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SUMMARY 

 

 Over the past 10 years, growing concerns over the modification of fibers have led 

researchers to focus on enriching the carboxyl group content of fibers by chemical 

oxidation and topochemical grafting. The current series of experiments continues this line 

of research by investigating the carboxyl group content of fibers during kraft pulping, 

alkaline peroxide bleaching, and 2,2,6,6-tetrametyl-1-piperidinyloxy radical (TEMPO)-

KBr-NaClO oxidation system. 

 The first experiment characterizes changes in the carboxyl group content of fibers 

for two sets of kraft pulps: 1) conventional laboratory cooked loblolly pine kraft pulps, 

and 2) conventional pulping (CK) versus Lo-Solids pulping (LS) pulps. The results 

indicate that effective alkali (EA), temperature, and H-factor are the primary factors 

controlling fiber charge during kraft pulping. This result is supported by the following 

findings. When pulping to the same H-factor, low EA charge and low pulping 

temperature were favorable for increasing bulk carboxylic acid group content of fibers. 

Sulfidity did not have an obvious effect on bulk or surface carboxylic acid group content 

of fibers. Bulk fiber charge had a linear relationship with water retention value. Another 

set of kraft pulps distinguished by conventional pulping and Lo-Solids pulping were 

investigated to determine the effect of H-factor and pulping protocol on fiber charge. 

When bulk fiber charge was plotted against kappa number, pulps from Lo-Solids pulping 

had a higher slope value than the conventional pulping pulps. The charge on 

holocellulose fibers approaches a constant value as pulping advances for both types of 

pulping processes.   



 xxvii 

 The second experiment examines the influence of alkaline peroxide treatment on 

elementally chlorine-free (ECF) bleached softwood kraft pulp. Alkaline peroxide 

treatment on fully bleached pulp was carried out because it is known that peroxide can 

increase fiber charge, but there’s no detailed study explored on it. The results indicate 

that fiber charge increases with the increase of peroxide charge. These increases were 

demonstrated in the following way: a maximum fiber charge increment of 16.6% was 

obtained with 8.0% more peroxide charge on oven dried (o.d.) pulp at 60.0°C. Copper 

number decreased when peroxide charges were 0.5% and 1.0% at 60.0°C and 90.0°C 

treatments, respectively, and then increased with the increment of peroxide charge. Both 

fiber charge and copper number approached constant values when a 4.0% or higher 

peroxide charge was applied. Fiber charge and copper number were compared after the 

peroxide treatment of ECF bleached kraft pulp versus sodium borohydride reduced ECF 

bleached kraft pulp. The results indicate that carbonyl group content of fibers is favorable 

for improving fiber charge after peroxide treatment. The effect of increased fiber charge 

on refining, cationic starch adsorption, and hornification was examined. Two pulps were 

investigated: (1) an ECF bleached softwood kraft pulp served as control and (2) the 

control pulp treated with alkaline peroxide which had a higher fiber charge. It was shown 

that the increased fiber charge can improve the efficiency of the refining treatment as 

indicated by differences in tensile index when pulps were refined from 0 to 1000 

revolutions. Upon the addition of 2% cationic starch to both pulps, the tensile index of 

the control pulp increased by 13.7% and that of high fiber charge pulp by 23.7%. 

Enhanced fiber charge was beneficial for reducing hornification when pulp was dried at 

105°C. 



 xxviii 

 The final experiment investigates the effect of TEMPO-mediated oxidation of an 

ECF bleached softwood kraft pulp on carboxyl group content, carbonyl group contents, 

degree of polymerization, and water retention value of fibers. The results show that 

TEMPO-mediated oxidation is useful in enriching the carboxyl and carbonyl groups to 

fibers, as well as enhancing the property of water adsorption of fibers. This result is 

supported by the findings that the carboxyl group content of the fibers was improved with 

increasing NaClO charge whereas, the carbonyl group content of fibers approached a 

maximum when a charge of 0.85 mmol NaClO/g o.d. fibers or higher was employed. The 

degree of polymerization of fibers drastically decreased from 2416 to 688 depending on 

the NaClO charge during the TEMPO-mediated oxidation. Oxidized fibers were shown to 

exhibit 62.9% higher water retention values (WRV) than the original fibers. Due to the 

enhanced carboxyl group content after oxidation, a measurement of the physical strength 

of the paper revealed that the tensile index of the oxidized fibers was 13.8% greater than 

that of the original fibers. The individual fiber strength of the oxidized fibers was lower 

than that of the original fibers as determined by a zero-span strength measurement 

showing a 17.0% decrease. 

These findings suggest that: (1) kraft pulping process can be modified to obtain 

the target carboxyl group content, (2) terminal peroxide bleaching provides higher fiber 

charge which can save energy and chemical charge of subsequent refining and wet-end 

processes, respectively, as well as reduce hornification during drying, (3) TEMPO-

mediated oxidation of fibers is capable of improving the properties of fibers, including 

fiber charge and water adsorption, and enhancing final paper strength. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

The chemical properties of fibers are of great importance to the behavior of fibers 

during pulping and papermaking processes, as well as for final paper products. Wood 

pulp fibers carry a charge when suspended in water due to the presence of acidic groups 

in cellulose, hemicelluloses, and lignin. The acidic functional groups associated with 

wood consist of (i) carboxylic acid groups with an approximate pKa value of 4.5; (ii) 

phenolic hydroxyl groups with an approximate pKa of 10.2; and (iii) weakly acidic 

hydroxyl groups present in polysaccharides with a pKa of roughly 13.7.[1] With the 

exception of pulps that contain significant levels of sulfonate groups, carboxylic acid 

groups are the only functional groups that give rise to the generation of charged sites on 

the fibers under typical papermaking conditions. 

Carboxyl groups of fibers can be controlled and introduced by the kraft pulping 

process and through bleaching processes, including oxygen delignification, ozone 

bleaching, and peroxide bleaching. 

The fiber charge of the kraft pulp, which is generated by the dissociation of the 

carboxyl group of fibers, is an important parameter to be considered during papermaking 

because many of the interactions between soluble and particulate fractions of 

papermaking furnishes are charge induced.[2, 3] The carboxyl groups of pulp fibers are 
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reported to be the primary retention sites of various wet-end additives in pulp 

suspensions. Therefore, the performance of retention aids, sizes, wet and dry strength 

resins, fillers etc., are influenced by the charge of fibers.[2-5] Also, the fiber charge 

strongly influences the swelling of wet fibers, fiber flexibility, fiber–fiber bonding, and 

refinability.[6-10] In short, the fiber charge not only determines the consumption of 

cationic additives used in papermaking, but is also very important for both fiber swelling 

and the interaction between the fibers during consolidation of the fibers in the dryer of 

the paper machine. 

The main objective in kraft pulping is liberation of wood fibers and 

delignification. Delignification in the kraft pulping process occurs mainly through 

fragmentation and creation of phenolates into the lignin fragments and the residual lignin.  

During the kraft pulping of wood, a significant proportion of the initial 4-O-methyl-

glucuronic acid side groups (MeGlcA) of xylan are converted to hexeneuronic acids 

(HexA) which can contribute to the fiber charge of kraft brownstock.[11, 12] Pulping 

conditions and green liquor pretreatment, prior to pulping, strongly affect the formation 

and stability of HexA.[13-15] Alkaline pulping also results in the formation of new 

polysaccharide carboxyl groups, generated from the peeling reaction which is stopped by 

the formation of metasaccharinic acid or other alkali-stable carboxyl groups.[16] The 

residual lignin in kraft pulps is known to contain carboxylic acid groups.[17, 18] 

The bleaching of kraft pulps is directed at lignin decolorization and the removal 

of residual lignin.[19] The oxidants commonly used for kraft pulp bleaching include 

chlorine, chlorine dioxide, oxygen, ozone, and hydrogen peroxide. Peroxides are 

important bleaching reagents for cellulosic products. In 1993, the consumption of 
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hydrogen peroxide in North America was 530 million pounds by the pulp and paper 

industry and 60 million pounds by the textiles industry.[20] Hydrogen peroxide in 

particular is a potent, relatively inexpensive oxidant that chemically degrades 

chromophoric components in pulps and textiles. It is known that H2O2 bleaching can 

introduce carboxylic acid groups by oxidizing cellulose, hemicelluloses, and also residual 

lignin of fibers.[21, 22] 

Recently, a novel method for the catalytic oxidation of polysaccharides by a 

water-soluble nitroxyl radical, 2,2,6,6-tetrametyl-1-piperidinyloxy radical (TEMPO), has 

been reported to be an effective reagent to convert C-6 primary hydroxyl groups to 

carboxylates via a reactive aldehyde-intermediate.[23-32] 

 

1.2 Objectives 

 

In spite of the practical importance of carboxyl group formation of pulp fibers 

during kraft pulping, few studies[13-15] have fully explored the effects of pulping 

processes. In fact, no study compares conventional kraft pulping to modern kraft pulping 

in terms of the carboxyl groups present in kraft pulp. Many studies that examined the 

effects of peroxide bleaching on carboxyl groups of pulp fibers were focused on 

mechanical pulp; therefore, not enough information is known about the effects of the 

alkaline peroxide treatment on fully bleached pulp fibers. The purpose of fiber 

modifications by novel methods, e.g., TEMPO-mediated oxidation and periodate, is to 

enrich functional groups of fibers, including the carboxyl and carbonyl groups of fibers.  
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The first goal of this study is to determine how fiber charge is influenced by 

varying kraft pulping conditions and two kraft pulping protocols: conventional kraft 

pulping and Lo-Solids continuous kraft pulping. These two protocols are also compared 

in terms of their impact on fiber charge. The second goal of this research is to understand 

the formation of carboxyl groups and carbonyl groups during the alkaline peroxide 

treatment of fully bleached softwood kraft pulp. Also, the influences of the enhanced 

fiber charge on wet-end chemical retention, refining, and hornification are examined. The 

third goal is to characterize the TEMPO-mediated oxidation of fully bleached softwood 

kraft pulp. 

This study could lead to: 

(1) A better understanding of kraft pulping process for optimization of the 

modern kraft pulping process, 

(2) A practical technology of terminal peroxide bleaching which can benefit the 

final paper making process, and   

(3) A promising method to increase the carboxyl group content of fibers by 

TEMPO-mediated oxidation, which can not only be applied to paper 

manufacturing, but also provide valuable information with regard to cellulose 

chemistry.  

 

1.3 Dissertation structure 

 

Chapter 1 of this dissertation briefly introduces the study and its objectives. 

Chapter 2 summarizes the basic knowledge and literature related to this research. The 
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experimental methods are described in Chapter 3. Chapter 4 details the results of the 

influence of kraft pulping on the carboxyl group content of softwood (SW) kraft pulps. 

The physico-chemical properties of elementally chlorine-free (ECF) bleached softwood 

kraft pulps treated by alkaline peroxide are investigated in Chapter 5. A novel chemical 

modification, TEMPO-mediated oxidation, on ECF bleached SW kraft pulp is discussed 

in Chapter 6. Lastly, Chapter 7 outlines the overall conclusions of this research and 

recommendations for future work. 
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 CHAPTER 2 

 

BACKGROUND LITERATURE 

 

2.1 The composition of wood fibers 

 

A wood fiber is a complex of natural substances including cellulose, 

hemicelluloses, lignin, and extractives.  Generally, the first three components have high 

molecular weights and contribute a lot of mass (see Table 2.1), while the latter 

component is of small molecular size. These polymer substances are not uniformly 

distributed within the wood cell wall and their concentrations change from one 

morphological region to another.[33] 

 

Table 2.1. Typical composition (wt., % of dry material) of softwoods, hardwoods, and 

wheat straw.[34] 

Components Softwoods Hardwoods Wheat straw 

Cellulose 42±2 45±2 36±5 

Hemicelluloses 27±2 30±5 27±3 
Lignin 28±3 20±4 11±3 
Extractives 3±2 5±3 26±5 

 

2.1.1 Cellulose 

Cellulose is a carbohydrate, meaning that it is composed of carbon, hydrogen, and 

oxygen. Cellulose is a straight-chain, unbranched, hydrophilic polysaccharide composed 

of repeating β-D-glucopyranose monomer units which are linked together by (1-4)-
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glycosidic bonds (Figure 2.1).  Note that β-D-glucopyranose chain units are in chair 

conformation (4C1) and substituents HO-2, HO-3, and CH2OH are oriented 

equatorially.[35] Every other chain unit is rotated 180o around the main axis of the chain, 

which shows that the actual repeating unit of cellulose is cellobiose.[35] The length of the 

cellobiose unit is 1.03 nm.[36]  
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Figure 2.1. Structure of cellulose.[37]  

 

The chemical formula for cellulose is (C6H10O6)n, where n is the number of 

repeating sugar units or the degree of polymerization (DP).  The value of n varies with 

the different sources of cellulose and the treatment received.[38] The degree of 

polymerization (DP) is defined in Equation 2.1. The DP of cellulose in wood is 

approximately 10,000, while it is around 2,000 for commercial wood pulp.[39] 

 

UnitseoGlucOneofWeightMolecular

CelluloseofWeightMolecular
DP =                              (2.1) 

Table 2.2 outlines the DP of cellulose of various pulps. 
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Table 2.2. Degree of polymerization of cellulose of various pulps. 

Pulp I.D. DP of cellulose 

Softwood[40] 
Semi-bleached kraft pulp 
Bleached kraft pulp 

Hardwood[40] 
Semi-bleached kraft pulp 
Bleached kraft pulp 

Commercial cellulose (acid-washed)[40] 

 
3600 
2900 

 
3600 
2400 
1180 

White spruce (Picea glauca)[41] 
Kraft pulp (kappa # = 40) 
Sulfite pulp (kappa # = 40) 

 
2295 
1677 

Fully bleached kraft pulp from pine (Pinus 

taeda)[42] 
1597 

Commercial bleached pulps[43] 
    Hardwood kraft ECF 
    Mixed hardwood kraft ECF 
    Birch kraft TCF 
    Eucalyptus kraft ECF 
    Pine kraft TCF 
    Birch kraft ECF 

 
1208 
845 
974 
978 
672 
997 

ECF* bleached SW (white spruce) kraft 
pulps[44]  
    Kraft 
    2% PS** 
    5% PS 
    10% PS 
O-ECF*** bleached SW kraft pulps 
    Kraft 
    2% PS 
    5% PS 
    10% PS     

 
1360 
1950 
2000 
1900 

 
1250 
1630 
1420 
1500 

                     * D0EDD ** Polysulphide  ***  OD0EDD 

Cellulose has a strong tendency to form intra- and intermolecular hydrogen bonds, 

which stiffen the straight chain and promote aggregation, forming a crystalline 

structure.[36] Bundles of cellulose molecules are aggregated together in the form of 

microfibrils, in which highly ordered (crystalline) regions alternate with less ordered 

(amorphous) regions (See Figure 2.2).[35, 38] Microfibrils build up and form fibrils 
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which form cellulose fibers. As a consequence of its fibrous structure and strong 

hydrogen bonds cellulose has high tensile strength and is insoluble in most solvents.[38]  

 

Figure 2.2. Schematic of molecular organization within a cellulose microfibril.[38] 

 

 The crystalline region of cellulose in wood and ECF bleached pulps accounts for 

65%[45] and 40-50% of the biomass structure, respectively[46]. Lennholm and her co-

workers[47] studied the crystallinity of cellulose materials by 13C-CP/MAS NMR. The 

results are shown in Table 2.3. It is evident that that the crystalline region in wood pulp 

can be increased by bleaching. 
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Table 2.3. The crystallinity index (CrI) and amorphicity index (AmI) values of cellulose 

in different cellulose materials.[47] 

Lignocellulosic samples CrI AmI 

Cotton 0.66 0.34 

Oxygen delignified hardwood pulp 0.44 0.56 
Fully bleached hardwood kraft pulp 0.43 0.57 
Fully bleached softwood kraft pulp 0.52 0.48 
Unbleached softwood kraft pulp 0.52 0.48 
Aspen CTMP 0.47 0.53 
Spruce CTMP 0.45 0.55 
Unbleached GWP 0.44 0.56 
Bleached GWP 0.45 0.55 
TMP 0.49 0.51 
Bleached spruce sulfite pulp 0.53 0.47 

 

2.1.2 Hemicelluloses 

 

Hemicelluloses differ substantially from cellulose, although both are 

polysaccharides of similar molecular chain structure.  Cellulose is a homopolysaccharide, 

while hemicelluloses are heteropolysaccharides.  The composition and structure of the 

hemicelluloses in softwoods differ in a characteristic way from those in the hardwoods. 

Hemicelluloses promote fiber’s internal lubrication, leading to improved flexibility. 

During pulp drying, they tend to stiffen fiber.[48] Table 2.4 summarizes the DP and 

percentage of the major hemicelluloses in softwoods and hardwoods. 
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Table 2.4. The DP and percentage of the major hemicelluloses in softwoods and 

hardwoods.  

Hemicellulose type 
Degree of 

polymerization 
(DP) 

Percentage 
in wood 

Galactoglucomannans 100 11-25% 
Softwoods[45] 

Arabinoglucuronoxylan 100 7-10% 
Glucuronoxylan[49] 133 n/a 
Glucuronoxylan 200 15-30% Hardwoods[45] 
Gluccomannan 200 2-5% 

Hardwoods[50] 
    E.* globulus 

    E.* urograndis 

   Betula pendula 

Glucuronoxylan 

 
200 
200 
160 

 
- 
- 
- 

     * Eucalyptus 

 

 Jacobs and Dahlman[51] developed a detailed database of the molar mass of 

hemicelluloses from wood and pulps using size exclusion chromatography (SEC) and 

matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALSI-

MS). The woods they investigated were birch, aspen, spruce, pine and larch wood all 

from Sweden. The results of the carbohydrate content of holocellulose from the woods 

are documented in Table 2.5. Jacobs and Dahlman[51] also reported the DP of 

hemicelluloses in woods, presented here in Table 2.6. 
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Table 2.5. The carbohydrate content of holocellulose from various woods and pulps by 

Jacobs and Dahlman.[51] 

Relative carbohydrate composition (mass %) 
Samples 

Glu Xyl Ara Man Gal 4OMeGlocA GlcA 

Birch 57.6 34.1 0.3 3.1 0.5 4.4 - 

Aspen 70.4 23.3 0.0 3.6 0.3 2.4 - 
Spruce 75.9 9.1 1.4 9.1 1.7 2.7 0.1 
Pine 75.5 9.3 2.0 9.3 1.3 2.4 0.1 
Larch 80.0 6.3 1.1 10.4 0.6 1.4 0.2 

 Glu=Glucose; Xyl=Xylose; Ara=Arabinose; Man=Mannose; Gal=Galactose; 
 4OMeGlocA=4-O-methylglucuronic acid; GlcA=Glucuronic acid 

  

 Table 2.6. Degree of polymerization of hemicelluloses extracted from softwoods 

and hardwoods by Jacobs and Dahlman.[51] 

Wood Type of hemicellulose DP of hemicellulose 

Birch Glucuronoxylan 101-122 

Arabinoglucuronoxylan 107-145 Spruce 
Pine 
Larch Galactoglucomannans 118-132 

 

2.1.2.1 Softwood hemicelluloses 

 

Figures 2.3 and 2.4 present the two main hemicelluloses in softwood, 

galactoglucomannans and arabinoglucuronoxylan, respectively.  
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Figure 2.3. Principal structure of galactoglucomannans.[35] 

 

Galactoglucomannans are the principal hemicelluloses in softwoods. Their 

backbone is a linear or possible slightly branched chain which is built up of (1→4)-linked 

β-D-glucopyranose and β-D-mannopyranose units. The α-D-galactopyranose residual is 

linked as a single-unit side chain to the framework by (1→6)-bonds.[35] 
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Figure 2.4. Principal structure of arabinoglucuronoxylan.[35] 

  

 Another major hemicellulose polymer in softwoods is an arabinoglucuronoxylan.  

It consists of a backbone of β-(1-4)-xylopyranose units with (l–2) branches of D-
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glucopyranosyluronic acid and (l–3) branches of l-arabinofuranose.[52] Because of their 

furanosidic structure, the arabinose side chains are easily hydrolyzed by acids.  Both the 

arabinose and uronic acid substituents stabilize the xylan chain against alkali-catalyzed 

degradation.[35] 

 

2.1.2.2 Hardwood hemicelluloses 

 

The main hemicellulose in hardwood is glucuronoxylan. Xylans contain acidic 

groups, such as glucuronic acid, and have a molecular structure which is similar to that of 

cellulose when the xylans are stripped of their branches.[48] 

 

Figure 2.5. Abbreviated formula of glucuronoxylan.[35] 

Xylp: xylopyranose; GlcpA: glucopyranosyluronic acid; R: Acetyl group (CH3CO). 

 

The backbone which is linked by (1→4)-bonds consists of β-D-xylopyranose 

units (see Figure 2.5).  Most of the xylose residues contain an O-acetyl group at C-2 or C-

3 and there are about seven acetyl residues per ten xylose units. The xylose units in the 

xylan chain additionally carry (1→2)-linked 4-O-methyl-α-D- glucopyranosyluronic acid 

residues.  Xylan chain consists of about one uronic per ten xylose residues.[35] 
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2.1.3 Distribution of the mono sugar content of woods and pulps  

 

Mono sugars found in woods and pulps include glucose, xylose, arabinose, 

mannose, and galactose. Currently, sugar content can be determined by high performance 

anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) 

analysis. Table 2.7 summarizes the sugar content of various woods and pulps. These 

samples include woods, mechanical pulp, unbleached kraft pulp, and bleached kraft pulp. 
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Table 2.7. The mono sugar content (on wood or pulp) of various woods and pulps. 

 
Sample 

Glucose 
(%) 

Xylose 
(%) 

Arabinose 
(%) 

Mannose 
(%) 

Galactose 
(%) 

Pinewood 
(Pinus sylvestris 
L.)[53] 

49.1 5.7 1.2 12.9 1.7 

Loblolly pine  
(Pinus taeda 

L.)[54]  
Top juvenile 
normal wood 

43.1 7.6 1.6 11.2 1.8 

Hardwoods[50] 
    E.* globulus 

    E.* urograndis 

    Betula pendula 

 
53.4 
52.1 
44.5 

 
14.2 
11.4 
23.6 

 
0.4 
0.4 
0.7 

 
1.1 
0.7 
2.1 

 
1.5 
1.2 
0.8 

Yellow birch[55] 43.8 21.1 0.7 1.0 1.1 

W
oo

d 

Norway spruce 
(Picea abies 
L.)[56] 

46.9 4.4 1.2 10.4 5.3 

M
ec

ha
ni

ca
l 

pu
lp

 

Spruce PGW** 
pulp[57] 

39.3 7.0 0.5 14.6 1.0 

Southern pine[58] 
(kappa # = 24.2) 

84.9 7.1 0.5 7.2 0.3 

U
nb

le
ac

he
d 

kr
af

t 
pu

lp
 Hardwoods[50] 

(kappa # = 18.6) 
    E.* globulus 

    E.* urograndis 

    Betula pendula 

 
 

76.7 
82.0 
73.1 

 
 

18.1 
13.9 
23.4 

 
 

0.2 
0.2 
0.2 

 
 

0.2 
0.2 
0.6 

 
 

0.7 
0.2 
0.0 

B
le

ac
he

d 
kr

af
t 

pu
lp

 

ECF*** SW[44] 
    Kraft 
    2% PS**** 
    5% PS 
    10% PS 
O-ECF***** SW 
    Kraft 
    2% PS 
    5% PS 
    10% PS 

 
86.8 
84.9 
82.2 
80.1 

 
87.1 
85.3 
83.6 
82.2 

 
6.5 
5.9 
4.6 
5.6 

 
5.9 
5.6 
4.2 
4.5 

 
<0.5 
<0.5 
<0.5 
<0.5 

 
<0.5 
<0.5 
<0.5 
<0.5 

 
6.3 
8.7 

12.6 
13.4 

 
6.4 
8.4 

11.7 
12.5 

 
<0.5 
<0.5 
<0.5 
<0.5 

 
<0.5 
<0.5 
<0.5 
<0.5 

  * Eucalyptus ** Pressurized groundwood spruce pulp *** D0EDD **** Polysulphide  
   *****  OD0EDD 
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2.1.4 Lignin 

 

Lignin is a complex aromatic polymer comprised of hydroxyphenylpropane units. 

It is an amorphous, crosslinked, three-dimensional phenolic polymer and is chemically 

bonded to the hemicelluloses. Lignin is much less hydrophilic than either cellulose or 

hemicellulose, almost to the point of being hydrophobic.[48] 

Native lignin is a polymer comprised of coniferyl alcohol, sinapyl alcohol, and p-

coumaryl alcohol.[59] The general lignin precursors are shown in Figure 2.6.[19] 

OH

OH

p-coumaryl alcohol
(softwood/hardwod)

OH

OCH3

OH

coniferyl alcohol
(softwood/hardwood)

OCH3H3CO

OH

OH

sinapyl alcohol
(hardwood)  

Figure 2.6. The structures of lignin precursors.[19] 

 

 The polymerization of these alcohols in the cell wall leads to a heterogeneous 

branched and cross-linked polymer in which the phenylpropane units are linked by C-C 

and C-O bonds. In addition, secondary reactions in the lignification process lead to the 

formation of benzyl alcohol and benzyl ether groups. Etherification of carbohydrates with 

benzyl alcohol groups leads to a cross-linking between lignin and polysaccharide chains. 

Figure 2.7 presents an example of a benzylic ether bond.[60] 
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OCH3

O

OH

O

O

O

OH

OH

O

OCH3

O
 

Figure 2.7. Chemical structure of a benzylic ether of the lignin-carbohydrate complex 

(LCC) type.[60] 

 

The main linkages joining the phenylpropane units are depicted in Figure 2.8.[35] 

The exact structure of lignin is not clearly understood because of the random nature of 

linkages between the phenylpropane units. 
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Figure 2.8. Inter-unit linkages in lignin.[35, 61, 62] 

 

 Lignin polymer in the wood is gradually degraded and dissolved during pulping 

and bleaching processes. Table 2.8 summarizes the functional groups in lignin from wood 

(native lignin), kraft pulp, and oxygen bleached kraft pulp of spruce.[63] 
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Table 2.8. Number of functional groups per 100 carbon atoms in lignin of wood, kraft 

pulp, and oxygen bleached kraft pulp of spruce.[63] 

Type of carbon 
Native 
lignin 

Kraft pulp 
(kappa #=30.5) 

Oxygen 
bleached pulp 

(kappa #=17.7) 

Carbonyl 0.8 - - 

Carboxyl - 2.1 3.5 
Olefinic + aromatic Cq 39 54 52 
Aliphatic CHx-OR 23.6 9.5 10.3 
Methoxyl 11.2 9.1 8.2 
Aliphatic CHx 4.9 10.4 10.4 

 

The lignin content of the pulp after chemical pulping and bleaching usually is 

measured by a standardized reaction of potassium permanganate (KMnO4); this measure 

is referred to as a “kappa number”. The approximate lignin content in weight percent is 

calculated by multiplying the kappa number by 0.15.[19] Lignin can be isolated from 

wood and pulp through a number of methods including milling, solvent extraction, 

cellulolytic enzymatic treatments, acidic hydrolysis, and combinations.[64, 65] 

 Koda, Gaspar, Yu, and Argyropoulos studied the molecular weight of residual 

lignin in softwood (loblolly pine, i.e., Pinus taeda L.) kraft pulp.[66] The kappa numbers 

and lignin contents of various kraft pulps are shown in Table 2.9. A two-step enzymatic-

acidolysis method[65] was applied in their study to isolate residual lignin. Figure 2.9 

presents the molecular weight and polydispersity of residual lignin. It is clear from Figure 

2.9-A that the weight average (Mw) and the number average (Mn) molecular weights of 

residual lignin decrease as of the degree of delignification increases, and that Mw is more 

sensitive than Mn. Polydispersity (Figure 2.9-B) is also observed to decrease during the 

process of delignification. These results suggest that the breadth of the molecular weight 

distribution becomes narrower as delignification proceeds.[66] 
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Table 2.9.i Kappa number and lignin content of kraft pulp from loblolly pine.[66] 

 
Wood 
meal 

Kraft pulp 

Kappa number - 104 89.3 70.7 38.4 27.4 
Lignin content (%) 25.9 15.5 13.9 11.3 5.2 3.9 
Acid insoluble (Klason) lignin 
(%) 

25.0 14.5 13.0 10.5 3.9 2.2 

Acid soluble lignin (%) 0.9 1.0 0.9 0.9 1.4 1.7 
Degree of delignification (%) 0 39 46.4 56.4 80.0 85.0 
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Figure 2.9.i The weight average and number average molecular weights of residual lignin 

in kraft pulp from loblolly pine compared to the degree of delignification.[66] 

 

 More recently, three lignin protocols for various wood species were examined by 

Guerra and co-workers[67]. The three isolated lignin are milled wood lignin (MWL), 

                                                 
i Table 2.9 and Figure 2.9 are reproduced with the kind permission from Appita Inc. The 
authors including Koda, Gaspar, Yu, and Argyropoulos of this manuscript are also 
appreciated for sharing their work.  

A 

B 
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cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL). The 

EMAL protocol was found to have much higher gravimetric lignin yields and molecular 

weights (MW) than those of the MWL and CEL (Table 2.10). The lignin yield was based 

on the Klason lignin content of extracted ground wood meal. 

 

Table 2.10. Gravimetric yields and MWs of EMAL, MWL, and CEL from Douglas fir, 

redwood, white fir, and Eucalyptus globulus.[67] 

MWL CEL EMAL 
Wood species Yield 

(%) 
MW 

(g/mol) 
Yield 
(%) 

MW 
(g/mol) 

Yield 
(%) 

MW 
(g/mol) 

Douglas fir 1.2 7400 7.0 21800 24.8 38000 
Redwood 15.0 5900 13.0 23000 56.7 30100 
White fir 11.0 8300 11.0 21700 42.9 52000 
Eucalyptus globulus 34.0 6700 33.0 17200 63.7 32000 

 

 The functional group of the EMAL isolated from different wood species is listed 

in Table 2.11.  

 

Table 2.11. Functional group contents of EMAL isolated from Douglas fir, 

redwood, white fir, and Eucalyptus globulus.[67] 

Wood species 
Functional group* 

Douglas fir Redwood White fir 
Eucalyptus 

globulus 
Total β-aryl ether 1600 1340 1490 2780 
Syringyl OH 0.00 0.00 0.00 620 
Guaiacyl OH 840 1060 930 350 
p-hydroxyl OH 100 160 110 20 
Uncondensed PhOH 940 1220 1040 Overlapped 
Condensed PhOH 410 630 560 Overlapped 
Total PhOH 1350 1850 1600 990 
Carboxylic groups 130 160 190 150 

    * It is determined by 31P NMR and values in µmol/g. 
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2.1.5 Extractives and inorganic materials 

 

In addition to the major chemical components, wood contains small amounts of 

inorganic materials, and various extraneous, low molecular mass organic materials, 

normally referred to as "extractives". The extractives comprise an unusually large number 

of individual compounds of both lipophilic and hydrophilic types, including: terpenes, 

lignans, stillbenes flavonoids, and fats.[35] Wood extractives, for the most part, are 

dissolved in alkaline pulping liquor directly by soap formation or indirectly by micelle 

formation caused by the presence of ionized resin and fatty acids.[19] The inorganic 

materials are mostly transition metals. 

 

2.2 The structure of wood fibers 

 

Figure 2.10 shows the structure of a wood cell. It has a hollow center named a 

lumen and the sublayers of the cell wall include a primary wall and a secondary wall. The 

compound that connects the two adjacent primary walls is called the middle lamella. The 

primary wall is built of an open network of microfibrils embedded in an amorphous 

material. The crystalline cellulose accounts for approximately two-thirds of the cellulose. 

The hemicelluloses exist in the amorphous areas of cellulose microfibrils which bond 

them together.[33] Cellulose is the substance of the framework for the cell wall. In most 

wood species, cellulose is located predominantly in the secondary cell wall. Compared to 

the secondary wall, the primary wall has a lower amount of cellulose, but a higher 
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amount of lignin. The microfibrils have a parallel arrangement in the secondary wall. The 

difference between the three sublayers of the secondary wall is the angle of microfibrils 

in each layer.[33] The angle of microfibrils to the cell axis in S1 layer is 50-700. It 

decreases to 10-300 in the S2 layer, and it changes to 60-900 in the S3 layer.[68] Lignin is 

biosynthesized by maturing cells and permeates the fiber walls and the intercellular 

regions (middle lamellae).[35] Typical softwood fibers are approximately 2.5 to 7.0 mm 

long and 25-50 µm wide. Hardwood fibers are typically 0.8-1.6 mm long and 14-40 µm 

wide. The thickness of the cell wall layers are shown in Table 2.12. 
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Figure 2.10.ii Schematic illustration of the cell wall structure of a softwood tracheid, P: 

primary wall, S: secondary wall.[68] 

 

Table 2.12. The size of cell wall layers in a softwood tracheid.[69] 

Cell wall layer Size (µm) 

Primary wall <0.1 

Secondary wall  
    S1 0.1-0.2 
    S2 0.8-1.4 
    S3 0.1-0.2 

                                                 
ii This figure is reproduced with the kind permission from the University of Washington 
Press. 
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2.3 The effect of kraft pulping on fiber composition and properties 

2.3.1 Kraft pulping conditions and chemistry  

 

The dominant chemical pulping process in North America is the kraft process.  

The alkaline pulping liquor contains sodium hydroxide (NaOH) and sodium sulfide 

(Na2S). The pulping process is conducted at high temperatures (approx. 170 oC). Tables 

2.13 and 2.14 summarize the pulping process parameters of Scots pine (Pinus 

Silcestris)[70] and loblolly pine[71], respectively. 

 

Table 2.13. Industry batch cooking parameters of Scots pine (Pinus 

Silcestris).[70] 

Wood Scots pine (Pinus Silcestris) 

Yield from wood 47% 

Moisture content of wood 45% 
Chip temperature 10oC 
Effective alkali charge (as NaOH) 18.5% 
White liquor  
    -effective alkali 115g/L 
    -active alkali 135g/L 
    -sulfidity 29.6% 
    -causticity 80.5% 
Black liquor  
    -temperature 70 oC 
    -dry solids content 15% 
    -density 1.05kg/m3 
Liquor to wood ratio in batch cooking 4.5:1 
Steam temperature 100 oC 
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Table 2.14. The kraft cooking conditions of loblolly pine.[71] 

Wood Loblolly pine 

Yield from wood 44%~59% 

Active alkali 15%~18% 
Sulfidity 15%~30% 
Liquor to wood ratio 4:1 
Maximum cooking temperature 170oC 
Cooking time 40~180 min 
Kappa number 20~150 

 

Degradation of lignin during kraft pulping firstly depends on the cleavage of ether 

linkages. The presence of hydrogen sulfite ions, compared to hydroxyl ions, greatly 

facilitates delignification because of their strong nucleophilicity. Hydrogen sulfite ions 

result in increased hydrophilicity of lignin because of the liberation of phenolic hydroxyl 

groups. Therefore, lignin can be degraded into water-soluble fragments in the pulping 

liquor as sodium phenolates.[35] Lignin can only be removed by approximately 90-95% 

through conventional kraft pulping technologies. It is well known that residual lignin 

contains carboxylic acid groups.[18] 

Recently, Chakar and Ragauskas[59] reviewed, in detail, the softwood kraft lignin 

process chemistry. Lignin reactions that occur during kraft pulping are classified as 

degradation and condensation reactions. The former reactions result in the liberation of 

lignin fragments and enhance their dissolution, a desirable result. On the contrary, the 

latter reactions form alkali-stable linkages. The prevalent degradation reactions are the 

cleavage of α-aryl ether and β-aryl ether bonds.[72] Figure 2.11 presents an example of 

an alkaline cleavage of an α-aryl ether bond in a phenolic aryl-propane unit, and Figure 
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2.12 presents a competitive addition of external nucleophiles to quinone methide 

intermediate. 

O

H3CO

CH OR

HC O

CH2

HO H3CO

O

H3CO

HC

HC O

CH2

HO H3CO

 

Figure 2.11. Alkaline cleavage of α-aryl ether bond in phenolic aryl-propane unit.[72] 
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Figure 2.12. Competitive addition of external nucleophiles to quinone methide 

intermediate: Oar, aroxyl group.[72] 

 

The carboxylic acid group content of the residual lignin is affected by the kraft 

pulping process and its protocols. Froass, Ragauskas, and Jiang studied the carboxylic 

acid groups in residual lignin of conventional cooking (CK) and simulated extended 

modified continuous cooking (EMCC) pulps.[18] Their results are shown in Figure 2.13. 

It can be seen that the carboxylic acid group content of the lignin increases as 
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delignification proceeds, and both CK and EMCC lignins undergo similar increments in 

carboxylic acid group content.[18] 
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Figure 2.13. The carboxylic acid group contents of residual lignin isolated from CK and 

EMCC pulps.[18] 

 

 Jiang and Argyropoulos[73] also studied the functional groups of residual lignins 

in kraft pulps. In Table 2.15, it can be seen that kraft pulping can enhance carboxylic acid 

groups in residual lignin. This enrichment is accompanied by a decrease in the amount of 

aliphatic hydroxyl groups. 
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Table 2.15. The contents of functional groups of residual lignins isolated from wood and 

kraft pulps.[73] 

Property of pulp and 
lignin 

Spruce wood Kraft pulps from spruce wood 

Kappa number - 145 86.4 29.4 

Hydroxyl units (mmol/g) 
Carboxylic acids 

    Aliphatic hydroxyls 

 
0.15 
4.27 

 
0.15 
3.09 

 
0.18 
2.78 

 
0.26 
2.76 
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Figure 2.14. Peeling and stopping reaction of polysaccharides during kraft pulping.[74] 
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Polysaccharides, including cellulose and hemicelluloses, are degraded during the 

kraft process. As a result of the alkaline hydrolysis of glycosidic bonds, occurring at high 

temperature, new end groups are formed, giving rise to additional degradation. The 

peeling reaction is finally interrupted because the competing "stopping reaction" converts 

the reducing end group to a stable carboxylic acid group (see Figure 2.14).[35] At the end 

of kraft cooking, it can be assumed that virtually all carbohydrate end groups have been 

converted to carboxylic acids. 

Lignin-carbohydrate complex (LCC) present in wood and pulps have been 

described in a number of studies.[60, 75-78] Lawoko, Henriksson, and Gellerstedt[76] 

reported carbohydrate and lignin analyses of spruce ball milled wood (BMW) and of 

various LCC fractions isolated from wood and pulps (Table 2.16). 

 

 Table 2.16. Carbohydrate and lignin analyses of spruce ball milled wood (BMW) and of 

various predominant LCC fractions isolated from wood and pulps.[76] 

Fractions 
Arabinan 

(%) 
Xylan 
(%) 

Mannan 
(%) 

Galactan 
(%) 

Glucan 
(%) 

Klason 
lignin (%) 

BMW 1.3 5.9 12.2 1.8 46.7 26.7 
Kraft pulp 
(Kappa #= 35) 

0.7 7.3 5.7 0.4 75 4.5 

O-delig. Pulp 
(Kappa #= 10) 

0.5 6.7 5.0 0.3 80 0.9 

Wood 
   LCC1 
   LCC2 

 
3.2 
1.0 

 
2.4 
0.9 

 
33.5 
2.5 

 
12.6 
0.2 

 
5.2 

85.2 

 
39 
7 

Kraft pulp 
   LCC3 
   LCC4 
   LCC5 

 
0.5 
1.2 
4.4 

 
3.5 

11.2 
56.8 

 
4.0 

20.2 
6.3 

 
0 

1.7 
0.4 

 
88 
7.4 
7.7 

 
2.4 
35 
23 

O-delig. Pulp 
  LCC6 

 
0.9 

 
7.6 

 
41.6 

 
2.8 

 
13.3 

 
19.6 

LCC1=GalactoGlucoMannan-Lignin; LCC2=Glucan-Lignin; LCC3=Glucan-Lignin; 
LCC4=GlucoMannan-Lignin-Xylan; LCC5=Xylan-Lignin-GlucoMannan;  
LCC6=GlucoMannan-Lignin-Xylan 
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Table 2.17 summarizes the content of uncondensed β-O-4 structures and phenolic 

hydroxyl groups of LCC fractions present in wood and pulps. Among the various LCC 

fractions in wood, it was found that LCC1 (GalactoGlucoMannan-Lignin) has a higher 

content of β-O-4 structures than LCC2 (Glucan-Lignin). After cooking, the content of β-

O-4 structures in the 3 LCCs (LCC3, LCC4, and LCC5) is much lower than that of the 

LCCs of wood; this difference is due to the degradation of galactoglucomannan during 

the initial phase of kraft cook. Since any cleavage of a β-O-4 structure in a lignin 

structure can lead to the formation of a new phenolic hydroxyl group, LCC3 appears to 

have high phenolic hydroxyl group content. LCC6 (GlucoMannan-Lignin-Xylan) is the 

predominant LCC isolated from oxygen delignified pulp, which contains 80% of the total 

pulp lignin. It still contains a considerable amount of β-O-4 structures. This result 

indicates the stability of the GlucoMannan-Lignin-Xylan complex during cooking and 

oxygen delignification, which is in agreement with a previous study by Lawoko et al.[79] 

 

Table 2.17. Content of uncondensed β-O-4 structures and phenolic hydroxyl groups of 

LCC isolated from wood and pulps.[76] 

Fractions 
β-O-4 structures 

µmol/g lignin 
Phenolic hydroxyl groups 

µmol/g lignin 
Wood 
   LCC1 
   LCC2 

 
1169 
658 

 
Not analyzed 

1558 
Kraft pulp 
   LCC3 
   LCC4 
   LCC5 

 
50 

292 
37 

 
2129 
1450 
1230 

O-delig. Pulp 
   LCC6 

 
90 

 
680 

LCC1=GalactoGlucoMannan-Lignin; LCC2=Glucan-Lignin; LCC3=Glucan-Lignin; 
LCC4=GlucoMannan-Lignin-Xylan; LCC5=Xylan-Lignin-GlucoMannan;  
LCC6=GlucoMannan-Lignin-Xylan 
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2.3.2 The fate of hexeneuronic acid groups during kraft pulping 

 

Xylan in wood contains acidic groups, which are in the form of 4-O-methyl-α-D-

glucuronic acid (see Figure 2.4 in Page 13). It has been reported that 4-O-methyl-α-D-

glucuronic acid groups present in xylan are in part converted into a corresponding 

unsaturated acid, hexeneuronic acid (HexA), which is due to the loss of methanol during 

the alkaline pulping of wood (Figure 2.15).[12, 80] 
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Figure 2.15. Formation of hexeneuronic acid groups in xylan during alkaline pulping.[12] 

 

A study of HexA groups in terms of their pulping and bleaching chemistry was 

conducted by Jiang and co-workers.[80] HexA contains enol ether or unsaturated 

carboxylic acid groups, shown in Figure 2.16. HexA groups can react with electrophilic 

bleaching chemicals, such as chlorine dioxide and ozone. 
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Figure 2.16. Functional groups of HexA attached to xylan.[80] 

 

Figure 2.17 characterizes the amount of uronic acid groups present during the 

kraft pulping of pine. It can be seen that glucuronic acid content decreases as cooking 

time increases, while HexA content first increases and then decreases. Both groups 

eventually reach constant values. 
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Figure 2.17. Profile of uronic acid content of xylose during kraft pulping of pine.[80] 
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A comparison between softwood and hardwood kraft pulps subjected to similar 

cooking conditions is also reported in the same study[80] (Table 2.18). Hardwood kraft 

pulps contain more HexA groups than do softwood kraft pulps, because hardwoods 

contain more 4-O-methylglucuronoxylan.  

 

Table 2.18. The uronic acid content in conventional batch softwood and hardwood kraft 

pulps.[80] 

 
Hardwood 

(Birch) 
Softwood 

(Pine) 

Kappa number 18.2 25.9 

Uronic acid content, µmol/g   
    4-O-methylglucuronic acid 42 14 
    HexA 76 54 
    Total 118 68 

 

Similar results for US hardwood kraft pulps were obtained by Chakar et al.[81] In 

Figure 2.18, it can be observed that the content of HexA groups in pulp increases as 

delignification is extended from a kappa number of 30 to 14. However, further depletion 

of HexA occurred as delignification was proceeded. 
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Figure 2.18. HexA group content of hardwood kraft pulp at different lignin content.[81] 

    

 Pulping protocols have also been found to affect the HexA group content of 

pulps.[82] Table 2.19 presents the HexA content of different pulps generated from 

conventional kraft pulping, Lo-Solids kraft pulping, soda pulping, soda AQ pulping, and 

polysulfide pulping. The wood used in this study was Scandinavian softwood. 

 

Table 2.19. The HexA group content of pulps from different pulping protocols.[82] 

Pulp sample Kappa number 
HexA content 

(mmol/kg) 

Conventional pulping 25.5 22.7 

Lo-Solids pulping 21.0 15.3 
Soda 25.0 0.5 
Soda AQ 21.0 3.7 
Polysulfide 24.2 4.6 
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Gustavsson and Al-Dajani[83] developed an equation to determine HexA content 

during cooking (Equation 2.2). 

)(
0 exp kt

t HexAHexA −•=  

))
15.443

11
(

314.8

123
(exp])[5.1][8.6][5.335.2(10 3 −•−∧•+++−•= +−−−

T
NaHSHOk   

(2.2) 

HexAt and HexA0 are the amounts of HexA at the cooking time t and the beginning of 

cook. According to the model, the rate increases incrementally in [HO-], [HS-], [Na+], and 

cooking temperature T. Moreover, the HexA content at a given kappa number can be 

reduced by applying a high [HO-], a high ionic strength, a low cooking temperature, and a 

low [HS-]. 

 Similar to the study above, Chai et al.[71] proposed a mathematical model written 

as follows: 

]][_)3[()(exp
][ −×−∧⋅= OHOCH

RT
Eak

dt

HexAd
xylan                        (2.3) 

Based on this model, the effective alkali is the key factor controlling the formation of 

HexA for a given cooking temperature and wood species. 

 

2.3.3 Effects of the kraft pulping process on the composition of pulps 

 

The conditions of kraft pulping influence the carbohydrate content of kraft pulps. 

Genco and co-workers[84] investigated the retention of hemicelluloses during kraft 

pulping.  They studied the effects of wood chip thickness (2, 4, and 6mm), active alkali 

(AA) charge (20-28%), maximum temperature (160-180oC), and cooking time. When the 
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same kappa number of kraft pulp was generated, the pulping of the thinnest wood chip, 

2mm, resulted in 2% and 3.5% greater hemicellulose content compared to that of the 4 

and 6mm wood chips, respectively. At the fixed thickness of 4mm, it was found that the 

higher effective alkali (EA) of 23.8% resulted in a 1% lower hemicellulose content than 

the EA of 16.8%.[84] 

 Another factor that influences the chemical composition of kraft pulps is the use 

of pulping additives, such as anthraquinone (AQ) or polysulfide, which leads to increased 

pulp yields through greater retention of the hemicelluloses.[19] Typically, AQ added to 

the cooking digester are in the range of 0.05 to 0.1% in the mill. Zou and his co-

workers[85, 86] cooked northeastern hardwood with the addition of AQ to the same 

kappa number (16~17). The results are summarized in Table 2.20.[86] 

 

Table 2.20. The results of kraft pulping of northeastern hardwood by Zou et al.[86] 

Cellulose content 
(%) 

Hemicelluloses 
content (%) 

Pulp 
Yield after 

pulping 
(%) 

Based 
upon 
pulp 

Based 
upon 
wood 

Based 
upon 
pulp 

Based 
upon 
wood 

Control 49.9 74.7 37.2 23.0 11.5 

AQ 0.1% 52.1 72.9 38.0 24.8 12.9 
AQ 1.0% 54.0 71.5 38.6 26.2 14.2 
AQ 4.0% 54.8 71.0 38.9 26.7 14.6 

 

 Their conclusions are summarized as: 

• AQ increases the pulp yield and shortens the cooking time. 

• High pulp yield created by AQ-kraft cooking is caused by an increase in 

hemicellulose by approximately 70% and by the enhancement of cellulose 

by 30%. 
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• The selectivity during the followed oxygen delignification was improved 

for the high yield AQ-kraft pulp.[86] 

Buchert et al.[87] examined the carbohydrate content of softwood (Pinus 

sylvestris) pulp after conventional cooking and after superbatch cooking. Superbatch 

cooking employs a warm black liquor impregnation process followed by a hot black 

liquor pre-treatment before cooking. The conditions of cooking and the results of 

carbohydrate content are shown in Table 2.21. The pulps generated from superbatch 

cooking had a higher carbohydrate content than the pulps generated from conventional 

cooking. Also, the carbohydrate content of the pulps increased during delignification. 

 

Table 2.21. Carbohydrate content of kraft pulps from conventional cooking and 

superbatch cooking of softwood (Pinus sylvestris).[87, 88] 

Carbohydrate content* 
(%) Pulping protocol H-factor 

Glucose Xylose Mannose 

Lignin 
content  

(%) 

Conventional 
L:W=4:1 
Active alkali=18.0-22.0% 
Sulfidity=34% 
Maximum temp.=170oC 

204 
1007 
1500 
2001 
2517 

58.1 
69.6 
69.8 
72.0 
72.5 

6.2 
6.9 
7.4 
7.3 
7.5 

5.9 
6.0 
6.0 
6.0 
5.6 

17.9 
6.5 
4.8 
3.5 
4.4 

Superbatch 
Active alkali=18-22% 
Sulfidity=38% 
Maximum temp.=170 oC 

 
370 
830 
1820 

 
77.5 
83.8 
84.6 

 
7.0 
7.0 
6.1 

 
7.5 
7.1 
6.8 

 
5.3 
2.5 
1.5 

  * The contents of arabinose and galactose did not present in the table, because only a trace amount of them in the 
pulp. 

 

Danielsson et al.[89] used xylan as an additive for kraft pulping to modify the 

pulp fibers. The dissolution, degradation, and redeposition of xylan in kraft pulping were 

examined. Table 2.22 presents the conditions of this study. The pulps were generated 
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with a kappa number between 17 and 19. When birch xylan with a high molecular weight 

(12,200 g/mol) was added during the kraft pulping of spruce wood, the kraft pulp after 

1000 revolutions PFI refining showed an increase of 10% on the tensile index compared 

to the kraft pulp without the xylan addition. When a low molecular weight (5,950 g/mol) 

xylan was applied, the tensile index only increased by 5%.[89]    

 

Table 2.22. The conditions of two-stage kraft pulping of spruce wood with birch xylan as 

an additive.[89] 

Parameters Data 

1st stage cook 
    Active alkali (%) 
    Sulfidity (%) 
    L:W 
    Maximum temperature (oC) 
    Cooking time (hr) 

 
20 
35 
4:1 
159 
3 

After 1st cooking, half volume of black liquor is withdrawn 
and then same amount black liquor with birch xylan is 
added. 
2nd stage cook 
    Birch xylan charge (g/l) 
    Maximum temperature (oC) 
    Cooking time (hr) 

 
7.85 
159 
1 

 

2.3.4 Modern continuous kraft pulping protocols 

 

Over the last few decades, kraft pulping technology has significantly evolved to 

achieve extended delignification, enhanced yield, lower chemical use, reduced energy 

and increased production rates employing batch and continuous digesters.[90]  

 In Froass et al.’s study[18], an extended modified continuous cooking (EMCC) 

was compared with conventional cooking. They started by adding white liquor and 
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impregnating the chips for 30 min at 110 °C and 1000 kPa. The cocurrent cooking stage 

began after this impregnation stage by adding another charge of white liquor and raising 

the temperature to the maximum temperature. The conditions and results are given in 

Table 2.23. In table 2.23, it can be seen that EMCC obtains higher viscosity and a lower 

kappa number of kraft pulps compared to conventional cooking when the similar 

conditions were present. 

 

Table 2.23. The conditions and results of EMCC and conventional cooking of 

softwood.[18] 

Pulping protocol Conventional cooking EMCC 

White liquor % AA  27.4 27.4 27.4 27.4 27.4 27.4 

Initial EA, % NaOH 19.7 19.7 22.0 12.0 12.0 12.0 
Cocurrent EA % - - - 5.0 5.0 5.0 
Countercurrent EA % - - - 4.0 4.2 5.0 
Maximum temp. oC 170 170 170 158 161 169 
H-factor 1715 2601 4238 1651 2229 4238 
Kappa number 28.0 18.5 13.0 29.1 18.5 14.5 
Viscosity, mPa·S 33.6 17.5 10.9 51.8 35.4 18.1 
Screened yield, % 45.9 42.8 41.0 45.6 43.8 40.9 

 

Low solids (Lo-Solids) pulping is an example of another modern continuous 

pulping technology. The main feature of the Lo-Solids pulping method is the extraction 

of dissolved organic substances before bulk delignification. These organic substances 

detrimentally impact pulp viscosity, brownstock brightness values, bleachability, final 

bleached pulp brightness ceilings, and pulp tear strength.[90, 91] 
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Figure 2.19. Conventional cooking and Lo-Solids cooking digesters.[92] 

 

 MiyanMiyanishi and Shimada[92] compared conventional kraft pulping against 

Lo-Solids kraft pulping. A diagram of the two digesters is illustrated in Figure 2.19. 

Table 2.24 presents the conditions of conventional cooking and Lo-Solids cooking. The 

white liquor is fed into the Lo-Solids digester at three points: at the top, at the lower 

cooking circulation (LCC), and at the wash circulation (WC). As for conventional 

cooking, the white liquor is fed only at the top of the digester. The results in Table 2.24 

show a lower kappa number and a higher viscosity of the Lo-Solids cooking pulp 

compared to those of the conventional cooking pulp. 
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Table 2.24. The conditions and results of conventional cooking versus Lo-Solids 

cooking.[92] 

Parameters Conventional cooking Lo-Solids cooking 

AA charge  
(% on bone dry wood) 19 19 
WL split ratio 

Feed from top (%) 
LCC (%) 
WC (%) 

 
100 
0 
0 

 
54 
27 
19 

Kappa number 28~30 25 
Viscosity (cP) 27 29 

 

2.3.5 The influence of kraft pulping on carboxylic acid groups of fibers 

  

Bhardwaj et al.[93] investigated the fiber charge of Lo-Solids kraft pulps with 

kappa numbers from 40 to 105. By conductometric titration, the fiber charge was found 

to vary from 6.2 to 11.4 mmol/100g o.d. pulp (Table 2.25).[93] This table indicates that 

carboxylic acid group content is positively proportional to the kappa number of kraft 

pulp.  

 

Table 2.25. Carboxylic acid group content of Lo-Solids kraft pulp from Pinus 

Radiata.[93] 

Kappa number 
Fiber charge 

(mmol/100g o.d. pulp) 

39.6 6.2 

60.8 8.4 
79.9 10.4 
94.7 11.0 

105.0 11.4 
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Buchert et al.[87] studied the carboxylic acids of pulp fibers during kraft and 

superbatch pulping of Pinus sylvestris. Their results are shown in Table 2.26. The kraft 

pulps they generated through superbatch cooking had lower carboxyl group content than 

those that underwent conventional cooking. The reason the superbatch pulp had fewer 

carboxyl groups was due to the higher residual alkalinity in the superbatch pulping. It 

was concluded that the residual lignin of conventional kraft pulp with a kappa number of 

24.2 accounted for 32% of the total acids; whereas, the residual lignin of the superbatch 

pulp with a kappa number of 11.8 accounted for approximately 45% of the total acids, 

which is due to the nearly complete degradation of HexA during the pulping process (see 

Table 2.26).[87] 

 

Table 2.26. The results of carboxylic acid group and uronic acid group contents of 

softwood kraft pulps from conventional cooking and superbatch cooking. 

Pulping protocol 

Residual 
effective 
alkali, g/l 

H-factor 
/Kappa 
number 

Carboxyl 
group 

content 
(mmol/kg) 

Uronic acid 
group 

content* 
(mmol/kg) 

Conventional 
L:W=4:1 
Active alkali=18.0-22.0% 
Sulfidity=34% 
Maximum temp.=170oC 

19.3 
9.5 
7.8 
5.6 
4.7 

204 
1007 
1500 
2001 

2517** 

186 
107 
83 
77 
77 

75 
57 
47 
43 
40 

Superbatch 
Active alkali=18-22% 
Sulfidity=38% 
Maximum temp.=170 oC 

 
25.0 
22.8 
18.2 

 
370 
830 

1820*** 

 
71 
46 
40 

 
43 
21 
10 

           * It is the sum of the amount of HexA, MeGlcA, MeIdoA, GalA, and GluA. 
 ** Kappa number = 24.2. Metasacchatinic acid content = 12 mmol/kg.  
       Lignin bound acid content = 77-40-12=25 mmol/kg. 

 *** Kappa number = 11.8. Metasacchatinic acid content = 12 mmol/kg 
         Lignin bound acid content = 40-10-12=18 mmol/kg 
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2.4 Pulp bleaching 

2.4.1 Bleaching chemistry 

 

Kraft pulp fibers are brown due to the formation of chromophoric groups during 

pulping.[19] The bleaching of kraft pulps is directed at removing residual lignin, 

hexeneuronic acids, and other chromophoric compounds, which leads to increased 

brightness. 

Bleaching chemicals are used primarily as oxidants. They can break down 

residual lignin in pulp and increase its solubility in the bleaching liquor. Bleaching 

reactions can be categorized according to their principal mode of operation. According to 

the general concept developed by Gierer, bleaching reactions may be classified 

mechanistically as electrophilic or nucleophilic.[94] A mechanistic approach classifies 

them as electrophiles, nucleophiles, and radicals.  

• Electrophilic reactions typically initiate lignin-degrading bleaching 

processes, which frequently take place in acidic conditions. They involve 

cations and radicals generated from the bleaching chemicals.   

• Nucleophilic reactions typically occur in lignin-retaining bleaching. These 

reactions generally are in alkaline media. Anions and, to a much lesser 

extent, radicals are involved in the reactions.[70] 

Table 2.27[19] presents a list of chemical species that participate in the bleaching 

process. 
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Table 2.27. The list of reactive bleaching chemical species.[19] 

Reactant Name Type 
E or 
N 

Function 
initially 

pH range 

1. Present during bleaching with chlorine compounds 
Cl+ Chloronium Cation  E Oxidant  Acidic 
Cl• Chlorine radical Radical  E  Oxidant Acidic 
OCl- Hypochlorite ion anion N Reductant  Alkaline 
ClO2 Chlorine dioxide radical E Oxidant Acidic 
2. Present during bleaching with oxygen, hydrogen peroxide, and ozone 
•OO• Oxygen Diradical E Oxidant All 

OO•- Superoxide anion radical 
Radical, 
anion 

N Oxidant Alkaline/neutral 

HOO• Hypdroperoxide radical Radical  E  Oxidant Acidic  
HOO- Hydroperoxide anion Anion  N Reductant Alkaline  
HO• Hydroxyl radical Radical  E Oxidant Acidic  
OH+ Hydroxomium ion Cation  E Oxidant Acidic 
+OOO- Ozone Cation E Oxidant Acidic  
3. Present during alkaline treatments 
OH- Hydroxide ion Anion  N - Alkaline 
E= Eletrophile; N=Nucleophile 

 

Oxygen, chlorine, and chlorine dioxide are commonly delignifying chemicals. Alkaline 

peroxide does very little delignification but reduce chromophores in lignin. Such 

chemicals may be called brighteners. Chlorine dioxide and hypochlorite are capable of 

doing both.[70] 

 

2.4.2 Modern ECF and TCF bleaching technologies 

 

 Generally, the oxidant chemicals used in pulp bleaching include chlorine (C), 

chlorine dioxide (D), hypochlorite (H), oxygen (O), peroxide (P), and ozone (Z). There 

are also other chemicals, such as enzymes (X), acid (A), sodium hydroxide (E), and 

chelants (Q), that are applied during the bleaching process and serve as either a 

pretreatment, an extraction, or as a single bleaching process.[38] The use of chlorine-
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containing chemicals in pulp bleaching results in the formation of organochlorine 

compounds, i.e., absorbable organic halides (AOX). ClO2 bleaching produces much less 

AOX than Cl2 bleaching. Therefore, elementally chlorine-free (ECF) and totally chlorine-

free (TCF) bleaching technologies are widely carried out in the paper industry due to 

environmental concerns. ECF substitutes Cl2 by chloride dioxide, and commonly contains 

three to four stages including ClO2, O2, ozone, and peroxide. TCF uses oxygen-derived 

compounds as the bleaching agents in all stages. These compounds consist of hydrogen 

peroxide, oxygen, or ozone. The total demand of bleaching chemicals in a bleaching 

sequence is often added up as total chlorine equivalent. The consumption mainly depends 

on the incoming kappa number, but also on the form of the residual lignin contained in 

the pulp.[70] 

 Chlorine dioxide reacts with residual lignin, which can dissolve lignin. Its 

reactions with carbohydrates are minimal. The consistency of ClO2 bleaching is 

conducted at 9% to 15%. Table 2.28 gives some typical bleaching sequences and their 

conditions for softwood kraft pulp.  
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Table 2.28. Typical ECF bleaching sequences conditions of softwood kraft pulp.[70] 

Bleaching stages DE0DED ODE0DED ODE0D 

Initial kappa number 27 14 14 

Delignification 
D0, ClO2, kg eq.Cl/tbdp 
D0, pH 
D0, temperature 

 
54 
2 

60 

 
28 
2.5 
60 

 
28 
2.5 
60 

Extraction 
E0, NaOH, kg/tbdp 
E0, pH 
E0, temperature 
E, NaOH, kg/tbdp 
E, pH 
E, temperature 

 
33 

10.5 
65 
10 
10 
70 

 
17 

10.5 
65 
8 

10 
70 

 
20 

10.5 
65 
- 
- 
- 

Bleaching 
D1, ClO2, kg eq.Cl/tbdp 
D1, pH 
D1, temperature 
D2, ClO2, kg eq.Cl/tbdp 
D2, pH 
D2, temperature 

 
30 
4 

70 
10 
5 

75 

 
25 
4 

70 
8 
5 

75 

 
35 
4 

80 
- 
- 
- 

Total equivalent chlorine 
    kg/tbdp 

 
94 

 
61 

 
63 

Final brightness, % ISO 89 89 87 
          eq.Cl = equivalent chlorine; tbdp = tone bone dry pulp 

  

Enzyme treatment is a relatively new bleaching technology. It usually uses 

xylanase to eliminate the xylans. Therefore, it breaks the link between the cellulose and 

lignin and leads to easier removing lignin in the subsequent bleaching stages.[95, 96] A 

mill trial was conducted by replacing (CD)(EO)D(EP)D with X(EOP)D(EP)D. The 

xylanase used in this mill was CartazymeHS. The conditions are shown in Table 2.29. 

The advantages of enzymatic bleaching from this mill trial are: 

• Enzyme-treated brightness was 5-7 points than those of the pulp without 

enzyme bleaching. 
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• No negative effect of enzyme treatment on viscosity of pulp was found. 

• Potentially, enzyme treatment can reduce the use of molecular chlorine. 

 

Table 2.29. The conditions and results of an ECF bleaching sequence of X(EOP)D(EP)D 

of eucalyptus brownstock.[95] 

Bleaching 
stages 

Retention 
time (hr) 

Temp. 
(oC) 

Cons. 
(%) 

Charge 
Brightness 
(% ISO) 

Enzyme  
(pH=3.5-5.0)  

2.5 33-41 8 1.25*  - 

EOP** 2.0 67 11 - 33.8 
D1*** 2.0 65 12 - 65.7 
EP 2.0 69 12 - 78.5 
D2 3.0 68 12 - 88.2 

   * The unit is AU/metric ton (1 AU=106 xylanase units) 
   ** The total charge of peroxide is 12.7 kg/o.d. metric ton pulp 
   *** The total ClO2 charge is 13.8 kg/o.d. metric ton pulp  

 

2.4.3 Reaction principles in peroxide bleaching and oxygen delignification 

 

Hydrogen peroxide is a clear and colorless liquid.  It is sold commercially in 30% 

to 70% solution concentrations.  It is well-known that hydrogen peroxide brightens 

mechanical pulp, delignifies kraft pulp, and increases the brightness of bleached chemical 

pulp and secondary (recycled) fibers.[97-99] When used under relatively mild conditions 

(35-55°C), peroxide is an effective lignin-preserving bleaching agent. It can improve the 

brightness of groundwood and other highly delignified pulps without significant yield 

loss.  Under more severe conditions (70-80°C), peroxide is used in the later stages of 

chemical pulp bleaching to provide increases in full bleach brightness and improve 

brightness stability.[38]  
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Traditionally, hydrogen peroxide has been classified as a lignin-preserving 

bleaching reagent.  It preferentially removes chromophoric structures present in residual 

lignin, but is incapable of degrading the lignin network.[100]  

The action of alkaline peroxide as a bleaching agent can be explained through the 

reactions of the hydroperoxide anion, HO2
-, formed in an alkaline medium according to 

the equilibrium: 

H2O2 + OH - HO2 - + H2O                      (2.4) 

Where pKa = 11.6 at 25°C.  

The hydroperoxide anion, HO2
-, is a mild oxidative species which attacks 

carbonyl groups present in lignin.[35]  

A number of reactive free radical species are formed during the decomposition of 

aqueous hydrogen peroxide.[94, 101]  In aqueous media, the kinetics and 

thermodynamics of the "active oxygen" species have been evaluated by pulse 

radiolysis.[102] 

HOOH + HOO- → HO• + HOO• + HO-                                           (2.5) 

HOO- + HO• → O2
-• + H2O    k=3×107 M-1s-1               (2.6) 

HOOH + HO• → H2O + HOO•    k=3×107 M-1s-1               (2.7) 

HOO•  O2
-• + H+     pKa = 4.8 @ 25°C          (2.8) 

HO• + O2
-• → HO- + O2     k= 1×1010 M-1s-1             (2.9) 

HOOH + O2
-• → HO• + HO- + O2             k= 1×10-1 M-1s-1            (2.10) 

From the above information, reactions 2.5, 2.6, 2.7, and 2.9 appear to represent a 

viable mechanism for the base-introduced decomposition of hydrogen peroxide to oxygen 
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and water.  In addition, as hydrogen peroxide is also produced in the alkaline hydrolysis 

of peroxy acids, the series of reactions outlined above will also occur [103]. 

It is generally accepted that the radicals of most concern during peroxide 

bleaching are the hydroxyl radicals, perhydroxyl radicals, and superodixe radicals in 

relation to the reaction with cellulose. The most critical of these is the hydroxyl radical 

due to its high reactivity with both lignin and carbohydrate.[94] 

 

Hydroxyl radicals 

 The hydroxyl radical (HO•) and its conjugate base, i.e., the oxy anion (-O•), are 

the most reactive of all the oxygen species. Hydroxyl radicals are extremely reactive 

molecules that are capable of several reactions: Hydrogen abstraction (Equation 2.11), 

electrophillic addition (Equation 2.12), radical coupling (Equation 2.13), and electro 

transfer reactions (Equation 2.14).[104] 

  R-H + HO• → H2O + R•                                (2.11) 

HO• + HO• → HOOH                       (2.12) 

R• + HO• → ROH                     (2.13) 

RX + HO• → HO- + RX+•                     (2.14) 

The oxy anion is present under alkaline conditions. It performs similar chemistry 

to that of the hydroxyl radical and preferentially attacks aliphatic sidechains in aromatic 

structures instead of adding to the ring.[104] 

 

Superoxide anions 
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Superoxide anion (O2
-•) is generated by reducing a molecular oxygen by one 

electron, and its conjugate acid is in the form of the hydroperoxyl radical (HOO•).  These 

anions are believed to be the principal active species involved in the elimination of 

chromophores in lignin structures, particularly conjugated carbonyl structures that are 

prone to react with the hydroperoxide anion.[105] Because of its specific and efficient 

action on carbonyl and conjugated carbonyl groups, the hydroperoxide anion can attack 

many of the chromophore groups present in pulp, including those created by the other 

reagents applied in previous bleaching stages. These stages including chlorine, chlorine 

dioxide, and oxygen are known to form quinone groups.[35, 106, 107] 

 

2.4.4 Reactions of hydrogen peroxide with lignin and carbohydrates 

 

Residual lignins in kraft pulp are in the structure of α-carbinol and α-carbonyl 

groups.[108] In the presence of a free-phenolic hydroxyl compound R=H, the reaction 

proceeds by way of the Dakin-reaction (see Figure 2.20).[109] 
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Figure 2.20. Dakin reaction of peroxide with lignin.[109] 
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Also, the peroxy anion attacks an o-quinone structure to form a carboxylic acid 

group (see Figure 2.21).[35] These quinoid-type chromophoric structures are rapidly 

degraded to mono/di functional carboxylic acids.[19, 109]  
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Figure 2.21. Attack of nucleophilic peroxy ion and alkaline quinoid-type chromophoric 

structures.[35] 

 

 The main oxidizing attack of bleaching agents occurs within the polysaccharide, 

but it can also be directed to the end groups. Figure 2.22 suggests a mechanism for how 

hydroxyl group degrades carbohydrate. The hydroxyl group first attacks the C2 or C3 

position of the glucose unit to form a carbonyl group through hydrogen abstraction. A β-

alkoxy elimination occurs at C4, which leads to the cleavage of the cellulose chain.  
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Figure 2.22. Cleavage of a glycosidic bond by alkaline oxygen/H2O2 bleaching after 

formation of a carbonyl group.[35] 

 

If the conditions are alkaline, the new reducing end groups generated as a result of 

the cleavage of glycosidic bonds will give rise to the peeling of the cellulose and 

hemicelluloses chains (see Figure 2.23).[35]   
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Figure 2.23. Peeling reaction of polysaccharides during oxygen/H2O2 bleaching.[35] 
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Malinen and Sjöström studied the reactions of hydrocellulose during oxygen 

bleaching and found that the predominant end group is erythronic acid.[110] It has also 

been found that reactions of hydroxyl radicals at the C-5 and C-6 positions of D-glucose 

can produce aldehyde groups (Figure 2.23).[111] Superoxide radicals and H2O2 can 

convert 2,3,4,6-tetra-o-methyl-D-glucose to 2,3,4,6-tetra-o-methyl-D-gluconic.[112] 

Isbell et al.[113] and Hebeish et al.[114] also reported that aldehyde groups of 

carbohydrate can be converted to carboxyl groups under an alkaline peroxide medium 

(Figure 2.24).  

HO + R C

H
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OH R C

R-

OH + H2O

R C

R-

OH + HOOH R C

R-

O + H2O

R C

R-

O + HOOH R C

R-

OH

OOH

 

Figure 2.24. Reaction mechanism of alkaline peroxide with glucose forming a carboxyl 

group.[113, 114] 

 

In summary, Figure 2.25 presents examples of carboxyl structures after 

polysaccharides are oxidized by hydrogen peroxide.[35] 
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Figure 2.25. Examples of carboxyl structures formed in cellulose by oxidation action of 

bleaching agents. Types: arabinonic acid (1), erythronic acid (2), glucuronic acid (3), and 

dicarboxylic acid structure (4).[35]  

 

By means oxygen delignification of model compounds, Guay[115] stated that a 

hydroxyl free radical (OH•) induced significant degradation to carbohydrate model 

compounds. He also found that molecular oxygen, superoxide anions, hydrogen peroxide, 

and hydroxyl anions did not show degradation to carbohydrate model compounds 

directly.[115] 

 Concerning the effect of bleaching on hemicelluloses, some researchers found 

that chemical pulps which had been subjected to totally chlorine free bleaching yielded 

xylans with degrees of polymerization similar to those of the corresponding xylans 

extracted from the unbleached pulps. This indicated that such bleaching does not cause 

any significant depolymerization of the hemicelluloses remaining in the pulp.[51] 

 

2.4.5 The influence of bleaching on HexA content 

 

 Figure 2.26 describes the effect of bleaching sequences on HexA content of kraft 

pulps in a study by Buchert et al.[88] In Figure 2.26, it can be seen that HexA groups are 
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unreactive during alkaline oxygen delignification and peroxide bleaching, but that they 

can be significantly removed by ozone bleaching and chlorine dioxide bleaching. 
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Figure 2.26. The effect of bleaching sequences on the HexA content of the kraft pulp of 

pine.[88] 

 

 A detailed study by Laine[116] was performed to understand the effects of ECF 

and TCF bleaching sequences on HexA. An unbleached softwood (Pinus sylvestris) kraft 

pulp with a kappa number 25.9 was subjected to a series bleaching sequences, including 

OZEP, OPZEP, ODEDED, and DEDED. The results of the HexA of pulps are reported in 

Table 2.30. The conclusions drawn from this study are: 

• Oxygen delignification can increase HexA content by approximately 21%.  

• Peroxide bleaching does not have an obvious effect on HexA. 

• Chlorine dioxide bleaching and ozone bleaching significantly reduce 

HexA content.   
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Table 2.30. HexA group contents of softwood kraft pulps undertook various ECF and 

TCF bleaching sequences.[116]  

Pulp after bleaching Brightness (% ISO) 
HexA content 

(µmol/g) 

Kraft pulp 23.4 37.0 

O 36.2 44.8 

OZ 
OZE 
OZEP 

48.4 
49.1 
74.1 

21.9 
13.9 
12.1 

OP 
OPZ 
OPZE 
OPZEP 

62.8 
74.2 
73.5 
85.1 

40.7 
10.4 
4.8 
4.0 

OD 
ODE 
ODED 
ODEDE 
ODEDED 

55.1 
59.8 
79.0 
77.4 
86.8 

17.4 
13.9 
4.6 
3.9 
2.3 

D 
DE 
DED 
DEDE 
DEDED 

38.4 
40.7 
68.7 
66.0 
81.9 

17.0 
13.1 
7.1 
5.3 
3.2 

  

Table 2.31 presents Allison et al.’s[117] data of the effect of oxygen 

delignification on HexA content of mill unbleached pulp and bleached pulps from radiata 

pine. In Table 2.31, it can be seen that oxygen delignification does not have an obvious 

effect on HexA, while the first chlorine dioxide bleaching removes 97% of HexA content 

of the original kraft pulp. 
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Table 2.31. The results of HexA content of softwood kraft pulps underwent a bleaching 

sequence of ODEOD.[117] 

Pulp 
Delignification 

(%) 
HexA removal 

(%) 

Kraft 0 0 

O -25 +4 
OD -94 -97 
ODEO -98 -97 
ODEOD -99 -97 

  

2.4.6 Role of transition metals and activators during oxygen delignification and 

peroxide bleaching 

 

 Transition metal ions are frequently present in wood and pulp. They are insoluble 

under alkaline conditions, and a heterogeneous surface-catalyzed reaction can be caused 

by colloidal transition metal ions. Table 2.32 lists the metal content of a southern pine 

kraft pulp and a fully bleached softwood kraft pulp with and without acid washing. After 

acid treatment, it can be observed that most of the metal ions can be removed except iron 

ions. 
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Table 2.32. Metal content of a southern pine kraft pulp and a fully bleached softwood 

kraft pulp with and without acid washing.[58, 118] 

Fully bleached softwood kraft 
pulp[118] 

Metal (ppm) 
Southern pine 
kraft pulp[58] 

No acid treatment 
After acid 
treatment 

Na 146 140 6 

K 37 - - 
Ca 1620 50 20 
Ba 3 - - 
Mg 288 20 6 
Mn 34 4.3 0.3 
Fe 20 37 31 
Al 7 70 40 

 

Earlier studies have shown that metal ions like manganese (Mn), copper (Cu), and 

iron (Fe) play an important role during the lignin oxidation process, and that metal ions 

can act as catalyzing agents during oxygen delignification.[119] 

At high pH values, metal ions will catalyze hydrogen peroxide decomposition to 

generate hydroxyl radicals (•OH) and superoxide anion radicals (O2•
-). Hydroxyl radicals 

initiate reactions which lead to both lignin and carbohydrate degradation.[120] Hall and 

co-workers found that Nickel (Ni) was the one metal that when present during oxygen 

delignification enhanced the selectivity of oxygen delignification, brought about by 

increasing delignification while suppressing carbohydrate degradation.[120] 

To minimize the effects of these transition-metals-induced decomposition 

reactions, many techniques have been employed.  The most widely used techniques in 

industry are acid washing and chelation. These methods deactivate or remove the metals, 

diminishing the decomposition of peroxide.[121]  
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Lapierre et al.[118] looked at the effect of magnesium ions on peroxide bleaching. 

After acid treatment of the fully bleached softwood kraft pulp (Table 2.32), the contents 

of Na, Ca, Mg, Mn, and Al obviously decrease. However, Fe seems resistant to the acid 

treatment.  

 Some approaches aim at activating peroxide, which can promote the oxidation 

potential of hydrogen peroxide. Kubelka et al.[122] employed 500 ppm of sodium 

molybdate under acidic conditions (pH=5) and a 2% peroxide charge, the kappa number 

reduced by 10 units. However, the kappa number only decreased by 3 units in the 

absence of molybdate. The disadvantage is that the viscosity was serious destroyed with 

pronounced delignification. 

 Suchy and Argyropoulos[123] applied a vanadium peroxo complex, i.e., 

ammonium triperoxophenanthroline vanadate, as the activator of alkaline peroxide 

delignification. The conditions and results are summarized in Table 2.33. It is observed 

that the activated peroxide delignification obtained higher brightness and a higher degree 

of delignification. Finally, they reported the optimum conditions as: 0.5% activator, 80oC, 

2 hour retention time, 3% for both peroxide and alkali charges. 
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Table 2.33. The conditions and results of alkaline peroxide delignification activated by 

ammonium triperoxophenanthroline vanadate of a oxygen-delignified hemlock 

pulp.[123] 

Brightness 
(% ISO) 

Kappa number H2O2 
Charge 
(%) 

Alkali 
charge 
(%) Control Activated Control Activated 

1 1.6 45.3 45.6 12.9 11.8 

2 2.0 50.1 54.8 11.3 8.8 
3 2.6 53.0 59.5 10.2 7.1 
4 3.0 57.8 66.2 9.6 5.8 
5 3.0 58.0 66.8 9.4 5.5 
Initial kappa number = 17.5 
Initial brightness = 30.3 
Peroxide treatment time = 2 hours 
Temperature during peroxide treatment = 80oC 
MgSO4 charge, % = 0.05 
DTPA charge, % = 0.2 
Activator charge = 2% 

  

 Some bleach activators for peroxide have been reported to be effective for 

whitening textiles. Among them, a cationic bleach activator offers increased affinity for 

the negatively charged surface, which results in minimizing hydrolysis in the bleach 

solution and maximizing oxidation at the relevant sites on the substrate.[124] A novel 

cationic bleach activator, N-[4-triethylammoniomethyl) benzoyl] caprolactam chloride 

(3) (Figure 2.27), was reported recently by Lim et al.[124] The process was optimized 

and the optimal conditions are given in Table 2.34. By comparing the results for the 

conventional conditions and the optimal conditions (Table 2.34), it can be seen that the 

bleach activator system can obtain a similar level of whiteness at a lower temperature and 

in a reduced time. Also, this system results in less damage of fiber based on the DP data 
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than the conventional conditions do. Unfortunately, their study did not measure the 

carboxyl group content after the treatments.  

N

OO

N+

H3C

H3C

H3C

Cl-

3
 

Figure 2.27. The structure of N-[4-triethylammoniomethyl) benzoyl] caprolactam 

chloride (3).[124] 

 

Table 2.34. The conditions and results of conventional and cationic bleach activator 

added peroxide treatments.[124] 

Conditions Results 
System H2O2 

(g/200 ml) 
Temp. 
(oC) 

Time 
(min) 

Whiteness 
index 

DP 

Conventional 1.71 25.0 110.0 75.91 2779 
Bleach 
activator  
(0.6 g/200 ml) 

1.71 18.3 102.5 75.56 2984 

 

2.5 Carboxyl groups of pulp fibers  

2.5.1 The origin and the determination of carboxyl groups of fibers 

 

Table 2.35 summarizes the acidic functional groups associated with a solid wood 

matrix. Based on the results following from the pKa values of these acidic functions, all 

acidic groups remain unionized if wood material is brought to equilibrium with an 

aqueous solution at a low pH. However, raising the pH of the equilibrating solution to the 
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range of 6.0 to 8.5 only converts all carboxylic functions to carboxylate groups. The 

alcoholic hydroxyl groups are such weak acids that they are ionized only in the presence 

of strong alkali.[125] Therefore, the fiber charge of pulps is largely due to the 

dissociation of carboxyl groups of kraft pulp in the papermaking process which is under 

neutral or weakly acidic conditions. 

Carboxylic acid groups of fibers can be distinguished as surface charge or bulk 

fiber charge depending on the location of acidic groups on the fiber.[4] Surface charge is 

the acidic groups which are located on the fiber’s surface, on which it is believed that 

bond strength appears to be more dependent. Bulk fiber charge is the acidic groups 

located within the bulk of the fiber. The method of conductometric titration[126] is 

widely used to determine the bulk fiber charges. The surface charge of fibers can be 

evaluated by cationic polymer adsorption, which was first applied by Wågberg et al.[127] 

They used different polymers with different molecular masses to detect the bulk fiber 

charge and surface charge.[127] 

 

Table 2.35. Type of acidic groups in wood.[125] 

Acidic group Structure pKa (25°C) 
Degree of ionization 

at pH 7, %   
R-CO2H (minor) 4-5 99-99.9 

Carboxylic 
R-CH(OR’)CO2H 3-4 99.9-99.99 

OHCR

O

 
(minor) 

7-8 10-50 

Phenolic 

OHR

 

9.5-10.5 0.03-0.3 

R-CH(OH)-R’ 15-17 10-8-10-6 

Alcoholic 
R-CH(OR’)CH(OH)-R” 13.5-15 10-6-3×10-5 

R, R’, and R” = H, alkyl, or aryl 



 

 66 

2.5.2 The effect of the bleaching process on carboxyl group content of fibers 

 

Zhang et al.[128] summarized the carboxylic acid group content of several pulp 

samples (Table 2.36). The methodology utilized in their study was conductometric 

titration. It can be seen that peroxide treatment can increase the carboxyl group content of 

the TMP and CTMP. 

 

Table 2.36. Carboxylic acid group content of various pulp determined by 

conductometric titration.[128] 

Pulp sample 
Carboxylic acid group content 

(mmol/100 g o.d. pulp) 
Unbleached TMP 8.0-11.0 

Bleached TMP (H2O2) 15.0-22.0 
Unbleached CTMP 8.0-11.0 
Bleached CTMP (H2O2) 15.0-25.0 
Unbleached sulfate  
(kappa number <32) 

6.0-8.0 

Unbleached sulphite 
(kappa number <32) 

5.0-6.0 

Bleached sulphate 1.0-2.5 
 

 Laine[116] summarized the total fiber charge of softwood kraft pulp during ECF 

and TCF bleaching (Table 2.37). As seen in Table 2.37, oxygen delignification can 

increase the fiber charge by 5%. 
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Table 2.37. Total acid group content of softwood kraft pulps undertook various ECF and 

TCF bleaching sequences.[116]  

Pulp after bleaching Total acid content (µeq/g) 

Kraft pulp 9.7 

O 10.2 

OZ 
OZE 
OZEP 

6.0 
5.4 
5.4 

OD 
ODE 
ODED 
ODEDE 
ODEDED 

6.1 
5.6 
5.4 
5.4 
4.6 

 

Oxygen delignification becomes one of the dominant bleaching process 

technologies. The principal advantages of adopting the oxygen delignification process are 

(1) improving bleaching process efficiency, (2) spent liquor is free of chlorine ions, (3) 

effluent can be handled by the kraft recovery system, and (4) decreased consumption of 

bleaching chemicals used in subsequent stages.[129] Gellerstedt and Lindfors[130] 

observed that there is an increase in the number of carboxylic acid groups when kraft 

pulp is bleached with oxygen, an additional advantage. 

Toven[21] studied the effect of bleaching on the fiber charge of softwood kraft 

pulp. In his study, bleaching sequences including O (oxygen delignification), D (chlorine 

dioxide bleaching), Eo (alkaline extraction reinforced with oxygen), Z (ozone bleaching, 

and PO (peroxide bleaching together with pressurized oxygen were conducted. The data 

are shown in Table 2.38. 
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Table 2.38. Development of charged groups in softwood kraft pulp in bleaching by 

Toven.[21] 

Fiber charge Hexeneuronic acid  
Carboxylic groups 

in lignin  Pulp 

(mmol/100 g o.d. pulp) 
Unbleached 12.3 1.69 2.5 
O 11.3 1.78 2.0 
ODEo 8.6 0.97 0.7 
O(DZ)Eo 7.4 0.79 - 
OZEo 7.6 0.67 1.0 
ODEoD1ED2 5.1 0.03 - 
O(DZ)EoD1ED2 4.9 0.03 - 
ODEoQ(PO) 7.3 1.03 - 
O(DZ)EoQ(PO) 6.8 0.70 - 

 

The lowest fiber charge (4.9) of the fully bleached pulp was obtained by the 

bleaching process O(DZ)EoD1ED2. When the last bleaching sequences D1ED2 was 

replaced by the Q(PO) stage, the fiber charge of the pulp was 6.8, 38.8% higher. Similar 

to the comparison above of ODEoD1ED2 against ODEoQ(PO), the fiber charge increased 

by 43.1% by applying the (PO) stage as the final bleaching sequence. It can safely be 

concluded that the (PO) stage, i.e., hydrogen peroxide together with pressurized oxygen, 

leads to enhanced fiber charge. Also, if the two sets of the bleaching sequences are 

compared with regard to the difference of the chlorine and ozone bleaching stage (DZ), 

the resulting fiber charge suggests that the DZ stage reduces the fiber charge. 

A study of the influence of oxygen delignification of softwood kraft pulp (SW-

KP) was performed by a member of our research group, Zhang.[131] By dynamically 

profiling the carboxyl group content variation during the one-stage oxygen delignification 

of SW-KP with a kappa number of 32.5, the following results emerged: 
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• Fiber charge exhibited an initial 4-13% increase in the first 10-30 minutes 

followed by a steady or slight decrease (2-7%).  

• The maximum of carboxyl group content of the pulp is found at kappa 

numbers from 20-24 (26-38% kappa number reduction). 

• The optimal conditions for obtaining higher fiber carboxylic acid content 

for one-stage oxygen delignification are found at 1.5-2.5% NaOH, 800 

kPa O2 at 100oC. 

Zhang also conducted a study of carboxylic acid group content of softwood kraft 

pulps after different various bleaching sequences (Table 2.39).[132]  It was observed that 

the total pulp fiber charge of SW kraft pulps underwent the bleaching sequences of 

DEDED, D(EPO)DED, and OQPZP was 18.0-21.0% higher than those bleached with 

(D+C)EDED, (D+C)(EO)DED, and OD(EPO)DD. Also, hydrogen peroxide could 

increase fiber charge by 20.0%, when peroxide was applied as the terminal bleaching step 

instead of D in the bleaching sequence of OD(EPO)DP. 

 

Table 2.39. The properties of softwood kraft pulps after different bleaching 

sequences.[132]  

Bleaching sequence Brightness (%) 
Carboxylic acid content 

(µmol/g) 

DEDED 87.8 41.1 

D(EPO)DED 88.0 38.5 

(D+C)EDED         87.4 35.9 
(D+C)(EO)DED   88.2 32.9 
OD(EPO)DD         87.1 32.3 
OD(EPO)DP         88.1 39.2 
OQPZP 87.1 41.2 
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2.5.3 The ionization of acid groups of pulp fibers – the Donnan theory 

 

Carboxylic acid groups of pulp fibers can become ionized during the papermaking 

process. These anionic groups can result in fiber swelling. The Donnan equilibrium 

theory[133] illustrates the ionized groups on one side of a membrane with the unequal 

distribution of free ions between that side of the membrane and the external solution. The 

Donnan theory has been applied to various systems since then. In Farrar and Neale’s 

study of the cationic and anionic distribution ratio between cellulose and water for 

various salts, the Donnan theory was applied to cellulosic membrane for the first 

time.[134] Towers and Scallan[135] studied the mathematical model between fiber walls 

and the surrounding solution. Figure 2.28 represents the swelling of pulp fibers due to 

ionized acidic groups on the surface of pulps. In the case of cellulose fibers, the fiber wall 

acts as a membrane. The unequal distribution of ions across the fiber wall results in an 

osmotic pressure differential. This pressure differential then causes the fibers to swell.   
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Figure 2.28. Representation of the swelling of pulp fibers due to ionized acidic groups on 

the surface of pulps.[135] 

 

2.5.4 The effect of acidic groups on the properties of fibers 

 

Since acidic groups in pulps can become ionized, it is necessary to understand the 

role of cations as they act as counter-ions to these acidic groups.  From a practical 

standpoint, industrial pulping takes place using tap water that contains numerous ions that 

can then affect the physical properties of the pulp.  Scallan and Grignon[136] studied the 

effect of various cations on the properties of several different pulps. When cations are 

removed from pulp and replaced by a single cation species, it is found that the fiber 
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saturation point increases in the order of Al3+<H+<Mg++<Ca++<Li+<Na+.  According to 

Proctor and Wilson[137], Scallan and Grignon theorize that fibers act much like gels: 

Cell-COOX Cell-COO- + X+                           (2.15) 

where X+ is a free ion.  Scallan and Grignon's work showed that there is a higher degree 

of swelling when Na+ is the counter ion than when H+ is.  This makes sense given the fact 

that Na+ dissociates more easily than H+ from carboxylate groups.[6] 

In a Katz and co-workers’ study, it was observed that there is a near linear 

correlation between fiber saturation point and acidic group content for stone groundwood 

and refiner pulp treated with caustic soda.[138] It is their belief that the increased 

swelling is due to the increased number of acidic groups. They also observed an increase 

in the strength as the amount of acidic groups was enhanced.[138] They conclude that the 

increased swelling caused by the enhancement of acidic groups led to increased bond 

strength.  

In another study by the same research group on the effects of alkali, ozone, 

successive alkai-ozone, and successive ozone-alkali on mechanical pulp, it was reported 

that both alkali-ozone and ozone-alkali successive treatments show a maximum amount 

of acidic groups achieved while swelling continues to increase.[8]  Katz and Scallan[8] 

also explained that the swelling was partially due to the breaking of bonds within the wall 

of the fiber. It was verified by esterifying the acidic groups so that they could not 

dissociate and contribute to increased swelling. The results in Figure 2.29 show that the 

fiber swelling increased with the increase of acidic groups after ozonation. When the 

fiber with the highest acidic group content was esterified to the initial level of acidic 

group, fiber swelling decreased but not to the initial level. This indicated that breaking of 
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cross-links within the cell wall caused irreversible damage to the cell wall, thus resulting 

in a fiber wall more elastic and, thus, more easily swelled.[136] 
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Figure 2.29. The effect of esterification on fiber swelling of a stone ground wood 

prepared from Douglas fir.[8] 

 

 It has also been stated that ionization of the acidic groups leading to increased 

swelling of the fibers is partly due to the electrostatic repulsion between the negatively 

charged carboxylate anions.[6, 136, 139] 

A number of researchers have found a positive correlation between acid groups 

and bond strength of pulp fibers. Laine et al.[140] summarized the correlation between 

paper sheet tensile strength and the charge of the fibers. Firstly, the swelling and hence 

the flexibility of rewetted fibers can be enhanced with increasing charge. Secondly, the 

conformability of the fibers can be improved by increasing flexibility. Finally, it leads to 

higher tensile strength.[140]  
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Toven[21] studied the effect of bleaching processes of chemical pulp on fiber 

charge and reported that a (P+O) stage has a potential to increase fiber charge for 

D(E+O)Q and D/Z(E+O)Q kraft pulps (Table 2.40). It is also observed that the tensile 

index, water retention, density, and Scott bond strength of DEoQ(PO) pulp is greater than 

DEoD1ED2 pulp. These results indicate that the increased fiber charge can improve the 

physical strength of paper and the water retention value to some extent.  

 

Table 2.40. Paper properties of unbeaten ECF bleached softwood kraft pulps.[21] 

Bleached pulp 
Paper property 

DEoD1ED2 DEoQ(PO) (DZ)EoQ(PO) 
Tensile index, Nm/g 25.9 26.8 27.8 
Density, kg/m3 606 619 623 
Scott bond, J/m2 100 109 109 
Water retention value, g/g 1.14 1.22 1.21 
Fiber charge, µmol/g 51 73 68 

  

Zhang et al.[141] studied a peroxide stage on fully bleached pulps. The authors 

demonstrated that it is easy to enhance the final charge by 10-25%, which results in 

improved sheet tensile strength and stiffness properties. 

 

2.6 Acidic group topochemistry of cellulose fibers 

 

In addition to using oxidizing reagents to increase the number of acidic groups on 

pulp fibers, groups that contain acidic functionality can be graft polymerized onto fibers.  

One of the popular approaches for introducing carboxylic acid groups into pulp 

fibers is the carboxymethylation of pulps using carboxymethyl cellulose (CMC). Barzyk 

et al.[9] is the first study that experimented with the topochemical modification of fibers 
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by carboxymethylation. The effectiveness of surface-substituted carboxylic acid groups 

compared to bulk-substituted (within the fiber) acidic groups was employed. The samples 

were prepared by enriching CMC to the bulk and surface of fibers, both holding 14.4 

mmol/100 g o.d. pulp carboxyl group content. After this, the Tappi standard handsheets 

were prepared in the typical manner, with the exception that wet pressing pressures of 25-

400 psi were conducted to form a serial of sheets having different scattering coefficients. 

Scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) confirmed the 

acid topochemistry of fibers. Surface-substituted carboxylic acid groups increased both 

breaking length and Scott-Bond strength to a greater extent than bulk-substituted acidic 

groups (see Figure 2.30). 
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Figure 2.30. The comparison of CMC enrichment on bulk and surface of fibers.  

A) Scattering coefficient against breaking length and B) Scattering coefficient against 

Scott-Bond strength.[9] 

  

 More recently, Laine et al.[142] conducted a detailed study of CMC modified 

cellulosic fibers. Their study included the effects of temperature, pH, electrolyte 

concentration, and the degree of substitution of CMC on the attached CMC onto fibers 
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after washing (Table 2.41). The adsorption of CMC onto fibers was conducted in a 

0.05M CaCl2 electrolyte solution. After treatment, if the pulp was washed by deionized 

water, the pulp was in its Ca-form. The pulp was also washed to its Na-form by using 

0.001 M NaHCO3 whose pH value had been adjusted to 9. 

 

Table 2.41. Conditions of CMC treatment of an unbeaten ECF bleached softwood kraft 

pulp.[142]  

Parameters Values 
Temperature 80 and 120oC 
pH value 3~13 

Electrolyte concentration 
Electrolyte free and CaCl2 

electrolyte solutions 
Degree of substitution (D.S.) 
of CMC 

0.39~0.80 

CMC applied to the fibers 0~40 mg/g fibers 
 

 The conclusions are summarized as follows:[142] 

� The treatment at an elevated temperature, i.e., 120oC, shows much higher 

attached CMC onto fibers. For example, attached CMC onto fibers after 

120oC treatment is 28 mg/g, which is 2 times higher than that after 80oC 

treatment (13 mg/g).  

� If the CMC treatment is subjected to electrolyte–free, no attachment takes 

place between pH 6 and pH 11. In the presence of electrolyte, CMC 

attachment decreases with the increase of pH value.  

� Low D.S. CMC is more likely to attach to fibers than high D.S. CMC is.  

Finally, a topochemical distribution of fiber charge was employed at two different 

molecular weights, i.e., 1·106 against 2.8·105, of CMC treatments. After treatment, the 
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surface charge of the two samples both increased by 26 µmol/g. However, the high MW 

CMC treated fibers improved the total fiber charge by 27 µmol/g, and the lower MW 

CMC by 44µmol/g. This result indicates that 96% of high MW CMC attached with fibers 

is attributed to the surface of fibers, but the lower MW CMC adsorbed onto the surface of 

fibers accounts for 59% of the total attached CMC. It suggests that CMC can be attached 

to cellulosic fiber surfaces with quantitative toposelectivity provided that the CMC has a 

sufficiently high MW.[142] 

Beģhello and Lindström[143] studied the influence of carboxymethylation on the 

fiber flocculation process. The water retention value increased after CMC (DS=0.08) 

treatment, a 47% higher increase than the control. After the same treatment of CMC at 

0.30% pulp consistency, the floc size decreased from 4.6 mm to 3.25 mm. 

Lepoutre and co-workers[144] examined the water absorbance of pulp fibers that 

were modified by graft polymerization of polyacrylonitrile (PAN), followed by 

hydrolysis to create a polyacrylamide-sodium polyacrylate copolymer graft (Figure 2.31). 

They observed that the water retention value (WRV) increased by 30 times using this 

technique. 

 

R C N R C O

NH2

NaOH
R C O

O-Na+
 

Figure 2.31. Hydrolysis of nitrile group to obtain carboxylate group.[144] 
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2.7 TEMPO-mediated oxidation of polysaccharides 

 

Polysaccharides, including starch, cellulose, and wood fibers, etc., serve many 

commercial applications in the food, textile, energy, and paper industries.[145] In terms 

of the modification of cellulose and starch, the primary hydroxyl group (C-6) and the 

secondary hydroxyl groups (C-2 and C-3) are available for oxidation. Oxidation is 

capable of introducing carbonyl and carboxyl groups. Periodate[146] and 

hypochlorite[147] oxidation of starch can lead to 2,3-scission resulting in the formation 

of dialdehyde and dicarboxylic structures. During the last decade, a water-soluble 

nitroxyl radical, 2,2,6,6-tetrametyl-1-piperidinyloxy radical (TEMPO), has become one 

of the most promising agents to convert primary hydroxyl groups of polysaccharides into 

the corresponding aldehydes and/or carboxylic acid groups. Contrary to enzymatic or 

metal catalyzed oxidation, the TEMPO-oxidation process has many advantages[148]: 

• It is highly effective in the conversion of the high molecular weight of 

polysaccharides; 

• It has a high reaction rate and yield, and a high selectivity; 

• There is a modest degradation of polysaccharides throughout the process. 

 The mechanism of TEMPO--NaClO-NaBr oxidation of polysaccharides is 

presented in Figure 2.32. The process can be illustrated as follows: (1) the generation of 

the TEMPO+ ion, i.e., the nitrosonium ion, from the TEMPO radical. (2) TEMPO+ 

converts the C-6 hydroxyl groups of cellulose to carboxylates, and becomes TEMPOH, 

i.e., hydroxylamine, which is the reduced form of TEMPO. The proton form of 

carboxylates of cellulose is converted to the sodium salt form in the presence of sodium 
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hydroxide. (3) The nitrosonium ion is regenerated by the reaction of hydroxylamine with 

hypobromide. (4) Hypobromide is generated by hypochlorite and bromide.[31]  
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Figure 2.32. The mechanism of TEMPO-mediated oxidation of the C-6 hydroxyl 

group of cellulose.[31] 
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The TEMPO-mediated oxidation system was first applied to water-soluble 

polysaccharides by Nooy et al.[23] The optimum pH for this system of water-soluble 

glucans was found to be between 10 and 11, and corresponding polyuronic acids were 

obtained.[23] In a further study of pullulan[24], pullulan was oxidatively depolymerized 

and the minimum depolymerization was in the pH range of 9.2 to 9.7.  

Isogai and Kato[25] applied TEMPO-NaBr-NaClO oxidation to generate 

polyuronic acid on a series of cellulosic samples (Table 2.42). In Table 2.42, it can be 

seen that native cellulose is not soluble in a TEMPO-mediated medium, while 

regenerated or mercerized cellulose is soluble. 

 

Table 2.42. Solubility of cellulose samples in the TEMPO-mediated oxidation medium at 

room temperature and pH value of 10-11.[25] 

Cellulose sample Solubility 
Native cellulose 
    Microcrystalline cellulose powder 
    Micro-®brillated cellulose prepared from bleached kraft pulp 
    Linter cellulose 
    Softwood bleached kraft pulp (SBKP) 
    Hardwood bleached kraft pulp (HBKP) 
    Bacterial cellulose 

 
No 
No 
No 
No 
No 
No 

Regenerated or mercerized cellulose 
    Amorphous cellulose 
    Regenerated cellulose 
    Rayon 
    Mercerized microcrystalline cellulose (never-dried) 
    Mercerized linter cellulose (never-dried) 
    Mercerized SBKP (never-dried) 
    Mercerized HBKP (never-dried) 
    Mercerized bacterial cellulose (never-dried) 

 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Others 
    Chitin 
    Chitosan 

 
Yes 
Yes 
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 For regenerated, or mercerized cellulose, Isogai and Kato’s[25] study showed that 

almost all C6 primary alcohol groups could be converted to carboxyl groups and that the 

charge of TEMPO, reaction time and temperature were the key factors controlling the 

depolymerization of cellulose. For softwood and hardwood bleached kraft pulps, bacterial 

cellulose, and microcrystalline cellulose powder, they demonstrated that TEMPO 

oxidation of these substrates was less efficient.[25] 

 The depolymerization of polysaccharides during TEMPO-mediated oxidization 

has been attributed to sodium hypochlorite oxidation of polysaccharides, which leads to a 

2,3-scission of the glucose unit; resulting in the formation of dialdehyde and dicarboxylic 

structures.[147] The presence of carbonyl groups at C-2, C-3 in a glucose unit facilitates 

depolymerization of celluloses via β-alkoxy fragmentation in an alkaline medium.[149] 

The mechanism is shown in Figure 2.33. 
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Figure 2.33. The mechanism of β-alkoxy fragmentation of cellulose with C-2 and C-3 

aldehyde in alkaline medium.[149] 
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In addition, depolymerization can occur via β-elimination.[24-27] Interestingly, a 

bromide-free TEMPO-mediated oxidation of starch has been reported to proceed with 

high selectivity and limited depolymerization.[29] 

The first study using TEMPO-oxidation to modify pulp fibers was conducted by 

Kitaoka et al.[26] A commercial bleached hardwood (HW) kraft pulp was investigated in 

this study. Table 2.43 summarizes the experimental conditions. 

 

Table 2.43. The conditions of TEMPO-mediated oxidation of bleached HW kraft pulp 

fibers by Kitaoka et al.[26] 

Parameters Condition 
CSF 470 ml 
Pulp, o.d. 10 g 
TEMPO 0.025 g 
Sodium bromide 0.25 g 
Sodium hypochlorite solution  
(10.5% content of NaClO) 

2.5-40 ml 

pH value during reaction ~10.5 
Temperature 20oC 
Reaction time 2 hour 
Total volume 750 ml 

 

The response variables are carboxyl group content, degree of polymerization, and 

the physical properties of paper, including tear index, tensile index, density, and 

brightness, which are partially presented in Table 2.44. Carboxyl group content, tensile 

index, and brightness of the oxidized pulps increased as the NaClO charge increased. 

Tear index and density did not show any obvious change after TEMPO-oxidation at 

different levels of the NaClO charge; in fact, the changes in these two properties were 

very small, in the small range of 8.0±0.2 mN·m2/g and 0.60±0.02 g/cm3, respectively.  
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Table 2.44. The results of TEMPO-mediated oxidation of bleached HW kraft pulp fibers 

by Kitaoka et al.[26] 

NaClO charge 
(% on o.d. pulp) 

Carboxyl group content 
(mmol/100 g o.d. pulp) 

Degree of 
polymerization 

Tensile 
index 
(N·m/g)               

Brightness 

0 6 910 36.7 76 
5 19 270 37.0 77 
10 28 250 37.5 77.5 
20 47 220 37.6 80 
40 47 200 37.6 80 

 

 Le Roux et al.[150] modified unbleached TMP using TEMPO-oxidation to 

improve filler retention. The conditions are presented in Table 2.45. The carboxyl group 

content of the original TMP was 20 mmol/100 g o.d. pulp; it increased to 100, 150, and 

180 after 1, 4, and 7 hour treatments, respectively.  

 

Table 2.45. The conditions of TEMPO-mediated oxidation of unbleached TMP by Le 

Roux et al.[150] 

Parameters Condition 
Pulp, o.d. 30 g 
TEMPO additive 400 mg 
Sodium bromide 15 g 
pH value during reaction ~10 
Temperature 20oC 
Reaction time 1, 4, and 7 hour 

 

 Subsequently, the oxidized pulp was employed by amidation, which converts the 

carboxyl groups to quaternary amine (NH4
+). Giard’s reagent[3] and water soluble 

carboiimide (WSC) salt was applied in the conditions of 1% consistency, room 

temperature, pH value of 4.75, and a 5 hour treatment. The pulp was treated by adding a 

cationic retention aid (0.25 kg/ton on o.d. pulp) and a filler, ground calcium carbonate 
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(GCC) (20% on o.d. pulp). Finally, GCC retention was determined and the results are 

presented in Figure 2.34. This graph clearly shows that the GCC filler retention of the 

TMP mixture containing oxidized TMP is 12.5% lower than that of only TMP. On the 

contrary, the GCC filler retention containing oxidized TMP after amidation is 28% higher 

than that of only TMP. These results indicate that improved filler retention of TMP can 

be obtained with a higher carboxyl group content of fibers when the carboxyl groups are 

converted into cationic form. 
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Figure 2.34. The results of GCC filler retention of various TMP with cationic retention 

aid treatment studied by Le Roux et al.[150] 
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2.8 Other enzymatic and chemical modification of fibers 

 

Chandra et al.[151] modified the high lignin content softwood kraft pulp with 

Laccase to improve paper strength. The results are presented in Table 2.46. It is evident 

from the table that the wet tensile index of the pulp after Laccase treatment increased by 

57% compared to the control. 

 

Table 2.46. Carboxylic acid group content and wet tensile index of high lignin softwood 

kraft pulp treated with Laccase.[151] 

Treatment 
Carboxylic acid 
group content 

(µmol/g) 

Tensile index 
(Nm/g) 

Control 151 1.05 
Laccase 162 1.65 
Laccase +  
Gallic acid (276µmol/g pulp) 

195 1.71 

 

In a study by Gellerstedt et al.[152], the TCF bleached kraft pulp was subjected to 

succinylate for either 6 or 12 hours. Their objective was to increase fiber charge. The 

pulp was first disintegrated and then dried in a vacuum oven overnight at 50oC. 

Subsequently, it was treated by soxhlet extraction in acetone and further dried in the 

vacuum oven. The conditions of succinylation are described in Table 2.47. After 

succinylation, the fibers were washed thoroughly with ethanol and acetone to remove 

pyridine, then extracted by acetone and dried in the vacuum oven. Table 2.48 summarizes 

the results with regard to the fiber charge and surface charge of fibers after succinylation. 
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Table 2.47. The conditions of succinylation of TCF bleached kraft pulp.[152] 

Parameters Value 

Succinic anhydride 4 g 

Pyridine 250 ml 
Fibers 5 g 
Temperature room temperature 
Reaction time 0, 6, 12 hour 

 

Table 2.48. Fiber charge and surface charge as a function of treatment time of 

succinylated TCF bleached kraft pulp.[152] 

Treatment 
time (hr) 

Fiber charge 
(mmol/100 g o.d. pulp) 

 

Surface charge 
(mmol/100 g o.d. pulp) 

Using poly-DADMAC as the 
polyelectrolyte 

0 8 0.4 

6 31 4.1 
12 68 10.0 

 

 In Table 2.48, it can be seen that fiber charge and surface charge increased as time 

increased. After determining the fibers perimeter change, it was found that fiber 

perimeter can increase 25% when the fiber charge is improved to 68 mmol/100 g o.d. 

pulp. This result indicates a positive effect of fiber charge on fiber swelling.[152] 

 

2.9 Carbonyl groups of cellulose fibers 

 

It is known that ketone and aldehyde groups in cellulose fibers are introduced 

during pulping and bleaching processes.[153]  It has also been reported that in addition to 

ketone and aldehyde forms, carbonyl groups in fibers are present as hydrates and/or 

hemiacetals/hemiketals.[154]  There are a few conventional approaches to determine the 
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amount of carbonyl groups in cellulose fibers. Copper number measurement is used to 

estimate the quantity of carbonyl groups in bleached pulp.[155] The reaction mechanism 

for this protocol is dependent on copper (II) salts that are reduced by reductive groups in 

fibers with the resulting Cu (I) determined titrimetrically. Table 2.49 outlines copper 

number values of various cellulosic samples. It is observed that ozone bleaching can 

introduce carbonyl groups into fibers. 

 

Table 2.49. Copper number of various pulps by Röhrling et al.[159] 

Pulp Copper number 
Eucalyptus kraft pulp 0.25 

Eucalyptus kraft pulp after 
ozone bleaching 

1.51 

Eucalyptus kraft pulp after 
ozone and peroxide stage 

1.20 

Beech sulfite pulp 1.25 
Beech sulfite pulp after ozone 

bleaching 
1.50 

Beech sulfite pulp after ozone 
and peroxide stage 

1.50 

 

Measuring carbonyl groups is also possible by the oxime method [37], the 

hydrazine method[156], and the cyanohydrin method[157]. A new method is the 

determination of carbonyl groups in cellulosics by fluorescence labeling.[158-160] This 

methodology is called CCOA to reference the marker carbazole-9-carbonyloxyamine. By 

comparing the results obtained by the methods CCOA and copper number, a linear 

relationship has been found between them.[159]  

Carbonyl groups in pulps can be reduced with sodium borohydride (NaBH4) 

under caustic conditions.[161, 162] Carbonyl groups of fibers initiate the scission of the 

chains in an alkaline medium by a β-glucoxy elimination reaction.[100] Sodium 
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borohydride treatment for fibers has been frequently studied to improve the performance 

of peroxide bleaching and produce high brightness pulp[98, 163, 164]. It also can obtain 

better selectivity of the bleaching process, including oxygen bleaching and ozone 

bleaching[165, 166]. A sodium borohydride treatment of an ozonated softwood kraft pulp 

was conducted by Odermatt et al. (Table 2.50).[165] Table 2.50 describes the conditions 

of general sodium borohydride treatment on fibers, and the result indicates that sodium 

borohydride treatment can increase brightness by 3 units. 

 

Table 2.50. The conditions of sodium borohydride treatment of an ozonated softwood 

kraft pulp.[165] 

Sodium 
borohydride 

(%) 

NaOH 
(%) 

Brightness 
(% ISO) 

0 0.4 80 

0.03 0.4 80 

0.06 0.4 81.2 

0.09 0.4 82.2 

0.12 0.4 82.5 

0.15 0.5 82.9 

                                * The remaining conditions are: 70oC, 30 min, 10% consistency. 

 

2.10 Fiber beating and drying 

 

It has been well-established that mechanical treatment of fibers can modify their 

morphology and structure.[167-173] The objective of refining chemical pulps is an 

improvement in the properties of the end products.[174, 175] Bhardwaj et al.[176] 

determined the total fiber charge and surface charge of pulps after refining. It was found 
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that the total charge of unbleached and bleached softwood kraft pulp remained constant 

as refining increased, while the surface charge increased (Table 2.51). The increase in 

surface charge is due to the fact that refining increases both the outer and inner 

fibrillation; therefore, these actions enhance surface accessibility and facilitate greater 

interaction between the carboxyl groups and the cationic polymer.[176]  

 
Table 2.51. Relation of ratio of surface charge to total fiber charge with pulp freeness of 

unbleached softwood kraft pulp.[176]  

Freeness (ml) 
Ratio of  

surface charge/total fiber charge  
750 0.46 

640 0.67 

560 0.76 

460 0.73 

370 0.76 

 
 

Drying or water removal of wood pulp fibers leads to shrinkage of the internal 

fiber volume.[177] This phenomenon is also termed “hornification”. Hornification causes 

less fiber bonding and a loss of swelling.[7, 178-180] Carboxyl groups can influence the 

hornification of kraft fibers. For example, Lindström and Carlsson[7] carboxymethylated 

fibers. The degree of hornification decreased if carboxyl groups were in their ionized 

form (instead of proton form) during drying. The degree of hornification can be 

quantified according to the change of the water retention value of fibers. Weise defined it 

as Equation 2.17.[181] 

100%,
0

10 ×
−

=
WRV

WRVWRV
ionHornificat                                      (2.17) 
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where, WRV0 and WRV1 are the water retention values of the never-dried fibers and 

dried fibers, respectively.  

Rebuzzi and Evtuguin[182] studied the effect of glucuronoxylan (GX) on the 

hornification of Eucalyptus globulus bleached pulps. By extracting GX with KOH at 

different times, pulps with a different content of GX were obtained. The degree of 

hornification of these pulps was analyzed (Table 2.52). It is observed that the degree of 

hornification decreases with the increment of GX content of pulp fibers.  

 

Table 2.52. The effect of glucuronoxylan on the hornification of Eucalyptus globulus 

bleached pulps.[182] 

Xylan content in 
kraft pulp (%) 

Hornification (%) 

17.1 15 

9.3 25 

6.8 34 

4.0 42 
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CHAPTER 3 

 

EXPERIMENTAL MATERIALS AND METHODS 

 

This chapter presents the materials, methods, and equipment utilized during this 

research. If not otherwise stated, the chemicals used in this study were purchased from 

Aldrich, JT Baker, and Fisher as analytical grade and were used as received. 

 

3.1 Material and preparation 

3.1.1 Experiment 1 (Chapter 4) 

 

In this section, the materials pertinent to the first experiment, which is elaborated 

on Chapter 4, are presented. The first experiment undertaken in this research deals with 

the kraft pulping of loblolly pine (Pinus taeda). 

 

3.1.1.1 Kraft pulping of loblolly pine (Pinus taeda) 

 

 The air dried loblolly pine wood chips were obtained from T. J. Dyer[183]. The 

thickness of the wood chips ranged from 2 to 8 mm, and prior to use the chips were 

stored in a cold room at 4°C. 

Two studies of kraft cooks were conducted in this experiment. The first study 

prepared a series of kraft pulps employing an M/K batch digester (Figure 3.1). The kraft 

pulping conditions, pulp kappa number and viscosity values are summarized in Table 3.1. 
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This first series of pulping was performed at the Institute of Paper Science and 

Technology (IPST) at the Georgia Institute of Technology (GaTech). 

The second study within this experiment prepared a series of softwood kraft pulps 

using a conventional batch digester (CK) and laboratory simulation of Lo-Solids (LS) 

kraft pulping. It was conducted at Ahlstrom Machinery Corp., in Glens Falls, N.Y. using 

established procedures.[91]  The conditions and results are presented in Table 3.2. 

Results are discussed in Chapter 4. 

 

 

Figure 3.1. Photograph of the M/K digester for kraft pulping. 
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M/K9 

12 

50 

1000 

160 

4 

46.6 

1321 

M/K8 

24 

50 

1000 

170 

4 

14.2 

686 

M/K7 

20 

50 

1000 

170 

4 

18.5 

835 

M/K6 

16 

50 

1000 

170 

4 

26.6 

1029 

M/K5 

12 

50 

1000 

170 

4 

44.4 

1245 

M/K4 

24 

30 

1000 

170 

4 

17.2 

684 

M/K3 

20 

30 

1000 

170 

4 

22.1 

858 

M/K2 

16 

30 

1000 

170 

4 

31.6 

1024 

Kraft pulping ID/Pulp abbreviation 

M/K1 

12 

30 

1000 

170 

4 

61.7 

1084 

Table 3.1. Pulping parameters and the results of the laboratory kraft pulping of loblolly pine 

conducted in an M/K batch digester. 

Parameters 

% EA 

% Sulfidity 

H-factor 

Maximum 
temp. (oC) 

L/W 

Kappa 
number 

Intrinsic 
viscosity 
(ml/g) 
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LS-5 

 
10.0 
92.8 
45.0 

30.0 

1289 

166.3 

2008 

29.3 

LS-4 

 
10.0 
92.8 
45.0 

30.0 

1140 

166.6 

2442 

26.1 

LS-3 

 
10.0 
92.9 
45.4 

29.8 

923 

166.3 

3362 

19.1 

LS-2 

 
10.0 
92.9 
45.4 

29.8 

833 

169.0 

4126 

17.1 

Lo-Solids cooking (LS) 

LS-1 

 
10.0 
89.6 
45.4 

29.8 

794 

170.0 

4489 

16.0 

CK-4 

 
20.5 
NA 
NA 

30.0 

1120 

166.0 

995 

39.9 

CK-3 

 
20.5 
NA 
NA 

29.8 

1068 

168.0 

1201 

33.0 

CK-2 

 
20.5 
NA 
NA 

29.8 

864 

170.0 

1999 

21.3 

Conventional cooking (CK) 

CK-1 

 
20.5 
NA 
NA 

30.0 

669 

171.0 

4000 

13.9 

Table 3.2. Conventional and Lo-Solids  pulping conditions of loblolly pine and pulp properties after pulping. 

(L:W=3.5:1) 

Parameters 

EA charge 
    Impregnation, % on wood NaOH 
    Displacement 1, g/l NaOH 
    Displacement 2, g/l NaOH    
 

% White liquor sulfidity, %AA 

Intrinsic viscosity (ml/g) 

Maximum pulping temp. (oC) 

H-factor 

Kappa number 
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3.1.1.2 The preparation of holocellulose from softwood unbleached kraft pulp 

 

Holocellulose pulps were prepared following the current method in the 

literature.[184] In brief, air dry softwood unbleached kraft pulp fibers equivalent to 1.500 

g of oven-dry fibers were dispersed into 125.00 ml of deionized water in a 300 ml beaker, 

followed by the addition of glacial acetic acid (1.00 ml, 0.017 mol) and NaClO2 (1.00 g, 

0.011 mol). The beaker was sealed using parafilm and placed on a hotplate. The slurry 

was heated to 70oC and stirred for 1 hour. Thereafter, a second addition of glacial acetic 

acid (1.00 ml, 0.017 mol) and NaClO2 (1.00 gr, 0.011 mol) was added, and the slurry was 

treated for an additional hour on the hotplate with stirring. The holocellulose pulp sample 

was then cooled to room temperature and stored overnight at 3oC. The sample was 

filtered and thoroughly washed with 2000 ml of deionized water. The pulp was air dried 

and the carboxyl group content was measured.  

 

3.1.2 Experiment 2 (Chapter 5) 

3.1.2.1 Peroxide bleaching of ECF bleached softwood kraft pulp 

 

The pulp used for the peroxide treatment was obtained from a pulp mill. It was an 

ECF bleached softwood kraft pulp which had undergone a D(E+O+P)D bleaching 

sequence. Basic pulp properties included a Tappi brightness of 84.5, a copper number of 

0.43, an intrinsic viscosity of 672 ml/g, and a carboxyl group content of 3.98 mmol/100 g 

o.d. pulp. The pulp was thoroughly washed with distilled water until the effluent pH was 

neutral; it was then pressed to around 30.0% consistency, and stored at 2°C prior to use. 
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The pulp was bleached with alkali peroxide in a sealed plastic bag placed in a 

water bath. All bleaching studies were conducted with 10.0% pulp consistency, a 

bleaching time of 2.0 hour and a 2.0% charge of NaOH. The pulp mixture was vigorously 

mixed with a glass rod initially and then manually kneaded every 15 min during the 

reaction. The peroxide charge of 0.5%, 1.0%, 2.0%, 4.0%, and 8.0% were examined at 

bleaching temperatures of 60.0 and 90.0°C. Another set of peroxide treatments, which 

employed a 2.0% peroxide charge, were performed at a series of temperatures from 40.0 

to 90.0°C. After the reaction, the pulps were thoroughly washed using Büchner funnel 

with suction. Carboxyl group contents, copper number, intrinsic viscosity, brightness, and 

the physical strength of paper were measured. 

  

3.1.2.2 Sodium borohydride (NaBH4) treatment of ECF bleached softwood kraft pulp 

 

The ECF bleached kraft pulp was treated with sodium borohydride in a sealed 

plastic bag placed in a 60.0°C water bath for 2.0 hour. The caustic charge was 2.0% 

NaOH on o.d. pulp, and the sodium borohydride (NaBH4) was 0.5% on o.d. pulp. The 

slurry consistency was 10.0%, and the slurry was manually kneaded every 15 minutes. 

After 2 hours of treatment, the pulp was filtered and washed with 4 liters of distilled 

water in a Büchner funnel with suction. It was air dried in order to determine the carboxyl 

group content and copper number.   

 

3.1.2.3 Adsorption of cationic starch into ECF bleached softwood kraft pulp fibers 
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A cationic corn starch (CATO 31) with 0.35% quaternary nitrogen substitution 

was obtained from National Starch and Chemical Company. The solution was prepared 

according to the methodology outlined in Yan et al.[185] 1% starch solution was cooked 

at 95°C for 30 min. The pulp slurry was prepared to a consistency of 0.40%. Cationic 

starch was added in concentrations of 0.25%, 0.50%, 1.0%, and 2.0% to the pulp (based 

on o.d. fibers), and allowed to adsorb for 30 min. Subsequently, handsheets were 

prepared based on the Tappi standard method T 205.[186] Tensile strength and burst 

strength were measured. 

 

3.1.2.4 Drying and hornification of ECF bleached softwood kraft pulp 

 

Six ECF bleached SW kraft pulp samples were prepared. Sample 1: Handsheets 

of the control pulp were air dried at 23°C (Tappi standard conditioning room 

temperature). Sample 2: Handsheets of the control pulp were dried at 105°C on a hot 

plate. A higher fiber charge pulp (HCP) was prepared by treating the control pulp at the 

conditions of 2% NaOH, 1% H2O2, 60°C, and 2 hour; HCP has a 12.8% higher fiber 

charge than control does. Samples 3 and 4: Handsheets of HCP were dried at 23°C and 

105°C, respectively. Sample 5: Sample 2 was rewetted in water, which was then 

disintegrated, filtered, and alkaline peroxide treated. Handsheets were prepared and dried 

at 23°C. Sample 6: Protocol for Sample 5 was followed, but in this case, the handsheets 

were dried at 105°C. The drying at 105°C was performed on a hotplate with a constant 

temperature of 105°C. The drying time was set to 10 min. The intrinsic viscosity, 

carboxyl group content, tensile index, and burst index of each sample were measured. 
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3.1.3 Experiment 3 (Chapter 6) 

3.1.3.1 TEMPO-mediated oxidation of ECF bleached softwood kraft pulp 

 

The same ECF bleached softwood kraft pulp discussed in Section 3.1.2.1 in page 

94 was used to conduct this experiment. The sodium hypochlorite solution was purchased 

from Sigma-Aldrich. The solution contained 10% available chlorine and had a density of 

1.206 g/ml, as labeled. 

The oxidation procedure was based on current methodology in the literature.[26, 

32] A diagram of the TEMPO-mediated oxidation technique used in this study is 

illustrated in Figure 3.2. The never-dried ECF bleached softwood kraft pulp (20.00 g 

oven-dried), TEMPO (0.050 g, 0.320 mmol), and KBr (0.500 g, 4.202 mmol) were mixed 

with deionized water (1840 ml) in a 2 liter beaker. Subsequently, a NaClO solution 

containing 10% available chlorine was added into the slurry. There were five levels of 

NaClO charge employed in this study, which were 1.70, 3.40, 8.50, 17.01, and 34.01 

mmol, respectively. If the initial pH after adding NaClO was lower than 10.5, then the pH 

value was adjusted to 10.5 by adding 1.00 N NaOH. The TEMPO-oxidation reactions 

were performed at the room temperature (23°C) for 2.0 h.  

An additional series of TEMPO-oxidations were conducted at 4 to 80°C, with a 

constant 0.85 mmol NaClO/g o.d. pulp. The effect of pH on oxidation was examined 

using the same conditions described above, except that the reaction pH was varied from 

7.10 to 10.00. When the reaction started, pH values decreased due to the formation of 

carboxyl groups in fibers. Once the reaction pH value decreased to the targeted value, it 
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was kept constant by adding 1.00 N NaOH.  

After reaction, the pulp was filtered and rinsed with 4 liters of distilled water in a 

Büchner funnel with suction. The carboxyl group content, copper number, viscosity, and 

physical testing of paper were then determined.   

 

Figure 3.2. The diagram of TEMPO-mediated oxidation of ECF bleached SW kraft pulp. 

 

3.1.3.2 Preparation of cross-linked fibers 

 

  Polyethylene glycol (PEG) (1.00 g, MW 3,350 or 10,000) was dissolved in 

deionized water (99.00 ml) which had been acidified to pH 2.00 with 1.00 N hydrochloric 

acid. The solution was mixed until the dissolution of PEG was visually complete. ECF 

bleached softwood kraft pulp fibers (2.00 g oven-dried) were then added, mixed for 15 

minutes and then filtered without washing. The fibers were heated at 105 °C for 30 



 

 101 

minutes. The treated fibers were disintegrated and soaked in a pH 8.5 NaOH aqueous 

solution (300.00 g) for 1 hour. Subsequently, the water retention value of the treated pulp 

was measured.   

 

3.1.4 PFI refining of pulp fibers 

 

PFI refining is based on the Tappi standard method T 248.[187] In Chapter 4, the 

holocellulose samples were refined for 2000 revolutions (r) to obtain similar curl and 

kink. The curl and kink were measured by a fiber quality analyzer (FQA). In Chapter 5, 

the various beating degrees of the ECF bleached pulps were defined by the number of 

revolutions, namely: 500, 1000, 2000, 4000, and 8000 r. 

 

Figure 3.3. Photograph of PFI refiner. 
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3.2 Methods and measurements 

3.2.1 Carboxylic acid group content of fibers  

 

Bulk carboxylic acid group content was measured by using conductometric 

titration methodology.[126] Air dry fibers equivalent to 1.500 g of oven dry fibers were 

added to 300.0 ml of 0.10 N HCl and stirred for one hour. The pulp was then filtered and 

washed with 2000 ml of deionized water until the effluent water conductivity was less 

than 5 mS cm-1. The washed pulp was treated with a 0.001 N NaCl (250.00 ml) and 0.10 

N HCl solution (1.50 ml), stirred and conductrimetrically titrated with 0.05 N NaOH in 

an atmosphere of nitrogen. The conductivity (umhos * 1000) was plotted against the 

volume of NaOH in Excel and the curve was parabolic in shape (Figure 3.4-I). Trend 

lines were added in Excel in order to draw lines through each linear region on the graph 

(Figure 3.4-II). A line across the “flat” portion of the curve was plotted too. The 

intersections of the left trendline and the right trendline with the flat line were obtained, 

and their X-axis values are represented by A and B. The carboxylic acid content of pulp 

fibers is obtained using equation 3.1. 

w

AB
contentRCOOH

5)( ×−
=  mmol/100 g o.d. pulp                             (3.1) 

where w is the o.d. weight of the pulp sample in grams. 

The experiments were performed in duplicate and the results had an error less 

than ±3%. The detailed procedure is described in Appendix B. 
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Figure 3.4. Calculation of carboxyl group (RCOOH) content using conductivity method. 

A) Original data and B) trend lines for calculating RCOOH content. 

 

3.2.2 Copper number of pulp fibers 

 

Copper number (Cu#) was measured following the Tappi standard method T 

430.[188] Copper number is defined as the number of grams of metallic copper (as Cu2O) 

resulting from the reduction of CuSO4 by 100.00 g of pulp fibers. Four solutions were 
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prepared before any of the experiments began. 

• Copper sulfate solution. 100g CuSO4•5H2O was dissolved in deionized 

water and diluted to 1000 ml. 

• Carbonate-bicarbonate solution. 129 g anhydrous Na2CO3 and 50 g 

NaHCO3 were dissolved and diluted to 1000 ml. 

• Phosphomolybdic acid solution. 100 g Na2MoO4•2H2O and 75 ml 

phosphoric acid (85%) were dissolved in a mixture of 275 ml concentrated 

H2SO4 and 1750 ml H2O. 

• 5% Sodium carbonate solution. 50 g Na2CO3 was dissolved by 950.00 g 

deionized water. 

Air dry fibers equivalent to 1.500 g of oven dry fibers were disintegrated in a 

blender for 1 min and transferred to a 125 ml flask. 5 ml CuSO4 solution and 95 ml 

carbonate-bicarbonate solution were mixed and heated to a boil for 2 min. The mixture 

was poured into a flask and stirred well. The flask was placed in a water bath at 100oC 

and shaken every 15 minutes. After 3 hours of treatment, the flask was removed from the 

bath and filtered in the Büchner funnel with suction. The fibers were washed with 100 ml 

5% Na2CO3 solution and then flooded with 250 ml of hot water at 95oC. The fibers along 

with the filter paper were transferred to a 500 ml plastic beaker, and 25 ml of the 

phosphomolybdic acid solution was added. A glass rod was used to macerate the mixture 

well. The mixture was transferred to a clean Büchner funnel and washed thoroughly with 

water until the blue color of the fibers was removed. The filtrate was collected and 

diluted to approximately 700 ml. The solution was titrated with 0.05N KMnO4 to a faint 

pink end point. A blank test was also performed following the same procedures. The 
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copper number was calculated using equation 3.2. 

W

NBV
numberCopper

×−×
=

)(36.6
                                             (3.2) 

Where: 

V = The volume of KMnO4 solution to titrate the filtrate from the specimen, ml. 

B = The volume of KMnO4 solution to titrate the blank filtrate, ml. 

N = Normality of KMnO4, 0.05N. 

W = The o.d. weight of pulp fibers, g. 

  The copper number of each sample was measured in duplicate with an error of 

less than ±5%. The copper number is an indication of aldehyde groups in fibers. It has 

been reported by Röhrling et al.[159] that there is a linear relationship between the 

carbonyl group content and copper number shown in equation 3.3. 

6.0/)07.0()..100/( # −= CupulpdogmmolContentGroupCarbonyl         (3.3) 

 

3.2.3 Surface charge of pulp fibers 

 

 Surface charge of fibers was measured using the polyelectrolyte adsorption 

method.[127, 128] Glycol chitosan was purchased from Sigma-Aldrich. The degree of 

polymerization of chitosan is greater than 400. This chitosan is used for colloidal 

titration. A solution of 0.001N potassium poly(vinyl sulfate) (PVSK) was purchased from 

ONDEO Nalco Company. 

 Prior to determining the surface charge of a given pulp sample, a series of control 

tests were conducted. Different volumes (12.50, 18.75, 25.00, and 31.25 ml) of the 

chitosan solution (1.00 g/l) were diluted with deionized water to a final solution weight of 



 

 106 

300.00 g.  After being mixed for 40 minutes, 25.00 ml of the diluted solutions were 

titrated with 2.00×10-4N PVSK. This titration procedure was performed in triplicate, and 

analysis showed a linear relationship between the volume of chitosan and the amount of 

PVSK.   

 Subsequently, air dry pulp samples (4×1.500 g) were dispersed in 0.01 N HCl 

(300.00 ml) for 1 hour and then washed with deionized water (at least 2000 ml).  The 

washed pulp samples were placed into a 0.005 N NaHCO3 (250.00 ml) solution.  The pH 

value of the slurry was adjusted to 9.00 by addition of 0.05 N NaOH. After stirring for 20 

minutes, the pulp slurry was filtered and washed with deionized water (at least 2000 ml).  

Different volumes (12.50, 18.75, 25.00, and 31.25 ml) of chitosan solution were added 

with the washed pulp samples separately, and diluted to 301.50 g with deionized water. 

After being mixed for 40 minutes, the slurries were filtered and the filtrates of 

unabsorbed chitosan were collected for titration. Each filtrate (25.00 ml) was pipetted 

into a flask and titrated with PVSK. Each titration was performed in triplicate. The 

amount of chitosan absorbed on the fibers was determined for each of the different 

volumes of chitosan solution added.  By plotting the moles of chitosan adsorbed on fibers 

(surface acid, mmol/100 g o.d. pulp) versus the chitosan concentration added, the surface 

charge of fibers could be calculated. Figure 3.5 presents the calculation of the surface 

charge of fibers. The experimental error was within ±5% of the average value. 
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Figure 3.5. The calculation of surface charge of fibers by polyelectrolyte adsorption 

method. 

 

3.2.4 Carbohydrate analysis by high performance anion-exchange 

chromatography with pulsed amperometric detection (HPAEC-PAD) of pulp 

fibers  

 

The sample preparation of pulp and acid hydrolysis for carbohydrate analysis is 

based on method described in Tappi T-249.[189] The monomeric sugar content of the 

hydrolysed pulp was determined by HPAEC-PAD analysis (Figure 3.6).[190] Deionized 

water was used in all of the steps described here. 
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The air-dried pulp was ground to pass through a 40 mesh screen. 0.175g of each 

ground sample was weighed into a 50 ml tube. Standard sugars were also weighed in a 50 

ml tube in order to put them through the same hydrolysis procedures as described for the 

pulp samples. The typical weights of standard sugars are presented in Table 3.3.  

 

Figure 3.6. Photograph of high performance anion-exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD). 

 

Table 3.3. Typical weights of standard sugars for carbohydrate content analysis of pulp. 

Standard sugar Weight (g) 
Glucose 0.1800 
Xylose 0.0360 

Arabinose 0.0100 
Mannose 0.0200 
Galactose 0.0100 

 

 1.5 ml of 72% sulfuric acid solution was added to each sample. The sample was 

stirred with a glass rod until wet. The glass rod was left in the sample and stirred 

occasionally throughout the primary hydrolysis process. The tube was placed into the 
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Digibloc set at 30oC. After 1 hour, the sample was diluted with 42 ml water. A watch 

glass was placed on the top of the tube and put into the autoclave for 1 hour on the 121oC 

setting. This was the secondary hydrolysis step. Until the pressure had dropped to zero, 

the sample could be taken out and cooled to room temperature. The solution was brought 

up to 50 ml with water and then filtered through glass filters. As for the pulp sample, 1 ml 

of the solution was pipetted and transferred to a 25 ml volumetric flask. Also, 1 ml of 1 

mg/ml fucose was added and additional water was added to the mark of the volumetric 

flask. 5 standard solutions were prepared by the same procedure. Typical dilutions were 

composed of 1, 0.75, 0.50, 0.25, and 0.10 ml aliquots of stock each and 1 ml of 1 mg/ml 

fucose stock brought up to 25 ml. The diluted solution was transferred to a 0.5 ml vial 

and placed in the auto sampler for carbohydrate content analysis by HPAEC. The output 

screen of the carbohydrate content for a sample is shown in Figure 3.7. The results of 

sugar content (µg/ml) could be obtained at the same time and for each sample, it was 

conducted in duplicate and the error was within ±2% of the average value. 
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Figure 3.7. The output screen of HPAEC for carbohydrate content analysis of pulp. 

 

3.2.5 Water retention value (WRV) of pulp fibers  

 

Pulp water retention values were evaluated according to the Tappi Useful Method 

256 Water Retention Value.[191] This methodology involves forming a pulp pad by 

draining a diluted pulp slurry on a fine mesh screen in a centrifuge cup. The pulp pad was 

prepared at a fixed basis weight of 555±55 g/m2. The pulp pad was then centrifuged at 

900 g for 30 min.  The wet pad, after centrifuging, was weighed, dried at 105 oC, and 

then reweighed.  The WRV was calculated as the amount of water by weight retained in 

the pad after centrifuging per o.d. weight of fibers (equation 3.4).  
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%100×
−

=
d

dw

W

WW
WRV                                                         (3.4) 

Ww is the weight of the wet sample after centrifuging, and Wd is that of the dry sample.  

The tests were done in quadruplicate, and the typical error was ±5% of the average value.  

 

3.2.6 Fiber surface morphology by atomic force microscopy (AFM) 

 

A silicon nitrile cantilever tip was used with a Digital Instruments 3100 Scanning 

Probe Microscope to evaluate the surface morphology of fibers. For each sample, height 

images were collected at 2 positions along each of 5 randomly chosen fibers. These 

values were averaged to provide roughness measurements in nm2 for each sample by 

using equation 3.5.[192]   

∑
=

−=
N

i

aveirms NZZFRR
1

)),((      (3.5) 

where N is the number of points in the area examined, Zi is the current height value, and 

Zave is the average height value. Rrms is the root-mean square of the standard deviation for 

the height (Z) data.  

In Chapter 4, the standard deviation (S.D.) values of roughness determined by 

AFM are presented in Figure 4.7. Refined samples have standard deviation values 

between 29 and 48, and unrefined samples have standard deviation values between 24 to 

34.   
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3.2.7 13
C CP/MAS NMR and SEM analysis of oxidized bleached pulps 

 

Four samples in the last study, Chapter 6, were analyzed by solid-state NMR, 

which consisted of the untreated ECF bleached SW kraft pulp and oxidized pulps (see 

Table 6.1). The 13C CP/MAS NMR spectra were recorded at room temperature on an 

instrument Bruker Advance/DMX-400 operating at 100.06 MHz using an MAS 4 mm 

probe and ZrO2 rotors. The MAS spin rate was 5 kHz. Acquisition was performed with a 

CP pulse sequence using 4.5 µs pulse, 2.0 ms contact pulse and 3.0 s delay between 

repetitions. 5000 scans were accumulated for each sample. 

 SEM images of the original ECF bleached SW kraft pulp and the fibers treated 

with a charge of 1.70 mmol NaClO/g o.d. pulp were acquired using a LEO 1530 

thermally-assisted field emission (TFE) microscope at 10 kV.  The coated quartz side and 

the smooth side of the paper test sheets were gold coated prior to analysis. 

 

3.2.8 Kappa number and intrinsic viscosity of pulp fibers 

 

 The kappa numbers of the pulps were measured according to the TAPPI standard 

method T 236.[193] The intrinsic viscosity [η] was measured according to ASTM 

standard D1795-62.[194]  Both of these tests were performed in duplicate, and the typical 

errors were ±0.5 for kappa number, and ±5 ml g-1
 for intrinsic viscosity of the average 

numbers, respectively.  
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3.2.9 Paper testing 

 

Handsheets were prepared according to the Tappi test method T205[186] using 

standard sheet mold (Figure 3.8). The brightness of the paper was determined by the 

Tappi test method T452.[195] 15 spots of handsheets were chosen during testing, and the 

typical standard deviation was 0.15 units. All of physical testing of the paper was 

performed following the Tappi test methods T220[196] and T402[197]. The caliper was 

measured according to Tappi test method T411 with an error less than 5%.[198] Tensile 

strength[199], burst strength[200], and zero-span strength[201] were determined 

following the Tappi test methods T494, T403, and T231, respectively. The experimental 

error was generally less than 5% of the mean values.  

 

Figure 3.8. Laboratory sheet mold for making handsheets by the Tappi test method T205. 
 
 

3.2.10 Hydrogen peroxide (H2O2) content 

 

Peroxide solution (35% wt) was purchased from Sigma-Aldrich. 100 ml 

concentrated peroxide solution was diluted to 1000 ml and stored in a refrigerator prior to 
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use. 5 ml of the peroxide solution was pipetted into a flask. The sample was acidified by 

adding 10 ml 20% H2SO4. The mixture was then titrated with 0.1N potassium 

permanganate until a pink end point. The volume (V, ml) of 0.1N potassium 

permanganate added to the sample was recorded for calculating the peroxide content 

using equation 3.6.  

H2O2 (g/l) = 0.3402 × V          (3.6) 

 

3.2.11 Fiber quality analyzer (FQA) for pulp fibers 

  

 The fiber quality analyzer (FQA) was used to optically characterize the curl and 

kink properties of the fiber. Figure 3.9 shows a photograph of the FQA. A diluted fiber 

suspension of approximately 0.0008% consistency was prepared and run through the 

FQA. Fiber length, curl, and kink were reported after 5000 fibers were counted by the 

program. The data and experimental error is presented in Table 4.2. 

 

Figure 3.9. Photograph of fiber quality analyzer. 
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CHAPTER 4 

 

INFLUENECE OF KRAFT PULPING ON CARBOXYLATE CONTENT OF 

SOFTWOOD KRAFT PULPS 

 

This chapter is in part reproduced with the kind permission from [Industrial & 

Engineering Chemistry Research]. Copyright © [2006] American Chemical Society.iii 

 

4.1 Introduction and objective 

 

This study is directed at determining how fiber charge is influenced by varying 

kraft pulping conditions, including effective alkali (EA), sulfidity and pulping 

temperatures for batch pulping.  

The effect of kraft pulping conditions on fiber charge was investigated by 

preparing a series of laboratory prepared conventional loblolly pine kraft pulps. The 

experimental parameters varied included effective alkali, sulfidity, and pulping 

temperature. The pulp IDs for the samples described in Table 3.1 were assigned M/K1 to 

M/K9. The primary pulping factors investigated were effective alkali and sulfidity. A 

preliminary study for the effect of maximum pulping temperature on fiber charge was 

accomplished comparing kraft pulp M/K5 versus M/K9. M/K5 was prepared at 170ºC 

                                                 
iii  This manuscript was initially published in Industrial and Engineering Chemistry Research, 2006, 
45(13), 4509-4516. It is titled as "Influence of Kraft Pulping on Carboxylate Content of Softwood Kraft 
Pulps". The other two authors are Dr. Tom Elder from USDA Forest Service, Southern Research Station 
and Dr. Arthur J. Ragauskas from the School of Chemistry and Biochemistry at the Georgia Institute of 
Technology. 
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and M/K9 at 160ºC. Basic fiber properties including kappa number and viscosity are 

summarized in Table 3.1. The results of intrinsic viscosity values shown in Table 3.1 

indicate that the viscosity decreases with increasing effective alkali when kraft pulping is 

performed at same sulfidity, H-factor, and maximum pulping temperature. This result is 

in agreement with Dyer and Ragauskas’ prior studies.[202] 

The effect of the Lo-Solids continuous kraft pulping technology on fiber charge 

was also compared with conventional kraft pulping. The primary parameters examined in 

the latter study were H-factor and pulping protocol. The conditions and results are shown 

in Table 3.2. 

 

4.2 Results and discussion 

4.2.1 The effect of effective alkali, sulfidity, and pulping temperature on carboxylic 

acid group content of bulk fibers and holocellulose fibers 

 

 The results for bulk carboxylic acid group content for kraft pulps are presented in 

Figure 4.1. EA increases in the order M/K1 to 4 and in the order MK/5 to 8.  The latter 

set of four samples has higher sulfidity. Condition M/K9 has lower maximum pulping 

temperature, but is otherwise similar to condition M/K5 as summarized in Table 3.1. 

These results indicate that the higher the EA for a batch kraft cook, the lower the 

carboxylic acid content of the resulting pulp when pulping is accomplished at the same 

H-factor and pulping temperature (170oC). This result is in accordance with other 

researchers’ studies. [15, 87, 203] It has been reported that a higher alkalinity in extended 

pulping serves to minimize the reprecipitation of lignin and under these conditions the 
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reprecipitation of the hemicellulose onto fibers surface is also decreased.[204] Hence, the 

results of this study which indicate that a lower effective alkali charge during pulping 

leads to kraft pulps with higher fiber charge is consistent with literature findings. In 

contrast, pulping sulfidity did not appear to have an obvious effect on carboxylic acid 

group content of bulk fibers, except under low EA (12%) conditions. Analysis of the 

results from M/K9 and M/K5 indicate that a lower temperature possibly favors the 

retention of carboxylic acid group content in the pulp.  
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Figure 4.1. Carboxylate content of kraft pulps prepared with varying EA, S, and 

maximum pulping temperature employing M/K digester at constant H-factor of 1000 and 

Liquid:Wood of 4:1 of loblolly pine. 

 
The differences in carboxylate content of kraft pulps reported in Figure 4.1 are 

due to differences in the carboxylate content of fiber polysaccharides and lignin. In ECF 
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bleached pulps, fiber charge originates primarily from carboxylate groups attached to 

saturated polysaccharides.  It is now well established that most hexeneuronic acids in 

pulp are oxidatively removed during ECF bleaching.[116] In order to evaluate the content 

of fiber charge associated with bleached polysaccharides, the kraft pulps in Table 3.1 

were holocellulose pulped. Figure 4.2 shows the carboxylate content of holocellulose 

pulps. The difference between carboxylate group content of bulk kraft pulp fibers and 

that of holocellulose pulps is attributed to the charge associated with lignin and 

hexeneuronic acid groups present in the kraft pulps.  These results demonstrate that 

approximately 56-86% of the carboxylic acid groups of the kraft pulps can be attributed 

to saturated pulp carbohydrates. The key pulping parameters influencing fiber charge on 

saturated polysaccharides include effective alkali and pulping temperature. Although 

holocellulose pulping is not employed industrially, it is relevant to ECF bleaching 

protocols. The results in Figure 4.2 indicate that the kraft pulps with higher fiber charge 

maintain higher fiber charge after holocellulose bleaching when compared against kraft 

pulps having lower fiber charge. 
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Figure 4.2. Carboxylate content of holocellulose fibers from kraft pulps prepared with 

varying EA, S, and maximum pulping temperature employing M/K digester at constant 

H-factor of 1000 and Liquid:Wood of 4:1 of loblolly pine. 

 

4.2.2 The effect of effective alkali, sulfidity, and pulping temperature on surface 

charge on fibers  

 

 Figure 4.3 summarizes the effect of EA profiles on surface charge. At the same H-

factor and pulping temperature (170 oC), a high EA in the digester yields a low surface 

charge. In contrast, no significant difference in fiber surface charge was observed when 

30% or 50% sulfidity was employed for pulping. The only exception to this observation 

was noted when the pulping conditions employed a low EA charge (12%), as previously 
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observed for bulk fiber charge. As for the pulping temperature effect, the M/K9 pulp 

prepared with a maximum pulping temperature of 160 oC resulted in a slightly higher 

(2%) surface charge compared to M/K5 pulp (i.e., same conditions except pulping 

temperature). These results suggested that a lower EA is favorable for increasing overall 

surface charge; while sulfidity is not a key parameter for controlling surface charge 

during kraft pulping. After comparing surface charge with bulk fiber charge, it suggests 

that surface charge accounts for approximately 4% to 7% of the bulk fiber charge. 
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Figure 4.3. Surface charge of kraft pulps prepared with varying EA, S, and maximum 

pulping temperature employing M/K digester at constant H-factor of 1000 and 

Liquid:Wood of 4:1 of loblolly pine. 
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4.2.3 The relationship between carboxylate content of bulk fibers and water 

retention value of pulps   

 

 Water retention value (WRV) is useful for evaluating the performance of pulps in 

dewatering on a paper machine and for some paper applications.[205] It can also provide 

a relative indication of the swelling capability of the pulps. As fibers swell, they are more 

easily beaten and defibrillated thus, exposing greater surface area for bonding to occur. It 

is commonly acknowledged that enhanced fiber swelling relates to increased 

concentration of acid groups in the pulp.[6, 8, 138, 139] The swelling of fibers has been 

attributed to two effects. One is Donnan equilibrium theory[133] which was applied to 

cellulosic membrane[134, 135]. The other is the electrostatic repulsion between the 

negatively charged carboxylate anions of fibers.[6, 136] Figure 4.4 summarizes the 

relationship between bulk fiber charge and water retention value of pulps. It is shown that 

there is a linear relationship coefficient of determination, R2, of 0.93.  

Prior studies have demonstrated that WRVs clearly increase by introduction of 

carboxyl groups into pulps via carboxymethylation under alkaline conditions.[7, 9, 128, 

206] Kitaoka et al. studied the chemical modification of pulp fibers by TEMPO-mediated 

oxidation; their results have shown that WRVs of pulps were roughly constant, even 

though these pulps had carboxyl contents from 0.06 to 0.47 mmol/g.[26] 



 

 122 

y = 0.0779x + 1.2399

R
2
 = 0.9313

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

2 4 6 8 10 12 14 16

Bulk Fiber Charge (mmol/100g o.d. pulp)

W
R

V
 (

g
 w

a
te

r/
g

 o
.d

. 
p

u
lp

)

 

Figure 4.4. The relationship between bulk fiber charge and water retention value of 

original M/K1 – M/K9 kraft pulps.   

 

4.2.4 Carboxylate content of holocellulose fibers versus total carbohydrate content 

of pulp fibers 

  

 In order to determine carboxylic acid group content per unit carbohydrate, 

including cellulose and hemicellulose of fibers, monomeric sugar content was determined 

by HPAEC-PAD.  The results are shown in Table 4.1.   
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Fiber charge of 
holocellulose 

fibers vs. 
carbohydrate 

content 

9.45 

5.55 

5.05 

3.94 

8.96 

5.65 

4.93 

3.92 

9.01 

Total 
carbohydrate 

content * 

(%) 

89.33 

96.44 

97.32 

97.75 

93.23 

98.79 

98.97 

99.68 

94.24 

Galactan 
(%) 

0.86 

0.56 

0.45 

0.37 

0.63 

0.50 

0.42 

0.33 

0.67 

Arabinan 
(%) 

0.88 

0.66 

0.48 

0.35 

0.96 

0.62 

0.50 

0.38 

1.10 

Mannan 
(%) 

4.80 

5.75 

6.16 

6.26 

5.19 

5.58 

6.24 

6.72 

5.14 

Xylan 
(%) 

7.99 

7.54 

5.95 

4.53 

9.20 

7.12 

6.46 

5.07 

9.92 

Glucan 
(%) 

74.80 

81.93 

84.28 

86.24 

77.25 

84.97 

85.35 

87.18 

77.41 

Fiber charge of 
holocellulose 

(mmol/100 g o.d. 
pulp) 

8.44 

5.35 

4.91 

3.85 

8.35 

5.58 

4.88 

3.91 

8.49 

Table 4.1. Fiber charge and mono saccharide content of kraft pulps underwent pulping condition M/K1 to M/K9. 

Kraft 
Pulps 
ID 

M/K 1 

M/K 2 

M/K 3 

M/K 4 

M/K 5 

M/K 6 

M/K 7 

M/K 8 

M/K 9 

* It is expressed by the summation of monomeric sugar content including glucan, xylan, mannan, galactan, and arabinan.  
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 The results show that mannan was relatively resistant to removal by increasing 

EA charge, during kraft pulping. Total carbohydrate content expressed by sum of the 

monomeric sugar content increased with increasing EA charge. Based on Table 4.1, it is 

indicated that fiber charge of unit holocellulose appeared highest at the lowest EA charge. 

It can be concluded that EA charge is the most important factor controlling carboxylic 

acid group of holocellulose of kraft pulp fibers during kraft pulping.  

 

4.2.5 Paper physical testing and PFI refining of holocellulose pulps 

 

 To further investigate the effect of acidic group on fully bleached paper physical 

strength, the strength properties of holocellulose pulped M/K1, M/K2, M/K5 and M/K6 

were determined. Since it is well known that curl and kink detrimentally impact physical 

strength properties, the holocellulose pulps were PFI refined to obtain similar curl and 

kink values.  Bulk fiber charge analysis of the pre- and postPFI refined pulps indicated 

that the refining process did not change bulk fiber charge when the fibers are refined at 

2000 revolutions. This result is consistent with recent reports that beating does not alter 

total fiber charge.[176] Table 4.2 summarizes the results of paper physical strength and 

fiber quality of holocellulose fibers after PFI refining with 2000 rev. The results of fiber 

quality analysis (FQA) show that holocellulose fibers have similar curl and kink values 

after PFI treatment of 2000 revolutions. From Table 4.2, it can be seen that higher fiber 

charge corresponds to enhanced tensile strength and burst strength of paper prepared 

from holocellulose fibers with similar curl and kink values. Nonetheless, both burst 

strength and tensile strength depend on other factors, such as interfiber bond strength, 
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web structure, and inherent fiber strength. By comparing the results of holocellulose 

pulps M/K6 and M/K5, it shows that a 50% increase in fiber charge of holocellulose 

fibers enhances tensile and burst index by 7% and 8%, respectively. 

 

Table 4.2. Paper physical strength and FQA results of holocellulose fibers from M/K1, 

M/K2, M/K5 and M/K6 kraft pulps. 

 

AFM is used to evaluate surface morphology and properties of a large number of 

materials which also include wood, fibers, and cellulose.[192, 207-209] Handsheets of 

unrefined and refined holocellulose fibers from M/K1, M/K2, M/K5 and M/K6 kraft 

pulps were analyzed by AFM. Figures 4.5 and 4.6 show AFM phase images of the 

holocellulose fibers. 

Holocellulose 
sample of 
M/K kraft 
pulps 

Fiber charge 
of 
holocellulose 
fibers after 
refining 
(mmol/100 g 
o.d. pulp) 

Tensile Index 
of 
holocellulose 
fibers after 
refining 
(Nm/g) 

Burst Index  
of 
holocellulose 
fibers after 
refining 
(kPa.m2/g) 

Curl of 
holocellulose 
fibers after 
refining 

Kink  of 
holocellulose 
fibers after 
refining 
(l/mm) 

#M/K 1 8.44±0.09 58.87±1.66 7.21±0.21 0.064±0.006 0.82 

#M/K 2 5.35±0.09 54.03±1.08 6.94±0.18 0.066±0.006 0.90 

#M/K 5 8.35±0.09 57.79±1.54 7.33±0.22 0.061±0.006 0.78 

#M/K 6 5.58±0.09 54.14±0.97 6.78±0.18 0.068±0.006 0.86 
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Figure 4.5. Atomic force microscopy (AFM) phase images of holocellulose fibers. (1), 

(2), (5), and (6) are holocellulose fibers from M/K1, M/K2, M/K5 and M/K6 kraft pulps, 

respectively.  
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Figure 4.6. Atomic force microscopy (AFM) phase images of holocellulose fibers treated 

by 2000 rev. PFI refining. (1), (2), (5), and (6) are holocellulose fibers from M/K1, M/K2, 

M/K5 and M/K6 kraft pulps, respectively.  

 
Based on the AFM Phase Images of samples, there are no striking differences in 

the surface topographies between high fiber charge (Holocellulose fibers M/K1 and M/K 

5) and low fiber charge (Holocellulose fibers M/K2 and M/K6).  Figure 4.7 presents the 

RMS-roughness values for holocellulose fiber M/K1, M/K2, M/K5, and M/K6. As 

expected, the unrefined samples exhibited at least 26% lower RMS values when 

compared to refined samples. However, no marked differences in RMS were noted 

between the high surface charge samples and low surface charge samples. Based on the 

research by Pang and Gray[210], it was found that the force acting on the AFM tip as it 
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approaches a pulp fiber surface can be measured using the AFM tip as a probe. Higher 

fibrillation of a pulp surface corresponds to high force acting on the tip as it approaches 

the pulp surface. Mechanical action causes fibrillation of the fiber surface, which can be 

detected from the tip-fiber force-distance curves.[210] PFI refining increased the 

fibrillation of fiber surfaces, which might lead to higher roughness value of refined pulp 

surface compared to unrefined pulp fiber surface.  
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Figure 4.7. Comparison between holocellulose fibers RMS-roughness measured by AFM 

and surface charge on holocellulose fibers of M/K1, M/K2, M/K5, and M/K6 kraft pulps. 

4.2.6 Investigation of batch vs. continuous Lo-Solids pulping on fiber charge 

 

 A series of lab produced kraft pulps were prepared employing conventional 

pulping (CK), and simulated continuous low solids (LS) pulping from kappa number 14.7 
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to 39.9.  Kraft pulping parameters and pulp properties are summarized in Table 3.2. The 

primary parameters investigated in this study were H-factor and pulping protocols. The 

remaining pulping parameters were kept constant within experimental control 

capabilities. 

From Table 3.2, it is apparent that the values of viscosity of Lo-Solids kraft pulps 

were higher than those of conventional kraft pulps, when pulping was conducted under 

the same conditions. This is in accordance with literature results.[90] Kappa number was 

plotted against bulk fiber charge for all the pulps in Table 2 in Figure 4.8.  
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Figure 4.8. The comparison between carboxylate content and kappa number of 

conventional and Lo-Solids pulping loblolly pine kraft pulps underwent 20.5% EA and 

170oC maximum temperature pulping. 
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It appears in Figure 4.8 that there is a linear relationship between kappa number 

and fiber charge. Although no linear relationship between fiber charge and kappa number 

of Lo-Solids pulps was found in Bhardwaj’s study[93], fiber charge was found to be 

positively proportional to kappa number which is widely accepted in numbers of studies 

of kraft pulps.[15, 87, 93, 131, 203, 211] 

Also from Figure 4.8, the fiber charge of LS pulps had a higher slope value than 

the conventional pulping pulps.  The two trend lines intersect at a kappa number of 18.2. 

This suggests that LS pulps with kappa number higher than 18.2 have higher fiber charge 

than CK pulps. On the contrary, LS pulps with kappa number lower than 18.2 have lower 

fiber charge than CK pulps.  These data indicate that LS pulps should not be pulped to a 

high H-factor if the desired effect is to produce high fiber charge pulps. This is the first 

time that fiber charge has been compared between conventional and Lo-Solids pulping.  
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Figure 4.9. Holocellulose fibers charge vs. kappa number of conventional and low solids 

pulping kraft pulps prepared from loblolly woodchips with 20.5% EA and 170oC 

maximum cooking temperature. 
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Figure 4.10. Holocellulose fibers charge versus pulping H-factor of conventional and low 

solids pulping kraft pulps prepared from loblolly woodchips with 20.5% EA and 170oC 

maximum cooking temperature. 

Figures 4.9 and 4.10 present the fiber charge of holocellulose fibers against kappa 

number of original kraft pulps and pulping H-factor, respectively.  From these data, it is 

apparent that the charge of holocellulose fibers reached a constant value as pulping 

advanced. This constant value for the LS pulps (4.62 mmol/100g o.d. pulp) was a 

somewhat lower than the value of CK pulps (4.70 mmol/100g o.d. pulp). From Figure 4.9, 

fiber charge of holocellulose LS pulps has higher values than that of CK pulps when 

pulps have the same kappa number. This is the first study to compare the charge of 

polysaccharides against H-factor. In Buchert’s study of kraft pulps,[87] the results 

showed that the carboxyl content of kraft pulps tended to be constant with the extension 

of cooking time, which is an indication of the H-factor.   
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4.3 Conclusions 

 

The results of laboratory pulping loblolly pine kraft pulps, which are generated in 

an M/K digester, show that EA charge is the key factor in controlling fiber charge when 

kraft pulping was performed at same H-factor. Low EA charge and low pulping 

temperature were favorable for increasing carboxylic acid group content of bulk fibers. 

Carboxylic acid group content of lignin and HexA contributes approximately 14-44% of 

the total carboxylic acid group content of bulk fibers, depending on the level of lignin 

content.  The surface charge on fibers accounts for 4% to 7% of the bulk fiber charge. 

Higher fiber charge correlated with enhanced paper physical strength by measuring 

tensile strength and burst strength of holocellulose fibers handsheets, with different fiber 

charge. The roughness data measured by AFM does not show a correlation with surface 

charge of holocellulose fibers. The results of another set of lab produced pulp, 

conventional pulping and Lo-Solids pulping, were investigated to determine the effect of 

pulping protocol on fiber charge. Kappa number was linearly related with fiber charge. 

The fiber charge of LS pulps had a higher slope value than the conventional pulping 

pulps when bulk fiber charge and kappa number were plotted. The charge of 

holocellulose fibers reaches a constant value as pulping advanced for both types of pulps.  

Fiber charge of holocellulose LS pulps has higher values than the CK pulps when cooked 

to the same kappa number. 

 

 



 

 134 

CHAPTER 5 

 

ALKALINE PEROXIDE TREATMENT OF ECF BLEACHED SOFTWOOD 

KRAFT PULPS 

 

This chapter is in part reproduced with the kind permission from [Holzforschung]. 

Copyright © 2007 by Walter de Gruyter GmbH & Co. KG. iv The first part investigates 

the effect of alkaline peroxide treatment on carboxyl groups of fibers. The second one 

examines the effect of increased fiber charge on refining, wet-end application, and 

hornification.  

 

5.1 Characterizing the effect of alkaline peroxide treatment on carboxyl groups 

of fibers 

5.1.1 Introduction and objective 

 

This section studies the effect of peroxide bleaching of ECF bleached softwood 

kraft pulp on fiber charge and carbonyl group contents. We also investigated the effect of 

sodium borohydride pretreatment of bleached kraft pulps prior to peroxide treatment 

aiming at the clarification of the role of carbonyl groups in the course of carboxyl group 

formation during the subsequent peroxide treatment.  

In our preliminary study[141] and Toven’s[21] work of peroxide bleaching of 

                                                 
iv This study was accepted by Holzforschung and is in the process of publishing. Two manuscripts were 
created based on this work. They are titled as “Alkaline peroxide treatment of ECF bleached softwood kraft 
pulp. Part I. Characterizing the effect of alkaline peroxide treatment on carboxyl groups of fibers.” and 
“Part II. Effect of increased fiber charge on refining, wet-end application, and hornification” 
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fully bleached pulps, it has been reported that the fiber charge can be increased, which 

results in enhanced swelling of fibers, and better tensile strength and stiffness. In the 

present paper, the alkaline peroxide treatment of ECF bleached pulp is studied in regards 

to fiber charge and carbonyl group content. 

 

5.1.2 Results and discussion 

5.1.2.1 The effect of peroxide charge on fiber charge 

 

 An ECF bleached softwood kraft pulp was subjected to alkaline peroxide 

treatment by employing a series of peroxide charges from 0 to 8.0%. The remaining 

parameters of the experiment were 2.0% NaOH, 2.0 hour treatment time, 10.0% 

consistency, and temperatures of 60.0 and 90.0°C. Figure 5.1 shows the effect of 

peroxide treatment on fiber charge of the treated ECF bleached SW kraft pulp. 
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Figure 5.1. Relation between peroxide charge on o.d. pulp and fiber charge after ECF 

bleached softwood kraft pulp was treated at 2.0% NaOH, 2.0 h treatment time and 

temperatures of 60.0°C and 90.0°C. 

 

The results in Figure 5.1 indicate that fiber charge is increased by an alkaline 

peroxide treatment. However, the charge value is approximately constant when peroxide 

charge is increased to 4.0% or greater. The maximum increase in fiber charge achieved 

by peroxide treatment was 16.6%. The treatment was performed at 60.0 and 90.0°C. It is 

obvious that an elevated temperature of 90.0°C was detrimental to fiber charge 

development. The influence of temperature was further studied in the range of 40.0 to 

90.0°C with 2.0% NaOH, 2.0% H2O2, 10.0% consistency, and 2.0 hour treatment (Figure 

5.2). 
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Figure 5.2. Relation between the temperature of alkaline peroxide treatment and fiber 

charge after ECF bleached softwood kraft pulp was treated at 2.0% NaOH and 2.0% 

H2O2 on o.d. pulp, 10.0% consistency, and 2.0 h treatment. 

 

Based on the data we suggest that the optimal temperature of alkaline peroxide 

treatment in terms of fiber charge development is between 60.0 and 70.0°C. Low 

temperature does not provide enough energy to activate the peroxide’s oxidizing power 

which is necessary for fiber charge formation. A too high temperature may lead to a high 

decomposition rate of peroxide, i.e., to another limiting factor for fiber charge 

formation.[97, 118] 
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5.1.2.2 The effect of peroxide charge on intrinsic viscosity of pulp 

  

Intrinsic viscosity is related to the molecular weight of the carbohydrates. Reduced 

viscosity is a hint to reduced strength of pulp fiber. Cellulose and hemicelluloses are 

readily attacked during alkaline oxygen delignification and peroxide bleaching. Hydroxyl 

radicals, the strongest one-electron oxidant in aqueous media, are responsible for 

cellulose degradation.[212, 213] 

Data of intrinsic viscosity are summarized in Figure 5.3. Accordingly, intrinsic 

viscosity decreases with increasing peroxide charge. As for the temperature effect, the 

intrinsic viscosity is lower after peroxide treatment at 90.0°C than that after peroxide 

treatment at 60.0°C. This observation is in accordance with literature reports.[97] 
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Figure 5.3. Relation between peroxide charge on o.d. pulp and intrinsic viscosity of fibers 

after ECF bleached softwood kraft pulp was treated at 2.0% NaOH, 2.0 h and 

temperatures of 60.0°C and 90.0°C. 

 

5.1.2.3 The effect of fiber charge on paper tensile strength 

 

 It is well established that higher carboxyl group content leads to enhanced paper 

strength.[9, 128, 206, 214, 215] Peroxide bleaching is usually the final step in a sequence 

before refining. Refining improves the final tensile strength. However, it has been also 

found that grafting with carboxymethyl cellulose (CMC) has the potential to replace the 

refining operation and its application leads to better paper properties than PFI-refining, 

e.g., concerning the relationship between tensile strength and light scattering 



 

 140 

coefficient.[216] In this study, the unrefined pulp was modified by peroxide treatment 

which led to the improved fiber charge. Subsequently, the effect of the improved fiber 

charge on refining will be described in Section 5.2. Pulp fibers, treated with peroxide at 

60.0°C in this study, were selected to investigate the influence of improved fiber charge 

on the tensile strength of the final paper (Table 5.1). 

 

Table 5.1. The results of tensile index of ECF bleached softwood pulp after alkaline 

peroxide treatment at 60.0°C, 2.0% NaOH, 2.0 h and 10.0% consistency. Data are based 

on oven dried pulp. 

Peroxide 
charge (%) 

Carboxyl group 
content 

(mmol/100g) 

Tensile 
index 

(Nm g-1) 
Untreated ECF 

bleached SW pulp 
3.98 32.8 

0.0 
(Alkaline extr.) 

3.98 34.9 

0.5 4.34 35.8 
1.0 4.49 36.0 
2.0 4.53 36.2 
3.0 4.56 36.2 
4.0 4.61 36.3 
8.0 4.64 36.5 

 

The tensile index of the untreated ECF bleached pulp was 32.8 Nm g-1. The fiber 

charge of ECF bleached pulp did not change at only 2.0% NaOH treatment. However, the 

tensile strength increased after 2.0% NaOH treatment to a value of 34.9 Nm g-1. This 

result can be explained by the increased swelling properties of fibers after alkali 

treatment.[139, 217] And swelling can lead to higher tensile strength.[21] In Table 5.1, it 

can be seen that tensile strength is enhanced as fiber charge is increased by the alkaline 

peroxide treatment. The tensile index of the pulp after alkaline treatment increased 6.4% 
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comparing to the control, while the maximum value of tensile index increased by 11.3% 

after 8% peroxide treatment. However, the alkaline treatment did not change the carboxyl 

group content which is of primary importance to retention of wet end chemicals. The 

densities were in the range of 0.426 ± 0.011 g cm-3 which did not show correlation 

between the control and the peroxide treated samples. Obviously, the increase in tensile 

index of the enhanced fiber charge sample did not relate to the change of the sheet 

density. 

 

5.1.2.4 The effect of peroxide charge on copper number 

 

 In Figure 5.4, it can be seen that the pulp copper number decreases when the 

peroxide charge is low, but increases when the peroxide charge is elevated from 0.5% (at 

60.0°C) and 1.0% (at 90.0°C). It is clear that there is an optimal peroxide charge between 

0.5 and 1.0%, at which the carbonyl groups could be removed. This contributes to an 

increase in brightness stability. At high charges of peroxide, new carbonyl groups are 

generated which leads to an increase in copper number. The copper number reaches to a 

constant value at peroxide charge of 4.0% (Figure 5.4). The coincidence of a maximum 

fiber charge and the copper number at a peroxide charge of 4.0% is remarkable. We 

suggest that the peroxide treatment has a limitation to oxidize cellulose fibers with 

respect to forming carbonyl and carboxyl groups. Peroxide charges at the 4.0% level or 

higher will not change any more the carbonyl and carboxyl group contents. 
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Figure 5.4. Relation between peroxide charge on o.d. pulp and copper number of ECF 

bleached softwood kraft pulp fibers treated at 2.0% NaOH, for 2.0 h and temperatures of 

60.0°C and 90.0°C. 

 

5.1.2.5 The effect of carbonyl groups of fibers on subsequent peroxide treatment 

 

 The ECF bleached SW kraft pulp was treated with NaBH4 (Figure 5.5). The 

carbonyl group content drops to zero after the ECF bleached kraft pulp fibers are treated 

with 0.5% sodium borohydride, the addition of which does not affect fiber charge. 
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Figure 5.5. The relationship between sodium borohydride addition, copper number, and   

fiber charge after fibers were treated with 2.0% NaOH, for 2.0 h, at 60.0°C, with different 

charges of sodium borohydride. 

 

The original pulp fiber was reduced with 0.5% NaBH4; thereafter, the reduced 

fibers were bleached with alkaline peroxide, at rates of 0.5 to 8.0% peroxide on o.d. pulp. 

The parameters during the alkaline treatment were: 2.0% NaOH on o.d. pulp, 60.0°C, 

10.0% consistency, and 2.0 h. 

 Based on these experiments, the results of peroxide treatment on sodium 

borohydride reduced ECF bleached pulp can be compared with those of the peroxide 

treatment on original ECF bleached pulp. Three cases were considered:  

� Case 1. The comparison of intrinsic viscosity (Figure 5.6). 
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� Case 2. The comparison of fiber charge (Figure 5.7). 

� Case 3. The comparison of copper number (Figure 5.8). 
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Figure 5.6. Comparison of the intrinsic viscosity after peroxide treatment on original ECF 

bleached kraft pulp with NaBH4 reduced ECF bleached kraft pulp. 
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Figure 5.7. Comparison of the fiber charge after peroxide treatment on original ECF 

bleached kraft pulp with NaBH4 reduced ECF bleached kraft pulp. 

 



 

 146 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Peroxide charge on o.d. pulp, %

C
o

p
p

e
r 

n
u

m
b

e
r 

Peroxide treatment of ECF bleached SW kraft pulp

Peroxide treatment of NaBH4 reduced ECF bleached SW
kraft pulp

 

Figure 5.8. Comparison of the copper number after peroxide treatment on original ECF 

bleached kraft pulp with NaBH4 reduced ECF bleached kraft pulp. 

 

Peroxide bleaching of NaBH4 reduced pulps resulted in a higher intrinsic 

viscosity values compared to the blank (with no reductive pretreatment) (Figure 5.6). 

This is probably due to the NaBH4 reduction of carbonyl groups, which decreases the 

chelating power and helps remove of heavy metals.[165, 166] 

Figure 5.7 is a comparison of fiber charge after peroxide treatment of original 

ECF bleached kraft pulp and that after NaBH4 reduction. It is apparent that the best fiber 

charge improvement is 5.53%, and this value is much lower than that of original fibers 

obtained by peroxide treatment (16.6%). Copper numbers of the two types of pulps after 

peroxide treatment are illustrated in Figure 5.8. The maximum copper number increase 
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after peroxide treatment was 0.19 units for the reduced pulp fibers, while it was 0.28 for 

original pulp fibers. At 0.5% peroxide charge on the reduced pulp (i.e., the pulp without 

carbonyl groups) the copper number and the carboxyl group content did not increase at 

all. However, at the same peroxide charge on the original pulp, the copper number 

dropped from 0.43 to 0.26 and the carboxyl group content increased by 9.1%. 

Accordingly, the virgin pulp carbonyl groups are the source for the carboxyl groups 

increment after peroxide treatment. 

 

5.1.3 Conclusions 

  

 Treatment of an ECF bleached kraft pulp with alkaline peroxide at 60.0°C was 

shown to increase fiber charge by 16.6% at a peroxide charge of 8.0% (base on o.d. 

pulp). When a low peroxide charge of 0.5% employed at 60.0°C, the copper number was 

reduced by 39.5% and an increase of fiber charge by 9.0% was observed. At 90.0°C, the 

same alkaline peroxide treatment resulted in lower fiber charge and intrinsic viscosity. 

Optimal temperature during the peroxide treatment with respect to fiber charge was found 

to be between 60 and 70°C. Peroxide treatment of ECF bleached kraft pulp was 

compared with NaBH4 reduced ECF bleached kraft pulp. The results with respect to fiber 

charge and copper number indicated that the carbonyl groups are source for the elevated 

carboxyl group contents observed after peroxide treatment. 

 

5.2 The effect of increased fiber charge on refining, wet-end application, and 

hornification 
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5.2.1 Introduction and objective 

  

 The intent of this paper is to study how improved fiber charge obtained from a 

peroxide-stage treatment affects refining, wet-end application, and hornification. On the 

basis of Section 5.1, an ECF bleached SW-KP was treated with 2% NaOH, and 1% H2O2, 

at 60°C resulting in a 12.8% increase in fiber charge. This study examines the effect of 

the change in fiber charge with respect to refining, cationic starch adsorption, and drying. 

 The properties of the control pulp and the high fiber charge pulp (HCP) are 

summarized in Table 5.2. The freeness values do not show an obvious difference between 

the two pulps. Given these results, the effects of enhanced fiber charge were investigated 

on refinability, cationic starch adsorption, and hornification. 

 

Table 5.2. The properties of the control pulp and HCP. 

Pulp samples 
Pulp properties 

Control pulp HCP 

Brightness 
(Tappi standard) 

84.5 87.3 

Intrinsic viscosity 
(ml g-1) 

672 628 

Carboxyl group content  
(mmol/100 g o.d. pulp) 

3.98 4.49 

Freeness (ml) 696±5 690±5 

FQA of fibers   

         Fiber length (mm) 1.090±0.034 0.995±0.032 

         Curl  0.144±0.006 0.128±0.006 

         Kink index (l mm-1) 1.48 1.38 
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5.2.2 Results and discussion 

5.2.2.1 The influence of elevated fiber charge on refining 

 

 HCP and control pulp were PFI refined at 500, 1000, 2000, 4000, and 8000 r. 

Fiber charge values of 3.98 – 4.00 mmol/100 g (control pulp) and 4.45 – 4.51 mmol/100 

g (HCP) were observed. Total fiber charge properties of both pulps remained relatively 

constant throughout the refining. Thus PFI refining does not appear to alter total fiber 

charge properties, a finding which is in agreement with the results of Bhardwaj et al. 

[176] 

The surface charge, on the other hand, increased as a function of PFI revolution 

(Figure 5.9-A). Expectedly, the refined pulp adsorbs more cationic polymers onto the 

fiber surface than the unrefined pulp. Surface charges of the two pulps without refining 

were statistically the same (Figure 5.9.-A). We can safely conclude that peroxide 

treatment of ECF bleached pulp does not affect significantly the surface charge. 

Figure 5.9-B shows the tensile indices plotted against the level of PFI refining. 

The initial tensile strength of the HCP was 10% higher than the control pulp. The 

differences in tensile indices between the two pulps were increased to 15.4% when 

refining took place at 1000 r. On the basis of Figure 5.9-B, the tensile indices of the two 

pulps are identical if refined at 2000 to 4000 revolutions. The control pulp exhibits a 

reduction in tensile strength when the revolution is elevated from 4000 to 8000. 
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Figure 5.9. The effect of increased fiber charge on PFI refining. A) surface charge and B) 

tensile strength against refining treatment of the control pulp and the alkaline peroxide 

treated pulp. 

 

A) 

B) 



 

 151 

It is well known that refining enhances the surface area of fibers.[218-220] Also, 

Carrasco et al.[221] found that freeness is related the total surface area of fibers after 

refining. The tensile strength is plotted against the freeness in Figure 5.10. It is obvious 

that HCP has better tensile indices of than those of the control pulp in the freeness range 

between 540 and 670 ml and below 260 ml. This observation is in agreement with the 

results illustrated in Figure 5.9-B. 
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Figure 5.10. Comparison between tensile strength and freeness of the control pulp and the 

alkaline peroxide treated pulp after refining. 

 

 The increased surface area of fibers after milling also leads to better 

bonding[222], but may damage the fiber quality which results in lower single fiber 

strength and lower final paper strength[223]. In this study is also confirmed that the 



 

 152 

tensile strength of the control pulp increases under the mild refining treatment, but 

decreases at the higher levels of refinement. It is well established that the strength of final 

paper is primarily controlled by fiber-fiber bonding at low levels of mechanical 

treatment, but the single fiber strength may become more important with high levels of 

refining. However, this is not the case for the HCP; it is more sensitive to mechanical 

refining from the very beginning. 

 

5.2.2.2 The influence of increased fiber charge on the cationic starch adsorption onto 
fibers 

 

 The wet-end behavior of the pulps was evaluated in the context of cationic starch 

as additive. Usually, papermakers apply about 4.54 kg ton-1 (10 lb ton-1), i.e. 0.454%, of 

cationic starch into the system and then gradually optimize it from that point.[224] In this 

study, dosages of 0.25, 0.50, 1.0, and 2.0% (based on o.d. pulp) were applied to both 

pulps in focus. Figures 5.11 and 5.12 show the results concerning of tensile and burst 

strength. It is apparent (Figure 5.11) that the tensile index was increased 23.7% with 2% 

cationic starch application onto the HCP in comparison to a 13.7% increment of the 

control pulp. The tensile index did not change too much around 1% cationic starch 

addition to the control pulp. However, the tensile index of the peroxide treated pulp 

exhibited a continuing increase even at higher application levels. As shown in Figure 

5.12, the greatest increase of burst indices is 47.4% (control) and 57.9% (HCP) when 2% 

cationic starch is applied. Clearly, the efficiency of cationic starch adsorption is better in 

the case of HCP. 
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Figure 5.11. Comparison of tensile index between the control pulp and the alkaline 

peroxide treated pulp after the adsorption of cationic starch onto fibers. 
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Figure 5.12. Comparison of burst index between the control pulp and the alkaline 

peroxide treated pulp after the adsorption of cationic starch onto fibers. 
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Tensile index has a linear relationship with burst index (Figure 5.13). The slope of 

the control sample trend line is lower than that of the enhanced fiber charge pulp. 

 

y = 3.4634x + 24.072

R
2
 = 0.9578

y = 5.6598x + 20.375

R
2
 = 0.9857

30

32.5

35

37.5

40

42.5

45

47.5

2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5

Burst index (kPa m2/g)

T
e
n

s
il

e
 i

n
d

e
x

 (
N

m
/g

)

ECF bleached pulp without treatment

Alkaline peroxide treated ECF bleached pulp

 

Figure 5.13. Comparison of burst index against tensile index of the control pulp and the 

alkaline peroxide treated pulp after the adsorption of cationic starch onto fibers. 

 

5.2.2.3 Surface morphology of cationic starch treated fibers measured by AFM 

 

 AFM is an effective tool for evaluating surface morphology and properties of 

wood, fibers, and cellulose. In our previous study on holocellulose fibers, we had 

reported that there was no apparent relationship between roughness and surface charge of 

fibers.[225] Figure 5.14 shows AFM phase images of the control, the control treated with 
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2% cationic starch, the HCP, and the HCP treated with 2% cationic starch. No striking 

differences in the surface topographies among the samples were found. 

 

 

Figure 5.14. Atomic force microscopy (AFM) phase images of pulp fibers: 1. control 

pulp, 2. control pulp treated with 2% cationic starch, 3. HCP, 4. HCP treated with 2% 

cationic starch. 

 

5.2.2.4 The influence of the increased fiber charge on hornification  
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Table 5.3. The results of pulp properties of the control pulp and HCP dried at 23°C and 

105°C. 

Pulp samples  
Drying at 

(°C) 

Intrinsic 
viscosity  
(ml g-1) 

Total carboxyl 
group content 
(mmol/100 g) 

Tensile 
index 

(Nm g-1) 

Burst index 
(kPa m2 g-1) 

1. Control pulp 23 672 3.98 32.8 2.6 

2. Control pulp 105 667 3.97 29.0 2.1 

3. Peroxide* treated pulp 23 628 4.49 36.0 2.7 

4. Peroxide* treated pulp 105 616 4.45 31.5 2.4 

5. Control pulp** 105 and 23 544 4.12 23.2 1.6 

6. Control pulp*** 105 and 105 542 4.11 19.2 1.0 

* Peroxide treatment condition: 2% NaOH, 1% H2O2, 60°C, 10% consistency, and 2 h treatment. 
** First dried at 105°C, peroxide* treated, and finally dried at 23°C 
*** First dried at 105°C, peroxide* treated, and finally dried at 105°C 

 

Six samples were prepared and the data are summarized in Table 5.3. By 

comparing the results of pulps dried at 23°C (samples 1, 3, and 5) with those dried at 

105°C (samples 2, 4, and 6), it can be seen that drying at elevated temperature does not 

have an obvious effect on intrinsic viscosity and fiber charge. However, high temperature 

drying does decrease physical strength properties including tensile and burst strength for 

both control pulp and HCP. 

The tensile index of sample 2 decreased 11.6% compared to that of sample 1, 

while the decrement was 12.5% in the case between samples 4 and 3. In terms of the 

effect of peroxide treatment on hornification, the tensile and the burst indices of sample 4 

were respectively 8.6% and 14.3% higher than those of sample 2. Accordingly, increased 

fiber charge can reduce the effect of hornification for never dried fibers to some extent. 

On the contrary, the tensile and burst indices of sample 6 showed a drastic decrease 

compared with those of samples 2 and 4. Although the carboxyl group content of sample 
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6 was 3.5% greater compared to sample 2, the tensile index of sample 6 dropped 33.8% 

(against sample 2) and 39.0% (against sample 4). Similar to the results of tensile index 

determination, the burst index dropped 52.4% and 58.3%. These results indicate that the 

peroxide treatment of oven dried pulps can not be used to recover physical strength 

properties. This treatment is in some cases detrimental. 

 

5.2.3 Conclusions 

 

 The increased fiber charge can enhance the efficiency of refining between 

freeness values of 540 and 670 ml and lower than 260 ml. In this ranges, the tensile index 

of the HCP is greater than that of the control pulp. The tensile index increased 23.7% 

with 2% starch application to the HCP, while the tensile index of the control pulp was 

improved 13.7%. The burst index of the control pulp and HCP increased 47.4% and 

57.9% after 2% cationic starch addition, respectively. When the never dried pulp was 

treated by peroxide, the increased fiber charge reduced the hornification at 105°C in 

comparison to the control pulp. The peroxide treatment of the once dried pulp at 105°C 

increased the hornification. The manifestation of this was very low intrinsic viscosity, 

tensile and burst indices. 
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CHAPTER 6 

 

CHARACTERIZING TEMPO-MEDIATED OXIDATION OF ECF BLEACHED 

SOFTWOOD KRAFT PULPS 

 

This chapter is reproduced with the kind permission of from [Carbohydrate 

Polymers]. Copyright © 2007 Elsevier B.V.v 

 

6.1 Introduction and objective 

 

 Softwood and hardwood kraft pulps are often used for absorbency materials. 

However, softwood fibers are judged to have much better water absorbency property than 

hardwood fibers.[226] Therefore, they are often preferably used as absorbency 

materials.[227] The objective of this study is to investigate TEMPO-mediated oxidation 

of an ECF bleached softwood kraft pulp which has not been previously examined. The 

effect of the oxidation parameters on carboxyl group content, copper number, water 

absorbency, and intrinsic viscosity of SW bleached kraft pulp were examined. NMR 

analyses and SEM images were employed to study the crystallinity index and surface 

morphology of oxidized fibers, respectively.  

 

                                                 
v This manuscript was accepted by Carbohydrate Polymers and is in the process of publishing. It was titled 
as “Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps”. The other two 
authors are Dr. Jianguo Zhang and Dr. Arthur J. Ragauskas from the School of Chemistry and 
Biochemistry at the Georgia Institute of Technology. 
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6.2 Results and discussion 

6.2.1 The effect of charge of NaClO on carboxyl group content, carbonyl group 

content, intrinsic viscosity of fibers after TEMPO-mediated oxidation 

   

  Figure 6.1 presents the carboxyl group content, carbonyl group content, and 

intrinsic viscosity of pulp fiber after treatment with different levels of NaClO charge. 

These results indicate that the carboxyl group content increased from 3.98 to 23.1 

mmol/100 g o.d. fibers in a near linear relationship of NaClO addition. The change in the 

degree of cellulose polymerization was monitored by intrinsic viscosity measurement. 

These results are in agreement with recent studies by Kitaoka et al.[26] and Saito & 

Isogai[32]. Evans & Wallis[228] developed an equation relating the degree of 

polymerization (DP) to the intrinsic viscosity [η] of the carbohydrates (equation 6.1). The 

DP of the control ECF bleached fibers was estimated as 2416, while the DP of the 

TEMPO oxidized fibers after 1.701 mmol NaClO/g o.d. pulp charge was 688. 

][65.19.0 η×=DP                                                    (6.1)  
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Figure 6.1. Carboxyl group content, carbonyl group content, and intrinsic viscosity of 

ECF bleached SW kraft pulps prepared with varying NaClO charge on pulps during 

TEMPO-mediated oxidation. 

  

  The copper number (Cu#) is an indication of aldehyde groups in fibers and the 

analysis for the TEMPO oxidized pulps is presented in Figure 6.1. Röhrling et al.[159] 

reported a linear relationship between the carbonyl group content and copper number 

shown in equation 3.3. In this study, this equation was applied to convert Cu# to carbonyl 

group content. 

  The aldehyde group is generated by oxidizing C6 hydroxyl group during 

TEMPO-mediated system. The results of carbonyl group content measurements are 

summarized in Figure 6.1. This data shows that the aldehyde groups enhanced with 
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increasing NaClO charge approaching a maximum value of 17.8 mmol/100g o.d. pulp 

with NaClO charge of 0.85 mmol/g o.d. fibers. These results suggest that the TEMPO-

oxidation process is not yet fully optimized for the formation of acid groups. 

 

6.2.2 13
C CP/MAS NMR spectra of the oxidized fibers 

  

 13C CP/MAS NMR analysis of the starting and TEMPO oxidized pulp were 

recorded, and the crystallinity index was determined following a literature method.[47] 

As summarized in Table 6.1, these results indicate that there was a minor increase in the 

crystallinity for the oxidized fibers. This suggests that the amorphous regions in fiber are 

slightly more prone to oxidation. 

 

Table 6.1. Crystallinity index results from 13C-CP/MAS NMR analysis of original ECF 

bleached SW kraft pulp fibers and TEMPO-mediated oxidized fibers. 

 

Sample I.D. Crystallinity index 

Original ECF bleached SW pulp fibers 
0.52 

Oxidized fibers (0.43 mmol NaClO/g o.d. 
pulp charge) 0.52 

Oxidized fibers (0.85 mmol NaClO/g o.d. 
pulp charge) 0.53 

Oxidized fibers (1.70 mmol NaClO/g o.d. 
pulp charge) 0.54 
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6.2.3 SEM images of the oxidized fibers 

  

  Figure 6.2 illustrates the SEM images of the original ECF bleached SW kraft pulp 

fibers and TEMPO-mediated oxidized pulps (NaClO charge of 1.70 mmol/g o.d. pulp). 

Figure 6.2-A provides a clear illustration of the primary wall of a fiber. The fibrils inside 

the fibers can be clearly seen from Figure 6.2-B. This result suggests that the primary 

wall or even the S1 sublayer, i.e. the outer layer of second wall, of the fibers were 

partially peeled by the alkaline TEMPO-mediated oxidation.  

 

 

Figure 6.2-A. SEM image of original ECF bleached SW kraft pulp fibers. 
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Figure 6.2-B. SEM image of TEMPO-mediated oxidized ECF bleached SW kraft pulp 

fibers (1.70 mmol NaClO/g o.d. pulp charge). 

 

6.2.4 The effect of temperature during TEMPO-mediated oxidation on carboxyl 

group content and intrinsic viscosity of fibers 

 

  As discussed previously, hypochlorite degrades carbohydrates which results in the 

loss of fiber viscosity. Usually, hypochlorite bleaching of kraft pulps is limited to high 

alkalinity (pH~10) and low temperature.[70] To investigate the effect of reaction 

temperature on carboxylate content and fiber viscosity, the TEMPO oxidation was 

conducted at varying reaction temperatures with a fixed charge of 0.85 mmol NaClO/g 

o.d. pulp (see Figure 6.3). These results show that the carboxyl group content of SW 

bleached fibers reaches a maximum value at 23°C. The intrinsic viscosity of fibers after 

TEMPO oxidation at 23°C was found to be the lowest. 
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Figure 6.3. The effect of temperature during TEMPO-mediated oxidation on carboxyl 

group content and intrinsic viscosity of ECF bleached SW kraft pulps at the condition of 

0.85 mmol NaClO/g o.d. pulp charge. 

 

6.2.5 The effect of pH value during TEMPO-mediated oxidation on carboxyl 

group content, carbonyl group content, and intrinsic viscosity of fibers 

 

 It’s been reported that the solution pH value has an impact on the TEMPO-

mediated oxidation with respect to the formation of carboxyl group and the reaction 

rate.[27] To evaluate this effect for SW bleached kraft pulp, five reaction pH values were 

examined including 7.10, 8.00, 8.60, 9.10, and 10.00. The remaining experimental 

conditions were kept constant including a reaction temperature of 23°C, 2.0 h reaction 
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time, and 0.85 mmol NaClO/g o.d. pulp. Figure 6.4 shows the results of carboxyl and 

carbonyl group content, and intrinsic viscosity of fibers after the ECF bleached SW kraft 

pulp was oxidized by the TEMPO-mediated system with 0.85 mmol NaClO/g o.d. pulp. 

In terms of the formation of carboxyl group content of fibers, the optimal result was 

obtained at pH 9.10. At this pH value, the carbonyl group content was the lowest, and the 

intrinsic viscosity was next to the highest value observed.  

 

 

Figure 6.4. The effect of pH value during TEMPO-mediated oxidation on carboxyl group 

content, carbonyl group content, and intrinsic viscosity of ECF bleached SW kraft pulps 

at the condition of 0.85 mmol NaClO/g o.d. pulp charge. 
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6.2.6 The effect of PEG addition on water retention value of fibers after TEMPO-

mediated oxidation 

 

 Pulp water retention values characterize the swelling capability of pulps.[138] It is 

commonly acknowledged that enhanced fiber swelling relates to increased concentration 

of acid groups in the mechanical pulps[8, 138] and kraft pulp[225]. In our previous study 

of the effect of carboxyl group content on WRV, it was found that there is a linear 

relationship between the carboxyl group content and WRV of the softwood kraft 

pulp.[225] 

 PEG is widely used to cross-link pulp fibers to enhance the water absorbency 

property of fibers.[229, 230] It has been reported that PEG-hydroxyl end groups can form 

ester crosslinking with cellulosic hydroxyl groups and carboxyl groups.[231, 232] 

Ibrahim et al.[233] studied the addition of PEG in the citric acid treated cotton and 

reported that the carboxyl group content was decreased due to the esterification. The 

imparting of a more hydrophilic crosslinked structure leads to enhanced swellability of 

the cellulose structure and higher moisture absorption.[233] In addition, PEG treatment 

of textile fabric shows enhancement of the fabric properties including antistatic behavior, 

wrinkle recovery, and abrasion resistance.[234, 235] 

 The glycols used in this study to cross-link fibers were PEG with a MW of 3,350 

and 10,000. The water retention values of the original ECF bleached SW kraft pulp, 

TEMPO oxidized, and PEG cross-linked pulps were studied. Table 6.2 summarizes the 

results of water retention studies. 

 The WRV of oxidized fibers is greater than that of the original fibers by 62.9%. 

This result indicates that, the higher value of carboxyl group content, the higher is the 



 

 168 

water retention value of the fibers. Kitaoka et al.[26] studied the chemical modification of 

bleached hardwood kraft pulp fibers by TEMPO-mediated oxidation. They reported that 

WRVs of pulps were roughly constant, even though these pulps had carboxyl contents 

from 0.06 to 0.47 mmol/g after TEMPO oxidation. In comparison, the softwood kraft 

pulps in this study present an enhanced water absorbency property after TEMPO 

oxidation. 

 The WRV of fibers after PEG cross-linking was increased compared to the 

untreated fibers. This is consistent with the study by Barcus & Bjorkquist[229]. As for 

the original fibers, the WRVs were increased by 59.6% and 22.6% after cross-linking by 

PEG 3,350 and 10,000, respectively. However, they increased by 18.1% and 3.0% when 

the oxidized fibers were cross-linked by PEG 3,350 and 10,000, respectively. Based on 

the performance of PEG 3,350 and PEG 10,000 on fibers, the low molecular weight 

polymer appears to provide enhanced improvement of fiber WRV. 

 

Table 6.2. The results of water retention values of ECF bleached SW kraft pulps with and 

without cross-linking. 

Water retention value 
(g water/ g o.d. pulp fibers) 

 Sample I.D. 
Control 

Cross-linked 
by PEG 3,350 

Cross-linked 
by PEG 10,000 

Original ECF bleached SW 
pulp fibers 0.733 1.170 0.899 

Oxidized fibers (0.85 mmol 
NaClO/g o.d. fiber) 1.194 1.410 1.230 
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6.2.7 The paper physical properties of fibers after TEMPO-mediated oxidation 

 

 Tensile and zero-span strength of the paper test sheets prepared from the two 

oxidized pulp samples described in section 6.2.6 were measured. The results are 

summarized in Table 6.3. 

 Due to the higher carboxyl group content, the tensile strength of the paper test 

sheet prepared from the oxidized pulp fibers was higher than that of the original pulp 

fibers. Zero-span index indicates the average ultimate strength of the longitudinal 

structure of individual fibers in a paper test sheet. The zero-span strength of the oxidized 

pulp fibers was lower than that of the original pulp fibers. Since the TEMPO-mediated 

oxidation drastically drops the intrinsic viscosity, it leads to the lower single fiber 

strength. 

 

Table 6.3. The results of paper physical properties of original ECF bleached SW kraft 

pulp fibers and oxidized fibers. 

Paper physical strength 
 Sample I.D. Tensile Index 

(Nm/g) 
Zero-span Index 

(Nm/g) 
Original ECF bleached SW 
pulp fibers 26.8 119.7 

Oxidized fibers (0.85 mmol 
NaClO/g o.d. fiber) 30.5 99.3 
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6.3 Conclusions 

 

 This study demonstrates the potential of the TEMPO-KBr-NaClO system to 

oxidize ECF bleached SW kraft pulp fibers providing a 480% increase in carboxyl group 

at the charge of 1.701 mmol NaClO/g o.d. pulp.  In addition, at this high oxidative charge 

the carbonyl group content of pulp was increased by a factor of 28. A comparison of the 

SEM images between the original fibers and the oxidized fibers indicated that the 

primary wall can be peeled by TEMPO-mediated oxidation. In terms of the carboxyl 

group formation of fibers after TEMPO-mediated oxidation, the optimum temperature 

and pH value were found to be around room temperature, and 9.10, respectively. Water 

retention value of the oxidized fibers had higher value than the original fibers. Fibers 

after PEG cross-linking showed increased water retention value. The zero-span strength 

of the paper test sheets prepared from the oxidized pulp fibers were lower than the 

original bleached pulp fibers due to oxidatively induced changes in the fibers. 
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CHAPTER 7 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

  

 In the experiments reported here, the carboxyl groups of pulp fibers were 

carefully investigated during kraft pulping, alkaline peroxide bleaching, and TEMPO-

mediated oxidation. This study provides a practical way to control the carboxyl group 

content of kraft pulps by kraft pulping, an effective technique to enhance the carboxyl 

group content of fully bleached pulps by peroxide bleaching, and a novel method to 

enrich the carboxyl groups into fibers. 

 

7.1.1 Effect of kraft pulping on fiber charge 

  

 Laboratory kraft pulping of loblolly pine was carried out to study the influence of 

pulping conditions, including: effective alkali (EA), sulfidity, and pulping temperature, 

on fiber charge. The results indicated that when pulping to the same H-factor, low EA 

charge and low pulping temperature are favorable for increasing bulk carboxylic acid 

group content of fibers. Sulfidity did not have an obvious effect on bulk or surface 

carboxylic acid group content of fibers. Surface charge was not significantly affected by 

pulping temperature. Bulk fiber charge has a linear relationship with water retention 

value. Another set of kraft pulps distinguished by conventional pulping and Lo-Solids 
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pulping were investigated to determine the effect of H-factor and pulping protocol on 

fiber charge.  When bulk fiber charge was plotted against kappa number, pulps from Lo-

Solids pulping had a higher slope value than the conventional pulping pulps. The charge 

on holocellulose fibers approaches a constant value as pulping advances for both types of 

pulping processes.   

 

7.1.2 Effect of peroxide bleaching on fiber charge 

 

 The influence of alkaline peroxide treatment has been characterized on ECF 

bleached SW kraft pulp. The results indicated that fiber charge was increased with the 

increase of peroxide charge. Two primary bleaching temperatures at 60.0°C and 90.0°C 

were investigated during peroxide treatment. Copper number was decreased when 

peroxide charges were 0.5% and 1.0% at 60.0°C and 90.0°C treatments, respectively, 

then increased with the increase of peroxide charge. Both fiber charge and copper number 

approached constant values when a 4.0% or higher peroxide charge was applied. 

Peroxide treatment on a bleached kraft pulp at 90.0°C resulted in lower fiber charge and 

lower intrinsic viscosity compared to a treatment at 60.0°C. Fiber charge and copper 

number were compared after peroxide treatment of ECF bleached kraft pulp versus 

sodium borohydride reduced ECF bleached kraft pulp. The results indicated that carbonyl 

group content of fibers is favorable for improving fiber charge after peroxide treatment. 

 The effect of increased fiber charge on refining, cationic starch adsorption, and 

hornification was examined. It was shown that the increased fiber charge can improve the 

efficiency of the refining treatment. Upon the addition of 2% cationic starch to both 



 

 173 

pulps, the tensile index of the control pulp increased by 13.7% and that of higher fiber 

charge pulp by 23.7%. Increased fiber charge was beneficial in reducing hornification 

when pulp was dried at 105°C.  

 

7.1.3 Effect of TEMPO-mediated oxidation on fiber charge 

 

 An ECF bleached SW-KP was catalytically oxidized with TEMPO-mediated 

system. This work shows a promising way to enrich carboxyl groups into fibers. 

However, the degree of polymerization of fibers drastically decreased from 2416 to 688 

depending on the increase of NaClO charge during the TEMPO-mediated oxidation. The 

optimum reaction temperature and pH for TEMPO-mediated oxidative generation of 

carboxyl groups was found to be 23oC at a pH of 9.10. Oxidized fibers were shown to 

exhibit 62.9% higher water retention values (WRV) than the original fibers. Due to the 

enhanced carboxyl group content after oxidation, the paper physical strength presented 

that the tensile index of the oxidized fibers is 13.8% greater than that of the original 

fibers. The individual fiber strength of the oxidized fibers was lower than that of the 

original fibers, as determined by zero-span strength measurement showing a 17.0% 

decrease. 

 

7.2 Recommendations 

 

 The current work suggests several other studies that might be conducted to further 

explore the enrichment of carboxyl groups into fibers.  
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� The effect of adding additives or catalysts on the retention of carboxyl 

groups during kraft pulping. 

� Peroxide activators should be explored to understand how it affects the 

carboxyl group content during peroxide bleaching. 

� TEMPO is an expensive reagent for paper industry. A fundamental study 

of the decomposition of the TEMPO should be explored during the 

oxidation of fibers. This can bring the ideas of reusing it. 

� An approach of how to avoid the drastic depolymerization of cellulose 

should be employed. That means the selectivity of TEMPO-oxidation 

should be increased to meet the requirements from industry. 
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APPENDIX B. PROCEDURE OF THE MEASUREMENT OF CARBOXYLIC 

ACID GROUP CONTENT OF PULP 

(Based on Tappi T-237: Carboxyl content of pulp) 

 

1. Apparatus and Materials 

1.1 Conductivity meter, EC Meter Model 2052 

1.2 Filtering funnels (coarse, fritted glass, 250mL) 

1.3 Filtering flask (2000mL) 

1.4 Beakers (400mL) 

1.5 Glass stirring rods 

1.6 Magnetic stir plates 

1.7 Magnetic stir bars 

1.8 Graduated cylinders (250mL and 500mL) 

1.9 Volumetric flasks (1000mL) 

2. Reagents 

2.1 Hydrochloric acid (HCl), 0.1N 

2.2 Sodium chloride (NaCl), 0.001N 

2.3 Sodium hydroxide (NaOH), 0.05N 

2.4 Nitrogen gas (N2) 

3. Sample Collection, Preservation, and Holding Times 

Samples should either stored in refrigerator or air dried. 

4. Procedure 

4.1 Sample Preparation 
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4.1.1 Determination the moisture content of the sample 

4.1.2 Weight out 1.500 gram of over-dry pulp into a 400mL beaker, to the nearest 

0.0001g 

4.1.3 Add 300mL of 0.1N HCl to the pulp and stir for one hour, and make sure the pulp 

is well dispersed 

4.1.4 Filter the pulp using a vacuum flask and fritted glass filter funnel.  Use a water 

aspirator as the vacuum source. Wash the sample with at least 2000mL of 

deionized water, breaking up the pulp and stirring with a glass rod.  Dump the 

filtrate and then wash the pulp with 200mL deionized water again.  Check the 

conductivity reading of filtrate to see whether it’s close to 0 which is almost same 

as the conductivity of deionized water.  If not, wash the pulp till it’s close to 0.  

4.2 Titration 

 Figure B.1 presents a picture of the equipment set for fiber charge measurement. 

4.2.1 Quantitatively transfer the filtered pulp back into the 400mL beaker and add 

250mL NaCl.  Use the glass rod and the sodium chloride solution to aid in 

transfer of the fiber. 

4.2.2 Add 1.5mL of the standard 0.1N HCl to the beaker.  Begin stirring and bubbling 

nitrogen through the solution. With the EC meter range set at D, dip the 

conductivity probe up and down and side to side to ensure fresh solution in the 

cell. Record the conductivity at 0mL NaOH added and multiply by 1000.  A 

typical reading is 0.390, multiplying by 100 give 390 for ease in recording a 

plotting. 
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4.2.3 While stirring and bubbling nitrogen through the mixture, titrate with 0.05N 

NaOH in 0.25mL aliquots, taking conductivity readings after each addition.  Be 

sure to dip the probe up and down and side to side before taking each reading.  

4.2.4 Titrate until the conductivity reading is the same or about the same as it was 

before began, typically about 9-10mL. 

4.2.5 Rinse the conductivity probe with water between samples.   

 

 

Figure B.1. Photograph of the equipment set for fiber charge measurement.  
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4.3 Cleanup 

 Clean the glass filter when they become slow to drain, by soaking it into strong 

sulfuric acid and then rinse with deionized water.  

4.4 Calculations 

 Refer section 3.2.1 for the calculation of carboxylic acid group content. 

Repeatability: Duplicate the tests, the difference between two data should accord to: 

 

Carboxylic acid content, meq/100 g pulp Repeatability, meq/100g pulp 

 

   0.20 to 5.0      0.13 

   5.1 to 10      0.18 
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