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SUMMARY

This dissertation develops optimal algorithms for distributed detection and

estimation in static and mobile ad hoc networks. In distributed detection or estima-

tion scenarios in clustered wireless sensor networks, sensor motes observe their local

environment, make decisions or quantize these observations into local estimates of

finite length, and send/relay them to a Cluster-Head (CH). For event detection tasks

that are subject to both measurement errors and communication errors, we develop

an algorithm that combines a Maximum a Posteriori (MAP) approach for local and

global decisions with low-complexity channel codes and processing algorithms. For

event estimation tasks that are subject to measurement errors, quantization errors

and communication errors, we develop an algorithm that uses dithered quantization

and channel compensation to ensure that each mote’s local estimate received by the

CH is unbiased and then lets the CH fuse these estimates into a global one using a

Best Linear Unbiased Estimator (BLUE). We then determine both the minimum en-

ergy required for the network to produce an estimate with a prescribed error variance

and show how this energy must be allocated amongst the motes in the network.

In mobile wireless sensor networks, the mobility model governing each node will

affect the detection accuracy at the CH and the energy consumption to achieve this

level of accuracy. Correlated Random Walks (CRWs) have been proposed as mobility

models that accounts for time dependency, geographical restrictions and nonzero drift.

Hence, the solution to the continuous-time, 1-D, finite state space CRW is provided

and its statistical behavior is studied both analytically and numerically. The impact

of the motion of sensor on the network’s performance and the strategies to improve

the performance are also studied.

xiv



CHAPTER I

INTRODUCTION

The market for wireless sensor networks has yet to reach the multi-billion dollar

levels predicted ten years ago. Sales of ZigBee chip sets, for example, are at most a

few million per year [73]. One reason for this smaller than expected market is that

most sensor networks considered so far have been dedicated to a single task, such as

environmental monitoring or energy management, and the resulting benefits do not

justify the cost of installing and maintaining the network. This will eventually change

as the cost of sensors and motes decline, batteries and energy scavenging techniques

improve, communication capacity and efficiency increase, and software tools improve.

One important possibility missing from the above scenario is the use of a sensor

network for multiple tasks. The combined benefits from performing these multiple

tasks might then be sufficient to justify the network. A situation like this has arisen

in the eStadium project at Purdue and Georgia Tech [109, 110, 10]. Its goal is to

gather game-, venue- and fan-generated multimedia content and deliver it to fans and

stadium personnel via their wireless devices. Some of this content is gathered via a

wireless sensor network deployed in the stadium – Fig. 1 and Fig. 2 show a Cluster-

Head (CH) and mote installed in the stadium at Purdue. The tasks this network

performs fall into two categories: safety/security and enhancing fans’ enjoyment of the

game. The first is essential but does not generate revenue; the second is non-essential

but is a potentially significant source of revenue. Their support by a dual-purpose

network should achieve economic sustainability for both.

1



Figure 1: A Cluster-Head (CH) of the eStadium sensor network in Ross Ade stadium
at Purdue. It is a Crossbow Stargate powered via a Power-over-Ethernet (PoE) en-
abled switch. Its USB web-cam captures images of the concourse area of the stadium
and its attached sensor mote collects data and supports communication with other,
untethered motes.

Figure 2: A Mica2 wireless sensor mote inside an enclosure that is strapped to a
steel girder of the stadium.

2



This dissertation focuses on the event detection and estimation tasks the eSta-

dium sensor network will perform. These include detecting or estimating: the occur-

rence/loudness of cheering or booing, which is used to tag the video clips of plays

of greatest interest to fans; the presence/coverage of WiFi, Bluetooth and ZigBee

networks that interfere with the stadium’s wireless networks; and, in the future, the

presence/concentration of chemicals, such as smoke, in or near the stadium. If all of

these detection and estimation tasks are to be supported by the same network, it is

essential that each one is very lightweight.

The support of two or more tasks or applications by a single sensor network means

that the requirements of each one must be very well understood to ensure they can

coexist in such a resource constrained environment. In particular, the minimum pro-

cessing and communication resources required for the application to perform well

must be determined. The patterns of use of these resources by each optimized appli-

cation must then be determined so that they can be optimally scheduled/managed.

We have thus begun an effort to characterize and optimize the use of resources by

classes of applications. We began by characterizing applications based on distributed

detection [90] and then move to applications based on distributed estimation, which

is generally more complicated. See, for example, [94, 18, 93] for excellent tutorials

on distributed detection, and [95, 33, 49, 68] for fundamental results on distributed

estimation.

The systems-level work reported in this dissertation for distributed detection/estimation

in mobile wireless sensor networks is also motivated by a security scenario that has

arisen in the context of the eStadium project, which develops multi-media web appli-

cations, wireless communication networks, and wireless sensor networks for football

games and other large-scale events. One security scenario of great interest occurs

in the hour immediately before or immediately after a large event. At these times,

large numbers of fans, stadium personnel, and concession staff are typically walking

3



toward or away from the stadium. This is a time when they are very vulnerable to

surreptitious exposure to hazardous chemical or biological agents.

Suppose that the smartphones that the fans are carrying, or possibly the tickets

that they have bought, have sensors embedded in them that can detect and/or esti-

mate the concentration of these agents. These sensors would necessarily be small and

inexpensive and might thus have a potentially high false-alarm rate and/or low rate

of correct detection. It is thus important that as many as possible of their individ-

ual decisions and estimates be fused with each other to ensure they are correct and

accurate. They must therefore be able to communicate with each other or with a des-

ignated Cluster Head (CH) to accomplish this goal. These mobile, battery-powered,

wireless sensors can thus be modeled as a mobile ad-hoc network that is supporting

applications that perform distributed detection or estimation. Hence it is interesting

and necessary in this scenario to model and analyze the motion of sensors and its

effects on the performance and cost during their execution of detection/estimation

tasks.

1.1 Overview of Wireless Sensor Networks

Advances in MEMS and wireless communications technologies have enabled the de-

ployment of wireless sensors for applications involving environmental sensing, battle-

field surveillance, health monitoring, process control, and so on. Each wireless sensor

node is equipped with an array of transducers that can convert a variety of physi-

cal phenomenon, such as temperature, humidity, light and sound levels, into electric

signals. In a typical scenario, these motes are either deterministically or randomly

deployed in a geographical area and they automatically self-organize into a network.

Then they perform their sensing tasks and transmit the data gathered to the clus-

ter head, which fuses the data collected from all motes in the network. The most

important constraints for the design of wireless sensor networks are the limits on

4



their power consumption and transmission rate. Sensor motes are usually powered

by batteries and their transmission rate is about 250kbps. Hence, there have been

many research efforts whose goals are to save energy and bandwidth in the design of

wireless sensor networks. For example, see [103, 29, 27, 74, 69, 28] for MAC layer

designs and [35, 39, 1, 5] for routing algorithms for wireless sensor networks.

The proliferation of mobile computing and communication devices such as smart-

phones, laptops and handheld digital devices has been driving the evolution of mobile

ad hoc sensor networks. Mobile ad hoc networks represent distributed systems com-

prised of wireless mobile nodes that can freely and dynamically self-organize into ar-

bitrary and temporary ad hoc network topologies without assuming any pre-existing

communication infrastructure. See [31, 26] for general tutorials on mobile ad hoc net-

works, [78] for a survey that focuses on routing protocol design for the organization

of mobile ad hoc networks, and [105] for a typical application that generates a signal

processing task in mobile sensor networks.

This dissertation will focus on signal processing aspects in both static and mobile

wireless sensor networks.

1.2 Overview of Distributed Signal Processing

The idea of distributed signal processing is to get an acceptable signal processing

result with a number of devices with limited capabilities to acquire, process, and

transmit signals. To achieve the objective, these devices have to execute the task

in a distributed and collaborative manner. Distributed signal processing in wireless

sensor networks is a typical example because the sensing accuracy, power consump-

tion, processing ability, and communication bandwidth of each mote is typically very

limited. Hence the target of the system is to obtain a much better result based on a

number of coarse results from each mote through data fusion.

As to sensor motes, communication is the most energy consuming operation; when
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compared with sensing and computation tasks [6]. Thus processing at each sensor

and collaboration within the entire network are the most important factors that

affect the performance of the final result. Concretely speaking, each mote makes

observations of the event the network is interested in, such as light, fire and sound,

when it is scheduled to be active. Then each mote will perform local signal processing

individually such as filtering, quantization, and encoding. In the next step, sensors

transmit their locally processed result to each other or a fusion center. Finally the

fusion center or one designated sensor will extract the useful information from the

data it received and fuse them together to generate the final result. Distributed

signal processing includes several different kinds of tasks, such as distributed data

compression [70, 101], distributed estimation [9, 12, 13, 11, 36, 46, 51, 52, 53, 63, 96,

97, 100, 95, 33, 60, 99, 62, 76, 75, 98], distributed detection [94, 18, 93, 92, 91, 22, 59,

61, 24, 23, 66, 55, 40, 30, 57, 8, 64, 67, 102, 56], localization [25, 43, 49], and tracking

[34, 50, 58, 107, 108].

Distributed detection and estimation are the most fundamental tasks among dis-

tributed signal processing tasks. They are duals of each other, but an estimation

problem is typically more complicated than a detection problem. Therefore, this dis-

sertation will focus on distributed estimation and detection, with detection problem

being treated first.

The rest of the dissertation is organized as follows. In Chapter II, an algorithm

of low complexity for distributed detection in wireless sensor networks is developed

to achieve the objective of energy/bandwidth efficiency. To ensure that a multi-

hop cluster of battery-powered, wireless sensor motes can complete all of its tasks,

each task must minimize its use of communication and processing resources. For

event detection tasks that are subject to both measurement errors by sensors and

communication errors in the wireless channel, this implies that: (i) the Cluster-Head

(CH) must optimally fuse the decisions received from its cluster in order to reduce
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Figure 3: Comparisons via simulation of the pure-relay, local-decision/repetition,
and hybrid strategies. The hybrid decision strategy lowers the probability of error by
using local decisions when needed.

the effect of measurement errors; (ii) the CH and all motes that relay other motes’

decisions must adopt low-complexity processing and coding algorithms that minimize

the effects of communication errors.

This chapter combines a Maximum a Posteriori (MAP) approach for local and

global decisions in multi-hop sensor networks with low-complexity repetition codes

and processing algorithms. It is shown by analysis and confirmed by simulation that

there exists an an odd integer M and an integer KM such the decision error probability

at the CH is reduced when: (1) nodes in rings k ≤ KM hops from the CH directly

relay their decisions to the CH; (2) nodes in rings k > KM locally fuse groups of

M decisions and then use a repetition code to forward these fused decisions to the

CH; and (3) KM is a nondecreasing function of M . This algorithm – and hybrid,

hierarchical, and compression approaches based on it – enable tradeoffs amongst the

probability of error, energy usage, compression ratio, complexity, and time to decision.

In Fig. 3, we can see that hybrid scheme outperforms both the pure relay scheme

and local decision/repetition schemes.
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In Chapter III, a combination of dithered quantization, channel compensation and

energy allocation is proposed for distributed estimation in wireless sensor networks

is proposed. In clustered networks of wireless sensors, each sensor collects noisy

observations of the environment, quantizes these observations into a local estimate

of finite length, and forwards them through one or more noisy wireless channels to

the Cluster Head (CH). The measurement noise is assumed to be zero-mean and

have finite variance and each wireless hop is modeled as a Binary Symmetric Channel

(BSC) with a known crossover probability. A novel scheme is proposed that uses

dithered quantization and channel compensation to ensure that each sensor’s local

estimate received by the CH is unbiased. The CH fuses these unbiased local estimates

into a global one using a Best Linear Unbiased Estimator (BLUE). Analytical and

simulation results show that the proposed scheme can achieve much smaller mean

square error (MSE) than two other common schemes while using the same amount of

energy. The sensitivity of the proposed scheme to errors in estimates of the crossover

probability of the BSC channel is studied by both analysis and simulation. We then

determine both the minimum energy required for the network to produce an estimate

with a prescribed error variance and how this energy must be allocated amongst

the sensors in the multi-hop network. In Tab. 1, we can see the optimal energy

allocation scheme among the entire network to achieve the threshold on MSE of the

final estimate with the minimum amount of energy.

The effects of motion on distributed detection/estimation are studied in Chapter

IV. A large set of mobile wireless sensors observe their environment as they move

about. We consider the subset of these sensors that each made observations about a

brief, localized event at the time when they were near that location. As they continue

to move, one of them eventually finishes processing its observations and makes a de-

cision or an estimate and determines that must be reported if other sensors confirm

its results. This sensor then assumes the role of a Cluster-Head (CH) and requests

8



Table 1: Comparison of the energy allocation schemes under different crossover
probabilities of the BSC channel. Bits are allocated first to the sensors closest to the
CH, with sensors in the third ring contributing more bits as the channel crossover
probability pc increases. Recall that pabc is the probability that node b in ring a
transmits 2c − 1 bits.

pc ring 1 ring 2 ring 3
0.02 p1i3 = 1 p2i3 = 1 p3i2 = 0.2433
0.04 p1i4 = 1 p2i3 = 1 p3i2 = 0.5721
0.06 p1i4 = 1 p2i3 = 1 p3i2 = 0.6477, p3i3 = 0.3523
0.08 p1i4 = 1 p2i4 = 1 p3i2 = 0.6838, p3i3 = 0.3162
0.10 p1i5 = 1 p2i4 = 1 p3i3 = 0.9789, p3i4 = 0.0211
0.12 p1i5 = 1 p2i5 = 1 p3i2 = 0.1291, p3i3 = 0.8709
0.14 p1i5 = 1 p2i5 = 1 p3i4 = 0.9346, p3i5 = 0.0654

that all other sensors that collected observations at that time/location reply to it

with their decisions/estimates. The motion of the sensors since the observation time

determines how many wireless hops their decision/estimates must cross to reach the

CH. We analyze the effect of this motion in the 1D case by modeling each sensor’s mo-

tion as a Correlated Random Walk (CRW), which can account for realistic transient

behavior, geographical restrictions, and nonzero drift. We also account for observa-

tion errors and errors in each hop in the wireless channel. Quantities, such as the

error probability of the final decision at the CH and the minimum energy required

to collect the estimates from all relevant sensors to achieve a prescribed estimation

accuracy, can then be determined as functions of time and the parameters of the

CRW, the measurement noise and the channel noise. These results thus allow rapid

calculation of the time-dependence of detection and estimation algorithms that are

being executed in realistic mobile sensor networks. In Fig. 4, we can see clearly the

tradeoff between delay and energy of estimation in mobile sensor networks.

Chapter V concludes the dissertation and discusses future research topics. The

results in this dissertation have been published in several journal papers [90, 87, 85]

and a number of conference papers [80, 88, 83, 89, 82, 81, 84, 86].
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Figure 4: Minimum energy, as a function of time, required in a mobile sensor network
to achieve a specified MSE for different values of the crossover probabilities of the
BSC channel. The MSE requirement is 0.015. The The network has 100 nodes that
each start at position zero and move independently according to asymmetric CRWs
on [0,10] with a mean rate of λ = 1 unit/sec. The transmission radius of each sensor
is r = 1; the signal and measurement noise are both uniformly distributed on [−1, 1].
This scenario is a reasonable model of a group of people/vehicles who start moving
after a traffic light turns and proceed to another traffic light where they again bunch
up and wait. Some of them stop for some time, or turn-around occasionally.
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CHAPTER II

DISTRIBUTED DETECTION IN WIRELESS SENSOR

NETWORKS

2.1 Research Motivation

This chapter will focus on distributed detection in wireless sensor networks. For

each event of interest, a sensor mote periodically produces a single bit to indicate

whether the event has occurred or not. Each decision bit is based on noise-corrupted

measurements of the environment in the stadium. These individual decisions are

then transmitted/relayed, either individually or after being gathered into packets,

over noisy wireless channels to the CH. When these decisions are relayed, they may

be processed by the relaying motes before being forwarded. The CH gathers the

decisions it receives from all of its motes and fuses them into a cluster-wide decision

about the event.

Fig. 5 is a schematic of the 1-D sensor net deployed along the edge of the stadium

[109]. The motes are organized into multi-hop clusters, either directly or by a fast,

energy-minimizing algorithm, such as the one in [15]. The CH’s make cluster-wide

decisions that they forward to a server that produces a stadium-wide status map for

each type of event being monitored. The diameter of each cluster is less than the

spatial-correlation length of the observed phenomenon. The motes in a cluster are

thus observing and making decisions about a phenomenon that we can assume to be

spatially-invariant.

The use of many inexpensive sensor motes in these clusters provides resilience

against failures, increases the spatial sampling rate, and yields decision error proba-

bilities at the CH that decrease exponentially as the number of motes increases. Each
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Figure 5: Layout of a 1-D sensor net that may be monitoring C(x, t), the space- and
time-varying concentration of an airborne contaminant, such as smoke, along the edge
of the stadium. The expanded view of a two-hop cluster shows its CH and motes.

mote makes decisions/estimates about a wide variety of phenomena [110] and can thus

combine the bits from all of its tasks into a single packet to transmit. The relaying

motes can likewise add relayed decisions and estimates to packets they generate. This

minimizes overhead, thus decreasing the energy expended.

A more general two-hop cluster is shown in Fig. 28. The 7 motes in the first

ring are one hop from the CH; the 15 motes in the second ring are two hops away.

Three motes in a sector of ring 2 are shown forwarding their decisions to a relay

mote in ring 1. Every mote’s observations are affected by measurement noise and all

communications throughout the network are affected by channel noise, fading, and

transceiver errors. Because the cluster is multi-hop, decisions forwarded by motes

in the outer rings suffer repeated exposure to these sources of communication error.

Understanding the combined effects of the communication and measurement errors

and developing lightweight algorithms to mitigate these effects are the goals of this

chapter.
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Figure 6: A two-hop, 2-D cluster. Each mote’s binary decision may be incorrect
because of measurement errors. Decisions transmitted over wireless channels may be
received incorrectly because of communication errors.

The approach we use is a combination of large deviation techniques, direct calcu-

lation, and simulation. Large deviation techniques, which were used to analyze errors

in a single-hop cluster in [22], are used to obtain the error exponent and upper bound

for the decision error probability at the CH for complex, multi-hop clusters. This

technique accurately characterizes the rate of decay of the tail of the decision error

probability for large numbers of motes but is often not precise for small or moderate

numbers of motes. For small numbers of motes, we thus use direct calculation of the

error probability. For moderate numbers of motes, the computational complexity is

too great, so simulation is used. The combination of these techniques enables us to

completely characterize the performance of the new strategies we propose.

This chapter is organized as follows: Section 2.2 reviews prior work on the dis-

tributed detection problem in single- and multi-hop sensor networks. Section 2.3

describes the system model and summarizes results for the Maximum a Posteriori

(MAP) detector in [91], which is adopted in this chapter. In Section 2.4, large devia-

tion techniques are used to bound the decision error probability of the MAP detector

for the multi-hop case. Section 2.5 defines new strategies that combine decision fu-

sion in sectors of the cluster with a repetition code for forwarding these decisions.

They are shown to reduce the probability of a decision error at the CH. In Section

13



2.6, the bounds from Section 2.2 are used to determine when a cluster’s detection

performance can be improved by combining local decision fusion and forwarding in

the outer rings with simple forwarding of decisions in the inner rings. In Section 2.7,

simulations are used to compare the performance of a pure-relay strategy, a local-

decision/repetition strategy, a hybrid strategy, and some compression strategies that

sacrifice detection performance to save energy. In Section 2.8, implementation issues

are discussed. Finally, Summary is provided in Section 2.9.

2.2 Most Relevant Prior Results

Many papers consider the task of distributed detection in single-hop sensor networks.

In [59], an optimal distributed detection strategy in a single-hop network was studied.

In [61], a decentralized detection problem under bandwidth constrained communica-

tion was investigated. The noise at different sensors was assumed to be independent,

but the statistics of the noise were assumed to be unknown to the CH, so it treats

all received detection results equally. It is shown in [24] how the performance of de-

tection algorithms is improved by knowledge of the channel. The limits of detection

performance in a one-hop sensor cluster with non-ideal channels were determined in

[23].

In [66], the performance of distributed detection in a random sensor field is an-

alyzed. [55] and [40] discuss the distributed detection problem for Gaussian signals

under communication constraints. In [30], the authors consider the detection and

localization problem of material releases with sparse sensor configurations. In [57],

the sensors adopt robust binary quantizers for distributed detection. Censoring and

sequential tests have also been adopted in distributed detection to achieve the same

detection accuracy with less energy [8], [64], and they have been combined to further

save energy [67], [102].

There are many papers on cooperative communication in sensor networks; see, for

14



example, [45]. They assume that relay nodes will use a collaborative amplify-and-

forward strategy to help ensure correct reception of a node’s packet by the destination.

This approach is thus a blend of one- and two-hop networks.

The paper most closely related to this one is [56] because it considers multi-hop

fusion schemes. The schemes differ in the form of the transmitted messages, the fusion

rules and the communication structure. The Multi-hop Forwarding (MF) algorithm is

similar to the pure-relay scheme that we define and use as a baseline for comparison.

The Multi-hop Forwarding algorithm (MF) and Multihop Histogram Fusion (HF)

algorithm use encoding schemes at the relay motes to reduce the number of bits that

must be forwarded to the CH, thus saving energy. The effect of channel errors on

these encoding algorithms is not considered; an error in the most-significant bit can

have a major impact on the probability of error. One solution to this problem is

dithered quantization and channel compensation [88]. A lower complexity approach

is provided in this paper.

In [91], a MAP approach was developed for the distributed detection problem in

a multi-hop cluster in a sensor network. Based on the results of the proposed MAP

detector, this chapter adopts the same system model and focuses on the optimal relay

strategy to improve the system performance without increasing of energy consump-

tion. The system assumptions and preliminary results are reviewed in detail in the

next section.

2.3 System Assumptions

This chapter assumes a multi-hop sensor network in which each wireless hop is mod-

eled as a Binary Symmetric Channel (BSC). The BSC cross-over probability captures

the effect of channel errors on each individual decision bit and is easier to estimate

than the full characteristics of the channel. The assumptions of symmetry and the

same cross-over probability for each mote-to-mote channel are easily relaxed – they
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are used only to simplify the analysis so that important trends can be discerned. This

chapter also assumes that the error probabilities of the individual received detection

results are learned over time by the CH. Hence, the CH is assumed to know the op-

timal weights for the weighted median in the MAP detector [91] it uses to fuse the

received detection results.

The system assumptions used in this chapter are summarized in the following:

1. The deployment assumption: The cluster has K rings and Nk motes in the kth

ring.

2. The task assumption: Each mote makes a decision between two hypotheses,

s0 = 0 and s1 = 1, where “1” denotes that an event has occurred and “0” that

it has not.

3. The measurement assumption: The detection results by different motes are

assumed to be i.i.d. Bernoulli random variables, each with a detection error

probability pm < 1/2. The noise processes in different wireless channels are

assumed to be independent and white.

4. The channel assumption: Each hop in the network is modeled as a BSC with

cross-over probability pc < 1/2.

5. The relay assumption: The decisions made by motes in the outer rings are

relayed to the CH by the motes in inner rings.

Let the error probability of the detection results received by the CH from the kth

ring be pe,k. Then, for example, pe,1 = pc(1− pm) + pm(1− pc). Denote the detection

result received by the CH from the ith mote in the kth ring by rk,i and arrange the

detection results in the same ring in a vector r̄k = (rk,1, rk,2, . . . , rk,Nk
), k = 1, 2, . . . , K.

Let E denote the event that a decision error happens at the CH.
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In a one-hop cluster, suppose the correct decision should be s. Assume the prior

probability p(s = s0) = p < 1/2 and find a real number χ such that ln((1 − p)/p) =

χ ln((1 − pe,1)/pe,1). Define W = ⌊N1/2 + χ/2⌋. The MAP-based decision bit at

the CH is r̂ = (r̄1)W = W ’th order statistic of (r1, r2, . . . , rN1
). The decision error

probability at the CH is [91]:

P (E)= (1 − p)

(

N1
∑

i=W

(

N1

i

)

(pe,1)
i(1 − pe,1)

N1−i

)

+p

(

N1
∑

i=N1−W

(

N1

i

)

(pe,1)
i(1 − pe,1)

N1−i

)

(1)

It is shown in [91] that, as an estimate of the true decision bit, this weighted order

statistic is biased but asymptotically unbiased. When the prior probability is p = 1/2,

it simplifies into a binary median filter.

Calculating the decision error probability in (1) is computationally complex when

N1 is large. The asymptotic behavior of the median filter in one-hop clusters has thus

been studied using large deviation techniques in [22]:

lim
N1→∞

− 1

N1
P (E) = C(pe,1)

C(pe,1) = − ln(2) − 1

2
ln(pe,1(1 − pe,1)) (2)

Now we review results in [91] for the multi -hop case. For a mote that is k hops away

from the CH, the detection result received by the CH after being relayed over these

hops has error probability:

pe,k =
1

2
− 1

2
(1 − 2pm)(1 − 2pc)

k, k ≥ 1 (3)

We use the notation W♦x, which means x should be duplicated W times. For

simplicity, suppose the prior probabilities are p(s = s0) = p(s = s1) = 1/2.

Theorem 1: Define χk = ln((1 − pe,k)/pe,k), and assume these χk’s can be scaled

so that χ1 : χ2 : . . . : χK = W1 : W2 : . . . : WK , where the Wk’s are positive

integers with gcd(W1, W2, . . . , WK) = 1. The MAP-based decision bit is then given
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by r̂ = Median(W1♦r̄1, W2♦r̄2, . . . , WK♦r̄K). The decision error probability at the

CH is given by:

P (E) =
∑

∑

Wk(2ck−Nk)>0

K
∏

k=1

(

Nk

ck

)

(pe,k)
ck(1 − pe,k)

Nk−ck (4)

where ck is the number of occurrences of 1 − s in the vector r̄k, k = 1, 2, . . . , K.

�

Because the weighted median is the MAP detector, we assume – even for sector-

level fusion algorithms – that the CH calculates this weighted median after receiving

inputs from all motes in the cluster. To understand what happens in these more

complex cases, the asymptotic behavior of the weighted median must be determined

for the single- and multi-hop cases; otherwise, it is too difficult to determine the

probability of a cluster-wide decision error at the CH.

2.4 Error Exponent and Error Bounds for Multi-Hop Net-
works

We now find the error exponent for the decision error probability for the multi-hop

case.

Theorem 2: In multi-hop sensor networks in which pe,k is the error probability of

the individual detection results received by the CH from nodes in ring k, the error

probability of the MAP detector is upper bounded by:

ln(P (E)) ≤
K
∑

k=1

Nk[ln(2) +
1

2
ln(pe,k(1 − pe,k))] (5)

Proof : In the context of the weighted median filter, the decision error probability at

the CH is:

P (E)=P (

K
∑

k=1

Wk

Nk
∑

i=1

rk,i ≥
K
∑

k=1

WkNk/2)

=P (
K
∑

k=1

Nk
∑

i=1

Wk(rk,i − 1/2) ≥ 0) (6)
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Since P (Z ≥ 0) ≤ E[eZt], let r
′

k,i = rk,i − 1/2, and E[r
′

k,i] = pe,k − 1/2 < 0. We have:

P (E)≤E[et
∑K

k=1

∑Nk
i=1

Wkr
′

k,i]

= E[
K
∏

k=1

Nk
∏

i=1

etWkr
′

k,i ]

=

K
∏

k=1

Nk
∏

i=1

E[etWkr
′

k,i ] (7)

For each term in the product, E[etWkr
′

k,i] = pe,ke
1

2
tWk + (1 − pe,k)e

− 1

2
tWk . Setting

∂E[e
tWkr

′

k,i ]
∂t

= 0, we find:

1

2
Wkpe,ke

1

2
tWk =

1

2
Wk(1 − pe,k)e

− 1

2
tWk

tWk = ln((1 − pe,k)/pe,k)

t= c (8)

This last equality follows because the results for the MAP detector in (4) state that

Wk = c ln((1−pe,k)/pe,k), where c is constant for all k. The optimal t’s are thus same

for every ring. When t = c, E[etWkr
′

k,i] = 2
√

pe,k(1 − pe,k). Thus:

P (E)≤
K
∏

k=1

Nk
∏

i=1

E[eWkr
′

k,i]

=
K
∏

k=1

Nk
∏

i=1

2
√

pe,k(1 − pe,k)

=

K
∏

k=1

[

2
√

pe,k(1 − pe,k)

]Nk

(9)

Taking the logarithm on both sides,

ln(P (E)) ≤
K
∑

k=1

Nk[ln(2) +
1

2
ln(pe,k(1 − pe,k))] (10)

�

This error exponent is accurate and the bound is tight when the motes are densely

deployed; i.e., the number of sensors is large. Minimizing P (E) when the number of

motes is finite is a very difficult combinatorial problem, so we can minimize this
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upper bound instead. Also note that the effect of each ring of motes on the deci-

sion error probability at the CH is apparent in this bound. It may thus be used to

simplify many optimization problems in distributed detection in multi-hop scenar-

ios. In the next section, it is used to show when and to what degree our proposed

local-fusion/repetition strategy provides a smaller upper bound on the decision error

probability than traditional pure-relay strategies. In a later section, direct calcula-

tion and simulations are used to confirm that these results hold for small to moderate

numbers of motes.

Now consider the simplifying case that a spatial Poisson process governs the loca-

tions of the motes. Assume that the spatial density of the motes is λR and the width

of each ring is r, so λk = E[Nk] = λR[πk2r2 − π(k − 1)2r2]. Then the effect on the

decision error probability of varying the density of the motes is given by:

P (E)≤
K
∏

k=1

∞
∑

Nk=0

[

2
√

pe,k(1 − pe,k)

]Nk

λNk

k e−λk/Nk!

=

K
∏

k=1

e−λk[1−2
√

pe,k(1−pe,k)] (11)

The decision error probability, as expected, decreases exponentially as the density

of the motes is increased.

Fig.7 compares the large deviation bound on the error probability with the error

probability from simulations for a 3-ring cluster. It shows the desired result that the

large deviation error exponent is accurate – the bound is parallel with the simulation

result over the entire range of spatial densities. Of course, the bound is high by a

multiplicative factor, which is often the case with large deviation techniques. The

conclusion is that it is reasonable to optimize the error exponent because it will

optimize the rate of decay of the actual error probability itself. Simulations are used

later to confirm that this is the case.
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Figure 7: Comparison for a 3-ring cluster of the error probability obtained via sim-
ulation and its large deviations bound. The error exponent is clearly correct and the
difference approaches zero asymptotically. Comparing the performance of complex
strategies via their error exponents will thus correctly show which strategy is best
when motes have large numbers of 1-hop neighbors. Direct calculations and simula-
tions are used to confirm those results for small to moderate numbers of neighbors.

2.5 Local-Decision/Repetition Strategy

We now analyze a decision and relay strategy that reduces the decision error probabil-

ity at the CH for decisions forwarded from motes in a single sector of a ring. Consider

the case that one mote in ring i receives a set of individual detection results from M

motes in a sector of ring i + 1. Assume w.l.o.g. that each individual detection result

has an equal probability to be “0” or “1”.

The relay mote has two options. It can relay every received bit toward the CH

– this is called the pure-relay decision strategy and is the most commonly assumed

strategy. The alternative is for the relay mote to make a local decision by computing

the locally optimal weighted median of the M decision bits it receives from the motes

in a sector of the next furthest ring. The relay mote then transmits this decision M

times toward the CH. This will be called the local-decision/repetition strategy.

Note that the number of bits transmitted by the relay mote is the same in both
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Figure 8: The pure-relay strategy in a 2-hop network.

strategies. Both thus use the same communication energy. The local-decision/repetition

strategy uses slightly more processing energy because the relay mote computes the

median of the bits it receives.

Figs. 8 and 9 show block diagrams of the pure-relay and local-decision/repetition

strategies for handling bits from one sector of a ring. Assume w.l.o.g. that the CH

makes a decision based on relayed detection results using the median filter. Then,

since both strategies use the same energy, we want to know which one results in a lower

probability of error when the CH makes a decision based solely on the bits it eventually

receives from this sector. Clearly, the local-decision/repetition strategy should be

better – in fact, the following theorem and corollary show that it is significantly

better for sectors in the outer rings because it helps counteract the effects of multiple

exposures to communication errors as the decisions are hopped to the CH.

Theorem 3: Consider M > 1 motes in a sector of ring k > 1 that transmit their

decisions to a single relay mote in ring k − 1. Assume the individual detection errors

for these motes are i.i.d. with probability of error 0 < pd < .5 and the communication

errors experienced by bits forwarded by the relay mote to the CH are i.i.d. with

0 < pc < .5. Then, the probability of error for the decision the CH makes with the

M bits it receives under the local-decision/repetition strategy is always smaller than
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Figure 9: The local-decision/repetition strategy in a 2-hop network.

when its decision is based on the M bits received under the pure-relay strategy.

Proof : Please see Appendix A.

Thus, given that we must either locally fuse and repeat all M decisions or re-

lay all of them, it is always better to fuse them for all rings k ≥ 2. The local-

decision/repetition strategy thus outperforms the pure-relay strategy for any given

ring sector with M motes. The benefit increases with the number of hops between

the mote performing the local fusion and the CH. In other words, it is best to do the

local fusion as soon as possible – in ring k − 1 for decisions originating from a sector

of ring k:

Corollary 1: Consider M > 1 sensor motes in a sector of ring K > 1 of a multi-hop

cluster. Define G0 as the strategy that relays every bit from these motes to the CH

and then makes a global decision. Define Gk, 1 ≤ k ≤ K − 1 as strategies that first

relay every bit to a mote that is k hops away from the CH and then uses the local-

decision/relay strategy to forward the M bits for each remaining hop. The decision

error probabilities, Pe(Gk), of these strategies satisfy:

Pe(G0) > Pe(G1) > . . . > Pe(GK−1) (12)

�

These results lead to three conclusions: (a) Both strategies use exactly the same
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amount of communication energy, so, for any global decision based solely on nodes

from one sector, the local-decision/repetition strategy is better than the pure-relay

strategy; (b) It is best to use the local-decision/repetition strategy at the first hop

along the path from the sector to the CH; (b) The performance degradation is cu-

mulative from right to left in (12), so the benefits of the local-decision/repetition

strategy are greater for sectors farther from the CH; and, (c) The more motes there

are in a given sector, the greater the advantage of using the local-decision/repetition

strategy.

2.6 Hybrid Decision Strategies

The previous section considered decisions from a single sector of some ring in the

cluster. We now consider an entire ring of motes. If the shortest paths are used for

moving the decisions from ring k to the CH, then they can not all be fused in ring

k− 1 as if the ring were a single sector. Theorem 3 and its Corollary can thus not be

used. Instead, the ring must be divided into sectors and the local-decision/repetition

strategy should be evaluated for each sector.

We must thus determine the tradeoff between the number of nodes in a sector and

the number of sectors in a ring. The number of motes in a ring is fixed, so increasing

the number of motes in each sector decreases the number of sectors. The number of

sectors reporting via the local-decision/repetition scheme (that fuses all decision from

a given sector) is the number of independent sets of decisions arriving at the CH. On

the other hand, local-decision/repetition reduces the impact of communication errors

on decisions from each sector – and this effect increases as the number of motes in a

sector increases. To evaluate this tradeoff, we will determine the effect on the global

decision at the CH of each possible sector size.

There is thus a tradeoff between the quantity of independent data, which is the

number of independent sectors, and the quality of the data, which is the number of
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motes per sector when each sector uses local-decision/repetition. We now evaluate

this tradeoff under the assumptions that: (i) all sectors have exactly M motes; and

(ii) the total number of motes in the ring is large enough for the large deviations

results to be accurate. The choice is then which rings should just relay decisions of

all motes and which rings should be divided into sectors, each of which uses the local-

decision/repetition strategy to fuse the M decisions from that sector. We will see

that for any fixed M , the inner rings of a cluster should use the pure-relay strategy

and the outer rings should use the local-decision/repetition strategy.

Theorem 4: Consider a sensor network with a node density that is large enough for

the large deviation bounds derived earlier to be tight. Given a local-decision/repetition

strategy that fuses M local decisions, there exists a finite K such that the strategy that

minimizes the decision error probability at the CH is for motes in rings k < K to use

the pure-relay strategy and those in rings k ≥ K to use the local-decision/repetition

strategy.

Proof : For simplicity, we assume that the number of nodes in ring k, Nk, is divisible

by M for every k. Since M is usually a small integer and Nk is a large integer, the

number of sectors, Nk/M , is large. For the pure-relay and local-decision/repetition

strategies, we have

lim
Nk→∞

− 1

Nk

P (EG) = C(pe,k) (13)

C(pe,k) = − ln(2) − 1

2
ln(pe,k(1 − pe,k))

pe,k =
1

2
− 1

2
(1 − 2pm)(1 − 2pc)

k

and

lim
Nk→∞

− 1

Nk
P (EL) = C

′

(M, p
′

e,k) (14)

C
′

(M, p
′

e,k) =
1

M
[− ln(2) − 1

2
ln(p

′

e,k(1 − p
′

e,k)]

p
′

e,k =
1

2
− 1

2
(1 − 2h(M, pe,1))(1 − 2h(M, pc))

k−1
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respectively, where p
′

e,k can be obtained by solving the first-order difference equation

p
′

e,k = p
′

e,k−1(1 − h(M, pc)) + (1 − p
′

e,k−1)h(M, pc), k ≥ 2 with the initial condition

p
′

e,1 = h(M, pe,1). In each ring, the motes can compare these two large deviation

rates, and adopt the relay strategy corresponding to the larger rate. We consider two

extreme cases here. First, when k = 1, there is no relay step during the transmission

between the motes and the CH. Also, the pure-relay strategy is already known to

minimize the decision error probability for this case. Hence motes in the first ring

should always adopt the pure-relay strategy. For the completeness of the analysis,

we give a concise proof that C(pe,1) > C
′

(M, p
′

e,1). For any positive odd number M ,

based on the Cauchy-Schwarz inequality,

h(M, pe,1 )( 1 − h(M, pe,1))

=





M
∑

i=⌈M/2⌉

(

M

i

)

pi
e,1(1 − pe,1)

M−i









M
∑

i=⌈M/2⌉

(

M

M − i

)

pM−i
e,1 (1 − pe,1)

i





≥





M
∑

i=⌈M/2⌉

√

(

M

i

)(

M

M − i

)

pM
e,1(1 − pe,1)M





2

= (2M/2)2pM
e,1(1 − pe,1)

M (15)

Note that the equality can not hold unless the two vectors are proportional to each

other, i.e., pe,1 = 0, 1/2 or 1. We can further get

h(M, pe,1)(1 − h(M, pe,1)) > (2M/2)2pM
e,1(1 − pe,1)

M (16)

1

2
ln(h(M, pe,1) (1−h(M, pe,1))) (17)

> (M − 1) ln(2) +
M

2
ln(pe,1(1 − pe,1))

1

M
[− ln(2) − 1

2
ln(h( M, pe,1)(1 − h(M, pe,1)))] (18)

< − ln(2) − 1

2
ln(pe,1(1 − pe,1))
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C
′

(M, p
′

e,1) < C(pe,1) (19)

For any positive even number M , h(M, pe,1) = h(M − 1, pe,1), C
′

(M, p
′

e,1) <

C
′

(M − 1, p
′

e,1), and the inequality still holds.

Now, assuming K is sufficiently large, we consider the case for k = K. Since

ln(1 + x) ∼= x when x is sufficiently small, we have C(pe,K) ∼= 1
2
(1− 2pm)2(1− 2pc)

2K

and C
′

(M, p
′

e,K) ∼= 1
2M

(1 − 2h(M, pe,1))
2(1 − 2h(M, pc))

2(K−1). Comparing C(pe,K)

and C
′

(M, p
′

e,K), we can get ln(C(pe,K))− ln(C
′

(M, p
′

e,K)) ∼= 2K[ln(1− 2pc)− ln(1−

2h(M, pc))] + 2 ln(1 − 2pm) + ln(M) − 2 ln(1 − 2h(M, pe,1)) + 2 ln(1 − 2h(M, pc)).

Note that pc > h(M, pc), so ln(1 − 2pc) − ln(1 − 2h(M, pc)) < 0. Since all the

other terms in the difference are independent of K, when K is sufficiently large,

C(pe,K) < C
′

(M, p
′

e,K). Hence the motes many hops away from the CH should always

adopt the local-decision/relay strategy.

�

Now define KM as the ring index beyond which the local-decision/repetition strat-

egy of fusing M decisions is better than the pure-relay strategy. Then, under the same

assumptions used in Theorem 4, it is straightforward to show that:

Corollary: KM is a nondecreasing function of M .

Fig. 11 compares the large deviations rates between the pure-relay strategy and

local-decision/repetition strategies with M = 3 and M = 5. As expected, the largest

rate for the innermost rings, rings 1 and 2, is that of the pure-relay strategy. The

communication error that nodes in these rings suffer is smaller than for all other rings,

so they should just forward their decisions to the CH. For rings 3 and 4, the rate for

the local-decision/repetition strategy with M = 3 is largest, so nodes in those rings

should adopt that strategy. For rings 5 and 6, the rate for the local-decision/repetition

strategy with M = 5 is largest, so these rings should adopt that strategy. For rings

sufficiently further out, the local-decision/repetition strategy with M = 7 will then

best, and so forth.
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As the probability of communication error increases, the points at which the curves

in Fig. 11 cross will move to the left. In other words, the best value of M for a given

ring will increase when the probability of communication error increases. Of course,

nodes in ring 1 should always send their decisions directly to the CH.

Now consider the simplest case in which only one value of M , typically M = 3 is

feasible because of network architecture, routing constraints, or other considerations.

To minimize the upper bound on the CH’s overall decision error probability, the large

deviation rate can be used to determine which rings should fuse local decisions. The

motes will switch from the pure-relay strategy to the local decision strategy when k

is large enough to make C
′

(M, p
′

e,k) greater than C(pe,k). We call this the hybrid-

decision strategy. Denote the event that the decision error happens at the CH using

the hybrid decision strategy by EH . Given M , the upper bound of the decision error

probability at the CH is:

ln(P (EH)) ≤ −
K
∑

k=1

Nk max{C(pe,k), C
′

(M, p
′

e,k)} (20)

which can be rewritten as

P (EH)≤ e−
∑K

k=1
Nk max{C(pe,k),C

′

(M,p
′

e,k
)}

=

K
∏

k=1

e−Nk max{C(pe,k),C
′

(M,p
′

e,k
)}

≤min{e−
∑K

k=1
NkC(pe,k), e−

∑K
k=1

NkC
′

(M,p
′

e,k
)}

= min{P (EG), P (EL)} (21)

These three decision and relay strategies – pure-relay, local-decision/repetition,

and the hybrid just defined – are now compared via simulation. When the motes are

uniformly deployed in a plane, the average number of motes in ring k is Nk = d(2k−1),

where d is the node density. Fig. 12 compares the three relay strategies when the

measurement error probability at each node is Pm = 0.2, there are K = 5 rings, the

node density is d = 3, and there are M = 3 motes in each sector. The hybrid strategy
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is, of course, the best for all values of the communication error probability pc. For

high values of pc, the hybrid decision strategy is close to the local-decision/repetition

strategy; for low values of pc, the hybrid decision strategy is close to the pure-relay

strategy.

2.7 Hybrid, Hierarchical and Compression Strategies

In this section, six strategies for distributed detection in multi-hop sensor networks

are compared via simulation. The first three were analyzed above; the others are

variations of them that either save energy or improve performance.

1. The pure-relay strategy: The decision reached by each sensor mote is relayed to

the CH by other motes over as many hops as necessary. No fusion of decisions

takes place anywhere along the route

2. The local-decision/repetition strategy: For each i, a local decision (median) is

made by a relay mote in ring i based on the M independent decisions trans-

mitted to it by the M motes in a sector of ring i + 1. This local decision is

transmitted M times by the relay mote in ring i to a relay mote in ring i − 1.

The relay mote in ring i − 1 computes the median of these M bits and then

transmits its decision M times to a relay mote in ring i − 2. This fuse/repeat

process continues until M bits reach the CH. It is also performed for every set

of M motes in every ring except the first ring.

3. The hybrid strategy: Sensor motes in different rings adopt the pure-relay (1)

or local-decision/repetition (2) strategy by choosing the one with the largest

large-deviation exponent. When all motes have the same measurement error

probability and every transmission has the same communication error proba-

bility, the innermost rings might adopt the pure-relay strategy while all others

adopt the local-decision/repetition strategy.
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4. The hierarchical decision strategy: The local decisions are made in a hierarchical

manner. Each mote in a set of M motes in ring i transmits its decisions to a

relay mote in ring i− 1. The relay mote fuses these received bits by computing

the median and then relays this bit M times to a relay mote in ring i − 2. The

relay mote in ring i−2 fuses the M bits repeated to it by each of M relay motes

in ring i− 1 and then transmits its decision M2 times to the relay mote in ring

i − 3.

5. The local compression strategy: This is the local-decision/repetition strategy

in (2) but without repetition. Thus, M sensor motes in ring i send their inde-

pendent decisions to a relay mote in ring i-1. The relay mote fuses (median)

these M bits and transmits the single bit that results to a relay mote in ring

i-1. This bit is forwarded by each relay mote after that until it reaches the CH

– no further fusion takes place.

6. The hierarchical compression strategy: It is the same as the hierarchical decision

strategy, but local fusions at each hop are transmitted only once to the next

hop. This significantly reduces the number of bits transmitted and thus the

energy used.

We first compare the number of transmissions, and thus the energy used, by these

strategies for a sensor network that has a tree topology with the CH as the root.

Suppose there are Q motes in the inner-most ring around the CH and that the k’th

ring has Nk = Lk−1Q,, 1 ≤ k ≤ K motes, where L is an integer. There are thus

(LK − 1)Q/(L − 1) motes in the network. All motes except those in the outermost

ring are responsible for relaying the decision results transmitted from the L motes in

the corresponding sector in the next closest ring. In this case, strategies (1) through

(4) each require a total of (KLK+1−(K+1)LK +1)Q/(L−1)2 transmissions. Strategy

(5) requires (LK − 1)Q/(L− 1)+ ((K − 1)LK −KLK−1 +1)Q/(L− 1)2 transmissions
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and strategy (6) requires (LK+1 − KL + K − 1)Q/(L − 1)2.

Fig. 13 shows the results of simulations to determine the detection error perfor-

mance of the 6 strategies when the measurement error probability is Pm = 0.2, there

are K = 5 rings, there are Q = 3 motes in ring 1, the factor by which the number of

motes increases from ring to ring is L = 3, and there are M = 3 nodes in each sector.

Fig. 14 shows a comparison when Pm = 0.2, K = 3, Q = 3, L = 3, M = 3.

When the communication noise is severe, strategies 2 and 4 perform very well and

the detection error probabilities of 1, 5, and 6 are similar. When the communication

noise is negligible, strategy 1 is always the best, 5 and 6 are the worst, and 2 and 4

are in the middle.

Another important measure of performance is the time required to collect one de-

cision from each node in the multi-hop network. The compression strategies require

less time because fewer bits or bits/packets are transmitted. To quantify this advan-

tage, the techniques in [17] can be used to obtain lower bounds on the time required.

We thus assume: the nodes in a 7 hop cluster are distributed according to a spatial

Poisson process with density λ; the width of each ring is r; and the time required

to transmit a packet between two motes is t. With these assumptions, the minimum

time to collect all decisions under the pure-relay strategy is 106λRπr2t. Under a local

compression strategy with M = 3 motes in each sector, the minimum time required

is 38.67λRπr2t, which is 36.48% of that using the pure-relay strategy. The structure

of the network prevents this figure from being the 33% that one would expect, but

the improvement is still substantial.

2.8 Implementation Issues

When a relay mote sends multiple copies of its local decision result to the next hop,

those replicas can be encapsulated in a packet with decisions/estimates related to

other tasks. This minimizes the addressing overhead and results in fewer and longer

31



packets, which help improve the throughput if a CSMA/CA-based protocol is used.

The number of hops that the bits from each detection result have traveled to reach

the current ring can be included in this packet.

The BSC assumption implies that the errors in successive bits in a packet are

independent. By interleaving the relay node’s replicated decision bits with other

bits in the packet, the independence of these errors for each decision application can

be guaranteed. This makes the BSC-model of the channel very realistic. The BSC

model can also account for processing errors by nodes, including the injection of

incorrect decisions by compromised nodes, when the probability that this occurs can

be measured by temporary forwarding of preset bit sequences.

To simplify the analysis, each sector in a ring was assumed to have the same

number of nodes, M . If nodes and the routes are deployed deterministically, this

can usually be arranged. If the motes are deployed randomly and algorithms like the

one in [15] are used for creating multi-hop clusters and routes, then the number of

nodes in a sector will also be random. New algorithms that attempt to optimize the

number of motes per sector are thus needed. This must be balanced with algorithms

that rotate the responsibility for relaying among a set of motes in order to prevent

rapid exhaustion or any one mote.

Finally, the local-decision/repetition, hybrid, and compression algorithms intro-

duced in this chapter will be tested in the eStadium sensor net currently under de-

velopment at Georgia Tech.

2.9 Summary

This chapter developed tools to determine when local fusion of decisions improves

the performance of distributed detection algorithms operating in multi-hop clusters

of sensor motes subject to both measurement and communication errors. Our cur-

rent efforts include development of optimization tools that enable the best tradeoffs
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between detection-performance, delay, energy-usage, etc. to be found for any sensor

network application.
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Figure 10: Calculations of the probability of error for the local-decision/repetition
strategy for small numbers of motes show how much it improves the detection perfor-
mance for a range of communication error probabilities. In the upper figure, decisions
from M=3 motes are fused and the measurement error probability is pm=0.2; in the
lower figure, M=5, pm=0.2. The improvement increases with both the number of
wireless hops and the number of motes, M, whose decisions are fused. The cases
shown are for decisions made at the CH based on the M decisions it receives from M
motes in one sector of one ring in a multi-hop cluster – the full clusters’ performances
are shown in Figure 12–13.
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Figure 11: Large deviation rates as a function of the number of rings are shown
for the pure-relay and the M=3 and M=5 local-decision/repetition strategies. The
probability of measurement error was pm = 0.2 and the probability of communication
error was pc = 0.04. The crossing of the rates implies that the error probabilities for
a finite numbers of motes should cross as well. Motes in rings 1 and 2 should clearly
use the pure-relay strategy. Nodes in rings 3 and 4 should fuse decisions from sectors
of size M = 3. Nodes in rings 5 and 6 can use either M = 3 or M = 5 because
they provide almost the same performance. If a node in ring 2 receives decisions from
six nodes in ring 3, it should break them into two sets of 3 decisions and use the
local-decision/repetition strategy on each set.
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Figure 12: Comparisons via simulation of the pure-relay, local-decision/repetition,
and hybrid strategies. The hybrid decision strategy lowers the probability of error by
using local decisions when needed.
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Figure 13: Simulations showing error probabilities achieved by six strategies in a 5
ring network. The ones in solid use the same amount of communication energy. The
compression strategies (dashed) use less energy because they make fewer transmis-
sions.
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Figure 14: Simulations Showing error probabilities achieved by six strategies in a 3
ring network. The ones in solid use the same amount of communication energy. The
compression strategies (dashed) use less energy because they make fewer transmis-
sions.
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CHAPTER III

DISTRIBUTED ESTIMATION IN WIRELESS SENSOR

NETWORKS

3.1 Research Motivation

This chapter will focus on distributed estimation in wireless sensor networks. In

this scenario for estimation in wireless sensor networks, we assume that many small,

battery-powered sensors with limited sensing, processing and transmission capabilities

are spread over a region [6]. They each make local estimates of the parameters of some

phenomenon that affects that region. These local estimates are then transmitted over

noisy wireless channels to a processing center that fuses them into global estimates

of the phenomenon.

To reduce the energy used for communication, the sensors self-organize into a

multi-hop clustered architecture. This architecture may have one level of multi-hop

clusters [7] or be a hierarchy of two or more levels of clusters [15]. In such cases,

each cluster’s Cluster-Head (CH) will fuse the decisions it receives from nodes on its

level into a cluster-wide decision. This cluster-wide decision is then forwarded to a

processing center, either directly or via a higher level of clusterheads.

The clusters at the lowest level of the hierarchy typically have diameters that

are less than the spatial correlation length of the phenomenon being observed. The

sensors in these low-level clusters are thus making local estimates about a spatially-

invariant phenomenon. Each of these local estimates may be affected by measurement

noise and their transmission through the network may be affected by noise, fading,

transceiver errors, errors injected by compromised nodes, etc. Analysis of the effects

of these measurement and communication errors, typically individually but sometimes
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together, has been the goal of many studies in distributed detection and estimation.

The focus of this chapter is the distributed estimation problem that CHs in the first

level of the hierarchy must solve. [60] proposes an isotropic decentralized estimation

scheme in a homogeneous environment. Each sensor transmits just one bit, with

probability 1/2 to transmit the most significant bit, probability 1/4 to transmit the

second-most significant bit, etc. [99] extends this result to the distributed estimation

problem in an inhomogeneous environment by letting each sensor transmit a number

of bits proportional to the logarithm of its local signal to noise ratio (SNR). [55]

analyzed the optimal energy allocation problem in this case by giving priority to the

transmissions with high energy efficiency.

[62] discusses optimal local estimation and final fusion schemes under the con-

straint that the communication from each sensor to the fusion center must be a

one-bit message. In a similar case with a noisy communication channel, a MAP esti-

mator and its variations are given in [12]. Each sensor is assumed to transmit a single

bit that results from comparison of its local measurement with a pre-set threshold.

The information these bits provide decreases significantly when the preset threshold

is not equal to the true but typically unknown signal value. To reduce the required

number of sensors and the sensitivity to the choice of threshold, a modified scheme is

provided in [79] in which the sensors use nonidentical thresholds that are uniformly

distributed in an interval that must contain the true signal value. [76] and [75] pro-

pose to let the sensors transmit one bit when the noise is relatively high, and multiple

bits when the noise is relatively low, both with nonidentical thresholds obtained via

convex optimization techniques.

[98] discusses the power scheduling problem for universal decentralized estimation

in sensor networks. There are, however, two issues not addressed by this chapter:

power scheduling among different bits of each quantized local estimate has not been

considered, and the final estimate is generally biased. [92] derives a MAP estimator
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for distributed estimation in multi-hop clustered wireless sensor networks, but its

realization by line search is of high computational complexity.

There are many papers that discuss the consensus problem in sensor networks.

In this case, all sensors smooth their local estimates by exchanging them with their

neighbors. This topic is only partially related to this chapter; please consult [47, 37,

38, 13] for information about it.

The results in this chapter improve upon those discussed above in five ways:

(1) The system model is extended to the more general case that each sensor can

transmit up to a fixed number of bits; (2) The more realistic scenario in which the

individual estimates received by the CH are corrupted by both measurement noise

and communication noise is addressed; (3) The computational complexity of our

algorithm is fairly low and its performance is guaranteed; (4) The overhead required

for implementation of our approach is low – the CH only needs a rough estimate of the

crossover probability of each one-hop channel and the variance of the measurement

noise; and (5) An algorithm is developed that both minimizes the energy required for

the network to produce an estimate with a prescribed error variance and determines

how this energy should be allocated amongst the sensors in the multihop network.

This rest of the paper is organized as follows: Section 3.2 describes the system

model for the distributed estimation problem in clustered sensor networks and reviews

the use of the BLUE estimator in the noiseless channel case. In Section 3.3, an

unbiased estimator for distributed estimation in the noisy-channel case is proposed

and compared with two other commonly used schemes. In section 3.4, the sensitivity

of the proposed schemes to the estimation accuracy of the crossover probability of the

BSC channel is analyzed. Section 3.5 investigates the tradeoffs in energy allocation

involving measurement noise, communication noise, and quantization noise. Section

3.6 discusses the difference between the proposed scheme and other schemes such as

those using thresholds. Section 3.7 provides some summarizing remarks.
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Figure 15: Block diagram illustrating distributed estimation in clustered wireless
sensor networks.

3.2 System Model

We consider the problem of distributed estimation in a clustered sensor network. Sup-

pose that the number of rings in a cluster is K and the number of sensors in the k’th

ring is Nk. The objective is to provide an accurate estimate of a random signal based

on a set of coarse estimates corrupted by both measurement noise and communication

noise. The process consists of four steps: (1) noisy signal measurements at individual

sensors, (2) quantization and coding of these measurements, (3) transmission of the

quantized and coded message along noisy multi-hop channels, (4) final data fusion at

the cluster head. A flowchart of the entire process can be seen in Fig. 15. The details

of each step are described below.

3.2.1 Signal Measurement

Denote the random signal being observed by x and the measurement result at the

ith sensor of the kth ring by xk,i. The measurement process at each sensor can be

described as

xk,i = x + nk,i (22)
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where nk,i is the measurement noise at the ith sensor of the kth ring. Assume that

the random signal is distributed in the interval [−U, U ] and the measurement noise is

zero-mean and bounded by the interval [−V, V ]. Letting W = U + V , the corrupted

signal lies in the interval [−W, W ]. Suppose the measurement noise is independent

of the random signal and that the measurement noise processes at different sensors

are mutually independent. Assume the variance of the measurement noise is known

by both the local sensor and the CH, but the probability density functions of both

the random signal and the measurement noise are unknown to either of them. For

simplicity only, assume the measurement noises at all the sensor are identically dis-

tributed. Let the variance of the measurement noise be σ2
m. Then each xk,i is an

unbiased estimate of x with V ar(xk,i) = σ2
m.

3.2.2 Quantization & Coding

Since a sensor can only transmit a finite number of bits, it has to quantize each noisy

measurement it makes. The measurement result xk,i is quantized to x′
k,i according to

some predetermined rule. Two different quantization schemes will be proposed and

compared in Section 3. Also, to increase the accuracy of the final estimate, a coding

technique should be considered to combat channel errors. Since energy efficiency is

a main concern in the design of algorithms implemented by sensor networks, many

powerful but complex coding techniques are not appropriate here. We thus adopt a

simple repetition code because it is easy to implement and, as will be seen, it can also

be completely analyzed and optimized. The intuition is to transmit more replicas of

the bits of more significance, as discussed in Section 5.

3.2.3 Transmission / Relay

After quantization and coding, the coded message is transmitted or relayed to the CH.

Suppose the sensors use a BPSK modulation scheme here, so that the transmission

and relay is bit by bit. For simplicity, assume all the one-hop communication channels
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between neighboring sensors are binary symmetric channels with crossover probability

pc. Then the equivalent crossover probability of the k-hop communication channel

pc,k satisfies the recursive equation:

pc,k = pc,k−1(1 − pc) + (1 − pc,k−1)pc, k ≥ 2 (23)

The solution to this first-order difference equation with initial condition pc,1 = pc is:

pc,k =
1

2
− 1

2
(1 − 2pc)

k (24)

3.2.4 Final Fusion

Since only the variance of the measurement noise and the crossover probabilities of the

BSC channels are known, the BLUE estimator is a reasonable and computationally

tractable one for the CH to adopt. It achieves the lowest variance among all linear

estimators and only requires first and second order statistics of each individual local

estimate. Denote the local estimate received at the CH from the ith sensor in the kth

ring by x′′
k,i and the final estimate made by the CH by x̂. If we can ensure that the

individual estimates from the sensors in the kth ring have zero mean and can show

that σ2
k is an upper bound on its variance, then the global estimate at the fusion

center can be represented as:

x̂ =

∑K
k=1

∑Nk

i=1 x′′
k,i/σ

2
k

∑K
k=1

∑Nk

i=1 1/σ2
k

(25)

The variance of the global estimate is then:

V ar(x̂) ≤
(

K
∑

k=1

Nk
∑

i=1

1/σ2
k

)−1

=

(

K
∑

k=1

Nk/σ
2
k

)−1

(26)

3.3 Distributed Estimation in Clustered Sensor Networks

In this section, three schemes for distributed estimation in clustered sensor networks

are proposed and compared.
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3.3.1 BLUE Estimator

Assume the measurement result is quantized into L bits. Then uniformly divide

the interval [−W, W ] into 2L − 1 subintervals, each with length ∆ = (2W )/(2L − 1).

While doing quantization, the each sensor rounds its measurement result to the closest

border of the subinterval in which it falls. If d∆ − W ≤ xk,i ≤ (d + 1)∆ − W , set

r = (x + W − d∆)/∆, we have:

x′
k,i = d∆ − W, if r <= 1/2

x′
k,i = (d + 1)∆ − W, if r > 1/2 (27)

Let b′k,i = E[x′
k,i−xk,i], and then |b′k,i| = |E[x′

k,i−xk,i]| ≤ E[|x′
k,i−xk,i|] = E[min{r, 1−

r}∆] ≤ 1
2
∆. Obviously, x′

k,i is a biased estimate of xk,i.

Then the index d or d + 1 is coded to a binary message to transmit to the CH.

Avoiding any coding specifics for now, suppose the lth most significant bit of the

message is ml. Clearly, we have:

x′
k,i =

L
∑

l=1

ml2
L−l∆ − W (28)

All the ml’s are sent to the next hop in order. Denote the received bit at the CH

based on noise-corrupted ml by m′
l and let the value represented by the possibly noise

corrupted received message be x′′
k,i. They satisfy the following relationship:

x′′
k,i =

L
∑

l=1

m′
l2

L−l∆ − W (29)

Obviously, E[x′′
k,i] may deviate from E[x′

k,i] since the BSC channel is naturally biased.
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Denote b′′k,i = E[x′′
k,i − x′

k,i], and we have:

E[x′′
k,i −x′

k,i|x′
k,i]

= E

[

L
∑

l=1

(m′
l − ml)2

L−l∆|x′
k,i

]

=
L
∑

l=1

E[m′
l − ml|ml]2

L−l∆

=

L
∑

l=1

(1 − 2ml)pc,k2
L−l∆

=
L
∑

l=1

pc,k2
L−l∆ − 2

L
∑

l=1

mlpc,k2
L−l∆

= pc,k(2
L − 1)∆ − 2pc,k

L
∑

l=1

ml2
L−l∆

= 2pc,kW − 2pc,k(x
′
k,i + W )

=−2pc,kx
′
k,i (30)

so that,

b′′k,i = E[E[x′′
k,i − x′

k,i|x′
k,i]] = −2pc,kE[x′

k,i] (31)

Note that E[m′
l − ml|ml] = (1 − 2ml)pc,k; i.e.,

E[m′
l − ml|ml = 0] = pc,k,

E[m′
l − ml|ml = 1] = −pc,k, (32)

which means that the BSC channel is linear in the statistical sense. Based on this

result, the received individual estimates at the CH can be made unbiased via a linear

mapping at either the transmitter or the receiver – this will be discussed in detail in

the next subsection. The bias depends on the transmitted message, and its absolute

value is bounded by:

2pc,k∆ ≤ |b′′k,i| ≤ 2pc,kW (33)

The total bias bk,i = b′k,i + b′′k,i, and

|bk,i| ≤ |b′k,i| + |b′′k,i| ≤
1

2
∆ + 2pc,kW (34)
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Now we calculate the mean square error (MSE):

E[( x ′′
k,i − x′

k,i)
2]

= E





(

L
∑

l=1

m′
l2

L−l∆ −
L
∑

l=1

ml2
L−l∆

)2




= E





(

L
∑

l=1

(m′
l − ml)2

L−l∆

)2




≤E





(

L
∑

l=1

|m′
l − ml|2L−l∆

)2




=
L
∑

l=1

E[|m′
l − ml|2]22(L−l)∆2

+

L
∑

l=1

L
∑

s=1,s 6=l

E[|m′
l − ml||m′

s − ms|]22L−l−s∆2

=

(

L
∑

i=1

22(L−i)∆2

)

pc,k

+





(

L
∑

i=1

2(L−i)∆

)2

−
L
∑

i=1

22(L−i)∆2



 p2
c,k

=
1

3
(22L − 1)∆2(pc,k − p2

c,k) + (2L − 1)2∆2p2
c,k (35)

Also, E[(xk,i − x)2] = σ2
m, and E[(x′

k,i − xk,i)
2] = E[min{r2, (1 − r)2}∆2] ≤ 1

4
∆2. Let

σ2
c,k =

1

3
(22L − 1)∆2(pc,k − p2

c,k) + (2L − 1)2∆2p2
c,k

σ2
q =

1

4
∆2 (36)

We have

E[(x′′
k,i − x)2] = E[((x′′

k,i − x′
k,i) + (x′

k,i − xk,i) + (xk,i − x))2] (37)

All the differences depend on the measurement noise nk,i, so in general they are not

mutually independent. Nevertheless, based on the Cauchy-Schwarz inequality, we

have

E[(x′′
k,i − x)2] ≤ (σm + σq + σc,k)

2 (38)
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Set σ2
k = (σm + σq + σc,k)

2 and apply the BLUE estimator. Then using the Cauchy-

Schwarz inequality again, we can get an upper bound on the mean square error

(MSE):

E[(x̂ − x)2] = E





(

∑K
k=1

∑Nk

i=1(x
′′
k,i − x)/σ2

k
∑K

k=1

∑Nk

i=1 1/σ2
k

)2




≤

(

∑K
k=1

∑Nk

i=1

√

E[(x′′
k,i − x)2]/σ2

k

)2

(

∑K
k=1

∑Nk

i=1 1/σ2
k

)2

=
(
∑K

k=1 Nk/σk)
2

(
∑K

k=1 Nk/σ2
k)

2
(39)

The square root of the total mean square error is thus a convex combination of the

square roots of the individual mean square errors. Letting N =
∑K

k=1 Nk, when the

number of sensors is large, lim
N→∞

E[(x̂ − x)2] 6= 0. While it is not zero in the limit, it

is bounded by the result in the preceding equation.

3.3.2 BLUE Estimation with Dithered Quantization

As proposed in [99], the quantization can be done in a probabilistic manner to remove

bias; i.e., the corrupted signal is rounded to either of the two borders of the subinterval

it falls in according to different probabilities. If xk,i ∈ [d∆−W, (d + 1)∆−W ] and r

is as defined at the beginning of Section 3.1, we have

P (x′
k,i = d∆ − W ) = 1 − r

P (x′
k,i = (d + 1)∆ − W ) = r (40)

It is easy to verify that E[x′
k,i] = E[xk,i]. Thus

bk,i = b′′k,i = −2pc,kE[x′
k,i] = −2pc,kx

|bk,i| = |b′′k,i| ≤ 2pc,kU (41)
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Since E[(x′
k,i − xk,i)

2] = E[(r − r2)∆2] ≤ ∆2/4 = σ2
q and

E[(x′
k,i − xk,i)(xk,i − x)]

= E[E[(x′
k,i − xk,i)(xk,i − x)|xk,i]] = 0 (42)

we have

E[(x′
k,i − x)2] = E[(x′

k,i − xk,i)
2] + E[(xk,i − x)2]

≤σ2
m + σ2

q (43)

Hence we find

E[(x′′
k,i − x)2] ≤

(√

σ2
m + σ2

q + σc,k

)2

(44)

For the same reason as in the first scheme, when the number of sensors is large the

bias does not go to zero: lim
N→∞

E[(x̂ − x)2] 6= 0.

3.3.3 BLUE Estimator with Dithered Quantization and Channel Com-
pensation

Clearly, to make the final estimate unbiased, we also need to make the BSC chan-

nel unbiased. This can be accomplished by modifying either the channel’s input or

output. We have

E[x′′
k,i|x′

k,i] = x′
k,i − 2pc,kx

′
k,i. (45)

Let

x̃′′
k,i =

x′′
k,i

1 − 2pc,k
. (46)

Then we can guarantee that

E[x̃′′
k,i|x′

k,i] = x′
k,i

E[x̃′′
k,i] = E[x′

k,i] (47)

This can also be interpreted as a mapping of bits. Suppose the output “0” is
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mapped to a and the output “1” is mapped to b. Then a and b should satisfy:

a(1 − pc,k) + bpc,k = 0

b(1 − pc,k) + apc,k = 1 (48)

Solving these linear equations, we find

a =
pc,k

2pc,k − 1

b =
pc,k − 1

2pc,k − 1
(49)

Note that if the channel is asymmetric, we can solve a similar set of linear equations

to make it unbiased. Suppose the crossover probability from “0” to “1” is p1 and the

crossover probability from “1” to “0” is p2. Then the solution in the general case is:

a =
p1

p1 + p2 − 1

b =
p1 − 1

p1 + p2 − 1
(50)

A unique solution exists if and only if p1 + p2 6= 1, which implies pc,k 6= 1/2 for the

binary symmetric channel. Note that with this mapping scheme the received message

will always be unbiased no matter what coding technique is used. A comparison

between the BSC channel and the modified BSC channel can be seen in Fig. 16 and

Fig. 17.

The modification could also be done at the input of the BSC channel. The sensors

can amplify x′
k,i by the factor α = 1/(1 − 2p) before transmission to make the final

estimate unbiased. Then the interval of the corrupted signal is [−αW, αW ]. If the

sensors still transmit L bits, the real number to quantize is
αx′

k,i
+αW

α∆
=

x′

k,i
+W

∆
, which

is the same as before. So this scheme is mathematically the same as doing the mod-

ification at the output of the BSC channel. A comparison between the quantization

step and the modified quantization step can be seen in Fig. 18 and Fig. 19.
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Figure 16: Binary symmetric channel model with crossover probability of p. We use
this model because it allows us to account for many types of errors in the relaying
of bits/packets from sensors to the CH. In addition to actual channel/decoding er-
rors, it can include, for example, processing errors by each relay mote and bit errors
maliciously injected by compromised relay nodes. More complex error models can be
substituted; this one is sufficient to demonstrate the effects of errors that accumulate
over multiple hops. The value of ǫ must be estimated – the effects of errors in this
estimate are considered later in this chapter.

Figure 17: Binary symmetric channel model with modification to channel output.
This may include multiple hops, starting from a sensor node to the CH, so the overall
crossover probability is pc,k.

Figure 18: Dithered quantization method.
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Figure 19: Dithered quantization method with modification to channel input.

Now we calculate the variance. Denote the mapping result of m′
l by m̃′

l. Thus

E[(x̃′′
k,i − x′

k,i)
2] = E





(

L
∑

l=1

m̃′
l2

L−l∆ −
L
∑

l=1

ml2
L−l∆

)2




=

L
∑

l=1

E[(m̃′
l − ml)

2]22(L−l)∆2

=

L
∑

l=1

E[E[(m̃′
l − ml)

2|ml]]2
2(L−l)∆2

=
L
∑

l=1

pc,k(1 − pc,k)

(1 − 2pc,k)2
22(L−l)∆2

=
1

3
(22L − 1)

pc,k(1 − pc,k)

(1 − 2pc,k)2
∆2 (51)

Let σ′2
c,k = 1

3
(22L − 1)

pc,k(1−pc,k)

(1−2pc,k)2
∆2. Since

E[(x̃′′
k,i − x′

k,i)(x
′
k,i − x)]

= E[E[(x̃′′
k,i − x′

k,i)(x
′
k,i − x)|x′

k,i]] = 0, (52)

we have:

E[(x̃′′
k,i − x)2] = E[(x̃′′

k,i − x′
k,i)

2] + E[(x′
k,i − x)2]

≤ σ2
m + σ2

q + σ′2
c,k (53)

Set σ2
k = σ2

m + σ2
q + σ′2

c,k and apply the BLUE estimator. Then we can get an upper
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bound on the mean square error (MSE):

E[(x̂ − x)2] ≤
(

K
∑

k=1

Nk/(σ2
m + σ2

q + σ′2
c,k)

)−1

(54)

When the number of sensors is large, we now have asymptotic efficiency: lim
N→∞

E[(x̂−

x)2] = 0.

Note that x̃′′
k,i =

x′′

k,i

1−2pc,k
. We can thus find the variance of the final estimate in the

second scheme:

V ar(x′′
k,i) = (1 − 2pc,k)

2V ar(x̃′′
k,i) (55)

In the case when L = 1, V ar(x′
k,i) = σ2

m + σ2
q and

V ar(x′′
k,i − x′

k,i) = E[V ar(x′′
k,i − x′

k,i|x′
k,i)]

+V ar(E[x′′
k,i − x′

k,i|x′
k,i])

≥E[V ar(x′′
k,i − x′

k,i|x′
k,i)]

= (pc,k − p2
c,k)∆

2 (56)

Considering the bounds instead of the true values, we can roughly get the following

relationship in the second scheme,

V ar(x′′
k,i) ≤ V ar(x′′

k,i − x′
k,i) + V ar(x′

k,i) (57)

which means that x′′
k,i − x′

k,i and x′
k,i are negatively correlated. This coincides with

the observation that x′′
k,i − x′

k,i decreases when x′
k,i increases.

Finally, it is worthwhile to mention that in the first two schemes, the range of the

final estimate is [−W, W ], and in the third scheme, the range of the final estimate is

[−αW, αW ]. Hence, there is a possibility that the final estimate falls outside of the

interval [−U, U ]. It can be projected back onto the interval [−U, U ] without increasing

the total mean square error, namely

x∗ = max{−U, min{U, x̄}} (58)
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Fig. 20 shows simulations that compare the MSE if the BLUE is used at the CH

when neither, either, or both of the bias-removal schemes are used. In all cases, the

signal and noise are uniformly distributed with U = 1, V = 0.25, respectively; and

there are N1 = 50 nodes. Fig. 20(a), shows what happens when L = 1, in which case

the quantization of the sensor output is very coarse because there are only 2L = 2

quantization levels; the output of the quantizer is basically the sign of the input.

When neither dithered quantization nor channel compensation are used, the MSE is

unexpectedly low for some values of pc because the bias is very large. When dithered

quantization is used by itself, most of the bias is removed but the residual bias due

to lack of channel compensation grows as pc increases. When channel compensation

is used by itself, the MSE increases significantly because the compensation basically

amplifies the errors caused by the coarse quantizer. When coarse quantization is

used, it is thus essential that dithered quantization and channel compensation be used

together.

In 20(b), L = 2 and 2L = 4 quantization levels are used. This somewhat finer

quantization eliminates much of the unusual, bias-induced behavior of the MSE in

20(a), but not all of it. The primary improvement occurs when channel compensation

is used. The improvement is not as great as what will be seen in the next figure

because the error variance due to quantization is still high.

Fig. 20(c) shows the effect of the bias removal schemes when L = 5, so there

are 2L = 32 quantization levels. In this case the quantization error and its bias

are both negligible, so the use of dithered quantization makes very little difference.

Channel compensation does significantly reduce the MSE, both with and without

dithered quantization. Thus, dithered quantization can be skipped in order to simplify

processing at the nodes when the input is finely quantized. Note that the MSE in

20(c) is significantly lower than any of the MSEs in 20(a) or 20(b), which shows the

advantage of fine over coarse quantization.
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3.4 Sensitivity Analysis

In section 3.3, we proposed an unbiased estimator that uses channel compensation

when the channel is noisy. When the number of sensors is sufficiently large, it can

definitely outperform the other two estimators. However, if the single-bit error rate of

the channel is not perfectly estimated, the expected value of the estimate still deviates

from the true value. Our focus in this section is thus to evaluate the sensitivity of the

performance of channel compensation to mis-estimation of the crossover probability.

For fairness, we only compare the second scheme and the third scheme. Denote

the CH’s estimate of the single-bit error rate pc,k by p′c,k. In the second scheme,

the bias and variance stay the same as before since p′c,k has nothing to do with the

estimator. We have

bk,i = −2pc,kx

V ar(x′′
k,i) = (1 − 2pc,k)

2(σ2
m + σ2

q + σ′2
c,k) (59)

In the third scheme, the one using channel compensation, since it is already known

that

x̃′′
k,i =

x′′
k,i

1 − 2pc,k
(60)

is an unbiased estimator of x, we have

x̄′′
k,i =

x′′
k,i

1 − 2p′c,k
=

1 − 2pc,k

1 − 2p′c,k
x̃′′

k,i (61)

Hence, we can further get

bk,i =
2(p′c,k − pc,k)

1 − 2p′c,k
x

V ar(x̄′′
k,i) =

(1 − 2pc,k)
2

(1 − 2p′c,k)
2
(σ2

m + σ2
q + σ′2

c,k) (62)

Note that the bias will dominate the performance of distributed estimation when
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the number of sensors is large. The absolute value of the bias in the dithered quan-

tization scheme is given by

|b| =

∑K
k=1

∑Nk

i=1 2pc,k|x|/σ2
k

∑K
k=1

∑Nk

i=1 1/σ2
k

(63)

The absolute value of the bias in the channel compensation scheme is given by

|b| ≤
∑K

k=1

∑Nk

i=1

2|p′
c,k

−pc,k|

1−2p′
c,k

|x|/σ2
k

∑K
k=1

∑Nk

i=1 1/σ2
k

(64)

Hence a sufficient condition for the scheme with channel compensation to have a

smaller upper bound is

2|p′c,k − pc,k|
1 − 2p′c,k

< 2pc,k

−pc,k(1 − 2p′c,k) < p′c,k − pc,k < pc,k(1 − 2p′c,k)

0 < p′c,k <
2pc,k

1 + 2pc,k

−pc,k < p′c,k − pc,k <
1 − 2pc,k

1 + 2pc,k

pc,k (65)

Clearly, the bias will vanish as the sensors gain a perfect knowledge of pc,k. Also, if

E[pc,k − p′c,k] = 0 and E[|pc,k − p′c,k|] << pc,k, the estimator approaches unbiasedness.

When an accurate estimate of pc,k is not achievable, with the same distance to the

true value, an underestimate of pc,k is slightly better than an overestimate of pc,k

because an overestimate will amplify the bias.

The absolute values of the residual coefficient under different pc,k’s and p′c,k’s are

shown in Fig. 21. Also, Fig. 22 shows the comparison based on the mean square

error of four different cases in a one-hop network when both the signal and noise

are uniformly distributed with U = 1, V = 0.25, L = 5, and N1 = 50. In the

first case, pc,k is perfectly estimated; in the second case, p′c,k = 0.8pc,k; in the third

case, p′c,k = 1.2pc,k; in the last case, p′c,k is uniformly distributed in the interval

[0.8pc,k, 1.2pc,k].
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3.5 Energy Allocation

3.5.1 Energy Allocation by Each Sensor

We now consider the problem of allocating energy among different bits of the quan-

tized message at each sensor for the channel compensation scheme. Assume the

quantized message is of length L and the overall energy available for transmission

is limited in order to maximize the lifetime of the network. Suppose the lth most

significant bit ml is repeated bl times. The mean of the received replicas of the lth

most significant bit is ul =
(

∑bl

n=1 m̃′
n

)

/bl. Define

ẋ′′
k,i =

L
∑

l=1

2L−lul∆ − W (66)

It is easy to verify that ẋ′′
k,i is an unbiased estimate of x. Let

βk =
pc,k(1 − pc,k)

(1 − 2pc,k)2
(67)

and we have

E[(ẋ′′
k,i − xk,i)

2] = E





(

L
∑

l=1

22(L−l)ul∆
2 −

L
∑

l=1

22(L−l)ml∆
2

)2




=
L
∑

l=1

22(L−l)E[(ul − ml)
2]∆2

=

L
∑

l=1

22(L−l) βk

bl
∆2

=
L
∑

l=1

2L−l
∑

m=1

2L−l βk

bl
∆2

≥ (
∑L

l=1 2L−l)2∆2

∑L
l=1

∑2L−l

m=1 2−(L−l) bl

βk

=
(
∑L

l=1 2L−l)2∆2

∑L
l=1

bl

βk

=
(2L − 1)2∆2

M/βk
(68)
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The above inequality uses the result that the arithmetic mean is always no smaller

than the harmonic mean. Furthermore, the equality holds if and only if

2L−l

bl
=

2L−s

bs
, ∀1 ≤ l, s ≤ L, l 6= s (69)

This result is similar to the solutions proposed in [60] and [41], but is actually an

extension of them because there are no assumptions about the channel noise or code

distribution. However, the problem itself is a discrete optimization problem rather

than a continuous optimization problem. Hence the above optimal solution is usually

not achievable. To facilitate the analysis, we round the optimal solution to the nearest

integer that is greater than the real value. Then, by using at most L − 1 extra bits,

the performance can be guaranteed. We can further get the total variance

E[(ẋ′′
k,i − x)2] = E[(ẋ′′

k,i − xk,i)
2] + E[(ẋ′′

k,i − x)2]

≤ (2L − 1)2∆2

M/βk
+

1

4
∆2 + σ2

m

= 4βkW
2/M +

W 2

(2L − 1)2
+ σ2

m (70)

Note that the first term and the last term do not change with respect to L, and the

middle term decreases as L increases. Also the bound on the possible total energy

consumption increases as L increases. So the sensors have to trade quantization error

for communication error. We look at two special cases here. If the single bit error

rate is negligible, then βk = 0 and

E[(ẋ′′
k,i − x)2] = W 2/(2L − 1)2 + σ2

m (71)

The optimal energy allocation strategy is then: bl = 1, 1 ≤ l ≤ M , so that L = M

and E[(ẋ′′
k,i − x)2] = W 2/(2M − 1)2 + σ2

m.

The energy allocation problem among different sensors has been studied in [99]

and [55]. The intuition here is when βk is large, the bits are repeated multiple times

in proportion to their weights; when βk is small, each bit is transmitted only once. If

56



2L − 1 = M ,

E[(ẋ′′
k,i − x)2] = 4βkW

2/M + W 2/M2 + σ2
m (72)

In this case, there are actually no differences among different bits and the fusion center

sums up all the received bits to get a maximum likelihood estimate of the quantized

message. To simplify the analysis, let L = ⌈log(M + 1)⌉ here. The performance is

bounded as before, and it may be improved by adding a few more bits.

Fig. 23 shows the mean square error of the different energy allocation schemes

in the one-hop case when both the signal and the measurement noise are uniformly

distributed with U = 1 and V = 0.25, respectively. Each sensor transmits M = 7

bits and there are N1 = 50 sensors.

3.5.2 Energy Allocation in the One-Hop Case

We now consider the energy allocation problem among different sensors in a one-hop

network with N1 sensors. The goal is to minimize the MSE subject to a limit on

the energy that can be used. The energy used is generally proportional to the total

number of bits, B, that are transmitted.

Suppose there are a total of S sensors actually participating in the distributed

estimation task and that the i’th one uses a total of M1,i bits to transmit its local

estimate to the CH. Minimizing the MSE subject to an energy bound can then be

formulated, following (51), as finding the M1,i’s that achieve:

max

S
∑

i=1

1

4β1W 2/M1,i + W 2/M2
1,i + σ2

m

subject to:

S
∑

i=1

M1,i ≤ B

S ≤ N1, M1,i > 0, 1 ≤ i ≤ S. (73)
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Since S is fixed, we can introduce a Lagrange multiplier and define:

G(M1,i, λ) =

S
∑

i=1

1

4β1W 2/M1,i + W 2/M2
1,i + σ2

m

(74)

+λ(
S
∑

i=1

M1,i − B).

Following standard techniques leads to the following optimality conditions:

∂(
1

4β1W 2/M1,i + W 2/M2
1,i + σ2

m

)/∂M1,i = 0 (75)

S
∑

i=1

M1,i = B (76)

Obviously, each sensor participating in distributed estimation should transmit the

same number of bits. Hence, the goal is to choose M1,i’s that achieve

max
B

(4β1W 2/M1,i + W 2/M2
1,i + σ2

m)M1,i
(77)

This objective is maximized when

4β1W
2 + W 2/M1,i + σ2

mM1,i (78)

is minimized. When B < (W/σm)N1, this minimum is achieved when B(σm/W )

sensors are randomly selected and each one transmits M1,i = W/σm bits. The overall

error variance is then:

1

B
(4β1W

2 + 2Wσm) (79)

To guarantee performance, each sensor can transmit M1,i = ⌈W/σm⌉ bits. If B <

W/σm, the network can randomly select one sensor to send M1,i = B bits and let

all other sensors keep silent. If B > (W/σm)N1, the sensor can typically transmit

M1,i = ⌈B/N1⌉ bits.

Fig. 24 compares the mean square error of different energy allocation schemes

in the one-hop case when both the signal and noise are uniformly distributed with

U = 1 and V = 0.25, respectively. In the cases shown, the energy constraint was

B = 100 bits and there were N1 = 50 nodes.
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3.5.3 Energy Allocation in Multi-Hop Cases

We now consider the multi-hop case. In this case, the goal is allocate bits amongst

rings and sensors within rings to minimize the energy required to achieve a MSE that

is below a specified level.

We must first define a function f(k) that is the energy expended to move a bit

from ring k of the network to the CH. In this dissertation, we assume it takes exactly

one transmission per hop, in which case f(k) = αk and we can let α = 1. Depending

on the approach used for communication, such as collaborative communication or a

standard random access protocol, f(k) may not be linear in k.

Now let Mk,i be the number of bits used by the ith sensor in ring k to transmit

its local estimate. The optimization problem can then be formulated as choosing the

Mk,i’s that achieve:

min

K
∑

k=1

Nk
∑

i=1

f(k)Mk,i

s.t.
K
∑

k=1

Nk
∑

i=1

1

4βkW 2/Mk,i + W 2/M2
k,i + σ2

m

≥ T

Mk,i ≥ 0, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk (80)

where T is fixed. Note that the total error variance is then upper bounded by 1/T . To

facilitate the implementation, suppose each sensor can only transmit 2j−1, 1 ≤ j ≤ Q

bits, where Q is restricted by the residual energy of the sensor(s). Further suppose

that each sensor can transmit different numbers of bits with different probabilities. To

this end, define pk,i,j to be the probability that the ith sensor in the kth ring transmits

2j−1 bits. Then, introducing this randomization into the above optimization problem
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leads to the following one.

min

K
∑

k=1

Nk
∑

i=1

Q
∑

j=1

pk,i,jf(k)(2j − 1)

s.t.
K
∑

k=1

Nk
∑

i=1

Q
∑

j=1

pk,i,j
1

4βkW 2/(2j − 1) + W 2/(2j − 1)2 + σ2
m

≥ T

0 ≤ pk,i,j ≤ 1, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk, 1 ≤ j ≤ Q
Q
∑

j=1

pk,i,j ≤ 1, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk (81)

This optimization problem can be solved by linear programming. The result can be

converted back to a deterministic policy by letting pk,i,jNk sensors in the kth ring

transmit 2j − 1 bits.

If there is no limit on the maximum number of bits that each sensor can transmit,

we can increase Q to track the solution of the linear program for each Q until all

pk,i,Q’s in the solution equal zero.

Fig. 37 shows the optimal energy consumption under different crossover prob-

abilities of the BSC channel for a three-hop network as a function of the bound

on the variance of the estimate. The signal for all cases was uniformly distributed

on [−U, U ] = [−1, 1] and the noise was independent but also uniformly distributed

on [−V, V ] = [−1, 1]. There were 60 nodes distributed among the three rings as:

N1 = 10, N2 = 20, and N3 = 30. Table 2 shows the corresponding energy allocation

schemes amongst rings and nodes when 1/T = 0.015.

Fig. 26 compares the optimal energy consumption in a three-hop network as

the limit V of the measurement noise (which is uniformly distributed on [−V, V ]) is

varied. The signal is again uniformly distributed on [−1, 1], the channel crossover

probability is pc = 0.05, and the 60 sensors are again spread across the rings as

N1 = 10, N2 = 20, and N3 = 30. Table 3 shows the corresponding energy allocation

schemes when 1/T = 0.015.

There is considerable freedom in the above optimization problem to account for
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Table 2: Comparison of the energy allocation schemes under different crossover
probabilities of the BSC channel. Bits are allocated first to the sensors closest to the
CH, with sensors in the third ring contributing more bits as the channel crossover
probability pc increases. Recall that pabc is the probability that node b in ring a
transmits 2c − 1 bits.

pc ring 1 ring 2 ring 3
0.02 p1i3 = 1 p2i3 = 1 p3i2 = 0.2433
0.04 p1i4 = 1 p2i3 = 1 p3i2 = 0.5721
0.06 p1i4 = 1 p2i3 = 1 p3i2 = 0.6477, p3i3 = 0.3523
0.08 p1i4 = 1 p2i4 = 1 p3i2 = 0.6838, p3i3 = 0.3162
0.10 p1i5 = 1 p2i4 = 1 p3i3 = 0.9789, p3i4 = 0.0211
0.12 p1i5 = 1 p2i5 = 1 p3i2 = 0.1291, p3i3 = 0.8709
0.14 p1i5 = 1 p2i5 = 1 p3i4 = 0.9346, p3i5 = 0.0654

Table 3: Energy allocation across rings and sensors as the measurement noise is
varied. As the measurement noise becomes more severe (as V increases), sensors in
the outer rings must contribute – but the energy cost of transmitting over multiple
hops ensures that the sensors in the inner rings use the most bits. pc = .05 and the
MSE is held at 0.015.

V ring 1 ring 2 ring 3
0.2 p1i4 = 0.2817
0.4 p1i3 = 0.9160

p1i4 = 0.0840
0.6 p1i4 = 1 p2i3 = 0.1515
0.8 p1i3 = 0.7452 p2i3 = 1

p1i4 = 0.2548
1.0 p1i4 = 1 p2i3 = 1 p3i2 = 0.9441
1.2 p1i4 = 1 p2i3 = 0.6678 p3i3 = 1

p2i4 = 0.3322
1.4 p1i5 = 1 p2i4 = 0.9369 p3i4 = 1

p2i5 = 0.0631
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additional constraints. For example, energy tracking or scavenging algorithms might

impose constraints on the maximum amount of energy that can be used by each ring

of motes. An upper bound on the energy that can be used by ring k could take the

form:
Nk
∑

i=1

M
∑

j=1

pk,i,jf(k)2j−1 < Ek (82)

These additional constraints are also linear; hence, an optimal allocation that satisfies

these constraints can still be found via a linear program.

3.6 Summary

We now discuss the impact of various modeling assumptions made in this chapter

and briefly mention possible future work.

3.6.1 The Binary Symmetric/Asymmetric Channel Models

The channel models used in this chapter were the Binary Symmetric and Asymmetric

Channels. They are reasonable choices because they cover some practical situations,

even when the estimates the sensors make are included in packets with other data.

The reason is that wireless sensors typically use very simple error control codes in

order to minimize both the computation involved in preparing a packet and the

number of bits transmitted. There will thus be a nontrivial probability of error for

each bit of the packet.

The assumption that errors affecting successive bits are independent is also rea-

sonable. Possible correlations between bits in the estimate that is being transmitted

can be avoided by interleaving these bits with those of other data being carried in

packets.

3.6.2 What Sensors and Clusterheads Must Know or Estimate

This chapter first addressed the issue of bias of the local estimates received by the CH.

This bias is introduced when the sensors quantize their local estimates and when these
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quantized estimates are transmitted over noisy wireless channels. We thus proposed

novel but simple quantization and channel coding schemes to ensure that each local

estimate received by the CH is unbiased.

To implement these schemes, the clusterhead and the sensors must know the

variance of the measurement errors made by the sensors. This is generally available

either from models of the hardware used by the sensors or via estimation of it by

the sensors. We also assumed that the CH knows the channel crossover probabilities

for the wireless channels but then demonstrated that reasonably accurate estimates

of them are sufficient for good performance. The sensors should thus be expected to

estimate the bit-error rates on each link that they use, which is something they would

usually be expected to do as part of any routing protocol for a wireless network.

With knowledge of the noise variance and estimates of the channel crossover prob-

ability, the bias in the received local estimates can thus be eliminated. The BLUE

estimator can then be used to fuse these local estimates. The analysis of the variance

of this estimator then led to techniques for optimal allocation amongst the sensors

of the bits to be transmitted. The minimum energy required to achieve an error

variance below a certain threshold could thus be found. Furthermore, an allocation

of bits across rings and amongst the sensors in each ring that achieves this minimum

energy was determined.

3.6.3 Future Work

One of the promising next steps for the work in this chapter is its use in mobile ad

hoc networks. The tractability of the coding, quantization, estimation, and energy

allocation schemes in this paper means that they can be used to rapidly study, via

analysis and optimization, the effect of mobility of sensors on an application like

estimation. For example, sensors that were near the same time and place may try to

fuse their estimates to increase their accuracy. Because of the time spent gathering
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a sample, making measurements of the sample, and computing estimates based on

these measurements, the sensors may have moved a substantial distance before their

estimates are ready for transmission. The number of hops they have moved in this

time will have a significant effect on the accuracy of the fusion algorithm. Our goal

will be to quantify this effect as a function of time. Please see [89] for preliminary

work on the effect of mobility on distributed detection applications.
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Figure 20: Simulations comparing the mean square error of four different estima-
tion schemes with different L’s, where 2L is the number of quantization levels used.
No Bias Removal is the BLUE estimator without dithered quantization or channel
compensation; Dithered Quant. Only is the BLUE estimator with dithered quan-
tization; Channel Comp. Only is the BLUE estimator with channel compensation;
Full Bias Removal is the BLUE estimator with dithered quantization and channel
compensation.
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Figure 21: The bias after channel compensation when the estimate of the crossover
probability of the BSC channel is not perfect.
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Figure 22: Comparison of the mean square errors under different estimates of the
crossover probability of the BSC channel.
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Figure 23: The mean square error as a function of the channel crossover probability
for three energy allocation schemes. Each sensor transmits M = 7 bits. In the case
L = 1, each sensor quantizes its local estimate to 1 bit and transmits it M = 7 times;
for L = M , each sensor quantizes its local estimate to M = 7 bits and transmits
each bit once. For the optimal case of L = log(M + 1) = 3, each sensor quantizes
its estimate to 3 bits, repeats the most significant bit (msb) 4 times, the next msb 2
times, and the least significant bit once.
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Figure 24: The mean square error of different energy allocation schemes for a one-
hop network. The difference in performance between the optimal energy allocation
scheme – each sensor quantizes its estimate to one bit and transmits it twice – and
the uniform energy allocation scheme – each sensor quantizes its estimate to two bits
and transmits each bit once – decreases as the channel becomes noisier.
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Figure 25: Minimum energy required in a three-hop network to achieve a specified
MSE for different values of the crossover probabilities of the BSC channel. The
network has 60 sensors: N1 = 10, N2 = 20, and N3 = 30; the signal and measurement
noise are both uniformly distributed on [−1, 1].
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Figure 26: Minimum energy required in a three-hop network to achieve a specified
MSE as the limit V on the measurement noise, which is uniformly distributed on
[−V, V ], is varied. The network has 60 sensors: N1 = 10, N2 = 20, and N3 = 30;
the signal is uniformly distributed on [−1, 1]; and the channel crossover probability
is pc = 0.05.
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CHAPTER IV

EFFECTS OF MOTION ON DISTRIBUTED DETECTION

AND ESTIMATION IN MOBILE AD HOC SENSOR

NETWORKS

4.1 Research Motivation

This chapter will focus on the effects of motion on distributed detection and estimation

in mobile ad hoc networks. Our first goal is to develop algorithms to efficiently

calculate the performance of fusion algorithms in this very dynamic and complex

scenario. These numerical algorithms should account for as many factors as possible

that could affect the system’s performance, including: the motions that are typical

of people in crowds, measurement errors in the sensors, errors made during wireless

communication, and fusion algorithms with low enough complexity that they can

be executed on very low-power processors or on processors that are shared by many

different applications.

We will illustrate how to approach the analysis of such systems via a particular

example. For this example, we assume a situation like that shown in Figure 1. The

wireless nodes shown in the figure are carried by people who are moving. They have

been moving for some time, generally toward the the stadium entrance, which is at

position x = N at the right end of each subfigure. Their motion to the right is thus

strongly dominant over motion to the left; which is shown by arrows to the right

that are larger than arrows pointing to the left. Each node may occasionally switch

directions of motion and briefly move against the general flow, just as people do in a

real crowd.
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At time t0 we assume without loss of generality that the sensors are in a config-

uration like that shown shown in Fig. 1(a). We assume that the sensors that are

colored blue have each collected observations/samples that have been affected by a

chemical or biological agent. It takes time for the sensors to process these observa-

tions/samples and the processors managing the sensors may have to finish other tasks

before processing them. During this processing delay, the people carrying the sensors

continue to move toward the stadium.

At time t1 one of the sensors shown in Fig. 1(b) has finished processing its

observations. The results satisfy some criterion – a preliminary positive detection or

a preliminary estimate that exceeds a threshold – that requires that sensor to seek

other sensor’s results so they can be fused with its own to make a highly reliable

decision/estimate. This sensor declares itself to be a clustered (CH) and floods the

network of sensors – shown in Fig. 1(b) as one sensor transmitting at time t2 –

with a request for other nodes to send it their results if they were at approximately

the same location and time that the CH acquired its samples. This flooding could be

accomplished in many ways, including, for example, by the A-OLA cooperative, multi-

hop broadcasting scheme proposed in [42]. This first request for data will suppress or

supersede any other requests by any other sensors for data generated for this location

and time. Thus, all other sensors with data about this event will forward it to the

CH. For our analysis we will consider two situations: (i) the CH remains stationary;

(ii) the CH continues to move with crowd.

At time t3, the CH’s request for reports have reached all other sensors, including

those with nothing to report, as shown in Fig. 1(c). Sensors with data to report,

shown in blue, begin transmitting their results to the CH. In some cases, the CH may

be multiple wireless hops away, so intermediate nodes will relay these transmissions.

We assume that no aggregation takes place as the nodes’ data is relayed to the CH.

It is during this data collection phase that the behavior becomes quite interesting.
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(a) The nodes at the time t0 at which an event occurs. The nodes
that make observations affected by the event are colored blue. All
nodes are moving, generally toward the stadium entrance at the
right, x = N , where they form a queue to enter the stadium.

(b) The nodes at time t1, the time when the first node to process its
observations decides that decisions and estimates from other nodes
should be processed, collected and fused as soon as possible. It
floods the group of sensors with a message with which it declares
itself to be the CH, organizes the nodes into a multi-hop cluster to
collect the data, and requests all nodes with relevant data – the ones
colored blue – to report.

(c) The nodes at time t3. All nodes that were affected by the event
have, on request, completed processing their observations and are
reporting their results back through the cluster to the CH.

Figure 27: A security scenario that arises when large crowds are moving toward a
stadium or other venue to participate in a event, such as a football game, soccer
match, or concert.
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From the moment it starts we want to determine the best decision or estimate that

the CH can make given the multi-hop network that exists at time t3. If t3 is close to

t1, the sensors would not have spread out very much, so each one may be within one

hop of the CH. If t3 is significantly greater than t1, then the nodes may be either very

spread out or, if they have all gotten close to the stadium entrance, have begun to

bunch up again. In any of these cases, there will be communication errors, but more

errors will occur when the nodes are spread out because additional transmissions

are needed to relay the data. The algorithms we use for distributed detection and

estimation account for these situations and can even determine how much energy each

node should dedicate to sending its data – where the energy is measured in terms of

the number of bits the node sends. For instance, it would determine how many bits

each node that is n hops from the CH should use to encode each bit in its quantized

estimate.

We develop analytical models of this scenario and numerical methods to calculate

the best possible performance that could be expected at any time t. We are thus

interested in the behavior of the network as it changes over time, where these changes

are due to the motion of the crowd. The transient behavior of stochastic models of

this motion are critical to understanding this scenario and eventually determining the

optimal time at which to make a decision.

This chapter is organized as follows. Section 4.2 reviews the most relevant prior

results in mobile ad hoc networks. In section 4.3, the transient behavior of semi-

infinite correlated random walks is reviewed. The solution to the finite case, which

is a good model for the motion of people the scenario of interest to us, is provided

in section 4.4. Its statistical properties that have the greatest impact on detection

and estimation applications are analyzed in section 4.5. In section 4.6 and 4.7, the

performance of detection and estimation tasks in mobile wireless sensor networks are

determined. Numerical results are provided in section 4.8. They demonstrate: (i)
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the use of the mobility model in calculating the minimum energy required to collect

data from each sensor participating in the data fusion process; (ii) the decision error

probability at the cluster head once the decisions from all participating sensors have

been gathered; and (iii) the minimum energy required to collect the estimates from all

relevant sensors to achieve a prescribed estimation accuracy. These three quantities

are functions of both time and the parameters of the mobility model and the ability

to rapidly and accurately calculate them is valuable in developing optimal strategies

form managing mobile sensor networks. Summary and a discussion of future work

are provided in Section 4.9.

4.2 Most Relevant Prior Results

We must first model how sensors organize into a cluster, which must be done very

rapidly in mobile, event-driven scenarios. We thus assume the existence of a very

fast, low-complexity algorithm for clustering that is triggered by an event – in this

case the request by one node for other nodes’ data. The algorithm we choose is the

one defined and analyzed in [15, 17]. We will only consider the the single-cluster case

that is created in the scenario in this chapter; the more general case of hierarchical

clustering is relevant if we need to collect results from all sensors participating in an

event. In this more general case, many thousands of sensors may be involved; one for

each person attending the event.

In the single-cluster scenario, the communication architecture is some variation

of the 2-hop cluster shown in Fig. 28. The sensor in the center of the cluster,

called the CH, is the one that requested the decisions/estimates from other sensors.

The sensors shown in the first ring are one wireless hop from the CH; the ones in

the second ring are two hops away, etc. Three sensors in a sector of ring 2 are

shown forwarding their decisions to one sensor in ring 1. Each sensor’s observation is

affected by measurement noise and all communications throughout the network will
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Figure 28: A 2-hop, 2-D cluster. The mobility of the sensors produces this tempo-
rary, multi-hop cluster for applications such as detection/estimation. As they move,
the cluster changes size and more hops may be required for all relevant sensors to
participate. Each sensor’s decision/estimate may be incorrect because of measure-
ment noise; transmitted packets may suffer bit errors because of noisy communication
channels. If the number of hops in the cluster increases with time, the energy required
for communication will increase and detection/estimation performance will decrease.

be affected by channel noise, fading, and transceiver errors. Because the cluster is

multi-hop, decisions forwarded from the outer rings will suffer repeated exposure to

the sources of communication error and more energy must expended to get them to

the CH.

The mobility model governing each sensor and the time since the event of interest

will clearly affect the number of hops, and thus both the detection/estimation accu-

racy at the CH and the energy consumed to achieve this level of accuracy. It will also

affect the network’s performance in terms of coverage, maximum throughput, and

throughput-delay trade-offs.

Many mobility models have been proposed for analyzing the behavior of mobile

ad hoc networks. In [14, 21], those models are categorized into four classes: ran-

dom models, models with temporal dependency, models with spatial dependency,

and models with geographic restrictions. For example, random walks and random

waypoint models are random models; Gauss-Markov mobility models and Smooth

Random models are models with temporal dependency; group mobility models [14]

are models with spatial dependency; and, Pathway mobility models and Obstacle
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mobility models are models with geographic restrictions. These models are useful as

analytical or simulation tools but none of them can account for all of the constraints

or features of real systems.

We thus use Correlated Random Walks (CRWs) as the model for the motion of the

sensors in our security scenario. They can account for time dependency, geographical

restrictions, and nonzero drift. They are more general than random walks but are

still amenable to analysis, sometimes in closed-form. The limiting distributions for a

discrete-time 1-D completely infinite CRW was derived in [32]. The probabilities of

being at any lattice point at the nth step for a discrete-time 1-D CRW in different cases

was found in [72, 19, 71, 48]. The absorbing probability and expected duration of a

discrete-time CRW was found in [106]. The transient behavior of the continuous-time

CRW on a semi-infinte, 1-D state space, is solved, in closed-form in some cases, in [16].

The behavior of multiple sensors whose motion is modeled by discrete-time processes

related to CRWs has been studied in [20]. In this chapter, we use continuous-time,

1-D CRWs on finite state-spaces to calculate the behavior of mobile sensors in the

security scenario described above.

Ultimately, our goal is to determine – by numerical analysis instead of simulation

– the effect of the mobility of the nodes on the detection and estimation problem that

exists at the application layer of the mobile, ad-hoc network. The performance of

these applications will vary with time because of the nodes’ motions. Understanding

the significance of these transient effects, and being able to precisely determine such

quantities as a lower bound on the probability of detection or MSE of an estimate,

is critical to developing a strategy for reaching a decision meeting certain criteria in

the minimum amount of time.

In [59], an optimal distributed detection strategy in a single-hop network was

studied. In [61], a decentralized detection problem under bandwidth constrained

communication was investigated. The noise at different sensors was assumed to be
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independent, but the statistics of the noise were assumed to be unknown to the

CH, so it treats all received detection results equally. It is shown in [24] how the

performance of detection algorithms is improved by knowledge of the channel. The

limits of detection performance in a one-hop sensor cluster with non-ideal channels

were determined in [23].

In [66], the performance of distributed detection in a random sensor field is an-

alyzed. [55] and [40] discuss the distributed detection problem for Gaussian signals

under communication constraints. In [30], the authors consider the detection and

localization problem of material releases with sparse sensor configurations. In [57],

the sensors adopt robust binary quantizers for distributed detection. Censoring and

sequential tests have also been adopted in distributed detection to achieve the same

detection accuracy with less energy [8], [64], and they have been combined to further

save energy [67], [102].

There are also many papers that consider the task of distributed estimation in

sensor networks. [60] proposes an isotropic decentralized estimation scheme in a

homogeneous environment. Each sensor transmits just one bit, with probability 1/2

to transmit the most significant bit, probability 1/4 to transmit the second-most

significant bit, etc. [99] extends this result to the distributed estimation problem

in an inhomogeneous environment by letting each sensor transmit a number of bits

proportional to the logarithm of its local signal to noise ratio (SNR). [51] analyzed the

optimal energy allocation problem in this case by giving priority to the transmissions

with high energy efficiency.

[62] discusses optimal local estimation and final fusion schemes under the con-

straint that the communication from each sensor to the fusion center must be a

one-bit message. In a similar case with a noisy communication channel, a MAP esti-

mator and its variations are given in [12]. Each sensor is assumed to transmit a single

bit that results from comparison of its local measurement with a pre-set threshold.
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The information these bits provide decreases significantly when the preset threshold

is not equal to the true but typically unknown signal value. To reduce the required

number of sensors and the sensitivity to the choice of threshold, a modified scheme is

provided in [79] in which the sensors use nonidentical thresholds that are uniformly

distributed in an interval that must contain the true signal value. [76] and [75] pro-

pose to let the sensors transmit one bit when the noise is relatively high, and multiple

bits when the noise is relatively low, both with nonidentical thresholds obtained via

convex optimization techniques.

4.3 Basic Results on Transient Analysis of a Correlated

Random Walk on {0, 1, . . . ,∞}

In this section, we briefly review results on the transient probability distributions of

continuous-time, 1D CRWs on {0, 1, 2, . . . ,∞}[16]. In this case, the sensor moves

according to the following rules:

It takes a step in the same direction as its previous step with probability p1 or

p2 depending on whether its previous step was in the positive or negative direction,

respectively. It takes a step in the opposite direction of its previous step with prob-

ability q1 = 1 − p1 or q2 = 1 − p2 depending on whether its previous step was in the

positive or negative direction, respectively. On reaching a (reflecting) boundary, it

takes a step in the opposite direction with probability one.

The time at which the sensor takes its next step is governed by a Poisson process

of intensity λ.

A CRW on {0, 1, . . . ,∞} with a reflecting boundary at 0 can be modeled as a

quasi-birth-death (QBD) process [65] with the state transition diagram shown in Fig.

29. The state n− at any level n is entered when the sensor moves to location n from

location n+1. The state n+ any level n is entered when the sensor moves to location

n from location n − 1.

Letting Q denote the generator for this QBD process, the Laplace transform Π(s)
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of the vector π(t) of transient probabilities for all states in the process satisfies the

equations [104]:

Π(s)(Q − sI) = −π(0), π(0) = π(t)|t=0 (83)

For this QBD process,

Q =















































−λ λ 0 0 0 0 0 0 . . .

q1λ−λ 0 p1λ 0 0 0 0 . . .

p2λ 0 −λ q2λ 0 0 0 0 . . .

0 0 q1λ −λ 0 p1λ 0 0 . . .

0 0 p2λ 0 −λ q2λ 0 0 . . .

0 0 0 0 q1λ −λ 0 p1λ . . .

0 0 0 0 p2λ 0 −λ q2λ . . .

...
...

...
...

...
...

. . .















































(84)

For simplicity only, assume the initial position of the sensor is 0; i.e., π(0) = [1, 0, 0, · · · ].

Define Πn(s) to be the transform of πn(t) = [πn+(t), πn−(t)], the row-vector of tran-

sient probabilities for states on level n of the process. Then,

−(λ + s)Π0(s) + Π1(s)







q1λ

p2λ






= −1, (85)

λΠ0(s) + Π1(s)







−(λ + s)

0






= 0, (86)

Πn(s)B(s) + Πn+1(s)C(s) = 0, n ≥ 1, (87)

where

B(s) =







0 p1λ

−(λ + s) q2λ






(88)

C(s) =







q1λ−(λ + s)

p2λ 0






(89)
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Thus we get

Πn+1(s) = Πn(s)W (s), (90)

where

W (s) = −B(s)[C(s)]−1 =







p1λ
λ+s

− p1q1λ
p2(λ+s)

q2λ
λ+s

λ+s
p2λ

− q1q2λ
p2(λ+s)






. (91)

The boundary variables must also satisfy the following equation:

Π1(s)v1(s) = 0. (92)

where v1(s) denotes the right eigenvector corresponding to the eigenvalue of W (s)

whose magnitude is greater than or equal to 1 for all possible values of s. For this

CRW, W (s) is diagonalizable and its eigenvalues are given by:

γk(s) =
f(s) − (−1)k

√

(f(s))2 − 4p1p2λ2(λ + s)2

2p2λ(λ + s)
(93)

where f(s) = (p1 + p2)λ
2 + 2sλ + s2, for k = 1, 2. The right eigenvectors vk(s),

k = 1, 2, corresponding to the eigenvalues γ1(s) and γ2(s) are

vk(s) =







f(s)−2p1p2λ2+(−1)k
√

(f(s))2−4p1p2λ2(λ+s)2

2p2(p2−1)λ2

1






(94)

We find numerically that, for all possible values of p1, p2, λ, and s, the magnitude

of γ1(s) is greater than or equal to 1. Hence,

Π1+(s) =
2λ(1 − p2)

Aλ2 + B(p2)(s + λ)2 + g(s)
(95)

and

Π1−(s) =
f(s) − Cλ2 −

√

(f(s))2 − 2Cλ2(λ + s)2

p2λ (Aλ2 + B(p2)(s + λ)2 + g(s))
(96)

where g(s) =
√

(s + λ)4 − [B(p1)B(p2) + 1]λ2(λ + s)2 + A2λ4 and A = p1 + p2 − 1,

B(x) = 1 − 2x, C = 2p1p2.

Thus by recursion,

Πn(s) = Π1(s)W̃
n−1(s), (97)
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Figure 29: A Correlated Random Walk (CRW) on {0, 1, . . . ,∞}.

where W̃ (s) is W (s) after the mode whose eigenvalue is outside of the unit circle has

been removed [104]. This ensures the stability of the recursion even when numerical

errors occur in enforcing the orthogonality condition in Eq. 92.

4.4 New Results on Transient Analysis of Correlated Ran-

dom Walks on {0, 1, . . . , N}

A CRW on {0, 1, . . . , N} with reflecting boundaries at 0 and N can be modeled as a

QBD process with the state transition diagram shown in Fig. 30 and the following

generator:

Q =





















































−λ λ 0 0 0 0 . . . 0 0

q1λ−λ 0 p1λ 0 0 . . . 0 0

p2λ 0 −λ q2λ 0 0 . . . 0 0

0 0 q1λ −λ 0 p1λ . . . 0 0

0 0 p2λ 0 −λ q2λ . . . 0 0

...
...

...
...

...
...

. . .
...

...

0 0 0 0 . . . q1λ−λ 0 p1λ

0 0 0 0 . . . p2λ 0 −λ q2λ

0 0 0 0 . . . 0 0 λ −λ





















































(98)
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We assume w.l.o.g. that the initial position of the sensor is 0; i.e., π(0) = [1, 0, . . . , 0].

Then we get

−(λ + s)Π0(s) + Π1(s)







q1λ

p2λ






= −1, (99)

λΠ0(s) + Π1(s)







−(λ + s)

0






= 0, (100)

Πn(s)B(s) + Πn+1(s)C(s) = 0, 1 ≤ n ≤ N − 2. (101)

λΠN (s) + ΠN−1(s)







0

−(λ + s)






= 0, (102)

−(λ + s)ΠN(s) + ΠN−1(s)







p1λ

q2λ






= 0, (103)

Thus, solving for Π(s) in Π(s)(Q − sI) = −π(0) is reduced to solving

[Π0(s), Π1(s), ΠN−1(s), ΠN(s)]Q̃(s) =



















−1

0

0

0



















(104)

where, with I as 2x2 identity matrix,

Q̃(s) =

































−(λ + s) λ

q1λ −(λ + s) I

p2λ 0

W N−2(s) 0 p1λ

−(λ + s) q2λ

λ −(λ + s)

































and the 2x2 matrix W N−2(s) can be computed, via the Cayley-Hamilton theorem,

as a linear combination of W (s) and I. It is then straightforward to calculate the
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Figure 30: A Correlated Random Walk on {0, 1, . . . , N}.

transient distributions of the process via stable algorithms for transform inversion

[2, 4, 3].

For large values of t, the transient distribution for the finite CRW always con-

verges to a unique limiting distribution. The limiting probability of the CWR on

{0, 1, . . . , N} being at any location n is [48]:

π̄0 =
1

2

(p1/p2) − 1

(p1/p2)N − 1
, (105)

π̄n = π̄0(1 + p1/p2)(p1/p2)
N−1, n = 1, 2, . . . , (N − 1).

π̄N = π̄0(p1/p2)
N−1,

For the special case of p1 = p2 = p, π̄0 = π̄N = 1/(2N) and π̄n = 1/N, 1, 2, . . . , (N−1).

4.5 Statistical Properties of Distances of Nodes From the
CH

Suppose the CH is motionless and there are a total of K sensors in the cluster.

As described in the introduction, they start at the the same location as the CH

(n = 0) and then move independently based on identical but independent CRW

models. Define xi(t) as the location of the ith sensor at time t. Further define dmax(t)

and dmin(t) as the maximum distance and the minimum distance between any sensor

in the cluster and the CH, respectively. Then,

P (dmax(t) = n) =P (dmax(t) ≤ n) − P (dmax(t) ≤ n − 1)

=P (x1(t) ≤ n)K − P (x1(t) ≤ n − 1)K

=

(

n
∑

l=0

πl(t)

)K

−
(

n−1
∑

l=0

πl(t)

)K

(106)
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and

P (dmin(t) = n)= P (dmin(t) ≥ n) − P (dmin(t) ≥ n + 1)

= P (x1(t) ≥ n)K − P (x1(t) ≥ n + 1)K

=

(

N
∑

l=n

πl(t)

)K

−
(

N
∑

l=n+1

πl(t)

)K

(107)

Now assume the CH is also mobile, that its position is governed by the same

CRW as any sensor, and, as before, their motions are all independent. Then dmax(t)

and dmin(t) become the maximum distance and the minimum distance between a

specified sensor and any other sensor in the cluster. The probabilities remain the

same whether the sensor is designated as the CH before or after motion of the sensors

begins. Denote the position of the CH by x0(t). We have

P ( d max(t) = n) (108)

=
N
∑

m=0

P (x0(t) = m)P (dmax(t) = n|x0 = m)

=

N
∑

m=0

P (x0(t) = m)[P (dmax(t) ≤ n|x0 = m)

−P (dmax(t) ≤ n − 1|x0 = m)]

=
N
∑

m=0

P (x0(t) = m)[P (m − n ≤ xi(t) ≤ m + n, 1 ≤ i ≤ K)

−P (m − n + 1 ≤ xi(t) ≤ m + n − 1, 1 ≤ i ≤ K)]

=

N
∑

m=0

πm(t)





(

m+n
∑

l=m−n

πl(t)

)K

−
(

m+n−1
∑

l=m−n+1

πl(t)

)K




P ( d min(t) = n) (109)

=
N
∑

m=0

P (x0(t) = m)[P (dmin(t) ≥ n|x0 = m)

−P (dmin(t) ≥ n + 1|x0 = m)]

=

N
∑

m=0

πm(t)

(

m−n
∑

l=0

πl(t) +

N
∑

l=m+n

πl(t)

)K

−
N
∑

m=0

πm(t)

(

m−n−1
∑

l=0

πl(t) +
N
∑

l=m+n+1

πl(t)

)K

The probability distribution of the distance between any two sensors d(t) is, for
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n = 0:

P (d(t) = 0) =
N
∑

m=0

πm(t)2 (110)

and, for n 6= 0:

P (d(t) = n) =
N
∑

m=0

πm(t)(πm+n(t) + πm−n(t)) (111)

Define Dmax(t) and Dmin(t) as the maximum distance and the minimum distance

between any two sensors in the cluster. Then,

P (Dmax(t) = 0)

=
N
∑

m=0

P (xi(t) = m, 1 ≤ i ≤ K) =
N
∑

m=0

πm(t)K (112)

and for n 6= 0,

P ( D max(t) = n) (113)

=

N−n
∑

m=0

P (min{xi(t)} = m,

max{xi(t)} = m + n, 1 ≤ i ≤ K)

=

N−n
∑

m=0

K−1
∑

l=1

K−l
∑

r=1

(

K

l

)(

K − l

r

)

πm(t)lπm+n(t)r

(

m+n−1
∑

s=m+1

πs(t)

)K−l−r

where l sensors are at the location m and r sensors are at the location m+n, while all

the others are in between. The calculation of the probability distribution of Dmin(t)

is much more complicated and, when K > N , it is always zero.

Thus, for both the motionless- and mobile-CH cases, computing Dmax(t), Dmin(t),

dmax(t), and dmin(t) have been reduced to computing the transient distributions of

CRWs. The computational techniques in Section II and III thus enable fast and stable

computation of statistics of interest in the structure of a cluster of mobile nodes as it

evolves over time.
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4.6 Detection and Estimation in mobile ad hoc networks

The main results of distributed detection and estimation in wireless sensor networks

are included in chapter II and III, respectively. Based on that, some results for the

mobile case are derived here.

If the CH is static, then we have

P (E)≤E

[

K
∏

i=1

2
√

pe,i(1 − pe,i)

]

=
K
∏

i=1

E

[

2
√

pe,i(1 − pe,i)

]

=

[

E

[

2
√

pe,1(1 − pe,1)

]]K

(114)

where

pe,1 =
1

2
− 1

2
(1 − 2pm)(1 − 2pc)

⌈x1(t)/r⌉ (115)

The expected energy consumption for collecting the data is then

C = KE [⌈x1(t)/r⌉] (116)

If the CH is also mobile and its position is governed by a CRW, then we have

P (E)≤
N
∑

m=0

P (x0(t) = m)P (E|x0(t) = m) (117)

=
N
∑

m=0

P (x0(t) = m)
K
∏

i=1

E

[

2
√

pe,i(1 − pe,i)|x0(t) = m

]

=

N
∑

m=0

P (x0(t) = m)

[

E

[

2
√

pe,1(1 − pe,1)|x0(t) = m

]]K

where

pe,1 =
1

2
− 1

2
(1 − 2pm)(1 − 2pc)

⌈d(t)/r⌉ (118)

The expected energy consumption for collection of the data is

C = KE [⌈d(t)/r⌉] (119)
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4.7 Numerical Results

Fig. 31 shows the transient probability distribution of two CRWs on [0,10] with

different parameters. One CRW is asymmetric, which means the walker tends, in the

case shown, to prefer motion to the right. The other CRW is symmetric, which means

that the walker has no preference for one direction or the other – but its motion is

still correlated, unlike in a standard random walk.

Fig. 32 shows the transient probability distribution of the distance from a static

clusterhead to the furthest of five mobile sensors for each point in time. The static

clusterhead is assumed to be at location 0. This distance d is important for calculating

the number of wireless hops between each sensor and the CH that is trying to gather

data. If the transmission radius of each sensor is r, then the number of hops to the

CH is the ceiling of d/r.

Fig.33 shows the transient probability distribution of the maximum distance be-

tween any of the five sensors and the CH when the mobile CH moves according to

the same mobility model as the sensors. This is probably the most realistic case

for mobile networks. It leads to an interesting phenomenon when the motion is on

a finite grid and the CRWs are all asymmetric in the same direction. The sensors

start at 0 when they gathered their observations. With time, they spread out but

they all tend to move to the right. As they get close to the other barrier, they then

tend to bunch up again. This effect is similar to a crowd moving in a given direction

and then gathering around that destination. The distance here, when divided by the

transmission radius of the sensors tells the maximum size, in wireless hops, of the

cluster.

Fig. 34 shows the expected energy consumed – as a function of the time at which

data collection starts – for a static or mobile CH to collect one packet of data from five

mobile sensors. The six sensors all collected measurements at the same time/place but

then continued to move. By the time a request to send in all data has been received,
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they are at locations in the state space with probabilities determined by their CRWs.

The data collected and decisions made by the sensors that have wandered the furthest

require the most energy to collect – that data must travel over the largest number of

hops to reach the CH.

Also note that the mobility of the CH has a significant impact on the energy

consumed to collect data. If it is mobile and all sensors are moving according to a

CRW that is asymmetric, then the energy required for collection first increases and

then decreases. In this case, it is better to collect data either very quickly after the

event, or, if that is not possible because of the time to process measurements, to wait

until the CH and the other sensors bunch up again at their destination.

Fig. 35 shows the large deviation bound of the error probability as a function of

time for a static or mobile CH to collect one packet of data from five mobile sensors.

It shows good agreement with the results in Fig.34, which shows the expected energy

consumption as a function of time for a static or mobile CH to collect one packet of

data from five mobile sensors.

Fig. 36 shows the expected error probability as a function of time for a static

or mobile CH to collect one packet of data from five mobile sensors. The same

comments made previously about the effects of the mobility of the CH, and the

effects of symmetric and asymmetric CRWs, apply here.

Fig. 37 shows the optimal energy consumption under different crossover proba-

bilities of the BSC channel for a mobile ad hoc network as a function of time. The

signal for all cases was uniformly distributed on [−U, U ] = [−1, 1] and the noise was

independent but also uniformly distributed on [−V, V ] = [−1, 1]. There were 100

nodes, and the MSE requirement is 0.015.

The peaks in Fig. 37 follow from the motion of the sensors. They all start at

location 0 at time 0 and proceed, moving at most one spatial unit at a time, in

the general direction of location 10. Each location might, for example, represent a
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storefront on a city block and location 10 is the next traffic light or is a stadium

entrance. They spend a random amount of time, whose average is 1 second, at each

location before moving on. They may occasionally turn around but their preference

is to move from location 0 to location 10. At between 10 and 15 seconds, they are

maximally spread between locations 0 and 10, so data must travel more hops than

at other times. After that, they begin bunching up again, but at location 10 instead

of location 0. The energy used thus starts at a minimum at time zero, grows to a

peak, and then declines toward the equilibrium values that would be expected when

enough time has passed for the nodes’ locations to be distributed according to the

limiting distributions of their CRWs.

The behavior in Figure 37 is clearly quite complex. For low channel error proba-

bility, the energy required to produce the desired quality of estimate stays reasonably

low and varies slowly with time. This is because, for most times, there are enough

sensors within a few hops of the (moving) CH that their data, received essentially

error-free, is sufficient for the CH to form its estimate – so the remaining sensors

do not need to transmit at all. When the channel error probability is large, many

more sensors must participate and they may be several hops away from the CH. It

is then that the motion of the entire group of sensors comes into play, and then that

the strange-at-first-glance dips and peaks appear in the energy required. These dips

and peaks have to do with the times that the nodes that move fastest to the right or

left start bouncing off the boundaries at 1 and 10. The important point to note in

these cases is that up 300% more energy may be required in some cases to produce an

estimate of a desired quality at a given time. It is thus very clear that the transient

behavior of nodes in mobile networks can have a very significant impact on overall

network performance.
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(a) An asymmetric CRW with p1=0.8, p2=0.2. The walker starts
at 0 and then drifts toward and tends to stay near 10.
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(b) A symmetric CRW with p1=0.9, p2=0.9. The walker starts at 0
and then it is eventually equally likely to be in each position except
a boundary state.

Figure 31: Transient probability distribution of two CRWs on [0,10]. The curve for
a given n shows the probability that the walker is at position n at time t.
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(a) All sensors move according to asymmetric CRWs with p1=0.8,
p2=0.2
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(b) All sensors move according to symmetric CRWs with p1=0.9,
p2=0.9

Figure 32: Transient probability distribution of the distance from a static CH to the
furthest of five sensors that are moving according to independent CRWs on [0,10].
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(a) All sensors move according to asymmetric CRWs with p1=0.8,
p2=0.2
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(b) All sensors move according to symmetric CRWs with p1=0.9,
p2=0.9

Figure 33: Transient probability distribution of the distance from a mobile CH to
the furthest of five sensors. The CH and the sensors are all moving independently
and according to CRWs on [0,10].
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(a) All sensors move according to asymmetric CRWs with p1=0.8,
p2=0.2
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(b) All sensors move according to symmetric CRWs with p1=0.9,
p2=0.9

Figure 34: Expected energy consumed by the network when the collection of data
from the five mobile sensors begins at time t. The cases considered are when the
transmission radius of each sensor is r=1 or r=3 and all sensors move according to
symmetric or asymmetric CRWs.
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(b) All sensors move according to symmetric CRWs with p1=0.9,
p2=0.9

Figure 35: Large deviation bound of the error probability when the collection of
data from the five mobile sensors begins at time t. The cases considered are when
the transmission radius of each sensor is r=1 or r=3 with pm = 0.10 and pc = 0.05
and all sensors move according to symmetric or asymmetric CRWs.
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(b) All sensors move according to symmetric CRWs with p1=0.9,
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Figure 36: Expected error probability when the collection of data from the five
mobile sensors begins at time t. The cases considered are when the transmission
radius of each sensor is r=1 or r=3 with pm = 0.10 and pc = 0.05 and all sensors
move according to symmetric or asymmetric CRWs.
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(a) All sensors move according to asymmetric CRWs with p1=0.8,
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(b) All sensors move according to symmetric CRWs with p1=0.9,
p2=0.9

Figure 37: Minimum energy, as a function of time, required in a mobile sensor
network to achieve a specified MSE for different values of the crossover probabilities
of the BSC channel. The MSE requirement is 0.015. The The network has 100 nodes
that each start at position zero and move independently according to asymmetric
CRWs on [0,10] with a mean rate of λ = 1 unit/sec. The transmission radius of each
sensor is r = 1; the signal and measurement noise are both uniformly distributed on
[−1, 1]. This scenario is a reasonable model of a group of people/vehicles who start
moving after a traffic light turns and proceed to another traffic light where they again
bunch up and wait. Some of them stop for some time, or turn-around occasionally.
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4.8 Summary

In this chapter, the solution to the finite state space CRW was provided and its

statistical behavior was studied both analytically and numerically. As an illustration

of the application-specific performance measures it can help address, we studied the

impact of motion on the error probability of the final decision at the CH and the

minimum energy required to collect the estimates from all relevant sensors to achieve

the prescribed estimation accuracy. Thus the temporary cluster head can decide the

most appropriate time to call for data reports to help it make decisions/estimates

within the allowed time frame and energy budget. In future research, we will study

the impact of motion on the energy required to gather data and the variance/error

probability of the final estimate/decision in complex mobile wireless sensor networks.

96



CHAPTER V

CONCLUSION

5.1 Summary of Contributions

In this dissertation, we studied optimal distributed detection and estimation algo-

rithms in static and mobile ad hoc networks. Our major contributions are summarized

as follows:

• Proposed and Analyzed a Local-Decision/Repetition Strategy for Distributed

Detection in Clustered Sensor Networks.

• Compared, and Analyzed when Feasible, Hybrid, Hierarchical and Compression

Strategies for in Clustered Sensor Networks Distributed Detection in Clustered

Sensor Networks.

• Analyzed Dithered Quantization and Proposed and Analyzed Channel Com-

pensation for Distributed BLU Estimation.

• Derived an Algorithm for Optimal Energy Allocation for Distributed Estimation

in Clustered Sensor Networks.

• Derived Efficient Numerical Algorithms for Computing the Transient Analysis

of Continuous-Time, 1-D, Finite-State-Space, Correlated Random Walks.

• Analyzed the Impact of Motion on System Performance and Energy Consump-

tion for Distributed Detection/Estimation in Mobile Ad Hoc Networks.

Some of the most valuable insights gained from this work include the following:

(a) In Chapter II, which was about distributed detection, we have shown when local

decision fusion by relay nodes should be used to improve the final global decision at
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the CH. Basically, when either pc is large enough or there are enough hops that the

end-to-end communication error becomes large enough, local decision/fusion should

be used. (b) In Chapter III, which considered distributed estimation, it is first clear

that if pc becomes 0, then coding is not necessary and the CH need only collect data

from enough nodes to overcome measurement error. It also became clear that if the

support interval for the measurement noise decreases to zero (V becomes 0) for all

nodes, then only one node in ring 1 needs to transmit its measurement to the CH,

using sufficient coding to ensure the estimate arrives at the CH with no more than the

allowed MSE being sought. (c) The results in Chapter III were combined with new

analysis of Correlated Random Walks to show in Chapter IV that large values of the

communication bit error probability, pc, cause the energy requirement to compute the

estimate to vary significantly with time. When this is the case, knowledge/models of

how/where nodes tend to move are essential for efficiently computing estimates with

a desired accuracy.

5.2 Future Research Directions

The objective of this dissertation was development of optimal distributed detection

and estimation algorithms in static and mobile wireless sensor networks. Future

research may be considered in the following three directions to make the algorithms

proposed in the previous chapters more practical and adaptive.

One possible direction is to consider criteria other than energy consumption and

detection/estimation accuracy. These may include: average delay or the probability

distribution of delay in reaching a decision/estimate; average and peak bandwidth

usage; and the contention in the MAC layer. We have analyzed the tradeoff in-

volving accuracy, delay and energy consumption in the scenario of distributed detec-

tion/estimation in mobile ad hoc networks in Chapter IV. In most cases, targeting

two or more criteria simultaneously will cause the overall optimization problem to
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be multi-objective. A simple solution would be to aggregate all the separate objec-

tives via a weighted sum, but more complex scenarios may also be needed because of

Stern’s effect [77].

Another possible direction is the modification of the system models we used to

account for other characteristics of real systems. These could include the routing

strategy, the MAC design, and the modulation scheme – i.e., other layers of the

protocol stack – to determine the effects they have on performance. Accounting for

some or all of these issues is highly likely to make the system model more complicated

and thus the overall optimization problem more difficult to solve. For example, [54]

is a good effort to incorporate route selection based on the observation that relaying

by sensors in inner rings may be infeasible in late stages as their batteries will be

exhausted faster than those in outer rings. Hence, simple distributed algorithms with

guaranteed good performance will be an interesting topic to look at in the future.

Finally, sequential/adaptive algorithms of distributed detection and estimation

are an important method to further reduce energy consumption.

There are thus many possible directions for future work that are made possible

by the tools for modeling and analysis that are provided by this dissertation.
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APPENDIX A

PROOF OF THEOREM 3 IN CHAPTER 2

Proof : Let h(M, p) be the decision error probability when the median filter is applied

to M i.i.d. bernoulli random variables, each with failure probability p. Also define

l(a, b) = a(1 − b) + b(1 − a). In the global decision strategy, the error probability of

individual detection results received by the CH is then l(pd, pc). Also note that in

the local-decision/repetition strategy, the multiple copies of the local-decision result

sent by the relay mote to the CH are not mutually independent but are conditionally

independent given the local decision result. Let EG and EL denote the events of the

decision error that happens at the CH using the pure-relay and local-decision/repition

strategies, respectively. Then:

P (EG) =h(M, l(pd, pc)) (120)

P (EL) = l(h(M, pd), h(M, pc)) (121)

We first look at an example. Define ∆P = P (EG) − P (EL). When M = 3, ∆P =

6pdpc(2pd − 1)(pd − 1)(2pc − 1)(pc − 1). It is clear that ∆P > 0, which confirms that

making local decisions before forwarding improves performance in this case.

Now consider the case when M is an even number. The definition of the median

filter in the even number case is ambiguous. Suppose the motes in a sensor network

adopt a binary modulation scheme. In the case that the relay mote receives equal

numbers of “0”s and “1”s, instead of sending 1/2 directly it sends “0” or “1” randomly,

each with probability 1/2. We partition the M variables into two sets, with set U

having M − 1 variables and set V having the remaining one. Denote the number of
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the error bits in U and V by Su and Sv, respectively. Therefore,

h(M, p) = P (Su ≥ M/2) − 1

2
P (Su = M/2)P (Sv = 0)

+
1

2
P (Su = M/2 − 1)P (Sv = 1)

= P (Su ≥ M/2) = h(M − 1, p) (122)

It is thus not economical to use an even number of bits because one is wasted.

We now prove the hypothesis in the odd number case. We compare the two

strategies when the source code of the repetition code is “1”. Denote the number of

“1”s received by the relay sensor by S. The decision error probability is,

P (EG)=

M
∑

D=0

P (EG|S = D)P (S = D) (123)

P (EL)=
M
∑

D=0

P (EL|S = D)P (S = D) (124)

where P (S = D) =
(

M
D

)

pM−D
d (1 − pd)

D.

In the pure-relay strategy, D “1”s and M −D “0”s are transmitted from the relay

mote to the CH. In the local-decision/repetition strategy, the median filter is adopted

at the relay mote. Since M is assumed to be odd, when 0 ≤ D ≤ ⌊M/2⌋, the local

decision result is “0”, and M “0”s are relayed to the CH. When ⌈M/2⌉ ≤ D ≤ M , the

local-decision result is “1”, and M “1”s are relayed. Denote the individual detection

results received by the relay mote by si’s, 1 ≤ i ≤ M . We partition them into two

sets. The received “0”s are assigned to T0, while the received “1”s are assigned to T1,

i.e., T0 = {i|si = 0, 1 ≤ i ≤ M, i ∈ N} and T1 = {i|si = 1, 1 ≤ i ≤ M, i ∈ N}. The

cardinality of T1 is D; for T0 it is M − D.

In the pure-relay strategy, after the transmissions from the relay mote to the CH,

among the elements in T1, suppose A ones remain “1” and D − A ones flip to “0”.

Also, among the elements in T0, suppose B zeros flip to “1” and M − D − B zeros

remain “0”. Certainly, all the (A, B) pairs are under the constraints that 0 ≤ A ≤ D

and 0 ≤ B ≤ M − D. If a pair (A, B) satisfies the condition A + B ≤ ⌊M/2⌋, a
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decision error will occur at the CH. We call such pairs decision error characteristic

pairs and denote the set containing all these (A, B) pairs by F0. Given M and pc,

the probability of achieving (A, B) from (D, M − D) after transmission is:

f1(M, D,A, B, pc) (125)

=

(

D

A

)

(1 − pc)
ApD−A

c

(

M − D

B

)

pB
c (1 − pc)

M−D−B

In the local-decision/repetition strategy, partition the detection results received by

the relay mote in the same way as pure-relay strategy. Assume ⌈M/2⌉ ≤ D ≤ M ,

so all the si’s that belong to T0 are converted to “1” to transmit. The probability of

achieving (A, B) from (D, M − D) after the transmission is

f2(M, D,A, B, pc) (126)

=

(

D

A

)

(1 − pc)
ApD−A

c

(

M − D

B

)

(1 − pc)
BpM−D−B

c

Note that the following two equalities always hold,

f2(M, D, D − A, B, pc) = f1(M, D, A, B, 1 − pc) (127)

f2(M, D, A, M − D − B, pc) = f1(M, D, A, B, pc) (128)

Denote the set containing all the (A, B) pairs satisfying both A+B ≤ ⌊M/2⌋ and A−

B ≤ ⌊D−M/2⌋ by F1. For all such pairs, we can further get A+(M−D−B) ≤ ⌊M/2⌋,

which implies that the pair (A, M − D − B) is also a decision error characteristic

pair. Denote the set containing all such (A, M −D −B) pairs by F2. Denote the set

containing all the (A, B) pairs satisfying both A+B ≤ ⌊M/2⌋ and A−B ≥ ⌈D−M/2⌉

by F3. For all such pairs, we can further get (D − A) + B ≤ ⌊M/2⌋, which implies

that the pair (D − A, B) is also a decision error characteristic pair. Denote the set

containing all such (D − A, B) pairs by F4. There is a one-to-one mapping between

F1 and F2, and another one between F3 and F4. So |F1| = |F2|, and |F3| = |F4|.

Apparently, F1

⋂

F3 = Ø, and F1

⋃

F3 = F0. Thus, F1 and F3 are mutually exclusive
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and collectively exhaustive subsets in F0. Assume F2

⋂

F4 6= Ø, which means that

at least one decision error characteristic pair falls into the intersection of the sets

F2 and F4. Suppose this pair is denoted as (A1, M − D − B1) and (D − A2, B2) in

F2 and F4, respectively. Then A1, A2, B1, B2 must satisfy both D − A2 = A1 and

B2 = M −D − B1, which induces A1 + A2 + B1 + B2 = M . Since A1 + B1 ≤ ⌊M/2⌋

and A2 + B2 ≤ ⌊M/2⌋, A1 + A2 + B1 + B2 ≤ M − 1. But this contradicts our

assumption. Thus we have proved that F2

⋂

F4 = Ø. F2, F4 ∈ F0, and we simply

have |F2

⋃

F4| = |F2| + |F4| = |F1| + |F3| = |F1

⋃

F3| = |F0|. Therefore, we can

declare that F2 and F4 are also mutually exclusive and collectively exhaustive subsets

in F0.

Define g(M, D, pc) = P (EG|S = D) − P (EL|S = D). For ⌈M/2⌉ ≤ D ≤ M ,

g(M,D, pc) (129)

=
∑

F0

f1(M, D, A, B, pc) −
∑

F0

f2(M, D, A, B, pc)

=
∑

F1

f1(M, D, A, B, pc) +
∑

F3

f1(M, D, A, B, pc)

−
∑

F2

f2(M, D, A, B, pc) −
∑

F4

f2(M, D, A, B, pc)

=
∑

F1

f1(M, D, A, B, pc) +
∑

F3

f1(M, D, A, B, pc)

−
∑

F1

f2(M, D, A, M − D − B, pc)

−
∑

F3

f2(M, D, D − A, B, pc)

=
∑

F3

(f1(M, D, A, B, pc) − f1(M, D, A, B, 1 − pc))

=
∑

F3

(

D

A

)(

M − D

B

)

pD−A+B
c (1 − pc)

M−(D−A+B)

−
∑

F3

(

D

A

)(

M − D

B

)

pM−(D−A+B)
c (1 − pc)

D−A+B

Since D−A + B ≤ ⌊M/2⌋ for all (A, B) pairs in F3, and 0 < pc < 1/2, each term
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in the above equation is positive, so that the entire sum is positive. Note that for

⌈M/2⌉ ≤ D ≤ M and all (A, B) pairs in F0,

f1(M, M − D, B, A, pc) = f1(M, D, A, B, 1 − pc) (130)

f2(M, M − D, B, A, pc) = f2(M, D, A, B, 1 − pc) (131)

Therefore,

g(M,M −D, pc) (132)

= P (EG|S = M − D) − P (EL|S = M − D)

=
∑

F0

f1(M, M − D, B, A, pc)

−
∑

F0

f2(M, M − D, B, A, pc)

=
∑

F0

f1(M, D, A, B, 1 − pc)

−
∑

F0

f2(M, D, A, B, 1 − pc)

= g(M, D, 1 − pc) = −g(M, D, pc)

For each ⌈M/2⌉ ≤ D ≤ M , we have 0 ≤ M − D ≤ ⌊M/2⌋. Now we examine the

difference between P (EG) and P (EL).

∆P = P (EG) − P (EL) (133)

=

M
∑

D=⌈M/2⌉

P (S = M − D)g(M, M − D, pc)

+

M
∑

D=⌈M/2⌉

P (S = D)g(M, D, pc)

=

M
∑

D=⌈M/2⌉

(P (S = D) − P (S = M − D))g(M, D, pc)

When ⌈M/2⌉ ≤ D ≤ M and 0 < pc < 1/2, P (S = D) − P (S = M − D) > 0. We

also know g(M, D, pc) > 0 from (20). So we have proved that ∆P > 0 for M odd,

and thus for M even as well.

�
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