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ABSTRACT  

A comparison of various heat conduction theories with data from several DIII-D [Luxon, Nucl. 

Fusion, 42, 614, 2002] shots indicates: 1) that neoclassical theory is in somewhat better 

agreement with experiment than is ion temperature gradient mode theory for the ion thermal 

conductivity in the edge pedestal, although both are in reasonable agreement with experiment for 

most discharges; and 2) that electron temperature gradient theory (k┴cs ≤ ωpe) is in much better 

agreement with experiment than is electron drift wave theory (k┴cs ≤ Ωi)  for the electron thermal 

conductivity.  New theoretical expressions derived from momentum balance are presented for: 1) 

a ‘diffusive-pinch’ particle flux, 2) an experimental determination of the momentum transfer 

frequency, and 3) the density gradient scale length.  Neither atomic physics nor convection can 

account for the measured momentum transfer frequencies, but neoclassical gyroviscosity 

predictions are of the correct magnitude.   
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I. INTRODUCTION 

The H-mode (high confinement mode) pedestal is important due to its impact on core 

performance in tokamaks (e.g. Refs. 1-3).  Although the edge pedestal has been the subject of 

intensive investigation for a number of years (e.g. Refs. 4-6), the causes for the pedestal structure 

are still not well understood.  MHD (magnetohydrodynamic) instability thresholds appear to 

place an upper limit on pedestal pressure and/or pressure gradient (e.g. Refs. 7 and 8).  However, 

between ELMs (edge localized modes) or in their absence, temperature and density gradients in 

the edge pedestal, as elsewhere, must satisfy transport relations9,10, and it is plausible that the 

structure of the pedestal is controlled by transport and sources.  Thus, the transport in the edge 

pedestal is expected to be an important element in determining the edge pedestal structure in H-

mode plasmas. 

There has been relatively little comparison of observed transport in the edge pedestal 

with theoretical predictions, due to various difficulties.  Experimentally, it is difficult to separate 

convective and conductive transport in the pedestal, where the particle source and convection 

may be large and varying.  At present, this can only be done by neutral transport calculations that 

are coupled to edge plasma transport calculations (e.g. the coupled fluid neutral-fluid plasma 

calculation of Ref. 11 that was used to infer edge transport coefficients in ASDEX 

[Axisymmetric Divertor Experiment] Upgrade).    Fundamental transport physics models for 

theoretical studies in the edge pedestal are embodied in some codes used to simulate the 

Braginskii fluid equations (e.g. Refs 12 and 13).  However, such codes are very computationally 

intensive.  

An alternate approach is to use analytical representations of transport coefficients arising 

from various physical transport phenomena to compare with transport coefficients or rates that 

are inferred from experiment.  While the approximations that are inherent in the development of 

such analytical expressions may introduce some ambiguity into the interpretation of their 

comparison with experiment, this approach can provide guidance with regards to which transport 

phenomena are most promising for more detailed transport calculations.  Reference 14 is a recent 

example of an application of such an alternative approach to study transport in the pedestal 

region of ASDEX Upgrade and JET (Joint European Torus).  

In this paper we make a comparison of analytical transport coefficients with experiment 

in the edge pedestal in a representative set of DIII-D15 H-mode plasmas.  This work takes 
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advantage of the good spatially-resolved measurements of Te, ne, Ti and ncarbon in the pedestal in 

this machine.  We first consider thermal transport.  Heat transport rates through the edge pedestal 

are inferred from the conventional heat conduction relationship, using measured pedestal 

densities and temperatures and their gradients and using particle and power fluxes through the 

edge calculated from particle and power balance.  These experimental rates are then compared 

with values predicted by analytical expressions derived from various theoretical heat conduction 

models (neoclassical, ion and electron temperature gradient, electron drift wave).  A feature of 

the transport analysis used in this paper is that atomic physics particle sources and heat losses in 

the pedestal are taken into account. 

Our investigation of particle and momentum transport begins with more fundamental 

derivations from momentum balance of 1) a generalized diffusion-pinch relation among particle 

fluxes, density and temperature gradients, and a collection of terms that constitute a pinch 

velocity, 2) an expression for the calculation of a frequency for the outward radial transfer of 

toroidal momentum, and 3) an expression for the ion density gradient scale length in the edge 

pedestal.  We compare experimental momentum transfer frequencies with values calculated from 

atomic physics, convection and neoclassical gyroviscous momentum transfer.   Finally, we give 

an example of how the new theoretical expression for ion density gradient scale length can be 

used to check the consistency of measurements and theoretical models. 

  

II. THERMAL TRANSPORT 

A. Flux-gradient relations 

 The conventional conductive heat flux closure relation 

 

 15
2a a a a a T

dTQ T q n nT L
drυ υ υ χ χ −⎛ ⎞− Γ ≡ = − ≡⎜ ⎟

⎝ ⎠
 (1) 

 

involving the total heat flux, Q, the particle flux, Г, and the conductive heat flux, q, can be used 

to develop flux-gradient relationships.  We consider average values over the pedestal, indicated 

above by the ‘av’ subscript.  We relate these average values of heat and particle fluxes to the 
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values of these fluxes crossing the separatrix (the quantities available from particle and heat 

balances on the plasma) by taking into account ionization of incoming neutral atoms and cooling 

by charge-exchange, elastic scattering, ionization and impurity radiation to obtain9,10 flux-

gradient relations in the pedestal for the ions 
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and for the electrons 
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 (3) 

Here LT = -T/(dT/dr), νat is the charge-exchange plus elastic scattering frequency of plasma ions 

with ‘cold’ incoming neutrals, νion is the electron impact ionization frequency with all neutrals 

present in the pedestal, Eion is the ionization energy, Qje is the ion-electron equilibration rate of 

energy exchange, L is the radiation emissivity, and Δ is the pedestal width.  The ‘av’ and ‘sep’ 

superscripts refer to the average value in the pedestal region and to the value at the separatrix, 

respectively.   

 In principle, Eqs. (2) and (3) can be used to infer ‘experimental’ values of the average ion 

and electron thermal conductivities from measured and calculated quantities.  The densities and 

temperatures, the temperature gradient scale lengths, and the pedestal width are measured.  The 

main ion particle flux crossing the separatrix can be calculated from the known neutral beam 

particle source, the calculated inward neutral particle flux and the measured rate of change in the 

density.  The total heat flux, Q = Qe + Qi, crossing the separatrix can be calculated from the 

known neutral beam heating power, the measured ohmic heating power, the measured rate of 

change of the thermal energy and the measured radiation from within the separatrix.   

The separation of the total heat flux into ion and electron components and calculation of 

the ion-electron equilibration are more difficult.  In order to avoid these difficulties, albeit at the 

cost of being unable to distinguish between ion and electron transport, the total conductive heat 

flux determined from experiment may be compared with the theoretical expression for the 

combined conductive heat flux due to ions and electrons 
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The terms on the left can be determined as described above.  Using measured n, T and LT on the 

right, various theoretical expressions for thermal conductivity can be tested for their ability to 

predict the measured combined conductive heat flux. 

The neutral concentrations needed to evaluate νat and νion and the recycling neutral influx 

needed to calculate Г are obtained using a 2D neutral transport calculation of fueling and 

recycling neutrals coupled to a “2-point” scrape-off layer and divertor plasma model and to a 

core plasma particle and power balance model16.  The plasma ion flux to the divertor plate is 

recycled as neutral atoms (at a fraction of the incident ion energy) or molecules which are 

assumed to immediately dissociate into Franck-Condon atoms (at ~ 2 eV).  These atoms are 

transported out of the divertor across the separatrix and into the plasma edge to produce a 

poloidally distributed neutral density which is averaged to evaluate νat and νion.  Measured plasma 

densities in the scrape-off layer and pedestal region are used in calculating the penetration of 

recycling neutrals.  Atoms that are ionized inside the separatrix contribute to the neutral source 

used to calculate Γ, and atoms that are charge-exchanged or scattered are assume to take on the 

energy of the ions at that location.  Although the neutral transport calculation is well-founded, 

the recycling neutral source is uncertain in such calculations.  We normalize the calculations to 

experiment by adjusting the recycling source so that the calculated core fueling by neutral influx 

plus neutral beam results in a prediction of the line-average density that agrees with the 

experimental value.  This model has been found to predict neutral densities that are in reasonable 

agreement with measured values in DIII-D and with Monte Carlo predictions17.    

B. Theoretical heat conductivities 

Our objective is to determine which, if any, of the candidate phenomena for causing heat 

conduction is generally consistent with the values inferred from experiment, and hence a 

candidate for more detailed transport analyses.  For this purpose, we use analytical expressions to 

characterize the heat conduction produced by the following phenomena.  

Neoclassical 

 The basic neoclassical expression for ion heat conductivity for a two-species (ion-

impurity) plasma is 
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 1 2 2
i i iIθχ ε ρ ν=  (5)  

where ε = r/R is the ratio of minor and major radii, ρiθ is the ion poloidal gyro-radius, and νiI is 

the ion-impurity collision frequency. 

 A more complete expression is given by the Chang-Hinton formula18 

 ( )1 2 2
1 1 2 1 2i i ii a g a g gθχ ε ρ ν ⎡ ⎤= + −⎣ ⎦  (6) 

where the a’s account for impurity, collisionality and finite inverse aspect ratio effects and the 

g’s account for the effect of the Shafranov shift.  These parameters are given in appendix A. 

 In the presence of a strong shear in the radial electric field, Er, the particle banana orbits 

are ‘squeezed’, resulting in a reduction in the ion thermal conductivity by a factor of S-3/2, 

where19 

 1 r r
i

th i

d  ln E ES
dr Bθ

θ

ρ
υ
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (7)    

thiυ  is the ion thermal speed, and Bθ is the poloidal magnetic field.  

Ion temperature gradient mode 

 For a sufficiently large temperature gradient (LTi < LTi
crit ≈ 0.1R—Ref. 16) the toroidal ion  

temperature gradient (ITG) mode becomes unstable.  An estimate of the ion thermal conductivity 

due to ITG modes is given by20 
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 (8) 

where k┴ρi = 2 has been used, with ρi being the ion gyro-radius in the toroidal field. 

Electron drift waves 

 The principal electron drift wave instabilities with k┴cs ≤ Ωi arise from trapped particle 

effects when νe* = νe/(vthe/qR)ε3/2 < 1.  In more collisional plasmas the mode becomes a 

collisional drift wave destabilized by passing particles.  An expression for the electron thermal 
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conductivity that encompasses both the dissipative trapped electron mode (TEM) and the 

transition to the collisionless mode as νe* → 0 is given by21 
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= ⎜ ⎟+⎝ ⎠.

 (9) 

where cs is the sound speed and ρs = cs/Ωi , with Ωi being the ion cyclotron frequency.  

Electron temperature gradient modes 

 The electron temperature gradient (ETG) mode (an electron drift wave with k┴cs ≤ ωpe) is 

unstable for ηe = Ln/LTe ≥ 1.  An expression for the electron thermal conductivity associated with 

the ETG mode is given by21 

 ( )
2

0 13 1S th  e m
e e e
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υ
χ η η

ω
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.  (10) 

where ωpe is the electron plasma frequency and Sm = (r/q)(dq/dr) is the magnetic shear. 

C. DIII-D Experimental results 

A set of DIII-D shots covering a range of operating parameters and upper (87085) and 

lower divertor configurations was used for this study, as described in Table 1. 

 The measured edge pedestal parameters are given in Table 2.  The density and 

temperature given is that at the top of the pedestal.  The average density and temperature in the 

pedestal region (top of pedestal to separatrix) is somewhat greater than half of the values shown.  

The measured widths (from the top of the pedestal to the separatrix) and average gradient scale 

lengths (Lx = ∆xln(xped/xsep), where xped/sep is the value at the top of the pedestal/separatrix) have 

been mapped to a flux-surface averaged cylindrical model, as described in Ref. 10. 

D.  Analysis of experimental data 

As mentioned previously, it is not possible to separate experimentally the ion and 

electron components of the heat flux through the pedestal.  Yet it is of interest to compare ion 

and electron heat conductivities separately.  Rather than introduce ambiguity into the procedure 

by making an approximate calculation, we assume for the moment that the ion and electron 

components of the total heat flux are equal (Qi = Qe).  We further assume that we can neglect the 

Qie equilibration term in the heat flux correction terms in Eqs. (2) and (3).  Note that this is not 
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equivalent to neglecting equilibration in the pedestal because we use measured ion and electron 

temperatures in the pedestal which have been affected by equilibration. 

The ‘experimental’ values of χ calculated from Eqs. (2) and (3) by using measured n, T 

and LT and heat and particle flux balances, as discussed previously, and the ‘theoretical’ values 

calculated by using measured quantities to evaluate Eqs. (6)-(10) are given in Table 3.   

For the ion thermal conductivity, the neoclassical χi is in somewhat better agreement with 

experiment than the ITG χi, although both are in reasonable agreement with experiment.  The 

neoclassical χi is calculated from the Chang-Hinton formula and reduced for orbit squeezing (the 

value without orbit squeezing shown in parentheses is usually closer to the experimental value).  

The toroidal ITG mode should be unstable (LTi/LTi
crit < 1) for all shots. 

 For the electron thermal conductivity, the TEM χe is clearly orders of magnitude too large 

at lower collisionality, but is in reasonable agreement with experiment for νe* > 1.  For the ETG 

mode, which should be at least marginally unstable (ηe ≥ 1) for all the shots, the predicted χe is 

reasonably close to the experimental value.  The neoclassical χe (not shown) is orders of 

magnitude too small, indicating that even in the H-mode edge transport barrier the electron 

transport is due to non-classical phenomena (a similar result has been noted for internal transport 

barriers22).    

 As mentioned and shown explicitly in Eqs. (2) and (3), the total heat and particle fluxes at 

the separatrix, which can be determined from heat and particle balance on the plasma, are 

‘corrected’ to ‘average’ values over the pedestal region by calculating the radiative cooling and 

particle ionization sources between the midpoint of the pedestal region and the separatrix.  This 

correction was 30-40% for the particle flux but only a few percent for the total heat flux.   

 The ambiguity introduced in the results of Table 3 by the assumption Qi = Qe can be 

removed by comparing the total conductive heat flux predicted by Eq.(4), when evaluated with 

measure n, T and LT and the theoretical expressions for χ, with the ‘experimental’ conductive 

heat flux constructed from the power and particle balances on the plasma, as discussed 

previously.  The results are shown in Table 4.  The use of either neoclassical or ITG χi and ETG 

χe results in a predicted conductive heat flux that is well ‘within the ballpark’ of the experimental 

value.  The conductive fraction of the total heat flux was 50% for the first two shots and 65-80% 

for the other shots. 



 9

III. PARTICLE AND MOMENTUM TRANSPORT 

A. Flux-gradient relations 

Our purpose in this section is to derive flux-gradient relations and an expression for the 

ion density gradient scale length directly from particle and momentum balance, taking into 

account the various phenomena that are important in the plasma edge.  We include neoclassical 

physics in a fluid formulation by making use of neoclassical expressions for the parallel 

viscosity, the gyroviscosity and the collisional friction, but refrain from making the 

approximations needed to obtain analytical solutions for the particle flows that lead to the usual 

Pfirsch-Schluter and neoclassical components of the particle flux, preferring to solve numerically 

for the flows in order to retain all important effects.   

We first develop an edge transport relation between particle fluxes and gradient scale 

lengths from momentum balance.  Subtracting the ion particle balance equation (including an 

ionization source) from the ion momentum balance equation (including a charge-exchange and 

elastic scattering momentum loss term), then taking the vector cross product of Bx the resulting 

equation and making use of B• the momentum equation leads to two independent equations 

 ( ) ( )A
i j j j j j j jk j k j j je j e j j dj je B M n e E n m n m n mθ φ φ φ φ φ φ φν υ υ ν υ υ ν υ∗Γ + + − − − − =  (11) 

and 

 ( )1 1 1 1jr r
j p j j p j nj Tj

j

TE Ef P f L L
B B e B

'
φ θ θ

θ θ θ

υ υ υ− − − −= + − = + + +  (12) 

which we shall use in the following derivation and to a third independent equation which we 

shall use in solving for the poloidal velocities.  Here, fp = Bθ/Bφ , Mφ represents the toroidal 

component of any external momentum input, EφA is the induced toroidal electric field, Er is the 

radial electric field, and  

 dj dj at  j ion  j jν ν ν ν ξ∗ = + +  (13) 

with 

 2
dj j j j jR Rn m φν φ υ≡ ∇ ⋅∇ ⋅π  (14) 



 10

representing the viscous angular momentum transport rate across the flux surface ( <X> indicates 

the flux surface average) and 

 2
j j j j j j j j jR m S R m S S Sφ φξ φ υ υ≡ ∇ ⋅ % %�  (15) 

representing the poloidal asymmetry over the flux surface of the ionization source.   

 There is a pair of Eqs (11) and (12) for each ion species.  When there are more than 2 

species present the ‘k’ subscript is understood to represent a sum over all other species k ≠ j.  

Here, the tilde indicates the difference between that local (in poloidal angle) and average (over 

the flux surface) values of the ionization source. 

 Using Eq. (12) to eliminate the toroidal velocities, vφ, from Eq. (11) allows the latter to 

be reduced to a ‘diffusive-pinch’ flux relationship 

 ( ) ( )1 1 1 1
j j jj nj Tj j jk nk Tk pjn D L L n D L L υ− − − −Γ = + − + +  (16) 

 

where the diffusion coefficients are 
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and the pinch velocity is 
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In deriving Eqs. (16)-(18), we have assumed that the condition (ncarbonZ2
carbon/ne) >> (me/mD)1/2 ≈ 

0.016 is satisfied, so that the ion-electron collisions can be neglected relative to the ion-impurity 

collisions; i.e. the ion-electron friction has been neglected relative to the ion-impurity friction.  It 

is interesting that the atomic physics (νion and νat) and the viscous (νd) momentum transfer 

frequencies, as well as the more familiar interspecies collision frequency (νjk), enter the 

expressions for the diffusion coefficients and the pinch velocity; i.e. all modes of momentum 

transfer to and from ion species ‘j’ are included.  The dependence of the pinch velocity on the 

electric fields, momentum input and poloidal rotation is also noteworthy. 
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B. Experimental momentum transfer frequency 

  Equation (11) can be solved directly for the momentum transfer frequency in the pedestal 
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Since Γ can be determined from particle balance, M can be calculated, n, Eφ and υφ can be 

measured, and the friction terms can probably be neglected, this expression provides a means to 

evaluate an experimental momentum transfer rate across the pedestal.  This quantity can be 

directly compared with various theoretical models for momentum transfer frequencies. 

C. Neoclassical momentum transport frequencies 

We now consider the neoclassical model for the toroidal viscous force, <R2∇φ⋅∇⋅π>, 

which determines the viscous momentum transport frequency given by Eq. (14).   There are three 

 neoclassical viscosity components—parallel, perpendicular and gyroviscous.  The ‘parallel’ 

component of the neoclassical viscosity vanishes identically in the viscous force term, and the 

‘perpendicular’ component is several orders of magnitude smaller than the ‘gyroviscous’ 

component23 
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where 

 ( ) ( )4 1c s s c
j j j j jn nφ φθ υ υ≡ + + −% % %% %  (21) 

represents poloidal asymmetries [the tilde quantities are the sine (s) and cosine (c ) components 

of the variation over the flux surface of the respective quantities) and 
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with the gyroviscosity coefficient η4j ≈ njmjTj/ejB.  The poloidal asymmetries in density needed 

for the evaluation of Eq. (21) can be calculated from low-order Fourier moments of the third 

independent (poloidal) component of the momentum balance equation24. 
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 We note that is has been suggested25 that the above expression for the gyrovicous toroidal 

force underestimates the momentum transport rate in regions of steep pressure gradients and low 

toroidal rotation (e.g. the edge pedestal) because of failure to take into account a drift kinetic 

correction not present in the original Braginskii derivation.  More recent work26 indicates that the 

Braginskii derivation is correct when the toroidal flow is of the same order as the thermal 

velocity, but that when the toroidal flow is much less than the thermal velocity (i.e. in the ‘drift’ 

ordering) then an additional heat flux term should appear in the viscosity tensor.  It is not clear a 

priori which ordering is more appropriate for the plasma edge.  In any case, the above equations 

have done well in predicting radial momentum transport in the DIII-D core plasma27, which 

motivates us to investigate their predictions in the edge pedestal. 

D. Evaluation of experimental momentum transfer frequencies 

The experimental momentum transfer frequencies were evaluated from Eq. (19) using 

measured and calculated quantities, as discussed previously.  These experimental νd* are shown 

in Table 5.  The atomic momentum transfer frequencies due to charge-exchange, elastic 

scattering and ionization were calculated and also are shown in the table.  The large poloidal 

asymmetry in the neutral fueling through the x-point region was represented in the calculation by 

using ξ = 1 for the fueling asymmetry factor of Eq. (15).  The frequency of momentum 

convection was also evaluated from the calculated radial particle flux and the measured toroidal 

velocity in the pedestal.  It is clear that the momentum transfer frequencies due to atomic physics 

and convection are too small by an order of magnitude to account for the observed experimental 

momentum transfer frequency.  On the other hand, the neoclassical gyroviscous momentum 

transport frequencies evaluated from Eq. (20) are in reasonable agreement with the experimental 

frequencies.  In general, the neoclassical momentum transfer frequencies are somewhat less than 

the experimental frequencies, perhaps indicating the presence also of an ‘anomalous’ momentum 

transport mechanism. 

 

IV.          DENSITY GRADIENT SCALE LENGTH 

A. Theoretical expression 

In order to gain theoretical insight, as well as to obtain an expression for calculating the 

density gradient scale length, we use Eq. (12) to eliminate vφ only from the term on the right side 
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in Eq. (11).  This leads immediately to an expression for the density gradient scale length of ion 

species ‘j’ 
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We will find that the momentum input (Mφ) and toroidal electric field (Eφ) are negligible and 

would expect that the friction term can also be neglected.  The import of Eq. (23) is then that the 

pressure gradient scale length must be consistent with the particle flux (Γ) and momentum 

transfer rate (νd*), with the poloidal rotation, and with the radial electric field, which latter is 

related to both poloidal and toroidal rotation velocities and the pressure gradient.  Since the 

temperature gradient scale length is determined by heat transport (i.e. Eqs. [2] and [3]), this 

momentum balance constraint on the pressure gradient can be considered a constraint on the 

density gradient scale length.   

B. Application to experiment 

Since the electron (j-e) friction term can be neglected relative to the ion (j-k) friction 

terms in plasmas with realistic impurity concentrations, all quantities on the right in Eq. (23) 

could be determined if Er could be measured directly and if the rotation velocities and radial 

particle fluxes could be measured separately for each ion species, which would allow 

experimental density gradient scale lengths to be determined for the various ion species from Eq. 

(23).  In fact, only carbon rotation velocities are usually measured, the ion particle flux is 

difficult to determine for the main ion species and can only be estimated for impurity ions, and 

the ‘experimental’ Er is usually calculated from Eq. (12) using measured carbon rotation 

velocities and electron pressure gradients.  Until this situation improves, the best use we can 

make of Eq. (23) is for a consistency check on the various measurements or theories or 

combinations thereof for the quantities on the right side.      
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As an example, we evaluate an average value of the gradient scale length from Eq. (23) 

for the main ion species as follows.  The momentum transfer frequency, νdi*, is calculated from 

the neoclassical gyroviscous expression plus the atomic physics and convective momentum 

transfer frequencies.  The radial particle flux is determined from particle balance, as discussed 

previously, and the neutral beam momentum input in the pedestal is calculated directly.  The 

friction terms involving the difference in ion and impurity and in ion and electron toroidal 

velocities are assumed to be negligible.  The EφA term and the temperature gradient scale length 

term are evaluated from experimental data.  The poloidal velocity is calculated by solving 

coupled Fourier moments of the poloidal momentum balance equation for the poloidal velocities 

of the ions and impurities and for the sine and cosine components of the ion and impurity density 

asymmetries which are needed to evaluate the poloidal asymmetry factor of Eq. (21); this 

calculation is described in detail in Ref. 24.   

The radial electric field is calculated by summing the toroidal components of the 

momentum balance equation for the ions and impurities, and using the toroidal component of the 

electron momentum balance, to obtain 

{ } ( ) ( )1 1
i I i i di i p i I I dI I p Ir

i i di I I dI

M M n m P f n m P fE
B n m n m

φ φ θ θ

θ

ν υ ν υ

ν ν

− −′+ + − + +
=

+

* ' *

* *  (24) 

This expression is evaluated using the calculated values of the Mφj and the theoretical values of 

νdj*and υθj just discussed, together with the experimental value of Pi’ and the assumption that the 

pressure gradient scale length is the same for the impurity as for the main ions.   

   The calculated values of the deuterium (i) and carbon impurity (I) poloidal velocities 

and of the radial electric field are compared with the measured values of the carbon toroidal and 

poloidal rotation velocities and with the ‘experimental’ value of Er in Table 6.  The ‘calculated’ 

Er is evaluated from Eq. (24) using the calculated values of vθi and vθI, the theoretical νdi of Eq. 

(20), the calculated values of νat and νion, the calculated values of Mφi and MφI, and the 

experimental values of P’I and P’i.  The ‘experimental’ Er is evaluated from the force balance 

Eq. (12) using the measured values of the carbon rotation velocities and pressure gradient.  The 

uncertainty in the measured υθ’s is probably a few km/s, and this introduces a significant 

uncertainty in the experimental Er.  

 



 15

 Using the calculated values given in Table 6 and determining the other parameters in Eq. 

(23) as discussed above, the main ion density gradient scale lengths, Lni were calculated,  This 

quantity is compared with the measured value of Lne  determined by Thomson scattering in Table 

7.  We note that the use of the experimental Lni and LTi to evaluate the P’i term in the above 

expression for Er, which is then used to evaluate Lni from Eq. (24), is somewhat circular.  

However, this calculation can be used to check the consistency of the measured and calculated 

quantities because the calculation of Er depends also on the calculation of the υθj from poloidal 

momentum balance24 and on the calculation of the neoclassical momentum transfer frequency 

from Eq. (20).   Furthermore, the calculation of Lni from Eq. (23) also depends directly on the 

calculation of the υθj from poloidal momentum balance and on the calculation of the neoclassical 

momentum transfer frequency from Eq. (20), on the calculation of Γi from particle balance 

(including a neutral recycling calculation), on the calculation of the neutral beam momentum 

deposition in the pedestal (Mφj) and on the value of EφA, which we take from experiment.  The 

last two terms had a negligible effect on the result.  The reasonably good agreement is indicative 

of 1) the consistency of the experimental measurements with the momentum balances of Eq. (23) 

and (24) and of 2) the neoclassical calculation models for νdj
23

 and vθj
24 that were used in 

evaluating these terms in Eqs. (23) and (24). 

  

IV. SUMMARY 

 Theoretical heat conductivities based on analytical representations of neoclassical and 

ITG modes for the ions and ETG and TEM modes for the electrons have been compared with 

measured thermal transport rates.  Thermal transport coefficients from the neoclassical, ITG and 

ETG theories are found to be within at most a factor of 2-3 of values inferred from experiment 

for most of the discharges considered, with the agreement being significantly better for 

neoclassical than for ITG ion thermal conductivities.  The edge gradients of these discharges are 

such that ITG and ETG modes are predicted to be unstable.  This finding that ETG modes should 

be unstable in the edge is consistent with previous observation of ηe ≈ 2 in a large number of 

discharges in ASDEX Upgrade28.   Furthermore, the results shown in Fig. 16 of Ref. 29 imply 

that ηe ≈ 1.5 in a large number of DIII-D discharges.   

 New expressions for a ‘diffusive-pinch’ form of particle flux, for calculating an 

experimental frequency for momentum transfer, and for predicting the ion density gradient scale 
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length have been derived from momentum balance.  The experimental momentum transfer rates 

are too large by an order of magnitude to be accounted for by atomic physics and convective 

momentum transfer, but neoclassical gyroviscous theory predicts frequencies comparable to 

those found experimentally. 

 Perhaps the most significant finding of this investigation is that neoclassical theory 

appears to provide a reasonable representation of ion transport in the edge pedestal.   The 

neoclassical predictions of both ion thermal conductivity and ion momentum transfer frequency 

were within a factor of 2-3 or better of the experimental values, and the use of neoclassical 

momentum transfer frequencies in the calculation of density gradient scale lengths results in a 

prediction that is within a factor of 2 of the directly measured value.  
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Appendix:      Coefficients for Chang-Hinton Formula 

 

 The coefficients for the Chang-Hinton expression for ion thermal conductivity given by 

Eq. (6) are18 
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 (A1) 

 

α = nIZI
2/niZi

2, μi* = νiIqR/ε3/2υthi and Δ’ = dΔ/dr, where Δ is the Shafranov shift.   The impurity 

thermal conductivity is obtained by interchanging the i and I subscripts, both in Eq. (6) and in the 

above expressions. 

 The Shafranov shift parameter may be evaluated from21 
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where βθ = p/(Bθ2/2μ0 ) and Bθa denotes the poloidal magnetic field evaluated at r = a.  Since we 

need this quantity at r = a, we can take advantage of the definition of the internal inductance 
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where βθa denotes the quantity evaluated using the average pressure over the plasma and Bθa.  

Using a parabola-to-a-power current profile j(r) = j0(1 – (r2/a2))ν, for which the ratio of the 

values of the safety factor at the edge to the center is qa/q0 = ν + 1 , and a fit21 

li = ln(1.65 + 0.89ν) leads to the simple expression  
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Table 1:  Operating parameters (R=1.74-1.78m, a = 0.60-0.62m) 

Shot Time(ms) I(MA) B(T) q95 δ κ Pnb(MW) 

93045 3700 1.6 2.1 4.1 .41 1.84 5.1 

87085 1620 1.2 1.6 5.5 .86 2.04 7.5 

97979 3250 1.4 1.6 3.9 .75 1.75 6.5 

106005 3000 1.2 1.5 3.1 .14 1.78 5.0 

106012 3000 1.2 2.1 4.2 .13 1.78 5.0 

92976 3210 1.0 2.1 5.7 .33 1.79 5.0 

98893 4000 1.2 1.6 4.2 .14 1.77 2.1 

Table 2:  Edge pedestal parameters 

Shot ne
ped 

(1019/m3)   

Te
ped 

(eV) 

Δn 

(cm) 

ΔTe 

(cm) 

Ln 

(cm) 

LTe 

(cm) 

LTi 

(cm) 

fcarbon 

 (%) 

93045 4.0 1150 5.1 5.5 2.8 2.2 4.7 4.1 

87085 2.8 685 8.1 10.2 4.3   4.5 8.5 5.5 

97979 6.3 525 3.5 5.0 3.3 2.6 6.2 1.1 

106005 4.6 460 4.6 4.6 2.7 2.1 5.3 1.8 

106012 4.6 395 4.4 5.9 2.4 2.0 10.3 2.0 

92976 4.9 215 3.6 7.2 6.0 4.2 10.3 1.8 

98893 8.3 120 2.2 2.2 1.5 1.5 10.1 0.8 

Table 3:  Experimental and theoretical thermal conductivities (m2/s) 

Shot νe* LTi/LTi
crit ηe χi

exp,a χi
NEO χi

ITG χe
exp,a χe

TEM χe
ETG 

93045 0.10 0.27 1.03 0.20 0.31(0.67b) 3.7 0.17 >100 2.4 

87085 0.28 0.49 0.96 1.1 0.58(0.93) 2.5 1.4 52 3.6 

97979 0.40 0.36 1.27 0.80 0.49(0.54) 1.7 0.48 44 1.6 

106005 0.30 0.31 1.29 1.1 0.62(0.76) 1.7 0.57 62 2.8 

106012 0.62 0.60 1.20 1.6 0.51(0.67) 0.59 0.73 21 1.5 

92976 1.53 0.60 1.43 1.5 0.53(0.84) 0.37 1.3 1.6 1.4 

98893 4.86 0.59 1.00 1.0 0.62(0.68) 0.20 0.34 1.7 0.55 
a Experimental values evaluated assuming Qi = Qe. 
b Without orbit squeezing correction. 
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Table 4:  Average conductive heat fluxes (105 W/m2) in pedestal 

Shot Exp. χi=NEO, 

χe=ETG 

χi=ITG, 

χe=ETG 

χi=NEO, 

χe=TEM 

χi=ITG, 

χe=TEM 

93045 0.38 2.7(3.0a) 5.5 > 100  > 100 

87085 0.51 0.87(.94) 1.2 > 10 > 10 

97979 0.69 1.4(1.4) 1.9 > 10 > 10 

106005 0.60 1.6(1.7) 1.9 >10 >10 

106012 0.61 0.75(.78) 0.76 9.5(9.5a) 9.5 

92976 0.48 0.36(.40) 0.34 0.41(.46) 0.39 

98893 0.25 0.29(.29) 0.24 0.74(.75) 0.70 

   a w/o orbit squeezing. 

 

Table 5:  Momentum transfer frequencies 

Shot  νd* (103 s-1)   

 Exp. Atomic Convect Neo 

93045 5.0 .49 .36 4.9 

87085 1.0 .20 .07 2.6 

97979 1.6 .13 .08 1.1 

106005 2.7 .11 .06 1.3 

106012 2.2 .12 .06 1.5 

92976 4.5 .16 .11 1.6 

98893 2.4 .13 .10 .81 
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Table 6: Rotation velocities and radial electric fields 

Shot vφI
exp 

(km/s) 

vθi
  a 

(km/s) 

vθI
  a 

(km/s) 

vθI
exp 

(km/s) 

Er  
b 

(kV/m) 

Er
exp  c

 
 

(kV/m) 

93045 5.9 -4.8 -0.2 -1.3 -58 -42 

87085 55 3.8 -12 9 -19 -15 

97979 17 -1.3 -1.7 3.5 -19 -13 

106005 13 -2.3 -1.1 -1.8 -21 -2 

106012 17 -2.8 -1.0 -0.3 -27 -7 

92976 8.5 -1.5 -1.9 -0.8 -10 -13 

98893 13 -1.4 3.5 2.6 -12 -2 
a calculated from poloidal momentum balance, Ref. 24; b calculated from Eq. (24 ) using calculated velocities and 
νdi* and experimental electron pressure gradients ; c calculated from force balance using measured carbon velocities 
and  pressure gradients.  

 

Table 7:  Density gradient scale lengths 

Shot 93045 87085 97979 106005 106012 92976 98893 

Exp. Lne 2.8 4.3 3.3 2.7 2.4 6.0 1.5 

Calc. Lni 2.7 3.3 2.4 1.9 1.8 3.3 0.8 

 


