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SUMMARY

The widespread integration of robotics into everyday life requires significant improve-

ment in the underlying machine learning (ML) agents to make them more accessible, cus-

tomizable, and intuitive for ordinary individuals to interact with. As part of a larger field of

interactive machine learning (IML), this dissertation aims to create intelligent agents that

can easily be taught by individuals with no specialized training, using an intuitive teaching

method such as critique, demonstrations, or explanations. It is imperative for researchers

to be aware of how design decisions affect the human’s experience because individuals

who experience frustration while interacting with a robot are unlikely to continue or repeat

the interaction in the future. Instead of asking how to train a person to use software, this

research asks how to design software agents so they can be easily trained by people.

When creating a robotic system, designers must make numerous decisions concerning

the mobility, morphology, intelligence, and interaction of the robot. This dissertation fo-

cuses on the design of the interaction between a human and intelligent agent, specifically

an agent that learns from a human’s verbal instructions. Most research concerning interac-

tion algorithms aims to improve the traditional ML metrics of the agent, such as cumulative

reward and training time, while neglecting the human experience. My work demonstrates

that decisions made during the design of interaction algorithms impact the human’s satis-

faction with the ML agent. I propose a series of design recommendations that researchers

should consider when creating IML algorithms.

This dissertation makes the following contributions to the field of Interactive Machine

Learning: (1) design recommendations for IML algorithms to allow researchers to create

algorithms with a positive human-agent interaction; (2) two new IML algorithms to foster

a pleasant user-experience; (3) a 3-step design and verification process for IML algorithms

using human factors; and (4) new methods for the application of NLP tools to IML.
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CHAPTER 1

INTRODUCTION

The widespread integration of robotics into everyday life requires significant improvement

in the underlying machine learning (ML) agents to make them more accessible, customiz-

able, and intuitive for ordinary individuals to interact with. As part of a larger field of

interactive machine learning (IML), this dissertation aims to create intelligent agents that

can easily be taught by individuals with no specialized training, using an intuitive teaching

method such as critique, demonstrations, or explanations. It is imperative for researchers

to be aware of how design decisions affect the human’s experience because individuals

who experience frustration while interacting with a robot are unlikely to continue or repeat

the interaction in the future. Instead of asking how to train a person to use software, this

research asks how to design software agents so they can be easily trained by people.

When creating a robotic system, designers must make numerous decisions concerning

the mobility, morphology, intelligence, and interaction of the robot. This dissertation fo-

cuses on the design of the interaction between a human and intelligent agent, specifically an

agent that learns from a human’s verbal instructions. Most research concerning interaction

algorithms aims to improve the traditional ML metrics of the agent, such as accumulated

reward and training time, while neglecting the human experience. My work demonstrates

that decisions made during the design of interaction algorithms impact the human’s satis-

faction with the ML agent. I propose a series of design recommendations that researchers

should consider when creating IML algorithms.

1.1 Thesis Statement

Verbal communication is a rich medium that is currently underutilized in teaching Rein-

forcement Learning (RL) algorithms. This dissertation will demonstrate that 1) the nature
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of the language instruction used by a human teacher to train an RL algorithm affects a per-

son’s experience and satisfaction of teaching an agent; 2) the information people verbally

provide is efficiently communicated to the agent; and 3) the RL agents taught using verbal

instruction achieve a reasonable level of performance.

1.1.1 Thesis Foci

The three foci of the thesis statement are discussed below.

1) Human Experience. The nature of the language instruction used by a human teacher

to train an RL algorithm affects a person’s experience and satisfaction of teaching an agent.

Through a series of studies, my work will demonstrate how and why decisions made during

the design of interaction algorithms impact the human’s experience with the agent. A

selection of design decisions studied include: what teaching method the agent can use;

what format of explanation an agent should ask a human for; how the human’s feedback is

incorporated; whether the agent generalizes feedback through time; and whether the agent

allows instructions to inform about future actions.

2) Efficiency. The information people verbally provide is efficiently communicated to

the agent. This work will explore how a small amount of verbal instruction can be used

to train an agent. Also, to more efficiently use verbal instruction I will utilize sentiment

analysis to expand the vocabulary available to the instructor. Finally, this work will explore

how agents should ask for explanations to most efficiently obtain high-quality information

from operators.

3) Performance. The RL agents taught using verbal instruction achieve a reasonable

level of performance. I will demonstrate that designing RL agents that improve the human

experience with the agent does not significantly detract from the agent’s capabilities.
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Figure 1.1: Human-Agent Information Flow

1.2 Agent Overview

The three foci of the thesis are supported by four studies. In each of the studies, a human

provides instruction to a machine learning agent. Throughout the dissertation, an ‘agent’ is

an instantiation of a machine learning algorithm.

Figure 1.1 shows the flow of information for all agents designed or studied in this work.

First, verbal instruction is provided by a human teacher and sent to language processing.

The processed human input is send to an interaction algorithm that allows the instructions

to be interfaced with an RL algorithm. The RL agent takes actions and learns from a reward

signal. In certain cases, people might watch how the agent acts in the world and modify

their instructions accordingly.

1.2.1 Methods of Human Instruction

The three methods of human instruction used in this dissertation are: explanations, advice

(i.e. verbal demonstrations), and critique. In a classroom setting, an explanation would be

a professor lecturing on material, a demonstration would be a professor going through an

example problem, and critique would be returning graded homework assignments.

In this work, explanations are simple sentences provided by a human teacher to de-

scribe how to perform a task. For example, in the Mario domain an explanation might be,

“Move right toward the goal. Jump on enemies. Do not fall into chasms.” Explanations are

3



provided before the agent tries to learn the task.

Advice, which can be thought of as a verbal demonstration, is when a human teacher

acts like a backseat driver and interactively tells the agent what action to take immediately

in the future. For example, if the person thinks the agent should move left, the person’s

advice would be “move left.”

Critique is binary positive or negative feedback such as, “good job,” or “don’t do that.”

Similar to advice, critique is provided interactively in real-time by the human teacher. Un-

like advice, critique informs the agent whether its past actions were productive or detri-

mental.

My dissertation investigates if the method of human instruction can affect a human

teacher’s experience with the agent. For example, does the teaching method impact how in-

telligent people perceive the agent to be? Is one teaching method more rhetorically positive

than another? Understanding how interaction methods affect a human teacher’s experience

is important because it sheds light on design decisions that can negatively impact a person’s

perception of the robot’s capabilities.

1.2.2 Language as an Interface

Language was chosen as an interaction method because language is a universal interface -

a new interaction method will not need to be created for each robot or domain.

Learning from natural language instructions poses many challenges and is not a part of

interactive machine learning that has been extensively studied. First, people do not limit

themselves to a domain-specific vocabulary - people make their own labels for objects

and actions. Different people use different words for the same concept, which compli-

cates grounding words to states and actions. Second, explanations also tend to include

information that is not actionable, like background knowledge. Third, many natural lan-

guage explanations do not include state information, which makes it very difficult to deter-

mine where and when to use the advice. The challenge is further compounded because, in
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English, written language is more formal than spoken. Finally, human teachers fluctuate

rapidly between levels of abstraction.

1.2.3 Interaction Algorithms

Three interaction algorithms were studied in this work. I designed Object-focused advice

to learn from explanations in Study 1. Policy Shaping is an algorithm that learns from

positive and negative critique. It was created by previous researchers to learn from people

clicking + and - buttons, but I slightly modified it to work with interactive verbal critique

in Studies 2 and 3. I designed Newtonian Action Advice to learn from advice for Studies

2, 3, and 4.

1.3 Contributions

To support the thesis statement, this dissertation makes the following contributions to the

field of Interactive Machine Learning:

• Design Recommendations for IML algorithms IML algorithms have historically

been designed to improve objective metrics rather than the human experience. Re-

searchers design new algorithms to decrease training time or increase the earned re-

ward. For example, Policy Shaping was created to use critique as policy information,

which was shown to be more efficient than using critique as a reward signal.

My dissertation studies IML algorithms from a human factors perspective in order

to learn how to design algorithms that improve the human’s experience. Throughout

this work, I studied how the interaction and nature of the ML algorithm can affect a

person’s experience with the agent. I identified several aspects of the interaction of

IML algorithms that impact the human’s experience with the agent and turned these

into design recommendations. These recommendations will allow IML researchers

to design algorithms with a positive human-agent interaction.
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• IML algorithms Because the IML field has not employed user-focused design, IML

algorithms do not create a positive human-agent interaction. For example, Policy

Shaping uses critique to increase or decrease the probability an action will be taken

again if the same state is seen in the future. It does not immediately change the

agent’s behavior. This causes frustration and feelings of powerlessness in users [1].

I have developed two IML algorithms to foster a positive human experience. Newto-

nian Action Advice, presented in Chapter 5, connects action advice to an RL agent

with the goal that it improve the human’s experience compared to other interactive

algorithms. The algorithm leverages a simple physics model to provide an agent that

acts in a way people expect and find non-frustrating. I also created Object-Focused

advice, developed in Chapter 4, that looks at how to ground simple instructional ex-

planations to an RL algorithm, creating a method for generalizing advice across the

state space since people do not provide state-specific information.

• Verification Process for IML algorithms using Human Factors Many of the ex-

isting machine learning algorithms that learn from human instructions are evaluated

using oracles (i.e. simulated feedback) and focus on how quickly the agent learns.

While this is valuable information, it ignores important aspects of the human-agent

interaction such as frustration. An oracle will never get frustrated with, confused

by, or lose trust in an agent. I suggest that validating interaction algorithms with

oracles and analyzing traditional RL metrics such as cumulative reward and training

time is only one step in the verification process. In addition to RL metrics, interac-

tion algorithms should be validated by measuring peoples’ experiences with agents

using human factors, such as frustration. If people become very frustrated with the

agent because it does not learn as they expect, people will not want to use the agent

regardless of the efficiency of an algorithm’s theoretical learning curves.

I propose a 3-step design and verification method in which 1) the algorithm is de-
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signed to create a positive user experience, 2) the algorithm is tested in simulation,

and 3) the algorithm is tested in a human-subject experiment and compared to other

algorithms with human factors metrics in addition to machine learning metrics.

• Application of NLP tools to IML I have developed methods of applying sentiment

and prosody to IML.

Sentiment analysis is an NLP tool that has traditionally been used to classify book,

movie, and product reviews into positive and negative. Sentiment analysis has not

been used for action selection before. I developed two new ways of using sentiment

analysis: to filter natural language critique into positive and negative, and to filter

natural language advice into ‘what to do’ and ‘what not to do’ actions. When applied

to critique, sentiment analysis also allows people to provide instructions without be-

ing restricted to a limited set of words, which creates a more natural and intuitive

interface for the human.

In linguistics, prosody is an analysis of the intonation, stress, tempo, rhythm, and

emotion of a speaker’s utterances. Prosody contains significant information in the

audio signal that is lost when algorithms transcribe the speech to text with automatic

speech recognition and then operate only on the semantic meaning. This dissertation

developed a method to use prosody as an objective measure of frustration by compar-

ing the linguistic feature values to the frustration metric reported in questionnaires.

1.4 Organization

Chapter 2 contains a review of related literature.

Each of the inner chapters has a common structure. The Introduction contains a list

of research questions as well as a summary of the algorithm development and evaluation

method. The Introduction is followed by Algorithm Development, Method, Results and

Discussion, and the Conclusion. After the Conclusion is the RQ Results Summary, which
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is a list of the answered research questions, how each question supports a thesis focus, and

which study validated each question.

Chapter 3 covers methods of applying NLP tools to IML, including using sentiment

analysis to classify verbal critique and action advice. This chapter can be read in order or

referred to while reading later chapters covering the associated studies.

Chapter 4 details Study 1, a human-subject experiment that tests Object-focused ad-

vice, an IML algorithm that connects explanations to Reinforcement Learning. Study 1

investigates how to learn from explanations that do not contain state information, and what

format an explanation should take.

Chapter 5 presents Newtonian Action Advice, an IML algorithm that incorporates a

human’s verbal action advice with Reinforcement Learning. Study 2 provides oracle sim-

ulations of Newtonian Action Advice and compares its theoretical performance to Policy

Shaping and Bayesian Q-learning. The chapter also acts as a template for IML design and

verification.

Chapter 6 delves into Study 3, a human-subject experiment comparing two teaching

interaction methods: Policy Shaping critique and Newtonian Action Advice. The study

identified several factors in the design of IML algorithms that impact the user experience.

Chapter 7 follows up on the advice vs. critique study in Chapter 6 by isolating and

testing three factors that impact the human teacher’s experience with the RL agent in Study

4.

Chapter 8 discusses how this dissertation will impact the IML field.
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CHAPTER 2

LITERATURE REVIEW

This chapter overviews fundamental concepts of this dissertation, including reinforcement

learning, learning from human teachers, and natural language processing. Some specific

topics will be referenced and explained throughout the dissertation.

2.1 Reinforcement Learning (RL)

Reinforcement learning (RL) is a branch of machine learning in which intelligent agents

learn from the environment which actions to take by receiving a signal of rewards and

punishments [2]. RL has been a topic of study in behavioral psychology [2, 3]. B. Skin-

ner compared the evolution of living things through natural selection with the shaping of

individual behavior through reinforcement [4]. People will likely repeat an action in a cir-

cumstance if they receive positive reinforcement, and will likely not repeat the action if

given negative reinforcement.

Most RL algorithms are modeled as Markov Decision Processes (MDPs), which learn

policies by mapping states to actions such that the agent’s expected reward is maximized.

An MDP is a tuple (S,A, T,R, γ) that describes S, the states of the domain; A, the actions

the agent can take; T , the transition dynamics describing the probability that a new state

will be reached given the current state and action; R, the reward earned by the agent; and

γ, a discount factor in which 0 ≤ γ ≤ 1.

The followed subsections will introduce Object-Focused Q-Learning used in Study 1

and Bayesian Q-Learning used in Studies 2-4.
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2.1.1 Object-Oriented RL

Object-Oriented Markov Decision Process (OO-MDPs) are an extension of MDPs. An

OO-MDP is a model-based representation that uses a fixed-length feature vector of object

relations [5]. For example, one feature in the Mario domain would be a binary relation

indicating if an enemy is east of Mario at each time step. A drawback of OO-MDPs is all

relations must be defined by a designer. Also, because the feature vector is fixed in length,

the agent cannot adapt to new objects in the environment.

Researchers have explored using Object-Oriented MDPs as a state vector [6]. If an

element in the state vector was true, it corresponded to a simple reward of +1. The state

was grounded directly to a reward function. Natural language commands were used, but a

strict grammar had to be used. The final behavior of an RL agent is very sensitive to the

reward function, so a simple +1 based on elements of the state is not guaranteed to produce

desired behavior. The state representation is at a high level of abstraction and is not learned

from low-level input (like pixels).

While an OO-MDP is an interesting method of connecting natural language to RL, it is

not flexible enough or guaranteed to produce the right behavior, so I used Object-Focused

Q-Learning, which is a modified version of OO-MDPs. Object-Focused Q-Learning (OF-

Q) with an Off-Policy TD Control Q-Learning algorithm was used to train the Q-values for

each object’s policy in Study 1. Unlike OO-MDPs, OF-Q is model-free and does not have

a fixed-length feature vector [7]. The number of objects and relations in the feature vector

can vary through time. Every object class has its own policy and reward signal.

Since Study 1 focuses on the efficacy of using sentiment as a filter on natural language

explanations, a well-understood tabular algorithm was used. In Equation 2.1, sot and at are

the object’s state and action chosen at time t, Q(sot , at) is the Q-value for a given object

state and action, r is the reward received after carrying out action at, α is the learning

parameter, and γ is the discount parameter for expected future rewards.
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Q(sot , at)← (1− α)Q(sot , at) + α[r + γmax
a

Q(sot+1 , a)] (2.1)

Reinforcement learning agents must trade off between exploring and exploiting - whether

to search for better policies or carry out what the agent has already learned. If the agent

decides to exploit the policy, the action with the maximum Q-value over all objects in the

state space is chosen since it is expected to yield the greatest reward.

π(s) = arg max
a

max
o
Q(so, a) (2.2)

While natural language explanations can be incorporated into many machine learning

algorithms, I used Object-focused Q-learning (OF-Q) to represent explanations in Chapter

4 for two main reasons [7]. First, OF-Q can directly use object-based human instruction,

which improves the transparency between the human teacher and robotic learner. Second,

object-based algorithms provide a method to solve high-dimensional state spaces, like the

Mario game domain.

2.1.2 Bayesian Q-Learning

Bayesian Q-Learning was the underlying ML agent used for both the critique and action

advice conditions in Chapters 5, 6, and 7. Bayesian Q-Learning is an RL algorithm in

which the utility of state-action pairs are represented as probabilistic point estimates of the

expected long term discounted reward [8].

2.2 Learning from Human Teachers

Interactive Machine Learning (IML) is a subfield of machine learning in which a human

provides instructions (e.g. explanations, demonstrations, or critique) to help the agent learn

a task. IML agents typically use RL algorithms for several reasons. First, RL provides a

way for the agent to learn by interacting with its environment, including a person. Peo-
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ple learn by interacting with their environment, so the IML field chooses RL methods that

replicate this process. Second, a human teacher is unlikely to provide exhaustive instruc-

tions for the entire state space. RL allows an agent to learn policies based on the agent’s

experience and earned reward in addition to human input. Similarly, human instructions

can be used to help an RL agent visit high-value states earlier than the agent’s exploration

policy, causing an RL agent to reach a high-scoring policy with less training time. The

human’s instructions can be incorporated into an RL algorithm in many ways, which will

be detailed in Section 2.2. Like other works in IML [9, 10], this work incorporates human

instruction into RL agents; however, I focus on the human teacher’s experience.

Three commonly studied methods of human instruction are explanations, demonstra-

tions, and critique [11]. Explanations transfer knowledge through non-interactive language.

Demonstrations provide ideal actions to take in situations. Critique is positive or negative

feedback that informs students how good or bad their actions were. Interaction algorithms

have been created that use different methods of human instruction. Object-Focused Q-

Learning (OF-Q) was used in Study 1 to utilize human explanations. Policy Shaping was

used for critique in Studies 2-3, and Newtonian Action Advice was created for action ad-

vice in Studies 2-4.

There are many ways to connect human instructions with RL. Figure 2.1 shows a simple

RL diagram in which an agent is in a state and takes an action in the environment; the agent

is now in a new state and earns a punishment or reward. The cycle continues since the

agent must decide which action to take in the new state. Explanations and advice can be

converted to (state, action) pairs, so when the agent is in a state, it takes the advised action.

Critique can be used directly as a reward signal [12] or as policy information about whether

to repeat an action if the same state is seen again in the future [13].
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Figure 2.1: Reinforcement Learning Diagram [2]

The way the human instructions are incorporated into the RL algorithm defines the

nature of the interaction between the human and agent, including whether people have to

repeat themselves, how quickly the agent incorporates the instructions, and how transparent

the agent’s decisions appear. One of the main purposes of this dissertation is to study how

to design the connection between the human and RL agent to create a human-friendly

experience.

Most machine learning methods that learn from human teachers force people to provide

state-specific information. That level of detail is often not intuitive or natural, and precludes

the possibility of learning from natural language that lacks state information. When an

agent learns from demonstrations, the agent learns a mapping from states to actions [14].

An agent that learns from demonstrations is effected by how much of the state space was

explored in the demonstrations and how well the person performed. Paired states and ac-

tions from demonstrations can also be used with apprenticeship and inverse reinforcement

learning to approximate the reward function the teacher was following [15]. Critique is

linked to the current state by informing an agent how good or bad its actions were, which

affects the probability the action will be taken in the same state in the future [13]. Critique

can also be used directly as a reward signal to tell the agent how positive or negative its

actions were in certain states [11]. All of these approaches link human input to specific

states.
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2.2.1 Learning from Critique

Many IML algorithms learn from critique. Initially, critique was incorporated into RL as

a reward signal [12]. This was shown to be less than optimal because people provide an

unpredictable signal and stop providing critique once the agent learns the task [16]. Later, it

was shown that it is more efficient to use critique as policy information rather than a reward

signal [17, 18]. An example of this is Policy Shaping, an IML algorithm that enables a

human to teach an agent using critique, which is incorporated into a Bayesian Q-learning

agent as policy information [13]. Cederborg, Grover, Isbell, and Thomaz [19] investigated

how to interpret silence while learning from critique with Policy Shaping.

There are some basic behavioral templates that people expect in a teaching situation.

For example, if I were to tell my nephew, “Stop,” I would expect him to immediately change

his behavior. Algorithms like Policy Shaping, which more efficiently use critique as policy

information instead of directly as a reward signal, do not adhere to this teaching template.

Chapter 6 discusses how this causes people to be confused and frustrated, and explains

how Policy Shaping using critique creates a worse user experience than Newtonian Action

Advice [1].

2.2.2 Learning from Explanations and Advice

Various forms of advice have been developed in other work, including linking one condi-

tion to each action [20], and linking a condition to rewards [6]. Several connect conditions

to higher-level actions that are defined by the researcher instead of primitive actions [20,

21, 22]. Argall, Browning, and Veloso [23] creates policies using demonstrations and ad-

vice. Meriçli, Klee, Paparian, and Veloso [24] parses language into a graphical representa-

tion and finally to primitive actions. Maclin, Shavlik, Torrey, Walker, and Wild [20] has the

person provide a relative preference of actions, whereas the agent determines the order of

preferred actions in our work. Sivamurugan and Ravindran [25] explored learning multiple

interpretations of instructions. Tellex, Kollar, Dickerson, Walter, Banerjee, Teller, and Roy
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[26] represents natural language commands as probabilistic graphical models. Similar to

this work, the advice in [23] does not require people to give specific numbers for continu-

ous state variables, but uses a set of predefined advice operators. The advice developed in

Study 1 links one action to each object. This allows each action to be used multiple times

in one domain; for example, in the Mario domain the agent may be advised to jump to the

right quickly for chasms and enemies.

Many researchers incorporate advice using IF-THEN rules and formal command lan-

guages [20, 21]; if the state meets a condition, then the learner takes the advice into ac-

count. Formal command languages and IF-THEN rules require advice that is state specific

and contains numbers. “When the agent is within 10 meters of this object, do this action.”

Developing a parser is labor intensive, and prior knowledge like distance calculations must

be encoded. Our work is different because the advice is object specific, the agent learns

which part of the state space the advice applies, and a person does not need to provide

numbers. This allows an agent to learn from a few simple sentences that non-experts can

provide. “Jump when Mario encounters a chasm.” No state-specific information is pro-

vided by the person, like: Where is the chasm with respect to Mario? How far away from

the chasm should Mario jump? What should Mario’s speed be near the chasm?

Most methods are permanently influenced by the advice. Kuhlmann, Stone, Mooney,

and Shavlik [21] can adjust for bad advice by learning biased function approximation val-

ues that negate the advice. Maclin, Shavlik, Torrey, Walker, and Wild [20] uses a penalty

for not following the advice that decreases with experience. The Newtonian Action Advice

(NAA) developed in Chapter 5 differs because the advice is followed a set number of times

for each object and each state in addition to exploration. After the advice is followed a set

number of times, the exploitation action selections are based entirely on experience, and

advice is no longer considered by the agent. If it was good advice, it will be reflected in the

Q-values and will continue to be the policy. With NAA, the advice can be overwritten by

new, contradictory advice in the future.
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2.3 Natural Language Processing (NLP)

2.3.1 Automatic Speech Recognition (ASR)

Automatic Speech Recognition (ASR) is how the human’s verbal instructions are tran-

scribed to written text. This dissertation used the Sphinx ASR software [27].

2.3.2 Sentiment Analysis

Sentiment analysis is an NLP tool that has traditionally been used to classify book, movie,

and product reviews into positive and negative [28]. Sentiment analysis has not been widely

used for action selection. This dissertation develops two new applications for sentiment

analysis that are discussed in Chapter 3. In Study 1, I developed a method for using senti-

ment analysis to classify natural language advice into advice of ‘what to do’ and warnings

of ‘what not to do’ [29]. In Study 3, I developed a method for using sentiment to filter

natural language critique into positive and negative. Used in this new manner, sentiment

analysis allows people to provide critique without being restricted to a limited set of words.

Much of the work in sentiment analysis has used a bag-of-words method in which each

word in a document is scored. The accumulated score of the text determines if the document

is classified as positive or negative. Since each word is scored separately, word order and

context are ignored, which leads to less-accurate results. This work uses Stanford’s deep

learning sentiment analysis software, which builds a representation of an entire sentence

instead of looking at words independently [30]. This sentiment tool uses Recursive Neural

Tensor Networks and the Stanford Sentiment Treebank [31]. The Stanford Sentiment

Treebank is a set of labeled data corpus of fully-labeled parse trees trained on the dataset

of movie reviews from rottentomatoes.com [32].

Many approaches to learning from language instruction require people to provide in-

structions using specific words, often in a specific order or format [24]. Thomason, Zhang,

Mooney, and Stone [33] worked to get around limitations like keyword search by creating
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an agent that learns semantic meaning from the human. In this work we created a method

of using sentiment analysis to filter verbal critique into positive and negative, which fur-

thers the goal of allowing people to provide verbal instructions without being limited to a

specific dictionary of words.

2.3.3 Prosody

In linguistics, prosody is an analysis of the intonation, stress, tempo, rhythm, and emotion

of a speaker’s utterances. Prosody contains significant information in the audio signal that

is lost when algorithms transcribe the speech to text with automatic speech recognition and

then operate only on the semantic meaning. Chapter 3 develops a model to use prosody

as an objective measure of frustration by comparing the linguistic feature values to the

frustration metric reported by human teachers in questionnaires.

Prosody has been used as a feature within an ML classifier to objectively detect whether

a patient is suffering from depression [34]. Kim, Leyzberg, Tsui, and Scassellati [35]

showed that humans teaching robotic students in unscripted interactions varied their af-

fective vocalizations based on the robot’s performance. Thomason, Nguyen, and Litman

[36] investigated which prosodic features correlate with student entrainment in a tutoring

dialogue system.

The software package Praat is being used to analyze prosodic features of the audio data

collected in Study 3 [37].
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CHAPTER 3

APPLICATION OF NLP TO IML

This chapter covers three new applications of NLP tools to IML. These methods were tested

in Studies 1 and 3, details of which can be found in Chapters 4 and 6.

3.1 Introduction

3.1.1 Research Questions

• Can sentiment analysis from the NLP field be used to filter natural language expla-

nations into advice of what to do and warnings of what not to do?

• Can sentiment analysis from the NLP field be used to classify natural language cri-

tique into positive and negative?

• Can sentiment analysis from the NLP field be used to allow human teachers to pro-

vide critique using an unrestricted vocabulary?

• Can prosodic features be used as an objective measure of frustration in place of

NASA-TLX subjective questions?

3.1.2 Development

This chapter will develop methods to 1) use sentiment analysis to filter advice, 2) use

sentiment analysis to filter critique, and 3) use prosodic features as an objective metric for

frustration.
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3.1.3 Method Summary

The use of sentiment as an advice filter will be tested in Study 1. The use of sentiment as a

critique filter as well as prosody as a frustration metric will be verified in Study 3.

3.2 Sentiment Analysis as an Advice Filter

A problem addressed in Study 1 is enabling an agent to categorize each sentence in an

explanation as advice of what to do or a warning of what not to do. Afterward, the advice

and warnings are used to shape the agent’s initial behavior. Autonomously categorizing

sentences into advice and warnings allows us to use natural language explanations that are

not formatted or restricted to a limited vocabulary.

A contribution of this work is to use sentiment analysis to filter natural language ex-

planations into advice and warnings. Sentiment analysis, or opinion mining, is a way to

computationally classify text into positive or negative opinions. This is a novel application

since sentiment analysis has not traditionally been used to inform action selection. This

work provides a new understanding to how sentiment analysis can be utilized.

Using sentiment analysis as a filter allows people to explain tasks to agents without

restricting the human teacher to a specific vocabulary or sentence structure. Consider the

following explanations of how to deal with enemies in the Mario Brothers domain.

It would be bad to walk right into an enemy. Jump on enemies.

Sentiment analysis classifies the first sentence as negative, so the agent is warned not

to walk right when dealing with an enemy. The second sentence is classified as positive, so

the agent treats jumping on enemies as advice of what to do. Sentiment classifications of

“positive” and “negative” are used in a semantic sense, not syntactic.

I tested the sentiment filter and Object-focused advice in a human-subject experiment

conducted in the popular game domain Mario Brothers. For details on Study 1, please see

Section 4.3.
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I started by classifying entire sentences as either positive/neutral or negative. I found

that positive and neutral classifications were accurate, but false negatives were a significant

problem. For the free-form explanations, the sentiment analysis correctly classified approx-

imately 86% of positive and neutral sentences. However, only 47% of sentences classified

as negative are truly negative (describing warnings of what not to do). Approximately half

of the sentences classified as negative are false negatives. For the structured explanations,

95% of the positive and neutral sentences were correctly classified, but 84% of the negative

classifications were false negatives.

Approximately half of the free-form sentences were classified as positive and neutral

while the other half were negative. Less than half of the structured explanations were

classified as positive or neutral. This is interesting because before each participant gave

a structured explanation they were prompted to give positive advice: “If Mario encoun-

ters an object, he should do this action.” If people conformed to the prompted format to

give positive advice and the sentiment classification were perfect, I would expect 100%

of the structured explanations to be classified as positive or neutral. Surprisingly, people

conformed to providing positive advice quite well since only 4/44 sentences were truly

warnings; however, people were not as good at providing one action for an object, often

providing sequences of actions.

If a warning like “Do not walk right into an enemy” is misclassified as advice, the agent

will walk right whenever an enemy is in its state space, which will injure or kill Mario. The

agent’s initial behavior will be the opposite of what the human teacher intended. After the

advice is followed a threshold number of times, the agent will rely on its experience and

avoid walking right into an enemy. If advice like “Jump on the enemy” is misclassified

as a warning by the sentiment filter, the agent will avoid jumping when an enemy is in its

state space, so its initial behavior will not be what the human teacher intended. The best

sentiment tools are approximately 85% accurate, so there will be misclassifications. While

I would prefer a perfectly accurate sentiment filter, a misclassification is not disastrous
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because it can be valuable for an agent to learn what not to do early so it does not repeat its

mistakes in the long term.

One reason false negatives are likely to occur is people include consequences or rea-

soning in their explanations. The following sentence from a participant was classified as a

warning (negative) even though it was meant as advice of what to do. “If you see a shell

shooting at you, jump to avoid it.”

False negatives are also likely to occur when an object or action associated with a

negative sentiment is included in an explanation. The following sentence is classified as

negative even though it describes what actions the agent should take. “There are holes in

the ground you should jump over.”

Positive and neutral classifications are quite accurate, but negative classifications should

not be trusted without further processing. To correct the false negatives, I split each sen-

tence into clauses and determined the sentiment of each clause. If at least half the clauses

were positive/neutral, I reclassified the sentence as positive. Consider the examples from

the previous two paragraphs. After being split into two clauses, ”If you see a shell shooting

at you,” is neutral; the clause, “jump to avoid it,” is negative. Similarly, “There are holes

in the ground,” is negative, but “you should jump over,” is neutral. Both false negatives can

now be reclassified correctly as advice of what to do.

The reclassification decision tree is shown in Figure 4. If a sentence is classified as

positive, it is used as advice of what actions to take. If a sentence is classified as negative,

the sentence is split into clauses; each clause is classified as positive or negative. If 50% or

more of the clauses are positive, the sentence is reclassified as advice of what to do. If the

sentence is still classified as negative, it is used as a warning of what not to do.

Tables 3.1 and 3.2 show the results of reclassifying sentences with negative sentiment.

By splitting negative sentences from free-form explanations into clauses and reclassifying,

78% of the false negatives were correctly reclassified as positive. All of the sentences that

remained negative were correctly classified. For structured explanations, splitting nega-
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Figure 3.1: Sentiment Classification Decision Tree.

True Classified Classified
Sentiment Positive or Neutral Negative

Positive or Neutral 21 (78%) 6 (22%)
Negative 0 (0%) 3 (100%)

Table 3.1: Free-Form Explanations after Reclassification

tive sentences into clauses and reclassifying caused 86% of false negatives to be correctly

classified as positive. Two out of the three sentences that remained negative were false

positives.

Reclassifying sentences with negative sentiment by splitting each sentence into clauses

increased the overall accuracy of classification from 56% to 83% for the free-form expla-

nations. Similarly, the accuracy of the structured explanation classifications was improved

from 50% to 86% by reclassifying sentences with negative sentiment.

Another approach to reducing false negatives would be to retrain the sentiment model

on language specific to the desired domain. Games are generally violent. Mario’s lexicon

includes killing, chasms, enemies, impalement, fireballs, and shooting – not activities or

objects thought of as positive in the mainstream English language.

True Classified Classified
Sentiment Positive or Neutral Negative

Positive or Neutral 19 (86%) 3 (14%)
Negative 2 (67%) 1 (33%)

Table 3.2: Structured Explanations after Reclassification
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From a traditional machine learning perspective, since the only concern is the agent’s

performance in a particular domain, the language model should be retrained for the do-

main. The data used to train the model should be representative of the data the agent will

encounter in the future. However, from a human-agent interaction perspective, the answer

is not as clear. Should we think of the future data as commands in a domain-specific lexi-

con or as language people might use? A goal of Interactive Machine Learning is to bring

the algorithm to the person instead of forcing the person to come to the algorithm. If the

model is retrained for a specific domain and a person is required to speak in a limited,

domain-specific vocabulary, the person’s natural behavior is altered to make the algorithm

work. If the model is trained on all of mainstream English and a person is allowed to say

anything, the person is able to teach an agent using a more natural behavior. People are

unlikely to limit themselves to a specific lexicon - they will use words they are familiar

with, so it is beneficial for the sentiment model to have an understanding of the mainstream

use of the language. Also, the words people choose inform what they think of situations.

“The monster is chasing me” is negative, but “The boy is chasing me” is neutral.

3.2.1 A Question of Ethics

Another thing to consider: is there an ethical question? Here, sentiment is applied to

determine ‘what to do’ and ‘what not to do.’ This is essentially the same as the field of

ethics. Ethics determines what actions we should take or not take. The Merriam-Webster

dictionary defines of ethics as “the discipline dealing with what is good and bad and with

moral duty and obligation.” The sentiment analysis tool is acting as the ethical decision-

maker for the agent.

If we retrain the sentiment analysis model for violent game domains in which the agent

kills other actors, we are essentially building an agent that thinks killing is good, because

the sentiment classification says so. No one really cares if an agent kills in a video game

because the consequences are not real to us. An agent cannot distinguish between real
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scenarios and simulations; the consequences of punishments and rewards are always real

for the agent, regardless of domain.

Using sentiment analysis as the ethical decision-making ‘module’ of A.I. agents is an

interesting thought, but with the potential for easy abuse. Depending on how accurate the

sentiment analysis model is, the agent may have a good chance of acting in a way most

people would consider a fairly ethical manner in line with mainstream behavior. How-

ever, retraining the sentiment model could radically change the agent’s behavior; whoever

chooses the data to retrain the model would be capable of determining the agent’s ethical

philosophy, at least in the short term.

3.2.2 Conclusion on Sentiment from Study 1

Sentiment analysis can be used to filter natural language explanations into advice of what

to do and warnings of what not to do. Negative classifications should not be immediately

trusted since there is a high likelihood of false negatives. Splitting sentences with negative

sentiment into clauses and reclassifying increased the overall accuracy of the sentiment

filter by approximately 30% to around 85%. While a sentiment filter can process free-form

explanations, many of the sentences are not actionable and cannot be directly utilized as

advice.

3.3 Sentiment Analysis as a Critique Filter

During Study 3 in Chapter 6, one of the agents learned from critique. A person would

watch the agent act and provide positive and negative critique, such as “good job,” or “bad

job.” It is not intuitive to restrict people to only saying “good” and “bad” because 1) the

human teachers need to be taught exactly which words they can say before interacting with

the agent, and 2) the human teachers need remember to conform to that behavior while

interacting with the agent. Study 1 (Section 4.4.2) shows that increasing the cognitive load

by requiring a certain format of an explanation leads to poor quality of instructions given
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by the human, even in a non-interactive setting. In order to create an intuitive interaction

for the human and get high-quality instructions, researchers should try to create agents that

learn from an unrestricted vocabulary.

Using sentiment analysis to filter critique into positive or negative allowed people to

provide verbal natural language critique without restricting their vocabulary. For example,

a participant could give varied critique such as, “Good job,” “That’s great,” “That is a bad

idea,” and “You’re wasting time”. The critique agent used Policy Shaping to incorporate

the positive and negative feedback.

Examples of critique provided during the experiment along with the sentiment classi-

fication are provided in Table 3.3. Sentiment analysis allows the agent to understand that

statements like “they’re dead” and “turn around” are bad and mean the agent should make

different decisions in the future. One drawback of allowing people to use an unrestricted

vocabulary is it opens the door to ambiguous feedback. If someone angrily says, “that’s it,”

the feedback would indicate that the person is very frustrated and fed up with the agent;

however, if someone says “that’s it” in an encouraging manner, the feedback would be pos-

itive. Sentiment analysis that solely uses the transcribed text on individual sentences has

no way to distinguish correctly between the two.

Table 3.3: Critique Given in Study 3 and Associated Sentiment Classification

Critique Sentiment
“yes that’s right” positive
“turn around” negative
“good job” positive
“keep going back” positive
“okay come on” negative
“that’s it” negative
“they’re dead” negative
“good I’m happy” positive

Details of the critique agent and experimental method can be found in Section 6.4.
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3.3.1 Conclusion on Sentiment from Study 3

Sentiment analysis can be used the filter natural language critique into positive and negative

without restricting the vocabulary available to the human teacher.

3.4 Prosody

The purpose of this section is to determine whether speech features can be used to predict

frustration. Currently in human-subject research, people are required to complete a task and

then score aspects of their experience, such as frustration, using subjective metrics like the

NASA-TLX questionnaire. It would be helpful if there existed a real-time, objective metric

for frustration based on nothing more than an analysis of the user’s voice. Eventually, field

of IML may benefit from incorporating emotional analysis into agents, a feat which has not

yet been accomplished.

During Study 3 in Chapter 6, the audio was recorded of each participant training each

agent. After participants trained an agent, they scored their frustration of working with the

agent. Details of the study can be found in Section 6.4.

The audio recordings were analyzed using the Praat NLP software, which took the

recordings as input and output a time history of NLP features including the pitch, inten-

sity, and the first to fifth formants. Pitch is the frequency of the sound wave; females

generally have higher-pitched voices than males. Intensity is the directional power car-

ried by sound waves, and is related to the perceived loudness of a sound. In general, a

higher intensity translates to a louder sound. However, a sound wave outside of a human’s

hearing range may have a non-zero intensity but zero loudness because it is not be perceiv-

able by humans [38]. A formant is a concentration of energy around a frequency. Many

formants exist simultaneously in a vocal signal and are numbered incrementally from the

lowest formant frequency; formants are separated by a span of approximately 200-1100

Hz. Formants vary through time based on factors such as if the person is vocalizing an
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oral or nasal vowel or consonant. For example, antiresonances (i.e. high impedence or

resistance at a frequency) in the vocal tract can lead to missing or attenuated formants with

oral consonants, while resonance in the nasal cavity can lead to additional formants with

nasal vowels [39]. Changes to the constriction of the vocal tract, larynx depression, as well

as the position of the tongue and lips can change the formant frequencies.

For each NLP feature, the minimum, maximum, average, and standard deviation were

calculated for the feature and its first and second derivatives. This resulted in 84 speech

features for every audio recording, which had one associated frustration score.

First, I checked each of the 84 features separately to see if any were correlated with

frustration. Four features were correlated with frustration: the minimum and standard de-

viation values of both the third and fifth formants. However, these were not strong correla-

tions since all were less than 0.43, as seen in Table 3.4.

Table 3.4: Correlations between individual speech features and frustration

Speech Feature Accept/Reject p-value ρ

Formant 3 Minimum Reject 0.030 0.320

Formant 3 σ Reject 0.032 -0.317

Formant 5 Minimum Reject 0.004 0.422

Formant 3 σ Reject 0.017 -0.350

Since none of the individual features were strongly correlated with frustration, I cre-

ated a supervised learning model that used several features to predict frustration. I used an

ensemble random forest regression model trained on the top four most important features,

as seen in Figure 3.2. Importance was calculated using the scikit package in python. As the

minimum and standard deviation values of both the third and fifth formants were individ-

ually correlated with frustration, it is unsurprising that these features were in the top seven

most important features.
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Figure 3.2: Prosody Feature Importance Ranking. D1: First Derivative. D2: Second
Derivative.

The top four features with the highest calculated importance were: the minimum value

of the fifth formant, the minimum pitch, the standard deviation of the fifth formant, and the

minimum value of the first derivative of the intensity.

Multiple studies have found that a high pitch and/or intensity (i.e. a “raised voice”) are

important predictors of frustration [40, 41, 42]. However, the results here show this is not

the case. A low pitch paired with an unchanging intensity (loudness), be it high or low,

are key features to predicting frustration. In my results, high pitch was ranked as the 20th

feature by importance, and high intensity was even further down the list. This discrepancy

indicates it is likely that people express frustration differently toward an IML agent than

they would to another person.
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It is algorithmically convenient that three of the top four features were minimum val-

ues as it is easy to keep track of ‘low watermarks’ in real time - only the lowest value

needs to be stored. There is a method of keeping a running value of the standard deviation

without storing a time history in memory; I recommend that approach be used for space

considerations.

The four features with the highest relative importance were used to train an ensemble

random forest regression model. The results are seen in Figure 3.3. The test data had a

Spearman correlation value between the recorded and predicted values of 0.935.
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Figure 3.3: Ensemble Random Forest Model Results using Top Four Most Important Fea-
tures.

3.4.1 Conclusion on Prosody from Study 3

An audio signal can be analyzed to predict frustration using NLP calculations rather than

subjective metrics. This will allow IML algorithms in the future to have an objective,

real-time estimate of the human’s frustration based solely on how the person is speaking.

The most important speech features for predicting frustration with IML agents differs from

those used for predicting frustration with another person. It is likely that people express
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frustration differently toward an IML agent than they would to another person, which is

important to take into account when building the frustration prediction model.

3.5 RQ Results Summary

• Sentiment analysis can be used to filter natural language explanations into advice of

what to do and warnings of what not to do.

– Validation: Study 1.

– Supports thesis: Part 2 (efficiency) - this work enables us to more efficiently

use verbal instruction.

• Sentiment analysis from the NLP field can be used to classify natural language cri-

tique into positive and negative.

– Validation: Study 2.

– Supports thesis: Part 2 (efficiency) - this work enables us to more efficiently

use verbal instruction.

• Sentiment analysis from the NLP field can be used to allow human teachers to pro-

vide critique using a nearly unrestricted vocabulary.

– Validation: Study 3.

– Supports thesis: Part 2 (efficiency) - this work expands the vocabulary available

to the instructor when using verbal critique. Part 1 (human experience) - a less-

restricted vocabulary creates a more intuitive experience for the human.

• As few as 4 prosodic features can be used to train a model to predict frustration based

on objective measures in place of NASA-TLX subjective questions.

– Validation: Study 3.
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– Supports thesis: Part 2 (efficiency) - this work explored a method to efficiently

use verbal instruction to objectively measure frustration instead of relying on

subjective questionnaires after task completion.

– Future work: Future IML researchers can determine the best methods of incor-

porating prosodic frustration measures into IML algorithms.

31



CHAPTER 4

STUDY 1: LEARNING FROM A PRIORI EXPLANATIONS

Most machine learning techniques that incorporate explanations require people to use a

limited vocabulary and provide state information, even if it is not intuitive. This chapter

discusses a software agent that learned to play the Mario Bros. game using explanations.

The goals to improve learning from explanations were two-fold: to filter explanations into

advice and warnings, and to learn policies from sentences without state information. I used

sentiment analysis to filter explanations into advice of what to do and warnings of what

to avoid. I developed Object-focused advice to represent what actions the agent should

take when dealing with objects. An RL agent used Object-focused advice to learn policies

that maximized its reward. After mitigating false negatives, using sentiment as a filter was

approximately 85% accurate. Object-focused advice performed better than when no advice

was given, the agent learned where to apply the advice, and the agent could recover from

adversarial advice. I also found the method of interaction should be designed to ease the

cognitive load of the human teacher or the advice may be of poor quality.

4.1 Introduction

While there are many ways people teach, including demonstrations and critique, this chap-

ter focuses on learning from explanations. Learning from natural language explanations

can decrease the amount of time and effort required by a human teacher. Giving a few

simple sentences is less work than demonstrating all possible situations or monitoring an

agent to provide critique. Because people are naturally skilled at harsh dimensionality re-

duction, learning from language automatically builds human-agent interaction that plays to

the strengths of both the human teacher and robotic student. Ideally, the person concisely

tells the robot what is most important to pay attention to, and the robot uses its computa-
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tional power to develop policies that maximize performance. Learning from explanations

is helpful because people may not be able to provide demonstrations if they are elderly,

injured, or the task is not safe for people to physically attempt. Additionally, a person does

not have to be present to teach the robot - telecommunication or written instructions work

just as well. Another attractive quality of learning from natural language explanations is

it is generalizable across domains. Even if the domain changes, people will use the same

language with the same meanings and structure to describe new tasks.

There are many challenges when learning from natural language explanations. People

do not limit themselves to a domain-specific vocabulary - people make their own labels for

objects and actions. Different people use different words for the same concept. In addition

to describing things to do or avoid, explanations also tend to include information that is not

actionable, like background knowledge. Many natural language explanations also do not

include state information, which makes it very difficult to determine where and when to

use the advice.

A primary problem addressed in this chapter focuses on an area of learning from ex-

planations that has been discussed little in previous research - how to learn from human

explanations that lack state information. This work contributes to this through the develop-

ment of Object-focused advice, a method in which human advice is tied to objects instead

of specific states and is generalized over the object’s state space. Consider this explanation

from Mario: “Mario should jump on enemies.” While this advice would easily be under-

stood by a human student, it proves problematic for reinforcement learning agents. The

teacher did not specify state information like where the enemy needs to be with respect

to Mario and what Mario’s velocity should be. Knowing that Mario should jump on an

enemy is valuable information, but how can an agent make use of it if no state information

is provided?

Solving this challenge is worthwhile since people often describe tasks by talking about

objects. The following is an explanation a person might give to describe how to play Mario
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that links an object, like an enemy, to an action that should be used around that object, like

jumping on an enemy. We define this to be advice because it tells the agent what actions to

take.

The goal is to reach the end of the level to the right quickly. Mario should

jump right on enemies. Mario should jump to collect coins, and jump over

chasms.

The human teacher does not need to provide state information, like where the enemy is

with respect to Mario. A person might also provide warnings in an explanation to teach

the agent what actions to avoid.

Do not fall into chasms.

Most agents that attempt to learn from explanations require the input to be in a specific

format, mainly advice of what actions to take in specific states. We aim to learn from

natural language explanations that do not necessarily include state-specific information or

follow a rigid format.

Three types of explanations were tested with an increasing level of structure and infor-

mation provided to each participant. We found that the cognitive load of the explanation

format adversely affected the quality of the advice. The results show that Object-focused

advice performs better than when no advice is given, the agent can learn where to apply

the advice in the state space, and the agent can recover from adversarial advice. Also,

providing warnings in addition to advice improved the agent’s performance.

4.1.1 Research Questions

This work investigates methods to turn natural language explanations into actionable in-

struction for the IML agent to use.

• Can we learn policies from NL sentences that are not state specific?
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• Can we link objects to actions and generalize over the state space?

• Does the format of asking a person for an explanation impact the quality of the ex-

planation?

4.1.2 Algorithm Development

In this chapter, an algorithm, Object-focused advice, will be developed to connect human

explanations to RL.

4.1.3 Method Summary

The research questions in this chapter were tested in Study 1, which was a human-subject

experiment conducted in the Mario Bros. domain.

4.2 Algorithm Development: Object-Focused Human Advice

Object-focused advice ties actions to objects instead of specific states and generalizes the

advice over the object’s state space [43]. Before the agent starts learning, a person instructs

the agent what action to take when dealing with an object. For example, in the Mario Bros.

game, a person could advise the agent to jump right (action) when encountering a coin

(object). The person does not need to specify state information, like where a coin needs

to be with respect to Mario, in order to take the advised action. The agent will take the

action the human advised a specified number of times, regardless of its experience, before

following normal exploitation. The job of the sentiment filter is to tell the agent whether a

sentence should be treated as advice or a warning.

It is likely this type of general, Object-focused advice will only apply to some subset of

the state space. The advice of jumping right will gain a reward if the coin is to the right of

Mario, but will not work if the coin is to Mario’s left. The agent determines the applicable

parts of the state space and how good the advice is through experience. Following human

advice occurs only during exploitation and does not interfere with exploration. Another
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way of thinking about this is following advice initially supplants exploitation with a form

of exploration directed by a human. This is separate from, and in addition to, ε-greedy

exploration. Since ε-greedy exploration is used, Object-focused advice has the convergence

properties of ε-greedy exploration.

Using Object-focused advice that is independent of the object’s state allows the person

to perform object-level generalization and abstraction instead of the agent. Generalization

is a vital part of induction because it is a way to extend the knowledge learned from one

particular example to many others. Generalizing over the entire state space of an object

may seem drastic, but it is a way to quickly operationalize and learn from human explana-

tions without state information. It is unrealistic to expect people to provide detailed state

information when giving advice. A person might say, “Jump on the enemy,” but will not

say, “Hold the jump key for 10 frames when Mario is within 2.5 horizontal blocks of an en-

emy with a velocity of 3.2 units/frame.” The agent will take the action advice of “Jump on

the enemy,” and determine to which portions of the state space, if any, the advice applies.

4.2.1 Advice

The first step is to get advice from a person that describes what actions the agent should

take. Advice is given to the algorithm as two lists: one containing the objects and the other

the advised actions. Advice can be provided for as many or as few objects in the state space

as a person decides. If the agent encounters an object for which advice was not given, the

policy is initialized without advice and the agent learns from exploration and experience.

Next, an object policy must be created for each object a person gave advice for. If a

person advises the agent to jump when dealing with coins, an empty object policy table is

created that sets the advised action to ‘jump’. Whenever a new object state is encountered

(like the first time Mario sees a coin to the northeast), a new state entry is made in the coin’s

policy table with specific state values like the x- and y-positions of the coin with respect

to Mario. This new state entry includes a value that counts the number of times the advice
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has been followed as well as a threshold number of times the advice should be followed.

This is what allows the agent to determine which part of the state space the advice applies

- it tries the advice a set number of times everywhere in the state space, and the resulting

Q-values reflect whether the advice is good or bad in that region of the object’s state space.

For example, the first twenty-five times Mario sees a coin to the northeast, Mario would

follow the advice to jump and update the Q-values based on the earned reward. The first

twenty-five times Mario sees a coin to the southwest, Mario would also follow the advice

to jump.

To include Object-focused advice in the OF-Q algorithm, an extra Q-value was created

that corresponds to advice, not a specific action. This indicator Q-value is initialized to a

value much larger than any reward the agent could achieve in the state space. During action

selection in Equation 2, this indicator Q-value forces the policy to choose the advice. While

the advice is followed, the Q-values that correspond to each action are updated as expected.

The indicator Q-value is never updated, nor does it affect the outcome of the Q updates in

Equation 1. After the advice has been followed some set number of times, the indicator

Q-value is removed and the policy chooses exploitation actions based on experience.

For every time step in game execution, the agent must choose an action (Algorithm

1). First, object recognition is used to determine which objects are currently in the state.

Reward allocation from the last time step is completed so the reward is applied to the proper

objects’ policies. Then, ε-greedy exploration is utilized. During exploitation, if advice has

been followed for an object less than a set number of times, the large indicator Q-value will

force the advised action to be chosen. ε is exponentially decayed at the end of each level.

Two interesting aspects of Object-focused advice are its ability to recover from adver-

sarial advice and its variable ‘trust’ in a person. Following advice a set number of times

and then relying on experience allows the agent to recover from adversarial advice, which

is antagonistic input that instructs the agent to take an action expected to result in the least

reward (greatest punishment). An example of adversarial advice in the Mario domain is
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Algorithm 1 Get Action
1: function GETACTION(reward, environment)
2: objects = getObjectsInStateSpace(environment)
3: for each object ∈ objectsOld do
4: Reward allocation: update Q values
5: If advice followed, increment timesAdviceTried

6: for each object ∈ objects do
7: If this object has never been seen by the agent,
8: create a new object policy
9: If this object has never been seen in this state,

10: add a state entry to the object’s policy
11: if rand(0, 1) > ε then . Exploit
12: Initialize action and Qmax ← −∞
13: for each object ∈ objects do
14: qi ← maxi(Q(object.state, ai))
15: if qi > Qmax then
16: Qmax ← qi, action = ai

17: else . Explore
18: action = random{actions}
19: objectsOld = objects

standing still while an enemy approaches. Also, Object-focused advice lets the agent’s

‘trust’ in the human vary across the domain by treating each piece of advice without preju-

dice; if a person provides one piece of good advice along with eight pieces of bad advice,

the agent will use its experience to build policies that reflect the good and ignore the bad.

4.2.2 Warnings and Multiple Objects

Advice describes what to do, while warnings describe what not to do. Similar to advice,

warnings of what not to do are incorporated by using an indicator Q-value. Instead of

a large positive value, a large negative indicator value is used. Object-focused advice, as

previously described, chooses an action by looking at each object separately. To incorporate

warnings, all objects in the state space are taken into account together by summing up the

Q-values associated with each action across all objects. Choosing an action by taking

multiple objects into account allows us to get an idea of the overall severity of each action.
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Consider the case of both a coin and enemy in the state space shown in Tables 4.1 and

4.2. Assume a person gave advice to move right for coins and jump right for enemies, and

warned the agent to not move left for coins or walk right for enemies. If each object is

considered separately and no warnings are used, the agent may follow the advice for coins

to move right, which would cause Mario to walk into an enemy and be injured. This is

solved by considering all objects in the state space and including warnings about which

actions to avoid.

Table 4.1 shows how multiple objects are considered by summing Q-values across all

objects in the state space. The indicator Q-values for advised actions are +2,000, warnings

are -2,000, and the default initial value when no information is given is 0. In this example,

the initial Q-values will result in the agent choosing to jump right since it has the maximum

Q-value in the total row. Moving right has a summed Q-value of zero because the action

was advised for coins but warned against for enemies (2, 000 − 2, 000 = 0). Moving

left has the worst summed Q-value because it was warned against for coins. Combining

multiple objects still produces a ranked preference of actions; jumping right (Q = 2, 000) is

better than walking right (Q = 0), which is in turn better than moving left (Q = −2, 000).

Initially, the agent does not have a sense of severity; it does not know that injuring Mario

is much worse than missing a coin. This is reflected in the learned Q-values.

Table 4.2 shows the learned Q-values for the same example. Eventually, the indicator

Q-values will not be added in and the agent will rely on experience. Jumping right has the

largest summed Q-value (Q = 10 + 50 = 60). Notice that the agent expects moving left

(Q = −1 + 0 = −1) to be better than moving right (Q = 10 − 50 = −40), which is not

the same order as the initial action preferences. Even if the agent moves right and collects

a coin, it will run into an enemy and be injured; moving left results in a small Q-value hit.

Summing an action’s Q-values across multiple objects allows the agent to learn the

importance and severity of all given advice and warnings. In Table 4.2, the total row shows

the agent has learned that the warning to avoid walking right into an enemy is much more
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Table 4.1: Example of Multiple Objects and Warnings. Initial Q-values with indicators.

Object JumpRight Right Left
Coin 0 2,000 -2,000

Enemy 2,000 -2,000 0
Total 2,000 0 -2,000

Table 4.2: Example of Multiple Objects and Warnings. Learned Q-values.

Object JumpRight Right Left
Coin 10 10 -1

Enemy 50 -50 0
Total 60 -40 -1

severe than walking left near a coin.

4.3 Study 1: Method

Two main goals of the human-subject experiment were to determine if sentiment analysis

could be used as a natural language filter to inform action selection (see Section 3.2) and

assess the performance of Object-focused advice.

The experiment had four phases: familiarization, free-form explanations, structured

explanations, and a fill-in-the-blank survey. In post-processing, the natural language expla-

nations were filtered through a sentiment analysis to determine if each sentence was advice

of what to do or a warning of what not to do. Once advice and warnings were in the form or

linking an object to an action (OF-advice), an agent was trained using the advice to shape

its initial action selection. This process is shown in Figure 4.1. The cumulative reward for

each object was analyzed to evaluate the agent’s performance over 500 trials.

Collect	natural	
language	

explana/on	

Use	Sen/ment	
to	filter	into	
advice	and	
warnings	

Create	Object-
focused	advice	

Train	agent:	
Object-focused	
Q-learning	

Figure 4.1: Work Flow Chart
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4.3.1 Mario Domain

The experiment was conducted using the Mario Bros. platform from the 2009 Mario AI

Competition [44], as seen in Figure 4.2. It is a partially-observable environment in which

Mario must collect rewards and avoid being harmed or killed while moving toward the

goal to the right. Mario wins a level by reaching the goal, and loses by running out of

time, falling into a chasm, or being repeatedly injured by an enemy. The primitive actions

are Right, Left, Jump, and Speed. Multiple actions can be used at once. Momentum is

incorporated into Mario’s dynamics, so when some keys are held down, the results are

different than pressing a key once. Before each level begins, the Mario platform generates

the level using several parameters, including an integer that represents the level’s difficulty.

The difficulty determines the number and types of obstacles and enemies in the level. For

example, a chasm is too difficult to appear in levels with a difficulty of zero.

Figure 4.2: A Participant’s View of the Mario Bros. Game

The agent defines objects in a generalized way, which enables the agent adapt to new

objects in the environment. Each object’s state includes x- and y-positions with respect to

Mario’s location as well as an integer code from the Mario environment that indicates the

type of object (coin, Goomba, etc.). The Mario Bros. platform provides a 22x22 grid of

integers at every time step that shows the environmental objects surrounding Mario, who

appears at the center of each grid. The platform also provides an integer code for each

visible enemy as well as the continuous x- and y-positions with respect to Mario. A subset
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of the available information was used in the representation. Environmental objects like

coins were included in the state space if they appeared in the 3x3 grid directly surrounding

Mario’s location, while enemies were included if they appeared anywhere on the screen.

This allowed us to determine how advice performed both with a reflexive agent that looked

directly around Mario and policies that looked at the whole screen. The only value of

Mario’s state that was included by the agent was whether Mario could jump at each time

step. Representing Mario in this manner creates a state space of approximately 1025 states.

4.3.2 Familiarization

In the first step of the experimental protocol, participants played Mario until they were

comfortable and had at least played one level each at a difficulty of 0, 1, and 2. This

ensured each person saw the same objects before providing advice.

4.3.3 Human explanations

Explanations were collected from human participants in three successive trials, in order of

increasing structure and provided information, as seen in Figure 4.3. Taking explanations

in the order of increasing structure and provided information allowed the most natural and

intuitive human feedback at each step. Details of each type of explanation is provided in

the following subsections.

Figure 4.3: Comparison of Explanation Formats.
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Free-form explanations

The free-form explanation was collected first since no information was given to the human

teacher - this means the participant’s explanation was not tainted by vocabulary, expected

information, or a structure imposed by the researcher. The researcher asked the participant

the following question.

“Imagine I know nothing about how to play Mario. Can you explain to me how

to play Mario?”

No guidance or instruction was provided to the participant indicating how to respond.

The participants gave their explanations in natural language, and the explanations were

collected as audio recordings.

Structured explanations

For the second explanation, the participants were prompted to provide certain information.

At this point, the responses were still in natural language. The participants could ignore,

loosely follow, or attempt to fulfill the prompt. This type of structured explanation gives

an approximation of a robotic agent asking an end-user to provide Object-focused advice.

The researcher asked participants the following question.

“There are many objects in Mario like coins and different types of enemies.

For each object, can you provide one action that you would advise someone

to use when dealing with that object? Try to fill in the blank: When Mario

encounters an object, he should do this action.”

Lists of objects and actions were not provided to the participants - they spoke about

what they remembered in natural language, including their own labels for objects and ac-

tions. The researcher collected audio recordings of the responses.
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Survey explanations

Finally, participants provided advice by completing a fill-in-the-blank survey. The partic-

ipants were given a list of objects and actions, including pictures of the objects, and were

asked to provide one advised action for each object. Participants were told they did not have

to provide advice for every listed object - only the objects they thought were important. The

advice was used to train agents offline; the results are in the following section.

4.3.4 Post-Processing

Sentiment Analysis as a Filter

We used a sentiment analysis to filter natural language explanations into advice and warn-

ings. Sentences classified with positive or neutral sentiment are considered to be advice

of actions to take. Sentences with negative sentiment are treated as warnings of actions to

avoid. Detailed results of the sentiment filter are found in Section 3.2.

Object-Focused Advice and Warnings

Once each sentence in an explanation has been filtered into positive or neutral sentiment

(advice) or negative sentiment (a warning), the explanation can be converted into Object-

focused advice. If a sentence is classified as advice or a warning and contains an object

and action, the paired object and action are added to lists containing either the advice

or warnings. Multiple actions can be associated with each object. To test the machine

learning performance, the survey data were used in which the grounding from language to

object/action was provided. Further work on grounding and ambiguity are out of the scope

of our research questions.
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Object-Focused Q-Learning

Once the Object-focused advice was created, it was used to initialize the OF-Q agent.

Each agent was trained using the Object-focused advice and OF-Q algorithms discussed in

Section 4.2. The author of this paper provided the adversarial advice, which is advice meant

to minimize the agent’s performance. An agent using no advice was used as a baseline for

comparison.

The results were averaged over 100 trials. A sliding window average with a width of 25

trials was used. The parameters used were α = 0.1, γ = 0.95, ε0 = 0.8, and εmin = 0.15.

ε-greedy exploration was used.

4.4 Study 1: Results and Discussion

The experiment had five participants who provided Object-focused advice; one agent was

trained per participant. The author of this paper provided the adversarial advice. An agent

using no advice was used as a baseline for comparison. The labels of ‘good’, ‘mediocre’,

and ‘bad’ were applied to participants’ advice by looking at the learned policy’s cumulative

reward. The participants were asked to give the best advice they could, but some resulted

in better or worse policies.

In OF-Q, each object class has its own reward function. Therefore, in addition to an-

alyzing the total cumulative reward for the entire state space, we evaluate the reward for

each object’s state space. Policies are learned for each object.

In the following sections, we will discuss the nature of the explanations, show the ac-

curacy of the sentiment filter, and discuss the agent’s performance using Object-focused

advice.
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4.4.1 Observations on the nature of explanations

The natural language explanations from participants were varied in many ways, including

the amount of prior knowledge the agent was assumed to have, the level of detail provided,

and whether primitive or higher-level actions were described. However, the similarities

across explanations were intriguing. All of the participants spoke in terms of objects, not

state space variables; none of the participants gave numbers to specify particulars of the

state like velocity and distance, supporting the claim that it is useful to be able to learn

from explanations that are not state-specific.

Information people did not provide

The most striking observation from the natural language explanations was none of the

participants provided any numbers to specify distance, relative position, velocity, etc. This

reinforces the idea that it is useful for an agent to be able to learn from explanations that do

not contain specific state information.

If an object or situation is considered too easy and obvious to deal with, people tend not

to mention it in their explanations. Almost no one described how Mario should deal with

steps in the natural language explanations.

Extra information people provided

For the survey, each participant provided advice for every available object, even though

they were told they did not have to (and even if they had not encountered the object during

the familiarization phase).

Several participants gave visual descriptions of how to identify what objects they were

talking about - how to link their labels to objects. “You are a guy in red clothes.” “Enemies

look like people walking around.” “A pit is when there is no floor to support you.” It would

be interesting to use this type of explanation, but the agent would need to start with much

more background knowledge.
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Some participants described a sequence of actions when dealing with objects. They

wanted to advise Mario to speed up and then jump over a chasm, or go under and then jump

to hit a brick. The advice developed here is a simple link from one object to one action - it

cannot currently take full advantage of the nuances of natural language explanations.

Many participants provided advice from their prior knowledge of similar domains. The

most common was advice explaining how to use tunnels to reach secret levels, which was

not possible in the experiment’s version of Mario, and was therefore never seen in the

familiarization phase. One participant assumed the agent would know about right-scrolling

games, and would apply that knowledge to Mario.

Most participants assumed the actions belong to the domain, not the agent. A couple of

participants explained the effect of each key - each primitive action of the game. It was not

assumed that these were the student’s primitive actions, but rather actions the student would

need to learn. If a teacher were to explain math operators like addition and multiplication,

she would teach how the operators work; the operators would exist in the math domain, not

the student’s natural, inborn set of actions.

Differences in experience

The amount of prior knowledge the agent was assumed to have varied drastically across

participants. The participant with the least video game experience provided the most de-

tails, including giving advice in terms of primitive actions. The participant with the most

video game experience provided the fewest details and assumed the agent had much prior

knowledge, including which actions were available and what each action accomplished.

The least experienced participant often provided a piece of action advice followed im-

mediately by the corresponding primitive action. This led to an interesting error: the natural

language explanation was correct, but the given primitive action key was wrong. It is easy

to accidentally say the “s” key instead of the “a” key when little meaning is associated with

“s” and “a”. It is much harder to mistake the word “jump” for “fireball” when speaking.
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Enabling agents to learn from natural language explanations may reduce errors compared

to attempting to make normal humans speak ‘computer’. Agents will be able to learn from

many more sources in more environments if people do not have to change their natural

teaching methods.

Generalizations

In natural language explanations, participants tended to generalize behavior across objects

by suggesting the same policy for many objects. Some generalizations were, “enemies”,

“obstacles”, and “things coming at you”. People are good at generalization. It is powerful if

an agent can take a few generalized sentences and extract initial policies for many objects.

In the free-form and structured explanations, participants often discussed actions like

“jump on” and “get”, as in “jump on an enemy” or “get the coin”. These actions are a

higher-level of abstraction than the primitive actions, in which a person would have to

choose between “jump right” and “jump left”. It may be better to allow people to specify

higher-order actions that naturally generalize across the state space instead of making them

choose a primitive action. Mario can get the coin if it is anywhere on the screen by decreas-

ing the distance between Mario and the coin; Mario can get a coin by jumping to the right

if the coin is to the right of Mario. The advice developed here used primitive actions. The

explanations of “jump on” and “get” might also imply a planner could be helpful instead

of defining higher-level actions in the future. If the effects of the primitive actions were

known, a planner could specify a sequence of actions necessary for Mario to jump such

that it landed on an enemy’s head or navigated to a coin’s location. Alternatively, it would

help to consider the possible actions in the domain as separate from the agent’s actions.

Human-agent interaction

The experimenter let the participants continue speaking until they were done. They seemed

to expect to be cut off or given some sort of feedback or indication that they had explained
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adequately and enough. Explanations died off awkwardly and uncertainly. If they were ex-

plaining directly to a robot, feedback, transparency, and gestures could help tell the teacher

that the knowledge is understood, the teacher can continue, finish, or change explanation

style.

Many participants provided reasons for actions, as if they needed to explain the meaning

of actions to the agent or convince the agent why an action should be taken. “Jump on an

enemy so you don’t lose a life.” Future work with this RL agent may try to convert reasons

for actions into reward information - losing a life is bad, which should give the agent a

negative reward, so the agent should jump on an enemy to avoid a negative reward.

4.4.2 Object-Focused Advice

The following sections discuss the performance of Object-focused advice. First, we discuss

how the quality of advice varied given different explanation formats. Then, we show the

cumulative reward earned over an object’s entire state space, how the agent learns where

the advice applies after generalizing over the object’s state, and then look closer at one

particular subset of an object’s state space.

Advice from Explanation Formats

Object Coin Ground Tunnel Brick Goomba
Winged	
Goomba Red	Koopa Green	Koopa Bullet	Bill Spiky Enemy	Flower Shell Chasm Goal

Freeform P1 collect jumpOver jump jump,	fireball jump,	fireball jump,	fireball jump,	fireball jump,	fireball jump,	fireball jump,	fireball ? right
P2 collect hitBottom jump,	don'tRunInto jump,	don'tRunInto
P3 collect jumpOver jumpOver jumpOver jumpOver jumpOver jumpOver jumpOver ? right
P4 collect,	jump jump jump jump jump jump jump jump ?
P5

Structured P1 jump jump jump jump jump jump jump,JSOver jump
P2 runInto jump jump jump jump jump jump jump jump jump landOn,jump
P3 walkThrough jump jump jump jump jump jump jump jump ? jump
P4 jump jump jump jump jump jump jump jump jump jump jumpOver
P5 jump jump jump waitProceedCautiously jump

Survey P1 SpeedRight SpeedRight Jump Jump JumpSpeed JRS JumpSpeed JumpSpeed Still JRS JRS Jump JRS JRS
P2 Right Right JumpRight Jump Jump Still Jump Jump Still Jump Still Jump JRS SpeedRight
P3 Right Right JumpRight JumpSpeed JumpRight Still JumpRight JumpRight Still JumpRight JRS JumpRight JRS JumpRight
P4 Right Right JumpRight Jump JumpRight Still JumpRight JumpRight Still JRS JRS JumpRight JRS Still
P5 JumpRight Right JumpRight Jump JumpSpeed JumpSpeed JumpRight JumpRight JRS JumpRight JRS JumpRight JRS Jump

Figure 4.4: Object-Focused Advice for each explanation type. Note that the responses
for the free-form and survey responses are varied, while almost all of the structured re-
sponses are to jump. The poor performance of the structured responses is likely due to
the increased cognitive load of that explanation format. Warnings are shown in red and
underlined. P#=Participant#. JRS=JumpRightSpeed. JS=JumpSpeed. The question marks
indicate the participant did not specify if shells were considered enemies.
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Figure 4.4 shows the Object-focused advice and warnings for each participant and each

form of explanation. There are many items worth noting, including the amount of action-

able advice for each explanation type and the quality of the advice.

The amount of actionable advice increased with the structure of the explanation format.

It is expected that free-form explanations will contain fewer actionable sentences since the

sentences can contain any information in any format. The structured explanations prompt

teachers to link objects to actions, so more sentences are expected to contain actionable

advice. Every survey entry will be actionable since teachers can only choose from a list

of actions for each object. Each participant provided advice for every object in the survey

explanation, even though it was not required and they did not see all of the objects during

the familiarization phase. Even though chasms were the leading cause of death in Mario,

no one provided advice about chasms in the free-form explanations, three people did in the

structured explanations, and everyone did in the survey.

Something very interesting happened with the structured explanations - while the num-

ber of actionable sentences increased from 19 to 27 compared to free-form explanations,

the quality and variation of the advice decreased as seen in Figure 4.4. In the free-form

explanations, the advice had a somewhat varied vocabulary including collect, jump, right,

hitBottom, fireball, don’t run into, and jump over. For the structured explanations, almost

every piece of advice was jump. In Mario, jumping vertically with no horizontal velocity

will eventually lead to losing the level. For the survey explanations, the variation in advice

increased again.

The poor advice from the structured explanations is likely due to the increased cognitive

load of the explanation format. Free-form explanations do not force people to provide spe-

cific content or formulate an answer in a particular format. People focus entirely on what

to say, not how to say it. Structured explanations, while still in natural language, prompt

people to provide specific content in a certain way. Now, people have to focus on not just

what to say, but how to say it. Participants did a fairly good job of providing content in the
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desired format, as evidenced by the increase in actionable advice. However, the extra work

to formulate their responses led to mostly worthless advice. Having to extemporaneously

create a natural language response in a certain structure was too difficult to yield worth-

while results, even in a game domain. For the survey explanations, the cognitive load was

less compared to the structured explanations. Domain information including pictures and

labels for objects and actions were provided to participants. They did not have to remem-

ber domain information or format responses; they simply had to fill in as many blanks as

they chose. If robots ask people for information, the amount of information given to the

person and the method of response should not impose a high cognitive load or the person’s

response may be of poor quality.

Total Cumulative Reward

Figure 4.5 is included for completeness and shows the total cumulative reward earned by an

agent with and without advice. The agent with advice is able to achieve better performance

immediately.

Figure 4.5: Cumulative Reward from Survey.

Performance over an object’s entire state space

Figure 4.6 compares the performance of participants’ advice for chasms with adversarial

and no advice. Good advice led to an agent with much better performance than adversarial

or no advice. An agent trained with adversarial advice quickly recovers and performs as

well as no advice, but not as well as good advice. After 400 trials of learning, the best
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advice from the experiment led to Mario falling into chasms approximately 16% of the

time, while the agents using adversarial or no advice fell into chasms 34% of occurrences.

Chasms are difficult for the reflexive state representation that looks at the 3x3 grid sur-

rounding Mario. Mario’s velocity and whether he is in the air are not part of the state

representation. This leads to state aliasing when learning policies for chasms. The pol-

icy cannot tell if Mario is approaching the chasm quickly or slowly, which changes the

likelihood a given action will succeed.

Figure 4.6: Reward for Chasms from Survey.

It is possible for a participant to provide poor advice for one object but good advice for

another. The agent treats each piece of advice without prejudice. Even if a participant gave

bad advice for chasms, the agent would not discount the rest of the advice given by the

same person.

Object-level generalization: learning where advice applies

Figure 4.7 shows the agent learns to which part of the state space the advice applies. The

agent was advised to jump to the right quickly when encountering Goombas. The agent

learned this was a good policy when the Goomba was to the right of Mario in a ‘goldilocks’

zone - not too close but not too far away. The agent learned jumping to the right quickly

was bad advice when the Goomba was directly above Mario, because he would become

injured when his head ran into the bottom of the Goomba. Using peoples’ advice as object-

level generalization allows the agent to quickly generalize a policy to relevant areas of the

state space that would be difficult to learn about via exploration.
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Figure 4.7: Visualizing Object-level Generalization in a Policy for Goombas from Survey.
The color scale represents Q-values showing when to jump quickly to the right.

Performance in a specific subset of an object’s state space

Now that we have seen the performance of policies across the entire state space of an object

and how generalization over the state works, let’s review the performance in one specific

subset of an object’s state space. Figure 4.8 shows the results when a coin is northeast of

Mario.

Figure 4.8: Comparing the Reward of Good, Mediocre, Adversarial, and No Advice when
a coin is northeast of Mario from Survey.

It can be more difficult to recover from mediocre advice than adversarial (Figure 4.8).

With adversarial advice, the agent recognizes quickly that the advice is harmful by earning

negative Q-values. The most exploration occurs in the first several trials, so it is likely the
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agent will experience many actions with better performance than the adversarial advice.

With mediocre advice, the Q-values will be positive, although not optimal. Fewer actions

will earn higher Q-values, and a better policy may not be found in a timely manner. Be-

cause of the nature of ε-greedy exploration, it is unlikely the same advice will be followed

multiple times in a row, which makes the situation more difficult in Mario’s domain due to

the combination of momentum in Mario’s movements and state aliasing.

Advice+Warnings

Figure 4.9 shows that incorporating “what not to do” warnings in addition to “what to do”

advice increased the cumulative reward earned by the agent for different objects. Avoiding

dangerous actions and considering multiple objects simultaneously during action selection

improved the agent’s performance.

The agent accumulated approximately twice the reward when both advice and warn-

ings were included. Algorithmically, this implies that if a robot or software agent queries a

human teacher for advice, it may improve performance by asking for both advice and warn-

ings. Even though the experiment did not specifically ask participants to provide warnings,

they were able to do so for the free-form and structured explanations.

Figure 4.9: Impact of Warnings on Reward for Coins and Participant 3 from Survey.

4.5 Study 1: Conclusion

Once the explanations have been split into advice and warnings, Object-focused advice and

OF-Q can be used to train the agent to maximize its reward for each object. We presented a
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novel method of using human advice and warnings that links objects to actions and does not

require people to specify state variables. Object-focused advice allows people to generalize

over an object’s state space, which means people are not forced to provide numbers or par-

ticulars describing the state in explanations. A model-free approach has been described that

increases performance and does not require the intensive construction of formal language

translations.

The goal of Object-focused advice is not to capture all the nuances and subtleties of

free-form teaching, but rather to make use of human explanations without state information.

It is vital to develop methods that use human explanations that aren’t state-specific since

they reflect much of non-expert instruction.

4.6 RQ Results Summary

• Policies can be learned from sentences that do not contain specific state information,

such as numbers.

– Validation: Study 1.

– Supports thesis: Part 2 (efficiency) - OF-advice allows a small amount of in-

struction to be used to train an agent. Part 3 (performance) - OF-advice uses

human instruction without detracting from the agent’s capabilities.

• Using OF-advice, we can link objects to actions and generalize over the state space.

– Validation: Study 1.

– Supports thesis: Part 2 (efficiency) - OF-advice allows a small amount of in-

struction to be used to train an agent.

• The requested format of an explanation impacts the quality of the explanation.

– Validation: Study 1. Explanations were collected from human participants in
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three successive trials, in order of increasing structure and provided informa-

tion.

– Supports thesis: Part 1 (human experience) - this work explored what format of

explanation an agent should ask a human for.
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CHAPTER 5

STUDY 2: TEMPLATE OF DESIGN AND VERIFICATION OF IML

ALGORITHMS WITH NAA EXAMPLE

Many of the existing machine learning algorithms that learn from human instructions are

evaluated using simulated feedback and focus on how quickly the agent learns. While

this is valuable information, it ignores important aspects of the human-agent interaction

such as frustration. In this chapter, I present the Newtonian Action Advice agent, a new

method of incorporating human verbal action advice with Reinforcement Learning (RL) in

a way that improves the human-agent interaction. In addition to simulations, I validated

the Newtonian Action Advice algorithm by conducting a human-subject experiment. The

results show that Newtonian Action Advice can perform better than Policy Shaping, a state-

of-the-art IML algorithm, both in terms of RL metrics like cumulative reward and human

factors metrics like frustration.

5.1 Introduction

This chapter introduces an algorithm, Newtonian Action Advice, which incorporates a hu-

man’s verbal action advice with Reinforcement Learning (RL). The algorithm leverages a

simple physics model to provide an agent that acts in a way people expect and find non-

frustrating.

I validate the algorithm by first constructing oracles to simulate human feedback to

compare Newtonian Action Advice (NAA) with Policy Shaping and Bayesian Q-learning.

In addition to the simulations, I conducted a human-subject experiment in which partici-

pants trained both NAA and Policy Shaping agents, and then reported on the experience of

working with both agents.

I suggest that validating interaction algorithms with oracles and analyzing traditional
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RL metrics such as cumulative reward and training time is only the first step. In addition to

RL metrics, interaction algorithms should be validated by measuring peoples’ experiences

with agents using human factors, such as frustration. Ideally, the interaction algorithms

should be designed with the goal of creating a positive human experience, because individ-

uals who experience frustration while interacting with an agent are unlikely to continue or

repeat the interaction in the future.

The results show that Newtonian Action Advice can perform better than Policy Shap-

ing, both in terms of RL metrics like cumulative reward and human factors metrics like

frustration. NAA can learn faster using less human instruction than Policy Shaping. NAA

creates a better human experience than Policy Shaping. Compared to Policy Shaping, par-

ticipants found the Newtonian Action Advice agent to be less frustrating, clearer and more

immediate in terms of how the agent used human input, better able to complete the task as

the participant intended, and more intelligent.

5.1.1 Research Questions

This chapter develops the Newtonian Action Advice algorithm.

In particular, this chapter is presented as a template for IML algorithm design and ver-

ification in which researchers: 1) design for a positive human experience, 2) test the algo-

rithm with oracles, and 3) verify the algorithm with a human-subject experiment measuring

human factors.

• What is the theoretical efficiency of the Newtonian Action Advice agent, and how

does it compare to Policy Shaping?

• How well does the NAA algorithm perform when trained using human teachers in-

stead of oracle simulations?
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5.1.2 Algorithm Development

In this chapter, an algorithm, Newtonian Action Advice, will be developed to connect hu-

man action advice (e.g. “move left”) to RL.

This chapter also acts as a template for creating IML algorithms.

5.1.3 Method Summary

The NAA algorithm was first tested with oracle simulations and compared to Bayesian Q-

learning and Policy Shaping in Study 2. Then, the NAA algorithm was tested in a human-

subject experiment and compared to Policy Shaping using human factors metrics. The

human-subject experiment is detailed in Chapter 6, but is briefly included here to show a

template of IML design that includes comparing algorithms with human factors metrics.

5.2 Algorithm Development: Newtonian Action Advice

Newtonian Action Advice is a teaching interaction algorithm I designed to enable an RL

agent to learn from human action advice. The theory is a metaphor of Newtonian dynam-

ics: objects in motion stay in motion unless acted on by an external force. In the Newtonian

Action Advice model, a piece of action advice provided by the human is an external force

on the agent. Once a person provides action advice (ex: “Go right”), the agent will immedi-

ately move in the direction of the external force, superseding the RL agent’s normal action

selection choice of exploration vs. exploitation. The model contains natural friction that

‘slows down’ the agent’s need to follow the human’s advice. The friction ensures that af-

ter some amount of time, the agent will resume the underlying RL algorithm’s exploration

policy. The advice does not necessarily need to specify directional motion; the metaphor

of advice as a force pushes the agent to follow the advice as opposed to the RL’s action

selection mechanism.

Newtonian Action Advice was designed to behave in a manner that is more natural and
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intuitive for the human teacher than other IML algorithms such as Policy Shaping. The

force model allows each piece of advice to be generalized through time. If a person says,

“go right,” the Newtonian Action Advice agent will move right and keep moving right

until the ‘friction’ causes the agent to resume normal exploration. The simplicity of the

force model is a feature to improve the human experience; people deal with Newtonian

mechanics in their everyday life and are used to objects moving in a Newtonian manner.

For example, if a ball is thrown straight up in the air the same way multiple times, it will

always rise to a certain height and fall back to the ground. The motion is predictable, and

one does not need formal physics training to recognize and expect the motion. I expect that

loosely mimicking this will help create a user-friendly experience.

If advice was followed in one state, the Newtonian Action Advice algorithm will cause

the agent to follow the same advice if the state is seen in the future. This means that a

person will only have to provide advice once for a given situation. Also, only the latest

advice is saved for a state, so people can correct any mistakes they made or change the

desired policy in real time.

Bayesian Q-Learning was used as NAA’s underlying RL algorithm. This choice was

primarily made so the Newtonian Action Advice algorithm could be more directly com-

pared to Policy Shaping. The structure of the NAA algorithm is such that the BQ-L algo-

rithm could be exchanged for a different RL algorithm.

In algorithm 2, NAA is the main procedure. At each time step, the agent listens for

Figure 5.1: Simple Force Model. Actions are an external force acting on the agent, and
‘friction’ determines the amount of time the action will be followed after the advice is
given.
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Algorithm 2 Newtonian Action Advice algorithm
1: procedure NAA
2: for each time step do
3: Listen for human advice
4: if human advice given then
5: newAdvice(state, advice)

6: action = actionSelection()
7: Take action and get reward
8: Update Bayesian Q-learning policy with reward
9: procedure NEWADVICE(state, advice)

10: agent.adviceJustGiven← True
11: agent.advisedAction← advice
12: agent.adviceDictionary[state] = advice

13: procedure ACTIONSELECTION(state)
14: if agent.adviceJustGiven == True then
15: chosenAction← agent.advisedAction
16: if state /∈ agent.adviceDictionary then
17: agent.adviceDictionary[state] = chosenAction

timesNewAdviceFollowed += 1
18: if timesNewAdviceFollowed >= timesToFollowAdviceThreshold then
19: agent.adviceJustGiven = False
20: timesNewAdviceFollowed = 0
21: If advice has been given for this state, choose between the human advice and the

algorithm
22: Otherwise, if advice has not been given for this state in the past, use the action

recommended from the BQL algorithm
23: return chosenAction
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advice. If advice is given, the agent updates its internal advice dictionary. The agent then

chooses and takes an action, receives a reward, and updates the Bayesian Q-learning policy.

The New Advice procedure adds the new (state, advice) pair to the agent’s dictionary

and sets a parameter that will tell the action selection procedure to follow the new advice.

The Action Selection procedure first checks to see whether advice has recently been

given and should still be followed. If the advice is being generalized through time (due

to low friction) and the new (state, advice) pair has not been added to the dictionary, it

will be added at this time. If this state is revisited in the future, the recent advice given

for a previous state will be applied as if it had been given for this state, too. The timer

that keeps track of the friction parameter threshold is updated. If the timer indicates that

the advice has been followed for long enough, parameters will be reset so the agent will

return to the Bayesian Q-learning’s action selection for the next time step. If advice has

previously been given for this state, the agent must choose between the human advice and

the BQL suggestion. For this work, I always choose the human’s advice. If a researcher

wants to encourage more exploration, a different method can be chosen (i.e. an algorithm

similar to ε − greedy applied to human vs. agent action selection instead of exploration

vs. exploitation). However, I have found that following advice in a probabilistic manner

increases frustration and uncertainty since the agent seems to disregard advice. In the case

that no advice has been given for or generalized to the current state, the action is chosen

from the Bayesian Q-learning’s action selection method.

5.2.1 Combining Supervised and Reinforcement Learning to allow for personalization by

end-users

When designing an interactive machine learning algorithm, one first must ask: what is the

goal of IML? Is the goal to use human instruction to decrease training time? Or is the goal

to enable people to teach an agent to perform a task in the way the human intends?

If the goal of IML is to use human instruction to decrease the amount of time it takes
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to train the RL agent, at first glance it seems like the best of both worlds. We get to use

powerful RL algorithms that are capable of learning from their environment instead of

having policies hard-coded or models from datasets built a priori; and we get to decrease

training time by getting useful human input.

However, if the goal is to get the agent to perform a task that a non-expert specifies in

the way the human wants the task done, then we have a problem.

The policy an RL agent learns is very sensitive to the reward function. In this work,

as well as most IML research, the reward function is provided by the researcher prior to

the experiment. Given a reward function, an RL algorithm will learn a policy to maximize

the reward, but the policy learned may be very alien to a human mind. The agent will

technically complete the task efficiently, but not in a way that makes a lot of sense to a

human. Given a reward function and human input, the RL algorithm may initially learn a

policy that conforms to the human’s instructions, but eventually might learn a policy that

solely maximizes cumulative reward. This may satisfy a goal of decreasing training time

since the human will have shown the RL agent high-earning states earlier than it would

have explored, but the policy may still be baffling to a non-expert. The human teacher may

feel like their instructions were disregarded in the long-term, creating feelings of frustration

and powerlessness when they cannot directly control the agent’s policies.

Newtonian Action Advice can be seen as a way to combine supervised and reinforce-

ment learning. A human provides information that is used to create policies that are static

to the agent (supervised learning), but can be overwritten by the human. The agent uses

reinforcement learning to determine the best course of action for parts of the state space in

which human advice is not given. Not only does this enable the agent to use human input

to decrease training time, it also empowers the human teacher to customize how the agent

performs the task. It is possible the learned policy will be near-optimal instead of optimal

from an objective analysis of the cumulative reward; but the agent’s performance will be in

greater accordance with the human teacher’s instructions, which will increase the human’s
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satisfaction with the agent’s performance.

5.2.2 Choosing the friction parameter

When calculating the algorithm’s ‘friction’ parameter, it is more straightforward to think

of the parameter as the number of steps each piece of advice should persist for, Sdes. In-

creasing Sdes causes each piece of advice to be followed for a longer time, which causes a

metaphorically lower friction in the model.

Let:

Sdes (steps) is the desired number of steps advice should persist for

Smin (steps) is the minimum number of steps advice should persist for

Smax (steps) is the maximum number of steps advice should persist for

U (steps/second) is the domain update rate

∆tdes (second) is the desired time between given advice

∆tmin (second) is the minimum time between given advice

∆tmax (second) is the maximum time between given advice

Equations 5.1-5.3 show how to calculate the minimum, maximum, and desired values

of the friction parameter. Two items should be noted for Smin. First, the value of ∆tmin has

a lower bound based on human limitations. You cannot expect people to provide advice

infinitely quickly. It is nonsensical to provide advice that only lasts for a fraction of a

second; if ∆tmin is too small, it may occur that the agent follows the advice for such a short

amount of time that it is not perceivable by the human. We suggest ∆tmin ≥ 0.5(seconds).

Second, the advice must last for at least one time step, so Smin ≥ 1(step).

Sdes = ∆tdes ∗ U (5.1)

Smin = ∆tmin ∗ U (5.2)
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Smax = ∆tmax ∗ U (5.3)

Depending on the domain, task, and nature of the actions, we suggest a starting value

of ∆tdes to be between 2-8 seconds.

Equation 5.4 shows the bounds on the friction parameter. The value of Smin has the

potential to run into a hard boundary based on human limitations, while Smax is a flexible

boundary based on desired behavior.

(1step) ≤ Smin ≤ Sdes ≤ Smax (5.4)

Instead of calculating the friction parameter using the desired time between when ad-

vice is given, the average duration of each action can be used.

Let:

∆a (actions) is the desired number of actions between when advice is given

spaavg (steps/action) is the average number of steps it takes to complete an

action

tpaavg (seconds/action) is the average time it takes to complete an action

If the human teacher is instructing the agent to take primitive actions, then spaavg =

1(step). If the human is providing instructions for higher order actions, then spaavg ≥

1(step). An action must last for the duration of at least one time step, so ∆a ≥ 1. Equations

5.5 and 5.6 show expressions for Sdes depending on whether the researcher has easier access

to spaavg or tpaavg.

Sdes = ∆a ∗ spaavg (5.5)

Sdes = ∆a ∗ tpaavg ∗ U (5.6)

If primitive actions are being used, it is likely that the ideal Sdes parameter will be

fairly large because the human teacher will want a given piece of advice to be followed for

several consecutive time steps. If higher order actions are being used, a smaller Sdes may
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be beneficial because it will already take the agent several time steps to carry out the higher

order action.

5.3 Study 2: Method

We validated our NAA algorithm first with oracles to test the theoretical performance of

the algorithm, and then with a human-subject experiment to compare the human teacher’s

experience with another IML interaction algorithm, Policy Shaping.

Many of the existing machine learning algorithms that learn from human feedback are

evaluated using oracles and focus on how quickly the agent learns. While this is valu-

able information, it ignores other important aspects of the human-agent interaction such as

how humans react to the agent. For example, an oracle will never get frustrated with the

agent or confused by its actions. If the interaction method affects how frustrated people

are, regardless of the underlying machine learning algorithm, then perhaps that interaction

method should be avoided. To that end, interactive machine learning agents should not

solely be designed to optimize theoretical learning curves from simulations, but also to

create a positive experience for the human teacher.

Both the simulations and human-subject experiment used the same task domain. The

oracle or human participant was required to teach agents to rescue a person in Radiation

World, a game developed in the unity minecraft environment (Figure 7.1). In the experi-

mental scenario, there has been a radiation leak and a person is injured and immobile. The

agent must find the person and take him to the exit while avoiding the radiation.

5.3.1 Constructing Oracles

I first tested the Newtonian Action Advice algorithm with simulations that used a con-

structed oracle to simulate human feedback. Each oracle was instantiated with a probabil-

ity, padvice, that determined how often to check for advice from the oracle. If the simulation

was testing the algorithm’s performance with padvice = 20%, then at every time step a ran-
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Figure 5.2: Radiation World Initial Condition

dom decimal, d, would be chosen between 0 and 1. The agent would check for advice if

padvice ≤ d, and would otherwise not check for advice. I provided the advice for the or-

acles to test several cases, including maximum friction, two cases of minimal advice, and

decreased friction.

The same oracle algorithm controlling when to check for instructions was used to test

the Policy Shaping agent. The same advice dictionary was used for the NAA and Policy

Shaping oracles. The advice dictionary was converted to critique for the Policy Shaping

agent in the following manner: if the agent took the advised action for the state, the critique

was positive; otherwise, the critique was negative.

5.3.2 Human-Subject Experiment

I conducted a repeated measures human-subject experiment in which I investigated the

effect of two different interaction methods, NAA and Policy Shaping, on the human’s ex-

perience of teaching the agent. Both the interaction methods shared the same underlying

Bayesian Q-learning algorithm.

The method of the human-subject experiment is detailed in Section 6.4.
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5.4 Study 2: Results and Discussion

5.4.1 Simulations

No generalization through time (extreme friction)

I simulated how the percentage of time advice is followed impacts performance. The sim-

ulation was set up so the NAA agent did not generalize a given piece of advice to other

states immediately after the advice was given, meaning that one piece of advice counted

for only one time step (maximum friction with S = 1(step)). The oracle was built with

advice given for every square in the grid (Figure 5.3).

Incorporating human instruction by using the Newtonian Action Advice algorithm al-

lows the RL agent to achieve a higher level of performance in many fewer episodes than

without human input. As advice is given for a greater number of individual times steps

(increasing from 20% to 90%), the agent accumulates more reward and completes each

episode with fewer actions (Figure 5.4). The case with no human input is shown as BQL

on the figures.

Figure 5.3: Advice given to simulation to avoid radiation.

Minimal Advice - shortest path

The minimal advice to take the shortest path (which takes the agent next to the radiation)

is comprised of only two pieces of action advice equivalent to a human saying, “First
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a: Reward b: Number of Steps to complete an episode

Figure 5.4: How the amount of advice provided impacts performance. (advice given 20,
50, and 90 percent of the time)

a: Minimal advice given to simulation to
complete task with minimal steps.

b: Minimal advice given to simulation to
avoid radiation.

Figure 5.5: Minimal advice for two paths.

move down. Then go right.” The minimal advice used to create the oracle in this case is

represented in Figure 5.5a.

Given only two pieces of advice, the NAA agent was able to complete the episode in

10 steps achieving a reward of 102.0 every single episode. The NAA agent was set to

follow each piece of advice for S = 5(steps) before returning to the BQ-L baseline action

selection.

The NAA model with a decreased friction parameter is what allows a human teacher to

say “down, right,” instead of, “down, down, down, down, down, right, right, right, right,

right.” It makes for a much better and more intuitive user experience to provide less in-

struction and not have to constantly repeat advice.
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Minimal Advice - avoiding radiation

The minimal advice to take a path that avoids the radiation is comprised of only four pieces

of action advice equivalent to a human saying, “First move right. Then go down. Move left

then immediately right after rescuing the injured person.” This advice, which was used to

construct the oracle for this case, can be seen in Figure 5.5b.

Given only four pieces of advice, the NAA agent was able to complete the episode

in 12 steps achieving a reward of 100.0 every single episode. The NAA agent was set to

follow each piece of advice for S = 5(steps) before returning to the BQ-L baseline action

selection.

This case is an example of the optimal vs. customized discussion in Section 5.2.1.

The learned policy was near-optimal instead of optimal from an objective analysis of the

cumulative reward since the path to avoid the radiation was slightly longer, but the agent’s

performance was in accordance with the human teacher’s advised path.

Generalization through time (friction effect)

I studied how the algorithm performs as the friction of the NAA model is decreased (i.e. the

S parameter is increased). Sections 5.4.1 and 5.4.1 have already shown that a small amount

of advice paired with a lowered friction can enable the NAA agent to perform optimally

or near-optimally from the very first episode. To test the friction effect more rigorously, I

built an oracle with the same advice given for every square as Section 5.4.1 (Figure 5.3).

When advice is given 20% of the time, the agent with a lower friction S = 5(steps)

initially performs better than a higher friction S = 1(step). However, in later episodes

the agent with lower friction earns a lower cumulative reward while taking more steps

to complete each episode compared to the high friction agent. In general, these results

indicate that, while lowering the friction can increase initial performance, it can also cause

a lower-performing policy to be learned by the agent.

But what is really going on in this case? We have seen in Sections 5.4.1 and 5.4.1 that
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minimal advice paired with a lowered friction enables the agent to perform optimally or

near-optimally from the very first episode. Why would providing more advice (padvice =

20%) harm the agent’s performance, particularly when Section 5.4.1 showed that increasing

advice increases performance? The core issue is a limitation of the oracle. At every time

step, the oracle listens for advice with a probability of 20%. This is not how a human would

provide advice. The decreased performance in this case occurs when the agent spends time

repeatedly banging into walls after advice has been generalized to a wall state instead of

the oracle providing advice for that wall state. The probability padvice = 20% is low enough

that this behavior is not corrected for many episodes. Human teachers who observed this

behavior would quickly provide an extra piece of advice to make sure the agent did not

fruitlessly waste time.

When people decrease advice, they tend to limit themselves to the most important

pieces of advice, such as the minimal advice cases. The oracle has no way to know which

advice is the most important, and so provides advice in a way that is not indicative of hu-

man behavior. A possible solution to this problem is to build more elaborate oracles that

more accurately represent human behavior. There are three main issues with this approach:

1) the use of and response to an algorithm will vary across individuals, so multiple con-

tradictory oracles would need to be constructed, 2) an oracle’s ability to provide a type of

input does not mean a human is likely or able to provide that input in reality, and 3) it is

very unlikely that even the most elaborate oracle could simulate the human’s response to

the agent, such as frustration. A more practical solution to this problem is to test algorithms

with human-subject experiments.

This case shows why IML researchers should verify interaction algorithms with human-

subject experiments in addition to simulations. If I had analyzed these results without

understanding the limitations of the oracle, I might have discarded parameterizations using

a lower friction.

71



a: Reward b: Number of Steps to complete an episode

Figure 5.6: Generalization through time. (advice given 20, 50, 90 percent of the time)

Comparison of Newtonian Action Advice and Policy Shaping

a: Reward b: Number of Steps to complete an episode

Figure 5.7: Comparison of Newtonian Action Advice and Policy Shaping

Figure 5.7 shows that, given equivalent input, Newtonian Action Advice can learn faster

using less human instruction than Policy Shaping in this domain. Even when Policy Shap-

ing used advice 98% of the time, it learned slower than the NAA agent that was using input

only 20% of the time. The oracle used the same setup as Sections 5.4.1 and 5.4.1 (Figure

5.3).

When learning from human teachers in practice, however, the performance of each

agent is entirely dependent on the instruction provided by the person. Neither agent is

guaranteed to perform better than the other. If the human provides no instructions, the

Policy Shaping and NAA agents perform equally since they both reduce to a Bayesian Q-
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learning algorithm. In order to investigate how the performance of the agents varied with

real human teachers, as well as how the human experience was impacted by interacting

with each agent, I conducted a human-subject experiment.

5.4.2 Human Subject Results

The results of the human-subject study are briefly described here to demonstrate how IML

algorithms can be compared using human factors metrics rather than relying solely on

objective ML metrics. This human-subject experiment will be discussed in detail in Chapter

6.

Immediately after training each agent, participants were asked to score aspects of their

experience training the agent, including frustration, perceived performance, transparency,

immediacy, and perceived intelligence (Figure 5.8). Paired t-tests were conducted for each

metric in which the null hypothesis was the pairwise difference between the two paired

groups had a mean equal to zero. I found that all measured aspects of the human experience

differed significantly between the two agents.
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Figure 5.8: Comparison of the human experience.

In summary, compared to Policy Shaping participants found the Newtonian Action Ad-

vice agent to be less frustrating, clear and more immediate in terms of how the agent used

human input, better able to complete the task as the person intended, and more intelligent.

In addition to creating a better human experience, the NAA agent also performed bet-
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ter than Policy Shaping in terms of objective RL metrics. The average training time was

smaller for the NAA agent. The number of steps the agent took to complete each episode

was smaller for NAA. The average reward was higher for NAA than Policy Shaping. How-

ever, the amount of input provided by the human teachers was statistically equal for the

two interaction algorithms.

The nature of the agent’s response to the human’s instruction created significantly dif-

ferent human experiences between the two agents. Consider that both agents used the same

underlying BQL algorithm, and so would perform equally with no human input. Also,

people provided a statistically equal number of instructions for both agents, so both were

equally effortful for the person. And yet, the peoples’ perceptions of the agents differed

across all subjective metrics, including frustration, perceived intelligence, and transparency.

A thorough analysis of the participants’ responses in Chapter 6 shows that the main factors

that influenced the participants’ frustration levels were whether the agent’s behavior made

the person feel powerless, whether the agent’s choices were transparent, the complexity of

the instruction format, and whether the agent immediately acted on the person’s instruc-

tions. The objective metrics like training time and reward were not factors mentioned by

the participants. This tells us that the human experience cannot be improved solely by

designing algorithms to optimize the objective metrics that are available in oracle testing.

5.5 Study 2: Conclusions

This chapter presented Newtonian Action Advice, an IML algorithm that integrates a hu-

man’s interactive action advice (ex: “move left”) with reinforcement learning. For equiva-

lent human input, Newtonian Action Advice performs better than Policy Shaping, both in

terms of RL metrics like cumulative reward and human factors metrics like frustration.

This chapter also acts as a template for IML algorithm design and verification in which

researchers: 1) design for a positive human experience, 2) test the algorithm with oracles,

and 3) verify the algorithm with a human-subject experiment measuring human factors.
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While the results of the human-subject experiment were briefly included here to demon-

strate the full template for IML design and verification, the next chapter delves more deeply

into these results.

5.6 RQ Results Summary

• Newtonian Action Advice can learn optimal policies at least an order of magnitude

faster than when no advice is provided to the underlying BQL agent. NAA can learn

optimal policies from the very first episode given minimal advice. A low friction

parameter can cause a sub-optimal policy to be learned. Given equivalent input,

NAA can learn faster with less input than Policy Shaping.

– Validation: Study 2.

– Supports thesis: Part 2 (efficiency) - NAA allows a small amount of instruction

to be used to train an agent. Part 3 (performance) - NAA can use action advice

without detracting from the agent’s capabilities.

• NAA creates a better human experience than Policy Shaping. Compared to Policy

Shaping, participants found the NAA agent to be less frustrating, clearer and more

immediate in terms of how the agent used human input, better able to complete the

task as the participant intended, and more intelligent.

– Validation: Study 3.

– Supports thesis: Part 1 (human experience) - this work analyzed human factors

metrics to determine how real people responded to the agent.
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CHAPTER 6

STUDY 3: MOVING BEYOND ORACLES - THE COMPARATIVE HUMAN

EXPERIENCE OF LEARNING FROM ADVICE AND CRITIQUE

A goal of interactive machine learning (IML) is to enable people with no specialized train-

ing to intuitively teach intelligent agents how to perform tasks. Toward achieving that goal,

I am studying how the design of the interaction method for a Bayesian Q-Learning algo-

rithm impacts aspects of the human’s experience of teaching the agent using human-centric

metrics such as frustration in addition to traditional ML performance metrics. I posit that

the type of feedback a robot can learn from affects the perceived intelligence of the robot,

similar to its physical appearance. This study investigated two methods of natural language

instruction: critique and action advice. I conducted a human-in-the-loop experiment in

which people trained two agents with different teaching methods but, unknown to each par-

ticipant, the same underlying reinforcement learning algorithm. The results show an agent

that learns from action advice creates a better user experience compared to an agent that

learns from binary critique in terms of frustration, perceived performance, transparency,

immediacy, and perceived intelligence. I identified nine main characteristics of an IML

algorithm’s design that impact the human’s experience with the agent, including: using

human instructions about the future, compliance with input, empowerment, transparency,

immediacy, a deterministic interaction, the complexity of the instructions, accuracy of the

speech recognition software, and the robust and flexible nature of the interaction algorithm.

6.1 Introduction

This chapter focuses on the question: Does the interaction method affect the person’s expe-

rience with the agent, and if so, why? Specifically, I analyze whether the method of natural

language feedback given to a ML agent impacts the human teacher’s satisfaction. Human
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experiences are important because individuals who experience frustration while interacting

with a robot are unlikely to interact with the robot in the future.

Traditional research into IML often fails to account for the human experience. Instead,

algorithms are tested with computer simulations of human input, i.e. oracles, and veri-

fied using objective ML metrics, such as cumulative reward. While a good starting point,

this method should be considered incomplete for any system that is intended to learn from

humans, as it ignores important aspects of the human-agent interaction that are difficult

to gauge using oracles alone. The use of oracles instead of human-subject experiments

overly simplifies the human interaction and ignores how humans react to the agent. Or-

acles will never get frustrated with the agent or confused by its actions. I suggest that

researchers should design and evaluate IML algorithms using human subjects and human

factors metrics for testing and verification in addition to the traditional ML analyses in

order to measure and improve the human teacher’s experience.

To illustrate how the results from an oracle can fail to capture the depth of differences

experienced by a human teacher, I performed a repeated measures human-subjects exper-

iment in which participants taught two agents how to play a simple game with different

teaching methods: critique and action advice. For the first teaching method, people trained

the agent using positive and negative verbal critique such as, “good job,” and “don’t do

that.” The second teaching method enabled people to teach the agent using action advice

such as, “move right,” and “go left.” The same underlying machine learning algorithm,

Bayesian Q-Learning, was used for both agents. The critique agent used Policy Shaping as

an interaction algorithm, while the action advice agent used the Newtonian Action Advice

algorithm.

As predicted, human teachers had difference experiences teaching the two agents. Par-

ticipants had a much better experience with the action advice agent compared to the cri-

tique agent. Participants found the action advice agent to be more intelligent, less frustrat-

ing, clearer and more immediate in terms of how the agent used human input, better able
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to complete the task as the person intended, and more intelligent than the critique agent.

Compared to the critique agent, the advice agent had a shorter average training time, a

smaller number of steps to complete each episode, and a higher average reward. People

provided approximately the same amount of instruction for both the advice and critique

agents.

6.1.1 Research Questions

This chapter investigates how and why an interaction algorithm impacts the human teacher’s

experience.

• Does the interaction method (e.g. Policy Shaping critique vs. Newtonian Action Ad-

vice) impact the human teacher’s experience with the agent (perceived intelligence,

perceived performance, frustration, immediacy, transparency)?

• Does the interaction method (e.g. Policy Shaping critique vs. Newtonian Action

Advice) impact the objective metrics of the teacher’s interaction with the agent (re-

ward, training time, amount of human input provided, number of steps for the agent

to complete each episode)?

• Which design decisions made during the creation of an interaction algorithm impact

the human teacher’s experience?

• Is action advice more rhetorically positive than critique?

6.1.2 Development

The elements were developed for use in this Study. The Newtonian Action Advice algo-

rithm used in this experiment is developed in Section 5.2. The method of using sentiment

analysis to filter verbal critique into positive and negative was developed in Chapter 3. This

chapter also develops a method of comparing IML algorithms using human factors metrics.
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6.1.3 Method Summary

The research questions in this chapter were tested in Study 3, which was a human-subject

experiment conducted in the Radiation World domain.

6.2 Differences Between Critique and Action Advice

In this section, I discuss differences between advice and critique, including rhetoric, timing,

and whether the instructions apply to the future or past.

6.2.1 Rhetoric

I suggest that the rhetoric of critique is inherently negative, while advice is more positive.

Since action advice exclusively informs the agent about what to do next, there is a sense of

rhetorical forgiveness - the human does not judge the agent’s behavior, but rather offers a

helping hand and advises the agent what to do next to move to a better situation. Critique,

on the other hand, is about placing credit and blame on past actions without encouraging

or allowing a person to provide a potential solution of what to do next [45].

Suppose that the agent was driving a car and got stuck in the mud. Rhetorically, the

critique teaching method is like a passenger crossing his arms, glaring at the driver, and

saying, “You are a terrible driver.” This may be true, but does not help the situation. The

action advice teaching method would be like a passenger who, without judging, suggested

using twigs, leaves, or a car mat to create traction, and told the driver slowly accelerate out

of the rut.

The inherent rhetoric of different teaching methods has never been applied to IML

algorithm design before, but I believe it is a characteristic that can impact the human expe-

rience. We do not want to design algorithms that force human teachers to be the judgmental

backseat driver in perpetuity as this would likely result in endless frustration. I believe in

creating a more positive interaction between the agent and human teacher.
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6.2.2 Immediate Applicability of Feedback

Critique provides rewards or punishments about past behavior, while advice supplies ac-

tions that should be taken by the agent in the immediate future. The critique will only

affect the Policy Shaping agent’s behavior if the critiqued past state is revisited in the fu-

ture. Because the critique agent applies feedback to past instead of future actions, there is

no way to ‘close the loop’ so the human can immediately tell if their feedback was correctly

understood and applied. Action Advice, on the other hand, provides instructions that the

agent can immediately apply. Consequently, it will likely seem to the human that the action

advice agent is more responsive than the agent learning from critique. Additionally, people

give instructions about the future, even if expressly told not to [18]. In these terms, I expect

action advice to be more human-friendly than critique.

6.2.3 Issues of language processing

There are three main issues associated with language processing when using verbal instruc-

tion as an interaction medium that impact the advice and critique algorithms unequally:

language processing time, accuracy of the ASR software, and credit attribution. The ad-

vice agent suffers more with the language processing time and accuracy of the transcription

software, while critique is impaired by credit attribution.

1. With the action advice agent, people are sensitive to the language processing time be-

cause the agent’s next action is effected. Human teachers are aware of the processing

time because it acts as a lag between when the person gives advice and when the agent

follows the advice. A long processing time would degrade the human experience. With

the critique agent, however, people are unaware of the processing time because their

instructions are used to inform past behavior.

2. Human teachers are expected to be more sensitive to the accuracy of the automatic

speech recognition software with the action advice agent because the human can im-
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mediately tell if the agent understood based on the next action. People are unaware of

the speech software accuracy with the critique agent because the next actions are not

impacted.

3. One severe issue with critique is the credit attribution problem. There is no definitive

way to know which past action(s) the human teacher intended to reward or penalize.

Action advice does not have this problem because the human’s action instructions are

simply applied to the next action. The credit attribution problem may be more apparent

to the algorithm designer than the human teacher - the human will know the critique

agent is not performing well, but will not necessarily know if, and how much, credit

attribution is to blame.

Figure 6.1 shows how language processing impacts the advice agent. At some point

in time, the human teacher starts giving verbal action advice, such as “move left.” After

the person stops speaking, the ASR software transcribes the speech to text. Additional

language processing, such as sentiment analysis, may be performed on the text depending

on the agent setup. After language processing, the advice is applied to the next action

in time. The human teacher is sensitive to longer language processing times since it that

would cause the agent to not follow the advice for several actions. Assuming a relatively

uniform time step, people soon learn the lag in the system. People are also sensitive to the

ASR accuracy because they will immediately tell if the verbal instruction was incorrectly

transcribed when the agent does not follow their advice. Significant inaccuracies in speech

recognition degrade the human experience. Finally, there is no credit attribution problem

with an advice agent.

Figure 6.2 shows how language processing impacts the critique agent. At some point

in time, the human teacher starts to give verbal critique, such as “Good job.” Once the

person stops speaking, the language is processed. After the language is processed into

positive and negative critique, the critique is used to update the Policy Shaping agent. The

human teacher is not aware of either the language processing time or the ASR accuracy
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Figure 6.1: Advice applies to the next action after language processing

Figure 6.2: The credit attribution problem with critique

since critique is applied past actions instead of the future. The human teacher is also not

necessarily aware of the credit attribution problem, even though it is a severe issue with

critique. It may appear at first glance that the three issues of language processing do not

impact the human’s experience of the critique agent as much as the advice agent. However,

the teacher does not know if 1) the critique has been heard, 2) the critique has been correctly

interpreted, and 3) to which action(s) the critique has been applied.

6.3 Perceived Intelligence - Interaction Method Parallels with Morphology

Many factors have been shown to effect perceived intelligence. A robot’s animacy, or life-

like behavior, is strongly correlated to its perceived intelligence [46]. Multiple studies have

shown that a person’s accent affects how intelligent that person is perceived to be by others

[47, 48]. HRI researchers have investigated standardized tools for measuring perceived

intelligence [49]. Human teachers change their behavior toward a robot as they develop a

mental model of the robot [50].
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Many studies have shown a robot’s morphology, or physical appearance, affects how

intelligent people expect the robot to be [51, 52, 53]. People expect a humanoid robot

to interact with a human-level of intelligence, whereas a robotic dog is expected to have

the lower-level of intelligence of a dog. I suggest that the method of interaction built into

a robotic agent also affects the perceived intelligence of the robot, similar to its physical

appearance.

Scaffolding is an instructional technique in which teachers can change their type of in-

struction based on how confused the student is [11]. When a teacher explains a concept,

she might ask an open-ended question (ex: What color is this?). If the student looks con-

fused, the teacher switches to yes-or-no questions (ex: Is this red?). The teacher gives the

student the best chance of getting a correct answer by decreasing the infinite number of

responses in the open-ended question to a 50/50 chance of a confused student getting a

correct answer.

The two methods of natural language instruction I studied were critique and action ad-

vice. When teaching using critique, a person gives the agent positive or negative feedback

(good, bad). When teaching with action advice, a person would tell the agent what actions

to take next (up, down, left, right).

Concerning our verbal interaction methods, action advice is similar to an open-ended

question (What action should I take?), whereas critique is similar to the yes-or-no question

(Am I doing good or bad?). If an agent can only understand binary input of good or bad

from a teacher, I hypothesize people will associate the agent with a less intelligent or strug-

gling student that cannot answer open-ended questions on their own. Similarly, I think an

agent that uses the more complex input of action advice from a teacher will be perceived

as more intelligent and capable, even if the underlying ML algorithm used by the agent is

the same.
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6.4 Study 3: Method

I conducted a repeated-measures human-subject experiment in which I investigated the

effect of two different teaching methods, critique and action advice, on the human’s satis-

faction with the agent. The experiment collected data from 24 participants who were not

experts in machine learning, and in many cases were not associated with a university. The

age of the participants varied from 18-65 years old.

Figure 6.3: Radiation World Initial Condition

Each participant trained two agents with different interaction methods - critique and ac-

tion advice - but an identical underlying Bayesian Q-learning algorithm. The task required

participants to teach each agent to rescue a person in Radiation World, which is a simple

game developed in the unity minecraft environment as shown in Figure 7.1. In the experi-

mental scenario, there has been a radiation leak and an injured person is located somewhere

in the grid unable to move. The agent must find and rescue the person, take him to the exit,

all while avoiding the radiation. The task is complete if the agent takes the person to the

exit. The task is failed if the agent enters the radiation or exits without the person.
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Figure 6.4: Agent Setup

The agent setup is shown in Figure 6.4. Both agents learned from verbal instruction.

The action advice agent used what can be thought of as verbal demonstrations, while the

critique agent learned from positive and negative critique. The verbal instructions were

transcribed to text using ASR software. The critique agent had an additional language

processing step of using sentiment analysis to convert the text to positive or negative cri-

tique. After language processing, the processed instructions were sent to an interaction

algorithm. The advice agent used Newtonian Action Advice, while the critique agent used

Policy Shaping. Both interaction algorithms worked with the Bayesian Q-learning algo-

rithm to determine action selection.

Neither agent is guaranteed to perform better than the other. If the human provides

no instructions, the critique and advice agents perform equally. With human teachers,

however, the performance of each agent is entirely dependent on the instruction provided by

the person. In terms of theoretical algorithmic performance for an equivalent set of human

instructions, the Newtonian Action Advice agent with a friction parameter of S = 5(steps)

in this experimental scenario is likely to have a higher cumulative reward for the initial
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episodes, but the Policy Shaping agent is likely to earn a higher cumulative reward for the

later episodes [54].

To teach the critique agent, participants were instructed to provide positive or negative

critique if the agent did something they considered good or bad. Using sentiment analysis

as a filter allowed people to provide verbal natural language critique without restricting

their vocabulary. For example, a participant could give varied critique such as, “Good job,”

“That’s great,” “That is a bad idea,” and “You’re wasting time”. The critique agent used

Policy Shaping to incorporate the positive and negative feedback.

For the action advice agent, people were instructed to tell the agent to move in a desired

direction. For example, if participants wanted the agent to move down, they should say,

“down.” The only four words recognized by the action advice agent were, “up,” “down,”

“left,” and “right.” The action advice agent used the Newtonian Action Advice algorithm

to incorporate the advice with the Bayesian Q-learning algorithm’s action selection. The

friction value used in the experiment was S = 5(steps).

The experiment split participants into two groups randomly. The first group trained the

critique agent first, and the second group trained the advice agent first. Participants were

told to stop training when either the agent was performing as they intended or the partic-

ipant was too frustrated to continue or wanted to stop for any reason. Consequently, the

training time varied for each participant and teaching method. After a participant finished

training an agent, the participant completed a questionnaire concerning the experience (see

Paired Tests). After training both agents, the participants filled out a questionnaire compar-

ing the two agents (see One-Sample Tests). At the end of the experiment, participants were

asked if they had any questions or additional thoughts concerning the experiment in an exit

interview.

Experimental Procedure

1. Greeting and Introduction
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2. Instructions for agent 1. Train agent 1. Questionnaire about experience of training agent

1. See Paired Tests in the Results.

3. Instructions for agent 2. Train agent 2. Questionnaire about experience of training agent

2. See Paired Tests in the Results.

4. Questionnaire comparing the experiences of training both agents, including free re-

sponse questions. See One-Sample Tests and participant quotes in the Results.

5. Exit interview.

6.4.1 Human Experience Measures

The answers to all questions regarding human experience were collected using a sliding bar

in which the selected value to the tenths decimal place was shown to the participant.

Paired tests. Immediately after training an agent, the participants were asked to score

the intelligence of the agent on a continuous scale from [0:10]. A value of 0 indicated

that the agent was not intelligent, while 10 meant very intelligent. The same scale of

[0:10] was used for four additional metrics: performance, frustration, transparency, and

immediacy. Values of 0 corresponded to poor performance, low frustration, non-transparent

use of feedback, and a slower response time. Values of 10 meant excellent performance,

high frustration, clear use of feedback, and an immediate response time, respectively.

One-Sample Tests. After training both agents, participants were asked to compare the

intelligence of the two agents on a continuous scale from [-5:5]. A value of -5 indicated

that the action advice agent was much less intelligent than critique. Zero meant the two

agents were equally intelligent. A value of 5 meant the action advice agent was much more

intelligent than critique. The same scale of [-5:5] was used for performance, frustration,

transparency, and immediacy. Values of -5 corresponded to the advice agent performing

much worse, causing much less frustration, using feedback less clearly, and responding

much slower than critique. The scales are shown on Figures 6.6-6.10.
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Explanation of Responses. After training both agents, in item 6 of the procedure par-

ticipants were given the option to explain the answers that they gave on each of their five

comparison ratings. For example, participants were asked, “If one agent was more frus-

trating than another, what made you feel that way?” These written responses were entirely

free form with no priming or options provided by the experimenter.

6.4.2 Objective ML measures

While participants were training the agents, objective performance metrics were logged to

data files. The training time and reward earned per episode were measured as continuous

data. The amount of human input provided and the number of actions it took to complete

an episode were measured as ordinal count data.

6.5 Study 3: Results

I will first show the results of the human teachers’ experience interacting with the agents,

followed by an analysis of the objective metrics of the agents’ performances. I will con-

clude with an analysis of the path the user chose. For the human factor’s metrics I will begin

with an overview of the quantitative analysis and then provide more detailed discussion of

each metric individually.

6.5.1 Human Experience Overview

Figure 6.5 illustrates the results of how participants scored aspects of the human experience.

The differences indicate the human experience was not the same for the advice and critique

agents. The figure shows aggregate participant ratings of how frustrated they were with

each agent, whether it was clear how each agent used the human instruction, how quickly

each agent responded to the instruction, whether the agent performed the task as intended,

and how intelligent the person thought the agent was.

Paired tests on Human Experience: Paired t-tests were conducted for each of the five
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human factors metrics that were collected following training each agent type. The null

hypothesis was the pairwise difference between the two paired groups had a mean equal to

zero. A significance of α = 0.05 was chosen as a reasonable limit on Type I error given the

number of participants enrolled. I found significant differences between the two agents for

every metric. Table 6.1 shows the results of each t-test.

One-sample tests on Human Experience: A series of one-sample t-tests were conducted

for the five human factors metrics that were collected following both training sessions.

Here the null hypothesis was the data came from a population with mean equal to zero.

A significance of α = 0.05 was chosen as a reasonable limit on Type I error given the

number of participants enrolled. I found significant differences between the two agents for

every metric. Table 6.2 shows the results of each t-test. These one-sample tests provide a

separate and internal verification of the paired tests. The results give us a greater assurance

that the differences in the human experience were not influenced by the order in which the

participant experienced the agent.

Clarity Frustration Immediacy Intelligence Performance

Advice Critique Advice Critique Advice Critique Advice Critique Advice Critique
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Figure 6.5: Human Factors Metrics. For all metrics save frustration, higher values represent
a better human experience (better performance, greater transparency, more immediate, and
more intelligent). For frustration, higher values indicate a higher-level of frustration, and
therefore a worse human experience.

Overall, participants found the action advice agent to create a better human experience
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Table 6.1: Paired T-tests on Human Experience

Human Factors Metric Accept/Reject t(23) p µadvice µcritique

Frustration Reject -3.1364 0.0046 3.41 5.60
Transparency Reject 5.4963 1.3738e-05 7.44 3.50
Perceived Intelligence Reject 4.5527 1.4192e-04 5.48 3.40
Perceived Performance Reject 2.2401 0.0350 6.85 5.26
Immediacy Reject 6.2911 2.0291e-06 6.25 3.06

Table 6.2: One-sample T-tests on Human Experience

Human Factors Metric Accept/Reject t(23) p µ
Frustration Reject -4.2313 3.1634e-04 -2.25
Transparency Reject 7.3599 1.7397e-07 2.90
Perceived Intelligence Reject 5.5087 1.3325e-05 2.387
Perceived Performance Reject 8.1462 3.1395e-08 3.06
Immediacy Reject 7.2958 2.0073e-07 2.94

than the critique agent. In both the paired and one-sample tests, participants found the

action advice agent to be less frustrating, more immediate, more transparent, and with a

higher perceived performance and perceived intelligence compared to the critique agent.
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Figure 6.6: Frustration Direct Comparison
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6.5.2 Frustration

Most participants found action advice to be much less frustrating than critique. The par-

ticipants’ free responses provided valuable insight as to why. I analyzed these responses

and found several factors were repeated by many participants. The main factors that made

people perceive one agent as more frustrating than another are listed below. I will discuss

each in turn.

Powerlessness: whether the agent’s behavior made the human operator feel powerless

Transparency: whether the human understands why the agent made its choices

Complexity: the complexity of allowed human instruction

Compliance with input: whether the agent did what it was told

Probabilistic: whether the agent incorporated input probabilistically

Sensitivity to ASR: the accuracy of the software that transcribes verbal speech to text

Powerlessness

The critique agent made people feel powerless, which caused higher levels of frustration

compared to the advice agent. The human’s lack of control over the critique agent caused

higher levels of frustration compared to the action advice agent.

P14 “In the critique case, I felt powerless to direct future actions, especially

to avoid the agent jumping into the radioactive pit.”

P9 “The critique agent did not listen to me which made me frustrated. It took

way longer to respond and did not end up learning how to do the task.”

P8 “Critique agent was hard to train since there wasn’t much feedback as to if

my critique had any affect on it at all.”

P6 “I believe the critique agent took too much time to recognize my input, and

did not act upon at all.”
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P3 “Repeating myself and still getting unintended results.”

P2 “The critique agent was more frustrating to train because I had less direct

control and it was not clear how it was interpreting my input.”

Transparency

The critique agent caused people to be frustrated because the human teachers could not

figure out how their input was being used by the agent.

P22 “The Critique agent was very frustrating. I never understood why it made

the choices it did, although that could have been because I was not telling

it the best commands.”

P8 “(The) Critique agent was hard to train since there wasn’t much feedback

as to if my critique had any affect on it at all.”

P15 “I did not understand how the critique would use my inputs.”

P10 “Critique was more frustrating because it was very difficult to tell how it

was using its knowledge base.”

P6 “I believe the critique agent took too much time to recognize my input, and

did not act upon at all.”

P2 “The critique agent was more frustrating to train because I had less direct

control and it was not clear how it was interpreting my input.”

Complexity

Participants felt that the more complex action advice was less frustrating than the less

complex method of critique.

P12 “I wanted to give more complex advice to ‘help’ the Critique Agent.”

P11 “I felt that the critique agent was more frustrating because I wasn’t able to

give it specific feedback on how to improve or what it had done correctly.”
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Compliance with input

The action advice agent created a less-frustrating interaction because it did what it was told,

unlike the critique agent.

P11 “The action advice robot just worked. The critique robot took time to

train–and even then, he was never as efficient as the action advice robot.”

P23 “I never did get the critique agent to the injured person. It just keep going

in different directions and I couldn’t figure out why.”

P9 “The critique agent did not listen to me which made me frustrated. It took

way longer to respond and did not end up learning how to do the task.”

P6 “I believe the critique agent took too much time to recognize my input, and

did not act upon at all.”

P3 “Repeating myself and still getting unintended results.”

Probabilistic

Several participants mentioned that the random or probabilistic nature of the critique agent

caused them to be more frustrated. The seeming randomness of the agent’s response to

instruction made them question why the critique agent was choosing certain actions. This

is a particularly important lesson for ML researchers because most interaction methods

incorporate human instruction in a probabilistic manner (following instructions, choosing

between human and RL policies, tapering off human instructions, choosing between human

and RL exploration, etc.). While a probabilistic nature of an interactive ML algorithm may

be beneficial for testing algorithms in simulation (and is common practice for pure ML),

it overlooks a basic and essential aspect of the human interaction experience: if I tell the

agent to do something, I want it to follow my instructions in a reliable, repeatable, non-

probabilistic way. I do not suggest that the underlying ML algorithm should be devoid of
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a probabilistic nature, but rather that the interaction method between the human and agent

should be deterministic or heavily biased toward human input in the short term.

P24 “The Critique agent was more frustrating because its development of a

mission plan based on user input seemed to be more randomized than

truly crafted based on feedback. This made it frustrating to give input, as

it felt like it wasn’t being used effectively.”

P23 “I never did get the critique agent to the injured person. It just keep going

in different directions and I couldn’t figure out why.”

Sensitivity to speech recognition

The few participants who found the action advice agent to be more frustrating than critique

had problems with the automatic speech recognition software that transcribed their verbal

feedback into text. While the ASR software used had a good average accuracy, results vary

based on a person’s specific accent and speech patterns. In the future, this problem will

diminish as ASR models are built using a wider array of training data.

The same ASR software was used for both advice and critique. However, the human’s

perception of the advice agent is more sensitive to ASR accuracy because it is immediately

apparent the agent did not understand the person if the person says “right” and the agent

does not move right. Action advice allows people to provide instructions for the agent’s

immediate future actions, which makes it sensitive to ASR accuracy because a person can

immediately tell if the ASR softwae was correct. If the ASR software has poor accuracy, it

is not as readily apparent for the critique agent, which applies the feedback to past actions.

P21 “Action Advice was far more frustrating because it was not recognizing

my commands (especially ”Down”). If it HAD been recognizing a very

high percentage of my commands, it would have been much, much LESS

frustrating than Critique was.”

94



P17 “The action didn’t seem to register what I was saying as clearly.”

P1 “Action advice was more frustrating because it often couldn’t hear me or

misheard me.”
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Figure 6.7: Transparency Direct Comparison

6.5.3 Transparency

Every participant except one found that action advice used the human instruction in a

clearer manner than critique. The main factor that made people perceive one agent as

more clear than another was:

Compliance with input: whether the agent did what it was told

Compliance with Input

P11 “The action advice agent used my feedback more clearly because it would

do exactly what I said. With the critique agent it was hard to tell how it

was choosing what to do next.”

P24 “The Action Advice agent used feedback much more clearly since it

awaited instruction and did exactly what was told, so long as the audio

was clear.”
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P23 “I could see that the Action Agent was at least responding by going the

way I said. Even if I told the critique agent it was bad, it didn’t necessarily

try something different.”

P21 “Action Advice was using my feedback, when it understood it correctly,

to directly move. I had to guess what Critique was going to do with my

input.”

P20 “I could see action agent respond to my input, but the critique agent didn’t

seem to use the input.”

P15 “(With the action advice agent,) a certain input caused an output. The

critique agent seemed to be going randomly with small help.”

P9 “It seems that the action agent used my feedback better because I was able

to get it to consistently collect the object and make it to the goal. The

critique agent seemed to do what it wanted and did not take my advice.”

P5 “The (action advice) agent responded in the right direction with a quicker

time.”

P4 “The speed and accuracy of the (advice) agent’s movements in response to

my feedback. Essentially, seeing the agent do what I ‘wanted it to do’

made it seem like my feedback was used more clearly.”

P2 “The action advice agent tended to move in the direction I had previously

advised it to move, but the critique agent still moved in general directions

that I had given negative feedback for previously.”

6.5.4 Perceived Intelligence

The majority of participants perceived the advice agent to be more intelligent than the

critique agent, even though both used the same underlying ML algorithm. Without human
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Figure 6.8: Perceived Intelligence Direct Comparison

input both agents were equally capable, but the teaching method caused the human-agent

interaction to differ.

Paired Tests: A paired T-test was conducted in which the null hypothesis was the pair-

wise difference between the two paired groups had a mean equal to zero. The test found

significant differences (t(23) = 4.5527, p ≤ 0.0001) of the perceived intelligence between

the two agents. Participants found the action advice agent (µa = 5.483) to be more intelli-

gent than the critique agent (µc = 3.408).

One-sample Comparison: A one-sample T-test was conducted in which the null hy-

pothesis was the data came from a population with mean equal to zero. I found significant

differences (t(23) = 5.5087, p ≤ 0.0001) of the perceived intelligence between the two

agents. Most participants perceived the advice agent to be more intelligent than the cri-

tique agent, even though both used the same underlying ML algorithm. Both agents were

equally capable, but the teaching method caused the human-agent interaction to be very

different. Figure 6.8 shows the number of respondents for each value. Most participants

found the action advice agent to be more intelligent than the critique agent, with 54% giv-

ing scores +3 or greater. Only 3 participants rated the critique agent as more intelligent,

and none of these rated it strongly so.

At the end of the experiment, participants were given the option to write about what
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made them think one agent was more intelligent than another. The main factors that made

people perceive one agent as more intelligent than another were:

Compliance with input: whether the agent did what it was told

Responsivness: how quickly the agent learned

Effort: the amount of input needed to train the agent

Additional factors participants noted that affected the agents’ perceived intelligence

levels were:

Complexity: the complexity of allowed human instruction

Transparency: whether the human understands why the agent made its choices

Robustness and Flexibility: the agent’s ability to correct mistakes and learn alternate

policies

Compliance

Surprisingly, the advice agent’s ability to immediately follow the human’s instructions was

a main reason participants gave for determining the intelligence of the agent, regardless of

whether they thought the advice or critique agent was more intelligent.

Most participants said the advice agent was more intelligent because it correctly fol-

lowed by the participant’s input. The following are from the participants’ responses:

P22 “The Action Advice was significantly more intelligent then the Critique. It followed

my comments and completed the task multiple times.”

P18 “I feel the Action Advice may be more intelligent because it took my commands

well.”

P10 “Action advice seemed more intelligent because it was receptive to concise com-

mands as opposed to the critique agent in which training with both positive and

negative reinforcement got difficult.”
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P19 “Action agent appeared to take direction better.”

P23 “The Action Advice followed my instructions.”

P9 “The action agent listened to me and did what I told it to do. With the critique agent

it would do an action I told it not to do over and over again. ”

P8 “Advice agent was able to follow the commands and get to the exit with the person.

Critique agent could not follow the commands.”

P3 “The advice agent responded with the correct results and was able to perform the

tasks with minimal effort.”

The few participants who thought the critique agent was more intelligent came to this

conclusion while admitting that the action advice agent performed better. They indicated

that the advice agent was ‘just following orders’, not showing independent thought. The

critique agent may not have performed well or made clear and immediate use of the hu-

man feedback, but that behavior was interpreted as figuring out the task on its own, like a

willful or independent person who does not follow directions. The following are from the

participants’ responses:

P24 “The critique agent was technically more ‘intelligent’ simply due to the fact that it

was making its own decisions. The Action Advice agent was simply controlled, but

this led to a more efficient mission despite the lack of intelligence.”

P21 “Action Advice was following commands, Critique had to ‘figure out’ to accomplish

goal off my +/- feedback.”

P13 “The action advice robot followed instructions very well. The critique robot would

go in a direction multiple times despite being told ‘no.’ The critique robot did

eventually learn though. As I write this, I realize I was wrong: the critique robot

was more intelligent but not as good at the task.”
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P7 “I thought the critique agent was more intelligent than the action advice agent because

although the action advice agent was able to get to the end successfully more, it was

not as good at picking the right path without human advice.”

Note that the exploration policy of both agents without human input was identical, as

directed by the Bayesian Q-learning algorithm.

These explanations bring up an interesting point of the definition of intelligence. It

would be interesting to know if their opinion of intelligence would persist to other domains

where the purpose of the robot is to help a human do a task instead of playing a game suc-

cessfully. A robot that can successfully figure out “on its own” how to navigate a maze may

seem more intelligent, but a robot that puts clothes or dishes in the wrong place multiple

times after being told it was wrong may be seen as less intelligent.

Responsiveness

Several participants said the advice agent was more intelligent because it was more respon-

sive, i.e. it learned faster than the critique agent. The following are from the participants’

responses:

P11 “I felt that the action advice agent was more intelligent because it seemed to learn

faster and recover from mistakes faster.”

P15 “The action advice agent seemed to respond to my statements faster.”

P4 “The advice agent is more intelligent because it adapted to what I defined as the

‘desired state’ more quickly and with less instruction.”

P20 “The action agent is able to perform correctly without input much quicker.”

P14 “The speed of response to my input was mostly how I judged the advice agent was

more intelligent.”

P5 “The action agent responded faster when controlled.”
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Effort

Similar to the training speed, several participants mentioned the advice agent was more

intelligent because less effort was required to teach it. The agent appeared to be able to be

more autonomous with fewer instructions from the human teacher. The following are from

the participants’ responses:

P3 “The Advice agent responded with the correct results and was able to perform the

tasks with minimal effort.”

P2 “The action advice agent was nearly able to complete the mission autonomously by

the end of training, but the critique agent still appeared to move somewhat ran-

domly.”

P1 “As time went by, I could say less and action advice agent could still do most on its

own.”

P4 “The advice agent is more intelligent because it adapted to what I defined as the

“desired state” more quickly and with less instruction.”

Robustness & Flexibility

During the exit interview, a couple of participants mentioned that they trained the advice

agent to complete the task one way, but then they retrained the advice agent to follow an

alternate policy. This flexibility and retraining was not possible with the critique agent.

Additionally, participants mentioned that when the advice agent made mistakes it seemed

to recover from them more quickly. The following are excerpts from the participants’

responses:

P11 I felt that the action advice agent was more intelligent because it seemed to learn

faster and recover from mistakes faster.
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P9 It [action agent] listened to me and did what I told it to do. With the first [critique]

agent it would do an action I told it not to do over and over again. With the action

agent it usually performed the actions I instructed it to do.

Transparency & Complexity

At least one person (P22) mentioned that, “the Action Advice was significantly more intel-

ligent then the Critique because I was always able to understand why it made the choices

it did.” This implies that the transparency of an agent’s actions affect how intelligent the

person perceives the agent to be.

I expected the complexity of the advice compared to the simpler critique to be a main

factor in the perceived intelligence of the agents. While some participants did discuss that

they thought the advice agent was more intelligent based on the complexity of the input,

it was a less-prevalent reason compared to performance, speed, and amount of instruction.

The following are excerpts from the participants’ responses:

P12 “Complexity of Action Advice made that agent seem more intelligent.”

P10 “Action advice seemed more intelligent because it was receptive to concise com-

mands as opposed to the critique agent in which training with both positive and

negative reinforcement got difficult. It was discouraging to give the agent negative

critique when the desired command was down and it oscillated between up, left and

right, due to fear of it going right (into the radiation zone) if a negative critique

landed on Left.”
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Figure 6.9: Perceived Performance Direct Comparison

6.5.5 Perceived Performance

Most participants thought action advice performed better than critique. In fact, no partic-

ipants found the action advice agent to perform much worse than critique, and over 60%

of participants felt action advice performed much better than critique. I did not ask partici-

pants for free-form responses on perceived performance, assuming the responses to “If one

agent performed the task as you intended better than the other, what made you think that?”

would be redundant.

6.5.6 Immediacy

Only two participants found action advice to respond slower than critique, and they had

issues with the ASR software accuracy. Similar to perceived performance, I did not ask

participants for free responses about immediacy, assuming tautological answers to: “If one

agent responded to your input faster than another, what made you think that?” However,

through the participants’ free responses to other human factors metrics, I have found the

immediacy of the agent’s response to be a main factor impacting both frustration and per-

ceived intelligence.
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κ Level of Agreement

0 - 0.20 None
0.21 - 0.39 Minimal
0.40 - 0.59 Weak
0.60 - 0.79 Moderate
0.80 - 0.90 Strong
Above 0.90 Almost Perfect

Table 6.3: Interpretation of Cohen’s kappa statistic

6.5.7 External Verification of Long Response Data Analysis

As part of the qualitative analysis of the free response answers, two researchers indepen-

dently classified each of the responses for the frustration, perceived intelligence, and trans-

parency questions. A Cohen’s kappa coefficient for the inter-rater reliability was calculated

for the two reviewers, with a goal of achieving a 0.60 or above, indicating moderate agree-

ment (Table 6.3). As seen in Table 6.4, the qualitative analysis coding achieved a kappa of

> 0.60 in all categories, with the majority achieving > 0.70.
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Category Frustration Perceived Intelligence Transparency

Compliance with Input 0.621 0.645 1.0
Immediacy 0.792 1.0 0.771

Transparency 0.727 - -
Complexity 0.694 - -
Randomness 0.831 - -

Powerlessness 0.713 - -
Effort - 0.633 -

Table 6.4: Cohen’s kappa for Study 3

6.5.8 Objective metrics on ML Performance

Paired tests on Interval ML Data: Paired t-tests were conducted for the ML metrics that

were interval in nature: training time and average reward. The null hypothesis was the

pairwise difference between the two paired groups had a mean equal to zero. I found

significant differences of the training time and reward between the two agents. Table 6.5

shows the results of each t-test.

Paired tests on Ordinal ML Data: Wilcoxon Signed Rank tests were conducted for the

objective metrics that were ordinal in nature: average number of training inputs from the

human and average number of steps to complete each episode. The null hypothesis was

the difference between the pairwise samples came from a distribution with zero median.

I found that there was a significant difference between advice and critique in the number

of steps it took to complete a level. However, there was not a significant difference in the

amount of input given by the human teacher. Table 6.6 shows the results of each test.

Table 6.5: Paired T-tests on ML Performance

Objective Metrics Accept/Reject t(23) p µadvice µcritique

Training Time Reject -3.9321 7.6406e-04 38.51 99.81

Avg Reward Reject 7.3106 3.3849e-07 -18.92 -89.57
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Table 6.6: Wilcoxon Signed Rank tests on ML Performance

Objective Metrics Accept/Reject Z p

Avg Number Inputs Accept 1.1201 0.2627

Avg Number Steps Reject -2.9057 0.0037
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Figure 6.11: ML Performance Comparison.

Training Time

The training time was significantly shorter for advice than critique.

Amount of Human Input

The amount of input provided by the human teacher was approximately the same for advice

and critique.
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Number of Steps to Complete an Episode

The advice agent was able to complete an episode in significantly fewer steps than critique.

The critique agent spends many steps wandering around the domain, seemingly aimlessly.

The median number of steps for advice was 24, while the critique agent doubled that with

a median of 50.

Reward

The advice agent received a significantly higher reward than critique.

6.5.9 Evaluating the User’s Path

Figure 6.12 shows the Radiation World domain with two specific paths. The first path is

the shortest path to the goal. This is the path that will earn the highest possible reward

from the reward signal, but will take the agent immediately adjacent to the radiation. The

second path allows the agent to keep a thick wall between the agent and the radiation leak

while only adding two steps to the total length of the shortest path, This second path that

avoids radiation will earn slightly less reward (100 vs 102), which means it is a path that

the underlying RL agent will never follow compared to the shortest path. However, many

people would rather the agent take two steps out of the way in order to keep a wall between

the agent and the radiation. For the following discussion, I will call the two paths ‘Shortest’

and ‘AvoidRadiation’.
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Figure 6.12: Radiation World with the 1) Shortest Path to Goal and 2) Path to Goal that
Avoids Radiation.

To analyze whether the agents followed paths closer to the Shortest or AvoidRadia-

tion paths, first I created a sequence of (x,y) coordinates to represent both paths. At each

time step, the agent’s location was compared to the sequences for both the Shortest and

AvoidRadiation paths. I used Manhattan distance as a distance metric.

For example, let (xagent, yagent) be the agent’s coordinates at time step i. Let (xavoidRad, yavoidRad)

be the ith element in the AvoidRadiation sequence of coordinates. Then, dist is the distance

between the agent’s location and the AvoidRadiation path at time step i.

dist = |xagent − xavoidRad|+ |yagent − yavoidRad|

The total distance between the agent’s path and the AvoidRadiation path is the distance

calculation summed over the entire path. Calculating distance in this way penalizes the

distance from the path as well as if the agent is in a location at the wrong time.
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Figure 6.13: Histogram: for each participant, the mean distance (averaged across episodes)
from the Shortest path.

Figure 6.13 shows a histogram that compares each participant’s mean distance from the

Shortest path. The critique agent tends to have a much higher average distance because the

agent takes many more steps to complete the episode, particularly in early trials, compared

to the action advice agent.

80% of participants using the advice agent chose a route closer to the AvoidRadiation

path during the first episode. A lower 61% of critique agents followed a route closer to the

AvoidRadiation path during the first training episode.
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Table 6.7: Percentage of Participants who tried to 1) always follow the Shortest path, 2)
always follow the AvoidRadiation path, or 3) switched between the Shortest and AvoidRa-
diation paths.

Path History Critique Advice

Every episode closest to Shortest Path 23.8 0.0

Every episode closest to AvoidRadiation Path 42.9 28.0

Switched between Closest and AvoidRadiation Paths 33.3 72.0

Table 6.7 shows the percentage of participants whose agents always followed paths

closest to the Shortest path, AvoidRadiation path, or switched between the two. Close to

one quarter of critique agents always followed paths closest to the Shortest path. On the

other hand, not even one action advice agent always took a path closest to the Shortest

path. Remember that the human does not have direct, immediate control over the critique

agent. When using the action advice agent, in which the person did have direct, immediate

control over the agent’s future actions, participants either had the agent always follow the

AvoidRadiation path or switched between the Shortest and AvoidRadiation paths. The

fact that 0.0% of participants had the agent always follow the Shortest path (that earns the

highest reward according to the reward signal) is further evidence that we should create

agents that can learn to complete the task as the person intends, even if it means following

a slightly sub-optimal policy according to the reward function.

Several of the participants trained the advice agent to follow multiple paths. One par-

ticipant said he did this to understand the agent’s limitations - in cases such as this, the path

followed is less indicative of whether people would train an agent to avoid radiation in real

life and more representative of the human trying to learn the agent’s capabilities. Figure

6.14 shows an example of a participant training the agent to follow drastically different

paths in different episodes.
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a: Episode 2: Avoid Radia-
tion Path

b: Episode 3: Shortest Path c: Episode 10: Avoid Radia-
tion Path

Figure 6.14: Example of a participant training the agent to follow different paths in different
episodes using the Newtonian Action Advice agent.

6.6 Study 3: Discussion

6.6.1 Perceived Intelligence: More than simply managing expectations

A robot’s physical appearance is often created to manage a person’s expectations (and

ideally to match the capabilities) of the intelligence and level of interaction the robot is

capable of. If the robot is not terribly intelligent or sophisticated, a humanoid appearance

is not a good design choice - people expect the robot to have a human-level intelligence

and are frustrated when the robot proves to be less intelligent than expected. The mismatch

between the expected and actual intelligence causes frustration [51].

Similarly, the results here indicate that the teaching method, like morphology, impacts

expectations. However, unlike morphology I suggest that the teaching method should not

be downgraded when designing a robot, because it would not achieve the same result of

managing expectations. With a robot’s morphology, the physical appearance is chosen to

match its capabilities. With teaching methods, choosing critique over action advice can

cause the human to think worse of the agent regardless of its capabilities. In the case

of teaching methods, the underlying ML agent is the same, but the human experience is

stymied by a poor human-agent interaction.
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6.6.2 Summary of participants’ long responses

The nested Venn diagram in Figure 6.15 shows a summary of which factors impact the

human teacher’s frustration as well as perceptions of transparency and intelligence based

on the free responses. The main factor impacting transparency was compliance with input;

and these two factors along with complexity impacted both the human’s frustration and

perceived intelligence of the agent. Feelings of powerlessness, a probabilistic use of the

user’s instruction, and a sensitivity to the ASR software increased frustration. Robustness,

flexibility, and effort impacted perceived intelligence.

I find it interesting that complexity does not detract from the human experience. The

more complex form of input, action advice, created a better user experience by lowering

frustration and creating a perception of a more intelligent agent. There is likely a point

at which the input could be designed to become so complex and detailed that it becomes

unwieldy and detracts from the user experience. On the other side of the complexity scale,

the results show that input of a too-simplistic form can damage the human’s satisfaction

with the agent.

Figure 6.15: Summary of factors that impact frustration, transparency, and perceived intel-
ligence based on participants’ free responses.
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6.6.3 Design considerations

The results of this study indicate that specific characteristics of an interaction algorithm will

impact the human teacher’s experience. Before researchers or designers create, modify, or

choose an interaction algorithm, I suggest they consider the following characteristics to

improve the human’s experience of working with the agent:

1. Instructions about future, not past. An algorithm that uses instructions about the

future (such as action advice) instead of the past fosters a positive human experience

because it increases the perceived control the human has over the agent, allows for

greater transparency of how the agent uses the instructions, and enables the human to

immediately detect issues with the agent’s compliance. Choosing a rhetorically positive

teaching method will also set the tone for a more positive human-agent interaction.

2. Compliance with Input. If the human teacher sees the agent following instructions, the

person will be less frustrated and perceive the agent to have a higher performance and

intelligence.

3. Empowerment. An interaction algorithm that forces the agent to clearly, immediately,

and consistently follow the human’s instructions will decrease feelings of powerless-

ness, which will in turn decrease the person’s frustration.

4. Transparency. An algorithm in which the human teacher can clearly understand how

the agent used the human’s instructions to choose an action will decrease frustration

and increase perceived intelligence. A greater transparency can be achieved if an agent

immediately complies with the instructions.

5. Immediacy. The human’s experience will be improved if the agent immediately re-

sponds to the instructions because it creates a sort of instant gratification for the human.

6. Deterministic interaction. While the underlying ML algorithm will doubtlessly be

probabilistic, the interaction with the human should be such that the agent follows the
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instructions in a reliable, repeatable, non-probabilistic manner. A deterministic interac-

tion with the human will decrease frustration and decrease the person’s uncertainty in

the agent that degrades trust.

7. Complexity. An algorithm that allows for more complex instructions than binary good

vs. bad critique will decrease frustration and increase perceived intelligence.

8. ASR accuracy. When choosing ASR software, it is worth the effort to improve the

accuracy in order to decrease the human’s frustration. Also, while a person is more

aware of the accuracy and processing duration for an advice agent, this does not mean

the critique agent is better in this regard. Rather, the critique agent trades processing lag

for less transparent agent response, which increases frustration and decreases perceived

intelligence.

9. Robustness and Flexibility. The ability to correct mistakes and teach the agent alternate

policies improves the human teacher’s experience.

6.6.4 Thoughts on using critique for IML applications

At first glance and from a ML researcher’s perspective, critique is a very attractive option

for using human feedback. It is simpler, binary feedback (positive vs. negative). It does

not require grounding feedback to the state/action space, and would not need to be altered

when switching between domains or to embodied robots. Critique can be incorporated into

machine learning algorithms in several ways; it can be used directly as a reward signal or,

more efficiently, as policy information in a Policy Shaping algorithm. However, Policy

Shaping does not promote a positive human experience. We need a better way to connect

critique to ML. Is it worth the time and effort to pursue better critique algorithms? Critique

is perceived as less intelligent than action advice, and is not as human-friendly. People

cannot directly control a critique agent, leading to feelings of powerlessness. It is unclear

how critique is being used by the agent during training, and people become frustrated with

the lack of transparency. People give instructions about the future, even if expressly told
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not to [18], so it is not intuitive to use an interaction method that disallows future instruc-

tions. There is no definitive way to solve the credit attribution problem. Also, critique is

inherently negative from a rhetorical perspective. It is tempting to focus on making action

advice better instead of pursuing critique. In the end, it would be beneficial to use both ad-

vice and critique since people naturally switch between both, but that is beyond the scope

of this work.

6.6.5 Limitations

I have shown that the interaction algorithm impacts the human’s satisfaction with the agent.

Specifically, the Newtonian Action Advice agent creates a better experience for the human

than Policy Shaping. In terms of teaching methods, our experiment used Newtonian Action

Advice as an ambassador of action advice, which can be thought of as verbal demonstra-

tions, and Policy Shaping as a representative of critique. I cannot use the results to directly

guarantee that all action advice algorithms will create a better user experience than all cri-

tique algorithms. However, after analyzing the participants’ explanations of what impacted

the user experience, I identified nine design considerations that each indicate action advice

is the superior teaching method and is inherently more likely to create a better experience

for the human teacher than critique.

The experimental scenario was chosen to even the playing field between the advice and

critique agents. A domain with a limited dimension was chosen so a critique agent could

be trained in less than 15 minutes. Four primitive actions were used so the advice agent

was limited to four possible inputs compared to critique’s two.

A limitation of the action advice agent is a menu of available actions must be defined by

the researcher. The available natural language descriptions of the actions were grounded

to the agent’s corresponding primitive actions prior to the experiment. For example, the

word ‘right’ was grounded to the agent’s action that would move the agent one square to

the right. The critique agent did not share this limitation.
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6.7 Study 3: Conclusion

I have shown that the interaction algorithm can impact the human’s experience with an

IML agent. The human experience differed between agents and could be measured. The

Newtonian Action Advice agent created a better experience for the human than the critique-

driven Policy Shaping.

I have identified nine main characteristics that impact the human’s experience with

the agent, including: using human instructions about the future, compliance with input,

empowerment, transparency, immediacy, a deterministic interaction, the complexity of the

instructions, accuracy of the speech recognition software, and the robust and flexible nature

of the interaction algorithm.

These design characteristics suggest that, in terms of teaching methods, action advice

is likely to create a better experience for the human teacher than critique.

This chapter demonstrates that it is not enough to design algorithms that can theoret-

ically use human input; we must go further and design algorithms that create a positive

human experience. IML algorithms must be verified using human factors metrics such as

frustration in addition to traditional ML metrics such as cumulative reward.

6.8 RQ Results Summary

• The interaction method (e.g. Policy Shaping critique vs. Newtonian Action Ad-

vice) impacts the human teacher’s experience with the agent (perceived intelligence,

perceived performance, frustration, immediacy, transparency). In fact, Newtonian

Action Advice creates a better user experience than Policy Shaping critique.

– Validation: Study 3.

– Supports thesis: Part 1 (human experience) - this work studies how and why

decisions made during the design of interaction algorithms impact the human’s

experience with the agent.
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• The interaction method (e.g. Policy Shaping critique vs. Newtonian Action Ad-

vice) impacts the objective metrics of the teacher’s interaction with the agent (re-

ward, training time, amount of human input provided, number of steps for the agent

to complete each episode). With human teachers, NAA earned a higher reward in a

smaller training time using fewer steps to complete each episode than Policy Shaping

critique. Both methods used approximately equal amounts of human input.

– Validation: Study 3.

– Supports thesis: Part 3 (performance) - designing an RL agent (NAA) that im-

proves the human experience with the agent did not detract from the agent’s

capabilities.

• Many design decisions made during the creation of an interaction algorithm impact

the human teacher’s experience, including whether instructions are about the future

or past, whether the agent complies with human input, how immediately the agent

uses the human input, whether the interaction with the agent is probabilistic, and the

accuracy of the ASR software.

– Validation: Study 3.

– Supports thesis: Part 1 (human experience) - this work studies how and why

decisions made during the design of interaction algorithms impact the human’s

experience with the agent.

• Action advice (“Go left. Move right.”) is more rhetorically positive than critique

(“Good. Bad.”)

– Validation: Study 3.

– Supports thesis: Part 1 (human experience) - this work explored how rhetoric is

a factor that should be taken into account when choosing a teaching interaction

method.
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CHAPTER 7

STUDY 4: EFFECT OF ADVICE VARIATIONS - TEASING APART WHAT

PEOPLE LIKE ABOUT ADVICE

This chapter investigates how three factors of the design of an interactive reinforcement

learning agent - generalization through time, immediacy, and a time delay - impact the

user’s experience with the agent. We conducted a human-subject experiment in which peo-

ple trained four agents with different interaction designs to play a simple game using verbal

instruction. All agent variations were modified versions of the Newtonian Action Advice

algorithm, an interactive reinforcement learning agent that learns from verbal advice like,

“go left.” The results show that a time delay between when advice is given to and followed

by the agent created a poor user experience, while a probabilistic interface generated a poor

to middling performance. Whether the agent generalized through time did not have a sig-

nificant impact on the user experience. IML researchers should be aware of this and design

algorithms that have a deterministic interface and minimize the time delay between when

advice is given and used.

7.1 Introduction

Our previous study in Chapter 6 analyzed human satisfaction with IML agents compared

the human experience of two verbal interaction methods: advice (e.g. “right, left”) and

critique (e.g. “good, bad”) [1]. The study found that the Newtonian Action Advice (NAA)

algorithm created a better user experience than a critique Policy Shaping agent. From

text responses provided by participants, the study identified several characteristics of the

interaction design of IML algorithms they suspected would impact the user experience,

including immediacy and a deterministic interaction. In this chapter, I have delved deeper

into those design characteristics to directly study the impact of individual design decisions
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in IML advice algorithms.

This chapter focuses on the question: How do the following three factors of an agent’s

interaction design affect the person’s experience with the agent: 1) generalization through

time, 2) time delay, and 3) a probabilistic interface? If we can isolate specific design deci-

sions that impact the user’s experience, IML researchers can design algorithms that create

a positive user experience. Based on the results of Chapter 6, I hypothesized the human’s

experience to be improved by designing an interaction algorithm to: have a minimal delay

between when human instructions are given and used by the agent; incorporate the human

input in a non-probabilistic manner; and generalize the human’s input through time so the

human does not need to provide as much instruction.

I performed a repeated measures human-subjects experiment in which participants taught

four agents how to play a game with different interaction designs. All four agent variations

were based on the Newtonian Action Advice algorithm (NAA), which is an IML algorithm

that enables people to teach an agent using verbal action advice (i.e. verbal demonstration)

such as “move down,” and “go left.”

7.1.1 Research Questions

This work investigates how three factors of an agent’s interaction design affect the person’s

experience with the agent.

• Does generalization through time impact the person’s experience with the agent? If

so, to what extent?

• Does a time delay between when advice is given and used impact the person’s expe-

rience with the agent? If so, to what extent?

• Does a probabilistic interface impact the person’s experience with the agent? If so,

to what extent?
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7.1.2 Algorithm Development

Three variations of the NAA algorithm were created for this study.

7.1.3 Method Summary

The research questions in this chapter were tested in Study 4, which was a human-subject

experiment conducted in the Radiation World domain.

7.2 Algorithm Development: Newtonian Action Advice Variations

During this study, each participant trained four agents in a different order, creating a bal-

anced experimental design. Each agent was a variation of the NAA algorithm.

7.2.1 Algorithm 1: Newtonian Action Advice, 5 Steps

The first algorithm developed for this study was the same NAA algorithm used in Section

5.2 [54]. The “5 Steps” refers to the amount of time steps a human’s advice would be

followed before the NAA agent reverted back to its underlying action selection method. If

a participant told the agent to move left, the agent would immediately move left for five

time steps unless the participant interrupted to provide new, superseding advice.

7.2.2 Algorithm 2: Newtonian Action Advice, 1 Step (no generalization)

The second algorithm developed for this study differed from the first by following advice

for one time step instead of five. This results in participants being required to provide ad-

vice more frequently. For example, if the participant wanted the agent to move down five

steps and then right four steps, the participant would need to say, “Down, down, down,

down, down, right, right, right, right.” This algorithm variation is testing whether no gen-

eralization of advice through time impacts the user’s experience. Many algorithms that

learn from demonstrations treat each demonstration as a strict (state, action) pair and do
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not generalize either through time or similar states.

7.2.3 Algorithm 3: Newtonian Action Advice, 5 Steps, probabilistic

The third algorithm developed for this study differed from the first by incorporating advice

in a probabilistic manner. Each time new advice was given by the person, the agent would

follow the advice with a 60% probability or choose an action based on the agent’s action

selection method with a 40% probability.

A certain level of unpredictability may be necessary for a fun user experience [55].

However, unpredictability can induce stress in humans [56]. A previous study found that

a Policy Shaping agent that integrates the human’s critique with the RL agent in a prob-

abilistic manner resulted in a worse user experience than an NAA agent that incorporates

the human’s advice in a deterministic manner [1]. This Probabilistic algorithm variation is

testing whether, and to what extent, using advice in a probabilistic manner impacts the user

experience.

7.2.4 Algorithm 4: Newtonian Action Advice, 5 Steps, time delay

The fourth algorithm developed for this study differs from the first by introducing a two

second time delay between when advice was provided by the participant and when the

agent followed the advice. Users can adapt to frequent, expected time delays [57], and

users tend to prefer delays of less than one second [58]. However, time delays can improve

performance on difficult tasks [59]. This algorithm variation is testing whether, and to what

extent, the immediacy of using advice impacts the user experience.

When designing an advice algorithm, a researcher may not purposefully build in an

extended time delay. However, the researcher may not make an effort minimize a time

delay unless studies like this one show it greatly impacts the user experience. Many IML

algorithms, such as those that learn from critique, do not have a method of immediately

using the human’s instruction.
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7.3 Study 4: Method

We conducted a repeated-measures human-subject experiment in which we investigated the

effect of four interaction algorithm variations on the human’s satisfaction with the agent.

The study collected data from 24 participants who were not experts in machine learning.

The age of the participants varied from 18-65 years old.

7.3.1 Radiation World Domain

This study used the same Radiation World domain setup as Study 2 (section 6.4).

Figure 7.1: Radiation World Initial Condition

The task required participants to teach each agent to rescue a person in Radiation World,

which is a game developed in the unity minecraft environment as shown in Figure 7.1 and

has been used in other IML studies [60, 54, 1]. In the experimental scenario, there has

been a radiation leak and an injured person is located somewhere in the grid unable to

move. The agent must find and rescue the person, take him to the exit, all while avoiding

the radiation. The task is complete if the agent takes the person to the exit. The task is

failed if the agent enters the radiation or exits without the person. The task is repeated for

several training episodes; participants were told to stop training when either the agent was

performing as they intended or the participant was too frustrated to continue or wanted to

stop for any reason. Consequently, the training time varied for each participant and inter-

action algorithm. After a participant finished training an agent, the participant completed a

questionnaire concerning the experience. At the end of the experiment, participants were

asked if they had any questions or additional thoughts concerning the experiment in an exit
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interview.

All four agents learned from verbal instruction that can be thought of as verbal demon-

strations. The verbal instructions were transcribed to text using ASR software. After

language processing, the processed instructions were sent to one of the NAA interaction

algorithm variations.

People were instructed to tell the agent to move in a desired direction. For example, if

participants wanted the agent to move down, they should say, “down.” The only four words

recognized by the action advice agents were, “up,” “down,” “left,” and “right.” The action

advice agent used the Newtonian Action Advice algorithm to incorporate the advice with

the Bayesian Q-learning algorithm’s action selection.

Experimental Procedure

The procedure followed by all participants is provided below. All participants experienced

the algorithm variations in a different order.

1. Greeting and Introduction

2. Instructions for agent 1. Train agent 1. Questionnaire on experience of training agent 1.

3. Instructions for agent 2. Train agent 2. Questionnaire on experience of training agent 2.

4. Instructions for agent 3. Train agent 3. Questionnaire on experience of training agent 3.

5. Instructions for agent 4. Train agent 4. Questionnaire on experience of training agent 4.

6. Free response questions about the experience of training the agents.

7.3.2 Human Experience Measures

The Human Experience measures were created as a modified version of the NASA-TLX

questionnaire [61]. The answers to all questions regarding the human experience were

collected using an electronic questionnaire that used a sliding bar in which the selected

value to the tenths decimal place was shown to the participant.
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Paired tests. Immediately after training an agent, the participants were asked to score

the intelligence of the agent on a continuous scale from [0:10]. A value of 0 indicated

that the agent was not intelligent, while 10 meant very intelligent. The same scale of

[0:10] was used for four additional metrics: performance, frustration, transparency, and

immediacy. Values of 0 corresponded to poor performance, low frustration, non-transparent

use of feedback, and a slower response time. Values of 10 meant excellent performance,

high frustration, clear use of feedback, and an immediate response time, respectively.

Explanation of Responses. After training both agents, in item 6 of the procedure partic-

ipants were given the option to explain what factors impacted their experience of working

with the agents. For example, participants were asked, “If one agent was more frustrating

than another, what made you feel that way?” These written responses were entirely free

form with no priming or options provided by the experimenter. The purpose of these ex-

planations is to explore why the interaction algorithm impacts the human’s experience. The

resultant set of design characteristics that affect the person’s relationship with the ML agent

allows us to analyze each of these characteristics thoroughly in future work and eventually

use the characteristics to direct the design of IML algorithms.

7.3.3 Objective ML measures

While participants were training the agents, objective performance metrics were logged to

data files. The training time and reward earned per episode were measured as continuous

data. The amount of human input provided and the number of actions it took to complete

an episode were measured as ordinal count data.

7.4 Study 4: Results and Discussion

The algorithm variations differed across the board in terms of both human factors and ob-

jective metrics. The NAA 5 Steps and NAA 1 Step algorithms performed the best, followed

by the Probabilistic variation. Overall, the Time Delay variation performed the worst.
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7.4.1 Human Factors Metrics

Figure 7.2: Human Factors Results for NAA Variations

Figure 7.3: Human Factors Results for NAA Variations

Figure 7.2 shows the boxplots of all the human factors results. For all human factors

metrics except frustration, higher values represent a better human experience (better perfor-

mance, greater transparency, more immediate, and more intelligent). For frustration, higher

values indicate a higher level of frustration, and therefore a worse human experience. The 5
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Steps and 1 Step agents performed better than the Probabilistic and Time Delay variations

on every human factors metric.

Figure 7.3 shows the distribution of responses for the human factors metrics. A line is

drawn at the middling value of 5 for each of the human factors. Both the 5 Steps and 1 Step

(no generalization) variations show distributions that are skewed toward a positive human

experience: high transparency, perceived performance, intelligence, immediacy, and low

frustration. The distributions for the Probabilistic variation are shifted toward a middling

and poor user experience. The Time Delay distributions are skewed toward a negative user

experience and are almost the opposite of the 5 Steps and 1 Step variations; the distributions

show that participants thought the Time Delay variation was not transparent, not intelligent,

responded slowly to advice, had middling performance, and was highly frustrating.

Each of the violin plots (Figures 7.4 - 7.8) show the data distribution drawn around a

boxplot.

Frustration

Figure 7.4: Frustration Results for NAA Variations

Figure 7.4 shows the 5 Steps and 1 Step agents resulted in the lowest frustration. The Time

Delay variation was the most frustrating, followed closely by the Probabilistic agent.

A one-way repeated measures ANOVA shows that frustration is not equal across all
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Table 7.1: Frustration: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 2325.59 249.78 23 214.1453 3.836e-13
Algorithms 167.35 490.22 69 7.8518 0.0001397

NAA algorithm variations (Table 7.1). A post-hoc analysis of a series of paired t-tests

shows the 5 Steps and 1 Step variations are equal in frustration. The Probability and Time

Delay variations are equal in frustration. However, the 5 Steps and 1 Step variations are

less frustrating than the Probability and Time Delay variations.

Perceived Performance

Figure 7.5: Perceived Performance Results for NAA Variations

Table 7.2: Perceived Performance: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 3902.8 290.21 23 309.3039 7.814e-15
Algorithms 113.0 490.85 69 5.2971 0.002405

Figure 7.5 shows the 5 Steps and 1 Step agents were clustered around a very high
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perceived performance. The Time Delay and Probabilistic variations had more variation

and were overall seen as performing worse.

A one-way repeated measures ANOVA shows that perceived performance is not equal

across all NAA variations (Table 7.2). A post-hoc analysis of a series of paired t-tests

shows the 5 Steps and 1 Step variations are perceived to have equal performance. The

Probability and Time Delay variations are equal in perceived performance. However, the 5

Steps and 1 Step variations are perceived to perform better than the Probability and Time

Delay variations.

Transparency

Figure 7.6: Transparency Results for NAA Variations

Table 7.3: Transparency: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 2715.8 293.78 23 212.619 4.133e-13
Algorithms 151.1 423.63 69 8.204 9.584e-05

Figure 7.6 shows the 5 Steps agent was seen to be the most transparent, with no partici-

pants scoring less than 2. The 1 Step agent also scored as very transparent. The Probabilis-
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tic variation was seen as middling in terms of transparency. The Time Delay variation was

seen as the least transparent, with an average less than 4.

A one-way repeated measures ANOVA shows that transparency is not equal across all

NAA variations (Table 7.3). A post-hoc analysis of a series of paired t-tests shows the

5 Steps and 1 Step variations are perceived to be equally transparent. The Probability and

Time Delay variations are equal in transparency. However, the 5 Steps and 1 Step variations

are perceived to be more transparent than the Probability and Time Delay variations.

Immediacy

Figure 7.7: Immediacy Results for NAA Variations

Table 7.4: Immediacy: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 1893.04 159.93 23 272.236 3.058e-14
Algorithms 284.45 486.21 69 13.456 5.230e-07

Figure 7.7 shows the 5 Steps and 1 Step agents were seen as implementing a human’s

advice very quickly. The Probabilistic variation had middling performance. The Time

Delay variation was almost universally seen as responding to advice very slowly, with a

mean less than 2.
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A one-way repeated measures ANOVA shows that immediacy is not equal across all

NAA variations (Table 7.4). The 5 Steps and 1 Step variations are perceived to respond to

advice equally quickly. However, the Time Delay variation is not equal to the Probability

variation, which is in turn not equal to the 5 Steps algorithm. People found the Time Delay

variation to respond the slowest to input, followed by the Probability variation. The 5 Steps

and 1 Step algorithms responded the fastest.

Perceived Intelligence

Figure 7.8: Perceived Intelligence Results for NAA Variations

Table 7.5: Perceived Intelligence: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 2379.05 190.0 23 287.987 1.679e-14
Algorithms 161.12 398.3 69 9.304 3.023e-05

Figure 7.8 shows the 5 Steps agent had the highest mean score of perceived intelligence,

with no participants responding less than a score of 3, followed closely by the 1 Step agent.

The Probabilist variation had a higher mean than the Time Delay agent, but the Probabilistic

agent had no scores greater than 7.5.
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A one-way repeated measures ANOVA shows that perceived intelligence is not equal

across all NAA variations (Table 7.5). A post-hoc analysis shows the 5 Steps and 1 Step

variations are equal in perceived intelligence. The Probability and Time Delay variations

are equal in perceived intelligence. However, the 5 Steps and 1 Step variations are perceived

to be more intelligent than the Probability and Time Delay variations.

7.4.2 Objective Metrics

Figure 7.9: Objective Metric Results for average values of NAA Variations

The 5 Steps and 1 Step agents performed approximately equally in terms of objective met-

rics; they earned a higher reward in less time than the Time Delay and Probabilistic varia-

tions. People provided less advice for the 5 Steps algorithm than the others.

Avg Training Time

Table 7.6: Training Time: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 96617 2595.9 20 744.383 ¡ 2.2e-16
Algorithms 2993 4163.8 60 14.375 3.633e-07
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In Figure 7.9, the 1 Step agent has the lowest mean training time, followed closely by

the 5 Steps agent. The Time Delay algorithm took the longest for people to train.

A one-way repeated measures ANOVA shows that training time is not equal across all

NAA variations (Table 7.6). A post-hoc analysis of a series of paired t-tests shows the

5 Steps and 1 Step variations are equal in training time. The Probability variation has a

longer training time than the 5 Steps and 1 Step variations. The Time Delay variation has

the longest training time.

Avg Amount of Advice Given by Human

Table 7.7: Amount of Advice: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 7796.3 457.17 20 341.068 4.916e-14
Algorithms 340.2 687.12 60 9.903 2.135e-05

In Figure 7.9, the 5 Steps agent required the least amount of advice from the human

during training. Compared to the 5 Steps algorithm, people gave more advice to the 1 Step

agent; this is expected because the lack of generalization through time in the 1 Step agent

means the person needs to repeat themselves. The Probabilistic variation was given more

advice than the 1 Step agent. The Time Delay variation was given the most advice out of all

the variations; this is interesting because the Time Delay agent can theoretically be trained

using the same amount of advice as the 5 Steps algorithm, but people either did not realize

a time delay existed or refused to wait for their advice to be enacted and kept providing

advice.

A one-way repeated measures ANOVA shows that amount of advice given by the hu-

man is not equal across all NAA variations (Table 7.7). In fact, a post-hoc analysis shows

none of the variations resulted in an equal amount of advice. People provided the least
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amount of input while training the 5 Steps variation, followed by the 1 Step, Probability,

and Time Delay variations.

Avg Reward

Table 7.8: Earned Avg Reward: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 391159 43853 20 178.3938 2.004e-11
Algorithms 8152 80719 60 2.0198 0.1207

In Figure 7.9, the 5 Steps agent earned the highest reward with the least variation,

followed by the 1 Step (no generalization) algorithm. The Time Delay had the third highest

average reward per episode. The Probabilistic variation earned the lowest average reward.

A one-way repeated measures ANOVA shows that average reward per episode is sta-

tistically equal across all NAA variations (Table 7.8). Most algorithms are compared using

the reward earned by the agent. The human factors results show that the user experience is

very different for the variations, even if the average reward is statistically equal.

Avg Number of Steps Agent took to Complete Each Episode

Table 7.9: Number of Steps: Repeated-Measured ANOVA

SS SSE df F Pr(> F )
Intercept 40815 1084.8 20 752.478 ¡ 2.2e-16
Algorithms 1268 1747.0 60 14.514 3.225e-07

In Figure 7.9, the 1 Step agent has the lowest mean number of steps to complete each

episode, followed closely by the 5 Steps agent. The Time Delay algorithm took the greatest

number of steps to complete each episode with the greatest variation. This data distribution
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is very similar to training time since each game step takes approximately the same amount

of time to execute.

A one-way repeated measures ANOVA shows that average amount of steps the agent

took to complete each level is not equal across all NAA variations (Table 7.9). A post-hoc

analysis shows the 5 Steps and 1 Step variations are equal in steps to completion. The

Probability variation has a larger average steps to completion than the 5 Steps a 1 Step

variations. The Time Delay variation has the largest average steps to completion.

7.4.3 Open-Ended Responses from Participants

At the end of the experiment, participants were given a chance to provide text responses

about their experiences interacting with the agents. According to the responses, several as-

pects of the agent’s interaction impacted the participants’ perceived intelligence and trans-

parency as well as frustration with the agent. There were many commonalities across the

participants’ responses; we have organized and tallied these responses in Table 7.10.

The four aspects of the agent’s interaction that were most often cited by participants

as impacting frustration, intelligence, and transparency were: 1) compliance with input

(whether the agent followed the person’s advice), 2) immediacy (whether the agent imme-

diately followed the person’s advice), 3) amount of instruction the person had to provide,

and 4) randomness (whether the agent was perceived to act in a random or deterministic

manner).

The question prompts for the long responses are listed below. The participant quotes

given in the following sections are answers to these question prompts.

• If one agent was more frustrating than another, what made you feel that way?

• If one agent was more intelligent than another, what made you think that?

• If one agent used your feedback in a clearer way than another, what made you think

that?
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Table 7.10: Percentage of participants who mentioned in their long responses certain fea-
tures that contributed to the user experience.

Feature
% Mentioned Feature Impacted HF

Frustration Intelligence Transparency

Compliance 71 54 23
Immediacy 38 54 50

Less Instruction 29 27
Randomness 21 23
Improvement
through time 17

Memory 9 14
Had to

repeat myself 13
Effort 9

Frustration 4
Transparency 4

As part of the qualitative analysis of the free response answers, two researchers inde-

pendently classified each of the responses for the frustration, perceived intelligence, and

transparency questions. A Cohen’s kappa coefficient for the inter-rater reliability was cal-

culated for the two reviewers, with a goal of achieving a 0.60 or above, indicating moderate

agreement (Table 6.3). As seen in Table 7.11, the qualitative analysis coding achieved a

kappa of > 0.60 in all categories, with the majority achieving > 0.70. A few of the less

common categories were condensed for this analysis.

Compliance with input

Compliance with input, i.e. whether the agent followed the person’s advice, was men-

tioned by approximately 3/4 of participants to lower frustration, over half the participants

to increase perceived intelligence, and 1/4 of participants to increase transparency.

P9, Frustration “Frustration came from not knowing if the agent was actually

taking my input and changing the way it was behaving because of it. (ie.
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Category Frustration Perceived Intelligence Transparency

Compliance with Input 0.647 0.625 0.776
Immediacy 1.0 0.917 0.814

Less Instruction - - 0.699
Randomness 0.903 - 0.818

Agent Learns / Memory - 0.834 0.744
Effort 0.882 - -

Table 7.11: Cohen’s kappa for Study 4

talking to a wall)”

P22, Intelligence “ I judged its intelligence on how well it mimicked what I

told it to do.”

P1, Transparency “It went the way I told it to quickly, and I could anticipate

when to give an effective command (timing easy to ascertain).”

Immediacy

An agent that immediately followed a participant’s advice was mentioned by approximately

half of participants as improving the perceived intelligence and transparency of the agent,

and it decreased the frustration of almost 2/5 of participants.

P15, Frustration “The delay between my instruction and when they performed

the action.”

P5, Frustration “It was very slow in responding to commands and/or ignored

commands.”

P9, Intelligence “A more intelligent agent seemed to respond quicker.”

P19, Transparency “The ones that responded quickly seemed to use feedback

most clearly.”
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Amount of instruction

Almost 30% of participants mentioned that they thought an agent was more intelligent and

transparent if the agent was able to learn from less advice given by the human teacher.

P12, Intelligence “Much less direction required to get it on the correct path.”

P15, Intelligence “One agent required me to give it instruction every move

which seemed less intelligent.”

24, Transparency “One agent responded with less reinforcing instructions.”

Randomness

A little over 20% of the participants wrote that the agent acting randomly caused the person

to be more frustrated and think of the agent as less transparent.

P8, Frustration “If the agent seemed to be guessing random directions to go

if it didn’t know, rather than just staying the last direction I had given it,

it was frustrating.”

P19, Transparency “The ones that didn’t seem to try random things on their

own when I wasn’t talking seemed to use feedback most clearly.”

P7, Transparency “When I could predict what telling it something would

make it do, or if I could figure out what I’d need to tell it to get it to

do what I wanted it to.”

P5, Transparency “If I could predict the agents next move even if it wasn’t

responding to me accurately.”

Improvement through time

Whether the agent’s performance improved through time was mentioned as a contributing

factor by 1/5 of participants for how intelligent the agent was perceived to be. One partic-

ipant thought one agent was more intelligent than others if it showed “improvement over
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repeated tries,” while another rated intelligence based on, “if the agent began to predict

where I wanted it to move.”

Memory

If the agent remembered the advice, some participants mentioned that contributed to per-

ceived intelligence and transparency.

P22, Intelligence “If one remembers what to do between two loops better than

the other, I thought that it was a more intelligent agent.”

P20, Transparency “The agent would use the exact advice given from prior

runs to achieve the goal.”

Other factors

One participant wrote, “Repeating the same instruction multiple times that the agent was

not registering made some agents more frustrating.”

Some other factors mentioned by participants were the effort it took to train the agent,

as well as frustration and transparency. The lack of transparency of some agents increased

a user’s frustration, which in turn decreased how intelligent the human perceived the agent

to be.

7.4.4 Design recommendations

For similar domains, we recommend IML advice agents should be designed with the fol-

lowing characteristics:

• Minimize the time delay between when advice is given by the person and used by

the agent.

• Create an interaction that is deterministic from the human’s perspective rather than

probabilistic.
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• While the generalization of advice through the next 5 time steps rather than using ad-

vice for only one time step did not have a significant effect in terms of human factors

in this case, it did enable participants to train an agent with less advice. It is possible

for generalizing advice through time to decrease the amount of effort and instruction

required by the human to train the agent, as well as decrease frustration by enabling

people to repeat themselves less. However, as generalizing advice through time was

not shown to significantly impact the user experience, we recommend prioritizing the

creation of a minimal time delay and deterministic interaction.

7.5 Study 4: Conclusion

This chapter delved deeper to understand which aspects of the action advice interaction

people liked. Specifically, this chapter focuses on the question: How do the following three

factors of an agent’s interaction design affect the person’s experience with the agent: 1)

generalization through time, 2) time delay, and 3) a probabilistic interface? The Time

Delay and Probabilistic interfaces had a significant, detrimental effect on the human expe-

rience. We found the agent that generalized advice through five steps immediately in the

future and the agent that had no generalization through time performed the best, both in

terms of human factors and objective metrics. While both the Time Delay and Probabilistic

agents created a worse experience, the Time Delay had the most negative impact on both

the user experience and objective metrics.

In order to create a transparent user interaction with low frustration, high perceived in-

telligence, and high perceived performance, we recommend creating interfaces that have

a deterministic interaction with the person and a minimal time delay between when ad-

vice is given to and used by the agent. To decrease training time, train with less advice,

train with fewer steps to task completion, and create an ‘instant gratification’ interaction

that is perceived to respond immediately to a human’s instruction, it is especially impor-

tant to minimize the time delay between when advice is provided and used, but it is also
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recommended to have a deterministic interface.

If you consider an agent to be ‘liked’ by a person if it scores well on human factors

metrics, then the results of this study show that the human-agent team performs worse

on algorithms people like the least. The agents that scored the best on the human factors

metrics - the 5 Steps and 1 Step (no generalization) agents - also scored the best on objective

machine learning metrics.

7.6 RQ Results Summary

• Generalization through time did not have a significant impact on the user experience

in the RadWorld domain.

– Validation: Study 4.

– Supports thesis: Part 1 (human experience) - While generalizing through 5 time

steps allowed people to provide significantly less advice than when no general-

ization was used, this was not a significant factor for the human experience, as

opposed to a time delay or a probabilistic interface. IML algorithm designers

should focus on other factors.

• A time delay between when advice is given and used had a significant detrimental

impact on the person’s experience with the agent.

– Validation: Study 4.

– Supports thesis: Part 1 (human experience) - IML designers should minimize

the time delay between when advice is given by the person and used by the

agent.

• A probabilistic interface had a significant detrimental impact on the person’s experi-

ence with the agent.

– Validation: Study 4.
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– Supports thesis: Part 1 (human experience) - IML researchers should create

an interaction that is deterministic from the human’s perspective rather than

probabilistic.
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CHAPTER 8

CONCLUDING DISCUSSION

Interactive Machine Learning is a relatively new field, and how the nature of the interaction

impacts the user’s experience is not widely studied. However, algorithms and methods

developed in this dissertation bring us closer to the creation of IML algorithms that can

be taught by end-users with no specialized training in a natural, intuitive way using verbal

instruction.

This dissertation makes the following contributions to the field of Interactive Machine

Learning: (1) design recommendations for IML algorithms to allow researchers to create

algorithms with a positive human-agent interaction; (2) two new IML algorithms to foster

a pleasant user-experience; (3) a 3-step design and verification process for IML algorithms

using human factors; and (4) new methods for the application of NLP tools to IML.

8.1 Design Recommendations for IML algorithms

IML algorithms have historically been designed to improve objective performance and ef-

ficiency metrics, while largely ignoring the human experience. Unfortunately, this leads to

algorithms that create a poor experience for the human teacher. To address this, I studied

IML algorithms from a human factors perspective to better understand how the interaction

and nature of the ML algorithm can affect a person’s experience with the agent. My goal is

to inform IML designers of the ramifications of their interaction design decisions.

I have identified nine main characteristics in an IML algorithm that impact the human’s

experience with the agent, including: using human instructions about the future, compli-

ance with input, empowerment, transparency, immediacy, a deterministic interaction, the

complexity of the instructions, accuracy of the speech recognition software, and the robust

and flexible nature of the interaction algorithm.
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A subset of my design recommendations to align with these characteristics include:

• Learning from Non-Interactive Explanations. Create agents that allow people to

provide explanations without state information. To improve the quality of the per-

son’s explanation, the explanation format should be strictly structured or entirely

free-form; a partially-structured explanation format can impose a high cognitive load

leading to an explanation of poor quality.

• Learning from Interactive Advice. In order to create a transparent user interaction

with low frustration, high perceived intelligence, and high perceived performance,

we recommend creating interfaces that have a deterministic interaction with the per-

son and a minimal time delay between when advice is given to and used by the agent.

To decrease training time, train with less advice, train with fewer steps to task com-

pletion, and create an ‘instant gratification’ interaction that is perceived to respond

immediately to a human’s instruction, it is especially important to minimize the time

delay between when advice is provided and used.

The results of the final study show that the human-agent team performs worse on algo-

rithms people like the least, which reinforces a central focus of my thesis that the human

experience is an important aspect of algorithmic design.

8.2 IML algorithms

Because the IML field has not employed user-focused design, the existing IML algorithms

do not necessarily create a positive human-agent interaction. To address this, I created

two IML algorithms that foster a positive experience for the person. The first algorithm,

Object-focused advice, allows an agent to learn from a priori explanations without state

information. The second algorithm, Newtonian Action Advice, enables a person to provide

advice about the future that is immediately and transparently implemented by the agent,
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can be easily overwritten in the future to correct mistakes, and creates a deterministic in-

teraction with the person. I isolated and analyzed individual design characteristics of the

Newtonian Action Advice agent to determine the extent that each had on the human expe-

rience.

8.3 Design and Verification Process for IML algorithms using Human Factors

The IML field evaluates algorithms using oracles (i.e. simulated feedback) that measure

objective metrics such as training time and cumulative reward. While this is necessary to

test the theoretical efficacy of an algorithm, it turns a blind eye to the human experience.

For example, an oracle will never get frustrated with an agent. Similarly, IML algorithms

are designed to optimize objective performance and efficiency metrics rather than improve

the human-agent interaction. This is a bottleneck that can delay the transition of IML

algorithms from academic to commercial applications because if people have a poor expe-

rience with the agent, they will not want to use the agent regardless of the efficiency of an

algorithm’s theoretical learning curves.

To remedy this, I proposed a 3-step design and verification method in which researchers:

1) design for a positive human experience, 2) test the algorithm with oracles to establish

theoretical efficiency and behavior, and 3) verify the algorithm with a human-subject ex-

periment measuring the human experience.

Think of control systems. Control systems usually contain a controller and observer.

An observer estimates values of the state space like position and velocity so the controller

knows where the agent is and what it has to do to reach a goal. If a control system does not

observe part of the state space, like velocity, the controller may push the system to move

dangerously fast or mathematically diverge to infinity and “blow up”. IML verification that

only uses oracle simulations is like a control system that is not fully-observed; the human

experience is “blowing up” because it is never observed by researchers, and so algorithms

are not designed to correct for the human experience. To correct this, we need to observe the
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human experience by performing human-subject experiments that analyze human factors

such as frustration. Then, we need to use feedback from the human participants to influence

the design of algorithms for a better human experience.

8.4 Application of NLP tools to IML

Using verbal instruction as an interaction medium is an attractive option because speech

is a near-universal interface that non-experts do not need to be trained to use. However,

a verbal audio signal is noisy, complex, varies between people, and depends on a time

history and context. Researchers have developed tools to analyze speech signals, but much

of NLP has yet to be incorporated into IML algorithms. I have developed three methods of

applying NLP tools to IML in order to improve the human experience.

1. In order to allow human teachers to speak more naturally and not focus on whether

they are providing advice or warnings, I developed a method of using sentiment anal-

ysis to filter natural language instructions into advice of ‘what to do’ and warnings

of ‘what not to do’. The automatic classification of advice and warnings can also

decrease human error.

2. To enable people to provide critique without being restricted to a limited set of words,

I created a method of using sentiment analysis to classify natural language critique

as positive and negative. This creates a more natural and intuitive interface for the

human.

3. To allow the agent to gauge the human’s frustration interactively by analyzing the

speech signal rather than collecting subjective responses from questionnaires at the

conclusion of a task, I created a supervised learning model that uses prosodic features

as an objective metric of frustration. A future area of study would be to determine an

efficient method of incorporating the human’s frustration into the IML agent in real

time.
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8.5 Summary

Verbal communication is a rich medium that has been underutilized in teaching Reinforce-

ment Learning algorithms. This dissertation demonstrated that 1) the nature of the language

instruction used by a human teacher to train an RL algorithm affects a person’s experience

and satisfaction of teaching an agent; 2) the information people verbally provide was ef-

ficiently communicated to the agent; and 3) the RL agents taught using verbal instruction

achieved a reasonable level of performance.

Building on this work, we can continue toward the goal of creating intelligent agents

that can easily be taught by individuals with no specialized training using intuitive teaching

methods.
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APPENDIX A

STUDY 3 QUESTIONNAIRE - (NAA) ADVICE AGENT

Immediately after training the Newtonian Action Advice agent in Study 3, participants

filled out the following questionnaire.
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APPENDIX B

STUDY 3 QUESTIONNAIRE - (POLICY SHAPING) CRITIQUE AGENT

Immediately after training the Policy Shaping critique agent in Study 3, participants filled

out the following questionnaire.
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APPENDIX C

STUDY 3 QUESTIONNAIRE - AFTER TRAINING BOTH AGENTS

At the end of the experiment after training both agents and filling out the associated ques-

tionnaires in Study 3, participants filled out the following questionnaire.
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APPENDIX D

STUDY 4 QUESTIONNAIRE - (NAA) ADVICE AGENT

Immediately after training each agent in Study 3, participants filled out the following ques-

tionnaire.
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APPENDIX E

STUDY 4 QUESTIONNAIRE - AFTER TRAINING ALL FOUR AGENTS

At the end of the experiment after training all four agents and filling out the associated

questionnaires in Study 4, participants filled out the following questionnaire.
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