A Combinatorial Polynomial Algorithm for Weighted Abstract Cut Packing

S. Thomas McCormick Britta Peis

Sauder School of Business, UBC; TU Berlin

Ga Tech, 22 March 2012

S. Thomas McCormick Sauder School of Business University of British Columbia

Selected applications of submodularity in SCM:

• Shen, Coullard, and Daskin (2003) model a facility location-inventory problem where column generation uses SFM.

Selected applications of submodularity in SCM:

- Shen, Coullard, and Daskin (2003) model a facility location-inventory problem where column generation uses SFM.
- Huh and Roundy (2005) model capacity expansion sequencing decisions in semiconductor fabs, where determining an optimal sequence with general costs uses a (parametric) SFM subroutine.

Selected applications of submodularity in SCM:

- Shen, Coullard, and Daskin (2003) model a facility location-inventory problem where column generation uses SFM.
- Huh and Roundy (2005) model capacity expansion sequencing decisions in semiconductor fabs, where determining an optimal sequence with general costs uses a (parametric) SFM subroutine.
- Koole and van der Sluis (2003) use multimodularity (L $^{\natural}$ -convexity) to schedule a call center.

Selected applications of submodularity in SCM:

- Shen, Coullard, and Daskin (2003) model a facility location-inventory problem where column generation uses SFM.
- Huh and Roundy (2005) model capacity expansion sequencing decisions in semiconductor fabs, where determining an optimal sequence with general costs uses a (parametric) SFM subroutine.
- Koole and van der Sluis (2003) use multimodularity (L^{\natural} -convexity) to schedule a call center.
- Begen and Queyranne (2011) use L-convexity to schedule stochastic appointments for, e.g., surgeries.

- Combinatorial Optimization
 - Packing problems

- Combinatorial Optimization
 - Packing problems
- Moffman's Models
 - Lattice Polyhedra
 - Blocking

- Combinatorial Optimization
 - Packing problems
- 2 Hoffman's Models
 - Lattice Polyhedra
 - Blocking
- Algorithms
 - Primal-Dual Algorithm
 - P-D for WACP

- Combinatorial Optimization
 - Packing problems
- Moffman's Models
 - Lattice Polyhedra
 - Blocking
- Algorithms
 - Primal-Dual Algorithm
 - P-D for WACP
- 4 Conclusion
 - Open questions

- Combinatorial Optimization
 - Packing problems
- 2 Hoffman's Models
 - Lattice Polyhedra
 - Blocking
- 3 Algorithms
 - Primal-Dual Algorithm
 - P-D for WACP
- 4 Conclusion
 - Open questions

A generic packing problem has

ullet A finite set E of elements

- A finite set *E* of elements
- A family \mathcal{D} of subsets of E, i.e., $D \in \mathcal{D} \implies D \subseteq E$.

- A finite set E of elements
- A family \mathcal{D} of subsets of E, i.e., $D \in \mathcal{D} \implies D \subseteq E$.
- A vector $u \in \mathbb{Z}^E$ of capacities on elements.

- A finite set E of elements
- A family \mathcal{D} of subsets of E, i.e., $D \in \mathcal{D} \implies D \subseteq E$.
- A vector $u \in \mathbb{Z}^E$ of capacities on elements.
- A vector $r \in \mathbb{Z}^{\mathcal{D}}$ of rewards on subsets.

- A finite set E of elements
- A family \mathcal{D} of subsets of E, i.e., $D \in \mathcal{D} \implies D \subseteq E$.
- A vector $u \in \mathbb{Z}^E$ of capacities on elements.
- A vector $r \in \mathbb{Z}^{\mathcal{D}}$ of rewards on subsets.
- The decision is to choose a weight y_D to put on each $D \in \mathcal{D}$ such that the total weight packed into e is at most $u_e \ \forall \ e \in E$.

- A finite set E of elements
- A family \mathcal{D} of subsets of E, i.e., $D \in \mathcal{D} \implies D \subseteq E$.
- A vector $u \in \mathbb{Z}^E$ of capacities on elements.
- A vector $r \in \mathbb{Z}^{\mathcal{D}}$ of rewards on subsets.
- The decision is to choose a weight y_D to put on each $D \in \mathcal{D}$ such that the total weight packed into e is at most $u_e \ \forall \ e \in E$.
- And among such feasible packings, find one that maximizes r^Ty .

- A finite set E of elements
- A family \mathcal{D} of subsets of E, i.e., $D \in \mathcal{D} \implies D \subseteq E$.
- A vector $u \in \mathbb{Z}^E$ of capacities on elements.
- A vector $r \in \mathbb{Z}^{\mathcal{D}}$ of rewards on subsets.
- The decision is to choose a weight y_D to put on each $D \in \mathcal{D}$ such that the total weight packed into e is at most $u_e \ \forall \ e \in E$.
- ullet And among such feasible packings, find one that maximizes r^Ty .
- We are usually interested in finding integer optimal solutions.

- A finite set E of elements
- A family \mathcal{D} of subsets of E, i.e., $D \in \mathcal{D} \implies D \subseteq E$.
- A vector $u \in \mathbb{Z}^E$ of capacities on elements.
- A vector $r \in \mathbb{Z}^{\mathcal{D}}$ of rewards on subsets.
- The decision is to choose a weight y_D to put on each $D \in \mathcal{D}$ such that the total weight packed into e is at most $u_e \ \forall \ e \in E$.
- ullet And among such feasible packings, find one that maximizes r^Ty .
- We are usually interested in finding integer optimal solutions.
- This generic problem has many applications, e.g., flow is packing paths into arcs, connectivity is packing trees into edges, etc.

 Now formulate a packing problem as an LP (it's more natural to make packing the dual):

- Now formulate a packing problem as an LP (it's more natural to make packing the dual):
 - put dual packing variable y_D on each $D \in \mathcal{D}$;

- Now formulate a packing problem as an LP (it's more natural to make packing the dual):
 - put dual packing variable y_D on each $D \in \mathcal{D}$;
 - put primal weight x_e on each element $e \in E$.

- Now formulate a packing problem as an LP (it's more natural to make packing the dual):
 - put dual packing variable y_D on each $D \in \mathcal{D}$;
 - put primal weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_D r_D y_D$$
 (P) $\min \sum_e u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e$ $\forall e \in E$ s.t. $\sum_{e \in D} x_e \ge r_D$ $\forall D \in \mathcal{D}$ $y \ge 0$ $x \ge 0$

- Now formulate a packing problem as an LP (it's more natural to make packing the dual):
 - put dual packing variable y_D on each $D \in \mathcal{D}$;
 - put primal weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_{D} r_D y_D$$
 (P) $\min \sum_{e} u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e\in D} x_e \ge r_D \quad \forall D \in \mathcal{D}$ $y \ge 0$ $x \ge 0$

"packing subsets into elements"

- Now formulate a packing problem as an LP (it's more natural to make packing the dual):
 - put dual packing variable y_D on each $D \in \mathcal{D}$;
 - put primal weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_{D} r_D y_D$$
 (P) $\min \sum_{e} u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e\in D} x_e \ge r_D \quad \forall D\in \mathcal{D}$ $y \ge 0$ $x \ge 0$

"packing subsets into elements" "covering subsets by elements"

- Now formulate a packing problem as an LP (it's more natural to make packing the dual):
 - put dual packing variable y_D on each $D \in \mathcal{D}$;
 - put primal weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_{D} r_D y_D$$
 (P) $\min \sum_{e} u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e\in D} x_e \ge r_D \quad \forall D\in \mathcal{D}$ $y \ge 0$ $x \ge 0$

Big Question: When do these LPs have guaranteed integer optimal solutions?

An example packing LP

Consider:

$$\max \mathbb{1}^T y$$

s.t.

$$y \ge 0$$
.

An example packing LP

Consider:

$$\max \mathbb{1}^T y$$

s.t.

$$y \ge 0$$
.

• Does this LP have an integer optimal solution?

An example packing LP

Consider:

$$\max \mathbf{1}^T y$$

s.t.

$$y \ge 0$$
.

- Does this LP have an integer optimal solution?
- What if we change the RHS u? The objective r?

• This LP has an integer optimal solution: $y^* = (1\ 4\ 0\ 4\ 0\ 0\ 3\ 0\ 0)$ of value 12.

- This LP has an integer optimal solution: $y^* = (1\ 4\ 0\ 4\ 0\ 0\ 3\ 0\ 0)$ of value 12.
- ullet In fact, it can be shown that this LP has integer optimal solutions for any RHS u.

- This LP has an integer optimal solution: $y^* = (1\ 4\ 0\ 4\ 0\ 0\ 3\ 0\ 0)$ of value 12.
- \bullet In fact, it can be shown that this LP has integer optimal solutions for any RHS u.
- The same holds true for some objectives *r*:

- This LP has an integer optimal solution: $y^* = (1\ 4\ 0\ 4\ 0\ 0\ 3\ 0\ 0)$ of value 12.
- ullet In fact, it can be shown that this LP has integer optimal solutions for any RHS u.
- The same holds true for some objectives *r*:
 - E.g., $r=(4\ 3\ 2\ 3\ 1\ 1\ 3\ 2\ 4)$ has integer optimal solution $y^*=(1\ 4\ 0\ 4\ 0\ 0\ 0\ 3)$ of value 40 for the given RHS u, and this is true for any integral u.

- This LP has an integer optimal solution: $y^* = (1\ 4\ 0\ 4\ 0\ 0\ 3\ 0\ 0)$ of value 12.
- ullet In fact, it can be shown that this LP has integer optimal solutions for any RHS u.
- The same holds true for some objectives *r*:
 - E.g., $r=(4\ 3\ 2\ 3\ 1\ 1\ 3\ 2\ 4)$ has integer optimal solution $y^*=(1\ 4\ 0\ 4\ 0\ 0\ 0\ 3)$ of value 40 for the given RHS u, and this is true for any integral u.
- But not all objectives r:

- This LP has an integer optimal solution: $y^* = (1\ 4\ 0\ 4\ 0\ 0\ 3\ 0\ 0)$ of value 12.
- ullet In fact, it can be shown that this LP has integer optimal solutions for any RHS u.
- The same holds true for some objectives *r*:
 - E.g., $r=(4\ 3\ 2\ 3\ 1\ 1\ 3\ 2\ 4)$ has integer optimal solution $y^*=(1\ 4\ 0\ 4\ 0\ 0\ 0\ 3)$ of value 40 for the given RHS u, and this is true for any integral u.
- But not all objectives r:
 - E.g., $r = (0\ 9\ 0\ 0\ 9\ 0\ 0\ 9\ 0)$ has fractional optimal solution $y^* = (0\ 4.5\ 0\ 0\ 0.5\ 0\ 0\ 3.5\ 2.5)$ with value 76.5 for the given RHS u.

- This LP has an integer optimal solution: $y^* = (1\ 4\ 0\ 4\ 0\ 0\ 3\ 0\ 0)$ of value 12.
- ullet In fact, it can be shown that this LP has integer optimal solutions for any RHS u.
- The same holds true for some objectives *r*:
 - E.g., $r=(4\ 3\ 2\ 3\ 1\ 1\ 3\ 2\ 4)$ has integer optimal solution $y^*=(1\ 4\ 0\ 4\ 0\ 0\ 0\ 3)$ of value 40 for the given RHS u, and this is true for any integral u.
- But not all objectives r:
 - E.g., $r = (0\ 9\ 0\ 0\ 9\ 0\ 0\ 9\ 0)$ has fractional optimal solution $y^* = (0\ 4.5\ 0\ 0\ 0.5\ 0\ 0\ 3.5\ 2.5)$ with value 76.5 for the given RHS u.
- How do I know that the first two objectives are "good" for all RHS?

How the example was constructed

• Consider the following graph:

How the example was constructed

Consider the following graph:

ullet There is a 1–1 correspondence between E and the nine edges of this graph.

How the example was constructed

Consider the following graph:

- There is a 1–1 correspondence between E and the nine edges of this graph.
- There is a 1–1 correspondence between the 9 interesting s–t cuts in this graph and the columns of the constraint matrix.

How the example was constructed

Consider the following graph:

- There is a 1–1 correspondence between E and the nine edges of this graph.
- There is a 1-1 correspondence between the 9 interesting s-t cuts in this graph and the columns of the constraint matrix.
- Why does this lead to integer optimal LP solutions?

ullet Recall that the primal covering LP has variables x_e ...

- ullet Recall that the primal covering LP has variables x_e ...
- ullet ... and constraints $\sum_{e\in D} x_e \geq 1$ for all $D\in \mathcal{D}.$

- ullet Recall that the primal covering LP has variables $x_e \dots$
- ... and constraints $\sum_{e \in D} x_e \ge 1$ for all $D \in \mathcal{D}$.
- Imagine that x is 0–1, so that it picks out a subset of edges.

- ullet Recall that the primal covering LP has variables x_e ...
- ... and constraints $\sum_{e \in D} x_e \ge 1$ for all $D \in \mathcal{D}$.
- Imagine that x is 0–1, so that it picks out a subset of edges.
- What subsets of edges hit every s-t cut?

- ullet Recall that the primal covering LP has variables x_e ...
- ... and constraints $\sum_{e \in D} x_e \ge 1$ for all $D \in \mathcal{D}$.
- Imagine that x is 0–1, so that it picks out a subset of edges.
- What subsets of edges hit every *s*–*t* cut?
- The s-t paths are the minimal edge subsets hitting every s-t cut.

- ullet Recall that the primal covering LP has variables x_e ...
- ... and constraints $\sum_{e \in D} x_e \ge 1$ for all $D \in \mathcal{D}$.
- Imagine that x is 0–1, so that it picks out a subset of edges.
- What subsets of edges hit every *s*–*t* cut?
- The s-t paths are the minimal edge subsets hitting every s-t cut.
- Therefore the primal LP is just Shortest Path.

- ullet Recall that the primal covering LP has variables x_e ...
- ... and constraints $\sum_{e \in D} x_e \ge 1$ for all $D \in \mathcal{D}$.
- Imagine that x is 0–1, so that it picks out a subset of edges.
- What subsets of edges hit every *s*–*t* cut?
- The s-t paths are the minimal edge subsets hitting every s-t cut.
- Therefore the primal LP is just Shortest Path.
- And in fact Dijkstra's Algorithm gives an integer optimal solution to this form of Shortest Path.

Going back to the dual packing LP

• Here is the Dijkstra solution with its shortest path tree:

Going back to the dual packing LP

• Here is the Dijkstra solution with its shortest path tree:

 Recall that we can greedily construct a tight cut packing that proves that this shortest path tree is optimal:

 Since we know that Dijkstra, and this greedy cut packing, work for any non-negative capacities u, we know that we get integer optimal solutions for all RHS u.

- Since we know that Dijkstra, and this greedy cut packing, work for any non-negative capacities u, we know that we get integer optimal solutions for all RHS u.
- It is very cool that this random-looking constraint matrix always has an integer optimal solution with the special objective vector 1.

- Since we know that Dijkstra, and this greedy cut packing, work for any non-negative capacities u, we know that we get integer optimal solutions for all RHS u.
- It is very cool that this random-looking constraint matrix always has an integer optimal solution with the special objective vector 1.
- LPs such as this where you get guaranteed integer optimal solutions for all RHSs, but only for some special objective vectors, are called Totally Dual Integral, or TDI.

- Since we know that Dijkstra, and this greedy cut packing, work for any non-negative capacities u, we know that we get integer optimal solutions for all RHS u.
- It is very cool that this random-looking constraint matrix always has an integer optimal solution with the special objective vector 1.
- LPs such as this where you get guaranteed integer optimal solutions for all RHSs, but only for some special objective vectors, are called Totally Dual Integral, or TDI.
- A natural question here is whether we can generalize this sort of example to a broader class of packing LPs with 0–1 constraint matrices.

- Since we know that Dijkstra, and this greedy cut packing, work for any non-negative capacities u, we know that we get integer optimal solutions for all RHS u.
- It is very cool that this random-looking constraint matrix always has an integer optimal solution with the special objective vector 1.
- LPs such as this where you get guaranteed integer optimal solutions for all RHSs, but only for some special objective vectors, are called Totally Dual Integral, or TDI.
- A natural question here is whether we can generalize this sort of example to a broader class of packing LPs with 0–1 constraint matrices.
- Hoffman did it . . .

Outline

- Combinatorial Optimization
 - Packing problems
- 2 Hoffman's Models
 - Lattice Polyhedra
 - Blocking
- 3 Algorithms
 - Primal-Dual Algorithm
 - P-D for WACP
- 4 Conclusion
 - Open questions

ullet We are given a finite set of elements E (nodes/arcs/mixed)

- ullet We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e

- ullet We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e
- ullet And a family ${\cal L}$ of cuts, where

- ullet We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e
- ullet And a family ${\cal L}$ of cuts, where
 - $\bullet \ D \in \mathcal{L} \ \text{means that} \ D \subseteq E$

- ullet We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e
- ullet And a family ${\cal L}$ of cuts, where
 - $D \in \mathcal{L}$ means that $D \subseteq E$
 - ullet is a lattice with partial order \preceq and operations \wedge and \vee satisfying

- ullet We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e
- ullet And a family ${\cal L}$ of cuts, where
 - ullet $D\in\mathcal{L}$ means that $D\subseteq E$
 - ullet is a lattice with partial order \preceq and operations \wedge and \vee satisfying
 - $D_i \prec D_j \prec D_k \implies D_i \cap D_k \subseteq D_j$ (consecutive), and

- We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e
- ullet And a family ${\cal L}$ of cuts, where
 - $\bullet \ \ D \in \mathcal{L} \ \text{means that} \ D \subseteq E$
 - ullet is a lattice with partial order \preceq and operations \wedge and \vee satisfying
 - $D_i \prec D_j \prec D_k \implies D_i \cap D_k \subseteq D_j$ (consecutive), and
 - $(D_i \wedge D_j) \cup (D_i \vee D_j) \subseteq D_i \cup D_j$ (submodular).

- We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e
- ullet And a family ${\cal L}$ of cuts, where
 - ullet $D\in\mathcal{L}$ means that $D\subseteq E$
 - ullet is a lattice with partial order \preceq and operations \wedge and \vee satisfying
 - $D_i \prec D_j \prec D_k \implies D_i \cap D_k \subseteq D_j$ (consecutive), and
 - $(D_i \wedge D_j) \cup (D_i \vee D_j) \subseteq D_i \cup D_j$ (submodular).
 - each $D \in \mathcal{L}$ has a per unit reward r_D (the weight of D)

- ullet We are given a finite set of elements E (nodes/arcs/mixed)
 - Each $e \in E$ has capacity u_e
- ullet And a family ${\cal L}$ of cuts, where
 - $\bullet \ \ D \in \mathcal{L} \ \text{means that} \ D \subseteq E$
 - ullet is a lattice with partial order \preceq and operations \wedge and \vee satisfying
 - $D_i \prec D_j \prec D_k \implies D_i \cap D_k \subseteq D_j$ (consecutive), and
 - $(D_i \wedge D_j) \cup (D_i \vee D_j) \subseteq D_i \cup D_j$ (submodular).
 - each $D \in \mathcal{L}$ has a per unit reward r_D (the weight of D)
- r satisfies a kind of supermodularity:

$$r_{D_i \wedge D_j} + r_{D_i \vee D_j} \ge r_{D_i} + r_{D_j}.$$

Understanding the lattice axioms

Ordinary cuts are partially ordered:

Understanding the lattice axioms

Ordinary cuts are partially ordered:

Ordinary cuts have meet and join, sub-modularity:

Understanding the lattice axioms

Ordinary cuts are partially ordered:

Ordinary cuts have meet and join, sub-modularity:

Ordinary cuts are consecutive ($e \in R \cap T$ $\implies e \in S$):

• The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and \mathcal{L} puts

- The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and $\mathcal L$ puts
 - packing variable y_D on each $D \in \mathcal{L}$;

- The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and $\mathcal L$ puts
 - packing variable y_D on each $D \in \mathcal{L}$;
 - weight x_e on each element $e \in E$.

- The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and $\mathcal L$ puts
 - packing variable y_D on each $D \in \mathcal{L}$;
 - weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_{D} r_D y_D$$
 (P) $\min \sum_{e} u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e \in D} x_e \ge r_D \quad \forall D \in \mathcal{L}$ $y \ge 0$ $x \ge 0$

- The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and $\mathcal L$ puts
 - packing variable y_D on each $D \in \mathcal{L}$;
 - weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_{D} r_D y_D$$
 (P) $\min \sum_{e} u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e \in D} x_e \ge r_D \quad \forall D \in \mathcal{L}$ $y \ge 0$ $x \ge 0$

"packing cuts into elements"

- The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and $\mathcal L$ puts
 - packing variable y_D on each $D \in \mathcal{L}$;
 - weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_D r_D y_D$$
 (P) $\min \sum_e u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e \in D} x_e \ge r_D \quad \forall D \in \mathcal{L}$ "packing cuts into elements" $x \ge 0$ "covering cuts by elements"

The lattice polyhedron (Weighted Abstract Cut Packing) linear programs

- The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and $\mathcal L$ puts
 - packing variable y_D on each $D \in \mathcal{L}$;
 - weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_{D} r_D y_D$$
 (P) $\min \sum_{e} u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e\in D} x_e \ge r_D \quad \forall D\in \mathcal{L}$ $y \ge 0$ $x \ge 0$

If $\mathcal L$ is just s-t cuts in a max flow network, and $r\equiv 1$, then this is just the usual blocking dual formulation of Dijkstra shortest path.

The lattice polyhedron (Weighted Abstract Cut Packing) linear programs

- The lattice polyhedron Weighted Abstract Cut Packing (WACP) problem associated with E and $\mathcal L$ puts
 - packing variable y_D on each $D \in \mathcal{L}$;
 - weight x_e on each element $e \in E$.
- The dual linear programs are:

(D)
$$\max \sum_D r_D y_D$$
 (P) $\min \sum_e u_e x_e$ s.t. $\sum_{D\ni e} y_D \le u_e \quad \forall e \in E$ s.t. $\sum_{e\in D} x_e \ge r_D \quad \forall D\in \mathcal{L}$ $y\ge 0$ $x\ge 0$

Theorem (Hoffman & Schwartz '76)

When r and u are integral, (P) and (D) have integral optimal solutions.

Lattice polyhedra would not be so interesting unless they included interesting applications other than Shortest Path:

 Dilworth's Theorem (chains and antichains in posets) and various Greene-Kleitman generalizations.

- Dilworth's Theorem (chains and antichains in posets) and various Greene-Kleitman generalizations.
- Shortest Path in hypergraphs.

- Dilworth's Theorem (chains and antichains in posets) and various Greene-Kleitman generalizations.
- Shortest Path in hypergraphs.
- Polymatroids and intersections of polymatroids.

- Dilworth's Theorem (chains and antichains in posets) and various Greene-Kleitman generalizations.
- Shortest Path in hypergraphs.
- Polymatroids and intersections of polymatroids.
- Min-cost arborescence.

- Dilworth's Theorem (chains and antichains in posets) and various Greene-Kleitman generalizations.
- Shortest Path in hypergraphs.
- Polymatroids and intersections of polymatroids.
- Min-cost arborescence.
- Our example with $r=(4\ 3\ 2\ 3\ 1\ 1\ 3\ 2\ 4)$ has integer optimal solutions for all RHS u because this r is supermodular: each $r_D=6-(\#$ edges crossing D).

- Dilworth's Theorem (chains and antichains in posets) and various Greene-Kleitman generalizations.
- Shortest Path in hypergraphs.
- Polymatroids and intersections of polymatroids.
- Min-cost arborescence.
- Our example with $r=(4\ 3\ 2\ 3\ 1\ 1\ 3\ 2\ 4)$ has integer optimal solutions for all RHS u because this r is supermodular: each $r_D=6-(\#$ edges crossing D).
- Our example with $r=(0\ 9\ 0\ 0\ 9\ 0\ 0\ 9\ 0)$ can have a fractional solution because this r is not supermodular.

- Dilworth's Theorem (chains and antichains in posets) and various Greene-Kleitman generalizations.
- Shortest Path in hypergraphs.
- Polymatroids and intersections of polymatroids.
- Min-cost arborescence.
- Our example with $r=(4\ 3\ 2\ 3\ 1\ 1\ 3\ 2\ 4)$ has integer optimal solutions for all RHS u because this r is supermodular: each $r_D=6-(\#$ edges crossing D).
- Our example with $r = (0\ 9\ 0\ 0\ 9\ 0\ 0\ 9\ 0)$ can have a fractional solution because this r is not supermodular.
- Etc. etc . . .

• Set family \mathcal{D} is a clutter if $R, S \in \mathcal{D}$, then $R \not\subset S$ and $S \not\subset R$ (edge sets of s-t cuts are a clutter).

- Set family \mathcal{D} is a clutter if $R, S \in \mathcal{D}$, then $R \not\subset S$ and $S \not\subset R$ (edge sets of s-t cuts are a clutter).
- Define the blocker of \mathcal{D} , $B(\mathcal{D})$, to be the set of minimal subsets Q of E such that $Q \cap D \neq \emptyset \ \forall \ D \in \mathcal{D}$; thus $B(\mathcal{D})$ is also a clutter.

- Set family $\mathcal D$ is a clutter if $R,S\in\mathcal D$, then $R\not\subset S$ and $S\not\subset R$ (edge sets of $s{-}t$ cuts are a clutter).
- Define the blocker of \mathcal{D} , $B(\mathcal{D})$, to be the set of minimal subsets Q of E such that $Q \cap D \neq \emptyset \ \forall \ D \in \mathcal{D}$; thus $B(\mathcal{D})$ is also a clutter.
- Fact: $B(B(\mathcal{D})) = \mathcal{D}$, and so blockers come in dual pairs.

- Set family $\mathcal D$ is a clutter if $R,S\in\mathcal D$, then $R\not\subset S$ and $S\not\subset R$ (edge sets of s-t cuts are a clutter).
- Define the blocker of \mathcal{D} , $B(\mathcal{D})$, to be the set of minimal subsets Q of E such that $Q \cap D \neq \emptyset \ \forall \ D \in \mathcal{D}$; thus $B(\mathcal{D})$ is also a clutter.
- Fact: $B(B(\mathcal{D})) = \mathcal{D}$, and so blockers come in dual pairs.
- Easy to see that the families of s-t paths and s-t cuts are a blocking pair.

- Set family $\mathcal D$ is a clutter if $R,S\in\mathcal D$, then $R\not\subset S$ and $S\not\subset R$ (edge sets of $s{-}t$ cuts are a clutter).
- Define the blocker of \mathcal{D} , $B(\mathcal{D})$, to be the set of minimal subsets Q of E such that $Q \cap D \neq \emptyset \ \forall \ D \in \mathcal{D}$; thus $B(\mathcal{D})$ is also a clutter.
- Fact: $B(B(\mathcal{D})) = \mathcal{D}$, and so blockers come in dual pairs.
- Easy to see that the families of s-t paths and s-t cuts are a blocking pair.
 - WACP generalizes s-t cuts.

- Set family $\mathcal D$ is a clutter if $R,S\in\mathcal D$, then $R\not\subset S$ and $S\not\subset R$ (edge sets of s-t cuts are a clutter).
- Define the blocker of \mathcal{D} , $B(\mathcal{D})$, to be the set of minimal subsets Q of E such that $Q \cap D \neq \emptyset \ \forall \ D \in \mathcal{D}$; thus $B(\mathcal{D})$ is also a clutter.
- Fact: $B(B(\mathcal{D})) = \mathcal{D}$, and so blockers come in dual pairs.
- Easy to see that the families of s-t paths and s-t cuts are a blocking pair.
 - WACP generalizes s-t cuts.
 - Hoffman also generalized packing of s-t paths (i.e., Max Flow) to Weighted Abstract Flow (WAF).

- Set family \mathcal{D} is a clutter if $R,S\in\mathcal{D}$, then $R\not\subset S$ and $S\not\subset R$ (edge sets of s-t cuts are a clutter).
- Define the blocker of \mathcal{D} , $B(\mathcal{D})$, to be the set of minimal subsets Q of E such that $Q \cap D \neq \emptyset \ \forall \ D \in \mathcal{D}$; thus $B(\mathcal{D})$ is also a clutter.
- Fact: $B(B(\mathcal{D})) = \mathcal{D}$, and so blockers come in dual pairs.
- Easy to see that the families of s-t paths and s-t cuts are a blocking pair.
 - WACP generalizes s-t cuts.
 - Hoffman also generalized packing of s-t paths (i.e., Max Flow) to Weighted Abstract Flow (WAF).

Theorem (Hoffman '78)

If $\mathcal L$ is a submodular clutter, then the blocker of $\mathcal L$ is an abstract path system.

Outline

- Combinatorial Optimization
 - Packing problems
- 2 Hoffman's Models
 - Lattice Polyhedra
 - Blocking
- 3 Algorithms
 - Primal-Dual Algorithm
 - P-D for WACP
- 4 Conclusion
 - Open questions

• Max Flow and Shortest Path are important because we have efficient algorithms that compute integer optimal solutions.

- Max Flow and Shortest Path are important because we have efficient algorithms that compute integer optimal solutions.
- So, it's not enough to just know that integer optimal solutions exist (TDI), but we also need algorithms to compute them.

- Max Flow and Shortest Path are important because we have efficient algorithms that compute integer optimal solutions.
- So, it's not enough to just know that integer optimal solutions exist (TDI), but we also need algorithms to compute them.
- WAF: A weakly polynomial combinatorial algorithm was developed by Martens and Mc.

- Max Flow and Shortest Path are important because we have efficient algorithms that compute integer optimal solutions.
- So, it's not enough to just know that integer optimal solutions exist (TDI), but we also need algorithms to compute them.
- WAF: A weakly polynomial combinatorial algorithm was developed by Martens and Mc.
- WACP: The result here is a weakly polynomial combinatorial algorithm.

- Max Flow and Shortest Path are important because we have efficient algorithms that compute integer optimal solutions.
- So, it's not enough to just know that integer optimal solutions exist (TDI), but we also need algorithms to compute them.
- WAF: A weakly polynomial combinatorial algorithm was developed by Martens and Mc.
- WACP: The result here is a weakly polynomial combinatorial algorithm.
 - There was a previous algorithm for the case where r is monotone (i.e., $D \leq Q \implies r_D \leq r_Q$) by Frank, but this does not cover important applications such as polymatroid intersection.

 Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for max flow at min cost.

- Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for max flow at min cost.
- It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:				

- Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for max flow at min cost.
- It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:

Set
$$x = 0$$
, $\pi = 0$.

- Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for max flow at min cost.
- It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:

Set x = 0. $\pi = 0$.

While augmenting paths remain do

End

- Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for max flow at min cost.
- It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:

```
Set x = 0, \pi = 0.
```

While augmenting paths remain do

Use Shortest Path to compute the subnetwork Sof min-cost augmenting paths (dual change).

End

- Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for max flow at min cost.
- It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:

```
Set x=0,\ \pi=0. While augmenting paths remain do Use Shortest Path to compute the subnetwork \mathcal S of min-cost augmenting paths (dual change). Use Max Flow to augment all paths in \mathcal S (primal change). End
```

- Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for max flow at min cost.
- It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:

```
Set x=0,\ \pi=0. While augmenting paths remain do Use Shortest Path to compute the subnetwork \mathcal S of min-cost augmenting paths (dual change). Use Max Flow to augment all paths in \mathcal S (primal change). End
```

• Each iteration maintains that x and π are optimal for current flow value, so when x becomes a max flow, it is optimal.

• Complementary slackness \implies if a primal variable > 0, the dual constraint must stay tight.

- \bullet Complementary slackness \implies if a primal variable >0, the dual constraint must stay tight.
- Thus P-D solves a restricted problem in inner iterations where some elements in R must stay tight.

- \bullet Complementary slackness \implies if a primal variable >0, the dual constraint must stay tight.
- Thus P-D solves a restricted problem in inner iterations where some elements in R must stay tight.
- But otherwise, the advantage of P-D is that it replaces the complicated objective $r^T y$ with a simple objective $\mathbb{1}^T y$.

- \bullet Complementary slackness \implies if a primal variable >0, the dual constraint must stay tight.
- Thus P-D solves a restricted problem in inner iterations where some elements in R must stay tight.
- But otherwise, the advantage of P-D is that it replaces the complicated objective $r^T y$ with a simple objective $\mathbb{1}^T y$.
- Due to R, the solution to the restricted dual could have -1 values in it, so the dual update need not be monotone.

P-D, TDI, and CPlex

Theorem (Applegate, Cook, Mc '91)

If a problem class is TDI, then P-D can be used to solve it while always maintaining integral solutions.

P-D, TDI, and CPlex

Theorem (Applegate, Cook, Mc '91)

If a problem class is TDI, then P-D can be used to solve it while always maintaining integral solutions.

Corollary

A conjecture of Barahona & Mahjoub on the TDI-ness of a feedback arc set formulation for K_5 .

P-D, TDI, and CPlex

Theorem (Applegate, Cook, Mc '91)

If a problem class is TDI, then P-D can be used to solve it while always maintaining integral solutions.

Corollary

A conjecture of Barahona & Mahjoub on the TDI-ness of a feedback arc set formulation for K_5 .

Proof.

Via LOPT 3.0, an early precursor to CPlex.

P-D, TDI, and CPlex

Theorem (Applegate, Cook, Mc '91)

If a problem class is TDI, then P-D can be used to solve it while always maintaining integral solutions.

Corollary

A conjecture of Barahona & Mahjoub on the TDI-ness of a feedback arc set formulation for K_5 .

Proof.

Via LOPT 3.0, an early precursor to CPlex.

(This is the earliest paper I know using CPlex as a solver)

ullet max instead of min \Longrightarrow must start with max weight cuts.

- ullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.

- \bullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.
- Relax $x(D) \geq r_D$ to $x(D) \geq r_D \lambda$.

- \bullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.
- Relax $x(D) \geq r_D$ to $x(D) \geq r_D \lambda$.
- [When $\lambda = r_{\text{max}} + 1$, x = y = 0 is optimal.]

- \bullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.
- Relax $x(D) \geq r_D$ to $x(D) \geq r_D \lambda$.
- [When $\lambda = r_{\text{max}} + 1$, x = y = 0 is optimal.]
- Now decrease λ to 0, keeping optimality \implies when $\lambda = 0$ we are optimal.

- \bullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.
- Relax $x(D) \ge r_D$ to $x(D) \ge r_D \lambda$.
- [When $\lambda = r_{\text{max}} + 1$, x = y = 0 is optimal.]
- Now decrease λ to 0, keeping optimality \implies when $\lambda = 0$ we are optimal.
- For fixed λ , focus on subnetwork of cuts with $\operatorname{gap}(D) = x(D) - r_D + \lambda = 0.$

- \bullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.
- Relax $x(D) > r_D$ to $x(D) > r_D \lambda$.
- [When $\lambda = r_{\text{max}} + 1$, x = y = 0 is optimal.]
- Now decrease λ to 0, keeping optimality \implies when $\lambda = 0$ we are optimal.
- For fixed λ , focus on subnetwork of cuts with $gap(D) = x(D) - r_D + \lambda = 0.$
- (implicitly get subnetwork via an oracle that gives any violating cuts ⇒ Ellipsoid-polynomial)

- \bullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.
- Relax $x(D) > r_D$ to $x(D) > r_D \lambda$.
- [When $\lambda = r_{\text{max}} + 1$, x = y = 0 is optimal.]
- Now decrease λ to 0, keeping optimality \implies when $\lambda = 0$ we are optimal.
- For fixed λ , focus on subnetwork of cuts with $gap(D) = x(D) - r_D + \lambda = 0.$
- (implicitly get subnetwork via an oracle that gives any violating cuts ⇒ Ellipsoid-polynomial)
- I emma: this subnetwork still satisfies the axioms.

- \bullet max instead of min \Longrightarrow must start with max weight cuts.
- Define λ as the weight of the current highest-reward cut; initially $\lambda = \max_D r_D = r_{\max}$.
- Relax $x(D) > r_D$ to $x(D) > r_D \lambda$.
- [When $\lambda = r_{\text{max}} + 1$, x = y = 0 is optimal.]
- Now decrease λ to 0, keeping optimality \implies when $\lambda = 0$ we are optimal.
- For fixed λ , focus on subnetwork of cuts with $gap(D) = x(D) - r_D + \lambda = 0.$
- (implicitly get subnetwork via an oracle that gives any violating cuts ⇒ Ellipsoid-polynomial)
- Lemma: this subnetwork still satisfies the axioms.
- But $R = \{e \mid x_e > 0\}$ is restricted to be tight, i.e., $\sum_{D \ni e} y_D = u_e$.

• Solve gap(D) = 0 subnetwork using extension of A. Frank '99 Abstract SP.

- Solve gap(D) = 0 subnetwork using extension of A. Frank '99 Abstract SP.
- Since restr. subnetwork is cut packing, it's blocked by a SP l.

- Solve gap(D) = 0 subnetwork using extension of A. Frank '99 Abstract SP.
- Since restr. subnetwork is cut packing, it's blocked by a SP l.
- Here l is 0, ± 1 :

- Solve gap(D) = 0 subnetwork using extension of A. Frank '99 Abstract SP.
- ullet Since restr. subnetwork is cut packing, it's blocked by a SP l.
- Here l is 0, ± 1 :

• Restricted subnetwork uses original y, auxiliary dual l.

- Solve gap(D) = 0 subnetwork using extension of A. Frank '99 Abstract SP.
- Since restr. subnetwork is cut packing, it's blocked by a SP l.
- Here l is 0. ± 1 :

- Restricted subnetwork uses original y, auxiliary dual l.
- Thus y is automatically updated.

lacktriangle Ensure that the cut packing y is a chain.

- **1** Ensure that the cut packing y is a chain.
- ② Build an auxiliary (real) digraph G based on this chain. The restricted abstract shortest path problem turns out to be equivalent to a generalized shortest path problem on G.

- **1** Ensure that the cut packing y is a chain.
- Build an auxiliary (real) digraph G based on this chain. The restricted abstract shortest path problem turns out to be equivalent to a generalized shortest path problem on G.
- **③** Find a generalized s-t path in G with incidence vector l using only elements of R.

- **1** Ensure that the cut packing y is a chain.
- Build an auxiliary (real) digraph G based on this chain. The restricted abstract shortest path problem turns out to be equivalent to a generalized shortest path problem on G.
- **9** Find a generalized s-t path in G with incidence vector l using only elements of R.
- If y and l are not complementary slack (i.e., if l is not tight on y's chain), update y along path l and return to Step 1.

What's going on here?

 \bullet Trying to get complementary slackness between y and l :

- Trying to get complementary slackness between y and l:
 - If $y_D>0$ (use cut D), $\sum_{e\in D} l_e=1$ ("path" l crosses D only once), and conversely.

- Trying to get complementary slackness between y and l:
 - If $y_D>0$ (use cut D), $\sum_{e\in D} l_e=1$ ("path" l crosses D only once), and conversely.
 - If $\sum_{D\ni e} y_D < u_e$ (cut D not tight), $l_e=0$ (path l does not use e), and conversely.

- Trying to get complementary slackness between y and l:
 - If $y_D>0$ (use cut D), $\sum_{e\in D} l_e=1$ ("path" l crosses D only once), and conversely.
 - If $\sum_{D\ni e}y_D < u_e$ (cut D not tight), $l_e=0$ (path l does not use e), and conversely.
- $\mathcal{L}(\lambda)$ is modular and consecutive \implies there is a sort of concrete s-t network underlying every y that's a chain.

- Trying to get complementary slackness between y and l:
 - If $y_D>0$ (use cut D), $\sum_{e\in D} l_e=1$ ("path" l crosses D only once), and conversely.
 - If $\sum_{D\ni e} y_D < u_e$ (cut D not tight), $l_e=0$ (path l does not use e), and conversely.
- ullet $\mathcal{L}(\lambda)$ is modular and consecutive \Longrightarrow there is a sort of concrete s-t network underlying every y that's a chain.
- ullet Try to find an $s\!-\!t$ path in this network that is complementary slack with y via breadth-first search.

- Trying to get complementary slackness between y and l:
 - If $y_D > 0$ (use cut D), $\sum_{e \in D} l_e = 1$ ("path" l crosses D only once), and conversely.
 - If $\sum_{D \supset e} y_D < u_e$ (cut D not tight), $l_e = 0$ (path l does not use e), and conversely.
- $\mathcal{L}(\lambda)$ is modular and consecutive \implies there is a sort of concrete s-t network underlying every y that's a chain.
- Try to find an s-t path in this network that is complementary slack with y via breadth-first search.
- If the BFS is blocked, this tells you how to change y so it can advance.

- Trying to get complementary slackness between y and l:
 - If $y_D > 0$ (use cut D), $\sum_{e \in D} l_e = 1$ ("path" l crosses D only once), and conversely.
 - If $\sum_{D \supset e} y_D < u_e$ (cut D not tight), $l_e = 0$ (path l does not use e), and conversely.
- $\mathcal{L}(\lambda)$ is modular and consecutive \implies there is a sort of concrete s-t network underlying every y that's a chain.
- Try to find an s-t path in this network that is complementary slack with y via breadth-first search.
- If the BFS is blocked, this tells you how to change y so it can advance.
- This process is monotone, and so terminates in strongly polynomial time with CS solutions.

• Update
$$x' \longleftarrow x + \theta l$$
,
 $\lambda' \longleftarrow \lambda - \theta$
 $\Longrightarrow \operatorname{gap}'(D) \longleftarrow \operatorname{gap}(D) + \theta (l(D) - 1)$.

- $\begin{array}{c} \bullet \ \, \mathsf{Update} \,\, x' \longleftarrow x + \theta l, \\ \lambda' \longleftarrow \lambda \theta \\ \\ \Longrightarrow \, \, \mathsf{gap}'(D) \longleftarrow \mathsf{gap}(D) + \theta (l(D) 1). \end{array}$
- Lemma: θ is always an integer.

- Update $x' \leftarrow x + \theta l$. $\lambda' \longleftarrow \lambda - \theta$ $\implies \operatorname{gap}'(D) \longleftarrow \operatorname{gap}(D) + \theta(l(D) - 1).$
- Lemma: θ is always an integer.
- Knowing this, we can use binary search plus the oracle to find new value of θ s.t. $gap'(D) \geq 0 \ \forall \ D \in \mathcal{D}$.

- Update $x' \leftarrow x + \theta l$. $\lambda' \longleftarrow \lambda - \theta$ $\implies \operatorname{gap}'(D) \longleftarrow \operatorname{gap}(D) + \theta(l(D) - 1).$
- Lemma: θ is always an integer.
- Knowing this, we can use binary search plus the oracle to find new value of θ s.t. $gap'(D) \geq 0 \ \forall \ D \in \mathcal{D}$.
- Also need to use oracle to "uncross" the new y.

- Update $x' \leftarrow x + \theta l$. $\lambda' \longleftarrow \lambda - \theta$ $\implies \operatorname{gap}'(D) \longleftarrow \operatorname{gap}(D) + \theta(l(D) - 1).$
- Lemma: θ is always an integer.
- Knowing this, we can use binary search plus the oracle to find new value of θ s.t. $gap'(D) > 0 \ \forall \ D \in \mathcal{D}$.
- Also need to use oracle to "uncross" the new y.
- Corollary: new x and y are optimal for the new λ .

• Each solve of Restr. Abstract Cut Pack is polynomial.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- x stays same at most n consecutive solves $\implies O(nr_{\max})$ solves.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- ullet x stays same at most n consecutive solves $\implies O(nr_{\max})$ solves.
- This gives a *pseudo-polynomial* bound.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- x stays same at most n consecutive solves $\implies O(nr_{\text{max}})$ solves.
- This gives a *pseudo-polynomial* bound.
- Make weakly polynomial via bit scaling.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- x stays same at most n consecutive solves $\implies O(nr_{\text{max}})$ solves.
- This gives a pseudo-polynomial bound.
- Make weakly polynomial via bit scaling.
 - Not clear how to scale supermodular $r \implies$ scale u.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- x stays same at most n consecutive solves $\implies O(nr_{\text{max}})$ solves.
- This gives a pseudo-polynomial bound.
- Make weakly polynomial via bit scaling.
 - Not clear how to scale supermodular $r \implies$ scale u.
 - Use standard trick of using one more bit of precision at each phase; doubling previous phase's y gives a good initial solution.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- x stays same at most n consecutive solves $\implies O(nr_{\max})$ solves.
- This gives a pseudo-polynomial bound.
- Make weakly polynomial via bit scaling.
 - Not clear how to scale supermodular $r \implies$ scale u.
 - Use standard trick of using one more bit of precision at each phase; doubling previous phase's y gives a good initial solution.
 - Introduce new "1" bits one-by-one \implies need only to solve subproblems with $u_e \leftarrow u_e + 1 \implies$ computational sensitivity analysis.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- x stays same at most n consecutive solves $\implies O(nr_{\max})$ solves.
- This gives a *pseudo-polynomial* bound.
- Make weakly polynomial via bit scaling.
 - Not clear how to scale supermodular $r \implies$ scale u.
 - Use standard trick of using one more bit of precision at each phase; doubling previous phase's y gives a good initial solution.
 - Introduce new "1" bits one-by-one \implies need only to solve subproblems with $u_e \leftarrow u_e + 1 \implies$ computational sensitivity analysis.
 - Same tools apply, but now are strongly polynomial.

- Each solve of Restr. Abstract Cut Pack is polynomial.
- x stays same at most n consecutive solves $\implies O(nr_{\max})$ solves.
- This gives a pseudo-polynomial bound.
- Make weakly polynomial via bit scaling.
 - Not clear how to scale supermodular $r \implies$ scale u.
 - Use standard trick of using one more bit of precision at each phase; doubling previous phase's y gives a good initial solution.
 - Introduce new "1" bits one-by-one \implies need only to solve subproblems with $u_e \leftarrow u_e + 1 \implies$ computational sensitivity analysis.
 - Same tools apply, but now are strongly polynomial.
- Theorem: This algorithm solves Weighted Abstract Cut Packing in $O((m \log C + m^2 \log r_{\text{max}}(m + \text{CO}))(m \cdot \text{CO} + h(m + h)))$ (weakly polynomial) time ("CO" is # oracle calls; h is height of lattice, C is max u_e).

Outline

- Combinatorial Optimization
 - Packing problems
- Hoffman's Models
 - Lattice Polyhedra
 - Blocking
- Algorithms
 - Primal-Dual Algorithm
 - P-D for WACP
- Conclusion
 - Open questions

Much the same P-D framework was used for the WAF algorithm.

- Much the same P-D framework was used for the WAF algorithm.
- If you are interested in algorithms for combinatorial optimization problems, a good place to look is at problems that have Ellipsoid but not (yet) combinatorial algorithms

- Much the same P-D framework was used for the WAF algorithm.
- If you are interested in algorithms for combinatorial optimization problems, a good place to look is at problems that have Ellipsoid but not (yet) combinatorial algorithms
 - ... such as optimizing over the Subtour Elimination Polytope for TSP

- Much the same P-D framework was used for the WAF algorithm.
- If you are interested in algorithms for combinatorial optimization problems, a good place to look is at problems that have Ellipsoid but not (yet) combinatorial algorithms
 - ...such as optimizing over the Subtour Elimination Polytope for TSP
- Or we get a combinatorial faster, or even strongly polynomial algorithm? Maybe some version of Min Mean Cycle?

- Much the same P-D framework was used for the WAF algorithm.
- If you are interested in algorithms for combinatorial optimization problems, a good place to look is at problems that have Ellipsoid but not (yet) combinatorial algorithms
 - ...such as optimizing over the Subtour Elimination Polytope for TSP
- Can we get a combinatorial faster, or even strongly polynomial algorithm? Maybe some version of Min Mean Cycle?
- Typically for such problems, figuring out how to represent the problem is a big hurdle; here we suppressed details of the oracles we are using.

- Much the same P-D framework was used for the WAF algorithm.
- If you are interested in algorithms for combinatorial optimization problems, a good place to look is at problems that have Ellipsoid but not (yet) combinatorial algorithms
 - ...such as optimizing over the Subtour Elimination Polytope for TSP
- Or we get a combinatorial faster, or even strongly polynomial algorithm? Maybe some version of Min Mean Cycle?
- Typically for such problems, figuring out how to represent the problem is a big hurdle; here we suppressed details of the oracles we are using.
- \odot Gröflin and Hoffman extended lattice polyhedra to 0, ± 1 matrices and to a version with sub- and super-modular interchanged; can we adapt our algorithm for these?

- Much the same P-D framework was used for the WAF algorithm.
- If you are interested in algorithms for combinatorial optimization problems, a good place to look is at problems that have Ellipsoid but not (yet) combinatorial algorithms
 - ...such as optimizing over the Subtour Elimination Polytope for TSP
- Or an we get a combinatorial faster, or even strongly polynomial algorithm? Maybe some version of Min Mean Cycle?
- Typically for such problems, figuring out how to represent the problem is a big hurdle; here we suppressed details of the oracles we are using.
- **3** Gröflin and Hoffman extended lattice polyhedra to 0, ± 1 matrices and to a version with sub- and super-modular interchanged; can we adapt our algorithm for these?
- Oculd we further extend this idea to solve, e.g., Schrijver's general framework for TDI problems?

- Much the same P-D framework was used for the WAF algorithm.
- If you are interested in algorithms for combinatorial optimization problems, a good place to look is at problems that have Ellipsoid but not (yet) combinatorial algorithms
 - ...such as optimizing over the Subtour Elimination Polytope for TSP
- Or we get a combinatorial faster, or even strongly polynomial algorithm? Maybe some version of Min Mean Cycle?
- Typically for such problems, figuring out how to represent the problem is a big hurdle; here we suppressed details of the oracles we are using.
- **3** Gröflin and Hoffman extended lattice polyhedra to 0, ± 1 matrices and to a version with sub- and super-modular interchanged; can we adapt our algorithm for these?
- Oculd we further extend this idea to solve, e.g., Schrijver's general framework for TDI problems?
- Is there a good blocking dual to Schrijver's framework?

Any questions?

Questions?

Comments?