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Submodularity in Supply Chain Management

Selected applications of submodularity in SCM:

Shen, Coullard, and Daskin (2003) model a facility location-inventory
problem where column generation uses SFM.

Huh and Roundy (2005) model capacity expansion sequencing
decisions in semiconductor fabs, where determining an optimal
sequence with general costs uses a (parametric) SFM subroutine.

Koole and van der Sluis (2003) use multimodularity (L\-convexity) to
schedule a call center.

Begen and Queyranne (2011) use L-convexity to schedule stochastic
appointments for, e.g., surgeries.
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Combinatorial Optimization Packing problems

Packing problems

A generic packing problem has

A finite set E of elements

A family D of subsets of E, i.e., D ∈ D =⇒ D ⊆ E.

A vector u ∈ ZE of capacities on elements.

A vector r ∈ ZD of rewards on subsets.

The decision is to choose a weight yD to put on each D ∈ D such
that the total weight packed into e is at most ue ∀ e ∈ E.

And among such feasible packings, find one that maximizes rT y.

We are usually interested in finding integer optimal solutions.

This generic problem has many applications, e.g., flow is packing
paths into arcs, connectivity is packing trees into edges, etc.
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Combinatorial Optimization Packing problems

Packing as an LP

Now formulate a packing problem as an LP (it’s more natural to
make packing the dual):

put dual packing variable yD on each D ∈ D;
put primal weight xe on each element e ∈ E.

The dual linear programs are:

(D) max
∑
D

rDyD (P) min
∑

e

uexe

s.t.
∑
D3e

yD ≤ ue ∀e ∈ E s.t.
∑
e∈D

xe ≥ rD ∀D ∈ D

y ≥ 0 x ≥ 0
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Combinatorial Optimization Packing problems

Packing as an LP

Now formulate a packing problem as an LP (it’s more natural to
make packing the dual):

put dual packing variable yD on each D ∈ D;
put primal weight xe on each element e ∈ E.

The dual linear programs are:

(D) max
∑
D

rDyD (P) min
∑

e

uexe

s.t.
∑
D3e

yD ≤ ue ∀e ∈ E s.t.
∑
e∈D

xe ≥ rD ∀D ∈ D

y ≥ 0 x ≥ 0

Big Question: When do these LPs have guaranteed integer optimal solu-
tions?
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Combinatorial Optimization Packing problems

An example packing LP

Consider:

max1T y

s.t.



1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1


y ≤



1
5
5
8
4
7
9
3
6


y ≥ 0.

Does this LP have an integer optimal solution?

What if we change the RHS u? The objective r?

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 7 / 32



Combinatorial Optimization Packing problems

An example packing LP

Consider:

max1T y

s.t.



1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1


y ≤



1
5
5
8
4
7
9
3
6


y ≥ 0.

Does this LP have an integer optimal solution?

What if we change the RHS u? The objective r?

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 7 / 32



Combinatorial Optimization Packing problems

An example packing LP

Consider:

max1T y

s.t.



1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1


y ≤



1
5
5
8
4
7
9
3
6


y ≥ 0.

Does this LP have an integer optimal solution?

What if we change the RHS u? The objective r?

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 7 / 32



Combinatorial Optimization Packing problems

More on the example

This LP has an integer optimal solution: y∗ = (1 4 0 4 0 0 3 0 0) of
value 12.

In fact, it can be shown that this LP has integer optimal solutions for
any RHS u.

The same holds true for some objectives r:

E.g., r = (4 3 2 3 1 1 3 2 4) has integer optimal solution
y∗ = (1 4 0 4 0 0 0 0 3) of value 40 for the given RHS u, and this is
true for any integral u.

But not all objectives r:

E.g., r = (0 9 0 0 9 0 0 9 0) has fractional optimal solution
y∗ = (0 4.5 0 0 0.5 0 0 3.5 2.5) with value 76.5 for the given RHS u.

How do I know that the first two objectives are “good” for all RHS?
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Combinatorial Optimization Packing problems

How the example was constructed

Consider the following graph:

9

1

5 4

8

7
5

3

6

1

2

s t

4

3

There is a 1–1 correspondence between E and the nine edges of this
graph.

There is a 1–1 correspondence between the 9 interesting s–t cuts in
this graph and the columns of the constraint matrix.

Why does this lead to integer optimal LP solutions?
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Combinatorial Optimization Packing problems

The primal covering LP

Recall that the primal covering LP has variables xe . . .

. . . and constraints
∑

e∈D xe ≥ 1 for all D ∈ D.

Imagine that x is 0–1, so that it picks out a subset of edges.

What subsets of edges hit every s–t cut?

The s–t paths are the minimal edge subsets hitting every s–t cut.

Therefore the primal LP is just Shortest Path.

And in fact Dijkstra’s Algorithm gives an integer optimal solution to
this form of Shortest Path.
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Combinatorial Optimization Packing problems

Going back to the dual packing LP

Here is the Dijkstra solution with its shortest path tree:
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Combinatorial Optimization Packing problems

Generalizing this behavior

Since we know that Dijkstra, and this greedy cut packing, work for
any non-negative capacities u, we know that we get integer optimal
solutions for all RHS u.

It is very cool that this random-looking constraint matrix always has
an integer optimal solution with the special objective vector 1.

LPs such as this where you get guaranteed integer optimal solutions
for all RHSs, but only for some special objective vectors, are called
Totally Dual Integral, or TDI.

A natural question here is whether we can generalize this sort of
example to a broader class of packing LPs with 0–1 constraint
matrices.

Hoffman did it . . .
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Hoffman’s Models Lattice Polyhedra

Alan Hoffman’s lattice polyhedron model

We are given a finite set of elements E (nodes/arcs/mixed)

Each e ∈ E has capacity ue

And a family L of cuts, where

D ∈ L means that D ⊆ E
L is a lattice with partial order � and operations ∧ and ∨ satisfying

Di ≺ Dj ≺ Dk =⇒ Di ∩Dk ⊆ Dj (consecutive), and
(Di ∧Dj) ∪ (Di ∨Dj) ⊆ Di ∪Dj (submodular).

each D ∈ L has a per unit reward rD (the weight of D)

r satisfies a kind of supermodularity:

rDi∧Dj + rDi∨Dj ≥ rDi + rDj .
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Hoffman’s Models Lattice Polyhedra

Understanding the lattice axioms

Ordinary cuts are partially ordered:

Ordinary cuts have meet and join, sub-
modularity:

Ordinary cuts are consecutive (e ∈ R∩ T
=⇒ e ∈ S):

S ≺ T

e

R S

R ∧ S R ∨ S

e

R S T≺ ≺
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Hoffman’s Models Lattice Polyhedra

The lattice polyhedron (Weighted Abstract Cut Packing)
linear programs

The lattice polyhedron Weighted Abstract Cut Packing (WACP)
problem associated with E and L puts

packing variable yD on each D ∈ L;
weight xe on each element e ∈ E.

The dual linear programs are:

(D) max
∑
D

rDyD (P) min
∑

e

uexe

s.t.
∑
D3e

yD ≤ ue ∀e ∈ E s.t.
∑
e∈D

xe ≥ rD ∀D ∈ L

y ≥ 0 x ≥ 0
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Hoffman’s Models Lattice Polyhedra

The lattice polyhedron (Weighted Abstract Cut Packing)
linear programs

The lattice polyhedron Weighted Abstract Cut Packing (WACP)
problem associated with E and L puts

packing variable yD on each D ∈ L;
weight xe on each element e ∈ E.

The dual linear programs are:

(D) max
∑
D

rDyD (P) min
∑

e

uexe

s.t.
∑
D3e

yD ≤ ue ∀e ∈ E s.t.
∑
e∈D

xe ≥ rD ∀D ∈ L

y ≥ 0 x ≥ 0
If L is just s–t cuts in a max flow network, and r ≡ 1, then this is just the
usual blocking dual formulation of Dijkstra shortest path.
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Hoffman’s Models Lattice Polyhedra

The lattice polyhedron (Weighted Abstract Cut Packing)
linear programs

The lattice polyhedron Weighted Abstract Cut Packing (WACP)
problem associated with E and L puts

packing variable yD on each D ∈ L;
weight xe on each element e ∈ E.

The dual linear programs are:

(D) max
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Theorem (Hoffman & Schwartz ’76)

When r and u are integral, (P) and (D) have integral optimal solutions.
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Hoffman’s Models Lattice Polyhedra

Other applications

Lattice polyhedra would not be so interesting unless they included
interesting applications other than Shortest Path:

Dilworth’s Theorem (chains and antichains in posets) and various
Greene-Kleitman generalizations.

Shortest Path in hypergraphs.

Polymatroids and intersections of polymatroids.

Min-cost arborescence.

Our example with r = (4 3 2 3 1 1 3 2 4) has integer optimal
solutions for all RHS u because this r is supermodular: each
rD = 6− (# edges crossing D).

Our example with r = (0 9 0 0 9 0 0 9 0) can have a fractional
solution because this r is not supermodular.

Etc, etc . . .
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Hoffman’s Models Blocking

Paths and cuts block each other

Set family D is a clutter if R,S ∈ D, then R 6⊂ S and S 6⊂ R (edge
sets of s–t cuts are a clutter).

Define the blocker of D, B(D), to be the set of minimal subsets Q of
E such that Q ∩D 6= ∅ ∀ D ∈ D; thus B(D) is also a clutter.

Fact: B(B(D)) = D, and so blockers come in dual pairs.

Easy to see that the families of s–t paths and s–t cuts are a blocking
pair.

WACP generalizes s–t cuts.
Hoffman also generalized packing of s–t paths (i.e., Max Flow) to
Weighted Abstract Flow (WAF).

Theorem (Hoffman ’78)

If L is a submodular clutter, then the blocker of L is an abstract path
system.
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Algorithms Primal-Dual Algorithm

How to compute integer optimal solutions?

Max Flow and Shortest Path are important because we have efficient
algorithms that compute integer optimal solutions.

So, it’s not enough to just know that integer optimal solutions exist
(TDI), but we also need algorithms to compute them.

WAF: A weakly polynomial combinatorial algorithm was developed by
Martens and Mc.

WACP: The result here is a weakly polynomial combinatorial
algorithm.

There was a previous algorithm for the case where r is monotone (i.e.,
D � Q =⇒ rD ≤ rQ) by Frank, but this does not cover important
applications such as polymatroid intersection.
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Algorithms Primal-Dual Algorithm

The Primal-Dual Algorithm

Recall the Primal-Dual (Successive Shortest Path, SSP) Algorithm for
max flow at min cost.

It greedily pushes flow on the cheapest (shortest) augmenting path.

Primal-Dual Algorithm:

Set x = 0, π = 0.
While augmenting paths remain do

Use Shortest Path to compute the subnetwork S
of min-cost augmenting paths (dual change).

Use Max Flow to augment all paths in S (primal change).
End

Each iteration maintains that x and π are optimal for current flow
value, so when x becomes a max flow, it is optimal.
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Algorithms Primal-Dual Algorithm

A Technical Detail

Complementary slackness =⇒ if a primal variable > 0, the dual
constraint must stay tight.

Thus P-D solves a restricted problem in inner iterations where some
elements in R must stay tight.

But otherwise, the advantage of P-D is that it replaces the
complicated objective rT y with a simple objective 1T y.

Due to R, the solution to the restricted dual could have −1 values in
it, so the dual update need not be monotone.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 22 / 32



Algorithms Primal-Dual Algorithm

A Technical Detail

Complementary slackness =⇒ if a primal variable > 0, the dual
constraint must stay tight.

Thus P-D solves a restricted problem in inner iterations where some
elements in R must stay tight.

But otherwise, the advantage of P-D is that it replaces the
complicated objective rT y with a simple objective 1T y.

Due to R, the solution to the restricted dual could have −1 values in
it, so the dual update need not be monotone.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 22 / 32



Algorithms Primal-Dual Algorithm

A Technical Detail

Complementary slackness =⇒ if a primal variable > 0, the dual
constraint must stay tight.

Thus P-D solves a restricted problem in inner iterations where some
elements in R must stay tight.

But otherwise, the advantage of P-D is that it replaces the
complicated objective rT y with a simple objective 1T y.

Due to R, the solution to the restricted dual could have −1 values in
it, so the dual update need not be monotone.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 22 / 32



Algorithms Primal-Dual Algorithm

A Technical Detail

Complementary slackness =⇒ if a primal variable > 0, the dual
constraint must stay tight.

Thus P-D solves a restricted problem in inner iterations where some
elements in R must stay tight.

But otherwise, the advantage of P-D is that it replaces the
complicated objective rT y with a simple objective 1T y.

Due to R, the solution to the restricted dual could have −1 values in
it, so the dual update need not be monotone.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 22 / 32



Algorithms Primal-Dual Algorithm

P-D, TDI, and CPlex

Theorem (Applegate, Cook, Mc ’91)

If a problem class is TDI, then P-D can be used to solve it while always
maintaining integral solutions.

Corollary

A conjecture of Barahona & Mahjoub on the TDI-ness of a feedback arc
set formulation for K5.

Proof.

Via LOPT 3.0, an early precursor to CPlex.

(This is the earliest paper I know using CPlex as a solver)
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Algorithms P-D for WACP

Overview

max instead of min =⇒ must start with max weight cuts.

Define λ as the weight of the current highest-reward cut; initially
λ = maxD rD = rmax.

Relax x(D) ≥ rD to x(D) ≥ rD − λ.

[When λ = rmax + 1, x = y = 0 is optimal.]

Now decrease λ to 0, keeping optimality =⇒ when λ = 0 we are
optimal.

For fixed λ, focus on subnetwork of cuts with
gap(D) = x(D)− rD + λ = 0.

(implicitly get subnetwork via an oracle that gives any violating cuts
=⇒ Ellipsoid-polynomial)

Lemma: this subnetwork still satisfies the axioms.

But R = {e | xe > 0} is restricted to be tight, i.e.,
∑

D3e yD = ue.
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Algorithms P-D for WACP

Restricted subnetwork

Solve gap(D) = 0 subnetwork using extension of A. Frank ’99
Abstract SP.

Since restr. subnetwork is cut packing, it’s blocked by a SP l.

Here l is 0, ±1:

e ∈ R, le = −1
L

Restricted subnetwork uses original y, auxiliary dual l.

Thus y is automatically updated.
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Algorithms P-D for WACP

Solving the restricted problem

1 Ensure that the cut packing y is a chain.

2 Build an auxiliary (real) digraph G based on this chain. The restricted
abstract shortest path problem turns out to be equivalent to a
generalized shortest path problem on G.

3 Find a generalized s-t path in G with incidence vector l using only
elements of R.

4 If y and l are not complementary slack (i.e., if l is not tight on y’s
chain), update y along path l and return to Step 1.
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Algorithms P-D for WACP

Some details

What’s going on here?

Trying to get complementary slackness between y and l:

If yD > 0 (use cut D),
∑

e∈D le = 1 (“path” l crosses D only once),
and conversely.
If

∑
D3e yD < ue (cut D not tight), le = 0 (path l does not use e),

and conversely.

L(λ) is modular and consecutive =⇒ there is a sort of concrete s–t
network underlying every y that’s a chain.

Try to find an s–t path in this network that is complementary slack
with y via breadth-first search.

If the BFS is blocked, this tells you how to change y so it can
advance.

This process is monotone, and so terminates in strongly polynomial
time with CS solutions.
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Algorithms P-D for WACP

Updating θ

Update x′ ←− x+ θl,
λ′ ←− λ− θ

=⇒ gap′(D)←− gap(D) + θ(l(D)− 1).

Lemma: θ is always an integer.

Knowing this, we can use binary search plus the oracle to find new
value of θ s.t. gap′(D) ≥ 0 ∀ D ∈ D.

Also need to use oracle to “uncross” the new y.

Corollary: new x and y are optimal for the new λ.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 28 / 32



Algorithms P-D for WACP

Updating θ

Update x′ ←− x+ θl,
λ′ ←− λ− θ

=⇒ gap′(D)←− gap(D) + θ(l(D)− 1).

Lemma: θ is always an integer.

Knowing this, we can use binary search plus the oracle to find new
value of θ s.t. gap′(D) ≥ 0 ∀ D ∈ D.

Also need to use oracle to “uncross” the new y.

Corollary: new x and y are optimal for the new λ.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 28 / 32



Algorithms P-D for WACP

Updating θ

Update x′ ←− x+ θl,
λ′ ←− λ− θ

=⇒ gap′(D)←− gap(D) + θ(l(D)− 1).

Lemma: θ is always an integer.

Knowing this, we can use binary search plus the oracle to find new
value of θ s.t. gap′(D) ≥ 0 ∀ D ∈ D.

Also need to use oracle to “uncross” the new y.

Corollary: new x and y are optimal for the new λ.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 28 / 32



Algorithms P-D for WACP

Updating θ

Update x′ ←− x+ θl,
λ′ ←− λ− θ

=⇒ gap′(D)←− gap(D) + θ(l(D)− 1).

Lemma: θ is always an integer.

Knowing this, we can use binary search plus the oracle to find new
value of θ s.t. gap′(D) ≥ 0 ∀ D ∈ D.

Also need to use oracle to “uncross” the new y.

Corollary: new x and y are optimal for the new λ.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 28 / 32



Algorithms P-D for WACP

Updating θ

Update x′ ←− x+ θl,
λ′ ←− λ− θ

=⇒ gap′(D)←− gap(D) + θ(l(D)− 1).

Lemma: θ is always an integer.

Knowing this, we can use binary search plus the oracle to find new
value of θ s.t. gap′(D) ≥ 0 ∀ D ∈ D.

Also need to use oracle to “uncross” the new y.

Corollary: new x and y are optimal for the new λ.

McCormick, Peis (BC, DE) Weighted Abstract Cut Packing Ga Tech 22 March 2012 28 / 32



Algorithms P-D for WACP

Complexity

Each solve of Restr. Abstract Cut Pack is polynomial.

x stays same at most n consecutive solves =⇒ O(nrmax) solves.

This gives a pseudo-polynomial bound.

Make weakly polynomial via bit scaling.

Not clear how to scale supermodular r =⇒ scale u.
Use standard trick of using one more bit of precision at each phase;
doubling previous phase’s y gives a good initial solution.
Introduce new “1” bits one-by-one =⇒ need only to solve
subproblems with ue ←− ue + 1 =⇒ computational sensitivity
analysis.
Same tools apply, but now are strongly polynomial.

Theorem: This algorithm solves Weighted Abstract Cut Packing in
O((m logC +m2 log rmax(m+ CO))(m ·CO + h(m+ h))) (weakly
polynomial) time (“CO” is # oracle calls; h is height of lattice, C is
max ue).
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Conclusion Open questions

Conclusion

1 Much the same P-D framework was used for the WAF algorithm.

2 If you are interested in algorithms for combinatorial optimization
problems, a good place to look is at problems that have Ellipsoid but
not (yet) combinatorial algorithms

. . . such as optimizing over the Subtour Elimination Polytope for TSP

3 Can we get a combinatorial faster, or even strongly polynomial
algorithm? Maybe some version of Min Mean Cycle?

4 Typically for such problems, figuring out how to represent the problem
is a big hurdle; here we suppressed details of the oracles we are using.

5 Gröflin and Hoffman extended lattice polyhedra to 0, ±1 matrices
and to a version with sub- and super-modular interchanged; can we
adapt our algorithm for these?

6 Could we further extend this idea to solve, e.g., Schrijver’s general
framework for TDI problems?

7 Is there a good blocking dual to Schrijver’s framework?
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4 Typically for such problems, figuring out how to represent the problem
is a big hurdle; here we suppressed details of the oracles we are using.

5 Gröflin and Hoffman extended lattice polyhedra to 0, ±1 matrices
and to a version with sub- and super-modular interchanged; can we
adapt our algorithm for these?

6 Could we further extend this idea to solve, e.g., Schrijver’s general
framework for TDI problems?

7 Is there a good blocking dual to Schrijver’s framework?
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Any questions?

Questions?

Comments?
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