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(57) ABSTRACT 

Waveguides and methods of fabrication thereof are pre
sented. A representative waveguide includes a waveguide 
core and a cladding layer, where the cladding layer sur
rounds the waveguide core. The waveguide core and clad
ding can be made of a host material having a plurality of 
nano-pores, wherein the nano-pores include a sacrificial 
material, and the sacrificial material can be selectively 
decomposed in both the core and cladding layers to form a 
plurality of nano air-gaps. 

13 Claims, 6 Drawing Sheets 
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OPTICAL WAVEGUIDES FORMED FROM 
NANO AIR-GAP INTER-LAYER 

DIELECTRIC MATERIALS AND METHODS 
OF FABRICATION THEREOF 

CROSS-REFERENCE TO RELATED 
APPLICATION 

2 
al., Proc. SPIE Linear, Nonlinear, and Power-limiting 
Organics, 43-53, August 2000). A high lln increases con
finement of optical energy within the core region, which in 
turn allows for higher waveguide densities due to the 

5 reduction in optical crosstalk and smaller radii bent 
waveguide paths. 

Interconnect density constraints imposed by GSI micro
electronics are such that high lln waveguide technologies 
(lln>0.1) are required for chip-level integration (U.S. Pat. 

10 No. 6,324,313) of optical waveguides. For the purposes of 
intra-chip optical data interconnection, for example, a 
waveguide technology that simultaneously allows for high 
lln and low-neff is required to exceed the performance of 

This application claims priority to U.S. provisional appli
cations entitled, "Monolithic Chip-level Optical Waveguides 
Formed From Low-k Nano Air-gap Inter-layer Dielectric 
(ILD) Materials and Methods," having Ser. No. 60/290,118, 
filed May 10, 2001, and "Monolithic Chip-level Optical 
Waveguides Formed From Low-k Nano Air-gap Inter-layer 
Dielectric (ILD) Materials and Methods," having Ser. No. 

15 
60/363,057, filed Mar. 11, 2002, both of which are entirely 
incorporated herein by reference. 

alternate electrical-interconnect technologies. 
Thus, a heretofore unaddressed need exists in industries 

employing optical waveguide technology to address the 
aforementioned deficiencies and/or inadequacies. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

The U.S. government may have a paid-up license in this 
invention and the right in limited circumstances to require 
the patent owner to license others on reasonable terms as 
provided for by the terms of MDA 972-99-1-0002 awarded 
by the DARPA of the U.S. Government. 

TECHNICAL FIELD 

The present invention is generally related to optical 
waveguides and, more particularly, embodiments of the 
present invention are related to waveguides constructed 
from nano air-gap materials and methods of fabrication 
thereof. 

BACKGROUND OF THE INVENTION 

In its simplest form, an optical waveguide is an intercon
nect medium represented by two regions of different refrac
tive index. The core region of a waveguide is represented by 
the region of higher refractive index, while the cladding 
region is represented by the region of lower refractive index. 
For confinement and guiding of optical energy to occur, the 
region of high refractive index must be surrounded by the 
region of lower refractive index. 

To create this contrast in refractive index, li.n, between 
core and cladding regions, optical waveguides are made 
using a variety of methods and materials. Previous fabrica
tion techniques include molding, embossing or casting (U.S. 
Pat. Nos. 6,272,275 and 6,233,388), photo-bleaching (U.S. 
Pat. No. 5,708,739), aerosol deposition (U.S. Pat. No. 5,622, 
750), lamination (U.S. Pat. No. 5,5407,990), guttering (U.S. 
Pat. No. 5,196,041), laser-writing (U.S. Pat. No. 4,949,352), 
metal (U.S. Pat. No. 4,284,663) and ion (U.S. Pat. Nos. 
5,160,523, 5,114,453, 6,226,433, 5,979,188) diffusion and 
doping (U.S. Pat. No. 5,080,931), and thermal diffusion 
(U.S. Pat. Nos. 5,194,079 and 5,551,966), for example. 

Waveguides made from optical polymer materials are of 
particular interest due to their low cost and ease of manu
facture (K. Glukh, et al, Proc. SPIE Linear, Nonlinear, and 
Power-limiting Organics, 43-53, August 2000) with respect 

20 

SUMMARY OF THE INVENTION 

Briefly described, the present invention provides for 
waveguides and methods of fabrication thereof A represen
tative waveguide includes a waveguide core and a cladding 
layer, where the cladding layer surrounds the waveguide 
core. The waveguide core can be made of a host material 

25 having a plurality of nano-pores, wherein the nano-pores 
include a sacrificial material. The cladding layer can be 
made of the host material having a plurality of nano air-gaps. 

The present invention also involves methods of fabricat
ing waveguides. A representative method for fabricating a 

30 waveguide includes: disposing a first host material layer 
onto a substrate, wherein the first host material layer 
includes a plurality of nano-pores, wherein the nano-pores 
include a sacrificial material; removing a portion of the 
sacrificial material from the nano-pores in a first region of 

35 the first host material layer, wherein the first region defines 
a first cladding layer; disposing a second host material layer 
onto the first cladding layer, wherein the first host material 
layer and the second host material layer are the same; 
removing a portion of the sacrificial material from the 

40 nano-pores in a second region of the second host material 
layer that defines the waveguide core; disposing a third host 
material layer onto the first cladding layer and the 
waveguide core, wherein the first host material layer, the 
second host material layer, and the third host material layer 

45 are the same; and removing a portion of the sacrificial 
material from the nano-pores in a third region of the third 
host material layer, wherein the first region defines a second 
cladding layer, and wherein the first and second cladding 
layers surround the waveguide core forming a cladding 

50 layer. 
Other systems, methods, features, and advantages of the 

present invention will be or become apparent to one with 
skill in the art upon examination of the following drawings 
and detailed description. It is intended that all such addi-

55 tional systems, methods, features, and advantages be 
included within this description, be within the scope of the 
present invention, and be protected by the accompanying 
claims. 

to integration within gigascale ( GSI) microelectronics 60 

(International Technology Roadmap for Semiconductors, 
2001 update). One limitation of polymer materials, however, 
which restricts the maximum waveguide density and mini
mum bending radius of an optical waveguide pathway is the 
low refractive index contrast between process-compatible 65 

core and cladding materials. Typical values for li.n are low 
within polymer technologies (e.g., lln=0.03) (K. Glukh, et 

BRIEF DESCRIPTION OF THE DRAWINGS 

Many aspects of the invention can be better understood 
with reference to the following drawings. The components 
in the drawings are not necessarily to scale, emphasis instead 
being placed upon clearly illustrating the principles of the 
present invention. Moreover, in the drawings, like reference 
numerals designate corresponding parts throughout the sev
eral views. 
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FIG. 1 is a schematic that illustrates a cross-sectional view 
of an optical waveguide. 

FIGS. 2A-2M are cross-section views of the fabrication 
process of the optical waveguide illustrated in FIG. 1. 

4 
layer dielectric layer is possible. Low dielectric constant 
materials incorporated into chip-level metallic interconnec
tion stacks reduce capacitive cross-talk between adjacent 
metal layers and allow for higher integration densities of 

FIGS. 3A-3K are cross-sectional views of another fabri- 5 electrical interconnections. 
Now having described waveguides in general, potential 

embodiments of the present invention will be described in 
Examples 1-3. While embodiments of the waveguides are 
described in connection with Examples 1-3 and the corre
sponding text and figures, there is no intent to limit embodi
ments of the waveguides to these descriptions. On the 

cation process of the optical waveguide illustrated in FIG. 1. 
FIG. 4 is a schematic that illustrates a cross-sectional view 

of another optical waveguide. 

FIGS. 5A-5G are cross-section views of the fabrication 10 
process of the optical waveguide illustrated in FIG. 4. 

FIGS. 6A and 6B are schematics that illustrate two 
cross-sectional views of a device incorporating the optical 
waveguide shown in FIG. 4. FIG. 6B is a cross-sectional 
view of FIG. 6A in the A-A direction, as shown by the 
arrows in FIG. 6A. 

FIGS. 7A-7C are schematics that illustrate a cross
sectional view of three coupler elements that can be incor
porated into the device in FIGS. 6A and 6B. 

DETAILED DESCRIPTION 

In general, embodiments of the present invention provide 
for optical waveguides having a waveguide core and a 
cladding layer. The waveguide core and cladding layers are 
made of a low dielectric constant material (e.g., 
methylsilsesquioxane) that provides for both enhanced elec
trical interconnect performance and a functional optical 
interconnect pathway. In this regard, the waveguide can be 
embedded within a layer of inter-layer dielectric as part of 
an on-chip metal stack within gigascale (GSI) microelec
tronic devices, micromechanical devices, compound semi
conductor microelectronics, and complementary metal 
oxide semiconductor wafers, for example. 

Embodiments of the waveguide can include waveguide 
core and cladding layers made of a low dielectric constant 
material (hereinafter "host material") having nano-pores. 
The nano-pores, made possible through the integration of a 
sacrificial material into the host material, permit transparent 
(i.e., low-loss) optical pathways due to the extremely small 
(1-15 nm) dimensions of the nano-pores. Nano air-gaps 
(i.e., nano-pores where the sacrificial material has been 
removed) can be made in the host material by removing a 
portion of the sacrificial material, within select regions of the 
host material, through decomposition or other methods. 
Areas where nano air-gaps are formed have a lower refrac
tive index than the remaining portion of the host material. 
Therefore, using a single solution of a host material com
posed of a given percent weight of sacrificial material, a 
cladding region can be defined through controlled formation 
of nano air-gaps in that region, leaving the remaining areas 
of the host material to define the waveguide core. In this 
manner, a high difference in refractive index between the 
waveguide core and the cladding layer can be realized. 

The weight percent (i.e., between 0% and 99%) of the 
sacrificial material integrated within the host material deter
mines the range of refractive indices available for the 
cladding and waveguide core regions. Consequently, the 
refractive index of the core and cladding regions can be 
tailored through both controlled removal of the sacrificial 
material through decomposition or other methods and by the 
amount of sacrificial material incorporated into the host 
material (e.g., indices of refraction about 1.0 to about 1.5 
and contrast in refractive index of about 0.3). 

contrary, the intent is to cover all alternatives, modifications, 
and equivalents included within the spirit and scope of 
embodiments of the present invention. Embodiments of the 

15 present invention are defined by claims, and examples are 
merely illustrative and are not intended to limit the scope of 
the claims. 

Example 1 

20 
FIG. 1 is a schematic that illustrates waveguide 100. 

Waveguide 100 includes a substrate 110, a cladding layer 
120, and a waveguide core 130. The waveguide core 130 is 
disposed within the cladding layer 120, which is disposed on 
the substrate 110. Additional details regarding the spatial 

25 
relationship of the components of waveguide 100, depicted 
in FIG. 1, are discussed in FIGS. 2A-2M and FIGS. 3A-3K, 
which illustrate exemplary fabrication processes of 
waveguide 100. It should be noted that other fabrication 
processes (i.e., a fabrication process similar to the process 

30 
shown in FIG. 5A-5G) could be used to fabricate waveguide 
100, for example. 

In general, waveguide 100 can be defined through mul
tiple fabrication processes such as, but not limited to, 
photo-definition, wet chemical etching, and thermally-

35 induced refractive index gradients. In addition, waveguide 
100 can have geometries such as, for example, raised strip 
geometry, buried geometry, or rib geometry. Raised-Strip 
waveguides are characterized by a "raised strip" of core 
material which resides atop a substrate characterized by a 

40 lower index of refraction than the core. The upper cladding 
layer is characterized by a lower refractive index than the 
substrate. Buried channel waveguides are characterized by a 
core region, which is "buried" or surrounded by a lower
index cladding material. Rib waveguides are characterized 

45 by a conventional rectangular core geometry that resides 
atop a thin layer, where both of the regions are composed of 
the same material. As above, the core refractive index is 
higher than the substrate index and upper cladding index. 

As indicated above, waveguide 100 includes a substrate 

50 110. The substrate 110 can be any of a variety of substrates 
found in microelectronic or telecommunications devices. 
The substrate 110 can include, for example, a complemen
tary metal oxide semiconductor wafer, compound semicon
ductor wafer, a fully processed semiconductor substrate, a 

55 partially processed semiconductor substrate, a dielectric 
substrate, a printed wiring board, a multi-chip module, fused 
silica, or a backplane substrate. 

The cladding layer 120 and the waveguide core 130 can 
be formed from the same material solution composed of a 

60 host material and a sacrificial material. The host material can 

Embodiments of the present invention are based upon 65 

materials with a low dielectric constant such that incorpo
ration of nano air-gap waveguides within a chip-level inter-

be a low dielectric constant polymer or a low dielectric 
constant glass. In particular, the host material can include, 
but is not limited to, methylsilsesquioxane (MSQ), or 
organic waveguide materials such as polyimides, for 
example. 

The sacrificial material can include, but is not limited to, 
trimethoxysilyl norbornene (TMSNB), polynorbornenes, 
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tion within the cladding layer. In Table 1, the host material 
is MSQ having TMSNB as the sacrificial material in the 
nano-pores. As shown in Table 1, the refractive index of the 
MSQ is measured as a function of the concentration of 

5 TMSNB within the host material. For example, the refrac
tive index is 1.420 when the concentration of TMSNB is 0% 
and 1.287 for a concentration of TMSNB=30%. Therefore, 
in the case where a single solution of 30% weight TMSNB 
is applied to an appropriate substrate and selective decom-

polyoxymethylene, polycarbonates, polyethers, and polyes
ters. More specifically the sacrificial material includes com
pounds such as BF Goodrich Unity™ 400, polypropylene 
carbonate, polyethylene carbonate, polyhexene carbonate, 
and polynorborene carbonate. In addition, volatile compo
nents such as mesitylene or other solvents, for example, that 
could be volatilized at higher temperatures or longer cure 
times could serve as the sacrificial component. In some 
embodiments the sacrificial material includes an ultra violet 
catalyst that can be activated to decompose the sacrificial 
material. The sacrificial material may also contain photo
sensitive compounds, which are additives for patterning or 
decomposition. The addition of a second component to the 
sacrificial material can deter its decomposition temperature. 
An acid will lower the decomposition temperature. Acids 15 

can be generated by acidation of a photoacid generator, thus 
making the sacrificial polymer photosensitive. 

10 position of the nano-pores is performed, a refractive index 
contrast li.n=0.133 can be achieved between the core and 
cladding regions of an optical waveguide formed within the 
material (FIGS. 2A-2M, for example). Alternatively, in the 
case where two solutions of material are used (FIGS. 
5A-5G, for example), the first solution of 0% weight 
TMSNB and the second solution of 30% weight, an optical 
waveguide can be formed with the same li.n by enclosing a 
patterned region of the 0% solution within the 30% solution 
and fully decomposing the entire 30% solution to form the 

20 cladding region. 

The nano-pores, represented by the sacrificial material, 
can be converted into nano air-gaps through removal of the 
sacrificial material. In particular, specific regions of the host 
material can be treated (e.g., heated) to remove sacrificial 
material from only nano-pores in that region. The removal of 
sacrificial material from the nano-pores can be performed 
through a variety of techniques, including, but not limited to, 
thermal decomposition, photo-induced decomposition, or 25 

volatilization of the sacrificial material. The concentration of 
the sacrificial material within the nano air-gap can range 
from 0% to about 99% by weight sacrificial material and 
preferably from 0% to about 40% by weight sacrificial 
material. The amount of sacrificial material removed 30 

depends, in part, upon the desired refractive index contrast 
between the cladding layer 120 and the waveguide core 130. 

POLYNORBORENE 
CONCENTRATION 

0 
10 
20 
30 

TABLE 1 

INDEX OF REFRACTION 
(@ 632.8 nm) 

1.420 
1.352 (1.37)* 
1.321 (1.33)* 
1.287 (1.30*) 

In one embodiment, the refractive index contrast is greatest 
when the concentration of the sacrificial material is maxi
mum in the cladding layer 120 and the concentration of 35 

sacrificial material is minimum in the waveguide core 130. 

The diameter of the nano-pores/nano air-gaps can range 
from about 1 to about 15 nanometers, with the preferred 
diameter being about 5 to about 10 nanometers. 

The composite material can be deposited using techniques 
such as, for example, spin coating, doctor-blading, 
sputtering, chemical vapor deposition (CVD), and plasma 
based deposition systems. The sacrificial material can also be a volatile component, 

which does not decompose, such as a solvent trapped in the 
host matrix, which can be volatilized at a higher temperature 

The sacrificial material can be removed, for example, by 
thermal decomposition, ultraviolet irradiation, or 
volatilization, for example. The thermal decomposition of 
the sacrificial material can be performed by heating one of 

or a longer cure time of the host material. For example, if a 40 

solvent such as mesitylene were trapped inside a host matrix 
such as polyimide or epoxy, the solvent could be removed 
after the host matrix is cured, leaving nano air-gap regions 
and thereby creating regions of lower refractive index. 

the deposited layers or waveguide 100 to the decomposition 
temperature of the sacrificial material and holding at that 
temperature for a certain time period (e.g., 1-4 hours). 

45 Thereafter, the decomposition products diffuse through the 
appropriate regions. 

Alternatively, the concentration of sacrificial material in 
both the cladding layer 120 and the waveguide core 130 can 
be varied to achieve a range of relative index differences. In 
this regard, the concentration of the sacrificial material in the 
waveguide core 130 is less than that m the waveguide 
cladding region. 

The sacrificial material can be, but is not limited to, 
polymers that slowly decompose in a manner to not create 
excessive pressure while forming the nano air-gap. In 
addition, in the case of decomposition of the sacrificial 
material to produce nano air-gaps, the decomposition pro
cess should produce gas molecules small enough to perme-
ate the host material in the cladding layer 120 and/or the core 
layer 130, depending upon the location of the sacrificial 
material. Further, in the case of decomposition of the sac
rificial material to produce nano air-gaps, the sacrificial 
material has a decomposition temperature less than the 
decomposition or degradation temperature of the host 
material, but greater than the cure temperature of the host 
material. 

More specifically, Table 1 illustrates the refractive index 
of a material as a function of sacrificial material concentra-

As depicted in FIG. 1, the waveguide 100 includes a 
cladding layer 120 surrounding a portion of the waveguide 

50 
core 130. The cladding layer 120 has a lower index of 
refraction than the waveguide core 130. 

Although not depicted in FIG. 1, the waveguide 100 can 
include coupler elements disposed at each end of the 
waveguide core 130. In this manner, energy (e.g., light) can 

55 enter one coupling element, travel down the waveguide core 
130, and exit another coupling element. 

Although only one waveguide core 130 is depicted in 
FIG. 1, one or more waveguide cores can be included in 
waveguide 100. In addition, multiple levels of waveguides 

60 and/or waveguide cores can be built atop one another. 
Generally, during the fabrication process of waveguide 

100, a first layer of the material having nano-pores is 
deposited onto the substrate 110 and patterned. Thereafter, 
the first layer is thermally cured, and the decomposition of 

65 the nano-pores is enabled by oven cure at a higher tempera
ture or by depositing a metal or other heat-carrying material 
atop select regions of the layer to thermally decompose the 
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sacrificial material in select areas, hence, forming a first 
layer of the cladding layer 120. Subsequently, a second layer 
of the same material is deposited onto the first layer. A 
portion of the nano-pores included within the second layer 

8 
FIG. 2G illustrates the patterning of the metal shield 116A 

into metal shield 116B. The metal shield 116A is patterned 
to define the region where the second cladding layer 120B 
and the waveguide core 130 are to be formed. 

FIG. 2H illustrates the thermally-induced removal of 
nano-pores within the second layer 112B to form the second 
cladding layer 120B. As indicated above, the thermally
induced removal of sacrificial material is achieved by heat
ing the metal shield 116B to the decomposition temperature 

of the material is selectively removed through the same 5 

process as the lower cladding layer, thus forming a second 
layer of the cladding layer 120. In addition, the portion of the 
nano-pores within the second layer where the sacrificial 
material is not removed forms the waveguide core 130. 
Subsequently, a third layer of the material is deposited onto 10 or boiling point of the sacrificial material in the nano-pores. 

The region where the metal shield 116B has been etched 
away defines the waveguide core 130. 

all portions of the second layer and is then thermally cured 
in the same manner as the first and second layers of the 
cladding layer, after which the selective removal of nano
pores from the third layer to form a cladding layer 120 is 
performed. The processes forming the cladding layer 120 15 

and the waveguide layer 130 are discussed in more detail 
hereinafter. 

FIG. 2I illustrates the removal of the metal shield 116C 
from the second cladding layer 120B. 

FIG. 21 illustrates the third layer 112C of the host material 
disposed on the second cladding layer 120B and the 
waveguide core 130. 

For the purposes of illustration only, and without 
limitation, waveguide 100 can be described with particular 
reference to the below-described fabrication method. For 20 

FIG. 2K illustrates a metal shield 118 (i.e., for thermally
induced removal of sacrificial material) disposed on third 
layer 112C of the host material. 

clarity, some portions of the fabrication process are not 
included in FIGS. 2A-2M. For example, photolithography 
or similar techniques can be used to define the first and 
second cladding layers and/or the waveguide core 130 
pattern. 

The following fabrication process is not intended to be an 
exhaustive list that includes all steps required for fabricating 
waveguide 100. In addition, the fabrication process is flex
ible because the process steps may be performed in a 
different order than the order illustrated in FIGS. 2A-2M. In 
addition, other waveguides (e.g., waveguides 140 and 200, 
FIGS. 4 and 6A-6B, respectively) can be fabricated from the 
following fabrication process or a similar fabrication pro-
cess. 

FIG. 2L illustrates the thermally-induced removal of 
sacrificial material from nano-pores within the third layer 
112C to form the third cladding layer 120C. As indicated 
above, the thermally-induced removal of sacrificial material 

25 is achieved by heating the metal shield 118 to the decom
position temperature or boiling point of the sacrificial mate
rial in the nano-pores. 

FIG. 2M illustrates the removal of the metal shield 114, 
thereby forming waveguide 100. The first, second, and third 

30 cladding layer 120A-120C form the cladding layer 120. 
It should be noted that the foregoing method shown in 

FIGS. 2A-2M can be altered to incorporate adding coupler 
elements and other components. 

FIGS. 3A-3K are cross-sectional views of a fabrication 
FIG. 2A-2M are cross-sectional views of a fabrication 35 

process relative to the view illustrated in FIG. 1. In 
particular, the fabrication process shown in FIGS. 3A-3K 
describes an ultra-violet (UV)-based fabrication process for 
forming waveguide 100. 

process relative to the view illustrated in FIG. 1. In 
particular, the fabrication process shown in FIGS. 2A-2M 
describes a thermal fabrication process for forming 
waveguide 100. FIG. 2Aillustrates the first layer 112Aof the 
host material disposed on the substrate 110. As indicated 
above, the host material includes nano-pores having a sac
rificial material disposed therein. 

FIG. 2B illustrates a metal shield 114 disposed on first 
layer 112A of the host material. The metal shield 114 is 
disposed on the first layer 112A to thermally remove sacri
ficial material from nano-pores located within the first layer 
112A and, hence, create nano air-gaps within the first layer 
112A. The metal shield 114 includes metals such as, for 
example, gold (Au), titanium (Ti), chromium (Cr), or alu
minum (Al), composites of these metals. 

FIG. 2C illustrates the thermally-induced removal of 
sacrificial material from nano-pores within the first layer 
112A to form the first cladding layer 120A. The thermally
induced removal is achieved by heating the metal shield 114 
to the decomposition temperature or boiling point of the 
sacrificial material in the nano-pores. The type of sacrificial 
material and the concentration of the sacrificial material 
within the host material determine both the temperature and 
the time period governing the thermally-induced removal of 
material. 

FIG. 2D illustrates the removal of the metal shield 114. 
FIG. 2E illustrates the second layer 112B of the host 

material disposed on the first cladding layer 120A. 
FIG. 2F illustrates a metal shield 116A(i.e., for thermally

induced removal of material) disposed on the second layer 
112B of the material. 

40 
FIG. 3Aillustrates the first layer 112A of the host material 

disposed on the substrate 110. As indicated above, the host 
material includes nano-pores having a sacrificial material 
disposed therein. 

FIG. 3B illustrates the UV-induced decomposition or 

45 volatilization of the sacrificial material within the first layer 
112A to form the first cladding layer 120A. The decompo
sition is achieved by UV irradiation of the first layer 112A. 
In the case of decomposition of the sacrificial material, 
decomposition is initiated with the activation of a 

50 UV-sensitive catalyst within the sacrificial material. The 
type and concentration of the sacrificial material and the 
type and concentration of the catalyst determine the appro
priate dose of UV energy required to initiate decomposition. 

FIG. 3C illustrates the second layer 112B of the material 
55 disposed on the first cladding layer 120A. 

FIG. 3D illustrates a hard mask 116A disposed on the 
second layer 112B of the material, which is used to deter 
UV-induced decomposition or volatilization within the host 
material immediately below the hard mask 116A. The hard 

60 mask 116A can be constructed from material such as, for 
example, gold (Au), titanium (Ti), chromium (Cr), or alu
minum (Al), composites of these metals, or any dielectric 
material that absorbs UV radiation. 

FIG. 3E illustrates patterning the hard mask 116A into 
65 hard mask 116B. The hard mask 116A is patterned to define 

the region where the second cladding layer 120B and the 
waveguide core 130 are to be formed. 
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FIG. 3F illustrates the UV-induced decomposition or 
volatilization within the second layer 112B into the second 
cladding layer 120B. The region where the hard mask 116B 
is located defines the waveguide core 130. 

FIG. 3G illustrates the removal of the hard mask 116B 
from the waveguide core 130. It should be noted that in 
addition to depositing and defining a hard mask (FIG. 
3D-3F), conventional photolithographic techniques incor
porating a photomask to block exposure of select regions 
can also be employed to produce FIG. 3G. 

FIG. 3H illustrates the application of a third layer 112Aof 
the material disposed on the second cladding layer 120B and 
the waveguide core 130. 

FIG. 3I illustrates a metal shield 119 for thermally
induced decomposition or volatilization of the sacrificial 
material within the nano-pores located within the third layer 
112C of the material. 

FIG. 3J illustrates the thermally-induced decomposition 
or volatilization of sacrificial material within nano-pores 
located within the third layer 112C to form the third cladding 
layer 120C. As indicated above, the thermally-induced 
decomposition or volatilization is achieved by heating the 
metal shield 119 to the decomposition temperature or boiling 
point of the sacrificial material in the nano-pores. 

FIG. 3K illustrates the removal of metal shield 119, 
thereby forming the waveguide 100. The first, second, and 
third cladding layers 120A-120C form the cladding layer 
120. 

It should be noted that the foregoing method shown in 
FIGS. 3A-3K can be altered to incorporate coupler elements 
and other components. 

Example 2 

FIG. 4 is a schematic that illustrates waveguide 140. 
Waveguide 140 includes a substrate 110, a cladding layer 
120, and a waveguide core lSO. The waveguide core lSO is 
disposed in the cladding layer 120, which is disposed on the 
substrate 110. Additional details regarding the spatial rela
tionship of the components of waveguide 140, depicted in 
FIG. 4, are discussed in FIG. SA-SG, which illustrate 
exemplary fabrication processes of waveguide 140. It should 
be noted that other fabrication processes (i.e., a fabrication 
process similar to the process shown in FIGS. 2A-2M and 
FIGS. 3A-3K) could be used to fabricate waveguide 140. 

In general, the waveguide lSO can be defined through 
multiple fabrication processes as described herein in relation 
to waveguide 100. In addition, the waveguide 140 includes 
a substrate 110. The substrate 110 can be any of a variety of 
substrates found in semiconductor microelectronic or tele
communications devices as discussed herein in reference to 
waveguide 100. 

The cladding layer 120 and the waveguide core 130 can 

10 
In this embodiment, the waveguide is formed through the 

use of the first and second host materials each having a 
different percent weight of sacrificial material, as opposed to 
using a single solution of host material with a single percent 

5 weight of sacrificial material as in other embodiments. In 
other words, the waveguide core 140 is made from a first 
host/sacrificial material solution, while the cladding layer 
120 is made from a second host/sacrificial material solution. 
The weight percent of sacrificial material within the core 

10 layer can vary from 0% to 99%, while the weight percent of 
sacrificial material within the cladding layer can vary from 
1 % to 99%. Since the first and second host materials have 
different percent weights of sacrificial material, the first and 
second host materials can have different refractive indices 

15 
after removal of the sacrificial material. 

Although not depicted in FIG. 4, the waveguide 140 can 
include coupler elements disposed at each end of the 
waveguide core lSO. In this manner, energy (e.g., light) can 

20 enter one coupling element, travel down the waveguide core 
130, and exit another coupling element. 

Although only one waveguide core 130 is depicted in 
FIG. 4, one or more waveguide cores can be included in 

25 
waveguide 100. In addition, multiple levels of waveguides 
and or waveguide cores can be built atop one another. 

Generally, during the fabrication process of waveguide 
140, a first layer of the material including the nano-pores is 
deposited onto the substrate 110 and patterned. Thereafter, a 

30 hard mask is patterned so that a waveguide core material 
with a different percent weight of sacrificial material (i.e., 
different concentration of nano-pores) can be deposited on 
the first cladding layer of the material to form the waveguide 
core lSO. Subsequently, a second layer of the same material 

35 used for the first layer is deposited onto the first layer and the 
waveguide core. Removal of the sacrificial material from 
nano-pores located within each layer (both cladding and 
core layers) is then initiated through decomposition, 
volatilization, or other mechanisms to form the waveguide 

40 core layer lSO and cladding layer 120. The processes 
forming the cladding layer 120 and the waveguide layer lSO 
are discussed in more detail hereinafter. 

For the purposes of illustration only, and without 

45 
limitation, waveguide 140 can be described with particular 
reference to the below-described fabrication method. For 
clarity, some portions of the fabrication process are not 
included in FIGS. SA-SG. For example, photolithography or 
similar techniques could be used to define the first and 

50 
second cladding layers and/or the waveguide core lSO 
pattern. 

be formed from material solutions composed of a first host 55 

material and a second host material each mixed with differ
ent percent weights of a sacrificial material. The first and 
second host materials can be low dielectric constant poly
mers or low dielectric constant glasses. The first and second 
host materials are analogous to the host material described 60 
herein in reference to waveguide 100. 

The following fabrication process is not intended to be an 
exhaustive list that includes all steps required for fabricating 
waveguide 140. In addition, the fabrication process is flex
ible because the process steps may be performed in a 
different order than the order illustrated in FIG. SA-SG. 

FIGS. SA-SG are cross-sectional views of a fabrication 
process relative to the view illustrated in FIG. 4. FIG. SA 
illustrates the first layer 112A of the first host material 
disposed on the substrate 110. As indicated above, the host 
material includes a given fixed percentage of nano-pores 
having a sacrificial material disposed therein. 

The first and second host materials contain nano-pores, 
represented by the sacrificial material. The nano-pores can 
be converted into nano air-gaps through selective removal of 
the sacrificial material from the nano-pores located in the 65 

first and second host materials through decomposition or 
volatilization, for example. 

FIG. SB illustrates a hard mask 122Adisposed on the first 
layer 112A of the material. The hard mask 122A can be 
constructed from material such as, for example, Au, Cr, or 
Al, or any dielectric material that absorbs UV radiation. 
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FIG. SC illustrates patterning the hard mask 122A into 
hard mask 122B. The hard mask 122Ais patterned to define 
the region where a second host material composed of a 
second, different percent weight of sacrificial material is 
deposited to form waveguide core lSO. 

FIG. SD illustrates the waveguide core lSO disposed on 
the first layer 112A. 

FIG. SE illustrates the removal of the hard mask 122B. 

5 

12 
It should be noted that other embodiments of device 200 

have the waveguide core and the cladding material as the 
same material, similar to Example 1. 

FIG. 7A illustrates a mirror element 260 based on total 
internal reflection (TIR) mirrors. The mirror element 260 
can be formed either through etching or by laser ablation. As 
shown by the arrows in FIG. 7A, optical energy can be 
directed from the waveguide core 2SO through the cladding 

FIG. SF illustrates a second layer 112B of the first host 
material disposed on the first layer 112A and the waveguide 10 

core lSO. 

layer 220 by using the mirror element 260. 

FIG. 7B illustrates a spatially-varied refractive index 
coupler element 261 based on a surface-relief grating pat
tern. The surface-relief coupler element 261 can be formed 
by defining alternating regions of high and low refractive 

FIG. SG illustrates the curing of waveguide 140 and 
removal of sacrificial material from nano-pores within the 
first layer 112A, the waveguide core lSO and the second 
layer 112B to form the waveguide 140. 

It should be noted that the foregoing method shown in 
FIGS. SA-SG can be altered to incorporate adding coupler 
elements and other components. 

Example 3 

FIGS. 6A and 6B are schematics that illustrate two 
cross-sectional views of device 200. FIG. 6B is a cross
sectional view of FIG. 6A in substantially the A-A 
direction, as shown by the arrows in FIG. 6A. 

Device 200 includes a substrate 210 and waveguide 216. 
The waveguide 216 is disposed on the substrate 210. The 
waveguide core 2SO is disposed in the cladding layer 220, 
which is disposed on the substrate 10. 

The substrate 210 includes a low dielectric constant layer 
212 and a metal layer 214. The low dielectric constant layer 
212 is composed of the nano-porous materials discussed in 
prior examples. The metal layer 214 is composed of such 
metals as, for example, Cu or Al. 

15 index in a periodic manner. In this regard the surface-relief 
coupler element 261 can be formed through the use of 
multiple solutions of host/sacrificial material in a manner 
similar to Example 2, for example. As shown by the arrows 
in FIG. 7B, optical energy can be directed from the 

20 waveguide core 2SO through the cladding layer 220 by using 
the surface-relief coupler element 261. 

FIG. 7C illustrates a spatially-varied refractive index 
coupler element 262 based on a volume grating pattern. The 

25 
volume coupler element 262 can be formed by defining 
alternating regions of high and low refractive index in a 
periodic manner. In this regard the volume coupler element 
262 can be formed by either a thermal process using a metal 
shield or by using UV irradiation, for example. As shown by 

30 
the arrows in FIG. 7C, optical energy can be directed from 
the waveguide core 2SO through the cladding layer 220 by 
using the spatially-varied refractive index coupler element 
262. 

In general, the waveguide 216 can be defined through any 35 

of the fabrication processes previously discussed in prior 
examples. In addition, the waveguide 216 can have geom
etries such as, for example, a raised strip geometry, buried 
geometry, or rib geometry. 

It should be emphasized that the above-described embodi
ments of the present invention are merely possible examples 
of implementations, and are set forth for a clear understand
ing of the principles of the invention. Many variations and 
modifications may be made to the above-described embodi
ments of the invention without departing substantially from 
the spirit and principles of the invention. All such modifi
cations and variations are intended to be included herein 
within the scope of this disclosure and the present invention 
and protected by the following claims. 

The waveguide 216 includes a cladding layer 220, coupler 
elements 240A and 240B, and a waveguide core 2SO. The 
waveguide core 2SO and the cladding layer 220 are analo
gous to the waveguide core lSO and the cladding layer 220 
shown in FIG. 4. 

As depicted in FIGS. 6A and 6B, the waveguide 216 
includes a cladding layer 220 engaging (e.g., surrounding a 
portion of the waveguide core 2SO and the coupler elements 
240A and 240B) the waveguide core 2SO and the coupler 
elements 240A and 240B. 

The waveguide 216 includes coupler elements 240A and 
240B disposed at each end of the waveguide core 2SO. In this 
manner, energy (e.g., light) can enter one coupling element 
240A, travel down the waveguide core 2SO, and exit another 
coupling element 240B. 

The type of coupler elements 240A and 240B that can be 
used include planar (or volume) grating coupler elements, 
surface-relief grating coupler elements, and total internal 
reflection coupler elements, for example. The coupler ele
ments are described in more detail below in regard to FIGS. 
7A-7C. 

In this embodiment, the waveguide core 2SO is made of a 
different material than the cladding layer 220. Examples of 
materials that can be used as the waveguide core 2SO 
include, but are not limited to, compounds such as methyl
silsesquioxane (MSQ) and organic waveguide materials 
such as polyimide, for example. 

40 

45 

50 

55 

What is claimed is: 
1. A waveguide, comprising: 

a waveguide core made of a first host material having a 
plurality of nano-pores, wherein the nano-pores include 
a sacrificial material, wherein the sacrificial material 
has a decomposition temperature less than a decompo
sition temperature of the first host material, wherein the 
decomposition temperature of the sacrificial material is 
greater than the cure temperature of the first host 
material; and 

a cladding layer made of a second host material having a 
plurality of nano air-gaps, wherein the cladding layer is 
disposed around the waveguide core. 

2. The waveguide of claim 1, wherein the first host 
material and the second host material comprise the same 

60 host material. 
3. The waveguide of claim 1, wherein the first host 

material and the second host material comprise different host 
materials. 

4. The waveguide of claim 1, wherein the nano-pores 
65 include a first amount of the sacrificial material so that the 

cladding layer has a lower refractive index than the 
waveguide core. 
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5. The waveguide of claim 1, wherein the nano air-gaps 
include a second amount of the sacrificial material so that the 
cladding layer has a lower refractive index than the 
waveguide core. 

6. The waveguide of claim 1, wherein the first host s 
material and the second host material are selected from 
methylsilsesquixane and polyimides. 

7. The waveguide of claim 1, wherein the first host 
material and the second host material includes methylsils-
esquixane. 10 

8. The waveguide of claim 1, wherein the sacrificial 
material is chosen from trimethoxysilye norborene, 
polynorbornenes, polyoxymethylene, polycarbonates, 
polyethers, and polyesters. 

9. The waveguide of claim 1, wherein the nano air-gaps 15 

have a diameter of about 1 to about 15 nanometers. 
10. The waveguide of claim 1, further comprising at least 

one coupler element. 

14 
a waveguide disposed on the substrate, wherein the 

waveguide includes: 

a waveguide core made of a material having a plurality of 
nano-pores, wherein the nano-pores include a sacrifi
cial material, wherein the sacrificial material has a 
decomposition temperature less than a decomposition 
temperature of the first host material, wherein the 
decomposition temperature of the sacrificial material is 
greater than the cure temperature of the first host 
material; and 

a cladding layer made of the material having a plurality of 
nano air-gaps. 

13. The device of claim 12, wherein the substrate is 
selected from a complementary metal oxide semiconductor 
wafer, compound semiconductor wafer, a fully processed 
semiconductor substrate, a partially processed semiconduc
tor substrate, a dielectric substrate, a printed wiring board, a 11. The waveguide of claim 1, wherein the sacrificial 

material includes mesitylene. 20 multi-chip module, fused silica, and a backplane substrate. 
12. A device, comprising: 

a substrate; and * * * * * 


