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Research Plan 

Phase L The characterization of the electrochemical behavior of all components (in both Karcher's 
and Chandalia's method) for converting arylmethyl ketones to u -keto acetaJs using cyclic and 
rotating-ring-disk voltammetry was the primary aim of this initial phase. Special emphasis was to be 
placed on identifying appropriate electrode materials, solvents and potential windows where the 
arylmethyl ketone reactant and the phenylgloxal and u-keto acetal products were electroinactive and 
where the selenium-based reactants were electroactive. 

Phase II. We proposed the construction of a laboratory-scale electrochemical reactor for the 
electrosynthesis of u-keto acetals in both the controlled potential and current modes. We proposed 
to determine product distributions using gas chromatography/mass selective detection. 

Phase Ill. The fabrication of a bench-scale reactor with high surface area electrodes was proposed. 
From the results of initial batch runs with this cell, a cost model will be developed for the 
electrocatalytic conversion of arylmethyl ketones to ex-keto acetals. 

Work Accomplished 

Phase L We evaluated the electrooxidative behavior of each of the following compounds in methanol 
solution at both a Pt and graphite anode: acetophenone (AP), 4-hydroxyacetophenone ( 4-HAP), 
}-acetonaphthone (I-AN), 2-acetonaphthone (2-AN), 4-methoxyacetophenone ( 4-MAP), sodium 
bromide, p-toluenesulfonic acid, lithium perchlorate, and diphenyldiselenide. We have synthesized 
the u-keto acetals of AP, 2-AN, 1-AN, 4-HAP and 4-MAP chemically according to Tiecco's method 
and verified purity by 1H nmr spectroscopy and mass spectrometry. The spectral results are 
summarized in Table I. These materials were used as thin layer chromatographic standards. 

Phase II. We have carried out electrooxidations of2-AN using a two electrode cell and 
systematically determined the importance of the following factors on product and byproduct 
yields: 

electrolysis time (under controlled current) 
controlled current vs. controlled potential 
concentration ofp-toluenesulfonic acid (0 to 0.5 M) 
concentration of diphenyldiselenide (0 to 0.075 M) 
effect of undivided versus divided cell (porous fiit, Nation 117 membrane, Nafion 
450 membrane) 
concentration and identity of supporting electrolyte (NaBr, KSCN, NaCI04, 

LiCI04, KBF4, TEABF4, NaOAc, HOAc/NaOAC). 

We have monitored the course of these reactions with thin layer chromatography and 
characterized the reaction products with 1H nmr and gas chromatography with mass selective 
detection both before and after product separation on a preparative scale silica gel column. 



The results of this phase of the investigation are summarized as follows: 

Under controlled current, the desired u -keto acetal product first increases and 
then decreases with time. The decrease is associated with oxidation of the u-keto 
acetal product to the acid. 
The fewest number of components are found in the product mixture when the 
electrolysis is carried out under controlled potential. This electrolysis method 
necessitated a longer electrolysis time. The rate of electrolysis may be increased 
through the use of high-surface area anodes to be explored in phase m of this 
investigation. 
When diphenyldiselenide is in the reactant mixture, the u -keto acetal product is 
obtained. The only exception is when sodium acetate is used as the supporting 
electrolyte. 
The product yield, number of intennediates and number of byproducts is strongly 
dependent upon the concentration of diphenyldiselenide, the electrolyte used, the 
electrolysis time and whether a divided cell is used. The intrinsic resistance of the 
divider necessitated higher applied potentials 
Except in the case of 4-HAP, the fonnation of product appears independent of the 
amount of p-toluenesulfonic acid present in the reactant mixture. 
The amount of u -keto acetal is markedly dependent upon the identity of the 
supporting electrolyte. The results obtained for this particular study are 
summarized in Table 2. 
In some instances, the process appears to be electrocatalytic, but we have not yet 
determined turnover numbers. 
The u -keto acetal product is fonned at either a Pt or graphite anode. Since there 
is a significant difference in cost between the two anode materials, a porous 
graphite electrode would appear to be preferable. 

We have electrooxidized AP, I-AN, 4-HAP and 4-MAP using the best conditions found for the 
production of 2-AN-ka. The conditions and product compositions are summarized in Table 3. 
Selected gas chromatograms and mass spectral analyses are included as an appendix to this report. 
Additional spectra and chromatograms are available upon request. The results of this phase of the 
investigation are: 

The desired u-keto acetal products are prepared in -75% yield with the 
electrooxidative method used. No attempt has been made to optimize the yield; 
the values reported are likely to be conservative estimates of the yield obtainable 
from this method. 
The production of the u-keto acetal of 4-HAP requires an acidic environment to 
keep the phenolic group protonated. 
It was anticipated that the use of a bromide containing supporting electrolyte 
would facilitate the electrocatalytic fonnation of the u -keto acetal via 
electrooxidation of bromide at the electrode followed by homogeneous reduction 
with diphenyldiselenide. However, this was not observed. Instead, u -brominated 
methyl ketones were found in the product mixtures. 



Phase Ill. Preliminary cost models have been fonnulated based on the yield estimates. These 
suggest that the desired ex-keto acetal products can be produced electrochemically at a 
significant profit. We are currently attempting to increase yields and reduce cell voltages by 
minimizing the resistance of both the solution and the divider, increasing and regulating the rate 
of mass transfer and increasing the surface area of both the anode and cathode. We are also 
designing a bench-scale reactor with high surface area electrodes for use in phase m experiments. 
We are exploring ways to immobilize theSe-based oxidant/catalyst (e.g. diphenyldiselenide or 
SeOJ to eliminate the need for removal of the selenium-byproducts from the product stream. 



.. 
TABLE 1. CHARACI'ERIZA TION OF REAGENTS AND PRODUCTS 

Compoaad Formula Description 18 NMR spectrum Mass 
(abbreviation) (vendor) spectrum 

acetophenone C6H5COCH3 colorless 2.61 (s, 3H) 120 (M+), . 
(AP) (Aldrich) liquid 7.4-7.5 (m, 2H) lOS (base), 

7.5-7.6 (m, IH) 91, 77, 63, 
7.9-8.0 (rn, 2H) 51,43 

acetophenone a- C,H,COCH(OCH3h light orange 3.48 (s, 6h) 149 (M+), 
keto acetal (synthesized using oil 5.24 (s, lH) 121, 105, 91, 
(AP-ka) Tiecco's method and 7.4-7.5S (m, 2H) 7S, (base), S 1, 

GaTech's 1.SS-1.1 (m, lH) 47 -
electrochemical 8.1-8.2 (m, 2H) 
method) 

1-aceto-naphtho- C1Jl7COCH3 colorless 2.76 (s, 3H) 170 (M+), 
phenone (Aldrich) liquid 7.4-7.7 (m, 2H) ISS (base), 
(I-AN) 7.8-8.1 (m, 4H) 127, 77, 63, 

8. 7-8.8 (m, I H) 43 

1-acetonaph- C1JI7COCH(OCH3h light yellow 3.S2 (s, 6H) 230 (M+), 
thophenone a- (synthesized using oil S.31 (s, IH) 199, 167, 
keto acetal Tiecco's method and 7.S-7.7 (m, 3H) ISS, 139, 
(l-AN-ka) GaTech's 7.8S-7.9S, (m, IH) 137, 7S 

electrochemical 8.0-8.1 (m, IH) (base), 47 
method) 8.2-8.3 (m, 1H) 

8.6S-8. 7S (m, I H) 

2-aceto-naphtho- C1JI,COCHl white solid 2.74 (s, 3H) 170 (M+), 
phenone (Aldrich) 7.S-7.7 (m, 2H) ISS (base), 
(2-AN) 7.8-8.1S (m, 4H) 127, 101, 77, 

8.48 (s, 1H) 63,43 

2-acetonaph- C1Jl7COCH(OCH3) 2 light yellow 3.S2 (s, 6H) 230 (M+), 
thophenone a- (synthesized using oil S.37 (s, IH) 201, 171, 
keto acetal Tiecco's method and 7.S-7.7 (m, 2H) ISS, 127, 7S 
(2-AN-ka) GaTech's 7.8-8.2 (m, 4H) (base), 47 

electrochemical 8.74 (s, 1H) 

,' 
method) 

4-hydroxyace- HOCACOCH3 white solid 2.S8 (s, 3H) 136 (M+), 
tophenone (Aldrich) 6.9-7.0 (m, 2H) 121 (base), 
(4-HAP) 7.9-8.0 (m, 2H) 93,6S,43,39 

>10.0 (s, IH) 
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4-hydroxyace- HOCJI.COCH(OCH light violet 3.46 (s, 6H) 196 (M+), 
tophenone ex- 3h oil 5.31 (s, IH) 137, 121, 93, 
keto acetal (synthesized using 6.9-7.0 (m, 2H) 75 (base), 65, 
(4-HAP-ka) Tiecco's method and 8.05-8.15 (m, 2H) 47 

GaTech's >10.0 (s, IH) 
electrochemical 
method) 

4-methoxyace- CH30CJI4COCH3 white crystal 2.57 (s, 3H) ISO (M+), 
tophenone (Aldrich) 3.88 (s, 3H) 135 (base), 
(4-MAP) 6.9-7.0 (m, 2H) 107, 92, 77, 

7.9-8.0 (m, 2H) 64,43 

4-methoxyace- CH30CJI4COCH(O white 3.47 (s, 6H) 210 (M+), --

tophenone ex- CH31 crystals 3.88 (s, 3H) 179, IS 1, 
keto acetal (synthesized using 5.19 (s, 1H) 135,92,75 
(4-MAP-ka) Tiecco's method and 6.9-7.0 (m, 2H) (base), 47 

GaTech's 8.1-8.2 (m, 2H) 
electrochemical 
method) 



TABLE l. IMPACT OF SUPPORTING ELECTROLYTE ON PRODUCT FORMATION 

ELECTROLYTE 

NaBr 

NaOAc 

HOAc/NaOAc (pH=4.75) 

KSCN 

NaCI04 

KBF4 

LiCI04 

TEABF4 

Electrolysis Conditions: 

divided cell (medium glass frit) 
anode: Pt foil (1 cm2 in area) 

RESULTS 

low product yield; 
high byproduct yield 

no product found 
insulating material precipitated on 
the anode 

no product found 
insulating material precipitated on 
the anode 

low product yield; 
high byproduct yield 
(uncharacterized orange ppt) 

experiment in progress at time of 
report. 

solution resistance too high; 
electrolysis aborted 

good product yield; 
low byproduct yield 

good product yield; 
no detectable byproducts 

anolyte: 0.1 M 2-AN, 0.025 M diphenyldiselenide, 0.2 M electrolyte in methanol 
cathode: carbon rod 
catholyte: 0.2 M electrolyte in ~ethanol 
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TABLE 3. SUMMARY OF RESULTS FOR ELEcrROOXIDA TION OF SELECTED 
- ARYLMETBYL KETONES IN DIVIDED CELLS. 

Arylmethyl Conditions Applied CeO Current Time Yield 
ketone Voltage (mA) (hr) 

(V) 

2-AN 0.1 M2-AN 25 30-8 4 65% 
0.2M LiC104 

0.025 M (PhSeh 

2-AN 0.1 M2-AN 25 30-8 4 73% 
0.2MTEABF4 

0.025 M (PhSeh -. 

4-HAP 0.1 M4-HAP 25 35-18 6.5 77% 
0.1 Mp-TSA 
0.2MTEABF4 

0.025 M (PhSe)2 

4-HAP 0.1 M4-HAP 30 40-7 6.5 25% 
0.2MTEABF4 

0.025 M (PhSe)2 

4-MAP 0.1 M4-MAP 30 25-6 8.5 70% 
0.2MTEABF4 

0.025 M (PhSe)2 

Note: Yields have been determined by integration of chromatographic peaks (mass selective 
detection). 
Isolated yields are lower. 
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ELECTROSYNTHESIS OF 2-AN-ka 

Coaditioas: 

0.1 M2-AN 
0.2MNaBr 
O.OS M (PhSeh 
0.1 Mp-TSA 

Voltage: 
Applied Current: 
Electrolysis Time: 
Divided CeO 

18.7 to 22 V 
lOrnA 
4.0 hrs 

Product Analysis: 

• 

2-AN-ka 
2-AN 
P~Se 
2-Nap-C(O)-CHz{OMe) 
2-Nap-C(O)-C(O)OMe 
(PhSeh 
2-Nap-C(OMe'h-CH(OMe)2 

2-Nap-C(O)-CH~r 
2-Nap-CO)-CH1-Nap 
2-Nap-C(O)-CH1-Se-Ph 
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ELECTROSYNTHESIS OF 4-HAP-ka 

Conditions: 

0.1 M4-HAP 
0.1 Mp-TSA 
0.2MTEABF4 

0.025 M (PhSeh 

Product Analysis: 

Applied Voltage: 
Cumat: 
Electrolysis Time: 
Divided CeO 

4-HAP Yaeld = 77% 
4-HAP-ka 
(PhSeh 
plus 3 minor components (see chromatogram) 
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· ELECTROSYNTHESIS OF 4-MAP-ka 

Coaditioas: 

O.IM4-MAP 
0.2MLiCIO• 
0.025 M (PhSeh 

Produd Aaalylil: 

4-MAP-b 
4-MAP 
(PbSeh 
4-MAP-Se-Ph 
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ELECTROSYNTHESIS OF 4-MAP-ka 

Conditions: 

0.1 M4-MAP 
0.2MTEABF. 
0.02S M (PhSe)z 

Product Analysis: 

4-MAP-ka 
4-MAP 
(PhSe1 
4-MAP-Se-Ph 

Applied Voltage: 
Current: 
Electrolysis Time: 
Divided Cell 

Yield= 70% 
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