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SUMMARY

This dissertation deals with three problems in health care. In the first, we consider

the incentives to change prices and capital levels at hospitals, when private payers

depend on hospitals to provide services for patients. We develop an optimal control

model of prices and capital formation over time, and analyze the expected effects

from the structure built into the assumptions.

In the second, we focus on the flow of nosocomial infections in an intensive care

unit. Nosocomial infections are a sub-set of healthcare acquired infections, namely

those caught while a patient at a hospital. In the U.S. these infections occur on

the order of two million per year, of whom roughly one hundred thousand die. In

our discrete-event simulation we investigate the relative impact of hand-hygiene and

isolation policies, and incorporate cost. We find that hand-hygiene is a more powerful

tool, provided compliance with hand-hygiene policy can reliably be improved.

In the third essay, we analyze a proposed change in diversion policies at hospitals,

in order to increase the number of patients served, without an increase in resources.

We use a continuous time Markov chain model to show that our policy decreases

the time a hospital spends on diversion under our scheme. We then use data to

parameterize a discrete-event simulation, in order to add revenue to the model. As

expected, the hospital increases its revenue by reserving some beds for high-paying

patients. However, another simulation of two hospitals, show that the policy increases

the number of low-paying patients served by the system overall, a result due to the

avoidance of system-wide ambulance diversion.

ix



CHAPTER I

INTRODUCTION

Health care in the U.S., especially the plight of uninsured and the rising costs, is

a prominent political topic in the current presidential campaign. Costs have grown

much faster than the general CPI. The system is highly complex, with a large num-

ber of interested parties. Many find the intimate link between health and financial

resources troubling.

In this dissertation, we address some of the aspects of this system, unravel some

of the incentives, and examine potential solutions to specific problems. The common

thread is provided not only by the topic of health care, but by the focus on incentives

faced by each party, and by the explicit inclusion of financial aspects.

1.1 Repeated Negotiations in Health care: Hospitals and
Payers

Health care costs in the U.S. have been characterized as exploding, and they are

certainly much higher as a percentage of GDP than other OECD nations. Since

Clinton’s failed reform in the early nineties, political fixes have been suggested, and

in the current presidential campaign (2008), almost every candidate has a plan for

health care.

The current system, dominated by employer benefits, came about when the fed-

eral government imposed wage caps during World War II. Employers responded by

competing for workers using benefits, and the popularity of health benefits made it

impossible to remove the linkage after the war. The fact that firms may deduct health

costs pre-tax, while individuals may not, gives employees a strong incentive to de-

mand health benefits from the firms. However, aside from the tax advantage, there
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is no obvious reason why health benefits should have any link to employment. Given

the vulnerability of the unemployed, it is easy to argue the opposite.

The tax shelter for firms, the fact that patients were only responsible for small co-

pays, the constrained supply of physicians, are among the reasons that have been put

forward to explain the troubling price increases in health care in the decades after

WWII. Health Maintenance Organizations (HMO’s) were introduced to emphasize

preventive care, and to control costs. Given that these entities are largely for profit,

benefit from patients’ limited use of health care, and also to shifting costs to providers,

it is not surprising that HMO’s are not universally popular with patients and doctors.

Also, in the last few years, cost increases have accelerated, in spite of the prevalence

of HMO’s.

We therefore consider the role of the private payers, and what incentives these

have with regard to the provision of hospital care to their patients. The critical

assumption is that HMO’s sell hospital provided services at a markup. We recognize

that this is an approximation, since prices tend to be fixed over the contract period,

typically one year. Nevertheless, it is not a stretch to imagine that higher hospital

prices one year, will lead to higher HMO charges in the following years.

In order to examine the effects of such assumptions on prices, we develop and

analyze an optimal control model. Over time, we find that prices and the hospital

capital stock grow proportionally, and without bound. This explosive behavior is

clearly only an approximation, since the pain of such excessive price increases will

lead to political fixes, especially when there is no functioning market discipline. Still,

we observe the explosive growth in prices, and many have also noted the remarkable

growth in medical capital. We find a limited amount of empirical support for the

model, but suggest it is one step in understanding the link between HMO’s, hospitals,

capital stock, and prices.
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1.2 A Simulation Model to Compare Strategies for the Re-
duction of Healthcare-Associated Infections

Infections that are acquired at a healthcare institution is defined as a “healthcare

associate infection”, or HAI. In the past, specifically hospital acquired infections were

termed nosocomial. In the US, there are approximately two million such infections per

year, of which roughly one hundred thousand lead to death. The situation in the rest

of the world is also serious. The problem is exacerbated by various pathogens’ growing

resistance to antibiotics. The term pathogen is used for all organic entities that may

cause an infection. Pathogens come and go like fashion, and currently Methicillin-

resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus

(VRE) are most troubling.

Since it is difficult to measure precisely when a patient was exposed to an infec-

tious pathogen, and many individuals may be asymptomatic, it is hard to even know

whether or not a given infection is an HAI. Clearly, individuals may be exposed to

pathogens outside of hospitals or long-term care facilities, in which case the infection

is classified as community acquired. Finally, the attachment of a pathogen to an

individual only leads to the individual being colonized, not necessarily infected. The

interaction of the infection with treatment, immune system and illness, and other

patients and visitors, make it extremely challenging to decide what impact any given

HAI may have.

In spite of the measurement difficulties, the growing toll of HAI’s is a problem

Congress recognizes. It is therefore considering different regulations. The CDC is

required to do cost versus benefit analyses for new regulations on public health,

and the end goal of this stream of research is an economic analysis of the various

approaches to constrain HAI’s.

Various measures include forced reporting, isolation and quarantine, limiting the

use of anti-biotics, and expanding the use of prosaic measures such as hand-hygiene.
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All of these have champions and detractors, and in order to make a first start, we

consider the flow of pathogens through an ICU, using cost data from Cook County

Hospital.

We simulate the flow of patients, visitors, and health-care workers (HCW), as well

as pathogens, through the ICU, and measure the cost of treatment. This enables us

to differentiate the effects of hand-hygiene and isolation, and to assess an overall cost

of an HAI.

In the future, we expect to build models for different types of hospitals across

the nation. These models will be used as input into a larger cost-benefit analysis of

regulation to combat HAIs.

1.3 The Effect of Flexible Hospital Contracts on Emer-
gency Department Diversion

There are fewer hospital beds and emergency departments (ED) in the U.S. today than

there were ten years ago, without a similar decrease in demand. ED overcrowding

is becoming a nationwide problem, not least because EDs are crucial in disaster

response, as well as the only medical resource for the uninsured. One major cause

of ED overcrowding is boarding, i.e. the practice of holding on to patients in the

ED, while waiting for a bed to open up in the regular hospital wards. Although the

uninsured only lay legal claim to beds in the ED, the privately insured, and those

insured under Medicare and Medicaid (M/M), often remain in the ED for significant

waiting periods. When medical conditions warrant, the ED physician in charge may

place the ED on ambulance diversion (AD). This means 911 operators are not to

send ambulances to the ED, although walk-ins still occur. Since there is some effort

in going on and off AD, hospitals leave the AD in place until conditions have improved,

i.e. beds have opened up. Operations research methods, especially queuing models,

appear appropriate to model the system of ED and hospital beds.

The opportunity to model the system and include variance of demand, as well as
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the mean level of demand, would in itself help in planning future capacity. However,

there is a simpler avenue, similar to changing software, while retaining the hardware.

The Federal government has immense purchasing power via the M/M contracts, and

dictate terms of contracts with hospitals. Two aspects of these contracts are espe-

cially salient. First, the prices paid are significantly lower than those paid by private

insurers. Second, if a hospital takes one M/M patient, the hospital must take every

such patient. This rigidity appears fair, but may not be necessary.

In metro areas with at least two hospitals in close proximity, ambulances often

may deliver patients to one or the other hospital based on a number of factors,

e.g. insurance, personal physician preferences, or family preferences. Physicians

tend to prefer that EMS personnel not make medical decisions, but otherwise, the

routing of patients to different hospitals is routine. This gives an opportunity to lower

overcrowding by adding one degree of freedom to the contract between hospitals and

the Federal government.

Specifically, we suggest that the Federal government allow M/M patients to be

diverted before the hospital goes on full AD. This would have the following expected

benefits: 1. The hospital would lessen the arrival rate of patients, while retaining

the highest-revenue private patients. 2. The federal government would gain hospitals

that are off AD more, and hence better prepared for disaster. To the extent that the

hospitals increase revenue, the government may also choose to decrease the amount

paid for service for M/M patients. 3. Patients benefit through the hospital being

off AD and better disaster preparedness as well. The uninsured and the privately

insured patients only benefit from this method. Those insured by the government

benefit from the improved disaster preparedness, but may have a more constrained

choice of hospital. This method is therefore limited to systems that have multiple

hospitals within a metropolitan area.

In order to operationalize this method, we specify a fixed level of hospital ward

5



beds that must be freed up before a hospital will go off full AD. In addition, we suggest

a secondary partial diversion (PD) level, at which point the hospital selectively diverts

M/M patients. We model this using a Markov process, and find that as expected, we

are able to significantly decrease the time spend on AD, with a very minor change.

Using data from DeKalb Medical Center in Atlanta to parameterize a simulation

model, we also found that revenue for the hospital increased for certain levels of

partial diversion. Hence we have found a method that is simple to implement due to

the pricing power of the federal government, and which both decreases overcrowding

and increases revenue and supply. Against the loss of choice for M/M patients, we

must therefore weigh the opportunity to decrease ED overcrowding, increase disaster

preparedness, increase revenue for hospitals, and increase average overall capacity of

hospitals.
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CHAPTER II

REPEATED NEGOTIATIONS IN HEALTHCARE:

HOSPITALS AND PAYERS

2.1 Introduction

Policy makers have a difficult problem in designing health systems. In order to

understand the effects of structural variables on health outcomes at the aggregate

level, feedback effects over time are important. In this paper, a dynamic model of

the iterated negotiations between hospitals and payers is analyzed to capture the goal

of the hospital to provide more services, and the payers to maximize profit over the

long-term. The latter effect drives a price for hospital services sufficiently high that it

allows hospitals to increase their capital stock, while the additional cost to payers is

recouped later. The key result of this model is that prices will grow proportionately

to the capital stock. Even without new medical technology, the model suggests that

prices will grow explosively, rather than reaching an equilibrium.

2.1.1 Overview

From a systems engineering perspective, the U.S. health care sector may be regarded

as system designed to reach multiple goals, both for individuals and in aggregate.

Applying such a perspective, which has roots more than half a century old ([57]),

means using operations research tools to model and improve the system. The decision

variables for the policy makers are the parameters that enter whichever sub-system

that is being studied. In this paper, we focus on the relationship between hospitals

and private payers over time. More narrowly, we investigate how the structure of the

hospital-payer system and the contract process impact the prices and capital base

7



over an infinite horizon.

Hospitals and payers such as health maintenance organizations (HMO’s) agree

to contracts that specify services and prices. These contracts are typically for one

year in duration ([8]), but are often extended or minimally amended ([78]). Both

parties expect to enter into a new contract after any current contract expires, and

this expected continuation can have both intuitive and unexpected effects on the

negotiations. We wish to explore the implications of repeated negotiations on yearly

contracts between hospitals and payers.

In general, hospitals provide prices for the uninsured, take Medicare and Medicaid

prices as given, but negotiate with payers such as HMO’s and PPO’s over the terms

of yearly contracts ([78]). Medicare and medicaid patients provide far less revenue

([69]), and self-insured often do not pay at all ([77]). Since both parties depend

on each other, each has an incentive to make sure the other is financially viable. In

particular, payers are aware that they depend on selling the services hospitals provide

to future patients, and so would like to see increased capital expenditures to facilitate

more medical products on offer ([38]). Patients are insulated from the direct costs

of their demand for medical services through medical insurance and the traditional

deference shown to doctors regarding their own treatment. Hence the structure of

health care markets is unusual.

The purpose of this study is to examine the impact of incentives that hospitals

and payers operate under through repeated negotiations. We assume that hospitals

take the prices that payers offer, since these are generally profitable ([76]), and invest

surplus in capital. Insurance firms are assumed to maximize the net present value

of their cash flow and select prices to drive capital formation. Patients are assumed

to do as their doctors order, and utilize the services hospitals provide, and through

small co-pays are largely shielded from the cost of providing those services. Firms are

not assumed to exert major cost-cutting pressure. To make the problem tractable,
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we assume continuous time pricing decisions are made, so that the solution to the

maximization problem is really a price function of time, or a price path.

In the following we provide a brief review of the literature. A mathematical model

captures the simplified incentives of the parties involved. This model is presented in

Section 3 with steady state and long term implications. Data from a regional hospital

is used to compare with the model implications in Section 4. Finally we consider what

implications this model suggests, and indicate future directions of study.

2.2 Literature Review

Inflation in U.S. health care costs have been a matter of concern for decades, and

remains a common topic in both the popular press and academic journals. In a

recent edition of BusinessWeek, Tom Daschle ([35]) states that “The biggest frus-

tration during my 26 years in Congress was our failure to address the health cost

crisis.” In a recent survey ([4]), The Economist stated the U.S. health-care system

was in a crisis and close to collapse. The survey further pointed out two key points.

First, the traditional explanations for increasing medical costs are not entirely con-

vincing. Technology improvement is not limited to the U.S. and could be dedicated

to cost-saving, e.g., through better handling of data. Nor is an aging population,

with resultant increased demand for health services, a problem unique to the U.S.

Second, the market for medical technology is insulated from budgets. In fact, the

survey suggests there is little reason to treat health as a classic competitive market.

In the Operations Research literature, health systems are instead regarded as tools

that may be adjusted to reach a goal ([57]). A large number of studies have been

undertaken, e.g. more than a hundred surveyed ([88]) in Decision Analysis alone prior

to 1980. Public interest goals include minimizing the discounted cost from infection

in an epidemic ([94]) or the average cost of a policy to stabilize a population ([111]).

Morey and Dittman ([105]) examine the profit incentives for hospitals to respond to
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Medicare reimbursement, and close by recommending that their optimization model

be used as a “policy analysis tool for federal administrators”. In each of these cases,

a model is created which allows policy makers to decide which goals to strive for, and

how to implement policies to do so.

Economic research has also addressed the issue of the health of the US health

care system. For example, Banks et. al ([9]) suggested that health care outcomes

in the USA were worse than in England, in spite of spending approximately twice

as much per person ($5274 versus $2164), and measured in biological markers for

disease rather than self-reported measures. An OECD overview of the U.S. health

system ([42]) documents the remarkably high spending levels compared to health

expenditures in other developed nations. The review points out that the U.S. system

has both strengths and weaknesses: there is ample capacity and choice, but costs

are excessive, outcomes are less than commensurate with expenditures, there is an

efficiency loss from the regulation and complexity of the system, and there is unequal

service across the population.

Why the U.S. has such a high, and rapidly increasing, level of health care expen-

diture, is considered an important question. Cutler ([34]) goes so far as to suggest

empirical evidence to study health costs is paramount within health economics. Un-

fortunately, hospitals define their products and prices as they wish ([76]), and instead

of price and quantity data, researchers can only apply expenditures ([66]).

Although technology may well be the driver of cost increases ([108]), it is exacer-

bated by weak competition between insurers ([34]). Further, the technology invested

in is not primarily cost-saving, and in fact, using the technologically advanced equip-

ment requires a great deal of expensive labor ([4]). In a published lecture, Fuchs ([61])

suggests supply factors are crucial drivers of expenditures. In a recent paper (2005),

Bodenheimer ([16]) shows that health care costs in the U.S. continue to grow faster

than inflation, and provides several possible hypotheses.
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The literature on health care economics is much larger than what is relevant to

this study, as we limit ourselves to the study of incentives and institutions. We recog-

nize that equity plays a distinct role in health delivery ([100]), and that operational

efficiency in health ([1]) may be relevant. Nevertheless, in this paper we only consider

how repeated negotiations between hospitals and payers may influence the incentives

of price development.

Fuchs ([61]) states that in some of the health care literature there is a view that

”refuses to accept the notion that resources are inherently scarce”. This perspective

also leads to an expansive attitude towards investment in hospital capacity: any

perceived need is sufficient rationale to invest. Further, vacant capacity tends to

stimulate demand ([118]). Nevertheless, there is at least a “quasi-market” ([14]) for

hospital care in the U.S., and so we assume that hospitals wish to provide as much,

and as high-quality, care as possible.

From the economic point of view, incentives guide actions, and financial gain

plays a role in the behavior of health care providers in several ways. First, even

non-profit hospitals need to earn enough to invest in new medical technology. Leone

and Horn ([95]) found that hospitals will adjust their income to be just barely pos-

itive. Physician behavior has also been found to depend on many different factors.

For example, Yip ([159]) found that coronary bypass grafts responded to changes in

Medicare fees. Rizzo and Zeckhauser ([121]) showed that physicians react to a loss of

income even if unable to change prices, e.g. by shortening appointments. Similarly,

Gruber and Owings ([74]) found that when ob/gyns lost income due to decreased

fertility, they compensated with increased cesarean sections. It appears that some

physicians, at least partially, adjust to incentives. Legal risk also affects physician

behavior. Kessler and McClellan ([84]) found evidence for physicians practicing de-

fensive medicine, which was weakened when tort reform lessened physicians legal

exposure ([85]). Under these circumstances, it does not seem unreasonable to treat
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physicians as applying all available resources to treat an illness.

On the other hand, patients also have complex incentives in health care. Royalty

and Hagens ([126]) found that patients were insensitive to price with regard to health

insurance. Strombom et al.([139]) found price sensitivity to insurance premiums,

especially among the younger and healthier. Similarly, Buchmueller ([21]) found a

price elasticity to out-of-pocket expenditures between -0.2 and -0.3. Patients are also

sensitive to their doctors recommendations, as documented by Lien et al. ([96]) for

alcohol abuse treatment. The latter two effects lead us to treat patients as simply

following a physicians recommendations in this paper.

Medicare and Medicaid are treated as free-riders on the private sector ([69]). This

merely suggests that the federal government pays what is required to purchase the

services needed, but no more. And since Medicare and Medicaid have a menu of

prices that hospitals may either take or leave, and if they do take it, they must

accept all such patients, we treat these actors as fixed in the repeated negotiations

between hospitals and payers. Government also has a hand in regulating hospitals,

with multiple regulators yielding sub-optimal outcomes ([120]), but we ignore this

complicating factor in this paper.

The remaining economic actors are the hospitals and the payers, and these are

the main actors in this study. The HMO’s and PPO’s that pay hospitals for service

are here regarded as traditional for-profit companies. As such, Bodenheimer ([16])

suggests

Payers generally wish to reduce the dollars flowing into health care, while

providers and suppliers want to increase those dollars. Payers want to

contain costs; providers and suppliers resist cost containment.

However, the structure of the product is such that HMO’s are concerned with patients

over the contract time, and as such are not merely focused on current costs. In game

theory terms, what happens if the suppliers act strategically? Rizzo ([119]) found
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“that preventive care is substantially higher with HMO coverage than with traditional

fee-for-service reimbursement”. Further, HMO’s market penetration was correlated

with lower hospitals admissions ([60]). This indicates that payers are interested in

the net present value of the patient over the terms of the contract, as opposed to

simplistically containing the costs of serving the patients perceived needs. We extend

this temporal awareness to the price that payers apply to reimburse hospitals.

Turning to the hospitals, the empirical support for their behavior is mixed. There

is some evidence that while doctors are meant to be the decision-makers, managers

also have some input ([15]). There does not appear to be a strong impact on hospital

prices if physicians are tied to the hospitals ([27]). It is clear that hospitals do have

some negotiating power with payers, but that they are offering lower prices and taking

on more risk than in previous years ([68]). Consistent with that finding, Krishnan

([89]) found that prices increased when hospitals merged, and that this effect was

stronger if the merged hospitals had an increased market share. Regarding the issue

of for-profit versus nonprofit ownership, Kessler and McClellan ([86]) document how

increased hospital competition leads to increased social welfare, and found that for-

profit hospitals had a slightly lower cost, but virtually the same output ([87]).

Hospitals’ investment and cost structure are of particular relevance to this paper.

Anderson et. al. ([3]) examine the relationship between capital and operating costs.

Previous studies ([137, 44, 11]) had explicitly estimated the increased operating costs

from new investment the previous year, and these estimates ranged from 22 to 50

cents. Taking into account the interdependence of capital and operating costs, e.g.

through automation, this increased cost was estimated to be much lower, and possibly

nothing more than capital costs ([113, 62]). After comparing six models, Anderson

et. al. estimate that costs do increase with investment, but not as much as the initial

models suggest ([3]).

In a series of papers from the financial literature, Wedig et. al. consider how
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hospitals invest, both theoretically and empirically ([152, 154, 153]). They find evi-

dence that the regulations, non-profit nature of most hospitals, and agency problems

between investing hospitals and donors, lead to investment that is driven by debt

targeting, rather than based on profitability or societal cost-benefit analysis. In a

paper especially relevant to this study, Wedig et. al. ([154]) extended Feldstein’s

model ([55]) which assumed that nonprofit hospitals maximize the present value of

“a utility function in the quantity and quality of care”. In this model, the hospitals

are constrained only by a break-even constraint; i.e. they will invest all they can in

additional capacity. In sum, hospitals appear to focus on efficiency and expanding

services, and otherwise appear less motivated by economic incentives than payers.

Modeling the interaction of the actors in the health care drama has often focussed

on maximizing social welfare. European studies often consider how the state may

optimally allocate health care expenditures, e.g. via tax or caps ([106]). Insurance

contracts have been considered in light of moral hazard ([65]), and optimal contracts

have been constructed between patients and physicians ([99]). Dynamic models have

also been used, e.g. by Claxton and Thompson ([29]) to model optimal clinical trials.

Optimal control models have been used in Operations Research settings to study the

control of epidemics ([94]), and to design policies to manage illicit drug use ([142]).

The paucity of data and the complexity of the situation have led to sophisticated

models, with fewer empirical studies.

2.3 Assumptions and model formulation

In this section we consider the structure of the repeated negotiation process and

construct a representational model for a single payer and health care service. We

then look at the steady state and long run implications of the model as well as

perform comparative statics. Finally we extend the model a duopoly and then to N

payers.
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2.3.1 Assumptions

There are a number of participants in the health care arena including:

• Hospitals provide services and desire increased health spending in order to invest

and expand those services.

• Private insurers sell health care and contract with hospitals to gain access to

operating rooms, MRI machines, etc.

• Consumers demand health care, but provided they have insurance, pay only a

small co-pay.

• Firms provide health care and make the expense opaque.

• The government pays a significant portion of US health care and pays a low

price due to its buying power.

There are two main negotiators with some flexibility in this complex situation:

hospitals and payers. The government tends to make unilateral decisions. For exam-

ple, hospitals cannot negotiate Medicaid reimbursement rates, but can only decide

whether to accept Medicaid patients or not. Consumers that have insurance are

mostly insulated from the cost of providing the health care they consume due to the

averaging effects of the insurance system.

Therefore the system is opaque to consumers, and the firms’ role is limited to

providing that shield. Payers and hospitals, on the other hand, require a contract

both find acceptable. Hospitals depend on the payers to ensure profitability because

the prices the government pays are very low and uninsured patients simply do not

pay. Therefore hospitals are dependent on the large, private, payers. The payers,

conversely, have some choice in hospitals, but not so much that they are happy to fail

to come to some agreement on the terms of a contract.

The key items of interest are therefore:
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1. Both parties expect to negotiate a new contract after the current contract ex-

pires;

2. The profitability of the hospital determines the equipment purchased, and hence

to the services offered in the future.

The last point leads to a dynamic element in the negotiations. We assume that

the payers mark up the cost of the services the hospital provides, and hence make

more profit in the future if the hospital is capable of offering more services.

In order to make the mathematics tractable, the model is set in continuous time,

with investment and capital as flow and stock functions. An optimal control approach

is applied, of which there are several recent examples ([150, 56, 53]).

2.3.2 Notation

In order to describe this scenario more concisely, we introduce some notation (see

table 16). The variables below are typically functions of time t. Hospitals have a

capital stock, K(t), that generates health services, and which depreciates at a rate of

δ, assumed to be between zero and one. To build its capital stock, a hospital invests

its “profit” as I(t). We assume costs C(t) are also proportional to capital with a

constant multiplier of z. Although in general capital is often used to substitute for

labor, in hospitals there is a great deal of labor that is required to use the machinery,

e.g. MRI machines.

We assume consumer demand, Q(t) is linear in P (t), and if a hospital provides

a service, consumers will demand it. We let q represent the multiplier to capital

K(t) that gives the total demand if the price is zero, i.e. qK(t). We let A be the

multiplier to the price that decreases demand. Technology is assumed to increase

demand by adding new techniques, but this is exogenous and is assumed to have an

impact through q and A. Hence both of these parameters are treated as constants in

the model.
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Table 1: Notation

t The time period
Q(t) The quantity of health care services demanded by consumers.
K(t) The capital of the hospital, generating the health care services

δ Capital retention (one minus the depreciation rate); δε〈0, 1〉
I(t) Amount invested by the hospital
C(t) The hospital’s costs

z Multiplier of capital to find costs, assumed positive
A Constant multiplier to P (t) that determines the decrease in demand Q(t)
q Constant multiplier to K(t) that determines zero-price demand Q(t)

P (t) Price of health care services as paid to the hospital
m Margin payers mark up P (t) when charging firms for health care insurance
r Payer’s discount rate, assumed constant and positive

π(t) Payer’s profit
F (t) Payer’s fixed costs

c Co-pay, as a percentage

Payers wish to maximize profits, and they use the prices, P (t) of hospital services

to pursue that goal. P (t) is a vector with a price for each service. We further assume

that m represents the constant markup that payers apply, so that the firms which

pay for the consumers health care is met with the price (1 + m)P (t). In order to

discount future cash flow, the payers use a rate of r. We assume the payers make a

profit of π(t). To simplify, we initially assume payers have a zero fixed cost F (t), and

no variable cost.

To defray some of the cost of the services provided by the hospital to the patient,

firms require that consumers pay a co-pay c. We assume c to be a percentage of cost,

rather than a fixed amount. Then the price a consumer faces is c(1 + m)P (t).

2.3.3 Model

We assume there is a single health care service, so the price vector P (t) is a scalar.

Based on our assumptions, demand is linear in P (t):
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Q(t) = qK(t)− Ac(1 + m)P (t) (1)

For notational simplicity, let a = Ac(1 + m).

Supply, however, depends only on capital, and so is fixed in the short term. In

the long run, capital grows with investment and declines with depreciation.

K̇(t) = δK(t) + I(t) (2)

We assume hospitals invest their entire profit, and so:

I(t) = P (t) ·Q(t)− zK(t)

Substituting in the expression for demand, we find that investment becomes:

I(t) = qP (t)K(t)− aP (t)2 − zK(t)

Similarly, inserting investment into (2) yields a new expression for capital growth.

K̇(t) = qK(t)P (t)− aP (t)2 − (δ − z)K(t) (3)

This model indicates that the key variable is the price of health care paid by the

payers to the hospital. Since the hospitals are dependent on the payers, one might

initially think that payers would reduce P (t) to a bare minimum. But that would

mean fewer services in the future, and so the payers also have an incentive to make

sure the hospital invests enough to provide the future services the payers rely on to

stay in business. Instead of a single-period model, payers must regulate the path of

the capital stock K(t) by judiciously choosing P (t) in every period.

Since we assumed the payer has no variable or fixed costs, i.e. F (t) = 0, the profit

equation is dependent on the margin, m:
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π(t) = mP (t)Q(t) = mqK(t)P (t)− a)P (t)2 (4)

However, the payer does not seek to maximize single-period profits, but instead to

maximize the total expected profit over an infinite horizon.

To make the model tractable, we assume continuous time instead of a series of

negotiations, and that the price function is the control, while K(t) is the capital stock.

We discount using r over an infinite time horizon, and apply a boundary condition of

K(0) = K0.

Further, we assume

K̇ = δK + I

where I = PQ− zK, i.e. the hospital invests all of its profit in capital. Let b = δ− z

, so that the change in the stock of capital becomes

K̇ = bK + qPK − aP 2

The profit for the payer is therefore the markup percentage of the revenue, or

π = mQP . Discounting this at r yields a net present value of profit of:

NPV =

∫ ∞

0

e−rt(mqKP −maP 2)dt

The problem becomes to find a price function P (t) that maximizes NPV subject

to our constraints:

max
P (t)

∫ ∞

0

e−rt(mqKP −maP 2)dt (5)

s.t. K̇ = bK + qPK − aP 2 (6)

K(0) = K0 (7)

This is an optimal control problem, so we define the Hamiltonian equation:
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H = e−rt(mqKP −maP 2) + λ(bK + qPK − aP 2) (8)

Solution of this control problem yields the following Theorem. The proofs of all

Theorems are provided in the Appendix.

Theorem 1: For a single payer and health care service under the assumptions pro-

vided, the solution for price P (t), capital K(t), and the multiplier λ(t) through time

is given by:

K(t) =
1(

1
K0

+ q2

4ab

)
e−bt − q2

4ab

(9)

P (t) =
q

2a

1(
1

K0
+ q2

4ab

)
e−bt − q2

4ab

(10)

λ(t) = e−A(t)

(∫
f(t)eA(t)dt + C

)
(11)

It is of interest to study the impact of capital stock on the change in capital and

pricing. Considering (47), we find that K̇(t) > 0 for all positive values of the capital

stock. Hence the change in capital is zero at K = 0, but for capital values greater

than zero, the capital stock will grow without bound. Since the price is proportional

to the capital stock (46), this leads to the following corollary:

Corollary 1: Whenever the capital stock exceeds the steady-state value of zero, both

the price and the capital will increase exponentially.

In other words, in this model, there is no positive steady state solution that is self-

correcting.

2.3.4 Comparative Statics

Since P (t) is proportional to K(t) (46), the number of relationships to consider un-

der comparative statics is simplified. However, for the parameters that make up

20



the constant of proportionality, q/2Ac(1 + m), we have a somewhat more complex

relationship.

We begin by introducing another helper function, Γ(t), so that K(t) = (Γ(t))−1.

We first examine the difference in capital stock with respect to the sensitivity of

demand to price:

∂K

∂A
=

(
q2

4c(1 + m)(δ − z)

)(
1

A2

)(
e(z−δ)t − 1

)
Γ−2 (12)

This derivative is negative, because (δ− z) is positive by assumption, the second and

third factors are positive due to the square, and the third is negative because z−δ < 0,

and time is positive. Since a more sensitive demand will reduce the future profit from

increasing the investment in capital, we get the following intuitive observation.

Observation 1: If demand is relatively more sensitive to price, then capital decreases

for all t.

Using the expressions for K and ∂K/∂A, we get the following relationship for

∂P/∂A:

∂P

∂A
=

q

2Ac(1 + m)

δK

δA
− q

2c(1 + m)A−2K(t)
(13)

This derivative is also negative, because (12) showed that ∂K/∂A is negative, the

proportionality constant q/2Ac(1 + m) must be positive, capital must be positive,

and A2 is clearly positive. This provides a second observation.

Observation 2: A more steeply sloping demand curve lowers the price path for all t.

Analogously, the derivative of capital with respect to the markup percentage is

also negative:

∂K

∂m
=

(
q2

4c(1 + m)(δ − z)

)(
1

(1 + m)2

)(
e(z−δ)t − 1

)
Γ−2 (14)

Examining the effect of markup on price, we find:
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∂P

∂m
=

q

2Ac(1 + m)

∂K

∂m
− q

2Ac(1 + m)2
K(t) (15)

This expression is negative, providing a third observation.

Observation 3: An increase in the markup percentage lowers the price path.

This observation is counterintuitive, but is the result of taking more profit out

earlier in time, and hence having a lower capital stock at every given time, rather

than lowering prices for a given supply of medical services.

Similarly, if the co-pay percentage increases, the capital stock path falls:

∂K

∂c
=

(
q2

4A(1 + m)(δ − z

)(
1

(c)2

)(
e(z−δ)t − 1

)
Γ−2 (16)

In exactly the same way as before, the effect of co-pay percentage on price is also

negative:

∂P

∂c
=

q

2Ac(1 + m)

∂K

∂m
− q

2A(1 + m)
c−2K(t) (17)

This leads to a forth (though intuitive) observation.

Observation 4: An increase in co-pay percentage dampens demand, resulting in a

drop in price.

2.3.5 Extensions to a Multi-Payer game

Since hospitals in this model are price takers, extending the game to multiple hospitals

is the same as increasing capacity. We first extend the results to a duopoly. In this

case market share is defined to be a function of the prices:

Si(t) =
Pj

Pi + Pj

(18)

This gives a market share that is bounded between zero and one, and is higher for

lower price. The approach has the advantages of being simple and allowing share

to change depending on price, without the extreme reaction that a Bertrand style
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model would entail. However, this functional form implies discontinuous jumps in

the market share if prices change discontinuously. In addition, the extension to N

payers is difficult, as we discuss in the next section. To further isolate the effect of

market share, we assume a1 = Ac1(1 + m1) = a2 = Ac2(1 + m2) = a.

With these assumptions, we let the demand faced by each payer to equal the share

of its monopoly demand: Qi = Si(qK − aPi). This has the results in overall demand:

Q = qK−aP1P2/P̄ . As in the monopoly model, the hospital invests its profit, so the

change in capital becomes:

K̇(t) = bK +
2qKP1P2

P1 + P2

− aP1P2 (19)

Again, b = δ − z. Since profit to the payer is still the focus, we find that profit

equation:

π1(t) = m1P1(t)Q1(t) = m1q
P1P2

P1 + P2

K(t)−m1a
P2P1

2

P1 + P2

(20)

Which gives the revised maximization problem:

max
P1(t)

∫ ∞

0

e−rt(m1q
P1P2

P1 + P2

K(t)−m1a
P2P1

2

P1 + P2

)dt

s.t. K̇ = bK +
2qKP1P2

P1 + P2

− aP1P2

K(0) = K0

This is also an optimal control problem, so we define the Hamiltonian equation:

H = e−rt(m1q
P1P2

P1 + P2

K(t)−m1a
P2P1

2

P1 + P2

) + λ(bK +
2qKP1P2

P1 + P2

− aP1P2) (21)

and find optimality conditions:
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K̇ = bK +
2qKP1P2

P1 + P2

− aP1P2 (22)

λ̇ = −HK (23)

HP1 = 0 (24)

These become:

K̇ = bK +
2qKP1P2

P1 + P2

− aP1P2 (25)

λ̇ = −e−rtm1q
P1P2

P1 + P2

− λ(b +
2P1P2

P1 + P2

) (26)

0 = e−rtm1P2(qK
P2

(P1 + P2)2

− aP1
P1 + 2P2

(P1 + P2)2
) + λP2(2qK

P2

(P1 + P2)2
− a) (27)

If we add the further requirement that our two payers are identical, we find the

following Theorem.

Theorem 2: For a duopoly: i) prices are lower than monopoly prices for any level

of capital invested and ii) price is proportional to capital stock and will grow without

bound.

As noted previously, the duopoly model of share as a function of price does not

easily generalize. As a remedy, one can model the system as having two state vari-

ables, share as well as capital, with an additional optimality condition equation and

an additional boundary condition, (S(0) = S0). We make this assumption in the

following section.

2.3.5.1 Extension to an N-Payer game

Extending the market share formula and assuming that there are N identical payers

gives:
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Si =

∑
j 6=i Pj∑

k

∑
j 6=k Pj

(28)

We assume positive prices, Pi > 0,∀i ∈ 1, . . . , N , and Si ∈< 0, 1 > ∀i ∈ 1, . . . , N .

To further simplify, we assume payers are identical, and so
∑

k

∑
j 6=k Pj = (N −

1)
∑

k=1
NPk = N(N − 1)P̄ . If we fix the other payers prices to be P , we find that

Si = P
(N−1)+Pi

. Finally, for identical payers, each payer’s initial share is 1/N , and each

payers ai = a.

With these assumptions, the change in capital is:

K̇ = bK +
N − 1

N
(qK − aP )P +

PiP (qK − aiPi)

(N − 1)P + Pi

and the profit for the i’th payer is:

πi = miQiPi =
miPiP (qK − aiPi)

(N − 1)P + Pi

So again, the problem is to maximize expected net present value of profit:

max
Pi(t)

∫ ∞

0

e−rtπidt

s.t. K̇ = bK +
N − 1

N
(qK − aP )P +

PiP (qK − aiPi)

(N − 1)P + Pi

K(0) = K0

This gives a somewhat more complex Hamiltonian:

H = e−rt

(
miPiP (qK − aiPi)

(N − 1)P + Pi

)
+λ(bK+

N − 1

N
(qK−aP )P+

PiP (qK − aiPi)

(N − 1)P + Pi

) (29)

The optimality conditions ([83]) are once again:
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K̇ = bK +
N − 1

N
(qK − aP )P +

PiP (qK − aiPi)

(N − 1)P + Pi

λ̇ = −HK

HP = 0

Solution of this control problem yields the following Theorem.

Theorem 3: For N identical players, capital stock will grow without bound, even

when there is no growth in external demand or technological change.

In order to test whether this result holds in practice, we perform an empirical

analysis in the next section.

2.4 Empirical analysis

Numerical support proves somewhat difficult as price and quantity are not directly ob-

servable ([66]). However, there exist some data-sets are available from public sources.

In this section we use data from the Mergent database; we first perform a simple

hypothesis test, and then apply the data to parameterize the model.

2.4.1 Statistical support

The model suggests that prices are proportional to capital (see 46). This leads to

the hypotheses that a linear statistical model would have an intercept of zero and a

constant slope:

Price = β0 + β1Assets + ε (30)

This type of hypothesis test requires a null hypothesis that the specified model is

correct, rather than the preferred approach of assuming a simpler model to hold.

Therefore, the conclusion is limited to finding whether or not the data is consistent

with the model.
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Table 2: Data Used in Numerical Analysis: Assets in millions per year

Company Name 2005 2004 2003 2002 2001 2000
Amsurg Corp. 527 425 356 299 241 190
Community Health Systems, Inc. (New) 3934 3632 3350 2809 2460 2213
HCA, Inc. 22225 21465 21063 18741 17730 17568
Health Management Associates, Inc. 3988 3507 2979 2364 1941 1772
Lifepoint Hospitals Inc 3224 887 799 733 554 488
MedCath Corp. 763 754 749 741 606 486
SunLink Health Systems Inc (US) 65440 63152 59453 48571 56514 23128
Tenet Healthcare Corp. (US) 9812 10078 12298 13814 12995 13161
Triad Hospitals, Inc. 5736 4981 4735 4381 4165 1400
United Surgical Partners Int. 1028 922 870 727 556 331
Universal Health Services, Inc. 2858 3022 2772 2323 2114 1742

With large data-sets it may be possible to explore and test more complex alterna-

tive formulations, but we are limited to accounting data. Although such data reflects

law as opposed to economic principles, we are assume that the accounts are accurate.

We use public accounting filings to find total assets and revenue, and the Bureau of

Labor Statistics to find both the hospital Consumer Price Index (CPI), as well as the

general CPI to strip out economy-wide inflation from the hospital price index. Two

levels of tests are performed.

2.4.1.1 Aggregated hospital hypothesis test

First, we aggregate the hospitals’ total assets from the Mergent database and use the

general CPI to adjust the hospital CPI ([22]). The index, therefore, indicates real

hospital prices, as opposed to nominal. This yields the graph of assets (in millions of

USD) and a real price index, normalized to 2000 (see Tables 2, 3, and 4).

Although the sample size is small, the linear model (30) provides a fit with adjusted

R2 = 0.92 and a P-value for the hypothesis test that the slope is zero of 0.000044.

The P-value for the hypothesis test that the intercept is zero is 0.07018, i.e. we fail

to reject the null hypothesis that the intercept is zero at a 5% level of significance.
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Table 3: Data Used in Numerical Analysis: Revenue in millions per year

Company Name 2005 2004 2003 2002 2001 2000
Amsurg Corp. 391 334 301 251 202 143
Community Health Systems, Inc. (New) 3738 3332 2834 2200 1693 1337
HCA, Inc. 24455 23502 21808 19729 17953 16670
Health Management Associates, Inc. 3588 3205 2560 2262 1879 1577
Lifepoint Hospitals Inc 1855 996 907 743 619 557
MedCath Corp. 758 692 542 477 377 332
SunLink Health Systems Inc (US) 128 112 99 87 41 32
Tenet Healthcare Corp. (US) 9614 9919 13212 13913 12053 11414
Triad Hospitals, Inc. 4747 4450 3865 3541 2669 1235
United Surgical Partners Int. 474 389 431 332 238 134
Universal Health Services, Inc. 3935 3938 3643 3258 2840 2242

Table 4: Data Used in Numerical Analysis: Price Index

Index 2006 2005 2004 2003 2002 2001 2000
CPI (Hospitals) 166.2 157.9 149.9 141 128.9 119.7 112.3
CPI (All prices) 198.3 190.7 185.2 181.7 177.1 175.1 168.8
Estimated Price Change Index 0.838 0.828 0.809 0.776 0.728 0.684 0.665
Normalized Estimate 126 124 122 117 109 103 100

Running the regression without an intercept, i.e. fitting Price = β1Assets + ε, we

find an adjusted R2 = 0.69. Results of both models are shown in Tables 5 and 6.

For completeness, we further test for nonlinearity by adding a quadratic term:

Price = β0 + β1Assets + β2Assets2 + ε. We were unable to reject H0 : β2 = 0 at

any reasonable level of significance, as the p-value was 71%. The results are shown

in Table 7.

These results are not conclusive, but the fact that the proportional model does

account for most of the variation in price, while the intercept does not provide sig-

nificant additional explanatory power, provides some support for the model.
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Table 5: Excel OLS output for Price index regressed on Total Assets

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.9646
R Square 0.9305
Adjusted R Square 0.9166
Standard Error 3.0232
Observations 7

ANOVA
df SS MS F Significance F

Regression 1 612.04 612.01 66.96 0.00044
Residual 5 45.70 9.14
Total 6 657.71

Coefficients Standard Error t Stat P-value
Intercept 25.17 10.97 2.30 0.0702
Total Assets 1.85E-09 2.26E-10 8.18 0.00044

Table 6: Excel OLS output for Price index regressed on Total Assets with zero
constant

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.9259
R Square 0.8573
Adjusted R Square 0.6906
Standard Error 3.9550
Observations 7

ANOVA
df SS MS F Significance F

Regression 1 563.86 563.86 36.05 0.00184
Residual 5 93.85 15.64
Total 6 657.71

Coefficients Standard Error t Stat P-value
Intercept 0 #N/A #N/A #N/A
Total Assets 2.36E-09 3.08E-11 76.78 3.28E-10
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Table 7: Excel OLS output for Price index regressed on Total Assets with quadratic
term

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.9660
R Square 0.9332
Adjusted R Square 0.8998
Standard Error 3.3139
Observations 7

ANOVA
df SS MS F Significance F

Regression 2 613.79 306.89 27.94 0.00446
Residual 4 43.93 10.98
Total 6 657.71

Coefficients Standard Error t Stat P-value
Intercept 72.82 119.26 0.61 0.5744
TotalAssetsInMillions -0.0002 0.0051 -0.0386 0.971
TAIM SQRD 2.17E-08 5.40E-08 0.4016 0.708

2.4.1.2 Individual hospital hypothesis tests

It is also possible to examine individual hospitals. Since we do not have access to

price data at this level, we substitute revenue, and note that equation (30) suggests

a quadratic relationship between revenues and assets for each hospital i: Revenuei =

βi,2Assetsi
2. When we add a constant term for each of the ten hospitals that we have

data for, i.e. Revenuei = βi,0 + βi,2Assetsi
2, we find an average positive intercept.

Applying a simple test for means, we find a p-value for the null hypothesis that the

average intercept is zero of 6.12%. Full results are shown in Table 8.

Alternatively, we may use a non-parametric signs test and note that all the esti-

mated intercepts were positive. The probability of all the intercepts being one sign,

assuming a 1/2 probability of either sign if the true population mean intercept is

zero, is binomially distributed and approximately 0.00195. This would suggest that

something is missing from the model, which is not surprising, given the rather strong
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Table 8: Excel worksheet with intercepts and tests H0 : β0 = 0

Company Name Intercepts
Amsurg Corp. 146919457.2
Community Health Systems, Inc. (New) 326100919.1
HCA, Inc. 5755455601
Health Management Associates, Inc. 1269493867
Lifepoint Hospitals Inc 705721853.2
MedCath Corp. 57643421.05
SunLink Health Systems Inc (United States) 16767071.74
Triad Hospitals, Inc. 1005770491
United Surgical Partners International Inc. 122547558.3
Universal Health Services, Inc. 1567040636

Avg 1097346088
StDev 1725848661
Standard Error 520362950
STS 2.1088
P-value for H0 : β0 = 0 0.0612

Binomial Prob of all positive intercepts 0.000977
Binomial Prob of all pos or all neg intercepts 0.001953
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assumptions we made to simplify the mathematics.

2.4.2 Numerical example

In constructing the numerical example, we rely on accounting data, as well as pub-

lished papers. From the SEC ([134]) accounting forms we find an average capital

retention rate of δ̄ = 0.961 with a standard deviation of sδ = 0.013 and an average

cost parameter of z̄ = 0.7165 with a standard deviation of sz = 0.0514. For conve-

nience, we set the co-pay percentage of price to c = 0.05, the markup percentage to

m = 1 and initial capital base to K0 = 1000. This leaves the demand parameters, A

and q, which we do not observe and turn to the literature for reasonable estimates.

Santerre and Neun ([129]) summarize a number of papers ([109, 47, 33, 37, 115, 54])

and suggest that an own-price elasticity between -0.1 and -0.7 is reasonable. As this

is our only information on demand, we select q = 1, A = 300 at price P = 10. Even

with this ad hoc parametrization, we observe the explosive growth in capital invested

(see figure 1).

This figure includes two boundary graphs, one in which the cost multiplier (z)

is two standard deviations below the mean, and the other two standard deviations

above. Note that the pattern is unchanged. For the other parameter estimate with a

standard deviation, the capital retention rate δ, the graphs were too close to each other

to be useful. We also tried arbitrary deviations from the remaining parameters in the

capital equation, with similar results. Only when the co-percentage c was lowered did

the model explode substantially quicker. Since it is the quality of explosive growth

that is of interest, this effect was not remarkable.

2.5 Conclusion

We developed a dynamic model of repeated negotiations between hospitals and payers.

Under certain assumptions,we arrived at an optimal control problem, which yields

solutions for price and capital. The price path equation (46) gives an optimal price
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Figure 1: Numerical illustration of capital growth in this model
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that is proportional to the hospitals’ capital stock. This means that as the supply

of hospital services increase, prices also increase, as opposed to the usual dynamic of

falling prices with expanding supply.

The solution for capital (9) is not obviously explosive, but when we examine

the long run and steady state solutions (2.3.4), we find that capital only has one

meaningful equilibrium, at zero. An equilibrium of zero is not useful, but when we

examine the time derivative of capital versus capital (47, we note that the derivative

is positive, i.e. the capital stock is increasing over time, and increases faster for

greater capital stock. This means the equilibrium is unstable, and an increase from

the steady state will lead to an explosion of both price and capital devoted to health

services.

The remainder of the comparative statics show that capital and price are sensitive

to the slope of the demand function (A), the markup percentage (m), and the co-pay

percentage (c). The directions of change are intuitive, which is reassuring, given the

simplifications of the model.

An extension to multiple payers was attempted in 2.3.5. Doing the same for

hospitals would not change the model, as these are price takers in the this scenario.

The effect of having each insurance firm know that the price they pay will benefit other

payers equally in the future, leads to a public goods problem. As one would expect,

multiple payers lead to lower investment and also lower prices. The dynamics of the

model remain unchanged from the single payer model, so even if more payers means

it takes longer for the explosion in capital and prices to arrive, the final result is the

same. Given the tremendous growth in health care expenditures, and unprecedented

portion of U.S. GDP devoted to health, the model appears to provide a possible

explanation for the twin phenomenon of beneficial capacity growth and traumatic

increase in health care costs Americans are experiencing.

The data examined is in accordance with the model, but no stronger conclusion
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may be drawn. Given the strong assumptions we made, and the limited data available,

even this result is encouraging. The prediction from the model that prices will be

proportional to capital has some support. But the more important implication, that

health care prices are exploding, seems obvious to most observers ([4, 42]).

The major contribution of this paper is to point out that even if payers act purely

out of self-interest, and without technological change, the incentives appear to be in

place for an expenditure explosion in health care capacity and prices. To our knowl-

edge, this result is new, and it is not an obvious conclusion. One policy implication is

that the qualitative aspects of the system will not change without structural redesign.
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CHAPTER III

A SIMULATION MODEL TO COMPARE STRATEGIES

FOR THE REDUCTION OF

HEALTHCARE-ASSOCIATED INFECTIONS

3.1 Introduction

Cook County Hospital, like many hospitals in the U.S. and worldwide, is pursuing a

developing strategy to combat healthcare-associated infections (HAIs). Annually, the

human toll in the U.S. is approximately two million infected, of which over 100,000

die. An interdisciplinary team of researchers from Georgia Tech, the CDC, and Cook

County Hospital, with backgrounds in engineering, economics and medicine, analyze

the flow of pathogens. We combine infection rates and cost data to build a discrete

event simulation model for the purpose of capturing the complex relationships be-

tween hand-hygiene, isolation, demand, and costs. We find that both hand-hygiene

and isolation policies have a significant impact on rates of infection, with a complex

interplay between factors. This suggests a systems-level approach to infection-control

procedures will be required to contain healthcare-associated infections.

3.1.1 Overview

A healthcare-associated infection (HAI) is defined as one where there is no evidence

that the patient was infected (or colonized) at the time of admission [48]. The in-

fections we consider in this study are a subset of HAI, namely the hospital acquired,

or nosocomial, infections. Roughly two million patients contract HAIs each year in

the United States alone, of which more than 100,000 die [101]. Dealing with these

infections costs more than thirty billion dollars per year, most of which must be borne
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by hospitals, since they are not part of any recognized treatment. The problem is

becoming increasingly complicated, due to the emergence of resistant pathogens [81].

In addition, there is evidence that the liberal use of antibiotics is resulting in evolving

resistance in pathogens [36].

The federal government is considering regulating infection control, but as of now,

various states have taken the lead [156]. For example, the Pennsylvania Health Care

Cost Containment Council (PHC4) now reports on HAIs online (www.phc4.org). The

idea that report cards on hospitals infection rates may help has been slow to win ac-

ceptance, but is being considered by a number of other states [156]. In addition, the

Centers for Medicare and Medicaid Services (CMS) recently announced new rules

for hospital inpatient cost reimbursement in response to a provision of the Deficit

Reduction Act of 2005, which requires hospitals to begin reporting secondary diag-

noses that are present on admission by October 1, 2007 [25]). Under the new rule,

diagnostic related payments to hospitals would be reduced or not provided for certain

hospital-acquired conditions.

In the U.S. health system, where hospitals have a financial and legal incentive to

conceal HAIs, it has been especially difficult to monitor the problem [75]. In addition,

the risk factors change depending on patient characteristics, ailments, local frequen-

cies of pathogens, and infection controls. This leads to research on very specific types

of HAIs [127, 23]. Different types of patients also have different risks for developing

HAIs [58]. Hence even if the problem is significant and potentially solvable, it is also

complex and in need of some level of aggregation.

We therefore seek to address the following research questions:

• Does the system of infections in a hospital behave as a set of independent

problems, or do the relationships between parts change depending on the state of

the system? For instance, does greater compliance with hand-hygiene measures
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reduce costs?

• What are the relative merits of isolation versus hand-hygiene?

• How do infection control measures impact hospitals costs?

To address these questions, we combine data from Cook County Hospital [122]

with parameter estimates from the literature to build a simulation model of HAIs in

an intensive care unit (ICU). We compare the costs, benefits, efficacy, and efficiency

of various strategies for HAI reduction including screening and isolation.

The paper is organized as follows. We first provide an overview of the literature

that provides the basis for our study. We describe our research design, and how it

relates to the literature. Then we discuss the data used in the model, followed by

the simulation model. After describing the different experiments based on the model,

we assess the economic impact of different approaches to infection control. Finally,

we give preliminary recommendations for policy, along with an overview of proposed

future research.

3.2 Literature Review

The literature on HAIs is very large, spanning both medical and economics journals,

and with varied approaches. We will draw on the health and economics literature, in

which pathogens and treatments are the focus.

3.2.1 Public Health and Medical Literature

HAIs can be classified by pathogen or by what is infected. The major types of in-

fections are surgical site infections (SSI), pneumonia, bloodstream infections (BSI),

urinary tract infections (UTI) and a catch-all class of Other [48]. Catheters in par-

ticular contribute to BSI, but these may be managed, as one study found mean rates

of catheter related BSI dropped from 7.7 to 1.4 per 1000 catheter-days due to an
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intervention [117]. A recent review estimated that “up to 1/3 of all HAIs may be

prevented by adequate cleaning of equipment” [130].

Another approach to reducing SSI is to provide feedback to the hospitals on their

performance. This approach in Germany’s KISS system (Krankenhaus Infektions

Surveillance System), led to a relative risk of 0.54 as compared to conditions prior

to installation of the outcome measures [64]. Naturally, such a system relies on

the hospitals to trust that their self-reported measures will not be used against them.

The efficacy of outcome measures is not limited to system-wide initiatives. St. Luke’s

Episcopal Health System counted incidents of hospital-acquired pneumonia, and were

able to identify risk factors such as the use of intra-aortic balloon pumps, renal failure,

re-intubation, and total intubation time, and reduce the rate of pneumonia from 6.5%

in FY96 to 2.8% in FY01 [80]. However, they noted that a “major obstacle” was to

keep staff aware and involved in the infection control program. A larger program

involving 56 hospitals decreased SSI rates from 2.3% to 1.7% over three months

by applying correct antibiotics (within one hour of surgery), keeping the patient at

correct temperature, blood sugar and blood-oxygen, and even correct hair removal

[39].

Which pathogens are most troubling at any one time changes as bacteria migrate

and develop resistance, and as technology provides both new avenues for microbes to

attack, as well as new tools, methods, and pharmaceuticals to combat various agents

of infection. Currently, the main problem pathogens in the U.S. are Methicillin-

resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus

(VRE) [46].

Although Staphylococcus aureus is a widespread bacterium, the current problem

is primarily with Methicillin-resistant strains. MRSA has been estimated to increase

length-of-stay (LOS) by 50% and the cost of hospitalization by 100%, when compared

to the susceptible strain, MSSA [98]. MRSA tends to stay in hospitals that have been
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infected, and carriers may harbor MRSA for more than three years [128]. Asymp-

tomatic carriers may contribute a great deal to the spread of MRSA, which argues

in favor of screening [149]. However, others find that isolating MRSA patients either

alone or in cohorts does little to reduce the risk of cross-infection [26]. Of course,

both those results are compatible with the argument that health-care workers spread

the bacterium; the number of manipulations does appear to increase the spread [45].

VRE, on the other hand, has become a significant problem only since 1990 [143,

17]. Just as with other HAIs, VRE leads to greater LOS and cost [140], and similar

to MRSA, VRE cross-colonization is easy, and colonization may persist for some time

[17].

In addition to the VREs and MRSAs, there are a number of other major pathogens,

and an even larger group of so-called zoonotic diseases (e.g. hantavirus, anthrax, hem-

orrhagic fevers such as Ebola, plague and rabies) [151]. Since pathogens follow cycles

and modeling can easily become intractable with too fine a structure, we will not go

into more detail on individual microbes. It is important to retain risk factors that are

common to HAIs, such as LOS, hand hygiene, and colonization among health-care

workers (HCW) [144]. In addition, it is important to include resistance to antibiotics

and biocides [30].

3.2.1.1 Medical Treatments

There are two major lines of research in the control of HAI: surveillance and avoid-

ance. Surveillance techniques observe and report on the record of the hospital, while

avoidance techniques help to hinder infection. In our simulation model, we focus on

screening and hand-hygiene, as different approaches to avoiding HAIs.

Surveillance This may be done either at the level of the hospital or of all patients,

i.e. the system. In addition, surveillance may be passive, inspecting patients or

records, or active, which involves culturing samples from asymptomatic patients and
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health care workers (HCW). There is no nationwide surveillance system in the U.S.,

but six states had systems in 2005 [10], and 39 have considered legislation [156].

Although it is not clear that all HAIs are being reported, hospitals that do report

their performance are not penalized, while those that fail to report risk $1000 dollar

per day fines. In addition to the importance of trust that their reports will not be

used against them, it is important to take into account risk-adjusted patients, so that

hospitals cannot ”improve” their performance by cherry-picking cases [156].

Screening It is difficult to know when to classify an infection as healthcare-associated.

If an active approach to screening all patients and HCW is applied, cultures must be

taken to test for different pathogens. In one study in Israel, a country where MRSA

is endemic, such an approach cut the cases of bacteremia in half [136], while a U.S.

study found a cost-effective reduction in the incidence of MRSA [28].

Isolation If carriers and those with infection can be isolated, either privately or in

cohorts, then such quarantine might control outbreaks. For individual patients, each

test costs approximately $30, and comprehensive screening is estimated to cost $300

[43]. Isolating MRSA-colonized patients is given credit for working in the Netherlands,

Denmark and Finland [51, 50]. However, a study in the UK found no effect [26]. Two

reviews of the literature found some support for isolation in response to MRSA [31],

but no robust economic evaluation [32]. Similarly, a survey of German hospitals

found that isolation did help control MRSA [63]. From a system-design perspective,

it seems that isolation may primarily benefit the entire health-care system, while

hand-washing may be most important for individual patients.

Hand Hygiene The issue of hand hygiene is sufficiently important for the Centers

for Disease Control and Prevention (CDC) to provide a Morbidity and Mortality

Weekly Report (MMWR) guideline [19]. In short, these recommend washing visibly
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dirty hands, and otherwise using alcohol-based hand rubs, as well as gloves in certain

cases. Rates of adherence to hand-hygiene guidelines are typically less than 50%

[147], so measures to improve compliance may have a significant impact. Although

[92] found that gels were no better than traditional methods, the fact that an increase

in the number of sinks, and therefore a reduction in the inconvenience in hand-

washing, had no significant impact on compliance [147], suggests that alcohol gels are

a better choice. An alternative may be to use gloves, which has similar efficacy, but is

cheaper and easier to comply with than hand-washing [145]. It has been noted that

improved hand-hygiene will have a secondary positive impact, in reducing the need

for antibiotics and retarding the evolution of resistant strains of pathogens [155].

3.2.2 Economics

The framework for general economic analysis of health care [133], and to the problem

of HAIs specifically, has been discussed in several papers. The economics of HAIs

are especially challenging due to measurement difficulties and the uncertainties asso-

ciated with cost-allocation and quantifying[124, 123, 71, 72]. Research has estimated

fixed costs to represent 84% of hospital costs [123, 71], which leads to questions of

how to assess such costs, as well as the benefits from infection control programs and

regulations. [101] provides a useful summary of the financial and human cost of hos-

pital acquired infections. A briefing for the Association for Professionals in Infection

Control and Epidemiology (APIC) also provided an overview of the financial impact

for hospitals, emphasizing that due to the increase in LOS from HAI, the opportunity

cost should also be counted, for hospitals running close to capacity [107]. Since HAIs

extend the stay of patients in hospitals, but do not usually require additional surgeries

or alternative treatment, several studies indicate that hospital acquired infections pri-

marily have the effect of increasing LOS [13, 73]. This has led to the argument that

only marginal costs should be included, as long as the perspective is the hospitals
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[72]. [73] also makes the argument that quality-adjusted life-years (QALY) should be

employed to measure the benefits of infection control. Clearly, extra mortality is also

a relevant cost [158], although this cost is not borne by the hospital.

The literature on HAIs is primarily based on specific transfers and pathogens,

without consideration for the complex interactions within a hospital setting. Our

focus is on the dynamics of the system as a whole. The contribution of this paper

then is to develop insights from HAIs in a hospital setting, accounting for the rela-

tively complex set of interactions, to develop insights that can help establish effective

policies.

3.3 Data

The data we use in in this work are based on the CARP study [122], conducted at

Cook County Hospital located in Chicago, Illinois. In the overall data-set we have

records for the hospitalization of 1,254 patients, with information on the patients’

age, whether or not they died during hospitalization, if they had surgeries, spent any

time in the ICU, and had a confirmed or suspected HAI in their urinary tract, blood-

stream, surgical site, lungs, or elsewhere. We further have available the LOS, two

severity of illness scores (the Apache III and the Charlson), in addition to various

costs. These have been carefully constructed through actual hospital outlays and

procedures, and include fixed charges for admittance ($635.33) and treatment in

the emergency department ($250.45). Variable costs include a charge for the LOS,

charges for procedures done at the bedside (i.e. without an operating room), charges

for use of an operating room, and charges for blood, pharmaceutical, and radiological

laboratory tests.

Since we are limiting this study to ICU’s, we first reduce our data-set to the 212

patients who were in the ICU. Of these, 33 died, 70 developed a confirmed HAI based

on the CDC guidelines, and a further 20 lacked one indicator, and so are counted as
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Table 9: ICU Summary Statistics

ICU With HAI No HAI
LOS Cost LOS Cost LOS Cost

Mean 15.73 38072.54 23.65 59711.30 10.43 23589.91
Standard
Deviation

15.10 38610.31 19.16 49996.29 8.16 17398.89

Count 212 85 127

suspected of having an HAI. Due to overlap, the total number patients classified as

having any HAI is 85, or approximately 40% (see Table 9). A t-test for differences in

means gives p-values of 0.000 for LOS and total cost, confirming that the difference

in means between patients with and without HAI is statistically significant.

We use the data to provide parameter estimates and a method to assign costs.

The LOS is modeled through a probability of discharge, which we estimate using

maximum likelihood means for a geometric distribution of length of stay (LOS): θ̂ =

N/
∑N

i=1 LOSi for both those infected, and those not infected. This gives θ̂NoHAI =

0.095291 and θ̂HAI = 0.042289. These are adjusted slightly, to make the LOS for

infected and uninfected patients conform with the CARP patients.

Finally, upon patient exit, costs are assessed using the CARP data. After running

several regressions, the best parsimonious fit for total costs is (see Table 18):

̂TotalCost = 3028.81 + 445.9 ∗HAILOS + 1944.2 ∗ LOS (31)

Here HAILOS = AnyHAI ∗ LOS, i.e. an interaction effect to increase the average

daily cost once infected. This gives an R2 = 0.88, after we remove one outlier.

The total costs we use since we do not have what the patients incur for specific

categories such as pharmacological costs. However, the CARP data gives us valuable

validation through both the average LOS and the average total cost incurred.

This aggregate approach ignores the types of HAI, the demographics, and the
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breakdown of costs into LOS, consults, drugs, diagnostics, etc. However, since we are

focused on the effect of HAI on overall costs, we use the total costs attributed to the

patients.

3.4 Simulation

Discrete event simulation is used to model the process by which pathogens, patients

and visitors enter an ICU, interact with HCW and each other, infect, become infected

and cured of both primary disease and their additional infections, and finally are

discharged and assigned costs. Note that those who carry an infection agent are

colonized, and that there is an incubation period between colonization and infection,

during which the pathogen may spread from an asymptomatic patient, HCW, or

visitor.

We incorporate the various pieces described above to shed light on the research

questions, in particular the complex interactions between the various parts of the

infection process. We simulate rather than pursue a closed-form approach, because

the large number of interacting factors means we must trade precision for greater

realism. This approach allows us to include all the various factors mentioned above,

which we need to address the research questions.

We incorporate location, patient demographics, and variable bed-occupancy into

the simulation. We construct a base model using an ICU [26], along with the CARP

data to provide ICU rates of HAI in a U.S. hospital, as well as total cost data.

The ICU has ten rooms, in which two doctors and four nurses provide trans-

portation for the pathogens. The HCWs mix in random groups of one doctor and

two nurses, and spread the pathogens between patient locations and HCWs. These

HCWs, patients and visitors all move on a network between an entrance (and exit),

and individual and cohort rooms (see Figure 2).

We alter the base model to allow for screening and isolation in two formats:
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Figure 2: ICU Schematic
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1. An additional isolation ward is added.

2. An isolation ward is carved out of the available space.

Hand-hygiene efficacy (HHE) and compliance is modeled through the assumption

that there is a hand-hygiene station in every patient room, and that HCWs attempt

to cleanse their hands, with a positive probability of success. We use an efficacy

parameter to quantify the probability of removing any colonization, and represent

both the probability of cleansing hands, and that the effort is successful.

We focus on the dynamic aspects of the movement of pathogens, and so limit

ourselves to one generic pathogen. Although this is a simplification, it is reasonable

due to the level of aggregation we utilize. Specifically, we do not include surgeries,

intravenous devices, different pharmaceutical products, which we would require in

order to benefit from differentiated pathogens. In the following we describe each of

the models and report on the results.

3.4.1 Base Model

The base model takes the ICU as given, but allows both patients and visitors to

bring colonizations of resistant and susceptible pathogens into the locale. The health

care workers then probabilistically spread the pathogen to different locations. In

order to keep some measure of control with the model, only the locations transfer the

pathogens, but we adjust the parameters to force the infection rates in the simulation

to mimic those seen in the data (See Table 10).

Using MedModel [79] structures, the discrete event simulation is formulated using

the following elements:

• Locations: Ten beds, along with visitor stations for each bed; one entrance for

patients, and another for visitors. The locations capture the transmission of

pathogens by passing along colonizations.
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• Entities: Patients and visitors. Both can be colonized with susceptible or resis-

tant pathogens, but only patients are assumed to arrive with actual infections.

• Path networks: The movement of the patients, visitors, nurses and doctors

are constrained to a network between locations (see 2). Although we have a

geographical model of the ICU, we do not allow the simulation to use all the

possible locations, as that would draw processing time, without adding useful

results.

• Resources: Doctors and nurses. These can be colonized, but infected HCWs are

assumed to stay away from the ICU [12, 135]. Colonized individuals can then

spread the pathogen to other locations.

• Processing: Entities are processed when they move from one location to another,

and while they remain at a given location.

1. Visitors bring pathogens from the outside, and can pass those along to the

locations visited.

2. Patients are treated by the health care workers, and since this is an ICU,

the patients are seen frequently. The simulation process selects one doctor

and two nurses at random for each patient care event. Each visit provides

an opportunity for pathogens to move between the HCW, locations, and

patients. In addition, a patient can stochastically develop or be cured of

an infection, and also has a probability of discharge. As mentioned above,

this probability falls substantially when the patient is infected, but not

from a colonization. The probabilities were selected to imitate the data

from Cook County Hospital (see 3.3).

3. Upon a patient’s exit there is a cleanup of the location if the patient was

infected, in order to limit the colonization. The exit process also captures
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data, such as the LOS, which infections had been caught, and calculates

the total cost for that patient.

• Arrivals: The rate at which patients and visitors arrive at the entrance. Arrivals

are modeled using exponential distributions.

• Variables: Global variables track the incidence of colonization for HCWs, loca-

tions, patients and visitors. In addition, global variables count various items of

interest, such as the number of the different types of patients entered and dis-

charged, infections and colonizations, lengths of stay, and the state of occupancy

in the ICU.

• Parameters are given constant values within each simulation run, representing

the probabilities of colonization, infection, cure, etc.

3.4.2 Model with Area Reserved for Isolation

In this model, we remove three beds next to the entrance (beds 8, 9 and 10) from the

base model, and turn these into an isolation ward. Patients are first screened, then go

to the isolation ward or the regular entrance. This significantly lowers capacity, but

provides a model directly comparable to the base model, as no more room is devoted

to the ICU.

3.4.3 Model with Additional Isolation Ward

In this model we add a separate isolation ward to the base model. This increases

capacity, since valuable beds are no longer used for de-colonization purpose. We

recognize that this solution may be somewhat unrealistic, as patients with a need to

be in an ICU would also require intensive care in any isolation facility, but it allows

for another direct comparison with the base model.
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Figure 3: Average Total Cost v. HHE in Patients without HAI

3.5 Analysis

We seek to understand the interplay between hand-hygiene (HHE), isolation, arrival

rates and costs on the dynamic flow of HAIs. We therefore simulate different scenar-

ios of isolation, namely, none (Base), an isolation ward carved out of the main ICU

(Carve-out), and with an added isolation ward (Plus-Screen). We use high, medium,

and low levels for the hand-hygiene (HHE) and arrival rate (Arr) parameters. The

simulations are replicated 50 times for 100 days, after a warm-up period, for each

scenario. The parameter values, as well as the calculated means and standard devia-

tions are provided in tables 12,13, and 14. Total costs and lengths of stay remain in

line with results from the CARP data set.
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We observe that higher overall infection rates increase costs, reduce capacity, and

increase lengths-of-stay. However, we note that the relationships do not appear to

be linear, and are sometimes surprising when we focus solely on subsets of patients,

e.g. those who did not catch an HAI. The apparently nonlinear relationships include

the relationship between the number of discharged patients (total, with and without

HAI) versus HHE, LOS and average cost versus HHE, and the proportion of time the

ICU is full versus HHE. There is no reason to assume linearity, but we emphasize this

point because previous statistical models used to assess the impact of HAIs on costs

have been linear, and in fact uncoupled from LOS [73].

Note that as the patients’ interarrival time decreases (e.g. Arr=0.1 rather than

Arr=1.0), the proportion of time the ICU is full increases. Only when there is a

significantly lower patient inflow does the ICU have spare capacity. In addition, a

significant increase in volume occurs only at the highest level of HHE.

Another capacity related effect is due to the physical locations of the screens.

When we add an additional screen to the base model, there is a slight increase in the

patient throughput. Since we do not allow for patient healing during isolation, this

estimate is conservative, and solely due to the decrease in HAIs. When the screen

is carved out of the ICU, however, capacity and throughput drop significantly, in

line with expectations. The effects are mirrored for those with and without HAIs.

However, the number discharged who ever had an HAI does not drop significantly

when the isolation room is added. Instead, the additional throughput is comprised

of patients who do not contract HAIs. We note here that visitors are not screened,

and bring in a steady stream of pathogens from the community.

In order to assess the numerical effects of the different parameter values, we av-

erage across the different scenarios (Table 15). We cautiously interpret these results,

and note that a standard deviation is meaningless due to the fact that these are ar-

bitrarily selected parameter-settings. Nevertheless, we do observe that the effect of
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changes in HHE is monotonic for each variable.

It appears clear that an increase in HHE is an unmitigated benefit. However,

it is of interest to note that under our specifications, and with low arrival rates, an

increase in HHE increases overall throughput, while the absolute number of patients

who ever contract HAIs remains roughly constant. This counterintuitive result is not

surprising in light of the overall increase in volume, but would suggest that an effort

to decrease the absolute number of patients who contract HAI’s through increased

efficacy of hand-hygiene, would simply not work. There would be a benefit, but this

would have the effect of greater throughput, rather than fewer patients with HAI.

This result suggests that isolated measures of success in controlling infections may be

misleading, and a system-wide perspective is needed.

The most counterintuitive results are arguably that higher efficacy in hand-hygiene

leads to longer lengths of stay, and higher costs, for patients who never contract an

HAI. We assume no additional costs for the increased HHE, so the effect comes from

the dynamics of the model. We also note that the relationship holds across all the

scenarios. The key to understanding this result is to bear in mind that the mean

LOS is conditional on the event that the patient did not catch an HAI. When HHE

increases, more patients that would otherwise have gotten an HAI are treated until

discharge without being infected, even though it may take longer. Said another way,

when infections are rampant, it is a rare patient who is lucky enough, and recovers

swiftly enough, to avoid an infection. Only those swift patients are counted among

the group that were discharged without contracting an HAI, so they must have a

short average LOS. Conversely, LOS falls for those who did contract an HAI, because

with better cleanliness, they are less likely to catch another infection.

Returning to cost, we note that LOS is the primary driver, which explains why

the same relationship holds for the average total cost per patient. We do note that

the CARP data as presently utilized uses an allocated mechanism, so true variable
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costs have not been calculated. However, since doing so would increase the benefit

from freeing up capacity, the approach currently utilized underestimates the impact

of HAIs on cost. We cannot compare the change in costs for the added isolation

ward, nor from carving out such a ward, as we do not have these figures. Since the

main effect appears to be on capacity and revenue, we must base our conclusions on

increased service to patients. However, since our simulation period is 100 days, we

note that the average increase in patients served over the full year is 192.3, while the

percentage of time the ICU is full declines from 95% to 82%.

3.6 Discussion

On the basis of these simulation models, we can draw several useful observations.

Observation 1: Both hand-hygiene and isolation policies have a strong impact on

rates of HAIs, capacity, and costs.

The effects of better compliance with hand-hygiene infection control is different

when capacity is tight, versus when there is slack in the system. This is intuitive

for any change that increases or decreases the average throughput of the hospital.

Since variable costs comprise less than a fifth of a hospitals costs [123, 71], average

per-patient costs may decline with a successful infection-control program. However,

overall costs will increase due to the program itself, and due to the shift in patients

that do or do not acquire HAI, it is not clear that per-patient average costs will

decrease for every class of patient.

Observation 2: Hand-hygiene and isolation policies interact, so that the relative

merits of the two approaches change for each scenario.

We are not surprised to find that drastically reducing capacity by carving out

an isolation ward left the ICU full much more often than under the base model or

the model with an added isolation ward (see tables 12, 13, 14). Although costs were

generally higher when we added isolation policies, we had to expect that, since we
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merely added this feature. In order to draw a strong conclusion, we would have to

compare the added cost from isolation to the cost of hand-hygiene campaigns, and

this data was not available. Since hand-hygiene is often poor, but may be improved

through inexpensive alcohol-gels, while ICU isolation wards require significant capi-

tal expenditure, the small difference in results between isolation-ward models and the

base models suggests the benefits to cost ratio is greater for hand-hygiene improve-

ments. The burden of proof, therefore, must lie with those recommending isolation

wards over hand-hygiene.

Observation 3: The relationships between arrival rates (i.e. demand), physical

structure, hand-hygiene efficacy, and length of stay are complex, and unlikely to be

adequately modeled with a single linear equation. Therefore, the infection control

problem does not decompose into a set of independent problems.

The non-linear nature of the system we simulate is difficult to model in closed-

form, which means that any linear approximation will only be valid for a limited

interval of parameter values. As an example, this means that if compliance with

hand-hygiene regulations is increased from 30% to 50%, a linear model to predict

performance changes may be invalid. A simulation that incorporates such non-linear

relationships remains usable.

Observation 4: When increasing HHE, the change in the dynamic system is too

complex to model with a linear approximation.

For example, based on our simulation, we would predict that the average length

of stay, as well as average total cost per patient, for patients who do not contract

an infection, would increase with greater HHE. Further, greater HHE would not lead

to a lower absolute number of patients who contract an HAI. We suggest that these

results are not intuitive at first glance, yet perfectly reasonable upon reflection. Such

insight into a service system is valuable in analyzing different approaches to improving

infection control.
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Observation 5: A systemic perspective is needed to understand infection control

from a global perspective.

It is unlikely that a hospital view-point is sufficient, since the environment re-

mains a reservoir for pathogens, which arrive at hospitals through patients, visitors

and health-care workers. In this simulation, we treated the level of infection in the

environment as fixed, although a multi-hospital simulation would require linked levels

of pathogens throughout a given region.

3.6.1 Contribution to the Literature

Our model was based on actual data, and adds to the set of studies applying simu-

lation to health issues [59]. Although simulations are more opaque than closed-form

solutions, we gain the benefit of solving a more realistic problem using simulation,

even if we cannot feasibly investigate every possible set of parameter values.

The complex and dynamic nature of the infection control problem also directly

addresses the current discrepancy in cost attributed to hospital acquired infections.

[122] estimated that HAIs added more than fifteen thousand dollars to the treatment

of the average patient, largely through extended stays. [73] recently estimated that

the costs were statistically insignificant for most types of HAIs under study, and

practically insignificant for one. However, the approach in [73] explicitly ignores

the linked effect of LOS and infection, and attributes no impact to cost from HAI

through more than 100 potential variables examined to account for cost. As such, it

is hardly surprising that they found no residual effect; the structural link is ignored,

and the indirect impact of HAI on cost through vehicles such as increased use of

pharmaceuticals is severed. Our model strongly suggests that LOS and HAI are

tightly linked, and HAIs have a significant impact on the use of hospital resources

and attention from HCWs, all of which increase cost (and increase the probability of

yet more infections).
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3.6.2 Future Research

We are pursuing several avenues to improve the precision and robustness of our results.

First, we seek to estimate the LOS and incidence of HAI simultaneously, and isolate

the effect of these on cost. A simultaneous equation approach is one possible way to

properly estimate the dynamic spiral described above.

Second, we are currently working on finding levels of variable costs that may be

allocated for specific events in a simulation. This will add veracity, although given

the very high proportion of hospital costs that are fixed, it is unlikely to alter the

overall picture drastically.

Third, although the simulation approach is valuable, it does not consider the

psychological responses of health-care workers. It is unclear why compliance rates for

hand-hygiene regulations are as low as they are. In order to examine the underlying

factors driving compliance with infection control procedures, we are constructing a

survey-instrument. We are currently working with multiple hospitals in the Atlanta

area.

Finally, this study is meant to be only a first step in evaluating the costs and

benefits of different types of regulations the U.S. Congress may enact. The CDC is

required to evaluate such regulations, and this was the initial impetus to the model.

We therefore seek to build models for different types of hospitals, before using these

sub-models as input into a nationwide study of HAIs and regulation. Currently,

we have four hospitals: two from Children’s Hospital of Atlanta, Athens Regional

Hospital, as well as the original source of data, Cook County Hospital. cooperating

with us in providing information and data.

The final outcome of this line of research is meant to be guidance for how different

sets of national regulations would impact HAIs, rates, costs and benefits. Since

everything outside the hospital functions as a reservoir for infections, we expect a

system-wide approach will be required in order to fully control resistant pathogens.
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Table 10: Base Model Parameters

Parameter Value Comment
mArrivalRate 1 Parameter governing the rate of patient arrival.
mVisitorMultiplier 3 Visitors arrive at a rate of three times the number

of patients.
mColonProp 0.2 Proportion colonized in the community.
mComResistProp 0.3 Proportion of those colonized in the community

carrying a resistant strain.
mTreatmentTime 0.04 Approximate number of days between visits from

HCWs.
mHandHygEffic .8 Efficacy of hand-hygiene, considered as a combi-

nation of probability of washing or using gel, with
probability that pathogen is removed.

mLocToHCWColRate .5 Probability per treatment incidence of transfer
from location to HCW.

mHCWtoPatientColRate .5 Probability per treatment incidence of transfer
from HCW to patient.

mHCWtoLocColRate .7 Probability per treatment incidence of transfer
from HCW to location.

mLocToPatientColRate .8 Probability per treatment incidence of transfer
from location to patient.

mPatientToHCWColRate .4 Probability per treatment incidence of transfer
from patient to HCW.

mPatientToLocColRate .9 Probability per treatment incidence of transfer
from patient to location.

mColToInfRate .3 Probability per treatment incidence a colonized
patient develops an infection.

mDisinfectLoc .1 Probability per treatment incidence a colonized
location is disinfected.

mCureSProb .4 Probability per treatment incidence a susceptible
infection is cured.

mCureRProb .1 Probability per treatment incidence a resistant in-
fection is cured.

mHealthyExitProb .06 Probability per treatment incidence of exit if pa-
tient is healthy.

mInfSExitProb .02 Probability per treatment incidence of exit if pa-
tient has a susceptible infection.

mInfRExitProb .01 Probability per treatment incidence of exit if pa-
tient has a resistant infection.
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Table 11: Parameter and Variable Definitions

Name Definition
Arr The mean interarrival time of patients.
HHE Hand-hygiene efficacy parameter.
vDischargedPatients The number of patients discharged.
vNumDischargedHAI The number of patients discharged that had an HAI.
vNumDischargedNoHAI The number of patients discharged that never had an

HAI.
vAvgLOSwithHAI The average length of stay of patients discharged that

had an HAI.
vAvgLOSnoHAI The average length of stay of patients discharged that

never had an HAI.
vAvgTCwithHAI The average total cost of patients discharged that had an

HAI.
vAvgTCnoHAI The average total cost of patients discharged that never

had an HAI.
vICUfull The average proportion of time the ICU was full.

Table 12: Output from Base Model

Arr HHE Statistic Number
of Dis-
charged
Patients

Number
dis-
charged
with
HAI

Number
Dis-
charged
Without
HAI

Avg
LOS of
patients
with
HAI

Avg
LOS for
patients
without
HAI

Avg TC
with
HAI

Avg TC
no HAI

ICUfull

0.1 0.4 Mean 39.46 37.76 1.70 23.71 1.43 59706.72 5201.85 1.00
0.1 0.4 SE 0.98 0.99 0.22 0.49 0.21 1172.03 518.45 0.00
0.1 0.6 Mean 46.74 43.80 2.94 21.31 1.55 53965.47 5738.28 1.00
0.1 0.6 SE 1.04 0.90 0.34 0.43 0.17 1016.22 398.88 0.00
0.1 0.8 Mean 102.48 78.34 24.14 12.45 3.72 32785.01 10259.30 0.99
0.1 0.8 SE 1.11 0.91 0.93 0.13 0.16 315.28 304.69 0.00

0.25 0.4 Mean 40.14 38.48 1.66 22.84 1.42 57622.88 4814.78 0.99
0.25 0.4 SE 0.98 0.94 0.28 0.54 0.27 1296.82 646.18 0.00
0.25 0.6 Mean 47.20 44.44 2.76 21.10 1.47 53464.89 5159.56 0.99
0.25 0.6 SE 1.12 0.99 0.38 0.45 0.18 1083.15 492.82 0.00
0.25 0.8 Mean 106.34 74.86 31.48 12.36 3.96 32565.22 10721.27 0.94
0.25 0.8 SE 1.15 1.16 1.29 0.15 0.15 369.25 287.85 0.00
0.5 0.4 Mean 40.46 37.96 2.50 21.87 1.19 55288.03 4680.92 0.97
0.5 0.4 SE 1.11 0.97 0.53 0.49 0.18 1161.24 463.56 0.00
0.5 0.6 Mean 47.72 43.82 3.90 20.40 1.73 51792.26 5905.90 0.95
0.5 0.6 SE 1.18 1.07 0.50 0.53 0.23 1276.21 542.43 0.00
0.5 0.8 Mean 100.94 64.42 36.52 12.44 4.66 32756.32 12085.96 0.78
0.5 0.8 SE 1.27 1.38 1.62 0.21 0.18 490.29 346.41 0.01

1 0.4 Mean 38.86 35.62 3.24 21.13 1.78 53538.45 5888.04 0.82
1 0.4 SE 1.08 1.00 0.56 0.53 0.31 1262.04 698.91 0.01
1 0.6 Mean 45.40 40.20 5.20 19.49 2.25 49606.30 7092.66 0.76
1 0.6 SE 1.16 1.05 0.79 0.49 0.26 1181.55 567.32 0.02
1 0.8 Mean 87.46 39.46 48.00 12.29 5.05 32411.16 12844.22 0.28
1 0.8 SE 1.26 1.77 2.27 0.25 0.16 594.36 318.64 0.02
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Table 13: Output from the model with an additional isolation ward

Arr HHE Statistic Number
of Dis-
charged
Patients

Number
dis-
charged
with
HAI

Number
Dis-
charged
Without
HAI

Avg
LOS of
patients
with
HAI

Avg
LOS for
patients
without
HAI

Avg TC
with
HAI

Avg TC
no HAI

ICUfull

0.1 0.4 Mean 43.08 40.16 2.92 25.16 1.87 63174.05 6169.10 1.00
0.1 0.4 SE 0.89 0.85 0.37 0.57 0.22 1356.52 524.91 0.00
0.1 0.6 Mean 49.10 44.46 4.64 23.32 3.05 58761.50 8829.71 1.00
0.1 0.6 SE 1.02 1.03 0.46 0.45 0.23 1077.90 480.19 0.00
0.1 0.8 Mean 103.76 77.06 26.70 14.18 5.01 36925.70 12765.78 1.00
0.1 0.8 SE 1.39 1.10 1.02 0.19 0.13 457.42 247.41 0.00

0.25 0.4 Mean 46.84 43.60 3.24 22.91 2.44 57793.02 7404.14 1.00
0.25 0.4 SE 1.14 0.95 0.45 0.49 0.32 1166.29 693.07 0.00
0.25 0.6 Mean 53.26 48.12 5.14 21.27 2.58 53863.11 7914.37 1.00
0.25 0.6 SE 1.17 1.01 0.62 0.38 0.18 908.44 386.30 0.00
0.25 0.8 Mean 105.70 70.74 34.96 14.07 5.50 36654.79 13714.98 0.99
0.25 0.8 SE 1.57 1.32 1.29 0.21 0.15 499.48 287.06 0.00
0.5 0.4 Mean 51.80 46.68 5.12 20.59 2.26 52231.42 7061.51 0.98
0.5 0.4 SE 1.28 1.07 0.67 0.54 0.21 1290.07 496.87 0.00
0.5 0.6 Mean 53.84 48.14 5.70 20.58 2.70 52214.10 8153.28 0.97
0.5 0.6 SE 1.69 1.65 0.58 0.65 0.22 1561.55 471.82 0.00
0.5 0.8 Mean 107.50 61.12 46.38 13.46 5.58 35208.61 13879.55 0.88
0.5 0.8 SE 1.46 1.55 2.23 0.20 0.16 474.66 303.86 0.01

1 0.4 Mean 50.80 44.94 5.86 18.41 2.59 47042.37 8064.89 0.79
1 0.4 SE 1.50 1.41 0.59 0.60 0.19 1425.49 367.74 0.02
1 0.6 Mean 60.76 49.44 11.32 16.62 3.16 42748.23 9175.49 0.69
1 0.6 SE 1.79 1.64 0.86 0.61 0.19 1460.98 373.67 0.02
1 0.8 Mean 93.08 32.78 60.30 12.57 6.03 33074.01 14759.42 0.30
1 0.8 SE 1.26 1.93 2.47 0.33 0.17 790.39 333.39 0.02
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Table 14: Output from the model with an isolation ward carved out form the ICU

Arr HHE Statistic Number
of Dis-
charged
Patients

Number
dis-
charged
with
HAI

Number
Dis-
charged
Without
HAI

Avg
LOS of
patients
with
HAI

Avg
LOS for
patients
without
HAI

Avg TC
with
HAI

Avg TC
no HAI

ICUfull

0.1 0.4 Mean 30.02 27.60 2.42 27.53 2.48 68832.41 7676.66 1
0.1 0.4 SE 0.89 0.86 0.26 0.89 0.28 2137.69 586.02 0.00
0.1 0.6 Mean 34.94 31.64 3.30 24.63 3.41 61905.13 9354.25 1
0.1 0.6 SE 0.80 0.75 0.33 0.54 0.37 1279.96 785.98 0
0.1 0.8 Mean 76.26 56.14 20.12 14.59 5.82 37906.77 14346.53 1
0.1 0.8 SE 1.33 0.86 0.91 0.26 0.18 624.03 355.40 0

0.25 0.4 Mean 31.54 27.82 3.72 26.82 2.57 67129.00 7604.63 1
0.25 0.4 SE 0.80 0.79 0.48 0.59 0.30 1404.22 677.43 0
0.25 0.6 Mean 35.88 31.78 4.10 23.99 3.52 60377.19 9624.01 1
0.25 0.6 SE 0.77 0.79 0.45 0.53 0.36 1258.33 751.24 0
0.25 0.8 Mean 79.38 50.14 29.24 14.45 6.41 37563.15 15486.66 1
0.25 0.8 SE 1.29 1.15 1.28 0.24 0.22 565.69 434.83 0
0.5 0.4 Mean 35.08 30.62 4.46 23.00 3.28 57990.86 9035.83 0.99
0.5 0.4 SE 1.07 0.95 0.52 0.64 0.38 1533.84 806.63 0
0.5 0.6 Mean 38.90 33.90 5.00 21.87 3.86 55292.43 10297.95 0.99
0.5 0.6 SE 1.23 1.05 0.69 0.52 0.36 1249.82 768.92 0
0.5 0.8 Mean 79.16 43.70 35.46 13.94 6.82 36355.71 16294.40 0.95
0.5 0.8 SE 1.39 1.10 1.62 0.27 0.19 646.23 377.79 0.01

1 0.4 Mean 39.16 34.60 4.56 19.66 3.00 50024.59 8738.02 0.91
1 0.4 SE 1.57 1.43 0.59 0.75 0.28 1786.62 569.07 0.01
1 0.6 Mean 42.88 35.94 6.94 18.97 3.56 48364.56 9890.36 0.88
1 0.6 SE 1.37 1.27 0.61 0.70 0.28 1666.79 566.46 0.01
1 0.8 Mean 77.38 30.32 47.06 13.26 6.30 34730.30 15266.53 0.67
1 0.8 SE 0.80 1.33 1.61 0.28 0.15 666.34 290.84 0.02

Table 15: The average effect across scenarios of changes in hand-hygiene efficacy

HHE Number of
Discharged
Patients

Number of
Discharged
Patients With
HAI

Number of
Discharged Pa-
tients without
HAI

Average
LOS with
HAI

Average
LOS with-
out HAI

Average
Total Cost
with HAI

Average
Total Cost
without
HAI

Proportion of
time the ICU
is full

0.4 40.60 37.15 3.45 22.80 2.19 57531.15 6861.70 0.95
0.6 46.39 41.31 5.08 21.13 2.74 53529.60 8094.65 0.94
0.8 93.29 56.59 36.70 13.34 5.40 34911.39 13535.38 0.82
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CHAPTER IV

THE EFFECT OF FLEXIBLE HOSPITAL CONTRACTS

ON EMERGENCY DEPARTMENT DIVERSION

4.1 Introduction

Overcrowding in the emergency departments (ED) has led to an increase in the use of

ambulance diversion (AD), during which a hospital formally stops accepting patients

by ambulance. A lack of available beds in the main hospital wards lead to patients

waiting in beds in the ED, a practice known as boarding. Boarding patients in the ED

as they await open beds in the main hospital is a primary reason for overcrowding,

and therefore AD. In this paper we examine the potential of a change in the contracts

between the federal government and hospitals to reduce such diversions. We model

the arrival and discharge of patients using a birth-death process, and identify condi-

tions under which a Pareto improvement may be found. We illustrate the procedure

using data from an urban hospital, and use a simulation model to estimate revenue

effects. A simulation of a two-hospital system shows that with appropriate choices

for parameters, more patients of each class is served, yielding a Pareto-improvement

over the current system.

4.1.1 Overview

From 1992 to 2003, the number of hospital emergency rooms in the U.S. went from

approximately 6000 to fewer than 4000, while emergency department visits increased

from 89.8 to 108 million ([131]). Many hospital patients arrive through the emergency

room, and when the hospital is at capacity, patients are boarded in the ED until a

regular bed opens up. This exacerbates crowding of the ED. To combat this problem,
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the hospital may go on diversion (or Ambulance Diversion, AD), where ambulances

are sent to other facilities.

AD is therefore an unfortunate symptom of overcrowding. Diversions cost money

both to initiate and terminate, and adds to the complexity of routing critical patients,

which benefits neither public, hospitals, nor government. The public benefits from

having efficient hospitals with the capacity to address both routine and surge require-

ments. The government is interested both in the public health and in the capacity

to respond to disasters. Hospitals themselves seek to serve patients, expand services,

and work efficiently.

The goal in this study is to identify a method to reduce AD, and to evaluate its

impact from multiple perspectives:

• Hospitals seek to reduce AD, increase patients served, attain high medical stan-

dards, and increase revenue.

• The government benefits from efficiently provided medical services, at low cost,

and from open ED’s that increase disaster preparedness.

• The public would like rapid service at ED’s, at a high medical standard, and at

low cost.

A method that benefits each party, even if side-payments are required, is a Pareto-

improvement.

It is important to distinguish between capacity at the hospital ED, and beds in

the main wards. The lack of beds in the main ward leads to patients accumulating in

the ED, after they are otherwise ready to move to the main wards (boarding). The

output from the ED is the input to the main hospital wards, so a lack of beds in the

wards may be regarded as a denial of service.

As an example, consider AD at DeKalb Medical Center in Atlanta, GA ([78]).

When the hospital reaches capacity, i.e. there are no beds available to accept patients
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Figure 4: Patients moving through the ED and main hospital ward.

from the ED, the hospital goes on AD, and ambulance dispatchers are informed.

Going on AD is not done lightly, and DeKalb Medical Center remains on diversion

until slack capacity is generated in order that a minor surge of new patients will not

overwhelm the ED again. The flow of patients is illustrated in Figure 4.

In this study, we develop an approach to lower both the rate and variability of new

patient arrivals to the ED when capacity is tight, thereby lessening the probability

that a hospital will have to go on diversion. The benefits include less time spent on

diversion for hospitals, less crowding of ED’s, enhanced government ability to respond

to disasters, and better health service for the public.

There are three types of patients in the U.S.: uninsured, privately insured, and

federally insured (Medicare and Medicaid). Hospital treatment for the latter is gov-

erned by very inflexible contracts, with low payments and a provision that if the

hospital is to get any such patients, it must accept all such patients. On the face

of it, this seems a reasonable safeguard against cherry-picking patients, but it may

be counter-productive under circumstances of high demand and frequent diversions.
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However, we show that introducing an additional degree of freedom to the hospital-

government contracts will alleviate several burdens associated with AD. The federal

government is the only entity that has one basic contract with thousands of hospitals,

and so is the only entity that may realistically impact the problem so broadly. Nev-

ertheless, our method is more general than we suggest here, since any class of patient

that may be selectively routed in an ambulance may serve the purpose of federally

insured patients in this paper. The scheme may therefore be applied in other health

systems with changed details, but similar effects.

We readily concede that our mechanism would not be applicable in situations

with emergent trauma or non-communicative patients, when immediate ED care is

paramount, or when ambulance personnel cannot find out the insurance status of

the patient. However, given that insurance and personal preference already partially

determines hospital routing, the mechanism is not unrealistic. New information sys-

tems at hospitals and emergency call-centers are easing the flow of medical records

and insurance information, and this problem of timely information flow is expected

to decrease over time.

The specific policy we analyze involves a change in the contract between the

federal government and hospitals, so that patients insured by Medicare/Medicaid

may be routed to hospitals with more room. In addition to full AD, we add a state

of partial diversion (PD), during which emergency medical services (EMS) personnel

route patients identified as having Medicare/Medicaid insurance to hospitals not on

diversion, either AD or PD. Physicians continue to make all medical decisions under

this approach, as recommended in the guidelines for AD ([20]).

We find conditions under which an alternative contract between the federal gov-

ernment and hospitals afford improvements in outcomes for patients, hospitals, and

the government, i.e. a Pareto improvement. We describe a practical method to route

patients during periods of high demand which may even out occupied capacity in
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hospitals in a given area. Limiting probabilities for a Markov process are derived in

order to show the potential effects, and data from DeKalb Medical Center in Atlanta

is used to parameterize a numerical example, as well as to provide the framework

for a simulation model. We use these quantitative analyses to estimate the scope for

improvement and to indicate expected long-run effects. Finally, we expand the simu-

lation to a two-hospital system, in order to demonstrate that more Medicare/Medicaid

and uninsured patients would be served under the new scheme.

4.2 Literature Review

The literature on hospital and emergency room overcrowding is growing with the

perception of incipient crisis ([82]), the core of which is a decrease in hospital capacity

over the last ten years as the number of ED visits increase. [131] give an overview

of hospital and ED overcrowding. More than six hundred studies were included in

a literature review of the problem of diversion, which is an indication of academic

interest ([114]). [114] point out that emergency departments constitute the designated

safety net for the health system, so the current lack of surge capacity is cause for

concern.

The American Hospital Association has documented the extent of the problem

([2]), showing that approximately half of ED’s are operating at or over capacity in

2006 (Figure 5), more than half of all urban and teaching hospitals are experiencing

at least some time on diversion (Figure 7), and the lack of beds in the main wards

is cited as the primary reason by slightly more than half the hospitals experiencing

some level of diversion (Figure 6).

The scope of the problem has grown significantly in recent years ([52, 131]), with

more than nine out of ten ED directors considered overcrowding a significant problem

([40]). In 2003, an estimated half million diversions occurred, while the overall volume

of ED visits was slightly more than sixteen million ([24]). Although this is primarily
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Figure 5: Hospital EDs at or over capacity
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Figure 6: Factors Cited as Number 1 Reason for AD
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Figure 7: Percent of Hospitals Reporting some time on AD in 2006
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a patient-safety issue, lost revenues is also considered a significant problem for many

hospitals ([67]). On a per patient basis, the revenues lost to hospitals from diversion

is estimated to average slightly more than one thousand dollars ([102]).

4.2.1 Overcrowding

Since the ED plays such a large number of roles in the U.S. health system, there are

a number of suggested reasons for the causes of overcrowding ([41]), including more

acute and complex cases presenting to the ED, increased patient volumes, and limited

resources. The causes of overcrowding of EDs may be decomposed into three sets of

problems, depending on where the patient flow is hindered ([52, 7]): i) the flow of

patients into the ED, ii) patients’ service times in the ED, and iii) the flow of patients

out of the ED. Note that the blockage of output from the ED to the main hospital,

i.e. boarding of patients in the ED, is considered a primary cause of over-crowding

([131]).

Instead of focusing only on a single hospital, several studies suggest that AD is

best seen as a system-wide problem ([90, 146]), since diversion at one hospital impacts

nearby hospitals. If one hospital goes on diversion, other hospitals have an incentive

to do so as well, to avoid an onerous increase in traffic. In a recent experiment,

two hospitals agreed to measure the impact on one hospital ED, when the other

committed to remain off diversion for a week ([148]). The effect was remarkable:

diversion hours fell from 19.4 and 27.7 to 1.4 and zero, respectively. A system-wide

collaborative approach in Sacramento, where the hospitals committed to working

together to manage patient flow, resulted in significant reductions in AD ([112]).

Collaborative efforts in Rochester, New York, saw some improvement ([132]), and a

24% reduction of hours on AD in Syracuse, New York ([90]).
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The studies that have been conducted support the contention that ED overcrowd-

ing and diversions are symptoms of a systemic problem ([114]). It follows that solu-

tions to the problem may be found outside of the ED itself, a point emphasized in

several studies ([91, 52, 131]). In this context, the rest of the hospital is considered

”outside of the ED”.

4.2.2 Proposed solutions to overcrowding

Increasing the number of beds, or creating systems to coordinate ambulance routing

among hospitals, are two potential solutions to overcrowding and AD. However, AD

itself is a method to handle overcrowding through a temporary reduction in input,

and there is evidence that AD does reduce ED overcrowding ([91]). However, it is

clearly not an ideal solution since it artificially removes access to an ED and thereby

reduces effective capacity. The most obvious way to increase throughput in an ED is

to add capacity. However, building new space is remarkably expensive, one estimate

putting the cost at approximately one million USD per bed ([110]).

Of the proposed solutions to increase the flow of patients from the ED, several

suggest increasing resources, such as ICU beds ([102]). In one hospital, increasing

ICU beds from 47 to 67 decreased average daily time on diversion from 3.8 to 1.4

hours ([103]). Better management of hospital beds, as opposed to simply increasing

the number of beds, is also expected to reduce ED overcrowding in general, and AD

in particular ([6]).

In addition to increasing resources, there are several suggestions for more flexible

use of assets. Selective diversions, e.g. for those patients that emergency medical

services (EMS) personnel believe are unlikely to need critical care ([116]), is one

possibility. A program to predict diversion may effectively preemptively divert in

order to avoid formal diversion ([49]). Information technology may provide decision

support systems to improve ED operations ([70]). In a straight-forward application

70



of internet technology, posting an up-to-the-minute workload schedule of EDs in the

Perth area was found to reduce the time spent on diversion by more than a third from

2002 to 2003 (specifically from 1788 to 1138 hours), despite an increase in demand

([138]).

Several operations management techniques have been used to help address the

problem of overcrowding ([5, 82]). For example, [97] make the point that most capac-

ity planning is done using average demand on resources, but ignores variability. This

immediately suggests that reducing variability in demand would be a viable method

to limit diversion, e.g. by scheduling elective surgeries ([97, 93]). [93] use a system

dynamics approach to simulate admission to acute hospitals, and found that elective

surgeries function as a safety valve in the UK, being canceled to allow ED patients

admittance.

4.2.3 Current recommendations

The American College of Emergency Physicians (ACEP) have issued Guidelines for

AD ([20]), which suggest that EMS agencies need working agreements to coordinate,

and diversion should be a temporary situation, managed systemically, and avoided

as much as possible. The guidelines explicitly allow for “selective diversion”, without

specifying this concept further. The guidelines suggest the decision to go on full

diversion should reside with the emergency physician at the ED, without being based

on financial considerations. We note that this point regards going on diversion in

any one particular instance. Since the capacity of a hospital or ED is fundamentally

dependent on financial resources, this caveat cannot extend to the system for hospital

management over time.

4.2.4 Incentives to change

The literature on overcrowding and AD documents the disparate incentives the vari-

ous participants operate under. Since it is unrealistic to expect a change in behavior
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that is contrary to a parties interests, we note some of the incentives.

The Institute of Medicine report ([82]) explicitly points out that hospitals have

few financial incentives “to reduce crowding”, and suggest that firm rules are needed

to avoid diversion. However, [104] estimate that each hour spent on diversion cost

one hospital $ 1,086 in foregone revenue.

To put the issue of ED overcrowding and AD in perspective, consider the benefits

from improving the situation. Waiting times for patients would be reduced, and

fewer patients would give up and leave without medical attention ([157]). Since any

hospital provided treatment must also be made available to ED patients, specialists

who now avoid the ED may be enticed back to providing emergency service, and

disaster preparedness would improve ([82]).

The system for responding to catastrophes is split between more than six thousand

911 centers, and there are no national training or certification for the responding EMS

personnel; nor is there any single federal agency responsible ([82]). The Institute of

Medicine (2006) points out that this fragmented system ensures limited accountabil-

ity.

4.2.5 Contribution

We propose to manage diversions through a flexible contract with the federal govern-

ment, which allows hospitals to selectively divert Medicare/Medicaid patients when

capacity is tight. Since the federal government is by far the largest purchaser of hospi-

tal beds, it has unmatched power to set terms for service, and this change is certainly

legally and practically feasible. On the operational side, EMS personnel would have

a simple and non-medical basis for choosing destination hospital.

Through the avoidance of shutting down hospital capacity, such flexibility would

allow patients to be spread more evenly among metro hospitals and decrease diver-

sion time. Since privately insured patients pay more, the hospital would benefit in
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terms of revenue, and a decrease in price for federal patients would allow a Pareto

improvement, even before the societal gains for reducing diversion is considered.

Compared to other suggested solutions, our proposal therefore increases the vol-

ume of patients served by avoiding diversion. Medical decision making is avoided in

the ambulance, speeding the decision making and reducing uncertainty. The change

is simple to implement, and does not require an increase in overall capacity. The

main drawback of this approach is a slight reduction in choice on the part of patients

selectively diverted from the hospital in question. Since we would only recommend

this method in urban areas with multiple hospitals, the mechanism would not send

patients outside of metro areas for emergency treatment.

To model this process, we use a continuous-time Markov process framework and

derive limiting probabilities, which indicate the proportion of time a hospital spends

on diversion. In order to illustrate the impact, we use data from an urban hospital

(DKMC) to examine the scope for improvement, and apply this data to numerical

examples. We then use the data and analysis as input for a simulation to gauge the

revenue implications of this approach. Finally, we simulate a two-hospital system

in order to show that more patients from every class are served under the partial

diversion scheme as compared to current practice.

4.3 Assumptions and model formulation

In order to model the hospital’s occupancy as a continuous time Markov process, we

make several assumptions. We then define the state space, and formulate the model.

4.3.1 Assumptions

1. Base case assumptions:

(a) The main ward of the hospital has a fixed number of beds: N .

(b) There is no overflow capacity, i.e. no beds are placed in hallways.
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(c) The hospital is operating in a metropolitan statistical area, with multiple

ED’s available to accept patients.

(d) The hospital is private, and does not function as the last resort for an area.

Some public hospitals cannot go on diversion, and so this model will not

apply to them.

(e) The hospital will go on full diversion only when at capacity, and remains

on full diversion until some slack develops, specifically until the number of

beds occupied is M < N . This is an interpretation of an oral description

of the policy at DKMC [78], and is not to be taken as fixed or permanent

policy.

2. Partial diversion assumption:

(a) Under the more flexible contract between the hospital and the federal

government, the hospital may go on partial diversion earlier than at full

capacity, in order to avoid full diversion. We specify K < N , and allow

the hospital to selectively divert all patients except those with private

insurance when the patient population has reached size K. This reduces

the arrival rate to γ < λ. It is realistic to have multiple types of diversion,

and the only new aspect to this assumption is that patients are routed

to hospitals depending on federal insurance. Routing is already partially

determined by insurance, so this assumption is only a small change in

standard operating procedure.

3. Technical assumptions:

(a) There are two classes of patients in this model, a high revenue class con-

sisting of the privately insured patients, and a low revenue class, made up

of Medicare/Medicaid and uninsured patients.
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(b) Arrivals follow a Poisson process with rate λ, and service times are ex-

ponentially distributed with mean µ, with no dependence on the revenue

class of the patient. With a sufficiently large metropolitan area, there is

reason to assume arrivals are independently distributed with exponential

inter-arrival times.

(c) Every state is recurrent and the continuous-time Markov chain is irre-

ducible, so the Markov chain is ergodic. This means that if the hospital

runs long enough, every bed occupancy level (X) will take place, and the

hospital will spend some time on, as well as off, full diversion. This as-

sumption assures the existence and uniqueness of the limiting probability

distribution ([125]).

4.3.2 State Space and Notation

We indicate that the hospital is on full diversion with ∆ = 1, and off full diversion

with ∆ = 0. Xε{0, ..., N} captures the number of beds occupied. The states are fully

specified by the number of beds occupied, and whether or not the hospital is on full

diversion: Ω = {0, 1} × {0, ..., N}. The states may therefore be visualized as on a

chain of nodes, with one loop for diversion (see Figure 8). Each node is specified by

the number of beds occupied, and whether or not the hospital is on full diversion. In

the following, when the state is off diversion, we often denote the node using only the

number of beds occupied.

The hospital goes on partial diversion at K beds occupied, on full diversion when

all N beds have patients, and back off full diversion when M beds are full. The

notation for the model is summarized in Table 16.

We expect significant fluctuations in patient demand and occupancy, but since we

are interested in the long-run behavior of the model, we focus on limiting probabilities.
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Figure 8: Partial Diversion Patient Flow
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Table 16: Notation

N The number of beds in the hospital. We assume the hospital goes on
full diversion when capacity is reached.

M Diversion limit, the number of beds occupied when hospital goes off
diversion.

K Capacity protection, when the hospital enters selective diversion.
X Number of beds occupied.
λ Arrival rate of patients.
γ Arrival rate of high-revenue patients (γ < λ).
µ Departure rate of patients.
∆ Indicator variable equal to 1 when the hospital is on full diversion, and

zero otherwise.
Ω State space; Ω = {0, 1} × {0, ..., N}.
Pi,∆ Limiting probability of being in state [i, ∆].
Pi Limiting probability of being in state [i, ∆ = 0].

ρj Helper parameter, equal to λ
jµ

θj Helper parameter, equal to γ
jµ

φ Helper parameter, equal to µ
γ

Γ Helper parameter, equal to
∑N−K−1

i=0
(K−i)!

K!
φi

4.3.3 Model

The limiting probabilities are characterized by the balance equations, which are based

on the fact that for an ergodic continuous-time Markov chain, the number of exits

and entries to a state must be equal. We specify the balance equations and present

the solution as the limiting probabilities for the system, or the long-run proportion

of time the system will be in a given state. We first provide a small example in order

to motivate the discussion.

4.3.4 Small-Scale model

The simplest model that would exhibit the behavior of interest is a hospital with only

two beds. The arrival rate overall is λ, and once one bed is occupied, only a subset

of patients are brought in. The arrival rate with one bed occupied is therefore lower,

and we denote the new arrival rate as γ, such that γ < λ. Since N is equal to 2,
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diversion sets in when the hospital is full, and there is only one other state in the

state space, namely when one bed is occupied while the hospital is on diversion [Node

(1,1)]. This gives the following set of balance equations:

Node(0) : µP1 + µP1,1 = λP1 (32)

Node(1) : λP0 = µP1 + γP1 (33)

Node(2) : γP1 = 2µP2 (34)

Node(1, 1) : 2µP2 = µP1,1 (35)

The solution is:

P0 =
2µ(µ + γ)

2µ(µ + γ + λ) + 3γλ
(36)

P1 =
2λµ

2µ(µ + γ + λ) + 3γλ
(37)

P2 =
λγ

2µ(µ + γ + λ) + 3γλ
(38)

P1,1 =
2γλ

2µ(µ + γ + λ) + 3γλ
(39)

(40)

This small model suggests some qualitative results which also hold in the full-scale

model. If we consider that selective diversion boils down to selecting an arrival rate γ

to limit the time spent on diversion, then the marginal effect of γ on the time spent

on diversion, P1,1, is as follows:

∂P1,1

∂γ
=
( 2λ

2µ(µ + γ + λ) + 3γλ

)[
1− γ(2µ + 3λ)

2µ(µ + γ + λ) + 3γλ

]
(41)

Since γ, λ, µ > 0, 2µγ+3γλ
2µ2+2µγ+2µλ+3γλ

< 1, both factors in Equation (41) are positive,

i.e., increasing the arrival rate while on selective diversion increases the time on full

diversion. This intuitive result is illustrative of the greater issue: by managing the
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distribution of patients such that hospitals on the verge of full diversion are partially

shielded, full diversion with its concomitant problems are avoided some portion of

the time. In order to assess the scope of this method, but with a full-scale model, we

refer to our numerical example (see Section 4.4).

We also observe that since γ < λ for all hospitals accepting Medicare/Medicaid

patients under the proposed new contract, the added flexibility of applying a selective

diversion limit of K means the hospital may improve its performance either in revenue,

or time spent off diversion, or both. Since the federal government may decrease the

reimbursement rate for hospitals who choose this option, some of the benefit would

accrue to tax-payers. Therefore, given our assumptions, the added flexibility this

scheme provides affords a Pareto improvement for the parties to the system.

4.3.5 Full-Scale Model

We now turn to the full-scale model. Using the same approach as in the smaller

model, but relegating the details to an appendix, we specify the balance equations,

solve in terms of P0, then normalize to find the limiting probabilities. The results are

provided in Table 19, in the appendix.

The full-scale model is qualitatively similar to the small-scale model. Under con-

ditions of significant demand, we find that the system spends most time close to

capacity, and with a significant amount of time spent on full diversion. Figure 9

shows the probabilities for states off diversion, and Figure 10 shows the probabili-

ties on diversion. These two figures represent a single probability distribution, using

specific numbers, as described in Section 4.4.

The derived limiting probabilities show that the system will suffer from diversion

if arrivals dominate departures. Since the patients have exponential service times, the

rate of discharge is proportional to the number of beds occupied, Xµ, so a low arrival

rate gives occupancies below capacity, and it is only when arrival rates dominate
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discharge rates at high occupancy that diversion became a significant issue. Also, as

expected, when γ is significantly smaller than the overall arrival rate, λ, the greatest

effect from selective diversion is found.

4.4 Numerical example

To illustrate the system and gain some intuition, we construct a numerical example

based on a scaled-down version of DeKalb Medical Center in Atlanta, Georgia. We

set the number of hospital beds to N = 100 (reduced from 535 beds), the level of

occupancy when diversion ends to M = 90, the arrival rate at λ = 12, the rate of

discharge at µ = 0.10, and the rate at which the privately insured patients arrive at

γ = 2. The limiting probability distribution is illustrated in Figure 9 for when the

hospital is off diversion, and Figure 10 for states on diversion.

To examine the effects of different levels at which selective diversion begins, we

varied parameter K, from M to N . For all practical purposes, reserving just a few

beds drove time spent on full diversion to zero (see Figure 11).

We therefore find that selective diversion has the potential to impact time spent

on diversion. In order to assess the incentives for the hospitals, we take into account

revenue, as well as the occupancy rates. We turn to empirical data to provide the input

to a simulation to assess occupancy and revenue. The rationale for using simulation

is that the problem becomes intractable when we add revenue. While the state space

without revenue classes is of size 2N − M , even with only two revenue classes each

occupancy level may hold from 0 to its level of one patient type, and so the size of the

state space grows to 1
2
((N + 1)(N + 2) + (N −M − 1)(N + M + 2)). In our example,

with N = 100 beds and an occupancy level to go off diversion of M = 90, this gives

13695 states.
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Figure 9: Limiting Probabilities for states off diversion
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Figure 10: Limiting Probabilities for states on diversion
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Figure 11: Diversion Time by Capital Protection Level
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4.5 Empirical Study

4.5.1 Data

The data was comprised of 140,720 records from 27,002 anonymous patients based

on 459 days from an Dekalb Medical Center in Atlanta Georgia, which supplies more

than thirty thousand services with individual charges ([78]). These data include all

the patients who had their entire stay within the period of 28 March, 2004, and 30

June, 2005, so we stripped one hundred days from the beginning and end of the

data-set in order to avoid the problem of understating occupancy levels. We did not

have access to diversion times, but did have access to both the lengths-of-stay, the

financial class of the patient, and the actual charges. These were calculated based

on the percentage collected of the nominal charges, which were as low as 0.4% for

one group of patients. The DeKalb Medical Center financial class corresponds to our

broader designations of privately insured (HMO), Medicare/Medicaid, and uninsured.

Mean lengths of stay per type of patient varied from 1 to 140 days, while the

average amount collected by type of patient varied from $7 to $774. The mean length

of stay was 5.18 days, with a standard deviation of 7.73 days, and with an average

collection of $3,516.51 (standard deviation $7118.16), which corresponds to an average

per day charge collected of $679.41.

4.5.2 Simulation

For the simulation, we begin with an initial patient population drawn from the dis-

tribution of patients in the hospital data. We assume exponential arrival and service

times, but use the sample mean inter-arrival and service times to calibrate.

The hospital beds are filled on a first-come first-served basis, and when the hospital

reaches capacity of 100 full beds, it ceased to accept patients, until there are 10 free

beds (M = 90). The illustrative choice of M should be sufficiently smaller than N to

provide some breathing space for the hospital. We then test various occupancy levels
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Figure 12: Revenue by Capital Protection Level

at which to go on partial diversion, K, usually from M to N . As an experiment,

we also investigate the effect of allowing K to be less than M , to a minimum of 75.

To improve the validity of the comparisons, we use common random numbers for the

inter-arrival times and service times.

For brevity, we denote the number of beds reserved “Capital Protection Level”,

or “CapProt” in the figures. As indicated in Figure 12, there does not appear to be

much effect when just a few beds are reserved, suggesting that the revenue effect is

modest.

The effect on time spent on diversion is more striking. Figure 13 shows how

the time spent on diversion falls to nearly zero with eight beds reserved for partial

diversion. This compares to an average time on diversion without partial diversion of

12.42 days out of 100. The results for eight beds for a simulation of 100 runs of 100

days are shown in Table 17.
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Figure 13: Diversion Time by Capital Protection Level

We run the simulation for CapProt = 25 beds to illustrate that neither the hos-

pital nor the patients benefit from reserving too many beds: the utilization rate falls,

and revenue does as well. Diversion time when 25 beds are reserved falls to an actual

value of zero in the simulation, but that compares to 0.14 days out of 100 with 8 beds

reserved. When compared to 12.41 without this partial diversion, we consider 8 beds

reserved sufficient to resolve the problem in practice.

The difference in total number of patients served, from 1388 under no partial

diversion, to 1380 with 8 beds reserved (K = 92) is not statistically significant. Since

the different groups of patients stay different time periods, however, we note that the

mean number of patients in the hospital falls slightly, from 91.9 to 89.84, which is

statistically significant (p ≈ 0).

To give the hospital an incentive to introduce this scheme, the revenue effect

is crucial. With 8 beds reserved, revenue increases from $671,976 (s=170,624) to
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Table 17: Simulation Results for DeKalb Medical Center

Mean Num-
ber of Pa-
tients (SD)

Total
HMO
Patients

Total
M/M
Patients

Total
Unin-
sured
Patients

Total
Pa-
tients

Without Capac-
ity Protection

91.9 (0.61) 541 686 161 1388

Capacity Protec-
tion of 25

74.7 (0.34) 692 383 88 1163

Capacity Protec-
tion of 8

89.84 (0.45) 688 560 132 1380

$714,217 (s=143,670). The p-value for the one-tailed t-test that revenue did not

increase was 0.02986, leading us to conclude that this change improves both metrics

of performance: time spent on diversion, and revenue for the hospital. Note that

revenue actually falls to $667,919 if the capacity level is increased one more bed,

to nine. This suggests that hospitals may welcome the flexibility to go on partial

diversion, but have a financial incentive to limit its use.

To complete the investigation we consider the effects on patients in the group

selectively diverted. If these suffer, we cannot argue that the scheme is a Pareto-

improvement. Since we cannot show the effect on these patients in a simulation

with a single hospital, we investigate the potential for improvement in a system of

only two hospitals. Note that with only one other hospital, neither will use partial

diversion if the other is on full or partial diversion, so the potential for improvement

is at its most limited with only two hospitals. To retain comparison with the single

hospital simulation, we use two identical hospitals with N = 100 beds each, going

off full diversion at K = 90 beds occupied, and with identical policies. We run the

simulation over 400 iterations over a period of one year.

As we can observe from Figure 14, the total number of patients served increases for

small levels of CapProt, but as expected, this benefit declines rapidly with increasing
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Figure 14: Medicare/Medicaid and Uninsured Patients served in a two-hospital
system using partial diversion

numbers of beds reserved. We test the null hypothesis that the mean number of

Medicare/Medicaid and Uninsured patients does not increase for CapProt = 4 versus

the base case: µCapProt=4 − µCapProt=0 ≤ 0. This t-test gave a p-value of 0.014.

Although this increase is small, since this scheme is primarily aimed at increasing the

total number of patients served, as well as hospital revenue, any increase is a bonus.

In addition, if the partial diversion scheme is Pareto improving for two hospitals, it

will also be improving for systems with more than two hospitals.

4.6 Conclusion

Currently there are a number of policies on diversion, and various causes of ED

overcrowding. With few spare beds in the main hospital wards, patients are often

boarded in the ED, a common cause of diversion. The policy in the base model has

the hospital go on diversion at capacity, then remain on diversion until some specified
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capacity has become available.

Our proposed model allows a hospital to go on partial diversion when capacity

has become tight. Specifically, we suggest the federal government allow hospitals

to selectively divert Medicare/Medicaid patients at a critical level, but prior to full

capacity. Some of the possible objections to our partial diversion scheme are:

• Contracts cannot be changed over a large enough group of hospitals to make a

difference. On the contrary, since the contracts are between hospitals and the

Federal government, the latter has both the power and the reach needed.

• Ambulance routing should be made only on the basis of patient preferences and

medical conditions. However, routing is already made based in part on patient

preferences, and the routing of patients based on insurance information saves

EMS personnel from making medical decisions the ACEP guidelines reserves

for physicians.

• Financial decisions have no place in patient care. In reality, financial decisions

already impact patient routing and care, especially in the routing of uninsured

patients. Our proposed change would merely acknowledge this aspect of our

health system. Since financial resources are required to extend treatment, we

regard wanton waste of medical resources detrimental to social welfare.

• There may be no other hospitals available. However, we explicitly reserve the

method to Metropolitan Statistical Areas (MSAs) ([146]) with multiple hospi-

tals. Two hospitals in a region would suffice, as a decrease in diversion in one

has been shown to significantly decrease diversion for the other ([148]). Since

the method decreases overall diversion, more hospitals will be off diversion, on

average. We confirmed this effect of our policy with the two-hospital simulation.

Emergency departments in the U.S. are required by law to stabilize patients,

regardless of their ability to pay. Many hospitals go much further, providing treatment
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with little expectation of remuneration. It is important, therefore, to distinguish

between policies and individual decision-making.

The change we are proposing is a systemic one, which simply uses one of the few

non-medical criteria that hospitals have, in order to route a patient. It does not

suggest that patients who pay less be denied care, only that they be routed to a less

congested hospital. Since the change introduces one more degree of freedom, it is a

truism that the system cannot perform worse if properly utilized. We have shown that

if this is done, benefits may accrue to the hospitals, the government and taxpayers,

and even to the general public, through the knowledge that EDs are less likely to be

on full diversion.

To summarize, the primary benefits of partial diversion are:

• Patients benefit from less congested EDs and more decisive routing.

• Government and tax-payers may benefit by extracting some of the added rev-

enues in the form of lower Medicare/Medicaid disbursements. Disaster pre-

paredness is enhanced from the decrease in full diversion.

• EMS personnel have a simpler decision and a emergency response system that

spends less time on full diversion. A follow-on benefit is that since insurance

is being used to direct patients initially, there should be less insurance-related

shuffling of patients to other hospitals after the initial emergency.

• Hospitals benefit from the added revenue gained when they operate near capac-

ity, as well as the increased time spent off full diversion.

We consider the problem of diversion from the standpoint of one hospital, even

though it is assumed to be in an MSA. One key factor that we did not explicitly model

is that each hospital has an incentive to defect, rather than to cooperate. Nevertheless,

given the purchasing power of the federal government, and that systems of hospitals
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have successfully come together to manage emergency care and reduce AD in the

past, we believe that our proposed method has promise.

ED overcrowding has many causes and will require several solutions to solve the

problem entirely. However, when this approach fits the problem, it has the advantages

of being simple, feasible, and effective.
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CHAPTER V

CONCLUSION

In this dissertation, we have addressed three problems out of many. The US system is

characterized by a large number of participants, in contrast to countries with universal

coverage. In addition to patients and doctors, hospitals, HMO’s, State and Federal

government, and others all play roles. These entities have divergent incentives, and

this includes financial motives, even if the public health ethos demands that this

aspect be ignored.

The problems in the system are possibly dominated by two: the spiralling cost of

care, and the large fraction of the population without coverage. Cynics may argue

that a lack of care is a personal preference, but given the tax structure, the government

has made care differentially easy to obtain, obviating this argument. Further, many

members of the public are troubled by those who suffer from medical catastrophe,

especially through no fault of their own. Hence there is a public good problem with

health.

The fact that the public has an interest in each citizens health, leads to several

more questions. First, what is the role of government in health? We have not tried

to answer that question, although the explosive cost spiral we found in our model

suggests that the current system is suboptimal. The yearly contracts for health care

mean that preventive care is underemphasized from the perspective of HMO’s and

patients, and the public would benefit from a greater emphasis on prevention. The

government could, for instance, provide more preventive care.

Whenever government has to decide how to prioritize services, financial incentives

come into the decision. And in order to balance these monetary considerations, we
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must consider how to measure the outcomes. These outcomes may be quality adjusted

years of health, rather than just extended life, but some form of outcome must be

captured in order to assess cost versus benefit. Currently, simply measuring results is

controversial, as many health care providers fear a tendency to cherry-pick patients.

These are some of the larger questions of how to structure health care delivery

in the U.S. Our problems are somewhat more limited, and with limited solutions.

Nevertheless, each of these chapters lead to future work.

We consider aligning incentives over time, and with multiple players, to be the

core question in chapter one. There are a number of games where the principal-agent

framework is insufficient, and health, with e.g. patient-doctor-hospital, is a prime

source of such problems.

Ambulance diversion is one problem tied to the decrease in hospital beds and

increase in crowding. There are a number of other operations management tech-

niques that may be brought to bear on managing the flow of patients through ED’s

and hospitals. On a larger scale, we may model the entire system of hospitals in a

metro area, in order to distinguish between incentives to go on or off diversion. The

game theoretic aspects of a system of hospitals, as well as system-wide agent-based

simulations, is a natural next step in this research.

The work on health care associated infections is ongoing at a number of insti-

tutions. We expect to build models for multiple hospitals, including Cook County

Hospital, Scottish Rite (Children’s Healthcare of Atlanta), and Athens Regional, and

use these to build a cost-benefit analysis of regulation of HAI’s.

Beyond the foreseeable problems in health, we can imagine problems where ge-

netic manipulation leads to true superbugs. Resistance itself may evolve in already

existing pathogens, or biological weapons laboratories may leak deadly organisms.

The encroachment on natural habitat may lead to increased outbreaks of diseases

with wild reservoirs, e.g. Ebola. On a more positive note, genetic manipulation are
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expected to lead to new therapies, and the increasing flow of people around the world

is making health care delivery a global industry. It would therefore be surprising if

the flow of health care associated research questions evaporated.
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APPENDIX A

PROOFS OF THEOREMS FOR REPEATED

NEGOTIATIONS

Proof of Theorem 1: The necessary conditions for optimality ([83]) are:

K̇ = bK + qPK − aP 2 (42)

λ̇ = −HK (43)

HP = 0 (44)

Since the multiplier function represents the shadow price of capital, it is restricted

to λ(t) ≥ 0 ([141]). This also ensures that the second order necessary condition,

HPP = −2a(me−rt + λ) ≤ 0 is met, so any solution maximizes profit. Note that the

subscript on the Hamiltonian function H indicates a partial derivative with respect to

the subscripted variable. The first equation is simply the control equation. Evaluating

HK gives the second equation as:

λ̇ = −(e−rtmqP − λ(b + qP ))

This simplifies to:

λ̇ + λ(b + qP ) = −e−rtmqP (45)

Finally, the third equation simplifies substantially:

e−rt(mqK − 2maP ) + λ(qK − 2aP ) = 0

(me−rt + λ)(qK − 2aP ) = 0
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But this product can only be zero if one or the other factors are zero, one of which

is precluded by the positive value of capital at all times. Assume me−rt + λ = 0, so

that λ = −me−rt < 0, contrary to assumption. This leaves the second factor equal

to zero, or qK = 2aP . Solving for P(t) yields:

P (t) =
q

2a
K(t) =

q

2Ac(1 + m)
K(t) (46)

Note that this states the price will increase proportionally with the capital stock,

which is intuitive if we observe a spiral of ever-increasing prices, while the supply of

medical services, dependent on the capital stock, only increases. This is in contrast to

conventional markets, in which additional supply usually implies at least some decline

in price.

We insert this solution (46) into the control equation:

K̇ = bK + q(
q

2a
K(t))K − a(

q

2a
K(t))2

Collecting terms gives:

K̇(t) = bK(t) +
q2

4a
(K(t))2 (47)

and rearranging:

K̇ − bK − q2

4a
K2 = 0 (48)

which is Bernoulli’s equation ([18]). We substitute K = Zy ⇒ K̇ = yZy−1 · Ż, which

yields:

yZy−1 · Ż − b(Zy)− q2

4a
(Zy)2 = 0

This in turn gives:

Ż − b

y
Z − q2

4ay
Zy+1 = 0

Since we have an additional degree of freedom, we now choose y = −1, which finally

gives us a first order non-homogenous ordinary differential equation:

Ż + bZ +
q2

4a
= 0 ⇔ Ż + bZ = − q2

4a
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Using an integrating factor of ebt we arrive at:

Żebt + bZebt = − q2

4a
ebt

(Zebt)′ = − q2

4a
ebt

Integrating on both sides with respect to time gives:

Zebt = − q2

4a

(
− 1

b
ebt
)

+ C1

and dividing by the integrating factor yields:

Z(t) = C1e
−bt − q2

4ab

However, we recall that we chose y = −1 and so had K = Z−1, which means

K(t) =

(
C1e

bt − q2

4ab

)−1

We apply the boundary condition K(0) = K0 and find that

C1 =
1

K0

+
q2

4ab

Finally, we have the solution for capital given in 9. Inserting this into the equation

for price (46) gives a solution for price only as a function of time and initial capital

given in 10.

Inserting the solution for price (10) into (45) give a general linear ordinary differ-

ential equation for the multiplier:

λ̇ + λ

(
b +

2K0bq
2

(4ab + K0q2)e−bt −K0q2

)
=

2K0bmq2e−rt

K0q2 − (4ab + K0q2)e−bt

We define the following helper functions:

G(t) = b +
2K0bq

2

(4ab + K0q2)e−bt −K0q2

f(t) =
2K0bmq2e−rt

K0q2 − (4ab + K0q2)e−bt
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This shortens the multiplier equation to:

λ̇ + λG(t) = f(t)

We introduce the integrating factor eA(t), chosen so that it will simplify the multiplier

equation, i.e. so that

d

dt
(λeA(t)) = λ̇eA(t) + λȦeA(t) (49)

To force this, we require Ȧ(t) = G(t). Therefore, we solve A(t) =
∫

G(t)dt. In-

tegrating b is trivial, and integrating the second part of G(t) is aided through the

substitution u = 4ab + K0q
2 − K0q

2e−bt. We may select the arbitrary integration

constant to make the equation as simple as possible, and therefore set it to zero.

This results in

A(t) = bt− ln[(4ab + K0q
2 −K0q

2ebt)2] (50)

Inserting into the equation for the multiplier (49) gives λeA(t) =
∫

f(t)eA(t)dt + C.

We assume A(t) finite, so that the general solution is given in 11.

Proof of Theorem 2: Equation 27 gives price as proportional to capital, which

compares to the monopoly solution

46:

P (t) =
q(e−rtm + 2λ)

a(3me−rt + 4λ)
K(t) (51)

In addition to remaining proportional to capital, we also note that if λ(t) = 0, or there

is no additional benefit to investing in capital, then P (t) = q
3a

K(t) < q
2a

K(t). While

there is a positive marginal value of capital investment, i.e. λ(t) > 0,P is further

attenuated because q, a, m and e−rt are all positive, so q(e−rtm+2λ)
a(3me−rt+4λ)

< q(e−rtm)
a(3me−rt)

= q
3a

,

and the results follow.

Proof of Theorem 3: First, we find the partial derivatives:
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HK =
miqPiPe−rt

(N − 1)P + Pi

+ λ

[
b +

qp(N − 1)

N
+

qPiP

(N − 1)P + Pi

]

HPi
=

mie
−rt
[
(N − 1)qKP 2 − 2a(N − 1)P 2Pi − aPPi

2
]

[(N − 1)P + Pi]2

Notice that HP is composed of three factors, the first and third of which are pos-

itive. Therefore, the third optimality condition, HP = 0, together with the require-

ment of positive prices, gives Pi = a−1
√

a2(N − 1)2P 2 + aPqK(N − 1)− (N − 1)P .

But if this is to be a Nash Equilibrium (NE), we require that Pi(t) ≡ P (t), which

upon insertion yields:

P =
q(N − 1)

a(2N − 1)
K (52)

This indicates that the optimal price is once again proportional to the capital

stock. Moving to the issue of whether or not capital growth is once again explosive,

we assume a NE in N identical payers with P = q(N−1)
a(2N−1)

K and ai = a. Inserting into

the capital growth equation and simplifying gives:

K̇ = bK +
q2

a

N(N − 1)

(2N − 1)2
K2 (53)

Even assuming no growth in external demand, or technological change, this expres-

sion is zero only for K = 0 or for K = −bAc(1+m)(2N−1)2

q2N(N−1)
, which is negative, provided

b > 0. Therefore, with that assumption and based on the capital growth equation,

the stock of capital will grow without bound even with N identical payers.

99



APPENDIX B

ADDITIONAL DATA AND NUMERICAL RESULTS FOR

HEALTH-CARE ASSOCIATED INFECTIONS

SIMULATION

OLS Output

Table 18: Excel OLS output for Total Cost regressed on LOS and HAILOS

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.939
R Square 0.8819
Adjusted R Square 0.8807
Standard Error 13301.08
Observations 211

ANOVA
df SS MS F Significance F

Regression 2 2.75E+11 1.37E+11 776.46 3.32E-97
Residual 208 3.68E+10 1.77E+08
Total 210 3.12E+11

Coefficients Standard Error t Stat P-value
Intercept 3028.81 1477 2.050559 0.041564
HAILOS 445.9 113.0168 3.945 0.000109
LOS 1944.186 125.4174 15.50172 1.55E-36
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APPENDIX C

DERIVATION OF LIMITING PROBABILITIES FOR THE

FULL-SCALE MODEL IN THE AMBULANCE

DIVERSION ANALYSIS

The limiting probabilities are presented in table 19. Notation used in the model is

defined in Table 1. In order to find the limiting probabilities in table 19, we present

the balance equations in Table 20. Note that all other states are impossible, i.e. their

limiting probabilities are zero. We now use the balance equations to solve for the

limiting probabilities in terms of the parameters.

State (0, 0) yields :

µP1 = λP0 ⇔ P1 =
λ

γ
P0 = ρ1P0 (54)

Similarly, state (0, 1) gives:

λP0 + 2µP2 = (λ + γ)P1

2µP2 = (λ + γ)P1 − λP0 = λP1

P2 =
λ

2γ
P0 = ρ2ρ1P0 (55)

The use of the previous state to cancel out one part of the equation follows through

up to and including M − 1 beds occupied:
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∀lε1, . . . ,M − 1 : Pl = P0

l∏
i=1

ρi (56)

Note especially that this is also true for state (0, M − 1). Once even more beds are

filled, the situation changes. Leaving aside (0, M), consider the balance equation for

M + 1 beds occupied:

(M + 2)µPM+2 + λPM = λPM+1 + (M + 1)µPM+1

PM+2 = ρM+2(PM+1 − PM) +
(M + 1)

(M + 2)
PM+1 (57)

This pattern holds up to K − 1 beds occupied:

PK = ρK(PK−1 − PK−2) +
(K − 1)

(K)
PK−1 (58)

For state (0, K), however, the selective diversion causes the balance equation to

shift:

(K + 1)µPK+1 + λPK+1 = γPK + KµPK

PK+1 =
γ

(K + 1)µ
PK − ρK+1PK−1 +

K

K + 1
PK

PK+1 = θK+1PK − ρK+1PK−1 +
K

K + 1
PK (59)

This pattern holds until there are two beds available, but at state (0, N − 1), there

are only two paths out: to full capacity and diversion, or back to N − 1 occupancy:
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γPN−2 = (γ + (N − 1)µ)PN−1

PN−1 =
γ

γ + (N − 1)µ
PN−2 (60)

For state (1, N), we have one arrival and one departure:

γPN−1 = NµPN ⇔ PN =
γ

Nµ
PN−1 (61)

The states under diversion are simpler, since there are only departures. So for

state (1, N − 1), we have:

NµPN = (N − 1)µPN−1,1 ⇔ PN−1,1 =
N

N − 1
PN (62)

This pattern is followed for the remainder of the states, i.e. ∀iεM + 1, . . . , N − 1:

Pi,1 =
i + 1

i
Pi+1,1 (63)

We finally note that the sum of the state probabilities must be one:∑
iε{0,1}X{0,...,N}

Pi = 1 (64)

In order to solve the equations above, we simplify the notation somewhat, intro-

ducing q = PN−1,0. For the states in diversion we have only patients leaving, which

we solve for q:

PN =
γ

(Nµ)
PN−1 = θNq (65)

PN−1,1 =
N

N − 1
PN = θN−1q (66)

... (67)

PM+1,1 = θM+1q (68)
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The situation during selective diversion is twice as complex, having two entering

and two departing flows. For state (0, N − 1), we have:

PN−1 =
γ

γ + (N − 1)µ
PN−2 (69)

PN−2 = (1 + θ−1
N−1)PN−1 = q + θ−1

N−1PN−1 (70)

Similarly, solving for PN−3, we find:

PN−3 = (1 + θ−1
N−2 + θ−1

N−2θ
−1
N−1)q = q + θ−1

N−2PN−2 (71)

We assume PL = q + θ−1
N−2PL+1 and solve for PL−1, using the balance equations

for the Lth node on selective diversion:

γPL−1 + (L + 1)µPL+1 = LµPL + γPL

γPL−1 +
(
γPL + (L + 3)µPL+3 − γPL+2

)
= LµPL + γPL

γPL−1 = LµPL + γ(q + θ−1
L+3PL+3)− (L + 3)µPL+3

PL−1 = q + θ−1
L PL (72)

(L + 1)µPL+1 = γPL − γq (73)

Here we have used both the balance equation for node L + 1 and the induction

hypothesis. Applying this equation (72) multiple times, we find that we can state PL

in terms of q:

104



PL = q[1 + θ−1
L+1 + θ−1

L+1θ
−1
L+2 + . . . + θ−1

L+1 · · · θ
−1
N−1] (74)

Inserting for µ and γ, we simplify this to:

PL =
q

L!

N−L−1∑
i=0

(L− 1)!(
µ

γ
)i =

q

L!

N−L−1∑
i=0

(L− 1)!φi (75)

This pattern continues for lower occupancies, giving every limiting probability through

PK , until the critical Kth node is reached. Then entry is at the full λ rate, while exit

is at a rate of γ.

λPK−1 + (K + 1)µPK+1 = KµPK + γPK

Inserting equation (73), this simplifies to:

λPK−1 +
(
γPK − γq

)
= KµPK + γPK

Cancelation gives:

PK−1 =
γ

λ
q +

Kµ

λ
PK =

γ

λ
q + ρ−1

K PK (76)

Except for the first term, this is the same form as for when selective diversion was in

place. Inserting for PK , in order to solve in terms of q, we find:

PK−1 = q

[
γ

λ
+ ρ−1

K

N−K−1∑
i=0

(K − i)!

K!
φi

]
(77)

For notational ease, we introduce Γ:

Γ =
N−K−1∑

i=0

(K − i)!

K!
φi (78)

A similar pattern then asserts itself for occupancies down to X = M + 1. We

begin with state (0, K − 1):
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λPK−2 + KµPK = (K − 1)µPK−1 + λPK−1

λPK−2 + (λPK−1 − γq) = (K − 1)µPK−1 + λPK−1

PK−2 =
γ

λ
q + ρ−1

K−1PK−1

PK−2 = q

[
γ

λ
+ ρ−1

K−1

γ

λ
+ ρ−1

K−1ρ
−1
K Γ

]
(79)

We solve for PK−3 and find:

PK−3 = q
γ

λ
+

µ(K − 2)

λ
PK−2 (80)

PK−3 = q

[
γ

λ
+ (K − 2)

µγ

λ2
+ (K − 2)(K − 1)

µ2γ

λ3
+ (K − 2)(K − 1)K

µ3Γ

λ3

]
As a practical solution method, equation(80) is simpler to solve in sequence. In

general, however, we can solve for each occupancy Lε{M, . . . , K − 1}:

PL = q

[
K−L−1∑

i=0

γµi

λi+1

(L + 1)!

(L + 1− i)!
+ (L + 1)(L + 2) · · ·K

(µ
λ

)K−L
Γ

]
(81)

For state (0, M), however, we have five flows. We insert for PM+1,1 using equation

(65), and the usual derivation yields:

PM =
γ

λ
q + ρ−1

M+1PM+1 ⇔ PM+1 =
λ

(M + 1)µ
PM − γ

(M + 1)µ
q (82)

These two, inserted into the balance equation for state (0, M) yield:

λPM−1 + µ(M + 1)PM+1 + µ(M + 1)PM+1,1 = λPM + MµPM (83)
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PM−1 = q

[
1− γ

(M + 1)µλ
+Mµ

(K−M−1∑
i=0

γµi

λi+1

(M + 1)!

(M + 1− i)!
+
(K−M∏

j=1

(M+j)
)(µ

λ

)K−M
Γ
)]

(84)

Define C1 such that PM−1 = qC1 above. This gives us two equations for PM−1,

namely (84) and (56) which means we may solve for q in terms of P0:

qC1 = PN−1,0C1 =

(M−1∏
l=1

ρl

)
P0 (85)

q = C−1
1

(M−1∏
l=1

ρl

)
P0 (86)

Through q, P0 and equation (86), we therefore have every limiting probability in

terms of parameters and P0, and so can use the fact that the sum of all the limiting

probabilities must sum to one to finally solve the system. There are N + 1 limiting

probabilities off full diversion, and N − M − 1 on full diversion, yielding 2N − M

probabilities in all:

P0 + P1 + . . . + PM + . . . PK . . . + PN + PN−1,1 + . . . PM+1,1 = 1 (87)

This does not simplify in a fruitful way, so we use the numerical example to

illustrate (see Section 4.4).
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Table 19: Limiting Probabilities for the Full-Scale Model

Limiting Probabilities
P0 is the normalizing probability

PN−1 = q = C−1
1

(∏M−1
l=1 ρl

)
P0

PN = γ
(Nµ)

PN−1 = θNq

PN−1,1 = N
N−1

PN = θN−1q
...
PM+1,1 = θM+1q
PN−2 = q + θ−1

N−1PN−1

PN−3 = q + θ−1
N−2PN−2

PL = q + θ−1
N−2PL+1

PL−1 = q + θ−1
L PL

...
PK−1 = γ

λ
q + ρ−1

K PK

PK−1 = q

[
γ
λ

+ ρ−1
K

∑N−K−1
i=0

(K−i)!
K!

φi

]
PK−2 = q

[
γ
λ

+ ρ−1
K−1

γ
λ

+ ρ−1
K−1ρ

−1
K Γ

]
PK−3 = q

[
γ
λ

+ (K − 2)µγ
λ2 + (K − 2)(K − 1)µ2γ

λ3 + (K − 2)(K − 1)K µ3Γ
λ3

]
...

PL = q

[∑K−L−1
i=0

γµi

λi+1

(L+1)!
(L+1−i)!

+ (L + 1)(L + 2) · · ·K
(

µ
λ

)K−L
Γ

]
PM = γ

λ
q + ρ−1

M+1PM+1

PM−1 = qC1

...
P0 = 1− (P1 + . . . + PM + . . . PK . . . + PN + PN−1,1 + . . . PM+1,1)
Where:
q = PN−1

φ = γ
µ

θj = γ
jµ

ρj = λ
jµ

Γ =
∑N−K−1

i=0
(K−i)!

K!
φi

C1 =

[
1− γ

(M+1)µλ
+ Mµ

(∑K−M−1
i=0

γµi

λi+1

(M+1)!
(M+1−i)!

+
(∏K−M

j=1 (M + j)
)(

µ
λ

)K−M
Γ
)]
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Table 20: Balance Equations

State (∆, X) Entering Rate Leaving Rate
(0, 0) µP1 λP0

(0, 1) λP0 + 2µP2 (λ + µ)P1

(0, 2) λP1 + 3µP3 (λ + 2µ)P2

...
...

...

(0, M-1) λPM−2 + MµPM (λ + (M − 1)µ)PM−1

(0, M) λPM−1 + (M + 1)µPM+1 + (M + 1)µPM+1,∆=1 =
λPM−1 + µ(M + 1)(PM+1,0 + PM+1,1)

(λ + Mµ)PM

(0, M+1) λPM + (M + 2)µPM+2 (λ + (M + 1)µ)PM+1

...
...

...

(0, K-1) λPK−2 + KµPK (λ + (K − 1)µ)PK−1

(0, K) λPK−1 + (K + 1)µPK+1 (γ + Kµ)PK

(0, K+1) γPK + (K + 2)µPK+2 (γ + (K + 1)µ)PK+1

...
...

...

(0, N-2) γPN−3 + (N − 1)µPN−1 (γ + (N − 2)µ)PN−2

(0, N-1) γPN−2 (γ + (N − 1)µ)PN−1

(1, N) γPN−1 NµPN,1

(1, N-1) NµPN,1 (N − 1)µPN−1,1

...
...

...

(1, M+1) (M + 2)µPM+2,1 (M + 1)µPM+1,1
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