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SUMMARY

This thesis addresses thé.problem gf determining the static
equivalent model of an ele&tric power system connedted to several ex-
ternal systems, Equivalent.ﬁodels ére iﬁﬁortant fﬁr contingency
analysis.in the process of éecgrity assessment. The problem is to find
an equivalent represenﬁation of the external system which will repro-
duce the actuél power flows for a set of pdétulated outages with a
guaranteed level of accuracy.

Emphasis is placed on.obtaining the eguivalent mod(_al by using
informatiori from the :i.nt:ernal_ sfstem'c_mly because of limited exchange
of infdrﬁation between the.neighboring'companies. |

" A procedure is developed which yields the optimal equivalent
model over a set of postulated outages. Thé problem is formulated as
an optimization problem. .The unknowﬁs are the.parameter values of the
fictitious branches améng the *Boundary busses. The connectivitj among
the boundafy busses shoﬁld'be constraint so that the admittance.matrix
of the equivaient model is a -sparse matrix.

The classical Nofton—type equivalent is treated as an a priori
information assuming that the topology and the parameter values of the
external system might be available. Mainly, fwo problems'related to
the Norton equivalent model are investigated: the sparsity of the
equivalent admittance matrix and the sensitivity of ﬁhe equivalent
model to changes in. the external system. 7Two elimination procedufes

are developed so that the equivalent admittance matrix preserves its




sparse structure. .A detection scheme to detect topological changes in
the external system is.alsﬁ developed. |

If the Norton—typé equivalent model does not Satisfy.the
dccuracy requiiements of the équVaienging prdblem, one has to solve
an optimization problem, This ﬁptim;zatidn_problem is in the form of
miniﬁizing a performéncé ihdex:sﬁbject tola set of linear constraiﬁts.
It has been observed that in'mahy”cases it is not necessary to solvé
the optimization problem in its entirety. First, the model obtained
from the solution of the'unﬁonstrained problem shogld be tested. If
this test is successful, the model is satisfactory. 1If not, thé
optimization problem needé to be.solﬁed in its éntirety. The guadratic
programming approach was chosen as thé method to solve the constrained
problem.

The procedure of this ﬁhesis has been-implemented and tested.
Several simulation results are included.

In summary, this thesis in&icates that data on actual system
oﬁtageé cénlbe effectively and directly used to obtain external system
-equivalents._ The resulting scheme of this theéis yields an equivalent
representation of;the external system with guaranteed accuracy in
predicting the effect of postulaﬁed system_oufages for on—iine steady

state security assessment.

O




CHAPTER I
INTRODUCTION

1l.1 Géneral

- * )
This thesis addresses the problem of the static equivalent

model of an electric powér system connected to several external systems
és it relates to thé contingency evaluation problem in the process of
éecurity assessment. Its_objéctiva.is the development of a systematic
procedure which yields an equivaient represeﬁtation of the eiternal

system with guaranteed accufécy in prédidting fhe effects of postulated

outéges for on-line steady-state security assessment.

Over the last'decade much importance has been given-ﬁo the se-
curity assessmeﬁt of electric power systéms. Advanced techniques from
different areas as control theory, pattern recognition, etc., bavé
been introduégd in power sfstem ;nglysis._ 211 these techniques aim

at helping the operator to assure electric power service under all .

conditions of operation. The system's operator is concerned with

various inequality constraints (frequency drop, overloading of . lines,

~etc.) and with equality constraints (generation meets the demand) [2-4].

Based on these eéuality and inequality constraints, it is
possible to classify the operating conditions of the system which

might prevail into three basic states [25]):

1. Normal State

2. Emergendy State

e ol ey — s e b e r— e A DA b ke
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-3. Restorative State

In the Nofmal State all eqﬁality'and'inequality_constraints are
satisfieﬁ. In the Emergency State soﬁe of tﬁe_inequality constraints
are violated. 1In the Restofativé Sﬁate some of the equality constraints
are violated. |

Figure'l.l shows the several operating states and the asgociated
control strategies.. A brief descriptidn of the cbntroi stratégies
follows.

If the system is in the emergency state, the operator should try
to maintain the geﬁeraﬁibn vs load balance without any further frequency
drop. The control.actioh in this case, referred to as emergency control
action, consists of a set of strategies for dropping generation and/or
ioad for every possible majbr fault. The.result of the emergency con-
trol is to bfing ﬁhe System to the restorative state. Further.control
action is ﬁeeded, known as restorative cdntroi action, to bring the
system from‘the Restorative State to the Neormal State.

The Normal State can be decomposed into two states:

(1) Secure Normal State

{2y Insecure Normal State

If the system is ih the Secure Normal State, single system con-<
tingencies such as a loss of transmission line or a generator does not

cause departure from the Normal State. If the system is in the Insecure

Normal State, single system contingencies may cause departure from the

Normal State to the Emergency State.




Normal State

Secure
State

[
Preventive—————3 4
Control \

: : Corrective
Restorative ey Control

Control /7

Resto~-
rative
State

— T Emergency
Control

gency
State

Figure 1.1. Power System Operating States with Associated
State Transitions [2].




The primary concern.of the system operator_is to keep the
opereting condition of the power syetem in the Normal State to ensure
service continuity at standard frequency.and voltage. The operator
should continuousl? test the capability of the power system to withstand
postulated next oontingencies; This testing is feferred oo as contin-

‘gency analysis. The contingency analysis involvee two steps.

(1) Computation of a load flow solufion of the_present
operating condition of the system. Loed—flow solution means solution -

. of the power flow equationsefor the voltage magnitudes and voltage phase
‘angles of the busses of the syetem.- This requires application of the
classical loao-flow methods [11-14] which utilize short-term bus load
forecasting or applicetion.of more advanced techniques such as estihation
techniques [5-10]'whico utilize on—lioe inforﬁation.

(2) Computation of. the load-flow sélution of the.syste:.n for
the various single line of generator outages.

Based on the contingenoy analysis, security dindices are computed.
The security indices ehow~how "secure” the system is under the.present
operating cdn&iﬁions and indicates if the system is. in Secure Normal
State orin-Inseoure Normal-State_[ZG]Q If the-e}stem is in the Secure
Normal State, no.control ootion is_needed.. if the systeﬁ is in the
Insecure Normal Staoe, pfeventive control action $hould be taken to
bring the system baCk io-the Secufe Normal State in the most economical
way. Examples of'pfeventive control'action'are:

(a) -Shifﬁing of generation.schedules

{(b) Switching coperations

U T
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{c) Start-up of units

(d) Changing of the scheduled exchange of power with the
neighboring companies. |

The.role 6f the static equivélent-model in the security assessment
of powér systems is discussed next.

In recent years the number of interconnections between neighboring
companies has been increased; ?ower coﬁpanieé do not operate indepen-
dently of each other as was the commbn practice in the-past. Capitél
-savings which are achieved by reducing spinning reserve regquirements or
by reducing capacity reqﬁirements force the indiﬁidual companies to
become parts of a power pool. Therefore; the operating conditions and
performaﬁce of each company becomes dependent'on thé operating conditions
of the neighboring dompahies.

The interconnectiénsﬁwith the neiéhboring companies considerably
influence the redistribution of network power flows and vdltage levels
after outages faké place in tﬂe pafticular company.' Therefore in per-'
forming contingency aﬁalys{s, ﬁﬁe knowledge of the precentingency load

flow solution of the entire area is required. This requires complete

- exchange of information between the néighborinq companies. This is

impractical éhd difficult to achieve at present because of storage

and time limi;ations:of todays computérs. In order_ﬁor a particular
company to perform the contingency analysis an equivalent rgpresénta-
tion of the external (neighboring) systems is needed. An eqﬁivaleﬁt
representatidn is a mathematical model which represents the unobservable
part-of-thé’system in the process of éontingency'analyéis. In some

cases, this representation is exact. In the cases under study, this

P Sy S e ] R e intorm ey s o




equivalent representation is only an approximation,
The existing approaches to obtain the equivalent representation
of the external system can be classified into two categories.

{l) MNerton-type equivalerits: To obtain a Norton-type equiva-

lent, knowledge of the topdlogy and netwofk'parameters of the external'
system is necessary. The model is obtained by linear reduction of the
external network to the boundaries of the internal system.

(2) On-line type equivalénts: On-line t&pe_equivalents

assume no kﬁowledgg about the external System_and they use information
from £he intéfnal systém 6n1y.to obtain the equivalenf.representation
of the.external system. - |

_In this thesis emphasis is placed on obtaining the_equivalent
model bylutilizing information frém the interﬁal system only because of
limjited exchanée of information between neighboriﬁg companies. The
agsumption that the topology and the pafametér values of £he external
system are available is valid for plahning_purposes but in most cases
is unrealistic for oﬁ-line opefation.

It shduld.bé émphasized that_eéuivalence technigues are applied
also for_plahning purposes but for different reasons than for on—liﬁe
security assessment. - In planning'the primary pﬁrpoge pf the hetwofk‘_
reduction is to avoid the computational burden of solﬁing.the load-flow
for the entire area. | |

The next seétion.réviews the available meﬁhods to obtéin:the

_equivalent representation of the external system.

e i s 2 i e [— At et et e e e e e e v ey




1.2 Historical Background

In any network.equivalencing broblem the overall.area is divided
into an.iﬁternal system and an external.system as it is éhown in Figure
1.2. In stricter terms, the infernal system consists of the ﬁbserﬁable_
part of the overall system as ohtained from on-line measurgmeﬁts and
bus load forecasts and estimates. Some buéseé of.the internal system
are connected to the external_system. These busses are called bouﬁdary
busses.

In most of the épproaches givén in the literature, the following.
‘'steps are taken: o

(a) Define the boundaries of the intermal system.

(b) .REGuce.by means of Norton eqpiv&lent the extérnal system.
to the boundary.

ﬁc) Classify the boundary busses as jéneration busses or asz
load busses.

In reference'15 the internal system is augmented by a buffer
zone as it is shown in_Fiéﬁre 1.3. This buffer zone includes:

(i) Busses of the external system critical to fhe accﬁfacy of
the equj;valént. |

(2) 'Componenté of the exté?nal system of whic'h the operational
limitations may_ﬁe violatgd due to disturbances in the iﬁfefnal system
(weak.links). | |

(3) Generation busses of the exterﬁal system whibh'control the
operating conditions in thé internal system.(contf&lling husses).

The weak links are found by imposing extreme stressing conditions

7
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' ?Figuie 1.2. System Decomposition with Associated -
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Figure 1.3. “Augmentation of Internal System by Means
of a_Buffer'Zone [15]. :
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in the intérnal system. Since an unobservablé part of the exte;nal
system is included in thé eéuivaleﬁt, several simplificationé and assump-
‘tions are needed which jeopardize the aﬁcuracy of the equivalent éystem.

"In reference 16 some_busses of the external system are included
in order to preserve sparsity in the equivalenf representatidn. Simu-
lation studies on power systems, however, have shown that the problem
of sparse structure is not so crucial. Even if the number of the
equivalent branches is extremely large, a portion of them may be
eliminated by using a technique proposed in reference 17 or by a simpler
method as we will propose later without significant.saérifice of the
accuracy. |

In reférence 17 the boundary busses are assumed to be load
busseg; therefore, many of the equivalent.branches between the boundary

busses are eliminated by using, as criterion, the ratio

2 .
E,l!
25,15

where Z_ .. is the impedance of the equivalent branch ij and 2_ .. is
E,i] . . . T,1j

the corresponding transfer impedance given by the rest of the network.

If

> ¢ )

where € is a predetermined value, the branch ij is eliminated from the

equivalent representation.

B . . h 4 o




In references 18 and 19 two approaches are suggested. The
first is a Norton-type equivalent'where the boundary busses are
treated as generation busses. The other is based on DC approximation

~of the external syétem. If

EB A vector of real power flows from the boundary

busses to the busses of the external system

EE A  wvector of real power injections at the buéseé of
the external system .

EE A vector éf voltage phase angles Bf'the busses of
the external system

gﬁ A vecfor of voltage phase angles of the boundary

. busses

then by using DC analysis, one can writé:

Bp . % K| | &
Py : KBE. Xes 8 (2)

where the matrices:KE

g’ “eB’ KBE' KBB_are known matrlces. Elimination

of the vector:gé yields -

N -1
Pp = Xppreple” (KppXpeXer¥en’ s

]

' B S . (3)
HP, + GB _

11

- e ..




12
where
H = -1
= Kgg Kgs
G =K. -K K.
= Kpg ~ XpeXpeXes
Since EB and EB are known, the vector
"HP, = - Go {(4)

is also known and it is assumed to be constant when a contingency

QACCuUrs.

If V and 6 are the vectors of voltage magnitudes anduvoltage
phase angles of the busses of the study area, these vectors can be

" decomposed as

=I 2{
Y- .
| % &

where the subscfipts I, B_refer to internal and boundarylbusses

respectively.

e mam o Ceeman cewewey




13

Then'the real and reactive injections in the internal system are:

P, = B (8,¥) : : (5)
o =0 8,V - (6)
and

or by taking into consideration the linear approximation for the external

system given by equation (3), equation {(7) becomes:
P_B(E'Y.) + H_E.’.E + G.G_B = 2

or

©.9) + 6, . | @)

Equations (5), [éyf.and (8) afe the load flow equations. The boundéry
busses are assumed to be generation busses.

In reference 20 a mpdél baSed on DC anal?sis ;s suggested.
Deviations from the operating-point are uséd tonprovide the necessary
information for the equivalent representation. The statement of the
-mefhod is: | |

The system between thé-boundary busses is modeled as




T e e
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(9)

{10)

{11}

(12)

(13)

where
Z & is the vector of the phase angles of the boundary busses
H A is the unknown boundary impedance matrix
u A is the vector of real powers which depend upon the topology
and real injections of the internal system
v 4 is the vector which depends upon the topology and real
injections of the external system.
If
Z{n) = Eﬁtn+1) - gﬁtn)
u{n} =uft .} - ult)
vin) = vit ) - vie)
then
Z{n) = Hu(n) + v(n)

It is assumed that v(n) has zero expected value and covariance

K . - _ | o . .
matrix E{g(nl)g (nz)}.— R+ 6ny = n,). _
uncorrelated. The problem is to estimate H and R by using Z{(n),

n=1l, .. . ,N where N is the number of ohservations.

2

Furthexmore, u(n) and v(n) are
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Least squares estimation yiélds:

- N N
- T T -1
H= [ ] z(mu (mM1[ ] ulnu (n)] K (14)
n=1 n=1 8
N .
2 1 4T
R=% ] (2(n) - Hu(n)) (Z(n) - Hu(n)) : (15)
n=1
provided that the inverse of
N
J um)y’ ()
n=1l
exists. .

Objections to this approach are:

{1) Since the entire syétem for a time period is moving in the
same direction, v(n) has an expected value different than zero.

{2) u(n), v(n) are not uncorrelated since both depend upon the
power injections.

{3) The accuracy of the DC model does not suffice for this
problem.

In reference 21 information from outages in the internal system
are used to obtain the equivalent system. If E} and g? are pre and
post-outage internal system measurement vectors, then

g_l = El (3:_1) + 31 {(16)
22 = hz(_{z) + o2

(17)
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1 ' _ . . _ 5
where x and _:5_2 are the_ pre- and post outage state vectors, 31 and v are

¢« R,. It

measurement error vectors with zerco mean and covariances Rl 2

is assumed that the boundary busses have been classified as load or as
generation busses. For'contingency'analysis, the real power and voltage

magnitudes at generation busses are assumed to be constant. All these
quantities define the vector C. If g} and g? dencote the pre- and post-

outage cases, then

ct=c’+v Qs

where 3? is a random vector of zero mean and covariance R3, and
1 ' :
El =t p - -_ : (19)
2 : )
c=rElp (20)

p is the vector of external network equivalent parameters, with initial

0 . : . .
value p° and a priori covariance error matrix MO.

Equations (18), (19), and (20) are combined to give:.

23 =0 = Ez.(f:}z) -t @1@ + 33 gﬁtzlrszfy + v

. S s o
The 0pt1mum‘§}, X, and p are those whichminimize the index




J = (p—p ) M (gg) + (2 —hl(xl))TR l(zlwhlt 1))

2.2 2 T -]

+ {(z°-h" (x | B R (Z —h (x 1}

+ (2 1g(x ' X ,E)) R (z ﬁg(x X ,g)

In reference 27 the equivalent representation of the external

system is obtained by using real-time information on the veoltage

17

magnitude and angle and the real and reactive'powér at boundary busses.

The basis of the method is the decoupled form of the Jacobian equations

for power systems.

proposed:
= = B! A8
!b T —b
where
“ sp A d;fferencé of the vector of thé net tié.line flows into
the external sysﬁem between a past time instant and_the
pfesent
§§b:g difference of £he vegéor bf the voltage phase angles
of the boﬁndary bussés between a past time'instant-
and the present.
_ 25 A vectot of.foltagé'magﬁitudes of'the boﬁndafy_busses'
Bio é unknbﬁn.admittaﬁce'mafrix¢

The unknown matrix B&T is computed from a glven sequence of ¢

The following model between the bohndafy busses is

(21)




|

. z*

18 ' 1

|

I

A |
measurements:

{QBT(I), QET(2), . .o fQET(r)}

so that the objective function

[}
]
i e~11R

=

s

o LT s o .
X (AP (i) BTﬂéﬁél)] [AP(1}~By, ﬂﬁlfl)]

1
is minimized.

In summary the available methods do not optimize the equivalent
representation of the external system;'therefdre, the available methods
do not guarantee accuracy in predicting the effects of postulated outages

for on-line steady-state security assessment,

1.3 Oﬁfline of Thesis

In Chapter II, the ﬁbjectiﬁes of.the equivalent problem are
presénted._ The equivalent.problém is formulated as an oﬁtimizatioh
problem...fhe decision wvariables, objective function, and’conStraints
of the problem are'discussed. .A.general solution té the_problem is
presented. . | |

Chépter IIX déals with the Nortoh-type equivélént..'The limita-
tions and the éroblems assoéiated with the Nor£on-type'equivalent model
are éiscussed.. Mainly, two problems are invesfigatea;: thé_sparsity of
the admittance maﬁrix of the equivalént model and the_effect on the
equivalent model when chahges in the exterﬁal system take place. The

contributions of this dissertation in Chapter III includes:

e A R
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(1) Two elimination schemes so that the admittance ﬁatrix of
the equivalent model preserves its sparsity.

(2) A détection scheme to detecf topological changes in the
external system. | | | |

Chapter IV deals with the solution of the optimization problem.

Equivalent models are'derivéd'by utiliéing information from the internal
system only. The contribitions in Chapter IV include:

(1) &2n eQuivalent-model based on least Square.fitting.

(2) An équivaleﬁtimodel based on gquadratic programminé.
Chapter V,deéls with computaticnal aspects and presents several
simulation'results;
One appendix is provided. This appendix provides a.brief

discussion of the quadratic and linear programming.
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CHAPTER Il
MATHEMATICAL FORMULATION OF THE PROBLEM

2.1 Objectives

The objective of this tﬁesis is the estimation of the equivalent
representation of & powér éystem_which is cqnnécted to a number of ex-
ternai power systems. The equivalent model should sat;sfy the following
requirements:.

{1} It should be-aﬁcurate, in the_sense, that it can yield
voltage'levels and powef flows which are very close:tb fhe actﬁal values
for a set of posfulatéd conditions.

(2) Chénges iﬁ thelexternal system should be easily handled.

Two kinds of changes in the external system may_take place: |
(2} Transmission line outages
{b) Generaﬁor'outages
With regafd to the'second reguirement, thrée éases_may be
distinguished.
(1) The gquiValen;.ﬁodel is insensitive to the change, whereby,"
it is not.necessary to modify the equivalent model.

{2) The equivalent”model is sensiti§e to a known ﬁhanée. In
this case, the.equivalént model should be uﬁdated.

(3) The eqﬁivalent.is.Sensitivé to an unknqwn Chahgé wheréby..
the change must fifst be detected and then the equivqlen£ model should

ke updated.
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2.2 Basic Aésumptions
This research assumes that thé tépology and the parameter values
of the internal system are known. Also, it is assumed that the internal
éysﬁem.is obgervable to a state estimator. This insures.that the
present opéréting condition of the internal system is always available,

The equivalent model is designed so that the boundary busses

‘behave as load busses, i.e. the real and reacﬁive injections at the

boundary busses should remain constant\before and after eéch of the N

. poétulated outages. Real efror at'each bus is defined as the absolute

value of the difference between the pre- and poét-outage real ihjections,
if the true pré- and posf-oﬁtage conditions were_uéed Fo compute thése
real injectiéﬁé. 'Simildr;y,'féactivé error a£ each bué i§ defined as
the absolute vaiue of the difference Betweep the.pre— and'post-outage
reactive injections if the true pre- and post-outage Cdnditions were

used ﬁo compute these reactive injections.

| In the ideal case the equivalent model should give zero values

for all these .errors.. In practice, however, ﬁhis_.is not feasible.

The equivalenf model will be determined to satisfy tﬁe following

inequalities.j

Total error < 5, S o (22)
Maximum real error < s, S - {23)
‘Maximum reactive error < § _ ' . (24)

3
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Sl' 82, and 83 are specified tolerances.

This thesis describes a procedure which determines the optimal

. equivalent representation of the external system for the following cases.

{a) The topology and the.parameter'vélues of the'éxternal
network are well defined.

{b) Information about the exferﬁal system is not avéilable.

In some'cases_an.eQUivalent model, such as the Norton eduivalent
model, 1s available. rIfhe model. should be ﬁested t§ see if it satisfies the
inequalities (22), (23), (24). If these inéquglities are satisfied, the

model is sufficient. If the inequalities are not satisfied or such

equivalent model is not available, the problem described by thé inequali-

ties {(22), {(23), (24) is relaxed by the inequalit? (22) and the model

is obtained by solving the following optimization problem.
Minimize: Total error {25)
subject to the constraints:

Maximum real error < 52 : - (26)

Maximum reactive error < 5, = . - (27)

in the feollowing sectioﬂs, the problem'deécribed by the relations
{25), (26), and'{27) is fdrﬁulated as an optimation problem.

Minimize:

.—':ﬁ'—':.!
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subject to the constraints:

u is the vector of the decision variables. The following sections are

devoted in the description and intérpretation of the various elements

of the optimization problem.

2.3 Decision Variables

The equivalent model of the external system consists of
fictitious network branches. The conductances and susceptanceé‘of
these fictitious branches are the unknown variables. The fictitious

branches may be lines between the boundary busses, and capacitors or

23

reactors at the boundary_busseé. The vector of the decision variables

is denoted by u. This unknown vector u will be determined from the

solution of the problem.

2.4 The Objective Functiocn

The equivalencing technigue of this thesis assumes the boundary

‘busses behave as load busses, i.e. the equivalent real and reactive

injections on the boundary busses remain constant before and after the
kth outage.
We denote by x the vectqf of the complex bus voltages of the

internal system. X is a Known vector because it has been assumed that




24

the internal system is observable to a state estimator. Let the vectors

E}k and §?k denote the pre- and post-outage vector of the complex bus

voltages, respectively. Let E}k, E?k be the pre- and post-outage

vectors of the injections on the boundary busses.

T

() | o (28)

I2k - I2k{§}k'

17 =1 wo | - (29)
If N is the number of postulated outages_in the internal system,
the objective of the problem is to find a vector u such that:
1k 2k

I =1

Fo
[l
e
=

This is equivalent to:

Find E_such'that

(Elk :Ezkr}l) = Elk {_}ilk’_l;]‘.) - .!:.2}{ (ﬁzk‘

u) =0 - - (30)
for k = 1, . ; . N

IE:
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9 x EY

1 1k 2 2k

g= | g| x =[x " s %
1N 2N

Iy z X

The diﬁension of g is 2xNxb if b is the number of the boundary
busses. The dimension of the.vector g determines the sparsify of the
admittance matrix of the eguivalent mode;. .It is_desirabie to keep
the dimeﬁsiéh of_éhe vector u as small as possib1e so that the eguiva-
lent admittapce matrix is a'spafse.matrix. Therefore, equation (31)
is an over-=determined Sef qf“quations ahd, in general, there is not
a solution whigh satiéfiés these eguations. ﬁenée, we seek a solution

" which will minimize the.following defined error:

This is a measure of the total error as a function of the decision

variables and defines the performance of the equivalent model. If

25

{31)

{32)




P;k,Pﬁk A real injected power at thé;jth
bus before and after the k outage
Q;k;Qik A  reactive injected power at the jth

th

bus before and after the k outage

then the vectdrs_z}k, I2k'de£ined earlier can be written in the form .

Py | By
1x. 2k
e &
ptk | _ p2X
A 2k J
= - Qlk ot = 7 sz
b 53
1k 2k
Pb ) . Pb
1k 2k
% By

We define by S the average error over the set of N outages and set of

b boundary busses.

26
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N S . .
1k 2k, 2k
s=t-g==1 7 o w-rF e T e e - = )
N*b N e e .
= == l}? '-IZ) {e* - pZKy2 4 (i . o2y o (33)

if

where E'is a predetermined value.

2.5 Cénsffaints

The objective fungtioh:measurés the total error of the real and
reactive injectians at thé boundary busses over the set of N postulated
outages. However, ﬁhe maximuﬁ.observéd 10ca1 error is, alsp,.df great
importance. The constraints'which will be aiscuése& in this secfion
deal with the maxirﬁum real and reactive error. .

Random changes take place in the external system. Dependiné.on
the location and the size of this change; it may or may not have an

effect on the equivalent representation. It is expected that outages
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of transmission lines far away from the boundaries do not affect
considerably the equivalent model.

It is assumed that the set of N postulated outageé consists
of Nl.outages with a nominal.topology of the external éyStem.and N2

outages while single outages'in.the external system took place.

Furthermore,

N2=N + N + .. .+ R + . .. +N (34)

2,L .

where N2 2 is the number of switching operations in the internal system
' . ) .

with the Eth branch of the external system out of operation.

Therefore, the vector g, defined by .eguation (31}, can be

decomposed as:

g = g_K . =. . ’ -. (35)

.

Next, we define the following accuracy indices:

o e Mk e e e ars i e e e e

J



and

fOI’ Rr = 1' - .'. - ;L.
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The equivalent model is further constrained to the following

inequalities:’

MP

MO

1A,

A

ok p2k)
J.
.'Nl |
b _ | (36)
2k|
j.
. ,Nl
. b (37)
lk.; ng-
i -3
’Né,z
. . .b . '  (38)
k 2k
o |
. . ,N2,£.
. . ,b L (39)
MP (40)
MO (41)
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(MP)'R < C) wP (42)
(M), s C, [T} (43)

for 4 =1, . . . ;L.

The va1ues of EE} Eﬁ;are predetermined maximum allowable local
errors according.to the requifements and applications of the équivalent
model. Generally, better accﬁracy is needed for on¥1ine operations
than for planning purposes. 'Cl, C, are positive numbers which corres-

pond to the specified accuracy tolerance.

2 .
The differences (P%k - P?k); (Q%k - Q.k} for k=1, . . . ,N
J . ] J J 1
are elements of the vector gN . Therefore, the inequalities (40} and
’ ' 1l .
(41) are satisfied if:
la,| <%
syl <

for all the rows of g& which correspond to the real power error and
1 _ . _ .
la, | <M

for all the rows of 9y which correspond to the reactive error.
' _ 1 .
The inequalities (40) and (41) are equivalent to

(u) = lg{;’ (51.35_2,_11” - §N £.0 oo - (44)

where

e T R TRt L

E— .|||

e e _
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— th
MP if the i row of 9y corresponds to
1 '
real power error
gNl i 1 — th o
’ MO if the i~ row of 9y corresponds to
. . L
_ reactive power error
Following the above thinking, inequalities (42) and (43) are
equivalent to:
By, @ =lg @.xiwl-g <0 (45)
2,8 . 2,48 .
for £ =1, . . +L
where
. — .. .. .th _ ' - '
Cy MP  if the i row of 9y corresponds to
real power
K < — th '
Cy MQ if the i row of 9y corresponds to
' ' 2,8
reactive power error
A .
“The inequalitiés (44) and (45) are the constraints of the
problem. These can be combined as:
F(ul-#'lg(xiizuw—“ <o . (46) -
Falu XX ,u 9y <0 :

e ros




32

where:

ENl
L]
9y = - : a (47)
3,
3L
2.6 General Solution to the Problem
The equivalent problem has been formulated as an optimization
problem. Minimize:
T
J = g (w)g(u) : : (48}
subject to the constraints:
< ' ' .
Fylw) =0 (49)

The dimensionality-bf the problem is huge. It has been observed
that in many caseé it is'ﬁot.necessary to-solve this lafge optimization
pProblem, A simpler ﬁodel ﬁay yvield a solﬁtioh which satisfies the con-
straints (49). Therefore, it pays back if prior to the solution of the

general problem, simpler models are tested. 1In this line of thinking
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we have developed a procedure which is dépicted in'Figufe 2.1. This
procedure yields the equivalent modellwhich saﬁisfiés inequalitiés o
(49) assuming thét theré.ig such a model.

A brief description of the procedure fbllows. If the tépology
.and the pérameter values of the external system gre available, the
Norton equivalent model can Eé calculated.  This model -should be tested
if it satisfies inequalities (49). The pérformance iﬁdex S should be
calculated, also. If this performance index S is less than a prede-
termined value E, the Norton equivalen; model is uwsed as the equivalent
representation of the_extefnal sysﬁem and the_solution of the problem
is avoided. If the Nortoﬁ equiyalent model does.not satisfy the abofe
requireﬁénts, the pfoblem described by the relations (48) and (49)
should be solved. . The following applies, also, to the case where
the topology aﬁd the.parametef values of the external system are not
available;' Before ﬁne has to solve the constrained problem, the
unconstrained problem shouid be considered. The model obtained from
the solution of the unconstrained problem should be tesﬁed if it
satisfies the inéquaiitieS'(49). If these inequalities are Qatisfied,
this model is used as tﬁeIEQuivalent repreéentation of the exterﬁalﬁ
system. If the model does not satisfy the inequalities {49), the
entire problem should be considered. Sclution to the problem exiéts
assuming that the solution space described by the'iﬁequalities (49)

is feasible.

2.7 Summary

In“this chapter, the equivalent problem has been formulated as




Find u
5.t $<8 _
F {(u)=g

topology and
parameter values of
the External System
.Available?

YES

Find u by
Minimizing

3 = g (g )

Find u by
~ Minimizing

J=g (ulg(w)
s.t. E (w)so

Find the
Norton-Type
Equivalent

Figure 2.1. General Soluﬁion te the Egquivalencing Problem.
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The decision variables, objective function,

an optimization problem.

Finally, a general

and constraints of the problem were discussed.

solution to the problem waé.given.
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CHAPTER IIIX

EQUIVALENCE BY REDUCTION

TO THE NORTON EQUIVALENT

3.1 Introduction

The Norton equivaleﬁtuhas a.loné history of application as the
model to represent the externﬁl network._ It ﬁéé introduced, by Ward
[1] in 1949, 5ecause of limitations imposed by the number.of analyzer
circuits.' Today the énaiyzér powef—fléw studies have been éﬁbstituted
by digital'computer poﬁer flow:studieé. However, the difficulties in
.performing the contingency analysis remain the éame.

The Norton type equivalént assumes that the topology and the
parametef values of the exteinal system are known. The iﬁading
conditions of the externallsyétgm are not available and the internal
system is assumed to be observable to a state estimator. The next

section is a review of the Norton egquivalencing theory,

3.2 -General Norton Equivalencing Theory

The entire system'nodal'matrix equation is:
W=S_ _ . (50)

where S, V are the vectors of injected complex bus currents and complex

bus voltages, respectively, and Y is the nodal admittance matrix. The
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transmission line model is assumed to be the pi equivalent circuit as
it is shown in Figure 3.1.
_'ykz is the complex.admittance of the transmission line which

connects the kth bus with the Rth bus and it is defined as:'

Yip T Cke * 3By | (51)

where Gk£ is the conductance of the line and Bkﬁ is the suéceptance of

the lihe.
'IQSHlkR is the_compleg_shuht admittance of the line. According

to the above notation, the'nodal admittancé matrix is defined as:

e |

~Yyy N | - : if k#R

| Y, =S

if k=%

_ v, o+ E v '
\ featk) k?’- fea (k) SH k&

a(k) is the set of busses connected to the kth bus.

The vectors S, V and the matrix Y are decomposed as follows:

] (% Yo Yep O
S= (% » V= | Y| Y= ¥ Ypp Yy
51 SRR 0 Y Y 52

where the subscripts E, B and I refer tc external, boundary, and




e
e ————
== e ..Hh.u....n.... - - -
A e e e
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bus

bus

kth

Transmission Line Model.

Figure 3.1.




internal systems, respectively. The twc zero submatrices indicate
that internal and external busses are not connected to one another.

According to the aboﬁe decomposition, equation (50) becomes:

— — — — -
FEE  'EB 0 Yo Sg
Yege Ygs  Yar ¥a = | 55
0 YIB ,YII 1 va Sr

L._ w—— e v R w—

Elimination of the vector Vg, from equation (53} yields:

Y -Y f'lY ¥ _v_| R _;.-—Y 'Y'ls_.
BB BE EE EB BI ‘p 2R 'BE EE“E
YIp | CYpg | Yy Sy

. S T ' . .' . :
The matrix f?BEYEEYEB represents equivalent network intercon-

nections between the boundary busses becauée_of the linear reduction
of the external systeﬁ to the boundaries of the internal system. The
-Y - ) . - i |.| 3
vector BEYEEEE represents equlvalent current injections at the
: .. o - : -1 .
boundary husses. The elemgnts of the matrix YBB—YBEYEEYEB correspond
to transmission linés connecting the bbundary busses. As such, the

individual line constants can be represented as a vector u. The

matrix

¥ -1

Yen Yer EE ER | BI

|
YIB' YII

40

{53)

(54)
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is known as the equivalent matrix and it is denoted by_qu.

If the first row of the matrix Y is premultiplied by the matrix

Y;é, then the matrix Y becomes: _ . : .
B | =1 1
TV Yee%es ! 0 _
_____ f I Sy—— g
: '
1
= I
51 Yee ¢ YBB, YBI l
- ! e l
I ] 3
1 '
O+ Yig 1 Y (55) |
l ] . || 1
' !

where I is the-identity matrix. .

If the first row oflthe matrix Y

1 is premultiplied by the matrix

YBE and'the resultant row is subtracted from the second row, then Yl

becomes:

=1

! '
I Ype¥ep 0
———d e - b
v. = lo ' voov. v iy a4 oy
Tz \ "BB 'BE'EE EB , BI
——d e
l ¥
g '} Y L . .
0 | Yoo : (11 | {56)
1 H
1 1

> is the equivalent admittance

Note that the iower'paft df.the matrik Y
matrix qu. ‘Therefore, thé equivaleht.admitﬁance matrix is thained by
gaussian elimination of the rows of the admittance matrix Y which corres-
ponds to the bussés of the_external.system. Direct inversion oflthe'
matrix Y;é_is thus avdided. |

Since the internal system is observable, by definition, the
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complex voltages of the busses of the internal system are known. .Using

equation {54), the eguivalent complex current injections can be evalua-

ted. If these injections were constant before and after an outage in

the internal system, then contingency analysis could be performed

exactly. However, these current injections do not remain constant and

it is common pradtice-in pefforming contingency analyéis to classify

the busses. as generation busses denoted as (P,V) busses; or as load

busses denoted as {P,Q) busses. Generation busses are defined as those

for which the réal'power injection P and the_volﬁagé magnitude V remain
constant beforé and after outages faké place in the system. Load
busses areidefined as those f0r_whiCh the real powér injection P and
the reactive pqwer injection Q remain consﬁant'before and after outages
take placé. Oneﬂof the_bussés in the syétem is classified as slack bus
and for this bus, the vo;tage phasé angle is arbitrafil§ set to be
Zero. | |

Thefefore, thé load flow.equations include:

{1} Two equations'for each load bus; one for the real injection

and one fbf fhe reactive injection.
L (2) Qﬂe eguation for each ggneration bué fo: fhe.reél injection.

From the referenbés cited in Chapter I, it is clear:that the
classificatibn of the_bbundary busses as (P,V) bussés or aé-(P,Q) busses
is dependént on the particular system and the set of-postulated outages.,
In our research, bofh aséﬁmptions were investigated and for our test
systems both assumptions gave similar results. “

In our research, the eguivalent is designed so that the boundary

busses behave as (P,Q) busses. To calculate the Norton equivalent
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Qpafsity techniques have been implemented. The computational aspects
for the Norton equivalent afe gifen in Section 5.2.1. 'The.conductances
and susceptancés of the fictitious lines created between the boundary
busses are the elements of the vector u, |

After the eguivalent ﬁodei'is found by computing the matrix
Y , this model is tested if i£ Safisfies the fequiremeﬁfé of the
problem. For the éet 6f N postulated outages, the performance index S
is computed. |

If
$<§ | . - (57)
and
(w) €0 , - - (58)

the Nérton-type equiQalent is.sufficient.' If'this set of inequalities
. is not satisfiedf the Norton-type equivaléht is rejegted and another
equivalent medel needs to be derived by following the procedure to be:
presented in the nexﬁ chapter. The N postulated oﬁtages are_eithgr
information from real switching égérations or'infofmétioﬁ from'coﬁ—-

. tingency analysis simulation using the entire area.

3.3 Sparsity of the Equivalent Admittance Matrix
The reduction of the external system to the boundaries of the

internal system creates equivalent branches between the boundary busses.
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The admittance matrix of the equivéient neﬁwork (between the boundary
busses) is given by:
-1

Y. Y ¥

Yer Yee rE BB

The.matrix YﬁE is a séarse matrix. waéver, its_inverée is in
general a full matrix.. Thefefoié, reduction of the external system to
- the boundaries wiii create a laige number of equivaient branches. The
number.of these branches will depend on the number of connections be-
tween the internél and exfernal system. Three cases may be
distinguished:

{é) All'phe busses of the'external system are'part_of one
area. If b is the number_of_the boundary busses, then the maximum

numbei of equivalent branches are:

b(b-1)
2

(b} The busses of the external system form m isclated ateas.
Each one of these m areas is COnnected.to'bi.boundary busses -of the

internal system. Then

m bi .(bi-l)

=1 2

equivalent branches are created, where:




(c} One or more busses of'tﬁe external system form an isolated
area and this area is COnnecped ﬁo dne boundafy bus. Ih this case only
the shunt admittance of this bus changes. |

: In general, if the internal system is highly interconnected-td
the external system, thelnumber of the equivalent branches is largé and
the sparsity of the admittance matrix of the eqﬁivaleﬁt model is des-
troved. -This is_undesirable for contingenéy analysis because of time
and storage'limitations.'-Some.compromise between accuracy and sparsity
is necessary. It has been suggested that some busses of fhe external
system should be included in the equivalent model so the admittance
matrix of the eguivalent system.wiil preserve its séarse structure.

The method is based on-thg ordering schémes for 5par§e'matrices develop
by Tinney [(22]. 1In order to iﬁcluﬂe busées of the external system in
the study area, syStématiC-exéhangé of information between neiéhboring
companies is 'réquired; If thié information is. not available, assump~
tions should be made about fhe loading conditions of the external
system.. These- assumptions _usually jeopardize the accu.raci.'y of the
'equiﬁalent model, o

This thesis_teporﬁs anoﬁher methodf A large numser.qf the
eqﬁiﬁ’alenf branches are eliminated according to some criterion. This
practice presérveé both the sparée sﬁructure df thé éqﬁivalen£ admit-
tance matrix and fhe.accuracy cf the model. Two_eliﬁination schemes
of branéhes of the equivalent model were éxamined; the two schemes are

discussed next.
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First Elimination Scheme

We define as (TP) the average of magnitude of real power for

3

the jth equivalent branch. Similarly, we define as (I‘Q)j the average

of magnitudé'of reactive power. The indices-(FP)i, (PQ)j given by

: N
1 2k.
(re), == } {pT] - (59)
_ | .
1 2k . .
(ro), =< 1 1o (60)
3N 5T

S 2% 2k _
are computed for every equivalent branch. ij, ij are -the real and

' reactive flows in the jth_branch after the k h outage. If foxr the

jth branch,

'(rp)j < TP (61)

Q) <TG - (62)

then, the jth-branch is eliminated from the equivalent representation.
‘For various values of TP, IO the accuracy indices S, MP, MQ are calcu-
1dted. The values of FE; fa are selected so that sparsity requirements

and accuracy specifications are satisfied.

Second_Eiimination Scheme

If for the jth branch the conductance and susceptance satisfy

the inegualities

la,] <3 | (63)
] } )

| <B | . (e4)
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. .t . . o
. the j h.branch is eliminated. For various values of G, B the accuracy
indices S, MP, MQ are calculated. The values of G, B are

selected so that sparsity requirements and accuracy specifications are

satisfied.

3.4 Updating of the Norton Equivalent

If major topological chgﬁges take place in the egternal system,
the admittance.matrix of the eﬁuivalent should be updated. A systematic
procedure is needed to détéfmine which transmission lines of the ex-
ternal system have éignificaﬁt effect on the magnitﬁdes of the conduc-
tances and susceptances of the équivélent branches. It is expected
that outages of transmission lines far away from the boundary busses
will have insignifiéant-effect on the equivalent model. _Tﬁe'fransmis-
sion lines of the éxternalI§YStem can be c1assified into two
categofies:

(i} Lines with significant effect on the.equivalentlmodel;

(2i Lines with no significant effect én the eQuivalenf_

.mﬁﬂ” |
fhé classificéﬁion is based on the accuracy indices (S}j.
(MPij, andI(MQ)j_which;h§Ve”been dgfinea. For ﬁhe jth ling of the
external systeﬁ; thg aécurgcy indices (S)j. (ﬁf)j,.aﬁd (MQ)j arg
calculated. | |

CIf

(s).
Fivee

=
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{MP} . _
—2-1<g,
MP )
MO}, |
‘and —= =1 < 03 ' _ (65)
MO -' :

the jth line belongs to the second category; else it belongs to the
"first. If one line of the external system goes out of operatibn and

it belongs to the second gfoup, the equivalent model does not heéd any

modification. If the line belbngs to the first group, the admittance
matrix of the equivalent model should be updated.

The updating can be achieved with minimal computational effort

by using the well known matrix inversion lemma. Assume that the line

th

which connects the i and jth busses of the external system is

tripped out. Then the nodal admittance matrix becomes:

L] = - .
Yer = YeE T Y3485 | | . (66)

where yij is the complex admittance of the line ij and,

' l. | ith entry

-1 . - jth entry -
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By applying the matrix inversion lerma:

-1 ij =1
] —
(YEE) o YEE * 9 Y Ebij—inEE (68)
where
L=l +y..e .Y e, . '
Gy = F otV yeVEESiy (63)
The updated admittahce_.matrix of the equivaleht model is given by:
— —_
Y ey ly Y
BB BE EE EB BI
Y' = ' . .. =
eq :
' YIB_ YII
L —
- i’;l Y Y‘.le eT. Y'_lY 0
q BE EE—ij—ij EE EB .
=Y __ + : :
q 0 . . 0 (68)
Further, define
D..AY Y le - - (69)
=ij = "BE EE—].J : ' :
Then,
V.o
il 212: 0
. qij 1]
Yo=Y
9 = 0 0 (70)
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The above matrix equation indicates that the equivalent admit-

tance matrix changes by a matrix

Vi
-2lp T
. —ij—i
qij 71l
%4 it should be noted that Qij is the difference between the ith and the
:; .th _ oy oyl
B ) column of the matrix YBEYEE'

3.5 Detection of Exterhal'System Qutages

Because of limitations in the exchange of information between
neighboring companies, outages of major lines in the external system

may be'unknown to the operatofs of the internal system. Thus,.the

need to detect unrepoktgd topological chapées in the external system is
created. A detecﬁion scheme has ﬁeén déveloéed:which-takes_advantage

of the well known DC ioad flow eguations. These equations are approxi-
mate. For detection purposes, however, they é:e adequéte. Furthermore,
it is assumed that: | |

(1} The susceptances of the transmission lines are larger

than the-condudtances, i.e.

Gy * jBij z 3B,

(2} Voltége magnitudes are constant and equal to the nominal

value, i.e.

vV, = 1 p.u.

O S et P
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for all busses.
(3) The voltage phase angle difference across a line is small,

i.e

sin{@, ~ 8,) ~ @, - O,

: i .= .1 ]
The above realistic assumptions yield the so called BC medel. Then,
"then entire area system equations are:

P = A0 : . (71)
where P is the vector of real injections and § is the vector of the
voltage phase angles, and

--Bij if i#j
A, =
ij _
.. B if i=j
jealiy *I
Equation (71) can be written as:
AEE ER 1% “E
1a ' '
e - Prr or Py : (72)

where the subscripts E and R refer to external and reduced systems,

respectively. Elimination of the vector QE yvields:
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AquR = Eeq o - {73}
where:
| -1
Aeq = Ppr T PpePeelER (74)
. o -1 - ._ o
.Eeq = ER - ARE%EEEE - . . (75)

.The detection scheme is based on the following proposition:
Proposition: Following the outage of a transmission line which
LEh .th - o '
connects the i and 3 busses of the external system, the vector of
the voltage phase angles of £he reduced system changes hy a vector
AQ_ such that:
Aeqée. = ksij _ '. | : (76)

“

where A is a constant_aﬁd Eij is a vector which completely characterizes

the line outage. The vector Eij is defined as:

¢ =na_ate N
—22 .

- where




_0
1] + ith entry
e,. = )
=i .
-1 - jth entry
0

Proof: - Following the outage of a transmission line which

.t
connects the i h

- modified as:

B — p -
= A" -
AEE' EE

where Bij is the'suscéptance of the line.. By applying the matrix

inversion lemma one obtains:

-1 ' T -1 -1
J = - = -
Pee! = Ppp T Biy&i48:5) ApE
where -
D,. =145, e ate -
ij . 1313 EEj

Let us define as:

and ™ bus of the external system, the matrix_AEE is

B, .e, .e.,
i3/ 3]
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B. . .
iy -1 T =1

B, Pee%i5%i 5 e
ij

{scalar)

-{78)




'Bij
.. A —=
ij Dij
and.
p o= a1
B = Bpp2;y
then
1 -1 - -1 - T
{Agg) ~ = AE}:_‘. P“i_j B8

where the vector Eij has been defined earlier._ The'modified real

‘injection wvector is:

) S |

" = - 4+
Pea T B " PrelPEp T Y45PEERi5S o 2ij EE)P
= P = 1 + 2 l A"l

A A
=R RE EE—E 13ARE EE-1 *13 EE~E

If

54

(79)

(80)

(81)

(82)

{83)
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T —l
M4 e PPy (84)
then
P = p + pte,..C. . (85)
eq eq 1313 _

The woltage phasé angles of the busses in the internal system,

.after the outage in the ekternal system, change from ER to gk + QQR:

Vo - 1
Aeq(gﬂ +_QQR> Eeq

By substituting the expressions for'Aéq, Péq from equations (82) and

{85), one obtains:

(A + £ .C, ){9 + AD, ) =P + pl..C,..
eq lfﬂll —&eq 13 -—1]
or
A O+ A ae + &..C, C {9 + A9 ) + ul,.C,
eq—R eq—R ij=ij -eq ij=ij
Since A G —eq and gij(gﬁ + QQR) is a scalar, the.above eXpression

is 51mp11f1ed to:

A g2 = {u - c 5@ ¥ A@ Yic, S5

or

T Tttt
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Ae_qbef = *91;1
where
A=2, .y -Cr.(e. + A0.)} 0.E.D.
i3 =ij =R T SR . |
Since the study area is observable to a state estimator, the
Vec#ors QR and QR + &GF ; i.e. the voltége phase angles of the busses
of the internal system before and after the outage in the external
system, are known. The vector:
Q_Q:Ae aeR | . ' {86}

is also a known vector. Let QN be the normalized vector of d

a

EN = ~|—|—§-|-'- ’ ' ’ E _ (87)

and C, . . the normalized wvector of C, .
-ij,N -=i7

C. . =‘”—J—|—r {88)
. fN. i
ST TIET |

‘Then, if

" S T TTATT e TT 27 S

B
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e ¢ - C
TIATT 116,17 S5 &3

| . L
AT Teg 4T ][cij|} eyl

|2

sign{i)1l

Therefore,

sl @

The  above developﬁénts fbfm'the base for the detection schemé
ﬁhich:is described next. |

For all theliines of the external s?steﬁ which have significaht
effect on the_Nq¥ton equivaienﬁ model-thg.ﬁormalized vectors Eij,N are
precomputed. When the_state-éstimator'détects a sudden change in the

phase voltage angles of the boundary buSsés,_the veétor QN and the

inner prodﬁcts d

a gij,N are computed. Fox the dropped llne-thg

absolute value of the inpef.product {89).wi11 assume a éalue cloée to
one. Since the detecﬁion sChemg is based on DC ana;ysis it is expected
that this absolute value will ﬁot be ekactly.equal_fb one but very
close to one. .

It has.been obsérvéd that.the transmission lines of the external
system foxm a set of groups._ The-lines.of.the RFh-group have-the same
normalized vectorandthisié:dEnotedbygg. :Therefore,.tﬁe detection
scheme detects the group in which the_line-in outage belongs. ?or the

ith line_belonging the the Eth group, there is a normalized constant

Cremi e mw gewn e me—e i e

ST
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Kf such that:

£ &
§ =K &

(90)
s ' _— th . ' '
From equation (82) it can be seen that with the i line out of opera-
tion, the equivaleﬁt matrix Aeq is modified by a matrix.
%2, R, AT
(Ki} RiE%(ENI
The constant Ri'has been defined. For two lines i and j belonging to

the same gfoup and connected in series the following relationships holds

{xi)zzi - (K?)zﬁj | o (91)
Therefore, if all.the lines of the same group afé in series; then these
'lines have the same effeét on the equivalent model. If the line in
outage:belongs to such a gfbup; by.defecting the.group,ZUSing thé.
detection scheﬁe'deséribed:earliér._the eQuivalent model caﬁ_bé upd&ted
appropriately. |
In the genéral case,'more information is néedéd to idehtify.
which line of the particular group detected by the detection scheme is
out of-operétion.
How to detect the line in.outage after detecting the group to
which'the line belongs is discqssed'next. It is assumed that the real
base load condition.for the external system is available and.this is

denoted by the. vector 2. Proceeding as earlier, it is easy to
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prove that
R NN S )
A 89 = K%, {B; - K (CQ) (Bp + 20 )Icy
S ' o o {92)
= Agy o - |
The constant Bi is defined as:
T -1 : .
and this is a known numbex.
Since the vectors Ae ae; and gﬂ.are.kncwn vectors, the.constant
A can be computed. For each line belonging to the same group which has
been found by the detection scheme, the constants.
L .. L LT o -
Ai = Ki&i{Bi - Kiigﬂ) (@R_+ ﬁ@a)} o -(94).

are computed,.

The line in outage gives the smallest value of the ]A-ﬂil. An
illustrative example for the detection scheme is given in Section

5.1.3

Ty
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_CHAPTER IV
ON-LINE EQUIVALENTS

4.1 General

AC power flbw equations used in conﬁingéncy analysis-aré”non—
linear. Switching and/or fraﬁsformer tap—cﬁanginé operations complibate;
furthermore, the analysis'bf poﬁér systems. Thesé nonlinearities should
be accounted fﬁr by the eqﬁivalent model. The Norton-type equivalents _ ¥
are based on engineering insight;.whereby, linear reduction is used to
obtain equivalents for a non-linear set of equations. Normallf, these

equivalents give good results in most cases. But there are cases of

serious.discrepancies rangihg from failure of the load flow algorithm to

conver@e to cases of highly erroneous answers. If the external system

consiéts of many busses, the-Norton-type.éqﬁivalent modei;requires a
large amount of data to be proceésed. Another aisadvantage of the Norton
type equivalent model'is that the classification of the:boundafy busses
as generation busses or as load busses is system dependent. These
shortcomihgs, together witﬁ the uncertainty with regard to the.topology
and the parameter vaiues of the external sfstem becauée of liﬁited ex-
change of  information between neighboring cbmpanies, have ihbréésed
in recent years the interest for on-line type equivalents [28}.

In this chapter,_on—line type equivalents are derived by using
inforﬁation from the internal system only. Sﬁitching_dperations,

together with on-line state estimation, are the main sources of information
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to obtain the'equivalent model. In the next section the formulation of

the problem for bnalihe'equivalents is presented.

4.2 Formilation of the Problem for On-Line Equivalents -

In this section the mathematical formulation presented in Chapter
II is stated as it is applied for on-line eqﬁivalénts.
For on-line equivalents it is assumed_that no information from -

the external system is available.. An egquivalent représentation of the

-externalHSystem needs to be obtained by using information from the

internal system-only;

Figure 4.1 shows a set of boundary busses. The dotted lines
indicafé aquivalent branches between the boﬁndary'busses.

Let a(i) be the set of busses of the.internal syétem cdnﬁected to
the'ith boundary bus ahd;b(i) the set of'the.bouﬁdary busses-éonneCted

th th

to the i boundary bus. The real and reactive injection at the i

boundary bus is given b?: g

;i - v; )

P, = v ] G, v.{G, .cos0, . + B..sind_ .}
i 1 5ep (i) {] b Sep(i) 13_ ij ij ij
+ 7 P, : . (95
jea (i) *J ' :
Q. = -vi{B S+ § B..Y-wv, T v.{G sinS,.
i i" SHUNT, i jeb(i).lj jeb(i) i ii
-Bijcose..} + 7 Qij | ' ' S (96)

jeq(15

where:




i

i sttt
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1 Q Boundary Bus
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. , | -~w= Equivalent Line
| -
) Actual Internal
' l ' System Line
|
I
th Bus

Figure_4.1. _Boundary Bus Interconnections. .
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ij -
G, .
13
Bij =
Bshunr, i
P, =
ij

Qij =

G..,|I B.-l’

i3’ Tij _BSHUNT,i

Using equations (95}, (96), the vectors of real and reactive

injections at the boundary busses before and after the k

be expressed as:

where:

3
"

a™y,aE®

The difference between the pre- and post-outage injections at the

T

63 - | W

th bus

ﬁoltage magnitude of the i
voltage phase angle difference across the line ij
conductance of line ij

susceptance of line ij

th bus

shunt susceptance at the i
rea1 f1Qw from the ith bus to the jth'bus

reactive flow from the ith bus to the jth bus.

are components of the vector u.

th
outage can

{97)

(98)

4 vectors of pre- and.post—outagé power
-flows from the boundary~busses fo the
internal system. These afe known
guantities.
) A matrices which are strictly dependent

‘on xlk and xzk.
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boundary busses becomes

1k 2k

g =L -1Z

- e - A

= ke,

e . . N o (99)

Since the internal system is observable to a state estimator,
the matrix H° and the vector g# are known quantities.

The objective_funcﬁion of the equivalent problem becomes:

-
T.
- L

N ' - _ |
= 7 o+ 9T+ o5 : © (100)
k=1 o - | -

Next the constraints of the problem are presented. Let us define as:

=H u+M o N (101)
Gy " BT A

. omH, u+M_ 5 f=l, . .. L o (102)

.iNz,x - Mo,y %’2,» ' . '

where: -
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(103)

=|

(104)

=l

=

and -

g
@
3
o
ot}
iy
L
S
'S}
o]
i}
i)
o
°
-
A
0
8

B ]
a
£L
k2
o
p
]

ol

Vi
iof

|
el

rX

lg(x

{u) =

becomes

(105}
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where:
H o
N )
l-lNZ'l %2!1
- R - [ © (108)
Wolmg, | w AL
H .
N2,.1. ' E'Nz‘.'L

In Summary, the problem is:

Minimize:

| = § o + #9705+ o | (107)
! k=1 ' :

subject to the conétxaints:

Folw) = jau+ml|-g so . (108)

For each outage there are 2b inequality constraints; therefore,

there are 2xbxN inequalities to be satisfied. The method to solve the

optimization problem described by the equations {107} and (108) is

discussed in the next sections.

e et S




4.3 Unconstrained Problem

If_the interhal sysfem is highly iﬁterconnected to the.éxternal
system and the number of switching operatioﬁs Qnder consideréﬁiép is
large, the nﬁmber'of'the ineqﬁglity gonstraints'to be satisfied is high.
Therefore, before the prdbleﬁ is SOlvéd in its éﬁﬁifety,_the model ob-
tained b?rsolﬁing the unconst?ainéd'problem Should‘bé tested. .In this
sectioﬁ the method of solving the unddnst?aihed problem is deriveﬁ and
the v;riqﬁs aspects of this model are.discﬁssed.

‘4.3.1 Eguivalent Model

The objective functibn-is'a quadratic_fﬁnction of the unknown

vector u. This quadratic function takes its minimum when:.

Q2o

1218
I
[=]

(109)
The optimality condition becomes:
N T - . J -
P Ta e+ =0 : - (10
k=1 : ) . :
and the optimal solutioﬁ is given by

. N N ' _
w=-t ) @ T @ | (111)
k=1 :

k=1

- Therefore, the solution is obtained in one iteration and the

solution exists assuming that the matrix

67
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| ? o) THE
k=1

is a nonsingular matrix.

If 2. is the number of the equivalent branchés and 22 is the

1
number of the.fictitiousucapacitors br ;eactbrs at the bouhdarf busses,
the SOlufion 0f.the uncoﬁstrained proﬁiem requireé the infersioﬁ 6f’a
matfik of'dimensidn_(2x£1+ﬂé) x (2x£i+22). _Tﬁe_computer éfbragé require~
ments and the compufdtiohal time are dependént'upon the values'qf

2" In generai, uéing_éparsity techhiqﬁes both ghe storage reguire-
ments and the computationélzgimefare moderate and thé.method is suitable

for on-line operation. The computational aspects to derive the solutibn

of the unconstrained problem are given in Section 5.2.2.

_Tﬁe value'qf fhe_quadratic funetion atlﬁhe optimum is givén by
N N . N _;'T T N L ';1' N o '
g= 3 o™ - 1) O] O] T ey
k=1 _ _ k=1 : k=1l o k=1 . .

J gives the total error. Note that.

J = Nxbxs SR | . (113)

where the index S has been defined.
The eqﬁivalent model obtained from equation'flll) should be

tested if it satisfies the inequality constraints:

Ew s0
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If the inequalities of the problem are satisfied, this equivalent i

model is acceptable. In this case, since the solution of Ehé'uhcon-

strained_probiem also satisfies the inequality constraints, the

equivalent model is optima1;

4.3.2 Sparsity of the Admittance Matrix

The vector g_determines the connectivity amohg the bOundary

busses and tﬁe dimension of the vector g_detérmineé the sparéity of the
admittance métrik of tﬁe equivalent model. _Complete coﬁnectivity among
all the.boﬁndary.busses will reéult in.poor'sparsity of the admittance
matrix if the number of the‘boundar? busses is 1arge. With cbmpléte
.connectivity however, the numbek of independent variables is tﬁé maximuam

and the ﬁnconstrained pfoblem will obtain igsioptimum solution. " In this

case, the objective functioﬁ J obtains ifs'ﬁinimuﬁ value, J*, By
eliminatiﬁg some of the'equivéient brancheé,;i.e., by feducingufhe

number of the independent'vériables, the édmittance'matrix.of the.
equivalent mpdel_becoﬁes'a sparsé.ﬁatrix bu£_the value.bf the performance
index J becomés‘gféaﬁer thgn thé value 6f J*,

This is in cﬁntrast tq}the obsefvations made with régard to the
sparsity ofjthe_adﬁittance~matrix of the Norton equivaleht whéré by
eliminéting some of fﬁe equivalenﬁ branches, the Pefforﬁanée indgx'wﬁé_
improved. This_is due £§ the fact that the Norton equivalent ié based

on engineering intuition rather than on mathematical analysis.

' To solve the unconstrained problem, a connectivity criterion among
boundary busses is needed such that the equivalent representation is

optimal. If % equivalent branches are retained, where £ < Qi%:il P
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then there are:

' b(b'-ll)

.possiblé connectiviﬁiesf It ié impracticéi to examine all these cases
to determine the optimﬁl connectivify.

A systematic prbcedﬁre to define the cohnéctivity'of the equiva~
lent model so that if will compromise betweeh-the_Sparsity of ﬁhé
admittance matrix and the performance index is as follows:

_F'ii:st Step: An initial _cormecﬁtivi’ty between the bbundai;y_.'busses
is assuméd. This is aepriOri in£ormatipn which can be based either on
' equivalencing technigues usihg the Norton—tfbe eqﬁivalent or.bn past
experience of ﬁhe partiéular system. This ddnnectivity shou1d:contain
sufficient number of equivalent b:anches.' fﬁe vector'g_which corfgs—-
ponds to the iﬁitial_cohnectivity-is denoted by v . The dimension' of
the vector u ié.restrictgd.by the cdﬁputer storage requiféments to. -

invert the matrix.
c TS
k=1

Second Step: Using the connectivity defined in the first step,
equétion,(lll)isapplied to determine the values of the conductances and
susceptances of the equivalent branches. The optimum vectdr u which

-

corresponds to this connectivity is denoted by u_-




-

Third Step: The vector Eo is used to compute for each eguivalent

branch the indices . _ 1

. 1 2k

(TP), = 5 Ellpj (114)
TS § 2k

Ty = F E Tomil {115)

where P?k, Qik have been defined. If for Ehg_jth branch:

(rey < TP

< T3

(TQ)j

then the jtll.l branch is eliminéted'from the equivalént representation.
. For various selections of ?E} fa'the indice$ s, MP, MQ are calculated.
The cbnnectiviti which satisfies tﬁe accuracy requirements and]preserves
| the sparse structure of the admittance matrik_is selecﬁed. " The vector
E_which'cqrresponds to this COnnectivitf is.génoted by.gl.' |
FourthlSteE= Shunt terms are included at the boupdary busses.
For.the connectivity selgcted from the'third stép,.the conductances and
'éusceptances of the-equivglent b:anches aré computed by.using equatibh-
(111) .- | | | |
Step fdur-gives thé equivalent representafibﬂmofﬂthe éﬁﬁerﬁal
system. Note that by ihcludihg shunt;terms_in_the'fdurth étep at the

bouridary busses the sparsity of the admittance matrix is not affected.




72

4.4 Constrained Problem

if ail the equivalent models examined SO fﬁr are'ﬁnable-to
satisfy the requirements.ﬁf the prpblem, one hés to solve the problem
in its.éﬁtifety. In this section the method to solve the constrained
probleﬁ is discusse@.

Ih'gene:al,'theré aré two approaches fo solve the constrained
pptimiZation problem.

(1) -Using penalty function methods 

(2j Using quadratic pfogramming

The penalty functioh méthcds transform the constrained problem

into an unconstrained'problem. A number of methods can be applied to

solve the unconstrained problem. Convergence of these methods becomes

dependent-on'fhe selection of the penalty factors. .Eérly attempts to
solve the consﬁrained'Problem ﬁsiﬁg penalty function methodé ﬁeﬁe
qnsuccessful bécéusé of‘cbnvergénce difficﬁltiés.‘

Quadratib prograﬁming ﬁas chosen aé'tﬁe methﬁd to sdlve'the
przoblem, It guaraﬁtees that the optimal ‘solution. is obtained iﬁ a
finite number of stépé a;éuming that such solution exisfs.

4.4.1 Eguivalent Model

The general statement of .a quadratic problem is:

Minimize the quadratic function:

x ;.E.E +uD T e
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Au < B - (117}

where:

€ = an n-vector of constrﬁints
EOI: _an m—vectof of.constrainté
DI = an nxn_matrix
A = an mxn matrix

u = an n-vector of unknowns

The matrix D iﬁ.aésumgd to be pbsitife semi-definite. This
assures that fhe quadxatic_function'xo is.cbnﬁex in u and since_the con-
straints are 1inear,'thé sclution space is convex too. Therefore, if a
minimum -is found, it is a ~global minimum._

Next, the_gquiﬁalent problem is formulated as a quadratic pro~-

gramming problem. The objective function of the problem is:

o
"

= If’ ia + 9Ty + f)

I

N _ N o N '
DT+ ot ] @O e (] o9 TH
k=1 _

k=1 k=1 :

N
+ E?{ : (Hk)THk}E
k=1 .

N, N ' N o
] of9T w20 ] (T e+ 0T T @ T Ca1e)
k=1 k=1 ' k=1




Since
N
EDRCeks
k=1
is a constant, the equivalent problem described by equations (107) and
(108) can be restated as:
Minimize:
N T T T N T : ’
x =20 ) @0+ 0 T & ' (119)
(s} - == -
k=1 T . k=1 : :
subjecf £o the.constraints:
= - o
Byt = gy - Yy ' (220)
THE S gt My 2t

The problem described by equations (119), (120), and (121) is

in the form:

ninimize: .
xo =c’u+ubu o O aa
subjécf to:
Au < P f123>_

where:

74
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c =2} @) (124)
_.k=]_. S
N T :
p= § @) (125)
k=1 '
| Hy
A= | {126)
Ay
p oo | BT (127)
-0 .

— T

| o+ iy

.The vecto¥ u is of éimepsioh n = 2£1+£2 where'il, 22- as defined
earlier. . The vector g_is'ofidimension m = 4xNxb. The defined matrix D
is a positife semi-définitezmétrix. |

 The equivalent modei E;is_obtained.by solvin§ the quédﬁatic
. programming problem deécribe& by the equatiqns (119},_(120?, and. {121).

The quadfatic'pngrémminq problem is solved by diréct application
of the Kuhh—TuckerIC§nditions. The Kuhn-Tucker conditions reduée-the
quadratié'problem to a linear_prégramming prdblem.' The pioblem' |
bécomes: | |

Find an n-vector; E} and n—veéto:, v, an m-vector, A, and an

m-vector, S, such that:

~2u - AA+y=C - (128)

{129)
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viu =0 130)
ATs = 0 (131)
A20 w20, v20 S20

The above conditions may be combined as:

: ¢ u =]
-— ) 4 1 o= ==
¥ t f
A .0 0 S | P
1 \ e -0
X
s
vu=0
As=o0

A20,u20, 820 vz0

Therefore, the quadratic programming is equivalent to'finding'

the solution to a set of linear equations. This solution should

_satisfy the additional constraints g?g = 0.-&?§_= 0.

The solution to the above problem is obtained by using 4 modi-
fication of the revised simplex method. Details are given in Appendix 1.

Solution to the problem exists assuming that the constraints:

oy,
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define 5 nﬁn empty space.

The sparsity of the admittance matrix of the equivaient model is
discussea next. The-coﬁétrained problem iéICQnéidéred'after it has
been con&ludéé.that the eéuivalent model based on the_sgluﬁion of the
unqonstrained problem does not Satisfy the inequality (108), This modél
should include the maximum possible number of branches bétween the
boundary busses. This maximum number of branches is specified by the
requiremént that the admittance matrix should preserve iﬁs sparsity.
.The cdﬁnectivity determineszthe variables for the éonstrained problem
also. Note thét the performance index of the model based on the solution
of the unconstrained probiem is the lower limit of the perfofmance index
of the'ﬁpdel oﬁtgined by solving the.constrained_problem.

:The computational aspects to solve the constrained problem are

discussed in Section 5.2.3.

4.5 Updating of the Equivalent Model

huring the daily operatidn of a power system, several switching
operatibhs are performed by the oﬁerator. Transmission iipes afe.
takeﬁ out of operation during the base loﬁd-pefiod_so thét ﬁhe system
reﬁainé stable and these.lines are inﬁerted baqk in the systeﬁ during.
the peak load period. Furthermoré, forced outages maj take place in
the.iﬁternal system.- Theréfore,_switching operations aﬁd/or fdrced
outages.are available 6n-a daily bésis and théy define the set of N
postulated oufages. )

To update the equivalent model the procedure outlined in

the general solution is applicable. For the set of the N postulaﬁed




outages, the inequality constraints F_(u) are formed. First, the

Ey
existing -equivalent model should be investigated if it satisfies the

specifications of the problem. .The performance index S is computed.

1f

and

there is 30 need to'update the.equivalent model. If the above tequire-
ments are not.satisfied'the;eéuivaient-model should be*updated._ If.the
model obtained by solving the uncohstrained_preblem satisfies the in-
equality constraints the model is sufficient. If not one has to solve
the constrained preblem.. The connectivity of the existing equivalent
model is used when.the.updated velues of tﬁe conduetances and sﬁscep_
tances of the equivalent branches are computed. The'connectitity of
the equivalent modei shoﬁld be investigated again if mejer outages have

been taking place in the external system.

4.6 Summary

In this chapter the solution to the optimization method has been

78

presented. First, the model obtained by solving the unconstrained prob-

lem is presented. A systematic procedure to define the connectivity of
the equivalent model is developed. Next the optimization problem is
formulated as a guadratic programming problem. Finally, the method to

solve the quadratic programming problem is presented.

—————r
A P ot
e it
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CHAPTER V
' TEST CASES AND COMPUTATIONAL ASPECTS

.5;1 Test Cases

. Five exampleé are presgnted in this sec£ion. The:first dééls
with the Norton Equivalent3  The second is an application of the elimina-
tion schemes derived in.Seéficn 3.3. The third is an application of fhe |
detection-scheme deriVed in Sectién 3.5. . The fourth deais.with the

unconstrained problem. The fifth deals with the constrained problem.

5.1.1 -Ekamgie-for the Norten Equi#alent

._This example deals witﬁ the Nofﬁon eQuiValent.' The 30 bus system
shown in Figure 51 is the entiré system, 'I"his is an IEEE test system.
- The dotted line Sepaiatés the internallsystem from the external.éystem.
The busses 8, 25, and 30 are the boundary buséeé. The Norﬁon Equivalént'
is shdwn in Figure 5.2. Three equivélent b:anches’are gfeated between
the three boundary busses and these branches are denotéd by the dotted
" lines. Eiﬁe outages were considéred in the internal system. 'The poétn
outage_conditioné were ogtained by performing the.load—flow'énélysis with
the entiré area. The Nortoh.EquLQaleht was tested for the set of these
five outageé.. The indices 5, MP, MQ were computed. These indices are

given below.

7.24  (MVA)Z

[47]
]

3
TR

.ésa”(_uW)

&

8.541 (MVAR)
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Figure 5.1. Topology' of the. Internal and External 'Syétem.
(Example 5.1.1)
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Figure 5.2. Topology of:the Norton.Equiﬁaienf Model
' of the Internal System. (Example 5.1.1)
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If these values of S, MP, MQ are less than the specified toler-

ances of the problem, the Norton equivalent model is satisfactory. The
index § gives the total error. The averége difference of the real and

reactive injections before ﬁhd after the five outages is 2.69 (MVA}.

{= V¥S). From the values of MP and MO it is concluded, for'this-particu-
lar example,'that the assumption that the real injectidns'fémain constant

is more valid than the assumption that the real injections remain con-

stant. This was trué for_all the other systems and sets of outages we

consider in this researdh.

5.1.2 Ex&mple on the Sparsity of the Admittaﬁde Matrix of the Norton

.gguivaleht |

The two.elimination séﬁemes presented in Section 3.3 were tested
with a 444 bus system. This is part of the Bonneville Power Administra-
tion (Bﬁa) system. The internal 5y$tem includes 87 busses with 31
Bounddry busses. The set of postulated outages includes'29 outages in
tﬁe internal system. The results of these outages were obtained by
performinq load-flow anélysis with the 444 bus system. Th; Norton
éqﬁivalent mddel was obtained with the algorithm we presént in Section
5.2.1. 437 equivalent branches were cféated betwéen the_boundary'busses.
Obviously, the admittancg ﬁatrix of.the equivalent model is nof a sparse
matrix. The two'elimina£ion schemes derived in Seéfion'3.3:were applied
to define a connectivity which satisfies both the sparsity requirements

and accuracy tolerances. For various selections of fE;‘Fﬁ and E} B

the accuracy_indices 5, MP, MD were computed and the results are

summarized in Tables 1 and 2.. The results are shown also in Fidures

5.3, 5.4, and 5.5. By examination of the Tables 1 and 2, we conclﬁde that:




. assat

%i a3
I |
: Table 1. Performance of the First Elimination Scheme.
(Example 5.1.2)
L . No. of Branches _
rp TQ Between 4 .8 - MP MO
(i) | (MvAR) | Boundary Busses | (Mva)2 (MW) (MVAR)
Initial ' _
Connectivity 437 753.34 | 114.95 | 354.39
| .| 1. 130 726.31 | 113.21 | 328.63
| 2. 2. 109 716.69 | 111.54 | 322.84
3. 2. 97 - 704.55 | 111.54 | 306.23
3. 3 92 675.44 | 111.54 | 246.28
a. 3. 83 674.09 | 111.54 | 246.28
5. 5. 74 665.51 | 105.41 | 246.28
8. 8. 72 665.97 | 105.41 | 246.28
10.{ 10. 66 653.12 | 151.78 | 186.37
12.} 12, 63 - 650.59 | 190.93 | 186.37
15. 15. 59 648.68 | 190.93 | 186.37
18. 18. . 57 650.31 | 190.93 | 186.37
20. 20. 54 639.37 | 190.93 | 184.80
23.] 23, 48 886.53 | 230.28 | 186.63
25.  2s. 47 11046.88 | 365.25 | 186.63"




Table 2. Performance of the Second Elimination Scheme.
{Example 5.1.2) '

_ _ No. of Branche_s. -

G B Between s MP MO
{p.u) [{p.w) Boundary Busses (MVA) 2 {MW) ({MVAR)
coiﬂiﬁi?iify 437 753.34 | 114.95 354;39

.05 ..05 | 135 | 740.32. 113.21 | 345.39
| e 720.14. | 111.54 322.84
.15 | .15 114 71§.51. 111.54 | 322.84

a )2 104 707.52. 111.54 | 306.23

2 .2 101 706.06 | ;11,54 306.23

2 | .3 | 9@ 688.13 111.54 279;79_

35 | .35 88 688.48 | 111.54 | 279.78
4 | .a 85 673.86 | 111.54 | 246.28
.4.'-_.5”. 82 669.28 | 111.54 | 246.28
5 | s 81 601.18 105.41 246.28

.6 | .6 76 637;gi_ 125.54 195.92_

S 7 642.84 | 125.54 | 192.87

91 .9 68 640.96 190.93' 192.87
1.1 | 1. 66 '1113.12 316.&7 229;33
Lo .o 184 751.71 114.68 | 354.15

84.
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(L) The_performance of the Norton eﬁuivalent ﬁodel is improved
by.eliminating some of the equivalent branches.

(2) The Ffirst elimination scheme is more effective than the
second elimination scheme. Using the first™ elimination scﬁeme less
equiﬁalent branches between the'boundary.busses are réquired to succeed
the minimum values- of the iqdices S, MP, MO. This was exﬁe&ted since
the first eliminatioﬁ scheme takes into consideration not only the
magnitudes of'the condﬁctances-and sﬁsceptances of the equivalent
branﬁhes 5ut, also, the operating conditiﬁns of the system.

{3) Thé indek MP ié less sensitive.to the number 6f retained
equivalent branches than the index MQ.

Thé ébove COncluéioné.cannot be géneralizedufo; every power system.
Similar investigationé should be performed with tﬁe-particular System
and sét of postulated outages to defﬁne the optimuh values of TP, TQ or
G, B. These valﬁes will bé'dependenﬁ on the 1oéding.condition of the
system and the postulated ogtaées. ”

5.1.3 Example for the Detection Scheme

The detection scheﬁe.derivéd in Séction 3.5 was tested with a 30
bus system.shown in Figufe 5;6.--The dotted line separates.the internal
system froﬁ the efternal sYstem._.The_busseé.s, 16,_24, 25, 26, énd'28 
are the 5cundary busses. Since fhe topolog? and thé parameter“valués of
the extérnal syétem éfe assumed to be.khqwn,:the_vecfors Eij' defined by
Equation (77), can be coﬁputed for all the transmission lines of_the'

external system. From the vectérs‘gij the normalized-vectbrs were

Si4,N
computed. . According to these normalized vectors the transmission lines

of the external system form six groups. ‘all the transmission lines
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Figure 5.6. prdlogy of the Internal and External System.
- {Example 5.1.3)
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belonging to the Eth group, where £=1,...,6, have the same normalized
L th L, ' th ' L
vector CN' For the i line belonging to the £ group there is a

normalized constant'Ki such that

From Equations (82) and (90), it is obvious that with the ith

the 3 group ocut of operation, the matrix Aéq is modified to

line of

S 42 g 4T
[ 3 —
AL = By + KD, ()

Thé cgnstant Ri was defined-inuseétion 3.5 by BEquation (79). We denocte
by cﬁ(i) the élement of.the véctqr gé which.corfesponds tb the ;th
boundéry bus, |

The groups and the normalized vectors are Summarizéd in Table 3.
The constants Ki’ £i' (Ki)zﬁi are summarized in Table 4.

f&Sﬁit3waéﬁekpe§ted the lines (2-19), (4-22), (17-18), (17-27),
and (18-27) do not have any effect oﬁ the equivalent mﬁdgl. Examination
of thé groups_reﬁealshthat either all the.lines of thé group are in

series or some of the lines of the group form a c¢losed loop and this

loop is in series with thé rest of the lines of the same group. Notice

also that lines in sefies belong to the same group and they.have the
e 2 ' '
same coefficient (Ki)_ﬂi.
Al1l the lines of the groups 3, 4, and 5 are in series. If the
line in outage belongs to any one of these groups, the Nortbn equivalent

~model can be updated simply by detecting the group to which this line




Table 3. Groups and Normalized Vectors for Example 5.1.3.

Gro np
' 1 2 3 4 5 6
_ _ 21-22 20-21 7-30 11-29 14-29 29-30
ILines 22-27 . | 15-29 11-10 12-13 19-29
Belonging '
to the 23”27 20-29 13-14. 1 19-30
Group . 8-23 15-20
23-30 o
8-30 _ .
cﬁ(s) .12664 .05879 ~.79628 -.07738 -.07303 .1489%
Norma- Cg(IS) -.73753 -.89028 |- .02903 -.16910- | -.15958 |-.31386
lized 7 - S : — ' .
Vector [C- (24) .14574 . 06766 .13487 -.08905 -.08404 .17147
cﬁ(zs} 63551 . | .29506 .58812 | -.38834 | -.36648 .74772
cgtzs} -.07252 . 19953 .01883 -.15992 ‘.386;?_" -.32108
cﬁ{zé) -.09785 | .26922 .02542 .88379 | -.20362 |-.43323

16’

R

i i




Parameters kg, ‘A

(ki)zzi-fdr Example 5.1.3.

Table 4. 1
e g3 . B2
Group | Line kl _R.i (ki) P’i
21-22 . 24295 7.11173 -41976'
22-27 .14781 19.21464 | .41976
1 23-27 . 22009 8.66600 .41976
8-23 .02396 6.74802 . 00387
23-30 .02890 68.25636 .057
8-30 .00494 | 158.58120 .00387
20-21 | .30499 | 11.17202 | 1.0392
" 15-29 | ~.06657 31.83888 .14109
20-29 | -.08798. ' 8.35706 .06468
15-20 | ~.02141 | 307.54693 .14109
3 7-30 .44138 | 31.37112 | 1.
‘4 11-29 .15493 | 75.34560 1.808
11-10 | -.36502 13.57483 | 1.808
14-29 | .31501 | 14.26719 | 1.41575
5 12-13 | ~.20187 34.73844 | 1.41575
13-14 | -.10671 | 124.32689 | 1.41575
29-30 . 38871 2.23631 | .33789
6 19-29 .13446 39.95601 .72238
'19-30 11.17481 .72238

- 25425

92

g )
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Table 5. Sample Output of the Detection Scheme. (Example 5.,1.3)
Line in .
outage ’
. ' 23-30 20-21 7-30 11-29 | 14-29 19-30 15-29 29-30

la -t .
Group 1 -96990 | .82891 | .24858 | .24075 | .26048 -79422 | .81208 {.77735
Group 2 -77738 - | .o883¢ | .11265 | .23849 .18260 | ;31036° | .95658 | .288ss
Group 3 -17426 - |.13667 | .99924 | .18117 -22509 | .29872 |.11798 | .30484
Group 4 229751 | .11839 | .14844 .99481 | .12099 ] .67465 | .06187 | .70597
Group 5 .11483 | .23985 -13470. ( .06201 | .9%6016. |.36336 |.27458 | .33568
Group 6 -81048 * | .36515 | .20528 | 63739 61336 | .99348 .36954 | .98776
Group to .
g?igh the 1 2 3 4 5 6 2 s
Belongs

£e
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belongs.

_Several examples of detécting the group to which. the line in
outage belongs are_presented below. .In our simulation with a line in
the external system out-of-operation, the pre- and post-outage vectors
of phése voltage aungles of the internﬁl éystem wére obtained by solving
the load flow fOr the'30‘bus_5ystém. This is:so.because the iptérnal
system is assumed to be observable. Frﬁm the.pfe— and post-outage
vectors of the.phase voltage angles, the ﬁector g; defined'by equation
(ge), and the normaliied végtor QN were computéd.. Finaily, for each

:group the Igﬂ'Eﬁl was computed. Based on the_valﬁes of Igﬁ-gil; the
group to which the line in outage.belongé was detected. Some of the
results are summarized in Table 5. |

-From Table 5 ;t cén'bé.éeén that the value.éf 1§sﬁg;'.for the
line outage is_not exactly equal to one.. Thislﬁas expected since the
detection scheme is based OnIDC:énélysis; The detection scheme, however,
séfely identifies the group tb_which the-lihe_in.outage belongs.

5.1.4. Example for the Unconstrained Problem

The model obtained by soiving the uncpnstraihed'p;oblém.ﬁas'.
tested with the 444 bus. sysﬁér& ds‘-'Scribéd in Section 5.1;2. The . set of
postulated outagés'includes 29 0ﬁtageé'in:£he.inte;hal'system-(N=29}.
The eqﬁi§alent model was obtained by following the procedure
outlined in Section 4.3.2.
Step One: The-initial connectivity bétween the boundary busses
~is obtained by the first eliminatioﬁ scheme -developed for the Norton
equivalent in éection 3.3}. This connectivity consists of 92 branches

between the 31 boundary-bussés. In Section 5.1.2 the values of the

R
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performance indices S, MP, MQ for the set of 29 oufages were given and

are cited again:

675.44'(MVA)2

w
It

-

- 111.54 (W)

246,28 (MVAR)

E

Step Two: For the connectivity obtained in Step One, equation
(111) was applied to determine the conductances and susceptances of the
- 92 equivalent branches'(il = 92, 22 = 0). This model was tested for the

set of 29 outages and the results are given below: '

S = 231.53 (Mva)?
‘MP = 67.59 (MW)
MQ = 109.49 (MVAR)

sﬁeE-Thréée The model_obtained in Step Two was used to compute
for each equivalent branch thelindiées (I‘P)j and (I‘,O_)j definéd by
equations (114) and (115}, respectively. For various selections of
FE,‘Fﬁ the perfo;mancé indices s, MP; MQ were compﬁted and the.results
are_summ;rized'in'Table 6. From Table 6 it can be seen thét all thé'
selections of.?gl ?§:ékcept.the last one gave eéuivalent-modgls whose
performancés_a;e-almost the éamé with the perférﬁaﬁcé of the model
obtained by 501Ving the uncdnstrainea problem. Based on £ﬁis eliﬁination
procedure, the connectivity consisted of 85 branchés between the_bounaary

busses . was selected as the connectivity for the equivalent model.
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Step Four: For the connectivity obtained in Step Three, the
model by solving the unconstrained problem was computed. Using equation
{(111), the conductances and susceptances of the 85 equivalent branches

were computed (21 =85, R, = O). This model was tested for the set of

2

29 outages and the results_afe given below.

5 = 234.176 (MVA)2
MP = 67.70 (M)
MO = 109.5  (MVAR)

Finally, shunt terms were included on 17 boundary busses and equation
(111) was applied to determine the. conductances and susceptances of the
85 equivalent branches and the susceptances of the 17 shunt terms

(% =85 %

2 = 0). This final equivalent model was tested and the

results for the 29 outages are given below.

s = 184.12 (wa)?
MP = 65.82 (MW)
MQ = 106.22 (MVAR)

The results of tﬁis éxémple are summarizéd in'Téble.7.

From Table 7, we can'conclude that:

(1} The pefformhnce of the mode;s obtéined by sbiﬁing_the un-
constrained prbblém is superior.to.the perforﬁance of the Nortoﬁ-type
equivalent. |

{2) By iﬁcreasing_the number of the equivalent branches, the
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Table 6 . Results of Elimination Procedure for
- Example 5.1.4.

L _ No. of Branches :
TP TQ Between 5 MP : MO
(MW} [MVAR) Boundary Busses (MVA)2 (M {MVAR)
Initial ' ; |
Connectivity 92 231.53 | 67.59 109.49
5. 5. 88 235.8 67.59 | 109.49
7. 5. 87 236.33 67.59 | 109.49
8. 8. 85 237.06 67.59 | 109.49
10. 9. 83 259.10 164.73 | 109.49




T

Table 7. Simulation Results for Example 5.1.4.

“Equivalent Model by “Model by Model by
Model|. Solving the Solving the Solving the
' . ‘Unconstrained | Unconstrained. Unconstrained
- |Norton Problem Problem Problem
_ ‘|Equivalent 92 Branches 85 Branches 85 Branches
Performance - 92 Branches | No Shunt Terms No Shunt Terms .With Shunt Terms
Indices B N '
s (a2 675.11 231.53 234.17 184.12
MR (MW) 111.54 67.59 67.70 65.82
MO (MVAR) 246.28 109.49 109.50 106.22

86
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'perfbrmance index § is impfoved..'This w;s expected since by_increasing
the number of equivalenﬁ branches the'ﬁumber of indépéndent.variables is
increased. |

(3) By iﬁciﬁding shunf'tgxms iﬁ ﬁhe eq;ivalent model, the per-
formance index S is improved. Note that these éhunt.terms.do not affect
the sparse st;ﬁctﬁre of the eqﬁivélent ﬁatrix. |

$5.1.5 Example for the Constrained Problem

This example demonstrates the feasibility of obtaining'an eqdiva?
lent model by solvipg a qﬁadratic pfoqramming péoblem as it was ﬁresénted
in Section 4.4, This example will serve also aé-a comparison bétwéen
the Norton—type equlvalent model the model obtained by solving the un~
constrained problem, and the mndel obtained by solv1ng the constrained
problem, The entire system consists of 30 busses and is shown in Figure
'5.1. The dotted ;ine-separatés the internal.system from the external
system. _The'busses 8, 25, 30 are'fhe bpundarY busses (b=3}. The éet of
postulated outages consists of five outages in'fhé'internal system (N=5).

. The NOrton-tfpé'éQuivalent model was comﬁuted in Section 5.1.1.
Three equiﬁalént branches are created between the bouﬁdary busses. Iﬁ
Section 5.1.1, the performaﬁcéliﬁdiées 5, MP, M fbr the set of five

outages were computed and are cited again:

7.2 (va)°

MP = ,833 (MW)
MO = 8.541 (MVAR)

The on-line equivaient models were obtained by solving the
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unconstrained and fhelépnstrainedjprsblem and'assuming'bnly twb lines
‘between the boundary 5usses; Qné line bgtwéen the busses 25 and 30 and
one line.between busseg 8 and 30_(21.; 2, 22 = 0}, | |

The model obtained by'solﬁing the unbohétrained problem {Section

4,3) was tested for the set of fivé'postulated outages. The performance

indices S, MP, MQ are given below.’

s =4.43 (mMva)2
MP = .624 (MW)

MO = 4.595 (MVAR)

The constrainedfprobiemi(SeCtioﬁ'4.4] was solved under two conditions of
constrainfé: |
(a)y Maximum allowable real error
WP = 4.5 (W)

Maximum allowable reactive error

MQ = 4.5 (MVER)"

This model was tested for the set of the five postulated outages and the

results are givﬁn'belcw.

4.45 (MVA)z

w
]

.

603 (MW)

M) = 4.5  (MVAR)

© g mmme g s min s omsi s e e et o re e et e TR e e e

—
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{b) Maximuﬁ alloWable_réal error
WP = 4.25 (MW)
Maximum allowable reactive error

MO = 4;25 (MVAR)

The obtﬁined modél was tested for the same set of five postulated

"outages. The performance indices are given below.

w
If

6.19 (Mva)°
WP = 3,45 (MW)

MO = 4.25 (MVAR)

The-resulfs_of this example_are summarized iﬂ Tagle 8.

Table 8 leads to several éonclusions:--

(1) The perfotmahcés of Ehe'ﬁodels obtained by sélving the un~
constrﬁihed and the constrained problem are éuperior to tﬁé performance
of the Norton-type equivalent model.. | |

(2) The performances of the models obﬁaihed-by.solving the un-
constrained and the conétrained prdblem can be improved 5? including
nore Fictitious branches}in'the Equivalent.mOdel (2, = 3; L, = 31..

(3) As it was eﬁpe&ted; the'pefformance index S takes it minimam
value_for the ﬁodél obtained from the solution of the unconstrained
proﬁlem. As the.constraints of the problem become tighter,-the_vélue”

of the performance index S becomes larger.

T |
PAREES
e




Table 8. Simulation Results for Example 5.1.5.

- Equivalent

Model by Solving

Model by Solving

Model -the Constrained . the Constrained
_ Problem Problem '
Model by Solving MP = 4.5 (MW) MP = 4.25 (MW)

. Norton _ the Unconstrained B = o —_— '
Performance Equivalent Problem ' Mg = 4.5 (wvAR) MQ " 4.25 (MVAR?
Indices 3 Branches 2 Branches - 2 Branches 2 Branches

s (uva)2 7.24 4.43 4.45 6.19
MP (MW) .833 .624 .603 3.45
MO (MVAR) 8.541 4.5 4.25

4.595

o1




1e3

5.2 Computational Aspects

In tﬁis section the computationél aspects Qf'thé Nortoﬁ equiva-
1en£ model, the eqﬁivalent'modei'by.solving'the unconstrained problem
and the equivalent.ﬁodel bf'éolving-the constraineq problém,_are
presepted.

The basic computational problem of the No;tﬁﬁ equivalent and the un-
constrainéd problem is the triangular'decomposition of a sparse matrix by
Gaussiah elimination. Triangﬁ;ar decomposiﬁion is.a-verY'effective.
scheme for computing solutioné of 1arge_spérse.systems of linear

eqﬁations. Basigally, we seek the solution of the equation:

AX = b o o (132)

where A is a nonsingular matrix, x is the unknown vector, and b is a

known vector. The triangﬂlér decomposition consists of decomposing the

matrix A aé:
A =Ly . : : (133)

where L i5s a lower triangular matrix, and U is an upper triéhgular

_matrix.

The unknown vector x is computed in two steps. First; solve the

set of eguations: -

Iy=b | | T (134)
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for the vector z,' This-operation is known as forward substitution.
Then solve the set of equations:
ux =y . - ' - {135)

for the vedtor 33 This dperation is known as back substitution.

The decomposition of the matrix A as a product of é lower ané
upéer triangular_matrix is éCComplisﬁéd in 6n step by Gaussian elimina-
tion. The eiements of the méﬁriceé L and U are stored in a table,
called the tab}e'of factors. |

BecéuSe"df.savings in operations and computer memory, it is
desirable:to process aﬁd store_qnly.the non-zero elements of the table
of factors. The ﬁumber-Of thé non-zerb elemehté-in'the table of f;ctors
depends on the order which rows aré prpcéssed. Several ordering
schemes have-beeﬁ develbped so that thé eliminagion-pfoéess yields the
least possible rion-zero elements iﬁ\the table bf'factdrs;.

The arithmetic operatiogs requiredito'cgmpute the table o§

) t : v
factors for an n h ordér system are as follows: .

. divisions = n

. . _ n-1
multiplications = )} «r,
=1 *
: . n?l 2
multiplications - additions = [ r}

where ry is the number of non-zero elements to the right of the diagonal

il =y
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in row i in the table of factors. The number r. depends on the selected

ordering scheme.

- The forward and back substitution requires:

i=1

|
1 multiplications ' =n
additions. N =n
n-=1
maltiplications - additions = 2 z ;

The storage'réqﬁirements.and arithmetic operations for the
% Norton-type equivalenf modéi, the model obtained by the solution of the
unconstrajned problem and the model obtained by the soiution_of the

constrainéd.problem to be presented next are not optimal. Both the

! storage requirements and execution time can be.further improved.

‘| _ However, the pfocédﬁreiwe déveloPed to define the equivalent represen-
tation of the external system_dbeslnot require frequent ﬁﬁdating of the
1 paréﬁéféfé 6f?£he.¢qu;valént'model. _The'algﬁrithm needs to be executed_
w once or twice a day dépending on the number of the switching Qperationsf

Note also that if the existing equivalent model satisfies the set of

' inequality'cdnétraiﬁtSwdefingd by the new set 6f éwitching coperations,
i there is ho.need to update the pafameter values of the equivalent modgl.
Therefore, the_algérithm'is-not restricted by'storage and execution
time_limitationé..

Thé_coméutational aspéété for the Ncrtoﬁ equivalent, the uncon-

strained problem and the constrained problem are discussed next.

[ ) g o e e i e o e
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5.2.1 Norton Equivalent

The admittance matrix of the entire area is of the form:

Yor Yen 0 _
Y = .?BE - '?BB Yor : {136)
0 ¥ Y

IB II

can be decomposed as a product of a lower and

If the matrix YEE

upper triangular matrix

Y, = Lu - (137)

- then the.computation of the Norton equivalent model involves the

transformation of the admittance matrix Y into the form:

=1
U LY 0
0 Y -y .y ly i
- *BB"'BE'EE’EB 'BI
o ¥'s  Ypp

Obviously, this transformation is obtained by performing the
triangular decomposition of the rows of the matrix Y which corresponds

to the busses.of the éxternal'system.

The rows of the matrix Y which correspond to the busses of the

external system and to the boundary busses are ordered according to the
. , . .
non-zero off-diagonal teims before elimination. Rows with the least
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off—diagoﬁal terms are numbered first and'thqse with the most terms lést.
Only the non-zero elements of the admittance matrix of the entire
area and the non-zero elements of the table of factors are stored.

The arithmetic operations required to compute the Norton equivalent

are as follows:

divisiohs _ _ : = ng
multiplications = Z r
: o &, i
i=1
_ L g )
multiplication - additions =" Z r,

- i=l

where_nE is the number of the busses of the external system and r, as
defined earlier.

5.2.2 Unconstrained Problem

_The solution of the unconstrained problem is given by:

k=1

w=-¢ L @] @ - (138)
kel . | o | : .
- The dimension of the matrix H# is_(bej x (2°£1 f £,) and the

nurber of non-zero elements is Btkl-bzz.

The arithmetic operations-réquired to compute the vector

k=1

are:

m U Py




multiplications - additions = (8% *2,) x N

' The matrix

lf o) T

k=1
is of dimension {2°£l-+£2) % {2-£1-+£2) and the number of non-zero
off-diagonal elements are:
o 2
kzl{(z-ak) +dyea ) - 60y

where a is the number of equivalent branches connected to the kth

boundary bus, and:

th bu

-1 if shunt term is included at the k =

0 elsewhere

where,

It c¢an be proven that the number of arithmetic operations

required to compute the matrix

§ @) T
k=1

1lo8




are

b _ :
multiplications - additions: N{ Z (Bai + 4ukak) + 22}
k=1 :
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The storage requirements and the arithmetic operations to compute

the table of factors for the matrix

- lf'mk}Tnk
k=1 :

have beeﬁ-discussed earlier. The vector u is computed by forward and

“back substitution of the vector

. LZ]_(Hk)Tg{k"

" k=1

5.2.3 Constrained Problem*'

The constrained problem is in the form:

Minimize:

¥ =cu+ ubu
.Io —— — — b
subject to the constraints:
Au £ P

where

(i39)

(140)

{141)

(142)




where:

The storage requirements and the'arithmetic operations required

to compute the vector ¢ and the matrix D were discussed in Section

110

Iz,
F
] I;ﬁ‘o

{143)

s
L

4

)
x
fal
o+
b=

2
o

. 4
IS

N

=
e—ﬂ.“ -

¢ = an n-vector
p = an m-vector
-0
D =:an nxn matrix
A = an mxn mht:ix
E; = an n-vector
n= 221 + 22 and m = 4xbxN
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5.2.2 for the unconstrained problem.

The number of non-zero elements of the matrix A is: '

2{8-21 f RZ)N .

The iterative scheme to solve the quadratic programming is dis-

cussed in Appendix 1. In each iteration the basic matrix B should be

updated using the formula

a1
-BNEXT = EBouRrRENT

The matrix E is defined in Appendix 1. The basic matrix B is of
dimension (n+m)xn+m).

In every iteration there are:

basic variables: m+n

" non-basic variables: Z2Zn+m

‘Let us define as ¢ the nﬁmber.of non-zero elements in the matrix

-1 ' o e s . s
BCURRENT and as kl the number pf artificial variables Ri {see Appepdlx

1 for the definition of'Ri} remained in the current iteration as basic

variables.
The arithmetic oéeratioﬁs required to define the ehtéring

variable in every iteration are:

multiplications - additions: 2(c + kl)kl
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The arithmetic 6peration'required to define the leaving variable in

every iteration are:

multiplications - additions:_ o]
maximum possible number of

divisions: - . mtn

After the entering and leaving variables are defined, the inverse of

the basic matrix is updated for the next iteration. The initial value

of k1 is n. The solution to the guadratic programming is obtained when

k1 becomes zero.




CHAPTER VI -
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This thesis.has presenﬁed a gene;ﬁl approach to the static
‘equivalent problem as it relates to.the security monitoring of power
systems. The proﬁlem is to define an equivalent represenﬁation of the
external system which wiil:réproduce the true results for.a set of
postulated outages with a guaranteed level of.accuracy;

Emphasis is placed.Oh'bbtaining-the équivélent model by utili-
zing information from'fhe_internal system only. In particular, this
thesis indicates that daﬁa oﬁ aéfual systém outages can.be-effectively
and directly_uSed to obtaiﬁ external system equivélgnﬁs.

The equivalencing problem is formulated as an optimizatibn
problem. The upknowns of'the prdblem are the parameter va;ues of the
fictitious bréncheé amﬁng the boﬁndary busses. ' The connectivity among
the boundary.busses éhouid guarantee that the'admiftancé'matrix of the
equivalent model is:a_sparse.matrix.

TheINorton type equiﬁaleht model is treated as‘an_a.priéri in-
formation assumihg that the topology and the paramefer values of Ehe
-external system midﬁt_begavailable. In this case, the Nortoh-tyée_
équivalent-model can be cdméuted and.then.tested,if it satisfieé the
accuracy.requirements of the equivalencing proﬁlem. If thé internal

system is highly interconnected to the external system, the linear

113




114

reduction of the externai éystem to the boundgriés of thelinternal sys-
tem creates many equivalent branches among.the boundafy busses. This
results in poor séarsé étructure of the equivalent admittanée matrix
which is undesirable fo; contingency analysis. In our research we found
that by eliminating some of tﬂe equivalent branches, the performance of
thé retéined model.may bé'superiof to the performance of the.Nértonétype
equivalent. 'I'wo such elimination procedﬁ:_:‘es have been developed and
tested successfully. A simple meghod to update the Norton equivalent
model when outages take place in the external systgm is presented. A
detectiop scheme to detect_unréported topologiéal changes in the external
system is also derived. This detection scheme is based on DC analjrsi's
énd it has been succeésfully tested.

If the Norton—typé equi&alent'model does not satisfy the accu-
racy requirements of the equivalencing probleﬁ, oné has to solve the
optimization problem. it has been cobserved that in many cases it is not
necessary to soclve the oﬁtimization problem in its entirety. Fifst, the
model obtained from tﬁe solution of the unconstrained problem should be
tested. A systematic procedufe to define the connectivity of the
equivalent model is developed; ‘The solution to the.unconstrained problem
is obtained in éne'iteraﬁion. Sparsity techniques Have been implemented.

There.is no guaréntee,_hbwever, that the solution to the uncon-
strained bfbblem-will'satisfy the inequality constraints of the optimi-
zation problem. .There'will'be cases when the optimizaticn problem
needs to be solved iﬂ its'éntirefy. The. quadratic prOgiammihg approach
was chosen as the method to solve.the constrained problem. The quadratic_

programming guarantees that a solution is obtained in a finite number
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of steps assuming_that'the constraints define a non-empty space.

Thé eqﬁivalent model is updated when a new'set of postulafed
outages is created from.recenf switching operations. The existing
equivalent model shouid be tested first if it satisfiés the new set of
cpnstraiﬁts.':lf ;hese gonStraints'are satiéfied, there is no need to
update the equivalent model. If tﬂese constraints are not satisfied;
oné has to solve the opti@ization problem. |

It should be noted that in our procedure to define the external

system equivalent, the equivalent model is not updated in a constant

fashion. It isuexpected that the equivalent medel will be updated once

or twice everyday depending on the number of switching operations. Thus

our method is not restricted by storage and time limitations.

Tb*summarizé, the main advantages of our procedure are:
{1) A small amount~of'déta needs to be prodessed_
(2) The accuracy of the equivalent model is. controllable.

(3) The equivalent model is updated once or twice everyday.

6.2 PRecommendations

The procedure we presented in this thesis to compute external

network equivalents requires on-line information from the internal

syétem only. .Iﬁfbfmatibn'from off-line studies can be easily combined
with on-liﬁe information-to be used as input'to the algorithm, It is
our belief that familiarity with the internal system of interesting

is a strong factor for the successful application of the algbrithm.

We feel that the following two minor modifications of our

~ procedure are worthwhile of further investigation:
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(1) Investigati6n 0f the possibility to decompose the set of
outages in several subsets. Then for each subsét'of outages our pro- :
cedure can apply.to define'th; cqrreSponding.equivalent_modei. |

{(2) Investigatioﬁ_df tﬁé pbssibility to decoﬁpose the boundary

busses to several subsets. For each subset the connectivity and the

'parameter values of the equivalent branches are defined by straight-

forward application of our algorithm. When a new set of outages is
created, each equivalen; model among the boundary busses of the same
set is tested separately. Only those equivalent models néed to be up-

dated for which the corresponding set of constraints are violated.




- APPENDIX A
This appendix presents the formﬁlation of the quadratic and
linear programming. The quadratic'and'the linear programming are

discussed extensively in [29~32].

Quadratic Programming

The quadratic program is defined as the problem of finding the

minimum of the gquadratic objective function

. subject to the following set of linéar constraints

Au = P
- 0

where

c = ‘an n-vector §f éonstants
b = an nxn matrix
A = an mxm matrix
go = an m—vectdr.of constanfs
u = _an_n;vector Qf'unknéwné

It is assumed that the matrix D is at least a positive semi~definite

matrix.
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X =cu+ubdu S (A1)

(A2)
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The Kuhn-Tucker conditions for the solution of the above

problem can be stated as:

20 + A'A ~ v = . . (a3)
Au + 8 =P (Ad)
= = o |
va =0 | | N )
T : )
A'Ss = 0 : _ - (B6)
x20,v20,820 ' (a7)

The problem is thus equivalent to finding the solution to a set of linear
egquations (A3) and (ad) which also éatisfies fhe conditions fAS} and (26).
Wifhdut loss of-generality”it is assumed that the elements of the vector
Eo are non—négatiﬁe. Solution to the.ahove pfpblem is obtained by

solving the. problem:

Minimize:
Po = 1 P o _ : (28)
i=1 :
subjeét.to:
. . T "

2Du + A7) - v+ R=-C -~ (n9)

Au +.§.= Eo | | (210)

g?g_= 0 ' _ {al1}

T, . _ o
A8=0 _ : _ {a12)

=
v
&
<
v
o
~
[t
v
o
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“where:

Py if ¢y > 0
Ri = o o
e P if ¢, 5O
0 20  i=1,...,n

The problem described by.the conditions (A8), (A9), and (AlD) can
be solved using the simplex.method. The noﬁ-linearities deséribed bf
the conditions (al11) and (Al2) can be taken'into'consideration_by'a
simple procedure within the simplexﬂaléorithm. If solution to the prob-
lem ekists, the simplex méfﬁod_tefminates witﬁ the sum of.fhe artificial-
variables pi equal'to Zero. :A.brief description of the simplex method

is given next. -

The Simplex Method

The simplex method is a systematic procedure for solving the
linear programming problem:
Minimize:
z=cx o {a13)

subject to:

AE - E . . (A14)
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where A is an:mxn matrix, S: X are n-vectors, and b is an.m-vector. The
jth column of A is denotéd by Ej' 4=1, ... ,n. It is assumed that m of
ﬁhe n vector a; are'indépendent and form a matfix B. This matrix is a
basis for Em and is.referred to as a basic matrix. Therefore, any

column of the matrix B can be expreséed as a linear combination of the

column of B, i.e.,

- m

a, = . s 8
—J l,E__:]_ y]fl"’i

where:

It is assumed without loss of generality that the matrix B consists of

the first m columns of A. i.e.,
A= (B8 - (a15)

Let us define as




ij - Y:HJ-

Then

|_|Im
0

or

LoPy

If the vector x is partitioned as

|
n

Then

| "AX = (B;N)

ol
.

or

vtk 4 i oo memen s m g i a me g e e o ae e T
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{al16) |

{al7)
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Bx

..|.
S Nx

=2

A basic solution corresponding to the basis B is obtained by setting

20 Therefore,
ok
or
.;l

AN

Xy is a basic solution to Ax=b. The variables in x

_B.are ca}led basic

variables. The variables in X, are called non~basic variables.

If

1]
il

then for each vector zj, there is a scalar zi defined as

z .= cT ;
I

Given the current basic solution, the simpléx method proceeds by ex-
changing a basic variable for a non-basic variable in a way that decreases

the objective function. The selectiah of the entering and leaving
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variables in a new.basic golution is based on the optimalitf and
.feasibility éonditions which.afe descriped.next;_

- The optimality.pondition determines the entering variables. The
optimality'COndition statés that any non~basic variable Ej is a promising
candidate for énfering éhe solution.provideé that (zj—cs).> 0. When .
(zj-cj) S_O for all the non;basic vectors, Eﬂ' the current solution, is
optimal. As a general rule tﬁe non-basic variable with the larger
positiﬁe nﬁmber (zj-cg) ?s séleéted as the entering variable.

The feasibility condiﬁion determines the leaving variable. The

leaving variable is selected such that the elements of the new basic

solution will be non-negative. If Ej is the entering variable then

Pty = gy

Let 9 be any real number. - Then,

OBy, = Oa
L = 9
" Since
B§e = b
Bix, - By.) +0a, =b
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31 e O¥;
0

is a feasible solution to thé given linear programming problem for
;ppropriéte ﬁalueé of the.variable 0. Tﬁe new solution will be a basic
solutioh_if 8 is so selectéd'that one of the old basic ﬁafiablés be-
comes 2Zero and the new elements of x remain non-negative. The'ab&ve
requiréments_are.met by the following selection of 0:

¢ = min {';jii— ,

. Y. . > 0}
kK Y5,k 3.k
@),

ko Y3k

Yj;k >O} ’

_ Ly, >0 - ' (a18)

where X is the kth h element

element of the vector x and yj X is the kt
: : o '
of the'véCtbr_yj. The variable X is the leaving variable.

After the entering and leaving variables have been selected, the

'.matrix.B'is updated and the process is repeated. Note, that each itera-

tion requires the inversion of the current basis matrix B.

The Revised Simpiex Method eliminates the néed-of inverting the

matrix B at each iteration. LEt"BCURRENT and BNEXT_be the-baglc

_matrices of the current and next iterations, respectively. The Revised

Simplex Method computes the B;éXT'by using the formula:
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-1 -1 ' ' '
Byexr = EBcurrenT (a19)
where:
E = {el,e2, . e . ’er-1'5'9r+1f . . ..,em) (A20)
e; is a unit vector with the unit element at the ith place, r is the
leaving variable and
-a, ./a_ . |
J:l/ r,]
-a, ,/a
Jaz/ r,]
= ) l/a_ . K AZl
£ oy g (a21)

-a, Jfa |
J.m -roJJ
where j is the entering variable. The Revised Simplex Method yields

savings in computational time and computer storage.
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Solution to the Quadratic Programming Problem

The problem described by eguations (A8}, (A9), (al0), (All)
and (Al2) can be solved by a simple modification of the Simplex Method
we presented earlier. 1In the selection of the vectors to enter the

basis, the following modifications are needed so that the nonlinearities

Als =0
and
via =0
- are satisfied.
1. If a variable u, is currently a basic variable at a positive

level, do_notﬂeonsider vj:és_a.candidate for entering-the basic solution;
if uj is currently a basic variable at zefo level, Vj may entér the basis
only if'uj remains at zero level.

2. 1f a variable Aj is currently a basic variable at a positive.
level do fiot censider Sj as a candidate for entering the basic.solﬁtion;
if Aj is currently a basic variable a£ zefo level, Sj méy enter the

basis only if Aj_remains-at zéro level.
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