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SUMMARY

The research in the thesis investigates the use of minimal path techniques to

track and detect cracks, modeled as curves, in critical infrastructure like pavements

and bridges. We developed a novel minimal path algorithm to detect curves with

complex topology that may have both closed cycles and open sections using an arbi-

trary point on the curve as the sole input. Specifically, we apply the novel algorithm

to three problems: semi-automatic crack detection, detection of continuous cracks for

crack sealing applications and detection of crack growth in structures like bridges.

First, we provide the background of the problem of crack detection and critically

assess the strengths and limitations of six current algorithms. Detection of cracks

in these structures is very challenging because of multiple textures, shadows, vari-

able lighting, irregular background and high noise present in the images, and this

motivated our research into minimal path techniques. Next, a background of the

minimal path techniques theory is provided. The current state of the art minimal

path techniques only work with prior knowledge of either both terminal points or one

terminal point plus total length of the curve. For curves with multiple branches, all

terminal points need to be known. Therefore, we developed a new algorithm that de-

tects curves and relaxes the necessary user input to one arbitrary point on the curve.

The document presents the systematic development of this algorithm in three stages.

First, an algorithm that can detect open curves with branches was formulated. Then

this algorithm was modified to detect curves that also have closed cycles. Finally, a

robust curve detection algorithm was devised that can increase the accuracy of curve

detection. The robust algorithm tackles two problems: spurious detection of curve

portions and inability to detect complex topological curves that have sharp corners

xiii



at branches. The algorithm was applied to crack images and the results of crack

detection were validated against the ground truth. A new quantification measure

called the buffered Hausdorff distance measure was developed for the experimental

validation. In addition, the algorithm was also used to detect features like catheter

tube and optical nerves in medical images. We finally conclude by giving some future

research directions. In particular, the algorithm can be extended to detect higher

dimensional curves and the computational speed of the algorithm can be improved

by optimizing the use of redundant information.

xiv



CHAPTER I

INTRODUCTION

Tracking and detecting crack patterns in critical infrastructure is essential for taking

corrective actions. Over the last few decades, increasing computational speed has

enabled the use of computer vision and image analysis algorithms for tracking and

detecting desired features of interest in different fields like remote sensing and medical

imaging. There is a great potential for the use of computer vision algorithms in

two civil engineering applications: monitoring of cracks in static critical structures

like bridges, and the detection of cracks in pavements. Most often, after the crack

in a structure or the distress in a pavement surface is projected onto 2D images,

image analysis can be employed to extract physical or geometric quantities that are

of engineering interest. Therefore, image analysis tools are being developed to detect

and track structural damage in static images or dynamic image frames.

Cracks in images can be described as spatially elongated, narrow objects that have

darker intensity compared to the background. These cracks can be modeled as curves

that have low intensity values. The current research explores the use of minimal path

techniques in tracking and detecting cracks in pavements and structures by modeling

them as curves. The current state of the art minimal path theory works only with

prior knowledge about both the terminal points or a terminal point plus total length

of the curve. For more complex curves with branches, all terminal points are required

to be known. The focus of the research will be to find curves under less restrictive

prior knowledge assumptions. Next, we describe the research objectives in detail.

1



p

(a)

p

(b)

p

(c)

Figure 1.1: (a) Curve with branches and initial point p. (b) Closed curve and initial
point p. (c) Complex topological curve with multiple branches and a cycle and initial
point p.

1.1 Research Objectives

The primary objective of the research is to investigate minimal path techniques and

develop an algorithm for detecting curves with complex topologies from a single ar-

bitrary point. Figure 1.1 shows synthetic images with different types of curves and

an arbitrary user defined initial point. We want the algorithm to detect the complete

curve in each of these cases using just the user defined initial point. The algorithm

will be a useful contribution in the area of minimal path methods because existing al-

gorithms need prior knowledge of all endpoints to successfully detect complex curves.

This algorithm will be applied to the following problems:

1. Semi-automatic detection of cracks: We propose to detect cracks in pave-

ments when the user provides an arbitrary point on the cracks. Figure 1.2

displays different types of cracks that we want to detect using our algorithm.

2. Detection of continuous cracks for crack sealing applications: We pro-

pose to detect continuous cracks that extend over several miles by just providing

the starting point on a crack as input to the algorithm. Figure 1.3 shows two

consecutive images that have a continuous crack. Once, the algorithm detects

2
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p

(d)

Figure 1.2: (a) Longitudinal crack with initial point p. (b) Transverse crack with
initial point p. (c) Diagonal crack with initial point p. (d) Crack having branches
with initial point p.

p

(a) (b)

Figure 1.3: (a) First image with continuous crack and initial point p. (b) Second
image with the extended continuous crack.

the crack in the first image, the endpoint of the crack in the image can be used

as the algorithm input for the next image. Hence, consecutive images can be

used to detect very long, continuous cracks and the detected crack map can be

utilized very efficiently to generate the optimal path for the automatic crack

sealing machine.

3. Tracking crack growth in critical structures: Figure 1.4 illustrates the

problem of tracking crack growth in critical structures. Given a user provided

3



Figure 1.4: Figure illustrating crack growth in structures with time.

point on the crack at the crack initiation step, we want to find crack maps at

various time instants to trace out the crack growth. The crack detected by our

minimal path algorithm at one time frame can be used as input for the next

time frame after registering the two temporal images.

4. Medical applications: We also want to use our algorithm to detect features

in medical images that can be modeled as curves with a user provided initial

point. Figure 1.5 shows two such medical images that contain a catheter tube

and optical nerves in the eye retina.

1.2 Key Contributions

This thesis has three key contributions that are listed below:

1. The most fundamental contribution is the development of a self-terminating al-

gorithm that can detect curves of complex topology with just one user provided

point on the curve. Existing minimal path algorithms need the user to provide

4
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(a)

p
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Figure 1.5: (a) Catheter tube image with initial point p. (b) Retinal Image with
initial point p.

information about all endpoints to detect complex curves and our algorithm

minimizes the user interaction significantly.

2. We apply the algorithm to the problem of crack detection in structures and pave-

ments in unique ways. Specifically, we tackle the problems of semi-automatic

crack detection, detection of long and continuous longitudinal cracks for crack

sealing applications and tracking of crack growth in critical structures. A review

of six existing crack detection algorithms and their limitations is also provided.

3. We developed a novel quantification measure based on the Hausdorff distance

metric that can evaluate the performance of crack detection algorithms effec-

tively. We compared it to four other quantification methods and demonstrated

that our proposed method achieves better score separation between differently

performing crack detection algorithms compared to the other methods. This

method can also be used to assess the accuracy of algorithms used to detect

other features that can be modeled as curves.

1.3 Organization of the Thesis

We begin by reviewing previous work in the area of crack detection in pavements and

critical structures in Chapter 2. We also assess existing algorithms and motivate the

5



need to use a new algorithm based on minimal path techniques. Chapter 3 provides

the literature review and technical background for minimal path methods. Then the

detailed development of our algorithm for detecting complex topological curves is

described step by step. In Chapter 4, we present a new quantification method to

evaluate the performance of crack detection algorithms. This method is based on the

buffered Hausdorff distance metric and it is compared to four other scoring measures.

Chapter 5 contains experimental results for our method on pavement and structural

crack images, and some medical images. It also describes performance analyses of the

algorithm, obtained using synthetic data. The last chapter summarizes the presented

work, draws conclusions from the thesis, and discusses possible directions for future

work.

6



CHAPTER II

BACKGROUND OF THE PROBLEM OF CRACK

DETECTION

This chapter briefly discusses the need for computer vision algorithms to track and

detect cracks in critical structures like bridges, and pavements. In addition, there is

a brief review of existing literature in these applications. The chapter also describes

the limitations of the existing algorithms and the motivation for using the minimal

path techniques for these applications.

2.1 Cracks in Critical Structures

Structural monitoring is needed for on-site inspection of critical structures like bridges,

dams and sewer pipes. The potentially catastrophic consequences of fatigue crack-

ing can be avoided by the early detection of fatigue cracks in on-site structures such

as bridges. The frequently used method of inspecting bridge components for fatigue

damage has been the elementary method of visual inspection. The most revealing sign

of a crack is the existence of rust, oxide film and powder. However, since rust does not

always appear immediately after a crack is formed, cracks may go undetected during

visual inspection. Once a crack is observed or suspected, the structure is further

tested to determine the extent or severity of the damage. A number of techniques are

currently used to confirm the existence of a crack. Among them are vibration based

methods, eddy current imaging, ultrasonic techniques [71], holographic interferome-

try, acoustic emission, photo elasticity, and Electronic Speckle Pattern Interferometry

(ESPI). Of late, wireless sensor networks [22, 35] and mobile sensor networks [77] have

been designed to monitor structures. Some of these techniques still require the initial
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step of observation of a crack by a trained inspector. Additionally, to confirm the

existence of a crack, many of these techniques require complex machinery, and/or

cumbersome and expensive physical removal of the structural member in question.

Visual inspection of structural components on-site at susceptible locations of the

structure remains the first line of action. Remote monitoring used in conjunction

with visual inspection has the potential to reduce the costs of bridge inspection and

maintenance. Human intervention to manually analyze a significant number of im-

ages, as might occur during the imaging of large civil structures such as bridges, is

a time-consuming and error-prone process. Therefore, computer vision algorithms

can facilitate the process of on-site visual inspection. In particular, information on

propagation of cracks across different time scales can be very helpful in determining

the future course of corrective action.

The literature describes various computer vision algorithms that can potentially

detect and track crack damage in structures. One approach consists of detecting

cracks at each time frame independently. Qader et al. [1] did a comparison of four

image analysis methods to detect cracks in bridge images: fast Haar transform (FHT),

fast Fourier transform (FFT), Sobel edge detection, and Canny edge detection. Simi-

larly, Hutchinon et al. [32] used Canny edge detector and wavelet based edge detector

to detect cracks in bridges. Chen et al. [9] used the level-set contour-based approach

to model the complex geometry and extent of cracks in concrete bridge images. The

results of these algorithms are very sensitive to varying lighting conditions and noise

levels of different images in a diverse image data set. Moreover, these algorithms

do not exploit crack information available from previous time frames to track crack

propagation in the current frame. Some methods described in the literature exploit

temporal information across images at various times, and track crack propagation.

Diaz et al. [20] studied propagation of cracks in concrete specimens using a non
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contact digital image measurement system. This system incorporates a contrast cor-

relation method to evaluate the level of plastic damage at each point of a specific

area in the specimen. Two images of the specimen that are acquired before and after

the introduction of fatigue deformation are used by the correlation method. Ryu and

Nahm [51] observed crack propagation behavior successfully by combining the block

matching method and the inclination threshold value method together. To monitor

the crack changes (width and length), it is critical to transform the image co-ordinates

of cracks extracted from each image into the fixed object co-ordinates of the concrete

surface. In the study by Sohn et al. [27], such a geometric relationship was auto-

matically recovered using the two-dimensional (2D) projective transformation based

on the modified iterated Hough transform (MIHT) algorithm. MIHT automatically

solves for the transformation parameters. One of the most popular optical meth-

ods used to measure structural deformation and displacements is the Digital Image

Correlation (DIC) method [23, 50, 73, 72]. DIC is based on the maximization of a

correlation that is determined by examining pixel intensity array subsets on two or

more corresponding images and extracting the deformation mapping function that

relates the images.

The above methods like DIC exploit temporal information between images at

different time frames, and they are very effective in generating displacement fields for

image registration. However, it is also important to find crack maps at various time

instants to trace out the crack growth. The current research proposes an algorithm

based on geodesic minimal paths to find crack maps that track the propagation of

specific cracks that are identified at the crack initiation stage. This problem is solved

together with the problem of crack detection in pavement images, which is discussed

next.
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2.2 Pavement Cracks

Pavement surface cracks measurement is an essential part of a pavement management

system (PMS) for determining cost-effective maintenance and rehabilitation strate-

gies. Visual surveys conducted by engineers in the field are still the most widely used

means to inspect and evaluate pavements. However, such evaluations involve high

degrees of subjectivity, hazardous exposure, and low production rates. Consequently,

automated crack identification is gaining wide popularity among transportation agen-

cies. For the past two decades, many researchers have been developing pavement dis-

tress detection and recognition algorithms using improved artificial and laser lighting.

Still, fully automated pavement distress detection and classification has remained a

challenge. According to the review by Transport Research Board Pavement Manage-

ment Systems Committee [13], the current distress classification is highly subjective

because of the lack of a standard classification protocol among all state agencies.

Hence, it is difficult to achieve standardization in measuring the performance of any

automatic distress classification system. Therefore, the current research focuses on

the more fundamental step of crack map generation that can be standardized among

different state transportation agencies. Crack map generation is defined as the pro-

cess of extracting objects of interest, or cracks, from the background. All the pixels

in the pavement image are identified as either crack or non-crack pixels. In the litera-

ture, this process is often called pavement crack segmentation and the two terms will

be used synonymously in this document. A critical assessment of existing pavement

crack segmentation methods was conducted as part of the research. Much of the

discussion that follows is based on [57].

The National Cooperative Highway Research program synthesis document [14]

contains a comprehensive summary on highway practice, research, and development

efforts in the automated collection and processing of pavement condition data, which

is typically used in network-level pavement management. It is in fully automated
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methods of crack data reduction from images that the greatest amount of research

and development work has occurred over the past decade. The survey noted several

limitations of existing pavement crack segmentation methods. Firstly, all digital

image analysis is limited by the quality and resolution of the images. The document

notes that finer cracks that are not detected automatically may be detected manually

because the human eye can perceive finer crack lines than the image can clearly

display. For this reason, cracks with non-uniform widths may be identified as several

shorter cracks. Secondly, certain types of pavement surface (e.g. chip seals), provide

poor crack visibility, as does crack sealing material.

2.2.1 Crack Map Generating Algorithms

Thresholding and edge detection are the two principal crack segmentation approaches

used. Thresholding-based segmentation methods are widely used in automated crack

detection systems to extract pavement crack features from recorded images . These

methods exploit the fact that cracks are darker than the background. Thresholding-

based segmentation is widely used in automated systems to extract pavement crack

features from recorded images . Kirschke et al. [40] presented initial work towards

a histogram-based machine vision method for the automated sensing of unprepared

cracks in highway pavement. In [42], a comparative study of different thresholding

methods was done. These methods include the Otsu method, a regression method,

a relaxation method, and Kittler’s method. Koutsopoulos et al. [42] showed that

the regression-based method is the best among these methods. After observing the

difficulties of segmentation using the regression-based method, especially in presence

of shadows, Oh et al. [47] proposed an iterated clipping method. This method iter-

atively uses mean and standard deviation values to eliminate noise while preserving

crack pixels. A statistical approach was presented by Koutsopoulos and Downey [41]

in which they recognized the imperfections of segmentation that cause difficulty in
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distinguishing pavement crack types, especially between block and alligator cracks.

Using the characteristics of pavement images, an innovative pavement crack segmen-

tation algorithm based on mathematic morphology was proposed by Sun and Qiu

[54]. Huang and Xu [30] implemented image processing algorithms in real time quite

successfully which were a part of an automated pavement inspection system devel-

oped by TxDOT. In their algorithm, crack analysis is carried out on cells that are

8x8 pixels and each cell is classified as a crack or non-crack cell; then, its orientation

is specified. These cells are connected together if the orientations of neighboring cells

are similar and then crack information is extracted using parameters such as contrast

and length. Cheng et al. [10] proposed a fuzzy logic-based method that exploits

the fact that the crack pixels in pavement images are darker than their surroundings

and are continuous. According to Cheng et al.’s analysis, there is inherent vagueness

rather than randomness in pavement crack images because of grayness and spatial

ambiguity in crack images. Consequently, conventional co-occurrence methods might

not work well. Instead, they use fuzzy homogeneity as the criterion, and use fuzzy

homogeneity vectors and fuzzy co-occurrence matrices to handle the grayness and

spatial uncertainty among pixels. Cheng et al. [10] also did crack classification using

fuzzy logic and neural networks and implemented a sound system that could run in

real-time as part of a Utah Department of Transportation (UDOT) project. Recently,

Hassani et al. (A. Hassani and Tehrani 2008) also used a fuzzy-logic based system for

automatic pavement crack detection. Huang and Xu [30], as a part of an automated

pavement inspection system developed by Texas Department of Transportation (Tx-

DOT), implemented image processing algorithms in real time quite successfully. In

their work, crack analysis is carried out on cells that are 8x8 pixels, where each cell

is classified as a crack or a non-crack cell. The orientation of the crack cell is also

specified. Kelvin Wang et al. [66, 62, 60, 63, 64, 65], as a part of a University of

Arkansas initiative, also developed an automated real time pavement survey system.
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In [62] and [63], the University of Arkansas team introduced a new automated system

capable of collecting and analyzing pavement surface distress, primarily cracks, in

real-time through the use of a high resolution digital camera, efficient image process-

ing algorithms, and multi-computer, and multi-CPU based parallel computing. In

[66] and [64], the image processing algorithms are assessed and a new low power laser

based image acquisition technique is discussed. Hou et al. [28] assessed the feasibility

of using 3D pavement stereo images for better automated crack analysis. Though

the use of 3D stereo vision and laser technologies for pavement crack detection is still

in preliminary stage, they have great potential of providing more information about

the crack that can be used to generate an accurate crack map. These technologies

can provide depth information of the pavement surface and researchers suspect that

depth information will be more robust to texture, lighting and noise compared to 2D

camera intensity images.

E1-Korchi et al [21] pointed out the importance of lighting in determining the

fraction of distress that went undetected. Nazef et al. [46] from FDOT did a compre-

hensive evaluation of pavement distress systems looking into different fact.ors includ-

ing spatial resolution, brightness resolution, optical distortion, and signal-to-noise

ratio. Xu [69] as part of a TxDOT team posits that artificial lighting is the solu-

tion for eliminating all shadows in the image and for improving the data uniformity

across different weather conditions. The TxDOT team has designed a Halogen light

with a special reflector to accomplish this objective. Summarizing thresholding based

method, we concluded that it is difficult to find a fixed thresholding criterion to find

crack maps for diverse pavement images with different lighting conditions, shadows,

oil stains and texture. Consequently, thresholding-based techniques have limitations.

Edge detection is another common image processing technique used for distress

segmentation. Over the past 30 years, many simple but useful edge detectors have

been developed and are widely used, such as Roberts, Sobel, Prewitt and LOG edge
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detectors [17]. Another technique is Canny edge detection [8] that optimizes a per-

formance index that favors true positive, true negative and accurate localization of

detected edges. Canny’s analysis, however, is restricted to a linear shift invariant

filter. Motivated by the idea of Canny’s edge detection algorithm, Mallat and Zhong

[45] first proposed a decimated fast bi-orthogonal dyadic wavelet transform to obtain

an image edge representation by computing the local maximum of the gradient of an

image. Since then, this technology has been widely used in different areas. First,

a pavement image is decomposed into different sub-bands by a wavelet transform.

The wavelet modulus is calculated by combing the horizontal, vertical and diagonal

details. Then, further analysis is carried out and edge information in each direction

is extracted. Pavement images have various details at different scales of resolution

and that has led to the popularity of wavelet-based edge detection methods in the

last decade. Wavelet-based methods can analyze information at multiple scales si-

multaneously [15, 75, 74, 76]. The idea of Mallat and Zhong [45] provides the basis

for most wavelet based algorithms used for pavement crack map detection. Recently

Wang et al.[61] used an ”atrous” algorithm based wavelet edge detection procedure

for pavement distress segmentation. This algorithm is an un-decimated wavelet trans-

form executed via a filter bank without sub-sampling. Wang et al. [59] developed a

segmentation approach using fractal dimension. In order to improve the efficiency of

the computational calculations, the improved approach of differential box-counting

(DBC) was presented in the paper. As with the thresholding techniques, it is hard to

find parameters to distinguish between edges, which correspond to cracks, and noise.

Outside the review of pavement crack specifically, a number of novel texture and

distress segmentation techniques have been implemented. In [53], cell-segmentation

is carried out using shape classification which is morphology driven. A two-phase

approach to segmentation is used where an unsupervised clustering approach cou-

pled with cluster merging based on a fitness function is used as the first phase to
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obtain a first approximation of the cell locations. A joint segmentation-classification

approach incorporating an ellipse as a shape model is used as the second phase to

detect the final cell contour, which is compared to the ground truth. Tomczak and

Mosorov [56], proposed a segmentation method based on Singular Value Decompo-

sition(SVD), which does not require extensive test images. Texture defect detection

has also been done using Gabor filters and its variations in literature [43, 48]. A

method based on mathematical morphology and curvature evaluation which detects

cracks in underground pipelines was proposed recently by Iyer et al. [33, 34]. They

propose a three-step method to identify and extract cracks from contrast enhanced

pipe images. Huo et al. [31] proposed a multi-scale detection of filamentary features

using significance graphs. This method exploits beamlets-a dyadically organized,

multiscale system of line segments-and associated fast algorithms for beamlet anal-

ysis to recover linear fragments from noisy images. Taking advantage of the new

developments in mathematical statistics, a multi-scale approach is designed to de-

tect filament or filament-like features in noisy images. Randen et al. [49] review

most major filtering approaches to texture feature extraction and perform a compar-

ative study. Filtering approaches included are ring/wedge filters, dyadic Gabor filter

banks, wavelet transforms, wavelet packets and wavelet frames, quadrature mirror

filters, discrete cosine transforms, eigen-filters, optimized Gabor filters, linear predic-

tors, and optimized finite impulse response filters. Rivaz et al. [18] illustrate the use

of complex dual tree wavelets in recovering edges in the presence of high noise. The

complex wavelets are oriented in six different directions and the wavelet structure is

able to segregate edges and noise effectively.

The overview of existing literature reflects some prominent areas of concern in the

field of automatic pavement crack segmentation. Firstly, even though research is being

carried out to improve image acquisition techniques and remove lighting defects, the

performance of existing algorithms is severely hampered in the presence of shadows,
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lighting effects and non-uniform crack widths. Full automation of pavement crack

detection and classification has remained a challenge, especially for accurate and

reliable segmentation. Secondly, many algorithms are able to perform well only in an

image data set that has images that are not too different from each other. Otherwise,

manual intervention is required to adjust the parameter inputs so that the algorithms

can perform reasonably for different images. Lastly, algorithms that are able to

tackle image variations and are robust to noise in image acquisition systems cannot

be implemented in real time. As a result, these algorithms have to be used for off line

testing until computationally faster machinery is employed in the future.

2.3 Assessment of Six Algorithms

During our research, six different algorithms for crack map generation were experi-

mentally tested on pavement images to assess their strengths and weaknesses. Most

of this section is based on [57], where all algorithms are described in extensive de-

tail. The six algorithms investigated in the research were statistical thresholding [42],

Canny edge detection [8], multi-scale wavelets method [45], crack seed verification

method [30], iterative clipping method [47] and dynamic optimization-based method

[3]. The results of these algorithms were quantitatively evaluated and compared with

the ground truth cracks that were visually identified by GDOT pavement engineers.

Dynamic optimization-based method formulates the crack map generation problem as

an optimization task. Under all possible shapes and positions of the crack indication,

one combination must be found that maximizes the score function Crack :

Crack = argmax
(n,p1,...,pn)

f(p1, p2, . . . , pn), (1)

where n is indication length (number of pixels) and the pi’s (i = 1, . . . , n) are

coordinates of the pixels along the crack indication. The function depends on four

primary parameters: the minimum signal-to-noise ratio of the indications of interest

16



(controls algorithm sensitivity); the a priori probability of indication presence (in-

fluences detection of indications with gaps); the minimum and maximum widths of

indication (define transversal resolution); and the minimal length of indication (de-

fines longitudinal resolution). This algorithm [3], which has been used on digital

radiography images of steel pipes, was used for the first time on pavement images.

There are two important characteristics of the algorithms that need to be an-

alyzed: speed and accuracy. Overall, the accuracy of dynamic optimization-based

method is consistently better than other methods. Figure 2.1 illustrates the supe-

rior crack map detection of the dynamic optimization-based method compared to the

other five algorithms. The reason for the success of this method is the simultaneous

use of both local and global properties of crack indicators. A global score function

is maximized by the optimal use of connected pixels with predefined constraints like

minimal crack length and crack width. However, the method only works for longitu-

dinal cracks. Moreover, though this algorithm is more robust to noise and variation

compared to the other five algorithms, the parameters in the algorithm need to be

fine tuned heuristically if there is a larger set of diverse images, especially in a set

containing images with different textures. Figure 2.2 depicts the result of dynamic

optimization on an image with concrete texture where it fails to perform well. The

statistical thresholding method uses only local intensity variation at each pixel loca-

tion to classify a pixel as a crack or a non-crack pixel. Hence, it is able to perform

well only when the intensity value difference between crack pixels and background

pixels remains the same throughout the image. This problem is somewhat corrected

in the iterative clipping algorithm by dividing images into tiles and segmenting the

cracks independently in each tile. As thresholds are iteratively calculated using sta-

tistical parameters for each tile, the iterative clipping method gives reasonably good

results for images that do not have shadows, high noise or extremely high variations

17



of pixel intensity values. The Canny edge detection algorithm fails to perform consis-

tently well for all images because the optimal values of its parameters (edge strength

and noise variance) are different for each image and the user has to choose these

values heuristically. Another problem is that the use of a high noise variance value

leads to detection of false edge contours because of the excessive smoothing effects

of the Gaussian filter. These concerns make the algorithm unusable for images with

high noise. A standard multi-scale wavelet algorithm is also unsuccessful in detecting

cracks across images with varying conditions. The user has to adjust the parameters

(numbers of scales, threshold values to separate edges from noise) manually according

to the image being processed. Crack seed verification method performs reasonably

well for images with uniform lighting conditions, but cracks in images with shadows

and variable lighting are not segmented well. This is because of two reasons: the

same crack seed verification threshold is used throughout the image, and there is no

process in the algorithm to connect crack seeds together optimally.

Another downside of the dynamic optimization-based method is its high processing

time (101 seconds per image) that makes the method unusable for real-time processing

currently. Canny edge detection (1.6 seconds per image), the statistical thresholding

method (0.8 seconds per image), the iterative clipping method (0.9 seconds per image)

and the seed verification method (1.2 seconds per image) are all easy to implement

in real time if the code is optimized. The multi-scale wavelet method is also slow

to implement (50 seconds per image) and the implementation time increases with an

increase in the number of scales.

All the above algorithms have input parameters that are sensitive to the lighting

conditions, shadows, texture, oil stains and the noise in the image. These challenges

make automatic crack map generation extremely difficult. To address a part of this

problem, we used minimal path techniques for finding continuous cracks that extend

over several image frames. Using overlapping images, crack information from one
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(e) (f) (g) (h)

Figure 2.1: (a) Original image . (b) Ground truth image. (c) Statistical thresholding
image. (d) Canny edge image. (e) Iterative clipping image. (f) Multi-scale wavelet
image. (g) Crack seed verification image. (h) Dynamic optimization image.
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(a) (b)

Figure 2.2: (a) Image with Concrete Texture. (b) Result of dynamic optimization-
based method.

frame can be used to find cracks in subsequent frames. Other than that, minimal

path techniques can be useful for semi-automatic crack map generation in pavement

images where the user can provide inputs for crack end points. The research seeks

to minimize user inputs and prior information requirements, while maintaining the

accuracy of the results. Cracks occurring in both critical structures and pavements

can be modeled as open curves under the minimal path formulation. Therefore, both

problems will be tackled under the same general framework, which is explained in the

next chapter.

2.4 Summary

This chapter identified the need for accurate crack map generation for both cracks

in critical structures and pavements. For critical structures like bridges, the po-

tential of finding crack growth by exploiting temporal information across structure

images at multiple times is identified. For pavements, accurate crack map genera-

tion is useful both for crack sealing application and for accurate crack classification.

Current research on pavement crack segmentation (crack map generation) algorithm
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is comprehensively reviewed to identify the research need. As part of the research,

six segmentation methods were tested using a diverse set of actual pavement images

provided by the Georgia Department of Transportation (GDOT) with varying light-

ing conditions, shadows, and crack positions to differentiate their performance. The

existing algorithms fail to perform on a diverse data set and this fact motivated the

exploration of techniques based on minimal path techniques described next.
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CHAPTER III

MINIMAL PATH TECHNIQUES

3.1 Introduction

Minimal path techniques are connected with variational energy minimization prin-

ciples that were first introduced into computer vision by Terzopoulos et al. [36].

Terzopoulos et al. [36] proposed the active contour model or snakes that evolves an

initially drawn curve in an image to minimize a certain energy functional. This en-

ergy consists of two terms: the external energy or the image feature term that guides

the evolving curve towards the desired features or object boundary and the internal

energy term that keeps the curve smooth as it evolves. However, the results of all

active contour models depend on the local placement of the initial contour. Cohen

and Kimmel [12] introduced a minimal cost path approach to tackle this problem.

The minimal path approach captures the curve that minimizes the contour depen-

dent energy between two user defined endpoints. The energy is selected such that it

takes lower values at the desired feature of interest. For instance, an intensity based

energy can be chosen to detect cracks because cracks are darker than the their im-

mediate surroundings. A large number of researchers in different areas like geometric

optics, computer vision, robotics and wire routing have previously considered such

minimum-cost path problems. In computer vision, these problems have been tackled

by graph search and dynamic programming principles. However, the graph based

search method for a digitized image with a Cartesian sampling pattern finds only

minimal path with segments that are vertical, horizontal or diagonal. Thus, graph

search methods like Djiktra’s algorithm suffer from inherent metrization errors, which

have been documented by Cohen and Kimmell [12]. The minimal path method based
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on active contours on the other hand, given its connection with active contours, for-

mulates the problem in the continuous domain and is less susceptible for metrization

errors.

The original minimal path technique can be extended for 3D tree-structured ob-

ject extraction [19], but not for general 3D surface extraction. A topology-based

saddle search routine is needed to extend the minimal path technique for closed curve

extraction. Ardon et al. [4] proposed a more general scheme for 3D surface ex-

traction between user supplied end-curves, but this scheme also requires the user

supplied curves to be located precisely on the desired 3D boundary. Though they

were introduced first as a boundary detection method, minimal path techniques have

been successfully applied to problems such as contour completion [11], tubular surface

extraction [19] and motion tracking [7].

All the above approaches require precise knowledge of the desired curve’s end-

points (2D) or the desired surface’s end curves (3D). In [6], a variant of the minimal

path approach called Minimal Path Method With KeyPoint Detection (MPWKD)

was devised to find curves under less restrictive prior information. The user needs

to provide one endpoint on the curve that will lead to detection of representative

keypoints along the curve using front propagation. For closed curves, a stopping cri-

terion was derived that requires no further prior information from the user. Other

researchers have used statistical shape priors [70, 25] and Principal Component Anal-

ysis (PCA) [44] based initial conditions for extracting organ shapes like lungs and

kidneys as closed contours. However, for the simplest case of open curves, informa-

tion about either both the endpoints or one endpoint plus the total length of the

curve is required to find the complete curve [6]. For more complex open curves with

multiple branches, all the endpoints need to be known up front. The motivation of

the current work is to detect curves using less restrictive prior knowledge. In Section

3.2, the theory of minimal path techniques will be introduced. Some applications
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to the problem of crack detection are shown. Section 3.3 will describe preliminary

research efforts in investigating some novel methods of limited and varying success to

detect curves with only one known point. Section 3.4 describes the most successful

algorithm out of our investigations for detecting open curves with the knowledge of

an arbitrary point (not necessarily an endpoint). Using this information, the algo-

rithm can find the complete curve that includes endpoints and even branches. Section

3.5 will describe extensions of the algorithm to curves of more general topology that

contain closed cycles as well as open segments. Finally, Section 3.6 presents two

modifications of the general algorithm that make the curve detection algorithm more

robust to noise and sharp corners at curve branches.

3.2 Theory of Minimal Path Techniques

The minimal path techniques capture the global minimum curve of a contour depen-

dent energy between two user supplied endpoints. The active contour model combines

an image feature term and a smoothing term in a composite energy functional

E(γ) = α

∫ 1

0

‖γ′(s)‖2
ds+ β

∫ 1

0

‖γ′′(s)‖2
ds+ λ

∫ 1

0

Φ(γ(s))ds, (2)

where α, β and λ are real positive weighing constants, γ(s) ∈ Rn is a curve that is

parameterized with respect to arc-length s, γ′(s) and γ′′(s) are the first and second

derivatives of the curve and Φ is a potential that depends on desired image features.

In the minimal path technique, a simplied energy is chosen that is given by

E(γ) =

∫
Ω

(Φ(γ(s)) + ω)ds =

∫
Ω

Φ̃(γ(s))ds, (3)

where E(γ) is energy computed along the curve, γ is the curve chosen in the domain

Ω, ω is a real constant and Φ̃ = Φ + ω. For our problem description, we will assume

that the potential Φ subsumes the constant ω and Φ̃ = Φ. A potential Φ : Ω → R+

is built from a given 2D or 3D image I : Ω → R+ , where Φ > 0, that takes lower

values near the desired features of the image I. The choice of the potential Φ depends
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on the application. For example, the potential function Φ for cracks can be taken

to be a function of intensity value at each pixel because cracks are darker than the

background. In some other applications, edge based potential functions can be used.

The goal is to extract a curve that minimizes the energy functional E : Ap1,p2 → R+

between two user defined points p1 and p2

E(γ) = min
γ∈Ap1,p2

∫
γ

Φ(γ(s))ds, (4)

where Ap1,p2 is the set of all paths connecting p1 to p2 and s is the arc length pa-

rameter. The curve connecting p1 to p2 that globally minimizes the energy E(γ) is

called the minimal path between p1 and p2 or the geodesic. The geodesic curve is

denoted by Cp1,p2 . The solution of this minimization problem is obtained through

the computation of the minimal action map U1 : Ω → R+ associated with p1. The

minimal action map is defined as the minimal energy integrated along a path between

p1 and any point x of the domain Ω:

∀x ∈ Ω, U1(x) = min
γ∈Ap1,x

∫
γ

Φ(γ(s))ds. (5)

In this document, the minimal action map will also be called the geodesic distance

map. The values of U1 are the arrival times of a front propagating from the source p1

with velocity (1/Φ) and U1(p1) = 0. U1 satisfies the Eikonal equation:

||∇U1(x)|| = Φ(x) for x ∈ Ω. (6)

The minimal action map calculation can be generalized to the case of multiple sources.

The minimal action map or the geodesic distance map associated with the potential

Φ : Ω → R+ with a set of n sources S = {p1, . . . , pn} is the function U : Ω → R+,

where

∀x ∈ Ω, U(x) = min
1≤j≤n

{Uj(x)}, (7)

and

Uj(x) = min
γ∈Apj,x

∫
γ

Φ(γ(s))ds. (8)
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Uj(x) is given by Equation (5) where p1 is replaced by pj. For all pj ∈ S, U(pj) = 0 and

U satisfies the Eikonal equation given by Equation (6). Another important quantity

important for the current work is the Euclidean distance map. It is the function

L : Ω→ R+ that assigns the Euclidean length of the minimal geodesic between x and

the source S to every point x of the domain Ω.

∀x ∈ Ω, L(x) =

∫
Cpj,x

ds, (9)

where

Cpj ,x = min
1≤i≤n

Cpi,x

is the minimum of all minimal paths from x to each source point pi. Cpi,x is calculated

using the potential Φ. In general if Φ 6= 1 for all x ∈ Ω, then the geodesic distance

map U is always different from the Euclidean distance map L.

Centered finite difference schemes for solving the Eikonal equation are unstable.

There are three algorithms described in [12] to compute the map U , and they are

all consistent with the continuous energy formulation implemented in a rectangular

grid. These three algorithms utilize level set methods, shape from shading methods,

and Fast Marching methods. Fast Marching methods were favored because of their

lower complexity compared to the other methods. Sethian [2, 52] proposed the Fast

Marching method to solve the Eikonal equation that relies on a one-sided derivative

that looks in the up-wind direction of the moving front. In the 2D case, at each point

x = (i, j), the numerical method gives the solution u approximating Ui,j :(
max{u− Ui−1,j, u− Ui+1,j, 0}

∆x

)2

+(
max{u− Ui,j−1, u− Ui,j+1, 0}

∆y

)2

= (Φ(i, j))2.

(10)

Here ∆x and ∆y are the grid spacings in the x and the y direction respectively. This

is the 4-neighbor scheme for the Fast Marching method. An alternate Fast March-

ing approach to solve Equation (10) was provided by Tsitsiklis [58] in the context of
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isotropic optimal trajectory problem in control theory. The fundamental difference

between the control theory and the front expansion formulation is that the former

interprets the starting point pj as the exit point and tries to find the fastest way

to reach pj from x while the latter one looks for the time it will take to advance

the front originating from pj to pass point x. Both Fast Marching method methods

compute the values of U in increasing order consistent with Huygens principle of wave-

front propagation. These wavefronts propagate from the source set S with a velocity

(1/Φ). The structure of the algorithm is almost identical to Dijkstra’s algorithm for

computing shortest paths on graphs. In the course of the algorithm, each grid point is

tagged as either Solved (a point for which U has been computed and frozen), Active

(a point for which U has been estimated but not frozen) or Unvisited (a point for

which U is unknown). The set of Active points form an interface between the set

of grid points for which U has been frozen (the Solved points) and the set of other

grid points (the Unsolved points). This interface may be regarded as a set of fronts

expanding from each source until every grid point has been reached. Given the source

points, the Fast Marching algorithm helps to calculate geodesic distance map U and

the Euclidean distance map L for every grid point. The improvement made by the

Fast Marching algorithm was to introduce order in the selection of the grid points.

The Fast Marching algorithm is computationally efficient because a priority queue

can be used to quickly find the Solved points at each step. The Solved points are

points with the smallest U (geodesic distance map) value among the current Active

points . If Active points are ordered in a minimum heap data structure, the compu-

tational complexity of the Fast Marching method is O(NlogN), where N is the total

number of grid points. Benmansour and Cohen [6] compute the geodesic distance

map U and the Euclidean distance map L, according to the discretization scheme

for Fast Marching method given in [52] . A number of different modifications have

been suggested to improve the accuracy of the Fast Marching method [16, 26]. For
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example, an 8-neighbor scheme was proposed by Danielsson and Lin in [16]. These

modifications adopt the control theoretic formulation of Tsitsiklis [58]. Therefore, we

compute the maps U and L following the control theoretic formulation because these

modifications can be used in future to improve the accuracy of L. In the next section,

the calculation of the maps U and L for 4-neighbors is given.

Algorithm FastMarchComputation
Input: Image Im, potential function Φ and initial source point set S.
Output: Geodesic distance map U and Euclidean distance map L.
1. for all source points p1, . . . , pn ∈ S
2. do Set U(pj) = 0, L(pj) = 0 and Status(pj) = ACTIVE.
3. for all other points x ∈ Ω
4. do Set U(x) =∞, L(pj) =∞ and Status(pj) = UNVISITED.
5. while Number of ACTIVE Points > 0
6. do Take out point wmin with minimum U .
7. Set Status(pj) = UNVISITED.
8. Update neighbors (STATUS 6= SOLVED) of wmin with procedure Up-

dateNeighbors.
9. repeat

3.2.1 Computation of maps U and L

In the Fast Marching algorithm, we first start with the L and U values at the source

points in S to be zero and the status of the source points is set to Active. At all other

points, U and L values are set to ∞ (a very high value) and their status is set to

Unvisited. All the Active points are put in a minimum heap data structure according

to the value of U . For each Fast Marching iteration, the grid point with the lowest U

value, which is called wmin, in the minimum heap structure is removed from the heap

and its status is changed to Solved. Next, the L and U values at the neighbors of the

point are updated. This corresponds to 4-neighbors in the 2D case and 6-neighbors in

3D case. The algorithm stops once all points are labeled Solved. The Fast Marching

algorithm is listed in FastMarchComputation. The UpdateNeighbor method is used

to update the neighbor values at each iteration. Only neighbors that are Unvisited
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Figure 3.1: (a) Four neighbors of the current point c. (b) Triangle formed by xmin
and ymin

or Active need to be updated. The UpdateNeighbor method for the 2D case will

be given in this section. It can easily be extended to the 3D case. We show the

UpdateNeighbor computation for one arbitrary neighbor of the point wmin, which we

call c. This procedure is carried out similarly for the other three neighbors of wmin.

Consider point c located at (i, j) and the four triangles formed by the neighbors of

c as illustrated in Figure 3.1a. The Fast Marching boundary can propagate from

any of the four directions given by the triangles. However, out of the four virtual

triangles formed by the four neighbors of wmin, only one will give the minimum value

at U(i, j). The triangle that should be used for computation of U(i, j) is the one

formed by xmin and ymin. xmin is the minimum x-neighbor that corresponds to the

x-neighbor ((i+ 1, j) or (i− 1, j))) that takes a lower U value. Similarly, ymin is the

minimum y-neighbor that corresponds to the y-neighbor ((i, j − 1) or (i, j + 1)) that

takes a lower U value. The triangle identified by this method is xminyminc where c

is the current point (i, j). This triangle is shown in Figure 3.1b. The steps in the

UpdateNeighbor method are described next.
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1. If xmin is Unvisited and ymin is Active or Solved,

U(c) = U(ymin) + Φ(c). (11)

L(c) = L(ymin) + 1. (12)

2. If ymin is Unvisited and xmin is Active or Solved,

U(c) = U(xmin) + Φ(c). (13)

L(c) = L(xmin) + 1. (14)

3. If xmin and ymin are not Unvisited, we compute point P , which is given by

P = (1− t)xmin + tymin (15)

where t is the parameter for linear interpolation that lies between 0 and 1. U(c)

is given by the solution of the following minimization problem in t:

U(c) = min
0≤t≤1

{(1− t)U(xmin) + tU(ymin) +
√
t2 + (1− t)2Φ(c)}. (16)

The parameter t that minimizes the expression in Equation (16) is called tmin.

The minimum tmin occurs at the boundary points where t is 0 or 1, or it occurs

at the local extrema t∗, which is obtained by differentiating the expression in

Equation (16).

t∗ =
1

2
+
U(xmin)− U(ymin)

2D1

. (17)

where

D1 =
√

2Φ2(c)− (U(xmin)− U(ymin))2. (18)

The two scenarios that arise are described below.

Case 1: If the discriminant D1 > 0 and 0 ≤ t∗ ≤ 1, the parameter tmin is com-

puted first. To identify tmin, the values Ut∗(c), U0(c) and U1(c) are computed,

which correspond to the values of the expression in Equation (16) at t = t∗,
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t = 0 and t = 1 respectively. U(c) is the minimum of the values Ut∗(c), U0(c)

and U1(c) and tmin is the parameter t that gives the value of U(c). The value

U(c) is given by

U(c) = min
t∈{0,1,t∗}

{(1− t)U(xmin) + tU(ymin) +
√
t2 + (1− t)2Φ(c)}. (19)

The point that corresponds to the parameter value tmin in Equation (15) is

called Pmin. Pmin is the point from which the Fast Marching front travels to

the current point c. We can use the value tmin at the point Pmin to compute

the Euclidean distance L(c) value by replacing Φ(c) with 1 in Equation (19).

L(c) = (1− tmin)L(xmin) + tminL(ymin) +
√
t2min + (1− tmin)2. (20)

In the computation of L and U given in [6], which is based on the approach

of Sethian [52], the computed value of U(c) is the same as in Equation (19).

However, the value of L(c) is computed by the following equation:

L(c) =
L(xmin) + L(ymin)

2
+
D2

2
, (21)

where

D2 =
√

2− (L(xmin)− L(ymin))2. (22)

According to the Tsitsiklis’s control theory formulation that we follow, the

computation of L(c) shown in Equation (21) corresponds to the value t̄min that

minimizes the expression

L(c) = min
0≤t≤1

{(1− t)L(xmin) + tL(ymin) +
√
t2 + (1− t)2}. (23)

Clearly, in general the value of t̄min and tmin will be different. According to

the definition of L given by Equation (9), tmin will lead to a more accurate

computation of L(c) compared to t̄min. The reason for that is we want to use

the minimizer tmin of U(c) to compute L(c), not the minimizer of L(c) ( given
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by t̄min). In addition, (18) and (22) demonstrate that discriminants D1 and

D2 are formed by completely different terms. Therefore, it may be possible

that D1 > 0 and D2 < 0. If that happens, L(c) cannot be computed using

the same neighbors that are used to compute U(c). Therefore, it can lead to

errors in the computation of L(c). Our method avoids this problem by finding

the location of the point P from which the geodesic front propagates. Hence,

the method allows for the computation of L directly instead of solving for a

separate quadratic equation. The accurate computation of L is essential for the

accuracy of our proposed algorithm to detect curves, so we use this approach.

Case 2: If D1 ≤ 0 or t∗ /∈ [0, 1], then we use the minimum of U(xmin) and

U(ymin) to compute U(c).

U(c) =


U(xmin) + Φ(c) if U(ymin) > U(xmin),

U(ymin) + Φ(c) otherwise.

(24)

L(c) is computed using the same neighbors as U(c)

L(c) =


L(xmin) + 1 if U(ymin) > U(xmin),

L(ymin) + 1 otherwise.

(25)

3.2.2 Back Propagation

For a source point set S with a single point p1, the minimum of U is at the front

propagation starting point p1 where U(p1) = 0. The gradient of U is orthogonal

to the propagating fronts since these are its level sets. Therefore, the minimal path

between any point q and the starting point is found by sliding back along the gradient

of the map U until arriving at U(p1). This back propagation procedure is a simple

steepest gradient descent. It is possible to make a straight forward implementation

on a rectangular grid: given a point q, the next point in the chain connecting q to

p1 is selected to be the neighbor p′ of q for which U(p′) is minimum. The tracking
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can be made more precise by using the Runge-Kutta method based gradient descent.

The back propagation approach can be easily extended to the multiple source points

(p1, p2, . . . , pn) scenario. In the case of multiple source points, the back propagation

procedure gives the minimal path between point q and the set of source points S =

{p1, p2, . . . , pn}. In addition, we can also find the origin point s∗ ∈ S from which the

minimal path to q originates. The minimal path back propagation procedure will be

important for our algorithm and we will denote it by MinimalPathbk(S, q), where S

is the set of source points and q is the destination point.

3.3 Preliminary Investigation

Single source
         p

1

(a)

q

p
1

(b)

Figure 3.2: (a) Pavement image with one source point p1. (b) Back propagation from
a point q.

We applied the minimal path algorithm to crack images on pavement and concrete

structures. We used a potential function Φ based on intensity information. The

potential function is given by

Φ(i, j) = ε+ I(i, j), (26)
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Figure 3.3: (a) Lab image with multiple source points p1, . . . , pn. (b) Back propaga-
tion from a point q with origin point pj (The point closest to q among p1, . . . , pn).

where I(i, j) is the image intensity value at each point x = (i, j) and ε = 10−6 is a

constant. Figures 3.2 and 3.3 show the results of the minimal path back propagation

algorithm, MinimalPathbk(S, q), for the single source and multiple source cases re-

spectively. In Figure 3.3b, pj is the origin point s∗ that is closest to q . The grid

spacings for the discretization step ∆x and ∆y were chosen to be 1. The raw image

for Figure 3.2 is a pavement image containing cracks that was provided by GDOT.

The image in Figure 3.2 was obtained from the experimental fatigue tests in Georgia

Tech Structures lab that were conducted to simulate crack propagation in critical

structures. The same potential function Φ was used for both images. The results

indicate that the same potential function Φ can be used to find cracks in both these

images. This potential function works better than functions based on edge detectors

like ||∇I|| because the images have high intensity variations in the non-crack regions.

However, to find the crack, the two end points of the crack still need to be precisely

known. This is a very restrictive condition for finding open curves or crack patterns.

Therefore, our research was focused on finding cracks or open curves, using less prior

information. A novel algorithm to detect open curves with only one known point
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was developed as part of the research. We starting by investigating two parameters :

geodesic to Euclidean length ratios and the local gradient around keypoints.

3.3.1 Geodesic to Euclidean length ratio

Given the geodesic and Euclidean distance maps U and L respectively, we can cal-

culate U/L or the Geodesic to Euclidean length ratio. Considering the fact that the

curve points or desired feature points have low potential function values, it is ex-

pected that the U values at curve points will be smaller than the L values, given that

0 < Φ ≤ 1 . This fact can be helpful in identifying the terminal point of the curve, if

one or more points on the crack are already known. If U and L are set to the value

1 at the source points or the known curve locations, any continuous path along the

points on the curve should continue to decrease the U/L ratio until it reaches the end

of the curve. Therefore, the point at which the minimum value of U/L is reached

can be identified as the endpoint of the curve. The computation of U/L ratio is done

using the following steps:

• Start with known curve locations as source points and set U and L to 1 at these

points.

• Follow the Fast Marching procedure given in Section 4.2 to compute distance

maps U and L for all grid points.

• Compute U/L ratio for all grid points.

U/L ratios were computed for the some synthetic images first and the results on

one of the synthetic image is shown in Figure 3.4b. The intensity value is chosen as

the potential function. The curve in the image is of mean intensity 0.2 and variance

0.05 and the background is of mean intensity 0.5 and variance 0.05. Even on this

image that has sufficient contrast, this method does not identify the correct endpoint

location. Figure 3.4a shows the synthetic image with the initial source point p. Figure
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Figure 3.4: (a) Image with source point p. (b) U/L ratio plot for the all Image pixels.

3.4b shows the U/L ratio plot at all pixel locations. The point with lowest U/L ratio

is labeled q. The U/L ratio exhibits low values at curve locations, but the lowest value

of U/L does not occur at the endpoint of the curve. The result can be attributed

to two factors. In images, a continuous path of uniform decreasing U/L ratio may

not be available as some noise or even small intensity changes along the curve may

be present. Therefore, it is difficult to identify the correct endpoint of the curve.

Secondly, though we assume the curve to be continuous, the U/L is computed using

the Fast Marching discretization scheme. Even these small discretization errors can

make the task of identifying correct endpoints difficult.

3.3.2 Local Gradient around Keypoints

The minimal path procedure described above requires the knowledge of two endpoints.

In addition, it also assumes that the potential function is not very noisy and provides

enough contrast that can enable the minimal path to track even convoluted, long

curves along desired features. In many applications, these conditions are not met and

the desired feature points have a lower potential only in a local neighborhood region.

To overcome the limitations of this approach, Benhamasour and Cohen [6] introduced
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Figure 3.5: (a) Image with a curve of interest. (b) Minimal paths from endpoint p to
multiple points 1 . . . 8.

the Minimal Path Method With KeyPoint Detection (MPWKD) approach. This

algorithm is based on the idea that among all points on the Fast Marching boundary

that have equal geodesic distance U values, the points near the desired features will

have the maximum Euclidean distance L. The path along the desired feature acts

like an attractor for all minimal paths. In Figure 3.5, the minimal paths that have

a common endpoint p on the curve are displayed. We can see that for all locations

of the other endpoints labeled 1, . . . , 8, the minimal path is attracted to the desired

curve. As the potential Φ at the feature points is lower than the neighborhood points,

the Fast Marching boundary propagates with high speed 1/Φ and travels the furthest

Euclidean distance along the feature points. When the Fast Marching boundary

propagates with the potential Φ from a source point set S (S = p initially), the first

point for which Euclidean distance L exceeds λ is identified. This point is referred to

as a keypoint. Keypoints are recursively detected until a known endpoint is reached

or until the detected curve exceeds a given Euclidean length. At each iteration, the

source point set S is augmented by including the detected keypoint.

37



p

(a)

1
2

3
4

5 6 7 8 9
10

11
12

Local
neighborhood
of keypoint

(b)

Figure 3.6: (a) Image with a curve of interest and source point p. (b) Image illustrat-
ing source point and the keypoints on the curve in sequence. The keypoint on the
random background is marked by ‘x’

The MPWKD requires prior knowledge of both endpoints or one endpoint plus

the total length of the curve. If the curve has multiple branches then the user needs to

know all endpoints of the curve. To relax these prior assumptions, we investigated the

gradient of L around each keypoint. The local gradient was computed by investigating

the minimum L value in a rectangle of size 5×5 around the keypoint and subtracting

it from the L value at the keypoint (keypoint has the highest L value ). It is expected

that when the keypoint is on the curve, the local gradient of L will be high because

the local neighborhood will have pixels with substantially lower potential values than

the keypoint. For a keypoint that is not on the curve but on a random background,

the potential values in the neighborhood should not produce a substantial gradient.

Figure 3.6a shows an image with the curve against a random background with an

initial starting point. All the points that include the initial point p and keypoints

on the curve are labeled in the sequence of their appearance in Figure 3.6b . The

last keypoint identified lies on the random background and is marked as ‘x’. The

rectangular region that represents the local neighborhood of this keypoint is also
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shown in Figure 3.6b.

We found out that it is not easy to choose a threshold gradient to identify the

termination of the curve. Even if the curve intensity changes slightly keeping the

background fixed, a new threshold needs to be set. After this initial investigation,

we developed a novel algorithm to detect open curves (even with multiple branches)

with the knowledge of an arbitrary known point. This algorithm is described next.

3.4 Algorithm for Detection of Open Curves

The keypoints detected in the MPWKD are approximately equally spaced along the

curve. We use this fact to find a good stopping criterion for curve endpoint detection.

Starting from the initial point p, fronts are propagated with potential Φ and the first

point that crosses a Euclidean distance of λ is detected. This point is labeled as

the first keypoint k1. The Fast Marching procedure to find the first keypoint k1 is

referred as FMM(S, λ) in this document where S is the source point set. The source

point set S includes only the point p initially. We use a synthetic image that has a

curve with lower mean intensity value than the random background for illustrating

the algorithm. A λ value of 30 was used for this image and the potential function was

chosen to be the intensity value. Figure 3.7a shows the image with initial source point

p on the curve. Figure 3.7b illustrates the use of FMM(S, λ) to find k1. The points

inside the Fast Marching boundary are scaled to a lower intensity value for better

illustration. The source point set S is augmented by including the new keypoint k1

and the set S now becomes p ∪ k1. An associative map m : S 7→ S is generated that

defines an origin point for every keypoint in S. For a new keypoint, the origin point

is the point closest in the set S to the keypoint. Hence, for k1, the origin point is

the initial point p. Though the initial point p does not have an origin point explicitly

because it is not a keypoint, we assign k1 as the origin point of p. The reason is that

the minimal path for two points is symmetric and can be found by propagating the
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Figure 3.7: (a) Synthetic image with initial point p. (b) Detection of first keypoint
k1. (c) Detection of second keypoint k2. (d) Fast March propagation from set s′.
(e) Minimal path on the curve. (f) Minimal path in background region. (g) Curve
and keypoints detected after 5 iterations. (h) Curve and keypoints detected after 8
iterations. (i) Final Image with ordered keypoints and terminating point marked by
‘x’.
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Fast Marching algorithm from either point (in this case p or k1). Therefore, if started

with k1 as the initial point in source set S, p would be the keypoint determined by

the procedure FMM(S, λ). Hence

m(p) = k1, (27)

m(k1) = p. (28)

Now, the Fast Marching propagation is carried out from the updated set S and

the next keypoint k2 is detected as shown in Figure 3.7c. Using the minimal path

backpropagation algorithm MinimalPathbk(S, k2), the point s∗ in S that is a part

of the minimal path from k2 to S is identified. s∗ is the origin point of k2 and m(k2)

equals s∗. In our example, origin point s∗ is the initial point p . Next, we find the

origin point s′ of the point s∗ from the map m (s′ is the point k1 for our example).

If there exists a continuous path of desired feature points with low potential values

between the points s′ and k2, then the minimal path between s′ and k2 should also

pass through the vicinity of s∗. Figure 3.7e shows the minimal path from s′ and k2 in

the case where the minimal path overlaps with the curve. When there is no portion

of a curve on this minimal path, the path does not pass through the neighborhood

of s∗ as illustrated in Figure 3.7f. We denote the Euclidean distance from a source

point set s′ to a point k2 as L(s′, k2). The Fast Marching propagation required to

determine L(s′, k2) is denoted by FMM(s′, k2). Figure 3.7d depicts this Fast March

propagation. From Figure 3.7e, we conclude that if the minimal path between s′ and

k2 lies on the curve, then

L(s′, k2) ≈ L(s′, s∗) + L(s∗, k2). (29)

As all keypoints are detected sequentially with a fixed Euclidean distance parameter

λ, the Euclidean distance L between neighboring keypoints is close to λ. The point

s∗ is the closest point to the keypoint k2 in the set S. Hence, by definition of the

procedure FMM(S, λ), the distance between s∗ and k2 is close to λ . Similarly,
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The point s′ should be at a distance of λ from s∗ because s′ is the origin point of

s∗. This fact is clear from Figure 3.7e. According to Equation (29), the Euclidean

distance L(S ′, k2) should then be approximately 2λ if the minimal path from S ′ to k2

passes through s∗. If Equation (29) does not hold (like in Figure 3.7f), then the curve

detection procedure can be terminated and the algorithm outputs that there is no

curve detected. Otherwise, this procedure of finding keypoints is recursively carried

out and the subsequent keypoints are identified as k2 in the OpenCurveDetection

algorithm that is given below. The point s∗ determined at each iteration is either

the initial source point p or a keypoint. A tolerance error value ε is specified for

the termination. We used an ε value of 0.2λ or 10% of the total length 2λ for the

algorithm. In Chapter 5, a sensitive analysis of the effect of ε and λ on curve detection

is presented. The intermediate results of the algorithm are shown in Figure 3.7g and

3.7h. The complete curve with keypoints (including the initial point) is shown in

Figure 3.7i. The keypoints are labeled according to the order of their appearance.

The last keypoint for which (29) does not hold and the algorithm terminates is called

the terminating point (represented by ‘x’ in Figure 3.7i). For a simple curve with no

branches, the estimated length of the detected curve should lie within λ distance of

the actual length.

There are several advantages to the above algorithm. Firstly, if the curve repre-

senting desired features grows or expands at each time frame, we can use the detected

keypoints from the previous time frame as the initial points for the next time frame.

Then, the curve already detected will not be recomputed and only new portions of

the curve will be added to the existing curve. This process can be very useful in

applications of crack growth in structures where the crack grows at each time frame.

The applications of the algorithm to the crack growth problem will be discussed in

Chapter 5. Secondly, the algorithm based on keypoint detection requires that the

potential chosen for the desired curve possesses sufficient contrast only in the local
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Algorithm OpenCurveDetection
Input: Image Im, potential function Φ and initial source point set S.
Output: Detected Curve C
1. Start with initial source point set S containing an arbitrary point p on the curve.
2. Set StopDetection = FALSE.
3. Use FMM(S, λ) to find keypoint k1.
4. Run MinimalPathbk(S, k1) and initialize curve C to contain the minimal path

between S and k1.
5. Set S ← S ∪ k1.
6. Set m(k1) = p and m(p) = k1.
7. while StopDetection = FALSE
8. do Run FMM(S, λ) to find new keypoint k2.
9. Run MinimalPathbk(S, k2) and find the origin point s∗ in set S.
10. Set curve C ′ to contain the minimal path between S and k2.
11. Compute point s′ = m(s∗).
12. Use FMM(s′, k2) to calculate L(s′, k2).
13. if |L(s′, k2)− 2λ| < ε
14. then C ← C ∪ C ′, S ← S ∪ k2 and m(k2) = s∗.
15. else StopDetection = TRUE.
16. repeat

neighborhood of the curve. Even if the potential values are similar to the desired

curve or there are undesired features similar to the curve in non-local regions, the

algorithm is able to detect the desired curve. The reason is that the computation of

L and U in the algorithm is confined to the local neighborhood around detected key-

points. This neighborhood is determined by the parameter λ and the neighborhood

is larger for a bigger value of λ. Figure 3.8a shows a synthetic image with the desired

curve in the center with a dark background and two undesired curves in the non-local

neighborhood. The potential is chosen to be the intensity of the image. Figure 3.8b

illustrates that the algorithm is still able to detect the desired curve. The Fast March

boundary corresponding to the computation of U and L are also drawn in Figure 3.8b

. Finally, the algorithm can be used to determine if there is any curve in the vicinity

of the initial point as shown in Figure 3.7f.

The above algorithm can also be used on more complex curves. Figure 3.9a

illustrates a synthetic image that has a curve with branches embedded in a noisy
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Figure 3.8: (a) Image with a curve of interest, and dark regions and undesired curves
in non-local neighborhood. (b) Detected curve and Fast March boundary with ordered
keypoints and terminating point labeled by ‘x’ .

random background of higher mean intensity. An arbitrary source point p on the curve

is provided as input to the algorithm. Figure 3.9b demonstrates the intermediate

result of the algorithm on the image in which the curve and the keypoints detected

are labeled. Figure 3.9c shows the final result with the complete curve, all ordered

keypoints and the terminating point. The next section explores the algorithm for

more general curves that have cycles.
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Figure 3.9: (a) Curve with branches and initial point p. (b) Intermediate result from
the algorithm after 9 iterations. (c) Final curve detection with keypoints and final
terminating point labeled by ‘x’.
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Figure 3.10: (a) Image with a closed curve of interest and initial point p. (b) End-
points e1 and e2 after first keypoint detection. (c) Endpoints e1 and e2 and the origin
point m(e2) after 5 iterations. (d) Detected curve from OpenCurveDetection with
ordered keypoints and terminating point labeled by ‘x’ . (e) Endpoints e1 and e2 and
the origin point m(e2) . (f) Complete curve with closure between e1 and e2 .

3.5 Algorithm for Detection of Curves of General Topology

The self-terminating minimal path algorithm described in Section 3.4 can also be

extended to curves of general topology that have cycles. For that we need to keep

track of keypoints that are endpoints. Endpoints are defined as points that have only

one neighbor. Two points are neighbors of each other if one point is the origin point

of the other. For every point in the source point set S, which is augmented each

time a new keypoint is added, the origin point is given by the map m as explained

in Section 3.4. The map m is one-to-one, so every point in S has an origin point.

Hence, every point in S has at least one neighbor. For any general point q, m(q)
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and q are neighbors. We illustrate the algorithm on a synthetic image with a closed

curve and a starting point p as shown in Figure 3.10a. When the first keypoint k1

is detected starting from initial point p, both points are designated as endpoints and

added to the endpoint set E as shown in Figure 3.10b. These endpoints are labeled

as e1 (which is same as p) and e2 (which is same as k1) in Figure 3.10b. For all

subsequently detected keypoints, it is easy to update the endpoint set E. Whenever

a new keypoint (identified as k2 in OpenCurveDetection algorithm and e2 in Figure

3.10c) is detected from the current source point set S and the keypoint satisfies

Equation (29) of the OpenCurveDetection algorithm, the keypoint is also added to

the endpoints E. This is because every new keypoint e2 has only one neighbor: the

origin point of e2 given by m(e2). When a new keypoint originating from the point

m(e2) contained in S is added to the set S, the point m(e2) has a new neighbor e2. All

points in the source point set S have at least one neighbor, which is given by the map

m. Hence, the point m(e2) has at least two neighbors now given by m(m(e2)) and e2

as shown in Figure 3.10c. If point m(e2) is in the endpoint set E (that is it had only

one neighbor m(m(e2)) previously), m(e2) should be removed from the set E. For

example, in Figure 3.10c, m(e2) was a part of endpoint set E previously and it has to

removed after the detection of the new keypoint e2. Apart from this additional step

of keeping track of endpoints, we follow the OpenCurveDetection algorithm exactly as

before. When the algorithm OpenCurveDetection terminates, we examine all pairs of

endpoints in the set E. Figure 3.10d illustrates the results of the OpenCurveDetection

algorithm with the keypoints and initial point marked in order. Let e1 and e2 be any

two points contained in the endpoint set E, and m(e2) be the origin point of e2 as

shown in Figure 3.10e. A continuous curve between e1 and e2 will exist only if the

distance L(e1, e2) is less than 2λ. This is because all keypoints are at a minimum

distance of λ from each other and a keypoint cannot be detected on the curve between

e1 and e2 with the total separation between e1 and e2 less than 2λ. If the distance
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L(e1, e2) is more than 2λ, an additional keypoint that lies on the curve between e1

and e2 should be detected. For the curve to exist between e1 and e2, an additional

condition similar to Equation (29) should be satisfied. The condition is given by the

following equation:

L(e1,m(e2)) ≈ L(e1, e2) + L(e2,m(e2)). (30)

By the definition of the origin point L(e2,m(e2)) is close to λ, so only the other two

quantities need to be computed in the above equation. If Equation (30) is satisfied

within a certain tolerance range, the detected curve is closed between endpoints e1

and e2 as shown in Figure 3.10f. This process is repeated for all pairs of points in

E (there are only two endpoints in the set E for the image in Figure 3.10f). The

same tolerance value ε is used for both Equations (29) and (30) in our algorithm.

If the user has prior knowledge that the curve is closed, the keypoint verification

given by Equation (29) can be dropped and unconstrained keypoint detection can

continue until the two endpoints (there are only two endpoints for a simple closed

curve) become closer than 2λ. However, in our algorithm we do not assume this prior

knowledge.

3.6 Robust Algorithm for Curve Detection

In our experimental tests, we found that some modifications of the algorithm de-

scribed in Section 3.5 can be made to improve the robustness of curve detection.

During the GeneralCurveDetection algorithm, there is a possibility of generating ad-

ditional keypoints that are not on the curve after all the keypoints on the curve have

been identified. Figure 3.11a shows a synthetic image with a closed curve and Figure

3.11b depicts the results of GeneralCurveDetection with parameter λ = 30. Point ‘14’

in Figure 3.11b is the additional keypoint that is generated and it produces spurious

curve portions. We observed that these additional points that lead to spurious curve

detection have an origin point that has at least 3 neighbors. Such points are called
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Figure 3.11: (a) Image with a closed curve of interest and initial point p. (b)
Curve, ordered keypoints and terminating point (marked by ‘x’) detected by Gen-
eralCurveDetection. (c) Minimal path between branch-point b1 and m(m(b1). (d)
Keypoint k2 for which the origin point m(k2) has only 2 neighbors. (e) Branch-point
b1 for which the origin point m(b1) has 3 neighbors branch-point b1, point ‘6’ and
the origin point m(m(b1)). (f) Complete curve detected by modified algorithm with
disconnected branch-point. (g) Image with open curve of interest and initial point
p. (h) Curve, ordered keypoints and terminating point (marked by ‘x’) detected
by GeneralCurveDetection. (i) Complete curve detected by modified algorithm with
disconnected branch-point.
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Algorithm GeneralCurveDetection
Input: Image Im, potential function Φ and initial source point set S.
Output: Detected Curve C
1. Start with initial source point set S containing an arbitrary point p on the curve.
2. Set StopDetection = FALSE.
3. Use FMM(S, λ) to find keypoint k1.
4. Run MinimalPathbk(S, k1) and initialize curve C to contain the minimal path

between S and k1.
5. Set S ← S ∪ k1.
6. Set m(k1) = p and m(p) = k1.
7. Set E ← p ∪ k1.
8. while StopDetection = FALSE
9. do Run FMM(S, λ) to find new keypoint k2.
10. Run MinimalPathbk(S, k2) and find the origin point s∗ in set S.
11. Set curve C ′ to contain the minimal path between S and k2.
12. Compute point s′ = m(s∗).
13. Use FMM(s′, k2) to calculate L(s′, k2).
14. if |L(s′, k2)− 2λ| < ε
15. then C ← C ∪ C ′, S ← S ∪ k2 and m(k2) = s∗.
16. Set E ← E ∪ k2 and E ← E −m(k2).
17. else StopDetection = TRUE.
18. for all pairs of points ei, ej in E,
19. if L(ei, ej) < 2λ
20. Run MinimalPathbk(ei, ej) and initialize C ′ to

contain the minimal path between ei and ej.
21. if |L(ei,m(ej))− L(ei, ej)− λ| < ε
22. then C ← C ∪ C ′
23. repeat

branch-points. In Figure 3.11c, the branch-point is labeled b1, which has origin point

m(b1). The point m(b1) has 3 neighbors that includes its origin point m(m(b1)), the

branch-point b1 and the point ‘6’, which is the sixth keypoint detected by the Gener-

alCurveDetection algorithm. For the branch-point b1, Condition (29) is satisfied and

GeneralCurveDetection algorithm is not terminated. This is because b1 is located in a

neighborhood of the curve section between m(b1) and point ‘6’. Hence, a major por-

tion of the minimal path between b1 and m(m(b1)) lies on the actual curve and passes

through the vicinity of m(b1) as shown in Figure 3.11c . This ensures that Equation

(29) is satisfied for the point b1. Here points b, m(b) and m(m(b)) correspond to k2,
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s∗ and s′ in (29). To overcome the problem of detection of spurious branch-points,

we keep track of the spurious branch-points using a set B in the modified algorithm.

A map m1 : S 7→ Z is generated for all the points in the source point set S. This

map gives the number of neighbors for each point in S. Whenever a new keypoint k2

is generated using the procedure FMM(S, λ), the neighbor count given by m1(k2) is

set to 1. In addition, the neighbor count for the origin point of the new keypoint is

incremented by 1. For a keypoint k2 that is not a branch-point (its origin point m(k2)

has only two neighbors) like in Figure 3.11d, the earlier algorithm procedure given in

GeneralCurveDetection is followed without changes. However, if the neighbor count

of the origin point m(k2) is greater than 2 , the new keypoint is identified as a branch-

point (which is b1 in Figure 3.11e) and added to the branch-point set B. It is also

added to the source point set S, but not to the endpoint set E. The minimal path

from the branch-point b1 and its origin point m(b1) is not added to the complete curve

so that spurious curve sections are not detected. A map n : B 7→ AI is generated for

all branch-points in B where n stores the minimal path between a branch-point b and

its origin point m(b) for all b ∈ B. AI is the space of continuous curves in the grid

generated by the input image I. We also wanted to ensure that if a branch-point b in

B corresponds to a genuine branch of the curve, we add the minimal path given by

n(b). Therefore, whenever a new keypoint k2 has an origin point b in set B, both the

minimal path from k2 to b and the minimal path from m(b) to m(m(b)) are added to

the detected curve. In addition, the origin point b is removed from the set B. Fig-

ure 3.11f shows the complete curve detected using the modified algorithm where the

branch-point curve section is not detected. Figure 3.11g illustrates another image for

which the GeneralCurveDetection algorithm detects spurious curve portions. Figure

3.11h shows the results of GeneralCurveDetection algorithm and Figure 3.11i shows

the corrected curve detection results using the modified algorithm.
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Figure 3.12: (a) Image with complex topological curve and initial point p. (b)
Curve, ordered keypoints and terminating point (marked by ‘x’) detected by Gen-
eralCurveDetection. (c) Minimal path between terminating point q and m(m(q)).
(d) Incremental keypoint r and Fast Marching boundary of FMM(S, λ) (e) Minimal
path between m(q) and r. (f) Complete curve detected by RobustCurveDetection
with ordered keypoints and terminating point marked by ‘x’

Apart from the modification described above, we identified another area of algo-

rithm improvement. We found that for complex topological curves that have sharp

corners at branches the GeneralCurveDetection algorithm terminates before the de-

tection of the complete curve. This is illustrated by Figure 3.12a that shows a syn-

thetic image with a complex topological curve with cycles and branches. Figure 3.12b

depicts the curve detection result of GeneralCurveDetection algorithm with ordered

keypoints and the terminating point (marked as ‘x’). A λ value of 30 was used for the
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algorithm. Figure 3.12b shows that the complete curve is not detected and the algo-

rithm stops after the detection of the terminating point, which is located on a branch

with a sharp corner. This is because though the potential image (the image intensity

value is used as potential for the image) provides a good contrast between the curve

and the background, there exists a shorter path between the terminal point, which is

called q, and m(m(q)) that does not pass through m(q). This fact is shown in Figure

3.12c where m(m(q)) is point ‘11’ and m(q) is point ‘12’. Hence, L(m(m(q)), q) is not

close to 2λ and Condition (29) is violated and the GeneralCurveDetection algorithm

is terminated. q, m(q) and m(m(q)) correspond to k2, s∗ and s′ in (29). To fix this

problem, we introduced an extra condition for algorithm termination. We compute an

additional keypoint r and call it the incremental keypoint. This point r is computed

using the Fast Marching procedure with the terminal point q as the source point. The

incremental keypoint r is the first point for which the Euclidean distance L is greater

than λ. However, this keypoint r should also lie outside the Fast Marching boundary

derived from the procedure FMM(S, λ). Recall that FMM(S, λ) is the Fast March-

ing procedure used to compute the terminal keypoint q in the GeneralCurveDetection

algorithm where S is the source point set containing all keypoints apart from q. The

incremental point r and the Fast Marching boundary for the procedure FMM(S, λ)

is shown in Figure 3.12d. In the figure, the region inside the Fast Marching bound-

ary is scaled to a lower intensity value for better illustration. The status of all the

grid points in an image after the execution of the FMM(S, λ) Fast Marching proce-

dure is stored in an array called STATUS. Points inside the Fast Marching boundary

of FMM(S, λ) correspond to the Solved points in the Fast Marching algorithm de-

scribed in Section 3.2. Hence, the incremental point r should not be a Solved point in

the STATUS array. This condition ensures that the new keypoint r originates from

the terminal point q and does not correspond to other keypoints on the curve that

are already computed. The Fast Marching procedure to compute the incremental
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keypoint r is called FMM(q, λ, STATUS). If a condition similar to (29) given by

L(m(q), r) ≈ L(m(q), q) + L(q, r), (31)

is satisfied then the curve detection algorithm is not terminated. This condition

ensures that if the incremental keypoint r lies along a branch of the curve as shown

in Figure 3.12e, the curve detection procedure continues. Since the new point r is

restricted to lie outside the Fast Marching boundary of FMM(S, λ), we found that

a lower tolerance value should be used for the validating Condition (31) compared to

Condition (29). According to the results of the quantitative validation study that is

described in detail in Section 5.3, we chose the tolerance value to be ε/2 = 0.1λ, half

of the value of Condition (29). In Figure 3.12e, the incremental keypoint r satisfies

Condition (31) because the minimal path between r and m(q) passes through the

point q. The algorithm can therefore proceed till Condition (31) is not satisfied for

a terminating point q. The complete curve detected using the modified algorithm

is shown in Figure 3.12f. Figure 3.12f also shows all the ordered keypoints and the

terminating point (point for which Condition (31) is not satisfied). The robust curve

detection algorithm that was designed with the two modifications discussed in this

section is described in RobustCurveDetection.

3.7 Summary

We have presented a novel algorithm for detecting curves with unknown endpoints

based on minimal path techniques. We showed that this algorithm can detect curves

using any arbitrary point on the desired curve as the sole user input. Synthetic image

data was used to illustrate our algorithm. The algorithm can also be generalized to

detect closed curves and detect curves with complex topologies that have both closed

cycles and open sections. The algorithm is also easy and straight-forward to extend

to volumetric data sets for the extraction of 3D (and even higher dimensional) curves.
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Algorithm RobustCurveDetection
Input: Image Im, potential function Φ and initial source point set S.
Output: Detected Curve C
1. Start with initial source point set S containing an arbitrary point p on the curve.
2. Set StopDetection = FALSE.
3. Use FMM(S, λ) to find keypoint k1.
4. Run MinimalPathbk(S, k1) and initialize curve C to contain the minimal path

between S and k1.
5. Set S ← S ∪ k1.
6. Set m(k1) = p and m(p) = k1.
7. Set m1(k1) = 1 (no. of neighbors is given by the map m1.) and m1(p) = 1.
8. Set E ← p ∪ k1.
9. while StopDetection = FALSE
10. do Run FMM(S, λ) to find new keypoint k2.
11. Store STATUS of all points after FMM(S, λ).
12. Run MinimalPathbk(S, k2) and find the origin point s∗ in set S.
13. Set curve C ′ to contain the minimal path between S and k2.
14. Compute point s′ = m(s∗).
15. Use FMM(s′, k2) to calculate L(s′, k2).
16. if |L(s′, k2)− 2λ| < ε
17. then S ← S ∪ k2 and m(k2) = s∗.
18. Set m1(k2) = 1 and m1(s∗)← m1(s∗) + 1.
19. if s∗ ∈ B (branch-points set)
20. then C ← C ∪ n(s∗), B = B − s∗.
21. if m1(s∗) > 2
22. then n(k2) = C ′

23. else C ← C ∪ C ′, E ← E ∪ k2, E ← E − s∗.
24. else C ′′ = C ′, q = k2 and m(q) = s∗.
25. Use FMM(q, λ, STATUS) to compute incremental keypoint r.
26. Set curve C ′ to contain the minimal path between q and r.
27. Use FMM(m(q), r) to calculate L(m(q), r).
28. if |L(m(q), r)− 2λ| < ε
29. then S ← S ∪ q ∪ r, C ← C ∪ C ′′ ∪ C ′ and m(r) = q.
30. Setm1(r) = 1, m1(q) = 2 andm1(m(q))← m1(m(q))+1.
31. E ← E ∪ r, E ← E −m(q).
32. else StopDetection = TRUE.
33. for all pairs of points ei, ej in E,
34. if L(ei, ej) < 2λ
35. Run MinimalPathbk(ei, ej) and initial-

ize C ′ to contain the minimal path be-
tween ei and ej.

36. if |L(ei,m(ej))− L(ei, ej)− λ| < ε/2
37. then C ← C ∪ C ′
38. repeat
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CHAPTER IV

DEVELOPMENT OF QUANTIFICATION MEASURE

FOR EVALUATING CRACK MAP ACCURACY

The Transportation Research Board Pavement Management Systems Committee [13]

of United States identified a need for establishing fundamental pavement crack ele-

ments using automatic image processing, and that need can be addressed by a robust

crack map generating or crack segmentation algorithm. As discussed in Chapter 2,

a robust segmentation algorithm that accurately differentiates pavement crack pixels

from the pavement pixels without crack can help to establish fundamental crack ele-

ments that can be standardized and compared among different transportation agen-

cies. These segmented distress elements can be then classified into the distress types

according to the definition of a particular transportation agency. Many crack seg-

mentation algorithms have been developed in the past decade, but there is no good

method to quantitatively evaluate the performance of these segmentation algorithms.

A simple quantitative measure that is generally used by transportation agencies com-

pares the number of crack pixels in the ground truth image to the number of crack

pixels in the automatically segmented image. This is illustrated in Figure 4.1 where

the number of crack pixels in a 5ft × ft area are compared. Even though qualitatively

Algorithm 1 is much better than Algorithm 2 in detecting cracks, the quantitative

measure reflects 100% detection for both algorithms. Unfortunately, qualitative as-

sessment of image segmentation results by engineers is time consuming and inefficient;

hence, there is a critical need to develop an objective quantitative evaluation criteria

that accurately reflects the assessment of a trained visual inspector. This will help

the research community focus on the development of better and faster algorithms.
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Figure 4.1: Region based quantification measure.

We address this issue by surveying different quantification methods and developing

a new, novel quantification method that accurately reflects the assessment of trained

engineers. Most of this chapter is based on [37].

Nazef [46] conducted a qualitative evaluation of pavement distress detection algo-

rithms under different lighting conditions, but the performance of segmentation al-

gorithms was not analyzed quantitatively. Others, like Koutsopoulos [42] and Wang

[59, 61] did a comparison of segmentation algorithms to show the superiority of their

particular algorithms, but the evaluations are again qualitative. Huang and Xu [30],

and Zhou [76] measured the performance of their algorithms by devising a scoring

criterion based on statistical correlation. Mean square error is another metric, which

is used extensively in image comparison studies. Another metric, called the Maha-

lanobis distance [24], has also been described in literature. All the above evaluation

methods use the entire image data for image comparison and do not target the crack

regions specifically. This can obscure the results, considering the fact that crack pix-

els are typically only a small percentage of the total image pixels, and these scoring
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measures are not specifically sensitive to crack information. In addition, information

about crack locations is not used in these evaluation methods. This may lead to

the error that two segmented crack images having different crack locations (one is

correct and the other is wrong) are considered the same simply because they have

the same number of total crack pixels in an image. Different quantification methods

are also used in medical imaging and machine vision. They are briefly discussed to

evaluate the possibility of applying them to pavement images. These methods include

Receiver Operator Characteristic (ROC) [38, 55, 68] and Hausdorff distance [5, 67].

Hausdorff distance enables the user to measure the distance between objects of dif-

ferent sizes. This can be helpful in the case of cracks, as the number of crack pixels

in the ground truth image can be different from the crack pixels in the segmented

images. A new quantification method based on the buffered Hausdorff distance met-

ric is proposed. The buffered Hausdorff distance metric incorporates the merits of

both mean square error and Hausdorff distance metric. The proposed method is com-

pared with four other possible quantification methods (mean square error, statistical

correlation, ROC, and Hausdorff distance) to demonstrate its superior capability in

distinguishing the performance of different segmentation algorithms. This paper is

organized as follows. The need for developing a method to quantitatively evaluate

the performance of different segmentation algorithms is identified in this section. The

proposed quantification method and other possible quantification methods that were

used for comparison are presented in the subsequent section. Experimental tests

that were performed to compare the capability of different quantification methods

using both real and synthetic images are described next. Finally, conclusions and

recommendations are made.
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4.1 The Quantification Methodology

This section presents the proposed quantification method that is based on buffered

Hausdorff distance. Four other possible quantification methods are also briefly intro-

duced in this section. The scores of different quantification methods are normalized

to a common scale of 0 to 100 to facilitate our evaluation. Zero and one hundred

represent the worst and the best performance possible for an algorithm, respectively,

according to this scoring criterion. The proposed quantification method is presented

below.

4.1.1 The Proposed Buffered Hausdorff Distance Measure

Our proposed buffered Hausdorff distance measure tries to incorporate the strengths

of both mean square error and Hausdorff distance by modifying the Hausdorff distance

metric. The Hausdorff distance is among the most popular distance measures that

measures the distance between two curves and is a metric. It has been extensively used

in literature [5, 67]. For any two sets of points A = a1, a2, . . . , an and B = b1, b2, . . . , bn

H(A,B) = max(h(A,B), h(B,A)), (32)

where

h(A,B) = max
a∈A

min
b∈B
‖a− b‖

is the greatest of all the small distances from points of A to B and h(B,A) is the

greatest of all the small distances from points of B to A. Figure 4.2 illustrates this

distance measure effectively.

The value of Hausdorff distance is large, even if one crack pixel in the automatically

segmented image is far from ground truth image crack pixels. Seeing this limitation of

the Hausdorff distance metric, a new metric was developed that does not suffer from

the defects of the Hausdorff distance. The intuitive development of this measure is

described next. A better distance measure than the Hausdorff distance is the modified
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Figure 4.2: Hausdorff distance illustration.

Hausdorff distance given by MH(A,B) :

MH(A,B) = max(h1(A,B), h1(B,A)), (33)

where

h1(A,B) =
1

m

∑
a∈A

min
b∈B
‖a− b‖

In order to apply this measure to our set of images, we employ the procedure that fol-

lows. Let M be the manually segmented ground truth image and P be the segmented

image after automatic detection. Let M1 be the matrix of co-ordinate locations de-

rived from M where the crack is supposedly located, and let P1 be the matrix of

co-ordinate locations derived from P . M1 and P1 locations correspond to sets A and

B respectively. Then we have

M1 =


m11 m12

...
...

mN1 mN2


N×2

, P1 =


p11 p12

...
...

pN1 pN2


S×2

One can calculate the modified Hausdorff distance MH(M1, P1) which is given by

Equation (33). After using the modified Hausdorff distance measure initially for our
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(a) (b)

Figure 4.3: (a) Image with Ground truth crack to compute M1. (b) Modified distance
variation for pixel points in the Image

image comparison, we felt that there was one more possible improvement. If we have

M1 locations determined by the curve(or the crack) in Figure 4.3a , the distance h1 for

each pixel location in the image increases uniformly as the pixel moves away from the

ground truth crack locations. The cracks are represented by a curve in Figure 4.3b.

However, when a crack pixel in the automatically segmented image falls substantially

away from the closest pixel in the ground truth image, it no longer makes sense to

heavily penalize this distance. Wrong detections beyond a certain distance should

be penalized equally. This led to a new distance measure, the buffered Hausdorff

distance measure given by BD(A,B) where A and B are co-ordinate locations of the

curve in the ground truth image and automatically segmented image respectively.

BD(A,B) = max(h2(A,B), h2(B,A)), (34)

where

h2(A,B) =
1

m

∑
a∈A

satL min
b∈B
||a− b||. (35)

Here satL indicates that when the distance of the crack pixel to the closest crack

pixel in the other image exceeds a saturation value L, we use a constant value of
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(a) (b)

(c) (d)

Figure 4.4: (a)Buffered Hausdorff distance variation for L = 10. (b) Buffered Haus-
dorff distance variation for L = 20. (c)Buffered Hausdorff distance variation for
L = 50. (d)Buffered Hausdorff distance variation for L = 10.
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L for the distance. The buffered Hausdorff distance algorithm is given in Buffered

Hausdorff distance. It is applied to the same matrices M1 and P1, which were derived

before. Figure 4.4 shows the variations of buffered Hausdorff distance h2 computed

at each pixel location for different L values . As before, ground crack locations in

Figure 4.4 are used to construct the M1 matrix. The value of L can be decreased if

the user desires more accuracy in detection. For instance, if the L value is changed

from 20 to 10, all the automatically segmented crack pixels beyond a distance of 10

from the ground truth will be given the worst performance measure. When the L

value is 20, only automatically segmented pixels beyond a distance of 20 will be given

the worst performance measure. The buffer L was heuristically chosen to be 50 for

our comparison experiments. Figure 4.5 illustrates the buffered Hausdorff distance

measure for two curves that represent crack locations of the ground truth and the

automatically segmented image. The sample values of the buffered Hausdorff distance

have a very intuitive meaning. The buffered Hausdorff distance can be interpreted as

the average Euclidean distance between the crack pixels in the ground truth image and

the segmented images. The measure can also be used if 3D crack location information

is available by computing the corresponding Euclidean distance. In addition, this

quantification method can be used to validate algorithms for detection of features

like optical nerves, vessels etc that are similar to cracks.

To compare other scoring methods with this buffered Hausdorff distance, a scaled

scoring measure was derived as given below:

Buffered distance score = 100− BD(A,B)

L
× 100. (36)

The buffered Hausdorff distance effectively measures the performance of the segmen-

tation methods and generates a score that corresponds with the qualitative perfor-

mance of the particular method. In order to establish the merits of the buffered

scoring distance, four other scoring measures were used in our experiments. Among

the scoring measures, the buffered Hausdorff distance gives the best performance, as
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Figure 4.5: Buffered Hausdorff distance illustration.

Algorithm Buffered Hausdorff distance
Input: Crack location matrix M1, crack location matrix P1 and buffer value L.
Output: buffered Hausdorff distance BD(M1, P1).
1. for i ←1 to S
2. do Min Dist = ‖minj=1,...,S(P1(ithrow)−M1(jthrow))‖.
3. if Min Dist > L
4. then Min Dist = L.
5. Set Distance1 = Distance1 + Min Dist.
6. h2(P1,M1) = Distance1

S
.

7. for i ←1 to N
8. do Min Dist = ‖minj=1,...,S(M1(ithrow)− P1(jthrow))‖.
9. if Min Dist > L
10. then Min Dist = L.
11. Set Distance2 = Distance2 + Min Dist.
12. h2(M1, P1) = Distance2

N
.

13. BD(M1, P1) = max(h2(P1,M1), h2(M1, P1).
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will be clear from the results.

To compare the performance of the proposed scoring method, four other scor-

ing methods were used: mean square error, statistical correlation, receiver operator

characteristic, and Hausdorff distance. These scoring methods are described briefly

below.

4.1.2 Mean Square Error Method

Mean Square Error (MSE) is one of the most commonly used performance metrics

in the image processing literature, especially in image compression. MSE is the

cumulative squared error between the two images, indicated by I1 and I2 respectively.

In our case the two images used are the ground truth image and the automatically

segmented image.

MSE(I1, I2) =
1

MN

M∑
y=1

N∑
x=1

(I1(x, y)− I2(x, y))2 (37)

Here, M and N are row and column lengths of the images respectively and (x, y) in-

dicate the co-ordinates of the pixel location in each image. In order to compare MSE

performance with other scoring measures, a scaled scoring measure is devised that

gives values between 0 and 100. As the ground truth image and the automatically

segmented images are binary images, the error for each pixel is either 1 or 0. Con-

sidering that cracks comprise a small portion of an image, we analyzed 150 different

pavement images to compute the maximum crack pixels as a percentage of total pix-

els. Observations showed that this percentage never exceeded 5%; hence, more than

5% error between two images was considered the worst segmentation performance.

Using this fact, a reasonable scaled scoring measure based on the MSE was derived

for comparison purposes. It is given by the following equation:

MSE score = 100− MSE(I1, I2)

0.05
× 100 (38)

.
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4.1.3 Statistical Correlation Method

Statistical correlation is another measure used to evaluate performance in the existing

literature. It is given by the correlation coefficient Corr(I1, I2) between two images,

Corr(I1, I2) =
Cov(I1, I2)√

V ar(I1)
√
V ar(I2)

(39)

where Cov(I1, I2) is the covariance between the two images, and V ar(I1) and V ar(I2)

are the variances of the two images. As the correlation lies between -1 and 1, the

scoring measure for correlation is derived using this information.

Corr Score =
Corr(I1, I2) + 1

2
× 100 (40)

4.1.4 Receiver Operator Characteristic Method

The Receiver Operator Characteristic (ROC) is a highly effective tool for image classi-

fication evaluation, and it has been extensively used in medical literature and machine

learning [38, 55, 68]. In [3], it was used to evaluate the performance of the segmenta-

tion algorithm. The ROC represents the dependence of the rate of correct detections

and the rate of false detections. The correct detection (CD) rate is defined as the

ratio between the number of areas or pixels correctly labeled as defective Ndefective to

the number of truly defective areas Ntrue on the image:

CD =
Ndefective

Ntrue

(41)

. The false alarm (FA) rate is defined as the ratio between the number of false

detections Nfalse to the number of truly defect-free areas ( Nall − Ntrue) (where Nall

is total number of areas on the image):

FA =
Nfalse

Nall − Ntrue

(42)

The ROC value is defined based on the ratio between FA and CD:

ROC =
FA

CD
(43)
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. For our experiments, correctly detected pixels in the segmented image needed to

lie within a square of 5-pixel width centered on a true crack pixel in the ground

truth image. A scaled scoring measure based on ROC was derived for comparison

purposes by taking the maximum value of the ROC to be 0.1. A ROC value above 0.1

would indicate an extremely poorly segmented image, which is not useful for further

investigation.

ROC score = 100− ROC

0.1
× 100 (44)

4.1.5 Hausdorff Distance Method

The Hausdorff distance H(A,B) between two sets A and B was described in Section

4.1.1 and is represented by Equation (32) . Using the width of the ground truth image

as a scaling factor, a scoring measure for the Hausdorff distance was calculated.

Hausdorff distance score = 100− H(A,B)

Column Width
× 100 (45)

4.2 Experimental Results and Discussion

For comparing the capability of the proposed quantification method to other methods,

both real data and synthetic data, simulating different pavement distress conditions,

were used. For the actual pavement distress images, GDOT pavement engineers vi-

sually marked the cracks (their actual locations) to establish the ground truth. Syn-

thetic images were generated in order to demonstrate the comparative strength of the

buffered Hausdorff distance method over other quantitative scoring methods. Figure

4.6 gives an overview of the experimental data presented in this section. Four seg-

mentation algorithms were used to evaluate the capability of different quantification

methods for being able to separate the performance of different segmentation meth-

ods. These segmentation algorithms include Canny edge detection [8], crack seed

verification [30], the iterated clipping method [47], and the dynamic optimization-

based method [3]. Although a large data set of 100 images has been analyzed in
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Figure 4.6: Overview of experimental data.

our experiments, here we present the results of the four segmentation methods on

4 GDOT images. The results obtained from these segmentation algorithms were

visually inspected by trained GDOT pavement engineers to assess the comparative

performance of the four algorithms. This known performance for each segmentation

algorithm was then used to evaluate the capability of different quantification methods.

For example, the engineers and authors observed that dynamic optimization-based

method gives substantially better performance than other methods qualitatively for

all the test images [57]. The underlined mean square error score and correlation score

values in Table 1 indicate that the dynamic optimization-based method is not the

best method for some images. Hence, the results of these two scoring measures do

not match with the assessment of GDOT engineers. It is also found that the buffered

Hausdorff distance score, ROC score and Hausdorff distance scores are consistent

with the visual assessment, but the buffered Hausdorff distance score achieves the

best score separation to distinguish the performance of different algorithms.

Two synthetic image data sets were generated for illustrating the better perfor-

mance of buffered Hausdorff distance compared to Hausdorff distance and ROC, and

to demonstrate a better score separation achieved by our proposed method. The
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Table 1: Scoring measures for GDOT images

Scoring Measure Dynamic optimization Canny edge detection Seed verification Iterated clipping
Image 1

Mean Square Error 95.9941 95.1833 95.4276 96.6716
Correlation 60.3986 49.8636 55.8749 58.7725

ROC measure 99.6927 0 99.614 95.9945
Hausdorff distance 97.6623 80.9665 39.3898 50.9328

Buffered Hausdorff distance 91.6468 24.4089 72.4155 38.8489
Image 2

Mean Square Error 95.6805 95.0156 95.0714 95.9808
Correlation 58.551 49.846 54.24 59.6205

ROC measure 99.5189 0 99.716 98.4453
Hausdorff distance 96.9521 41.9934 55.3874 42.2313

Buffered Hausdorff distance 91.8955 14.0205 17.5782 66.1937
Image 3

Mean Square Error 95.5108 94.7141 94.6804 95.5614
Correlation 59.6935 49.9575 50.8001 58.3103

ROC measure 99.6954 2.2489 99.7577 98.2338
Hausdorff distance 98.0013 41.3101 0 40.6776

Buffered Hausdorff distance 92.4423 14.9668 3.1376 64.0048
Image 4

Mean Square Error 95.4859 94.4584 94.5122 94.5391
Correlation 61.5723 49.9428 53.6835 52.1224

ROC measure 99.7451 0 99.7203 91.3818
Hausdorff distance 97.432 49.3804 31.0443 50.6515

Buffered Hausdorff distance 93.0536 16.1591 19.1754 24.4211

first synthetic ground truth image, which is shown in Figure 4.7b, was generated by

marking isolated noise pixels apart from true crack pixels, which are located far from

the crack pixels, on top of a GDOT raw image as shown in Figure 4.7a. This syn-

thetic ground truth image was compared to four test images generated by applying

the four automatic segmentation algorithms to the raw pavement image. Images in

Figure 4.7 clearly show that though Test Image1 has the best performance, but table

2 shows that the Hausdorff distance score and the mean square error actually list

it as the worst-performing image. The problem is that Hausdorff distance is very

sensitive to isolated noise outliers and does not reflect the overall performance of the

segmentation method. The buffered Hausdorff distance measure accurately reflects

the performance of test images and also achieves good score separation to distinguish

their performance behavior.

The second synthetic ground truth image is illustrated in Figure 4.8. This syn-

thetic image has a curve that runs through the middle of the image. The Test images

1, 2, and 3 are horizontal translations of the ground truth image by 1, 2 and 3 pixels,
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(a)

Isolated
noise pixels

(b) (c)

(d) (e) (f)

Figure 4.7: (a) Raw image. (b) Synthetic ground truth image with added noise pixels.
(c) Test image 1. (d) Test image 2. (e) Test image 3. (f) Test image 4.
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Table 2: Scoring measures for synthetic Image 1

Scoring Measure Test Image 1 Test Image 2 Test Image 3 Test Image 4
Mean Square Error 95.2962 94.6596 95.4198 94.8768

Correlation 58.7137 50.0709 56.244 54.9956
ROC measure 99.5161 36.5221 95.5748 98.683

Hausdorff distance 44.7479 64.2952 69.6907 66.9031
Buffered Hausdorff distance 80.9604 22.6031 57.0306 64.022

Table 3: Scoring measure for synthetic Image 2

Scoring Measure Test Image 1 Test Image 2 Test Image 3
ROC measure 100 100 0

Buffered Hausdorff distance 98 96 94

respectively. Table 3 shows the scoring measure results for the 3 images. It is seen

that the ROC measure allots the same score of 100, reflecting the best performance,

to both Test Image 1 and Test Image 2 and a score of 0, reflecting the worst per-

formance, to Test Image 3. This observation illustrates that ROC can show very

different score value for two similar images. When the horizontal translation exceeds

2 pixels, then all crack pixels in the test image are classified as wrongly detected.

This problem happens around the boundary points where the classification decision

changes from true detection to false detection. The buffered Hausdorff distance score

still accurately reflects the performance of the test images because it is not based on

a hard decision rule like ROC. The combined results indicate that the buffered Haus-

dorff distance score is better than the other four scoring methods used in experiments.

Based on the results, we examined the strengths and weaknesses of each scoring

method. Mean Square Error (MSE) takes into account the error in the whole image

and not just the error in location of crack pixels. Moreover, in its computation,

MSE does not take into account the relative proximity of the crack pixels in the

ground truth image to the crack pixels in the segmented image. Unless there is an

exact overlap between the crack pixels in the ground truth image and the segmented

image, the MSE score will be the same for the two different automatically segmented
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(a) (b)

(c) (d)

Figure 4.8: (a) Synthetic ground truth Image. (b)Test image 1 (translation = 1
pixel). (c) Test image 2 (translation = 2 pixels. (d) Test image 3 ( translation = 3
pixels.
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images. In other words, the MSE score stays the same irrespective of the relative

proximity of the crack pixels in the automatically segmented image to the cracks in

the ground truth image. This exact overlap is highly unlikely, considering the fact

that marking the ground truth image to such a degree of accuracy can be a tedious

exercise. MSE can only be used on images of similar sizes and cannot selectively

focus on the crack pixels in the image. Thus, it is not very useful for comparison

of pavement segmentation algorithms. Like MSE, the correlation coefficient also

requires exact overlap between crack pixels of the two compared images to get a

high performance evaluation score. This coefficient also suffers from the limitation

that it can be applied only to similarly sized objects. Hence, the non-crack pixels,

which are larger in extent in all pavements, affect the correlation severely. Results

of ROC are better compared to MSE and correlation scoring measure, but it is seen

through results of the second synthetic image data set that qualitatively very similar

segmented images can have very different ROC values. This happens due to the fact

that ROC uses hard decision rules to classify pixels as false alarms or true defects.

Hence, on the boundary of these decision rules, the ROC value can change abruptly,

and very similar segmented images can have drastically different ROC values. The

Hausdorff distance has the ability to measure the distance between only crack pixels

in both the ground truth and segmented image, and, therefore, it can capture the local

effectiveness of the segmentation algorithm. However, it is very sensitive to outliers

or noise pixels, and Hausdorff score values change drastically even in the presence of

one outlier. The buffered Hausdorff distance measure captures the local effectiveness

of the segmentation algorithm and is not sensitive to outliers or noise pixels. It also

achieves good score separation in the values for different segmentation algorithms,

and it is the best out of all the methods. In this method, the buffer value L needs

to be chosen by the user according to the accuracy requirements of the system. The

drawback of the method is that the selection of this value L is still heuristic in nature.
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4.3 Summary

Researchers have developed many pavement crack segmentation algorithms in the

past, but it is difficult to compare the performance of different algorithms efficiently

without an accurate quantitative method. This hinders the focused development of

better segmentation algorithms. Our research is motivated by this need to develop a

method to quantitatively evaluate the performance of different pavement distress seg-

mentation algorithms. In this chapter, we introduced a novel quantification method

based on the buffered Hausdorff distance. In addition, the capability of the proposed

method was compared with four other possible quantification methods (mean square

error, statistical correlation, receiver operator characteristic (ROC) and Hausdorff

distance). Both real and synthetic data were used to validate the capability of our

proposed quantification method. The real data sets consisted of raw GDOT images

and the resultant images of four segmentation algorithms. These data sets were vi-

sually inspected to assess the performance of different algorithms. It is found that

the mean square error and statistical correlation do not reflect the assessed perfor-

mance of different segmentation algorithms. Further, two sets of synthetic images

were generated to show the better performance of the buffered Hausdorff distance

method compared to the Hausdorff distance and the ROC method and to illustrate

the good score separation achieved by the buffered Hausdorff distance method.The

experimental results indicate that the buffered Hausdorff distance scoring measure

accurately reflects the observed performance of the segmentation techniques and out-

performs the other four quantification methods. It also achieves good score separation

to distinguish between the performance of different methods.
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CHAPTER V

EXPERIMENTAL RESULTS AND ANALYSIS

In order to analyze the novel self-terminating minimal path algorithm explained in

Chapter 3 (RobustCurveDetection), the algorithm was tested extensively on both

real and synthetic experimental data sets. This chapter presents a detailed analysis

of these experiments. We used the scaled buffered distance (SBD), true positive rates,

true negative rates and false negative rates to evaluate the accuracy of our algorithm.

The SBD is a scaled version of the buffered Hausdorff distance measure described in

Chapter 4. Recall that the buffered Hausdorff distance is given by given by BD(A,B)

where A and B are coordinate locations of the curve in the ground truth image and

the processed image respectively.

BD(A,B) = max(h2(A,B), h2(B,A)), (46)

where

h2(A,B) =
1

m

∑
a∈A

satL min
b∈B
||a− b||. (47)

BD(A,B) lies between 0 and L and we normalize this value to lie between 0 and 1 to

get scaled buffered distance SBD(A,B). The value of SBD approaches 0 if the curve

detected by the algorithm and the curve in the ground truth image are close to each

other.

SBD(A,B) =
BD(A,B)

L
. (48)

The value of L was chosen to be 50 for our experiments.

The true positive (TP) rate is defined as the ratio between the number of curve

pixels in the ground truth image correctly detected in the processed image (Ncorrect)
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to the total curve pixels in the ground truth image (Nground):

TP =
Ncorrect

Nground

. (49)

For our experiments, correctly detected pixels (Ncorrect) are pixels in the ground truth

image that lie within a square of 5-pixel width centered on a detected curve pixel in

the processed image. The false positive (FP) rate is defined as the ratio between the

number of pixels in the processed image that are wrongly identified as curve pixels

(Nfalse) to the total curve pixels in the ground truth image:

FP =
Nfalse

Nground

. (50)

The false negative (FN) rate is the ratio between the the number of true curve pixels

that are undetected (Nground − Ncorrect) to the total curve pixels in the ground truth

image:

FN =
Nground − Ncorrect

Nground

. (51)

In this chapter, we first present the experimental results of our algorithm on crack

images in pavements and concrete structures. These cover the three applications of

semi-automatic crack detection, crack sealing in pavements and tracking crack growth

in concrete structures. The consolidated quantitative validation of several crack im-

ages is also presented. Next, the algorithm results on a two medical images with thin

elongated features are shown. We then present the results of a detailed sensitivity

study on the effect of algorithm parameters λ and ε on curve detection. Synthetic

images with varying background intensities were used to conduct the sensitivity anal-

ysis. Finally, the extension of the robust algorithm is described where user input can

be utilized at successive stages of the algorithm for more accurate curve detection

results.
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5.1 Results on Crack Images

We present the experimental results of the algorithm for three applications: semi-

automatic crack detection, detection of continuous cracks for crack sealing in pave-

ments and tracking crack growth in critical structures.

5.1.1 Semi-automatic Crack Detection

The objective of the experimental tests was to detect cracks of different types using

an arbitrary user defined point on the crack. We used 80 images provided by Georgia

Department of Transportation (GDOT) to conduct our study. Figure 5.1 presents the

results on 4 pavement images that have different crack types: longitudinal, transverse,

diagonal and compound. Figure 5.2 shows the algorithm results on a complex pave-

ments crack with branches and closed cycles. The RobustCurveDetection algorithm

was used on all the crack images. Some of the processed images have branch-points

that were discussed as part of the RobustCurveDetection algorithm. The robust al-

gorithm avoids false positives associated with these branch-points. Figure 5.1f, 5.1g

and 5.2b contain branch-points that have no crack detection associated with them.

The qualitative analysis of the algorithm on 80 GDOT pavement crack images gave

very good results for crack detection. A λ value of 50 was used for all the pavement

images. A more rigorous, quantitative validation using FN, FP, TP and SBD mea-

sures was conducted on 25 selected images. The consolidated quantitative validation

for crack images, including those used for detecting continuous cracks and tracking

crack growth is given in Section 5.1.4.

5.1.2 Crack Sealing Application

Many efforts have been made to automate the process of crack sealing. According to

the recent study by Kim et al. [39], complete automation of crack mapping and sealing

operations is not feasible and a desirable balance has to be found in the human and

machine functions. Specifically, it was concluded that complete automation of crack
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Figure 5.1: (a) Longitudinal crack. (b) Transverse crack. (c) Diagonal crack. (d)
Complex crack with multiple branches. (e) Longitudinal crack detected with ordered
keypoints and terminating point (marked by ‘x’). (f) Transverse crack detected with
ordered keypoints (including branch-points) and terminating point (marked by ‘x’).
(g) Diagonal crack detected with ordered keypoints (including branch-points) and ter-
minating point (marked by ‘x’). (h) Compound crack detected with ordered keypoints
and terminating point (marked by ‘x’).

mapping is not desirable because pavement images have varying lighting conditions,

poor contrast, oil stains and shadows that make accurate automatic crack detection

very difficult. In addition, crack mapping for crack sealing has different requirements
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Figure 5.2: (a) Complex crack with multiple branches and closed cycles. (b) Com-
plex crack containing branches and closed cycles detected with ordered keypoints
(including branch-points) and terminating point (marked by ‘x’).

from the pavement distress survey. Firstly, there is a higher need for location and di-

rection accuracy in the crack map detection for the automatic crack sealer. Secondly,

the crack map that is used as input for robotic arm path planning needs to have

continuous components without too many discontinuities and isolated pixels. This is

due to the fact that the automatic crack sealer needs to be efficient and seal large

continuous crack segments without too many breaks. However, most machine vision

algorithms do not ensure that they detect continuous crack segments. Therefore, we

use our algorithm to detect cracks with minimum user interaction. The algorithm

can detect continuous longitudinal cracks that extend over several miles with the

specification of just the starting point of the crack by the user.

To demonstrate this concept, we selected 3 sets of pavement images with contin-

uous longitudinal cracks. Each of these sets contained continuous cracks extending

over 6-10 images. Figure 5.3 shows one of these data sets. We specified an initial

crack point p in the first image shown in Figure 5.3a. Using our RobustCurveDetec-

tion algorithm, we kept on detecting keypoints until a new keypoint was less than a
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Figure 5.3: (a) First image and initial point p. (b) Second consecutive image. (c)
Third consecutive image. (d) Detected crack map in first image with ordered key-
points and last keypoint that is used as starting point for next image. (e) Detected
crack map in second image with ordered keypoints and last keypoint that is used as
starting point for next image. (f) Detected crack map in third image with ordered
keypoints and last keypoint that is used as starting point for next image. (g) Fourth
consecutive image. (h) Fifth consecutive image. (i) Sixth consecutive image with end
of continuous crack. (j) Detected crack map in fourth image with ordered keypoints
and last keypoint that is used as starting point for next image. (k) Detected crack
map in fifth image with ordered keypoints and last keypoint that is used as starting
point for next image. (l) Detected crack map in first image with ordered keypoints
and terminating point (marked by ‘x’).

distance λ from the end of the pavement image or the algorithm terminated on its

own. If a new keypoint close to the end of a pavement image was detected, it was
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used as the initial point for the next pavement image. This is possible because in real

crack sealing applications overlapping images are acquired, so there is always some

portion of the previous pavement image that is common to the next pavement image.

Our experimental data did not have overlapping images, but we demonstrate this

idea through six consecutive images. In the sixth image, which is shown in Figure

5.3l, the continuous crack ends as there is a break of length greater than λ between

the two crack portions. The crack detection results were satisfactory in all the three

data sets. Hence, our algorithm provides a unique application in the area of crack

sealing.

5.1.3 Tracking Crack Growth

To simulate crack growth in critical structures like bridges, 3 concrete structure sam-

ples were subject to indirect tensile tests. Images with size 2448 × 2040 pixels were

captured with the aid of the 5 Mega Pixel camera at the rate of 7 frames/second.

However, indirect tensile tests were unsuitable for crack growth simulation because

the sample structures ruptured under the application of tensile load. In future, strain

tests will be conducted to get better sample images. We could find two images by

which we could demonstrate the application of our algorithm. Figure 5.4a shows the

concrete structure sample with a small crack. This is identified as the crack initiation

step. An arbitrary point p is chosen on the crack in the image and the crack detec-

tion algorithm is applied to this image. Figure 5.4c shows the RobustCurveDetection

algorithm results. In the image at the next time frame, which is shown in Figure

5.4b, the initiated crack has grown. We registered the two images (Figure 5.4a and

5.4b) so that the coordinates of the two images are aligned to one another. Next,

the keypoints identified in the crack initiation step are used as initial points for the

image at the next time frame shown in Figure 5.4b. Using these initial points (marked

1,2 and 3 in Figure 5.4a), we ran the RobustCurveDetection algorithm to detect the
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Figure 5.4: (a) Image at crack initiation step (Stage 1) with initial point p. (b)
Image with crack propagation (Stage 2). (c) Detected crack map in first image with
ordered keypoints (including branch-points) and terminating point marked by ‘x’. (d)
Detected crack map in second image with ordered keypoints and terminating point
marked by ‘x’. (Keypoints from Stage 1 are used as initial conditions for Stage 2)

crack growth. The complete crack after the crack initiation and the crack growth

stage with all keypoints in shown in 5.4d. In the future, more experimental images

that are acquired from strain testing can be used to test the algorithm.
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Table 4: Quantitative validation of crack images.

Image TP(%) FP(%) FN(%) SBD
Figure 5.1a 91.37 15.31 8.73 0.094
Figure 5.1b 91.21 3.1 8.79 0.0364
Figure 5.1c 91.38 13.52 8.62 0.1121
Figure 5.1d 92.35 18.1 7.65 0.121
Figure 5.2a 81.16 10.80 18.84 0.0693
Figure 5.3a 87.67 17.98 12.23 0.0319
Figure 5.3b 90.95 15.28 9.05 0.0236
Figure 5.3c 95.60 10.51 4.40 0.0238
Figure 5.3g 88.21 19.81 11.79 0.0311
Figure 5.3h 85.21 15.62 14.79 0.0895
Figure 5.3i 80.27 33.74 19.73 0.0773
Figure 5.4a 85.71 11.61 14.29 0.0353
Figure 5.4b 88.55 5.59 11.45 0.092

Average (25 images) 89.46 14.93 10.64 0.0721

5.1.4 Quantitative Validation

The ground truth for crack data was determined by GDOT engineers for 25 pavement

images. They were asked to represent the crack with zero-width curves in the local

neighborhood of the initial source point p. Table 4 presents the consolidated validation

results of the crack images shown in this chapter. The validation results include the

TP, FP, FN and SBD values. The average validation measure values for 25 pavement

images, which were evaluated, is also provided in Table 4. The results show that

our algorithm achieves consistently high TP rates. The FP rates and FN rates arise

because of the fact that the algorithm adds a minimal path of length λ at every

iteration step and this tends to slightly overestimate or underestimate the crack. In

addition, the ground truth itself is approximate for crack images because it is manually

drawn. The FP rate for Figure 5.3i is high because the total number of crack pixels

in the ground truth is not high. Therefore, false detections form a large percentage of

the total crack pixel detections. The SBD value, which was established in Chapter 4

as an excellent measure for quantitative validation of cracks, shows consistently good

results for all images. The total average value of SBD is 0.0721, which corresponds

to an absolute buffered distance (BD) value of 3.60 out of the maximum of 50. As

ground truth accuracy of crack image is also suspect because it is derived from manual
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hand markings, the SBD value indicates the good performance of our algorithm. In

the future, more crack images can be tested to validate our algorithm.

5.2 Medical Applications
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Figure 5.5: (a) Catheter tube image. (b) Edge based potential image. (c) Final
catheter tube detection with ordered keypoints and terminating point (marked by
‘x’). (e) Color Retinal image. (f) Grayscale image. (g) Final optical nerve detection
with ordered keypoints and terminating point (marked by ‘x’).

We also used our algorithm to detect features or objects in medical images that

can be modeled as thin curves. Figure 5.5a shows a medical image containing a

catheter tube. A potential function based on the Laplacian is used to provide contrast

between the desired feature and the background. Figure 5.5b illustrates the potential

function image. Figure 5.5c shows the detected curve (catheter tube), keypoints and

terminating point for the catheter tube image. We also applied our algorithm to

a retinal image containing optical nerves shown in Figure 5.5d. The color image

is converted to grayscale and shown in Figure 5.5e. An intensity based potential

function was used as input for the RobustCurveDetection algorithm. Figure 5.5f

shows the detected curve (optical nerve), keypoints and terminating point for the

retinal image. These examples demonstrate the wide applicability of our algorithm.
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In future, the algorithm can be tested on more medical images.

5.3 Sensitivity Analysis of Parameters λ and ε
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Figure 5.6: Synthetic Images corresponding to different background mean intensity
µb = 0.3, 0.4, 0.5 and algorithm results for λ = 20, 40, 60

We conducted an extensive quantitative study on sensitivity of parameter λ using

synthetic images and kept parameter ε constant at 0.4λ. Four basic synthetic images

that contain a simple curve, closed curve, curve with multiple branches and a complex

topology curve (similar to Figures 3.7a, 3.9a, 3.10a and 3.12a used for algorithm

illustration) were used for this validation study. The curves were chosen to be of mean
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Table 5: Comparison of synthetic curve detection results obtaining by changing pa-
rameters λ and µb.

Measure λ = 20 λ = 30 λ = 40 λ = 50 λ = 60
µb = 0.5
TP(%) 100 100 98.53 99.1 97.64
FP(%) 0.1 5.6 8.84 33.15 20.91
FN(%) 0 0 1.47 0.9 2.36
SBD 0.0035 0.0127 0.0239 0.1151 0.0923

µb = 0.4
TP(%) 99.25 98.53 97.05 94.52 99.89
FP(%) 0.86 1.77 7.95 31.24 35.2
FN(%) 0.75 1.47 2.95 5.48 0.11
SBD 0.0034 0.0089 0.0241 0.1161 0.1825

µb = 0.3
TP(%) 79.09 88.95 95.58 93.67 96.47
FP(%) 2.95 12.67 18.85 112.52 131.5
FN(%) 20.91 11.05 4.42 6.33 3.53
SBD 0.0958 0.0441 0.0547 0.3716 0.4051

intensity µc = 0.2 and variance σc = 0.05. As we used a potential function based on

intensity for our algorithm, we varied the mean intensity µb of the background to see

its impact on the curve detection rate. The background variance σb was chosen to be

0.1. We found that when µb > 0.5, the curve detection was very accurate and there

was no impact of varying µb beyond a value of 0.5. Therefore, we chose µb to be 30,40

and 50 for our study. To determine the impact of the Euclidean length parameter

λ on the curve detection, we varied λ between 20 to 60. µb and λ were varied for

each of the four synthetic images and the average TP, FP, TN and SBD values for the

detected curves were calculated. The results are tabulated in Table 5 and the plots for

TP, FP, TN and SBD values are shown in Figure 5.7. Figure 5.6 shows one of the four

synthetic images that contains a curve with multiple branches. The curve detection

results for λ values 20,40 and 60 are illustrated for each of the three images generated

using different µb. The plots and Figure 5.6 indicate that for higher µb values (0.4

and 0.5), a smaller λ value gives better curve detection results as indicated by the

TP, FP, TN and SBD values. This is because the potential provides enough contrast
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Figure 5.7: Plots indicating variation of true positive, false positive and false negative
rates, and scaled buffered distance with changes in parameter λ and background
intensity µd
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Figure 5.8: Synthetic image and algorithm results for ε = 0.2, 0.4, 0.6
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between the curve and the background and a smaller λ can help to terminate the

RobustCurveDetection algorithm near the endpoints of the curve. Recall that the

Euclidean length λ is the Euclidean distance L between detected keypoints and the

curve is detected in minimum increments of λ. However, when µb is 0.3, a smaller

λ value of 20 leads to a high FN rate. The reason for this is that a lower µb value

provides poor contrast between the curve and the background, and a small interval

λ is not sufficient for the keypoints to lie on the desired curve. Hence, the Equations

(29) and (31) are not satisfied and the algorithm is terminated before the entire curve

is detected. On the other hand as we increase the value of λ, the FN rate reduces

and the FP rate increases. For µb = 0.3 and λ values 50 and 60, the curve detection

algorithm shows very high FP rates. The SBD plot in Figure 5.7d indicates that a

value of λ between 30 and 40 gives the lowest value of SBD for µb = 0.3. Therefore, for

images with a poor potential function that does not provide enough contrast between

the curve and the background, an optimal λ that minimizes SBD can be picked. In

general, the results indicate that a good potential function that provides enough local

contrast between the curve and the background is essential for the accuracy of our

algorithm. This is true for all minimal path based techniques.

We also assessed the impact of the tolerance value ε on the curve detection algo-

rithm. Recall that we used a tolerance ε for Condition (29) and (30) and tolerance

ε/2 for the incremental keypoint Condition (31). Our sensitivity study showed that

ε values between 0.2λ and 0.6λ had very little impact on Conditions (29) and (30).

On the other hand, ε value had an impact on Condition (31) because the incremental

keypoint r in the (RobustCurveDetection) algorithm was restricted to originate only

from the previous keypoint q. Hence, a higher ε value led to more false positives

because many points that were not on the actual curve were able to meet a relaxed

tolerance value for Condition (31). This fact is illustrated in Figure 5.8, which shows

the curve detection results for ε values 0.2λ, 0.4λ and 0.6λ on a synthetic image.
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Based on our study, we chose ε = 0.2λ for all experimental tests on real images. The

high FP rates for λ values 50 and 60 seen in Table 5 can also be reduced substantially

by chosing ε = 0.2λ instead of 0.4λ. The high FP rates for λ values 50 and 60 seen in

Table 5 can also be reduced substantially by chosing ε = 0.2λ instead of 0.4λ. This

concludes the sensitivity study results.

5.4 Extended User Interaction
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Figure 5.9: (a) Complex crack and initial point p. (b) Crack detection results, ordered
keypoints, terminating point (labeled by ‘x’) and new initial point p on undetected
curve portion (c) Final crack detection with ordered keypoints and final terminating
point labeled by ‘x’.

Instead of fine tuning and adjusting the parameters λ and ε for different image data

sets, the self-terminating algorithm also provides the user an option of interactively

providing additional inputs. The algorithm can use the curve detection results from

the first run of the algorithm and an additional user point in the undetected portion of

the curve as starting conditions for next run of the algorithm. Figure 5.9 illustrates

this principle. Figure 5.9a shows a complex crack and an initial point p provided

by the user. Figure 5.9b shows the crack detection results, ordered keypoints and

terminating point (labeled by ‘x’) after applying the RobustCurveDetection algorithm

with parameters λ = 45 and ε = 0.2. In additional, a new initial point p is selected in

the undetected portion of the crack. Like before, a keypoint k1 is detected from this

new initial point p. However, once the keypoint k1 is detected, the curve information is
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integrated into the detected curve points set C, source point set S and endpoints set E

that is obtained from the previous run of the algorithm. The RobustCurveDetection

algorithm is then followed exactly like before. Figure 5.9b shows the new crack

detection results after the second run of the algorithm. The sets C, S and E are

empty for the first run of the algorithm. The details of this extended user interaction

procedure are described in ExtendedUserInteraction.

Algorithm ExtendedUserInteraction
Input: Image Im, potential function Φ, previous source point set S, map m(S),

endpoints set E, curve detected so far C
Output: New Detected Curve C
1. Start with an arbitrary point p on the undetected portion of the curve.
2. Set StopDetection = FALSE.
3. Use FMM(p, λ) to find keypoint k1.
4. Run MinimalPathbk(p, k1) and set curve C ′ to contain the minimal path be-

tween p and k1.
5. Set S ← S ∪ p ∪ k1.
6. Set C ← C ∪ C ′.
7. Set m(k1) = p and m(p) = k1.
8. Set m1(k1) = 1 (no. of neighbors is given by the map m1.) and m1(p) = 1.
9. Set E ← E ∪ p ∪ k1.
10. Follow Step 9-38 of RobustCurveDetection algorithm.

5.5 Summary

We demonstrate the use of our RobustCurveDetection algorithm for three applica-

tions in identification of cracks in critical infrastructures like pavements and bridges:

semi-automatic crack detection, detection of continuous cracks for crack sealing and

tracking of crack growth in time. The consolidated quantitative validation of several

crack images is also presented. Next, the algorithm results on a two medical images

with thin elongated objects are shown. Finally, a detailed sensitivity study on the

effect of algorithm parameter λ and ε. on the curve detection was conducted. Syn-

thetic images with varying background intensities were used to conduct the analysis.

Finally, the extension of the robust algorithm is described where user input can be
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utilized at successive stages of the algorithm for more accurate curve detection results.

The experimental results demonstrate that our algorithm can be used effectively for

a wide range of applications.
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CHAPTER VI

CONCLUSION

This thesis has successfully accomplished the intended research objectives. Initially,

existing crack map detection methods were tested on experimental data sets and the

limitations of these methods were highlighted . This motivated our use of minimal

path techniques for three related problems of crack map detection in pavements and

critical structures like bridges: tracking crack growth in critical structures like bridges

after crack initiation, finding continuous cracks extending over several miles in pave-

ments using the starting point of the crack, and semi-automatic detection of cracks

in pavements. Existing minimal path techniques requires additional user input to

detect features like cracks. To reduce this user input, several research directions were

explored. This led to the development of a novel self-terminating minimal path al-

gorithm that can detect curves of complex topology (including branches and closed

cycles) from a single point on the curve (not necessarily an endpoint). This algorithm

was tested and validated on an extensive data set containing both synthetic and real

images. Apart from crack images in pavements and critical structures, this algorithm

was also tested on medical images that contain objects of interest like catheter tubes

and optical nerves, which can be modeled as curves.

The fundamental contribution of the thesis is the development of a novel algorithm

to detect complex curves of arbitrary topology from a single point. It is a significant

step in reducing the user interaction required for detecting curves using minimal

path techniques. Earlier, both endpoints for a simple curve with no branches and

all endpoints for curves with multiple branches were required to detect such curves

using minimal path methods. However, the novel self-terminating algorithm is able
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to detect complex curves using just one arbitrary point. The power of the new al-

gorithm was demonstrated by using it for multiple applications in crack detection

and in detecting features in medical images. Another contribution of the thesis was

the development of the buffered distance measure for quantifying the performance of

crack map detection algorithms. Crack map detection is the crucial step in analyzing

the condition of pavements and critical structures like bridges and a quantification

measure is needed to effectively measure the performance of crack map detection al-

gorithms. However, due to the unique nature of the crack map detection problem,

traditional quantification measures like mean square error and statistical correlation

are not able to distinguish between the performance of different algorithms effectively.

This led to the development of the buffered distance measure that is based on mod-

ifications of the Hausdorff distance. Using both real and synthetic images, it was

demonstrated that the buffered distance is superior to four existing scoring measures

in distinguishing between the performance of different crack detection algorithms.

There are several future research directions that can be pursued. First, the self-

terminating minimal path algorithm can be extended to detect higher dimensional

curves. In particular, it will be useful to detect tubular structures like vessels where

these structures are modeled as 3D and 4D curves [29] (2D structures as 3D curves

and 3D structures as 4D curves). An extra dimension is introduced to model the

width of tubular structure. Even wide cracks can be modeled as higher dimensional

curves to capture crack width information. Currently, further user interaction is

needed to detect these structures using the method formulated by Hua and Yezzi [29].

Our novel algorithm has the potential to substantially reduce this user interaction.

Second, work can be done on complete automation of the curve detection process

where the user does not have to supply any point on the curve. More extensive

testing on image that have complex structural cracks and features like thin capillaries

and bone cracks in medical images can be conducted. Third, the algorithm can
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be tested on pavement depth data acquired using a continuous laser profiler. It

is expected that depth information can be used to construct a potential that will

be better than intensity information because depth information is not affected by

shadows, oil stains and lighting conditions. Finally, code optimization can be done

to improve the computational speed of the current algorithm. The current algorithm

implementation does not exploit redundant information between different iterations.

This redundant information can be used to make the algorithm faster and applicable

to real-time computation scenarios.

We have explored an important problem of crack detection, proposed a novel

algorithm based on a principled theoretical framework of minimal path methods and

extended this algorithm to other applications. We expect that this thesis will be very

beneficial to researchers exploring the problem of detection of objects or features that

can be modeled as curves.
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