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SUMMARY

The purpose §f this thesis is to report the development of three
cost models for the T2 control chart for multiple quality characteristics.
One of the models is for processes that possess the Markov property,

i.e. the time in the in-control state follows the geometric distribution.
The other two models are for processes that do not possess the Markov
property and assume Poisson and logarithﬁ series distribution for the
time in the in-control state. A general.method for choosing the sample
size and qritical region parameter for the T2 chaft is presented.

A grid search numerical procedure is developed to determine the
optimal sample siie, critical region parametef, and the average time
cost. Ploté are given of the cosf funcfions for various values of the
cost cﬁefficients. Also 152 numerical examples are presented and
analyzed, It is concluded that the Markov assumption is important in

the design of a multivariate quality control model.




CHAPTER I

ey

INTRODUCTICN

This chapter gives an overview of quality control‘procedure for
multiple quality characteristics, the.purpose and scope of this research,
and a survey of thelpertinent literature. The development of the various
cost models and the solution procedures employed will be discussed in

later chapters.

Multiple Quality Characteristics

Statistical testing procedures are used to control the quality of
products produced by many types of industrial processes. A product is
considered to be of acceptable quality if some measurable characteristics
of the product fall within prescribed limits. Otherwise, the product is
considered to be unacceptable or defective, The function of qualityl
control procedure is to determine if a process is in or out of control.

Many industrial processes are characterized by two or more
quality characteristics, and the joint effect of theée characteristics
describes product quality. " For example, in the production of steel
bars, the strength and the diameter are both important quality charac-
teristics. They aré also jointly distributed random Variablés. The use
of univariate methods in an attempt to control a process like the one
mentioned above would result in substantial error from the independent

testing and control of each variable. - Jackson (11), Montgomery and



Klatt (19), and other authors ﬁave shbﬁn how the control procedure can
be distorted if one uses a univariate quality control procedure on a
process with more than one quality characteristic. Hence control pro-
cedures for these kind of processes must be based on multivariate

statistical techniques.

Purpose and Scope of the Thesis

Considerable research in gquality control methodclogy has been
directed towards improving techniques involving only a single quality
characteristic. This research often involves the development of a cost
medel relating the test parameter to some measure of effectiveness. 1In
most of the univariate cost models developed, the usual test parameters
explicated are the sample size, the time interval Letween samples and
the statistics defining the critical region. There are two limitations
in these médels; first, the quality characteristics used in the control
procedure must be univariate in nature, and seccnd, the population vari-
ance is assumed known. A very basic assumption made in these models is
the Markovian nature of.the process shift from the in-contrecl to the
out-of-contrel state. That is, given that the system remains in control
at a certain point in time, the probability of its deterioration by some
future time is independent of the past histcory of the process. For
discrete time, this implies that the duration in the in-control state
follows the geometric distribution.

The cbjective of this research is to develop alternative quality
control models of a process chafacterized s& at least two quality charac-

teristics. It is assumed that these quality characteristics are




continucus random varisbles. Furthermore these models should not

require prior knowledge of the population covariance structure. The

time in the in-control state is assumed to follow the geometric distribu-.

tion, Poisson distribution, and the logarithmic series or '"logseries"
distribution. These latter two distributions are considered since for
some processes, the basic assumption of the Markovian nature of the
process shift from the in-contrcl to out-of-control state may not be
valid. TFor example,_in the rolling of steel bolts, a common process
shift occurs as a result of heat due to friction in the continual pro-
duction of the bolts. When a false alarm induces & search for an assign-
able cause, the machine has an opportunity to cool down. The occurrence
of the true shift is thus postponed. As a consequence it might be more
realistic to assume that the distribution of the duration in control
pertains only to the interval since the previcus search. The reason for
choosing the Foisson and the logseries distribution is mainly for con-
venience. The primary nultivariate quality control technique is assuﬁed
to be the Hotelling T2 control chart, and the.éconqmic selection of the
test parameter {sample size and critical regioﬁ)'will be considered. It
is assumed that the optimél sample size and optimal critical region will
yield the minimum total cost of operating a multivariate quality control

system.

Survey of the Literature

The importance of multivariate statistical procedures was recog-
nized by Hotelling (39) as early as 193l. Generalization of Student's t

distribution provided Hotelling with a basis for development of a unique




statistical procedure. This procedure could be utilized in situations
involving more than one variable, and in addition, those instances in

which the variance must be estimated from a sample. Hotelling showed

that if N observations from a multivariate normal population with mean
vector u and covariance matrix V have been recorded, and the covariance
matrix is estimated from the sample by the Statistic S, then the
quadratic form

2

1= N(Eu) '8 T (R,

has the probability density function

orny2)P Tt

f(T2) = 5
I(p/2)TL[(N-p)/2](N-L)[1+T“/(N-1)]

This density function is called the Hotelling T2 distribution with p
and N-1 degrees of freedom, and is usually denoted by T;,N—l' Hotel-
ling's 1931 offering has more receﬁtly been discussed by Hicks (8) and
Jackson (11,12), and Kramer and Jensen (15-18). These authors have
unanimously endorsed the importance of Hotel1ing's technique and have
demonstrated the utility of these techniques in practical situations.
Sevéral authors have developed cost models for univariate sta-
tistical control procedures. Cowden (4) developed a cost model to study

the economic design of tests for the mean of a process. The form of his

model is




C=Cy+C+ Cphy

where C Cl’ and C, represent the operating cost associated with the

0’ 2

test procedure, the engineering cost of investigating a process when
there has been an apparent shift in the méan, and the cost incurred
when the process is not in control and defecfivé items are produced.
The assumptions made in Cowden's model are:

1. The pfocess is considered to be out-of-control at the
beginning of each day.

2. Once the assignable cause of equality variation is detected,
it is corrected gquickly and no further trouble can occur that déy.

3. The cost of locking for the assignable cause is proportional
to the shift in the mean.

4. The probability of finding the aééighabie cause 1s a function

of the cost of looking for trouble.

Because of the unrealistic nature of scme of these assumptions, the value

of the medel is minimized.

Duncan (5) has developed a cost model of the‘uniyariéféﬁinchart
that maximizes the long runAqyerégé'néf*Encome pef unit of time for the
process. His model is of the form

C = CO + Cl + C2’
where CO is the average cost per hour for operating the quality control

procedure, C. is the average cost per hour of looking for the assignable

1




cause and 02 is the average cost per hour of producing defectives.

Duncan assumes that the process may shift from the in-control
state toc a single out-of-control state any time during the day. He
‘further assumed that the time the process remains in the in-control
state before going out of control ié'an exponential random variable
with mean 1/X hours.

Knappenberger and Grandage (1l4) developed a very comprehensive
cost model for the univariate quality control. Theilr general cost

model is of the form
“E(C) = E(CO) + E(cl) + E(CQ)

where E(CO) is the expected cost per unit associated with sampling and
testing procedures, E(Cl) is the expected cost per unit associated with
rejecting the null hypothesis of statistical control, and E(CQ) is the
expected cost per unit associated with the production of defective
products.

In this model, it is assumed that the process may have more than
fwo quality states, and the process parameter is a continuous random
variable which can be satisfactorily approximated by a discrete random
variable. The cost of investigating and correcting a process which is
out of control is assumed to be a random variable. When the process
goes out of control, the model assumes that it remains in the out-of-
control state until detected. However, the process can shift farther

out of control before being détected. The only limitation in




Knappenberger and Grandage's work is the complex method required for
determining the various probabilities involved.

7 Baker t3) developed two cost models of an X chart assuming a
discrete time process in which the output quality characteristic of
interest is measurable on a continuous scale. His models apre of the

general form

where ay is the cost of taking an individual sample from the process,
a, is the cost of shutting down the process and searching for an assign-

able cause, a, is the cost of operating out of control for one period,

3
and ATC is the average time cost, i.e. the expected rate at which the
three components, (al,aQ,aa) of costs are incurred.

The assumption made in both of Baker's models is that the shift
out of control occurs at the beginning of a pericd and the process
remains out of control for at least ocne full period before the sampling
procedure can indicate that corrective action should be taken. That is,
conceptually, sampling is done at the end of each period. In cne of
Baker's medels, he assumes that the duration of the process is not
affected by the occurrence of false alarms, In the other model, Baker
assumes that the time in contreol is dependent of the number of false
alarms which cccurred. Baker's results indicated that the inappropriate
use of the geometric distribution may be significantly misleading in

certain cost cases.




Montgomery and Klatt {19) have recently developed a cost model
capable of déaling with multiple quality characteristics. Their model
is a multivariate analog of several well-known models for the univariate
X chart. The Hotelling T2 control chart was used in their model and
they further assume that only.one assignable cause of variation exists,
that monitoring will be carried out by taking successive samples of
constant size at fixed sample intervals and that correctivé agfion is
taken when one sample produces a value of the test statistic which
falls outside the control limits.

In the next chapter, the development of the various mddels used
in this research will be presented. In Chapter III, the solution pro;
cedure will be discussed, the analysis of results will be presented in

Chapter IV, followed by the conclusions and recommendations in Chapter

V.




CHAFTER II
DEVELOPMENT OF THE MODELS

In this chapter, the development of the three cost models used in
this research will be presented as well as a brief discussion of the

Hotelling T2 control chart.

Tﬁe T2 Control Chart

Suppose that the ocutput of a process is described by p quality
characteristics, and that X is a {px1) random vector whose Jjth element is
the Jjth quality characteristic (a continuous, measurable variable). We

assume that X is distributed according to the p-variate normél, i.e.
2.} -1
£(x) = 1/0nP?]2]7] explg(x-p) 57 (x-p) ¥, (1)

where E(X) = u is the (pxl) mean vector of the quality characteristics,
Cov(X) = I is the (pxp) covariance matrix of X, and the prime (') denotes
the transpose operation. In general, y and I are unknown.

The control procedure for X is due to Hotelling (10} and Jackson
{11,12). From a random sample of size n from X, say Ei’EQ""’§n5 we

compute the sample mean vector and sample covariance matrix as

| >
1

(2)

=l
1~
| >
(=0

1
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1R o o
s> L (xR0 -R) (3

-1 .
n i=1

Let ¥y denote the value of E_correéponding to the in-control state.

Thus if By = s the Statlstlé
) - | (%)

is distributed as Hotelling's T2 with p and n-p degrees of freedom,

denoted by T§ hep” The statistic T in quation (4) forms the boundary
L]

of an ellipsoid in the p-dimensional space of u, with center at g as

0

shown in Figure 1 for the case p = 2,

x|
22

Figure 1. Two-Dimensional Ellipsoid Formed by the Statistic T
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Define T2 as the upper a percentage point of Hotelling's T2
s sllT
. . . 2.2 _ . 2 2
distribution such that Pr{T">T } =a. Then if T° > T we
Q.p,0N-p ¢,p,0-p

would coneclude that u # Hos i.e., the process is out of control. The
distribution of the random variable {(n—p)/(n-l)p}T2 is noncentral F

with p and n-p degrees of freedom and noncentrality parameter 1, where
t.-1
T = nlp-ug) T (umpg). (5)

If y = Hys then 1 = 0 and the F distribution is said to be central.
Hence

Ti,P,n~p ) (2:;;p fo,p,n-p (®)
Therefore, the percentage peint of Hotelling's T2 distribution can be
found from tables of the cumulative F distribution (2}.

The T2 control chaft has only an upper control limit of Ti,p,n—p'
Samples of size n are taken pericdically, the quantity T2 computed
according to Equation (4), and T2 plotted.in a time-oriented sequence
on the chart. It is only necessary to compute §_l only (usually from
preliminary data taken when the process is in control), as this control

procedure is for means only. If T'2 > T2 » we conclude that the

a,pb,n-p
process is ocut of control, and appropriate action is taken. Jackson
(11) discusses how to determine which quality characteristics (component

of E) have assumed out-of-control values, Figure 2 shows an example of

a T2 control chart.
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2 {
O,p,n-p
2
TB
2
TQ T5
2 T2
i
2
Ty
0 Time
. Z
Figure 2. T  Control Chart
In this example, T° > T° from which nelude that u # i.e
xample, T, %,p,n-p’ om ch we conclude at y Ky 1-e-

the process mean vector is different from the desired standard.

If the population covariance matrix L were Rnown with certainty,
then §_l in (4) cén be replaced with E-l, and the statistie T2 would be
distributed as x2 with p degrees of freedom. Under these conditions, a
contrel procedure could be based on the x2 distribution., Only rarely,

however, could this be done, as knowledge of I would be unusual.

Economic Models of the T2 Control Chart

Consider a discrete time process in which the output quality

characteristics of interest are measurable on a continuous scale
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(e.g. length, weight, etc.). The system is assumed to remain in control
for T periods, where T is a random variable with a discrete probability

distribution, say

Pri{T=t} = p(t) t=0,1,2,...,

the process is assumed to shift out of control at the start of a period

and sampling and plotting is dene at the end of a period. That is, if

a shift occurs, defective items will'be produced for at least one period.
With the use of a T2 control chart, the test statistic employed

is given by Equation (4). For a single assignable cause model, W, repre-

Q
sents the in-control state and Yy + 4§ = By represents the out-of-centrol
state, where § is the magnitude of the shift and is assumed known.

In any period, the probability a that z false alarm will occur,

i.e, a type 1 error, is

Pr{Type 1 error}

Q
T

Pr{False alarm}

2

Pr{T2>T
: G,p,11-p

lu=py)

/ £(r?)ar? - (7)

G,P,N-p

and the probability 1-8 of detecting an out-of-control state is
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Pr{Detect out-of-control state}

=
|

0
n

o

= f2 CE(T? ,r)dT? . (8)

a,p,n-p

v .
where 1 = nm with m = § § lS. Note that 1-B is just the power of the

test.

The cost model used in this research is comprised of the follow-

ing three components:

|

a

1 Variable cost of sampling in the process. This is taken

to be proportional to sample size.

a, = Cost of searching for assignable causes. This may be either
real or false alarms, and reflects the shutdown and startup
costs associated with the interruption, or the labor, cover-
head, and opportunity costs associated with testing and
adjusting some facet of producticn.

a, = Cost of operating cut of control for one pefiod. This may
reflect such factors as added corrections resulting from
subsequent inspection, waste of input material, delay cost
due to later disassemblies, customer dissatisfaction, ete.

The measure of effectiveness which we shall employ is the average

time cost of the Inspection and control procedure. This 1s the expected

cost as which the three components of cost are incurred,

The Geometric (Markov) Model

In this model, an assumption made is that the duration of the
process iﬂ control is not affected by the occurrence of false alarms.
For discrete time process, this Implies that the time in control follows
the geometric distribution.

Let the random variable O be the run length out of contrel, and




15

—
"

number of pericds the process is in contrel following the
(i-1)th repair until the ith shift, and

O
n

number of pericds process remains outrbf control from the
ith shift until detected.

The system may then be characterized over a sequence of alternate

intervals {Tl’ol’T2’ 2,...} and Figure 3 shows the behavior of the

model,

detection ' detection detection

nnnnn

s sy ODeTAting
3 periocds

Figure 3. Behavior of the Geometric Model

The length of the ith in-control-shift-detection cycle is
Ti + Oi’ and the expected value of the ith cycle length is

E{Cycle lengthl} = E{T} + E{0},

therefore the expected sampling cost per cyc;e is aln[E{T}+E{O}], the
lexpected cost of investigating and correcting the process is a2[l+E{X}],
where X is the number of false alarm per cyclé, and the expected cost of
producing defective 1is aaE{Q}; Thus combining these elements, the long

run average time cost per cycle is:

a2[l+E{X}]+-a3E{O}
C=anmn+

1 E{T! + ELO} (9)
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But,

E{0} = Number of Bernoulli trials

with the first success

1
T TR (10)

where 1-f is the prdbability of success, and

E{x} = ) E{X/T=t}Pr{T=t}

t

1

E atp(t)
t

]

1l

'a‘é_tp(t)g
|

t

but

therefore,

E{X} = aE{T}. (11)

On substituting (10) and (11) into (9), we have

e a2[l+aE{T}] + a3/(l—8) (12)

1 E{T} + (1/1-R)
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Under the Markov assumption made in this model, T follows the geometric

distribution, hence

e(l-a)t t20,1,2,...
p(t) = '
0 otherwise

and the expected value of T is

Thus

a2(l—6)[9+a(l—6)] + a.8

3
1 (1-83(1-8) + 6

The Poisson Model

(13)

In the development of this model, we assume that the distribution

of the duration in control depends on the time interval since the previ-

ous search, To assist in describing the system for this and the feollow-

ing (logseries) model, some additiocnal notation is needed.

T' = Number of periods the process remains in control from the
conclusion of the previous search (whether or not the search

was induced by a false alarm}.

0' = Number of periods the process is out of control prior to a
particular signal for action (0' is analogous to 0O except
that for a cycle in which the signal is a falm alarm, 0' = 0),
and

D = Number of pericds following the conclusion of a search until

the next signal for action.
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In this and the following model, a cycle is defined as the interval
]
between two signals, i.e. an interwval Ti in control followed by an

interval Oi out of control, Figure 4 shows the behavior of these two

models.,
Detection "~ Detection
o | !
e e S oo et dmtdts e operating
t i 1 1 [ 1
Ty 10 T2 ; T3 EOS ' Ty periods
Process False K - '
Shift Alarm

Figure 4, Behavior of the Poisson and the logseries model,

The cost incurred during the ith cycle is

.
a,nD; + a, + aj0,. (1u)

Following the same procedure as in the geometric model, the average time

cost is

a, + aaE{O'}
C = a,n + 0! .. (15)

In this model, assume that the duration in control has a Foisson

distribution with mean 6, that is

t=0,1,2,...

¢} otherwise,




and
o = Pr{D=t+1/D>t and T'=2t+l}

1 -8 = Pr{D=t+1/D>t and T'st}.

19

(18)

(17)

If D > T', then the associated signal is valid, and the probability of

such a cycle is

Z Pr{D>f'/t"=t}Pr{T'=t}
t=0

Pr{D>T'}

) (-0 6% %11
t=0

or upen simplifying,
Pr{D>T'} = e_ae.
The quantity E{O'} may be writtén as
E{0'} = E[O'/D<T'JPr{D<T'} + E[O'/D>T'IPr{D>T'}

where it can be observed that E[0'/D<T'] = 0 and

E[0'/D<T'] = 1/(1-B).

(18)

(18)

(20)




20

Hence
E{0'} = (1/(1-8))e P, (21)

The mean cycle length, conditicned on the length of time in control, can

- *
be written as

noa(1-)”™ + (1)t ] n(1-g) (1-(1-p))"7Ft
1 n=t+l

E[D/T'=t]

1l
nr~1ct

n

t t
21 - (l-w)” - tall-a) t 1
= = + (1-a) [t +_l~8}

1 til 1
e (1-a) (a - l—_"e—] . (22)

The conditiocn can then be removed as follows;

E{D} = ] E[D/T'=tIPr{T'=t}
t
vo1 t {1 1)f,t -8
- t—ZO = - (1-0) [E' l—-B_] 6 e /tt,
or
L S e (28)

On substituting intoc (15) we find
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azu(l-B) + aaote_mB
C = a.n + (24)

(l—B)(l—e-ae) + me_ue

The Logseries Model

The last model that will be discussed is almost identical to the
Poisson model except that the duration in control is assumed to have a

logseries distributicn, i.e.

P {T=t} = ‘ ' (25)

where 0 < 8 < 1 and v = -[1og(l—9)]_l.

Hence, using Equation (25), we have

oo

} Pr{D>T'/T'=t}Pr{T'=t}
t=0

Pr{D>T'}

= 1(P.) + E (i—.)t Iéf—(l P )
- S L AT T A,

t=1

It

| T oyt t
Poo+ (1-P )y ) T (1-a)
0 'Y LR |

but since

7 {6(1-a)}" _

) - ~%n (1-6(1-0)},
t=],
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therefore,
Pr{D>T'} = P, + (1-P0)y[—2n(1—e(1-a)]1 (26)

Similar to the Poisscn model, the quantity E{0'} may be written as

1
1-8

(P + (1-P))y [ [8(1-a)1%/t}
t=1

E{0'}

1

=g Pt (1-Po)y[-zn[1-e(l-a))]}. (27)

The mean cycle length is the same as given by Equatieon (23}, and

E{D} = } E[D/T'=t]Pr{T'=t}
t
RN tfr 1 .
= tZO I:E— (1-a) 7 F'B—]PI‘{T —tﬂ
1 = |1 ef1 1] vat
= T8 PO + Z % (1-a) [a- - l—_B—} < (l—PO)
t=1 | a
B oo 1 3 -] t
_ 1 Y ] 1 1 {(1-a)0}
- L rgra|t ] Goy[Eo ]y LGl
1-f 0 0 @yt o 1-B) .2y t
- 1 Y 1 1
= m—PO + (l-PO) 5 (-En(l-e) - Y(a— - 1-_'_'75“} ["941'1 l-e(l—a)]ﬂ
r-
= if%—E'PO + (1-2) |- | {-an(1-8) - [—zn(l—e(l—q)]]] +

i—%—g-{~2n(l—6(l-a)]1l. (28)
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The average time cost is found by substituting Equations (27) and (28)

~into (15) as

a, + aSE_%B_ {p, + Y(l—Po)[—En[l-B(l-a)]]il

1 Y Y | _onf1-a61-
T Po + (1-P) « -zn(l-e)-(—zp[l—e(l-a)]] + L [—ﬂn[l—e(l—a))] (29)

Equations (13), (24), and (29) are the equations that will be used

in this research. The next chapter will discuss the solution procedure

used in this work.
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CHAPTER III
SOLUTION PROCEDURE

The purpose of this chapter is to fcrmulate a method for selecting
the sample size.(n) and the critical region parameter (Ti) which mini-
mizes the cost functions given in Chapter II. The optimization technigue
employed is a direct search method and makes use of a digital computer

program.

Optimization Method

The sclution technigue used in selecting the sample size and
critical region parameter which minimizes the cost function is a simple
grid search tecﬁnique. The methods are for a discrete time process and
the sample sizes are integer valued, Hence, for a particular set of
cost parameter, and for a particular sample size, one can search through
a range of probability for detecting the out-of-control state (a) to
find the optimal average time cost and the critical region parameter
associated with it for that particular sample size. The procedure con-
sists of dividing the range of o inte small intervals and calculating
the average time cost correspending to each interval for a particular
sample size. In this fashion, the optimum average time cost for a range
of sample sizes can be found. The optimum total cost corresponding to
a set of cost parameters will be the lowest of the set of optimum aver-

age time costs.
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The above procedure is used for all three models discussed in
Chapter II. Computer programs coded in Fortran V for the UNIVAC 1108
were developed for all three models. These programs are essentially
the same, differing only in the calculation of the average time cost
which is done in a subroutine, A listing of the main pregram ana the
three subroutines can.be'found in thé Apﬁendix. A flow chart of one of
the programs i1s shown in Figure 5,

The method described in- this séction are generally applicable to
any number of quality characteristics. The computer programs, shown In
the Appendix, are for fwo guality characteristics only. Minor modifica-
tion in calculating Ti will be needed before the program can deal with
more than two qualify characteristics.

In order to calculate the probability 1-B as given by Equation
(8) in Chapter II with a digital computer, numerical approximations are
required. The following sections will be devoted to the discussion of

this approximation.

Calculation of the Power of the Test (1-8)

As given by Equation (8), the power is

1-g=] #(1% ,1)a1?, (30)
%,p,01-P
and also from Equaticn (6) we have

T2 o (n-L)p £
0,p,0-p n-p 0,p,n-p
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Read in ai, a 8

v

Read in Range of o for Search Purpose
(Lower Limity Upper Limit}
Alsc Search Increment Ac

2> 43> V>

+
Read in 7 Value
+
DO n=3, LASTN
Initialize Optimum C=99999%.
5 ¥
Calculate Ta {Starting from the Lower Limit)
vy
Calculate C

¥

Compare C with Optimum C

If C < Optimum C If C > Optimum C Then
Then Optimum C=C Optimum C=Cptimum C

|
b

Increment 2 by Aa

+ ,

No If o Greater Than Upper Limit > Yes

Figure 5. TFlow Chart
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or

£ . {n-p) 2 . (31)
G,p,n-p (n-l)P 4,p,0-p :

when 1, the moncentrality parameter, is not equal to zero, which is the

case when p # Moo Equation (31) becomes

1 _ (n-p) T'2

. (32)
o,p,0-p n-1l)p "a,p,n-p

This quantity has the noncentral T distribution with degrees of freedom
p and n-p and noncentrality parameter 1. Thus Equation (31) can be

replaced with

1-8=f £(F',p,n-p,T)dF", (33)
(n-p) "2 '
(n_ljp sP,0-DP

where f£(F',p,n-p,t) is the noncentral T distribution with p and n-p
degrees of freedom and noncentrality parameter 1. The frequency func-

tion for the noncentral F distribution is given by

f(F‘ ap:n_PsT) =

[(2i+p)/2]Tie—TF[(2i+p—2)/2]
[(Zi ) /2] )

rL(2i+n)/2])[p/(n-p)]
iz0 T[(n-p)/21r[{2i+p)/21it[1+pF/(n-p)]

(34}

The approximaticn of 1-R is due to Klatt (13) and is an extension of
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Paulson's (20) approximation. Paulson (2C) developed an approximation
for the probability'integral of the central F distribution by defining
a statistic x, a function of F, such that X is nearly normally dis-

tributed with zero mean and unit variance. That is

-] ' [+]

f £(F,p,n-p)dF = f £(z2)dz, (35)

F X
C,p,0-P

13

and i1f we substitute vy and v, for p and n-p, respectively, Equation

{35) becomes

f £(F, vy ,v,)dF = [ f£(z2)dz, (36)

o4,V 5V, ®

where f(F,v ,v2) is the frequency function of the central F distribution

1

and £(z) is the frequency function of the normal distribution. In (36)

x is given by

2 1/3 2
A

x = (37)

where 1 - §%— and 5%—-is the mean and variance of anormally and inde-
2 -2
pendently distributed variate w and 1 - —2v-and _2_,13 the mean and
9vl 9vl

variance of another normally and independently distributed variate y.
Paulson (20) has found that x as given by Equaticn (37) is nearly

normally distributed with zero mean and unit variance. In developing
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/3

this approximation, Paulson has regarded Fl as the ratio of twc

normally distributed variates.
Paulson's work was extended by Klatt (13) to cbtain an approxi-
mation for the probability integral of the noncentral F distribution.
The noncentral F is given by
2!
Xy /vy

Fro= (38}

2
X2/v2

. . . . o . 2!
which is the ratio of a noncentral Chi-square distribution (xl ) tc a

central Chi-square distribution (x;) with Vi and L degrees of freedom,

respectively. Wilson and Hilferty (21) have shown that (Xg/VQ)l/S is

nearly normally distributed with mean 1 - g%n-and variance 5%—-, also,
2 2
1
Adbel-Aty (1) have shown that [xi /(vl+r):|l/3 is nearly normally
d' . i 2(V1+2T) 4 ) 2(Vl+2T)
istributed with mean 1 - aT;I;?T— and variance gz V1+T . 1f we con-
sider the ratic
1/3
2! 1/3
X; /v ' v FT
% 1 =T 1/3 - 1 , . (39)
v
XQ/V2 1
then the ratio
1/3
1
x2 J{v_ +T1) v.F 1/3
1 1 21 .
= (40)
2/v vl+T
X2/¥2
. . : 1
Using this relationship and the mean and variance of xi /(vl+r) and




X;/V2 as given previously, Eguation (37) becomes

30

v_F 1/3 2{v_4+21)
R | o1 - 2
9v2 vl+1 g{v_+1)
x = . , (u1)
5 vlF 2/3 2(Vi+2T) |
v T *T T {v_+17)
2 1 - 1 |
and since
P oD =P o2, Vo 2
(n-1)p (n—l)vi
Equation (41) becomes
o Tl 173 2(v. +21)
1 -2 1 I RS S
Sv, (vl+TF(h-1)J 9(vl+T)

2 2/3
vlT

2(vl+2r)
9v2 (vl+T)(n-lJ * inl+rj

The quantity % as given by Equation (41) or (42) is nearly normally

distributed with zero mean and unit variance.

The approximation for 1-R is

(43)
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To evaluate the normal integral as given by Equation (43),

Hasting's (7) approximation is used in conjunction with the above

approxihations. Hasting found that

t?

e dK

2 - a3

can be approximated by

1
1 - (4d)
2 3 Ly 5 6,16 °*
(l+blx+b2x +b x"#b X +b_x"+b X )

where bl = 070523078k
b2 = 0422820123
b3 = .0092705272
bj+ = .001520143
b5 = .002%65672
b6 = .000430638.

Based on Equation {(44), i1t can be shown that Equation (43) can be

written as

0.5 :
l1-8-= 45
g {(l+c. %tc x2+c X +C x4+c X5+c Xe)l6 ’ (49
1 2 3 I 5 &

where c. = bi/Ql/z, and the value of x is as given by Equation (42).

1

The values of c, are:

Cl = .0498B73470




c, = .0211410062
cy = 0032776263
c, = .0000380035
c5-=..oooouesgoo
¢, = .0000053800.

This approximation of the normal integral has an accuracy of
0.,000003, The apprqximétion of x is accurate to within 0.005 of the

true value.

32
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CHAPTER IV
ANALYSIS OF RESULTS

This chapter will present the results obtained by meking use of
the theory developed in Chapter II and fhe solution procedure suggested
in Chapter III, A total of 54 different problems were analyzed for each
of the three models. 8ix different sets of cost parameters (al,az,as),
the noncentrality parameters, and three different probability distribu-
tion parameters were used to develop the 54 problems.

The cost parameters used in this study are:

a, = 0.4, 1.0
a, =.50, 100, and
ag = 100, 1000

The noncentrality parameters are based on values of 7 of 5, 10, and 25,
The probability distribution parameters used are shown in Table 1.
Figures 6 to 14 illustrate the probability distributions fof all
these cases. In selecting these parameters, care has been exercised to
make sure that the expected values are the same for all three dis%ribu—
tions for each case. TFor example, the expected value of the geometric

random variable is
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E[x] = =2 - e
the expected value cof the Poiséon random variable is
Elx] = 8, (47)
and the expedfed value of the logseries random is

E(x] = [ys(1-8)I[1-2,1 (u8)

Thué, when 6 of the geometric distribution is 0.025 as in case 1, the
expected value E[x] is (1-0.025)/0.025=39, and since E[x] for the Pois-
son random variable is 6, therefore 8 = 33 for case 1, and similarly for
the logseries distribution where PO = 0.025 and 6 = 0.98689. Note that
PO for.the logseries distributicn is assumed to be equal to the geo-

metric probability that x = 0.

Table 1. Probability Distribution Parameters
Used in the Example Problems

CASES

Distribution 1 2 o.....3
Geometric (8) 0.025 0.05 0.15
Poisson (8) . ag 19 5.6667

Logseries (2 ,8) 0,025, 0.98689 0.05, 0.9675 0.15, 0.8426
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Figure 6. Geometric Distribution (8=0.025)

L i .

10 20 30 40 50 60 70

Figure 7. Poisson Distribution (6=39)
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p(t)]

0.20 1}
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0

Figure 8., Logseries Distributicn (PO=0.025, 6=0.98689)
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Figure 9. Geometric Distribution (6=0.05)
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Figure 10. Poisson Distribution (6=193)
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Figure 11. Logseries Distribution (PO:O.OS, 0=0.9675)
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Figure 13. Poisson Distribution (6=5.6667)
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p(t)1
0.5}

0.4}

0 lll. =
0 1¢ 20 t

Figure 14. Logseries Distribution (P, =0.15, 8=0.8:26)

The next few sections will discuss the effect of each cost coef-
ficient, the effect of the noncenfrality parameter, the effect of the
probability distribution parameter, and the distributions themselves on
the sample size (n), the critiecal region parametér (Ti) and the average

time cost (C).

9

* Effect of a, on L, n, and T

Tables 2, 3 and 4 show a sample list of the results obtained.
(The remaining results can be found in Tables 5 to 12.)

As a; increases, the optimal values of n decrease in all three
models. In some cases, there is a significant decrease in sample size.
The effect of a, on the optimal average time cost is very apparent. As

would be expected, an increase in the variable cost of sampling causes

an increase in the optimal average time cost.
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Table 2. . Effect of a; on the Optimal Value of C, n, and Ti
(Case 1 of Probability Distribution Parameter)
Cost ot . .
P Geometric Logseries Polsson
arameter
a, ,ad,,a T n T2 C n T2 c n T2 C
1?72°73 o 1 a o
al = 0,4
a, = 100 .5 9 29,463 9,385 17 13.020 10.689 6 26,311 8,304
a3 = 100 B -
a, = 1.0
a, = 100 5 7 31.857 13.B39 8 2B8.000 18.5%6 5 33.384 11.543
az = 100 .
3, = 0.4
a, = 100 10 14 18.438 8§.818 14 17.092 8.735 13 15,981 8.398
a3 = 1000 o
a, = 1.0
a2 = 100 10 12 15,021 16.339 12 13,302 16.259 10 12.037 15.212
as = 100
al = 0.4
a, = lo0 25 9 32,252 6.659 9 28,352 6.585 8 27.300 6.387
a, = 100
a, = 1.0 |
a, = 100 25 5 96,000 11.231 8 24,475 11.590 4 104.143  9.960
a, = 100
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Table 3. Effect of a) on the Optimal Value of C, n, and Tg
(Case 2 of Probability Distribution Parameter)
p Cost Geometric Logseries Poisson
arameter .
T n T2 ‘ C n T2 C n T2 C
8153593 a 1 a a
al = 0.4 |
a2 = 100 5 17 13.984 13.527 18 12.707 13.071 16 12,331 12.911
a3 = 100
al = 1.0
a, =100 5 7 26.629 19.406 14  9.18% 22,411 5 24.172 16.992
a3 = 100
al = 0.4
a2 = 100 10 14 17.497 11.624 14 16,069 11.008 13 15.026 11.193
a3 = 100
al = 1.0
a2 = 100 lQ 12 13.997 19.340 11 10.868 18.471 11 11.963 18.231
a3 = 1000
al = 0.4
a2 = 100 25 9 29,463 Q.uu6 9 26.507 8.871 8 24,475 9.196
a3 = 100
al = 1.0
62 = 100 25 8 26.051 14.509 8 22,398 13.851 7 18.577 14,300
a, = 100
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Effect of a; on the Optimal Value of C, n, and Tg

Table 4.
(Case 3 of Probability Distribution Parameter)

P Cost Geometric = Logseries Poisson

arameter
a.,a,,a T n 7 C n 72 C n T C
1*722*73 o _ Q o
al = 0.4
82 = 100 5 19 13.766 26.38%9 17 9.963 21,021 17 11.237 25.764
ay = 100
a; = 1.0
a2 = 100 5 15 10.819 36.525 13 6.536 29.880 - 14 8.963 34,884
a, = 100

= 0.4

al 0

a, = 100 10

a, = 1000

14 16,069 24.203 13 13.040 18,943 13 13,751 23,745

a, = 100 10

13 1#.430 32.235 11 9.775 25.862 11 10.563 31,058

a, = 1000

a, = 0.4

a, = 100 25 g 26.507 21,973 8 19.710 16.966 9 25.020 21.659
a, = 100

al = 1.0

a, = 100 25

a. = 100

8 23.162 27.220 7 16,078 21.556 8 21.706 26.545
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Finally, we observe that the effect of a, on the optimal critical region

parameter is dependent upon age Nc generalization will be made at this
time.

2

Effect of a., on C, n, and T
2 O—

Tables 5, & and 7 show another set of numerical results. It can

be seen that as the cost of searching for assignable causes (a2)
increases, the optimal sample size increases. This increase, in general,
is not vepy significant. This should be the case since an increase in

a, without adjusting the contreol limit would reduce the type one and.

2

type two error.

An increase in a, also causes an increase in the optimal critical
region parameter. This should be expected, for the same reason as in
the case of the samplé size. That is, since false alarmé are more
costly, we wish to make the test procedure less sensitive.

Taking the total effect Qf increasing a, on the coptimal n and Ti
into account, we find no unexpected results. That is, the effect of
increasing a, is to increase n and Ti, and thus reduce both error proba-
bilities. This forces the test parameter to generate fewer false out-
of-contrel signals, and to be less sensitive so far as detecting a true
out-of-contrel state is concerned. |

We observe that an increase in a, causes an increase in. the

optimal average time cost.



Table 5. Effect of ap on the Optimal Valué of C, n, and T,
(Case 1 of Probability Distribution Parameter)

L

2

P Cost Geometric Logseries Poisson

arameter

a..a.,.. T n T ¢ n 72 C n T c
127273 ) o o

al = 0.'4.

a, =50 5 18 11.386 9.605 18 10,027 9.586 15 9.061  8.898

a3 = 1000

al = 0.4

a, = 100 5 19 13.131 11.515 20 "12.694 11,516 18 11.737 10.873

a3 = 1000

al = 0.4

a2 = 50 1¢ 11 16.721 6.588 11 13.853 6.655 5 31.389 5.666
a3 = 100

al = 0.4 |

a2 = 100 10 12 20.140 8.263 '13 18.905 8.317 6 34.528 ° 7.756
a3 = 100

al = 0.4

32 = 50 25 9 24.375 5,333 g 22,732 5.263 8 20.224 5,049
a3 = 1000

al = 0.4

a, = 100 25 10 29.u456 6.926 10 28.002 6.813 9 24,375 6.622

a, = 10098
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Table 6.
(Case 2 of Probability Distribution Parameter)
P Cost Geometric Logseries Poisson
arameter : =
a 7 T c T? c 1 c
1>%2°%3 " o " o b a
a; = 0.4 -
a, = 50 5 18 10.636 11.167 17 8.535 10.688 16 8.715 10.505
ay = 1000
a, = 0.4
a, = 100 5 20 13,087 14.438 19 11.071 13.790 18 10.900 13.800
a, = 100
a, = O
a, = 50 10 12 16.631 8.135 11 12.699 7.791 10 12.904 7.706
a, = 100
a, = 0.4 |
a, = 100 10 13 19.445 11.170 13 17.210 10.627 12 16.916 10.759
a3 = 100
a, = 0.4
a, = 50 25 9 23.238 6.733 g 21.408 6.377 8 18.788 6,450
ag = 1000
a, = 0.4
a, = 100 25 10 28,002 9,670 9 22.281 9.088 9 23.238 9,370
a, = 1000
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Table 7. Effect of a, on the Optimal Value of C, n, and Ta
{Case 3 of Probability Distribution Parameter)
Cost Geometric Logseries Poisso
Parameter O85C I
Z,a,a. % n - T C =n 7° c n 1 ¢
1’2’3 o . Q o
al = 0.4
a2 = 50 5 19 10.520 17.870 16 6.822 14.320 17 8.340 16,987
a3 = 1000
al = 0.4
32 = 100 5 21 13.036 27.155 18 8,991 21,6812 19 10.B05 26.u495
a3 = 1000
al = 0.4
a2 = 50 10 12 1u.652 14.557 11 11.064 11.613 11 12.224% 14.107
a3 = 100
al = 0.4
a2 = 100 10 13 17.579 23.791 12 13.566 18.620 12 14,833 23.260
a3 = 100
al = 0.4
a2 = 50 25 g 25,020 12.8H1 8 18.788 10.120 8 20.224 12.536
a3 = 1000
al = 0.4
a2 = 100 25 10 26.787 22.133 9 20.653 17.092 g 21.821 21.839
a3 = 1000

- —_—
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Effect of a_ on C, n, and Ti_

Tables 8, 9 and 10 provide some additional nqmerical'results.
These results are arranged to show the effect of a change in a, on the
optimal value of C, n, and Ti.

By carefully studying these tables, it can be seen that an
increase in the cost of operating ocut of control for one period (a3)
will increase the optimal sample size (n), but the optimal critical
region parameter (Ti) will be decreased, Intuitively, this is what
should be expected, because if it costs mﬁre to operafe out of control

for one period, the test procedure should become more sensitive, This

. . . . . . . 2
is precisely what is accomplished by increasing n and decreasing Tu

simultaneously.

As before, the effect of an increase in asris to cause an increase

in the optimal average time cost.

Effect of the Noncentrality Parameter on C, n, and Ti_;

Recall that in Chapter II in the discussion of the power of the
test, the noncentrality parameter was defined as 1 = n§f§f1§_= nﬁ. In
this work, three different values of m were used; namely 5, 10 and 25.
Varying the values of 7 is equivalent to varying the difference between
the in-contrel and out-of-control states. Tables 11 and 1? are sample
results which show the effect of variation im 7 on the optimal values
of C, n, and T-.

Based on the results shown on Tables 2 te 12, it can bLe seen that
as m ranges.from 5 to 25, or when there is a bigger shift in the procesé,

the optimal value of n and C decreases for all three models, whereas the

.
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Table 8. Effect of ag on the Optimal Value of C, n, and Tg
(Case 1 of Probability Distribution Parameter)

| Cost ~ Geometric - Logseries Poisson
Parameter
d,,d,,a T n T2 c n T2 c n - T2 C
1°72°73 a a o
a; = 0.4 |
a, = 50 5 8 .26.051 7.769 16 10,792 8.8u47 5 25,872 6,020
ag = 100
a; = 0.4
a, = 50 5 18 11,3%6 9.605 18 10.027 9.586 15 9.061 8.898
ag = 1060
a; = 1.0
a, = 100 10 6 49,233 12,430 10 13.834 15.134 5 42.784 10.813
a, = 100
a; = 1.¢
a, = 160 10 12 15.021 16.339 12 13.302 16.259 10 12.037 15.212
ay = 1000
a; = 0.4
a, = 50 25 8 26,051 5,108 8 22,398 5.078 7 22.891 4.8u49
ay = 100
a; = 0.4
a, = 50 25 9 24,375 5,333 9 22,732 5.263 8 20.224 5.048
a, = 1000
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Table 9. Effect of a3 on the Optimal Value of C, n, and Tg
¢Case 2 of Probability Distribution Parameter)
Cost Geometric - Logseries Poisson
Parameter
a, ,a, ,a T 0 T2 C n T2 C n T2 c
1272773 o o a
al = 0.4
a, = 50 5 16 11.961 10.323 16 9.874 10,024 5 17.367 9.5860
a3 = 100
al = 0.4
a, = 50 5 18 10.836 11.167 17 8.535 10.688 16 8.715 10.505
Ay = 1000
a; = 1,0
a2 = 100 10 6 Ho.6u4 17.814 10 12.197 17.475 5 32.024 15,974
a3 = 100
al = 1.0
a2 = lo0 10 12 13.997 19.3%0 11 10.868 18,471 11 11.963 18.231
a, = 1000
a; = 0.4
a, = 50 25 8 24.012 6.566 8 21.075 6.194 8 22.770 6.257
ay = 160 o
a, = 0.4
a, = 50 25 9 23.238 6.733 9 21.408 6.377 8 18.788 6.450

a, = 1000
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Table 10. Effect of a; on the Optimal Value of C, n, and Tg
. (Case 3 of Probability Distribution Parameter)
Cost Geometric Logseries Poisson
Parameter g
7 T2 c o T2 ¢ n T c
a) 58,53, n o o . n T, :
a, = 0.4
a2 = 50 5 17 11.047 16.983 15 7.555 13,781 15 '8.718 16,339
a3 = 100
al = 0.4
a2 = 50 5 1% 10,520 '17.670 16 6.82‘2I 14.320 17 8.340 16.987
az = 1000
al = 1.0
a, = 100 10 11 1u.u4l18 31.124 10 10.228 25.036 10 11.883 30.012
ag = 100
al = 1.0 | ‘
a, = 100 10 13 14,430 32.235 11  9.775 25.862 11 10,563 31,058
a3 = 1000 )
al = 0.4
a, = 50 25 9 25,020 12.841 8 18.788 10.120 8 20,224 12,536
a, = 100 B - -
a, = O.u |
a, = 50 25 9 21,408 13,013 8 16,191 10,239 8 17.101 12.726
a, = 1600
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' B 2
Table 11. Effect of w on the Optimal Value of C, n, and T,
(Case 1 of Probability Distribution Parameter)

Cost Ceometric Logseries Poisson
Parameter s 5 3
T C
al,az,a8 U] n Ta C n Ta C n a
al = 0.4 |
a, = 50 5 18 11.396 9.605 18 10,027 9.586 15 9.061 8.898
a3 = 1000
al = 0.4
a2 = 50 10 13 15.721 7.111 12 12.494 7.042 11 12.Lk07 7.111
ag = 1000
al = 0.4
a2 = 50 25 9 24,375 5.333 g 22.732 5.263 g 20.224 5,049
ay = 1000 s
al = 1.0
a2 = 100 5 16 .10.481 22.050 186 8.674 22.104 L 25,986 17.228
a3 = 1000 5
al = 1,0 |
a2 = 100 1¢ 12 15.021 16.339 12 13,302 16.259 10 12.037 15.212
a3 = 1000
al = 3.0
a, = 100 25 8 21.706 12.316 8 19.4867 12.125 8 21.075 11.578
a,. = 1000
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Table 12, Effect of m on the Optimal Value of C, n, and Ti
(Case 3 of Probability Distribution Parameter)
Cost Geometric Logseries Poisson
Parameter -
a, ,da,,a m T2 c n 2 C n T2 C
1*72°73 n a o o
a, = 0.4
a2 = 50 5 17 11.047 16.983 15 7.555 13,781 15 ‘8,718 16.339
ag = 100
i al = 0.4
- a2 = 50 10 12 14.652 14.557 11 11.064 11.633 11 12.224 14,107
a, = 100
al = 0.4
a, = 50 25 9 25.020 12.841 8 18,788 10.120 8 20.224  12.538
ag = 100 L o
a, = 1.0
a, = 100 5 18 10.168 38.632 15 8.u402 31.397 18 8.012 36,913
ay = 1000
a = 1.¢
a, = 100 1% 13. 14.430 32,235 11 9.775 25.862 11 10.563 31.058
a4 = lQOO
a, = 1.0 |
a, = 106 25 9 22.261 27.723 8 16.940 22.007 8 17.982 26.941
a, = 1000
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optimum value for Ti increases. That is, a less costly and less
selective procedure is required to detect out-of-control states that

differ considerably from the In-control state,

Effect of Probability Distribution
Parameter on C, n, and_zi_

By varying the parameter of the probability distributions, the
expected number of periocds that the process remains in control is
varied, Three different cases of probability distribution parameters
were used in this work. Most of the numerical results are shown in
Table 13. |

The results obtained show fhat as the expected number of periods
the process reméins in contrel decreases, the opfimal sample size in-

creases slightiy, the optimal Ti decreases and the optimal average time

cost inereases, Intultively, this is what should happen since decreasing

the expected number of pericds the process remains in control would

require a more sensitive contrcl procedure.

Lffect of the Markov Assumption

From the results cbtained, it can be seen that in general, the
geometric (Markov) model differs somewhat from the Poisson and the log-
series models, and requires a larger sample size, larger critical region
parameter, and results in a higher avérage time cost than the Poisson
model, IFf we consider all the problems with. case 3 of probability
distribution parameter, notice in these problems the results of the
optimum average time cost between the logseries model and the gecmetric

model differed by as much as 20 per cent in some cases,



Table 13. Effect of Probability Distribution Earameter
on the Cptimal Value of C, n, and Ta

Cost

Parameter Geogetrlc . Logggrles P01§son
al,az,as,n Case n Ta C n Ta C n Ta C
al = 0.4
a, = 50 1 11 16,721 6.588 11  13.853 6.655 5 31.389 5.666
a, = 1000 \

3
m™ = 10
ap = 0.4
3, = 30 2 12 16.631  8.135 11 12.699  7.791 10 12.304  7.706
a., = 100 ' ..

3
T = 10
al = 0.4 | | |
a, = 50 3 12 14.642 14,557 11  11.06% 11.633 11  12.924  14.107
a. = 100 :

3
T = 10
al = 0,4 |
a, = 50 1 13 15.721 7.111 12 12.u94 7.042 11  12.407 6.661
a, = 1000

3
T = 10

S



Table 13. Continued
: Cost GCeometric Logseries Poisson
! Parameter 5 5 5
i' 31585,85,T Case n T C n T c n T C
!. . al = 0.4 |
‘ a2 = 50 2 13 14.818 B8.557 12 11.913 8.135 12 12.82¢ 8.118
a, = 1000 :
3
T = 10
| —
al = 0.4 |
¥ 3, =50 3 13 13.751 14.918 11  9.290 11.916 - 12 - 11.570 . 14.449
I a. = 1000 :
K 3
i m = 10
[
i . al = 1.0
J = 100 =~ : :
a2 1 6 49,233 12.430 10 13.634 15,134 5 42,784 10.813 -
a. = 100
3
m = 10
al = 1.0
a,. = 100
2 ) 2 6 LO.6uy 17.814 10 12.197 17.475 5 32.024 15.974
a, = 100
3
m = 10

G<



Table 13. Continued

Cost Geometric Logseries Poisson
Parameter 5 5 5

al,az,aa,n Case n T C n T C n T C
al = 1.0
a. = 100 .

2 3 11 14,418 31.124 10 10.228 25.036 10 11.883 30.012
a, = 100

3
m = 10
al = 1.0 _
a, = 100

2 1 8 21,706 12.316 8 19.467 12,125 8 21.075 11.576
a, = 1000

3

T = 25
al = 1.0

a, = 100 .

2 2 9 24,375 15,168 8 18,577 14,300 8 19.710 14,382
a, = 1000

3

T = 25
al = 1.0

a, = 100 '

2 3 9 22,261 27.723 8 16,940 22,007 8 17.982 26.94]
a, = 1000 Co

3

mn = 25

9§
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Therefore care must be exercised in making the assumption that a process
possesses the Markov property.

Baker (3} in this work demonstrated that the results of the
geometric model and the Poisson model differed by as much as 55 per cent
when the i.contfol chart is used. The results of this work show that the
T2 control chart is not as sensitive to the Markov assumption as the X

control chart.

General Behavier of the Cost Functions

N
In order to study the general behavior of the cost functions, the

response surface of three sample_ﬁroblems of each model were plotted.
This is done using the CALCOMP GENERAL PURPCSE CONTOUR PLOTTING PACKAGE,
and the plots.are shown in Figures 15 to.23.

From these contcurs, it can be seen that in general these cost
functions are well-behaved. For the geometric médel, as n lncreases
from 3 and o increases from ¢.001, the surface slopes steeply towards
the optimum. Similar behavior is exhibited by the Poisson model. It
is alsc observed that the cost functions for the logseries ﬁodel are not
as steep in this vicinity as those for the geometric and Poisson models.
This leads us to conclude that if we must estimate the optimum parameters
rather than determine them analytically, it would be best to overestimate
n and o for all three models. The gffect of poorly estimated test
parameters is much more serious in the geomeiric model than in thé

Poisson model, and much less serious in the logseries model.
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Figure 15.

Sample Size

Contour for the Geometric Model (1 Unit Interval)
(al=0.4; 32:50; 4,=100; m=5; §=0,025)
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Sample Size

n

Figure 16, Contour for the Geometric Model (1 Unit Interval)

(al=0.4; aé=lOO; a4=100; 7=5; 8=0.025)
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Figure 17.

Sample Size

Contour for the Geometric Model (1 Unit Interval)
(al=l.0; a2=100; a3=100; =5 m = 53 06=0.058)
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Figure 18.

Sample Size

Contour for the Poisson Model (1 Unit Interval)
(a1=0.H; a,=50; a,=100; m=5; 6=39)
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= : I - B —+ T
34 .25 4101 15,21 i0.ih I 10.22 tc.77
2 5 7 9 11 13 15

Sample Size

Contour for the Poisson Model (1 Unit Interval)

Figure 19.
- (al=o.u; 2,=100; a,=100; w=5; 8=39)
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Figure 20.

Sample Size

Contour for the Poisson Model (1 Unit

(a,=1.0; a,=100; a,=100; w=5; 8=19)
1 2 3

Interval)



B4

0.021-
13fe

0.011
13.7%
7

Sample Size

Figure 21. Contour for the Logseries Model (1 Unit Interval)

(al=0.4; a2=50; a3=lOO; =53 P0=O.025; 6=.98689)
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0.061

0.051 |
I74

0.0ul |
15

0.031 |
1515

0.021
15

0.011

1e

0.001

30,37

Figure 22.

Sémple Size

Contour for the Logseries Model (1 Unit Interval)

_(al=0.4; a

2

=100; a,=100; 7=5; P0=0.025; 6=0.98689)

3
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0.13L
30

0.121.
EL

0.111 ;
He

0,101 4
ic

0,091 |

~
2

0.081

LA W

0. 071._/
23tsa

0.0614
29

0.0514

0,011
27.50
7

Sample Size

Figure 23. Contour for the Logseries Model (1 Unit Interval)
(al=1,o; a,=100; a,=100; m=5; P,=0.05; 8=0.9675)
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CHAPTER V |
CONCLUSIONS AND RECOMMENDATIONS

Cenclusions

In the preéeding chapters, the theory and development of thres
cost models for the economic design of T2 control charts were presented.
These models were develoﬁed with fhé assumption that a process shifts
out of control at the start of a period‘and remains out of control for
at least one period. Thé modéls are for'a single assignable cause.
These assumptions may not completely coincide with real world, but the
medels should be'adequate for many situations.

A simple grid search technique was developed and programmed for
a digital computer to determine the optimal sample size (n), critical
region parameter (Ti), and the optimal average time cost (C). A total
of 162 problems were sclved.

The conclusions that can be drawn from this study are:

1. The optimal values of n decrease and the optimal averages
time cost increases as a, increases.

2. The optimal values of n, Ti and C increase as a, increases,

3. The optimal values of n and C increase by an Increase In the
value of aqs whereas Ti decreases by an Increase in'aa.

4. Care must be exercised in making the Markov assumption regard-
ing the time in the in-control state.

5. The optimal value of n and Ti decreases as the expected
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number of periods the process remains in control decreases. The.optimal
value of C increases when the expected number cf periods in control
decreases,

6. The u§ual assumption of a process possessing the Markov
property causes.the optimal value of n, Ti, and { to be higher thap for
the Poisson model,

7. The T2 control char#.is'léss:sensitive to the Markov assump-
tion than the X control chért.

8.1 The cost functioﬁs arefinlgenefai well behaved and appear to
be unimodal. The geometric model has a steeper cost surface than does
the Poisson model. The logseries model has a cost surface that is flat-
ter than either the gecmetric or Poisson medel.

3. If the‘dptimal test pafameters must be estimated, it is best

to overestimate both n and Ti for all three models.

Recommeridations

Duncan (6) indicated that in the invariate case, a single assign-
able cost model is sufficient, but it is not knewn if this holds in the
multivariate case. It would be of interest to extend this work to con-
sider more than one assignable cauge.

The computer program developed in this thesis can only handle two
quality characteristics, as the numerical approximation for Ti holds only
for this case. Since it is very inconvenient to store all the values of
Ti in the memory of the computer, the development of a numerical approxi-
maticn for Ti when the number of quality characteristics is greater than

two should be very useful.
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The simple grid search technique used is not very efficient. To
achieve higher numerical accuracy will require excessive computer time.
It is recommended that a more efficient optimization technique be

employed in future work.
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APPENDIX

COMPUTER PROGRAM
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IMPLICIT REAL*8(A-H,0-2Z)
DIMENSION AMIN(S1),0PTALP(51),0PTT5Q¢51)
INTEGER YES,NO,ANSWER
DATA YES,NO/'YES',*NO ‘v
COMMON AlLAZ,A3,VILPI,P
1 FORMAT( )
_ DEFINE TSQ(Y,X) = (€1.0/Y)%%(2.0/(X=2.0))=140)%(X=1.0)
C READ IN COST PARAMETER
WRITE(6,10)
10 FORMAT(® THIS$ IS THE GEOMETRIC DISTRIBUTION MODEL'//' ALL®
l' INPUT OF THIS PROGRAM ARE IN FREE FIELD'/ ' ENTRIES®
2' MUST BE SEPARATED BY COMMAS'//)
2 WRITE(6,11) -
11 FORMAT ('L',*' INPUT VARIABLE COST OF SAMPLING. '/ :
1' COST OF SEARCHING FOR ASSIGNABLE CAUSES, '/*' COST OF OPE" -
2*RATING OUT OF CONTROL FOR 1| PERIOD's' NUMBER OF QUALITY®
3' CHARACTERISTICS'/' PARAMETER P OF THE DISTRIBUTION')
READ (5,1) Al,AR,A3,VILP
C READ IN RANGE OF ALPHA VALUES AND THE PI VALUE
3 WRITE(6,12)>
12 FORMAT (' INPUT THE RANGE OF PROBABILITY FOR DETECTING QUT®
l*-DF-CONTROL*/' STARTING WITH THE LOVER LIMIT, THEN THE °*
2'UPPER LIMIT'/' AND THE SEARCH INCREMENT FOR ALPHA')}
READ(S.1) QBE,QEN,GDEL
WRITE(S,13)
13 FORMAT(® INPUT THE PI VALUE®)
READ(5,1) PI
WRITE(6,18) .
|8 FORMAT(1B8X, ' GEOMETRIC DISTRIBUTION MODEL "2
WRITE(6,19) Al.AR,A3,VI,P,PI
19 FORMAT(' COST PARAMETER'/* COST Al
120X, *COST A2',20X,*'COST A3*'/3( F9.4,17X)/* NO. OF QUALITY *
2 *CHAR. ', 6X, "PARA. OF DIST."214%," P1'/ 2(F10.2,15%X),F8.27/)
WVRITE(6,20) '
20 FORMAT(® SAMPLE SIZE’,2X.,'ALPHA-~VALUE',2X, ‘T-SQUARE-VALUE",
12X, "AVG.-TOTAL=-COST/CYCLE "//)
C SEARCH FOR OPTIMUM VALUE FOR A PARTICULAR SAMPLE SIZE
4 DO BEB I = 3,25

@B = QBE

QE = QEN

SN =1

AMINC(]I) = 9999906,
AA = GBE

111 TA = TSQC(AALSND)
CALL EVALUE(SN,TA,AA,ATC)
IFCATC.LE.AMINCI)) GO TO 222
GO TO 333 ’
222 AMIN(1) = ATC
‘ " T OPTALP(I) = AA
| OPTTSG (1) = TA
4 3323 AA = AA+QLEL
i IFCAALGT.QENY GO TO 555
| GO TO 111
l 555 WRITEC(E,21) ILGPTALP(IY,0PTTSR(I),AMINC])




21 FORMAT(' ',2X,13,7X,F10¢5,4X,F10.5,8X,F10.5)
IFCI.EQ.32 GO TO 666
IF(AMIN(I).GE.OPTMIN) GO TO 8E8
OPTMIN = AMIN(I)

GO TO 777
666 OPTMIN = AMIN(I)
7717 J = 1
888 CONTINUE
WRITE(6,23)

23 FORMAT(// ' THE OPTIMUM 15 ')

WRITE(6,24) J,OPTALP(J),OPTTSQ(J),0PTMIN

24 FORMAT(IOX,"' A SAMPLE SIZE OF " 13,/

[110X,'" AN ALPHA VALUE QF ' Fl10.5,/

210X,*' A T-SQUARE VALUE OF ' Fl0.5,"' AND'/

310X,* AN AVERAGE TOTAL COST OQOF * Fl0.5/)
WRITE(6:25)

25 FORMAT(' DO YOU HAVE ANOTHER PROBLEM TO SOLVE? *)

READ(5,26) ANSWER
26 FORMAT(A3)
IF(ANSWER.EQ.NO ) GO TO 999
GO TO 2
969 STOP
END

-~ «=«THE ENDGS- - -

72
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SUBROUTINE EVALUE (5N, TS@,ALP,ATC)
IMPLICIT REAL*8(A-H,0-2)
COMMON AlL,A2,A3,VILPILP

REAL LAMDA

Cl = 0.0498673470
€2 = 0.0211410062
C2 = 0.0032776263
C4 = 0.0000380036
€5 = 0.0000488900
€6 = 0.0000053830
Va2 = SN-VI

‘LAMDA = SNx*PI

VILA = VI+LAMDA

V2T5Q = V2xT5a

Xt = (VETSQ/(VILA*(SN-l 0)))**(0 3333)#(1 0~-2.0/(9, 0#V2))
X2 = 1.0-2.0%(V]+2. O*LAMDA)/(9 O% (VI +LAMDA Y *%2)

X3 = 2.,0%(V1+2.,0%LAMDAY/ (9.0%(V1+LAMDA)*%2)+2.0/(9.0%V2)%
1 (V2TSQ/ C(VI+LAMDA)Y*(SN=1.0))2%%(0.6667) '

X = (X1-X2)/5QRT(X3)

ALPR --5/(!.0+Cl*x+62*x*¢2+03*Xm:3+04¢X*¢a+c5*x**5+06*X¢#6)

1%%x1 6 _

ATC = Al *xSN+ (A2*ALPR*x(P+ALP*(1.-P))+A3*P)/(ALPR*(1.~P)+P)
RETURN

END

- ~~THE ENTDGS=- - -
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SUBROUTINE EVALUE (SNa TSQ,ALP,ATC)
IMPLICIT REAL*8(A-H,0-2)

COMMON Al,AZ2,A3,VI,PO0,PI1,P

REAL LAMDA

Cl = D.0498673470

C2 = 0.0211430062
C3 = 0.0032776263
C4 = 0.0000380036
C5 = 0.0000488900
Cé = 0.0000053830
v2 = SN-VI

LAMDA = SNx*P]

VILA = VI+LAMDA

vaTsa = V2xTSsSQ

Xl = (V2TS5Q/(VILA%(S5N-1:0)3))*%(0.3333)*(1.0-2.0/(¢(9.0%V2))
X2 = |.0-2.0%(V1+2.0%LAMDA)/ (9.0% (V] +LAMDA )**%2)

X3 = 2.,0«(VI+2.0«xLAMDA)/ (9.0%(VI+LAMDA)Y*%2)42,0/(¢(9.,0%V2)%
1CV2TSQ/(CVI+LAMDAY®(SN=~1.01)))%%(0.6667)

X = (X1=-X2)/SQRT(X3)

ALPR .5/ (1 +0+C1 ¥X+C2Xx%k2 +C3 %Xk +C 4Nk x4 +C 56 X%k 54+C 6 X%k 6)
1 %%l 6

GAM = 1./-DLOGIOC).~P)
COM = =(DLOG(l.~Px(l.=ALP)))
ATC = Al*SN+(A2+A3* (]l ./ALPR*(PO+GAM*x (] .-P0)xCOM)))/

1(1./ALPR*PO+ (]l ++P0)*(GAM/ALP*(~-DLOG(l.-P)=-COM)))
RETURN '
END

---<THE END-S- - -




75

SUBROUTINE EVALUE (SN, TSQ,ALP,ATC)
IMPLICIT REAL*B(A-H,0-2)
COMMON AlL,AZ2,AJ,VI,.PI1,P

REAL LAMDA

Cl = 0.0498673470
€2 = 0.0211410062
€3 = 0.0032776263
Ca = 0.0000380036
C5 = 0.0000488900
€6 = 0.0000053830
v2 = SN-VI

LAMDA = SN=xPI

VILA = V1+LAMDA

V2TSQ = V2x*TSa

Xl = (V2TSQ/(VILA*(SN=1+0)))%%(0.3333)%(1.0~2,0/(9.0%V2))
X2 = 1.0-2.0%(V1+2.0%«LAMDAY/(9.0% (V1 +LAMDA)*%2)

X3 = 2.0%x(V]+2.0%xLAMDAY/ (9.0 (V] +LAMDA)Y*%2)+2,0/(9.0%xV2)%

1 (V2TSQ/ (CVI+LAMDA)*(SN=~1+0)))%%(0.,6667)

X = (X1=-X2)/SQRT(X3)
ALPR =,5/(1. 0+Cl*X+C2tX*#2+C3#Xt*3+Ch*Xt*4+CS*X**5+C6*X**6)

I%%1 6

ATC = Al *SN+ (AZ2xALPR*ALP+A3*ALP*DEXP (~ALP%*P) )/ (ALPR=*

1¢l.=-DEXP(-ALP*P))+ALP*xDEXP (~ALP*P))

RETURN
END

---THE END-=- ~ -



76

BIBLIOGRAPHY

- -



10.

11,

12.

77

BIBLIOGRAPHY

Abdel-Aty, S., "Appropriate Formulae for the Percentage Points
and the Probability Integral of the Non-Central x2 Distribution,"
Biometrika, 41, 195u.

Anderson, T. W,, 4n Introduction to Multivariate Statistiecal
Analysis, John Wiley & Sons, Inc., New York, 1958,

Baker, Kenneth R., Two Cost Models for Economic Design of an X
Chart, American Institute of Industrial Engineering Proceedings,
May, 1971,

Cowden, D. J., Statistical Methods in Quality Control, Prentice-
Hall, Inc., Englewcod Cliffs, New Jersey, 1957,

Duncan, A. J., "The Economic Design of X Charts Used to Maintain
Current Control of a Process,'" Journal of American Statistical
Assoetation, v. 51, 1956,

Duncan, A. J., "The Economic Design of X-Charts When There is a
Multiplicity of Assignable Causes," Journal of American Statistieal
desoeiation, March, 1971, Vol. 66,

Hastings, C., Approximations for Digital Computers, Princeton
University Press, Princeton, New Jersey, 1955,

Hicks, Charles R., "Some Applications of Hotelling's T," Industrial
Quality Contreol, Vol. XI, No. 9, June, 1955.

Hotelling, Harold, '"The Generalization of Student's Ratio," Amnals
of Mathematical Statistics, Vol. 2, 1931.

» "Multivariate Quality Control," Techniques of Statistical
Analysis, ed. by Eisenhart, Hastay, and Wallis, McGraw-Hill, New
York, 1947.

Jackson, J. E., "Quality Contrel Methods for Two Related Variables,"
Industrial Quality Control, January, 1956,

"Quality Control Methods for Several Related Variables,"
Technometrics, Vol. 1, No. 4, November, 1959.

Klatt, Phillip J., Design of Control Charts for the Mean Vector of
a Multivariate Normal Process, M.S. Thesis, Georgia Institute of
Technolegy, 1971.




14,

15.

16.

17.

18.

19.

20.

21.

78

Knappenberger, H. A. and Grandage, A. H., "Minimum Cost Quality
Control Tests,'" AIIF Transactions, Vol. 1, No. 1, 1961.

Kramer, Clyde Y. and Jensen, Donald R., "Fundamentals of Multi-

variate Analysis--Part I. Inferences About Means," Journal of
Quality Technology, Vol. 1, No. 2, April, 1969.

, "Fundamentals of Multivariate Analysis--Part II.
Inference About Two Treatments," Journal of Quality Technology,
Vol. 1, No. 3, July, 1969. '

. "Fundamentals of Multivariate Analysis--Part III.
Analysis of Variance for One-Way Classifications," Jourmal of
Quality Technology, Vol. 1, No, 4, October, 1969,

, "Fundamentals of Multivariate. Analysis-~Part IV. Analysis
of Variance for Balanced Experiments," Journal of Quality Tech-
nology, Vol. 2, No. 1, January, 1970,

. . 2
Montgomery, D. C. and Klatt, P. J., "Economic Design of T~ Control
Chart tc Maintain Current Control of a Process," Journal of Man-
agement Science, September, 1972.

- Paulson, E., "An Approximate Normalization of the Analysis of

Variance Distribution," d4dnn. Math. Statistics, 13, 19y2.

Wilson, E. B, and Hilferty, M. M., "The Distribution of Chi-Square,"
National Aead. Se. Proe., Vol. 17, 1931. .




