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SUMMARY 

The purpose of this thesis is to report the development of three 
2 . . 

cost models for the T control chart for multiple quality characteristics. 

One of the models is for processes that possess the Markov property, 

i.e. the time in the in-control state follows the geometric distribution. 

The other two models are for processes that do not possess the Markov 

property and assume Poisson and logarithm series distribution for the 

time in the in-control state. A general method for choosing the sample 
2 

size and critical region parameter for the T chart is presented. 

A grid search numerical procedure is developed to determine the 

optimal sample size, critical region parameter, and the average time 

cost. Plots are given of the cost functions for various values of the 

cost coefficients. Also 162 numerical examples are presented and 

analyzed. It is concluded that the Markov assumption is important in 

the design of a multivariate quality control model. 
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CHAPTER I 

INTRODUCTION 

This chapter gives an overview of quality control procedure for 

multiple quality characteristics, the purpose and scope of this research, 

and a survey of the pertinent literature. The development of the various 

cost models and the solution procedures employed will be discussed in 

later chapters. 

Multiple Quality Characteristics 

Statistical testing procedures are used to control the quality of 

products produced by many types of industrial processes. A product is 

considered to be of acceptable quality if some measurable characteristics 

of the product fall within prescribed limits. Otherwise, the product is 

considered to be unacceptable or defective. The function of quality 

control procedure is to determine if a process is in or out of control. 

Many industrial processes are characterized by two or more 

quality characteristics, and the joint effect of these characteristics 

describes product quality. For example, in the production of steel 

bars, the strength and the diameter are both important quality charac­

teristics. They are also jointly distributed random variables. The use 

of univariate methods in an attempt to control a process like the one 

mentioned above would result in substantial error from the independent 

testing and control of each variable. Jackson (11), Montgomery and 
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Klatt (19), and other authors have shown how the control procedure can 

be distorted if one uses a univariate quality control procedure on a 

process with more than one quality characteristic. Hence control pro­

cedures for these kind of processes must be based on multivariate 

statistical techniques. 

Purpose arid Scope of the Thesis 

Considerable research in quality control methodology has been 

directed towards improving techniques involving only a single quality 

characteristic. This research often involves the development of a cost 

model relating the test parameter to some measure of effectiveness. In 

most of the univariate cost models developed, the usual test parameters 

explicated are the sample size, the time interval between samples and 

the statistics defining the critical region. There are two limitations 

in these models; first, the quality characteristics used in the control 

procedure must be univariate in nature, and second, the population vari­

ance is assumed known. A very basic assumption made in these models is 

the Markovian nature of the process shift from the in-control to the 

out-of-control state. That is, given that the system remains in control 

at a certain point in time, the probability of its deterioration by some 

future time is independent of the past history of the process. For 

discrete time, this implies that the duration in the in-control state 

follows the geometric distribution. 

The objective of this research is to develop alternative quality 

control models of a process characterized by at least two quality charac­

teristics . It is assumed that these quality characteristics are 
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continuous random variables. Furthermore these models should not 

require prior knowledge of the population covariance structure. The 

time in the in-control state is assumed to follow the geometric distribu­

tion, Poisson distribution, and the logarithmic series or "logseries" 

distribution. These latter two distributions are considered since for 

some processes, the basic assumption of the Markovian nature of the 

process shift from the in-control to out-of-control state may not be 

valid. For example, in the rolling of steel bolts, a common process 

shift occurs as a result of heat due to friction in the continual pro­

duction of the bolts. When a false alarm induces a search for an assign­

able cause, the machine has an opportunity to cool down. The occurrence 

of the true shift is thus postponed. As a consequence it might be more 

realistic to assume that the distribution of the duration in control 

pertains only to the interval since the previous search. The reason for 

choosing the Poisson and the logseries distribution is mainly for con­

venience. The primary multivariate quality control technique is assumed 

2 

to be the Hotelling T control chart, and the economic selection of the 

test parameter (sample size and critical region) will be considered. It 

is assumed that the optimal sample size and optimal critical region will 

yield the minimum total* cost of operating a multivariate quality control 

system. 

Survey of the Literature 

The importance of multivariate statistical procedures was recog­

nized by Hotelling (9) as early as 1931. Generalization of Student's t 

distribution provided Hotelling with a basis for development of a unique 
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statistical procedure. This procedure could be utilized in situations 

involving more than one variable, and in addition, those instances in 

which the variance must be estimated from a sample. Hotelling showed 

that if N observations from a multivariate normal population with mean 

vector u and covariance matrix V have been recorded, and the covariance 

matrix is estimated from the sample by the Statistic S, then the 

quadratic form 

,T 2 = N(x-u 0) fS_~ 1(x-u 0) 

has the probability density function 

2, 2r(N/2)T 

f(r) = 
p-1 

r(p/2)r[(N-p)/2](N-l)[l+T 2/(N-l)] 

2 
This density function is called the Hotelling T distribution with p 

2 and N-l degrees of freedom, and is usually denoted by T „T .. Hotel-• . J J p,N-l 

ling's 1931 offering has more recently been discussed by Hicks (8) and 

Jackson (11,12), and Kramer and Jensen (15-18). These authors have 

unanimously endorsed the importance of Hotelling*s technique and have 

demonstrated the utility of these techniques in practical situations. 

Several authors have developed cost models for univariate sta­

tistical control procedures. Cowden (4) developed a cost model to study 

the economic design of tests for the mean of a process. The form of his 

model is 
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c = c + c + c 
0 1 2 s 

where C^, C^, and represent the operating cost associated with the 

test procedure, the engineering cost of investigating a process when 

there has been an apparent shift in the mean, and the cost incurred 

when the process is not in control and defective items are produced. 

The assumptions made in Cowden's model are: 

1. The process is considered to be out-of-control at the 

beginning of each day. 

2. Once the a s s i g n a b l e cause of" equality variation is detected, 

it is corrected quickly and no further trouble can occur that day. 

3. The cost of looking for.the assignable cause is proportional 

to the shift in the mean. 

The probability of finding the assignable cause is a function 

of the cost of looking for trouble. 

Because of the unrealistic nature of some of these assumptions, the value 

of the model is minimized. 

Duncan (5) has developed a cost model of the univariate X chart 

that maximizes the long run average net income per unit of time for the 

process. His model is of the form 

C = C Q + c 1 + c 2 , 

where is the average cost per hour for operating the quality control 

procedure, C is the average cost per hour of looking for the assignable 
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cause and is the average cost ^er hour of producing defectives. 

Duncan assumes that the process may shift from the in-control , 

state to a single out-of-control state any time during the day. He 

further assumed that the time the process remains in the in-control 

state before going out of control is an exponential random variable 

with mean 1/A hours. 

Knappenberger and Grandage (14) developed a very comprehensive 

cost model for the univariate quality control. Their general cost 

model is of the form 

E(C) = E(C Q) + E(C 1) + E(C 2) 

where E(C Q) is the expected cost per unit associated with sampling and 

testing procedures, E(C^) is the expected cost per unit associated with 

rejecting the null hypothesis of statistical control, and E(C 2) is the 

expected cost per unit associated with the production of defective 

products. 

In this model, it is assumed that the process may have more than 

two quality states, and the process parameter is a continuous random 

variable which can be satisfactorily approximated by a discrete random 

variable. The cost of investigating and correcting a process which is 

out of control is assumed to be a random variable. When the process 

goes out of control, the model assumes that it remains in the out-of-

control state until detected. However, the process can shift farther 

out of control before being detected. The only limitation in 
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Knappenberger and Grandage's work is the complex method required for 

determining the various.probabilities involved. 

Baker (3) developed two cost models of an X chart assuming a 

discrete time process in which the output quality characteristic of 

interest is measurable on a continuous scale. His models are of the 

general form 

ATC = a 1 + a 2 + a 3 

where is the cost of taking an individual sample from the process, 

a^ is the cost of shutting down'the process and searching for an assign­

able cause, a g is the cost of operating out of control for one period, 

and ATC is the average time cost, i.e. the expected rate at which the 

three components, (a^,a 2,a 3) of costs are incurred. 

The assumption made in both of Baker's models is that the shift 

out of control occurs at the beginning of a period and the process 

remains out of control for at least one full period before the sampling 

procedure can indicate that corrective action should be taken. That is, 

conceptually, sampling is done at the end of each period. In one of 

Baker's models, he assumes that the duration of the process is not 

affected by the occurrence of false alarms. In the other model, Baker 

assumes that the time in control is dependent of the number of false 

alarms which occurred. Baker's results indicated that the inappropriate 

use of the geometric distribution may be significantly misleading in 

certain cost cases. 
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Montgomery and Klatt (19) have recently developed a cost model 

capable of dealing with multiple quality characteristics. Their model 

is a multivariate, analog of several well-known models for the univariate 
2 

X chart. The Hotelling T control chart was used in their model and 

they further assume that only one assignable cause of variation exists, 

that monitoring will be carried out by taking successive samples of 

constant size at fixed sample intervals and that corrective action is 

taken when one sample produces a value of the test statistic which 

falls outside the control limits. 

In t h e n e x t chapter, the development of the various models used, 

in this research will be presented. In Chapter III, the solution pro­

cedure will be discussed, the analysis of results will be presented in 

Chapter IV, followed by the conclusions and recommendations in Chapter 

V. 



9 

CHAPTER II 

DEVELOPMENT OF THE MODELS 

In this chapter, the development of the three cost models used in 

this research will be presented as well as a brief discussion of the 

2 
Hotelling T control chart. 

2 

The T Control Chart 

S u p p o s e that the o u t p u t o f a p r o c e s s is described by p quality 

characteristics, and that X is a (p*l) random vector whose JTH element is 

the jt/r quality characteristic (a continuous, measurable variable). We 

assume that X_ is distributed according to the p-variate normal, i.e. 

f(x).= 1/[(2 t t ) P / 2 | Z_|^] exp{-^(x-u_) V ^ x - y ) } , (l) 

where E(X) = y_ is the ( p x l ) mean vector of the quality characteristics, 

Cov(X) = Z is the ( p x p ) covariance matrix of X, and the prime (') denotes 

the transpose operation. In general, y and Z are unknown. 

The control procedure for X_ is due to Hotelling (10) and Jackson 

(11,12). From a random sample of size n from X_, say ,X 2,. .. ,X^, we 

compute the sample mean vector and sample covariance matrix as 

(2) 
n 

X = i I X. — n .en —i i=l 

In ^ 
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s = 1 I (X.-X)(X.-X) . —. n - 1 —l — —i — i=l 
(3) 

Let denote the value of u corresponding to the in-control state. 

Thus if = j£, the statistic 

T 2 = n(X-y 0) ,S_" 1(X-iJ 0) CO 

is distributed as Hotelling's T with p and n-p degrees of freedom, 
2 2 denoted by T . The statistic T in quation (4) forms the boundary 

o f a n e l l i p s o i d i n t h e p - d i m e n s i o n a l s p a c e o f w i t h c e n t e r a t X a s 

shown in Figure 1 for the case p = 2. 

Figure 1. Two-Dimensional Ellipsoid Formed by the Statistic T" 
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2 2 Define ^ as the upper a percentage point of Hotelling's T 
2 2 2 2 distribution such that Pr{T >T } = a. Then if T > T we 

a,p,n-p a,p,n-p 
would conclude that y i- y^, i.e., the process is out of control. The 

2 

distribution, of the random variable {(n-p)/(n-l)p}T is noncentral F 

with p and n-p degrees of freedom and noncentrality parameter x, where 

x =n(u-u )'E 1 ( y - y Q ) - (5) 

If y = y^, then x = 0 and the F distribution is said to be central. 

Hence 

T 2 -p^£-r (5) 
a,p,n-p (n-p) a,p,n-p 

2 
Therefore, the percentage point of Hotelling's T distribution can be 

found from tables of the cumulative F distribution (2). 
2 . . 2 The T control chart has only an upper control limit of T a,p,n-p 

2 
Samples of size n are taken periodically, the quantity T computed 

2 

according to Equation (4), and T plotted in a time-oriented sequence 

on the chart. It is only necessary to compute S only (usually from 

preliminary data taken when the process is in control), as this control 
2 2 procedure is for means only. If T > T , we conclude that the > a,p,n-p' 

process is out of control, and appropriate action is taken. Jackson 

(11) discusses how to determine which quality characteristics (component 

of y) have assumed out-of-control values. Figure 2 shows an example of 
2 

a T control chart. 
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0 Time 

9 
Figure 2. T" Control Chart 

In this example, T > T , from which we conclude that u ^ u , i.e. 

the process mean vector is different from the desired standard. 

If the population covariance matrix E were known with certainty, 
-1 ' -1 2 then S in (M-) can be replaced with E . , and the statistic T would be 

2 

distributed as x with p degrees of freedom. Under these conditions, a 
2 

control procedure could be based on the x distribution. Only rarely, 

however, could this be done, as knowledge of E would be unusual. 
2 

Economic Models of the T ̂  Control Chart 

Consider a discrete time process in which the output quality 

characteristics of interest are measurable on a continuous scale 
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(e.g. length, weight, etc.). The system is assumed to remain in control 

for T periods, where T is a random variable with a discrete probability 

distribution, say 

the process is assumed to shift out of control at the start of a period 

and sampling and plotting is done at the end of a period. That is, if 

a shift occurs, defective items will'be produced for at least one period. 
2 

W i t h the use of a T control c h a r t , the test s t a t i s t i c employed 

is given by Equation (4). For a single assignable cause model, y^ repre­

sents the in-control state and y^ + 6 = y^ represents the out-of-control 

state, where 6 is the magnitude of the shift and is assumed known. 

In any period, the probability a that a false alarm will occur, 

i.e. a type 1 error, is 

Pr{T=t} = p(t) t=0,l,2,..., 

a = Pr{Type 1 error} 

= Pr{False alarm} 

= Pr{T 2>T a,p,n-p'- -0 

oo 2 2 f(T )dT (7) 
T a,p,n-p 

and the probability 1-8 of detecting an out-of-control state is 
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1 - 3 = Pr{Detect out-of-control state} 

oo 
= / f(T 2,x)dT 2 (8) 

T 2 

a,P,n-p 

1 -1 

where t = n-rr with tt = .6 S 6. Note that 1-3 is just the power of the . 

test. 

The cost model used in this research is comprised of the follow­

ing three components: 
a^ = Variable cost of sampling in the process. This is taken 

to be p r o p o r t i o n a l t o sample size. 
a^ = Cost of searching for assignable causes. This may be either 

real or false alarms, and reflects the shutdown and startup 
costs associated with the interruption, or the labor, over­
head, and opportunity costs associated with testing and 
adjusting some facet of production. 

a^ = Cost of operating out of control for one period. This may 
reflect such factors as added corrections resulting from 
subsequent inspection, waste of input material, delay cost 
due to later disassemblies, customer dissatisfaction, etc. 

The measure of effectiveness which we shall employ is the average 

time cost of the inspection and control procedure. This is the expected 

cost as which the three components of cost are incurred. 

The Geometric (Markov) Model 

In this model, an assumption made is that the duration of the 

process in control is not affected by the occurrence of false alarms. 

For discrete time process, this implies that the time in control follows 

the geometric distribution. 

Let the random variable 0 be the run length out of control, and 
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T\ = number of periods the process is in control following the 
(i-l)th repair until the ith shift, and 

0. = number of periods process remains out of control from the 
ith shift until detected. 

The system may then be characterized over a sequence of alternate 

intervals {T ,0 ,T 2,0 2-,. . .} and Figure 3 shows the behavior of the 

model. -

detection 
l 
i 

detection 
1 i 

• J • 

detection 
i 

T l i °1 ! T 2 
: 0 ! T ! 2 . 3 

*r> *•» •—-i 
! °3 i 
f <i 

periods 

Figure 3. Behavior of the Geometric Model 

The length of the ith in-control-shift-detection cycle is 

T_̂  + CL, and the expected value of the ith cycle length is 

E{Cycle length} = E{T} + E{0}, 

therefore the expected sampling cost per cycle is a^n[E{T}+E{0}], the 

expected cost of investigating and correcting the process is a 2[l+E{X}], 

where X is the number of false alarm per cycle, and the expected cost of 

producing defective is a_E{0}. Thus combining these elements, the long 

run average time cost per cycle is: * 

a 2[l+ E{X}]+ a 3 E{0} 
c = a i n + e { t ) + - e { O ) ( 9 ) 
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But, 

E{0} = Number of Bernoulli trials 
with the first success 

1 -

where 1-3 is the probability of success, and 

E{X} = I E{X/T=t}Pr{T=t} 

t 

but 

= I atp(t) 
t 

= a I tp(t), 
t 

E{T} = I tp(t), 
t 

therefore 

On substituting (10) and (11) into (9), we have 

(10) 

E{X} = aE{T}. (11) 

a 2Cl+aE{T}] + a3/(l-3) ( 1 2 ) 

C = a i n + E{T} + (1/1-3) ' 
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Under the Markov assumption made in this model, T follows the geometric 

distribution, hence 

ed-e)11 t=0,l,2,... otherwise 

and the expected value of T is 

E{T} = -

Thus 

a2(l-3)C8+a(l-e)] + a ^ 
c = a i n + —â ui-er̂ q'" • ( 1 3 ) 

The Poisson Model 

In the development of this model, we assume that the distribution 

of the duration in control depends on the time interval since the previ­

ous search. To assist in describing the system for this and the follow­

ing (logseries) model, some additional notation is needed. Let 

T' = Number of periods the process remains in control from the 
conclusion of the previous search (whether or not the search 
was induced by a false alarm). 

0' = Number of periods the process is out of control prior to a 
particular signal for action (0' is analogous to 0 except 
that for a cycle in which the signal is a falm alarm, 0' = 0 ) , 
and 

D = Number of periods following the conclusion of a search until 
the next signal for action. 
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In this and the following model, a cycle is defined as the interval 
t 

between two signals, i.e. an interval in control followed by an 

interval o! out of control. Figure 4 shows the behavior of these two 

models. 

Detection i i 
• i 

i . . . 

Detection 
1 i • i 

T . 
l 

! °i i T 2 

! A3 • 6 ' j T ; ! 3 : 4 • 
—v——— 

operating 
periods 

Process False 
Shift Alarm 

Figure 4. Behavior of the Poisson and the logseries model. 

The cost incurred during the i t h cycle is 

a nD. + a 0 + a Q 0 . 
_L 1 o 1 

(14) 

Following the same procedure as in the geometric model, the average time 

cost is 

a 2 + a 3 E{0'} 
c = a i n + — E T T T J 

(15) 

In this model, assume that the duration in control has a Poisson 

distribution with mean 9, that is 

Pr{T=t> = <̂  

t - i 9 e 
t! 

0 

t=0,l,2,.. 

otherwise, 



19 

and 

a = Pr{D=t+l/D>t and T'>t+l} (16) 

1 - 8 =• Pr{D=t+l/D>t and T'<t}. (17) 

If D > T', then the associated signal is valid, and the probability of 

such a cycle is 

P r { D > T ' . } = I P r { D > T ' / t " = t } P r { T , = t } 
t=0 

= I (l-a) t 6 te" b/tl (18) 
t=0 

or upon simplifying, 

Pr{D>T'}•= e a 6 . (19) 

The quantity E{0'} may be written as 

E{0'} = E[0 ,/D<T ,]Pr{D<T ,> + E[0 1/D>T 1]Pr{D>T 1} (20) 

where it can be observed that ECO'/D^T.'] = 0 and 

E[0'/D<T !] = 1/(1-8). 
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Hence 

E{OV> = (l/(l-B))e -a6 (21) 

The mean cycle length, conditioned on the length of time in. control, can 

be written as * 

E[D/T'=t] = I na(l-a) n 1 t (l-a)* £ n(l-3) (l-(l-3)) 
n=l n=t+l 

n-t-1 

1 - (l-a) 1 - ta(l-a) t . ,t —. — t (l-a) t + 1-f 

1 , n ,t 1 1 (l-a) a a X-I (22) 

The condition can then be removed as follows: 

E{D> = J E[D/T T-t]Pr{T'=t} 
t 

I 
t=0 

1 M vt 1 1 (l-a) -r—j a a 1- e V V t i , 

or 

E { D } = I - e ~ a 6 

a 
1 1 
a 1-1 

(23) 

On substituting into (15) we find 
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C = a n + 
/ H n \ -a6 a 2a(l-$) + a gae 

(l-$)(l-e ) + ae 
(24) 

The Logseries Model 

The last model that will be discussed is almost identical to the 

Poisson,model except that the duration in control is assumed to have a 

logseries distribution, i.e. 

P r{T=t}' = <̂  
Y6 L(1-P. 0) 

t=0 

t=l,2,3, 

(25) 

where 0 < 0 < 1 and y = -[log(l-0)] -1 

Hence, using Equation (25), we have 

Pr{D>T'} = I Pr{D>T'/T ,=t}Pr{T'=t} 
t=0 

= 1(P0) + l^'a^ ̂  (1-po} 

= P Q + (1-P 0)Y I (l-a)* 
t=l 

but since 

I {6(1:a)} = 
t=i 
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therefore, 

Pr{D>T'} = P' +' ( 1-P )YC-An(l-e(l-a)) ] (26) 

Similar to the Poisson model, the quantity E { 0 ' } may be written as 

00 
E { 0 ' } = ~ J {P Q + ( 1-P 0)Y I LE(L-a)F/T} t=l 

= YZTJ { p
0
 + Ci-P 0)YC-An(i-e(i-a))]}. (27) 

The mean cycle length is the same as given by Equation (23), and 

E{D} = I E[D/T'=tjPr{T'=t} 
t 

I 
t = 0 

1 1 

a 1-f 
Pr{T f=t} 

op 
t = l 

r r j p

0

 + ( 1 - p o ) 

i - (l-a)* 

a 
1 1 

[a 1 - 3 J 

00 1" r > oo +• 
X. y !__. fi J L _ ] y {(i-oPe) 
a t=i 1 " T ' A " 1 - 3 J t=i 1 

r ^ T p o + ( 1 - p o } 
-£n(l-6) - y — - T ~ H* f-An l-e(l-a)) [a 1 - 3 J ^ J 

r ^ r p o + ( 1 - p o > 
(-£n(l-e) - (-An (l-B(l-a)) 

[-An(l-e(l-a)]^ . (28) 
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The average time cost is found by substituting Equations (27) and (28) 

into (15) as 

C = a n + 

a 2 + a 3 
1 ( r > ^ {P Q + Y(l-P 0) -An(l-6(l-a)J 

.IT P 0 + ( 1 " P 0 ) 
-£n(l-6)-|^-£n (l-6(l-a)) -£n(l-6(l-a)) (29) 

Equations (13), (24), and (29) are the equations that will be used 

i n t h i s r e s e a r c h . T h e n e x t c h a p t e r w i l l d i s c u s s t h e s o l u t i o n p r o c e d u r e 

used in this work. 
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CHAPTER III 

SOLUTION.PROCEDURE 

The purpose of this chapter is to formulate a method for selecting 
2 

the sample size (n) and the critical region parameter (T ) which mini­

mizes the cost functions given in Chapter II. The optimization technique 

employed is a direct search method and makes use of a digital computer 

program. 

Optimization Method 

The solution technique used in selecting the sample size and 

critical region parameter which minimizes the cost function is a simple 1 

grid search technique. The methods are for a discrete time process and 

the sample sizes are integer valued. Hence, for a particular set of 

cost parameter, and for a particular sample size, one can search through 

a range of probability for detecting the out-of-control state (a) to 

find the optimal average time cost and the critical region parameter 

associated with it for that particular sample size. The procedure con­

sists of dividing the range of a into small intervals and calculating 

the average time cost corresponding to each interval for a particular 

sample size. In this fashion, the optimum average time cost for a range 

of sample sizes can be found. The optimum total cost corresponding to 

a set of cost parameters will be the lowest of the set of optimum aver­

age time costs. 
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The above procedure is used for all three models discussed in 

Chapter II. Computer programs coded in Fortran V for the UNIVAC 1108 

were developed for all three models. These programs are essentially 

the same, differing only in the calculation of the average time cost 

which is done in a subroutine. A listing of the main program and the 

three subroutines can be found in the Appendix. A flow chart of one of 

the programs is shown in Figure 5. 

The method described in•this section are generally applicable to 

any number of quality characteristics. The computer programs, shown in 

the Appendix, are for two quality characteristics only. Minor modifica-
2 

tion in calculating T will be needed before the program can deal with 

rv more than two quality characteristics. 

In order to calculate the probability 1 - 8 as given by Equation 

(8) in Chapter II with a digital computer, numerical approximations are 

required. The following sections will be devoted to the discussion of 

this approximation. 

Calculation of the Power of the Test ( 1 - 8 ) 

As given by Equation (8), the power is 

oo (30) 

a,p,n-p 

and also from Equation (6) we have 

,2 = (n-l)p F 

a,p,n-p (n-p) i a,p,n-p 
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Read in a^- a 2 , a , 'v , 8 

Read in Range of a for Search Purpose 
(Lower Limit,- Upper Limit) 
Also Search Increment Aa 

Calculate T (Starting from the Lower Limit) 

4- • 
Read in tt Value 

4-
DO n=3, LASTN + 

4, 
Initialize Optimum C=999999. 

a 4-
Calculate C 

4-
Compare C with Optimum C 

If C < Optimum C 
Then Optimum C=C 

If C > Optimum C Then 
Optimum C=Optimum C 

1 I 

No 

Increment 2 by Aa 
4-

If a Greater Than Upper Limit * Yes 

Figure 5. Flow Chart 
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or 

_ (n-p) T 2 r . (3D a,p,n-p (n-l)p a,p,n-p 

when t , the noncentrality parameter, is not equal to zero, which is the 

case when y ^ y , Equation (31) becomes 

F 1 = < H - E > _ T ' 2 . ( 3 2 ) a,p,n-p (n-l)p a,p,n-p 

This quantity has the noncentral F distribution with degrees of freedom 

p and n-p and noncentrality parameter t . Thus Equation (31) can be 

replaced with 

bo 
1 - 3 = / f(F',p,n-p ,T)dF', (33) 

(n-p) T'2 
(n-l)p ,p,n-p 

where f(F',p,n-p,f). is the noncentral F distribution with p and n-p 

degrees of freedom and noncentrality parameter t . The frequency func­

tion for the noncentral F distribution is given by 

f(F',p,n-p,x) = 

00 Tnr/o- wo-ir // xnC(2i+p)/2] i -x_[(2i+p-2)/2] 
£ r[(2i+n)/2][p/(n-p)] r t e F # ( 3 4 ) 

i=0 r[(n-p)/2]r[(2i+p)/2]i![l+pF/(n-p)] C ( 2 i + n ) / 2 J 

The approximation of 1-8 is due to Klatt (13) and is an extension of 
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Paulson's (20) approximation. Paulson (20) developed an approximation 

for the probability integral of the central F distribution by defining 

a statistic x, a function of F, such that x is nearly normally dis­

tributed with zero mean and unit variance. That is 

f(F,p,n-p)dF = / f(z)dz, (35) 

a,p,n-p 

and if we substitute v^ and v 2 for p and n-p, respectively, Equation 

(35) becomes 

oo oo 
/ f(F,v ,v )dF = / f(z)dz, (36) 
F * x a , v l 5 v 2 

Where f(F,v^,v 2) is the frequency function of the central F distribution 

and f(z) is the frequency function of the normal distribution. In (36) 

x is given by 

1 - 9v, 
,1/3 1 - 9v. 

f 2 2/3 _ 2 _ 
9v 2

 + 9 V l 

(37) 
1/2 

2 2 where 1 - — — and - — is the mean and variance of anormally and inde-9v 9v J 

2 2 
pendently distributed variate w and 1 - and - — is the mean and 9v: 9v, 1 1 

variance of another normally and independently distributed variate y. 

Paulson (20) has found that x as given by Equation (37) is nearly 

normally distributed with zero mean and unit variance. In developing 
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1 / 3 

this approximation, Paulson has regarded F as the ratio of two 

normally distributed variates. 

Paulson's work was extended by Klatt ( 1 3 ) to obtain an approxi­

mation for the probability integral of the noncentral F distribution. 

The noncentral F is given by 

F' = 
Xj_ /v. 

X 2 / v 2 

( 3 8 ) 

2 

which is the ratio of a noncentral Chi-square distribution (x̂  ) to a 
2 

central Chi-square distribution (x2) with v^ and degrees of freedom, 
2 1 / 3 

respectively. Wilson and Hilferty ( 2 1 ) have shown that is 
2 2 nearly normally distributed with mean 1 - - — and variance ^ — • , also, yv 2 o 

Adbel-Aty ( 1 ) have shown that [x̂  /(v +T)]1'3 is nearly normally 

2(v1+2t) 2(v1+2t) 

distributed with mean 1 - 777 •—<:—and variance —7 •—r-7- . If we con-

9(v +x) 9-(v +t)z 

sider the ratio 

X l / V 1 
-11/3 

2 . 
X 2 / v 2 

= F ' 1 / 3 
^ F ^ 1 / 3 

1 
( 3 9 ) 

then the ratio 

X I ' / ( V I + T ) 

1 / 3 

V 1 F " 
1 / 3 

2 , X 2 / v 2 V̂+T 
(40) 

Using this relationship and the mean and variance of Xj_ /(v̂+t) and 
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X^V2 a s S^- v e n P r e v i ° u s l y j Equation (37) becomes 

, f v.F 1 1 - 9v, 

1/3 
1 -

2(v + 2 t ) 

9(v + t ) 

X = 

1 ^ F ^ 2 / 3 

9v, 
2 ( V i + 2 t ) 

1/2 (41) 

and since 

F = n - P T 2 
h (n-l)p 1 

v. 

(n-l)v; 
T 2 , 

Equation (41) becomes 

i - 9v, 

v T 
(v +T)(n-1) 

1/3 r 

1 -
2 ( V i + 2 t ) 
9(v + t ) 

9v, 
v T 

(y 1 +T)(n-l) 

2/3 2 ( V i + 2 t ) 
+ 9 ( v , + t ) 

1/2 (42) 

The quantity x as given by Equation (41) or (42) is nearly normally 

distributed with zero mean and unit variance. 

The approximation for 1-3 is 

1 - 3 = / 
(2tt) 

z 

172" dZ, (43) 

where x is as given by Equation (42). 
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To evaluate the normal integral as given by Equation (43), 

Hasting rs (7) approximation is used in conjunction with the above 

approximations. Hasting found that 

ti 
0 <-) ' 

can be approximated by 

1 : ± , . fiiii) 
, , 2 v 3 v 4 , . 5 v 6,16 ' (l+b.x-Hb̂x +b0x +b, x +b_x +b̂x ) ± A o M- b b 

where b = .0705230784 

b 2 = .0422820123 

b 3 = .0092705272 

b^ = .001520143 

b c = .002765672 b 
b e = .000430638. 
6 

Based on Equation (44), it can be shown that Equation (43) can be 

written as 

0.5 
1 - 6 — 3 — 5 6716" ' ( 4 5 ) 

(1+ C . X f C - X + C . X +c.x +c x +c_x ) 1 2 o 4 b b 
i/2 

where c^ = b^/2 , and the value of x is a s given by Equation (42). 

The values of c. are: 
i 

c = .0498673470 



c 2 = .0211410062 

c = .0032776263 
o 

= .0000380036 - -

c c•= .0000488900 

cr = .0000053800. 
6 

This approximation of the normal integral has an accuracy of 

0.000003. The approximation of x is accurate to within 0.005 of the 

true value. 
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CHAPTER IV 

ANALYSIS OF RESULTS 

This chapter will present the results obtained by making use of 

the theory developed in Chapter II and the solution procedure suggested 

in Chapter III. A total of 54 different problems were analyzed for each 

of the three models. Six different sets of cost parameters ( a ^ , a 2 , a 3 ) , 

the noncentrality parameters, and three different probability distribu­

tion parameters were used to develop the 54 problems. 

The cost parameters used in this study are: 

a 1 = 0.4, 1.0 

a 2 = 50, 100, and 

a 3 = 100, 1000 

The noncentrality parameters are based on values of % of 5, 10, and 25. 

The probability distribution parameters used are shown in Table 1. 

Figures 6 to 14 illustrate the probability distributions for all 

these cases. In selecting these parameters, care has been exercised to 

make sure that the expected values are the same for all three distribu­

tions for each case. For example, the expected value of the geometric 

random variable is 
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ECxJ = ^ - 5 - , (46) 

the expected value of the Poisson random variable is 

E[x] = 0 , (47) 

and the expected value of the logseries random is 

E [ x ] = Ey6(1-0)~1][1-Po] "(48) 

Thus, when 0 of the geometric distribution is 0.025 as in case 1, the 

expected value E[x] is (1-0.025)/0.025 = 39, and since E[x] for the Pois­

son random variable is 0, therefore 0 = 39 for case 1, and similarly for 

the logseries distribution where P Q = 0.025 and 0 = 0.98689. Note that 

Pq for the logseries distribution is assumed to be equal to the geo­

metric probability that x = 0. 

Table 1. Probability Distribution Parameters 
Used in the Example Problems 

CASES 
Distribution 1 2 3 

Geometric (0) 0.025 0.05 0.15 

Poisson (0) 39 19 5.6667 

Logseries (P n,6) 0.025, 0.98689 0.05, 0.9675 0.15, 0.8426 
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p ( t ) 

. 0 2 

. 0 1 . 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 t 

F i g u r e 6 . G e o m e t r i c D i s t r i b u t i o n ( 6 = 0 . 0 2 5 ) 

p ( t ) 

0'..06 

0 . 0 5 

0 . 0 4 

0 . 0 3 

0 . 0 2 

0 . 0 1 

± i i 0 1 0 2 0 30 4 0 5 0 6 0 7 0 

F i g u r e 7 . P o i s s o n D i s t r i b u t i o n ( 6 = 3 9 ) 
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p(t) 

0.20 

O . I O L 

0 10 20 30 40 50 60 70 t 

Figure 8. Logseries Distribution.(P-0.025, 6=0.98689) 

p(t) " 

0 .04. 

0 .03-

0.02. 

0.01. 

Figure 9. Geometric Distribution (6=0.05) 



p(t) 
0.1 

0 .5 

0 10 20 30 4 0 t 

Figure 10. Poisson Distribution (0=19) 

P(t) , 
0.30 

0 .20 

0.10 

I I I I 1 I l I i i i i i i ,i ii 0 10 20 30 40 50 60 ' 70 t 

Figure 11. Logseries Distribution (P 0=0.05, 0=0.9675) 



p(t.) f 

0 10 20 30 40 50 t 

Figure 12. Geometric Distribution (8=0.15) 

P(t) j 
0 .2 L 
0.1 

1 I I I I I 1 • i ; * 
0 10 20 t 

Figure 13. Poisson Distribution (8=5.6667) 

0.1 > 
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p(t) 

0.5 • 

0.4 -

0.3 . 

0.2 • 

0.1 . 

0 I i I I I i . . . , ». 
0 10 20 t 

Figure 14. Logseries Distribution (P Q=0.15, 6=0.8426) 

The next few sections will discuss the effect of each cost coef­

ficient, the effect of the noncentrality parameter, the effect of the 

probability distribution parameter, and the distributions themselves on 
2 

the sample size (n), the critical region parameter (T ) and the average 

time cost (C). 
!' 2 

Effect of a n on C, n, and T 

. 1 2 1— a— 

Tables 2, 3 and 4 show a sample list of the results obtained. 

(The remaining results can be found in Tables 5 to 12.) 

'As•a increases, the optimal values of n decrease in all three 

models. In some cases, there is a significant decrease in sample size. 

The effect of a^ on the optimal average time cost is very apparent. As 

would be expected, an increase in the variable cost of sampling causes 

an increase in the optimal average time cost. 
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Table 2. Effect of aj_ on the Optimal Value of C, n, and T a 

(Case 1 of Probability Distribution Parameter) 

Cost „ _ ~ _,_ Geometric Logseries Poisson Parameter — i 2 — r : — — 

a n ,a 0,a 0 it n • T C , n T C n T C 

1 2 3 a 1 q , a 

a = 0.4 

a 2 = 100 5 9 29.463 9.385 17 13.020 10.689 6 26.311 8.304 

a 3 = 100 
a 1 = 1.0 

a 2 = 100 5 7 31.857 13.839 8 28.000 18.596 5 33.384 11.543 

a 3 = 100 

a = 0.4 

a 2 = 100 10 14 18.438 8.818 14 17.092 8.735 13 15.981 8.398 

a 3 = 1000 . 

a 2 = 1.0 

a 2 = 100 10 12 15.021 16.339 12 13.302 16.259 10 12.037 15.212 

a 3 = 1 0 0 

a 1 = 0.4 

a 2 = 100 25 9 32.252 6.659 9 28.352 6.585 8 27.300 6.387 

a 3 = 1 0 0 

a 1 = 1.0 

a 2 = 100 25 5 96.000 11.231 8 24,475 11.590 4 104.143 9.960 

a 3 = 100 
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Table 3. Effect of aj_ on the Optimal Value of C, n, and T a 

(Case 2 of Probability Distribution Parameter) 

Cost Geometric Logseries Poisson Parameter - -
a n , a 0 S a 0 tt n T C n. T C n T C 1 2 3 a 1 or • a 

a 1 = 0.4 

a 2 = 100 5. 17 13.984 13.527 18 12.707 13.071 16 12.331 12.911 

a 3 = 1 0 ° ' -

a 1 = 1.0 

a 2 = 100 5 7 26.629 19.406 14 9.184 22.411 5 24.172 16.992 

a3 = 1 0 0 

a 1 = 0.4 

a 2 = 100 10 14 17.497 11.624 14 16.069 11.008 13 15.026 11.193 

a 3 - 100 

a 1 = 1.0 

a 2 = 1 0 0 10 12 13.997 19.340 11 10.868 18.471 11 11.963 18.231 

a 3 = 1000 

a 1 = 0.4 

a 2 = 100 25 9 29.463 9.446 9 26.507 8.871 8 24.475 9.196 

a 3 = 1 0 0 

a 1 = 1.0 

a 2 = 100 25 8 26.051 14.509 8 22.398 13.851 7 18.577 14.300 

a 3 = 1 0 0 
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Table 4. Effect of aj_ on the Optimal Value of C, n, and T a 

(Case 3 of Probability Distribution Parameter) 

Cost Geometric Logseries"' Poisson Parameter — • — ; — -
a.,a 0,a. it n T C n T C n T C 1 2 3 a ; a g 

a 2 = 0.4 

a 2 = 1 0 0 5 19 13.766 26.389 17 9.963 21.021 17 11.237 25.764 

a 3 = 1 0 0 

a± = 1.0 

a 2 = 100 5 15 10.619 36.525 13 .6.536 29.880 14 8.963 34.884 

a 3 = 100 

a 1 = 0.4 

a 2 = 100 10 14 16.069 24.203 13 13.040 18.943 13 13.751 23.745 

a 3 = 1000 

a± = 0 . 4 

a 2 = 1 0 0 10 13 14.430 32.235 11 9.775 25.862 11 10.563 31.058 

a 3 = 1000 

a 2 = 0.4 

a 2 = 100 25 9 26.507 21.973 8 19.710 16.966 9 25.020 21.659 

a 3 = 100 

a± = 1.0 

a 2 = 100 25 8 23.162 27.220 7 16.078 21.556 8 21.706 26.545 

a 3 = 100 
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Finally, we observe that the effect of a^ on the optimal critical region 

parameter is dependent upon a Q . No generalization will be made at this 

time. 

2 Effect of an on C, n, and T - 2 — 2 — — : — a — 

Tables 5, 6 and 7 show another set of numerical results. It can 

be seen that as the cost of searching for assignable causes (a^) 

increases, the optimal sample size increases. This increase, in general, 

is not very significant. This should be the case since an increase in 

a 2 without adjusting the control limit would reduce the type one and 

type two error. 

An increase in a^ also causes an increase in the optimal critical 

region parameter. This should be expected, for the same reason as in 

the case of the sample size. That is, since false alarms are more 

costly, we wish to make the test procedure less sensitive. 
. 2 

Taking the total effect of increasing a^ on the optimal n and T^ 

into account, we find no unexpected results. That is, the effect of 
2 

increasing a^ is to increase n and T , and thus reduce both error proba­

bilities. This forces the test parameter to generate fewer false out-

of-control signals, and to be less sensitive so far as detecting a true 

out-of-control state is concerned. 

We observe that an increase in a^ causes an increase in the 

optimal average time cost. 
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Table 5. Effect of A.2 on the Optimal Value of C s n, and T a 

(Case 1 of Probability Distribution Parameter) 

Cost 
Parameter Geometric Logseries Poisson Cost 
Parameter 

T 2 

a 
T 2 C a T 2 

a V a 2 , a 3 tt n T 2 

a 
C n T 2 C a n T 2 

a 
C 

a l = 0.4 

a 2 = 50 5 18 11.396 9 .605 18 10.027 9.586 15 9.061 8.898 

a 3 = 1000 

a i = 0.4 

a 2 = 100 5 19 13.131 11 .515 20 12.694 11.516 18 11.737 10.873 

a 3 = 1000 

a i = 0.4 

a 2 = 50 10 11 16.721 6 .588 11 13.853 6.655 5 31.389 5 .666 

a 3 = 100 

a i = 0.4 

a 2 = 100 10 12 20.140 8 .263 13 18.905 8.317 6 34.528 7.756 

a 3 = 100 

a i = 0.4 

a 2 = 50 25 9 24.375 5 .333 9 22.732 5.263 8 20.224 5.049 

a 3 = 1000 

a i = 0.4 

a 2 = 100 25 10 29.456 6 .926 10 28.002 6.813 9 24.375 6.622 

a 3 = 1000 
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2 
Effect of a 0 on the Optimal Value of C, n, and T a 

(Case 2 of Probability Distribution Parameter) 

a 1 = 0.4 

a 2 = 50 5 18 10.636 11.167 17 8.535 10.688 16 8.715 10.505 

a 3 = 1000 

a 1 = 0.4 

a 2 = 100 5 20 13.067 14.438 19 11.071 13.790 18 10.900 13.800 

a 3 = 100 

a± - 0.4 

a 2 = 50 10 12 16.631 8.135 11 12.699 7.791 10 12.904 7.706 

a 3 = 1 0 0 

a 1 = 0.4 

a 2 = 100 10 13 19.445 11.170 13 17.210 10.627 12 16.916 10.759 

a 3 = 1 0 ° _ _ _ 

a 1 = 0.4 

a 2 = 50 25 9 23.238 6.733 9 21.408 6.377 8 18.788 6.450 

a = 1000 

a± - 0.4 

a 2 = 100 25 10 28,002 9.670 9 22.261 9.088 9 23.238 9.370 

a = 1000 o 



46 

Table 7. Effect of 3.2 on the Optimal Value of C 9 n, and T a 

(Case 3 of Probability Distribution Parameter) 

Poisson 
2 n T C a 

a1 = 0.4 . - • 

a 2 = 5 0 5 19 10.520 17.670 16 6.822 14.320 17 8.340 16.987 

a 3 = 1000 

a 1 = 0.4 

a 2 = 100 5 21 13.036 27.155 18 8.991 21.612 19 10.605 26.495 

a 3 = 1000 

a = 0.4 

a 2 = 50 10 12 14.652 14.557 11 11.064 11.613 11 12.224 14.107 

a 3 = 1 Q ° 

a± = 0.4 

a 2 = 100 10 13 17.579 23.791 12 13.566 18.620 12 14.833 23.260 

a 3 = 1 0 0 

a 1 = 0 . 4 

a 2 = 50 25 9 25.020 12.841 8 18.788 10.120 8 20.224 12.536 

a = 1000 

a1 = 0.4 

a 2 = 100 25 10 26.787 22.133 9 20.653 17.092 9 21.821 21.839 

a 3 = 1000 

Cost Geometric Logseries 
Parameter — 2 

a. ,a. ,a 0 tt n T C n T 1 2 3 a a 
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2 Effect of a. on C. n. and T 
— -3—-— --2 ex-

Tables 8, 9 and 10 provide some additional numerical results. 

These results are arranged to show the effect of a change in a^ on the 

2 

optimal value of C, n, and T^. 

By carefully studying these tables, it can be seen that an 

increase in the cost of operating out of control for one period (a ) 

will increase the optimal sample size (n), but the optimal critical 
2 

region parameter (T^) will be decreased. Intuitively, this is what 

should be expected, because if it costs more to operate out of control 

for one period, the t e s t procedure should become more sensitive. This 
2 

is precisely what is accomplished by increasing n and decreasing T^ 

simultaneously. 

As before, the effect of an increase in a^ is to cause an increase 

in the optimal average time cost. 
. 2 

Effect of the Noncentrality Parameter on C, n, and T^ 

Recall that in Chapter II in the discussion of the power of the 

test, the noncentrality parameter was defined as T = N^J^_ = N7T* ^N 

this work, three different values of IT were used; namely 5, 10 and 25. 

Varying the values of TT is equivalent to varying the difference between 

the in-control and out-of-control states. Tables 11 and 12 are sample 

results which show the effect of variation in i r on the optimal values 
2 

of C, n, and T . 

Based on the results shown on Tables 2 to 12, it can be seen that 

as TT ranges from 5 to 25, or when there is a>bigger shift in the process, 

the optimal value of n and C decreases for all three models, whereas the 
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Table 8. Effect of a^ on the Optimal Value of C, n, and T a 

(Case 1 of Probability Distribution Parameter) 

Cost 
Parameter Geometric Logseries Poisson Cost 
Parameter 

T 2 C a 
2 

T C 
a 

T 2 

a W a 3 * n T 2 C a n 2 
T C 
a 

n T 2 

a 
C 

a = 0.4 

a 2 = 50 5 8 26.051 7.769 16 10.792 8.847 5 25.872 6 .020 

a 3 = 100 

a = 0.4 

a 2 = 50 5 18 11.396 9.605 18 10.027 9.586 15 9.061 8 .89 8 

a 3 = 1000 

a = 1.0 

a 2 = 100 10 6 49.233 12.430 10 13.634 15.134 5 42.784 10 .813 

a 0 = 100 
3 

a = 1.0 

a 2 = 100 10 12 15.021 16.339 12 13.302 16.259 10 12.037 15 .212 

a 0 = 1000 
3 

a = 0.4 

a 2 = 50. 25 8 26.051 5.108 8 22.398 5.078 7 22.691 4 .849 

a. = 100 

a l = 

a 2 = 

a 3 = 

0.4 

50 25 9 24.375 5.333 9 22.732 5.263 8 20.224 5.049 

1000 
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Table 9. Effect of a 3 on the Optimal Value of C, n, and T a 

#Case 2 of Probability Distribution Parameter) 

Cost N +. > r • T> * 
Geometric Logseries Poisson Parameter ^ — ^ — — 

. ,a 0,a 0 tT n T C n T C n T I s 2 5 3 a a a 

a 1 = 0.4 

a 2 = 50 5 16 11.961 10.323 16 9.874 10.024 5 17.367 9.560 

a 3 = 1 0 0 

a± = 0.4 

a2 = 50 5 18 10.636 11.167 17 8.535 10.688 16 8.715 10.505 
a 3 = 1000 

a = 1.0 ' 

a 2 = 100 10 6 40.644 17.814 10 12.197 17.475 5 32.024 15.974 

a 3 = 1 0 0 

a = 1.0 

a 2 = 100 10 12 13.997 19.340 11 10.868 18.471 11 11.963 18.231 

a = 1000 

a = 0.4 

a 2 = 5 0 25 8 24.012 6.566 8 21.075 6.194 8 22.770 6.257 

a 3 = 1 0 0 .. . 

a 1 = 0.4 

a 2 = 50 25 9 23.238 6.733 9 21.408 6.377 . 8 18.788 6.450 

a 3 = 1000 . 
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Table 10. Effect of a 3 on the Optimal Value of C, n, and T a 

- (Case 3 of Probability Distribution Parameter) 

Poisson 
2 

n T , C 
a 

a± = 0.4 

a 2 = 50 5 17 11.047 16.983 15 7.555 13.781 15 8.718 16.339 

a 3 = 1 0 0 -: " ' ' ̂  ' .. • • _ 

a = 0.4 

a 2 = 50 5 19 1 0 . 5 2 0 1 7 . 6 7 0 16 6 * 822 1 4 . 3 2 0 17 8 . 3 4 0 1 6 . 9 8 7 

a 3 = 1000 

a = 1.0 

a 2 = 100 10 11 14.418 31.124 10 10.228 25.036 10 11.883 30.012 

a 3 = 1 0 0 : 

a ± = 1 . 0 

a 2 = 100 10 13 14.430 32.235 11 9.775 25.862 11 10.563 31.058 

a 3 = 1000 

a = 0.4 

a 2 = 50 25 9 25.020 12.841 8 18.788 10.120 8 20.224 12.536 

a 3 = 1 0 0 

a 1 = 0.4 

a 2 = 50 25 9 21.408 13.013 8 16.191 10.239 8 17.101 12.726 

a 3 = I O O O 

Cost _ T _. Geometric Logseries Parameter •— f f
2 • • 

a n 9a_ 9 a 0 tt n T C n T 1 2 3 a a 
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Table 11. Effect of tt on the Optimal Value of C, n, and T a 

(Case 1 of Probability Distribution Parameter) 

Parameter — • -z : — ;

 2

 1 • 2

 ; 

a, , a o 3 a 0 - tt n T C n T C n T C V 2 3 a a a 

a = 0.4 

a 2 = 50 5 18 11.396 9.605 18 10.027 9.586. 15 9.061 8.898 

a g = 1000 

a = 0.4 

a 2 = 50 10 13 15.721 7.111 12 12.494 7.042 11 12.407 7.111 

a = 1000 

a 1 = 0.4 

a 2 = 5 0 25 9 24.375 5.333 9 22.732 5.263 8 20.224 5.049 

a = 1000 

a = 1.0 

a 2 = 100 5 16 10.481 22.050 16 8.674 22.104 4 25.986 17.228 

a g = 1000 

a = 1.0 

a 2 = 100 10 12 15.021 16.339 12 13.302 16.259 10 12.037 15.212 

a 3 = 1000 

a = 1.0' 

a 2 = 100 25 8 21.706 12.316 8 19.467 12.125 8 21.075 11.576 

a 3 = .1000 ....... 
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Table 12. Effect of it on the Optimal Value of C, n, and T a 

(Case 3 of Probability Distribution Parameter) 

-___i___J__ 2 2 2 a. ,a.,a 0 - n T C n T C n T C 1 2 3 . g a _ a 

a = 0.4 

a 2 = 50 5 17 11.047 16.983 15 7.555 13.781 15 8.718 16.339 

a 3 = 1 0 0 

a 1 = 0.4 

a2 = 50 10 12 14.652 14.557 11 11.064 11.633 11 12.224 14.107 
a 3 1 0 0 

a 1 = 0.4 

a 2 = 5 0 25 9 25.020 12.841 8 18.788' 10.120 8 20.224 12.536 

a 3 = 1 0 0 

a± = 1.0 

a 2 = 100 5 18 10.168 38.632 15 8.402 31.397 16 8.012 36.913 

a 3 = 1000 

a 1 = 1.0 

a 2 = 100 10 13 14.430 32.235 11 9.775 25.862 11 10.563 31.058 

a 3 = 1000 

a = 1.0 

a 2 = 100 25 9 22.261 27.723 8 16.940 22.007 8 17.982 26.941. 

a = 1000 
O 
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optimum value for increases. That is, a less costly and less 

selective procedure is required to detect out-of-control states that 

differ considerably from the in-control state. 

Effect of Probability Distribution 
Parameter on C, n, and TZ , 2—_2 a— 

By varying the parameter of the probability distributions, the 

expected number of periods that the process remains in control is 

varied. Three different cases of probability distribution parameters 

were used in this work. Most of the numerical results are shown in 

Table 13. 

The results obtained show that as the expected number of periods 

the process remains in control decreases, the optimal sample size in-
2 

creases slightly, the optimal T^ decreases and the optimal average time 

cost increases. Intuitively, this is what should happen since decreasing 

the expected number of periods the process remains in control would 

require a more sensitive control procedure. 

Effect of the Markov Assumption 

From the results obtained, it can be seen that in general, the 

geometric (Markov) model differs somewhat from the. Poisson and the log-

series models, and requires a larger sample size, larger critical region 

parameter, and results in a higher average time cost than the Poisson 

model. If we consider all the problems with; case 3 of probability 

distribution parameter, notice in these problems the results of the 

optimum average time cost between the logseries model and the geometric 

model differed by as much as 20 per cent in some cases. 



Table 13. Effect of Probability Distribution Parameter 
on the Optimal Value of C, n, and T 

Cost 
Parameter Geometric Logseries Poisson Cost 
Parameter 

o 9 9 a l ' a 2 ,a3,7r Case n T 
a 

C n T . a C n T 
a 

C 

a l = 0.4 

a 2 = 50 1 11 16.721 6.588 11 13.853 6.655 5 31.389 5.666 
a 3 = 1000 

TT = 10 
a i = 

0.4 

a 2 = 50 2 12 16.631 8.135 11 12.699 7.791 10 12.904 7.706 
a 3 = 100 

IT = 10 
a i = 0.4 

a 2 = 50 3 12 14.642 14.557 11 11.064 11.633 11 12.224 14.107 
a 3 = 100 

IT = 10 
a i = 0.4 

a 2 = 50 1 13 15.721 7.111 12 12.494 7.042 11 12-. 40 7 6.661 
a 3 = 1 0 0 0 
7T = 10 

. 



Table 13. Continued 

Logseries Poisson 
2 2 n T C n T C 

a^ = 0.4 

PL - SO 
2 2 13 14.818 8.557 12 11.913 8.135 12 12.820 8.118 

a = 1000 
TT = 10 , . 

a 1 = 0.4 

= - SO 
2 3 13 13.751 14.918 11 9.290 11,916. 12 11.570. 14.449 

a 3 = 1000 

tt = 10 

a± = 1.0 

a 2 = 1 0 0 1 6 49.233 12.430 10 13.634 15.134 .5 42.784 10.813 
a 3 = 100 
TT = 10 

Cost „ . . Geometric Parameter ^ 
a 9a » a3» 7 T C a s e n T 

a, = 
a^ = 
a^ = 
TT = 

1.0 
100 
100 
10 

40.644 17.814 10 12.197 17.475 32.024 15.974 



Table 1 3 . Continued 

Cost 
Parameter Geometric Logseries Poisson Cost 
Parameter 

T 2 2 
T C 

9 
, a 2 , a 3 j 1 T Case n T 2 C n 2 

T C n r C 

a l = 1.0 

a 2 = 100 3 1 1 1 4 . 4 1 8 31 .124 10 1 0 . 2 2 8 25 .036 10 1 1 . 8 8 3 30 .012 
a 3 = 100 

= 10 

a i = 1.0 

a 2 = 100 1 8 21 .706 12 .316 8 19 .467 1 2 . 1 2 5 8 2 1 . 0 7 5 1 1 .576 
a 3 = 1000 

IT = 25 

a i = 1 .0 

a 2 = 100 2 9 24 .375 15 .168 8 18 .577 14 .300 8 1 9 . 7 1 0 14 .382 
a 3 = 1000 

= 25 

= 1.0 

a 2 = 100 3 9 2 2 . 2 6 1 27 .723 8 16 .940 .22.007 8 17 .982 26 . 9 4 1 
a 3 = 1000 

TT = 25 
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Therefore care must be exercised in making the assumption that a process 

possesses the Markov property. 

Baker (3) in this work demonstrated that the results of the 

geometric model and the Poisson model differed by as much as 55 per cent 

when the X control chart is used. The results of this work show that the 
2 

T control chart is not as sensitive to the Markov assumption as the X 

control chart. 

General Behavior of the Cost Functions 

In order to study the general behavior of the cost functions, the 

response surface of three sample,problems of each model were plotted. 

This is done using the CALCOMP GENERAL PURPOSE CONTOUR PLOTTING PACKAGE, 

and the plots are shown in Figures 15 to 23. 

From these contours, it can be seen that in general these cost 

functions are well-behaved. For the geometric model, as n increases 

from 3 and a increases from 0.001, the surface slopes steeply towards 

the optimum. Similar behavior is exhibited by the Poisson model. It 

is also observed that the cost functions for the logseries model are not 

as steep in this vicinity as those for the geometric and Poisson models. 

This leads us to conclude that if we must estimate the optimum parameters 

rather than determine them analytically, it would be best to overestimate 

n and a for all three models. The effect of poorly estimated test 

parameters is much more serious in the geometric model than in the 

Poisson model, and much less serious in the logseries model. 
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Sample Size 

Figure 15. Contour for the Geometric Model (1 Unit Interval) 
(a =0.4; a =50; a =100; tt=5 ; 8=0.025) 
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0.121 

0.111 

0.001 

Sample Size 

Figure 16. Contour for the Geometric Model (1 Unit -Interval) 
[3 = (a^O.4; a 2=100; a^'100 ;' tt=5 ; '9 = 0 .025) 
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0.001. 

Sample Size 

Figure 17. Contour for the Geometric Model (1 Unit Interval) 
(a^l.O; a 2=100; a-=100; T T=5; TT = 5; 6=0.05) 
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0.011 

Sample Size 

Figure 18. Contour for the Poisson Model (1 Unit Interval) 
(a =0.4; a 2=50; a 3=100; t t=5; 6=39) 
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0.041 

0.031 _h 

0.021 

0.011 

Sample Size 

Figure 19. Contour for the Poisson Model (1 Unit Interval) 
- (a =0.4; a 2=100; a 3=100; t t=5; 6=39) 
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Sample Size 

Figure 20. Contour for the Poisson Model (1 Unit Interval) 
(a^l.O; a 2=100; a 3=100; TT=5; 6=19) 
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Sample Size 

Figure 21. Contour for the Logseries Model (1 Unit Interval) 
(a.^0.4; a 2=50; a 3=100; tt=5 ; .P Q=0.025; 6=. 98689) 



6 5 

0 . 1 2 1 

0 . 0 3 1 

0 . 0 2 1 

0 . 0 1 1 

0 . 0 0 1 

Sample Size 

Figure 2 2 . Contour for the Logseries Model ( 1 Unit Interval) 
(a = 0 . 4 ; a 2 = 1 0 0 ; a 3 = 1 0 0 ; t t = 5 ; P Q = 0 . 0 2 5 ; 9 = 0 . 9 8 6 8 9 ) 
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0.011 
2 3 . 4 4 -
17 2 4 . . 62 19 

Sample Size 

Figure 23. Contour for the Logseries Model (1 Unit Interval) 
(a^l.O; a.-lOO; a 3=100; TT=5 ; P Q=0.05; 6=0.9675) 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In the preceding chapters, the theory and development of three 
2 

cost models for the economic design of T control charts were presented. 

These models were developed with the assumption that a process shifts 

out of control at the start of a period.and remains out of control for 

at least one period. The models are for':a single assignable cause. 

These assumptions may not completely coincide with real world, but the 

models should be adequate for many situations. 

A simple grid search technique was developed and programmed for 

a digital computer to determine the optimal sample size (n), critical 
2 

region parameter (T^), and the optimal average time cost (C). A total 

of 162 problems were solved. 

The conclusions that can be drawn from this study are: 

1. The optimal values of n decrease and the optimal averages 

time cost increases as a^ increases. 
2 2. The optimal values of n, T and C increase as a„ increases, r a 2 

3. The optimal values of n and C increase by an increase in the 
2 value of a^, whereas T decreases by an increase m a 0 . 3 a ~ o 

Care must be exercised in making the Markov assumption regard­

ing the time in the in-control state. 
2 

5. The optimal value of n and T^ decreases as the expected 
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number of periods the process remains in control decreases. The optimal 

value of C increases when the expected number of periods in control 

decreases. 

6. The usual assumption of a process possessing the Markov 
2 

property causes.the optimal value of n, T , and C to be higher than for 

the Poisson model. 
2 . . 

7. The T control chart is less?, sensitive' to the Markov assump­

tion than the X control chart. 

8. The cost functions are in general well behaved and appear to 

be unimodal. The geometric model has a steeper cost surface than does 

the Poisson model. The logseries model has a cost surface that is flat­

ter than either the geometric or Poisson model. 

9. If the optimal test parameters must be estimated, it is best 
2 

to overestimate both n and T for all three models. 
a 

Re commendati ons 

Duncan (6) indicated that in the invariate case, a single assign­

able cost model is sufficient, but it is not known if this holds in the 

multivariate case. It would be of interest to extend this work to con­

sider more than one assignable cause. 

The computer program developed in this thesis can only handle two 
2 

quality characteristics, as the numerical approximation for T^ holds only 
for this case. Since it is very inconvenient to store all the values of 
2 . 

T m the memory of the computer, the development of a numerical approxi-
2 

mation for.T when the number of quality characteristics is greater than 

two should be very useful. 
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The simple grid search technique used is not very efficient. To 

achieve higher numerical accuracy will require excessive computer time. 

It is recommended that a more efficient optimization technique be 

employed in future work. 



APPENDIX 

COMPUTER PROGRAM 



I M P L I C I T R E A L * 8 ( A - H , 0 - Z ) 
D I M E N S I O N AM IN ( 5 1 ) , 0 P T A L P ( 5 1 ) , O P T T S Q < 5 1 ) 
I N T E G E R Y E S * N O * A N S W E R 
DATA Y E S , N O / ' Y E S ' , 'NO ' / 
COMMON A 1 , A 2 , A 3 , V I , P I , P 

1 FORMAT( ) 
D E F I N E T S Q ( Y , X ) = ( ( 1 . O / Y ) * * ( 2 . 0 / ( X - 2 . 0 ) ) - 1 . 0 ) * ( X - 1 . 0 ) 

C READ IN COST PARAMETER 
V R I T E ( 6 , 1 0 ) 

1 0 FORMAT C T H I S I S T H E G E O M E T R I C D I S T R I B U T I O N M O D E L ' / / • A L L ' 
1 ' INPUT OF T H I S PROGRAM A R E IN F R E E F I E L D ' / ' E N T R I E S ' 
2 ' MUST B E S E P A R A T E D BY C O M M A S ' / / ) 

2 V R I T E C 6 , 1 1 ) 
11 FORMAT ( T i ' I N P U T V A R I A B L E C O S T OF S A M P L I N G , V 

1 ' COST O F S E A R C H I N G FOR A S S I G N A B L E C A U S E S , V COST O F O P E ' 
2 ' R A T I N G OUT O F CONTROL FOR 1 P E R I O D ' / • NUMBER OF Q U A L I T Y ' 
3' C H A R A C T E R I S T I C S ' / ' PARAMETER P O F T H E D I S T R I B U T I O N ' ) 

READ ( 5 , 1 ) A t , A 2 , A 3 , V I , P 
C READ IN RANGE O F A L P H A VALUES AND T H E P I VALUE 

3 V R I T E < 6 , 1 2 > 
1 2 F O R M A T C I N P U T T H E RANGE O F P R O B A B I L I T Y FOR D E T E C T I N G O U T ' 

1 ' - 0 F - C O N T R O L ' / ' S T A R T I N G WITH T H E LOWER L I M I T , THEN T H E ' 
2 ' U P P E R L I M I T ' / ' AND T H E SEARCH INCREMENT FOR A L P H A ' ) 

R E A D ( 5 * 1 ) Q B E , Q E N , Q D E L 
W R I T E ( 6 , 1 3 ) 

1 3 FORMAT C I N P U T T H E P I V A L U E ' ) 
R E A D ( 5 , 1 ) P I 
V R I T E C 6* 1 8 ) 

1 8 F 0 R M A T O 8 X , ' GEOMETRIC D I S T R I B U T I O N MODEL *) 
W R I T E ( 6 , 1 9 ) A l , A 2 , A 3 , V I , P , P I 

1 9 F O R M A T C COST PARAMETER V ' COST A l ' 
1 2 0 X , ' C O S T A 2 ' , 2 0 X , ' C O S T A 3 ' / 3 ( F 9 . 4 , 1 7 X ) / ' N O . O F Q U A L I T Y ' 
2 ' C H A R . ' , 6 X , ' P A R A • O F D I S T . ' , 1 4 X , ' P I ' / 2 < F l 0 . Z * 1 5 X ) , F 8 . 2 / / ) 

V R I T E ( 6 , 2 0 ) 
2 0 F O R M A T ( * S A M P L E S I Z E ' , 2 X , ' A L P H A - V A L U E ' , 2 X , ' T - S Q U A R E - V A L U E %

s 

1 2 X , ' A V G . - T O T A L - C O S T / C Y C L E ' / / ) 
C S E A R C H FOR OPTIMUM VALUE FOR A P A R T I C U L A R S A M P L E S I Z E 

4 DO 8 8 6 I = 3 , 2 5 
QB = QBE 
QE = QEN 
SN = I 
A M I N ( I ) = 9999999. 
AA = QBE 

1 1 1 TA = T S G ( A A , S N ) 
CALL E V A L U E ( S N , T A , A A , A T C ) 
I F ( A T C . L E . A M I N ( I ) ) GO TO 2 2 2 
GO TO 3 3 3 

2 2 2 AM IN(I) = ATC 
O P T A L P ( I ) = AA 
O P T T S C(I) = TA 

3 3 3 AA = AA + QDEL 
I F ( A A . GT.QEN) GO TO 5 5 5 
GO TO 1 1 1 

5 5 5 V R I T E ( 6 , 2 1 ) I , O P T A L P ( I ) , O P T T S Q ( I ) , AM IN ( I ) 



21 FORMAT(• ' , 2 X , 1 3 , 7 X , F I O . 5 , 4 X , F l 0 . 5 , 8 X * F I O . 5 ) 
I F C I . E Q . 3 ) GO TO 666 
IFCAMINCI ).GE.OPTMIN) GO TO 888 
OPTMIN = A M I N C I ) 
GO TO 777 

666 OPTMIN » A M I N C I ) 
777 U * I 
888 C O N T I N U E 

WRIT EC 6,23) 
23 FORMAT C// • T H E OPTIMUM IS •> 

VRIT EC 6,24) J , O P T A L P C J ) , O P T T S Q CJ),OPTMIN 
24 FORMATCIOX,' A S A M P L E S I Z E OF • 13,/ 

11 OX, • AN A L P H A V A L U E O F • FIO. 5,/ 
210X, • A T-SQUARE V A L U E OF * Fl 0. 5, • A N D " / 
3 1 0 X , ' AN A V E R A G E TOTAL COST OF .• FIO. 5/) 
WRIT EC 6, 2 5 ) 

25 FORMAT C • DO YOU H A V E A N O T H E R P R O B L E M TO SOLVE? 
R E A D C 5 , 2 6 ) A N S W E R 

26 F O R M A T C A 3 ) 
IF(ANSWER*EQ.NO ) GO TO 999 
GO TO 2 

999 STOP 
END 
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S U B R O U T I N E E V A L U E ( S N , T S Q * A L P , A T C ) 
IMPLICIT R E A L * 8 ( A - H , 0 - Z ) 
COMMON A l , A 2 , A 3 , V I , P I s P 
R E A L LAM DA 
CI « 0.0498673470 
C2 * 0 . 0 2 1 1 4 1 0 0 6 2 
C3 = 0.0032776263 
C 4 = 0 . 0 0 0 0 3 8 0 0 3 6 
C5 = 0 . 0 0 0 0 4 8 8 9 0 0 
C 6 = 0 . 0 0 0 0 0 5 3 8 3 0 
V2 = SN-V1 
LAMDA = SN*PI 
VILA » VI+LAMDA 
V2TSQ = V2*TSQ 
XI = ( V2TSQ/C VI LA* (SN- 1.0 X ) ) * * (0.3333)*( 1 . 0 - 2 . 0 / < 9 . 0 * V 2 ) ) 
X2 = 1 • 0-2 • 0 * < VI + 2 • 0*Lkll'PA>/ 0*:< VI *LAMDA >**2 > 
X3 = 2 . 0*(VI+2 . 0*LAMDA)/( 9 . 0 * ( V I + L A M D A ) * * 2 ) + 2 . 0 / ( 9 . 0 * V 2 ) * 

1 (V2TSQ/( (VI t-LAMDA)*(SN-l .0)) ) * * ( 0.6667) 
X = ( X 1 - X 2 ) / S Q R T ( X 3 ) 
A L P R =.5/(1 .O + Cl * X + C 2 * X * * 2 + C 3 * X * * 3 + C 4 * X * * 4 + C 5 * X * * 5 + C 6 * X * * 6 ) 
1**16 
A T C « A 1 * S N + ( A 2 * A L P R * ( P + A L P * ( 1 . - P ) ) + A 3 * P ) / ( A L P R * ( 1 • - P ) + P ) 
R E T U R N 
END 

- - - T H E E N D - - -
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S U B R O U T I N E E V A L U E (SN, T S Q > A L P , A T C ) 
IMPLICIT R E A L * 8 ( A - H , 0 - Z ) 
COMMON A 1 , A 2 , A 3 , V i , P O , P I , P 
REAL LAM DA 
Cl » 0 . 0 4 9 8 6 7 3 4 7 0 
C2 = 0 . 0 2 1 1 4 1 0 0 6 2 
C3 * 0.0032776263 
C 4 * 0 . 0 0 0 0 3 8 0 0 3 6 
C5 = 0 . 0 0 0 0 4 8 8 9 0 0 
C6 = 0 . 0 0 0 0 0 5 3 8 3 0 
V2 » SN-V1 
LAM DA - SN*PI 
VILA » Vl+LAMDA 
V2TSQ - V2*TSQ 
XI « < V 2 T S Q / < V 1 L A * < S N - 1 , 0 ) ) ) * * < 0 . 3 3 3 3 > * ( 1 . 0 - 2 . 0 / ( 9 . 0 * V 2 ) ) 
X2 = 1 . 0 - 2 . 0 * ( V l + 2 . 0 * L A M D A ) / ( 9 . 0 * ( V l + L A M D A ) * * 2 ) 
X3 = 2 . 0 * ( V 1 + 2 . 0 * L A M D A ) / ( 9 . 0 * ( V l + L A M D A ) * * 2 ) + 2 . 0 / ( 9 . 0 * V 2 ) * 

1 < V 2 T S Q / < < V 1 + L A M D A ) * C S N - 1 . 0 ) ) > * * < 0 . 6 6 6 7 ) 
X * < X 1 - X 2 ) / S Q R T < X 3 ) 
A L P R * • 5/ < 1 • 0+C1 *X+C2*X**2 •C3*X**3 + C 4 * X * * 4 + C 5 * X * * 5 + C 6 * X * * 6 ) 
1**16 
GAM » 1 . / - D L 0 G 1 0 U .-P) 
COM « - ( D L O G C l . - P * < 1 . - A L P ) ) ) 
A T C - A 1 * S N + ( A 2 + A 3 * < 1 . / A L P R * < P 0 + G A M * < 1 . - P 0 ) * C 0 M ) ) ) / 

1 ( 1 . / A L P R * P 0 + < 1 . * P 0 ) * < G A M / A L P * < - D L 0 G < 1 . - P ) - C 0 M ) ) ) 
RETURN 
END 
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SUBROUTINE EVALUE (SN,TSQ,ALP,ATC) 
IMPLICIT REAL*8(A-H,0-Z) 
COMMON A1,A2,A3,V1,PI,P 
REAL LAMDA 
C I s 0 .0498673470 
C2 s 0 .0211410062 
C3 s 0 .0032776263 
C4 at 0 .0000380036 
C5 = 0 .0000488900 
C6 = 0 .0000053830 
V2 s S N - V l 
LAM DA •• SN*PI 
VILA * Vl+LAMDA 
V2TSQ « V2*TSQ 
XI = (V2TSQ/(VI LA*(SN-1.0)))**(0.3333)*(1.0-2.0/(9.0*V2)) 
X2 = 1 .0-2.0*(Vl+2.0*LAMDA)/(9.0*(VI+LAMDA>**2) 
X3 = 2.0*(VI+2.0*LAMDA)/(9.0*(V1+LAMDA)**2)+2.0/(9.0*V2)* 
1 (V2TSQ/((V1+LAMDA)*(SN-1.0)))**(0.6667) 
X * (X1-X2)/SQRT(X3) 
ALPR «.5/(1.O+Cl*X+C2*X**2*C3*X**3+C4*X**4+C5*X**5+C6*X**6) 
1**16 
ATC = A1*SNV(A2*ALPR*ALP+A3*ALP*DEXP(-ALP*P))/(ALPR* 
1 (1.-DEXP(-ALP*P))+ALP*DEXP(-ALP*P>) 
RETURN 
END 



76 

BIBLIOGRAPHY 



77 

BIBLIOGRAPHY 

1. Abdel-Aty, S., "Appropriate Formulae for the Percentage Points 
and the Probability Integral of the Non-Central x2 Distribution," 
Biometrika, 41, 1954. 

2. Anderson, T. W.,.i4n Introduction to Multivariate Statistical 
Analysis, John Wiley & Sons, Inc., New York, 1958. 

3. Baker, Kenneth R., Two Cost Models for Economic Design of an X 
Chart, American Institute of Industrial Engineering Proceedings, 
May, 1971. 

4. Cowden, D. J., Statistical Methods in Quality Control, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 195 7. 

5. Duncan, A. J., "The Economic Design of X Charts Used to Maintain 
Current Control of a Process," Journal of American Statistical 
Association, v. 51, 1956. 

6. Duncan, A. J., "The Economic Design of X-Charts When There is a 
Multiplicity of Assignable Causes," Journal of American Statistical 
Association, March, 1971, Vol. 66. 

7. Hastings, C , Approximations for Digital Computers, Princeton 
University Press, Princeton, New Jersey, 1955. 

8. Hicks, Charles R., "Some Applications of Hotelling's T," Industrial 
Quality Control, Vol. XI, No. 9, June, 1955. 

9. Hotelling, Harold, "The Generalization of Student's Ratio," Annals 
of Mathematical Statistics, Vol. 2, 1931. 

10. , "Multivariate Quality Control," Techniques of Statistical 
Analysis, ed. by Eisenhart, Hastay, and Wallis,. McGraw-Hill, New 
York, 1947. 

1.1. Jackson, J. E., "Quality Control Methods for Two Related Variables," 
Industrial Quality Control, January, 1956. 

12. , "Quality Control Methods for Several Related Variables," 
Technometries, Vol. 1, No. 4, November, 1959. 

13. Klatt, Phillip J., Design of Control Charts for the Mean Vector of 
a Multivariate Normal Process, M.S. Thesis, Georgia Institute of 
Technology, 1971. 



78 

14. Knappenberger, H. A. and Grandage, A. H., "Minimum Cost Quality 
Control Tests," AIIE Transactions, Vol. 1, No. 1, 1961. 

15. Kramer, Clyde Y. and Jensen, Donald R., "Fundamentals of Multi­
variate Analysis—Part I. Inferences About Means," Journal of 
Quality Technology, Vol. 1, No. 2, April, 1969. 

16. , "Fundamentals of Multivariate Analysis—Part II. 
Inference About Two Treatments," Journal of Quality Technology, 
Vol. 1, No. 3, July, 1969. 

1 7 • . "Fundamentals of Multivariate Analysis—Part III. 
Analysis of Variance for One-Way Classifications," Journal of 
Quality Technology, Vol. 1, No, 4, October, 1969. 

18. , "Fundamentals of Multivariate.. Analysis—Part IV. Analysis 
of Variance 1 for Balanced Experiments," Journal of Quality Tech­
nology, Vol. 2, No. 1, January, 1970. 

2 

19. Montgomery, D. C. and Klatt, P. J., "Economic Design of T Control 
Chart to Maintain Current Control of a Process," Journal of Man­
agement Science, September, 1972. 

20. Paulson, E., "An Approximate Normalization of the Analysis of 
Variance Distribution," Ann. Math. Statistics, 13, 1942. 

21. Wilson, E. B. and Hilferty, M. M., "The Distribution of Chi-Square," 
National Acad. Sc. Proc, Vol. 17, 19 31. . 


