
Jen Mankoff 1 of 10 09/24/99

Interacting with Multiple Alternatives Generated by
Recognition Technologies

ABSTRACT
Despite significant advances in recognition technologies
in areas such as speech and gesture recognition, our
experience tells us that recognition errors and uncertainty
are unlikely to disappear. For the foreseeable future, use
of recognition based systems will introduce uncertainty
into the input process. If interactive systems are going to
work robustly with recognition-based input, it will be
necessary to consider uncertainty as a normal part of
input handling rather than considering it to be an
anomaly or an exceptional condition. This paper
considers techniques for explicit treatment of input
uncertainty in user interfaces. In particular, it considers a
general class of techniques for the display of, and
interaction with, multiple alternatives generated by
recognition technologies. Augmentation of the typical
event-handling infrastructure is discussed, as well as an
application interface infrastructure which attempts to
minimize the impact of uncertainty on the application. A
prototype system that embodies this infrastructure is also
considered.

KEYWORDS: recognition systems, inputs with
uncertainty, multiple alternative displays, error handling,
toolkits

INTRODUCTION
Recognition-based input is becoming more commonplace.
Humans communicate with each other using handwriting,
speech, and other natural modes and they have an
intuitive understanding of how to use those
communication modes. In the case of human-computer
communication, handwriting and speech are desirable
because they can be used in settings where the keyboard
and mouse are inaccessible such as mobile computing and
by people with disabilities.

Recognition systems also come with a serious
disadvantage — they sometimes incorrectly interpret
human input. If recognition systems make incorrect

choices, correcting them can slow potentially fast input
methods such as speech from around 120 words per
minute (wpm) down to 20-30 wpm, half the speed of
typing [22]. For slower input methods, such as
handwriting, this slowdown can make the system almost
unusable for lengthy input. There is extensive work in
trying to reduce the number of errors made by these
technologies, but experience suggests that the uncertainty
introduced by recognizers is unlikely to go away entirely
[21].

If uncertainty is being introduced into the interface, It
behooves user interface designers not to ignore the
uncertainty but to provide explicit mechanisms for
dealing with it effectively. We have surveyed previous
work in user interface and system-level techniques for
handling these errors [16]. We uncovered two common
strategies. One is repeating the input in a different
modality. For example, Suhm found that it was more
accurate to correct speech using a pen than with speech
[22]. This is because the sorts of errors that occur in
speech input are orthogonal to those that occur in pen
input. Another option is to use a more accurate repetition
modality such as a soft keyboard.

The second strategy is to present the user with multiple
alternatives interpretations, from which a correct one is
chosen. Recognizers generate interpretations from input
such as speech, handwriting, drawings, or gestures. The
potential interpretations may include anything which is
the result of recognition, including commands, ASCII
text, or drawings. There are a variety of interfaces for
selecting an interpretation. Figure 1 shows one example, a
menu. Table 1 describes other examples, drawn from our
literature survey. We chose to focus our work on this
strategy because the variety and complexity of user
interface issues which need to be supported make it a
more interesting and difficult problem for which to
provide reusable support.

This paper addresses the user interface infrastructure
needs for generalized support of displaying and
interacting with multiple alternatives. We have
implemented a variety of interactive components (what
we will call “interactors”) including several of the
interaction techniques uncovered in our survey. This

Jennifer Mankoff & Gregory D. Abowd
College of Computing & GVU Center

Georgia Tech
Atlanta, GA 30332

E-mail: {jmankoff,abowd}@cc.gatech.edu

Scott Hudson
HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213

 E-mail: hudson@cs.cmu.edu

GVU GIT TechReport

Jen Mankoff 2 of 10 09/24/99

interactor hierarchy can easily be subclassed in order to
support additional strategies.

For effective support of the display of multiple
alternatives, it is necessary to extend the standard event-
based infrastructure to handle ambiguous events, input
events that have more than one plausible interpretation.
This simplifies the implementation of the multiple
alternative display, and the use of recognizers. At the
same time, we want to hide the ambiguity from the
application as much as possible. Our goal is to put up an
"ambiguity firewall" between the application and the
ambiguity generated by the recognizer. From the
application developer's perspective, ambiguous event
handling should differ as little as possible from standard
event handling. We require only one application-level
extension: Applications must separate feedback about
potential interpretations of input from the action
performed once a correct interpretation has been chosen.

The next section discusses in more detail the variety of
multiple alternative displays found in our survey. We
then discuss the relationship between a multiple
alternative display (abbreviated MAD) interactor and the
application, including the high-level design choices which
make it possible for us to implement the variety found in
the survey. The following section presents our
architecture, which makes the simplicity of the MAD and
application design possible. We then demonstrate the
architecture by showing how the multiple alternative
displays in Figures 1 and 5 were implemented for an
example of pen-based input recognition. Our current
prototype demonstrations concentrate on pen-based
inputs, but these techniques should be applicable to the
wider range of recognition-based inputs, such as speech
and video. We then discuss the limitations of our
approach and future work.

BACKGROUND
We are concerned primarily with speech, pen, and
keyboard-based input. These inputs may be translated by
various recognition-based technologies into commands,
ASCII words, spoken words, letters, or drawings. We
surveyed previous research and applications that use
recognition-based technologies in order to determine what
error handling techniques are currently in use [16]. The
complete survey discusses several aspects of error
handling including error discovery, testing, toolkit-level
support, and interface techniques. Interface techniques
include repetition (including redoing, rephrasing,
switching to less ambiguous or orthogonally ambiguous
input methods, and the use of natural human correction
strategies such as overwriting) and displaying multiple
alternatives.

In the area of multiple alternative displays, our survey
uncovered variations in alternative layout, display
instantiation, whether or not the original input (or other
additional context) is displayed, interaction techniques for
choosing an alternative, and the feedback used to
represent what an alternative looked like. For example,
the Newton MessagePad™ uses a menu layout, which is
instantiated when the user double clicks on a word. The
original handwritten input is displayed at the bottom of
the menu and an alternative is selected by clicking the
mouse on the choice. Alternatives are represented in this
menu as text (words).

Although this work focuses on systems that have
graphical output, researchers in audio-only systems have
used multiple alternative displays as well. For example,
Brennan & Hulteen use natural language to "display"
multiple alternatives [3], and Marx & Schmandt use an
audio menu in his work [17]. Table 1 gives an overview
of some commercial and research systems with graphical
output that demonstrates different multiple alternative
displays.

Layout: Variations in layout include a pie menu [14], a
linear menu [2, 5, 19], or floating around a central
location [7], in location that the selected alternative will
appear [13], or in a grid [1, 8, 23]. Another variation is
to display only the top choice (while supporting
interactions that involve other choices) [7].

Instantiation: Variations in when the display is
originated include: on a click [2] or other user request
such as pause [14] or spoken command [5]; based on an
automatic assessment of ambiguity, continuously [1, 8,
18, 19]; as soon as recognition is completed [7, 13]; or
on any other input event the designer wishes [23].

Figure 1: Correcting a misrecognized letter. The
user draws an “a”, which is recognized as an “o”.
Because this is wrong, the user clicks on the “o”,
which causes a menu of other alternatives to
appear. The user selects “a” from the menu and
the error is corrected.

Jen Mankoff 3 of 10 09/24/99

Context: A large variety of additional context may be
displayed along with the actual alternatives including
information about their certainty [19], how they were
determined [13], and the original input [2].

Interaction/Selection: Most displays use information
about where the mouse was released for selection. For
example, Goldberg and Goodisman suggest using a
click to select the next most likely alternative even
when it is not displayed [7]. Many systems
automatically select the top choice if the user starts to
draw a new stroke [7, 13]. This is called implicit
confirmation. In cases where recognition is highly error
prone, the opposite is done [1, 8, 19]. This is called
implicit contradiction. The system essentially acts as if
no recognition had occurred at all.

Feedback: Variations in what is displayed included
ASCII text [1, 2, 5, 7, 8, 18, 19], drawings [13],
commands [14], icons [23], and mixtures of these types.
Table 1 shows what choices the systems covered in our
survey made for each of these variables.

Table 1 illustrates these design space requirements. Each
system we reference implemented one-off solutions for
their particular problem, but as Table 1 makes clear, the
same design decisions show up again and again. By
providing higher-level support for this design space, we
can begin to experiment with new approaches. For
example, although continuous display of alternatives has
been used in text-based prediction such as Netscape’s
word prediction and the Remembrance agent [18, 19], to
our knowledge it has not been used to display predicted
completions of a gesture in progress.

APPLICATION AND INTERACTOR DESIGN
Our primary goal is to provide application designers with
reusable interactors for handling errors by displaying
multiple alternatives without requiring significant changes

to the application itself. In order to be useful, these
interactors must be reusable both across applications and
across recognizers. This means that a multiple alternative
display must work with other standard graphical user
interface (GUI) interactors, as Henry et al. Discuss [9],
and must work with the variety of data types returned by
recognizers such as text, commands, and drawings.

In order to support this goal, we separate the interaction
and feedback of each individual interpretation from the
interaction and feedback with the MAD itself. The MAD
knows nothing about the representation of its constituent
alternatives. The MAD only handles the instantiation,
layout and selection of interpretations. Each interpretation
is in charge of displaying itself. These interpretation
displays are provided by the application. In fact, they can
be any GUI interactor.

The only change required of the application to support
this design is the separation of feedback about each
interpretation from the action taken once an interpretation
has been selected by the user. The application still
provides feedback immediately, but it must wait to act
until any ambiguity has been resolved. The application
never has to know how many alternatives there are, or
gather them together in one place and choose one. It
simply returns information about how to provide feedback
for any particular alternative when asked. And it acts on
the alternative when told that it can.

For example, consider a pen or mouse stroke for which a
recognizer returns two alternatives (delete and select). If
the application were to immediately act on both events, it
would show some feedback indicating selection and then
select the object under the gesture. It would also show
some feedback indicating it was deleting the same object

 System Layout Instantiation Context Interaction Feedback
MessagePadTM[2] linear menu on click original ink drag-release ASCII words
DragonDictateTM[5] linear menu speech command speech command ASCII words
Goldberg and
Goodisman [7]

below top choice on completion click on choice ASCII letters

Word Prediction
 (Alm [1] &
 Greenberg [8])

bottom of screen
(grid)

continuously click on choice ASCII words

Word Prediction
 (Netscape [18])

in place continuously returns selects top
keystroke, arrow
requests more

ASCII words

Marking Menu [14] pie menu on pause flick at choice commands, ASCII
letters

Beautification [13] in place on completion constraints click on choice pictures (lines)
Remembrance
Agent [19]

bottom of screen,
linear menu

continuously certainty,
result excerpts

keystroke
command

ASCII sentences

UIDE [23] grid on command click on choice thumbnails of results

Table 1: The layout, instantiation mode, context, selection, and representation used by systems covered in our survey [16].

Jen Mankoff 4 of 10 09/24/99
and then delete it. Alternatively, the application designer
would have to include some code to gather up all the
recognition results, pick one, and then act on that one. In
our system, the application provides feedback for
indicating the selection and feedback for indicating the
deletion. And once the user has chosen, say, select with
the help of the MAD¸ the application is told that it can act
on select. It never has to worry about the fact that there is
more than one potential interpretation, and it also doesn’t
have to worry about executing some incorrect action or
worry about trying to figure out which interpretation was
selected.

This separation between feedback about interpretations
and the MAD allows for two interesting extensions. First,
each interpretation can support interactions if desired. For
example, the feedback interactor for the delete event may
allow the user to change an argument to that command.

Second, each interpretation can easily display additional
application-specific context about itself such as the
constraints used to generate a line or the part of speech
associated with a word. To do this, the application
replaces the interpretation’s default feedback interactor
when the feedback() method is called. This replacement
knows how to draw the additional information. No change
to the MAD itself is required.

AMBIGUOUS EVENT HANDLING ARCHITECTURE
In order to make minimal changes to the application and
still keep the design of MADs simple, we had to build a
new event-handling infrastructure. Figure 2 shows how
the flow of events in our previous example would happen

in a standard GUI application that uses a recognizer to
turn strokes into commands. This scenario can be
generalized to handle other input modalities besides pen.
Here the application must decide when to call the
recognizer, and then take its response and either pick one
interpretation to act on, or create a MAD. All of the
uncertainty is exposed to the application designer, who
must figure out the best way to handle it. This results in
error-handling solutions which are not reusable and can
make the design of the application more complicated. If
the application uses a MAD¸ that MAD only has access to
the information that the application designer chooses to
give it, which may limit its capabilities.

 In contrast, our ambiguous event handling system treats
the interpretations returned by the recognizer as events
just like a mouse click or key press. This allows us to
deliver interpretations to interested interactors in the same
way that standard events are delivered.

Figure 3 shows the flow of events for the same example
as Figure 2, but with the addition of our ambiguous event-
handling infrastructure. Now the MAD can automatically
subscribe directly to the event-handling infrastructure in
order to be informed about new interpretations. The
gesture recognizer no longer has to wait for the
application to call it, but can ask the architecture to notify
it whenever a stroke is completed. And the application
designer does not have to worry about deciding which
interpretation is correct —once the user has selected an
interpretation, the application will automatically be
notified that it can act on that choice.

Figure 2: The flow of events in a simple application written with a standard event architecture. Gray indicates
components and events present in most standard GUIs. The recognizer is black because it, like the additions
in Figure 3, involves the use of and delivery of ambiguous events.

Jen Mankoff 5 of 10 09/24/99

Extensions to Standard Event Handling
In order to allow recognized input to be treated just like
any other event, we had to make two major extensions to
the event handling infrastructure.

ambiguous events: First, we had to create a new class of
events which can be recognized. These are referred to
as ambiguous events because they may have several
potential interpretations, only one of which is correct
from the user's perspective. Ambiguous events are
described in more detail below. Because of this change,
we refer to our architecture as an ambiguous event
handling system.

event life-cycles: In our architecture, events are no longer
consumed as they are in standard event handling. For
example, in a GUI toolkit such as subArctic [6, 10], an
interactor returns a Boolean value indicating whether or
not an event was consumed. If the return value is true,
the toolkit has finished with that event, and no other
interactor has access to it. If false, the toolkit assumes
that interactor did not want or use the event, and it
passes the event on to the next interactor. In contrast,
interactors which handle ambiguous events return an
ambiguous event change object which indicates what, if
any, changes were made to the event. Every change to
an event sends it back through the event queue.

Because of this change, we deliver information not only
about the creation of ambiguous events, but also about
any changes to ambiguous events. For example,
interactors, MADs, or recognizers may wish to know
when an interpretation has been chosen, when an input
event has been recognized, or even about each update
to a stroke as the user draws it.

Consider the example in Figure 3. In our system, a stroke
is an example of an ambiguous event, since it can be
recognized. When a stroke is completed, it enters the
event queue and is passed to the recognizer (arrow 1). The
recognizer returns its recognized interpretations in an
ambiguous event change object (arrow 2). These are sent
back through the event queue. This example will be
discussed in more detail below, after we define
ambiguous events.

Ambiguous Events
In order to better understand how an ambiguous event
may change, we need to define it more precisely. An
ambiguous event is any event that provides input to a
recognizer, hence may have multiple interpretations. An
ambiguous event keeps a pointer to a list of its potential
interpretations. Figure 4 shows an example of a stroke
event with two interpretations (the delete command and
the select command).

Each interpretation has a percentage certainty (generated
by the recognizer) [11]. In our example, the delete
command is 80% certain while the select command is
only 20% certain.

User interaction with a MAD leads to a selection of one
interpretation as "correct.” While certainty represents the
recognizer's best guess of which interpretation is correct,
we store information about the user's opinion in the
closure field. Closure is a logical attribute indicating that
interpretation of the input has become fixed. This is
similar to the kind of closure that typicaly happens when
the user hits "return" in a traditional textual interaction -

Figure 3: The flow of events in a simple application written with our architecture. Gray indicates components
and events present in Figure 2. Stroke events are delivered normally to the application. But whenever a stroke
is completed it is also automatically delivered to the recognizer (1), which then returns a set of interpretations
(2). The ambiguous dispatcher then requests feedback_interactors from the application (3), and passes them
along with the interpretations to the menu multiple alternative display (4). When the user selects one, the
dispatcher is notified (5) and it tells the application it can now act on that interpretation (6).

Jen Mankoff 6 of 10 09/24/99

after that point the user is no longer free to use the
backspace key to modify a line of input. In our system
closure indicates that a particular interpretation for an
ambiguous event is correct from the user's perspective.
Interpretations are created with a closure value of OPEN.
At this point, the application does not yet act on the
interpretation, although it does provide feedback for it.
When the user selects an interpretation, its closure value
is changed to CLOSED, and the application can act on it.
Essentially, closure indicates to the application how safe
it is to take some (potentially irreversible) action based on
an interpretation.

Finally, each interpretation has a feedback interactor
which can be used to display it on screen. For example,
the alternatives in Figure 5a use a line interactor, and the
alternatives in Figure 5b&c use a normal menu label
interactor. These interactors can be subclasses of any
standard GUI interactor as long as they implement a
simple interface which allows the MAD to request their
source event and a text representation for situations where
graphics are not tenable. This means the application
designer can take advantage of the existing interactor
hierarchy instead of having to replicate parts of it.

Event Life-Cycles
As discussed above, our ambiguous event handling
architecture delivers information about changes to events
as well as the creation of events. We provide several
different event dispatchers for delivering information
about event changes to interested parties. An event
dispatcher is a class which uses state information to
decide where and when to deliver events. Events may be
delivered to interactors, recognizers, the application, or
any other component which has an interest in them.
Dispatchers simplify the job of the component receiving
the event by keeping track of state and only delivering
events to the component when they are useful.

For example, many GUI toolkits have mouse-motion
event dispatchers which deliver information about mouse
move and drag events to interested interactors while

filtering out all other events such as key presses, mouse
clicks, etc. Most of these are positional dispatchers.
Mouse events are only delivered to interactors when their
position falls inside the interactor’s bounding box. Our
stroke event dispatcher (Figures 2&3) is another example
—it delivers events about stroke start, feedback, and end
to components under the stroke. It is, therefore, a type of
positional dispatcher. Other event dispatchers may be
focus-based. For example, a recognizer can subscribe to a
focus dispatcher in order to be told about stroke events
even when it has no location on screen.

In addition to handling state and filtering events based on
type, event dispatchers in our ambiguous event system
may only deliver events when a certain type of ambiguous
event change has happened. For example, our
application_delivery event dispatcher handles the
separation of feedback from action described earlier.
When an ambiguous event is created, it calls feedback.
When an ambiguous event’s CLOSURE is changed, it
calls action. All other changes to events are ignored. This
event dispatcher is responsible for hiding the ambiguity
from the application.

We will illustrate the ways that different event dispatchers
deliver events, and interactors and recognizers change
them by walking through the example in Figure 3. First, a
stroke event dispatcher collects mouse events and delivers
them to the application in the form of stroke_start,
stroke_feedback and stroke_end method calls. An
ambiguous stroke event is created as soon as the stroke
starts (when stroke_start is called). When stroke_end
occurs, the stroke event is changed to reflect the fact that
it has been completed. The gesture recognizer is
automatically told about this change by a focus event
dispatcher (1). The application, which is notified about
stroke_end by the stroke event dispatcher, creates a MAD
at this time and passes the stroke to it. The MAD will
receive the interpretations from the event system when
they are created, and will handle the selection of any
interpretations generated from that stroke. The application
doesn’t have to inform the MAD about anything except
which stroke it is responsible for. This is very similar to
how it would treat any other GUI interactor: If it created a
Buttoņ it would not have to tell the button about mouse
events in order for the Button to know when the user
clicks on it.

The recognizer changes the stroke event by adding new
interpretations to it (2), and the application_delivery event
dispatcher automatically queries the application for
information on how to display feedback for each
interpretation via the feedback method (3).

The MAD has asked the focus event dispatcher to notify it
each time any change is made to the stroke that the
application told it to handle. Because of this, it is
automatically notified that the list of possible
interpretations of the stroke has changed (4). Different

Figure 4 : a stroke
event for which a
unistroke gesture
recognizer has
returned two
interpretations
(delete and select).

Jen Mankoff 7 of 10 09/24/99

MADs will deal with this information in different ways,
but they all have the goal of resolving the ambiguity with
the user's help. For example, a menu MAD such as that in
Figure 5b will only display the top choice until the user
clicks on it. The user can then drag down and release over
the correct interpretation. These mouse events are
delivered by the normal event dispatcher just like any
other non-ambiguous events received by the application
or the MAD. Once the user has selected an alternative,
the MAD notifies the event handling architecture that the
interpretation's closure has changed to CLOSED (5). By
default, the MAD also removes itself from the
application’s GUI.

The application_delivery event dispatcher sees that an
interpretation's closure has been changed and calls the
applications action method (6), passing that interpretation
to the application. Since the action method tells the
application exactly which interpretation has been selected,
the application doesn’t need to do any additional work to
figure that out. In our example, select was chosen, so the
application will now select the object under the stroke. If
the chosen event has a graphical interpretation, the
application will create conventional (single interpretation)
interactor for it at this point.

EVALUATION OF THE ARCHITECTURE
As the example described above illustrates, this
architecture supports our stated goal of hiding ambiguity
as much as possible from the application while making it
accessible to MADs and recognizers.

In addition, the example in Figure 3 illustrates how our
architecture supports the two required extensions to
standard event handling. We deliver ambiguous events

(arrows 1, 3, 6). We also deliver information about
changes to ambiguous events (arrow 2, 4, 5), and we have
modified the model of event consumers by delivering the
same event to multiple consumers (arrows 3, 4).

Applications, recognizers, or interactors that take
advantage of the flexibility of our infrastructure can do far
more than the simple separation of feedback from action
provided by default. For example, a recognizer which
makes predictions may generate interpretations for a
partially completed stroke, and then update those
interpretations each time new information arrives. After
each update, the MAD displaying the predicted
interpretations will automatically be notified.

We chose to use the subArctic toolkit [6, 10], because it
was a simple matter to extend subArctic's event handling
infrastructure (which was derived from that of the earlier
Artkit toolkit described fully in [9]) to support ambiguous
event handling. This is because subArctic effectively
separates the abstractions for dealing with event handling
from the rest of the toolkit. In addition, many of the
events we are dealing with are non-rectangular, and
subArctic makes it fairly easy to design non-rectangular
interactors for representing these events. For example, if
the lines in Figure 5a were rectangular, many mouse
clicks would overlap several different lines making it hard
for the user to select one particular interpretation.

Building MADs
In addition to the benefits described above, our
architecture makes it a simple matter to implement and
test a variety of MADs. Although we have not yet
completely populated the space of MADs, we have
implemented two different layout policies, two different

Figure 5: Some example multiple alternatives displays
(a) A multiple alternative display showing 3 lines. The black line is the top choice, the lighter lines are lower choices.

The choices are shown in the place they will appear if selected. The MAD appears as soon as recognition is
completed. The recognizer is a drawing beautifier [12].

(b) A multiple alternative display showing 3 characters. The o is the top choice. The characters are shown in a menu
layout, and the menu appears when the user clicks on the top choice. The recognizer is a unistroke gesture
recognizer [20].

(c) The same multiple alternative display as (b), this time showing 5 angles. The angles are the text representation of
lines generated by the recognizer in (a). The information in the menu indicates a potential line that is described
by its degree rotation counterclockwise from the positive x-axis.

 (a)
(b)

(c)

Jen Mankoff 8 of 10 09/24/99
instantiation policies, and two different selection policies;
and we have connected two different recognizers up to the
ambiguous event handling infrastructure. Figure 5
demonstrates this variety.

In Figure 5a, we show a multiple alternative display in
which each alternative is shown in place (where it will be
if selected). The MAD is instantiated when the stroke is
completed. Selection is performed by clicking on a line.
The recognizer used is an interactive drawing beautifier
[13].

In Figure 5b, we show a MAD in which the alternatives
are layed out in a menu. The MAD is instantiated when
the top choice is clicked on. In order to select a choice,
the user drags the mouse down the menu and releasing it
over the desired item. The recognizer used recognizes a
unistroke alphabet.

Figure 5c shows the same menu MAD displaying
alternatives generated by the recognizer from Figure 5a.
Both MADs will work with either recognizer, and they do
not need to be told anything about which recognizer is
being used or what type of alternatives they will be
displaying. Each of the recognizers is a 3rd-party product
for which we wrote a small wrapper. Once the wrapper is
written, a single method call is used to subscribe or
unsubscribe a recognizer from the ambiguous event
handling system.

The in-place MAD is our base multiple alternative display
class. The menu MAD inherits from it. There were only
two significant changes necessary to create the menu
MAD. First, instead of using each interpretation’s default
feedback object, it requests a text feedback object from
them (the ability to handle this request is required of
every feedback object in our system because some
situations may only be able to handle text). Second, we
substitute a subArctic menu for the base layout object
used by default. We did not have to make any changes at
all to the menu class. The menu MAD simply implements
a subArctic interface through which the menu notifies it
when a menu item is selected.

Current Limitations
Although the design of our base MAD class makes it easy
to switch between recognizers and layout types, it is not
as simple to change the instantiation type or selection
method. This does not prevent designers from using a
variety of selection and instantiation types, it merely
means that currently each MAD demonstrates only one
example of each combination. Ideally, a designer should
be able to implement, for example, the "on completion"
type of instantiation once and use it with every MAD.

Another feature missing from our MAD class is the ability
to filter alternatives. For example, there are times when
the drawing beautification system returns many lines
which are very close together. When this happens, the

user has very little control over which line they are
actually selecting. Ideally, the MAD should filter out lines
which overlap significantly, possibly providing some
other way to access the filtered out choices.

This brings up another issue: The correct answer (from
the user's perspective) may not be among the alternatives
displayed. One solution is to use the MAD technique in
combination with other techniques such as repetition, or
using an alternate (less error-prone) input method for
correction.

There are several limitations at the architecture level as
well. First of all, it is possible to create an endless loop
during event handling. For example, consider a case
where two stroke recognizers (A and B) both update their
interpretations each time anyone else changes the
potential interpretations of a stroke. A adds some
interpretations, which causes B to add some, which causes
A to re-evaluate and add slightly different ones, which
causes B to re-evaluate and…. For now, it is up to the
application programmer to make sure these do not
happen, although it is possible to work on a cycle-
detection algorithm. In order to make this job easier, we
provide unique sequence numbers for each event.

Secondly, we need to spend more time populating the set
of event dispatchers used to deliver events. In particular,
it would be helpful to have separate ones for MADs and
for recognizers, simplifying the use of both. For example,
the recognizer event dispatcher might use a method called
recognize when the recognizer's data is available; the
MAD event dispatcher might use methods show and hide
to indicate when the MAD should instantiate itself.

Future Work
In the case of the MAD design, there are issues relating to
each of the five dimensions discussed in this paper.

Layout: One issue not normally addressed in the layout
of multiple alternatives is how to fit them in the
surrounding context without obscuring it or making
them difficult to read. A complete solution to this
requires the support of something like Chang et al.’s
fluid negotiation architecture [4]. Negotiations between
alternatives and between the application and the MAD
are both necessary.

Instantiation : One interesting problem which we don’t
currently address is how to discover when automatic
selection of an alternative will be erroneous. This
affects instantiation because ideally a MAD should
appear only when the system can't decide which
alternative is correct. Currently we show a multiple
alternative display any time there is more than one
choice. However, there may be situations in which
even when the recognizer returns multiple choices it is
obvious which one is correct.

Context: The display of context makes it possible to
display alternatives without obvious visual

Jen Mankoff 9 of 10 09/24/99
representations, such as commands. Interesting context
might include the arguments to a command, or the part
of speech assigned to a word. Currently our system
depends on the recognizer to provide an object pointing
to any relevant context about each alternative. For
example, the drawing beautification system provides an
object holding the constraints satisfied for each
alternative. This has the same problems as making the
MAD depend on the application for information about
alternatives. We need to investigate the possibility of
sending context through the event infrastructure just
like ambiguous events.

Interaction/Selection: Currently our MADs all use
unambiguous events for interaction and selection. Suhm
[22] and Huerst, Yang & Waibel [12] have looked at
recognition-based methods for error handling, but we
only aware of one example which applies recognition-
based methods to multiple alternative displays [5]. We
plan to investigate new types of MADs which take
ambiguous events as input for interaction and selection.
For example, the user might select an alternative with a
gesture rather than a mouse click.

 Feedback: Designers have rarely addressed the issue of
how to display multiple alternatives which are
commands. Marking menus are one of the few
examples of this, and they are limited to a certain type
of gesture, displayed only at the user request, and only
display commands as names or pictures. For example,
predictions of gesture completions may be best
displayed as animations, a technique only rarely used to
display alternatives [4]. Other ways to display
commands include abstract pictures and textual/verbal
descriptions. In addition, because commands may not
all be associated with one central location on screen, we
may need to use color or size to make them more
visible.

In terms of our ambiguous event handling architecture,
we plan to extend it to handle the full set of error handling
issues uncovered in our survey. This will require several
additions. First of all, users may change their minds. What
should happen when they change which interpretation
they have selected? There is extensive research into the
undo problem for unambiguous events. It will be
interesting to investigate the same problem with regards
to ambiguous events. At a minimum, our architecture will
need to be extended to keep a history of events and
changes to events.

Another issue which we will need to address is the
segmentation problem. Segmentation involves deciding
which input tokens (e.g., strokes for pen-based input) to
group together to send to a recognizer. Segmentation is
error prone and segmentations may change over time.
Because of this, previous recognition results may be
invalidated. Ambiguous events may disappear completely
or need to be re-recognized as segmentation changes. We
believe that our basic design will scale to handle this

problem. When events change, we make information
about that change available. A change in segmentation is
just another change we will need to deliver to interested
parties. Since segmentation is error prone, we will also
need to investigate how to present segmentation
alternatives to the user.

CONCLUSIONS
This work is based on the claim that uncertianty is
inherent in recognition-based technologies, and cannot be
eliminated nor ignored. This means that in order to make
real use of recognition in the interface, uncertainty needs
to be dealt with explicitly, and that the user needs to be
involved in at least some cases. To make this a practical
reality, it is important that toolkits provide an
infrastructure and interactor library which can be reused
and extended.

There are two commonly used interface techniques:
repetition and interaction with multiple alternatives. We
have chosen to focus on the second because its
complexity and the need to integrate it with the existing
interface make it an interesting, difficult problem. In order
to do this, we surveyed existing one-off solutions and
developed toolkit-level support for implementing them.
Our solution was to extend event handling to include the
concept of ambiguous events. From the application's
perspective, ambiguous events are almost
indistinguishable from unambiguous events. The only
change is that the application must separate feedback
about ambiguous events from the action taken once the
user has selected the correct interpretation. On the other
hand, other components using our toolkit have access to a
much richer set of information about event creation and
changes to events. This allows us to build powerful new
interactors. In particular, it allows us to build multiple
alternative displays, the error handling technique we
originally set out to provide.

ACKNOWLEDGMENTS
The authors thank members of the Future Computig
Environments Group in the College of Computing for
their comments on early drafts of this work, especially
Beth Mynatt, Blair MacIntyre & Anind Dey. The Java-
based unistroke gesture recognizer used for demonstration
in this paper, GDT, was provided by Chris Long from UC
Berkeley as a port of Dean Rubine’s original work [20].
Takeo Igarashi provided the drawing beautifier
recognizer, Pegasus, that was also used for
demonstrational purposes [13]. This work was supported
in part by the National Science Foundation under grants
IRI-9703384, EIA-9806822, IRI-9500942 and IIS-
9800597.

REFERENCES
1. Alm, N., Arnott, J.L. and Newell, A.F. Prediction and

conversational momentum in an augmentative
communication system. Communications of the ACM
35, 5 (1992) 46–57.

Jen Mankoff 10 of 10 09/24/99
2. Apple Computer, Inc. The Newton MessagePad

3. Brennan, S.E. and Hulteen, E.A. Interaction and
Feedback in a spoken language system: A theoretical
framework. Knowledge-Based Systems 8, 2-3 (1995),
143–151.

4. Chang, B., Mackinlay, J.D., Zellweger, P. and
Igarashi, T. A negotiation architecture for fluid
documents. In Proceedings of the ACM Symposium
on User Interface Software and Technology. ACM.
November, 1998. pp.123–132.

5. DragonDictate product Web page. Available at:
http://www.dragonsystems.com/products/dragondicta
te/index.html.

6. Edwards, W. K., Hudson, S., Rodenstein, R., Smith,
I. and Rodrigues, T. Systematic Output Modification
in a 2D UI Toolkit. In Proceedings of the ACM
Symposium on User Interface Software and
Technology. ACM. October 1997. pp. 151-158.

7. Goldberg, D. and Goodisman, A. Stylus User
Interfaces for Manipulating Text, in Proceedings of
the ACM Symposium on User Interface Software and
Technology. ACM. 1991. pp.127-135.

8. Greenberg, S., Darragh, J.J., Maulsby, D. and Witten,
I.H. Predictive Interfaces: what will they think of
next? In Extra-ordinary Human-Computer
Interaction: Interfaces for Users with Disabilities,
Cambridge University Press. 1995., pp.103–139.

9. Henry T., Hudson S. and Newell, G. Integrating
Snapping and Gesture in a User Interface Toolkit. In
Proceedings of the ACM Symposium on User
Interface Software and Technology. ACM. October
1990. pp. 112-122.

10. Hudson, S. and Smith, I. Supporting Dynamic
Downloadable Appearances in an Extensible User
Interface Toolkit. In Proceedings of the ACM
Symposium on User Interface Software and
Technology. ACM. October, 1997. pp. 159-168.

11. Hudson, S., Newell, G. Probabilistic State Machines:
Dialog Management for Inputs with Uncertainty. In
Proceedings of the ACM Symposium on User
Interface Software and Technology. ACM.
November, 1992. pp. 199-208.

12. Huerst, W., Yang, J. and Waibel, A. Interactive error
repair for an online handwriting interface. In
Proceedings of CHI'98 Human Factors in Computing
Systems. ACM/SIGCHI. April, 1998. pp. 353–354.

13. Igarashi, T., Matsuoka, S., Kawachiya, S. and
Tanaka, H. Interactive beautification: A technique for
rapid geometric design. In Proceedings of the ACM
Symposium on User Interface Software and
Technology. ACM. October, 1997. pp.105–114.

14. Kurtenbach, G. and Buxton, W. User learning and
performance with marking menus In Proceedings of
CHI'94 Human Factors in Computing Systems.
ACM/SIGCHI, N.Y. 1994. pp. 258–264.

15. Kurtenbach, G., Moran, T.P. and Buxton, W.
Contextual animation of gestural commands.
Computer Graphics Forum 13, 5 (1994), 305–314.

16. Mankoff, J. and Abowd, G.D. Error correction
techniques for handwriting, speech, and other
ambiguous or error prone systems. Georgia Tech
Technical Report, GIT-GVU-99-**. May, 1999.

17. Marx, M. and Schmandt, C. Putting people first:
Specifying proper names in speech interfaces. In
Proceedings of the ACM Symposium on User
Interface Software and Technology, ACM, N.Y.
November, 1994. pp. 30–37.

18. Netscape Communications Corporation Web page.
Available at http://www.netscape.com.

19. Rhodes, B.J. & Starner, T. Remembrance agent: t: A
continuously running automated information retrieval
system. In Proceedings of PAAM '96 International
Conference on The Practical Application Of
Intelligent Agents and Multi Agent Technology. 1996.
pp. 487–495.

20. Rubine, D. Specifying gestures by example.
Computer Graphics 25, 4 (July 1991), 329–337.

21. Schomaker, L.R.B. User-interface aspects in
recognizing connected-cursive handwriting. In
Proceedings of the IEE Colloquium on Handwriting
and Pen-based Input, number 1994/065, The
Institution of Electrical Engineers, London, 1994.

22. Suhm, B. Multimodal interactive error recovery for
non-conversational speech user interfaces. PhD
Thesis, Kalsruhe University, 1998.

23. Sukaviriya, P., Foley, J. and Griffith, T. A second
generation user interface design environment: The
model and runtime architecture. In Proceedings of
INTERCHI'93 (April 24-29). ACM, N.Y., 1993. pp.
375–382.

