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SUMMARY 
 

 
 
 A tetrazole is a 5-membered ring containing 4 nitrogens and 1 carbon.  Due to its 

energetic potential and structural similarity to carboxylic acids, this ring system has a 

wide number of applications.  In this thesis, a new and safe sustainable process to 

produce tetrazoles was designed that acheived high yields under mild conditions.  Also, a 

technique was developed to form a trityl-protected tetrazole in situ.  The rest of this work 

involved the exploitation of the energetic potential of tetrazoles.  This moiety was 

successfully applied in polymers, ionic liquids, foams, and gels.  The overall results from 

these experiments illustrate the fact that tetrazoles have the potential to serve as a stable 

alternative to the troublesome azido group common in many energetic materials.  Due to 

these applications, the tetrazole moiety is a very important entity.       
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CHAPTER I 
 

INTRODUCTION 
 
 
 A tetrazole is a 5-membered ring containing 4 nitrogens and 1 carbon.  Due to its 

energetic potential and structural similarity to carboxylic acids, this ring system has a 

wide number of applications.  Tetrazoles are used in the pharmaceutical industry in 

modern anti-hypertensive medications.  While this field is fairly developed, the energetic 

applications for tetrazoles are fairly unexplored.  Throughout this thesis, tetrazole 

derivatives were synthesized and investigated as potential energetic materials or 

components of energetic materials.  In most cases, these compounds were an acceptable 

substitute for the problematic azido derivatives common in many energetic compounds.   

Specifically, azido groups are unstable because they react with a variety of compounds.  

In energetic binders, they react with the cure catalysts and introduce charges along the 

polymer chains.  These problems will be further defined and discussed in the following 

chapters.   

The synthesis of tetrazoles is inherently dangerous because of the explosive and 

toxic nature of sodium azide.  One of the initial goals of this research was to design a safe 

and efficient synthesis of tetrazoles.  In Chapter II, two novel systems that used 

benzonitrile as reactant and solvent for the preparation of 5-phenyl-1H-tetrazole were 

developed.  The first reaction system used a protonated tertiary amine (a proton source) 

and sodium azide.  This reaction was run at a relatively mild temperature of 50 oC to 

provide an isolated product yield of 97% within 16 hours.  This versatile reaction system 

also produced a protected tetrazole in situ with the addition of trityl chloride in place of 

the usual acidification step.  The second reaction system, employing quaternary 
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ammonium salts, demonstrated the ability to control the potential amount of hydrazoic 

acid formation while producing good yields of 5-phenyl-1H-tetrazole in relatively mild 

conditions.   By introducing only a 10 mol% of a proton source in the presence of a 

stoichiometric amount of quaternary ammonium salt, isolated yields as high as 87 % were 

achieved.   

 In Chapters III and IV, the synthesis of energetic polymers that included tetrazole 

derivatives as sidechains on the polymer backbone was achieved.  These polymers were 

designed as an improvement upon glycidyl azide polymers described in the patent 

literature.  In particular, the reactivity of the azido group limits the applicability of the 

glycidyl azide polymers (GAP).  The azide causes problems during the curing of the 

energetic material and shortens the shelf-life of the resulting material.  The results of this 

research demonstrated that a tetrazole substituted glycidyl azide polymer could be readily 

synthesized.  The synthetic steps were straightforward and did not present any 

overwhelming difficulties.  While the exotherms for the glycidyl tetrazole polymer 

derivative were not as large as the glycidyl azide polymer exotherm, the benefits with 

regard to processing and storage could overcome this energetic disadvantage. 

 In Chapter V, a group of energetic foams was synthesized.  By means of urethane 

chemistry, the polymers synthesized in the previous chapters were used to generate these 

energetic foams.  The hydroxyl end groups on the polymers made this particular phase of 

the research possible.  In the study of energetic materials, the physical characteristics of 

the compounds are just as important as the energetic capabilities.  Foams provide a 

unique medium for energetic materials.  Although they are less dense than energetic 

materials such as ammonium perchlorate, foams offer a wide number of advantages.  A 
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rigid foam could easily provide a solid support for a liquid energetic material.  Military 

personnel could also easily apply foams in the field in canisters or in more traditional 

weapons.  These foams illustrate how tetrazoles can be applied to nearly every energetic 

application.  Their inherent tunability opens up a large number of possible uses and 

applications.   

 In Chapter VI, energetic ionic liquids were designed and synthesized.  Ionic 

liquids are molten salts that exhibit no detectable vapor pressure.  Many of the current 

energetic materials such as monopropellants are toxic and volatile.  If an ionic liquid 

were used instead of the normally used hydrazine, volitilty would no longer threaten the 

workers who deal with the propellants.  Two classes of tetrazole ionic liquids were 

discussed in this chapter, and one was synthesized and characterized. The structural 

modifications proved that the physical properties and energetic potential of these liquids 

could be effectively tuned.  With additional theoretical work, it is anticipated that the 

most promising energetic counter-anion will be discovered.  A number of possibilities 

exist and they are discussed in the final chapter of this thesis.  

Energetic gels that included tetrazoles were also studied (Chapter VII).  Gels, like 

ionic liquids and foams, enjoy several special advantages.  Primarily, gels are thixotropic.  

A thixotropic substance is one that will flow if a shearing force is applied, but solidify 

when the force is removed.  Therefore, gels will not spill out of a ruptured container, and 

will be easily cast into a rocket motor.  In this chapter, the preparation of a two-

dimensional polymer was reported. The energetic potential was low compared to the 

performance of the GAP, but the suggested structural modifications should positively 

impact the performance.  The three-dimensional polymers were synthesized as well. 
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These experiments proved that the molecular weight and the degree of cross-linking 

influenced the physical characteristics of the gels. Additional work will be necessary to 

provide optimum systems with the desired physical and energetic characteristics.   

The research results in this thesis demonstrate that tetrazole derivatives are a 

versatile and useful class of compounds for applications toward the development of new 

and novel energetic materials.  Tetrazoles provide a stable alternative to the ubiquitous 

energetic azido group.  Due to their stability, tetrazoles are suitable energetic candidates 

in gels, foams, ionic liquids, and polymers.   
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CHAPTER II 
 

A NOVEL APPROACH TO THE GENERAL SYNTHESIS OF TETRAZOLES 
 
 

Introduction 
 
 Research on the preparation of tetrazoles has been conducted for more than 50 

years.  A tetrazole moiety is a 5-membered cyclic ring containing 4 nitrogen atoms and a 

carbon.  A general 5-substituted tetrazole is shown in Figure 2-1.  Tetrazoles can be 

prepared from imidoyl chlorides, amidrazones, nitriles, nitrilium salts, and isonitriles 

(Gupa et al., 1999).  All of these reactions require the use of either an organic or 

inorganic azide (-N3) in the presence of a proton source.  The most common method of 

producing tetrazoles is through the reaction of a nitrile with an organic azide.  However, 

inorganic azides are easily converted to hydrazoic acid (HN3) through protonation.  

Hydrazoic acid is extremely dangerous due to its explosive nature and high toxicity and, 

for this reason, reactions with azide must be conducted with extreme caution.  For these 

reasons, researchers have tried to develop alternate methods for the preparation of 

tetrazoles.  As a consequence, the focus of this research was to develop safe and efficient 

methods for the preparation of tetrazoles that improved upon the current techniques.  The 

goal was to develop a process that used sodium azide while limiting the possibility of 

forming the toxic and explosive hydrazoic acid.  Scalability was also a concern 

throughout this project.   

 Tetrazoles and their derivatives have a wide number of applications.  Primarily, 

tetrazoles are used as rocket propellants (Brown, 1967), primary explosives (Tarver et al., 

1967; Henry, 1963), and as pharmaceutical precursors in medicinal chemistry (Bradbury  
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Figure 2-1. Structural comparison of the carboxylic acid type moiety present in the 

tetrazole ring.   
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et al., 1993; Carini, 1991; Duncia et al., 1991; Koyama et al., 1987; Raman et al., 1980; 

Rossano, 1992; Larson et al., 1994; Singh et al., 1989; Stenberg et al., 1984).  Tetrazoles 

exhibit potential biological activity because the tetrazole ring is considered a biomimic of 

the carboxylic acid functional group (Figure 2-1).  However, the tetrazole moiety is 

metabolically more stable than the carboxylic acid group (Gupta, et al., 1999).  This 

special characteristic suggests that tetrazoles will continue to have a significant impact in 

pharmaceutical research.   

Currently, there is a new class of drugs that shows great potential for successfully 

treating hypertension.  These angiotensin-II-antagonists or receptor blockers (AT-II 

blockers) all possess a tetrazole moiety (Bradbury et al., 1993; Larsen et al., 1994).  AT-

II blockers were originally developed as an alternative to the commercially successful 

ACE-inhibitors.  The ACE-inhibitors exhibited a number of negative side effects.  Both 

classes of these drugs act on the rennin angiotensin system (RAS), which is a key element 

in blood pressure regulation.  AT-II antagonists have great potential, but they suffer one 

large drawback—the most efficient method used to produce tetrazoles involves the use of 

sodium azide.     

Sodium azide is used in air bag inflation, pharmaceuticals, and as an intermediate 

in explosive manufacturing.  Sodium azide is highly toxic by inhalation in aerosols, 

ingestion, or skin absorption; and, it forms dangerous explosive heavy metal azides in 

laboratory equipment and drain traps.   

Hydrazoic acid is believed to be the ultimate toxic agent in humans exposed to 

sodium azide.  NaN3 is rapidly converted to HN3 on contact with moisture (National 

Research Council, 1981).  The acute toxicity of sodium azide is very high.  Symptoms of 
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exposure include lowered blood pressure, headache, hypothermia, and (in cases of serious 

overexposure) convulsions and death.  Ingestion of 100 to 200 mg in humans may result 

in headache, respiratory distress, and diarrhea.  Target organs are primarily the central 

nervous system and brain.  Symptoms of acute exposure to hydrazoic acid include eye 

irritation, headache, dramatic decrease in blood pressure, weakness, pulmonary edema, 

and collapse.  Solutions of sodium azide can also be absorbed through the skin. When 

solutions of hydrazoic acid are formed, the highly toxic gas can easily evaporate and 

cause a serious inhalation hazard.  

While sodium azide is not explosive under normal conditions or considered a 

flammability hazard, it is commonly used in detonators and other explosives.  It does 

impose explosion risks when shocked or heated to high temperatures.  Violent 

decomposition can occur when heated to 275 oC. The decomposition products are 

nitrogen and sodium oxides.  The toxicity and explosive dangers associated with azide 

illustrate why it is important to develop methods for tetrazole preparation that reduce or 

even eliminate its use. 

As mentioned previously, there are many ways to prepare tetrazoles from 

different starting materials. Most of these methods involve the use of azides.  Their 

preparation from nitriles commonly involves the use of an amine hydrochloride and 

sodium azide.  In one case, hydrazoic acid (HN3) is complexed as its amine salt by the 

reaction of ammonium chloride and sodium azide in polar, high-boiling solvents such as 

dimethylformamide and methylsulfoxide (Benson, 1967; Butler, 1977; Herbst and 

Wilson, 1957; Finnegan et al., 1958; Kabada, 1973).  Recently, several different 5-

substituted tetrazoles were prepared from nitriles using sodium azide and an excess of 
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triethylamine hydrochloride in aromatic solvents (Koguro et al., 1998).  Another method 

has been reported where nitriles react with sodium azide and a stoichiometric amount of 

acetic acid in tert-butyl alcohol (Russell and Murray, 1993).  Extreme care must be taken 

with these types of reactions to monitor any possible HN3 in the headspace of the reactor 

to avoid explosive levels of hydrazoic acid. 

Several other methods exist for the preparation of tetrazoles from nitriles where 

dangerous levels of hydrazoic acid can be avoided.  The use of trialkyltin azide (Duncia 

et al., 1991) or trialkylsilylazide in conjunction with either dialkyltin oxide (Wittenberger 

and Donner, 1993) or trimethylaluminum (Huff and Staszak, 1993) has been reported but 

each suffers from a difficult initial reagent synthesis.  These systems using tin lead to 

problematic separations of tin from the product and involve careful handling of toxic tin.  

Systems containing trimethylaluminum include laborious catalyst neutralization and 

waste disposal as well as careful handling due to moisture sensitivity.  A method using 

tetramethylguanidinium azide (Papa, 1966) has been reported but suffers from dangerous 

reagent synthesis involving the direct use of HN3.  The use of a surfactant in conjunction 

with ammonium chloride and sodium azide (Jursic and LeBlanc, 1998) has been 

developed but is limited due to long reaction times in excess of 5 days.   

The limitations that exist for these systems must be avoided if a safe and 

economical process is to be developed for the preparation of tetrazoles.  Therefore, the 

objective of this project was to design a system that permitted the formation of tetrazole 

derivatives from a nitrile using azide while reducing the potential to create significant 

levels of hydrazoic acid.  The reactions reported in this chapter were run with the intent 

of finding a simple process that minimized the possibility of hydrazoic acid formation, 
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produced high yields, used azide as the limiting reagent, and allowed for the recycle of all 

components of the reaction system.   

 

Experimental Methods 

 
Materials 

The chemicals used during these investigations were obtained and used without 

further purification.  These include the following: benzonitrile (Aldrich, 99%), 

benzyltriethylammonium chloride (Aldrich, 99%), butyldiethylamine (Aldrich, 99%), 

butyldimethylamine (Aldrich, 99%), heptane (Aldrich, 99%), hydrochloric acid (Aldrich, 

37%), methanol (Aldrich, 99.8%), 5-phenyl-1H-tetrazole (Aldrich, 99%), sodium azide 

(Aldrich, 99%), tributylamine (Aldrich, 99%), triethylamine (Aldrich, 99.5%), 

triethylamine hydrochloride (Aldrich, 98%), trioctylamine (Aldrich, 99%), 

triphenylmethyl chloride (Aldrich, 98%), tripropylamine (Aldrich, 99%).  

 

Procedure 

 All the reaction procedures described below were performed in a 100ml single 

neck (24/40) round bottom flask.  Once the reactants were loaded, the reaction flasks 

were all flushed with argon for 1 minute and left under argon for the duration of the 

reaction.  All reactions were stirred at the same rate using a teflon coated magnetic stir 

bar.  All reactions were heated using a silicon oil bath and reaction flasks were fitted with 

a reflux condenser.  Sodium azide was the limiting reagent in all reactions so mol 

percentages and other references to relative added quantities were all based on the 

amount of added sodium azide.   All reactions were followed by the same post-reaction 
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product isolation (work up) procedures unless otherwise noted.  For 5-phenyl-1H-

tetrazole, mp=216-217°C, 1H, δ (CDCl3):  7.62 (m, 3H), 8.05 (m, 2H).  These data 

corresponded to the literature values for the melting point of 5-phenyl-1H-tetrazole, 

mp=215-217°C and the NMR spectra (Koguro, 1998).   

 

(Figure 2-3) Sodium azide (2.25g, 35mmol) was first weighed into the reaction 

flask and clamped into the hood.  Benzonitrile (~5ml) was added followed by 

triethylamine hydrochloride (4.9g, 35mmol) and the remaining benzonitrile (15ml).  

 

 (Synthesis of ammonium hydrochloride salts).  The amine hydrochloride (10g ) 

was placed into a 1 L round bottom reaction flask.  The flask was clamped into the hood 

and lowered into an ice bath.  Diethylether was added and a magnetic stir bar was used to 

stir the mixture.  Dry HCl in ether was then added via syringe.  The resulting crystals 

were collected via vacuum filtration and stored under reduced pressure for 24 hours.  The 

crystals were stored in a desiccator.  The products were analyzed via 1H NMR. 

Diethylbutylamine HCl, 1H, δ (CDCl3):  0.98 (t, 3H), 1.40 (m, 2H), 1.82 (m, 2H), 2.01 (d, 

6H), 2.86 (m, 4H), 3.02 (m, 2H); Dimethylbutylamine HCl, 1H, δ (CDCl3):  0.98 (t, 3H), 

1.40 (m, 2H), 1.82 (m, 2H), 2.81 (d, 6H), 3.02 (m, 2H); Tributylamine HCl, 1H, δ 

(CDCl3):  0.98 (t, 9H), 1.42 (sextet, 6H), 1.75 (m, 6H), 3.05 (m, 6H); Tripropylamine 

HCl, 1H, δ (CDCl3):  1.01 (t, 9H), 1.84 (m, 6H), 2.95 (m, 6H). 

 
 

(Figure 2-6) Synthesis of 5-phenyl-2-triphenylmethyl tetrazole. To a 250mL 

round bottom flask 2.25g (35mmol) of sodium azide was added.  Benzonitrile (5mL) was 
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then introduced to cover the solid.  A stoichiometric amount of quaternary ammonium 

salt was then added to the flask, followed by more benzonitrile (15mL).  A magnetic stir 

bar was added and a condenser was attached.  The system was then flushed with nitrogen 

and sealed.  After the reaction was complete, the condenser was removed and the reaction 

remained in the hot oil bath.  Then a stoichiometric amount of trityl chloride in hot 

benzonitrile was added dropwise via pipette.  The system was then resealed with the 

condenser and allowed to stir.  The reaction was then cooled on ice and water (40mL) 

was introduced.  Cold heptane (150mL) was then added to precipitate the product.  The 

entire flask was then sealed with a rubber stopper and placed under refrigeration for at 

least 24 hours.   The crystals were then filtered, washed with water, and collected with 

ethyl acetate.  The ethyl acetate was reduced with a rotary evaporator and all excess 

solvents were removed from the product crystals in an oven (65°C) under reduced 

pressure.  Mp= 155-156°C, 1H  δ (CDCl3): 7.08-7.48 (m, 18H), 8.03 (m, 2H) These 

values corresponded to those found in the literature (Myznikov, 2002).  

 

(Figure 2-8) Sodium azide (2.25g, 35mmol) was first weighed into the reaction 

flask and clamped into the hood.  Benzonitrile (~5ml) was added followed by a 

stoichiometric amount of benzyltriethylammonium chloride (8.0g, 35mmol).  The proton 

source (triethylamine hydrochloride, TEAHC (0.49g, 3.5mmol, 10 mol%) or 

triethylammonium 5-phenyltetrazolate, TEAPT (5ml of 0.7M solution, 3.5mmol, 10 

mol%)) was then added followed by the remaining benzonitrile (~15ml for reactions with 

TEAHC and ~10ml for reactions with TEAPT).  
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Preparation of 0.7M solution of triethylammonium 5-phenyltetrazolate (TEAPT) 

in benzonitrile (Figure 2-7):  1.02g of 5-phenyl-1H-tetrazole was weighed into a 10ml 

volumetric flask.  A few milliliters of benzonitrile were added followed by a 

stoichiometric amount of triethylamine (relative to the weighed 5-phenyl-1H-tetrazole) 

via microsyringe.  As soon as the solid was dissolved the solution was diluted to the 10ml 

mark with benzonitrile to give a molarity of ~0.7M. 

 

(Gaseous Workup) To a 250mL three-neck round bottom flask was added 2.25g 

(35mmol) of sodium azide.  Benzonitrile (~5mL) was then introduced to cover the solid.  

A stoichiometric amount of amine hydrochloride was then added to the flask, followed by 

more benzonitrile (~15mL).  A magnetic stir bar was added and a condenser was 

attached.  The system was then flushed with nitrogen and sealed.  After the reaction was 

completed, the flask was removed from the hot oil bath and placed on ice while stirring.  

The condenser was removed and the center neck was sealed.  The flask was then fitted 

with a sidearm attachment connected to a gas bubbler and a glass tube to bubble the HCl 

gas through the solution.  The HCl gas was then bubbled into the mixture with the aide of 

argon.  The product crystals were then filtered and the filtrate was collected in a 100mL 

round bottom flask.  Azide and a stir bar were then added to the filtrate and the reaction 

was allowed to continue.  The crystals from both cycles were filtered, washed with water, 

and collected with acetone and placed in an oven (65°C) under reduced pressure. 
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Results and Discussion 

The focus of this research was to develop a system for preparing tetrazoles using a 

nitrile and sodium azide in which the potential for hydrazoic acid formation could be 

reduced, controlled or even eliminated.  Benzonitrile was chosen as the initial substrate 

because its product tetrazole, 5-phenyl-1H-tetrazole, is a valuable precursor to many 

pharmaceuticals.  Initial experiments used toluene as a solvent in the presence of sodium 

azide, benzonitrile and tetrabutylammonium chloride (TBAB).  TBAB is a very 

commonly used commercially available phase-transfer catalyst (PTC).   

Phase transfer catalysis is a special technique that appeared to offer several 

benefits to this project.  A phase transfer catalyst is typically an ammonium salt with long 

alkyl chains.  The catalyst forms a reactive species with a reactive salt such as KCN or 

NaN3.  The long greasy alkyl chains transfer the reactive species into the organic phase 

containing the starting material (Liotta et al., 1990).  The reaction then takes place when 

the entities are brought together in the organic phase.   

For this project, it was believed that PTC would transfer the reactive azide anion 

into the toluene phase for reaction with benzonitrile.  Several different sets of reaction 

conditions were tested.  The temperature, reactant concentration, and catalyst amount 

were all systematically adjusted.  While these variations were tested, it was decided to 

use the benzonitrile as both the solvent and reactant.  In all cases, these reactions were 

found to be largely unsuccessful as no product tetrazole was produced.   

The literature was extensively reviewed and it was determined that the presence 

of a tertiary amine hydrochloride might facilitate the reaction.  Ammonium salts of azides 

in which the ammonium salt contained at least one proton have been reported to be 
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successful reagents for the [3 + 2] cycloaddition reactions with nitriles (Koguro et al., 

1998). However, ammonium salts without a proton (PTCs) did not facilitate reaction. 

Therefore, it was proposed that a modified version of a phase-transfer catalyst should be 

used.  A protonated tertiary amine was used instead of a traditional quaternary 

ammonium salt.  The modified PTC still contained enough organic character to transfer 

the reactive azide anion and, consistent with the interpretation of the literature, the 

presence of the proton would aid in the cycloadditon reaction between the azide and 

benzonitrile by forming the reactive species show in Figure 2-2.  Because triethylamine 

hydrochloride (TEAHC) was commercially available, it was chosen as the initial amine 

hydrochloride.  The reaction for this particular system is shown in Figure 2-3.  

 This reaction was initially attempted at room temperature in order to keep the 

reaction conditions relatively mild. The presence of a stoichiometric amount of TEAHC 

(relative to sodium azide) made safety an important concern because all of the sodium 

azide could have been transformed into hydrazoic acid under the conditions of the 

experiment.  At room temperature, this reaction produced an isolated yield of 20 % in 24 

hours.  Therefore, the reaction was heated slightly to 50 oC and run for 24 hours.  These 

conditions produced an isolated yield of 97%. Reactions were found to go to completion 

only when TEAHC was used in equimolar quantities relative to the sodium azide.  Due to 

the success of this reaction, the experiment was repeated at shorter times to verify when 

the reaction was complete.  Figure 2-4 presents a graph showing the isolated yields of 5-

phenyl-1H-tetrazole versus time at 50oC for the reaction system shown in Figure 2-3.  

This graph illustrates that the reaction appears to be complete within 16 hours.  The 

reaction was also attempted at 100°C with similar results.  At this higher temperature,  
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N3 H NR3 
 
 
 
 
Figure 2-2.  The complex between azide ion and a protonated tertiary 

amine.  
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Figure 2-3. General reaction between triethylamine hydrochloride and sodium 

azide with benzonitrile as both solvent and reactant in the 
preparation of 5-phenyl-1H-tetrazole. 
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Figure 2-4. Isolated yields of 5-phenyl-1H-tetrazole versus time for the reaction 

shown in Figure 5-2 at 50oC. 
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however, an isolated yield of 97% was obtained after only 1 hour.  The amine 

hydrochloride was used without purification.  It should be noted that the drying and 

crushing of the amine hydrochloride had a negligible effect on the overall isolated yields.   

 In addition to TEAHC, a number of other proton sources were tested.  These 

included tripropylamine hydrochloride, butyldiethylamine hydrochloride, butyldimethyl 

hydrochloride, tributylamine hydrochloride, and trioctylamine hydrochloride (Figure 2-

5).  The analysis of these new proton sources was driven by two motives.  The first was 

to determine whether TEAHC was indeed the most effective, and the second was to find 

a proton source that was soluble in benzonitrile.  This characteristic would allow the 

amine hydrochloride to be recycled if a gaseous HCl workup was used in lieu of the 

standard aqueous workup. With the aide of gaseous HCl, the product could be 

precipitated and filtered while the proton source remained active and soluble in the 

benzonitrile.  The beauty of this process lied in the fact that only the addition of sodium 

azide to the solvent (benzonitrile) containing the recycled amine hydrochloride would be 

needed to conduct another reaction.   

The first amine hydrochloride tested was the long chained trioctylamine 

hydrochloride.  This species was soluble in benzonitrile, but yielded no product.  It was 

hypothesized that the steric exposure of the protonated nitrogen played a key role in the 

effectiveness of the amine hydrochloride in the formation of the reactive species (Figure 

2-2). The shorter, assymetrical amine hydrochlorides were then tested with the hope of 

finding an effective proton source with a sterically exposed nitrogen and enough organic 

character to remain soluble in benzonitrile.  Indeed, these catalysts proved to be soluble 

in benzonitrile and they produced varying yields of tetrazole as seen in Table 2-1.  
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Figure 2-5. Tertiary amines employed as proton sources in the formation of 

the tetrazole functionality.    



  

Table 2-1.  Yields of tetrazole as a function of time and temperature.   
 
 

Proton Source Time(hours) Temp. (°C) Yield (%)
Tripropylamine HCl 24 50 60 

 1 100 75 
 2 100 86 
 4 100 91 
    

Butyldiethylamine HCl 24 50 85 
 1 100 74 
 2 100 79 
 4 100 90 
    

Butyldimethylamine HCl 24 50 82 
 2 100 62 
 4 100 60 
 8 100 76 
    

Tributylamine HCl 24 50 74 
 5 100 57 
 24 100 50 
    

Trioctylamine HCl 24 50 0 
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In all of the reactions that used a soluble amine hydrochloride, gaseous HCl was used to 

precipitate the product.   After filtering the product and washing with benzonitrile, NaN3 

was added to the filtrate and the procedure was repeated.   A list of the results from these 

consecutive recycle experiments is in Table 2-2.  These experiments were a success.  By 

using a soluble amine hydrochloride, the product was successfully isolated without 

destroying the catalyst with a traditional aqueous wash.  From the standpoint of 

economics, this process represented an important breakthrough.   

  In addition to the reactions that used a stoichiometric amount of the amine 

hydrochloride, several experiments were run with a 2:1 addition (relative to azide).  

While the ability to recycle the amine hydrochloride made this method economically 

acceptable, the excess addition had little effect on the isolated yields.  The reactions run 

with tripropylamine hydrochloride only displayed a 1-4% increase in isolated yields 

when a 2:1 ratio was used.  Overall, tripropylamine hydrochloride clearly provided the 

best results with the gaseous HCl workup.  However, headspace analysis of the reaction 

with tripropylamine hydrochloride showed that 4-5% of the NaN3 was converted to 

hydrazoic acid during the course of the reaction.  In contrast, triethylamine hydrochloride 

did not produce any detectable hydrazoic acid regardless of the temperature of the 

reaction.  Therefore, the addition of a 2:1 amount (relative to azide) of the amine 

hydrochloride did little to improve this process.  It was concluded that it would not be 

advisable to use larger than stoichiometric quantities of the proton source.   

As an extension to this novel system, the in situ protection of the tetrazole moiety 

was investigated.  To provide more advanced intermediates--especially those that are 

precursors for AT-II receptor antagonists--the tetrazole moiety is commonly protected  
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Table 2-2. Yields of tetrazole between the first and second cycle.     
 

Proton Source Time (Hours) Temp. (°C) Yield of 5PT (%)*
Tripropylamine HCl 4 100 91/89 

Butyldiethylamine HCl 24 50 85/84 
Butyldimethylamine HCl 24 50 89/88 

Tributylamine HCl 24 50 74/74 
*(Yield of First Cycle/Yield of Second Cycle)  
 
 
 



(Larson et al., 1994; Carini et al., 1991; Lo and Rossano, 1992; Schuman et al., 1991).  

This is accomplished through a separate synthetic step by adding a triphenylmethyl group 

to the N-2 position of the tetrazole ring.  The protection step involves reaction of the 

tetrazole moiety with triphenylmethyl chloride (trityl chloride) in the presence of tertiary 

amine as base.  Because the reaction system under investigaion was believed to already 

contain a deprotonated tetrazole ring at the end of reaction prior to acidification, it was 

proposed that the simple introduction of trityl chloride should provide the desired 

protected product.  Figure 2-6 shows the synthetic steps involved for the protection of the 

tetrazole ring with trityl chloride.   

In order to optimize the isolation of the protected product, the trityl chloride was 

added to the reaction at various temperatures (0-115°C) using a variety of methods; and, 

allowed to react for several hours (0-16).  Most commonly, the trityl chloride was 

dissolved in benzonitrile or a mixture of benzonitrile and heptane. Originally, the solution 

was mixed at 25°C and a great deal of benzonitrile was needed to dissolve the trityl 

chloride.  For every 10g of trityl chloride, nearly 45 mL of benzonitrile was required to 

fully dissolve the solid.  This led to an undesirable dilution effect that hindered the 

efficiency of the reaction.  The yields of protected tetrazole ranged from 61-67% when 

the trityl chloride solution was mixed and added at 25°C regardless of the other variables.   

 Therefore, the solutions were heated to increase the solubility of the trityl 

chloride.  At 70°C, 10g of trityl chloride dissolved in only 10 mL of benzonitrile.  While 

trityl chloride melts at 109°C, its addition as a liquid at 115°C did not produce an 

acceptable result.  This was also true for a neat addition of trityl chloride at 50°C.  Based 

on  
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Figure 2-6. Reaction sequence showing the formation of triethylammonium 5-

phenyltetrazolate and subsequent tetrazole ring protection by 
reaction with triphenylmethyl chloride. 



all of the experiments, it was realized that 70°C was the ideal temperature for the addition 

of trityl chloride dissolved in benzonitrile.  These results are shown in Table 2-3.   

A series of experiments were run to substantiate the yields obtained in the above 

reactions.  In these experiments, 5-phenyl-1H-tetrazole was dissolved in benzonitrile and 

deprotonated with triethylamine. The trityl chloride was then added and the product was 

extracted with heptane.  The independent yield from this step was 85%.  Overall yields 

near 80% were obtained for most of these reactions.  These yields were consistent with 

the results obtained in the one-pot reaction process described previously if one assumed 

that the initial tetrazole formation reaction went to ~93-97% completion (as clearly 

demonstrated earlier in this chapter).   

A mechanism, consistent with the experimental observations, was proposed to 

describe the formation of the tetrazole derivative (Figure 2-7).  The TEAHC had a high 

solubility in the benzonitrile phase and was believed to form a complex on the surface of 

the solid sodium azide particles.  The formation and reaction of species of this type on the 

surface of solid salt particles is described in the literature (Liotta, 1987).  This complex 

then underwent an ion-exchange process to form solid sodium chloride and a soluble 

species (N3
-
••••H-NEt3

+) believed to be the reactive species for the cycloaddition. 

Hydrogen-bonded complexes of this type (between HN3 and different bases) have been 

well studied through the use of infrared spectroscopy and proton nuclear magnetic 

resonance spectroscopy (Nelson, 1970; Lieber et al., 1963; Nelson et al., 1970).   In order 

to possibly speed up the overall rate of reaction, a quaternary ammonium salt, 

benzyltriethylammonium chloride (BTEAC), was introduced into the system. This was 

expected to aid in the transfer of the azide anion into the organic phase (where a high  
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Table 2-3.  The yield of protected tetrazole as a function of initial addition 

temperature.  
 
 

Temp. of Reaction  Time Trityl Chloride Temperature  Yield of  
During Addition (°C) Reacted (Hours) (°C) Protected 5PT (%)

0 3 100 77 
100 3 100 81 

*All of these reactions used TEAHCl for the first step  
 
 



 27

(soln)
C N

N
N

N

+ (soln)

C N

N3.....H
(soln)

NEt3

.....H
(soln)NEt3NaCl (s)  +  N3    Na N3    HNEt3Cl (surface)

NaN3 (s)  +  Et3NH Cl (soln)                     Na N3    HNEt3Cl (surface) (1)

(2)

(3)H-NEt3

 
 
 
 
Figure 2-7. Proposed mechanism for the reaction shown in Figure 2-3. 



concentration of the TEAHC existed) and facilitate a faster formation of the reactive 

complex.  Table 2-4 shows a comparison of the results achieved with and without the 

BTEAC present. For the 5 hour reactions, the isolated yield increased almost 20% in the 

presence of BTEAC.  However, the 12 hour reaction produced a lower isolated yield with 

the BTEAC.   

 In Figure 2-7, the resulting product in step 3 was a complex between the 

tetrazolate anion and a protonated triethylamine cation.  It was proposed that if a 

quaternary ammonium cation could form a more stable complex with the tetrazolate 

anion, the protonated triethylamine could ion exchange with a quaternary ammonium 

chloride to regenerate the reactive species (N3
-
••••H-NEt3

+) for continuous reaction.  It 

was expected that a system containing a stoichiometric amount of quaternary ammonium 

chloride salt (to complex each mole of tetrazolate product formed) and a less than 

stoichiometric amount of triethylamine hydrochloride would facilitate a catalytic 

reaction.  This proposed reaction sequence is shown in Figure 2-8.  

  This reaction system was initially setup and run with a stoichiometric amount of 

BTEAC and only a 10 mol% of proton source, TEAHC.  The conditions were varied and 

the results are depicted in Table 2-5.  A 71% isolated yield of the product was achieved in 

48 hours at 50oC using only a 10 mol% of TEAHC.  Accordingly, only 10 mol% of the 

azide could potentially form hydrazoic acid.  However, if the quaternary ammonium 

cation was indeed responsible for stabilizing the deprotonated tetrazolate anion species, 

less than a stoichiometric amount of BTEAC would result in a poor isolated yield. This 

result would occur because the TEAHC would not undergo the ion exchange that 

continued the reaction.     When  only  a  10 mol%  of BTEAC and TEAHC were used, an  
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Table 2-4. Comparison of isolated yields for the reaction shown in Figure 2-3 at 
50oC with and without BTEAC.  Mol percentages are relative to 
sodium azide  addition. 

 
 

BTEAC 
(mol%) 

NEt3 • HCl 
(mol%) 

Time 
(hours) 

Isolated Yield 
(%) 

 100 5 53 
 100 12 88 

10 100 5 71 
10 100 12 78 
100 10 48 71 
10 10 48 4 

 



 30

NaN3 (s)  +  Q Cl (soln) Q N3
 
(soln)   +   NaCl(s)

C N
N

N
N

Q

C N
N

N
N

NEt3
H

NEt3N3 ..... (soln)

C N

(soln)
(soln)

(soln)

Cyclization

Ion
Exchange

Initiation:

HQ Cl (soln) +

Cl HNEt3(soln)

Formation of
Reactive Species 

 
 
Figure 2-8. Proposed catalytic cycle for the preparation of 5-phenyl-1H-tetrazole 

using a stoichiometric amount of triethylamine hydrochloride 
(TEAHC) and a 10 mol% of benzyltriethylammonium chloride 
(BTEAC).   



 

 
Table 2-5. The results from the temperature, time, and mol% of TEAHC 

variations.  In all of these experiments, a stoichiometric amount of 
BTEAC was used.   

 
Mol % of TEAHC Time (hrs) Temp. (°C) Yield of 5PT(%)

5 48 50 41 
10 48 50 71 
20 48 50 75 
30 48 50 71 
40 48 50 61 
 
5 72 50 65 
10 72 50 79 
50 72 50 88 
 

10 1 100 47 
10 2 100 52 
10 3 100 65 
10 6 100 70 
 
5 24 100 60 
10 24 100 62 
20 24 100 69 
50 24 100 79 
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isolated yield of only 4% was obtained.  Therefore, the proposed catalytic mechanism 

shown in Figure 2-8 was believed to be a valid representation of this system. 

 The first step of the proposed catalytic cycle (Figure 2-8) was an initiation step in 

which the quaternary ammonium chloride shuttled the azide anion into the organic phase.  

Here, the azide reacted with TEAHC, the proton source, to provide the reactive species 

and the original quaternary ammonium chloride.  The reactive species then reacted with 

the nitrile to give the product.  Next, an ion exchange step stabilized the product tetrazole 

with the quaternary ammonium cation.  The ion exchange step also regenerated the 

triethylamine hydrochloride proton source for further reaction.  As stated earlier, if less 

than a stoichiometric amount of quaternary ammonium salt was used, the reaction was 

limited by the ion exchange step.  Of great interest in this cycle was the fact that after the 

cycloaddition step, the product tetrazolate species was being stabilized by a protonated 

triethylamine.  Therefore, it was proposed that this species (the triethylammonium 5-

phenyltetrazolate, TEAPT) could serve as the catalyst in the system instead of 

triethylamine hydrochloride. 

The use of the product tetrazole as the proton source was investigated next.  As 

shown in Figure 2-9, 5-phenyl-1H-tetrazole is insoluble in benzonitrile. However, it is 

soluble when deprotonated with a stoichiometric amount of triethylamine.  It is known 

that the limited solubility of tetrazoles in many organic solvents is due to the 

intermolecular hydrogen bonding that exists (Gupta, 1999) as shown in Figure 2-10.  This 

H-bonding system breaks down with the addition of triethylamine due to deprotonation.  

Reactions were performed using a 10 mol% of the TEAPT species as the proton source 

with  benzonitrile  as  reactant  and  solvent  in  the  presence  of  sodium   azide  and  a  
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Figure 2-9. Reaction showing the deprotonation of the 5-phenyl-1H-tetrazole 

to produce a soluble triethylammonium 5-phenyltetrazolate 
species (TEAPT). 
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Figure 2-10. Intermolecular hydrogen bonding of 5-Phenyl-1H-tetrazole. 
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Figure 2-11. Reaction scheme using 10 mol% TEAPT as the proton source. 
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stoichiometric amount of BTEAC as shown in Figure 2-11. No product was formed when 

sodium azide was reacted with only benzonitrile at 50 oC for 48 hours.  When this 

reaction was repeated in the presence of a 10 mol% of TEAPT, again, no product was 

formed.  When sodium azide was reacted with benzonitrile only in the presence of a 

stoichiometric amount of BTEAC (no TEAPT) at 50 oC for 48 hours a 15 % isolated 

yield of the product was obtained.  But when the sodium azide was reacted with 

benzonitrile in the presence of both a stoichiometric amount of BTEAC and a 10 mol% 

of TEAPT an isolated yield of 87% is achieved.  A proposed catalytic cycle for this 

system is shown in Figure 2-12. 

 Again, the quaternary ammonium cation transferred the azide anion into the 

organic phase during the initiation step.  This azide underwent an ion exchange with the 

TEAPT/TEAHC to produce a stabilized product and the reactive species.  This reactive 

species then reacted with benzonitrile to regenerate the TEAPT/TEAHC species for 

further catalytic reaction.  This novel system provided direct control over the potential 

amount of hydrazoic acid that can form in the system.  By only introducing a catalytic 

amount of proton source, there could never be more than an equivalent amount of 

hydrazoic acid present at any given time.  This reaction, as shown by the results in Figure 

2-12, did not proceed without a stoichiometric amount of BTEAC even when a 10 mol% 

of TEAPT was present.  Therefore, it was believed the quaternary ammonium cation was 

imperative for stabilization of the tetrazolate anion while freeing up the protonated 

triethylamine for further reaction. 
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Figure 2-12. Proposed catalytic cycle for the reaction shown in Figure 2-11. 



Conclusions 

Two novel systems that use benzonitrile as reactant and solvent for the 

preparation of 5-phenyl-1H-tetrazole were developed.  The first system used a modified 

version of phase-transfer catalyst (a protonated tertiary amine) in stoichiometric amounts 

relative to sodium azide.  This system was run at the relatively mild temperature of  

50 oC and provided an isolated product yield of  97% within 16 hours.  It was also 

demonstrated that a protected tetrazole can be prepared in situ prior to acidification with 

the addition of trityl chloride.  This would allow for subsequent derivatization of other 

functionalities without interference of the tetrazole moiety.  The second system 

demonstrated the ability to control the potential amount of hydrazoic acid formation 

without sacrificing high yields of 5-phenyl-1H-tetrazole.   By introducing only a 10 

mol% of a proton source, either TEAHC or TEAPT, in the presence of a stoichiometric 

amount of quaternary ammonium salt, BTEAC, isolated yields as high as 87 % were 

achieved.   
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CHAPTER III 
 
THE SYNTHESIS AND CHARACTERIZATION OF GLYCIDYL AZIDE POLYMER 

 
 

Introduction 
 
 To facilitate their use as propellants, energetic materials are typically mixed with 

a binder.  A binder is a cross-linked polymer that provides a matrix that binds the 

explosive ingredients together with a plasticizer.  The plasticizer is added to not only 

facilitate processing, but to improve the mechanical properties of the final formulation.  

After the curing process, the binder is a rigid and tough elastomeric rubber capable of 

dissipating and absorbing energy from hazardous stimuli (Provatas, 2000).  One of the 

first binders used in energetic materials was a mixture of nitrocellulose and 

nitroglycerine.  The nitrocellulose thickened the nitroglycerin and reduced the impact and 

friction sensitivity of the propellant.  (Leeming, 1996) Currently, the favored practice is 

the encapsulation of the explosive in a binder composed of a polymer such as hydroxyl-

terminated polybutadiene crosslinked with isocyanates and a plasticizer such as dioctyl 

adipate.  (Provatas, 2000)  This system produces a tough, yet flexible, three-dimensional 

network.  

 A number of binders—including azide and non-azide species—for use in 

advanced propellant formulations have been studied (Niehaus, 2000).    One of the most 

popular binders is glycidyl azide polymer (GAP) or poly[(azidomethyl)ethylene oxide] 

(Figure 3-1).  GAP was first synthesized in 1972 by Vandenburg (Vandenburg, 1972). 

The physical and energetic characteristics of GAP make its use as a binder very 

important.  The low glass transition temperature of GAP and its low percentage of  

 40



 41

R

O

OH

N3

x
m

 
 
Figure 3-1.  Glycidyl Azide Polymer (GAP) is a viscous amber liquid.   
 



polymer weight-bearing chain make it an energetically favorable substance for use in 

binder systems (Kim et al, 2002; Korobeinichev et al, 2002).   

 In most solid propellants, the polymer content (from the binder) composes only 5-

15% of the total propellant formulation.  Nonetheless, the polymer ingredient affects the 

properties of the propellant.  Prior to the development of GAP, the polymer component of 

most binders was the least energetic material in the entire mixture.  GAP was designed to 

overcome this disadvantage by providing energetic properties to every component in the 

propellant formulation (Frankel, 1979). Based on the density impulse, the energetic 

properties of GAP were found to be highly competitive with existing propellants 

(Kuwahara, 2000).  The azide groups on GAP are responsible for the energetic 

characteristics.  Each N3 group has an energy of 80 kcal/mol and adds 2 seconds to the 

specific impulse (Isp) of metallized propellants and 6 seconds in non-metallized 

propellants.  (Johannssen, 1988)  During the combustion of GAP, the azide group 

undergoes a chain scission to produce nitrogen gas with a heat of reaction of +957 kJ/kg 

at 5 MPa (Kubota, 1988; Kubota, et al 1990).  Despite the high energy released by the 

azide group, researchers have discovered that the safety characteristics of an 

RDX(Cyclotrimethylenetrinitramine) and GAP mixture (86.4/13.6) has the same safety 

characteristics as the combination of RDX and the inert binder HTPB(Hydroxyl 

terminated polybutadiene) (86.4/13.6) (Desai et al, 1996).   

 Currently, only one major manufacturer in the United States produces GAP.  The 

specifications and properties of the available material are very limited as only one 

molecular weight, PDI, and functionality are produced.  The molecular weight and 

functionality of GAP are very important with regard to achieving the desired level of 
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cross-linking of the cured propellant mixture (Ampleman, 1990). The goal of this 

research was to synthesize several GAP materials with various specifications.  These 

experiments were designed in an attempt to control the molecular weight, functionality, 

and polydispersity of GAP.  As always, process improvement was another guiding 

principle during this research.   

 

Experimental Methods 

 
Materials 

 The chemicals used in these experiments were purchased and used without 

additional purification.  The chemicals used included:  epichlorohydrin (Aldrich, 99.9%), 

stannic chloride (Aldrich, 99.9%), 1,4-butanediol (Aldrich 99%), 1,3-propanediol 

(Aldrich, 99.98%), trifluoroacetic acid (Aldrich, 99%), sodium azide (Aldrich, 99.98%), 

Aliquat 336 (Aldrich, 99%), dichloroethane (Aldrich 99.9%), [BMIM][PF6] (Alrich, 

99%), [BMIM][BF4] (Aldrich, 99%), dimethylsulfoxide (Aldrich, 99%) 

 

Procedure 

 All of these reactions were run with an overhead stirrer.  Unless noted otherwise, 

the stir rate was 180 RPM.  Three- or four-necked flasks were used in all of these 

procedures.  To measure the molecular weights and polydispersities of the polymers, a 

GPC was used that had been calibrated using the low molecular weight range polystyrene 

Easy-Cal strips.  Structural analysis was performed using IR spectroscopy, 13C, and 1H 

NMR and the data corresponded to the analysis found in the literature.  All of the 
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reactions involving GAP were performed on a small scale (3.0g or less) and encased 

behind a blast shield.   

 

 (Figure 3-2) Synthesis of PECH.  1,4-butanediol (1.076 mL, 0.0121 mol) was 

added to a four-necked roundbottom flask.  1,2-dichloroethane (4.00 mL) was then added 

and allowed to stir for several minutes.  Nitrogen gas was then run through the system.  

While stirring, trifluoroacetic acid (0.116 mL, 1.51 mmol) and stannic chloride (0.04 mL, 

0.342 mmol) were added via syringe.  The contents were then lowered into an ice bath 

and epichlorohydrin (20.0 mL, 0.255 mol) was slowly dripped into the solution.  After 

the addition of epichlorohydrin was complete, the solution was heated to 65° C for one 

hour.  10% aqueous methanol with 0.25 mL of NaEDTA was then used to wash the 

reaction.  The wash was repeated without the NaEDTA 3 more times before the organic 

phase was dried with MgSO4 and placed in the drying oven to remove the dichloroethane.  

Isolated yields of 96% were obtained.  PECH:  1H, δ (d-CDCl3):  3.55-3.78 (m, 2H, 2H, 

H); 13C, δ (d-CDCl3):  26.58 (CH2), 43.89 (CH2), 69.84 (CH), 79.29 (CH2). IR displayed 

stretching at 3450 cm-1 (-OH), 1120 cm-1 (C-O-C), 748 cm-1 (C-Cl). 

 

 (Synthesis of Catalyst Mixture)  Stannic chloride (10.08g, 38.24mmol), 

trifluoroacetic acid (20.88g, 0.180mol), and 1,2-dichloroethane (48mL) were added to a 

dried 100mL round bottom flask.  The solution was stirred vigorously with a magnetic 

stirrer for 20 minutes.  The flask was capped with an air-tight rubber stopper and stored at 

5°C.   
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 (Figure 3-4)  Polyepichlorohydrin (3.0g, 30.0mmol) was weighed into the flask 

followed by the addition of Aliquat 336 (0.455g, 1.12 mmol).  The flask was then secured 

in the hood and DMSO (5mL) was added.  The mixture was stirred and sodium azide 

(2.217g, 34mmol) was added.  More DMSO (5mL) was added and the reaction was 

heated to 80°C for 24 hours.  The reaction was then cooled down with the aid of an ice 

bath and washed with water.  The water was then decanted and the rinse was repeated 3 

times.  The flask was then placed in a vacuum oven overnight at 50°C.  Process resulted 

in complete conversion of the PECH.  GAP:  1H, δ (d-CDCl3):  3.26-3.95 (m, 2H, 2H, H);  

13C, δ (d-DMSO):  29.37 (CH2), 51.71 (CH2), 60.72 (CH2), 69.57 (CH), 78.72 (CH2).  IR 

revealed pattern stretching at 2100 cm-1 (C-N3) and 1075 cm-1 (C-O-C).    

 

 (Figure 3-7) Polyepichlorohydrin (2.30g, 23 mmol) was added to a 3-necked 

round bottom flask.  1-butyl-3-methylimidazolium hexafluorophosphate (3.0 mL), or 1-

butyl-3-methylimidazolium tetrafluoroborate (3.0mL) was then added to the flask.  

Stirring was commenced and sodium azide (1.8106g, 27 mmol) was added.  The reaction 

was heated to 100°C for 48 hours.  Upon completion, water and diethyl ether were added 

to the reaction.  The two phases were then separated and the aqueous phase was washed 

with ether.  The oranic phase was washed with water three times.  The organic phases 

were then combined and dried with MgSO4.  After the solvent was reduced via rotary 

evaporator, the product was placed in a vacuum oven overnight at 50°C.   
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Results and Discussion 

 The first step in the synthesis of GAP is the polymerization of epichlorohydrin 

(ECH).  This procedure is an exothermic epoxide ring-opening polymerization of which 

there are many examples in the literature (Frankel, 1992).   

 The general descriptions of reactant stoichiometry and reaction conditions for the 

initial experiments are shown in Figure 3-2.  In this reaction, butanediol reacts with the 

epichlorohydrin to initiate the polymerization.  The SnCl4 complexes with the oxygen on 

the monomer to facilitate this process.  A depiction of this mechanism is shown in Figure 

3-3.  The stannic chloride was a necessary ingredient, as the reaction did not occur 

without it.  Several experiments were attempted without trifluoroacetic acid (TFA).  

While the experiments without TFA produced some product, the process was much more 

efficient when the TFA was present.  The TFA and the stannic chloride reacted to form 

the triflate seen in Figure 3-3.  The addition of this group to the stannic chloride further 

depleted the electron density of the tin center.  This led to a stronger coordination with 

the oxygen of the epichlorohydrin, which was essential for the successful activation of 

the monomer.   

 Altering the number of hydroxyls on the diol initiator provided the ability to 

change the functionality of the polymer, and did not alter the overall result of the 

reaction.  In these experiments, butanediol, propanediol, and 1,2,3-propanetriol were all 

used with success.  While altering the number of hydroxyls on the diol did not affect the 

outcome of the reaction, the properties of the product changed.  Aside from a higher 

functionality, the tri-functional PECH had a higher viscosity and darker color.   
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Figure 3-2.  The general process for synthesizing PECH.  In this depiction, 1,4-

butanediol is the initiator, however, the reaction is also successful with 
1,3-propanediol and 1,2,3-propanediol.   

 47



 48

Sn

Cl

Cl

Cl

Cl
O

R OH

CF3

O
O

Initiator

Tin Catalyst

Epichlorohydrin

     

Cl

OH

O
R

Sn

Cl

Cl

Cl

Cl
O

CF3

O
O

Polymer

Epichlorohydrin

Tin Catalyst

 
First Step: Initiation     Second Step: Propagation 
 
 
Figure 3-3.  The general mechanism for the polymerization of epichlorohydrin.   



            In the test used to control the molecular weight of the polymers, butanediol was 

used as the initiator.  To serve as an effective binder, a molecular weight of roughly 2000 

is required for GAP.  This weight gives the polymer a viscosity comparable to other 

binders currently used in rocket motors.  To achieve this molecular weight, an experiment 

was run with 0.0121 mol of butanediol and 0.255 mol epichlorohydrin and 0.2 mol% of 

the catalyst relative to ECH.   Calculations revealed that if the reaction approached 

completion with this monomer:initiator ratio, a polymer with a molecular weight of 2000 

would be obtained.  However, the experimental molecular weight for this polymer was 

~3300 (PDI = 1.1).  The experiment was repeated and once again a molecular weight 

near 3000 was obtained.   

 It was believed that this high molecular weight was caused by an inadequate 

activation of the monomer.  To ensure that all of the hydroxyl groups on the butanediol 

reacted, it was suggested that more catalyst should be used.  However, safety concerns 

about this reaction removed this course of action from consideration.  The epoxide ring 

opening is an exothermic process.  During several of the initial experiments, starting 

material was ejected from the condenser when the reaction started.  Given the extreme 

toxicity of epichlorohydrin and stannic chloride, this occurrence created a potentially 

dangerous situation.  Since the addition of more catalyst would have increased this risk, a 

different approach was taken.   

 One of the concerns throughout the beginning of this project was the volatility of 

the stannic chloride.  This problem was magnified by the flow of nitrogen gas through the 

system.  Another concern was the mixing of the trifluoroacetic acid and stannic chloride 

in the dichloroethane.  Due to the volatility, the addition of epichlorohydrin was started as 
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soon as the catalyst and TFA was added.  This immediate addition may not have allowed 

the triflate to form before the addition of the monomer.  To address these issues, a pre-

mixed catalyst solution was prepared.  The catalyst cocktail included stannic chloride, 

TFA, and dichlorethane.  This technique ensured that none of the volatile catalyst would 

be lost during the addition.  Also, the pre-mixing allowed plenty of time for the triflate to 

form prior to its introduction into the reaction flask.     

 The general procedure with butanediol was then repeated using the catalyst 

cocktail.  The molecular weight of the polymer from this process was ~1600.  This result 

was much closer to the desired weight of 2000 and proved that the problems with the 

catalyst were assuaged by the use of the cocktail.   

 A series of reactions were also run in an attempt to vary the polydispersity (PDI) 

of the polymers in situ.  These efforts included adding the monomer in delayed phases 

and alternating the addition of monomer and initiator.  Unfortunately, these efforts were 

unsuccessful, as the PDI never strayed from the 1.1-1.3 range.  Despite this 

disappointment, PECH starting material was synthesized so that GAP could be produced.   

 The first experiments run to produce GAP involved the use of a simple phase 

transfer catalyst.  In this case, the phase transfer catalyst was a quaternary ammonium salt 

that formed a reactive species with sodium azide.  This reactive species transferred the 

azide into the organic phase to react with the dissolved polymer (Starks, C. M. et al, 

1994). The general reactant stoichiometries and reaction conditions can be seen in Figure 

3-4.  In this process, the sodium azide formed a reactive species with the Aliquat 336 (US 

4,268,450).  The azide then replaced the chloride on the side chain of the PECH.  In only 

24 hours at 80°C, the process completely converted the bi- and tri-functional PECHs into  
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Figure 3-4.  The general GAP reaction.   



GAP (Figure 3-5).  This process produced GAP with a higher functionality when the 

trifunctional PECH was used.  Raising the functionality by using the tri-functional 

starting material was much simpler than other techniques that employed regioselective 

epoxidation of linear PECH in basic conditions (US 5,256,804).   

 For all of these reactions, strict safety measures were followed.  Teflon coated 

spatulas were used, and blast shields encased all of the reactions because GAP is an 

explosive compound.   In addition to performing the reactions on a very small scale, the 

GAP in solution was never heated beyond 80°C.  The pure products were not exposed to 

temperatures over 50°C.  These guidelines were adopted from the safety protocols at 

ATK Thiokol.  The only drawback to this process was the use of DMSO.  While it served 

the reaction well, the removal of this solvent was very difficult.  Safety was also a 

concern with DMSO.  Like sodium azide (which is extremely toxic), DMSO is readily 

absorbed through the skin.  In combination these chemicals have to be handled with 

extreme care.  However, the use of DMSO was considered safer than the methods that 

employ aqueous solvents due to the possibility of forming hydrazoic acid (US 

4,379,894). Due to these concerns, it was decided that ionic liquids should be employed 

to aid in the synthesis of GAP.   

 Ionic liquids are quite simply molten salts that are liquids at room temperature 

and standard pressure.  They consist of an anion and a cation and have no measurable 

vapor pressure.  For the purposes of making GAP it was believed that the ionic liquid 

could serve not only as a solvent but as a replacement for Aliquat 336.  The use of the 

ionic liquid ensured the presence of a large excess of a quaternary salt that would likely 

speed up the reaction.   
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Figure 3-5.  Two samples of GAP.  The sample on the left is bi-functional GAP 

synthesized with 1,4-butanediol.  The sample on the right is tri-functional 
GAP synthesized with 1,2,3-propanetriol.   
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Two ionic liquids were tested.  They were 1-butyl-3-methylimidazolium 

tetrafluoroborate ([BMIM][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate 

([BMIM][PF6]).  These liquids are pictured in Figure 3-6.  The key difference between 

these ionic liquids is their hydrophilicity.  The [BMIM][BF4] is hydrophilic because of its 

polar nature.  The [BF4] anion creates this high polarity because it is a small anion with a 

concentrated negative charge.  The [BMIM][PF6] is hydrophobic because the larger size 

of the anion disperses the charge over a larger area.  This dispersion dimishes the polarity 

of the molecule.  The cation can also be tuned to inhibit or promote hydrophilicity by 

adjusting the length of the alkyl chains.  This feature will be very important in Chapter 

VI.   

 Unfortunately, the processes that employed ionic liquids were unsuccessful.  The 

general reactant stoichiometries and reaction conditions are shown in Figure 3-7.  

Initially, it was postulated that the hydrophobic ionic liquid would work best due to the 

sensitive nature of sodium azide.  However, after 48 hours at 100°C [BMIM][PF6] did 

not produce any GAP.  When [BMIM][BF4] was used, however, these same conditions 

converted 20% of the sidechains to GAP.  The process was repeated at 50°C and 80°C 

and yields of 0 and 8% respectively were achieved.  The reasons for these low yields 

were unclear.  The reaction might have been mass transfer limited by the viscosity of the 

ionic liquid.  A co-solvent would possibly ameliorate this problem.  Such an addition 

might also assist in the ion exchange between the salt and the sodium azide.   
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Figure 3-7.  This procedure is the process for producing GAP in ionic liquids. This 

depiction shows [BMIM][BF4], however, [BMIM][PF6] was also tested.   
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Figure 3-6.  Two generalized structures of common ionic liquids.  



Conclusion 

 The procedures in this chapter successfully produced PECH and GAP with the 

desired properties.  Although the hydroxyl-terminated polymers were used throughout 

this thesis, the GAP polymers can be further functionalized (EP, 0-296-310).  These 

possibilities expand the possible uses of GAP in energetic materials.   

Aside from the ability to produce GAP with the desired molecular weight and 

functionality, the main lesson learned from these experiments was the safe handling of 

GAP.  Explosive materials were used in each of the remaining chapters of this thesis.  

The work in this chapter laid the groundwork for the safety procedures that were 

followed throughout the rest of this work.  By following the procedures in this chapter, 

GAP can be safely and efficiently produced.   
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CHAPTER IV 
 

THE SYNTHESIS AND CHARACTERIZATION OF 
GLYCIDYL TETRAZOLE POLYMERS 

 
 

Introduction 
 
  In Chapter III, glycidyl azide polymers (Figure 4-1) were prepared by 

substituting the chlorine on the sidechain of polepichlorohydrin with an azide moiety.  

While the presence of the azido group adds the desired energy to GAP, it leads to other 

significant problems.  The first problem occurs during the curing process.  GAP is usually 

cured with aliphatic isocyanates.  This process creates urethane linkages with the 

hydroxyl end groups of the GAP.  The isocyanates are also capable of reacting with the 

azido groups present in the GAP (Kasikci, 2000; Panda, 2000).  A fast cure process that 

rapidly depletes the isocyanate groups has been employed to attempt to overcome this 

problem.  These fast cures lead to short propellant pot-lives which makes propellant 

processing and motor casting more difficult.  Additionally, the cure catalysts often 

contain metal ions which are known to decompose organic azides (Balteanu, 2004).  The 

“pot-life” of a propellant mixture is a measure of how long a propellant mixture can be 

manipulated before it hardens or cures.  A short pot-life means that there is little time to 

cast the propellent into a mold.  A longer pot-life simply means that the propellant 

formuation takes longer to harden or cure.   

 Also, the general reactivity of the azido groups leads to other problems.  Upon 

storage, degradative processes introduce double bonds in the binder’s structure.  These 

double bonds have the potential to react with the azido group to form unstable triazole 

intermediates.  These species react to release N2.  Nitrogen gas is insoluble in the  
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Figure 4-1.  Glycidyl Azide Polymer (GAP) is a viscous amber liquid.   



binder and will result in voids in the cured propellant (Frankel, 1985).  In terms of 

processibility, safety, toxicity, and storability, GAP is not an ideal energetic material.   

 The goal of this research was to preserve the energetic advantages provided by 

GAP while ameliorating the drawbacks caused by the reactivity of the azido group.  To 

accomplish this goal the research focused on replacing the -N3 with the more stable 

tetrazole moiety.  The results of this research produced a glycidyl tetrazole polymer 

(GTP) (Figure 4-2).  The tetrazole was chosen for its stability and energetic properties.  

In a heat of formation comparison calculation using Spartan (See Chapter VI), the CH2N3 

side chain and the tetrazole ring (-CHN4) had ∆Hf of 313.8 and 280.1 kJ/mol 

respectively.  In another calculation the energetic impulse of GAP and GTP was 

compared.  Once again, they displayed similar results as GAP and GTP measured 272.4 

and 250.0 respectively.  Based on these calculations, it was decided that the replacement 

of the azide with the tetrazole ring would preserve the energetic properties of the 

polymer.  It was believed that the tetrazole moiety would be a stable, non-reactive—yet 

energetic—species that would provide a preferred alternative to the troublesome azido 

group.   

 
 

Experimental Methods 
 
 
Materials 
 
 The chemicals used during this investigation were obtained and used without 

further purification.  The chemicals used included the following: polyepichlorohydrin 

(See Chapter III), glycidyl azide polymer (See Chapter III), dibutyltin dilaurate (Aldrich, 

95%), dichloroethane (Aldrich, 99+%), sodium azide (Aldrich, 99.99+%), Aliquat 336,  
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Figure 4-2.  Glycidyl Tetrazole Polymers (GTP).  .   
  
 



dimethyl sulfoxide (Aldrich, 99+%), toluene (Aldrich, 99.8%), p-toluenesulfonyl cyanide 

(Aldrich, 95%), ethyl cyanoformate (Aldrich, 99%), benzyl cyanoformate (Aldrich, 

97%), lithium hydroxide (Aldrich, 98+%), tetrahydrafuran (Aldrich, 99.5+%), methylene 

chloride (Aldrich, 99+%), hydrochloric acid (Aldrich, 37%), and ethyl acetate (Aldrich, 

99.8%).   

 
Procedure 
 
 All of the reactions described below were performed in a 100 mL (14/20) 3-neck 

round bottom flask.  In each experiment, an overhead mechanical stirrer was used to 

facilitate adequate mixing of the polymers.  Unless otherwise noted, the standard stir rate 

was 150 RPM.  A water-cooled condenser was also used in each experiment.  The 

remaining neck was used to add solid reactants to the system.  During the reactions, a 

rubber stopper was used to seal the outlet.  Heating mantles and temperature controllers 

were also used in all of these experiments.  Whenever a volatile solvent was involved, a 

water flow safety monitor was attached to the condenser.  In all of these tests, the 

polymer was the limiting reagent; therefore, all of the mol percent values are relative to 

the starting material polymer.   

 

 (Figure 4-3) Polyepichlorohydrin (PECH) (5.00g, 54 mmol) was first weighed 

into the reaction flask.  This step was followed by the addition of 10 mol % of Aliquat 

336 (2.18g, 5.4 mmol) or tetrabutylammonium bromide (TBAB) (2.08g, 5.4 mmol).  The 

flask was then clamped in the hood and toluene (15mL) was added.  The water-cooled 

condenser was then attached and stirring was commenced.  1.2 equivalents of NaCN 

(3.17g, 65 mmol) was then added followed by toluene (15mL).  The mixture was heated 
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for 72 hours at 60°C.  Upon completion, water (15mL X 3) was used to wash the toluene 

phase.  The toluene was then evaporated with the aid of a rotary evaporator.  The polymer 

was placed in the drying over overnight.  

 

 (Figure 4-4) Glycidyl azide polymer (GAP) (1.0g, 10 mmol) was weighed into the 

reaction flask and clamped into the fume hood.  Toluene (2mL) was then added and 

stirring was started.  p-Toluenesulfonyl cyanide (2.00g, 11 mmol) was then added 

followed by toluene (2mL).  The mixture was heated to 80°C and stirred for 72 hours.  

The product was rinsed with toluene (10mL).  The solvent was decanted and the product 

was placed in the vacuum oven to remove the residual solvent.  Quantitative yields were 

obtained.  13C, δ (d-DMSO):  22.11 (CH3), 29.41 (CH2), 51.55 (CH2), 60.42 (CH2), 69.51 

(CH), 78.79 (CH2), 129.81 (CH), 130.46 (CH), 136.63 (C), 147.94 (C), 155.42 (C) 

 

 (Figure 4-8) Glycidyl azide polymer (GAP) (0.5g, 5 mmol) was weighed out into 

the reaction flasked and secured in fume hood.  Stirring was commenced.  Ethyl 

cyanoformate (3.0g, 30 mmol) or benzyl cyanoformate (4.0g, 25 mmol) was then added 

to the flask.  The mixture was then heated to 100°C or 50°C and reacted for 168 or 72 

hours respectively to obtain 100% conversion.  Upon completion, water (3mL) was added 

to the reaction followed by ethyl acetate (15mL).  Saturated sodium bicarbonate (20mL) 

was then added and stirred for 1 hour.  The organic layer was separated, washed with 

MgSO4, reduced via rotary evaporator, and placed in a drying oven overnight (50°C).  

Ethyl-GTP -13C, δ (d-DMSO):  22.74 (CH3), 29.47 (CH2), 50.89 (CH2), 60.42 (CH2), 

63.64 (CH2), 69.85 (CH), 79.12 (CH2), 147.25 (C), 152.60 (C). Benzyl-GTP-13C, δ (d-
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DMSO):  29.37 (CH2), 51.71 (CH2), 60.06 (CH2), 66.96 (CH2), 69.73 (CH), 79.20 (CH2), 

128.63 (CH), 129.07 (CH), 129.18 (CH), 136.13 (C), 143.22 (C), 155.12 (C) 

 

 Ethyl-GTP (0.30g, 1.50 mmol) or benzyl-GTP (0.50g, 2.0 mmol) was weighed 

out into the reaction flask and secured in the fume hood.  Tetrahydrafuran (3mL) was 

then added to the reaction and stirring was begun.  1M HCl (2mL, 2.0 mmol) was added 

dropwise to the solution.  The reaction was then heated t 50°C and stirred overnight.  The 

reaction was cooled on ice.  Tetrahydrafuran (20mL) and water (20mL) were then added.  

The mixture was transferred to a separatory funnel and washed with saturated sodium 

bicarbonate (20mL).  The organic phase was washed with water (20mL X 3) and dried 

with MgSO4.  The organic layer was then reduced via rotary evaporator and placed in a 

vacuum oven overnight.   

 

 (Figure 4-9) Ethyl-GTP (0.5g, 2.3 mmol) or Benzyl-GTP (0.70g, 2.6 mmol) was 

added to the reaction flask and secured in the fume hood.  Tetrahydrafuran (4mL) was 

then added and stirring was started.  3 equivalents of LiOH (0.167g, 6.9 mmol) were then 

added to the solution.  A solution of LiOH and water was used for this purpose (0.25g 

LiOH/10 mL water).  The reaction was heated to 50°C and stirred for 24 hours.  Upon 

completion, water (20mL) and ethyl acetate (20mL) were added to the cooled reaction.  

After 10 minutes of stirring, HCl (10%) was added dropwise until the solution was acidic 

(pH ~ 2).  The organic layer was then separated, washed with MgSO4, reduced via rotary 

evaporator, and placed in a vacuum oven overnight (50°C).  13C, δ (d-DMSO):  29.41 

(CH2), 48.19 (CH2), 60.42 (CH2), 68.75 (CH), 77.08 (CH2), 145.39 (C).   
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Results and Discussion 

 The goal of this research was successfully accomplished by replacing the azide 

group on the side chains of GAP with a tetrazole.  The initial strategy involved replacing 

the –Cl on the side-chain of PECH with a –CN group.  There were two reasons why this 

strategy was selected.  The first was that the –CN on the sidechain could be easily 

converted into a tetrazole through the cycloaddition of sodium azide (Benson, 1967; 

Butler, 1977; Herbst, 1957; Koguro, 1998; Russell, 1993).  Second, this technique would 

not require the explicit use of GAP as a starting material.     

 Upon searching the literature, a technique was found that converted –CH2Cl side-

chains to –CH2CN side-chains (Jean, 1979).  The technique was a direct substitution of 

the chlorine with the nitrile.  The procedure was followed explicitly and repeated several 

times.  Unfortunately, the reaction failed to produce any cyano substituted polymer.  This 

technique was subsequently abandoned and phase transfer catalysis (PTC) was employed.   

 PTC was used in an effort to introduce the NaCN salt into the organic phase that 

dissolved the polymer.  The technique used closely mirrored those found in the literature 

(Dozeman, 1997; Starks, 1994).  This process (Figure 4-3) was attempted using two 

phase transfer catalysts:  Aliquat 336 and tetrabutylammonium bromide.  Despite 

repeated attempts, the procedure failed to produce any cyano-substituted polymer.  

Although the reasons for this failure were unclear, it was believed that the process may 

have formed carbenes along the polymer side-chains.  This theory was devised based on 

the bright orange colors observed during the first few hours of the reactions.  The cyano 

group likely acted as a base and deprotonated the alpha hydrogens along the side chain.   
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Figure 4-3.  Phase transfer catalysis process designed to replace the chlorine of 

polyepichlorohydrin with a cyano group.    

 66



These carbenes could have easily reacted with other nitrile groups attached to the 

polymer.  Another possible reason for this failure was the viscous nature of the polymer.  

The benefits of PTC may not have overcome the limitations placed on mixing by the 

polymer’s viscosity.   

 At this point, it was decided to attempt the synthesis using GAP as the starting 

material.  While this decision heightened concerns about safety, all of the reactions never  

utilized more than 1.0g of GAP.  In a recently reported method, researchers used “click-

chemistry” to produce tetrazoles from organic azides (Demko, 2001).  By adding a 

cyanide with an electron withdrawing group to a series of organic azides, the researchers 

produced tetrazoles with 100% conversion.  In addition to these results, the work-up 

involved was very simplistic.  In the reactions that used small molecules as starting 

materials, the only workup required was the removal of the product from the Teflon 

coated stir bar.  Therefore, a number of experiments were run using GAP as the organic 

azide and p-toluenesulfonyl cyanide as the cyano group (Figure 4-4).  Although GAP is a 

liquid at room temperature, the reaction was run with a co-solvent due to its high 

viscosity.  To assist in the mixing of the reactants, a small amount of toluene was 

introduced into the system.  On every front, this reaction was a success.   

 The pure tosyl-GTP product was an orange solid.  While this was expected, this 

physical characteristic would disqualify tosyl-GTP from serving as an energetic binder.  

Therefore, a series of GAP/tosyl-GTP polymers were synthesized.  The picture in Figure 

4-5 depicts the transformation from the liquid GAP to the solid tosyl-GTP.  As the picture 

indicates, the polymer remained a liquid until more than 60% of the –N3 groups were 

replaced with tetrazoles.  This opened up the possibility that a hybrid compound could be  
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Figure 4-5.   The physical properties of a wide range of GAP/Ts-GTP compounds.   
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used as a propellant.  Energetic tests were then conducted on these polymers using 

differential scanning calorimetry (DSC).  The DSC data was collected (Figure 4-6) and 

the extent of the exotherms were evaluated via peak integration (Figure 4-7).  The 

polymers that had a higher GAP content also had a stronger exotherm.  It was believed 

that the size and stablilty of the tosyl group adversely affected the energetic properties of 

the molecule.   

 Accordingly, the work refocused on producing a hydrogen substituted GTP 

polymer as shown in Figure 4-2 (R’ = H).  It has been shown that a number of 

cyanoformates will react with organic azides (Demko, 2001).  It was proposed that if the 

product from this reaction was followed with a successful decarboxylation, the hydrogen 

substituted GTP derivative could be easily obtained.  Once again, GAP would be the 

starting material, but very small amounts were used due to safety concerns.  For the 

purpose of these experiments, ethyl and benzyl cyanoformate were used.  In both cases, 

the process was a success (Figure 4-8).  However, the ethyl cyanoformate derivative 

required 7 full days to go to completion.  Benzyl cyanoformate offered a small 

improvement, but still required a full 3 days to reach completion.  The ethylester-GTP 

was a solid at room temperature, whereas the benzylester-GTP was a liquid.   

 At first, an acid catalyzed decarboxylation was attempted on both derivatives. 

Unfortunately, these efforts were unsuccessful.  A base-catalyzed process using LiOH 

however, provided the necessary conditions for decarboxylation (Figure 4-9).  While both 

derivatives successfully decarboxylated using this technique, the benzyl-GTP derivative 

created a problem.  In the 13C NMR, benzyl alcohol (bp=210°C) continually appeared.   
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Figure 4-6.  Differential scanning calorimetry data for the GAP/Ts-GTP polymer.   
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Figure 4-7.  Exotherms observed for Ts-GTP as the GAP component was replaced with 

the tosylated tetrazole moiety  
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Figure 4-8.  Reaction conditions for the addition of the cyanoformates to GAP.     

 

 

 

R
O

OH

N
N

N

N C
CO2R

LiOH
R

O
OH

N
N

N

N C
H

n

Glycidyl Tetrazole Polymer

+

0.4 g

n

THF (4mL)

50°C
24 Hours

3 Equivalents
Lithium Hydroxide

Glycidyl Tetrazole Polymer

CH2CH3R = OR

 
  
 
Figure 4-9.  Decarboxylation of the esters to produce the H-substituted glycidyl 

tetrazole polymer.   
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While this indicated a successful cleavage of the ester, it illustrated the difficulty of 

removing this by-product without a laborious workup.  The ethyl derivative was therefore  

the preferred starting material because ethanol was easily removed during the standard 

workup.  The final product, GTP (Figure 4-2A), was a solid.   

 Finally, a comparison of the DSC data for every derivative was plotted.  While the 

substituted GTP derivatives all exhibited exotherms that were less than half of GAP’s, the 

hydrogen substituted GTP produced an exotherm equal to 75% of GAP.  All of this data 

is presented in Figure 4-10 and Table 4-1.  Clearly, this data proves that the R’ group 

from Figure 4-2 played a key role in the exotherm strength for each of the derivatives.   

 

Conclusion 
 
 The results of this research proved that a wide variety of tetrazole substituted 

GAP polymers could be synthesized.  While the exotherms for the H-GTP derivative 

(Figure 4-2A) were not as large as the GAP exotherm, the benefits with regard to 

processing and storage might overcome this energetic disadvantage.   

 Another issue to consider is the difference between the isomers in Figure 4-2.  

While this research successfully analyzed the exotherm of Figure 4-2A, the exotherm of 

4-2B is still unknown.  Further testing might show that this alternate isomer has an 

energetic potential closer to GAP.  

 Regardless of which isomer is produced, this research clearly illustrated that the 

R’group from Figure 4-2 played a significant role in determining the size and strength of 

the exotherm.  This group also affected the physical properties of the polymer.  This point  
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Table 4-1.  This table shows the exotherm values of each of the GTP derivatives.  
The colors in the last column correspond to the colors in the DSC data. 

 
  
Molecule Energy (J/g) Energy (kJ/mol) Color
Glycidyl Azide Polymer 2097 207 Black 
H-Glydidyl Tetrazole Polymer 1429 180 Purple 
Tosyl-Glycidyl Tetrazole Pol. 797 223 Blue 
Ethylester-Glycidyl Tet. Pol. 584 115 Red 
Benzyl-Glycidyl Tetrazole Pol. 342 88 Green 
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Figure 4-10.  The collection DSC scans for all of the GTP derivatives.  The colors 

correspond to the data found in Table 3-1.   
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was proven by the fact that the ethylester-GTP was a solid at room temperature and the 

benzylester-GTP was a solid.  The exotherms of these two molecules also vastly differed.  

This data offers conclusive proof that variations on the R’ group can significantly impact 

the overall properties of this polymer.  One very interesting possibility would be the 

placement of an energetic substituent in the R’ position.  This could be achieved with a 

substitution on the tosyl-GTP derivative.  Such a reaction would allow for both the 

energetic and physical properties to be altered in a single process.   

 Another consideration in this project is the molecular weight of the polymers.  All 

of the polymers used in these experiments had a molecular weight around 2000 g/mol.  

This characteristic could easily be altered during the synthesis of the PECH starting 

material.  Altering this property would provide another opportunity to control the 

physical properties of the polymer.  In addition, using branched starting materials might 

also assist in this endeavor.   

 Overall, this project proved that the GTP polymers show potential as a possible 

replacement for GAP.  Even if every tetrazole derivative proved to be a solid, a hybrid 

polymer could still be produced that would range from a solid to a liquid.  An illustration 

of this concept is shown in Figure 4-5.  Such a hybrid would have much fewer –N3 

groups than GAP, and would significantly improve the problems that the azido groups 

cause for this molecule.   

 It should be noted, however, that the solid GTP could have other applications.  

Tetrazoles have been discussed as potential air bag propellants.  A role such as this could 

be filled by a solid GTP polymer.   
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 The synthesis of GTP illustrated herein opens up a number of possibilities.  The 

GTP is an energetic polymer with tunable energetic and physical characteristics that 

shows potential as a GAP replacement.   
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CHAPTER V 
 

THE SYNTHESIS AND CHARACTERIZATION OF ENERGETIC FOAMS 
 
 

Introduction 
 
 In the previous chapters, the synthesis of nitrogen-rich energetic polymers was 

discussed.  The glycidyl azide polymers (GAP) and the glycidyl tetrazole polymers 

(GTP) have hydroxyl-terminated chains.  It is well known that through urethane 

chemistry hydroxyl-terminated polymers can be transformed into foams.  Since their 

invention by Bayer in 1937, polyurethanes have become the most well known polymers 

used to make foams.  They are also the most versatile family of polymers.  They are used 

to make elastomers, fibers, and adhesives (Wilson, 1989).  In this project, urethane 

linkages were formed with the end groups of the energetic polymers (Figure 5-1).  Gas 

bubbles were then introduced to generate an energetic foam.   

 An energetic foam would have a number of possible applications.  For most 

propellants, a binder is used to give the propellant a solid support structure that fills 

rocket motors.  For liquid propellants it is conceivable that an energetic foam could be 

used to absorb the substance before it is placed in a motor.  Any foam could be used for 

this purpose, however, an energetic foam would contribute to the overall energy of the 

system. In the past, foamed propellants have been widely studied (Messmer, et al 2001; 

Bohnlein-Maub, 2002), but the foaming of the binder itself has received limited attention 

(Sanderson, 2000).  A foamed propellant is less applicable, because of the low density of 

foams.  This lowered density would be an advantage in a binder, however, because the 

empty spaces could be filled with propellant.   
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Figure 5-1.  A simple urethane linkage.   
 



           Aside from propellants and binders, energetic foams could also serve as 

transportable explosives.  It may be possible to seal the foam in a canister so that soldiers 

could carry it in the field.  The energetic foam could then be applied to doors, rocks, or 

any other obstruction that should be detonated (Energetic Materials Workshop, 2004).   

Foams could also replace the propellant systems in air bags or other common 

applications (Hughes, et al 2000).  The tunability of foams makes the number of 

applications virtually endless.  Foams can be soft like shaving cream, compressible like a 

sponge, or very hard.  To understand how this is possible, a general description of foams 

is necessary.   

 A foam is typically defined as a dispersion of gas bubbles in a liquid.  They are 

lightweight and versatile and are used in a large number of applications.  The solid phase 

of the foam is called the plastic matrix.  The matrix consists of a base resin and other 

compounding ingredients.  These other compounds include:  plasticizers, stabilizers, 

cross-linkers, surfactants, dyes, pigments, fire retardants, or fillers.  These compounds 

define the rigidity of the foam.  Depending on the chemical composition of the starting 

materials, a foam can be flexible, semi-flexible, or rigid.  Rigid foams have a glass 

transition temperature (Tg) above room temperature, while flexible foams have a Tg 

below room temperature (Blaga, 1974).   

 The gas bubbles constitute the other critical component of foams.  Blowing or 

foaming agents are used to introduce the air bubbles into the plastic matrix.  These can be 

divided into 3 distinct classes:  chemical, physical, and mechanical (Wilson, 1989).  

However, current blowing agents are not limited to these classes (Roth A. J., 2003). 
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 Chemical blowing agents are materials that are usually stable at room 

temperature, but—under certain conditions—undergo decomposition to produce gases.  

Ideally, this should be a very controllable process.  These chemical blowing agents can be 

divided into 2 major classes:  organic and inorganic.  Inorganic blowing agents—such as 

sodium bicarbonate, ammonium carbonate, and sodium boron hydride—slowly generate 

gases and are difficult to control.  Therefore, the inorganic agents are not widely used.  

Organic blowing agents however, are very popular.  Gas can be generated predictably 

and easily using these agents.  The organic nitrogen compounds are used most often.  

These compounds, like azodicarbonamide, produce mainly nitrogen gas (Wilson, 1989).   

 Although it does not fall completely within the realm of the chemical blowing 

agents, water is a well-known foaming agent.  Water reacts with the isocyanate groups in 

the foam mixture to generate carbon dioxide through the mechanism shown in Figure 5-2.  

The carbon dioxide forms the gas bubbles that create the bubbles in the foam.   

 In addition to the chemical blowing agents, physical blowing agents are also used.  

Physical methods are unlike the chemical methods because the physical properties of the 

blowing agents do not change during use.  The most common physical methods involve 

the expansion of a gas dissolved in a resin matrix by reducing the pressure.  Another 

method is the boiling off of a low boiling liquid by either application of external heat or 

by harnessing the heat of the exothermic process.   

 The third and final method of gas creation is mechanical.  In this method the 

foams are “whipped” with  gases.    The  gases   are  trapped  in  the  matrix  as  the  foam  
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Figure 5-2.  The mechanism by which water reacts with the diisocyanate to 

generate the carbon dioxide bubbles in the foam. 



hardens.  This method is valuable because it creates consistently sized bubbles in the 

foam matrix (Wilson, 1989).   

The goal of this research was to create a polyurethane based energetic foam.  The 

energetic starting materials were the polymers synthesized in Chapters III and IV. The 

hydroxyl terminated chains allowed for the urethane linkages to be formed.  

 An extensive review of the literature yielded a great deal of information.  It was 

learned that the combination of a hydroxyl-terminated polymer, a diisocyanate, and a tin 

catalyst formed the critical urethane linkages (Figure 5-1).   

   The tin catalyst used in these experiments was dibutyltin dilaurate.  By 

complexing with the oxygen of the diisocyanate, the catalyst facilitated the attack of the 

carbon in the diisocyante by the terminated hydroxyl group of the polymer (Figure 5-3).  

For the diisocyanate, isophorone diisocyanate was chosen.  This decision was made 

because of its availability and the fact that it was a liquid at room temperature.   

 The literature also revealed that the presence of a surfactant was necessary in all 

of these processes.  Silicon based surfactants are very important in forming urethane 

foams.  The mechanical properties of a cured polyurethane foam are greatly affected by 

the structure of the silicon surfactant.  The bubble generation and cell window 

stabilization phase are both impacted by the surfactant.  The role of the surfactant is to 

lower the surface tension at the air-polyol interface (Zhang, 1999).  It is believed that 

silicon surfactants can lower surface tension, promote generation of bubbles during 

mixing, stabilize cell windows, and emulsify incompatible formulation ingredients.  In 

this project, Dow 193 was chosen as the surfactant because of its common use in the 

literature.      Studies   show   that  the  structure  of  the  silicon  polymer  can  affect  air  
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Figure 5-3. The mechanism of the reaction between the hydroxyl-terminated polymer 

and the diisocyanate.  The tin catalyst used in this project was dibutyl tin 
dilaurate.   

 



permeability and foam cell size (Zhang, 1999).  Therefore, to avoid inconsistencies, Dow 

193 was used in all of these experiments.   

 The last decision that was made before the experiments were performed involved 

the choice of a blowing agent.  Water was initially chosen because of safety concerns.  

The starting materials were explosive; and due to the exothermic nature of the urethane 

reaction, physical blowing agents were avoided because they would have required the use 

of an external heating source.  A mechanical technique was also used to generate the 

energetic foams.   

           

Experimental Methods 

Materials 

 The chemicals used during these experiments were obtained and used without 

further purification or synthesized in the lab.  The chemicals used included: glycidyl 

azide polymer (Chapter III), isophorone diisocyanate (Aldrich, 99%), Dow 193 (Dow, 

99%), dibutyltin dilaurate (Aldrich, 99.9%), and water.   

 

Procedure 

 For the reactions that created the gas bubbles chemically, a large culture tube was 

used to house the reaction.  The reactants were loaded and a small magnetic stir bar was 

added.  For the trifunctional polymers, the stirring was assisted with a wooden applicator.  

For the foams synthesis that used mechanical gas introduction, a mechanical overhead 

stirrer was used.  A special blade was created with small holes that facilitated the 

“whipping” of the foam.  The reactants were added and the stirring was commenced at 
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300 RPM until the foam had formed.  GAP Foam:  1H, δ (d-DMSO):  0.6-0.96 (s, 6H); 

1.231 (s, 3H); 1.563 (s, 2H); 2.476 (s, 2H); 2.913 (s, 1H),  3.26-3.95 (m, 2H, 2H, H);  13C, 

δ (d-DMSO):  14.609 (3-CH3), 21.998 (C), 22.756 (C), 26.458 (CH2), 29.37 (CH2), 

31.859 (CH2), 36.543 (CH), 51.71 (CH2),  60.72 (CH2), 69.57 (CH), 71.781 (CH2), 78.72 

(CH2).  DSC plotted in the last figure of this chapter.   

 

 (Chemically produced foams) Glycidyl azide polymer (0.5g, 5.0 mmol) was 

added to the test tube.  Isophorone diisocyanate (0.140g, 0.5 mmol) was then added.  The 

tube was then secured in the fume hood and submersed in an ice bath.  Dow 193 (0.012g) 

was then added followed by dibutyltin dilaurate (0.010g, 0.01 mmol).  Water ( 0.012g) 

was then added to facilitate the gas creation.  The mixture was then stirred in the ice bath 

until the foam stopped expanding and/or bubbling.   

 

 (Mechanically produced foams) Glycidyl azide polymer (0.5g, 5.0 mmol) was 

added to a 100 mL 3-neck flask.  Isophorone diisocyanate (0.140g, 0.5 mmol) was then 

added.  The tube was then secured in the fume hood and submersed in an ice bath.  Dow 

193 (0.012g) was then added followed by dibutyltin dilaurate (0.010g, 0.01 mmol).  The 

mechanical stirrer was then activated and run at 300 RPM with the special stir blade.  The 

process continued until the foam formed on the side of the reaction flask.   
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Results and Discussion 

  The initial reactions were run on a 0.5g scale.  The reactants were loaded into a 

culture tube and placed in an ice bath.  After the addition of the surfactant, the polymer 

and the isophorone diisocyanate created a creamy single phase.  Water, the blowing 

agent, was always the last reactant that was added.  Initially, the reactions were stirred 

with a wooden applicator before and after the addition of the water.  The reaction took 

place very quickly (~30 seconds) and the stirring was continued until the bubbling 

stopped.  For more consistent stirring, a magnetic stir bar was used in place of the 

applicator in the later experiments.  This method was successful for the di-functional 

GAP, however, this method did not transfer successfully to the tri-functional GAP 

because of its high viscosity.   

 For all of these experiments, the conditions were kept static with the exception of 

the mol percent of isophorone diisocyanate.  As expected, the foams synthesized with a 

higher mol percent were more rigid (Figure 5-4).  The foams synthesized with 25 mol 

percent of the isophorone diisocyanate were crusty solids, while the foams made with 10 

mole percent or less were very flexible.  The cross linker was therefore critical in 

defining the physical properties of the foam.   

 As previously stated, chemical or physical blowing agents were avoided due to 

safety concerns.  Mechanical means, however, did not impose any special danger.  

Therefore, a special stir blade was designed with the intention of introducing gas bubbles 

into the plastic matrix.  This special paddle (shown in Figure 5-5) was a Teflon stir blade 

with a series of assymetrical holes drilled along its base.   
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   5               10                                                 25 

(mol percent of isophorone diisocyanate) 
 
 
Figure 5-4. The water blown foams made with 5, 10, and 25 mol percent of 

isophorone are shown.  All of these foams were made with difunctional 
GAP.   
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Figure 5-5.  The stir blade used in an attempt to mechanically introduce air 

bubbles into the plastic matrix of the energetic foams.   
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           These reactions were performed in the same manner as the reactions previously 

described with two major exceptions:  water was not added and the reaction was run in a 

3-neck round bottom flask.  The water was not needed because the gas was to be 

introduced mechanically.  The surfactant however was still present to assist in the mixing 

of the components, promote bubble growth, and to stabilize the foam.  The foams made 

with this method had the physical characteristics of a rubber.  It should be noted that the 

mechanical method only worked for the foam with 10 mol percent of diisocyanate 

(Figure 5-6).  The mixture containing 5 mol percent of the diisocyanate failed to form the 

urethane linkages, while the formulation with 25 mol percent formed a clear, hard 

rubbery film on the sides of the flask.   

After these experiments, the exothermic properties of the foams were tested using 

differential scanning calorimetry.  The foam possessed an exotherm on par with the 

energetic polymer starting materials.  The addition of the surfactant, catalyst, and water 

did little to diminish the energetic potential of the foam (Figure 5-7).  The foam displayed 

in this figure was made with 25 mol percent of diisocyante and water generated air 

bubbles.  This foam was chosen because its rigid character made it easy to place and 

weigh out into the DSC pan.  Also, with 25 mol percent of diisocyante it was assumed 

that it would have the lowest exothermic potential.   

 

Conclusion 

 The experiments in this chapter proved that urethane chemistry could be easily 

applied to glycidyl azide polymer to create energetic foams.  These discoveries further 

illustrated the utility of these energetic polymers.  The foaming of these polymers opened  
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Figure 5-6.  The foam on the right was produced with the mechanical stir blade, while 

the foam on the left was produced using magnetic stirring.   
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ergetic foam, and H-GTP.   



up a limitless number of potential applications.  By altering the characteristics of the 

starting material, the blowing agent, the surfactant, or the cross-linker, energetic foams 

can be tuned or altered in many ways.  With the simple chemistry and limitless versatility 

outlined in this chapter, energetic foams could play a major role in the future of energetic 

materials.   
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CHAPTER VI   
 

THE SYNTHESIS AND CHARACTERIZATION OF ENERGETIC IONIC LIQUIDS 
 
 

Introduction 
 
 Ionic liquids are molten salts that are dense liquids at or near room temperature.  

In addition to this feature, they exhibit no detectable vapor pressure. While known for 

decades, ionic liquids have recently experienced a rebirth as “new solvents” for 

environmentally benign chemical processes, reactions, and separations (Welton, 1999; 

Chauvin, et al 1995; Gull et al 2000). The majority of ionic liquids have molecular 

structures based on the imidazolium or ammonium cations along with an appropriate 

anion (Seddon, 1997; Holbrey, et al 1999; Huddleston, et al 2001). The physical 

properties of these species (melting point, boiling point, etc.) can be tuned either by 

changing the length of the alkyl chain attached to the nitrogen atoms or by changing the 

counter anion. Two structures of commonly used salts are shown in Figure 6-1. 

 Ionic liquids—due to their special characteristics—receive consideration as 

energetic materials in this chapter.  Energetic materials are useful as propellants, gas 

generants, etc.  One special class of propellants is called “monopropellants.”  A 

monopropellant is a chemical propellant that does not require a separate oxidizer.  

Hydrazine (N2H4) is currently considered the state of the art in the field of 

monopropellants, and has been studied for 30 years (Sutton, 1992).  Hydrazine is 

decomposed by passing the compound through a heated bed of an iridium-coated alumina 

catalyst, providing ammonia, nitrogen, and hydrogen gas.  The decomposition of 

hydrazine can be controlled to provide the volatile products in varying stoichiometries.   
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Figure 6-1.   Two generalized common structures for ionic liquids.   



This feature allows the specific impulse to vary.  As a result, the hydrazine systems are 

stable, dependable, and provide consistent and predictable results (Sutton, 1992).  

 Despite these advantages, hydrazine is plagued by several severe drawbacks.  It is 

a potential carcinogen that damages living tissue.  Hydrazine also has a very high vapor 

pressure.  Workers must wear self-contained breathing suits to protect themselves from 

the toxic vapors.  These safety concerns significantly raise the cost of working with 

hydrazine (Sutton, 1992).  Ionic liquids would overcome these problems because of the 

lack of vapor pressure.   

 The goal of this research was to use tetrazole anions and cations instead of the 

imidazole moiety commonly used in ionic liquids (Figure 6-1).  The energetic capability 

of the tetrazole group combined with the special properties of ionic liquids opened up a 

huge number of possibilities with regard to energetic materials.   

 The first phase of this research involved an extensive literature search on the 

imidazolium-based ionic liquids.  The relationship between structure and properties of the 

imidazolium-based ionic liquids had been thoroughly studied.  In Figure 6-2, the 

correlation between the length of the alkyl chain on the cations and the melting points of 

the corresponding ionic liquids is displayed (Holbrey, et al 1999; Welton, 1999; 

Wasserscheid, et al 2000).  The dramatic influence that the length of the alkyl chain had 

on the properties of the ionic liquids clearly indicated the explicit tunablity of these 

compounds.   

 An extensive literature research was also performed on the tetrazole chemistry.  

An    analogy   between  the  melting points  of  the  5-methyltetrazole  salts   and   the  
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N N
H3C R

BF4  
Figure 6-2.  The phase changes that the length of the alkyl chain induces on the 

imidazolium based ionic liquid.   



imidazolium salts was found (Borch, 1969; Lee, et al 1972; Hanley, et al 1979; Araki, 

1983, Araki, 1984; Araki et al 1998). The reported melting points of the amine salts of 5- 

methyltetrazole (5-MT) decreased as the length of the alkyl chain on the ammonium 

cation increased and/or as a branched alkyl chain was introduced. The bis-ammonium salt 

of 5,5'-bi-1H-tetrazole (BHT) was studied as well; and, its trimethylammonium salt 

(Figure 6-3 and Table 6-1) exhibited a relatively low melting point (38oC) (Welton, 

1999).   For each amine salt of the 5-methyltetrazole (5-MT) and 5,5'-bi-1H-tetrazole 

(BHT), the alkyl groups on the amine counter-part have been highlighted. Their 

importance will become clear later in this chapter. So far, no other cations have been 

studied. 

 Based on the research found in the literature, two classes of ionic liquids based on 

the tetrazole moiety were designed.  Class I was composed of a negatively charged 

tetrazole coupled with a variety of tetra-alkyl ammonium cations.  Class II was composed 

of a positively charged tetrazole coupled with a variety of counter anions (Figure 6-4.). 

Classes I and II provided the basis for the development of new liquid propellants with 

unique physical properties. The experiments performed to synthesize these new 

compounds were analogous to those found in the literature for the imidazolium 

compounds (as tetrazoles have not been widely used to produce ionic liquids). 

 The R1, R2, and R3 on the amine counterpart allowed for an infinite number of 

combinations. However, it was important to keep in mind the trends observed for the 

imidazolium ionic liquids in order to consider only the most promising associations. The 

symmetry, the ‘greasy’ character (the length of the alkyl chains), and the basicity of the  
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Figure 6-3 5,5’-bi-1H-tetrazole (BHT) (Left) and 5-methyltetrazole(5-MT) (Right).
 
 
 
 
 
 
 
 
Table 6-1.  Literature reported melting points for BHT and 5-MT amine salts. 
 
 

 Amine 
Salt of 

Amine counter-part Mp (oC) 

BHT Trimethylamine (Bis 
Salt) 

38 

5-MT Dimethylamine 90 

5-MT Diethylamine 70 

5-MT Isopropylamine 58 
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Figure 6-4.  The Class I (left) and Class II (right) tetrazole based ionic 

liquids.   
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amines were carefully balanced to obtain a molten salt state. Six amines were selected 

with different alkyl chains, symmetry, and substitution patterns (Table 6-2).  

 

 
Experimental 

 
 
Materials 
 
 The chemicals used in these experiments were purchased from Aldrich and used 

without additional purification.  The chemicals used included the following:  5-

methyltetrazole (Aldrich, 99.9%), methanol (Aldrich, 99.9%), N,N-dimethylbutylamine 

(Aldrich 99%), Isopropylamine (Aldrich 99.9%), Diisopropylamine (Aldrich 99.8%), 

Butylamine (Aldrich 99.7%), Pentylamine (Aldrich 99%). 

 
 
Procedure 
 

The 5-methytetrazole (0.5g, 6.0 mmol) was placed in a round bottom flask 

equipped with a temperature monitoring system. The methanol (5 ml) was added and the 

solution was stirred at 0oC for 5 min. The amine (1.1 eq) was added drop-wise in order to 

control the exothermic reaction. At the end of the exotherm, the reaction was heated for 

2h at 65oC. The reaction was then cooled to room temperature. High vacuum was then 

applied to remove the methanol and un-reacted amine. The resulting product (quantitative 

yield) was analyzed by 1H NMR (d-DMSO).  N,N-dimethylbutylamine ionic liquid,  1H, 

δ(d-DMSO): 0.86 (t, 3H, CH3), 1.27 (st, 2H, CH2), 1.56 (m, 2H, CH2), 2.46 (s, 6H, CH3), 

2.68 (s, 3H, CH3), 2.92 (m, 2H, CH2). Mp = 101.3oC (dcp).  Isopropylamine ionic liquid, 
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Table 6-2. The six selected and tested a
pattern. 

Amine R1 Group

Amylamine -(CH2)4CH3

Butylamine -(CH2)3CH3

N,N-
dimethylbutylamine 

-(CH2)3CH3

Isopropylamine -CH(CH3)2

Disopropylamine -CH(CH3)2

Triisopropylamine -CH(CH3)2

 
 

 
mines and their alkyl chain/substitution 

 
 
 

 R2 Group R3 Group 

-H -H 

-H -H 

-CH3 -CH3

-H -H 

-CH(CH3)2 -H 

-CH(CH3)2 -CH(CH3)2
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1H, δ(d-DMSO): 0.91 (d, 6H, CH3), 1.86 (sept, 1H, CH), 2.25 (s, 3H, CH3), 2.66 (d, 2H, 

CH2), 6.36 (b, 3H, NH). Mp = 109.9oC.  Diisopropylamine ionic liquid, 1H, δ(d-DMSO): 

1.20 (d, 12H, CH3), 2.25 (s, 3H, CH3), 3.31 (m, 2H, CH). Mp = 121.6oC.  Butylamine 

ionic liquid, 1H, δ(d-DMSO): 0.86 (t, 3H, CH3), 1.32 (m, 2H, CH3), 1.58 (m, 2H, CH2), 

2.29 (s, 3H, CH3), 2.89 (t, 2H, CH2).  Pentylamine ionic liquid, 1H, δ(d-DMSO): 0.85 (t, 

3H, CH3), 1.27 (m, 4H, CH2), 1.56 (m, 2H, CH2), 2.23 (s, 3H, CH3), 2.79 (t, 2H, CH2).  

 
 
 

Results and Discussion 
 
 The first compounds synthesized were the Class I ionic liquids seen in Figure 6-4.  

The groups R, R1, R2, R3, were changed in order to induce a liquid state at room 

temperature (i.e. low melting point). Since the 5-MT was reported in the literature and 

was commercially available, the effort focused on the salts of this compound. Therefore, 

the R group in the 5-position on the tetrazole ring was assigned as a methyl group. The 

proton on the nitrogen in position 1 on the 5-methyltetrazole was relatively acidic and 

reacted with bases--such as amines--to form the corresponding ionic species. The simple 

acid/base reaction was successfully applied to prepare the 5-methyltetrazole molten salts 

(Figure 6-5). 

 The reaction conditions were optimized to yield quantitative completion. Since all 

the selected amines were liquid at ambient conditions, the first attempt was conducted 

without the use of a solvent (neat). This option made a simple work-up possible and 

increased the efficiency of the reaction. The amine was placed into the reaction flask and 
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Figure 6-5.  Acid/Base reaction used to synthesize 5-methyltetrazole (5-MT) salts. 
 



the solid 5-methytetrazole (mp: 142-146oC) was carefully added. Soon after the addition, 

an exotherm (> 40oC)  was  observed.  The exotherm  raised  awareness about  safety and  

reaction control. The reaction conditions were therefore modified and a solvent was 

introduced. The solvent was carefully chosen to allow for a simple purification as well as 

maximum reaction efficiency (miscibility, medium polarity etc.). After careful 

consideration, methanol was chosen as the solvent.  However, the dilution of the reactants 

was strictly monitored and minimized.  With the use of the solvent, the reaction was 

successfully carried out with only a slight exotherm.  

 It was essential for these reactions to reach completion since there were no 

purification techniques that could easily be applied to these systems.  In the case of 

highly substituted amines—such as diisopropylamine and triisopropylamine—the 

reaction did not reach completion like the mono-substituted amines (e.g. butylamine). 

The basicity and steric hindrance of the substituted amines slowed the rate of the 

reaction.  To reach completion (according to the literature), the reaction mixture must be 

heated for 2h at 65oC after the disappearance of the initial exotherm. Accordingly, each 

reaction was carried out using this procedure to insure complete conversion regardless of 

the reactivity of the amine. Due to the energetic potential of these systems, all reactions 

were carefully placed behind safety shields. In addition, solvent removal was not 

performed on the usual rotary evaporator apparatus. High vacuum was directly applied to 

the reaction mixture in order to remove all the solvent (methanol) and the excess amine. 

The chosen panel of amines produced significant information concerning the 

structure/properties relationship of the tetrazole-based ionic liquids (Table 6-3). 
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Table 6-3.  Amine salts of 5-methyltetraz
as the properties (mp, density

Amine R1 Group R2 Group 

Amylamine -(CH2)4CH3 -H 

Butylamine -(CH2)3CH3 -H 

N,N-
dimethylbutyl 
amine 

-(CH2)3CH3 -CH3

Isopropyl- 
amine 

-CH(CH3)2 -H 

Disopropylam
ine 

-CH(CH3)2 -
CH(CH3)2

Triisopropyl- 
amine 

-CH(CH3)2 -
CH(CH3)2

 
 

 
ole (5-MT). The substitution pattern as well 
) are reported. 
 
 

R3 Group Aspect characteristic 

-H Liquid/ 
amber 

d=1.00+/-0.1 g/ml

-H Liquid/ 
beige 

d=1.00+/-0.1 g/ml

-CH3 Solid mp(dcp)=101.3oC 

-H Solid mp(dcp)=109.9oC 

-H Solid mp(dcp)=121.6oC 

-CH(CH3)2 -- No reaction 
occurred 
09



These results further elucidated the critical role played by the substitution pattern of the 

amine. Regardless of the conditions, the trisopropylamine did not undergo reaction with 

the 5-aminotetrazole.  This was attributed to steric hindrance. The branched amines (e.g. 

isopropylamine and diisopropylamine) yielded solid salts with melting points above 

100oC.  The tertiary amine – N,N-dimethylamine –also afforded a solid with a melting 

point near 100oC.  

 Nevertheless, the Class I tetrazole-based ionic liquids were successfully obtained 

when the straight chain mono-substituted amines were used (butylamine (A) and 

amylamine (B)). 

 The first phase of this research focused on synthesizing the Class I ionic liquids, 

while the second phase focused on evaluating the energetic potential of the ionic liquids. 

Two complementary approaches were adopted: theoretical and experimental. The 

theoretical approach—completed using SPARTAN—was based on ab initio calculations 

which allowed the identification of the lowest energy (most stable) conformers and their 

relative energy. This method was applied to both ionic liquids using Hartree-Fock 

(3.21G*) and density functional (B3LYP – 3.21G*) data sets. From the lowest identified 

energy, the enthalpies of formation were calculated based on isodesmic equations. Using 

the known enthalpy of formation, the energy impulses were simulated using a Chemical 

Equilibrim and Applications code (CEA) (Gordon et al., 1994).  The parameters involved 

in the simulation programs were the following: the oxidant was Inhibited Red Fuming 

Nitric Acid (IRFNA), the temperature was 298.15 K, the chamber pressure was 2000 

psia, the pressure ratio (pi/p) was 136.0919, the density was introduced if known (if the 

density was unknown it was estimated to be 1), and finally the ratio oxidant fuel (O/F) 
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was varied in order to determine the maximum performance. The same process was used 

for all the theoretical calculations in this research (including energetic polymers, ionic 

liquids, amines, and gels). The densities of the ionic liquids measured in the 

laboratory were entered to obtain accurate energy impulse predictions. The energy 

density impulse simulations were essential because of the importance of developing 

highly dense energetic materials. Figures 6-6 and 6-7 were designed to illustrate the 

energy impulse (Isp) and density energy impulse (D*Isp) versus the O/F ratio for the 

energetic ionic liquids and other comparable materials.  The ionic liquid performances 

were compared to the performances of well known propellants or energetic candidates: 

monomethyhydrazine (MMH, red), N,N-dimethylaminoethylazide (DMAZ, pink). The 

density impulse versus the O/F ratio plots demonstrated that the ionic liquids were 

comparable to other propellants with regard to density energy impulse.    

 Experimentally, differential scanning calorimetry (DSC) data was collected for 

the ionic liquids. (Figure 6-8). The exotherms were normalized to provide comparable 

values. An exotherm was observed for both butylammonium-5-methyltetrazolide (A) and 

pentylammonium-5-methyltetrazolide (B) salts at about 275oC. Respectively, the 

normalized exotherm values were 218 J/g and 147.5 J/g. Although both liquids displayed 

an exotherm, the normalized values were much smaller than the size of the exotherm for 

glycidyl azide polymer (GAP) which was 2100 J/g.  

 It should be noted that the exotherm produced by ionic liquid A was greater than 

the exotherm observed for B. This result was attributed to the longer alkyl chain on the B 

anion which lowered the ratio of energetic to non-energetic components. The exotherm 

values clearly reflected the loss of energy.  Therefore, the ammonium counter anions  
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Figure 6-6.  The specific impulse [Isp (lb/s)] versus the oxidizer/fuel ratio [O/F

ratio] for the novel energetic ionic liquids and other common
energetic materials. (IRFNA is the oxidant).
Abbreviations 
 
MMH – monomethylhydrazine 
DMAZ – dimethylethylamino azide 
BAMT – butylammonium-5-methyltetrazolide  
ABAMT- pentylammonium-5-methyltetrazolide 
1AEMT – 1-ethyl-3-pentyl-5-methyltetrazolium chloride 
5AEMT – 3-ethyl-1-pentyl-5-methyltetrazolium chloride 
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Figure 6-7.  The density energy impulse [D*Imp (lb/s)] versus the oxidizer/fuel

ratio [O/F ratio] for the energetic ionic liquids and other common
propellants.   
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played  a  critical  role in  determining  both  the physical  properties  and  the  energetic 

potential of the ionic liquid.  These plots demonstrated the importance of choosing the 

proper cation/anion combination.   

 Another opportunity that the ionic liquids offered was the unique ability to 

dissolve both ionic and organic species (Welton, 1999; Chauvin et al 1995; Blanchard et 

al, 1999). This property was exploited to increase the energy potential of the tetrazole-

based ionic liquids. Energetic salts were dissolved into the ionic liquids to produce a 

highly energetic and dense solution. The energetic salts that were used included 

perchlorates and nitrates. Two perchlorates were tested: ammonium perchlorate and 

potassium perchlorate. As for the nitrate salts, sodium nitrate was used. Both ionic liquids 

A and B were used in these experiments (Table 6-4). 

 The salts were added to the ionic liquids in small increments (~10 mg) and the 

mixture was slowly stirred until dissolution was observed. The addition of the salts was 

stopped as soon as the liquids were saturated. The amount of each solid salt needed to 

saturate 1g of each ionic liquid was recorded (Table 6-4).  

            The DSC spectra of the saturated solutions were recorded to evaluate the 

exotherm enhancement. The ionic liquids with potassium perchlorate (Figures 6-9 and 6-

10) exhibited an endotherm at ~120oC and an exotherm at ~275oC. For the 

butylammonium 5-methyltetrazolide and amylammonium 5-methyltetrazolide ionic 

liquids, the exotherm value remained low compared to GAP—128 J/g and 103 J/g, 

respectively. The saturated solutions of ammonium perchlorate in both tetrazole-based 

ionic liquids were also studied (Figure 6-11 & 6-12). The results were significantly  
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Table 6-4.  Amount of NH4ClO4, NaClO4, and NaNO3 needed to reach the saturation 
of 1g of ionic liquid A and B. 

 
 
 

 5-MTButylamine Salt 
(1g) 

5-MTAmylamine Salt 
(1g) 

Ammonium Perchlorate 0.19 g 0.15 g 
Potassium Perchlorate 0.19 g 0.15 g 

Sodium Nitrate <0.028 g <0.02 g 

 
 
 
 



        

I ntegral 1108.93 mJ
  normalized 128.95 Jg^-1
Onset 255.63 °C
Peak 276.03 °C
Endset 291.67 °C

Integral -1441.89 mJ
  normal ized -167.66 Jg^-1
Onset 61.72 °C
Peak 119.93 °C
Endset 120.17 °C

&ILbutyl  KCL04
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Figure 6-9.  DSC spectrum of the saturated solution of KClO4 in butylammonium

5-methyltetrazolide (Bu-5-MT).  
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Integral -559.65 mJ
  normal ized -93.27 Jg -̂1
Onset 74.02 °C
Peak 117.82 °C
Endset 121.74 °C

Integral 617.53 mJ
  normalized 102.92 Jg^-1
Onset 255.49 °C
Peak 270.82 °C
Endset 285.86 °C
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Figure 6-10.  DSC spectrum of the saturated solution of KClO4 in  amyl- 

ammonium 5-methyltetrazolide (Bu-5-MT).  
 

°C 
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different from the potassium perchlorate results (Figure 6-9 & 6-10). In the case of the 

saturated solution of ammonium perchlorate in butylammonium 5-methyltetrazolide 

(Figure 6-11), the base line was steady and the exotherm was dramatically enhanced. 

Accordingly, the normalized value for the exotherm was 1307 J/g. The saturated solution 

of ammonium perchlorate in the amylammonium based ionic liquids (Figure 6-12) 

exhibited a similar base line and enhancement profile. The normalized value for the 

overall exotherm was 939 J/g. In addition to these results, the origin of the peaks at 290° 

C and 330°C will be explored in future experiments. Overall, the energetic ionic liquid 

solutions were highly energetic when the nitrates and perchlorates were dissolved in 

them.  The exotherms of 1307 J/g and 939 J/g approached the GAP and the H-GTP 

exotherm values (2100 J/g and 1420 J/g, respectively).  

 
 

Conclusion 
 
 The energy potential of the tetrazole based ionic liquids was demonstrated. For 

the first time, energetic molten salts from tetrazole derivatives were prepared.   Tetrazole-

based ionic liquids are dense materials that can be tuned and altered to produce high 

amounts of energy.  The high density and the ability to dissolve energetic salts will be a 

key advantage for advanced propellants applications. Overall, the theoretical estimations 

and experimental data collected for both ionic liquids proved that these compounds could 

potentially replace many current energetic materials.    With their tunability, non-existent 

vapor pressure, and high density, ionic liquids have many characteristics in common with 

the “ideal” propellant.  These preliminary experiments prove that ionic liquids have 

significant potential in the realm of energetic materials.   
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Integral 7058.88 mJ
  normalized 1307.20 Jg^-1
Onset 262.39 °C
Peak 298.77 °C
Endset 335.43 °C
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Figure 6-11.  DSC spectrum of the saturated solution of NH4ClO4 in butyl- 

ammonium 5-methyltetrazolide (Bu-5-MT). 
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Integral 5542.73 m J
  normalized 939.45 Jg^-1
Onset 281.26 °C
Peak 310.22 °C
Endset 333.43 °C

Integral 1762.20 m J
  normalized 298.68 Jg^ -1
Onset 293.60 °C
Peak 311.06 °C
Endset 330.43 °C

Integral 721.95 mJ
  normalized 122.36 Jg^-1
Onset 259.47 °C
Peak 278.61 °C
Endset 289.22 °C

&AM YL IL NH4Cl O4
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Figure 6-12.  DSC spectrum of the saturated solution of NH4ClO4 in amyl- 

ammonium 5-methyltetrazolide (Bu-5-MT).  
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CHAPTER VII 
 

THE SYNTHESIS AND CHARACTERIZATION OF NOVEL ENERGETIC GELS 
 
 

Introduction 
 
 The possibility of synthesizing an energetic gel has attracted a great deal of 

attention in the energetic materials community.  The physical properties of gels allow 

them to share the advantages held by solid and liquid propellants.  Gels have the potential 

to replace the current propellants used in rocket motors and other applications.   

 Solid propellants are useful because of their high density and uniform burning 

characteristics.  Liquid propellants allow for a motor to be shut off or weakened unlike 

their solid counterparts.  Because of their hybrid nature, gels would enjoy both of these 

qualities. 

 The thixotropic nature of gels also makes them safer to use.  A thixotropic 

substance is one that will move or flow if a force is applied, but will act as a solid when it 

is stationary. (Toothpaste is an example of a thixotropic substance). If a large motor 

containing a gel is ruptured, the material would remain inside the canister.  This would 

not be true for conventional liquids.  Also, energetic gels—depending on the design—

could be demilitarized with a simple aqueous wash.  These properties are most inviting 

considering the modern age of terrorism (Energetic Materials Workshop, 2004).   

This research focused on developing an organic and energetic three-dimensional 

network to create a gel and/or confer thixotropic properties to an appropriate liquid. Gels 

have been well studied in the energetic field, however, most of the research has focused 

on inorganic gels. Most of the work found in the literature concentrated on the gelation of 

known liquid monopropellants. For example, monomethylhydrazine (MMH) was treated 
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with an inorganic (silicon based) gelling agent (Pekala, 1998; Simpson, 1999; Tappan, 

2002; Tillotson, 1998). The monomethylhydrazine is a highly efficient propellant. MMH 

has a very low flash point (38oF) and is extremely volatile. This high volatility makes this 

particular monopropellant especially hazardous to workers.  The gelation of 

monomethylhydrazine (MMH), however, resulted in a dramatic depletion of the volatility 

and the safety hazards. Unfortunately, the gelling agent used was non-energetic and 

affected the performance of the final material. Some energetic gelling agents, like 

nitrocellulose, were used; but, the performance of these energetic gels still fell short of 

the propellant community’s expectations. 

By creating gels based on the tetrazole chemistry outlined in this thesis, this 

research was performed with the hopes of designing a high-performance energetic gel. 

The literature on the conventional gels was used as a guide for this research (Allcock, 

1993; Cohen, 1996; Fried, 2003; Gevalda, 2002)  

A tetrazole gel was reported in the literature as an alternative for polyester in a 

water adsorption application (Fried, 2003; Gavalda, 2002; Cohen, 1996; Allcock, 1993). 

This example was used as the foundation to develop a tetrazole based three dimensional 

(3-D) network from methacryloyl chloride that could be used in advanced propellant 

applications.  

In the literature these polymeric materials were tuned by modifying the chemical 

structure of the monomer, the structure of the network, the molecular weight and/or the 

polydispersity of the polymer. It was expected that the proton in position 1 on the 

tetrazole ring would dramatically impact the physical properties of the materials.  Due to 

hydrogen bonding, it was believed that the material would be a solid regardless of the 

 124



other factors such as molecular weight.  Therefore, it was proposed that the removal of 

the hydrogen with an amine would lower the melting point of the material.  The ideas 

from Chapter VI were applied to the monomers and polymers presented in this chapter.  

The addition of the tetrazole to the monomer provided another tunable entity through 

which the polymers were adjusted 

 

Experimental 

 
Materials 
 

The chemicals used in these experiments were purchased and used without 

additional purification.  The chemicals used in these experiments included:  methacryloyl 

chloride (Aldrich 99.9%), 5-aminotetrazole monohydrate (Aldrich 98%), tetrahydrafuran 

(Aldrich, 99.9%),  2,2’-azobisisobutyronitrile (Aldrich 99.99%), DMF (Aldrich 99.9%), 

DMSO (Aldrich 99%), hydrochlorydric acid (Aldrich 99.99%), butylamine (Aldrich 

99%), pentylamine (Aldrich 99.98%).   

 
Procedure 
 
 Synthesis of  5-(methacrylamido)tetrazole (Monomer I).  Methacryloyl chloride 

(10.7g, 1.1eq) was added dropwise to a suspension of 5-aminotetrazole monohydrate 

(10.0g, 0.95mol) in THF (250 ml) and water (12ml) at room temperature. The solid 

dissolved after 30 min. Then after 1h, a precipitate appeared again. The reaction was then 

diluted with water (250ml), and stored overnight in a refrigerator. The white solid was 

collected by filtration in 60 % yield and placed in a vacuum oven (T = 40-50oC) for at 
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least one day. 1H NMR δ(d-DMSO, ppm): 1.95 (s, 3H, CH3), 5.72 (m, 2H, CH2), 6.08 (m, 

1H, CH), 11.95 (br, 1H, NH). Mp = 135.2oC (dcp). 

 

 
 2-D Polymerization.  A solution of monomer I (2.00g, 13.1 mmol) and 2,2’-

azobisisobutyronitrile (AIBN) (20mg, 0.12mmol) in DMF (20ml) was degassed for at 

least 3 hours. The reaction was heated to 65oC overnight. The reaction was cooled to 

room temperature and added drop-wise to a solution of methanol (250ml) and 

hydrochlorydric acid (5ml). The colorless solid was collected by filtration, washed with 

methanol and dried in vacuum oven (To = 40-50oC) overnight. The product was obtained 

in quantitative yield. Solid 13C NMR δ (ppm): 20 (CH3), 45 (CH2), 50 (C), 150 (C 

tetrazole), 180 (C=O). Mp > 300oC. 

 

 
 3-D Polymerization.  The monomer I (2.00g, 13.1 mmol) was added to a solution 

of sodium hydroxide (0.62g, 1.2 eq) in methanol (25ml) and was refluxed for 5 min. 

After the solvent was removed on a rotary evaporator, the residue was dissolved in 

deionized water (10ml) and 2,2’-azobis(2-methylpropionamidine) dihydrochloride (V-

50)(20.1mg, 0.074mmol) and N,N’-methylene-bisacrylamide (20 µmol, 1.0ml of a 0.02 

M solution in water) were added. The solution was then degassed for at least 4 hours 

before the reaction was heated at 65oC. After 12h, the viscous solution was cooled and 

dialyzed against deionized water for 3 days with water changed daily. The purified 

polymer was collected and evaporated under vacuum. The product was isolated with 

yields from 15 to 30 %. 
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 Preparation of amine salts of monomer I.  The monomer I (0.5g) was placed in a 

round bottom flask equipped with a temperature monitoring system. Methanol (5ml) was 

added and the solution was stirred at 0oC for 5 min. A large excess of amine (3ml) was 

then added drop-wise. The reaction was stirred at room temperature for 2h and heated to 

65oC for 1h.  After being cooled to room temperature, the methanol and un-reacted were 

evaporated under vacuum. The resulting compound was finally analyzed.   Butylamine 

1H, δ(d-DMSO): 0.86 (m, 3H, CH3), 1.31 (m, 2H, CH2), 1.51 (m, 2H, CH2), 1.91 (s, 3H, 

CH3), 2.79 (m, 2H, CH2), 5.45 (m, 2H, CH2), 5.84 (m, 1H, CH).  Amylamine 1H, δ(d-

DMSO): 0.85 (t, 3H, CH3), 1.26 (m, 4H, CH2), 1.52 (m, 2H, CH2), 1.90 (s, 3H, CH3), 

2.76 (m, 2H, CH2), 5.42 (m, 2H, CH2), 5.81 (m, 1H, CH).  

 
  

 Preparation of amine salts of 2-D polymer.  The procedure was the same as 

described for the preparation of the amine salts of monomer I.  Butylamine 1H, δ(d-

DMSO): 0.84 (t, 3H, CH3), 1.29 (m, 2H, CH2), 1.59 (m, 2H, CH2), 2.5 (m, CH3 + 

DMSO), 2.87 (m, 2H, CH2), 8-9 (br, NH).  Amylamine 1H, δ(d-DMSO): 0.83 (m, 3H, 

CH3), 1.26 (m, 4H, CH2), 1.63 (m, 2H, CH2), 2.48 (m, CH3 + DMSO), 2.84 (m, 2H, 

CH2), 8-9 (br, NH). 

 
 
 

Results and Discussion 
 

The monomer I was prepared as described in the literature from the methacryloyl 

chloride and the 5-aminotetrazole with a 60 % yield (Aden, 2002) (Figure 7-1). The  
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Figure 7-1.  General synthetic scheme for the preparation of the     

monomer I and its subsequent polymerization. 



melting point of the white solid was 220.2oC and occurred with decomposition. The 

reaction was then scaled up in order to have a sufficient amount of monomer for the 

polymerization step. 

The polymerization was first attempted in the presence of 2,2’-

azobisisobutyronitrile (AIBN) in dimethylformamide (DMF). The polymerization 

mechanism followed a radical pathway. Since oxygen interfered with the radical 

polymerizations, all the solvents were degassed before the reaction was engaged.  The 

temperature was increased to 65oC in order to allow the reaction to take place. The first 

attempt was not as successful. The polymerization did occur, however the major products 

detected by NMR were the un-reacted starting materials. After examination, the solvent 

degassing was performed more thoroughly and the reaction was successful.  The melting 

point was higher than 300 oC, which was the limit of the melting point apparatus. 

Regardless of the solvents and options used, no GPC spectrum was successfully recorded. 

This problem was caused by the extremely low solubility of the polymer in organic 

solvents and water. For the same reason, no NMR spectra in the liquid phase were of 

sufficient quality.  

The DSC spectrum was then recorded for the 2-dimensional polymer.  The 

exotherm was measured at 325 J/g which was notably lower than GAP (2100 J/g) and 

slightly lower than the tosyl substituted glycidyl tetrazole polymer (GTP) (797 J/g).  The 

presence of the carbonyl was detrimental to the exotherm, however, other groups could 

be used in place of the carbonyl to increase the energetic potential (Cooper, 1983; Drain, 

1963; Kepler, 1987; McBride, 1956; Ranganathan, 1994; Taylor, 1976).   
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Another series of experiments combined the chemistry of the gels with the 

principles of ionic liquids. For this approach, the polymerization was performed in the 

presence of a cross linker which induced the 3-D network formation (Figure 7-2). The 

experiment was attempted on the key monomer. 

The cross linker—N,N-methylene-bisacrylamide—was  chosen in accordance 

with the literature. The catalyst was therefore changed from AIBN to 2,2’-azobis(2-

methylpropionamidine) dihydrochloride (V-50) because of water solubility.  The 

monomer was first reacted with a base to make it water-soluble before the reaction was 

engaged at 65o C.  The polymerization occurred as expected. The purification of the 

resulting polymer was performed using membrane filtration.  The polymer was 

characterized by NMR and regardless of the conditions, the GPC did not produce 

conclusive results. The 2-D polymer was a white solid which exhibited almost no 

solubility in all the solvents tested. However, the 3-D polymer made a colorless film on 

the flask (Figure 7-3). It had a glassy appearance when removed from the flask. This 

observation demonstrated that the physical properties of these materials were dependent 

on the type of cross-linking network used in the synthesis. 

As depicted in Figure 7-4, the monomer was reacted with the two amines that 

were the most successful in the synthesis of the simple tetrazole ionic liquids (e.g. 

butylamonium-5-methyltetrazolide and amylamonium-5-methyltetrazolide). In both 

cases, the reactions were carried out in methanol at room temperature, and were heated to 

60oC for 1h. The reaction was quantitative; the excess solvent and un-reacted amine were  

removed under vacuum. As always, the reactions were carefully kept under blast shields.  
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Figure 7-2.  General scheme for the preparation of  3-D polymeric network 
 

 
Figure 7-3.  Pictures of the 3-D polymers  when on the flask wall as well  
  after collection into a vial. 
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Figure 7-4.  General scheme for the preparation of ionic species    
  from the neutral monomer. 
 



When the butylamine was used as the base, the melting point of the ionic monomer 

(135.2oC) was depressed by 85oC (compared to the non-ionic monomer melting point of 

220.2oC).  In the case of the amylamine, the melting point depression observed from the 

monomer to the ionic form was 94.4oC. The results of this experiment proved the critical 

role that this transformation played in tuning the physical properties of the final materials.  

The next experiments involved repeating this process with the polymers rather 

than the monomers.  The reaction went to completion in 1 hour in methanol at room 

temperature in the presence of an excess of amine. The completion of reaction was 

observed when all the insoluble starting materials present at the beginning of the reaction 

disappeared. The starting material polymer was insoluble but the ionic polymer produced 

was fully soluble in methanol. The products were analyzed by conventional liquid state 

NMR since the ionic polymer product was soluble in the deuterated solvents. When the 

butylamine was used, the ionic polymer exhibited a melting point of 206oC. When the 

amylamine was used, the ionic polymer exhibits a melting point of 211.6oC. The melting 

point depression in both cases from the neutral polymer to the ionic polymer exceeded 

100oC. This was a dramatic change that could be appropriately exploited to tune the 

physical and energetic characteristics of the polymer. 

 

Conclusion 

 The results of these experiments proved that tetrazole gels can be synthesized and 

effectively tuned.  Although the melting points were higher than expected, the data in this 

chapter illustrated the effects that small adjustments had on the physical properties of the 

energetic gels.   
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 Perhaps the most important development from this work was the combination of 

the principles behind the energetic ionic liquids with the energetic gels.  By combining 

these two technologies, a countless number of options were introduced.  With further 

experimentation, these energetic gels could potentially satisfy the needs of any energetic 

application.   
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CHAPTER VIII 
 

RECOMMENDATIONS 
 
 
 Much of the work outlined in this thesis involved novel energetic materials.  

Therefore, some of the research was in a preliminary state.  There were many 

recommendations and possibilities that involved combining the data and knowledge from 

each of these chapters.  In this chapter, recommendations for each project will be 

suggested.  

 In Chapter II, the synthesis of 5-phenyl-1H-tetrazoles was discussed.  The three 

major developments in this research were the protected tetrazole, the recyclable process, 

and the catalytic method.  The primary recommendation would be to develop a method to 

combine these three advances.  By adding the trityl chloride to a recyclable catalytic 

system rather than gaseous HCl, it should be possible to extract the product with little 

difficulty.  With the aid of engineers, this process would not be difficult to implement.   

 In addition, these techniques should be used to make tetrazoles other than the 5-

phenyl derivative.  Toluene could serve as an adequate replacement for benzonitrile 

(Koguro, 1998).  With this change, other nitriles could be added to the reaction.  

Although some of the efficiency of the reaction would be lost (because the solvent would 

no longer serve as the reactant), the overall process would surely be a success.  There is 

little doubt that this process would safely and efficiently produce a wide array of 5-

substitued tetrazoles.   

 In Chapters III and IV, the synthesis of a new series of glycidyl tetrazole 

polymers was outlined.  As mentioned in Chapter IV, the first experiments attempted to 

replace the chlorine on the epichlorohydrin with a nitrile.  If this reaction was successful, 
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the knowledge from Chapter II could be used to introduce a tetrazole on the side chain 

while avoiding the use of glycidyl azide polymer throughout the entire procedure.  The 

attempt to replace the chlorine was a failure.  The alpha hydrogens were likely extracted 

by the basic nitrile.  Therefore, the primary recommendation for these chapters would be 

to design a synthetic step that would allow for an easy substitution of the chlorine.  While 

at this time there are no specific suggestions, this would be an important development.  

With a nitrile-substituted polymer, the tetrazole could be safely synthesized.  This 

procedure would also produce a tetrazole attached to the sidechain via the carbon in the 

ring.  Compared to the isomer synthesized in Chapter IV, this polymer might possess a 

much higher energetic potential.   

 Beyond synthesizing the nitrile-substituted polymer, the only other 

recommendation involves the improvement of the overall process that utilizes the 

cyanoformates.  The long reaction times hinder the progress of the project—especially 

considering the small quantities synthesized due to safety concerns.  The ethyl and benzyl 

cyanoformates are also fairly expensive.  If an easier route to the H-GTP was discovered, 

the speed of this research would significantly increase.   

 The energetic foams discussed in Chapter V would consume an entire thesis if all 

of the tunable avenues were explored.  Currently, the main suggestion would be to 

synthesize a foam using a liquid glycidyl tetrazole polymer.  While the pure GTP is a 

solid when the MW is 2000, the material should be a liquid at a higher molecular weight.  

This liquid material should be used to generate an energetic foam.  The resulting foam 

would be a stable energetic structural framework that could be used in any of the 
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applications discussed in Chapter V.  Without the presence of the azide groups, however, 

the foam would be safer and have a longer shelf life.   

 Like the energetic foams, the ionic liquids in Chapter VI created an endless 

number of potential experiments.  One of the most significant possibilities involved the 

introduction of an energetic amine counter-cation.  The ionic liquids were composed of 

an energetic component and a non-energetic component—the tetrazolide ring and the 

substituted ammonium, respectively. The research in Chapter V proved that the amine 

had a negative effect on the energetic potential of the molecule.  The ionic liquids in 

which the substituted ammonium possessed a longer alkyl chain lowered the ratio of 

energetic to non-energetic components. The exotherm values clearly reflected the lost of 

energy.  The ammonium counter-cation played a critical role in determining both the 

physical properties and the energetic potential of the ionic liquids.   

 To overcome the lack of energetic character in common amines, the design of an 

energetic counter-amine is recommended. Through literature searches, theoretical 

calculations, and discussions during meetings and workshops, the most promising 

candidates are those illustrated in Table 8-1.  However, a careful balance between the 

energy intake and the alkyl chain length must be considered in order to maintain liquids 

properties yet increase the energy.  

At the top of the list of potential amines is dimethylaminoethylazide (DMAZ). 

The synthesis of DMAZ is well known in the propellant field but is seldom reported in 

the literature (Green, 2004; McQuaid, 2003; Striebich, 2003, Miksa, 2003; Thompson, 

2000). Others energetic amines are also summarized in Table 8-1. 
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Table 8-1. Energetic azido-amines and tetrazole base amines. 

 
 

AZIDE AMINE 
DERIVATIVES 

TETRAZOLE AMINE 
DERIVATIVES 

 

N
N3

 
 

Dimethylaminoethylazide 
(DMAZ) 

N

N

N

N

N

 
Dimethylaminoethyltetrazole 

 

H2N
N3

 
 

Aminobutylazide 
H2N

N

N

N

N

Aminobutultetrazole 
 

H2N N3 
 

Aminopropylazide 

H2N

N

N
N

N

 
Aminopropyltetrazole 
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With the exception of DMAZ, the azide derivatives have been well described and the 

syntheses reported (Lee, 2001). The general scheme is outlined in Figure 8-1. The 

tetrazole-amines derivatives are novel compounds and their syntheses should be 

investigated. A synthesis for the tetrazole amines is shown in Figure 8-2. This scheme 

can also be applied to longer alkyl chains like aminobutyltetrazole. The synthesis is 

straightforward and the chemistry is well known. A number of tetrazole-amines can be 

prepared in three steps (Figure 8-2). The synthetic schemes allow the tetrazole to be 

attached either on the –N in 1 position or on the –C in 5 position.  

 The synthetic schemes, as observed, include a pathway to prepare DMAZ. The 

literature provides only one procedure to specifically prepare DMAZ (Schiemenz, 1959). 

This synthesis was conducted twice during the ionic liquids research, but unfortunately 

was unsuccessful. The major concern in this synthesis is safety, which raises the overall 

difficulty of this process. In addition, high dilution and the use of water as the solvent 

make the isolation difficult.  

 The energetic amines designed above are extremely promising in terms of energy 

intake according to the theoretical calculations currently under review. However, the 

experimentation will be critical in order to know the physical properties of their 5-

methyltetrazole salts. The syntheses of the energetic amines are relatively 

straightforward. The major drawback is the concern about safety.  

The last series of recommendations involves the energetic gels in Chapter VI.  

Although the energy potential of the gels will primarily come from the compounds 

entrapped in the matrix, the energetic properties of the monomer are an important 

consideration.   
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Figure 8-1. Synthetic scheme to prepare long alkyl chain azido-amines 
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Figure 8-2.  Synthetic scheme to prepare DMAZ, 5-alkylaminetetrazole and 1- 
  alkylaminetetrazole. In this illustration ethylaminotetrazole are  
  depicted.   
 



 Based on discussions held at meetings and energetic workshops, it is believed that 

the carbonyl and the methyl groups are responsible for the mediocre exotherm values 

observed in Chapter VI.  A structure modification will consequently be needed in order to 

enhance the final performance. The methyl group is needed to allow good yields during 

the monomer synthesis—and should remain unchanged. However, the carbonyl is 

detrimental in terms of energy potential so it should be modified into groups that will 

strongly contribute to the overall energy (Figure 8-3). Several groups should be 

considered to counter this problem (Cooper, 1983; Drain, 1963; Kepler, 1987; McBride, 

1956; Ranganathan, 1994; Taylor, 1996). By calculating their theoretical potential, 

specific experiments will enhance the energetic properties of the molecules.   

With these recommendations, the performance of each molecule in this thesis 

could be improved.  There are literally thousands of possibilities with regard to foams, 

gels, and ionic liquids that could be implemented and studied.  Great strides have been 

made; and these suggestions will only enhance all of these projects.   
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Figure 8-3.  Synthesis pathways to prepare novel and enhance  
  energetic polymers. 
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