
Agent-Based Design of Fault Tolerant
Manipulators for Satellite Docking

Abstract:

A rapidly deployable fault tolerant manipulator system
consists of modular hardware and support software that
allow the user to quickly configure and deploy a fault tol-
erant manipulator that is custom-tailored for a given task.
The main focus of this paper is on the Task Based Design
component of such a system; that is, the determination of
the optimal manipulator configuration, its base position,
and the corresponding joint space trajectory for a given
task. We introduce a novel agent-based solution approach
to task based design and illustrate it with a fault tolerant
manipulator design for a satellite docking operation
aboard the space shuttle.

1 Introduction

There exists a need for manipulators that are more flex-
ible and reliable than the current fixed configuration ma-
nipulators. Indeed, robot manipulators can be easily
reprogrammed to perform different tasks, yet the range of
tasks that can be performed by a manipulator is limited by
its mechanical structure. In remote and hazardous envi-
ronments, such as a nuclear facility or a space station, the
range of tasks that may need to be performed often ex-
ceeds the capabilities of a single manipulator. Moreover,
it is essential that critical tasks be executed reliably in
these environments.

To address this need for a more flexible and reliable
manipulator, we propose the concept of a rapidly deploy-
able fault tolerant manipulator system [11], as is illustrat-
ed in Figure 1. At the base of such a system is the
Reconfigurable Modular Manipulator System (RMMS)
[12]. The RMMS consists of an inventory of link and joint
modules of different sizes and performance specifications.
Quick coupling connectors allow the modules to be rapid-
ly configured into a wide variety of manipulator struc-
tures; each module can be connected in 8 different
orientations (@45deg angles) relative to the previous
module. The inventory of modules considered in this pa-
per contains 23 modules of 5 different types as shown in
Figure 2.

To achieve rapid deployability, the RMMS is combined
with support software for rapid programming, control,
and fault tolerant trajectory planning. In this paper, fault
tolerance is defined as the ability to continue a given task
even when one of the manipulator modules fails and is
immobilized. By carefully planning a fault tolerant joint
space trajectory to be followed by the manipulator before
any failures occur, one can guarantee that a fault tolerant
manipulator can continue its task regardless of which de-
gree-of-freedom is immobilized and regardless of the time
at which the failure occurred. For more information about
manipulator fault tolerance refer to [11, 13, 14].

2 The Task-Based Design Problem

The central component of rapidly deployable fault tol-
erant manipulator system is the Task Based Design (TBD)

Reconfigurable
Modular

Hardware

Fault Tolerant
Trajectory
Planning

Control
Software

Task Definition

Task Based Design and Verification

Figure 1: A rapidly deployable fault tolerant system.

Pivot Joint Rotate JointLinkWrist

Corner Link

Figure 2: The modules in the inventory.

Christiaan J.J. Paredis

paredis@cmu.edu
Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213

Pradeep K. Khosla

pkk@cs.cmu.edu
Dept. of Electrical and Computer Engineering,

The Robotics Institute,
Carnegie Mellon University,

Pittsburgh, PA 15213

software. It answers the question: given a low-level task
description and an inventory of manipulator modules, find
a manipulator configuration, its base position, and the cor-
responding fault tolerant joint space trajectory which is
optimally suited to perform the given task. Note that TBD
involves the complete specification of not only the physi-
cal structure of the manipulator (kinematics as well as dy-
namics), but also its behavior (trajectory planning and
control).

We assume that a task is defined as a Cartesian path to
be followed by the end-effector of the manipulator with-
out violating any of the following constraints:

• joint position, velocity, and torque limits
• singularity avoidance
• collision avoidance with obstacles and the manipulator

itself
• fault tolerance.

The optimality criterion that we consider is energy con-
sumption.

Unfortunately, TBD is a difficult problem. The size of
the design space grows exponentially with the number of
modules in the inventory; the constraints and optimization
criteria are highly coupled and non-linear; and evaluating
whether the constraints are achieved is very computation-
ally expensive.

In the remainder of this paper, we propose a novel
agent-based approach to TBD and illustrate the power of
this approach with a comprehensive manipulator design
problem for a satellite docking operation.

3 An Integrated Solution Approach

In the literature, the TBD problem is usually decoupled
into four subproblems: kinematic design, dynamic design,
trajectory planning, and control [2, 3, 7, 10, 15]. These
subproblems are then solved individually and sequential-
ly. However, this approach assumes a weak interaction be-
tween the subproblems, which is often not the case in
reality, especially when considering such global design
criteria as fault tolerance and energy consumption. In a
sequential design approach, strong interactions would re-
sult in an unacceptably large number of re-iterations.
Therefore, we propose a fully integrated design approach
that considers kinematics, dynamics, trajectory planning,
and control simultaneously in one large global search
problem.

Our approach is based on a genetic algorithm to which
the following important modifications have been made: 1)
the computational requirements have been reduced by in-
cluding problem specific design knowledge in the modifi-
cation and evaluation functions; 2) the computational
resources are increased through an agent-based imple-
mentation that can be executed on a group of networked
workstations.

4 Including Problem Specific Design Knowledge

Michalewicz [8] has shown that the performance of ge-
netic algorithms can be drastically improved by including
problem specific knowledge. We implemented two differ-
ent mechanisms through which problem specific knowl-
edge improves the efficiency of the search algorithm:

• reduction of the search space size
• reduction of the evaluation cost of a candidate solution

(i.e. fitness determination)

In the context of TBD, a very important reduction in
the size of the search space is obtained by applying the
global fault tolerant trajectory planning algorithm [14] to
the trajectory planning and control subproblem. Instead of
having tosearch for a desired trajectory, one can deter-
mine the manipulator’s behavior algorithmically, resulting
in a very important reduction in the size of the search
space. A second important reduction in search space size,
is achieved by including problem specific design knowl-
edge in the generation of candidate designs. We require
that a candidate design satisfies the following three con-
straints:

• The first and last module of a manipulator must be a
base and end-effector module, respectively.

• A spatial fault tolerant manipulator requires 7 degrees-
of-freedom.

• The orientation in which an axially symmetric module
is mounted with respect to the previous module can be
arbitrarily chosen to be zero degrees.

The combination of these three constraints results again in
a very significant reduction of the search space size.

The second important mechanism to improve the effi-
ciency of the search algorithm, is to reduce the cost of
evaluating a candidate solution. We call the approach we
have implemented “progressive evaluation,” because it
progressively uses more and more complicated—and time
consuming—tests to evaluate designs. Very often it is pos-
sible to devise a simple test for anecessary condition—if
a design fails the test one can guarantee that the design
does not meet the task requirements. When a design does
not pass the test for a necessary condition, an estimate for
the fitness of the design is generated and the evaluation is
terminated. Progressive evaluation is based on the obser-
vation that it is very often possible to recognize a bad de-
sign quickly using a simple test. Here is a successive list
of tests that are implemented in the TBD evaluation func-
tion:

• If fault tolerance is required, test whether the manipu-
lator is redundant.

• Test whether the manipulator can reach the initial
point of the Cartesian path.

• If fault tolerance is required, test whether a fault toler-
ant joint space trajectory exists.

• The fault tolerant trajectory planning algorithm itself
is also implemented in a progressive manner [14].

• When all tests are satisfied, a simulation of the task
execution is started to verify all the other constraints.

5 An Agent-Based Design Framework

To complement the reduction of the computational re-
quirements, it is possible to increase the computational re-
sources through an agent-based implementation of the
genetic algorithm.

For every new generation in a genetic algorithm, one
needs to modify and evaluate each of the individuals.
These modification and evaluation operations can be par-
allelized. However, a straightforward parallel implementa-
tion of the standard genetic algorithm would cause load
balancing problems and inefficient processor usage due to
the synchronization requirements of the centrally con-
trolled algorithm—selection of the parents for the next
generation of individuals depends on thenormalized fit-
ness and therefore cannot be executed untilall the indi-
viduals have been evaluated. In the current literature on
parallel genetic algorithms, one can find three main adap-
tations of the standard genetic algorithm that avoid this
centralized control: tournament selection [4], parallel sub-
populations [17], and a physically distributed population
with one processor per individual [9].

Synchronization problems can also be avoided through
an agent-based implementation, where each agent corre-
sponds to anoperator rather than an individual. This ap-
proach, illustrated in Figure 3, combines three types of
agents: creation/evaluation agents, modification/evalua-
tion agents, and destroyer agents. The agents do not com-
municate with each other directly, but only indirectly
through a shared memory which contains the population
of candidate solutions. A population manager manages
the storage and retrieval of individuals of the population,
but does not control the execution of the agents. The
agents are fully autonomous and execute asynchronously.

Their functions correspond roughly to the functional enti-
ties of the genetic algorithm. At start-up, acreation/eval-
uation agent generates initial candidate solutions,
determines their fitness value, and places them in the pop-
ulation (creation of the initial population). Based on the
evaluations, modification/evaluation agentsselect and
modify candidate solutions and return them to the popula-
tion (selection, mutation, and cross-over in genetic algo-
rithms). One major difference between this agent-based
approach and the standard genetic algorithm is the way
the population is managed. Rather than creating a new
population each generation based on the population in the
previous generation, the algorithm does not consider dis-
tinct generations at all. Instead, the off-spring is simply
added to the current population. To avoid an ever growing
population, individuals with a low fitness value are de-
stroyed bydestroyer agents; this is similar to the mecha-
nism used in -Evolution Strategies [16].
Population convergence is achieved in our approach by
preferably destroying the worst individuals. As a result,
the framework, shown in Figure 3, maintains the desired
convergence characteristics of genetic algorithms, while,
at the same time, avoiding the need for centralized con-
trol—a critical criterion for a distributed implementation.

The main advantage of an agent-based framework is
performance. Current day computing facilities consist of
a highly networked group of powerful workstations. Many
of these workstations are idle for large amounts of time.
These idle cycles can be used at no extra cost to run the
agents in our distributed framework. Since we are dealing
with a small data structure to represent candidate solu-
tions, the time needed to exchange data between the
agents and the population manager is negligible compared
to the computing time required for modification and eval-
uation of candidate solutions, resulting in a speedup that
is almost linear in the number of processors.

An additional advantage of this agent-based design
framework is itsmodularity. We have divided the mono-
lithic standard genetic algorithm into functional entities
that, by removing the centralized control, have become in-
dependent modules or autonomous agents. These agents
are separate processes that interact only with the popula-
tion manager, so that the addition of new agents does not
affect the other agents.

6 Task Based Design Example

The TBD problem solved in this example is to design
a fault tolerant manipulator for a satellite docking opera-
tion aboard the space shuttle. The task is to grab a satellite
with a manipulator mounted in the cargo bay, and store it
fault tolerantly in a storage unit. The goal of TBD is to
determine the optimal manipulator configuration; the base
position of the manipulator, i.e., the position and orienta-

Figure 3: Layout of the agent-based design
framework.

Creation/Memory with
Candidate
Solutions

Destroyer Evaluation
Agent

Modification/
Evaluation

Agent

Modification/
Evaluation

Agent

µ λ+()

tion of the space shuttle with respect to the satellite; and
the corresponding fault tolerant joint space trajectory. To
create the manipulator structure, an inventory of 23 mod-
ules is available:1

• 4 pivot joint modules (varying torque characteristics),
• 4 rotate joint modules (varying torque characteristics),
• 10 link modules (varying lengths),
• 2 corner link modules (varying lengths),
• 2 wrist modules, each with three DOFs,
• 1 base module mounted in the space shuttle cargo bay.

As is illustrated in Figure 4, the satellite is cylindrical
in shape and weighs 1000kg. The fault tolerant task starts
with manipulator’s end-effector 0.5m in front of the satel-
lite’s grasp handle. The final position of the satellite is in
the middle of the cargo bay, 7m behind the manipulator
base. To insert the satellite into its storage unit successful-
ly, it is important that the final descent be straight down.
Therefore, there is an approach point included in the tra-
jectory, which is 0.75m above the satellite storage unit.
The complete manipulator trajectory is defined by four
points (and the corresponding times), as shown in
Figure 4. Note that the first two points are defined relative
to the initial position of the satellite, while the last two
points are defined relative to the manipulator base. Be-
cause the position and orientation of the manipulator base
(i.e., the space shuttle) are design variables, the Cartesian
trajectory varies from one design to another. It is part of
the design task to determine the optimal position and ori-
entation of the space shuttle with respect to the satellite.
We have restricted the base position to be within a cube

1. Complete specifications of all the modules can be found in [11]

of meters centered around the initial satel-
lite position. This ensures that the design system does not
waste too much time exploring designs for which the sat-
ellite is positioned completely out of the range of the ma-
nipulator. On the other hand, we have also restricted the
position of the space shuttle to assure that the satellite is
not too close to the shuttle, which would make the initial
approach maneuver too dangerous. We require that the
center of the satellite be more than 3m removed from any
part of the space shuttle.

Finally, because the position and orientation of the
end-effector are considered, the manipulator needsseven
DOFs to perform the task fault tolerantly [13].

7 Problem Characterization

Before we evaluate the performance of the agent-based
design system, it is important to get an idea of the com-
plexity of the design problem. In this section, we charac-
terize the TBD problem using four characteristics:

• size of the design space
• cost of evaluating a candidate design
• fraction of the design space containing feasible solu-

tions
• quality of the fitness heuristic

The 23 modules in the inventory can be assembled into
an extremely large number of configurations:

(1)

Even when including the knowledge that a legal configu-
ration has to start with a manipulator base and end with
an end-effector, that it should have seven DOFs, and that
axially symmetric modules have a zero relative orienta-
tion, the number of configurations is still very large:

. (2)

Besides the discrete design variables, the size of the
search space is further increased by six continuously vary-
ing parameters defining the position and orientation of the
space shuttle with respect to the satellite.

In addition to the large search space, this TBD problem
is complex due to the high computation cost of a function
evaluation (in addition to the determination of the fault
tolerant trajectory a complete kinematic and dynamic sim-
ulation of the task execution needs to be performed). As
is shown in Figure 5, the average computation cost for the
fitness evaluation of a random design is relatively small.
The random search algorithm performed approximately
12,000 fitness evaluations per hour on 24 Sparc worksta-
tions, which corresponds to 7.2 seconds per fitness evalu-
ation on one Sparc 20 workstation. However, the vast

x

x

x

x

y

y

y

y

z

z

z

z
1

4

3

2

Figure 4: The Cartesian trajectory. The coordinate
frames indicated the desired position and orientation
of the end-effector of the manipulator.

t1 = 0 sec
t2 = 10 sec
t3 = 40 sec
t4 = 50 sec

24 24× 24×

N
23!

23 i–()!
--------------------8i

i 1=

23

∑ 1.7 43×10≈=

N 3 20×10≈

majority of the randomly chosen designs are very poor, so
that the progressive fitness evaluation requires very little
time. On the other hand, the average computation cost for
the designs considered by the agent-based genetic algo-
rithm is approximately 62 seconds on one Sparc worksta-
tion. Moreover, towards the end of the algorithm’s
execution, when the better designs are being evaluated,
the average evaluation cost increases to 100 seconds.

To determine the fraction of the design space contain-
ing feasible solutions, a random search has been executed;
an exhaustive search is impossible due to the size of the
search space. Even though the search space is very large,
it could be possible that a large percentage of all candi-
date designs are acceptably good solutions (for this exam-
ple, a feasible solution, which does not violate any task
constraints, is considered to be acceptably good). If this
were the case, a random search would find one of those
feasible solutions quickly. However, for the satellite dock-
ing operation, the random search found only one feasible
solution in 750,000 function evaluations (64 hours on 24
Sparc workstations).

The final step in characterizing the TBD problem is to
examine the quality of the fitness heuristic by determining
the probability that a pure hill-climbing algorithm reaches
a feasible solution. Even though only a very small fraction
of the design space contains feasible designs, it could still
be possible that the TBD problem is relatively simple,
namely, if the fitness heuristic function leads the hill-
climbing algorithm directly to the region containing the
feasible designs. One can check whether the fitness func-
tion for the satellite docking problem exhibits this proper-
ty by performing a large number of statistical hill-
climbing runs. In the experiments for this problem, only 8
out of 480 single start statistical hill-climbing runs [6]
converged to a feasible solution—that is approximately

1.7%. All the other runs got stuck in an infeasible local
maximum. Although 1.7% is not extremely small, it does
indicate that it is best to use an algorithm that can avoid
local maxima—for instance, the agent-based genetic algo-
rithm.

In conclusion, the TBD problem for the satellite dock-
ing operation is characterized by:

• a very large search space
• a high computation cost for evaluating the fitness of a

candidate design
• a very small fraction of feasible designs
• a small probability of reaching these feasible designs

through statistical hill-climbing.

The combination of these characteristics result in a
very challenging design problem, for which one can ex-
pect a high computation cost for finding a feasible solu-
tion.

8 Performance Analysis

This section compares the performance of the agent-
based genetic algorithm with multiple restart statistical
hill-climbing (MRSH); MRSH has been suggested as an
adequate benchmark for evaluating the performance of
genetic algorithms [1, 6]. The MRSH algorithm is imple-
mented as 24 single start statistical hill-climbing algo-
rithms running in parallel on 24 Sparc workstations. On
the other hand, the agent-based genetic algorithm a total
of 46 agents: 20 creation agents, 3 crossover agents, 3
MutateModule agents, 3 AddDeleteModule agents, 3 Per-
muteModule agents, 3 MutateBasePosition agents, 9 Mu-
tateRelativeOrientation agents, one destroyer agent, and
one displayer agent. These agents run on the same set of
24 Sparc workstations used for MRSH—one modification
agent per workstation.

Because this satellite docking example is so complicat-
ed, the solution process requires a large amount of com-
putation. A single run of the MRSH or the GA lasts 6
hours on 24 Sparc workstations. If one were to use one
single Sparc 20, the experiment would last 6 days, which
would be absolutely unacceptable. This clearly illustrates
the need for a distributed implementation of the design
system.

The analysis consists of two components: comparison
based on anabsolute and arelative performance criterion.
The absolute performance criterion, illustrated in Figure
6, is the ability of the algorithms to reach a feasible solu-
tion. Because the design space for this example is too
large for an exhaustive search, it is impossible to deter-
mine the absolute global optimum. However, since the
differences in power consumption between the feasible
solutions are relatively small, it makes sense to consider
any feasible solutions to be acceptably good.

0 1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

14000

time [hours]

nu
m

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

random search

MRSH

GA

Figure 5: The number of fitness evaluations as a
function of time.

As Figure 6 indicates, the agent-based genetic algo-
rithm is much more likely than the multiple restart statis-
tical hill-climbing algorithm to find a feasible solution.
The genetic algorithm failed to reach a feasible solution in
only five out of twenty runs. In those five runs, it was still
successful at planning a fault tolerant trajectory, but dur-
ing the simulation of this trajectory a torque limit viola-
tion occurred, so that the design did not meet all the task
requirements. The MRSH algorithm reached a feasible so-
lution only in seven out of twenty runs, and failed to even
plan a fault tolerant trajectory in all but two of the remain-
ing runs.

According to the relative performance criterion, the
agent-based genetic algorithm also outperforms the
MRSH algorithm. For the relative performance criterion,
the two algorithms are compared in a tournament, run by
run. The algorithm that achieves the highest fitness value
in a particular run wins. Figure 7 depicts, as a function of
time, the probability that the agent-based genetic algo-
rithm achieves a higher fitness value than the MRSH al-
gorithm. Initially, the two algorithms perform almost
equally well—that is, their fitness value increases at an al-
most equal pace. Yet, as Figure 6 indicates, it is very un-
likely that either algorithm reaches a feasible solution at
this stage. It is only after about three hours, that the genet-
ic algorithm starts to perform significantly better than
MRSH; the probability that it finds a candidate design
with a fitness value larger than the one found by MRSH
is between 80% and 90%. Figure 8 confirms that this dif-
ference in performance is statistically significant as indi-
cated by the non-parametric Fisher sign test [5].

In conclusion, three hours into the experiment, the
agent-based genetic algorithm performs significantly bet-
ter than the MRSH algorithm: there is a chance of more

than 80% that the GA achieves a higher fitness value than
MRSH. Moreover, after six hours, the agent-based genetic
algorithm finds a feasible solution with a probability of
about 75%.

9 Interpretation of the Optimal Design

So far the focus has been on the designprocess. In this
section, we take a closer look at the result of this process,
namely, the optimal design found by the agent-based ge-
netic algorithm.

The optimal manipulator configuration is depicted in
Figure 9. It consists of only eight modules, as listed in Ta-
ble 1. All the other designs found by the agent-based de-
sign system had more than eight modules. Since the
energy consumption (which is the optimality criterion) de-
pends on the number of modules (energy consumed by the

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

time [hours]

pe
rc

en
ta

ge
 o

f r
un

s
at

ta
in

in
g

a
fe

as
ib

le
 s

ol
ut

io
n

MRSH

GA

Figure 6: Percentage of the runs attaining a
feasible solution.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [hours]

pr
ob

ab
ili

ty
 th

at
 G

A
 >

 M
R

S
H

Figure 7: Relative comparison between GA
and MRSH.

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

time [hours]

le
ve

l o
f s

ig
ni

fic
an

ce

0.05 significance level

Figure 8: Results of the Fisher sign test.

module electronics), designs with fewer modules are pre-
ferred over the others. An additional benefit is that de-
signs with fewer modules tend to have a simpler structure.

Given that the design system does not include any ex-
plicit guidelines as to what a good manipulator should
look like, it is surprising how much sense this manipulator
design makes from the perspective of a human designer:

• The four positional DOFs of the manipulator are
equally distributed over the length of the manipulator
(the last link only looks shorter in Figure 9 because of
perspective distortion). The Denavit Hartenberg param-
eters shown in Table 2 indicate that the three links are
almost equal in length: 3.469m, 3.654m, and 3.289m.
This is very important from a fault tolerant perspective.
If, for instance, the first link were much longer than the
others, a failure in the first DOF would severely restrict
the positioning capabilities of the manipulator.

• The total length of the manipulator is about 11m. This
allows the manipulator to reach the initial and final po-
sition of the satellite without being fully stretched out
or folded back—both of which would be detrimental to
the fault tolerant capabilities of the manipulator.

• The DOFs are strongly coupled, as is required for fault
tolerance [13]. The twist angles between the pivot

Figure 9: The optimal design found by the agent-
based design system. The two figures at the bottom
are taken by a camera which is positioned to the right
of the cockpit. They show the manipulator in the initial
and final posture.

serial
number

relative
orientation

joint
type

comment

sn50 270 pivot joint Tmax = 400Nm

sn76 0 link length = 2m

sn61 0 rotate joint Tmax = 600Nm

sn52 90 pivot joint Tmax = 600Nm

sn77 0 link length = 3m

sn51 270 pivot joint Tmax = 600Nm

sn75 0 link length = 2m

sn91 0 3-roll wrist length = 1.5m

Table 1: The module configuration of the optimal design.

DOF

1 –0.137 0

2 –3.469 0

3 –0.275 3.654

4 –0.275 0

5 3.289 0

6 0 0

7 0 0 0

i di ai αi

π/2

π/2

π– /2

π/2

π/2

π/2

Table 2: Denavit Hartenberg parameters of the optimal
manipulator design.

joints are all 90 degree angles, and by including a ro-
tate joint between the first and the second pivot mod-
ules, the second half of the manipulator can be pointed
in any direction. (One could consider the rotate joint
followed by a pivot joint to be a 2-DOF spherical
joint.)

• The first rotation axis is perpendicular to the axis of
the space shuttle, allowing the first link to move along
a plane in the middle of the cargo bay. This makes
sense because both the initial and final position of the
satellite are in the middle of the cargo bay.

• The base position of the manipulator, i.e., the position
and orientation of the space shuttle with respect to the
satellite, is chosen very carefully. The satellite is posi-
tioned almost exactly in the middle of the cargo bay (y-
coordinate =), 8.36m behind the manipulator
base, and 3.85m above the space shuttle. This means
that the satellite is as close to its final position as it is
allowed to be (3m removed from any part of the space
shuttle). Furthermore its orientation is such that only a
small rotation is required to move it to its final position
in the storage unit.

10 Summary

This paper introduced a novel agent-based design sys-
tem for task-based design of modular reconfigurable ma-
nipulators. This system combines the flexibility and
performance of an agent-based implementation of a ge-
netic algorithm with an effective search based on problem
specific design knowledge.

The performance of the design system is evaluated for
a very challenging problem: the design of a fault tolerant
manipulator for a satellite docking operation aboard the
space shuttle. The agent-based genetic algorithm easily
outperforms a multiple restart statistical hill-climbing al-
gorithm that is used as a benchmark.

Acknowledgment

This research was funded in part by the DOE under
grant DE-F902-89ER14042, by Sandia National laborato-
ries under contract AL-3020, by the Department of Elec-
trical and Computer Engineering, and by The Robotics
Institute, Carnegie Mellon University.

References

[1] Baluja, S. 1995. An Empirical Comparison of Seven Itera-
tive and Evolutionary Function Optimization Heuristics.
Technical Report CMU–CS–95–193. Computer Science
Department, Carnegie Mellon University.

[2] Chen, I-M., and Burdick, J. W. 1995 (May 21–27, Nagoya,
Japan). Determining Task Optimal Modular Robot Assem-
bly Configurations.Proceedings of the 1995 IEEE Interna-
tional Conference on Robotics and Automation, Vol. 1. Los

Alamitos, CA: IEEE, pp. 132–137.
[3] Farritor, S., Dubowsky, S., Rutman, N., and Cole, J. 1996

(April, Minneapolis, MN). A System-Level Modular
Design Approach to Field Robotics.Proceedings of the
1996 IEEE International Conference on Robotics and Auto-
mation. Vol. 4. Los Alamitos, CA: IEEE, pp. 2890–2895.

[4] Goldberg, D. E., Deb, K., and Korb, B. 1991. Do not
Worry, Be Messy.Proceedings of the Fourth International
Conference on Genetic Algorithms. Eds: Belew and
Booker. Los Altos, Ca: Morgan Kaufmann Publishers, pp.
24–30.

[5] Hollander, M. and Wolfe, D. A. 1973.Nonparametric Sta-
tistical Methods. Wiley Series in Probability and Mathe-
matical Statistics. New York, NY: John Wiley & Sons.

[6] Juels, A., and Wattenberg, M. 1994. Stochastic Hillclimb-
ing as a Baseline Method for Evaluating Genetic Algo-
rithms. Technical Report CSD–94–834. Computers Science
Department, University of California at Berkeley.

[7] Kim, J.-O., and Khosla, P. K. 1992 (July 7–10, Raleigh,
NC). A Multi-Population Genetic Algorithm and Its Appli-
cation to Design of Manipulators.Proceedings of the 1992
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’92).

[8] Michalewicz, Z. 1994. Genetic Algorithms + Data Struc-
tures = Evolution Programs (second edition), New York,
NY: Springer Verlag.

[9] Mühlenbein, H. 1992. Parallel Genetic Algorithm in Com-
binatorial Optimization.Computer Science and Operations
Research. Eds.: O. Balcki, R. Shandra, and S. Zenios. New
York, NY: Pergamon Press, pp. 441–456.

[10] Murthy, S. S. 1992. Synergy in Cooperating Agents:
Designing Manipulators from Task Specifications. Ph.D.
Thesis. Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University.

[11] Paredis, C. J. J. 1996. An Agent-Based Approach to the
Design of Rapidly Deployable Fault Tolerant Manipulators.
(http://www.cs.cmu.edu/~paredis/pubs/thesis.html) Ph.D.
thesis. Department of Electrical and Computer Engineering.
Carnegie Mellon University.

[12] Paredis, C. J. J., Brown, H. B., and Khosla, P. K. 1996
(April 22–28, Minneapolis, MN). A Rapidly Deployable
Manipulator System.Proceedings of the 1996 IEEE Inter-
national Conference on Robotics and Automation. Vol. 2.
Los Alamitos, CA: IEEE, pp. 1434–1439.

[13] Paredis, C. J. J., and Khosla, P. K. 1996. Designing Fault
Tolerant Manipulators: How Many Degrees of Freedom?
The International Journal of Robotics Research. Vol. 15.
No. 6.

[14] Paredis, C. J. J., and Khosla, P. K. 1996. Fault Tolerant
Task Execution through Global Trajectory Planning.Reli-
ability Engineering and System Safety (Special Issue on
Safety of Robotic Systems). In Press.

[15] Paredis, C. J. J., and Khosla, P. K. 1993. Kinematic Design
of Serial Link Manipulators From Task Specifications.
International Journal of Robotics Research. Vol. 12. No. 3.
pp. 274–286.

[16] Schwefel, H.-P. 1981.Numerical Optimization for Com-
puter Models. Chichester, UK: John Wiley.

[17] Tanese, R. 1989. Distributed Genetic Algorithm.Proceed-
ings of the Third International Conference on Genetic Algo-
rithms. ed.: H. Schaffer, Morgan-Kaufmann, pp 434–440.

–0.18m

