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SUMMARY

A recent line of works established a remarkable connection for antiferromagnetic

2-spin systems, including the Ising and hard-core models, showing that the computa-

tional complexity of approximating the partition function for graphs with maximum de-

gree ∆ undergoes a computational transition that coincides with the statistical physics

uniqueness/non-uniqueness phase transition on the infinite ∆-regular tree. Despite this

clear picture for 2-spin systems, there is little known for multi-spin systems. We present

the first analog of the above inapproximability results for multi-spin systems.

The main difficulty in previous inapproximability results was analyzing the behavior

of the model on random ∆-regular bipartite graphs, which served as the gadget in the

reduction. To this end one needs to understand the moments of the partition function. Our

key contribution is connecting: (i) induced matrix norms, (ii) maxima of the expectation of

the partition function, and (iii) attractive fixed points of the associated tree recursions (belief

propagation). We thus obtain a generic analysis of the Gibbs distribution of any multi-spin

system on random regular bipartite graphs. We also treat in depth the k-colorings and the

q-state antiferromagnetic Potts models.

Based on these findings, we prove that for ∆ constant and even k < ∆, it is NP-hard

to approximate within an exponential factor the number of k-colorings on triangle-free

∆-regular graphs. We also prove an analogous statement for the antiferromagnetic Potts

model. We systematize the approach to obtain a general theorem for the computational

hardness of counting in antiferromagnetic spin systems, which we ultimately use to obtain

the inapproximability results for the k-colorings and q-state antiferromagnetic Potts models,

as well as (the previously known results for) antiferromagnetic 2-spin systems. The criterion

captures in an appropriate way the statistical physics uniqueness phase transition on the

tree.
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CHAPTER I

INTRODUCTION

Over the last two decades, the need to efficiently simulate large-scale random systems has

led to an extensive development of approximate sampling techniques. This line of research is

concretely captured in the framework of probabilistic graphical models, whose applications

can be found in a wide range of areas, including statistical machine learning, bioinformatics

and computer vision, to name a few. As a byproduct of the intensive study of graphical

models, the classical Markov Chain Monte Carlo approach for approximate sampling has

been complemented by elaborate variational methods (see for example [67]). Rapid as the

development of approximate sampling techniques might be, the computational limits of

these methods and the reasons behind their practical success (or failure) remain for the

large part elusive.

Recently, a remarkable connection has been established for spin systems, a natural class

of graphical models, relating directly the complexity of approximate sampling/counting in

computer science and the theory of phase transitions in statistical physics. A crucial part

in this connection is in establishing phase transitions for spin systems on random graphs.

This thesis is devoted to developing further these ideas and understanding the boundaries

of efficient computation.

1.1 Spin systems & Computation: overview

Spin systems are a general framework that captures well-studied models from statistical

physics, such as the Ising and Potts models, and also models of combinatorial interest, such

as k-colorings and the hard-core lattice gas model defined on independent sets. We next

give a general definition of spin systems and later review the most interesting models.

1



1.1.1 General definition

For an integer q ≥ 2, a q-spin system is specified by a symmetric q × q interaction matrix

B = (Bij)i,j∈[q] with non-negative entries, which specify the strength of the interaction

between the spins.

For a finite undirected graph G = (V,E), a q-spin system is a probability distribution

µG over the space ΩG of all configurations, i.e., spin assignments σ : V → [q]. The weight

of a configuration σ ∈ ΩG is the product of neighboring spin interactions, that is,

wG(σ) =
∏

(u,v)∈E

Bσ(u)σ(v). (1)

The spin system has hard constraints if there exist i, j ∈ [q] such that Bij = 0; note that

every configuration with positive weight does not have the spins i, j assigned to adjacent

vertices. A permissive spin system is a system for which there exists a spin i such that

minj Bij > 0. For example, a system with no hard constraints is permissive. In permissive

spin systems, there is always a configuration with positive weight and, more strongly, every

partial configuration σ : S → [q] with S ⊆ V has an extension σ̄ : V → [q] such that

wG(σ̄) 6= 0 (provided that for all u, v ∈ S such that (u, v) ∈ E it holds that Bσ(u)σ(v) 6= 0).

The partition function of the spin system is the aggregate weight of the configurations,

i.e.,

ZG =
∑
σ∈ΩG

wG(σ). (2)

The Gibbs distribution µG is defined as µG(σ) = wG(σ)/ZG. In statistical physics, the

Gibbs distribution specifies an equilibrium state of the system.

Often, the edge interaction is supplemented by a set of external fields which bias the

frequency of one or more spins. More precisely, a set of external fields is specified by a

q-dimensional vector λ = (λi)i∈[q] with non-negative entries. The weight function (1) is

given then by

wG(σ) =
∏
u∈V

λσ(u)

∏
(u,v)∈E

Bσ(u)σ(v).

Note that setting all the λi’s equal to 1 yields the weight function (1), the so called no

external field case.

2



Remark 1. In the largest portion of this thesis, we will work with ∆-regular graphs. For

this class of graphs, there is a generic way to restrict our attention to spin systems with

no external fields. In particular, the spin system specified by B,λ is equivalent to a spin

system with interaction matrix Bλ where the ij-entry of Bλ is given by λ
1/∆
i λ

1/∆
j Bij.

For completeness, we next review some well-known models of significant combinatorial

or statistical physics interest.

1.1.2 2-spin systems

A 2-spin system is specified by parameters B1, B2 ≥ 0 and λ > 0. The parameters B1, B2

specify the edge interaction, while λ is the external field on the spin 1. To avoid trivial

models we will invariably assume that at least one of B1, B2 is bigger than 0. The edge

interaction matrix for a 2-spin system with parameters B1, B2 is given by

B =

 B1 1

1 B2

 .
The system is antiferromagnetic if B1B2 < 1 and ferromagnetic if B1B2 > 1. The classifi-

cation captures whether neighboring spins are favored to be the same or different.

The two most interesting models of 2-spin systems are the hard-core and Ising models.

The hard-core model is an idealized lattice gas model in statistical physics and has only

one parameter, the external field λ, which is known as the fugacity or activity of the gas.

It corresponds to the special case where B1 = 1, B2 = 0 (in particular, it is a permissive

antiferromagnetic 2-spin system). In the standard formulation of the hard-core model,

the spins take 0,1 values and vertices which are assigned spin 1 are called occupied, and

unoccupied otherwise. The external field λ acts on the vertices assigned spin 1. It is

straightforward to verify that the Gibbs distribution is supported on configurations which

induce an independent set (by looking at the vertices assigned the spin 1). Recall, an

independent set is a set of vertices which are mutually non-adjacent. The partition function

may be alternatively written as

ZG =
∑
I

λ|I|,

3



where the sum ranges over all independent sets of G. Note that for λ = 1, the partition

function is the total number of independent sets and the Gibbs distribution is the uniform

distribution over the set of independent sets.

The Ising model was introduced as a model of ferromagnetism by Lenz, which was

studied in Ising’s PhD thesis [34]. In the 2-spin setting given above, it corresponds to the

particular case B1 = B2 = B. In the no external field case, the Gibbs distribution of the

Ising model can be viewed as a weighted probability distribution on the set of cuts of the

graph G. The model is antiferromagnetic when B < 1 and ferromagnetic otherwise. Note

that when B < 1, cuts with larger size are favored, in contrast to the case B > 1 where

the largest weight configurations are trivially the assignments in which every vertex has the

same spin. In the standard formulation of the ferromagnetic Ising model with no external

field, the spins take ±1 values and the Gibbs distribution is given by

µG(σ) ∝ exp

β ∑
(u,v)∈E

σ(u)σ(v)

 , (3)

where β ≥ 0 corresponds to what is known as the inverse temperature. In our setting,

B = exp(β). The antiferromagnetic regime is obtained by replacing β with −β (and keeping

β ≥ 0).

To conclude our review of 2-spin systems, we note that there is no generality to be

gained by having extra parameters in the formulation of a 2-spin system, provided that the

presence of an external field is allowed.

1.1.3 The k-colorings and the q-state Potts models

We next look at models with more than 2-spins. The most important such example is the

k-colorings model, where k ≥ 3 is the number of colors/spins. Later in this thesis, we will

use q instead of k to have a uniform account of spin systems. Recall that a proper k-coloring

of a graph G is an assignment of k colors to the vertices of G such that no two adjacent

vertices have the same color.

The Gibbs distribution of a graph G in the k-colorings model is the uniform distribution

over the set of proper k-colorings of the graph G with k-colors. In particular, the partition

4



function is the total number of proper k-colorings. In contrast to 2-spin systems, note that

the Gibbs distribution is not always well-defined if the graph G does not admit a proper

k-coloring. This is clearly not an issue when k is greater or equal than the chromatic

number χ(G), however computing the latter is in general an NP-hard problem. For graphs

of maximum degree ∆, the well-known Brooks’ theorem asserts that χ(G) ≤ ∆ unless the

graph is complete or an odd cycle. Our interest will be in the class of graphs G whose

maximum degree ∆ is a constant (independent of the size of the graph), for which better

algorithmic bounds on the chromatic number are known. We postpone a review of the

literature regarding the colorability of graphs with maximum degree ∆ till Section 1.4.2.

The q-state Potts model is a generalization of the k-colorings model. Precisely, the

model has q spins and a parameter B > 0 (which roughly corresponds to the temperature).

The weight of a configuration σ is Bm(σ), where m(σ) is the number of monochromatic

edges under the configuration σ, that is, edges (u, v) with σ(u) = σ(v). The model is

antiferromagnetic when B < 1 and antiferromagnetic otherwise. Note that the case B = 0

corresponds to the k-colorings model. The edge interaction matrix of the q-state Potts

model has off-diagonal entries equal to 1, and on the diagonal equal to B. Finally, observe

that the Ising model is the particular case of the Potts model with q = 2.

1.1.4 Counting in spin systems

From a computational perspective, the notion of the partition function naturally gives rise

to the problem of computing it. The partition function captures the macroscopic properties

of a spin system and is important to run simulations. For example, it is well known that an

FPRAS for the partition function is equivalent to approximately sampling from the Gibbs

distribution (see [39] for more details).

Formally, we will be interested in the following counting problem.

Parameters. integer q ≥ 2, q × q symmetric matrix B with non-negative entries.

Name. #PartitionFunction(q,B).

Input. A graph G.

Output. The partition function ZG for the q-spin system specified by the interaction

5



matrix B.

The input of #PartitionFunction(q,B) will often be restricted to ∆-regular graphs

or graphs with maximum degree ∆, where ∆ ≥ 3 is a fixed constant. This will be clear

from context.

From a complexity viewpoint, #PartitionFunction(q,B) belongs to the complexity

class #P (introduced in [66]), which is the class of function problems associated to counting

versions of decision problems in the class NP 1. The problem #PartitionFunction(q,B)

is #P-complete unless the matrix B has rank 1 [12]. When B has 0, 1 entries, this is

known to hold even for graphs of bounded degree [24], and it is reasonable to expect

that #PartitionFunction(q,B) is #P-complete even when restricted to graphs of max-

imum degree ∆, for all ∆ ≥ 3. We will thus be interested in efficient approximations of

#PartitionFunction(q,B); below we give a formal description of the class of algorithms

that will be of interest to us.

Let f : Σ∗ → R, where f is a function we are interested in computing and Σ∗ is an

encoding of the instances. A polynomial-time randomized approximation scheme (PRAS)

for f is a randomized algorithm that takes as input a pair (x, ε) ∈ Σ∗×(0, 1) and outputs in

polynomial time (in the length |x| of the input) the value of a random variable Y supported

on rational numbers which satisfies Pr[|Y − f(x)| ≤ ε|f(x)|] ≥ 3/4. A fully polynomial-time

randomized approximation scheme (FPRAS) for f has the same guarantees as a PRAS, but

the algorithm is required to run in polynomial time both in the length |x| and 1/ε. A PTAS

and an FPTAS are the deterministic analogues of PRAS and FPRAS, respectively.

Later, we will also need to compare the relative complexity of approximating the par-

tition functions in two different spin systems. This notion was introduced in [23]. Let

f, g : Σ∗ → R. An approximation-preserving reduction (AP− reduction) from f to g is an

FPRAS for f that has oracle access to an FPRAS for g; moreover, on input (x, ε) ∈ Σ∗×(0, 1),

all oracle calls to g should be pairs (y, δ) ∈ Σ∗ × (0, 1), where |y| is polynomial in |x|, ε−1

and δ is polynomial in |x|, ε.

1We assume familiarity with standard complexity classes, such as P,NP,RP. The reader is referred to
[58] in the literature.
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1.1.5 A sharp computational transition for the hard-core model

A striking computational transition was established for the problem of approximating the

partition function in the hard-core model. To describe this computational transition, for

∆ ≥ 3, let λc(T∆) := (∆ − 1)∆−1/(∆ − 2)∆ (the notation λc(T∆) will become apparent

shortly).

Weitz [68] gave an FPTAS for the partition function of graphs with maximum degree

∆ when ∆ is constant and λ < λc(T∆). On the other hand, Sly [63] proved (extended in

[26, 27, 64], see also Theorem 11 in this thesis) that, unless NP = RP, for every ∆ ≥ 3

and λ > λc(T∆), there does not exist an FPRAS for the partition function on graphs with

maximum degree ∆. In fact, it was proved in [64] that the intractability result remains true

even within an exponential factor of approximation. As an interesting special case of these

results, observe that λc(T∆) > 1 iff ∆ ≤ 5, and thus approximately counting independent

sets on graphs with maximum degree ∆ admits a polynomial-time algorithm iff ∆ ≤ 5

(assuming NP 6= RP).

This sharp computational transition is even more interesting in light of the fact that

it coincides with the uniqueness/non-uniqueness phase transition on the infinite ∆-regular

tree T∆ in statistical physics. Roughly, the uniqueness/non-uniqueness phase transition

captures the existence of long-range correlations; we will formulate this precisely later in the

introduction. For now, we note that the techniques and results of [68] and [63] established for

the first time a strong connection between computational complexity and phase transitions

in statistical physics.

This connection was later extended to antiferromagnetic 2-spin systems [44, 64] (for the

hardness side, see also Theorem 11). Despite this beautiful picture for 2-spin systems, much

less is known for multi-spin systems such as the k-colorings or the q-state Potts models.

Our major goal in this thesis is to obtain an analog of the above inapproximability results

for multi-spin systems, by exploring the connection with the phase transition on the infinite

∆-regular tree.

More precisely, the main difficulty in the previous inapproximability results for 2-spin

systems was to analyze the Gibbs distribution on random bipartite ∆-regular graphs, which
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are used as gadgets in the reduction. This reduction scheme was first introduced by Dyer,

Frieze, and Jerrum [22], who obtained that approximately counting independent sets on

graphs of maximum degree ∆ is hard whenever ∆ ≥ 25. The connection of the Gibbs

distribution on random bipartite ∆-regular graphs with the phase transition on the infinite

∆-regular tree was formulated and established by Mossel, Weitz, and Wormald [56], who

conjectured that approximating the partition function in the hard-core model should be hard

whenever λ > λc(T∆). In a seminal work, Sly [63] proved the conjecture when λc(T∆) < λ <

λc(T∆) + ε(∆) for some small ε(∆) > 0 and the interesting case λ = 1,∆ = 6, introducing

a reduction scheme which allowed to go all the way to the threshold.

To give a flavor of our later pursuits, it will be useful to briefly go over the approach

in [62]. Sly utilized the results in [56] to construct a gadget based on a bipartite random

graph (the gadget itself is a bipartite graph). Roughly, when λ > λc(T∆), the largest

contribution to the partition function of the gadget comes from configurations which have

a linear (in the size of the gadget) surplus of occupied vertices on one side of the bipartition

(the configuration space splits evenly with respect to this property between the two sides).

The gadget thus exhibits a boolean behavior; a configuration σ in the Gibbs distribution

is with high probability in one of two “phases”, depending on the side of the bipartition

which has the largest number of occupied vertices. By making clever connections between

the sides of two copies of the gadget yields a graph whose partition function is dominated

by the contribution of configurations whose phases on the two gadgets are different. Using

a sufficiently large gadget, the construction can be carried out for an arbitrary graph H

(rather than a single edge) by replacing each vertex of H by a copy of the gadget. The

partition function of the resulting graph is dominated by configurations whose phases on

neighboring gadgets are as different as possible. Specifically, the phases of the gadgets

correspond to a maximum cut partition of H, yielding a reduction of MaxCut to the

problem of approximating the partition function in the hard-core model.

Sly’s reduction required substantial technical work, at the heart of which lies the anal-

ysis of the hard-core model on random bipartite ∆-regular graphs. The latter analysis is
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based heavily on insights from phase transitions on the infinite ∆-regular tree. To get in-

approximability results for multi-spin systems, we will follow a similar approach, seeking

to analyze general spin systems on random bipartite ∆-regular graphs. En route, we will

describe the uniqueness phase transition (Section 1.2) and how it manifests itself on random

regular graphs (Section 1.3). These pieces will be combined in Section 1.4 to obtain our

inapproximability results.

1.2 Phase transitions on lattices

From the viewpoint of statistical physics, a phase transition is an abrupt change in the

macroscopic properties of a system due to small changes in the microscopic parameters of

the system. A well-known example of a phase transition is the transformation of the states

of matter (solid, liquid, gas). To better align however with the mathematical development

of phase transitions, it will be useful to describe the phase transition of the Ising model on

the two dimensional integer lattice Z2 (which we will abbreviate in short as 2D Ising). We

will work in the standard notation of the Ising model, given in (3).

To motivate the discussion, let us first observe that the Gibbs distribution is well de-

fined only for finite graphs. In statistical physics however, systems have typically a large

number of components, effectively infinite. This raises the question of how to describe the

equilibrium states in an infinite system as an extension of the (finite) Gibbs distribution.

Ideally, the description of such an equilibrium would capture that finite subsystems are in

equilibrium with the rest of the system. Let us formalize the last sentence.

Consider the 2D Ising model on Z2. Let Λn be a square box around the origin of Z2

with length b
√
nc. The set of vertices in Z2\Λn which have neighbors in Λn will be called

the (external) boundary of Λn and denoted as ∂Λn. We will consider configurations which

assign the same spin to the boundary vertices. Specifically, the (+)-boundary condition

will refer to the set of configurations σ : Λn ∪ ∂Λn → {±1} where all vertices in ∂Λn are

assigned spin +1. Define analogously the (−)-boundary condition. Next, we will examine

whether the boundary condition affects the marginal probability that the origin is assigned

the spin +1. To do this, denote the origin by ρ and the Gibbs distribution on Λn ∪ ∂Λn by
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µn := µΛn∪∂Λn . Let

p+
n := µn(σ(ρ) = +1 | ∀u ∈ ∂Λn, σ(u) = +1),

p−n := µn(σ(ρ) = +1 | ∀u ∈ ∂Λn, σ(u) = −1).

Given that the model is ferromagnetic, it is reasonable to expect that p+
n > p−n . The phase

transition in Z2 captures whether the bias persists in the limit n→∞. More precisely, if

p+
n − p−n → 0, (4)

the model is in the uniqueness regime of Z2, and otherwise in the non-uniqueness regime.

To justify this terminology, (4) captures whether there are multiple equilibrium states of the

infinite system. In particular, whenever (4) holds, it can be proved that finite subregions

which are far away are asymptotically independent. It is reasonable to expect that this

would hold when the edge interaction is weak, i.e., when β is small. On the other hand, if β

is large, then (4) fails and the system is characterized by long range correlations, signifying

the existence of multiple equilibrium states. In fact, the transition from the uniqueness

regime to the non-uniqueness regime is sharp: Onsager [57] solved the model and proved

the existence of a critical temperature βc(Z2) such that whenever β > βc(Z2) the model is

in the non-uniqueness regime, and in uniqueness otherwise.

To summarize, the phase transition on Z2 captures the existence of long range corre-

lations in the large scale limit; whenever the correlations persist, the system has multiple

equilibrium states. So far, we have been intentionally obscure on the definition of the equi-

librium states in infinite systems, since the mathematical formulation is more strenuous.

An equilibrium state in Z2 is a probability distribution on the space of all configurations,

known as an infinite volume Gibbs measure. Roughly, an infinite volume Gibbs measure is

consistent with all Gibbs distributions on finite subgraphs and all boundary conditions on

them. This should bear some resemblance with the argument above; a formal definition

and further discussion is given in Section 1.2.1.

We conclude this part by noting that there are other ways to view the phase transition

on Z2: the classical statistical physics view concentrates on singularities of the limit of
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the logarithm of the partition function or discontinuities of macroscopic properties of the

system.

1.2.1 Infinite-volume Gibbs measures

Dobrushin [21] and Lanford and Ruelle [43] formulated the concept of an infinite-volume

Gibbs measure. This is a natural extension of the Gibbs distribution in the setting of infinite

graphs and can be therefore interpreted as an equilibrium state of an infinite system. In the

previous section, we described the motivation behind the definition of an infinite-volume

Gibbs measure. In this section, we shall give a formal definition for a q-spin system with

interaction matrix B. For a more elaborate treatment, the reader should refer to [29].

Let G = (V,E) be a graph, where V is a countable set of vertices. For convenience,

we will assume that the graph is locally finite, i.e., every vertex has bounded degree. A

configuration σ : V → [q] will be called feasible if for every edge (u, v) ∈ E, it holds that

Bσ(u)σ(v) > 0. For a configuration σ and a subset S ⊆ V , the restriction of σ to S will be

denoted by σS .

Let Λ be a finite subgraph of G and denote by ∂Λ its external boundary, i.e., the set of

vertices which do not belong in Λ but are adjacent to a vertex in Λ. With a minor abuse

of notation, for a configuration σ, we will denote by σΛ the restriction of σ to the set of

vertices in Λ. We will denote by µΛ∪∂Λ the finite volume Gibbs distribution on Λ ∪ ∂Λ.

A Gibbs measure ν is defined by requiring ν to agree with the finite Gibbs distribution

inside every finite region Λ, given that the configuration outside Λ is kept fixed. More

precisely, we have the following definition.

Definition 1. Let B be the interaction matrix of a q-spin system and G = (V,E) be a

locally finite graph. A probability measure ν over the space of all feasible configurations on

G is a Gibbs measure for the spin model defined by B, if for every finite region Λ ⊆ G, and

ν-almost every feasible configuration η, it holds that

ν(σΛ = τ |σG\Λ = ηG\Λ) = µΛ∪∂Λ(σΛ = τ |σ∂Λ = η∂Λ),

for every τ : Λ→ [q].
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With the definition of an infinite-volume Gibbs measure in place, we are now ready to

give a formal definition of uniqueness/non-uniqueness. The definition captures the existence

of multiple equilibrium states for the infinite system.

Definition 2. Let B be the interaction matrix of a q-spin system and G = (V,E) be

a locally finite graph. The q-spin system is in the uniqueness regime of G if there ex-

ists a unique infinite-volume Gibbs measure. Otherwise, the q-spin system is in the non-

uniqueness regime of G.

To relate with the definition of the uniqueness regime in the 2D Ising model, we give

the following equivalent definition of uniqueness, whose proof can be found in e.g. [29].

Lemma 1. Let B be the interaction matrix of a q-spin system and G = (V,E) be a locally

finite graph. The q-spin system is in the uniqueness regime of G iff for every finite subgraph

Λ ⊆ G, there exists a sequence of finite regions Λ ⊆ Λ1 ⊆ Λ2 ⊆ · · · ⊆ Λn ⊆ . . . with

∪nΛn = V such that for every pair of feasible configurations η, η′ on G, it holds that

∣∣µΛn∪∂Λn(σΛ = τ |σG\Λn = ηG\Λn)− µΛn∪∂Λn(σΛ = τ |σG\Λn = η′G\Λn)
∣∣→ 0

for all τ : Λ→ [q].

Equation (4) for the 2D Ising model captures the condition in Lemma 1, in the case that

Λ is the origin of Z2 and η, η′ are the configurations on Z2 where all vertices are assigned

+1,−1, respectively. That for the ferromagnetic Ising model it suffices to look only at

these two extreme configurations follows from a correlation inequality known as Griffith’s

inequality.

1.2.2 A primer on the uniqueness threshold on the Bethe lattice

Let ∆ ≥ 3. The infinite ∆-regular tree, denoted by T∆, is known in statistical physics as

the Bethe lattice with coordination number ∆.

The uniqueness threshold on T∆ will be crucial for our arguments. T∆ has been con-

jectured to be the worst case graph of maximum degree ∆ for long range correlations. The

reason being that the influence from boundary conditions should be maximized when the
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number of vertices in the boundary is maximized. In this sense, T∆ has the most vertices

at distance ` from the root. While the conjecture has been proved to be wrong in general

[62], for natural spin systems such as k-colorings or the antiferromagnetic Potts model it is

believed to be true. In fact, for 2-spin systems the conjecture has been shown to be true

in [68] in the context of the hard-core model and was later extended in [61, 44] for anti-

ferromagnetic 2-spin systems. Later, the reader will find that our inapproximability results

hinge upon the long-range correlation on the tree.

Determining the uniqueness threshold on T∆ is generally simpler than on other graphs,

due to its acyclic structure. However, technical difficulties are not absent; for example, it

is surprising to some extent that the uniqueness threshold for the antiferromagnetic Potts

model is not known, despite that it is conjectured to have the particularly simple form

Bc(∆) = ∆−q
∆ .

We next give a flavor of the arguments that come into play when determining the

uniqueness threshold on the tree, to help motivating the upcoming sections. We do this

in the simplest possible case, the hard-core model with activity λ. Note, the uniqueness

threshold for the hard-core model has been found by Kelly [42] to be

λc(T∆) =
(∆− 1)(∆−1)

(∆− 2)∆
,

so we will focus on those parts that will be most important for us.

Following the same approach as in the 2D Ising model, we examine the Gibbs distribution

for the hard-core model on finite trees of depth n. It will be more convenient to look

at complete (∆ − 1)-ary trees of depth n, where the root has degree ∆ − 1 (this is to

avoid accounting for the root separately, otherwise nothing really changes). We denote the

depth n tree with Tn and its set of leaves by Sn. We will examine two extreme boundary

configurations on the leaves which, due to certain monotonicities of the hard-core model on

the tree T∆ (or more generally a bipartite graph), turn out to have the largest influence

on the root: the (+)-boundary, where all the leaves are occupied, and the (−)-boundary,

where all the leaves are unoccupied. Let p+
n , p

−
n be the marginal probabilities that the root

of Tn is occupied conditioned on the (+), (−) boundary conditions respectively. Formally,
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if ρ denotes the root of the tree and µn := µTn the Gibbs distribution on Tn, let

p+
n := µn(σ(ρ) = 1 | ∀u ∈ Sn, σ(u) = 1), p−n := µn(σ(ρ) = 1 | ∀u ∈ Sn, σ(u) = 0).

The hard-core model with activity λ is then in the uniqueness regime of T∆ if p+
n − p−n → 0

as n→∞. We note here that, in contrast to the Ising model, it does not hold that p+
n > p−n

for all n; instead, it holds that

p+
2n > p−2n and p+

2n+1 < p−2n+1. (5)

This is a consequence of the fact that the hard-core model is an antiferromagnetic 2-spin

system. Unlike to the case of Z2, we can get easily a handle on p+
n , p

−
n by writing tree

recursions. One thus obtains the following recursions

p+
n+1 = f(p+

n ), p−n+1 = f(p−n ), where f(x) := 1− 1

1 + λ(1− x)∆−1
. (6)

The initial conditions for the recursions are given by p+
0 = 1 and p−0 = 0. It can easily be

checked that the fixed point equation x = f(x) has a unique solution xo for all values of

λ. When λ ≤ λc(T∆), the fixed point (or in short fixpoint) xo is stable and both p+
n , p

−
n

converge to x0. However, when λ > λc(T∆), the fixpoint xo is unstable, i.e., it holds that

f ′(xo) < −1. This implies that the sequences p+
n , p

−
n do not converge: otherwise, their limit

would have to be equal to xo, but close to xo the recursion oscillates.

To better understand what is happening in the regime λ > λc(T∆), (5) suggests looking

at the recursion (6) for two steps, i.e.,

p+
2n+2 = g(p+

2n), p−2n+2 = g(p−2n), where g(x) := f(f(x)),

and p+
0 = 1 and p−0 = 0. The fixpoint equation x = g(x) has now three fixpoints x+ >

xo > x− in the regime λ > λc(T∆). The unstable fixpoint xo of f remains unstable for g as

well, i.e., g′(xo) > 1. The remaining two fixpoints x+, x− satisfy |g′(x)| < 1 and are hence

stable. Combining the above observations, one can easily see that p+
2n ↓ x+ and p−2n ↑ x−.

This suggests the existence of (at least) two different infinite-volume Gibbs measures in the

regime λ > λc(T∆). The first is obtained by fixing the leaves on T2n to be occupied and

taking the weak limit as n→∞; the marginal probability of the root being occupied is x+
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in the limiting measure. The second is obtained by fixing the leaves on T2n to be unoccupied

and taking again the weak limit as n → ∞; in this case, the marginal probability of the

root being occupied is x− in the limiting measure. A more explicit construction of these

two infinite-volume Gibbs measures is given in Section 1.2.3.1.

We now summarize our observations. First, we saw that one can get a handle on the

uniqueness threshold on the tree by looking at appropriate tree recursions. In the case of

the hard-core model, due to the (anti)monotonicity properties that the model exhibits, we

had to go up to depth two only and look at the two extreme boundary conditions (in general

this need not be the case). Second, the asymptotic stability of the fixpoints provided us

with useful information on the location of the phase transition and helped us to identify

infinite-volume Gibbs measures.

In the next section, we will see how to generalize in an appropriate way these observations

to a general q-spin system.

1.2.3 Translation invariant Gibbs measures on the Bethe lattice

In general, infinite-volume Gibbs measures can be extremely complex and particularly hard

to define. However, on lattice graphs it is usually the case that a natural class of Gibbs

measures can be identified which are invariant under a subgroup of the automorphism

group of the graph. In this section, we will view two such general constructions on the

infinite ∆-regular tree. These constructions will naturally lead us to the notion of semi-

translation invariant uniqueness, which is a weaker notion of uniqueness, albeit easier to

formulate. Most importantly, this auxiliary uniqueness threshold will manifest itself in our

later investigation of random ∆-regular graphs, allowing us to connect the phase transition

on the infinite ∆-regular tree with properties of the Gibbs distribution in random graphs.

Recall from Section 1.2.2 that the Bethe lattice is an (infinite) regular tree. We will

denote the infinite ∆-regular tree by T∆. To ease exposition, it will also be helpful to specify

a root ρ on T∆. A translation invariant Gibbs measure on T∆ is a measure ν on the space of

configurations which is invariant under all automorphisms of T∆
2. Among other things, this

2An automorphism g of T∆ is either a rotation (there exists a vertex v such that gv = v), an inversion
(there exists an edge (u, v) such that gu = v and gv = u) or a translation. For more details, see e.g., [65, 16].
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implies that under ν, the marginal spin distribution of each vertex of the tree is identical,

i.e., the distribution ν(σ(v) = ·) does not depend on the vertex v. As we shall display at

the end of this section, translation invariant Gibbs measures correspond to fixpoints of the

depth-one tree recursions:

R̂i ∝
( q∑
j=1

BijRj

)∆−1
. (7)

The fixpoints of the tree recursions (7) are those r = (R1, . . . , Rq) such that:

R̂i ∝ Ri for all i ∈ [q].

Remark 2. If r = (R1, . . . , Rq) is a fixpoint of (7), so is cr = (cR1, . . . , cRq) for any c > 0.

In other words, the recursion (7) is scale-free.

Before proceeding, for the sake of a concrete example, we align the recursions (7) with

the recursion (6) for the hard-core model. Recall that the interaction matrix of the hard-core

model is given by
[

1 1
1 0

]
. Hence, (7) takes the form:

R̂1 ∝ (R1 +R2)∆−1, R̂2 ∝ λR∆−1
1 .

Note here the minor change to account for the presence of the external field, one can

alternatively start from Remark 1 to derive the same recursion but this requires slightly

more work. If we set p̂ = R̂2/(R̂1 + R̂2) and p = R2/(R1 +R2), we obtain p̂ = f(p), exactly

as in (6).

As we saw in Section 1.2.2, for the hard-core model we needed to look at two steps of

the tree recursions to get the correct limiting behavior, as a consequence of the fact that it

is an antiferromagnetic spin system. It is natural thus to also examine the Gibbs measures

arising from fixpoints after iterating two steps of the tree recursions.

We may define a semi-translation invariant Gibbs measure on T∆ as a measure ν which

is invariant under parity-preserving automorphisms of T∆; the marginal spin distribution

of a vertex of the tree depends now on the parity of its distance from the root of the tree.

Semi-translation invariant Gibbs measures correspond to fixpoints of the depth-two tree

recursions:

R̂i ∝
( q∑
j=1

BijCj

)∆−1
and Ĉj ∝

( q∑
i=1

BijRj

)∆−1
. (8)
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The fixpoints of the tree recursions (8) are those pairs (r, c) with r = (R1, . . . , Rq) and

c = (C1, . . . , Cq) such that:

R̂i ∝ Ri for all i ∈ [q] , Ĉj ∝ Cj for all j ∈ [q].

Remark 3. Analogously to Remark 2, observe that if (r, c) is a fixpoint of (8), so is

(c1r, c2c) for any c1, c2 > 0. In other words, the recursion (8) is scale-free.

Definition 3. A fixpoint of (8) will be called translation invariant iff Ri ∝ Ci for all i ∈ [q].

Following the observations in Section 1.2.2, it will be important to have the notion of

stability for a fixpoint of the tree recursions. The following definition captures whether the

tree recursions (7), (8) are stable under small perturbations around a fixpoint. The formal

definition uses the Jacobian matrix of a vector valued function f : Rn → Rn. The Jacobian

of f at a point x ∈ Rn is the n × n matrix whose i, j entry is the partial derivative of the

i-th component of f with respect to xj (the j-th component of x).

In this languange, our observations in Section 1.2.2 translate as follows in the case of

the hard-core model: in the non-uniqueness regime, the Jacobian of the depth-one tree

recursions at the unique fixpoint has spectral radius greater than one, while the Jacobian

of the depth-two tree recursions at each of the other two fixpoints has spectral radius less

than one. We capture this in a more general setting as follows.

Definition 4. A fixpoint r = (R1, . . . , Rq) of the depth-one tree recursions (7), viewed as

a function f : (R1, . . . , Rq) 7→ (R̂1, . . . , R̂q), is Jacobian attractive if the Jacobian of f at r

has spectral radius less than 1.

Similarly, a fixpoint (r, c) with r = (R1, . . . , Rq), c = (C1, . . . , Cq) of the depth-two tree

recursions (8), viewed as a function f : (R1, . . . , Rq, C1, . . . , Cq) 7→ (R̂1, . . . , R̂q, Ĉ1, . . . , Ĉq),

is Jacobian attractive if the Jacobian of f at (r, c) has spectral radius less than 1.

We next define the notion of semi-translation invariant uniqueness on T∆. This is a

simpler notion of uniqueness, which captures whether there are multiple semi-translation

invariant Gibbs measures. In turn, the latter corresponds to checking whether there are

multiple fixpoints to the tree recursions (8).
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Definition 5. A spin system with interaction matrix B is in the semi-translation invariant

uniqueness regime of T∆, if there is a unique fixpoint to the tree recursions (8). Otherwise,

the model is in the semi-translation invariant non-uniqueness regime of T∆.

We now discuss the interplay between Definitions 4 and 5. It can be proved by a

variational argument (described in Section 1.3) that a translation invariant fixpoint, i.e., a

fixpoint of the recursions (7), always exists. In the uniqueness regime of T∆, the fixpoints

of both the recursions (7) and (8) should correspond to the same infinite-volume Gibbs

measure. On the other hand, if there exists a fixpoint of either (7) or (8) which is not

stable, then we will prove (see Theorem 2) that there must exist another fixpoint of (7) or

(8), signifying that the spin system is in the non-uniqueness regime of T∆.

It should be noted at this point that a spin system may be in the semi-translation

invariant uniqueness regime of T∆, but not in the uniqueness regime of T∆, a concrete

example will be given shortly. However, for the most interesting models, the relevant

thresholds are typically close if not identical. In particular, for 2-spin systems, the semi-

translation invariant non-uniqueness threshold coincides with the uniqueness threshold. For

the antiferromagnetic Potts model, the uniqueness threshold is conjectured to be Bc(T∆) =

∆−q
∆ and we will prove that this is the semi-translation invariant non-uniqueness threshold.

For k-colorings there is a slight discrepancy: uniqueness holds when k ≥ ∆ + 1, while

semi-translation invariant uniqueness holds for k ≥ ∆.

1.2.3.1 Gibbs measures from fixpoints of the tree recursions

Here, we will explicitly show that the tree recursions (7) and (8) correspond to translation

and semi-translation invariant invariant Gibbs measures on T∆. Note that this argument

is well-known; we just give the construction for completeness.

Given a fixpoint of the depth-one tree recursions (7), a Gibbs measure on T∆ for the

spin system specified by B, can be defined by a broadcasting process (see [55]); the spin

of the root is chosen according to a probability distribution (specified by the fixpoint) and

is then propagated along the edges of the tree, where each edge acts as a q-ary channel.
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Specifically, for r = (R1, . . . , Rq), define the probability vector α = (α1, . . . , αq) given by

αi =
Ri
∑q

j=1BijRj∑
i,j BijRiRj

,

and consider the q × q matrix M = (Mij)i,j∈[q] where Mij = BijRj/
∑q

j=1BijRj . It is

immediate to verify that M is stochastic, so we can view M as a transition kernel. Moreover,

by construction αM = α, so that α is the stationary distribution of the kernel M. With

these observations, it can easily be shown that the following broadcasting process generates

a translation invariant Gibbs measure ν on T∆: first choose the spin at the root ρ according

to the probability vector α. The spin of the root is then propagated along the edges of the

tree; if u is the parent of v in the tree, then

ν(σ(v) = j |σ(u) = i) = Mij .

It is straightforward to check that each vertex has marginal spin distribution α.

For a fixpoint of the depth-two tree recursions (8), a slight modification of the above

argument is possible. Namely, for r = (R1, . . . , Rq), c = (C1, . . . , Cq), define the probability

vectors α = (α1, . . . , αq),β = (β1, . . . , βq) by

αi =
Ri
∑q

j=1BijCj∑
i,j BijRiCj

, βj =
Cj
∑q

i=1BijRi∑
i,j BijRiCj

. (9)

Consider also the following q× q matrices: M+ = (M+
ij )i,j∈[q], whose (i, j)-entry is given by

BijCj/
∑q

j=1BijCj , and M− = (M−ij )i,j∈[q], whose (i, j)-entry equals BijRj/
∑q

j=1BijRj .

As before, it is immediate to verify that M+,M− are stochastic and by construction αM+ =

β and βM− = α. There are two possible ways now to define the broadcadsting process,

which are symmetric up to interchanging α,β and M+,M−. We describe explicitly one of

the two: first choose the spin at the root ρ according to the probability vector α. The spin

of the root is then propagated along the edges of the tree; if u is the parent of v in the tree

and v has odd distance from the root of the tree, then

ν(σ(v) = j |σ(u) = i) = M+
ij .

Otherwise,

ν(σ(v) = j |σ(u) = i) = M−ij .
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As in the translation-invariant case, it is straightforward to check that each vertex at odd

level has marginal distribution β, while each vertex at even level has marginal distribution

α.

1.3 Phase transitions on random regular graphs

The behavior of spin systems on sparse random graphs has been the subject of intensive

study in statistical physics, probability and probabilistic combinatorics, see for example

[18]. We will use such graphs as gadgets for our inapproximability results. In this section,

we make the crucial connection between the Gibbs distribution of such graphs and Gibbs

measures, laying down the foundation for the most technical part of our work.

There is a well-known connection between sparse random graphs and random trees (see

for example [17]). This connection is particularly simple for random ∆-regular graphs.

Namely, a random ∆-regular graph converges locally to the infinite ∆-regular tree. We will

not give the general definition of local convergence for graphs (see [6, 2]) but rather what

it means in our setting. Let v be a uniformly random vertex of a random ∆-regular graph

G with n vertices and let t ≥ 1 be an arbitrary integer. The t-step neighborhood of v is

the set of vertices in G whose graph distance from v is at most t. The local convergence

of a random ∆-regular graph to T∆ can be stated as follows: for all n sufficiently large,

with probability 1− o(1) over the choice of v and the graph G, the t-step neighborhood of

v is isomorphic to the t-step neighborhood of the root of T∆. In other words, for all but

a vanishing fraction of vertices of a random ∆-regular graph G, the local neighborhood of

a vertex looks like a complete tree. An immediate consequence of the local convergence to

the tree is that the number of short cycles (i.e., constant length, not depending on n) in a

random ∆-regular graph is o(n).

Given this property, it is reasonable to expect that the analysis of the Gibbs distribution

on random ∆-regular graphs would be connected with the infinite-volume Gibbs distribution

on T∆. However, whether this connection actually holds turns out to depend on the spin

system. Let us first explain in more detail how one can obtain an alignment between the

two settings and then what can go wrong.
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We will restrict our attention to two classes of graph distributions, random ∆-regular

graphs and random bipartite ∆-regular graphs, which we will use for our inapproximability

results. The approach we will ultimately describe for analyzing the Gibbs distribution on

random graphs will be much more general for the class of random bipartite ∆-regular graphs,

so we will focus on this distribution first and discuss extensions to the random ∆-regular

graph case afterwards.

For a q-spin system with interaction matrix B, our goal is to understand the Gibbs

distribution on a random ∆-regular bipartite graph G = (V,E) (with bipartition V =

V1 ∪ V2) by looking at the distribution of spin values in V1 and V2. Let n = |V1| = |V2|. For

a configuration σ : V → [q], we denote the set of vertices assigned spin i by σ−1(i). For

q-dimensional probability vectors α,β, let

Σα,β =
{
σ : V → {1, . . . , q}

∣∣ |σ−1(i) ∩ V1| = αin, |σ−1(i) ∩ V2| = βin for i = 1, . . . , q
}
,

that is, configurations in Σα,β assign αin and βin vertices in V1 and V2 the spin value i,

respectively. For example, in the case of the hard-core model, the set Σα,β would correspond

to the independent sets of G which have αn vertices in V1 and βn vertices in V2, upon

identifying α,β with the scalars α, β since for 2-spin systems we only need two variables to

capture the spin frequencies. Our interest will be in the total weight Zα,β
G of configurations

in Σα,β, namely

Zα,β
G =

∑
σ∈Σα,β

wG(σ).

What would be the pairs α,β with the largest Zα,β
G ? Let us give a high level motivation

to this question. We expect that for sufficiently large n, the α,β with the largest Zα,β
G

dominate the partition function of G in the following sense: the partition function of G is

just a sum of a polynomial (in n) number of Zα,β
G which are typically exponential in n.

Thus, the only pairs α,β with non-negligible contribution to the partition function should

maximize Zα,β
G and should correspond in some sense to equilibrium states in the Gibbs

distribution of the random graph.

To go one step further, let us look again at the example of the hard-core model and use

the view with the local tree-like structure of the graph to speculate how the equilibrium
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might look. As previously, we consider independent sets with a prescribed number of

αn, βn vertices in V1, V2. In a random such configuration, a vertex v ∈ V1 would typically

see a complete tree whose vertices at odd levels are occupied with probability β and at

even levels are occupied with probability α. Thus, one would expect to see in the limit

n → ∞ a semi-translation invariant Gibbs measure of the infinite ∆-regular tree. The

reader may have observed that this view is on a shaky ground; the phrase “in a random

such configuration” implicitly assumes that a random configuration in the hard-core model

distribution is decorrelated from the random graph. Despite this deficit of the argument,

we now have an overview of what we would like to formalize.

A great portion of this thesis is targeted to establish the picture above for general

spin systems on random ∆-regular bipartite graphs. To do this, and following previous

approaches for the hard-core model [56], we will look at the moments of Zα,β
G with respect

to the distribution of the random ∆-regular bipartite graph, from hereon denoted by G.

For the next two subsections, we will focus on analyzing the leading terms of the first and

second moments of Zα,β
G , namely

Ψ1(α,β) = ΨB
1 (α,β) := lim

n→∞

1

n
log EG

[
Zα,β
G

]
,

Ψ2(α,β) = ΨB
2 (α,β) := lim

n→∞

1

n
log EG

[(
Zα,β
G

)2]
.

The function Ψ1 will be used to make connections to the depth-two recursions (8) and hence

semi-translation invariant Gibbs measures on T∆. The function Ψ2 will be used to identify

those (α,β) for which Zα,β
G is asymptotically independent from the choice of the random

graph.

1.3.1 First moment

To start, denote the leading term of the first moment of Zα,β
G as:

Ψ1(α,β) = ΨB
1 (α,β) := lim

n→∞

1

n
log EG

[
Zα,β
G

]
,

We will be interested in the global maximizers of Ψ1, which (at least in expectation) capture

the configurations which have the largest contribution in the partition function of a random

∆-regular bipartite graph as n→∞. This motivates the following definition.
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Definition 6. For a q-spin system with interaction matrix B, a dominant phase is a pair

(α,β) of q-dimensional probability vectors which maximize Ψ1(α,β).

Now, we have a concrete function whose maxima hopefully capture the equilibrium

states of a random bipartite ∆-regular graph G, we will address this point later. Prior to

that, we first look at the critical points of Ψ1 to get a better understanding of the dominant

phases. The following definition will help to make the picture more clear.

Definition 7. For a q-spin system with interaction matrix B, a phase is a pair (α,β) of

q-dimensional probability vectors which is a critical point of Ψ1(α,β).

A conceptual observation made in [56] in the context of the hard-core model was that the

phases of a random ∆-regular bipartite graph correspond to the semi-translation invariant

Gibbs measures on T∆. This extends rather easily to the general q-spin model as well,

see Section 3.2.2 for a derivation in our setting. In particular, we restate for the reader’s

convenience the depth-two tree recursions on T∆.

R̂i ∝
( q∑
j=1

BijCj

)∆−1
and Ĉj ∝

( q∑
i=1

BijRi

)∆−1
. (8)

The phase (α,β) corresponding to a fixpoint (R1, . . . , Rq, C1, . . . , Cq) of the tree recur-

sions is given by (9), which we restate here for concreteness:

αi =
Ri
∑q

j=1BijCj∑
i,j BijRiCj

, βj =
Cj
∑q

i=1BijRi∑
i,j BijRiCj

. (9)

Recall here that the vectors α,β are the marginal spin distributions of even and odd ver-

tices in the semi-translation invariant Gibbs measure on T∆ corresponding to the fixpoint

(R1, . . . , Rq, C1, . . . , Cq) of (8), cf. Section 1.2.3.1. This establishes a firm connection be-

tween critical points of Ψ1 and Gibbs measures on T∆.

However, even this level of understanding is not sufficient for our purposes. The reason

being, that the critical points of a function f can be local minima, local maxima or saddle

points of the function. We need hence a more refined picture to restrict our attention to

the phases that can be dominant phases. This investigation will also allow us to connect

the semi-translation invariant uniqueness threshold with the Jacobian stability of fixpoints.
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To obtain a handle on the local maxima of a function, we use the Hessian criterion: a

critical point x ∈ Rt of a function f : Rt → R is a local maximum of f if the Hessian matrix

of f at x is negative definite. When the Hessian criterion is true, we call the critical point

a Hessian local maximum. In Section 3.4, we show the following connection between the

stability of the tree recursions and Hessian local maxima of Ψ1.

Theorem 2. Jacobian attractive fixpoints of the depth-two tree recursions (8) correspond

to Hessian local maxima of Ψ1. Moreover, if B is ergodic (irreducible and aperiodic),

Hessian local maxima of Ψ1 correspond to Jacobian attractive fixpoints of the depth-two tree

recursions.

In particular, we have the following straightforward corollary.

Corollary 3. For every ergodic B (irreducible and aperiodic), a phase of a random ∆-

regular bipartite graph is a local maximum of Ψ1 iff the corresponding fixpoint of the depth-

two tree recursions is Jacobian attractive.

Before concluding this section, let us comment briefly on the restriction in the second

part of Theorem 2, which requires B to be irreducible and aperiodic. Irreducibility is a

natural condition on the spin system; if not, the spin system may be decomposed into

sub-spin systems whose interaction matrices are irreducible. For connected graphs, the

partition function of the initial spin system is just the sum of the partition functions for each

sub-spin system. Thus, the irreducibility condition merely excludes degenerate cases. The

aperiodicity condition is also kind of a degenerate one, in the following sense. The interaction

matrix B of a periodic spin system must have period two (since B is symmetric) and hence

such a spin system is only interesting on bipartite graphs (otherwise the partition function

is zero). Thus, the condition is rather an artifact of studying the spin system on a bipartite

graph (for random regular graphs for example the condition may be immediately dropped).

By restricting to appropriate subspaces, one can still show an analog of Theorem 2. We do

not pursue this path here since for spin systems studied in statistical physics and computer

science, it is usually the case that the system remains interesting on non-bipartite graphs,

cf. the spin systems in Section 1.1.
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1.3.2 Second moment

Having established a connection between dominant phases and Gibbs measures on T∆,

we next come to perhaps the most intriguing aspect of establishing that the dominant

phases are indeed “equilibria” of a random ∆-regular graph. We first explain why the first

moment argument above is not sufficient. Using Markov’s inequality, one can easily show

that only dominant phases can have significant contribution to the partition function of

G. This information alone however is insufficient, since we would like a lower bound for

the contribution of dominant phases to the partition function to argue that the dominant

phases correspond to natural equilibrium states of the random graph (with high probability

over the choice of the graph). Ideally, the lower bound would be in terms of the expectation,

and we are naturally led to consider the second moment of Zα,β
G .

The classical second-moment method establishes the concentration of a random variable

X around its expectation E[X], provided that the ratio E[X2]/(E[X])2 is close to 1. While

this direct approach will not work for us, there is a substitute of the method, known as

the small subgraph conditioning method, which works extremely well for probability spaces

corresponding to random ∆-regular graphs when the ratio E[X2]/(E[X])2 is a constant

(strictly greater than 1). The method still needs to argue however about the asymptotic

order of the second moment, in our case EG [(Zα,β
G )2].

As a necessary step, we need to consider first the leading term of the second moment,

which we recall that it is given by

Ψ2(α,β) = ΨB
2 (α,β) := lim

n→∞

1

n
log EG

[(
Zα,β
G

)2]
.

The following theorem relates the second moment to the first moment, for any spin

system on random bipartite ∆-regular graphs. The proof is given in Section 3.3.

Theorem 4. For any spin system, for all ∆ ≥ 3,

max
α,β

Ψ2(α,β) = 2 max
α,β

Ψ1(α,β).

In particular, for every dominant phase (α,β), it holds that Ψ2(α,β) = 2Ψ1(α,β).
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Theorem 4 suggests that for a dominant phase (α,β), EG
[(
Zα,β
G

)2]
/
(
EG [Zα,β

G ]
)2

should

be asymptotically equal to a constant and hints that Zα,β
G should be close to its expectation.

Though certain difficulties do emerge (the implicit constant turns out to be a constant

greater than 1, see Section 1.3.3 for a more thorough discussion), it all comes down to

proving Theorem 4.

Second moment arguments analogous to the one given in Theorem 4 tend to be difficult.

To illustrate the difficulty, let us give the development of the proof for Theorem 4 in the

case of the hard-core model. This was first done in [56], where they showed the equality

Ψ2(α,β) = 2Ψ1(α,β) for the dominant phase at λ = λc(T∆) for all ∆ ≥ 3. By a convex-

ity/continuity argument, they were able to conclude the existence of ε(∆) > 0 such that

the same equality holds for λc(T∆) < λ < λc(T∆) + ε(∆). Their argument was used in

the seminal inapproximability results of [63], which due to the same technical reason were

only obtained under the same condition and the interesting subcase λ = 1, ∆ = 6. The

analysis of [56] was extended in [26] for certain regimes of λ,∆ in a way that was sufficient

to conclude the inapproximability results for ∆ = 3 and ∆ ≥ 6 for all λ > λc(T∆). After

that, in [27] the remaining cases ∆ = 4, 5 were settled by a somewhat easier analysis which

applied to a subclass of general antiferromagnetic 2-spin systems. Simultaneously, [64] man-

aged to circumvent the second-moment analysis for the hard-core model (and general 2-spin

systems) by a different approach. Needless to say that the reason why the second-moment

approach seemed to work for random bipartite ∆-regular graphs, even in the 2-spin case,

remained elusive. To add more to this mystery, it was well-known that the second-moment

approach on Zα,β
G fails for random regular graphs after a certain threshold (see, for example,

[20] for more details).

The analysis for the proof of Theorem 4, which appeared in [28], is surprisingly simple

given the difficulty in the previous approaches even in the rather restricted setting of 2-spin

systems. There are two key ideas: the first one is the reformulation of the function Ψ1(α,β)

with an auxiliary function Φ(r, c). The reformulation is such that the maximum of Ψ1 over

α,β equals the maximum Φ over r, c. At the same time, the maximum of Φ can easily be

expressed as a matrix norm of the interaction matrix B. The second key idea is more of an
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observation: the second moment can be interpreted as a paired-spin model, i.e., a q2-spin

system with interaction matrix B⊗B, where ⊗ denotes the Kronecker product. Then the

maximum of Ψ2 is captured by the norm of the matrix B ⊗ B. It then comes down to

connect the two norms, at which point we can utilize a result of Bennett [7], stating that

the relevant norms are multiplicative over tensor product. For concreteness, we next give

in more detail the connection between Ψ1 and Φ.

First, we need to define the function Φ. We will need to set up some notation. Recall

that the p-norm of a vector x ∈ Rn is given by

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

.

We will also use the subordinate matrix norm (also known as the induced matrix norm)

which will be denoted as ‖ · ‖p→q′ (this is different than the usual notation ‖ · ‖p→q used

in the literature, since we have reserved q for the number of spins). For a matrix A, the

subordinate matrix norm ‖A‖p→q′ is defined as:

‖A‖p→q′ = max
‖x‖p=1

‖A x‖q′ .

Note that if A has non-negative entries then one can restrict the maximization to x with

non-negative entries. A well-known example of an induced norm is the spectral norm ‖·‖2→2.

Let p = ∆/(∆ − 1). For non-negative q-dimensional vectors r := (R1, . . . , Rq), c :=

(C1, . . . , Cq), define Φ(r, c) by:

exp
(
Φ(r, c)/∆

)
=

rᵀBc

‖r‖p‖c‖p
.

The maximum of Φ can be compactly expressed in terms of matrix norms. as follows:

max
r,c

exp
(
Φ(r, c)/∆

)
= max

c
max

r

rᵀBc

‖r‖p‖c‖p
= max

c

‖Bc‖∆
‖c‖p

= ‖B‖p→∆, (10)

where the second equality follows from matrix norm duality (see for example [33]).

The following theorem connects tree recursions, the function Φ and the function Ψ1.

The proof is given in Section 3.2.
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Theorem 5. There is a one-to-one correspondence between the fixpoints of the tree re-

cursions and the critical points of Φ (both considered for non-negative r = (R1, . . . , Rq),

c = (C1, . . . , Cq) in the projective space, that is, up to scaling by constants as in Remark 3).

The following transformation (r, c) 7→ (α,β) given by:

αi =
R

∆/(∆−1)
i∑
iR

∆/(∆−1)
i

and βj =
C

∆/(∆−1)
j∑
j C

∆/(∆−1)
j

(11)

yields a one-to-one correspondence between the critical points of Φ and the critical points of

Ψ1 (in the region defined by αi ≥ 0, βj ≥ 0 and
∑

i αi = 1,
∑

j βj = 1).

Moreover, for the corresponding critical points (r, c) and (α,β) one has

Φ(r, c) = Ψ1(α,β). (12)

Finally, for ergodic B (irreducible and ergodic), the local maxima of Φ and Ψ1 happen

at the critical points (that is, there are no local maxima on the boundary).

The first item states that the critical points of Φ are given by the tree recursions; this

follows from a straightforward differentiation. Equation (11) gives the correspondence be-

tween fixpoints of the tree recursions and the critical points of Ψ1; note that this equation is

seemingly different than (9), though the two expressions can easily be seen to be equivalent

using that (r, c) are fixpoints of (8). Equation (12) is the most important piece for the

second-moment analysis; it asserts that the values of the functions Ψ1 and Φ at the corre-

sponding critical points are equal. Since the final item guarantees that the maxima of Ψ1,Φ

happen at their critical points, we obtain that they have the same maximum value yielding

the matrix norm formulation of Ψ1 we wanted. We remark that the last point can also be

obtained even when the maximum happens at the boundary; the restriction of ergodicity

imposed on B is to make the connection more transparent.

1.3.3 Gibbs distribution of a random graph and short cycles

Theorem 4 establishes that for a dominant phase (α,β) the exponential order of the second

moment of Zα,β
G is twice the exponential order of the first moment of Zα,β

G . The question we

would like to address now is whether this can be used to establish concentration for Zα,β
G .
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In the ideal scenario, we would be able to apply Chebyshev’s inequality to get immediately

a sharp concentration result. For this method to be succesful, it must be the case that the

ratio EG
[(
Zα,β
G

)2]
/
(
EG [Zα,β

G ]
)2

converges asymptotically to 1. An intensive calculation of

the asymptotic ratio, yields however

lim
n→∞

EG
[(
Zα,β
G

)2](
EG
[
Zα,β
G

])2 = C > 1, (13)

for a constant C depending on the interaction matrix B and ∆, see Lemma 43 for an explicit

form. Thus, the direct second-moment method only yields the existence of a graph G where

Zα,β
G is comparable to its expected value. This is for several reasons prohibitive: first, it

does not allow to get a statement which holds with high probability over the choice of the

random graph; second, if there exist multiple dominant phases, i.e., the q-spin system is

in the semi-translation invariant non-uniqueness regime of T∆, we are not guaranteed that

the dominant phases coexist in at least one graph, which is a crucial component in utilizing

the uniqueness phase transition. Fortunately, there exists a well-established method to deal

with this apparent (13) failure of the second-moment method, known as the small subgraph

conditioning method.

The small subgraph conditioning method was introduced in [60] to prove that a ran-

dom ∆-regular contains asymptotically almost surely (a.a.s.) a Hamilton cycle. Roughly

speaking, the method provides a way to get a.a.s results when the second-moment method

fails, in the particular case (though common in the random regular graph setting) where

the ratio of the second moment of a variable to the first moment squared converges to a

constant strictly greater than 1. The method was first used to analyze spin models on ran-

dom regular graphs in [56] and was subsequently used in [63, 27]. The principle behind the

method is that the variance of Zα,β
G comes from the presence of short cycles, which as we

discussed in Section 1.3 are few, but still appear with non-zero probability (asymptotically

with n, they follow the Poisson distribution).

In our setting, this comes about almost naturally. We have already seen that EG [Zα,β
G ] is

determined by the Gibbs measure on the infinite ∆-regular tree. On the other hand, we do

expect a deviation from the expectation since a graph G ∼ G does have o(n) vertices which
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are contained in constant sized cycles. Thus, it is reasonable to expect that Zα,β
G fluctuates

from its expectation. It is equally reasonable to expect the fluctuations to depend on the

presence of small cycles which occur with small but non-zero probability. The surprising

aspect of (14), a consequence of applying the small subgraph conditioning method, is that

there is an explicit handle on these fluctuations.

The following lemma is a special case of the slightly stronger Lemma 36 which will help

us to make the above explicit. The proof is given in Section 4.2.1.

Lemma 6. Suppose that (α,β) is a dominant phase on random bipartite ∆-regular graph,

which corresponds to a Jacobian attractive fixpoint of the tree recursions. Let G ∼ G and

denote by Xin, i = 1, 2, . . . , the number of cycles of length 2i in G. There exist random

variables Wmn, a deterministic function of X1n, X2n, . . . , Xmn, such that for every ε > 0

lim
m→∞

lim sup
n→∞

PrG

([∣∣ Zα,β
G

EG [Zα,β
G ]

−Wmn

∣∣ > ε
])

= 0, (14)

There also exists a positive constant c > 0 such that Wmn > c uniformly in m,n.

The rather unintuitive limit in (14) should be understood as follows: if we let m,n

sufficiently large, the random variable Zα,β
G /EG [Zα,β

G ] is well-approximated by the random

variablesWmn, with large probability over the choice of the random graph. Equation (14) (or

rather the slightly stronger version in Lemma 36) will be crucial for proving the properties

of the gadget in our inapproximability results since it will allow us to tie Zα,β
G to the

underlying graph. Thus, even when there exist multiple dominant phases, we can hope to

compare their contribution to the partition function by understanding the corresponding

random variables Wmn.

1.3.4 Extensions to random regular graphs

In this section, we discuss extensions of our techniques to random ∆-regular graphs. First,

a word of caution; we cannot possibly hope to get as general results as in previous sections.

For example, in the k-colorings model on random ∆-regular graphs the second-moment

approach cannot possibly work when the number of colors is less than ∆
2 log ∆(1+o(1)), since

this is with high probability the chromatic number of the random graph. However we do
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identify two cases where the approach works well. The most important one is in the context

of ferromagnetic spin systems. Let us first the notion of ferromagnetism we use.

Definition 8. A model is called ferromagnetic if B is positive definite. Equivalently we

have that all of its eigenvalues are positive and also that

B = B̂ᵀB̂, (15)

for some q × q matrix B̂.

The most alluring aspect of this definition is that for a ferromagnetic model, neighboring

vertices prefer to have the same spin, matching the intuition with the 2-spin setting. More

generally, we have the following simple application of the Cauchy-Schwarz inequality. If B

is ferromagnetic, then for probability vectors z1, z2, it holds that

(zᵀ1Bz1)(zᵀ2Bz2) ≥ (zᵀ1Bz2)2,

In particular, if we plug in the above inequality the vectors with a single 1 in the positions i

and j respectively, we obtain that any two spins i, j induce a ferromagnetic two-spin system.

The definition is discussed more thoroughly in Section 8.1.2.

To state our results for ferromagnetic models, let us present briefly the slightly different

setting. Let G = (V,E) be a random ∆-regular graph with n = |V |. For a q-dimensional

probability vector α, denote by Σα the set of configurations σ which assign to αin vertices

the spin i for each i ∈ [q]. Let

Zα
G =

∑
σ∈Σα wG(σ).

We again study Zα
G by looking at the moments EG [Zα

G ] and EG [(Zα
G)2], where the expec-

tation is over the distribution of the random ∆-regular bipartite graph G, from hereon

denoted by G (no confusion should arise with the notation for bipartite random ∆-regular

graphs).

Denote the leading term of the first and second moments as:

Ψ1(α) = ΨB
1 (α) := lim

n→∞

1

n
log EG

[
Zα
G

]
.

Ψ2(α) = ΨB
2 (α) := lim

n→∞

1

n
log EG

[(
Zα
G

)2]
.
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Dominant phases are vectors α which are maximizers of Ψ1(α). Analogously to Theo-

rem 2, we prove the following in Section 8.3.

Theorem 7. For a ferromagnetic model, Jacobian attractive fixpoints of the (depth-one)

tree recursions are in one-to-one correspondence with the Hessian local maxima of Ψ1.

Also, we obtain the analogue of Theorem 4 for ferromagnetic models on random regular

graphs. The reason that this is possible in the case of ferromagnetic Potts model is the

Cholesky decomposition in Definition 8, which allows us to formulate the maximum of the

first moment as a matrix norm (which in general is not possible).

Theorem 8. For a ferromagnetic model,

max
α

Ψ2(α) = 2 max
α

Ψ1(α).

Specifically, for dominant phases α, Ψ2(α) = 2Ψ1(α).

Theorem 8 is proved in Section 8.3.1. Combining Theorem 8 with the small subgraph

conditioning method allows us to prove concentration for Zα
G (see Lemma 107). In partic-

ular, we verify the so-called Bethe prediction for general ferromagnetic models on random

∆-regular graphs, which is captured in our setting by equation (16) in the following theorem.

Theorem 9. Let B specify a ferromagnetic model. Then, if there exists a Hessian dominant

phase, it holds that

lim
n→∞

1

n
EG [logZG] = lim

n→∞

1

n
log EG [ZG]. (16)

Theorem 9 is proved in Section 8.6. Note that for a ferromagnetic model the interaction

matrix B is positive definite and hence the entries on the diagonal are all positive. Thus

ZG is always positive for every graph G.

We note here that in contrast to limn→∞
1
n log EG [ZG], even proving the existence of

limn→∞
1
nEG [logZG] is far from trivial. There are however general techniques based on

the interpolation method to establish the existence of the limit [4], which do not provide

however its explicit value.

Theorem 9 can be extended to general models (not necessarily ferromagnetic) on random

∆-regular graphs under the stronger assumption that there is a unique semi-translation
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invariant Gibbs measure on T∆. In this setting, one also obtains the analogue of Theorem

8 and as a consequence concentration for Zα
G for the (unique) dominant phase α, which can

be used to verify in complete analogy the Bethe prediction. Similar results are well-known

in the literature (assuming uniqueness), the most general to the best of our knowledge are

in [19].

Theorem 10. Let B be the interaction matrix of a spin system such that ZG > 0 for all ∆-

regular graphs. Assume that there exists a unique semi-translation invariant Gibbs measure

on T∆ and the corresponding fixpoint of the tree recurrences (7) is Jacobian attractive.

Provided that the matrix B is regular (non-zero determinant),

lim
n→∞

1

n
EG [logZG] = lim

n→∞

1

n
log EG [ZG]. (17)

Theorem 10 is proved in Section 8.6. The assumption ZG > 0 for all ∆-regular graphs

is to avoid pathological cases where logZG ≡ −∞ in which case the quantities are not well-

defined. It is satisfied by many classes of models, e.g., permissive models (cf. Section 1.1.1),

such as the hard-core and antiferromagnetic Potts models, or even non-permissive, such as

k-colorings when k ≥ ∆ + 1. Finally, the restriction that B is regular is to ensure that we

can apply the small subgraph conditioning method (see the relevant Lemma 31).

We conclude this section by noting that for natural models such as the hard-core or the k-

colorings model, the second moment has been analyzed even in non-uniqueness regimes (see

for example [1], [14]). Needless to say that Theorem 9 does not improve on these results; the

scope of Theorem 9 is to provide a simple criterion (uniqueness of semi-translation invariant

measures) which applies for general spin systems.

1.4 The complexity lens

1.4.1 Inapproximability for antiferromagnetic 2-spin systems

As we mentioned in Section 1.1.5, the complexity of approximately counting in antiferro-

magnetic 2-spin systems on graphs of maximum degree ∆ is now well understood; recall that

these are systems where neighboring vertices are favored to have different spins. Building

on the works of Weitz [68] and Sly [63] for the hard-core model, the infinite ∆-regular tree
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has been identified to be the worst case graph for the persistence of long-range correlations

in antiferromagnetic 2-spin systems. For 2-spin antiferromagnetic models, this establishes a

beautiful picture connecting the computational complexity of approximating the partition

function to statistical physics phase transitions in the infinite tree.

For the hard-core model on graphs of maximum degree ∆, there exists an FPTAS for the

partition function for all λ < λc(T∆), and for λ > λc(T∆) the problem is intractable. Anal-

ogous results hold for general antiferromagnetic 2-spin systems; the uniqueness threshold

on T∆ maps the boundary for efficient computation. For the algorithmic side, see [61, 44],

and for the intractability side see [64]. As a straightforward application of our upcoming

general theorem 14, we can also easily cover the computational hardness regime in the 2-spin

setting.

Theorem 11. Let ∆ ≥ 3. For an antiferromagnetic 2-spin system in the non-uniqueness

regime of T∆, unless NP = RP, there is no FPRAS for approximating the partition function

for triangle-free ∆-regular graphs. Moreover, there exists ε = ε(B1, B2,∆) > 0 such that,

unless NP = RP, one cannot approximate the partition function within a factor 2εn for

triangle-free ∆-regular graphs (where n is the number of vertices).

Theorem 11 is proved in Section 6.1.

Remark 4. The hardness result remains true even for ∆-regular graphs with girth at least

g, for any constant g ≥ 3.

Remark 5. The condition NP 6= RP is because we exclude the possibility of an FPRAS, as

is typical in problems of the field. If instead we restricted our attention to an FPTAS, the

condition may be replaced with NP 6= P.

Remark 6. The above two remarks apply to the upcoming Theorems 12, 13, 14, 15 as well.

Before proceeding, we remark that for ferromagnetic 2-spin systems, a seminal algorithm

by Jerrum and Sinclair [38] approximates the partition function for all graphs (without

degree bound) in the ferromagnetic Ising model (allowing the presence of external field), and

this extends to arbitrary ferromagnetic 2-spin systems on regular graphs. For ferromagnetic

34



2-spin systems on non-regular graphs, the picture is more complicated, see [31, 45] for more

details.

1.4.2 NP-hardness for the colorings and antiferromagnetic Potts models

The picture for multi-spin systems (systems with q > 2 possible spins for vertices) is much

less clear; the above approaches for 2-spin systems do not extend to multi-spin models in

a straightforward manner. We aim to establish the analog of the above inapproximability

results for the colorings problem, namely, NP-hardness in the tree non-uniqueness region.

Our techniques and results generalize to a broad class of antiferromagnetic spin systems.

For the colorings problem, even understanding the uniqueness threshold is challenging.

Jonasson [41] established uniqueness when k ≥ ∆+1, and it is easy to show non-uniqueness

when k ≤ ∆ since a fixed coloring on the leaves can “freeze” the internal coloring. As

we mentioned earlier, for k-colorings the uniqueness threshold and the semi-translation

invariant uniqueness threshold no longer coincide. In particular, Brightwell and Winkler

[11] established, for semi-translation invariant measures, uniqueness when k ≥ ∆ and non-

uniqueness when k < ∆.

We prove, for even k, that it is NP-hard to approximate the number of proper k-colorings

(in other words, NP-hard to approximate the partition function) when there are multiple

semi-translation invariant Gibbs measures on T∆ (which corresponds to k < ∆). Moreover,

our result proves hardness for the class of triangle-free ∆-regular graphs. Hence, our result

is particularly interesting in the region k = Ω(∆/ log ∆) since a seminal result of Johansson

[40, 51] shows that all triangle-free graphs are colorable with O(∆/ log ∆) colors. His proof,

which uses the nibble method and the Lovász Local Lemma, can be made algorithmic using

the constructive proof of [54]. For small values of ∆, one can use that triangle-free graphs

are colorable with 3
⌈

∆+1
4

⌉
colors (this bound is also algorithmic3), see [50, Chapter 12] or

[37, Chapter 4] for references and a thorough account of bounds when stronger restirictions

3We give an explicit description of an algorithm based on Catlin’s proof [13]. Let r =
⌈

∆+1
4

⌉
. Partition

the vertex set of the graph into r sets V1, . . . , Vr arbitrarily. Iteratively, if a vertex v ∈ Vi has more than
three neighbors in Vi move it to a set Vj where v has at most three neighbors; such a set exists by the choice
of r and the bound ∆ on the degree of v. This procedure strictly decreases the aggregate number of edges
within the sets V1, . . . , Vr, so it must end in at most linear number of steps. In the final partition, each Vi
induces a triangle-free graph of maximum degree 3, and thus can be 3-colored by Brooks’ theorem.
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on the girth of the graph are imposed. For general graphs with maximum degree ∆, the

interesting region is k = ∆ − O(
√

∆), since Molloy and Reed [50] showed, for all fixed

constants ∆ ≥ ∆0, determining if a graph G of maximum degree ∆ has a (∆ + 1 − l)-

coloring is in P for any l such that l2 + l ≤ ∆ (the result is tight up to the value of ∆0, see

[25, 50] for more details). We note that most parts of the proof extend to the odd k case

as well, modulo the missing piece in the phase diagram, see Section 1.4.5.1 for a precise

description.

Here is the formal statement of our inapproximability result for colorings.

Theorem 12. For all even k ≥ 3, all ∆ ≥ 3, for the k-colorings problem, when k < ∆,

unless NP = RP, there is no FPRAS that approximates the partition function for triangle-

free ∆-regular graphs. Moreover, there exists ε = ε(k,∆) > 0 such that, unless NP = RP,

one cannot approximate the partition function within a factor 2εn for triangle-free ∆-regular

graphs (where n is the number of vertices).

Theorem 12 is proved in Section 6.3. The result extends also to the antiferromag-

netic Potts model. As we mentioned earlier, somewhat surprisingly, the uniqueness/non-

uniqueness threshold for the infinite tree T∆ is not known for the antiferromagnetic Potts

model. We prove that the uniqueness/non-uniqueness threshold for semi-translation invari-

ant Gibbs measures on T∆ is given by Bc(∆) = ∆−q
∆ . We believe this threshold coincides

with the uniqueness/non-uniqueness threshold, unlike in the case of colorings. We prove, for

even q, that approximating the partition function is NP-hard in the non-uniqueness region

for semi-translation invariant measures. The following theorem, which is proved in Sec-

tion 6.3, is the formal statement of our inapproximability results for the antiferromagnetic

Potts model.

Theorem 13. For all even q ≥ 3, all ∆ ≥ 3, for the antiferromagnetic q-state Potts model,

for all B < ∆−q
∆ , unless NP = RP, there is no FPRAS that approximates the partition

function for triangle-free ∆-regular graphs. Moreover, there exists ε = ε(q,B,∆) > 0 such

that, unless NP = RP, one cannot approximate the partition function within a factor 2εn

for triangle-free ∆-regular graphs (where n is the number of vertices).
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In fact, we obtain inapproximability of the partition function for any antiferromagnetic

model when there is non-uniqueness of semi-translation invariant measures on T∆ and mild

additional conditions. Our results for general models are stated in Section 1.4.3.

1.4.3 Inapproximability for general antiferromagnetic models

The inapproximability results for colorings can be extended to general antiferromagnetic

models on bounded degree graphs. The key concept in the general theorem is again the

existence of long-range correlations, in the form of semi-translation non-uniqueness on the

infinite regular tree.

We use the following definition of antiferromagnetic models, which is in terms of the

signature of the interaction matrix B, i.e., the signs of its eigenvalues. Recall that the

interaction matrix B is symmetric and hence its eigenvalues are real. Moreover, it is simple

to see that the matrices B which correspond to non-degenerate models should be irreducible.

The Perron-Frobenius theorem then implies that one of the eigenvalues with the largest

magnitude is positive. When all the other eigenvalues are negative, we show in Section 5.5.1

(see Corollary 61) that neighboring spins prefer to be different and hence we call such models

antiferromagnetic. This notion of antiferromagnetism extends naturally the definition for

2-spin models (see [31, 44, 64]) and also captures antiferromagnetism in the Potts model.

A more thorough discussion is given in Section 5.5.1.

Proceeding to the general hardness results, we have already displayed that the second

moment argument for random bipartite graphs covers arbitrary models (general interaction

matrix B). There are two properties of the gadget G in Section 1.4.5.2 we need to ensure.

First, the symmetry breaking between the two sides of the graph, i.e., a typical configuration

should have different color frequencies on the two sides of the graph. Second, to be able

to quantify the interaction between neighboring gadgets, we need to ensure that phases

appear with roughly equal probability and that given the phase, the spins of the vertices

with degree ∆− 1 are approximately independent.

The first property can be guaranteed by the absence of translation invariant phases,

i.e., maximizers of the function Ψ1 of the form (x,x). Since in uniqueness regimes the only
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maximizer is translation invariant, this can be the case only in non-uniqueness regimes.

The second property is subtler and relates to the concentration properties of the random

variable Zα,β
G . The required concentration is sufficiently strong when the maximizers α,β

(viewed as unorderded pairs) of the function Ψ1 are (i) Hessian maxima, i.e., the Hessian

matrix of Ψ1 is negative definite when evaluated at (α,β), and (ii) permutation-symmetric,

i.e., obtainable from one another by a suitable permutation of the set of spins (equivalently,

the coordinates of αi’s and βj ’s). We clarify that the permutations must be automorphisms

of the interaction matrix B. For example, note that the maxima for the colorings model

are permutation-symmetric.

Given these assumptions, the proof approach in Section 1.4.5.2 (with some extra work)

can be adapted to give the following general inapproximability result.

Theorem 14. Let q ≥ 2,∆ ≥ 3. For an antiferromagnetic q-spin system with interaction

matrix B, if the dominant semi-translation invariant Gibbs measures on the tree T∆ are

permutation-symmetric and all of them are Hessian dominant and not translation invariant

then, unless NP = RP, there is no FPRAS for approximating the partition function for

triangle-free ∆-regular graphs. Moreover, there exists ε = ε(q,B,∆) > 0 such that, unless

NP = RP, one cannot approximate the partition function within a factor 2εn for triangle-free

∆-regular graphs (where n is the number of vertices).

Theorems 12 and 13 can be obtained as corollaries of Theorem 14 after using the detailed

analysis of the dominant phases in the upcoming Theorem 16. We also do the analogous

much easier task for antiferromagnetic 2-spin systems in Section 6.1 and thus obtain The-

orem 11.

1.4.4 NP-hardness for general spin systems with unique dominant phase

For general models with interaction matrix B, when there is no restriction on the eigenvalues

of B, we can prove hardness whenever there is a unique dominant phase which is not

translation invariant. The formal statement is along the lines of Theorem 14 and is stated

below.
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Theorem 15. Let q ≥ 2,∆ ≥ 3. For a general q-spin system with interaction matrix B,

if there exists a unique dominant semi-translation invariant Gibbs measure on the tree T∆

which is Hessian dominant and not translation invariant then, unless NP = RP, there is no

FPRAS for approximating the partition function for triangle-free ∆-regular graphs. More-

over, there exists ε = ε(q,B,∆) > 0 such that, unless NP = RP, one cannot approximate

the partition function within a factor 2εn for triangle-free ∆-regular graphs (where n is the

number of vertices).

The proof of Theorem 15 is given in Section 5.3. We remark that the reduction for

Theorem 15 is fairly simple due to the restriction that the dominant phase is unique. In

fact, it is a straightforward extension of the known reduction for antiferromagnetic 2-spin

systems (note however that the multi-spin setting requires the new results of Section 1.3).

We highlight it here because it hints that perhaps a more general inapproximability theorem

could be possible which does not require the eigenvalue restriction on the interaction matrix

B (used in Theorem 14).

1.4.5 Overview of the reduction for the k-colorings model

In this section, we overview the reduction for the k-colorings model. We start with analyzing

the dominant phases of the model on random bipartite ∆-regular graphs. This reduces to

computing the matrix norm ‖B‖ ∆
∆−1
→∆, where B is the interaction matrix of the k-colorings

model. This optimization problem turns out to be quite hard to solve in full generality, i.e.,

for all values of k,∆. We solve this problem for all even k and all ∆ ≥ 3 (see Theorem 16),

and this is where the restriction on k comes from in Theorem 12. We should note that if

this analysis was extended to k odd, it would immediately extend Theorem 12 to odd k as

well.

We also remark that the analysis of ‖B‖ ∆
∆−1
→∆ when B is the interaction matrix of the

antiferromagnetic Potts model turns out to be analogous to the colorings model (modulo

the extra parameter B which causes more technical difficulties), so we treat the two models

simultaneously in Section 1.4.5.1. Analogous remarks as in the colorings model apply for

the restiction on q to be even in Theorem 13.
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In Section 1.4.5.2, we describe how to use this information to obtain a gadget for the

reduction. This part is similar to [64] for 2-spin systems, modulo of course the technical

bottleneck of the analysis of the second moment for random ∆-regular bipartite graphs

(which we described thoroughly in previous sections). We then highlight the main points

where previous approaches for antiferromagnetic 2-spin systems do not work (roughly, the

existence of a large number of dominant phases) and the new elements required.

1.4.5.1 Dominant phases for the antiferromagnetic Potts and colorings models

To obtain Theorems 12 and 13, we need to figure out the dominant phases in a random

bipartite regular graph for the antiferromagnetic Potts and colorings models. Recall, the

interaction matrix B for the Potts model is completely determined by a parameter B.

The antiferromagnetic regime corresponds to 0 < B < 1. The coloring model is the zero

temperature limit of the Potts model and corresponds to the particular case B = 0 in what

follows. We should note that in statistical physics terms, the arguments of this section are

closely related to the phase diagrams of the models.

Recall that the critical points of Ψ1 are given by fixpoints of the tree recursions. For

the Potts model, the tree recursions (7) can be written as:

Ri ∝
(
BCi +

∑
j 6=i Cj

)∆−1
, Cj ∝

(
BRj +

∑
i 6=j Ri

)∆−1
, (18)

Using Theorem 2 to connect Jacobian attractive fixpoints and dominant phases together

with the function Φ of Theorem 5, we establish the following theorem in Section 6.3.

Theorem 16. Let 0 ≤ B < 1 and ∆ ≥ 3.

1. When q ≥ ∆ + 1 or B ≥ ∆−q
∆ , there is a unique fixpoint of (18) which is translation

invariant. Thus the model is in the semi-translation invariant uniqueness regime of

T∆.

2. When q < ∆ and 0 ≤ B < ∆−q
∆ , there are multiple fixpoints of (18). Thus the model

is in the semi-translation invariant non-uniqueness regime of T∆.

3. For all even q ≥ 3, for all ∆ ≥ 3, when q < ∆ and 0 ≤ B < ∆−q
∆ , the dominant

phases (α,β) are in one-to-one correspondence with subsets T ⊆ [q] with |T | = q/2.
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Moreover, there exist a, b such that for T ⊆ [q] with |T | = q/2, the dominant phase

(α,β) corresponding to T satisfies

αi = a if i ∈ T, αi = b if i /∈ T,

βi = b if i ∈ T, βi = a if i /∈ T.

1.4.5.2 The gadget and its properties

In this section, we give the main elements of our inapproximability results. We start by

reviewing the main components of the reduction for 2-spin systems (as carried out in [63,

64]) and in particular the hard-core model. This will allow us to isolate the parts of the

argument which do not extend to the multi-spin case and motivate our reduction scheme.

To simplify the presentation, we shall focus on the colorings model (k even), but the same

ideas can be generalized to the Potts model and (with more technical effort) to arbitrary

antiferromagnetic multi-spin models.

The basic gadget in the reduction is a bipartite random graph, which we denote by G.

The sides of the bipartition have an equal number of vertices, and the sides are labelled

with + and −. Most vertices in G have degree ∆ but there is also a small number of degree

∆−1 vertices (to allow to make connections between gadgets without creating degree ∆+1

vertices). For s = {+,−}, let the vertices in the s-side be U s ∪W s where the vertices in

U = U+ ∪ U− have degree ∆ and the vertices in W = W+ ∪W− have degree ∆− 1. The

phase of an independent set I is + (resp. −) if I has more vertices in U+ (resp. U−). Note

that the phase depends only on the spins of the “large” portion of the graph, i.e., the spins

of vertices in U .

In non-uniqueness regimes, the gadget G has two important properties, both of which

can be obtained by building on the second-moment argument we outlined earlier. First,

the phase of a random independent set I is equal to + or − with probability roughly equal

to 1/2. Second, conditioned on the phase of a random independent set I, the spins of the

vertices in W are approximately independent, i.e., the marginal distribution on W is close

to a product distribution. In this product distribution if the phase is + (resp. −), a vertex

in W+ is in I with probability p+ (resp. p−), while a vertex in W− is in I with probability
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p− (resp. p+). The values p± correspond to maxima of the function Ψ1 and, crucially (as

we shall demonstrate shortly), they satisfy p+ 6= p−.

Using the second-moment analysis and in particular Theorem 4, we can prove that an

analogous phenomenon takes place for the k-colorings model in the semi-translation non-

uniqueness regime. The main difference is that, instead of two phases, the number of phases

is equal to the number of maximizers of the function Ψ1, cf. Theorem 16. For k even, the

phase of a coloring is determined by the dominant set of k/2 colors on U+, i.e., the k/2

colors with largest frequencies among vertices of U+. Each of the
(
k
k/2

)
phases appears

with roughly equal probability and given the phase, the marginal distribution on W is

close to a product distribution, which we now describe. We can compute explicit values

a = a(k,∆), b = b(k,∆) such that for a phase T ∈
( [k]
k/2

)
the probability mass function x of

a vertex in W+ has its i-th entry equal to a if i ∈ T and equal to b if i /∈ T . Similarly, the

probability mass function y of a vertex in W− has its i-th entry equal to b if i ∈ T and equal

to a if i /∈ T . We note here that the values of a, b can be determined using the mapping

between the dominant phases (described in Theorem 16) and their respective fixpoints of

the tree recursions (see (11)); see also Section 6.3.

Let Q be the union of the pairs (x,y) over all phases. Hereafter, we will identify the

phases with elements of Q. Note that if (x,y) ∈ Q, then (y,x) ∈ Q as well. We also denote

by Q′ the union of unordered elements of Q. Elements of Q′ are called unordered phases

(we use p to denote unordered phases). Given a phase p = {x,y} an ordering of the pair

will be called “assigning spin to the phase”. The two ordered phases corresponding to the

unordered phase p will be denoted by p+ and p−.

The conditional independence property is crucial. It allows to quantify the effect of

using vertices of W as terminals to make connections between copies of the gadget G.

For example, consider the following type of connection, which we refer to as parallel. Let

v+ ∈ W+, v− ∈ W− and consider two copies of the gadget G, say G1, G2. For i = 1, 2

denote by v+
i , v

−
i the images of v+, v− in Gi. Now add the edges (v+

1 , v
+
2 ) and (v−1 , v

−
2 ) and

denote the final graph by G12. Thus, a parallel connection corresponds to joining the +,+

and −,− sides of two copies of the gadget.
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Clearly, random colorings of G12 can be generated by first generating random colorings

of G1, G2 and keeping the resulting coloring if v±1 , v
±
2 have different colors. We thus have

that the partition function of G12 is equal to (ZG)2 times the probability that v±1 , v
±
2 have

different colors in random colorings of G1, G2. The latter quantity can easily be computed

if we condition on the phases (x1,y1), (x2,y2) of the colorings in G1, G2, and this is equal

to (1− xᵀ
1x2)(1− yᵀ

1y2).

By taking logarithms, we can assume a parallel connection between gadgets with phases

(x1,y1) and (x2,y2) incurs an (additive) weight

wp((x1,y1), (x2,y2)) = ln(1− xᵀ
1x2) + ln(1− yᵀ

1y2).

In the hard-core model, parallel connections are sufficient to give hardness. In this case,

we have that Q′ = {p} and Q = {p+,p−} and the respective function wp(·, ·) satisfies

wp(p
+,p+) = wp(p

−,p−) < wp(p
+,p−). (19)

Thus, in this case, wp(·, ·) takes only two values and neighboring gadgets prefer to have

different phases. Now assume that H is an instance of Max-Cut and replace each vertex

in H by a copy of the gadget G, while for each edge of H, connect the respective gadgets

in parallel. The partition function of the final graph is dominated from phase assignments

which correspond to large cuts in H. This intuition is the basis of the reduction in [63, 64].

For the colorings model, reducing from Max-Cut poses an extra challenge. While

for every unordered phase p equation (19) continues to hold, a short calculation shows

that the optimal configuration for a triangle of gadgets connected in parallel is to give all

three gadgets different phases. To bypass this entanglement, we need to introduce some

sort of ferromagnetism in the reduction to enforce gadgets corresponding to vertices of H

to use a single (unordered) phase. To achieve this, we use symmetric connections, which

correspond to having not only (+,+), (−,−) connections of the gadgets, but also (+,−)

and (−,+). Thus, a symmetric connection whose endpoints have phases (x1,y1), (x2,y2)

incurs (additive) weight

ws((x1,y1), (x2,y2)) = wp((x1,y1), (x2,y2)) + wp((x1,y1), (y2,x2)).
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Symmetric connections will allow us to enforce a single unordered phase to all gadgets,

while parallel connections will allow us to recover a maximum-cut partition. To have some

modularity in our construction, rather than reducing from Max-Cut directly, we use the

following “phase labeling problem”.

Colorings Phase Labeling Problem(Q):

INPUT: undirected edge-weighted multigraph H = (V,E) and a partition of the edges

{Ep, Es}.

OUTPUT: MaxLwt(H) := maxY LwtH(Y), where the maximization is over all possible

phase labelings Y : V → Q and

LwtH(Y) :=
∑

{u,v}∈Es

ws(Y(u),Y(v)) +
∑

{u,v}∈Ep

wp(Y(u),Y(v)).

Edges in Ep (resp. Es) correspond to parallel (resp. symmetric) connections and we shall

refer to them as parallel (resp. symmetric) edges. The arguments in [64], which we sketched

earlier, can easily be adapted to show that an algorithm for approximating the partition

function to an arbitrarily small exponential factor yields a PRAS for the phase labeling

problem, see the general Lemma 55 in Section 5.1. The harder part of our arguments is to

show that a PRAS for the phase labeling problem yields a PRAS for Max-Cut on 3-regular

graphs, see Lemma 58 in Section 5.4.

We conclude by pointing to the general Lemma 56 and its proof in Section 5.5 for the

proof of Theorem 14.

1.4.6 AP-reductions for graphs of bounded degree

The sharp transition in the complexity of the hard-core model on graphs with maximum

degree ∆ is one of the most striking computational dichotomies. It would be interesting

thus to explore deeper the boundaries of this dichotomy.

A natural such question is whether the same computational transition remains true for

bipartite graphs of maximum degree ∆. One side is trivial: in the regime λ < λc(T∆),

Weitz’s algorithm applies invariably irrespectively of the underlying graph structure (pro-

vided of course that the maximum degree is ∆). On the hardness side, the things are
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no longer clear. Even for general bipartite graphs (with unbounded degree) a strong NP-

hardness result is considered unlikely, though it is conjectured to not admit an FPRAS.

The class of problems whose approximation complexity is equivalent to counting indepen-

dent sets on bipartite graphs (which we will abbreviate as #BIS) includes many natural

problems, see for example [23].

Most #BIS-hardness results have thus far focused on graphs without degree bounds. We

make a step for bipartite graphs of bounded degree, first in the case of the hard-core model,

proving #BIS-hardness for the hard-core model throughout the non-uniqueness regime of

T∆. Thus, if the conjectured hardness of #BIS holds true, the following Theorem 17 is

tight (see Section 7.3 for the proof).

Theorem 17. For all ∆ ≥ 3, for the hard-core model, for any λ > λc(T∆), it is #BIS-

hard to obtain an FPRAS that approximates the partition function for bipartite graphs of

maximum degree ∆.

We prove an analogous result for the ferromagnetic Potts model. We utilize an im-

portant result of Goldberg and Jerrum [30], who showed that approximating the partition

function of the ferromagnetic Potts model on general graphs is BIS-hard. Using bipar-

tite random ∆-regular graphs as gadgets, we show that the hardness is maintained if one

restricts to bounded degree bipartite graphs, provided the parameter B is bigger than a

natural threshold Bo (a function of q,∆), see Section 6.2 for more details.

Theorem 18. For all q ≥ 3, all ∆ ≥ 3, for the ferromagnetic q-state Potts model, for any

B > Bo, it is #BIS-hard to obtain an FPRAS that approximates the partition function for

bipartite graphs of maximum degree ∆.

Theorem 18 is proved in Section 7.2. The threshold Bo, rather than being the uniqueness

threshold of the ferromagnetic Potts model on the infinite ∆-regular tree T∆, is the phase

coexistence point on a random ∆-regular graph (whose existence we establish). When

B < Bo, the uniform vector is the only dominant phase; when B > Bo, the uniform vector

over the spins is not a dominant phase and q permutation-symmetric dominant phases
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exist; at B = Bo, the model has q + 1 dominant phases, the uniform vector and the q

permutation-symmetric dominant phases. For more details, see Theorem 69 in Section 6.2.
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CHAPTER II

SPIN SYSTEMS ON RANDOM REGULAR BIPARTITE GRAPHS

Random regular bipartite graphs will serve as building blocks for the gadgets we use in our

hardness reductions. Thus, a major component in this thesis is the analysis of spin systems

on models of random regular graphs. Our primary focus will be on random bipartite ∆-

regular graphs; this graph distribution is formally defined in Section 2.1.1. Extensions to

random regular graphs are discussed in Chapter 8.

To obtain results for the Gibbs distribution which hold with probability 1−o(1) over the

choice of the graph, we shall employ a second-moment approach based on the small subgraph

conditioning method. We formulate the main technical aspects of the moment approach

in Section 2.2.1 and review the small subgraph conditioning method in Section 2.3, all in

the spin model setting. Later chapters will progressively establish and refine the various

components needed in the analysis.

The reader who is acquainted with similar settings as ours will effectively recognize a

good portion of the notions and methods, modulo perhaps the specific technical details.

Namely, both the use of moments and the small subgraph conditioning method are well

established techniques which have been applied to numerous problems in probabilistic com-

binatorics and statistical physics. Despite this, the technical details change substantially

for each instantation of the method and the purpose of this chapter is to set up a concrete

basis for our later investigations.

2.1 Preliminaries

2.1.1 The distribution on ∆-regular Bipartite Graphs

We will use the following simple variant of the standard pairing model (also known as the

configuration model [5, 9]) to study random ∆-regular bipartite graphs.

Let V1, V2 be disjoint sets of vertices with |V1| = |V2| = n. For an integer ∆ ≥ 3, we

will denote by Gn,∆ the graph distribution on the set of bipartite ∆-regular multigraphs
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generated by the following random process. First, sample uniformly at random ∆ perfect

matchings between V1 and V2. Then, construct a graph G with vertex set V1 ∪ V2 whose

edges are given by the union of the ∆ perfect matchings. G is simple if it does not contain

parallel edges.

For the sake of completeness, we next compare the distribution Gn,∆ with the standard

pairing model Pn,∆ for random ∆-regular bipartite graphs. The conclusion we are going to

make is that there is no loss in working with the distribution Gn,∆. The reader may skip

the remainder of the paragraph without impact on what follows. Pn,∆ is generated by a

uniformly random perfect matching between [V1] × [∆] and [V2] × [∆] and then naturally

projecting the edges of the matching on V1 × V2. Let G ∼ Pn,∆ and let Psn,∆ be the

conditional distribution on G being simple. It is easy to see that Psn,∆ is the uniform

distribution over the set of labelled ∆-regular bicoloured graphs. It is well known that the

distributions Pn,∆ and Psn,∆ are contiguous; a property holds asymptotically almost surely1

over the distribution Gn,∆ iff it holds asymptotically almost surely over the distribution

Psn,∆ (see [36, Section 9.6] for a formal account of contiguity). It has been proved in [35, 52]

that Gn,∆ is contiguous to Pn,∆ and hence to Psn,∆.

2.1.2 Recap: spin systems

We briefly recall the spin system framework, for more details see Section 1.1. For an integer

q ≥ 2, a q-spin system is specified by a symmetric q × q interaction matrix B = (Bij)i,j∈[q]

with non-negative entries, which specify the strength of the interaction between the spins.

For a finite undirected graph G = (V,E), a q-spin system is a probability distribution

µG over the space ΩG of all configurations, i.e., spin assignments σ : V → [q]. The weight

of a configuration σ ∈ ΩG is the product of neighboring spin interactions, that is,

wG(σ) =
∏

(u,v)∈E

Bσ(u)σ(v).

The distribution µG, known as the Gibbs distribution is defined as µG(σ) = wG(σ)/ZG

1Formally, a property can be interpreted as a sequence of events An in underlying probability spaces
(Ωn,An,Pn). Then, a property holds asymptotically almost surely if Pn(An) → 1 as n → ∞. We will
abbreviate asymptotically almost surely by a.a.s..
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where ZG is the partition function defined as ZG =
∑

σ∈ΩG
wG(σ). We drop the subscript

G when the graph under consideration is clear.

2.2 A moments’ approach for spin systems on random graphs

2.2.1 Expressions for the first and second moments

Let G ∼ Gn,∆ where Gn,∆ was defined in Section 2.1.1. Briefly, Gn,∆ is the probability

distribution over bipartite graphs with n + n vertices formed by taking the union of ∆

random perfect matchings. We will denote the two sides of the bipartition of the graphs as

V1, V2.

For a q-spin system with interaction matrix B, we will study the Gibbs distribution

of the random graph G using the moments of the partition function. We first set up our

notation.

We denote by 4t the simplex of t-dimensional probability vectors, i.e.,

4t := {(x1, x2, . . . , xt) ∈ Rt |
∑t

i=1 xi = 1 and xi ≥ 0 for i = 1, . . . , t}. (20)

For a configuration σ : V1 ∪ V2 → {1, . . . , q}, we shall denote the set of vertices assigned

color i by σ−1(i). For α,β ∈ 4q ∩
(

1
nZ

q
)
, let

Σα,β := {σ : V → {1, . . . , q}
∣∣ |σ−1(i) ∩ V1| = αin, |σ−1(i) ∩ V2| = βjn for i = 1, . . . , q},

(21)

that is, configurations in Σα,β assign αin and βin vertices in V1 and V2 the spin value

i, respectively. We will be interested in the total weight Zα,β
G of configurations in Σα,β,

namely

Zα,β
G =

∑
σ∈Σα,β wG(σ).

Thus, the random variable Zα,β
G can be interpreted as a conditional partition function

on those configurations with vertex empirical distribution given by α,β. Note that the

partition function ZG is the sum of Zα,β
G , over the set of all possible α,β ∈ 4q.

We will study Zα,β
G by looking at the moments EG [Zα,β

G ] and EG [(Zα,β
G )2].

We begin with the first moment. Let α,β ∈ 4q ∩
(

1
nZ

q
)
. For σ ∈ Σα,β and a matching

between V1 and V2, let nxij denote the number of edges matching vertices in σ−1(i) ∩ V1
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and σ−1(j) ∩ V2 and set x := (x11, . . . , xqq). Note that x is itself a probability vector in

4q2 , capturing the edge empirical distribution under the configuration σ. In particular, x

must have the right marginals on the sets V1, V2. Precisely, x ∈M1(α,β) ∩
(

1
nZ

q2)
, where

M1(α,β) is the polytope

M1(α,β) :=

x :

∑
j xij = αi

(
∀i ∈ [q]

)
,
∑

i xij = βj
(
∀j ∈ [q]

)
,

xij ≥ 0
(
∀(i, j) ∈ [q]2

)
 . (22)

To make the following expressions more compact, for i, j ∈ [q], we denote

xi· := (xi1, . . . , xiq), x·j := (x1j , . . . , xqj).

We will also use the following notation for multinomial coefficients. For z ∈ Rt≥0,(
zn

zn

)
:=

(
zn

z1n, . . . , ztn

)
provided that z1 + . . .+ zt = z.

Under the convention that 00 ≡ 1, we then have

EG [Zα,β
G ] =

(
n

αn

)(
n

βn

)(∑
x

[(
n

xn

)−1∏
i

(
αin

xi·n

)∏
j

(
βjn

x·jn

)]∏
i,j

B
nxij
ij

)∆

, (23)

where the sum ranges over x ∈M1(α,β)∩
(

1
nZ

q2)
. Let us briefly explain the derivation of

(23). The term
(
n
αn

)(
n
βn

)
accounts for the cardinality of Σα,β, while the remainder of the

expression is EG [wG(σ)] for an arbitrary σ ∈ Σα,β. Since the weight of a configuration is

multiplicative over the edges and the matchings are independent, EG [wG(σ)] is the ∆-power

of the expected contribution of a single matching. The latter is completely determined by x

and is equal to
∏
i,j B

xij
ij , scaled by the probability that the matching induces the prescribed

x, i.e.,
(
n
xn

)−1∏
i

(
αin
xi·n
)∏

j

(
βjn
x·jn

)
.

The second moment EG [(Zα,β
G )2] is completely analogous, once we introduce the right

variables. It will be useful though for our later investigations to study the slightly more

general EG [Z
α1,β1
G Z

α2,β2
G ]. To do this, for (σ1, σ2) ∈ Σα1,β1 × Σα2,β2 , we need to compute

EG [wG(σ1)wG(σ2)]. Let

γik = |σ−1
1 (i) ∩ σ−1

2 (k) ∩ V1|/n, δjl = |σ−1
1 (j) ∩ σ−1

2 (l) ∩ V2|/n.

50



The vectors γ := (γ11, . . . , γqq) and δ = (δ11, . . . , δqq) capture the overlap of configurations in

V1 and V2, respectively. In particular, observe that γ and δ satisfy the marginal constraints

γ ∈M1(α1,α2), δ ∈M1(β1,β2),

where the polytope M1(·, ·) is given by (22). To capture wG(σ1)wG(σ2), for a matching

between V1 and V2, let nyikjl denote the number of edges matching vertices in σ−1
1 (i) ∩

σ−1
2 (k) ∩ V1 and σ−1

1 (j) ∩ σ−1
2 (l) ∩ V2. The vector y = (y1111, . . . , yqqqq) must lie in the

polytope M2(γ, δ), where

M2(γ, δ) :=

y :

∑
j,l yikjl = γik

(
∀(i, k) ∈ [q]2

)
,
∑

i,k yikjl = δjl
(
∀(j, l) ∈ [q]2

)
,

yikjl ≥ 0
(
∀(i, k, j, l) ∈ [q]4

)
.


(24)

Again, to make the expressions compact, for i, k, j, l ∈ [q], we denote

yik· := (yik11, . . . , yikqq), y·jl := (y11jl, . . . , yqqjl)

Under the convention 00 ≡ 1, we then have

EG [Z
α1,β2
G Z

α2,β2
G ] =∑

γ,δ

(
n

γn

)(
n

δn

)(∑
y

[(
n

yn

)−1∏
i,k

(
γikn

yik·n

)∏
j,l

(
δjln

y·jln

)]∏
ikjl

(BijBkl)
nyikjl

)∆

,
(25)

where the sums range over γ ∈ M1(α1,α2), δ ∈ M1(β1,β2), y ∈ M2(γ, δ). The

first line in (25) accounts for the cardinality of Σα1,β1 × Σα2,β2 , while the second line

is EG [wG(σ1)wG(σ2)] for (σ1, σ2) ∈ Σα1,β1 × Σα2,β2 with the prescribed γ, δ. Since the

weight of a configuration is multiplicative over the edges and the matchings are indepen-

dent, EG [wG(σ1)wG(σ2)] is the ∆-power of the expected weight of a single matching. The

latter is completely determined by y and is equal to
∏
i,k,j,l(BijBkl)

yikjl , scaled by the

probability that the matching induces the prescribed y.

By restricting to the case α1 = α2 = α, β1 = β2 = β we obtain EG [(Zα,β
G )2]. Note that

only the range of the sums in (25) change (the regions that γ, δ are allowed to lie); other

than that, the expressions are identical. In fact, we have the following simple remark.
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Remark 7. The second moment of the partition function of G is given by (25), where the

sum ranges over all γ, δ ∈ 4q2. More generally (and precisely), for Σ ⊆ 4q ×4q, denote

by

ZG(Σ) =
∑

(α,β)∈Σ

Zα,β
G , so that

(
ZG(Σ)

)2
=

∑
(α1,β1),(α2,β2)∈Σ

Z
α1,β1
G Z

α2,β2
G .

The second moment EG [
(
ZG(Σ)

)2
] is given by (25), where now the first sum ranges over all

(γ, δ) ∈
⋃

(α1,β1),(α2,β2)∈Σ

M1(α1,α2)×M1(β1,β2).

The following equally simple remark will be much more crucial. The second moment

can be viewed as the first moment of a paired-spin model with interaction matrix B ⊗B.

Indeed, we can interpret BijBkl as the edge activity between the paired spins (i, k) and

(j, l). Since this observation will be a crucial component in our later arguments, we state

the following lemma for further expliciteness.

Lemma 19. For a graph G and an interaction matrix B, let ZG,B be the partition function

of G in the spin system specified by the interaction matrix B. It holds that

EG
[
(ZG,B)2

]
= EG

[
ZG,B⊗B

]
.

Proof. As discussed in Remark 7, we have

EG
[
(ZG,B)2

]
=∑

γ,δ

(
n

γn

)(
n

δn

)(∑
y

[(
n

yn

)−1∏
i,k

(
γikn

yik·n

)∏
j,l

(
δjln

y·jln

)] ∏
i,k,j,l

(BijBkl)
nyikjl

)∆

,
(26)

where the sums range over γ, δ ∈ 4q2 ∩
(

1
nZ

q2)
and y ∈M2(γ, δ) ∩

(
1
nZ

q4)
. Similarly,

EG
[
ZG,B⊗B

]
=∑

α,β

(
n

αn

)(
n

βn

)(∑
x

[(
n

xn

)−1∏
i′

(
αi′n

xi′·n

)∏
j′

(
βj′n

x·j′n

)]∏
i′,j′

(B⊗B)
nx̄i′j′

i′j′

)∆

,
(27)

where the sums range over α,β ∈ 4q2 ∩
(

1
nZ

q2)
,x ∈ M1(α,β) ∩

(
1
nZ

q4)
and the products

over i′, j′ ∈ [q2]. The map f : (i, k) 7→ q(i−1)+k gives a one-to-one correspondence between

(i, k) ∈ [q] × [q] and i′ ∈ [q2], and similarly for (j, l) ∈ [q] × [q] and j′ ∈ [q2]. Observe also

BijBkl = (B⊗B)f(i,k)f(j,l) and that the map f gives a natural correspondence between the
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entries of γ and α, δ and β, y and x. We thus have a one-to-one correspondence between

(α,β,x) and (γ, δ,y). Thus the expressions (26) and (27) are equal, as wanted.

2.2.2 The exponential order of the moments

In this section, we study the limits of 1
n log EG

[
Zα,β
G

]
and 1

n log EG
[
(Zα,β

G )2
]

as n → ∞.

These limits exist under relatively mild conditions as we discuss below (see Remark 8).

Roughly, the calculation of these limits involves expanding the factorials using Stirling’s

approximation and finding the maximum of the resulting function. The intuition here is that

the terms in the sums (23) and (25) are typically exponential in n, but have polynomially

many terms. This gives that their asymptotic order is determined by a few terms close to

their dominating terms.

Under the usual conventions that ln 0 ≡ −∞ and 0 ln 0 ≡ 0, we obtain the following:

Ψ1(α,β) = ΨB
1 (α,β) := lim

n→∞

1

n
log EG

[
Zα,β
G

]
= max

x∈M1(α,β)
Υ1(α,β,x), (28)

where Υ1(α,β,x) := (∆− 1)f1(α,β) + ∆g1(x),

f1(α,β) :=
∑

i αi lnαi +
∑

j βj lnβj ,

g1(x) :=
∑

i,j xij lnBij −
∑

i,j xij lnxij .

And for the second moment:

Ψ2(α,β) = ΨB
2 (α,β) := lim

n→∞

1

n
log EG

[
(Zα,β

G )2
]

= max
γ∈M1(α,α)
δ∈M1(β,β)

max
y∈M2(γ,δ)

Υ2(γ, δ,y), (29)

where Υ2(γ, δ,y) := (∆− 1)f2(γ, δ) + ∆g2(y),

f2(γ, δ) :=
∑

i,k γik ln γik +
∑

j,l δjl ln δjl,

g2(y) :=
∑

i,k,j,l yikjl ln(BijBkl)−
∑

i,k,j,l yikjl ln yikjl.

Remark 8. We expand at a lower level of technical detail our discussion on the existence

of the limits 1
n log EG

[
Zα,β
G

]
and 1

n log EG
[
(Zα,β

G )2
]
. Assuming that the Hessian of these

functions is negative definite at the respective maxima, one can use a Gaussian integral

around the maximizers to compute the asymptotics of EG
[
Zα,β
G

]
and EG

[
(Zα,β

G )2
]
, i.e., the

tails of these sums are negligible. The technique has been coined as Laplace’s method (see
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for example [15, Chapter 4] or [69, Chapter IX]). This is exactly what we are going to do

in Chapter 4 and the reason behind the Hessian condition in Theorem 14. It should be

noted however that the limits of the logarithms of the moments may be justified under much

milder conditions, see for example [48]. We do not follow this path here since we will need

the asymptotics of the moments.

Remark 9. The maximization in the first moment depends only on the function g1(x)

which is strictly concave in the convex region over the convex polytope M1(α,β). Hence,

for any fixed α,β, the global maximum of Υ1(α,β,x) with respect to x is achieved at a

unique point. Similarly, for any fixed γ, δ, the maximum of Υ2(γ, δ,y) with respect to y

is achieved at a unique point. Crucially for our considerations in Section 4.3, if α,β are

global maximizers of Ψ1, the global maximum of Υ2(γ, δ,y) with respect to γ, δ,y is also

achieved at a unique point, see Lemma 31 in Section 3.3.3.

A notational convention that we have adopted silently so far is perhaps useful to ex-

plicitly mention: the indices i, k “point” to the set V1, while indices j, l “point” to the set

V2.

2.3 Bits on the small subgraph conditioning method

As described in Section 1.3.3, our goal is to obtain concentration for the random variables

Zα,β
G around their expectation for each dominant phase (α,β), cf. Definition 6. We will use

this information in Chapter 4 to show that the largest contribution to the partition function

of a random bipartite regular graph G comes from configurations whose spin frequencies

on the two sides of the graph are close to a dominant phase (α,β). In turn, this will allow

us to obtain a gadget to derive our inapproximability results whenever there are more than

one dominant phases.

Back to the concentration of Zα,β
G , we mentioned in Section 1.3.3 that to apply the

second moment method, one first needs to compute the ratio EG
[(
Zα,β
G

)2]
/
(
EG [Zα,β

G ]
)2

and show that it is asymptotically equal to 1. Computing this ratio is highly nontrivial and

requires a thorough understanding of the functions Ψ1,Ψ2 and the location of their maxima.

In this sense, the technical bottleneck of our arguments are proved in Chapter 3. To fast
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forward slightly, the analysis of the functions Ψ1 and Ψ2, together with intensive asymptotic

calculations yield that the ratio EG
[(
Zα,β
G

)2]
/
(
EG [Zα,β

G ]
)2

converges to a constant greater

than 1 (cf. equation (13)). This does not allow to obtain concentration of Zα,β
G around its

expectation based on that information alone, as well as to argue the presence of multiple

dominant phases in a single graph G.

For probability spaces corresponding to random ∆-regular graphs, there is a well-

established method to overcome this failure of the second moment method, known as the

small subgraph conditioning method. The small subgraph conditioning method was in-

troduced in [60] to prove that a random ∆-regular contains asymptotically almost surely

(a.a.s.) a Hamilton cycle. Roughly, the method provides a way to get a.a.s. results for a

random variable Y when the second moment method fails, in the particular case (though

common in the random regular graph setting) where the ratio of the second moment of Y

to the first moment squared converges to a constant strictly greater than 1. The method

tries to attribute the variance of Y to the presence of subgraph structures. In particular, for

random ∆-regular graphs the only interesting subgraph structures are short cycles (cycles

whose length is constant), which, as it typically turns out, cause all the variance of Y . By

taking into account the variance caused by the short cycles, one can obtain strong bounds

on Y (in terms of its expectation), as we shall see shortly in the upcoming Theorem 20 and

Lemma 21.

The small subgraph conditioning method was first used to analyze spin systems on

random regular graphs in [56] and was subsequently used in [63, 27]. As in these works, our

goal is to apply the method on Zα,β
G for a dominant phase (α,β), and explain the variance

of Zα,β
G by looking at the variance of Zα,β

G conditioned on the presence of short cycles. In

particular, for i = 1, 2, . . ., Xin will denote the number of cycles of length i in a random

bipartite ∆-regular graph G ∼ Gn,∆.

The method is captured by the following theorem. We note here that there are several

versions of the method, we will use a combined version of the respective theorems in [60, 35].

The theorem can be extrapolated from [35], after combining [35, Lemma 1, Remark 4,

Remark 9]. The notation [X]m refers to the m-th order falling factorial of the variable X.
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We shall discuss the theorem statement and how it applies to our setting afterwards.

Theorem 20. For i = 1, 2, . . ., let λi > 0 and δi > −1 be constants and assume that

for each n there are random variables Xin, i = 1, 2, . . . , and Yn, all defined on the same

probability space G = Gn such that Xin is non-negative integer valued, Yn ≥ 0 and E
[
Yn
]
> 0

(for n sufficiently large). Furthermore, the following hold:

(A1) Xin
d−→ Zi as n → ∞, jointly for all i, where Zi ∼ Po(λi) are independent Poisson

random variables;

(A2) for every finite sequence j1, . . . , jm of non-negative integers,

EG
[
Yn[X1n]j1 · · · [Xmn]jm

]
EG
[
Yn
] →

m∏
i=1

(
λi
(
1 + δi

))ji
as n→∞; (30)

(A3)
∑

i λi
(
δ

(s)
i

)2
<∞;

(A4) EG
[
Y 2
n

]
/
(
EG
[
Yn
])2 ≤ exp

(∑
i λiδ

2
i

)
+ o(1) as n→∞;

Then:

(C1) Let r(n) be a function such that r(n)→ 0 as n→∞. It holds that Yn > r(n)EG
[
Yn
]

asymptotically almost surely.

(C2) The following convergence in distribution holds:

Yn

EG
[
Yn
] d−→W =

∞∏
i

(1 + δi)
Zi exp

(
− λiδi

)
. (31)

This and the convergence in (A1) hold jointly. The infinite product defining W con-

verges a.s. and in L2, with

E[W ] = 1 and E
[
W 2
]

= lim
n→∞

EG
[
Y 2
n

]
/
(
EG
[
Yn
])2

.

Moreover, W > 0 a.s..

The conclusion (C1) of Theorem 20 is essentially due to [60], while the conclusion (C2)

is due to [35] (note that (C2) implies (C1)). (C1) is generally sufficient when the interest

is in proving concentration of a random variable Yn within a polynomial factor from its
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expectation (the upper tail can typically be handled using Markov’s inequality). (C2) gives

the distributional limit of the random variable Yn and as a consequence gives a handle on

the fluctuations from the expectation in terms of the limiting distribution of the short cycle

counts.

For our inapproximabilty results, to prove the properties of the gadget used in the

reduction we will need (roughly) to argue that the ratio Zα,β
G /ZG can be made arbitrary

close (within ±ε for every ε > 0 and all sufficiently large n) to a fixed constant for all

dominant phases (α,β). For this type of approximation, we need sharper bounds on Zα,β
G ,

better than polynomial factors. In this sense, conclusion (C1) will not be sufficient for our

purposes. Conclusion (C2) is closer to what we need, but not exactly. Instead, we will use

the following lemma, which will allow us to explicitly connect the random variables Zα,β
G

with the cycle counts Xin of the graph G. The lemma is implicit in the arguments of [60]

and observed in [35, p.5], where it is discussed without proof in a specific setting, and as

such we write and prove a formal statement in the setup of Theorem 20. The proof follows

Janson’s proof of Theorem 20 but uses a slightly different finish.

Lemma 21. Assume that the conditions in Theorem 20 hold. For an integer m > 0, let

Wmn =
m∏
i=1

(
1 + δi

)Xin exp
(
− λiδi

)
.

Then, for every ε > 0, it holds that

lim
m→∞

lim sup
n→∞

PrGn

([∣∣∣ Yn

EGn
[
Yn
] −Wmn

∣∣∣ > ε

])
= 0. (32)

Proof of Lemma 21. Wlog we will assume that EGn
[
Yn
]

= 1. We will prove that

lim sup
n→∞

PrGn
([
|Yn −Wmn| > ε

])
≤ 1

4
ε−2
[

exp
( ∞∑
i=1

λiδ
2
i

)
− exp

( m∑
i=1

λiδ
2
i

)]
. (33)

This clearly gives the statement of the lemma, since by assumption (A3) of Theorem 20,

the lhs is finite and goes to 0 as m→∞. To prove (33), we follow [35, Proof of Theorem 1]

up to a certain point but avoid the use of Skorokhod’s theorem in the argument. Janson’s
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proof goes as follows. For a positive integer m define the functions

fn(x1, . . . , xm) = EGn [Yn |X1n = x1, . . . , Xmn = xm],

f∞(x1, . . . , xm) = lim
n→∞

fn(x1, . . . , xm) =
m∏
i=1

(1 + δi)
xie−λiδi . (34)

The second equality follows by assumption (A2) of Theorem 20 and [35, Lemma 1]. Define

also the random variable

Y (m)
n = EGn [Yn |X1n, . . . , Xmn].

Using assumptions (A1) and (A2), Fatou’s Lemma and that Y
(m)
n is a conditional expecta-

tion of Yn, one obtains

lim sup
n→∞

EGn
[
|Yn − Y (m)

n |2
]
≤ exp

( ∞∑
i=1

λiδ
2
i

)
− exp

( m∑
i=1

λiδ
2
i

)
,

see [35, Equation (5.2)] for details. We now give the main deviation point from Janson’s

proof, which amounts to proving that for fixed m, we have

lim
n→∞

PrGn
([
|Y (m)
n −Wmn| > ε

])
= 0. (35)

as n→∞. Fix M > 0. By (34), there is N such that for n ≥ N it holds that

|fn(x1, . . . , xm)− f∞(x1, . . . , xm)| < ε for all integer x1, . . . , xm ∈ [0,M ].

It follows that for n ≥ N , we have

PrGn
([
|Y (m)
n −Wmn| > ε

])
≤ PrGn

( m⋃
i=1

[
Xin > M

])
Note that as n → ∞, the rhs by assumption (A1) converges to Pr

(⋃m
i=1

[
Zi > M

])
. The

latter can be made arbitrarily small by letting M →∞. This proves (35).

The final step is to bound

lim sup
n→∞

PrGn
([
|Yn −Wmn| > ε

])
≤ lim sup

n→∞
PrGn

([
|Yn − Y (m)

n | > ε/2
])

+ lim sup
n→∞

PrGn
([
|Y (m)
n −Wmn| > ε/2

])
≤ 1

4
ε−2
[

exp
( ∞∑
i=1

λiδ
2
i

)
− exp

( m∑
i=1

λiδ
2
i

)]
+ 0,

which finishes the proof of (33).
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2.4 Notes

We refer the reader to the survey of Wormald [70] for a thorough account of models of

random regular graphs. Another standard source is the book of Bollobás [10]. For an

account which is targeted towards applications for factor models, look at [49, Chapter 9].
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CHAPTER III

SECOND MOMENT ANALYSIS USING MATRIX NORMS

In Chapter 2, for a q-spin system with interaction matrix B, we viewed the partition function

of a random ∆-regular bipartite graph as a random variable and calculated its first and

second moments. In particular, we saw that the exponential order of the moments is

determined by certain functions Ψ1 and Ψ2 of the spin frequencies.

In this chapter, we use the first moment to identify the configurations with the largest

contribution in expectation; essentially, we characterize in a suitable sense the configurations

which are “candidates” to be the modes in the Gibbs distribution. As was demonstrated in

[56] (in the case of the hard-core model), these candidate modes correspond to fixpoints of

the tree recursions and we shall show a derivation in our setting. More importantly, we will

use this information to reformulate the first moment as an induced matrix norm (depending

on ∆) of the interaction matrix B.

Of course, there is no a priori reason that the expectation argument of the previous

paragraph indeed gives the modes in the Gibbs distribution. We supplement it by showing

that the exponential order of the second moment matches the exponential order of the first

moment squared. This is done in a surprisingly straightforward way; we observe that the

second moment can also be reformulated as the induced matrix norm of B ⊗ B. Using

that induced matrix norms are multiplicative over tensor products, the desired alignment

between the second moment and the first moment is obtained.

A far more refined variance analysis in Chapter 4 (based on the small subgraph con-

ditioning method) will yield that the identified configurations are indeed the (only) modes

in the Gibbs distribution with high probability over the choice of the random graph. To

carry out however the variance analysis, we will need more information about the moments

and, in particular, the second order behavior of the functions Ψ1,Ψ2 around their maxima.
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We will connect this problem to the stability of fixpoints to the tree recursions, a connec-

tion which will be amply utilized to study the modes for spin models of specific interest in

Chapter 6.

3.1 Preliminaries

3.1.1 Recap: first and second moments

For a q-spin system with interaction matrix B, our goal is to understand the Gibbs distri-

bution on a random ∆-regular bipartite graph G = (V,E) (with bipartition V = V1 ∪ V2)

by looking at the distribution of spin values in V1 and V2. Let n = |V1| = |V2|. For a

configuration σ : V → [q], we denote the set of vertices assigned spin i by σ−1(i). For

q-dimensional probability vectors α,β, let

Σα,β =
{
σ : V → {1, . . . , q}

∣∣ |σ−1(i) ∩ V1| = αin, |σ−1(i) ∩ V2| = βin for i = 1, . . . , q
}
,

that is, configurations in Σα,β assign αin and βin vertices in V1 and V2 the spin value

i, respectively. We will be interested in the total weight Zα,β
G of configurations in Σα,β,

namely

Zα,β
G =

∑
σ∈Σα,β w(σ).

We study Zα,β
G by looking at the moments EG [Zα,β

G ] and EG [(Zα,β
G )2], where the expectation

is over the distribution of the random ∆-regular bipartite graph, from hereon denoted by

G.

Denote the leading term of the first and second moments as:

Ψ1(α,β) = ΨB
1 (α,β) := lim

n→∞

1

n
log EG

[
Zα,β
G

]
.

Ψ2(α,β) = ΨB
2 (α,β) := lim

n→∞

1

n
log EG

[(
Zα,β
G

)2]
.

We will be interested in the global maximizers of Ψ1, which (at least in expectation)

capture the configurations which have the largest contribution in the partition function of a

random ∆-regular bipartite graph. We also recall the following definition from Section 1.3.

Definition 6. For a q-spin system with interaction matrix B, a dominant phase is a pair

(α,β) of q-dimensional probability vectors which maximize Ψ1(α,β).
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3.1.2 Basic definitions: matrix norms

We will reformulate the maxima of the first and second moments in terms of matrix norms.

We recall here the basic definitions regarding matrix norms. The usual vector norms are

denoted as:

‖x‖p = (
n∑
i=1

xpi )
1/p.

We will use the subordinate matrix norm (also known as the induced matrix norm) which

will be denoted as ‖ · ‖p→q′ (this is different than the usual notation ‖ · ‖p→q used in the

literature, since we have reserved q for the number of spins) and is defined as:

‖A‖p→q′ = max
‖x‖p=1

‖A x‖q′ .

Note that if A has non-negative entries then one can restrict the maximization to x with

non-negative entries. A well-known example of an induced norm is the spectral norm ‖·‖2→2.

It was proved by Bennett [7, Proposition 10.1] that induced norms ‖ · ‖p→q′ with p ≤ q′

are multiplicative over Kronecker product. Precisely, for matrices A1,A2 it holds that

‖A1 ⊗A2‖p→q′ = ‖A1‖p→q′‖A2‖p→q′ . (36)

This property will be crucial for our analysis of the second moment of Zα,β
G .

We will also need duality of norms. Recall that the norms ‖ · ‖p and ‖ · ‖p′ are dual if

1
p + 1

p′ = 1. It then holds

max
‖y‖p=1

|yᵀx| = ‖x‖p′ . (37)

Note that (37) is an immediate consequence of Hölder’s inequality. For more details, the

reader is referred to [33].

3.2 Tree recursions, first moment, and matrix norms

A key component in our arguments is to get a good handle on the function Ψ1. We displayed

in Section 1.3.2 that the important idea is to define a new function Φ which captures in an

appropriate way the maximum of Ψ1. The function Φ allows us to use matrix norms in our

analysis of the first and second moments. For the reader’s convenience, we recall next the

definition of the function Φ.
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Let p = ∆/(∆ − 1). For non-negative q-dimensional vectors r := (R1, . . . , Rq), c :=

(C1, . . . , Cq), define Φ(r, c) by:

exp
(
Φ(r, c)/∆

)
=

rᵀBc

‖r‖p‖c‖p
.

We will show that the critical points of Φ and Ψ1 match in the sense that there is a

one-to-one correspondence between them and their values are equal at the corresponding

critical points. The full statement is contained in Theorem 5 given below, but the important

element for the analysis of the second moment is captured in the following lemma:

Lemma 22. For every model on bipartite random regular graphs, it holds that

max
α,β∈4q

Ψ1(α,β) = max
r,c

Φ(r, c).

Therefore, to determine the dominant phases of Ψ1, it suffices to study Φ. As we

displayed in Setion 1.3.2, the maximum of Φ can be compactly expressed in terms of matrix

norms. Recall the one-line derivation:

max
r,c

exp
(
Φ(r, c)/∆

)
= max

c
max

r

rᵀBc

‖r‖p‖c‖p
= max

c

‖Bc‖∆
‖c‖p

= ‖B‖p→∆, (10)

where the second equality follows from matrix norm duality (namely, apply (37) for x = Bc

and y = r).

Hence, the dominant phases of Ψ1 can be expressed in terms of matrix norms:

max
α,β∈4q

exp
(
Ψ1(α,β)/∆

)
= ‖B‖ ∆

∆−1
→∆. (38)

The proof of Lemma 22 is immediate using Theorem 5 stated in Section 1.3.2. We

reiterate the theorem for the reader’s convenience, and prove it in the remainder of this

section. We note that the analysis of the second moment does not need any extra pieces

other than Lemma 22.

Theorem 5. There is a one-to-one correspondence between the fixpoints of the tree re-

cursions and the critical points of Φ (both considered for non-negative r = (R1, . . . , Rq),

c = (C1, . . . , Cq) in the projective space, that is, up to scaling by constants as in Remark 3).
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The following transformation (r, c) 7→ (α,β) given by:

αi =
R

∆/(∆−1)
i∑
iR

∆/(∆−1)
i

and βj =
C

∆/(∆−1)
j∑
j C

∆/(∆−1)
j

(11)

yields a one-to-one correspondence between the critical points of Φ and the critical points of

Ψ1 (in the region defined by αi ≥ 0, βj ≥ 0 and
∑

i αi = 1,
∑

j βj = 1).

Moreover, for the corresponding critical points (r, c) and (α,β) one has

Φ(r, c) = Ψ1(α,β). (12)

Finally, for ergodic B (irreducible and ergodic), the local maxima of Φ and Ψ1 happen

at the critical points (that is, there are no local maxima on the boundary).

In the following proof of Theorem 5, we give forward references to the ingredients which

we will prove next.

Proof of Theorem 5. Lemmas 25 and 26 give the connection between the critical points of

Ψ1 and the fixpoints of the tree recursions. Lemmas 27 and 28 give the connection between

the critical points of Ψ1 and Φ and show that the values agree on the corresponding critical

points. Finally, Lemmas 29 and 30 show that the maxima happen in the interior (that is,

for Ri > 0, Cj > 0 in the case of Φ and for αi > 0, βj > 0 in the case of Ψ1).

3.2.1 Preliminaries on maximum-entropy distributions

Let α and β be non-negative vectors in Rq such that

∑
i

αi = 1 and
∑
j

βj = 1. (39)

For α and β that satisfy (39) let

g(α1, . . . , αq, β1, . . . , βq) = max

q∑
i=1

q∑
j=1

xij(ln(Bij)− lnxij), (40)

where the maximum is taken over non-negative xij ’s such that

αi =
∑
j

xij and βj =
∑
i

xij . (41)
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Lemma 23. The maximum of the right-hand-side of (40) is achieved at unique xij. The

xij are given by

xij = BijRiCj , (42)

where r and c satisfy

Ri

q∑
j=1

BijCj = αi and Cj

q∑
i=1

BijRi = βj , (43)

and

q∑
j=1

BijCj = 0 =⇒ Ri = 0;

q∑
i=1

BijRi = 0 =⇒ Cj = 0.

(44)

The value of g, in terms of Ri’s and Cj’s, is given by

g(α1, . . . , αq, β1, . . . , βq) = −
q∑
i=1

q∑
j=1

BijRiCj ln(RiCj). (45)

Proof. From strict concavity of −x lnx it follows that the right-hand side of (40) has a

unique critical point (if there were two critical points then the segment between the points

lies in the linear space defined by (41); the function has a zero derivative on both ends

of the segment; and the second derivative of the function is negative on the segment; a

contradiction).

Using the method of Lagrange multipliers we obtain that the critical points of the

right-hand side of (40) are xij given by (42) where Ri’s and Cj ’s are solutions of (43).

We can make any solution of (43) satisfy (44): if
∑q

j=1BijCj = 0 then set Ri = 0 (and

symmetrically, if
∑q

i=1BijRi = 0 then set Cj = 0). We now argue that this change does

not violate (43). Suppose that after the change for some k ∈ [q] we have

Rk

q∑
j=1

BkjCj 6= αk. (46)

Then i = k (since only Ri changed) and since
∑q

j=1BijCj = 0 we also have αi = 0, a

contradiction (with (46)). Now suppose that after the change for some j ∈ [q] we have

Cj

q∑
k=1

BkjRk 6= βj . (47)
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Then Bij > 0 and Cj > 0 (otherwise changing Ri would not violate (47)). This then implies∑q
j=1BijCj > BijCj > 0, a contradiction. Thus the change does not violate (43).

Equation (45) is obtained by substituting (43) into (40).

Remark 10. Scaling all the Ri’s up by the same factor while scaling all the Cj’s down by

the same factor preserves (42) and (43). Modulo such scaling the Ri’s and Cj’s are unique,

since the xij’s are unique and (42) determines the Ri’s and Cj’s once one value (say R1)

is fixed (here we use the fact that the matrix of the model is ergodic).

Remark 11. Note that the condition (39) translates (using (43)) into the following condi-

tion on Ri’s and Cj’s
q∑
i=1

q∑
j=1

BijRiCj = 1. (48)

Our goal now is to see how the value of (40) changes when we perturb αi’s and βj ’s. We

are going to view them as functions of a new variable z. All differentiation in this section

will be with respect to z. Note that to stay in the subspace defined by (39) we should have,

in particular, ∑
i

α′i =
∑
i

α′′i = 0 and
∑
j

β′j =
∑
j

β′′j = 0. (49)

Differentiating (43) we obtain

q∑
j=1

Bij(RiCj)
′ = α′i and

q∑
i=1

Bij(RiCj)
′ = β′j . (50)

The following ratio of (43) and (50) will be useful later

α′i
αi

=
R′i
Ri

+

∑q
j=1BijC

′
j∑q

j=1BijCj
and

β′j
βj

=
C ′j
Cj

+

∑q
i=1BijR

′
i∑q

i=1BijRi
. (51)

The scaling freedom forRi’s and Cj ’s (discussed in Remark 10) is equivalent to increasing

all R′i/Ri’s by the same (additive) amount and decreasing all C ′i/Ci by the same (additive)

amount. We are going to remove this freedom by requiring

q∑
i=1

αi
R′i
Ri

=

q∑
j=1

βj
C ′j
Cj
. (52)

(Recall that we study the effect of perturbing g when we change αi’s and βj ’s; equation (52)

just fixes the corresponding change in Ri’s and Cj ’s.)

Now we compute the derivatives of g.
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Lemma 24. We have

g′ = −
q∑
i=1

(lnRi)α
′
i −

q∑
j=1

(lnCj)β
′
j , (53)

and

g′′ = −
q∑
i=1

R′i
Ri
α′i −

q∑
j=1

C ′j
Cj
β′j −

q∑
i=1

(lnRi)α
′′
i −

q∑
j=1

(lnCj)β
′′
j . (54)

Proof. Using (f ln f)′ = (1 + ln f)f ′ and equations (50) and (49) we obtain

g′ = −
q∑
i=1

q∑
j=1

Bij(1 + ln(RiCi))(RiCj)
′ = −

q∑
i=1

(lnRi)α
′
i −
∑
j

(lnCj)β
′
j .

Differentiating (53) we obtain (54).

Note the expressions (53) and (54) are independent of the choice of scaling of Ri’s and

Cj ’s (this follows from (49)). The particular tying of R′i/Ri’s and C ′j/Cj ’s to α′i and β′j

(given by (52)) will be useful later.

3.2.2 Critical points of Ψ1 and the tree recursions

In this section we establish the connection between the critical points of Ψ1 and the fixpoints

of the tree recursions.

Lemma 25. Let α,β be a critical point of Ψ1(α,β) in the subspace defined by (39). Let

r, c be given by (43). Then

αi ∝ R∆/(∆−1)
i and βj ∝ C∆/(∆−1)

j . (55)

Consequently, r, c satisfy the tree recursions stated in the introduction:

Ri ∝
( q∑
j=1

BijCj

)∆−1
and Cj ∝

( q∑
i=1

BijRi

)∆−1
. (8)

Proof. At the critical points of Ψ the first derivative of Ψ has to vanish for all α′i’s and β′j ’s

from the subspace defined by (49), that is,

Ψ′ = (∆− 1)
( q∑
i=1

(1 + lnαi)α
′
i +

q∑
j=1

(1 + lnβj)β
′
j

)
−∆

( q∑
i=1

(lnRi)α
′
i +

q∑
j=1

(lnCj)β
′
j

)
=

q∑
i=1

(
(∆− 1)(1 + lnαi)−∆ lnRi

)
α′i +

q∑
j=1

(
(∆− 1)(1 + lnβj)−∆ lnCj

)
β′j = 0,

(56)
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where the Ri’s and Cj ’s are given by (43). Inspecting (56) we see that (∆− 1)(1 + lnαi)−

∆ lnRi have the same value. Indeed, if two of them, say with indices i1, i2, had different

values then we could increase αi1 and decrease αi2 by the same infinitesimal amount and

violate (56). Similarly, (∆−1)(1+lnβj)−∆Cj have the same value and hence we have (55).

Plugging (55) into (43) one obtains (8).

Lemma 26. Let (r, c) be a solution of the tree recurrences (8). Let (α,β) be given by (11).

Then (α,β) is a critical point of Ψ1(α,β) in the subspace defined by (39).

Proof. Let

ZR := (∆− 1)(1 + lnαi)−∆ lnRi = (∆− 1)
(

1− ln

q∑
i=1

R
(∆+1)/∆
i

)
,

where the second equality follows from (11). Note that ZR is independent of the choice of

i. Similarly let

ZC := (∆− 1)(1 + lnβj)−∆ lnCj = (∆− 1)
(

1− ln

q∑
j=1

C
(∆+1)/∆
j

)
.

For perturbations of α,β in the subspace given by (39) we have

Ψ′1(α,β) =

q∑
i=1

(
(∆− 1)(1 + lnαi)−∆ lnRi

)
α′i +

q∑
j=1

(
(∆− 1)(1 + lnβj)−∆ lnCj

)
β′j

= ZR

q∑
i=1

α′i + ZC

q∑
j=1

β′j = 0,

and hence (α,β) is a critical point.

3.2.3 Value of Ψ1 at the critical points

Lemma 27. Let (α,β) be critical point of Ψ1(α,β). Let (r, c) be given by (43). Then

Φ(r, c) = Ψ1(α,β). (12)

Moreover, (r, c) is a critical point of Φ(r, c).

Proof. We have (see equation (45))

Ψ1(α,β) = (∆− 1)
( q∑
i=1

αi lnαi +

q∑
j=1

βj lnβj

)
−∆

q∑
i=1

q∑
j=1

BijRiCj ln(RiCj). (57)
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At the critical points we have (see equation (55))

αi =
R

∆/(∆−1)
i∑q

i=1R
∆/(∆−1)
i

and βj =
C

∆/(∆−1)
j∑q

j=1C
∆/(∆−1)
j

. (58)

Plugging (43) into (57) we obtain

Ψ1(α,β) = (∆− 1)
( q∑
i=1

αi lnαi +

q∑
j=1

βj lnβj

)
−∆

( q∑
i=1

αi lnRi +

q∑
j=1

βj lnCj

)
=

q∑
i=1

αi ln
α∆−1
i

R∆
i

+

q∑
j=1

βj ln
β∆−1
j

C∆
j

= −(∆− 1)
[

ln
( q∑
i=1

R
∆/(∆−1)
i

)
+ ln

( q∑
j=1

C
∆/(∆−1)
j

)]
,

(59)

where in the last equality we used (58) and the fact that αi’s and βj ’s sum to 1. Recall that

q∑
i=1

q∑
j=1

BijRiCj =

q∑
i=1

αi = 1, (60)

and hence the following is obtained by adding zero to the right-hand side of (59):

Ψ1(α,β) = ∆ ln
( q∑
i=1

q∑
j=1

BijRiCj

)
−(∆−1)

[
ln
( q∑
i=1

R
∆/(∆−1)
i

)
+ln

( q∑
j=1

C
∆/(∆−1)
j

)]
= Φ(r, c).

Now we argue that (r, c) is a critical point of Φ(r, c). We have

∂

∂Ri
Φ(r, c) = ∆

∑q
j=1BijCj∑q

i=1

∑q
j=1BijRiCj

− (∆− 1)
∆

∆−1R
1/(∆−1)
i∑q

i=1R
∆/(∆−1)
i

. (61)

Using (58), (43), and (39) we obtain

∂

∂Ri
Φ(r, c) = ∆

αi
Ri
−∆

αi
Ri

= 0.

The same argument yields

∂

∂Cj
Φ(r, c) = ∆

∑q
i=1BijRi∑q

i=1

∑q
j=1BijRiCj

− (∆− 1)
∆

∆−1C
1/(∆−1)
j∑q

j=1C
∆/(∆−1)
j

= 0. (62)

and hence r, c is a critical point of Φ.

Lemma 28. Let (r, c) be a critical point of Φ(r, c). Let α,β be given by (11). Then α,β

is a critical point of Ψ1(α,β) in the subspace defined by (39).
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Proof. At a critical point of Φ we have that (61) is zero for i ∈ [q]. Note that the denomi-

nators do not depend on i and hence we have

R
1/(∆−1)
i ∝

q∑
j=1

BijCj .

Similarly, from (62) we obtain

C
1/(∆−1)
j ∝

q∑
i=1

BijRi.

Hence (r, c) satisfy the tree recursions. Now we use Lemma 26 to conclude that (α,β) is a

critical point of Ψ1(α,β) in the subspace defined by (39).

3.2.4 Local maxima of Ψ1 are in the interior

In this section we show that for models with ergodic (irreducible and aperiodic) interac-

tion matrix B the maximum of Φ(r, c) is achieved in the interior. A symmetric matrix is

irreducible if the graph whose edges correspond to non-zero edges of B is connected. A

symmetric matrix is aperiodic if the graph whose edges correspond to non-zero edges of B

has an odd cycle.

Lemma 29. Assume that B is ergodic. Let (r, c) 6= 0 be a local maximum of Φ in the

region r, c ≥ 0. Then Ri > 0 for all i ∈ [q] and Cj > 0 for all j ∈ [q].

Proof. Suppose not, that is, we have a maximum that has a zero on some coordinate of

r or c. From the ergodicity of B we have that there exist i, j ∈ [q] such that i) Ri = 0,

Cj > 0, and Bij > 0 or ii) Ri > 0, Cj = 0, and Bij > 0. (Suppose not. Let ZR ⊆ [q] be

the set of i such that Ri = 0. Similarly let ZC ⊆ [q] be the set of j such that Cj = 0. If

neither i) nor ii) happens then non-zero Bij are possibly between i ∈ ZR and j ∈ ZC and

i ∈ [q] \ZR and j ∈ [q] \ZC . Thus in B2 the non-zero (B2)ij are possibly between i, j ∈ ZR

and i, j ∈ [q] \ ZR. Thus B is not ergodic.) W.l.o.g. assume that it is the case i) (the case

ii) is handled analogously).

The derivative of Φ w.r.t. Ri is (we are using Ri = 0)

∂

∂Ri
Φ(r, c) = ∆

∑q
j=1BijCj∑q

i=1

∑q
j=1BijRiCj

> ∆
BijCj∑q

i=1

∑q
j=1BijRiCj

> 0,

and hence we are not at a maximum, a contradiction.
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Lemma 30. Assume that B is ergodic. Let α,β ≥ 0 be a local maximum of Ψ1(α,β) in

the subspace defined by (39). Then αi > 0 for all i ∈ [q] and βj > 0 for all j ∈ [q].

Proof. It will be useful to view Ψ1 as a function of (r, c). Because of Lemma 23 we have

(r, c) satisfying (60) and (44) (and any such (r, c) yields (α,β) satisfying (39)). From (59),

we have

Ψ1(α,β) =

q∑
i=1

q∑
j=1

BijRiCj

(∆− 1)

(
ln
( q∑
j=1

BijCj

)
+ ln

( q∑
i=1

BijRi

))
− lnRi − lnCj


=: Ψ̂1(r, c).

If r has a zero coordinate then, by ergodicity of B there exists k, ` ∈ [q] such that (i) Rk = 0,

C` > 0, and Bk` > 0 or (ii) Rk > 0, C` = 0, and Bk` > 0 (see the argument in the proof of

Lemma 29). W.l.o.g. it is the case (i).

Note that we have

∂

∂Rk

q∑
i=1

q∑
j=1

BijRiCj =

q∑
j=1

BkjCj ≥ Bk`C` > 0. (63)

We have

∂

∂Rk
Ψ̂1 =

q∑
j=1

BkjCj

(
(∆− 1) ln

( q∑
i=1

BijRi

)
− lnCj

)

+

(
(∆− 1) ln

( q∑
j=1

BkjCj

)
− lnRk

)( q∑
j=1

BkjCj

)
+ (∆− 2)

q∑
j=1

BkjCj . (64)

The first sum in (64) is finite since if Cj > 0 then
∑q

i=1BijRi > 0 (using (44)); if Cj = 0

then the contribution of the term to the sum is zero (we are using the usual convention

0 ln 0 = 0). The second term in (64) has value +∞ since lnRk = −∞ and (63). Finally,

the last term in (64) is finite and hence we have ∂
∂Rk

Ψ̂1 = +∞.

Recall that C` > 0 and hence (using (44)):

∂

∂C`

q∑
i=1

q∑
j=1

BijRiCj =

q∑
i=1

Bi`Ri > 0. (65)

Finally, we argue that ∂
∂C`

Ψ̂1 is finite. We have (analogously to (64))

∂

∂C`
Ψ̂1 =

q∑
i=1

Bi`Ci

(
(∆− 1) ln

( q∑
j=1

BijCj

)
− lnRi

)

+

(
(∆− 1) ln

( q∑
i=1

Bi`Ri

)
− lnC`

)( q∑
i=1

Bi`Ri

)
+ (∆− 2)

q∑
i=1

Bi`Ri.

71



The first and third terms in (66) are finite by the same argument as for (64). In the second

term we use (65) and C` > 0.

Now we increase Rk by an infinitesimal amount and change C` to maintain (48) (and

hence (39)). (This is possible because both C` and Rk change the value of (48), see equa-

tions (63) and (65).) This change will increase Ψ̂1 and hence Ψ1 contradicting the local

maximality of α,β.

3.3 Second-moment analysis for dominant phases

In this section, we prove Theorem 4, which we restate for convenience here.

Theorem 4. For any spin system, for all ∆ ≥ 3,

max
α,β

Ψ2(α,β) = 2 max
α,β

Ψ1(α,β).

In particular, for every dominant phase (α,β), it holds that Ψ2(α,β) = 2Ψ1(α,β).

Theorem 4 will eventually allow us to prove strong concentration properties for the

random variables Zα,β
G , whenever (α,β) is a dominant phase.

The proof of Theorem 4 resides into two main components: (i) the reformulation of the

first moment of any spin system as an induced matrix norm of its interaction matrix B, (ii)

viewing the second moment as the first moment of a “paired-spin” system with interaction

matrix B⊗B. Item (ii) allows us to reformulate the second moment as an induced matrix

norm of B⊗B. The key component then is to connect the induced matrix norms of B and

B ⊗ B, which we can do by using multiplicative properties of induced matrix norms over

tensor product.

3.3.1 The second moment as the first moment of a paired-spin model

We have already discussed in Section 2.2.1 that the second moment can be viewed as the

first moment of a paired-spin model with interaction matrix B ⊗ B, see Lemma 19. We

briefly review the connection.

For the second moment EG [(Zα,β
G )2], one considers a pair of configurations, say σ and

σ′, which are both constrained to have marginals α on V1 and β on V2, where V = V1 ∪V2.
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We capture this constraint using a pair of vectors γ, δ corresponding to the overlap between

σ and σ′, in particular, γij (and δij) is the number of vertices in V1 (and V2, respectively)

with spin i in σ and spin j in σ′. Thus, in the second moment, every vertex in V is assigned

a pair of spins (i, k) and the interaction in the paired-spin system is given by B⊗B.

Let us now see how this translates to the functions ΨB
1 ,Ψ

B
2 . Recall, ΨB

1 indicates the

dependence of the function Ψ1 on the interaction matrix B; to simplify the notation we will

drop the exponent if it is B. Extrapolating from Section 2.2.1, we have

Ψ2(α,β) = max
γ,δ

ΨB⊗B
1 (γ, δ), (66)

where the optimization in (66) is constrained to non-negative γ, δ such that

∑
i γik = αk,

∑
k γik = αi,

∑
j δj` = β` and

∑
` δj` = βj . (67)

3.3.2 Analyzing the second moment: proof of Theorem 4

We are now ready to prove Theorem 4.

Proof of Theorem 4. Replacing the four constraints in (67) with the weaker constraints

γ, δ ∈ 4q2 can only increase the value of (66) and hence

max
α,β

exp(Ψ2(α,β)/∆) ≤ max
γ,δ∈4q2

exp
(

ΨB⊗B
1 (γ, δ)/∆

)
= ‖B⊗B‖ ∆

∆−1
→∆, (68)

where the last equality follows by applying the analogue of (38) for the spin model specified

by B ⊗ B. The key fact we now use is that induced norms ‖ · ‖p→q′ with p ≤ q′ are

multiplicative over Kronecker product, see equation (36). Applying (36) in our setting

yields

‖B⊗B‖p→q′ = ‖B‖p→q′ ‖B‖p→q′ . (69)

Therefore,

max
α,β

Ψ2(α,β) ≤ 2∆ log ‖B‖ ∆
∆−1
→∆ = 2 max

α,β
Ψ1(α,β). (70)

Observe that for any (α,β) we have Ψ2(α,β) ≥ 2Ψ1(α,β) as a simple implication of

E[X2] ≥ E[X]2. This yields the equality in (70), as well as the equality for dominant

phases.
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3.3.3 Optimal second-moment configuration

We will need more detailed information about the γ, δ which achieve equality in Theorem 4

and equation (66). The following lemma is true whenever B is regular (and hence for

antiferromagnetic models as well, cf. Definition 11).

Lemma 31. Assume that B is regular (non-zero determinant). The γ, δ for which the

equality in

max
α,β

max
γ,δ satisfying (67)

ΨB⊗B
1 (γ, δ) = max

α,β
ΨB

1 (α,β), (71)

is achieved satisfy (for all i, j, k, l ∈ [q])

γik = αiαk and δjl = βjβl. (72)

Proof. We will have to dig in to the proof of (69) and use (67). Bennett’s proof of (69) is

the following (our particular values are q′ = ∆ and p = ∆/(∆− 1)):

‖(B⊗B)r‖q′ =

(∑
k

∑
i

∣∣∣∑
j

Bij
∑
l

BklRjl

∣∣∣q′)1/q′

≤ ‖B‖p→q′

∑
k

(∑
j

∣∣∣∑
l

BklRjl

∣∣∣p)q′/p
1/q′

≤ ‖B‖p→q′

∑
j

(∑
k

∣∣∣∑
l

BklRjl

∣∣∣q′)p/q′
1/p

≤ ‖B‖2p→q′
(∑

j,l

Rpjl

)1/p

.

Note that in the last inequality one uses ‖B r‖q′ ≤ ‖B‖p→q′‖r‖p, applied to the vectors

r′j := (Rj1, Rj2, . . . , Rjq), for j = 1, . . . , q. Thus if r is a maximizer of

max
r

‖(B⊗B)r‖q′
‖r‖p

, (73)

then the vectors r′j are maximizers of

max
r′

‖B r′‖q′
‖r′‖p

. (74)

The same, by symmetry, applies to r′′l := (R1l, R2l, . . . , Rql), for l = 1, . . . , q.
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The second inequality in Bennett’s proof is Minkowski’s inequality applied to vectors

Br′1, . . . ,Br′q. The equality is achieved only if Br′1, . . . ,Br′q generate space of dimension

one, and since B is regular we have also that r′1, . . . , r
′
q generate space of dimension one.

Hence, for a maximizer r of (73) we have r = r′ ⊗ r′′, where r′ and r′′ are maximizers

of (74). By Theorem 5 (equation (11)) we then have

γik = α′iα
′′
k, (75)

for the corresponding maximizers of ΨB⊗B
1 (γ) and ΨB

1 (α). Equation (75) together with

constraints ∑
i

γik = αk and
∑
k

γik = αi,

implies γik = αiαk (since αk =
∑

i γik =
∑

i α
′
iα
′′
k = α′′k). The proof of δjl = βjβl is

analogous.

3.4 Tree recursions and critical points of the first moment

The second moment results of the previous section will be used to establish that the Gibbs

distribution is concentrated at the global maxima of Ψ1(α,β). To simplify the analysis

of the local maxima of Ψ1 we connect them to attractive fixpoints of the associated tree

recursions.

In [56], it was observed that the critical points of Ψ1 correspond to fixpoints of the

following tree recursions (8), which we recall for convenience here:

R̂i ∝
( q∑
j=1

BijCj

)∆−1
and Ĉj ∝

( q∑
i=1

BijRj

)∆−1
. (8)

The fixpoints are those Ri’s and Cj ’s such that R̂i ∝ Ri and Ĉj ∝ Cj , for all i, j ∈ [q]. In

[56], this connection was established for the case for hard-core model, so we give a derivation

in our setting in Section 3.2.2.

We call a fixpoint x of a function f a Jacobian attractive fixpoint if the Jacobian of f

at x has spectral radius less than 1. We say that a critical point α,β is a Hessian local

maximum if the Hessian of Ψ1 at α,β is negative definite. (Note this is a sufficient condition

for α,β to be a local maximum.)
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The purpose of this section is to prove Theorem 2, which we recall for the convenience

of the reader here (cf. Theorem 5 for a more detailed version of the below connection.)

Theorem 2. Jacobian attractive fixpoints of the depth-two tree recursions (8) correspond

to Hessian local maxima of Ψ1. Moreover, if B is ergodic (irreducible and aperiodic),

Hessian local maxima of Ψ1 correspond to Jacobian attractive fixpoints of the depth-two tree

recursions.

Theorem 2 is important for analyzing the global maxima of Ψ1 for colorings and anti-

ferromagnetic Potts model (see Section 6.3). The rest of this section is devoted to the proof

of Theorem 2.

3.4.1 Maximum entropy configurations on random regular bipartite graphs

We analyze the critical points by looking at the second derivative. Using (f ln f)′′ =

(f ′)2/f + (1 + ln f)f ′′ we have

Ψ′′1(α,β) = (∆− 1)

q∑
i=1

(
(α′i)

2/αi + (1 + lnαi)α
′′
i

)
−∆

q∑
i=1

(
α′i
R′i
Ri

+ (lnRi)α
′′
i

)
+(∆− 1)

q∑
j=1

(
(β′j)

2/βj + (1 + lnβj)β
′′
j

)
−∆

q∑
j=1

(
β′j
C ′j
Cj

+ (lnCj)β
′′
j

)
= (∆− 1)

q∑
i=1

(α′i)
2/αi −∆

q∑
i=1

α′i
R′i
Ri

+

q∑
i=1

α′′i

(
(∆− 1)(1 + lnαi)−∆ lnRi

)
+(∆− 1)

q∑
j=1

(β′j)
2/βj −∆

q∑
j=1

β′j
C ′j
Cj

+

q∑
j=1

β′′j

(
(∆− 1)(1 + lnβj)−∆ lnCj

)
= (∆− 1)

q∑
i=1

(α′i)
2/αi −∆

q∑
i=1

α′i
R′i
Ri

+ (∆− 1)

q∑
j=1

(β′j)
2/βj −∆

q∑
j=1

β′j
C ′j
Cj
,

(76)

where the last equality follows from (56) (replacing α′i by α′′i and β′j by β′′j ; note that they

are both from the same subspace (49)).

Plugging (51) into (76) we obtain

Ψ′′1(α,β) =

q∑
i=1

α′i

(
(∆− 1)

∑q
j=1BijC

′
j∑q

j=1BijCj
− R′i
Ri

)
+

q∑
j=1

β′j

(
(∆− 1)

∑q
i=1BijR

′
i∑q

i=1BijRi
−
C ′j
Cj

)
.

(77)
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We are going to use the second partial derivative test (which gives a sufficient condi-

tion) to establish maxima of Ψ1. We will use the following terminology for local maxima

established using this method.

Definition 9. A critical point x of a function f :M→ R is called Hessian local maxi-

mum if the Hessian of f at x is negative definite.

Let L be the (matrix of) linear map (r1, . . . , rq, c1, . . . , cq) 7→ (r̂1, . . . , r̂q, ĉ1, . . . , ĉq) given

by

r̂i =
∑
j

BijRiCj√
αiβj

cj and ĉj =
∑
i

BijRiCj√
αiβj

ri. (78)

In the following, we denote by I the identity matrix of dimension 2q × 2q.

Lemma 32. A critical point (α,β) is a Hessian local maximum of Ψ1(α,β) in the subspace

defined by (49) if and only if wᵀ(I+L)((∆−1)L−I)w < 0 for all w = (r1, . . . , rq, c1, . . . , cq)
ᵀ

such that
q∑
i=1

√
αiri = 0 and

q∑
j=1

√
βjcj = 0. (79)

Proof. To check whether we are at a Hessian local maximum of Ψ(α,β) we have to have (77)

negative for non-zero α′i’s and β′j ’s from the subspace defined by (49) and (52).

Let ri =
√
αiR

′
i/Ri and cj =

√
βjC

′
j/Cj . Using (51) we have

Ψ′′ =
∑
i

αi

(
R′i
Ri

+

∑
j BijC

′
j∑

j BijCj

)(
(∆− 1)

∑
j BijC

′
j∑

j BijCj
− R′i
Ri

)
+
∑
j

βj

(
C ′j
Cj

+

∑
iBijR

′
i∑

iBijRi

)(
(∆− 1)

∑
iBijR

′
i∑

iBijRi
−
C ′j
Cj

)

=
∑
i

(
ri +

∑
j

BijRiCj√
αiβj

cj

)(∑
j

(∆− 1)
BijRiCj√

αiβj
cj − ri

)

+
∑
j

(
cj +

∑
i

BijRiCj√
αiβj

ri

)(∑
i

(∆− 1)
BijRiCj√

αiβj
ri − cj

)
.

Let w = (r1, . . . , rq, c1, . . . , cq)
ᵀ. In terms of L and w we have

Φ′′ = wᵀ(I + L)((∆− 1)L− I)w. (80)
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We have to examine when (80) is in the subspace defined by (49) and (52), which in terms

of ri’s and cj ’s become ∑
i

α′i =
∑
j

β′j =
∑
i

√
αiri +

∑
j

√
βjcj = 0, (81)

∑
i

αi
R′i
Ri
−
∑
j

βj
C ′j
Cj

=
∑
i

√
αiri −

∑
j

√
βjcj = 0. (82)

We give more detail on the derivation of (81) below. We have

∑
i

α′i =
∑
i

αi
α′i
αi

=
∑
i

αi

(
R′i
Ri

+

∑
j BijC

′
j∑

j BijCj

)
=
∑
i

ri
√
αi +

∑
i

∑
j

BijRiC
′
j

=
∑
i

ri
√
αi +

∑
j

cj√
βj

∑
i

BijRiCj =
∑
i

ri
√
αi +

∑
j

cj
√
βj ,

the derivation for
∑

j β
′
j is analogous.

3.4.2 Attractive fixpoints of tree recursions

The variables Ri, Cj , αi, βj in this section refer to a priori different quantities as the

variables in Section 3.4.1. We feel that this conflict is justified since we will establish that

they coincide.

For convenience we repeat the tree recursions as stated in the introduction:

R̂i ∝
( q∑
j=1

BijCj

)∆−1

and Ĉj ∝
( q∑
i=1

BijRj

)∆−1

. (8)

We are interested in the fixpoints of the tree recursions, that is, Ri’s and Cj ’s such that

R̂i ∝ Ri and Ĉj ∝ Cj

for all i, j ∈ [q]. Note that the fixpoints correspond to the critical points of Ψ1 (using

Theorem 5).

Next we examine the stability of fixpoints. For a continuously differentiable map a

sufficient condition for a fixpoint to be attractive is if the spectral radius of the derivative

is less than one at the fixpoint. We will use the following terminology for fixpoints whose

attractiveness is established using this method.

Definition 10. A fixpoint x of a function f : M → M is called jacobian attractive

fixpoint if the Jacobian of f at x has spectral radius less than 1.
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Lemma 33. Let (r, c) be a fixpoint of the tree recursions. Let αi =
∑q

j=1BijRiCj and

βj =
∑q

i=1BijRiCj and let L be the (matrix of the) map defined by (78). We have that

(r, c) is jacobian attractive if and only if (∆ − 1)L has spectral radius less than 1 in the

subspace of w = (r1, . . . , rq, c1, . . . , cq) that satisfy

q∑
i=1

√
αiri = 0 and

q∑
j=1

√
βjcj = 0. (79)

Proof. W.l.o.g. we can assume that (r, c) is scaled so that

q∑
i=1

q∑
j=1

BijRiCj = 1. (83)

Note that the scaling does not affect the value of L nor does it affect the constraint (79).

When we perturb the Ri’s and Cj ’s and apply one step of the tree recursion we obtain

R̂′i
R̂i

= (∆− 1)

∑q
j=1BijCj

C′j
Cj∑q

j=1BijCj
and

Ĉ ′j

Ĉj
= (∆− 1)

∑q
i=1BijRi

R′i
Ri∑q

i=1BijRi
. (84)

We can rewrite (84) as follows

R̂′i
R̂i

= (∆− 1)

∑q
j=1BijRiCj

C′j
Cj

αi
and

Ĉ ′j

Ĉj
= (∆− 1)

∑q
i=1BijRiCj

R′i
Ri

βj
. (85)

The perturbation that scales all Ri’s by the same factor does not change the messages

(since they are in the projective space) and hence we need to exclude it when studying

local stability of (84). Similarly scaling all Cj ’s by the same factor does not change the

messages. We need to locate an invariant subspace of (85) whose complement corresponds

to the scaling. We obtain the following subspace (it corresponds to preserving (83)):

q∑
i=1

αi
R′i
Ri

= 0 and

q∑
j=1

βj
C ′j
Cj

= 0. (86)

Now we check that (86) is invariant under the map (85), indeed,

q∑
i=1

αi
R̂′i
R̂i

= (∆− 1)

q∑
i=1

q∑
j=1

BijRiCj
C ′j
Cj

= (∆− 1)

q∑
j=1

βj
C ′j
Cj

= 0; (87)

the argument for
∑q

j=1 βj
Ĉ′j
Ĉj

= 0 is analogous.

A fixpoint (R1, . . . , Rq, C1, . . . , Cq) is Jacobian attractive if the linear transformation(
R′1
R1
, . . . ,

R′q
Rq
,
C ′1
C1
, . . . ,

C ′q
Cq

)
7→

(
R̂′1
R̂1

, . . . ,
R̂′q

R̂q
,
Ĉ ′1
Ĉ1

, . . . ,
Ĉ ′q

Ĉq

)
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given by (84) has spectral radius less than 1 in the subspace defined by (86).

Let ri =
√
αiR

′
i/Ri, cj =

√
βjC

′
j/Cj , r̂i =

√
αiR̂

′
i/R̂i, and ĉj =

√
βjĈ

′
j/Ĉj . This linear

transformation of variables turns (85) into

r̂i = (∆− 1)

q∑
j=1

BijRiCj√
αiβj

cj and ĉj = (∆− 1)

q∑
i=1

BijRiCj√
αiβj

ri. (88)

Note that (88) is (∆−1)J where J is the map defined by (78). The constraint (86) becomes

(79).

3.4.3 Connecting attractive fixpoints to maximum entropy configurations

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let S be the linear subspace defined by (79) (note that (81) together

with (82) define the same subspace). The constraint for the fixpoint to be jacobian attractive

is that (∆− 1)L on S has spectral radius less than 1. The constraint for the critical point

to be Hessian maximum is that the eigenvalues of (I + L)((∆− 1)L− I) on S are negative

(see equation (80)).

Note that L is symmetric and it is a result of tensor product with the matrix ( 0 1
1 0 ).

Hence L has symmetric real spectrum (symmetry means that if a is an eigenvalue then so

is −a). Note that S is invariant under L and hence the spectrum of L on S is a subset of

the spectrum of L (it is still symmetric real; the restriction wiped out a pair of eigenvalues

−1 and 1).

The constraint for the fixpoint to be jacobian attractive, in terms of eigenvalues, is: for

each eigenvalue x of L on S

−1 < (∆− 1)x < 1. (89)

The constraint for the critical point to be Hessian maximum, in terms of eigenvalues, is:

for each eigenvalue x of L on S

(1 + x)
(
(∆− 1)x− 1

)
< 0 and (1− x)

(
− (∆− 1)x− 1

)
< 0, (90)

where the second constraint comes from the symmetry of the spectrum (thus −x is an

eigenvalue). Note that conditions (89) and (90) are equivalent (since (1 + x)
(
(∆− 1)x− 1

)
is negative for −1 < x < 1/(∆− 1)).
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CHAPTER IV

THE GADGET

In this chapter, we construct the gadget which we will use to derive our NP-hardness results.

The chapter is then devoted to proving the properties of the gadget.

The gadget is a random graph from a graph distribution Grn,∆, which closely resembles

the graph distribution Gn,∆. The main difference is that Grn,∆ is supported on bipartite

graphs whose vertices have degrees both ∆ and ∆ − 1, with r controlling the number of

vertices with degree ∆− 1. The vertices of degree ∆− 1 will be crucial to allow us to make

connections between the gadgets without exceeding the degree bound ∆.

We will study the random graph distribution Grn,∆ for sufficiently small values of r,

allowing us to directly transfer the results from our analysis of the random graph distribution

Gn,∆. In particular, the asymptotics of the first and second moments of the partition

function for the two graph distributions will be essentially the same up to easily computable

correction factors.

4.1 Construction

Let ∆ ≥ 3 and n, r be integers with n > r > 0. The graph distribution Grn := Grn,∆ is defined

as follows.

1. Grn is supported on bipartite graphs. The two parts of the bipartite graph are denoted

by +,− and each is partitioned as U s ∪W s where |U s| = n, |W s| = r for s = {+,−}.

U denotes the set U+ ∪ U− and similarly W denotes the set W+ ∪W−.

2. To sample G ∼ Grn, sample uniformly and independently ∆ matchings: (i) (∆ − 1)

perfect matchings between U+ ∪W+ and U− ∪W−, (ii) a n-matching between U+

and U−. The edge set of G is the union of the ∆ matchings. Thus, vertices in U have

degree ∆, while vertices in W have degree ∆− 1.
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The case r = 0 will also be critical for our arguments, in which case there are no vertices of

degree ∆ − 1 and hence the graph distribution is identical to the distribution Gn := Gn,∆,

which we studied thoroughly in Chapters 2 & 3. We will thus write Gn instead of G0
n.

Let G ∼ Grn and denote by µG the Gibbs distribution on G with interaction matrix B.

We let Q denote the set of dominant phases on a random ∆-regular bipartite graph, that is,

the union of the pairs (α,β) which maximize ΨB
1 (α,β) (recall that α,β are q-dimensional

probability vectors, i.e., α,β ∈ 4q where 4q is the standard (q − 1)-simplex). We will use

p to denote a dominant phase (α,β) and for the purposes of this section p+,p− will be

used to denote the vectors α,β respectively.

For a configuration σ : U ∪ W → [q], the footprint of σ is defined as a pair of q-

dimensional probability vectors (p+
σ ,p

−
σ ), i.e., p+

σ ,p
−
σ ∈ 4q. The vectors p+

σ ,p
−
σ count the

frequencies of the colors in σ in the parts U+, U−. Formally, for s ∈ {+,−}, the i-th entry

of psσ is equal to |σ−1(i) ∩ U s|/n. The phase of a configuration σ is denoted by Y (σ) and

is equal to

Y (σ) := arg min
p∈Q

∥∥p+
σ − p+

∥∥
1

+
∥∥p−σ − p−

∥∥
1
. (91)

If there are more than one dominant phases that achieve the minimum in (91), any tie

breaking criterion may be used, e.g., the lowest indexed phase. Note that the phase of

σ depends only on the spins of vertices in U . For σ : U ∪W → [q], denote by σW the

restriction of σ to vertices in W .

The exact marginal distribution of µG on the vertices in W is quite intricate. How-

ever, we shall display shortly that, conditioned on the phase of the configuration, it can

be well approximated by an appropriate product measure. To do this, recall that ev-

ery dominant phase p = (α,β) ∈ Q corresponds to a fixpoint (r, c) of the tree recur-

sions (8) (see Theorem 5). Let r = (R1, . . . , Rq) and c = (C1, . . . , Cq) and denote by

r̂ = (R̂1, . . . , R̂q), ĉ = (Ĉ1, . . . , Ĉq) the scaled versions of r, c respectively so that
∑

i R̂i = 1

and
∑

i Ĉi = 1. To avoid overloading the notation, we do not explicitly index the Ri’s and

Cj ’s by the phase p. We next define the relevant product measure ν⊗p (·) on the space of
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spin assignments to vertices in W for a phase p ∈ Q. For σ : W → [q] and p ∈ Q, let

ν⊗p (σ) =
∏
i∈[q]

(R̂i)
|σ−1(i)∩W+|

∏
j∈[q]

(Ĉj)
|σ−1(j)∩W−|. (92)

We can now state formally the properties of the gadget G ∼ Grn that we will need. Let

∆ ≥ 3. We impose the following conditions on the spin system specified by B:

(H1) B is regular (non-zero determinant) and ergodic (irreducible and aperiodic).

(H2) Every dominant phase p ∈ Q is a Hessian maximum of ΨB
1 (α,β). Equivalently, by

Theorem 2, the fixpoint (r, c) of the tree recursions (8) corresponding to each p ∈ Q

is Jacobian stable (note that the validity of this assumption is allowed to vary with

the degree ∆).

(H3) The dominant phases p ∈ Q are permutation symmetric. That is, if p1 = (α1,β1)

and p2 = (α2,β2), then there exists a q× q permutation matrix P such that B = PB

and (α1,β1) = (Pα2,Pβ2) or (α1,β1) = (Pβ2,Pα2) . In other words, the dominant

phases can be obtained from each other by permuting the spins in a way that B is

left invariant.

The condition (H1) allows to apply in full strength the results of Chapter 3. The condition

(H2) allows to compute the asymptotics of the moments using Laplace’s method. The

condition (H3) allows to argue that the dominant phases have roughly the same contribution

to the partition function of G ∼ Grn.

Remark 12. Whenever (H3) is true, i.e., the phases are permutation symmetric, it should

be intuitively clear that it suffices to check (H2) for a single dominant phase p ∈ Q; the

Hessian condition for the remaining dominant phases follows from symmetry. This is indeed

true, see the upcoming Lemma 38, where the condition (H2) is captured explicitly by the

magnitude of the eigenvalues of an explicit matrix.

The rest of this chapter is devoted to the proof of the following theorem, which formally

states the properties of the gadget.
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Theorem 34. Let ∆ ≥ 3 and suppose that the interaction matrix B satisfies conditions

(H1), (H2), (H3). Let r be a fixed constant. Then, for every ε > 0, a random graph

G ∼ Grn,∆ satisfies with probability 1− o(1) as n→∞ all of the following:

1. For each p ∈ Q, (1 − ε)/|Q| ≤ µG(Y (σ) = p) ≤ (1 + ε)/|Q|. That is, the phases in

the graph G appear with roughly equal probability.

2. For each p ∈ Q, for all η : W → [q], µG(σW = η |Y (σ) = p)/ν⊗p (η) ∈ [1 − ε, 1 + ε].

That is, conditioned on the phase p of the configuration, the spins of the vertices in

W are roughly independent and the marginal measure on them can be approximated

by the measure ν⊗p (·).

3. There is no edge between W+ and W−. Moreover, there is no vertex in G which has

two neighbors in W+ ∪W−.

Moreover, G is simple with asymptotically positive probability and the above continue to

hold with probability 1− o(1) conditioned on G being simple.

Remark 13. When r is allowed to vary moderately with n, say r = o(n1/4), Items 1 and

3 still hold, however Item 2 is no longer true pointwise. The reason is that the number of

configurations η grows with n, which does not allow to conclude Item 2 for every η : W → [q].

Instead, one needs to slightly weaken Item 2 to the following statement. For every ε > 0,

for every p ∈ Q,

lim
n→∞

sup
η∈[q]W

PrGrn

(
µG(σW = η |Y (σ) = p)

ν⊗p (η)
/∈ (1± ε)

)
= 0. (93)

This version will only be used for the AP-reductions in Chapter 7 (along the lines of [63]),

where we do need r to vary with n.

4.2 Proving the properties of the gadget

The goal of this section is to give the proof of Theorem 34. To be able to conclude (93) in

the case that r varies moderately with n, we will work under the slightly weaker assumption

r = o(n1/4).
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Let G ∼ Grn. To get a handle on Items 1 and 2 of Theorem 34, we first define the

partitioned functions conditioned on a phase p ∈ Q. Similar definitions appear in [63]. For

a configuration η : W → [q] and α,β ∈ 4q, define

Zα,β
G (η) :=

∑
σ; σW=η

wG(σ)1{(p+
σ ,p

−
σ ) = (α,β)},

Zp
G(η) :=

∑
α,β

Zα,β
G (η)1arg minp′‖(α,β)−(p′+,p′−)‖1=p,

Zp
G :=

∑
η

Zp
G(η).

(94)

Let us explain briefly these definitions. Zα,β
G (η) is the contribution from configurations

which agree with η on W and their footprint on U is (α,β). To picture the definition of

Zp
G(η), view the phases Q as modes in the Gibbs distribution which “attract” the configura-

tions closest to them. Note that distances here are only with respect to the spin assignments

on U . Therefore, the spin assignment on W induces a partition on the attraction space of

the phase p. In this view, Zp
G(η) is simply the contribution of the set indexed by η in the

partition. Finally, Zp
G is the total contribution of the configurations which are attracted by

p.

The following equalities display the relevance of these quantities to Theorem 34.

µG(Y (σ) = p) =
Zp
G∑

p∈Q Z
p
G

, µG(σW = η |Y (σ) = p) =
Zp
G(η)

Zp
G

. (95)

It will also be useful to explicitly state how the definitions in (96) degenerate in the

case r = 0. In this setting there are no vertices of degree ∆ − 1 (and hence no set W ), so

the graph distribution G0
n is identical to the graph distribution G(n,∆). The definitions in

(94) extend to this setting by simply dropping the argument η. The conditioned partition

functions when r = 0 are thus given by

Zα,β
G =

∑
σ;

(p+
σ ,p
−
σ )=(α,β)

wG(σ), Zp
G =

∑
α,β;

p=arg minp′‖(α,β)−(p′+,p′−)‖

Zα,β
G . (96)

To start, we are going to show that Items 1 and 2 of Theorem 34 hold in expectation.

This is the scope of the following lemma. Note that o(1) refers to quantities that tend to 0

as n→∞.

85



Lemma 35. Let r be a fixed constant and let p be a Hessian dominant phase, i.e., p ∈ Q.

There exists a constant C(p) such that for every η : W → [q], it holds that

EGrn
[
Zp
G(η)

]
=
(
1 + o(1)

)
Crν⊗p (η)EGn

[
Zp
G

]
, and thus sup

η

∣∣∣EGrn[Zp
G(η)

]
EGrn

[
Zp
G

] − ν⊗p (η)
∣∣∣ = o(1).

(97)

Moreover, when the phases Q are permutation-symmetric, EGn
[
Zp
G

]
=
(
1 + o(1)

)
EGn

[
Zp′

G

]
for any phases p,p′ ∈ Q and the constant C in (97) does not depend on the particular phase

p. Consequently, for p,p′ ∈ Q

EGrn
[
Zp
G

]
=
(
1 + o(1)

)
EGrn

[
Zp′

G

]
, and thus

EGrn
[
Zp
G

]∑
p∈QEGrn

[
Zp
G

] =
(
1 + o(1)

) 1

|Q|
. (98)

Proof. The second equalities in each of (97) and (98) follow immediately from the first.

The latter may be proved by explicit calculations following the same arguments as in [63,

Lemma 3.3] and essentially reduce to arguing that certain sums are dominated by their

maximum terms.

It is worthy to note that the first part of the lemma is true even if the phases are not

permutation-symmetric, which is not necessarily true for the second part.

In light of Equations (95), (97) and (98), the path to obtain Items 1 and 2 of Theorem 34

is now paved: it suffices to show that the conditioned partition functions Zp
G(η) are (with

positive probability) arbitrarily close to their expectations for large n. Note that we want

this to be simultaneously true for all p and η, that is, for the same graph G. This in turn

requires using in full strength a theorem by Janson [35], which is an extension of the small

subgraph conditioning method introduced by Robinson and Wormald [60].

We do a quite extensive, and hopefully illuminating, exposition of these theorems and

their application in our setting in the next section. For satisfying the reader who is more

interested in the proof of Theorem 34, the following lemma is a stripped-down version of

the results in Section 2.3, yet at the same point containing some important bits which will

allow us to motivate it. Note that we have already discussed a special case of the following

lemma, cf. Lemma 6 in Section 1.3.3. Note that the latter is obtained by setting r = 0 and

replacing the random variables Zp
G with Zα,β

G .
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Lemma 36. Let r ≥ 0 be a constant not depending on n. Let G ∼ Grn and denote by Xin,

i = 1, 2, . . . , the number of cycles of length 2i in G. There exist random variables Wp
mn, a

deterministic function of X1n, X2n, . . . , Xmn, such that for every ε > 0

lim
m→∞

lim sup
n→∞

PrGrn

(⋃
p

⋃
η

[∣∣ Zp
G(η)

EGrn [Zp
G(η)]

−Wp
mn

∣∣ > ε
])

= 0, (99)

There also exists a positive constant c > 0 such that Wp
mn > c uniformly in m,n. Moreover,

when the phases Q are permutation-symmetric, the variables Wp
mn do not depend on the

phase p.

Remark 14. When r is allowed to vary with n, say r = o(n1/4), (99) must be modified into

lim
m→∞

lim sup
n→∞

sup
p,η

PrGrn

([∣∣ Zp
G(η)

EGrn [Zp
G(η)]

−Wp
mn

∣∣ > ε
])

= 0. (100)

Lemma 36 provides a straightforward proof of Theorem 34, so we shall elucidate its most

important aspects in an attempt to demystify its rather unintuitive statement. Equation

(99) says that for all sufficiently large m,n the random variables Zp
G(η)/EGrn [Zp

G(η)] are

well-approximated by the variables Wp
mn, with large probability. To get a feeling about this

statement, it is well known fact that a random ∆-regular graph is locally tree-like and its

girth diverges as n → ∞. That is, as n grows large, for any positive integer t, for all but

o(n) vertices, the t-depth neighborhood of a vertex is eventually isomorphic to the first t

levels of the infinite ∆-regular tree. This is in alignment with the fact that EGrn [Zp
G(η)] is

determined by the Gibbs measure on the infinite ∆-regular tree associated to the phase p.

On the other hand, a graph G ∼ Grn does have o(n) vertices which are contained in constant

sized cycles. Thus, it is reasonable to expect that Zp
G(η) fluctuates from its expectation. It

is equally reasonable to expect the fluctuations to depend on the presence of small cycles

which occur with small but non-zero probability.

The surprising aspect of (99), a consequence of applying the conditioning method, is

that there is an explicit handle on these fluctuations, a crucial component in the proof of

Theorem 34. This handle is given by the variables Wp
mn, which are a deterministic function

of the small cycle counts in G. Crucially for our proof of Theorem 34, when the phases

are permutation-symmetric, the fluctuations from the expectation are captured by a single
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random variable, which allows us to control them uniformly over all the phases p and

configurations η.

We should point out that the notation Wp
mn should not be confused by any means to

the labeling of the degree ∆− 1 vertices in G, i.e., the set of vertices W .

Proof of Theorem 34. We consider first the case that r is fixed, and then discuss how to

modify the argument for r = o(n1/4). Let ε′ > 0 be sufficiently smaller than ε, to be picked

later, and consider also an arbitrary ε′′ > 0.

By Lemma 36, for all m,n sufficiently large the random variables Zp
G(η)/EGrn

[
Zp
G(η)

]
are well approximated by Wp

mn with large probability. That is, there exist M(ε′′), N(ε′′)

such that for m ≥ M and n ≥ N , it holds with probability 1 − ε′′ over the choice of the

graph G that, for every phase p and every configuration η : W → [q],

Zp
G(η) = (Wp

mn ± ε′)EGrn
[
Zp
G(η)

]
. (101)

We will show that whenever this is the case (for an appropriate choice of ε′), Items 1 and 2

hold. To do this, sum (101) over η to obtain that for each phase p, it holds

Zp
G = (Wp

mn ± ε′)EGrn
[
Zp
G

]
, (102)

Using that Wp
mn are uniformly bounded by the positive constant c in Lemma 36, we obtain

that for ε′ sufficiently smaller than c, the ratio Zp
G(η)/Zp

G is within a multiplicative (1± ε)

from EGrn
[
Zp
G(η)

]
/EGrn

[
Zp
G

]
. This gives Item 2 of the theorem, when used in conjuction

with (95) and (98). Note that this part of the argument did not use that the phases p are

permutation-symmetric.

To obtain Item 1, we have to use that the phases p are permutation-symmetric. Then

Wp
mn =: Wmn by the last assertion in Lemma 36. Thus, a summation of (102) over p ∈ Q

gives Zp
G = (Wmn ± ε′)EGrn

[
Zp
G

]
. Exactly the same reasoning yields the thesis.

It is a standard union bound to show that Item 3 holds with probability 1−o(1) over the

choice of the graph G, essentially because G is an expander. Perhaps the second assertion

there requires a brief proof sketch. Let v ∈ U+ ∪W+, w1, w2 ∈ W− and let Ei be the

event that (v, wi) is an edge of G. The events E1, E2 are negatively correlated since v
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has a fixed number of edges incident to it, either ∆ or ∆ − 1. It is also easy to see that

PrGrn(Ei) ≤ 1 − (1 − 1/n)∆ = O(1/n), so that PrGrn(E1 ∩ E2) = O(1/n2). A union bound

over the roughly nr2 = o(n2) choices for the vertices v, w1, w2 gives the desired bound.

Thus, a graph G ∼ Grn satisfies Items 1, 2 and 3 with probability 1−ε′′ for all sufficiently

large n. Since ε′′ was arbitrary, this gives the first part of the theorem. The second part of

the theorem follows immediately by contiguity, see [35, Section 2].

4.2.1 Application of the small subgraph conditioning method

The application of Theorem 20, and similarly Lemma 21, requires a verification of its

assumptions. This check is routine for the most part, but it is nevertheless technically ar-

duous, mainly because of condition (A3), which requires precise calculation of the moments’

asymptotics. We suppress the verification in the following lemma whose proof is given later

in this section. The lemma includes some details on a few quantities which will be relevant

in the proof of Lemma 36.

Lemma 37. Let G ∼ Grn and Xin be the number of cycles of length 2i appearing in G,

i = 1, 2, . . .. Let S = {(p, η) |p ∈ Q, η : W → [q]} and for s ∈ S with s = (p, η), set

Y
(s)
n = Zp

G(η). In the setting of Theorem 14, the assumptions of Theorem 20 hold.

Further, for s ∈ S with s = (p, η), for i = 1, 2, . . ., δ
(s)
i satisfies (i) δ

(s)
i > 0, (ii) δ

(s)
i

depends on p but not on η, (iii)
∑

i λiδ
(s)
i <∞, (iv) if the phases are permutation-symmetric,

δ
(s)
i depends on the spin model but not on the particular phase p.

Further, all of the above hold if S = {(p, η) |p ∈ Q, η : W → [q]} and Y
(s)
n = Zα,β

G (η).

Using Lemmas 21 and 37, we are ready to prove Lemmas 6 and 36.

Proof of Lemmas 6 and 36. To see (14) and (99), note that the W
(s)
mn of Lemma 21 depend

on the particular s only through δ
(s)
i . By Item (ii) of Lemma 37, these depend only on p

in general and specifically for the permutation-symmetric case, only on the spin model by

Item (iv).

It remains to prove that Wp
mn are lower bounded uniformly in p by a positive constant.

Since the number of phases p is bounded by a constant depending only on the spin model,
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it suffices to show that this is the case for a fixed phase p. Using Item (i) of Lemma 37

and that the random variables Xin are non-negative integer valued, we have everywhere the

bound

Wp
mn =

m∏
i=1

(
1 + δpi

)Xin exp
(
− λiδpi

)
≥

m∏
i=1

exp
(
− λiδpi

)
>
∞∏
i=1

exp
(
− λiδpi

)
.

Note that we have identified the δ
(s)
i ’s with the respective δpi ’s, this is justified by Item (ii)

of Lemma 37. The last quantity is finite and positive by Item (iii) in Lemma 37.

We next prove Lemma 37 which amounts to checking the validity of the assumptions

(A1)-(A4) of Theorem 20 for Zp
G(η) for every phase p and configuration η : W → [q]. Recall

that a phase p corresponds to a pair of vectors (α,β) which is a global maximum of Φ,

which in turn corresponds a triple (α,β,x), a global maximum of Υ1, see Section 2.2.1 for

details. We shall also check the validity of the assumptions for the random variables Zα,β
G

when G ∼ Gn,∆. This will make the arguments crispier and easier to extend to the slightly

more peculiar random variables Zp
G(η).

To begin, the following lemma puts together some relevant quantities and information

which have appeared in Section 3.4. For vectors zi ∈ Rmi , i = 1, . . . , t we denote by

[z1, . . . , zt]
ᵀ the R

∑
imi vector which is the concatenation of the vectors z1, . . . , zt. For

a vector z = [z1, . . . , zn]ᵀ and a function f : R → R, we denote by f(z) the vector

[f(z1), . . . , f(zn)]ᵀ, provided that the f(zi)’s are well defined.

Lemma 38. Suppose that (α,β) is a Hessian local maximum of Ψ1 and let p be the phase

corresponding to the pair (α,β). Define the vector x = (xij)i,j∈[q] as in Lemma 23.

Let J be the matrix

 0 L

Lᵀ 0

, where L is the q × q matrix whose ij-entry is given by

xij/
√
αi
√
βj. It holds that:

1. The spectrum of J is

±1,±λ1, . . . ,±λq−1,

where the λi’s are positive and satisfy maxi λi <
1

∆−1 .
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2. The eigenvectors of J associated to the (simple) eigenvalues ±1 are given by the vectors

[
√
α,±
√
β]ᵀ. Moreover, any other eigenvector of J is of the form [v1,v2]ᵀ, where

√
α

ᵀ
v1 =

√
β
ᵀ
v2 = 0.

Relevant to Lemma 37, observe that if the phases p are permutation-symmetric, then the

λi’s are common for all phases.

Recall that Zα,β
G is the weight of configurations in Σα,β for a random ∆-regular bipartite

graph G ∼ Gn,∆. Let Xi be the number of cycles of even length i in G. We have the following

lemmas.

Note that we prefer to reserve the notation λi for the eigenvalues of the matrix J of

Lemma 38, so that we make the slight change of notation in Theorem 20 from λi to µi; no

confusion should arise.

Lemma 39 (Lemma 7.3 in [56]). Condition 1 of Theorem 20 holds for even i with

µi =
r(∆, i)

i
=

(∆− 1)i + (−1)i(∆− 1)

i
,

where r(∆, i) is the number of ways to properly edge color a cycle of length i with ∆ colors.

The proof of Lemma 39 is given in [56] and is omitted.

Lemma 40. In the notation and setting of Lemma 38, for every fixed r ≥ 0, every η : W →

[q] and even i ≥ 2, it holds that

EG [Zα,β
G Xi]

EG [Zα,β
G ]

,
EGrn [Zp

G(η)Xi]

EGrn [Zp
G(η)]

→ µi(1 + δi) as n→∞, where δi =

q−1∑
j=1

λij . (103)

In particular, δi is positive.

The proof of Lemma 40 is given in Section 4.2.2.

Lemma 41. In the setting of Lemma 40, for every fixed r ≥ 0, every η : W → [q] and for

every finite sequence m1, . . . ,mk of nonnegative integers, it holds that

EG
[
Zα,β
G [X2]m1 · · · [X2k]mk

]
EG [Zα,β

G ]
,
EGrn [Zp

G(η) [X2]m1 · · · [X2k]mk
]
]

EGrn [Zp
G(η)]

→
k∏
i=1

(
µi(1 + δi)

)mi as n→∞.
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Once we give the proof of Lemma 40, the proof of Lemma 41 is identical to [56, Proof of

Lemma 7.5] and is omitted.

Lemma 42. In the notation and setting of Lemma 38, it holds that

exp
( ∑

even i≥2

µiδ
2
i

)
=

q−1∏
i=1

q−1∏
j=1

(
1− (∆− 1)2λ2

iλ
2
j

)−1/2
q−1∏
i=1

q−1∏
j=1

(
1− λ2

iλ
2
j

)−(∆−1)/2
.

Moreover,
∑

i µiδi <∞.

The proof of Lemma 42 is given in Section 4.2.2.

Finally, we find the asymptotics of the second moment over the first moment squared.

Lemma 43. In the notation and setting of Lemma 38, for every fixed r ≥ 0, every η : W →

[q], it holds that

lim
n→∞

EG [(Zα,β
G )2](

EG [Zα,β
G ]

)2 = lim
n→∞

EGrn [
(
Zp
G(η)

)2
](

EGrn [Zp
G(η)]

)2
=

q−1∏
i=1

q−1∏
j=1

(
1− (∆− 1)2λ2

iλ
2
j

)−1/2
q−1∏
i=1

q−1∏
j=1

(
1− λ2

iλ
2
j

)−(∆−1)/2
.

The proof of Lemma 43 is quite extensive. In Section 4.3, we reduce the asymptotics

to determinants of relevant Hessian matrices. These determinants are computed in Sec-

tion 4.4.2, where also the proof of Lemma 43 is given.

We are now ready to give the proof of Lemma 37.

Proof of Lemma 37. Lemmas 39–43 verify assumptions (A1)–(A4) of Theorem 20. This

proves the first part of the lemma. The second part, that is, Items (i) to (iv), follow from

Lemmas 38, 42.

4.2.2 Proofs

We now give the proofs of Lemmas 40 and 42 which are the most crucial components for

the success of the method in our case.

Proof of Lemma 40. The proof is close to [56, Proof of Lemma 7.4], the approach is minorly

different to account for the q-spin setting. We make the minor notation change from Xi to

X`. We first give the proof for Zα,β
G for G ∼ Gn.
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Let S = {S1, . . . , Sq} and T = {T1, . . . , Tq} be partitions of V1 and V2 respectively

such that |Si| = αin and |Tj | = βjn for all i, j ∈ [q]. Denote by YS,T the weight of the

configuration σ that S, T induce, i.e. for a vertex v ∈ V1, σ(v) = i iff v ∈ Si and similarly

for vertices in V2.

Fix a specific pair of S, T . By symmetry,

E[Zα,β
G X`]

E[Zα,β
G ]

=
E[YS,TX`]

E[YS,T ]
. (104)

We now decompose X` as follows:

• ξ will denote a proper ∆-edge colored, rooted and oriented `-cycle (r(∆, `) possibil-

ities), in which the vertices are colored with {Y1, . . . , Yq, G1, . . . , Gq} and edges are

colored with {1, . . . ,∆}.

A vertex colored with Yi (resp. Gi) for some i ∈ [q] will be loosely called yellow (resp.

green) and signifies that the vertex belongs to Si (resp. Ti). Since a yellow vertex

belongs to V1, and a green vertex belongs to V2, a vertex coloring is consistent with

the bipartiteness of the random graph if adjacent vertices of the cycle are not both

yellow or green, that is, the vertex assignments which are prohibited for neighboring

vertices in the cycle are (Yi, Yj) and (Gi, Gj), ∀(i, j) ∈ [q]2. Note here that we do not

expicitly prohibit assignments (Yi, Gj) in the presence of a hard constraint Bij = 0;

this will be accounted otherwise. The color of the edges will prescribe which of the ∆

perfect matchings an edge of a (potential) cycle will belong to.

• Given ξ, ζ denotes a position that an i-cycle can be, i.e., the exact vertices it traverses

in order, such that the prescription of the vertex colors of ξ is satisfied.

• 1ξ,ζ is the indicator function whether a cycle specified by ξ, ζ is present in the graph

G.

Note that each possible cycle corresponds to exactly 2` different configurations ξ (the num-

ber of ways to root and orient the cycle). For each of those ξ, the respective sets of

configurations ζ are the same. Hence, we may write

X` =
1

2`

∑
ξ

∑
ζ

1ξ,ζ .
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Let p1 := Pr[1ξ,ζ = 1]. It follows that

E[YS,TX`] =
1

2`

∑
ξ

∑
ζ

p1 ·E[YS,T |1ξ,ζ = 1].

In light of (104), we need to study the ratio E[YS,T |1ξ,ζ = 1]/E[YS,T ]. At this point, to

simplify notation, we may assume that ξ, ζ are fixed.

We have shown in Section 2.2.1 that

E[YS,T ] =

(∑
x

[(
n

xn

)−1∏
i

(
αin

xi·n

)∏
j

(
βjn

x·jn

)]∏
i,j

B
xijn
ij

)∆

, (105)

where the variables x = (x11, . . . , xqq) denote the number of edges between S, T in one

matching. In particular nxij is the number of edges between the sets Si and Tj .

To calculate E[YS,T | 1ξ,ζ = 1], we need to introduce some notation. For colors c1, c2 ∈

{Y1, . . . , Yq, G1, . . . , Gq}, we say that an edge is of type {c1, c2} if its endpoints have colors

c1, c2. Let yi, gj denote the number of vertices colored with Yi, Gj respectively. For k =

1, . . . ,∆, let aij(k) denote the number of edges of color k and type {Yi, Gj}, and

ai⊥(k) :=
∑
j

aij(k), a⊥j(k) :=
∑
j

aij(k), a(k) :=
∑
i,j

aij(k), a(k) := (a11, . . . , aqq).

Finally, for i, j ∈ [q] let aij :=
∑

k aij(k). By considering the sum of the degrees of vertices

colored Yi, the sum of the degrees of vertices colored Gj and the total number of edges of

the cycle, we obtain the following equalities.

∑
j aij = 2yi,

∑
i aij = 2gj ,

∑
i,j aij = 2`. (106)

We are almost set to compute E[YS,T |1ξ,ζ = 1]. For the k-th matching, denote by x the the

total number of edges between sets Si and Tj in the k-th matching. This number includes

the aij(k) edges prescribed by ξ, ζ. Set E = E[YS,T |1ξ,ζ = 1]. We have

E =

∆∏
k=1

∑
x

[(
n− a(k)

xn− a(k)

)−1∏
i

(
αin− ai⊥(k)

xi·n− ai·(k)

)∏
j

(
βjn− a⊥j(k)

x·jn− a·j

)]∏
i,j

B
nxij
ij

 ,

where we remind the reader the notation ai· = (ai1, . . . , aiq) and a·j = (a1j , . . . , aqj).

Standard approximations of binomial coefficients, see for example [27, Lemma 27], give(αin−ai⊥(k)
xi·n−ai·(k)

)(
αin
xi·n
) ∼

∏
j

(
xij
)aij(k)

α
ai⊥(k)
i

,

(βjn−a⊥j(k)
x·jn−a·jn

)(
βjn
x·j
) ∼

∏
i

(
xij
)aij(k)

β
a⊥j(k)
j

,

( n−a(k)
xn−a(k)

)(
n
xn

) ∼
∏
i,j

(
xij
)aij(k)

.
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Thus, we obtain

E[YS,T |1ξ,ζ = 1]

E[YS,T ]
∼

∏
i,j

(
xij
)aij

∏
i α

∑
j aij

i

∏
j β

∑
i aij

j

.

Clearly p1 ∼ n−` and for given ξ, the number of possible ζ is asymptotic to n`
∏
i α

yi
i

∏
j β

gj
j .

Thus, for the given ξ, we have∑
ζ p1E[YS,T |1ξ,ζ = 1]

E[YS,T ]
∼
∏
i α

yi
i

∏
j β

gj
j

∏
i,j

(
xij
)aij

∏
i α

∑
j aij

i

∏
j β

∑
i aij

j

=
∏
i,j

( xij√
αiβj

)aij
Note that the rhs evaluates to 0 whenever there exist i, j such that Bij = 0 but aij 6= 0, since

then we have xij = 0. This is in complete accordance with the fact that the configuration

induced by the partition {S, T } has zero weight. Thus, by (104), we may write

E[Y X`]

E[Y ]
=
r(∆, `)

2`
·
∑
ξ

Na

( xij√
αiβj

)aij
,

where a = {a11, . . . , aqq} and Na is the number of possible ξ with aij edges having assign-

ment (Yi, Gj). To analyze this sum, we employ a technique given in [35]. The idea is to

define a weighted transition matrix and view it as a weighted graph. The powers of the

matrix count the (multiplicative) weight of walks in the graph and a closed walk in this

graph will correspond to a specification ξ. By defining the weights appropriately, one can

also ensure that each closed walk will correctly capture the weight of the specification ξ.

In our setting, the transition matrix is simply the matrix J of Lemma 38. The first

q rows and q columns correspond to the colors Yi and the remaining rows and columns

to colors Gj . The total weight of closed walks of length ` is given by Tr(J`). Using the

description of the eigenvalues given in Item 1 of Lemma 38, we obtain that for even `,

Tr(J`) = 2
(

1 +
∑q−1

i=1 λ
`
i

)
. This concludes the proof for the variables Zα,β

G .

We next turn to the variables Zp
G(η) when G ∼ Grn. For a fixed η : W → [q], our goal

is to compute EGrn [Zp
G(η)X`]/EGrn [Zp

G(η)]. Denote by η± the q-dimensional vectors whose

i-th entries are given by |σ−1 ∩W±| (thus η+ is the analog of αn and η− is the analog of

βn).

For x ∈M1(α + η+/n,β + η−/n), let

κα,β,xG (η) :=

(
n+ r

xn

)−1∏
i

(
αin+ η+

i

xi·

)∏
j

(
βjn+ η−j

x·j

)∏
i,j

(Bij)
nxij ,
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and for x ∈M1(α,β), let

κα,β,xG :=

(
n

xn

)−1∏
i

(
αin

xi·

)∏
j

(
βjn

x·j

)∏
i,j

(Bij)
nxij ,

We have that

EGrn [Zp
G(η)] =

∑
α,β

(
n

αn

)(
n

βn

)(∑
x

κα,β,xG (η)

)∆−1(∑
x

κα,β,xG

)
, (107)

where the sum over α,β ranges in Σp and the sum over x’s range inM1(α+η+/n,β+η−/n)

and M1(α,β) respectively.

To compute EGrn [Zp
G(η)X`], we again decompose X` as before, so that

EGrn [Zp
G(η)X`] =

1

2`

∑
ξ

∑
ζ

p1EGrn [Zp
G(η) |1ξ,ζ ].

It will suffice thus to compute EGrn [Zp
G(η) |1ξ,ζ ]/EGrn [Zp

G(η)]. Keeping the same definitions

for a(k),ai·,a·j , ai⊥(k), a⊥j(k), a(k), for k = 1, . . . ,∆− 1, let

κ̂α,β,xG,k (η) =

(
n+ r − a(k)

xn− a(k)

)−1∏
i

(
αin+ η+

i − ai⊥(k)

xi·n− ai·(k)

)∏
j

(
βjn+ η−j − a⊥j(k)

x·jn− a·i(k)

)∏
i,j

B
nxij
ij ,

while for k = ∆, let

κ̂α,β,xG,∆ =

(
n− a(k)

xn− a(k)

)−1∏
i

(
αin− ai⊥(k)

xi·n− ai·(k)

)∏
j

(
βjn− a⊥j(k)

x·jn− a·i(k)

)∏
i,j

B
nxij
ij .

We have that

EGrn [Zp
G(η)] =

∑
α,β

(
n

αn

)(
n

βn

)[∆−1∏
k=1

(∑
x

κ̂α,β,xG,k (η)

)](∑
x

κ̂α,β,xG,∆

)
. (108)

The previous calculations show that

κ̂α,β,xG,∆

κα,β,xG

∼
∏
i,j

(
xij
)aij(∆)

∏
i α

∑
j aij(∆)

i

∏
j β

∑
i aij(∆)

j

Moreover, we have(αin+η+
i −ai⊥(k)

xi·n−ai·(k)

)
(
αin+η+

i
xi·n

) ∼
∏
j x

aij(k)
ij

α
ai⊥(k)
i

,

(βjn+η−j −a⊥j(k)

x·jn−a·j(k)

)
(βjn+η−j

x·jn
) ∼

∏
i x

aij(k)
ij

β
a⊥j(k)
j

,

(n+r−a(k)
xn−a(k)

)(
n+r
xn

) ∼
∏
i,j

x
a(k)
ij .

yielding

EGrn [Zp
G(η) |1ξ,ζ ]

EGrn [Zp
G(η)]

∼
∏
i,j

(
xij
)aij

∏
i α

∑
j aij

i

∏
j β

∑
i aij

j

,

exactly as before. Hence, the rest of the proof for the variables Zp
G(η) is exactly the same

as for the variables Zα,β
G (η).
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Proof of Lemma 42. Using Lemma 39, we have

∑
even i≥2

µiδ
2
i =

∑
even i≥2

r(∆, i)

i
·
( q−1∑
j=1

λij

)2

=
∑

even i≥2

(∆− 1)i + (∆− 1)

i
·
( q−1∑
j=1

q−1∑
j′=1

λijλ
i
j′

)
.

Observe that
∑

j≥1
x2j

2j = −1
2 ln(1 − x2) for all |x| < 1. By Item 1 of Lemma 38, it holds

that (∆− 1)λj < 1 for all j, so that (∆− 1)λjλj′ < 1 for all j, j′. It follows that

∑
even i≥2

µiδ
2
i = −1

2

(∑
i,j

ln
(
1− (∆− 1)2λ2

iλ
2
j

)
+ (∆− 1)

∑
i,j

ln
(
1− λ2

iλ
2
j

))
,

thus proving the first part of the lemma. The proof of
∑

i µiδi <∞ is completely analogous.

4.3 Moment Asymptotics

In this section we compute the asymptotics of the moments. For a dominant phase p =

(α,β) (cf. Definition 6), we will be interested in the asymptotics of

EG [Zα,β
G ], EG [(Zα,β

G )2],

the asymptotics of EG [Zp
G], EG [(Zp

G)2] can be treated completely analogously.

The main idea behind the calculation of the moment asymptotics is that the sums in

(23) and (25) are determined by the terms with the largest contribution. For example, to

compute the asymptotics of EG [Zα,β
G ], we need to consider the vector x∗ which maximizes

Υ1(α,β,x) and integrate over the vectors x which are close to x∗. Provided that the

Hessian of Υ1(α,β,x) at x∗ is negative definite, we obtain a Gaussian integral which can

be computed in terms of the determinant of the Hessian. A similar approach applies to

compute the asymptotics of EG [(Zα,β
G )2]; there, we need to consider (γ∗, δ∗,y∗) which

maximize Υ2(γ, δ,y) and integrate over (γ, δ,y) which are close to (γ∗, δ∗,y∗). Note that

the x∗ and (γ∗, δ∗,y∗) are unique; see Remark 9 for details. To lighten notation, we will

drop the stars from the maximizers when clear from context.

To perform the integrations accurately, we will need to ensure that the integration

variables lie in a full dimensional space. This requires a slightly different view of the domain

of the functions Υ1 and Υ2, which we refer to as the full dimensional representation. We will
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also have to take care of a minor technical detail relative to the presence of hard constraints.

Such considerations were circumvented in the maximization of Υ1 and Υ2, but here it will

be cleaner to explicitly deal with them in a slightly more combinatorial fashion. We do this

in the context of the calculations needed for the asymptotics of EG [(Zα,β
G )] and EG [(Zα,β

G )2],

respectively.

4.3.1 Full-dimensional representations

For the first moment, EG [(Zα,β
G )] is a sum over x while α,β are fixed. Let

P1 =
{

(i, j) ∈ [q]2
∣∣Bij > 0

}
. (109)

In the presence of a hard constraint Bij = 0, edge assignments (i, j) have zero weight and

hence correspond to a non-permissible configuration. In the maximization of Υ1, the hard

constraint Bij = 0 was not directly relevant, since for xij > 0 the function Υ1 evaluates

to −∞. Indeed, we found that the optimal xij is of the form BijRiCj and hence zero.

However, the asymptotics in which we are interested include products of the optimal values

of the xij and to correctly capture them, we need to explicitly rule out the zero values.

To do so, in the formulation (22), we hard-code xij = 0 for a pair (i, j) /∈ P1 and hence

the variables x are restricted to the space

∑
j xij = αi

(
∀i ∈ [q]

)
,

∑
i xij = βj

(
∀j ∈ [q]

)
,

xij = 0
(
∀(i, j) ∈ [q]2\P1

)
, xij ≥ 0

(
∀(i, j) ∈ P1

)
.

(110)

Note that the dimension of the polytope (110) is |P1| − (2q − 1) since the matrix B is

irreducible. To get affinely independent variables x, we use the equalities in (110) and

substitute an appropriate set of (q − 1)2 − |P1| variables. We will not need to understand

these substitutions till Section 4.4.1, yet in the integrations which follow it is preferable to

have integration variables rather than integrate over subspaces.

After this process, we are going to have |P1|−(2q−1) variables lying in a full dimensional

space. We refer to this set of variables as the full dimensional x. We still use the notation

x for these variables and refer to xij even if xij is not in the representation x, under the

understanding that this is just a shorthand for the substituted expression. Using these
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conventions, note that Υ1(α,β,x) is now a function of the full dimensional x, and we will

refer to this setup as the full dimensional representation of Υ1.

For the second moment, EG [(Zα,β
G )2] is a sum over γ, δ,y while α,β are fixed. Let

P2 =
{

(i, k, j, l) ∈ [q]4
∣∣Bikjl > 0

}
. (111)

Since Bikjl = BijBkl, we clearly have |P2| = |P1|2. As above, we now restrict γ, δ,y to lie

in the space

∑
k γik = αi

(
∀i ∈ [q]

)
,
∑

l δjl = βj
(
∀j ∈ [q]

)
,
∑

j,l yikjl = γik
(
∀(i, k) ∈ [q]2

)
∑

i γik = αk
(
∀k ∈ [q]

)
,
∑

j δjl = βl
(
∀l ∈ [q]

)
,
∑

i,k yikjl = δjl
(
∀(j, l) ∈ [q]2

)
γik ≥ 0

(
∀(i, k) ∈ [q]2

)
, δjl ≥ 0

(
∀(j, l) ∈ [q]2

)
, yikjl ≥ 0

(
∀(i, k, j, l) ∈ P2

)
,

yikjl = 0
(
∀(i, k, j, l) ∈ [q]4\P2

)
.

(112)

Once again, note the extra equality constraints relative to the original formulation (24).

The same remarks and conventions apply as in the case of the first moment. Therefore, we

obtain full dimensional (γ, δ,y) and a full dimensional representation of Υ2(γ, δ,y). We

point out that in the full dimensional (γ, δ,y), there are (q − 1)2 variables γik, (q − 1)2

variables δjl and |P2| − (2q2 − 1) variables yikjl.

The following two lemmas express the asymptotics of the moments in terms of suitable

determinants. Thus, to compute the asymptotics of the ratio EG [(Zα,β
G )2]/

(
EG [Zα,β

G ]
)2

, it

suffices to compute the determinants appearing in the above two lemmas. This is a long

and twisted road and is deferred to Section 4.4.2, where also the proof of Lemma 43 is

completed.

Lemma 44. Suppose that (α,β) maximize Ψ1. Let x be the (unique) maximizer of Υ1.

Denote by H1 be the Hessian of the full dimensional representation of Υ1(α,β,x) scaled by

1/∆ and by H1,x the square submatrix of H1 corresponding to rows and columns indexed

by x. Then

lim
n→∞

(2πn)q−1EG [Zα,β
G ]

enΥ1(α,β,x)
=

(∏
i αi

∏
j βj

)(∆−1)/2(∏
(i,j)∈P1

xij

)−∆/2

(
Det(−H1,x)

)∆/2 .
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Lemma 45. Suppose that (α,β) maximize Ψ1. Let (γ,β,y) be the (unique) maximizer of

Υ2. Denote by H2 be the Hessian of the full dimensional representation of Υ2(γ, δ,y) scaled

by 1/∆ and H2,y the square submatrix of H2 corresponding to rows and columns indexed

by y. Then

lim
n→∞

(2πn)2(q−1)EG [(Zα,β
G )2]

enΥ2(γ,δ,y)
=

(∏
i,k γik

∏
j,l δjl

)(∆−1)/2(∏
(i,k,j,l)∈P2

yikjl

)−∆/2

∆(q−1)2
(
Det(−H2)

)1/2(
Det(−H2,y)

)(∆−1)/2
.

The proofs of Lemmas 44 and 45 are similar; we give the proof of Lemma 45 which is a

bit tricky due to a two step integration.

Proof of Lemma 45. We assume a full dimensional representation of (γ, δ,y). We denote

by (γ∗, δ∗,y∗) the optimal vector which maximizes the full dimensional representation of

Υ2(γ, δ,y). We have that γ∗ik, δ
∗
jl > 0 for all i, k, j, l and y∗ikjl > 0 for (i, k, j, l) ∈ P2. For all

δ sufficiently small it holds that:

‖(γ, δ,y)− (γ∗, δ∗,y∗)‖2 ≤ δ implies

 γik, δjl > 0 for all i, k, j, l ∈ [q],

yikjl > 0 for (i, k, j, l) ∈ P2.

Since Υ2 has a unique global maximum (γ∗, δ∗,y∗) in the space (112), standard com-

pactness arguments imply that there exists ε(δ) > 0 such that ‖(γ, δ,y)− (γ∗, δ∗,y∗)‖ ≥ δ

implies Υ2(γ∗, δ∗,y∗) − Υ2(γ, δ,y) ≥ ε. It follows that the contribution of terms with

‖(γ, δ,y)− (γ∗, δ∗,y∗)‖ ≥ δ to EG [(Zα,β
G )2] may be safely ignored. Hence we may restrict

our attention to γ, δ,y satisfying ‖(γ, δ,y)− (γ∗, δ∗,y∗)‖ < δ. Moreover, using Taylor’s

expansion, we may choose δ small enough such that Υ2 decays quadratically in a δ-ball

around (γ∗, δ∗,y∗).

Utilizing the choice of δ and Stirling’s approximation for factorials, we thus obtain

EG [(Zα,β
G )2]

enΥ2(γ∗,δ∗,y∗)
=
(

1 +O
(
n−1

)) 1

(2πn)2(q−1)

∑
γ,δ

( 1√
2πn

)2(q−1)2(∏
i,k

γik
∏
j,l

δjl

)(∆−1)/2

[∑
y

( 1√
2πn

)|P2|−(2q2−1)( ∏
(i,k,j,l)∈P2

1
√
yikjl

)
en
(

Υ2(γ,δ,y)−Υ2(γ∗,δ∗,y∗)
)
/∆

]∆

.

We now compute

L = lim
n→∞

(2πn)2(q−1)EG [(Zα,β
G )2]

enΥ2(γ∗,δ∗,y∗)
.
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Standard techniques of rewriting sums as integrals and an application of the dominated

convergence theorem (see for example [36, Section 9.4]) ultimately give

L =
1

(2π)2(q−1)

(∏
i,k

γ∗ik
∏
j,l

δ∗jl

)(∆−1)/2( ∏
(i,k,j,l)∈P2

y∗ikjl

)−∆/2
(113)

( 1√
2π

)2(q−1)2 ∫ ∞
−∞
· · ·
∫ ∞
−∞

[( 1√
2π

)|P2|−(2q2−1)
∫ ∞
−∞
· · ·
∫ ∞
−∞

e
1
2

(γ,δ,y)·H·(γ,δ,y)ᵀdy

]∆

dγdδ,

where H denotes the Hessian matrix of Υ2 evaluated at (γ∗, δ∗,y∗) scaled by 1/∆ and the

operator · stands for matrix multiplication.

We thus focus on computing the integral in (113). We begin with the inner integration.

Let

I1 =

[( 1√
2π

)|P2|−(2q2−1)
∫ ∞
−∞
· · ·
∫ ∞
−∞

e
1
2

(γ,δ,y)·H·(γ,δ,y)ᵀdy

]∆

.

To calculate I1, we first decompose the exponent to isolate the terms involving y. We obtain

1

2
(γ, δ,y) ·H · (γ, δ,y)ᵀ =

1

2
(γ, δ) ·Hγ,δ · (γ, δ)ᵀ − 1

2
y · (−Hy) · yᵀ + T · yᵀ,

where H =

 Hγ,δ Hγδ,y

Hᵀ
γδ,y Hy

 and T = (γ, δ) ·Hγδ,y. Specifically:

• Hγ,δ is the square submatrix of H corresponding to the rows indexed by γ, δ and the

columns indexed by γ, δ,

• Hy is the square submatrix of H corresponding to the rows indexed by y and the

columns indexed by y,

• T = (γ, δ) · Hγδ,y, where Hγδ,y is the submatrix of H corresponding to the rows

indexed by γ, δ and the columns indexed by y.

Note that Hy is the Hessian of g2(y) evaluated at y∗. Since g2(y) is concave, we have that

Hy is negative definite. Utilizing this decomposition, we obtain

I1 = e
∆
2

(γ,δ)·Hγ,δ ·(γ,δ)ᵀ
[( 1√

2π

)|P2|−(2q2−1)
∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
1
2
y·(−Hy)·yᵀ+T·yᵀ

dy

]∆

=
1(

Det(−Hy)
)∆/2 e∆

2

(
T·(−Hy)−1·Tᵀ+(γ,δ)·Hγ,δ ·(γ,δ)ᵀ

)
.
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We are left with the task of computing the integral

I2 =
( 1√

2π

)2(q−1)2 ∫ ∞
−∞
· · ·
∫ ∞
−∞

e
∆
2 (T·(−Hy)−1·Tᵀ+(γ,δ)·Hγ,δ ·(γ,δ)ᵀ)dγdδ. (114)

Using the definition of T, we have

T · (−Hy)−1 ·Tᵀ + (γ, δ) ·Hγ,δ · (γ, δ)ᵀ = (γ, δ) ·
(
Hγ,δ −Hγδ,y ·H−1

y ·H
ᵀ
γδ,y

)
· (γ, δ)ᵀ.

The matrix M = Hγ,δ−Hγδ,y ·H−1
y ·H

ᵀ
γδ,y is the Schur complement of the block Hy of H.

In fact, we have the identity Det(H) = Det(Hy)Det(M) and in particular M is negative

definite. A Gaussian integration then yields

I2 =
( 1

∆2(q−1)2Det(−M)

)1/2
=
( Det(−Hy)

∆2(q−1)2Det(−H)

)1/2
. (115)

Combining equations (113), (114), (115), we obtain the statement of the lemma.

4.4 The determinants

This section addresses the computation of the determinants of the Hessians in Lemmas 44

and 45. The calculations are quite complex since one has to make a choice of free variables,

do the substitutions, differentiate, and then hope that the structure of the problem will pre-

vail in the determinants. Pushing this procedure in our setting leads to complications since

the choice of free variables takes away much of the combinatorial structure of the problem.

We follow a different path, which amongst other things, reveals that the determinants, via

the matrix-tree theorem, correspond to counting weighted trees in appropriate graphs.

The proof has two parts. The first part connects different formulations of the Hessian

of a constrained maximization in an abstract setting. Essentially, this puts together well

known concepts from optimization in a way that will allow to stay as close as possible to the

combinatorial structure of the determinants. The second part specialises the work of the

first part to compute the required determinants and is unavoidably more computational.

4.4.1 Hessian formulations for constrained problems

The setting of this section is the following: we are given Υ, a function of z ∈ Rn, subject

to the linear constraints Az = b, where A ∈ Rm×n. The assumption of linear constraints

102



stems from the setting of Lemmas 44 and 45, yet the arguments extend to other constraints

as well by considering gradients of these constraints at the point z0 and implicit functions.

Wlog, we will also assume that b = 0.

We are interested in the Hessian Hf of a full dimensional representation of Υ. A full

dimensional representation of Υ consists essentially of substituting an appropriate subset of

the variables z using the constraints Az = 0. Note that the representation is not as much

tied to Υ as it is tied to the space Az = 0. Specifically, assume that the row rank of A

is r. In all the relevant constrained functions we consider, the constraints are not linearly

independent so such an assumption is necessary. A full dimensional representation of Υ is

specified by two submatrices of A denoted by (Af ,Afs). The matrix Af is a submatrix of

A consisting of r linearly independent rows of A, so that Az = 0 iff Af z = 0. Then, Afs

is an r × r submatrix of Af which is invertible. The variables corresponding to columns of

Afs are denoted by zs. The remaining variables zf are called free and Aff is the submatrix

of Af induced by the columns indexed by zf . Renaming if needed, the equation Af z = 0

may be naturally decomposed as

[
Aff Afs

] zf

zs

 = 0, so that z =

 zf

zs

 =

 I

−(Afs)
−1Aff

 zf .

Thus, we can now think of Υ as a function which is completely determined by the variables

zf which, in contrast with the variables z, span a full dimensional space.

Denote by H the unconstrained Hessian of Υ with respect to the variables z and by Hf

the Hessian of the full dimensional representation of Υ with respect to the variables zf . The

Hessians H, Hf are connected by the following equation, which follows by straightforward

matrix calculus and its proof is omitted.

Hf = Sᵀ H S, where S =

 I

−(Afs)
−1Aff

 . (116)

Note that Hf is different, though closely related, from the constrained Hessian Hc of Υ

in the subspace Az = 0, see for example [46, Chapter 10]. The constrained Hessian Hc has

infinitely many matrix representations, all of which correspond to similar matrices, that is,
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matrices with the same set of eigenvalues. A matrix representation may be obtained by

first picking an orthonormal basis of the (n − r)-dimensional space {z |Az = 0}. Let E

denote the n × (n − r) matrix whose columns are the vectors in the basis. Then a matrix

representation of Hc is given by

Hc = Eᵀ H E, (117)

where H is as before the unconstrained Hessian of Υ with respect to the variables z. We

are ready to prove the following. It is useful to recall here that congruent matrices have the

same number of negative, zero and positive eigenvalues.

Lemma 46. Hf is congruent to any matrix representation of Hc. Moreover, it holds that

Det
(
Hf
)

= Det
(
Hc
)

Det
(
AfA

ᵀ
f

)/
Det

(
Afs

)2
.

Proof of Lemma 46. The columns of the matrix S defined in equation (116) form a basis of

the space {z |Az = 0}. Indeed, S has clearly full column rank and also Af S = 0 implying

A S = 0 as well. For future use, by a direct evaluation

SᵀS = I + Aᵀ
ff

(
AfsA

ᵀ
fs

)−1
Aff , so Det(SᵀS) = Det

(
I + AffA

ᵀ
ff

(
AfsA

ᵀ
fs

)−1
)
,

where the latter equality uses Sylvester’s determinant theorem. This clearly yields

Det(SᵀS) = Det
(
AfA

ᵀ
f

)/
Det(Afs)

2 . (118)

Comparing (116) and (117), the only difference is that S does not necessarily encode an

orthonormal basis. Nevertheless, there clearly exists an invertible matrix P such that S P

consists of orthonormal columns, for example by the Gram-Schmidt process on the columns

of S. It follows that Pᵀ Hf P is a matrix representation of Hc. This proves the first part of

the lemma and also gives Det
(
Hc
)

= Det
(
Hf
)

Det(P)2.

For the second part, the selection of P implies that (S P)ᵀS P is the identity matrix and

hence Det(SᵀS) Det(P)2 = 1. The desired equality follows.

Lemma 46 allows us to focus on the determinant of Hc or equivalently the product of

its eigenvalues. The latter may be handled using bordered Hessians. Specifically, let Af be
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any submatrix of A induced by r linearly independent rows. Then, λ is an eigenvalue of

Hc iff it is a root of the polynomial

p(λ) = Det

([ 0 Af

−Aᵀ
f H− λIn

])
. (119)

In our case, deleting rows of A to obtain Af would cause undesirable complications. In

the following, we circumvent such deletions by adding suitable “perturbations”. We will

also allow for certain degrees of freedom to select the perturbations which will be exploited

in the computations. We first prove the following.

For a polynomial p(s), [st]p(s) denotes the coefficient of st in p(s).

Lemma 47. Let M ∈ Rm×m be a symmetric matrix with rank r and let µi, i = 1, . . . ,m

be the eigenvalues of M with corresponding unit eigenvectors vi, where {v1, . . . ,vm} is an

orthonormal basis of Rm. Then, for any symmetric matrix T ∈ Rm×m, it holds that

[εm−r] Det
(
εT + M

)
=

∏
i;µi 6=0

µi
∏

i;µi=0

vᵀ
i T vi, (120)

In particular, if T is positive semidefinite and [T M] has full row rank, the rhs of (120) is

non-zero.

Proof of Lemma 47. Let M(ε) = εT+M and denote by µi(ε),vi(ε) the eigenvalues and unit

eigenvectors of M(ε). Rellich’s theorem asserts that µi(ε) and vi(ε) are analytic functions

of ε around ε = 0. By Hadamard’s first variation formula, we have
∂µi
∂ε

= vᵀ
i

∂M

∂ε
vi. At

ε = 0, M has rank r and hence exactly m− r eigenvalues are zero. Thus, for small enough

ε,

Det(M(ε)) = εm−r
∏

i:µi 6=0

µi
∏

i:µi=0

vᵀ
iTvi +O(εm−r+1).

Hence, [εm−r]Det(M(ε)) 6= 0 if for every vi 6= 0 such that Mvi = 0, we have vᵀ
iTvi 6= 0.

The latter is true. Otherwise, using the positive semidefiniteness of T, we obtain vᵀ
i [T M] =

0, contradicting that [T M] has full row rank.

The following lemma gives the promised extension of (119).

105



Lemma 48. Suppose that T is a diagonal positive semidefinite m × m matrix such that

[T A] has full row rank. Let H (resp. Hc) be the unconstrained (resp. constrained) Hessian

of Υ evaluated at a point z0. Then, λ is an eigenvalue of Hc iff it is a root of the polynomial

p(λ) = [εm−r] Det(Hλ) where Hλ =
[ εT A

−Aᵀ H− λIn

]
. (121)

Further, if H is invertible, then Det
(
Hc
)

= (−1)nDet(H)
[εm−r] Det

(
εT + AH−1Aᵀ

)
[εm−r] Det

(
εT−AAᵀ

) .

Proof of Lemma 48. Let T = (ti,j)i,j∈[m] and Hλ = (hi,j)i,j∈[m+n]. Let W =
(

[m]
m−r

)
and for

W ∈ W let PW = {σ ∈ Sm+n | {i ∈ [m] |σ(i) = i} = W}. Since T is diagonal, by Leibniz’s

formula,

p(λ) = [εm−r]Det(Hλ) =
∑
W∈W

∏
i∈W

ti,i
∑
σ∈PW

sgn(σ)
∏

i∈[m+n]\W

hi,σ(i). (122)

Let A[m]\W be the r× n submatrix of A which is obtain by excluding the rows indexed by

W . Identifying permutations in PW with permutations of [n + r] in the natural way, we

obtain

∑
σ∈PW

sgn(σ)
∏

i∈[m+n]\W

hi,σ(i) = Det

([ 0r A[m]\W

−Aᵀ
[m]\W H− λIn

])
≡ qW (λ). (123)

If A[m]\W has row rank < r, then qW (λ) is 0. Otherwise, the roots of qW (λ) are the

eigenvalues of Hc, c.f. (119). By (122), this is also the case for p(λ), provided it is not

identically zero.

To prove that p(λ) is nonzero, we prove that the leading coefficient of p(λ) is nonzero.

Starting from (123) and plugging into (122), this can easily be seen to equal

[εm−r]Det

([ εT A

−Aᵀ −In

])
= [εm−r](−1)nDet(εT−AAᵀ),

where in the latter equality we used the Schur complement of the block −In. This is non-zero

by Lemma 47.

The determinant of Hc is the product of its eigenvalues. This equals p(0) divided by

the leading coefficient of p(λ). The latter has already been computed. The former, using
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the Schur complement of the invertible H, is equal to [εm−r]Det(H) Det
(
εT −AH−1Aᵀ

)
.

This concludes the proof.

Finally, we combine the above lemmas to obtain the following.

Lemma 49. Let Υ be a function of z ∈ Rn subject to the linear constraints Az = b, where

A ∈ Rm×n where A has rank r. Let
(
Af ,Afs

)
specify a full dimensional representation of

Υ and let Hf be the corresponding Hessian of Υ evaluated at a point z0.

Suppose T is a positive semidefinite diagonal matrix with dimensions m×m such that

[T A] has full row rank. Let H (resp. Hc) be the unconstrained Hessian of Υ evaluated at

z0. If H is invertible, then

Det
(
−Hf

)
=
L
(
Af ,A,T

)
Det

(
Afs

)2 Det(H) [εm−r] Det
(
εT−AH−1Aᵀ), (124)

where L
(
Af ,A,T

)
= Det

(
AfA

ᵀ
f

)/
[εm−r] Det

(
εT−AAᵀ

)
.

Proof of Lemma 49. Just combine Lemmas 46 and 48. The minor sign change −Hf in the

statement can easily be accounted by applying the lemmas to the function −Υ.

The rhs of (124) has two qualitatively different factors: the factor
L(Af ,A,T)

Det(Afs)2 depends on

the specific full dimensional representation, while the remaining factor is tied to the Hessian

of Υ. The technical convenience of Lemma 49 is dual: first, it gives an explicit formula for

Det
(
−Hf

)
without doing substitutions which would hinder the combinatorial view of the

constraints A; second, it isolates the deletions of rows of A in the factor L(Af ,A) and

leaves untouched the more complicated matrix AH−1Aᵀ.

4.4.2 The computations

In this section, we utilize Lemma 49 to compute the determinants in Lemmas 44 and 45.

Notation: For a vector z ∈ Rn, zD denotes the n×n diagonal matrix diag{z1, . . . , zn}.

For vectors zi ∈ Rmi , i = 1, . . . , t we denote by [z1, . . . , zt]
ᵀ the R

∑
imi vector which is

the concatenation of the vectors z1, . . . , zt. For matrices A and B, A ⊗ B will denote

the Kronecker product of A,B, while A ⊕B is the direct sum of A,B, that is, the block

diagonal matrix diag{A,B}. The expression ⊕2A is a shorthand for A ⊕A. Further, In
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denotes the identity matrix of dimensions n × n. Finally, 1n,0n denote the all-one and

all-zero n-dimensional vector.

To start, the equality constraints in (110) and (112) may be written in the form

A1x = 0, A2

[
γ, δ, y

]ᵀ
=
[
α, α, β, β, 02q2

]ᵀ
.

The matrices A1 and A2 have dimensions 2q × (q2 − |P1|) and (4q + 2q2) × (2q2 + q4 −

|P2|), respectively, where P1, P2 are defined in (109), (111). Note that we exclude from

consideration variables xij and yikjl which are hard-coded to zero. This is done to ensure

that the unconstrained Hessians are invertible, so that Lemma 49 applies directly. It will

be useful to decompose the matrix A2 as

A2 =
[ A2,γδ 0

−I2q2 A2,y

]
, (125)

where A2,γδ,A2,y have dimensions 4q × 2q2 and 2q2 × (q4 − |P2|), respectively.

The easiest way to handle the matrices A1,A2,γδ,A2,y is as incidence matrices of appro-

priate bipartite graphs. This view will simplify the arguments significantly. In particular,

for an undirected graph G, we denote by AG the 0,1 incidence matrix of G, by RG the

adjacency matrix of G, by DG the diagonal matrix whose diagonal entries are equal to the

degrees of the vertices in G and by ΛG the matrix DG + RG. We will also be interested

in the case where the graph G is weighted. We assume that the weights on the edges are

positive and are given by the diagonal entries of a square diagonal matrix WG. We denote

by Rw
G,D

w
G,Λ

w
G the weighted versions of the matrices RG,DG,ΛG. It is well known and

easy to check that

AGAᵀ
G = ΛG, AGWGAᵀ

G = Λw
G. (126)

Before defining graphs to which (126) will be applied, it will be useful to state the uncon-

strained Hessians. From Lemmas 44 and 45, the unconstrained Hessians of interest are:

(i) H1,x, the Hessian of Υ1/∆ with respect to x when α,β are fixed, (ii) H2,y, the Hes-

sian of Υ2/∆ with respect to y when α,β,γ, δ are fixed, (iii) H2, the Hessian of Υ2/∆

with respect to γ, δ,y when α,β are fixed. These three matrices are all diagonal and it is
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straightforward to see

Det(H1,x)−1 = (−1)q
2−|P1|

∏
i,j∈P1

xij , Det(H2,y)−1 = (−1)q
4−|P2|

∏
(i,k,j,l)∈P2

yikjl,

Det(H2)−1 = Det(H2,y)−1
(∆− 1

∆

)2q2 ∏
i,k∈[q]

γik
∏
j,l∈[q]

δjl,

(H1,x)−1 = −xD, (H2,y)−1 = −yD, (H2)−1 =
∆

∆− 1
γD ⊕ ∆

∆− 1
δD ⊕ (H2,y)−1.

(127)

We next proceed to the definition of the bipartite graphs for each of the above matrices.

For A1,x, the related graph Gx is a bipartite graph with vertex bipartition ([q], [q]) and an

edge (i, j) is present iff (i, j) ∈ P1, that is, Bij > 0. Since B is symmetric and irreducible,

Gx is undirected and connected. For A2,y, the related graph Gy is a bipartite graph with

vertex bipartition ([q]2, [q]2) and an edge
(
(i, k), (j, l)

)
is present iff (i, k, j, l) ∈ P2, that is,

Bikjl > 0. For A2,γδ, the graph has two connected components indexed by γ, δ, respectively.

Each is isomorphic to the complete bipartite graph Kq,q with vertex bipartition ([q], [q]).

We denote by A2q,q2 the incidence matrix of Kq,q, so that A2,γδ = ⊕2A2q,q2 .

The weights on the edges of the graphs Gx, Gy, Gγδ are given in principle by (127).

Explicitly, an edge (i, j) in Gx has weight xij , an edge
(
(i, k), (j, l)

)
in Gy has weight yikjl

and an edge (i, j) in Gγδ is γij if it belongs to the connected component indexed by γ and

δij if it belongs to the connected component indexed by δ. The factor ∆/(∆−1) in (H2)−1

will be accounted otherwise. In the languange of (126),

WGx = xD, WGy = yD, WGγδ
= γD ⊕ δD. (128)

The otherwise straightforward application of (126) on each of the graphs Gx, Gy, Gγδ

is useful to do explicitly in order to decompose the resulting matrices. In particular, since

these graphs are undirected and bipartite, we have

Λw(Gx) =

 αD Sx

Sᵀ
x βD

 , Λw(Gy) =

 γD Sy

Sᵀ
y δD

 , (129)

Λw(Gγδ) =

 αD Sγ

Sγ αD

⊕
 βD Sδ

Sδ βD

 , (130)
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where Sx,Sγ ,Sδ are the q× q matrices whose (i, j) entries are xij , γij , δij , respectively, and

Sy is the q2 × q2 matrix whose ((i, k), (j, l)) entry is yikjl. Note that the matrices Dw were

substituted using (110) and (112).

We are now ready to evaluate these matrices at a global maximum (α∗,β∗,x∗) of Υ1

and (γ∗, δ∗,y∗) of Υ2. From now on, we will not explicitly use asterisks in the notation

with the understanding that the values of all the variables are fixed to their optimal values.

Note by Lemma 31, we have

γ = α⊗α, δ = β ⊗ β, y = x⊗ x. (131)

We will apply Lemma 49 to the matrices H1,x,H2,y,H2 using the matrices

T1 = αD ⊕ βD, T2,y = γD ⊕ δD, T2 = αD ⊕αD ⊕ βD ⊕ βD ⊕ 02q2 , (132)

respectively. We first compute the determinants of M1 = εT1 − A1(H1,x)−1Aᵀ
1, M2,y =

εT2,y−A2,y(H2,y)−1Aᵀ
2,y, M2 = εT2−A2(H2)−1Aᵀ

2, which contribute the most interesting

factors in Lemma 49.

We begin with the simplest of these matrices, M1. Note that A1 has rank 2q − 1,

so by Lemma 49 we want to compute [ε] Det(M1). Using (126), (127), (128), (132), it is

straightforward to check that M1 has the following form

M1 =

 αD(εIq + Iq) Sx

Sᵀ
x βD(εIq + Iq)

 , so Det(M1) =
( ∏
i∈[q]

αi
∏
j∈[q]

βj

)
Det

(
εIq + Iq + J

)
,

(133)

where J is the matrix in Lemma 38. Note that in Equation (133), to get the second equality,

we did the following operations on M1: for i = 1, . . . , q, we divided the i-th row of by
√
αi,

the i-th column by
√
αi, the (i + q)-th row by

√
βi, the (i + q)-th column by

√
βi. The

eigenvalues of the matrix εIq + Iq + J are appropriate shifts of the eigenvalues of J and are

given by

ε, ε+ 2, ε+ 1± λ1, . . . , ε+ 1± λq−1,

c.f., Lemma 38 for the definition of the λi and their properties. We thus obtain

[ε] Det
(
εT1 −A1(H1,x)−1Aᵀ

1

)
= 2

∏
i∈[q]

αi
∏
j∈[q]

βj
∏

i∈[q−1]

(
1− λ2

i

)
. (134)
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In a completely analogous manner, we can also obtain

[ε] Det
(
εT2,y −A2,y(H2,y)−1Aᵀ

2,y

)
= 2

∏
i,k∈[q]

γik
∏
j,l∈[q]

δjl
∏

i∈[q−1]

(
1− λ2

i

)2 ∏
i,j∈[q−1]

(
1− λ2

iλ
2
j

)
.

(135)

Note here that the λi’s are again the same as in Lemma 38. The more complicated product

in (135) is due to the eigenvalues of a Kronecker product. We omit the details since these

can be inferred from Lemma 51 which will be stated and proved afterwards. There, the

shifting of the eigenvalues is different, but otherwise everything else is the same.

The determinant of the matrix M2 is quite more complicated to compute due to its more

intricate complicate block structure, which requires using Schur’s complement formula to

handle. The following is proved in Section 4.4.3.1.

[ε3]Det
(
εT2 −A2(H′2)−1Aᵀ

2

)∏
i∈[q]

αi
∏
j∈[q]

βj
∏
i,k∈[q]

γik
∏
j,l∈[q]

δjl
=

4∆4q−2

(∆− 1)2q2

∏
i,j∈[q−1]

(
1− (∆− 1)2λ2

iλ
2
j

) ∏
i∈[q−1]

(
1− λ2

i

)2
.

(136)

Equations (127), (134), (135), (136) deal with the factors in Lemma 49 which are tied

to the Hessians of the functions. While these contribute the most interesting factors, some

care is needed to deal with the remaining factors. This is accomplished in the following

lemma, which is proved in Section 4.4.3.2.

Lemma 50. Let
(
(A1)f , (A1)fs

)
,
(
(A2,y)f , (A2,y)fs

)
,
(
(A2)f , (A2)fs

)
specify arbitrary full

dimensional representations of the spaces A1x = 0, A2,yy = 0, A2 [γ, δ,y]ᵀ = 0. Then:

Det
(
(A1)fs

)2
= Det

(
(A2,y)fs

)2
= Det

(
(A2)fs

)2
= 1, (137)

L
(
(A1)f ,A1,T1) = L

(
(A2,y)f ,A2,y,T2,y) = 1/2, L

(
(A2)f ,A2,T2) = 1/4, (138)

where T1,T2,y,T2 are given by (132) and the quantities in (138) are defined in Lemma 49.

We are now ready to finish the proof of Lemma 43.

Proof of Lemma 43. Apply Lemma 49 three times to unravel the determinants appearing

in Lemmas 44 and 45. Each of the resulting quantities has been computed and appears in

one of (127), (134), (135), (136) or Lemma 50. The proof of the lemma is completed with

careful but otherwise straightforward substitutions.
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4.4.3 Remaining proofs

4.4.3.1 Details for the Second Moment Determinant

We give here the details of the proof of (136), which gives the determinant of the more

intricate matrix M2 := εT2 − A2(H2)−1Aᵀ
2. The first step of the computation is the

same as in the previous arguments and consists of writing out its block structure and then

appropriately normalizing the resulting matrix. Here the normalization is slightly more

intricate. The analog of (133) is

Det
(
M2

)
= Det

(
H′2
) ∏
i∈[q]

αi
∏
j∈[q]

βj
∏
i,k∈[q]

γik
∏
j,l∈[q]

δjl, (139)

where

H′2 =
∆

∆− 1

 ε∆−1
∆ I4q −VVᵀ V

Vᵀ −∆−1
∆ W

 , (140)

and the matrices W,V are given by

W =
1

∆− 1
I2q2 −

 0 L⊗ L

(L⊗ L)ᵀ 0

 ,
V = (⊕2α

D)−1/2A2q,q2 (γD)1/2
⊕

(⊕2β
D)−1/2A2q,q2 (δD)1/2.

Equation (139) can be obtained by performing the following operations on M2: for i =

1, . . . , q, divide the i, i + q rows by
√
αi, the i + 2q, i + 3q rows by

√
βi; for i, j = 1, . . . , q,

divide the 4q+ q(i− 1) + j row by
√
γij and the 4q+ q2 + q(i− 1) + j row by

√
δij ; and the

same operations on columns. These operations are captured by the matrices (⊕2α
D)−1/2,

(⊕2β
D)−1/2, (γD)1/2, (δD)−1/2 which appear in the matrix V. The matrix W is the

normalized form of −A2,y(H2,y)−1Aᵀ
2,y but with some corrections in the diagonal which

stem from the coupled form of the matrix A2 and the factor ∆/(∆ − 1) which appears in

H2, c.f., Equations (125) and (127).

In light of (139), it suffices to compute Det(H′2). To do this, we proceed by taking the

Schur complement of the matrix W. For this, we need that W is invertible, as the following

lemma guarantees.
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Lemma 51. Let t = 1/(∆− 1). In the notation and setting of Lemma 38, the spectrum of

W is given by

t±1, t±λ1, t±λ1, . . . , t±λq−1, t±λq−1, t±λ2
1, t±λ1λ2, . . . , t±λ1λq−1, t±λ2λ1, . . . , t±λ2

q−1.

Recall that the λi are non-negative and maxλi <
1

∆−1 . Hence, W is invertible. We also

have

Det(W) = − ∆(∆− 2)

(∆− 1)2q2

∏
i∈[q−1]

(
1− (∆− 1)2λ2

i

)2 ∏
i,j∈[q−1]

(
1− (∆− 1)2λ2

iλ
2
j

)
. (141)

Proof of Lemma 51. The matrix tI2q2 shifts the eigenvalues of

[
0 L⊗ L

(L⊗ L)ᵀ 0

]
by t,

so it suffices to find the eigenvalues of the latter matrix.

These come in pairs (σ2
i ,−σ2

i ), i ∈ [q2], where
{
σ2
i

}
i∈[q2]

are the singular values of

L⊗L. By properties of the Kronecker Product, these are equal to
{

(σ′i)
2(σ′j)

2
}
i,j∈[q]

, where

{(σ′i)2}i∈[q] are the singular values of L. The latter are the non-negative eigenvalues of[
0 L

Lᵀ 0

]
and are precisely {1, λ1, . . . , λq−1}. The lemma follows.

After taking the Schur complement of the matrix W, we obtain

Det(H′2) =
( ∆

∆− 1

)4q
Det

(
W
)

Det
(
ε

∆− 1

∆
I4q + Z

)
, with Z =

∆

∆− 1
VW−1Vᵀ −VVᵀ.

(142)

We are left with the evaluation of Det
(
ε∆−1

∆ I4q + Z
)
. This is possible once we know

the eigenvalues of Z, since the identity matrix just shifts its eigenvalues. The complication

here is the nontrivial inverse of W appearing in the formulation of Z. The next couple of

lemmas circumvent the computation of W−1 and reduce it to the inverse of a much simpler

matrix.

Lemma 52. In the notation and setting of Lemma 38, it holds that

VW =
( 1

∆− 1
I4q − L′

)
V, where L′ =

 0 L⊕ L

(L⊕ L)ᵀ 0

 .
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Lemma 52 is useful only if the matrix 1
∆−1I4q − L′ is invertible. This is an immediate

corollary of the following.

Lemma 53. The spectrum of the matrix L′ defined in Lemma 52 is given by

±1,±1,±λ1,±λ1, . . . ,±λq−1,±λq−1.

Recall that the λi are non-negative and maxi λi <
1

∆−1 . Hence, 1
∆−1I4q − L′ is invertible.

Proof of Lemma 53. The matrix L′ is similar by a permutation matrix to the direct sum of

two copies of the matrix J of Lemma 38. Thus, the eigenvalues of L′ can be easily derived

by properties of the direct sum. The matrix 1
∆−1I4q just shifts the eigenvalues of −L′ by

1/(∆− 1). The lemma follows.

Combining Lemmas 52 and 53, we obtain

Z =
[
− I4q +

∆

∆− 1

( 1

∆− 1
I4q − L′

)−1]
VVᵀ =

(
I4q + L′

)( 1

∆− 1
I4q − L′

)−1
VVᵀ, (143)

By (142), Z is trivially symmetric. As a consequence of Equation (143), we are now in

position to study the eigenvalues of Z.

Lemma 54. The spectrum of Z is given by

0, 0, 0, 2f(1), f(±λ1), f(±λ1), . . . , f(±λq−1), f(±λq−1),

where f(x) = (1 + x)( 1
∆−1 − x)−1.

To simplify slightly the expressions, set r = (∆ − 1)/∆. The matrix εrI4q shifts the

eigenvalues of Z by εr. Thus, Lemma 54 yields

Det
(
εrI4q + Z

)
= ε3r3

(
εr + 2f(1)

) ∏
i∈[q−1]

(
εr + f(λi)

)2 ∏
i∈[q−1]

(
εr + f(−λi)

)2
.

By Lemma 54, we have f(1), f(±λi) 6= 0 for every i ∈ [q − 1], so that

[ε3]Det
(
εrI4q+Z

)
= 2r3f(1)

∏
i∈[q−1]

(
f(−λi)f(λi)

)2
= −4(∆− 1)4q

∆3(∆− 2)

∏
i∈[q−1]

(
1− λ2

i

1− (∆− 1)2λ2
i

)2

.

(144)
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Plugging (141) and (144) in (142), we obtain

[ε3]Det(H′2) =
4∆4q−2

(∆− 1)2q2

∏
i,j∈[q−1]

(
1− (∆− 1)2λ2

iλ
2
j

) ∏
i∈[q−1]

(
1− λ2

i

)2
.

Using this and (139), we obtain (136).

Proof of Lemma 54. Define

u1 =
[√

α,
√
α,
√
β,
√
β
]ᵀ
, u3 =

[√
α,0,−

√
β,0

]ᵀ
,

u2 =
[√

α,−
√
α,
√
β,−
√
β
]ᵀ
, u4 =

[
0,
√
α,0,−

√
β
]ᵀ
,

and set S1 = {u1,u2,u3,u4} and S2 = {v : v eigenvector of L′ with eigenvalue µ, |µ| 6= 1}.

We claim that S1 ∪ S2 is a linearly independent set of eigenvectors of Z.

Let v ∈ S2 and let µ be the eigenvalue of L′ associated to v. Then it is easy to check

that VVᵀv = v, so that Zv = f(µ)v. This gives us 4(q − 1) eigenvectors of VVᵀ with

eigenvalue 1.

Moreover, it is easy to see that

[
√
α,
√
α,0,0]ᵀ, [0,0,

√
β,
√

β]ᵀ, [
√
α,−
√
α,0,0]ᵀ, [0,0,

√
β,−

√
β]ᵀ

are linearly independent eigenvectors of VVᵀ with eigenvalues 2, 2, 0, 0 respectively.

Using these or by straightforward calculation, we obtain VVᵀu1 = 2u1, VVᵀu2 = 0,

VVᵀu3 = u2, VVᵀu4 = u2. Noting that u1,u2 are eigenvectors of L′ with eigenvalues 1

and -1 respectively, we obtain that the vectors in S1 are eigenvectors of Z with eigenvalues

2f(1), 0, 0, 0 respectively.

Proof of Lemma 52. For notational convenience, set

R = (⊕2α
D)−1/2A2q,q2 (γD)1/2, S = (⊕2β

D)−1/2A2q,q2(δD)1/2, N = L⊗ L.

Note that V = R⊕ S. The lemma clearly reduces to proving

R N =

 L 0

0 L

 S, S Nᵀ =

 Lᵀ 0

0 Lᵀ

 R.

We prove the first of these equalities, since the proof of the latter is identical. Let A,B

be the matrices in the lhs and rhs of the equality. A,B clearly have the same dimensions,
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since R,S have dimensions 2q × q2 and N has dimensions q2 × q2. So, it remains to check

that the entries of A,B are equal. To do this, we first explore the entries of R,S,N. It is

easy to see that their entries are given by

Rt,(i,k) =


√

γik
αi

1{i = t}, 1 ≤ t ≤ q√
γik
αk

1{k = t− q}, q + 1 ≤ t ≤ 2q

, Si,(j,l) =


√

δjl
βj

1{j = i}, 1 ≤ i ≤ q√
δjl
βl

1{l = i− q}, q + 1 ≤ i ≤ 2q

,

and N(i,k),(j,l) = xijxkl/
√
γikδjl. We are now ready to prove that A = B. Consider the(

i, (j, l)
)

entries of these matrices. Wlog we may assume i ≤ q. We have

Ai,(j,l) =
∑
i′,k

Ri,(i′,k)N(i′,k),(j,l) =
∑
i′,k

√
γi′k
αi′

1{i′ = i}
xi′jxkl√
γi′kδjl

=
xij√
αi
√
δjl

∑
k

xkl =
βlxij√
αi
√
δjl
.

Bi,(j,l) =
∑
j′

Li,j′Sj′,(j,l) =
∑
j′

Li,j′

√
δjl
βj

1{j = j′} = Li,j

√
δjl
βj

=
xij
√
δjl

βj
√
αi

.

Thus Ai,(j,l) = Bi,(j,l) for every i, j, l and we are done.

4.4.3.2 Proof of Lemma 50

We first prove (137). Since A1, A2,y are incidence matrices of the bipartite graphs Gx, Gy,

they are totally unimodular matrices. By the way full dimensional representations are

chosen, the matrices (A1)fs, (A2,y)fs are invertible and hence their determinants squared

equal 1. For (A2)fs, the same logic applies: by (125), it is immediate to verify that (A2)fs

has the block decomposition

(A2)fs =

 (A2,γδ)fs 0

−I (A2,y)fs

 , so that Det
(
(A2)fs

)
= Det

(
(A2,γδ)fs

)
Det

(
(A2,y)fs

)
.

Since A2,γδ, A2,y are totally unimodular, any invertible submatrix of them has determinant

±1. This concludes the proof of (137).

We next turn to (138). We begin with L
(
(A1)f ,A1,T1

)
. The argument is closely

related to the proof of Kirchoff’s Matrix-Tree Theorem, but is written in a way that it

easily extends to the more complicated L
(
(A2)f ,A2,T2

)
.

Denote by µ1, . . . , µ2q−1 the non-zero eigenvalues of A1A
ᵀ
1; there are exactly 2q − 1 of

those since Gx is a connected bipartite graph. Moreover, vᵀ
0 = 1√

2q
[−1q 1q] is the unit
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eigenvector of A1A
ᵀ
1 with eigenvalue 0. We claim that

[ε]Det
(
εT1,x −A1A

ᵀ
1

)
= −

∏
i∈[2q−1] µi

q
, Det

(
(A1)f (A1)ᵀf

)
= −

∏
i∈[2q−1] µi

2q
, (145)

which clearly proves L
(
(A1)f ,A1,T1

)
= 1/2. The first equality is a direct application of

Lemma 47, after observing that vᵀ
0Tv0 = 1/q. The second can be proved as follows. The

matrix (A1)f (A1)ᵀf is a principal minor of A1A
ᵀ
1, the specific principal minor is clearly

determined by which row of A1 we chose to delete to obtain (A1)f . Since A1A
ᵀ
1 has

exactly one zero eigenvalue, we have

−
∏

i∈[2q−1]

µi =
∑

W∈( [2q]
2q−1)

Det
(
(A1)W (A1)ᵀW

)
, (146)

where (A1)W is the submatrix of A1 induced by the rows indexed with W . It is easily

checked that for any W,W ′ ∈
(

[2q]
2q−1

)
, there exists a unitary matrix P such that (A1)W =

P(A1)W ′ , so that all summands in (146) are equal. Indeed, since A corresponds to the

incidence matrix of a bipartite graph or otherwise, the sum of the first q rows (as vectors)

equals the sum of the last q rows. It follows that any row of A1 can be expressed as a

{1,−1} linear combination of the remaining rows, which easily yields the existence of P

with the desired properties. Hence, for any (A1)f as in the statement of the lemma, the

second equality in (145) holds as well.

The argument for L
(
(A2,y)f ,A2,y,T2,y

)
= 1/2 is completely analogous. We give a

proof sketch for L
(
(A2)f ,A2,T2

)
= 1/4. The matrix A2A

ᵀ
2 has zero as an eigenvalue

by multiplicity three. Denote by σ1, . . . , σ2q2+4q−3 the non-zero eigenvalues of A2A
ᵀ
2. By

looking at the space zA2 = 0, it is easy to derive an orthonormal set of eigenvectors for the

eigenvalue 0; these are given by the vectors

v1 =
1√
2q

[−1q, 1q, 02q+2q2 ]ᵀ, v2 =
1√
2q

[02q, −1q, 1q, 02q2 ]ᵀ,

v3 =
1

2
√
q + 2q2

[−12q, 12q, −2q2 , 2q2 ]ᵀ.

Moreover, the analog of (146) is

−
∏

i∈[2q2+4q−3]

σi =
∑

W∈( [2q2+4q]

2q2+4q−3
)

Det
(
(A2)W (A2)ᵀW

)
. (147)

117



The difference of (147) from (146) is the existence of W ∈
( [2q2+4q]

2q2+4q−3

)
which do not contribute

to the sum, i.e., Det
(
(A2)W (A2)ᵀW

)
= 0. We thus restrict our attention to W with non-zero

contribution. These correspond to deleting three rows of A2 such that either (i) all three

rows are among the first 4q rows of A2, (ii) two of the rows are among the first 4q rows of

A2 and the remaining is from the last 2q2 rows. Note that the deletions must be such that

the rank of A2 is preserved. Using the block decomposition of A2, c.f. (125), it can easily

be checked that there are 4q3 W ’s of the form (i) and 8q4 of the form (ii), for a total of

4q3(2q + 1).

Moreover, it can be seen that all non-zero summands in (146) are equal. This can be

proved using the following linear dependencies among the rows of A2: (i) the sum of rows

1, . . . , q is equal to the sum of rows q+1, . . . , 2q, (ii) the sum of rows 2q+1, . . . , 3q is equal to

the sum of rows 3q+1, . . . , 4q, (iii) the sum of rows 1, . . . , q−1, q, 4q+1, . . . , 4q+q2−1, 4q+q2

is equal to the sum of rows 2q + 1, . . . , 3q − 1, 3q, 4q + q2 + 1, . . . , 4q + 2q2 − 1, 4q + 2q2.

Hence, the equality L
(
(A2)f ,A2,T2

)
= 1/4 is obtained by the following analog of (145)

[ε]Det
(
εT2 −A2A

ᵀ
2

)
= −

∏
i∈[2q2+4q−3] σi

q3(2q + 1)
, Det

(
(A2)f (A2)ᵀf

)
= −

∏
i∈[2q2+4q−3] σi

4q3(2q + 1)
.
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CHAPTER V

NP-HARDNESS FOR COUNTING IN SPIN SYSTEMS

In this chapter, we are going to prove the inapproximability results of this thesis, namely

Theorems 11, 12, 13, 14, and 15. Much of our focus will concentrate on the more general

(and difficult to prove) Theorem 14, which we recall for convenience here.

Theorem 14. Let q ≥ 2,∆ ≥ 3. For an antiferromagnetic q-spin system with interaction

matrix B, if the dominant semi-translation invariant Gibbs measures on the tree T∆ are

permutation-symmetric and all of them are Hessian dominant and not translation invariant

then, unless NP = RP, there is no FPRAS for approximating the partition function for

triangle-free ∆-regular graphs. Moreover, there exists ε = ε(q,B,∆) > 0 such that, unless

NP = RP, one cannot approximate the partition function within a factor 2εn for triangle-free

∆-regular graphs (where n is the number of vertices).

5.1 The phase labeling problem and the reduction scheme

5.1.1 Recap: the properties of the gadget

For convenience, we restate the properties of the graph distribution Grn from Chapter 4. To

do this, we briefly recall few definitions from Section 4.1, see therein for more details.

A graph G ∼ Grn is bipartite, whose bipartition is labeled as (+,−). Moreover, G has

vertices of degree ∆ and ∆−1, and W denotes the set of vertices with degree ∆−1. Further,

Q is the union of dominant phases p = (α,β) (cf. Definition 6) and the product measures

ν⊗p (·) on configurations σ on G are defined in terms of the corresponding fixpoints of the

tree recursions (cf. equation (92)). Finally, the phase Y (σ) of a configuration σ on G is the

dominant phase which is closer to the footprint of σ on the vertices of degree ∆ in G.

We proved the following theorem in Chapter 4.

Theorem 34. Let ∆ ≥ 3 and suppose that the interaction matrix B satisfies conditions

(H1), (H2), (H3). Let r be a fixed constant. Then, for every ε > 0, a random graph
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G ∼ Grn,∆ satisfies with probability 1− o(1) as n→∞ all of the following:

1. For each p ∈ Q, (1 − ε)/|Q| ≤ µG(Y (σ) = p) ≤ (1 + ε)/|Q|. That is, the phases in

the graph G appear with roughly equal probability.

2. For each p ∈ Q, for all η : W → [q], µG(σW = η |Y (σ) = p)/ν⊗p (η) ∈ [1 − ε, 1 + ε].

That is, conditioned on the phase p of the configuration, the spins of the vertices in

W are roughly independent and the marginal measure on them can be approximated

by the measure ν⊗p (·).

3. There is no edge between W+ and W−. Moreover, there is no vertex in G which has

two neighbors in W+ ∪W−.

Moreover, G is simple with asymptotically positive probability and the above continue to

hold with probability 1− o(1) conditioned on G being simple.

Let ∆ ≥ 3. In this chapter, we will also need the following condition on the spin system

specified by the interaction matrix B:

(H4) There does not exist a dominant phase which is translation invariant. In other words,

if p = (α,β) is a dominant phase (cf. Definition 6) for the spin system with interaction

matrix B, it holds that α 6= β.

5.1.2 The phase labeling problem

In this section, we define the phase labeling problem for a general spin system with inter-

action matrix B and degree ∆ ≥ 3. We have already done this in the specific case of the

colorings model in Section 1.4.5.2.

In the remainder of the chapter, we are going to identify a dominant phase p = (α,β)

with the corresponding fixpoint of the tree recursions (r, c); this is justified by Theorem 5,

equation (11). With a slight abuse of notation, we will write p = (r, c) instead of (α,β);

no confusion should arise, we will not need an explicit handle on (α,β) in this chapter.

From hereon, we are going to assume that we have a list of the dominant phases. For

fixed q,∆,B, they can be found using existential theory of reals and can be approximated
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to any desired polynomial accuracy of their values. Let Q be the list of dominant phases–we

will call them ordered phases and view them as ordered pairs of vectors:

Q = {(r1, c1), . . . , (rQ, cQ)}.

The condition (H4) translates into ri 6= ci for all i ∈ [Q]. Note that if (r, c) ∈ Q, then by

symmetry (c, r) ∈ Q as well. We will refer to the unordered pair of vectors {r, c} as an

unordered phase. Let Q′ be the set of unordered phases over all dominant phases; namely,

Q′ = {{r, c} | p = (r, c) ∈ Q}. Enumerate Q′ as follows:

Q′ = {{r1, c1}, . . . , {rQ′ , cQ′}}.

Note that Q = 2Q′ (as a consequence of condition (H4)).

We will denote unordered phases using p; the two ordered phases corresponding to the

unordered phase p will be denoted by p+ and p−. Given a graph H with vertex set V we

will assign ordered phases to its vertices—the labeling (also called phase assignment) will

be denoted by Y : V → Q. The corresponding labeling by unordered phases (where the

ordering is removed) will be denoted by Y ′.

Now we define the weight of a phase assignment. We will have two types of edges in H:

parallel or symmetric; the type of an edge will only impact the weight of a phase assignment.

In particular, a parallel edge whose endpoints have labels (r1, c1) and (r2, c2) incurs weight

wp((r1, c1), (r2, c2)) = ln(rᵀ1Br2) + ln(cᵀ1Bc2),

while a symmetric edge incurs weight

ws((r1, c1), (r2, c2)) = wp((r1, c1), (r2, c2)) + wp((r1, c1), (c2, r2)).

Note that if we flip (r1, c1), that is, replace it by (c1, r1), the weight of the symmetric edge

does not change.

We will use the following problem in our reduction.

Phase Labeling Problem(B,Q):

INPUT: undirected edge-weighted multigraph H = (V,E) and a partition of the edges

{Ep, Es}.

121



OUTPUT: MaxLwt(H) := maxY LwtH(Y), where the maximization is over all possible

phase labelings Y : V → Q and

LwtH(Y) =
∑

{u,v}∈Es

ws(Y(u),Y(v)) +
∑

{u,v}∈Ep

wp(Y(u),Y(v)).

The motivation for the Phase Labeling problem is the following lemma. The proof

roughly follows the lines of [64] and is given in Section 5.2.

Lemma 55. Let ∆ ≥ 3 and B specify the interaction matrix of a spin system. Assume

further that conditions (H1), (H2), (H3) are satisfied. Then, a (randomized) algorithm that

approximates the partition function on triangle free ∆-regular graphs within an arbitrarily

small exponential factor yields a PRAS for the phase labeling problem with parameters B,Q

on bounded degree graphs.

The most difficult part of our arguments is the following lemma which is given in Sec-

tion 5.5.

Lemma 56. Let ∆ ≥ 3 and B specify the interaction matrix of a spin system. Assume fur-

ther that condition (H4) is satisfied. A PRAS for the phase labeling problem with parameters

B,Q on bounded degree graphs yields a PRAS for MaxCut on 3-regular graphs.

Using Lemmas 55 and 56, we obtain Theorem 14.

Proof of Theorem 14. Suppose that there exists a (randomized) algorithm to approximate

the partition function on ∆-regular graphs with interaction matrix B up to an arbitrarily

small exponential factor. Then, combinining Lemmas 55 and 56, we obtain a (randomized)

algorithm to approximate MaxCut on 3-regular graphs within a factor of 1 − o(1). This

contradicts the result of [3].

5.2 Connection between approximating the partition function and the
phase labeling problem

The purpose of this section is to prove Lemma 55.

We begin by clarifying what degree means in our setting. Let H = (V,E) be an instance

of the phase labeling problem, and {Ep, Es} be a partition of the edges and |V | = m. The
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degree of a vertex v ∈ V will be defined as 2ds+dp+ 4ls+ 2lp, where ds, dp are the numbers

of symmetric and parallel edges joining v to a distinct vertex u and ls, lp are the numbers of

symmetric and parallel loops from v to itself. The bounded degree assumption means there

is an absolute constant D (not depending on m) which bounds the degree of any v ∈ V .

To approximate the phase labeling problem on H with parameters B,Q, we will replace

each vertex in the graph H by a suitable graph in a family of gadgets F . The construction

has a parameter k which roughly controls the accuracy of the approximation we want to

achieve. The family F will be of the form {Gd}d∈[D] and the gadget for a vertex v will be

Gd where d is the degree of v. Note that the cardinality of F is bounded by the absolute

constant D. The gadgets Gd are selected from the graph distribution Gkdn for some n which

is sufficiently large.

An immediate consequence of Theorem 34 is the following.

Corollary 57. Let k be an arbitrarily large constant. For d ∈ [D], let Gd ∼ Gkdn and set

F = {Gd}d∈[D]. Then, for all sufficiently large n, Gd is simple and satisfies Items 1, 2 and

3 of Theorem 34 with positive probability for every d ∈ [D].

Corollary 57 also yields a trivial randomized algorithm to construct the family F for

an arbitrary constant k. In fact, since all the parameters are constants, one can construct

the family F by brute force search. With the family F in our hands, we can now give the

details of the construction.

The first step consists of replacing each vertex v ∈ H with degree d with a distinct copy

of the gadget Gd ∈ F . We will refer to the gadget corresponding to vertex v as Gv and the

respective sets in Gv as Wv,W
±
v , U

±
v . Denote by Ĥ the graph obtained by the disconnected

copies of the gadgets.

The second step consists of placing the edges of H in Ĥ, that is, making connections

between the gadgets. The final graph will be denoted as HF . The edges we are going to

place will form a perfect matching on ∪v∈HWv and as a result HF will be ∆-regular. Every

parallel edge of H corresponds to 2k edges in HF , while every symmetric to 4k. Roughly,

parallel and symmetric indicate which parts of two gadgets get connected (recall that the
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gadgets are bipartite). Loops are treated as if they were connecting distinct vertices.

In detail, let (u, v) be an edge e of H. Suppose first that u 6= v. If e is parallel, place

k edges between W s
u and W s

v for s ∈ {+,−}. If e is symmetric, place k edges between W s
u

and W s
v and k edges between W s

u and W−sv for s ∈ {+,−}. Suppose now that u = v. If

e is parallel, place k edges between distinct vertices in W+
v and k edges between distinct

vertices in W−v . If e is symmetric, place 2k edges between W+
v and W−v , k edges between

distinct vertices in W+
v and k edges between distinct vertices in W−v .

The first step of the construction guarantees that the second step can be done in a

(deterministic) way so that HF is ∆-regular. Moreover, by Corollary 57 and item 3 of

Lemma 34, HF is a simple, triangle-free graph.

Proof of Lemma 55. The argument in [64, Lemma 4.3] almost verbatim gives

(1− ε)2m

|Q|m
≤

ZHF/ZĤ
exp(k ·MaxLwt(H))

≤ (1 + ε)m.

This can be rearranged into

1

k
log
(ZHF
Z
Ĥ

)
− m

k
log(1 + ε) ≤MaxLwt(H) ≤ 1

k
log
(ZHF
Z
Ĥ

)
− m

k

[
2 log(1− ε)− log |Q|

]
.

The argument in [64, Proof of Theorems 1 and 2] gives the desired result. We give

the short details. The graph Ĥ consists of m disconnected subgraphs, each of constant

size. Hence, we can compute Z
Ĥ

exactly in polynomial time. Assume now that ZHF

can be approximated within a factor of exp
(
c|Ĥ|

)
in polynomial time for any c > 0.

Since log
(
ZHF

)
is bounded above by O(|Ĥ|), the ratio log

(
ZHF/ZĤ

)
can be approximated

within an additive O(c|Ĥ|) = O[cm(n+ kD)]. Thus we obtain upper and lower bounds for

MaxLwt(H) which differ by O[(cn + 1)m/k]. A random phase labeling yields the lower

bound MaxLwt(H) ≥ Ω(m). Thus, the final approximation is within a multiplicative

factor 1 + O[(cn + 1)/k] of MaxLwt(H). To make this multiplicative factor arbitrarily

close to 1, first take k large and make cn small with a sufficiently small value of c.
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5.3 Reducing MaxCut to the phase labeling problem for spin systems
with a unique dominant phase

Proof of Theorem 15. The assumptions of the Theorem imply that Q = {p+,p−}, where

p = {r, c}. Using Lemma 55, the hardness will follow from the APX-hardness of MaxCut

[3] and

wp(p
+,p+) = wp(p

−,p−) < wp(p
+,p−).

The equality follows from the definition of wp(·, ·) and p+,p−, while the inequality is equiv-

alent to

(rᵀBr)(cᵀBc) ≤ (rᵀBc)2.

To see the inequality, recall that (r, c) are maximizers of Φ(r, c) =
rᵀBc

‖r‖p ‖c‖p
, where p =

∆
∆−1 . By cancelling the denominators in Φ(r, r)Φ(c, c) ≤ (Φ(r, c))2, we obtain the desired

inequality, as wanted.

5.4 Reducing MaxCut to the colorings phase labeling problem

In this section, as a preparation to the proof of the more general Lemma 56, we first prove

the following lemma.

Lemma 58. A PRAS for Colorings Phase Labeling Problem(Q) yields a PRAS for

Max-Cut on 3-regular graphs.

The reduction in the proof of Lemma 58 relies on the following gadget which “prefers”

the unordered phase of two distinguished vertices u and v to agree. Recall that for a phase

assignment Y with ordered phases, we denote by Y ′ the respective phase assignment with

unordered phases.

Lemma 59. A constant sized gadget J1 with two distinguished vertices u, v can be con-

structed with the following property: all edges of J1 are symmetric and the following is

true,

max
Y;Y ′(u)=Y ′(v)

LwtJ1(Y) > ε1 + max
Y;Y ′(u)6=Y ′(v)

LwtJ1(Y), (148)

where ε1 > 0 is a constant depending only on k and ∆.
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With Lemma 59 at hand, we can derive Lemma 58 fairly easily.

Proof of Lemma 58. Let ε1 be as in Lemma 59 and

t := 2

⌈
maxp1,p2 wp(p1,p2)−minp1,p2 wp(p1,p2)

ε1

⌉
.

Given a 3-regular instance H = (V,E) of Max-Cut, we first declare all edges of H to be

parallel. Moreover, for every edge (u′, v′) of H, take t copies of gadget J1 from Lemma 59,

identify (merge) their u vertices with u′, and identify (merge) their v vertices with v′. Let

H ′ be the final graph.

To find the optimal phase labeling of H ′, we may focus on the phase assignment re-

stricted to vertices in H, since each gadget J1 can be independently set to its optimal value

conditioned on the phases for its distinguished vertices u and v. We claim that

MaxLwt(H ′) = C1MaxCut(H) + (C2 + C3t)|E|, (149)

for constants C1, C2, C3 to be specified later (depending only on k,∆). Using the trivial

bound MaxCut(H) ≥ |E|/2 = 3|V |/4, the lemma follows easily from (149). We thus focus

on proving (149).

The key idea is that for any phase labeling Y : V → Q, changing the unordered phases of

vertices in H to the same unordered phase p ∈ Q′, while keeping the spins, can only increase

the weight of the labeling. Indeed, for (u, v) ∈ E such that Y ′(u) = Y ′(v), no change in

the weight of the labeling occurs, using (148). For (u, v) ∈ E such that Y ′(u) 6= Y ′(v), the

potential (weight) loss from the parallel edge (u, v) is compensated by the gain on the t

copies of J1 by (148) and the choice of t.

For phase labelings which assign vertices of H the same unordered phase p, to attain

the maximum weight for a phase labeling, we only need to choose the spins, in order to

maximize the contribution from parallel edges (the edges of H). The same argument we

discussed for the hard-core model, (19) yields that the optimal choice of spins to the phases

induces a maximum-cut partition of H. For such a spin assignment, the contribution from

parallel edges is C1MaxCut(H) + C2|E|, where

C1 := wp(p
+,p−)− wp(p−,p−) and C2 := wp(p

−,p−).
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Finally, if we let C3 := maxY;Y ′(u)=Y ′(v)=p LwtJ1(Y), it is simple to see that the contribution

from symmetric edges is C3t|E|. This proves (149).

We next give the proof of the critical Lemma 59.

Proof of Lemma 59. Let Q′ := {p1, . . . ,pQ′} and pi := {ri, ci} for i ∈ [Q′]. Denote by K

the multigraph on Q′ vertices b1, b2, . . . , bQ′ with the following symmetric edges: self-loop

on bi for i ∈ [Q′] and two edges between bi and bj for every i, j ∈ [Q′] with i 6= j. We first

prove that the optimal phase assignments Y of K are those which assign each vertex bi a

distinct phase from Q′ (note that the spin of the phase does not matter since all edges of

K are symmetric). The desired gadget J1 will be constructed afterwards.

Let Y be a phase labeling of K and si be the number of vertices assigned phase pi.

Let s be the vector (s1, . . . , sQ′)
ᵀ. Note that 1ᵀs = Q′, where 1 is the all one vector with

dimension Q′. Then

LwtK(Y) =
∑

i,j∈[Q′]

sisjws(pi,pj) = sᵀAs,

where A is the Q′×Q′ matrix whose (i, j) entry equals ws(pi,pj). Note that A is symmetric

and 1 is an eigenvector of A (because of the transitive symmetry of phases). Moreover, if

we let s′ = s− 1, then 1ᵀs′ = 0. It follows that

sᵀAs = 1ᵀA1 + (s′)ᵀAs′. (150)

If A is negative definite, equation (150) shows that the all ones labeling is better than any

other labeling. Hence the result will follow if we prove that A is negative definite.

Let z1, . . . , zQ := r1, . . . , rQ′ , c1, . . . , cQ′ and let Â be the Q×Q matrix whose ij-entry

is ln(1 − zᵀi zj). Using the definition of the weights ws(·, ·), it is easy to check that for any

vector s it holds that

sᵀAs = (s, s)ᵀÂ(s, s),

so it suffices to prove that Â is negative definite. We will show here that Â is negative

semi-definite; the proof that Â is regular (and hence negative definite) is trickier and is

given in the proof of the more general Lemma 62. Note that the entries of Â are obtained
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by applying z 7→ ln(1−z) to each entry of the Gram matrix of the vectors z1, . . . , zQ. Since

for |z| < 1 we have ln(1 − z) = −z − z2/2 − z3/3 − . . ., by Schur’s product theorem (see

Corollary 7.5.9 in [33]) we obtain that Â is negative semi-definite, as desired.

To construct the gadget J1, we overlay two copies of K as follows. Let Ku (resp. Kv)

be a copy of K, where the image of bQ′ is renamed to u (resp. v). Overlay Ku,Kv by

identifying the images of b1, . . . , bQ′−1 in the two copies. Thus, the resulting graph J1 has

two self loops on bi for i ∈ [Q′ − 1], four edges between bi and bj for every i, j ∈ [Q′ − 1]

with i 6= j, two edges between u and bi for i ∈ [Q′ − 1], two edges between v and bi for

i ∈ [Q′ − 1] and a self loop on u, v.

Note that for every phase labeling Y of J1, we have

LwtJ1(Y) = LwtKu(Y) + LwtKv(Y)

and hence

MaxLwt(J1) ≤ 2MaxLwt(K).

Using that the optimal phase labelings for K are those which assign each vertex a distinct

phase from Q′, we obtain that the inequality holds at equality for those (and only those)

phase labelings which assign u, v a common phase p ∈ Q′ and vertices b1, . . . , bQ′−1 a

distinct phase from Q′ − {p}. This yields the ε1 in the statement of the lemma. Note that

ε1 depends only on Q′, which in turn is completely determined by k,∆.

5.5 Reducing MaxCut to the phase labeling problem for general anti-
ferromagnetic spin systems

5.5.1 Antiferromagnetic spin systems and their properties

5.5.1.1 Definition of antiferromagnetic spin systems

In this section, we define antiferromagnetic models in terms of the eigenvalues of the interac-

tion matrix B. Using this definition, we then state and prove properties of antiferromagnetic

models relevant to this work.

The interaction matrix B is assumed to be symmetric and have non-negative entries.

These are standard assumptions since we are interested in undirected graphs and the Gibbs

distribution should be a probability distribution. We will also assume that B is primitive,
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i.e., irreducible and aperiodic. As we demonstrate next, this is also a natural restriction

which does not affect generality.

If B is reducible, by a suitable permutation of the labels of colors, B can be put into

block diagonal form (which coincides with the normal form of the reducible B) where each

of the blocks is either irreducible or zero. Intuitively, this says that the original spin model

can be studied by considering the induced sub-models of each block which correspond to

irreducible symmetric matrices (where our results apply). Indeed, these sub-models are

“non-interacting” for connected graphs G, that is, the partition function for the original

model is simply the sum of the partition functions of each sub-model.

We are now ready to give the definition of antiferromagnetism we use.

Definition 11. Let B be the interaction matrix of a q-state spin system. Since B is

symmetric all of its eigenvalues are real. Also note that it has non-negative entries and by

irreducibility, the Perron-Frobenius theorem implies that one of the eigenvalues of B with the

largest magnitude is positive and simple, i.e., the associated eigenspace is one-dimensional.

The model is called antiferromagnetic if all the other eigenvalues are negative. Note that

no eigenvalue is allowed to be zero and hence B is regular.

The above definition generalizes antiferromagnetism for 2-spin systems, and captures

colorings as well as the antiferromagnetic region for the Potts models. Moreover, the above

definition seems natural in that it implies that neighboring vertices prefer to have different

spin assignments (see Corollary 61 below). Another nice feature of Definition 11 is that

it does not depend on the presence of external fields. Specifically, for ∆-regular graphs,

any external field can be pushed into the interaction matrix B with a congruence trans-

formation of the matrix B. The resulting interaction matrix, by Sylvester’s law of inertia,

has the same number of positive, zero and negative eigenvalues and in particular remains

antiferromagnetic.

We conclude this discussion by pointing out that some of our results for general models

are more easily stated when B is further assumed to be aperiodic. We shall refer to such

matrices B (irreducible and aperiodic) as ergodic. Note that if B is periodic, its period must
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be two, since B is symmetric. Such a model is only interesting on bipartite graphs (otherwise

the partition function is zero). It can be verified that Definition 11 of antiferromagnetism

implies that the matrix B is ergodic whenever q ≥ 3 (note that it is trivial to compute the

partition function on periodic models with q = 2).

5.5.1.2 Properties

As a consequence of the Perron-Frobenius theorem and the antiferromagnetism definition,

we may decompose the interaction matrix B of an antiferromagnetic model as

B = uuᵀ −PᵀP, (151)

where the vector u has positive entries and P is a square matrix. Using the decomposition

(151), we prove the following two lemmas which are used in the reduction.

Lemma 60. For antiferromagnetic B, and vectors z1, z2 ∈ Rq≥0 with ‖z1‖1 = ‖z2‖1 = 1,

we have

(zᵀ1Bz1)(zᵀ2Bz2) ≤ (zᵀ1Bz2)2.

Equality holds iff z1 = z2.

Proof. Set w1 = Pz1, w2 = Pz2, a1 = uᵀz1, a2 = uᵀz2. Then

zᵀ1Bz1 = a2
1 −wᵀ

1w1, zᵀ2Bz2 = a2
2 −wᵀ

2w2, zᵀ1Bz2 = a1a2 −wᵀ
1w2.

Since B, z1, z2 have non-negative entries, the above equalities imply that

a2
1 −wᵀ

1w1, a
2
2 −wᵀ

2w2, a1a2 −wᵀ
1w2 ≥ 0.

The desired inequality reduces to

(
a2

1 −wᵀ
1w1

)(
a2

2 −wᵀ
2w2

)
≤
(
a1a2 −wᵀ

1w2

)2
.

This is known as Aczél’s inequality. The fastest proof goes as follows: set b21 = a2
1−wᵀ

1w1 and

b22 = a2
2 −wᵀ

2w2, so that by Cauchy-Schwarz a1a2 ≥ b1b2 + wᵀ
1w2, implying the inequality.

Equality can only hold if a1 = λa2 and w1 = λw2, yielding uᵀ(z1 − λz2) = 0 and

P(z1 − λz2) = 0. We easily obtain B(z1 − λz2) = 0 and since B is invertible, z1 = λz2.

The assumption ‖z1‖1 = ‖z2‖1 = 1 implies λ = 1, as wanted.
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Corollary 61. By plugging in the inequality of Lemma 60 the vectors with a single 1 in the

positions i and j respectively, we obtain that any two spins i, j induce an antiferromagnetic

two-spin system.

Lemma 62. Let z1, . . . , zn ∈ Rd be a collection of distinct non-negative vectors such that

‖zi‖1 = 1 for i ∈ [n]. Let ai = zᵀiu, where u is as in (151). Let A′ be the n × n matrix

whose ij-th entry is ln(zᵀiBzj)− ln(ai)− ln(aj). Then A′ is negative definite.

Proof. Let wi = 1
ai

Pzi and let W be the q × n matrix whose columns are w1, . . . ,wn.

We first argue wi 6= wj for i 6= j. Suppose wi = wj . Let z = 1
ai

zi − 1
aj

zj . We have

Pz = wi − wj = 0 and uᵀz = 1 − 1 = 0 and hence Bz = 0. Since B is regular we have

z = 0. Thus 0 = zᵀ1 = 1
ai
− 1

aj
which implies ai = aj which in turn implies zi = zj , a

contradiction. Thus wi 6= wj for i 6= j.

Note that we have

ln(1−wᵀ
iwj) = ln(aiaj − zᵀiP

ᵀPzj)− ln(aiaj) = A′ij .

Thus the ij-th entry in A′ is obtained by applying z 7→ ln(1−z) to each entry of the Gramm

matrix WᵀW . Note that for |z| < 1 we have ln(1− z) = −z− z2/2− z3/3− . . . and hence

by Schur product theorem A′ is negative semi-definite (see Corollary 7.5.9 in [33]).

Now we argue that A′ is regular (and hence negative definite). We have

−A′ =
∞∑
k=1

1

k
Wᵀ

kWk, (152)

where Wk is the qk×n matrix whose columns are w⊗k1 , . . . , w⊗kn . Note that if A′ is singular

then there exists a non-zero vector v such that vᵀA′v = 0 and for this to happen we would

have to have

Wkv = 0 (153)

for all k ≥ 1 (the terms on the right-hand side of (152) are non-negative and if even one of

them is positive then vᵀA′v < 0).

There exists a vector h ∈ Rq such that αi = hᵀwi, i = 1, . . . , n are distinct real numbers

(the wi’s are distinct and hence for any i 6= j the measure of h ∈ [0, 1]q such that hᵀwi =
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hᵀwj is zero). Note that (h⊗k)ᵀWk is (αk1 , . . . , α
k
n). From (153) we obtain that for every

integer k ≥ 1 we have (αk1 , . . . , α
k
n)v = 0 and hence v = 0 (by considering the Vandermonde

matrix {αki }), a contradiction. Hence A′ is regular and negative definite.

5.5.2 The reduction

The remainder of this section is devoted to the proof of Lemma 56. We will use the existence

of the following gadget which “prefers” the unordered phase of two vertices to agree. We

postpone the proof to Section 5.5.3.

Lemma 63. A constant sized gadget J1 with two special vertices u, v can be constructed

with the following property: all edges of J1 are symmetric and the following is true,

max
Y;Y ′(u)=Y ′(v)

LwtJ1(Y) > ε1 + max
Y;Y ′(u)6=Y ′(v)

LwtJ1(Y), (154)

where ε1 > 0 is a constant depending only on the spin model and ∆.

In Lemma 60 we proved that for a parallel edge and any phase p we have w(p+,p+) =

wp(p
−,p−) < wp(p

+,p−) and hence there exists a constant ε2 > 0 depending only on the

model and ∆ such that for every phase p ∈ Q we have

wp(p
+,p+) = wp(p

−,p−) < wp(p
+,p−)− ε2. (155)

Combining Lemma 63 with equation (155) we can construct a gadget that “prefers” the

unordered phase of two vertices to agree and also “prefers” the spin assignment to disagree.

Lemma 64. A constant sized gadget J2 can be constructed with two special vertices u, v

and the following property: there exists a phase p ∈ Q′ satisfying simultaneously all of the

following:

1. A1(p) = MaxLwt(J2), where

A1(p) := max
Y;Y(u)=p+,Y(v)=p−

LwtJ2(Y) = max
Y;Y(u)=p−,Y(v)=p+

LwtJ2(Y). (156)

2. Among p that satisfy Item 1, p maximizes

A2(p) := max
Y;Y(u)=p+,Y(v)=p+

LwtJ2(Y) = max
Y;Y(u)=p−,Y(v)=p−

LwtJ2(Y). (157)
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3. The following inequalities hold

A1(p) > A2(p) + ε3 and A2(p) > ε3 + max
Y;Y ′(u)6=Y ′(v)

LwtJ2(Y), (158)

where ε3 > 0 is a constant (depending only on the model and ∆).

Proof. To construct J2 we take t := 3d(maxp1,p2 wp(p1,p2)−minp1,p2 wp(p1,p2))/ε1e copies

of gadget J1 from Lemma 63, identify (merge) their u vertices, and identify (merge) their

v vertices. Finally we add a parallel edge between u and v.

Let p be the unordered phase that is the common value of Y ′(u) and Y ′(v) for which

the maximum on the left-hand side of (154) is achieved (note that p is not unique; we just

take one such p). Let

A4 := max
Y;Y ′(u)=p,Y ′(v)=p

LwtJ2(Y) and A5 := max
Y;Y ′(u)6=Y ′(v)

LwtJ2(Y).

Then applying (154) on each copy of J1 in J2 we obtain

A4 > A5 + 2(max
p1,p2

wp(p1,p2)− min
p1,p2

wp(p1,p2)). (159)

Thus the maximizer of maxY LwtJ2(Y) happens for Y with Y ′(u) = Y ′(v). Only the parallel

edge is influenced by the spin and hence, by (155), we have

max
Y

LwtJ2(Y) = max
p

max
Y:Y(u)=p+,Y(v)=p−

LwtJ2(Y). (160)

Let p be the maximizer on the right-hand side of (160) that (secondarily) maximizes the

second expression in (157). Note that p satisfies the first and second condition of the lemma.

The first part of the third condition is satisfied for any ε3 ≤ ε2 (using (155)). Recall that

ε2 > 0. The second part of the third condition is satisfied for ε3 ≤ maxp1,p2 wp(p1,p2) −

minp1,p2 wp(p1,p2). Recall that maxp1,p2 wp(p1,p2) − minp1,p2 wp(p1,p2) > 0. Thus we

can take ε3 > 0 to be the smaller of the two upper bounds (each of which is a constant

depending on the model and ∆ only).

Lemma 65. Let B be the interaction matrix of an antiferromagnetic spin system. Let

A1, A2 be the constants defined in Lemma 64. There exist constants D1, D2, D3 depending
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only on the model and ∆ such that the following is true. Given a cubic graph H we can, in

polynomial-time, construct a max-degree-D1 graph G with |V (G)| ≤ D2|V (H)| such that

MaxLwt(G) = (A1 −A2)MaxCut(H) +A2|E(H)|+A1D3|V (H)|.

We can now go back and prove the inapproximability result for the phase labeling

problem.

Proof of Lemma 56. Since A1, A2, D3 are constants depending only on the model and ∆,

the trivial algorithm gives the bound MaxCut(H) ≥ 1/2|E(H)| = 3/2|V (H)|. Together

with Lemma 65 we obtain the result.

Proof of Lemma 65. Replace each edge of H by gadget J2 and for each vertex w ∈ V (H)

add D3 new vertices w1, . . . , wD3 and add a gadgets J2 between w and wi (for i ∈ [D3]),

where D3 will be determined shortly.

The purpose of the D3 copies of J2 is to force phase p (from Lemma 64) to be used on

the special vertices in a labeling of G with maximum weight. A phase s 6= p can have

`1(s) := max
Y;Y(u)=s+,Y(v)=s+

LwtJ2(Y)− max
Y;Y(u)=p+,Y(v)=p+

LwtJ2(Y) > 0, (161)

but then by the choice of p

`2(s) := max
Y;Y(u)=p+,Y(v)=p−

LwtJ2(Y)− max
Y;Y(u)=s+,Y(v)=s−

LwtJ2(Y) > 0. (162)

Let

D3 = 4 + 3

⌈
max

s

`1(s)

`2(s)

⌉
,

where the maximum is taken over s such that (161) is satisfied (if no such s exists we can

take D3 = 0). Note that D3 is a constant depending on the model and ∆ only.

Now we want to find the maximum weight labeling of G. We are only going to focus on

labeling of the special vertices (u’s and v’s in the J2 gadgets), since once those are fixed one

just finds the optimal labeling in each gadget (conditioned on the labels of special vertices).

Let U be a labeling of the special vertices that leads to the maximum weight labeling of

G. Let Û be the labeling obtained from U by changing the phase of each special vertex
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to p while (1) keeping the original spin on the vertices of H, and (2) making the spin of

w1, . . . , wD3 the opposite of the spin of U (for each w ∈ V (H)). Now we compare U and Û

for each J2 gadget corresponding to edge of H:

• if in U the phase of u and v were different then Û has higher weight than U on the

gadget, using (158);

• if in U the phase of u and v is the same but the spin is different then Û has greater

or equal weight than U on the gadget, using (156);

• if in U the phase of u and v is the same and the spin is the same that the loss of Û

on the gadget (compared to U) is `1(s) (where s is the phase of u, v in U).

For the J2 gadgets connecting U to w1, . . . , wD3 we have

• if the phase of w in U was s such that `1(s) > 0 then the gain of Û on each gadget

(compared to U) is at least `2(s);

• otherwise, by (156) Û has greater or equal weight than U on the gadget.

For each vertex whose phase in U was s such that `1(s) > 0 there are 3 edges where Û can

lose `1(s) (compared to U) but there are D3 edges where Û gains `2(s) (compared to U).

Since D3`2(s) > 3`1(s) we have that Û has at least as large weight as U (and hence is also

optimal).

Now we just argue how the spins should be assigned. The largest number of J2 gadgets

with opposite spins on the special vertices arises when we take the max-cut of H and assign

the spin according to the cut.

5.5.3 The gadget

Proof of Lemma 63. Let z1, . . . , zQ := r1, . . . , rQ′ , c1, . . . , cQ′ . Let u be defined as in Equa-

tion (151). In Section 5.5.1, Lemma 62 it is proved that the Q × Q matrix Â whose ij-th

entry is ln(zᵀiBzj) − ln(zᵀiu) − ln(zᵀju) is negative definite. Let A′ be the Q′ × Q′ matrix

obtained by the following “folding” of Â:

A′ij = Âi,j + Âi+Q′,j + Âi,j+Q′ + Âi+Q′,j+Q′ .
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We have that A′ is also negative definite (since xᵀA′x = yᵀÂy′, where yᵀ = (xᵀ,xᵀ)).

Note that

A′ij = ws((xi,yi), (xj ,yj))− a′i − a′j ,

where a′i := 2 ln(xᵀ
iu) + 2 ln(yᵀ

i u).

Let λ1 be largest eigenvalue of −A′ and let λ2 be the smallest eigenvalue of −A′. Note

that 0 < λ2 ≤ λ1. Define A to be the Q′×Q′ matrix with Aij = A′ij + a′i + a′j and consider

the following maximization problem

max
x;xᵀ1=1,x≥0

xᵀAx. (163)

Note that for x with xᵀ1 = 1 we have

xᵀAx = 2a′ᵀx + xᵀA′x, (164)

where A′ is negative definite. Note that if x and y are distinct optimal solutions of (163)

then (x + y)/2 satisfies all the constraints, and from (164) and negative definiteness of A′

we have

((x + y)/2)ᵀA((x + y)/2) > (xᵀAx + yᵀAy) /2,

a contradiction (with optimality of both x and y). Thus (163) has a unique maximum;

let x∗ be the value of x achieving it. Let O∗ be (x∗)ᵀAx∗. Let S be the set of non-zero

coordinates in x∗.

Let y ∈ RQ′ be such that yᵀ1 = 0 and y is zero on coordinates outside S. Then from

(local) optimality of x∗ we have

(x∗+y)ᵀA(x∗+y) = O∗+2(a′ᵀ+(x∗)ᵀA′)y+yᵀA′y = O∗+yᵀA′y ≥ O∗−λ1‖y‖22. (165)

Equation (165) tells us that moving slightly from the optimum the objective decreases at

most quadratically in the length of y.

Let y ∈ RQ′ be such that yᵀ1 = 0 and y is non-negative on coordinates outside S. Then

from (local) optimality of x∗ we have

(x∗+y)ᵀA(x∗+y) = O∗+2(a′ᵀ+(x∗)ᵀA′)y+yᵀA′y = O∗+yᵀA′y ≥ O∗−λ2‖y‖22. (166)
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Equation (165) tells us that moving slightly from the optimum the objective decreases at

least quadratically in the length of y.

Let Z ≥ (4Q′λ1/λ2)Q
′
. Note that Z is a constant depending only on the model and ∆.

Let z1/z, . . . , zQ′/z be the optimal simultaneous Diophantine approximation of x∗1, . . . , x
∗
Q′

with z1, . . . , zQ′ , z ∈ Z and 1 ≤ z ≤ Z. By Dirichlet’s theorem we have

|zx∗i − zi| ≤ Z−1/Q′ < 1. (167)

Note that (167) implies

if x∗i = 0 then zi = 0. (168)

Also note that ∣∣∣∣∣∣
Q′∑
i=1

zx∗i −
Q′∑
i=1

zi

∣∣∣∣∣∣ ≤
Q′∑
i=1

|zx∗i − zi| ≤ Q′Z−1/Q′ < 1,

and since z and zi’s are integers and (x∗)ᵀ1 = 1 we have

Q′∑
i=1

zi
z

= 1. (169)

From (168) and (169) we have that for y := (z1/z, . . . , zQ′/z)− x∗ we can apply (165) and

hence

(z1/z, . . . , zQ′/z)A(z1/z, . . . , zQ′/z)
ᵀ ≥ O∗ − λ1Q

′Z−2/Q′z−2. (170)

Now we are ready to construct the gadget J1. First, let K be the multigraph on z vertices

b1, b2, . . . , bz with the following symmetric edges: self-loop on bi for i ∈ [z] and two edges

between bi and bj for every i, j ∈ [z] with i 6= j. To obtain J1, we overlay two copies of

K as follows. Let Ku (resp. Kv) be a copy of K, where the image of bz is renamed to u

(resp. v). Overlay Ku,Kv by identifying the images of b1, . . . , bz−1 in the two copies. Thus,

the resulting graph J1 has z + 1 vertices and the following edges: two self loops on bi for

i ∈ [z − 1], four edges between bi and bj for every i, j ∈ [Q′ − 1] with i 6= j, two edges

between u and bi for i ∈ [z − 1], two edges between v and bi for i ∈ [z − 1] and a self loop

on u, v.

Note that the weight of a phase assignment on J1 is the sum of the induced phase

assignments on Ku and Kv. Consider an assignment of phases Yo such that in each complete
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graph zi vertices get phase i (note that this forces the phases of u and v to be the same).

The weight of the phase assignment Yo is

LwtJ1(Yo) = S1 := 2(z1, . . . , zQ′)A(z1, . . . , zQ′)
ᵀ ≥ 2z2O∗ − 2λ1Q

′Z−2/Q′ . (171)

Now suppose that we have a phase assignment Y for J1 where the phases of u and v are

different. Let û be the vector with ûi counting the number of vertices with phase i in Ku

and define similarly v̂.

Note that ‖û − v̂‖22 = 2 (since û and v̂ differ in two coordinates—the phases of u

and v in the assignment). By triangle inequality we have ‖û/z − x∗‖2 ≥ 1/(z
√

2) or

‖v̂/z− x∗‖2 ≥ 1/(z
√

2) (otherwise we would have ‖û/z− v̂/z‖2 <
√

2/z). W.l.o.g. assume

that û/z has the greater distance from x∗. We have

LwtJ1(Yo) = S2 := ûᵀAû + v̂ᵀAv̂ ≤ z2(2O∗ − λ2/(2z
2)) = 2z2O∗ − λ2/2. (172)

By our choice of Z we have S1 > S2 and hence in an optimal phase assignment for J1 we

have that u and v get the same phase. Note that we did not show which phase assignment

is optimal; we only found a phase assignment in which u, v have the same phase that is

better than any assignment in which u, v have different phases.
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CHAPTER VI

PHASE DIAGRAMS

In this chapter, we study the phase diagrams for spin systems of particular interest. We

will be working on random ∆-regular bipartite graphs, and hence phase diagrams should

be understood as the maximizers (α,β) of the limit 1
n log EG[Zα,β

G ], see also Definition 6

in Section 3.3. We do this for the following spin systems: antiferromagnetic 2-spin systems

with external field, the ferromagnetic Potts model, the antiferromagnetic Potts and the

colorings model.

Our general approach will be to use Theorem 2 as far as possible, that is, we will identify

whenever possible the local maxima of the function Ψ1. By Theorem 2, this is equivalent

to identifying the stable fixpoints of the tree recursions. Of course, this is trivial when the

parameters of the model lie in the uniqueness regime since there only one fixpoint exists,

which by Theorem 5 corresponds to the (unique) global maximum of Ψ1. Thus, the more

interesting case is the non-uniqueness regime.

For antiferromagnetic 2-spin systems, identifying the stable fixpoints of the tree recur-

sions will be sufficient to find the phases since they will be the only local maximizers of

the function Ψ1. In contrast, for the q-spin systems we investigate, more work is needed,

essentially because the number of non-permutation symmetric fixpoints is a function of q.

For the ferromagnetic Potts model, the situation remains relatively simple: the non-

permutation symmetric stable fixpoints turn out to not vary with q and ∆, and hence we

can find the dominant phases by comparing the value of Ψ1 at the local maximizers. An

interesting phenomenon arises here, the so called phase coexistence. In particular, at a

certain temperature B = Bo (where Bo is a function of q,∆), the global maximizers are

no longer permutation symmetric and each has total measure a constant fraction of the

Gibbs distribution. The phase coexistence phenomenon for the ferromagnetic Potts model

has been observed and rigorously proved on the complete graph (this setting should be
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considered simpler than ours) and on the grid Z2 (this setting should be considered harder

than ours).

The analysis of dominant phases becomes much more complicated for the antiferromag-

netic Potts model and the colorings model. First, the local maximizers now turn out to

depend on both q,∆. Second, the structure of the local maximizers needs several variables

to be captured, which makes analytical penetration much more intricate.

6.1 Antiferromagnetic 2-spin systems

A 2-spin system is specified by parameters B1, B2 ≥ 0 and λ > 0. To avoid trivial models

we will assume that at least one of B1, B2 is bigger than 0. The edge interaction matrix for

a 2-spin system with parameters B1, B2 is given by

B =

 B1 1

1 B2

 .
The system is antiferromagnetic if B1B2 < 1 and ferromagnetic otherwise. For the purposes

of this section only, we will index the rows and columns of B by {0, 1} (instead of {1, 2 . . . , q}

used for q-spin systems).

For a graph G = (V,E) and a configuration σ : V → {0, 1}, the weight of the configu-

ration σ is given by

wG(σ) = λ|σ
−1(0)|

∏
(u,v)∈E

Bσ(u),σ(v),

and the partition function is given by ZG =
∑

σ wG(σ).

We note that for ∆-regular graphs, the external field λ may be pushed into the interac-

tion matrix B, giving a 2-spin system specified by the interaction matrix

Bλ =

 λ2/∆B1 λ1/∆

λ1/∆ B2

 .
Thus, Theorem 14 applies, provided that its assumptions are satisfied. As a first step, it is

important to characterize the semi-translation invariant non-uniqueness regime for Bλ. For

two-spin systems, this turns out to coincide with the non-uniqueness regime. As a starting
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point, we study the fixpoints of the tree recursions 8 for Bλ, which can be written as

R0 ∝ (B1C0 + λ1/∆C1)∆−1 and R1 ∝ (λ1/∆C0 + λ2/∆B2C1)∆−1,

C0 ∝ (B1R0 + λ1/∆R1)∆−1 and C1 ∝ (λ1/∆R0 + λ2/∆B2R1)∆−1.

(173)

We can easily transform the system (173) into a system with two variables, by substituting

x′ = R0/R1 and y′ = C0/C1. This gives the equivalent system of equations

x′ =

(
λ2/∆B1y

′ + λ1/∆

λ1/∆y′ +B2

)∆−1

and y′ =

(
λ2/∆B1x

′ + λ1/∆

λ1/∆x′ +B2

)∆−1

(174)

A further simplification is also possible giving a direct correspondence with the standard

form of the tree recursions for the original spin system (with the external field λ). Namely,

if we set x = λ1/∆x′ and y = λ1/∆y′, we obtain

x = λ

(
B1y + 1

y +B2

)∆−1

and y = λ

(
B1y + 1

y +B2

)∆−1

(175)

The system (175) always has a positive solution with x = y =: p. The quantity p captures

the uniqueness regime on the infinite tree. Precisely, the 2-spin system with parameters

B1, B2, λ is in the uniqueness regime of T̂∆ iff

(∆− 1)ω ≤ 1, where ω :=
(1−B1B2)p

(B2 + p)(1 +B1p)
. (176)

To gain some intuition, let us look at the stability matrix of the tree recursions. By

Lemma 33, for a general interaction matrix B, the condition for Jacobian stability of a

fixpoint of the tree recursions is related to the spectrum of L =
[

0 A
Aᵀ 0

]
, where A is the

q × q matrix whose ij-entry is given by Aij = BijRiCj/
√
αiβj and αi, βj are given by

(43). Recall that ±1 are eigenvalues of L and the condition for Jacobian stability is that all

the other eigenvalues have absolute value less than 1/(∆ − 1) (see for details the proof of

Theorem 2 in Section 3.4.3). We next show that ±ω in (176) are the nontrivial eigenvalues

of L and hence, when (∆− 1)ω < 1 the fixpoint x = y = p is Jacobian stable.

To do this, we trace back a solution to (173), which is given by R0 ∝ p/λ1/∆, R1 ∝ 1

and C0 ∝ p/λ1/∆, C1 ∝ 1. The matrix A for the spin model Bλ is thus given by B1p
B1p+1

p1/2

(B1p+1)1/2(p+B2)1/2

p1/2

(B1p+1)1/2(p+B2)1/2
B2
p+B2

 ,
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whose eigenvalues are easily checked to be 1,−ω. Thus, the eigenvalues of J are ±1,±ω, as

claimed.

The above arguments show that the translation invariant fixpoint of (173) is unstable in

the non-uniqueness regime of T∆. By Theorem 2, it does not correspond to a Hessian local

maximum of Ψ1(α,β). Thus, in the non-uniqueness regime of T∆, the dominant phases

correspond to positive solutions of (175) with x 6= y. It is a standard fact that there are

exactly two such pairs (p+, p−), (p−, p+). Both of these should correspond to the global

maxima of Ψ1(α,β). All we are left to do now is verify that they are Hessian local maxima,

or equivalently (by Theorem 2) that the respective fixpoint of (175) is Jacobian stable.

Similar arguments as above yield that Jacobian stability of the two fixpoints is captured

by the following inequality. For convenience, let x = p+, y = p−.

(∆− 1)2ω∗ < 1 where ω∗ =
(1−B1B2)2xy

(B1x+ 1)(B1y + 1)(B2 + x)(B2 + y)
. (177)

We prove the following technical lemma.

Lemma 66. Every positive solution of (175) with x 6= y satisfies (177).

We prove Lemma 66 shortly. First, we give the proof of Theorem 11.

Proof of Theorem 11. Recall that for 2-spin systems, non-uniqueness coincides with the

existence of multiple semi-translation invariant Gibbs measures on the tree. Moreover,

in non-uniqueness, the maximizers of Ψ1 are exactly two pairs (α,β) and (β,α) with

α 6= β. Thus, they do not correspond to translation invariant measures and satisfy the

permutation symmetric property. Finally, as discussed above, Lemma 66 establishes that

they are Hessian dominant and hence the hypotheses of Theorem 14 are satisfied.

For the proof of Lemma 66, we will use the following intermediate lemma.

Lemma 67. For ∆ ≥ 3, every positive solution of (175) with x 6= y satisfies

B1xy +B1B2(x+ y) +B2 ≥ (∆− 2)(1−B1B2)
√
xy.

With Lemma 67, it is easy to establish Lemma 177.
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Proof of Lemma 66. Let W := B1xy +B1B2(x+ y) +B2. Observe that

W = (B1x+ 1)(y +B2)− (1−B1B2)y = (B1y + 1)(x+B2)− (1−B1B2)x.

Using the two expressions of W and the AM-GM inequality, we obtain

W 2 = (B1x+ 1)(y +B2)(B1y + 1)(x+B2) + (1−B1B2)2xy

− (1−B1B2)
(
y(B1x+ 1)(B2 + y) + x(B1y + 1)(B2 + x)

)
≤
(√

(B1x+ 1)(B1y + 1)(B2 + x)(B2 + y)− (1−B1B2)
√
xy
)2
. (178)

Equality in (178) can only hold if y(B1x + 1)(B2 + y) = x(B1y + 1)(B2 + x), which in

conjuction with (175) gives x = y. Thus, the inequality (178) is in fact strict. To take

square roots in (178), note that trivially

(B1x+ 1)(B1y + 1)(B2 + x)(B2 + y) > xy > (1−B1B2)2xy,

so (178) and Lemma 67 give

√
(B1x+ 1)(y +B2)(B1y + 1)(x+B2)− (1−B1B2)

√
xy > (∆− 2)(1−B1B2).

which after massaging gives (177).

Proof of Lemma 67. For convenience, set d = ∆− 1. The x, y satisfy

x = λ

(
B1y + 1

y +B2

)d
and y = λ

(
B1x+ 1

x+B2

)d
.

It follows that

x

(
B1x+ 1

x+B2

)d
= y

(
B1y + 1

y +B2

)d
⇒ x

(
(B1x+1)(y+B2)

)d
= y
(

(B1y+1)(x+B2)
)d
. (179)

Let W := B1xy +B1B2x+B1B2y +B2. Observe that

(B1x+ 1)(y +B2) = B1xy +B1B2x+ y +B2 = W + (1−B1B2)y,

(B1y + 1)(x+B2) = B1xy +B1B2y + x+B2 = W + (1−B1B2)x.

Hence, (179) gives

x (W + (1−B1B2)y)d = y (W + (1−B1B2)x)d .
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Expanding using Newton’s formula gives

x

d∑
k=0

(
d

k

)
W d−k((1−B1B2)y

)k
= y

d∑
k=0

(
d

k

)
W d−k((1−B1B2)x

)k
,

which is equivalent to

W d(x− y) = xy

d∑
k=2

(
d

k

)
W d−k(1−B1B2)k

(
xk−1 − yk−1

)
.

Since x 6= y, this can be rewritten as

W d = xy
d∑

k=2

(
d

k

)
W d−k(1−B1B2)k

(
xk−1 − yk−1

x− y

)
. (180)

Claim 68. For k ≥ 2 and x, y > 0 with x 6= y, it holds that
xk−1 − yk−1

x− y
≥ (k −

1)(xy)(k−2)/2.

The simple proof of Claim 68 is given at the end. Using Claim 68, (180) gives

W d ≥
d∑

k=2

(
d

k

)
(k − 1)W d−k(1−B1B2)k(xy)k/2,

or equivalently

W d +
d∑

k=2

(
d

k

)
W d−k(1−B1B2)k(xy)k/2︸ ︷︷ ︸

C

≥
d∑

k=2

(
d

k

)
kW d−k(1−B1B2)k(xy)k/2︸ ︷︷ ︸

D

. (181)

Using again Newton’s formula and the identity
(
d
k

)
= d

k

(
d−1
k−1

)
, we have

C =
(
W + (1−B1B2)

√
xy
)d − dW d−1(1−B1B2)

√
xy,

D = d(1−B1B2)
√
xy

d∑
k=2

(
d− 1

k − 1

)
W d−k(1−B1B2)k−1(

√
xy)k−1

= d(1−B1B2)
√
xy
((
W + (1−B1B2)

√
xy
)d−1 −W d−1

)
.

Thus, (181) gives

W ≥ (d− 1)(1−B1B2)
√
xy,

which is exactly the inequality we wanted. Finally, we give the proof of Claim 68.
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Proof of Claim 68. Since k ≥ 2, observe that

xk−1 − yk−1

x− y
= xk−2+xk−3y+. . .+yk−2 ≥ (k−1)

(
(xy)(k−1)(k−2)/2

)1/(k−1)
= (k−1)(xy)(k−2)/2.

The inequality is an application of the AM-GM inequality to xk−2, . . . , yk−2. Equality holds

iff x = y.

This completes the proof of Lemma 67.

6.2 Ferromagnetic Potts model

Häggström [32] established that the uniqueness threshold Bu for the q-state ferromagnetic

Potts model with parameter B is the unique value for which the following polynomial has

a double root in (0, 1):

(q − 1)x∆ + (2−B − q)x∆−1 +Bx− 1. (182)

We prove that the ferromagnetic Potts model on random ∆-regular graphs undergoes a first

order phase transition at a parameter Bo > Bu,(which was considered by Peruggi et al.

[59]):

Bo :=
q − 2

(q − 1)(1−2/∆) − 1
.

Finally, Häggström [32] considers the following activity Brc, which he conjectures is a

(second) threshold for uniqueness of the random-cluster model, defined as:

Brc := 1 +
q

∆− 2
.

Note, Bu < Bo < Brc.

In this section we prove the following Theorem 69 detailing the phase diagram for

the Potts model. This consists of q + 1 phases; the disordered phase and q permutation

symmetric ordered phases. The disordered phase corresponds the uniform fixpoint with

α = (1/q, . . . , 1/q). When we refer to an ordered phase α this refers specifically to a phase

with one color dominating in the following sense: one coordinate is equal to a > 1/q and

the other q − 1 coordinates are equal to (1− a)/(q − 1).

Theorem 69. For the ferromagnetic Potts model the following holds at activity B:
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B < Bu: There is a unique infinite-volume Gibbs measure on T∆. The disordered phase

is Hessian dominant phase, and there are no other local maxima of Ψ1.

Bu < B < Brc: The local maxima of Ψ1 are the disordered phase u and the q ordered

phases (the ordered phases are permutations of each other). All of these q + 1 phases

are Hessian local maxima. Moreover:

Bu < B < Bo: The disordered phase is Hessian dominant.

B = Bo: Both the disordered phase and the ordered phases are Hessian dominant.

Bo < B < Brc: The ordered phases are Hessian dominant.

B ≥ Brc: The q ordered phases (which are permutations of each other) are Hessian

dominant. For B > Brc there are no other local maxima of Ψ1.

To prove Theorem 69, in light of Theorem 2, in order to determine the local maxima

for the Potts model, we need to compute the spectral radius of the map L : (r1, . . . , rq) 7→

(r̂1, . . . , r̂q), given by

r̂i =

q∑
j=1

BijRiRj√
αiαj

rj (183)

in the subspace
q∑
i=1

√
αiri = 0, (184)

where the Ri’s are fixed points of the tree recursions and the αi’s are given by

αi = Ri

q∑
j=1

BijRj for i = 1, . . . , q.

Our goal is to determine the local maxima by verifying when the spectal radius of this map

(in the subspace) is less than 1/(∆− 1).

First we argue that the solutions of the tree recurrences for the Potts model are simple—

they have only two values.

Lemma 70. Let (R1, . . . , Rq) be a solution of the tree recursion of ferromagnetic Potts

model. Then the Ri’s have at most two distinct values.
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Proof. Let ri = R
1/d
i and r =

∑q
i=1 r

d
i , where d := ∆− 1. We have

ri = r + (B − 1)rdi .

The polynomial f(x) = (B − 1)xd − x+ r has at most 2 positive roots (counted with their

multiplicities; by the Descartes’ rule of signs) and hence there are at most 2 different values

of the ri’s.

Let

M =

{
BijRiRj√
αiαj

}q
i,j=1

be the matrix of the linear map L. Note that M is symmetric and has an eigenvalue equal

to 1 with eigenvector e =
[√
α1, . . . ,

√
αq
]T

.

Lemma 71. The fixed points of the tree recursions, assuming R1 ≥ R2 ≥ . . . Rq, satisfy

R1 = R2 = . . . = Rt and Rt+1 = . . . Rq for some 1 ≤ t ≤ q. It follows that α1 = α2 = . . . =

αt and αt+1 = . . . αq.

Proof. This follows from Lemma 70.

Remark 15. Two settings for t in the setting of Lemma 71 will be of particular interest,

namely t = 1 and t = q. We shall refer to the latter as the uniform fixpoint, and this

corresponds to the disordered phase. We shall refer to fixpoints with t = 1 as the “majority”

fixpoints. This class includes either one or two (depending on the value of B, c.f. Lemma 75)

fixpoints where color 1 dominates and the remaining appear with equal probability. The

ordered phases correspond to the majority fixpoint for which the ratio R1/Rq is maximum.

Lemma 71 implies that M has a very simple structure. The following simple lemma

describes the eigenvalues of M.

Lemma 72. Assume 1 ≤ t < q. Then M has the following eigenvalues:

• 1 with multiplicity 1,

• (B − 1)R2
1/α1 with multiplicity t− 1 (assuming t > 1),

• (B − 1)R2
q/αq with multiplicity q − t− 1 (assuming t < q − 1), and
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• (B + t− 1)R2
1/α1 + (B + q − t− 1)R2

q/αq − 1 with multiplicity 1.

For t = q the eigenvalues of M are

• 1 with multiplicity 1,

• (B − 1)R2
1/α1 with multiplicity q − 1.

Proof. We already described the eigenvector for 1. A vector with 1 at position 1 and −1 at

a position i for 2 ≤ i ≤ t (and zeros elsewhere) yields eigenvalue (B − 1)R2
1/α1. Similarly,

a vector with 1 at position q and −1 at a position i for t+ 1 ≤ i < q (and zeros elsewhere)

yields eigenvalue (B − 1)R2
q/αq. Note that in the case t = q this accounts for all the

eigenvalues. In the case t < q we deduce the remaining eigenvalue by considering the trace

of M:

t
BR2

1

α1
+ (q − t)t

BR2
q

αq
− (t− 1)

(B − 1)R2
1

α1
− (q − t− 1)

(B − 1)R2
q

αq
− 1.

Lemma 73. The uniform fixed point is stable if (∆ − 2)(B − 1) < q. The uniform fixed

point is unstable if (∆− 2)(B − 1) > q.

Proof. The solution of the tree recurrences considered is R1 = · · · = Rq and hence α1 =

· · · = αq = (B + q − 1)R2
1. The only relevant eigenvalue is (B − 1)/(B + q − 1) (with

multiplicity q − 1), which we compare with 1/(∆− 1) to obtain the result.

Lemma 73 allows us to restrict our focus on q − 1 ≥ t ≥ 1. In this setting, the tree

equations give, with x := yd := R1
Rq

and d = ∆− 1,

x =

(
(B + t− 1)x+ (q − t)
tx+ (B + q − t− 1)

)d
or B − 1 =

(y − 1)
(
tyd + q − t

)
yd − y

. (185)

The following lemma implies that all fixed points with q − 1 ≥ t ≥ 2 are unstable in the

whole non-uniqueness regime, since the respective matrices have an eigenvalue greater than

1/(∆− 1).

Lemma 74. When R1
Rq

> 1, it holds that (B − 1)
R2

1
α1

> 1
∆−1 .
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Proof. The desired inequality is equivalent to

(∆− 1)(B − 1)R1 > (B + t− 1)R1 + (q − t)Rq,

which after simple manipulations reduces into

(
(∆− 2)(B − 1)− t

)R1

Rq
> q − t.

Substituting R1
Rq

= yd and B − 1 from equation (185), the inequality becomes(
(d− 1)(y − 1)

(
tyd + q − t

)
yd − y

− t

)
yd − (q − t) > 0.

Doing the necessary simplifications, we obtain the following equivalent inequality(
(d− 1)y1+d − dyd + y

) (
q + t

(
yd − 1

))
yd − y

> 0.

Since y > 1, the only non-trivial factor to prove positivity is p(y) := (d−1)yd+1−dyd+y. By

Descartes’ rule of signs, p can have at most two positive roots. It holds that p(1) = p′(1) = 0,

so that p(y) is always positive for y > 1.

In light of Lemma 74, we need to classify fixpoints with t = 1, the majority fixpoints.

The following lemma gives the number of such majotity fixpoints in the regimes of interest.

Lemma 75. When Bu ≤ B < Brc, there are exactly two majority fixpoints. When B ≥

Brc, there is exactly one majority fixpoint.

Proof. We need to look at (185) for t = 1 and check how many values of y > 1 satisfy the

equation in the two different regimes. For t = 1, the equation reads as

B − 1 = f(y) :=
(y − 1)(yd + q − 1)

yd − y
, so that f ′(y) =

p(y)

(yd − y)2
, (186)

where p(y) is the polynomial

p(y) := y2d − dyd+1 − (d− 1)(q − 2)yd + d(q − 1)yd−1 − (q − 1). (187)

Employing the Descartes’ rule of signs we see that p has one or three positivite roots counted

by multiplicities. It is easy to check that p(1) = p′(1) = 0, so that p has in fact 3 positive

149



roots (since 1 is a double root), let ρ denote the other positive root. We next prove that

ρ > 1 so that p(y) ≥ 0 if 1 ≤ y ≤ ρ and p(y) ≥ 0 if y ≥ ρ. It follows that for positive y we

have p(y) > 0 iff y > ρ.

To prove that ρ > 1, for the sake of contradiction assume that 0 < ρ ≤ 1. If ρ = 1, then 1

is a root with multiplicity 3 of the polynomial p(y) and hence p′′(1) = 0. By straightforward

calculations we see that p′′(1) = (q − 2)(d − d2) which is clearly non-zero for q ≥ 3 and

d ≥ 3. Thus, we may assume that 0 < ρ < 1. Since p(1) = p(ρ) = 0, by Rolle’s theorem

there is a root ρ′ ∈ (ρ, 1) of the polynomial p′(y) = dyd−2g(y) where

g(y) := 2yd+1 − (d+ 1)y2 − (d− 1)(q − 2)y + (d− 1)(q − 1).

Since g(1) = g(ρ′) = 0, by the same token there is a root ρ′′ ∈ (ρ′, 1) of

g′(y) = 2(d+ 1)yd − 2(d+ 1)y − (d− 1)(q − 2).

We thus obtain the desired contradiction since, for q ≥ 3 and d ≥ 2, g′(y) < 0 for all

y ∈ [0, 1].

Now observe that f(y) → ∞ as y → ∞, while f(y) → q
d−1 as y → 1+. Thus, when

y → 1+, B, as given by (186), goes to Brc from below.

To obtain the lemma, it thus suffices to show that at y = ρ, we have B = Bu. Recall,

that Bu is the unique value of B for which the polynomial (q−1)zd+1+(2−B−q)zd+Bz−1

has a double root in (0, 1). We reparameterize z → 1/z, so that Bu is the unique value of

B for which the following polynomial has a double root in (1,∞):

r(z) = zd+1 −Bzd − (2−B − q)z − (q − 1).

Let zc be the double root of this polynomial when B = Bu. Solving each of r(zc) = 0 and

r(zc) = 0 with respect to B and equating the expressions, we obtain that p(zc) = 0. It

follows that ρ = zc, as wanted.

We can now classify the stability of fixpoints with t = 1.

Lemma 76. Exactly one majority fixed point is stable. More precisely, the only stable fixed

point with t = 1 is the one maximizing the ratio x.
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Proof. In the setting of Lemma 71 we have t = 1 and thus the interesting eigenvalues of M

are Rq2/αq and BR2
1/α1 + (B + q − 2)R2

q/αq − 1. One can easily check that the former is

always larger, so it suffices to check when the following inequality holds

Q := BR2
1/α1 + (B + q − 2)R2

q/αq −
∆

∆− 1
< 0. (188)

Expanding everything out, we have

Q =
BR1

BR1 + (q − 1)Rq
+

(B + q − 2)Rq
R1 + (q − 2 +B)Rq

− ∆

∆− 1

=
R1Rq((∆− 2)B(q − 2 +B)−∆(q − 1))−BR2

1 − (q − 1)(q − 2 +B)R2
q)

(∆− 1)(BR1 + (q − 1)Rq)(R1 + (q − 2 +B)Rq)
.

Thus it suffices to check, with x = R1
Rq

, when

((∆− 2)B(q − 2 +B)−∆(q − 1))x < Bx2 + (q − 1)(q − 2 +B). (189)

Substituting x = yd and B − 1 from (185), we obtain the equivalent inequality

0 <
y
(
yd − 1

) (
yd + q − 1

)
p(y)

(yd − y)
2 .

where p(y) is the polynomial given in (187). By the proof of Lemma 75, p(y) > 0 iff y > ρ.

The latter inequality, throughout the regime B ≥ Bu, is only satisfied by the majority

fixpoint with x maximum, concluding the proof.

Having classified the fixpoints which are Jacobian attractive, we now need to see when

these are dominant. This entails comparing the values of Ψ1 for the respective phases.

Rather than doing this directly, we use Lemma 5. In particular, it is equivalent to compare

the values of Φ1 at the fixpoints. Moreover, note that the expression (249) is invariant

upon scaling Ri’s by the same factor and hence we only need to compare Φ1(x, 1, . . . , 1)

and Φ1(1, . . . , 1), where x is a solution of (185) for t = 1.

Lemma 77. Let t = 1 and x be the solution of (185) with x maximum. Then

Φ1(x, 1, . . . , 1) ≥ Φ1(1, 1, . . . , 1) iff B ≥ Bo.

Equality holds iff B = Bo.
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Proof. By a direct calculation

Φ1(x, 1, . . . , 1) =
∆

2
log
(
(x+ q − 1)2 + (B − 1)(x2 + q − 1)

)
− (∆− 1) log

(
x∆/∆−1 + q − 1

)
,

Φ1(1, 1, . . . , 1) =
∆

2
log
(
q2 + (B − 1)q

)
− (∆− 1) log

(
q
)
.

Using the substitutions d = ∆ − 1, x = yd and the second equation in (185), after careful

manipulations we obtain

DIF := Φ1(x, 1, . . . , 1)− Φ1(1, 1, . . . , 1) = log

( (
yd + q − 1

)d+1

(yd+1 + q − 1)
d−1

/
(q + y − 1)d+1

qd−1

)
.

It is straightforward to check that for y = (q − 1)2/(d+1), DIF = 0. The respective value

of B for this value of y is given by the second equation in (185) and equals Bo. Thus, it

suffices to show that y is an increasing function of B and DIF increases as y increases.

This is indeed true. By (185), one calculates

∂y

∂B
· p(y)

y(yd − y)2
= 1, and

∂DIF

∂y
=

(d+ 1)(q − 1)p(y)

y(y + q − 1)(yd + q − 1)(yd+1 + q − 1)
,

where p(y) is the polynomial defined in Lemma 74, whose positivity has already been

established. The claim follows.

Proof of Theorem 69. We first argue about the local maxima of the function Ψ1. To use

the results proved in this section, we apply Theorem 2: we just need to check the stability

of the corresponding fixpoints. As proved in Lemma 74, only the disordered phase and the

q ordered phases can be local maxima. The disordered phase, by Lemma 73, is Jacobian

stable when 1 < B ≤ Brc. The q ordered phases (which are permutations of each other),

by Lemmas 74 and 76, are Jacobian stable when B ≥ Bu.

To argue about the dominant phases, we need to find the regimes where the disor-

dered/ordered phases are dominant. Lemma 77 says that the disordered phase is dominant

iff B ≤ Bo, whereas the q ordered phases iff B ≥ Bo. To finish the proof of Theorem 69,

we only need to argue that the phases are also Hesian dominant in the respective regimes.

This follows immediately by Theorem 2, since Jacobian stability is equivalent to a Hessian

phase. Thus, since we classified local maxima of Ψ1 using the Jacobian stability of the

corresponding fixpoints, the statements about the Hessian phases follow from the preceding

discussion.
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6.3 Antiferromagnetic Potts model and colorings

In this section, we establish the dominant phases for the antiferromagnetic Potts model and

colorings and hence prove Theorem 16. We also verify the hypotheses of Theorem 14 for

these two models and hence complete the proofs of Theorems 12 and 13.

6.3.1 Proof outline

To obtain Theorems 12 and 13, we verify the hypotheses of Theorem 14 for the dominant

phases of the antiferromagnetic Potts and colorings models on random ∆-regular bipartite

graphs. Recall, the interaction matrix B for the Potts model is completely determined by a

parameter B, which is equal to exp(−β) where β is the inverse temperature in the standard

notation for the Potts model. The antiferromagnetic regime corresponds to 0 < B < 1.

The coloring model is the zero temperature limit of the Potts model and corresponds to the

particular case B = 0 in what follows. We should note that in Statistical Physics terms,

the arguments of this section are closely related to the phase diagrams of the models.

The most crucial component is to obtain characterizations of the global maxima of Ψ1.

To be able to apply Theorem 14, our goal is to prove that the global maxima of Ψ1 in

the regime 0 ≤ B < ∆−q
∆ are (i) not translation-invariant, (ii) Hessian maxima, and (iii)

permutation symmetric, see Section 1.4.3 for the definitions of these terms. We will in fact

show the stronger statement that condition (i) is met only in the regime 0 ≤ B < ∆−q
∆ ,

which shows that the inapproximability results of Theorems 12 and 13 are best possible for

any reduction which uses bipartite graphs as gadgets. We next outline our methods.

By Theorem 5 specified to the antiferromagnetic Potts and colorings models, studying

the global maxima of Ψ1 is equivalent to studying the global maxima of Φ. Moreover,

the global maxima of Φ and Ψ1 occur at their critical points. Since there is a one-to-one

correspondence between the critical points of Φ and the critical points of Ψ1 (given by (11)),

we will freely interchange our focus between critical points of Φ and Ψ1.

The critical points of Φ, by the first part of Theorem 5, are given by fixpoints of the

tree recursions (8), which for the Potts model are positive solutions to (18) stated in the
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Introduction. For convenience, we restate the equations (18):

Ri ∝
(
BCi +

∑
j 6=i Cj

)d
, Cj ∝

(
BRj +

∑
i 6=j Ri

)d
, (18)

where i, j = 1, . . . , q and d is the notational convenient substitution d := ∆− 1 ≥ 2. Given

a fixpoint of the tree recursions (18), we will classify whether it is a Hessian local maximum

of Ψ1 using Theorem 2.

Once we find the global maxima of Ψ1, it will be simple to prove that they are Hessian

and permutation symmetric. Finding however the global maxima of Ψ1 is going to be more

intricate, mainly because the number of local maxima varies according to the value of B.

We will thus have to compare the values of Ψ1 at the critical points. Rather than doing this

directly (which seems as a difficult task), we solve a relaxed optimisation problem, which

for q even can be tied to the maximization of Ψ1. We next give the details.

We begin our considerations by examining when a fixpoint (18) is translation invariant,

i.e., satisfies Ri ∝ Ci for every i ∈ [q].

Lemma 78. Let 0 ≤ B < 1 and ∆ ≥ 3. Then a solution of (18) satisfies Ri ∝ Ci for every

i ∈ [q] iff R1 = . . . = Rq and C1 = . . . = Cq.

Proof of Lemma 78. We first prove the forward direction. By the symmetries of the model,

we may assume an arbitrary ordering of the Ri’s. Since 0 ≤ B < 1, equations (18) easily

imply the reverse ordering of the Ci’s. Thus, Ri ∝ Ci for every i ∈ [q] implies that the

ordering must be trivial, i.e, R1 = . . . = Rq and C1 = . . . = Cq. The backward direction is

trivial.

Corollary 79. Translation invariant fixpoints (18) always exist and are unique up to scal-

ing.

We next explore in which regimes of B, the critical points of Φ consist solely of transla-

tion invariant fixpoints. In this regime, we immediately obtain by Theorem 5 that the global

maximum of Ψ1 (and hence the global maximum of Φ as well) is achieved at a translation

invariant fixpoint.
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Lemma 80. Let 0 ≤ B < 1 and ∆ ≥ 3. When q ≥ ∆ and 0 ≤ B < 1 or q < ∆ and

∆−q
∆ ≤ B < 1, the system of equations (18) admits a positive solution iff R1 = . . . = Rq

and C1 = . . . = Cq.

The proof of Lemma 80 is an extension of an argument in [11] for colorings and is given in

Section 6.3.5.1. The next lemma states that in the complementary regime of Lemma 80, the

translation invariant fixpoint does not correspond to a local maximum of Ψ1 and hence, by

Theorem 5, the global maximum of Ψ1 occurs at a fixpoint of (18) which is not translation

invariant. In particular, in this regime we have semi-translational non-uniqueness.

Lemma 81. For q < ∆ and 0 ≤ B < ∆−q
∆ , the global maximum of Ψ1 is not achieved at

the translation invariant fixpoint.

Proof of Lemma 81. We apply Theorem 2 by showing that the translation invariant fixpoint

is Jacobian unstable and hence not a local maximum of Ψ1. By Lemma 33, for a general

interaction matrix B, the condition for Jacobian stability of a fixpoint of the tree recursions

is related to the spectrum of L =
[

0 A
Aᵀ 0

]
, where A is the q × q matrix whose ij-entry is

given by Aij = BijRiCj/
√
αiβj and αi, βj are given by (43). Recall that ±1 are eigenvalues

of L and the condition for Jacobian stability is that all the other eigenvalues have absolute

value less than 1/(∆− 1) (see for details the proof of Theorem 2 in Section 3.4.3).

In the setting of the lemma, the matrix A for the translation invariant fixpoint has

off-diagonal entries equal to 1/(B + q − 1) and diagonal entries equal to B/(B + q − 1). It

follows that the eigenvalues of L are ±1 by multiplicity 1 and ±(1 − B)/(B + q − 1) by

multiplicity q − 1. The absolute value of the latter is greater than 1
∆−1 for 0 ≤ B < ∆−q

∆ ,

as claimed.

We summarize the above results into the following corollary.

Corollary 82. When q ≥ ∆ and 0 ≤ B < 1 or q < ∆ and ∆−q
∆ ≤ B < 1, Ψ1 has a unique

global maximum for α1 = . . . = αq = β1 = . . . = βq = 1/q or, in other words, the global

maximum of Ψ1 is achieved by the fixpoint which corresponds to the (unique) translation

invariant Gibbs measure. In the complementary regime q < ∆ and 0 ≤ B < ∆−q
∆ , the
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maximum of Ψ1 is not achieved at the translation invariant fixpoint, and hence it is achieved

at a semi-translation invariant fixpoint which is not translation invariant.

Corollary 82 is not sufficient to obtain Theorems 12 and 13, since we need to verify that

the global maxima of Ψ1 in semi-translational non-uniqueness are Hessian and permutation

symmetric. We do this by identifying the critical points which are maxima of Ψ1.

To state the result, we first need the following structural statement for the solutions of

equations (18), namely that solutions of (18) are supported on at most 3 values for the Ri’s

and similarly for the Ci’s.

Lemma 83. Let (R1, . . . , Rq, C1, . . . , Cq) be a positive solution of the system (18). Let tR

be the number of values on which the Ri’s are supported and define similarly tC . Then

tR, tC ≤ 3 and tR = tC =: t.

The proof of Lemma 83 is given in Section 6.3.5. Lemma 83 motivates the following

definition.

Definition 12. From Lemma 83, the Ri’s and Cj’s of a fixpoint of (18) attain at most

t ≤ 3 different values. Let R̃1, . . . , R̃t and C̃1, . . . , C̃t be their values and let q1, . . . , qt ≥ 1

be their multiplicities. When t = 1, define q2 = q3 = 0; when t = 2, define q3 = 0;

when qi = 0, define the values of R̃i, C̃i to be zero. The corresponding solution of (18) or

equivalently the fixpoint of the tree recursions is then defined to be of type (q1, q2, q3). Note

that q1 + q2 + q3 = q and the qi’s are non-negative integers. Call a (q1, q2, q3)-type fixpoint

to be t-supported if the number of qi’s which are non-zero equals t.

Finding the types of fixpoints which correspond (via (11)) to global maxima of Ψ1 is

not a trivial task. While 2-supported fixpoints are simple to handle, this is not the case for

3-supported fixpoints. The main lemma we prove is the following, which identifies the type

of fixpoints which maximize Ψ1.

Lemma 84. For 0 ≤ B < ∆−q
∆ and even q ≥ 3, the maximum of Ψ1 over (q1, q2, q3)-type

solutions of (18) is attained at fixpoints of type (q/2, q/2, 0).
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The final piece is to show that fixpoints of type (q/2, q/2, 0) are Hessian maxima of Ψ1

and permutation symmetric. This is the scope of the next lemma, whose proof is given in

Section 6.3.5.

Lemma 85. For 0 ≤ B < ∆−q
∆ and even q ≥ 3, fixpoints of type (q/2, q/2, 0) are Jacobian

stable and hence correspond to Hessian maxima of Ψ1. The values of Ri’s and Cj’s for

fixpoints of type (q/2, q/2, 0) are unique up to scaling and permutations of the colours.

We are now ready to prove Theorem 16.

Proof of Theorem 16. Items 1 and 2 follow from Corollary 82 (see also Lemmas 80 and 81).

Item 3 follows from Lemmas 85, after using the correspondence between fixpoints of the

tree recursions (18) and dominant phases of Theorem 5 (equation (11)).

With Lemmas 84 and 85 at hand, it is also straightforward to obtain Theorems 12 and 13

by applying the inapproximability result of Theorem 14.

Proof of Theorems 12 and 13. By Theorem 14, it suffices to check that the dominant phases

of Ψ1 are permutation symmetric and Hessian. By Theorem 5, the maximum of Ψ1 happens

at a critical point, which correspond (via (11)) to fixpoints (18). By Lemma 84, the fixpoints

(18) which correspond to maximizers of Ψ1 are of type (q/2, q/2, 0). Note that the scaling of

Ri’s and Cj ’s does not affect the values of αi’s and βj ’s in Theorem 5. It follows by Lemma 85

that the maximizers of Ψ1 are permutation symmetric and correspond to Hessian maxima

of Ψ1. This verifies the hypotheses of Theorem 14.

6.3.2 Proof of Lemma 84

In this section, we outline the proof of Lemma 84. We need to find the type(s) of the

fixpoints which maximize Ψ1. Let q = (q1, q2, q3) specify the type of a fixpoint of (18) and

let r = (R1, R2, R3), c = (C1, C2, C3) be the respective values of the Ri’s and Cj ’s, see

Definition 12. Note that the qi’s are non-negative integers satisfying q1 + q2 + q3 = q.

Using Theorem 5, we obtain that the value of Ψ1(α,β) corresponding to this fixpoint
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of (18) is given by the value of the function ΦS , where

ΦS(q, r, c) := (d+ 1) ln
(∑3

i=1 qiRi
∑3

j=1 qjCj + (B − 1)
∑

i qiRiCi

)
− d ln

(∑3
i=1 qiR

(d+1)/d
i

)
− d ln

(∑3
j=1 qjC

(d+1)/d
j

)
,

(190)

and d = ∆− 1. It is a non-trivial task to directly compare the values of ΦS over fixpoints

of (18). Instead, we will solve a relaxed version of the problem, seeking to maximize ΦS

over non-negative qi’s which satisfy q1 + q2 + q3 = q. If this maximum happens to occur for

integer q and the respective values of Ri’s and Cj ’s are solutions of (18), then we have also

found the solution to the original maximization problem. It turns out that all of the above

are satisfied iff q is even.

To formalize the argument, for non-negative qi’s such that q1 + q2 + q3 = q, define

Φ(q) := max
r,c

ΦS(q, r, c) (191)

where the maximum is over r = (R1, R2, R3)ᵀ, c = (C1, C2, C3)ᵀ which satisfy

∑3
i=1 qiRi

∑3
j=1 qjCj + (B − 1)

∑3
i=1 qiRiCi > 0,

R1, R2, R3, C1, C2, C3 ≥ 0.

(192)

It is simple to see that in the region (192), ΦS is well defined. It is not completely immediate

that the maximum in (191) is well defined since the region (192) is not compact. This is a

consequence of the following scale-free property of ΦS with respect to r and c:

for every c1, c2 > 0 it holds that ΦS(q, c1r, c2c) = ΦS(q, r, c). (193)

Using (193), it is simple to obtain the following.

Lemma 86. Let B ≥ 0 and q ≥ 2. For all q1, q2, q3 ≥ 0 which satisfy q1 + q2 + q3 = q, the

maximum in (191) is well defined. Moreover, the maximum of Φ(q1, q2, q3) over all such

q1, q2, q3 is attained.

We next seek to connect the maximizers of (191) with solutions of (18). To do this, we

first need to consider whether the maximum in (191) happens on the boundary of the region

(192); it turns out that the maximum can happen at the boundary Ri = 0 or Ci = 0 if qi
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is close to zero. While the boundary cases are an artifact of allowing qi’s to be non-integer,

we will need to treat them explicitly to find the maximum of Φ.

Definition 13. A triple q = (q1, q2, q3) is good if the r, c which achieve the maximum in

(191) satisfy: for i = 1, 2, 3, qi > 0 implies Ri, Ci > 0. A triple q = (q1, q2, q3) is bad if it

is not good.

To complete the connection, we need to further restrict the set of triples q. To motivate

this restriction, note that if we consider the region (192) in the subspace R1 = R2 and

C1 = C2, we obtain Φ(q1 + q2, q3, 0) ≤ Φ(q1, q2, q3). To avoid degenerate cases, we consider

only triples q where such simple inequalities do not hold at equality.

Definition 14. Let t = 2 or 3. A triple q = (q1, q2, q3) is called t-maximal if exactly t of the

qi’s are non-zero and for all distinct i, j, k ∈ {1, 2, 3} it holds that Φ(qi + qj , qk, 0) < Φ(q).

Our interest is in maximal good triples q = (q1, q2, q3). This is justified by the following

lemma, whose proof is given in Section 6.3.5.

Lemma 87. Suppose that q1, q2, q3 are non-negative integers and the triple q = (q1, q2, q3) is

t-maximal and good. Then, the r, c which achieve the maximum in (18) specify a t-supported

fixpoint of (18) of type (q1, q2, q3).

Thus to prove Lemma 84, it suffices to prove that the triple (q/2, q/2, 0) is 2-maximal

and good and that the maximum of Φ(q) is achieved at (q/2, q/2, 0). The next lemma

examines which maximal good triples can be a maximum of Φ.

Lemma 88. Let q ≥ 3 and 0 ≤ B < 1. There do not exist 3-maximal good triples q which

maximize Φ(q). The only 2-maximal good triples q where a maximum of Φ(q) can occur

are (q/2, q/2, 0) or its permutations.

Lemma 88 is not sufficient to yield Lemma 84 because the maximum of Φ(q) can occur

at a bad triple q. This possibility is excluded by the following lemma.

Lemma 89. Let q ≥ 3 and 0 ≤ B < ∆−q
∆ . There do not exist bad triples q which maximize

Φ(q).
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Using Lemmas 88 and 89, we can now give the proof of Lemma 84.

Proof of Lemma 84. The maximum of Φ(q) over triples q is attained by Lemma 86. This

maximum can happpen either at a bad or a good triple q. Maxima at bad triples q are

excluded by Lemma 89. Maxima at 3-maximal good triples are excluded by the first part of

Lemma 88. Thus, the maximum must happen at a (good) triple of the form q = (q1, q2, 0).

The latter can be either 2-maximal or not. If it is not 2-maximal, the maximum must equal

Φ(q), which in the regime 0 ≤ B < ∆−q
∆ is excluded by Lemma 81. Thus, the maximum

must happen at a 2-maximal good triple, which Lemma 88 asserts that it must be the triple

(q/2, q/2, 0). Finally, for q even, by Lemma 87 the r, c which achieve the maximum in (191)

correspond to a 2-supported fixpoint of (18) of type (q/2, q/2, 0), as wanted.

For the proofs of Lemmas 88 and 89, we will often perturb the values of qi’s. The

following lemma, which is proved in Section 6.3.5 will be very helpful.

Lemma 90. Let q = (q1, q2, q3) and I = {i | qi > 0}. Suppose that r, c achieve the maximum

in (191). Then, for i ∈ I it holds that

∂ΦS

∂qi
(q, r, c) =

Ri
∑

j qjCj + Ci
∑

j qjRj + (d− 1)(1−B)RiCi∑
j qjRj

∑
j qjCj + (B − 1)

∑
j qjRjCj

. (194)

Moreover, if there exist i, j ∈ I such that ∂ΦS

∂qi
− ∂ΦS

∂qj
6= 0, the maximum of Φ is not achieved

at the triple q.

6.3.3 Good triples: proof of Lemma 88

We first prove the statement of the lemma for 3-maximal good triples q = (q1, q2, q3), the

proof for 2-maximal good triples will easily be inferred by appropriately modifying the

arguments in the special case q2 = 0.

Let q = (q1, q2, q3) be a 3-maximal good triple. Since q is 3-maximal all of the qi’s are

positive. Moreover, q is good, and hence the maximum in (191) for q is attained at positive

Ri’s and Cj ’s. Thus, the Ri’s and Cj ’s satisfy ∂ΦS/∂Ri = ∂ΦS/∂Cj = 0 which give

R
1/d
i ∝ q1C1 + q2C2 + q3C3 + (B − 1)Ci, C

1/d
j ∝ q1R1 + q2R2 + q3R3 + (B − 1)Rj . (195)
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Since q is 3-maximal, we may assume that r is such that Ri 6= Rj for all i 6= j. Otherwise,

if for example R1 = R2, by (195), we have C1 = C2 as well, so that Φ(q1, q2, q3) = Φ(q1 +

q2, q3, 0), contradicting the 3-maximality of q. Thus, we may assume a strict ordering of

the Ri’s, which by (195) implies the reverse ordering of the Cj ’s. Wlog, we will use the

following ordering:

R1 > R2 > R3 > 0 and 0 < C1 < C2 < C3. (196)

The following lemma, together with the second part of Lemma 90, establishes that the

maximum of Φ cannot occur at a 3-maximal triple.

Lemma 91. Suppose that Ri’s and Cj’s satisfy (195) and (196). If R1/R3 6= C3/C1 then

∂ΦS

∂q1
− ∂ΦS

∂q3
6= 0. If R1/R3 = C3/C1 then ∂ΦS

∂q1
− ∂ΦS

∂q2
6= 0.

We next give the proof of Lemma 91. We will utilize Lemma 90 by specifying a particular

scaling of the Ri’s and Cj ’s which will be beneficial. To do this, set

rd1 = R1/R3, r
d
2 = R2/R3, c

d
2 = C2/C1, c

d
3 = C3/C1. (197)

The Ri’s and Cj ’s may be recovered from ri’s, cj ’s using

R1 ∝ rd1 , R2 ∝ rd2 , R3 ∝ 1, and C1 ∝ 1, C2 ∝ cd2, C3 ∝ cd3. (198)

Translating (196) into r1, r2, c2, c3 gives

r1 > r2 > 1 and c3 > c2 > 1. (199)

Moreover, dividing appropriate pairs of (195), we also obtain

r1 =
B + q1 − 1 + q2c

d
2 + q3c

d
3

q1 + q2cd2 + (B + q3 − 1)cd3
, c3 =

B + q3 − 1 + q2r
d
2 + q1r

d
1

q3 + q2rd2 + (B + q1 − 1)rd1
,

r2 =
q1 + (B + q2 − 1)cd2 + q3c

d
3

q1 + q2cd2 + (B + q3 − 1)cd3
, c2 =

q3 + (B + q2 − 1)rd2 + q1r
d
1

q3 + q2rd2 + (B + q1 − 1)rd1
.

(200)

It can easily be verified that this system of equations gives

q1 =
(1−B)f(r1, c3) + q2P

(
cd2 − cd3rd2

)
P
(
rd1c

d
3 − 1

) , q3 =
(1−B)f(c3, r1) + q2P

(
rd2 − rd1cd2

)
P
(
rd1c

d
3 − 1

) (201)

r2 =
r1c

d
3 − 1− cd2(r1 − 1)

cd3 − 1
, rd2 =

rd1c3 − 1− c2(rd1 − 1)

c3 − 1
, (202)

f(x, y) := xd+1yd+1 − xdyd+1 − xyd+1 + yd + y − 1, P := (r1 − 1)(c3 − 1) > 0.
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We will need the following lemma.

Lemma 92. Assume that q1, q2, q3, r1, r2, c2, c3 satisfy (199), (201), (202). If r1 = c3 then

r2 = c2 and q1 = q3.

Proof of Lemma 92. We prove that r1 = c3 implies r2 = c2. Once this is done, (201) easily

gives that r1 = c3 implies q1 = q3 as well, thus proving the lemma.

So, suppose that z = r1 = c3 and for the sake of contradiction assume r2 6= c2. By

(199) we obtain that r2, c2 ∈ (1, z). Eliminating r2 from (202) we obtain that c2 (and by a

symmetric argument r2) satisfies

g(s) :=

(
zd+1 − 1− sd(z − 1)

zd − 1

)d
+
s(zd − 1)− (zd+1 − 1)

z − 1
= 0.

In fact, g(1) = g(z) = 0 as well, so that g has at least four distinct roots in [1, z]. It

follows that g′(s) = 0 has at least three distinct solutions in [1, z], say si for i = 1, 2, 3.

As a consequence of g′(si) = 0, we easily obtain that the si’s satisfy h(si) = c where

h(s) := (zd+1 − 1)s − sd+1(z − 1) and c is a constant which depends only on z, d. Thus,

h′(s) = 0 has at least two distinct solutions in [1, z] which is clearly absurd.

Proof of Lemma 91. Set

DIF13 :=
∂ΦS

∂q1
− ∂ΦS

∂q3
, DIF12 :=

∂ΦS

∂q1
− ∂ΦS

∂q2
, S :=

∑
i qiRi

∑
j qjCj + (B − 1)

∑
i qiRiCi.

We use the expressions (194) for the derivatives. The denominators in the expressions

are the same, so we may ignore them. Moreover, the expressions therein are scale-free,

consequently in order to write the derivatives with respect to ri’s and cj ’s we just need to

make the substitutions (198).

To prove the first part of the lemma, we eliminate q1, q3 from the resulting expression

for DIF13 using (201). This substitution has the beneficial effect of eliminating q2, r2 from

the final expression. After straightforward calculations, we obtain the following:

DIF13 = − (1−B) g(r1, c3)

S(r1 − 1)(c3 − 1)
, where

g(r1, c3) := (r1 − c3)(rd1 − 1)(cd3 − 1)− d(r1 − 1)(c3 − 1)(rd1 − cd3).

(203)
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It can easily be seen that for r1, c3 > 1, it holds that g(r1, c3) = 0 iff r1 = c3 iff R1/R3 =

C3/C1 as desired.

We next prove the second part of the lemma. Since R1/R3 = C3/C1, we have r1 = c3

and by Lemma 92, r2 = c2 and q1 = q3. Using these, (201) and (202) simplify to

q1 =
(1−B)

(
rd+1

1 − 1
)
− q2r

d
2(r1 − 1)

(r1 − 1)
(
rd1 + 1

) , r2 =
rd+1

1 − 1− rd2(r1 − 1)

rd1 − 1
. (204)

Moreover, using the substitutions (198) and q1 = q3, we obtain

DIF12 =
(q1r

d
1 + q2r

d
2 + q1)(rd1 − 2rd2 + 1) + (d− 1)(1−B)(rd1 − r2d

2 )

S

= −
(1−B)

[
(d− 1)(r1 − 1)r2d

2 + 2rd2(rd+1
1 − 1)− (r2d+1

1 + drd+1
1 − drd1 − 1)

]
(r1 − 1)S

,

where in the second equality we substituted the value of q1 from (204). Observe that the

numerator is a quadratic polynomial in rd2 and, by inspection, for r1 > 1, its roots are of

opposite sign. Thus, DIF12 = 0 iff rd2 = ρ1, where

ρ1(r1) :=

√
D − (rd+1

1 − 1)

(d− 1)(r1 − 1)
and D :=

(
drd+1

1 − (d− 1)rd1 + 1
)(
rd+1

1 + (d− 1)r1 − d
)
.

For the sake of contradiction, suppose that rd2 = ρ1. Then (204) gives that r2 = ρ2, where

ρ2(r1) :=
d(rd+1

1 − 1)−
√
D

(d− 1)(rd1 − 1)
.

Thus ρ1 = ρd2. We obtain a contradiction by showing that for every r1 > 1, it holds that

ρd2 < ρ1 or equivalently d ln ρ2 < ln ρ1. It is easy to see that in the limit r1 ↓ 1 the inequality

is satisfied at equality, thus it suffices to prove that the derivative of the rhs w.r.t r1 is

greater than the respective derivative of the l.h.s. for r1 > 1.

This differentiation is cumbersome but otherwise straightforward. The final result is

1

ρ1

∂ρ1

∂r1
− d

ρ2

∂ρ2

∂r1
=

(d+ 1)g(r1)h(r1)

2(r1 − 1)
(
rd1 − 1

) (√
D − (rd+1

1 − 1)
)(

d(rd+1
1 − 1)−

√
D
) , (205)

g(r1) : = r2d
1 − d2rd+1

1 + 2(d2 − 1)rd1 − d2rd−1
1 + 1,

h(r1) : = (d+ 1)(rd+1
1 − 1)− (d− 1)(rd1 − 1)− 2

√
D.

Note that the denominator in the r.h.s. of (205) is positive for r1 > 1: the terms involving
√
D are positive since they are the numerators of ρ1, ρ2. The final part of the proof consists

of proving that g(r1) > 0 and h(r1) > 0 for r1 > 1.
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The polynomial g has 4 sign changes and hence, by the Descartes’ rule of signs has

at most 4 positive roots. In fact, a tedious calculation shows that r1 = 1 is a root by

multiplicity 4, thus proving that g(r1) > 0 for r1 > 1. To prove that h(r1) > 0 for r1 > 1,

note the identity

[
(d+ 1)(rd+1

1 − 1)− (d− 1)(rd1 − 1)
]2 − 4D = (d− 1)2(r1 − 1)2(rd1 − 1)2.

This completes the proof.

To prove the second part of Lemma 88, assume that q = (q1, q2, q3) is a 2-maximal good

triple. Since q is 2-maximal, w.l.o.g. we may assume that q2 = 0. Note that the values of

R2, C2 do not affect the value of the derivatives ∂ΦS/∂q1, ∂ΦS/∂q3 when q2 = 0. Similarly,

(201) continues to hold even when q2 = 0. Thus, the proof of the first part of Lemma 91

carries through verbatim. In particular, if R1/R3 6= C3/C1, then ∂ΦS/∂q1 − ∂ΦS/∂q3 6= 0.

By the second part of Lemma 90, it follows that q = (q1, 0, q3) cannot be a maximum unless

R1/R3 = C3/C1. In this case, (201) gives q1 = q3. Since q1 + q3 = q, we obtain that the

only 2-maximal good triples where the maximum of Φ may occur are (q/2, q/2, 0) or its

permutations, as desired.

This concludes the proof of Lemma 88.

6.3.4 Bad triples: proof of Lemma 89

To get a handle on bad triples, we first give necessary conditions so that the maximum in

(191) happens at the boundary. The proof of the following lemma is given in Section 6.3.5.

Lemma 93. Let 0 ≤ B < 1. For a triple q = (q1, q2, q3), let r, c achieve the maximum in

(191). Then, if qi > 0, the following implications hold:

Ri = 0⇒
∑

j qjCj ≤ (1−B)Ci, Ci = 0⇒
∑

j qjRj ≤ (1−B)Ri.

In particular, if qi > 1−B it holds that Ri, Ci > 0 and hence for every q ≥ 3 there exists i

such that Ri, Ci > 0.

We next examine bad triples. Note that a bad triple q = (q1, q2, q3), by the second part

of Lemma 90, must have at least two positive entries. We consider cases whether the triple
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q has two or three positive entries. We start with the case where exactly two of the qi’s are

positive. We assume throughout the rest of the section that r, c achieve the maximum in

(191).

Let q = (q1, q2, 0) be a bad triple where q1, q2 > 0. Since q is bad, at least one of

R1, R2, C1, C2 is zero. Wlog, we may assume C2 = 0. By the second part of Lemma 93, it

follows that R1, C1 > 0. There are two cases to consider.

(I) R2 = 0, (II) R2 > 0. (206)

Case (I) is straightforward: by the first part of Lemma 90, we trivially have ∂ΦS

∂q1
> 0 and

∂ΦS

∂q2
= 0, so that the second part of Lemma 90 yields that q does not maximize Φ.

We next examine case (II). Since ΦS is scale-free (see (193)), we may assume that C1 = 1.

Since R1, R2 are positive, it holds that ∂ΦS/∂R1 = ∂ΦS/∂R2 = 0, yielding

R1 ∝ yd, R2 ∝ 1, where y = (q1 +B − 1)/q1.

Expressing q1, q2 in terms of y and substituting in ΦS , we obtain the value of Φ(q):

Φ(q) = log h(y), where h(y) :=
(1−B)

(
q(1− y)− (1−B)(1− yd+1)

)
(1− y)2

.

Let I be the interval [0, (q + B − 1)/q]. Note that for any y ∈ I, there exists a positive

q1 ∈ [0, q] such that y = (q1 +B − 1)/q1. Obviously, if q maximizes Φ, it must be the case

that y maximizes h(y) in the interval I. We compute h′(y).

h′(y) =
(1−B) r(y)

(1− y)3
, where r(y) := q(1− y)− (1−B)

(
(d− 1)yd+1 − (d+ 1)yd + 2

)
.

It is immediate to see that r(y) is convex for y ∈ [0, 1]. Since r(0) = q − 2(1− B) > 0 and

r(1) = 0, we obtain that either

(i) r(y) > 0 for all y ∈ I, or

(ii) ∃ yo ∈ I: r(yo) = 0, r(y) > 0 iff y < yo.

In case (i), h(y) is increasing and hence h(y) is maximized at y = (q + B − 1)/q. This

value of y corresponds to q1 = q and thus Φ(q) = Φ(q, 0, 0).
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In case (ii), we have h(y) ≤ h(yo). The value of q1 corresponding to yo is qo := (1 −

B)/(1 − yo). We will show that the maximum in (191) does not happen at the boundary

C2 = 0 when q = (qo, q − qo, 0), implying that h(yo) does not equal Φ(q) and hence the

maximum of Φ as well. To prove the former, we utilize the first part of Lemma 93. In

particular, we prove that

qoy
d
o + (q − qo) > (1−B). (207)

Note that r(yo) = 0 yields q = (1−B)
(
(d− 1)yd+1

o − (d+ 1)ydo + 2
)
/(1− yo). Plugging this

expression into (207), we only need to show that

(d− 1)yd+1
o − dydo + 1

1− yo
> 1 or (d− 1)ydo + 1 > dyd−1

o , (208)

which holds by the AM-GM inequality for any positive yo 6= 1.

Let q = (q1, q2, q3) be a bad triple where all of the qi’s are positive. Since q is bad, at

least one of the Ri’s and Cj ’s is zero. W.l.o.g. we may assume C2 = 0. Moreover, by the

second part of Lemma 93, we may also assume that R1, C1 > 0. There are four cases to

consider.

(I) R2 = 0, (II) R2, R3 > 0, C3 = 0, (III) R2, R3, C3 > 0, (IV) R2, C3 > 0, R3 = 0.

We omitted the case R2 > 0 and R3 = C3 = 0, which is identical to case (I) after renaming

the qi’s.

Case (I) is straightforward: since R2 = C2 = 0, (194) gives ∂ΦS/∂q2 = 0. Since at least

one of ∂ΦS/∂q1, ∂ΦS/∂q3 is positive, the second part of Lemma 90 yields that q does not

maximize Φ.

We next examine case (II). Since ΦS is scale-free (see (193)), we may substitute C1 = 1.

Setting the derivatives of ∂ΦS/∂R1, ∂ΦS/∂R2, ∂ΦS/∂R3 equal to zero, we obtain

R1 ∝ (q1 +B − 1)d/qd1 , R2 ∝ 1, R3 ∝ 1.

It follows that Φ(q) = Φ(q1, q2 + q3, 0) and hence the maximum of Φ does not occur at q

by the argument for case (II) in (206).
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We next examine case (III). The partial derivatives of ΦS with respect to R1, R2, R3,

C1, C3 must vanish so we obtain

R
1/d
1 ∝ q1C1 + q2C3 − (1−B)C1, R

1/d
2 ∝ q1C1 + q3C3, R

1/d
3 ∝ q1C1 + q3C3 − (1−B)C3,

C
1/d
1 ∝ q1R1 + q2R2 + q3R3 − (1−B)R1, C

1/d
3 ∝ q1R1 + q2R2 + q3R3 − (1−B)R3.

(209)

If C1 = C3, then R1 = R3 and thus we obtain Φ(q1, q2, q3) = Φ(q1 + q3, q2, 0), contradicting

the maximality of q by the argument for case (II) in (206). Thus, wlog we may assume

C1 < C3. By (209), this yields

R2 > R1 > R3, C1 < C3. (210)

We have the following analogue of Lemma 91, which proves that the maximum cannot occur

at q by the second part in Lemma 90.

Lemma 94. Suppose that Ri’s and Cj’s satisfy (209) and (210). If R1/R3 6= C3/C1 then

∂ΦS

∂q1
− ∂ΦS

∂q3
6= 0. If R1/R3 = C3/C1 then ∂ΦS

∂q1
− ∂ΦS

∂q2
6= 0.

Proof of Lemma 94. The proof is analogous to the proof of Lemma 91, we highlight the

main differences. Let rd1 = R1/R3, r
d
2 = R2/R3, c

d
3 = C3/C1. The Ri’s and Cj ’s may be

recovered by the ri’s and cj ’s by

R1 ∝ rd1 , R2 ∝ rd2 , R3 ∝ 1, and C1 ∝ 1, C3 ∝ cd3. (211)

By (210), we have

r2 > r1 > 1 and c3 > 1.

The expressions for r1, r2, c3 in (200) are exactly the same after substituting c2 = 0. The

same is true for (201), (202). It follows that the proof for the first part of Lemma 91 holds

verbatim in this case as well (note that the ordering of r1, r2 is different here but that part

of the argument does not use the ordering).

While the proof for the second part of Lemma 91 does not carry through as simply,

the changes are minor. We assume that r1 = c3 and set DIF12 := ∂ΦS

∂q1
− ∂ΦS

∂q2
. Plugging

r1 = c3 and c2 = 0 in (201), (202) and then substituting the resulting expressions in DIF12
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we obtain

DIF12 =
(1−B)h(r1)

r1− 1
, where h(r1) := (r2d+1

1 + drd+1
1 − drd1 − 1)− (rd+1

1 − 1)d+1

(rd1 − 1)d
.

By a first derivative argument, the function

g(r1) := log

(
(rd+1

1 − 1)d+1

(rd1 − 1)d (r2d+1
1 + drd+1

1 − drd1 − 1)

)
,

is strictly increasing for r1 > 1 . Thus, g(r1) ≥ g(+∞) = 0, which gives h(r1) > 0 for all

r1 > 1. This proves that DIF12 6= 0, as desired.

Finally, we examine case (IV). The partial derivatives of ΦS with respect to R1, R2, C1,

C3 must vanish so we obtain

R
1/d
1 ∝ q1C1 + q3C3 − (1−B)C1, R

1/d
2 ∝ q1C1 + q3C3,

C
1/d
1 ∝ q1R1 + q2R2 − (1−B)R1, C

1/d
3 ∝ q1R1 + q2R2.

(212)

Note that we have R1 < R2 and C1 < C3.

Lemma 95. If R2/R1 6= C3/C1 then either ∂ΦS

∂q2
− ∂ΦS

∂q3
6= 0 or ∂ΦS

∂q1
− ∂ΦS

∂q2
6= 0. If R2/R1 =

C3/C1 and ∂ΦS

∂q1
− ∂ΦS

∂q2
= 0, then the maximum in (191) does not happen at the boundary

C2 = 0.

Proof of Lemma 95. The approach for the first part is similar the proof of Lemma 91. Set

rd2 = R2/R1 and cd3 = C3/C1, so that r1, c3 > 1. Dividing appropriate pairs in (212), we

obtain

r2 =
q1 + q3c

d
3

(q1 +B − 1) + q3cd3
, c3 =

q1 + q2r
d
2

(q1 +B − 1) + q2rd2
. (213)

It follows that

q2 =
q1 − (q1 +B − 1)c3

rd2(c3 − 1)
, q3 =

q1 − (q1 +B − 1)r2

cd3(r2 − 1)
.

Using these, we obtain

∂ΦS

∂q2
− ∂ΦS

∂q3
= 0⇒ f(r2) = f(c3), where f(x) :=

xd+1

x− 1
, (214)

∂ΦS

∂q1
− ∂ΦS

∂q3
= 0⇒ rd+1

2 (c3 − 1)− (d+ 1)r2c3 + d(r2 + c3)− (d− 1) = 0. (215)
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It is relatively simple to prove that this cannot be the case unless r2 = c3. This gives the

first part.

For the second part, we have r2 = c3 and ∂ΦS

∂q1
− ∂ΦS

∂q3
= 0. Thus, (215) yields

rd+1
2 = (d+ 1)r2 − (d− 1). (216)

To prove that the maximum does not happen at the boundary C2 = 0, we use the first part

of Lemma 93. It suffices to prove that

q1 + q2r
d
2 > (1−B)rd2 . (217)

We have that q2 = q3 = (q − q1)/2, so that (213) gives

q1 =
q(rd+1

2 − rd2)− 2r2(1−B)

(r2 − 1)(rd2 − 2)
, q2 = q3 =

q − r2(q +B − 1)

(r2 − 1)(rd2 − 2)
. (218)

Plugging (218) into (217) gives the equivalent inequality

(1−B)
(
rd2 + r2 − rd+1

2

)
r2 − 1

> 0

To see the latter, use (216) to obtain

rd2 + r2 − rd+1
2 = rd2 + (d− 1)− dr2 > 0, for all r2 > 1 by the AM-GM inequality.

This completes the proof.

6.3.5 Remaining proofs

Proof of Lemma 83. Let Ri = rdi , Ci = cdi , r =
∑q

i=1 r
d
i , and c =

∑q
i=1 c

d
i . We have

ri = c− (1−B)cdi and ci = r − (1−B)rdi ,

It is clear from this equation that Ri = Rj iff Ci = Cj and hence also tR = tC . We also

obtain that for i = 1, . . . , q,

ri = c− (1−B)(r − (1−B)rdi )
d. (219)

Since r is the sum of rdi and the ri are positive, we have (1 − B)rdi < r. Fix the values of

r, c and let I be the interval where (1−B)xd < r. Using (219), we shall prove that tR ≤ 3
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by arguing that f(x) = c− (1−B)(r− (1−B)xd)d − x has at most 3 positive roots in the

interval I, counted by multiplicities. We have

f ′(x) = (1−B)2d2(r − (1−B)xd)d−1xd−1 − 1 =

(
d−2∑
i=0

g(x)i

)
(g(x)− 1),

where

g(x) = ((1−B)d)2/(d−1)(r − (1−B)xd)x.

Note that g(x) > 0 in the interval I and hence all roots of f ′(x) in this interval come from

g(x)−1. The polynomial g(x)−1 has at most two positive roots by Descartes’ rule of signs,

hence f ′(x) has at most two positive roots in I. Thus, f(x) has at most three positive roots

in I, all roots counted by their multiplicities. This concludes the proof.

Proof of Lemma 85. Let q′ = q/2. To better align with the results of Section 6.3.3, let us

assume that the fixpoint (q′, 0, q′) maximizes Ψ1. In Section 6.3.3, we proved that this can

be the case only if R1/R3 = C3/C1 or (in the parameterization of Section 6.3.3) r1 = c3 =: x

where x > 1. Equation (200) for q2 = 0, q1 = q3 = q′ gives that x satisfies

x =
B + q′ − 1 + q′xd

q′ + (B + q′ − 1)xd
. (220)

It is straightforward to check that (220) has exactly one solution x > 1 for all 0 ≤ B < ∆−q
∆ .

The values of R1, C1, R3, C3 may be recovered by (198), which in the case q2 = 0 give

R1 ∝ xd, R3 ∝ 1 and C1 ∝ 1, C3 ∝ xd.

This proves the second part of the lemma. For the first part, to check Jacobian stability,

we proceed as in the proof of Lemma 81. The eigenvalues of the matrix L in this case can

be computed easily as well. They are given by ±1 by multiplicity 1, ±λ1 by multiplicity

q − 2 and ±(B + q − 1)λ2
1 by multiplicity 1, where

λ1 :=
(1−B)xd/2√

(q′ + (B + q′ − 1)xd)(B + q′ − 1 + q′xd)
.

To prove that the absolute value of the eigenvalues different from 1 is less than 1/d, it suffices

to prove that λ1 < 1/d. Use (220) to solve for q′ and plug the value into the expression for

λ1. This yields that λ1 is equal to x(d−1)/2(x−1)/(xd−1), which by the AM-GM inequality

is less than 1/d for x > 1.
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Proof of Lemma 86. For non-negative q = (q1, q2, q3) with q1 + q2 + q3 = q, consider the

function

F (q) = max
r,c

F (q, r, c), where F (q, r, c) :=
∑3

i=1 qiRi
∑3

j=1 qjCj + (B − 1)
∑3

i=1 qiRiCi,

(221)

and the maximum is over the compact region (by restricting to Ri = Ci = 0 whenever

qi = 0) ∑3
i=1 qiR

(d+1)/d
i ≤ 1,

∑3
j=1 qjC

(d+1)/d
j ≤ 1,

R1, R2, R3, C1, C2, C3 ≥ 0.

(222)

Note that F (q) > 0, since we can set all of the Ri’s and Cj ’s equal to x, where qx(d+1)/d = 1.

Clearly, Φ(q) ≥ lnF (q). Since ΦS(q, r, c) is scale-free with respect to r and c (see (193)),

we may scale r, c to satisfy (222) and hence Φ(q) = supr,c ΦS(q, r, c) ≤ lnF (q), proving

that Φ(q) = lnF (q) and consequently the supremum is attained.

To prove that supq Φ(q) is attained, it clearly suffices to prove that L := supq F (q) is

attained. This can be accomplished by using variants of Berge’s Maximum Theorem [8] and

showing that the function F (q) is upper semi-continuous. We give a more direct argument,

which is similar to the proof of Berge’s Maximum Theorem and can also easily be adapted

to show that F (q) is upper semi-continuous.

Note first that L < ∞ by a simple application of Hölder’s inequality. Let qn be such

that F (qn) ↑ L. Since the qn lie in a compact region, by restricting to a subsequence

we may assume that qn → q. Let rn, cn be maximizers for F (qn) in (221). Suppose

first that q has positive entries. Then, for sufficiently large n, the maximizers rn, cn lie in a

compact set and hence a standard diagonalisation argument yields a convergent subsequence

(qnk , rnk , cnk)→ (q, r, c). By continuity, r, c must lie in the region (222) defined by q and

moreover F (qnk) = F (qnk , rnk , cnk) → F (q, r, c). Thus L = F (q, r, c) and the supremum

is attained.

Assume now that q has an entry equal to zero, say q1, so that q1n → 0 (with the

natural notation for entries of the subsequences). In this setting, R1n, C1n might escape

to infinity, so assume that R1n, C1n ↑ ∞, by restricting to a subsequence if necessary.

However, (222) implies q1nR
(d+1)/d
1n , q1nC

(d+1)/d
1n ≤ 1 and hence q1nR1n, q1nC1n → 0. Note
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that q1nR1nC1n → 0 as well; otherwise there exists a subsequence with q1nkR1nkC1nk ≥ ε >

0. This contradicts that rnk , cnk maximize F (qnk , ·, ·), since setting R1,nk = C1,nk = 0 would

maintain feasibility in (222) and achieve a bigger value of F for all sufficiently large k (recall

that B < 1). Thus q1nR1n, q1nC1n, q1nR1nC1n → 0, yielding once again L = F (q, r, c).

Proofs of Lemmas 87 and 90. We first prove Lemma 90. Let IR = {i ∈ I |Ri > 0}. For

i ∈ IR, it must hold that ∂ΦS/∂Ri = 0. Since qi > 0 for i ∈ I, it follows that

R
1/d
i ∝

∑
j qjCj − (1−B)Ci for all i ∈ IR, (223)

and hence

R
(d+1)/d
i ∝ Ri

(∑
j qjCj − (1−B)Ci

)
for all i ∈ I.

Thus, for i ∈ I it holds that

R
(d+1)/d
i∑

j qjR
(d+1)/d
j

=
Ri
(∑

j qjCj − (1−B)Ci
)∑

j qjRj
∑

j qjCj + (B − 1)
∑

j qjRjCj
, (224)

and an analogous argument for the Ci’s gives

C
(d+1)/d
i∑

j qjC
(d+1)/d
j

=
Ci
(∑

j qjRj − (1−B)Ri
)∑

j qjRj
∑

j qjCj + (B − 1)
∑

j qjRjCj
. (225)

Moreover, by a direct calculation we have

∂ΦS

∂qi
=

(d+ 1)
(
Ri
∑

j qjCj + Ci
∑

j qjRj + (B − 1)RiCi
)∑

j qjRj
∑

j qjCj + (B − 1)
∑

j qjRjCj
−

dR
(d+1)/d
i∑

j qjR
(d+1)/d
j

−
dC

(d+1)/d
i∑

j qjC
(d+1)/d
i

.

(226)

Plugging (224), (225) in (226) proves the first part of Lemma 90.

For the second part of Lemma 90, assume w.l.o.g. that q1, q2 > 0 and ∂ΦS

∂q1
− ∂ΦS

∂q2
> 0.

For ε > 0, consider q′ = (q1 + ε, q2 − ε, q3). Since q1, q2 are positive, for small enough ε, q′

has positive entries which sum to q. Moreover, for small enough ε the value of ΦS increases,

while still maintaining feasibility in the region (192). Hence, q does not maximize Φ, as

desired.

Lemma 87 follows easily: just use (223) and the fact that q1, q2, q3 are integers to get

the alignment with (18).
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Proof of Lemma 93. Suppose that qi > 0 and
∑

j qjCj > (1 − B)Ci. We look at the

derivative ∂ΦS/∂Ri evaluated at Ri = 0:

∂ΦS

∂Ri
=

qi(q1C1 + q2C2 + q3C3 − (1−B)Ci)∑
j qjRj

∑
j qjCj + (B − 1)

∑
j qjRjCj

> 0

Thus, increasing the value of Ri by a sufficiently small amount, we increase the value of ΦS .

Hence, the maximum cannot be obtained at the boundary Ri = 0. The second part of the

lemma follows immediately from the first part.

6.3.5.1 Uniqueness of semi-translation invariant measures (Antiferromagnetic Potts)

In this section, we prove Lemma 80. As noted earlier, the proof extends the respective

argument in [11] for colorings in the antiferromagnetic Potts model setting. That said, the

technical details, due to the soft contraints, are relatively more intricate.

Proof of Lemma 80. We may assume that R1 ≥ . . . ≥ Rq. Then the equations easily imply

C1 ≤ . . . ≤ Cq. Define

α =
R1

Rq
, β =

R1 + . . .+Rq−1

(q − 1)Rq
, S = R1 + . . .+Rq−1.

We clearly have α ≥ β ≥ 1, and we may assume for the sake of contradiction that β > 1.

Note that

α1/d =

(
R1

Rq

)1/d

= 1 +
(1−B)(Cq − C1)

C1 + . . .+ Cq−1 +BCq

Cq = (R1 + . . .+Rq−1 +BRq)
d =

[
(q − 1)β +B

]d
Rdq

C1 = (BR1 +R2 + . . .+Rq)
d =

[
(q − 1)β + 1− (1−B)α

]d
Rdq

Moreover, by Holder’s inequality or otherwise, we have

C1 + . . .+ Cq−1 +BCq =

q−1∑
i=1

[
S +Rq − (1−B)Ri

]d
+B(S +BRq)

d

≥ (q − 1)
[q − 2 +B

q − 1
S + (q − 1)Rq

]d
+B(S +BRq)

d

= (q − 1)
[
(q − 2 +B)β + 1

]d
Rdq +B

[
(q − 1)β +B

]d
Rdq .
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Thus, we obtain that every solution must satisfy

α1/d ≤ 1 +
(1−B)

{[
(q − 1)β +B

]d − [1− (1−B)α+ (q − 1)β
]d}

(q − 1)
[
(q − 2 +B)β + 1

]d
+B

[
(q − 1)β +B

]d ⇐⇒

0 ≤ 1− α1/d +

(1−B)

[
1−

(
1− (1−B)(α−1)

(q−1)β+B

)d]
(q − 1)

[
1− (1−B)(β−1)

(q−1)β+B

]d
+B

=: f(α, β,B).

To obtain a contradiction, our goal is to prove that for q and B as in the statement of the

lemma, when (q − 1)β > α ≥ β > 1, it holds that f(α, β,B) < 0.

It is easy to see that f is decreasing in B. This immediately yields the lemma for q ≥ ∆:

it holds that f(α, β,B) ≤ f(α, β, 0) < 0, since the last inequality was proved by [11]. For

q ≤ d and B ≥ d+1−q
d+1 := Bc, this yields

f(α, β,B) ≤ f (α, β,Bc) =: g(α, β).

We first prove that g(α, β) ≤ g(β, β). For q = 2 there is nothing to prove. Hence we may

assume that d ≥ q ≥ 3. Clearly it suffices to prove that g is decreasing in α. This requires

a fair bit of work, so we state it as a Lemma to prove later.

Lemma 96. For d ≥ q ≥ 3 and Bc = d+1−q
d+1 , the function g(α, β) is decreasing in α for

α ≥ β > 1.

We finish the proof by showing that for β ≥ 1, it holds that g(β, β) ≤ 0 with equality

iff β = 1. After massaging the inequality, this reduces to

1 ≤
[
1− (1−Bc)(β − 1)

(q − 1)β +Bc

]d [
(q − 1)

(
β1/d − 1

)
+ 1−Bc

]
+Bcβ

1/d =: h(β)

Note that the inequality holds at equality for β = 1, so it suffices to prove h′(β) > 0 for

β > 1, which is the assertion of the next lemma.

Lemma 97. For d ≥ q ≥ 2 and Bc = d+1−q
d+1 , the function h(β) is increasing for β ≥ 1.

Modulo the proofs of Lemmas 96 and 97, which are given below, the proof is complete.
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Proof of Lemma 96. We compute

∂g

∂α
= −1

d
α−(d−1)/d +

(1−Bc)2

(q − 1)β +Bc
·

d
[
1− (1−Bc)(α−1)

(q−1)β+Bc

]d−1

(q − 1)
[
1− (1−Bc)(β−1)

(q−1)β+Bc

]d
+Bc

Let F (x) = x
[
1− (1−Bc)(x−1)

(q−1)β+Bc

]d
for x ∈ [β, (q − 1)β]. Straightforward manipulations show

that ∂g
∂α < 0 is equivalent to

d2(1−Bc)2F (α)(d−1)/d ≤
[
(q − 1)β +Bc

][
(q − 1)

(
1− (1−Bc)(β − 1)

(q − 1)β +Bc

)d
+Bc

]
. (227)

We prove that F (x) is decreasing in [β, (q − 1)β]. It is simple to check that

F ′(x) =

[
1− (1−Bc)(x− 1)

(q − 1)β +Bc

]d−1 (q − 1)β + 1− (d+ 1)(1−Bc)x
(q − 1)β +Bc

.

For x ∈ [β, (q− 1)β], we have (d+ 1)(1−Bc)x = qx = (q− 1)x+x > (q− 1)β+ 1, where in

the last inequality we used that β > 1. It follows that F (x) is indeed decreasing and thus

F (α) ≤ F (β).

To prove (227), it thus suffices to argue that for β > 1 it holds

d2(1−Bc)2F (β)(d−1)/d ≤
[
(q − 1)β +Bc

][
(q − 1)

(
1− (1−Bc)(β − 1)

(q − 1)β +Bc

)d
+Bc

]
. (228)

Note that q− 1 +Bc = d(1−Bc) so that the inequality is tight for β = 1. By the weighted

AM-GM inequality on Ad and 1 with weights (q − 1) and Bc respectively, we obtain

(q − 1)Ad +Bc ≥ (q − 1 +Bc)A
d(q−1)/(q−1+Bc) = d(1−Bc)A(q−1)(d+1)/q.

We use this for A =
(

1− (1−Bc)(β−1)
(q−1)β+Bc

)d
so that, after simplifications, it suffices to show that

d(1−Bc)β(d−1)/d ≤
[
(q − 1)β +Bc

] [
1− (1−Bc)(β − 1)

(q − 1)β +Bc

]−(d+1−2q)/q

.

This can further be massaged into

G(β) := β(d−1)/d
[
(q − 1)β +Bc

]−(d+1−q)/q[
(q − 2 +Bc)β + 1

](d+1−2q)/q ≤ 1

d(1−Bc)
.

Once again, note that the inequality holds at equality for β = 1, so it suffices to prove

that G′(β) < 0 for β > 1. This has nothing special, apart from tedious, but otherwise
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straightforward, calculations. We include the details briefly. Differentiating lnG(β), we

obtain

G′(β)

G(β)
=

(d− 1)

dβ
− (d+ 1− q)(q − 1)

q
[
(q − 1)β +Bc

] +
(d+ 1− 2q)(q − 2 +Bc)

q
[
(q − 2 +Bc)β + 1

] .

By clearing denominators, it suffices to check that the following second order polynomial

p(β) is negative whenever β > 1:

p(β) := (d− 1)q[(q − 1)β +Bc
][

(q − 2 +Bc)β + 1
]
− (d+ 1− q)(q − 1)dβ

[
(q − 1)β +Bc

]
+ (d+ 1− 2q)(q − 2 +Bc)β

[
(q − 1)β +Bc

]
.

Using again that q− 1 +Bc = d(1−Bc) it is easy to verify that p(1) = 0. The factorization

of p(β) (using the value of Bc) is given by

p(β) = −
q(β − 1)

[
β
(
d(q − 1)2 − (q − 1)

)
+ d(d− q) + q − 1

]
d+ 1

,

which is obviously negative for β > 1, whenever d ≥ q ≥ 2.

Proof of Lemma 97. We compute

h′(β) =
1

d
β−(d−1)/d

[
(q − 1)

(
1− (1−Bc)(β − 1)

(q − 1)β +Bc

)d
+Bc

]
− d

[
1− (1−Bc)(β − 1)

(q − 1)β +Bc

]d−1 (1−Bc)(q − 1 +Bc)[(q − 1)β1/d − (q − 2 +Bc)]

[(q − 1)β +Bc]2
.

Thus, to prove h′(β) > 0 it suffices to check (using q− 1 +Bc = d(1−Bc) and the function

F defined in Lemma 96)

d3(1−Bc)2F (β)(d−1)/d ≤

≤
[
(q − 1)β +Bc

]2
(q − 1)β1/d − (q − 2 +Bc)

[
(q − 1)

(
1− (1−Bc)(β − 1)

(q − 1)β +Bc

)d
+Bc

]
,

This is similar to (228) and in fact follows from (228), once we prove that

(q − 1)β1/d − (q − 2 +Bc)

(q − 1)β +Bc
≤ 1

d
.

To see the last inequality, observe that β + d− 1 ≥ dβ1/d as a consequence of the weighted

AM-GM inequality (or otherwise). Hence,

(q − 1)β1/d − (q − 2 +Bc)

(q − 1)β +Bc
≤ (q − 1)β + (d− 1)(q − 1)− d(q − 2 +Bc)

d
[
(q − 1)β +Bc

] =
1

d
,

completing the proof.
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CHAPTER VII

AP-REDUCTIONS USING NON-RECONSTRUCTION

For our AP-reductions, we will use a modification of the gadget we analysed in Chapter 4.

The properties of the gadget were first proved in the context of the hard-core model in [63].

7.1 A modified gadget

Recall from Section 4.1 the definition of the graph distribution Grn, for integers n > r ≥ 0:

1. Grn is supported on bipartite graphs. The two parts of the bipartite graph are labelled

by +,− and each is partitioned as V s := U s ∪ W s where |U s| = n, |W s| = r for

s ∈ {+,−}. U denotes the set U+ ∪ U− and similarly W denotes the set W+ ∪W−.

2. To sample G ∼ Grn, sample uniformly and independently ∆ matchings: (i) (∆ − 1)

random perfect matchings between U+ ∪W+ and U− ∪W−, (ii) a random perfect

matching between U+ and U−. The edge set of G is the union of the ∆ matchings.

Thus, vertices in U have degree ∆, while vertices in W have degree ∆− 1.

Note here the slight change of notation for a random graph from the distribution Grn, since we

will reserve G for the final gadget. The construction of G has two parameters 0 < θ, ψ < 1/8.

Let r = (∆ − 1)bθ log∆−1 nc+2bψ
2

log∆−1 nc, so that r = o(n1/4). First, sample G from the

distribution Grn conditioning on G being simple. Next, for s ∈ {+,−}, attach t disjoint

(∆ − 1)-ary trees of even depth ` (with t = (∆ − 1)bθ log∆−1 nc and ` = 2bψ2 log∆−1 nc)

to W s, so that every vertex in W s is a leaf of exactly one tree (this is possible since

m′ = |W | = t(∆ − 1)`). Denote by Rs the roots of the trees, so that |Rs| = t. The trees

do not share common vertices with the graph G, apart from the vertices in W . The final

graph G is the desired gadget.

Note that the definition of the phase of a configuration we gave in Section 4.1 extends

to this modified gadget as well. Specifically, the phase of a configuration depends only the

spins of vertices U (the large portion of the graph).
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The purpose of using the trees in the modified construction is related to Remark 13.

As showed in [63], the trees, together with (93), allow to obtain the pointwise conditional

independence property 2 for the roots of the trees and to make the error of approximation

polynomially small in n. The proof uses the non-reconstruction (see [55]) of the Gibbs

measures corresponding to the dominant phases for the hard-core and ferromagnetic Potts

models.

7.2 #BIS-hardness for the ferromagnetic Potts model

In this section we prove the #BIS-hardness result for the ferromagnetic Potts model. Our

first objective is to describe the properties of the modified gadget G.

The regime which will be interesting to us is B > Bo, where Theorem 69 gives the

existence of q dominant phases. Recall that the dominant phases for the ferromagnetic Potts

model are of the form (α,α), where α ranges over the permutations of (p′, 1−p′
q−1 , . . . ,

1−p′
q−1 ),

for some p′ > 1/q. Specifically, p′ is the probability that the root of the infinite ∆-regular

tree is assigned the spin i in the Gibbs measure corresponding to the ordered phase i. More

interesting for our considerations in this section will be the same quantity in the (∆−1)-ary

tree, which we denote by p. The probabillity p is the largest solution bigger than 1/q of the

following equation

(q − 1)p

1− p
=

(
(B − 1)p+ 1

(B − 1)1−p
q−1 + 1

)∆−1

,

as can easily be derived from the tree recursions (8).

It would be useful to have an explicit form of the product distribution (92). For a

phase i and S ⊂ V , we will denote by QiS(·) the product distribution (92) on the set of

configurations σ : S → [q]. Specifically, for [i] ∈ q and σ : S → [q], QiS(σ) is given by

QiS(σ) = p|σ
−1(i)∩S|

(1− p
q − 1

)|R\σ−1(i)|
,

Our interest in this section will be mostly in the case S = R (the roots of the trees of the

gadget), though to analyze the properties of G we will also look at the case S = W , in order

to transfer our results for the random graph G from Chapter 4.

Using Theorem 34, we prove the following lemma in Section 7.4. The main ingredient

here is that the L1 asymptotic convergence of µG(σW |Y (σ) = i) to QiS(σW ) is now an L∞
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asymptotic convergence of µG(σR |Y (σ) = i) to QiR(σR). Also, due to symmetries of the

Potts model, the probability that the phases occur are inverse polynomially close to 1/q.

Lemma 98. For every ∆ ≥ 3 and B > Bo, there exist constants θ(∆, B), ψ(∆, B) > 0

such that the graph G satisfies the following with probability 1− o(1) over the choice of the

graph:

1. The phases occur with roughly equal probability, so that for every phase i ∈ [q], we

have ∣∣∣µG(Y (σ) = i
)
− 1

q

∣∣∣ ≤ n−2θ.

2. Conditioned on the phase i, the spins of vertices in R are approximately independent,

that is,

max
σR

∣∣∣µG(σR |Y = i
)

QiR(σR)
− 1
∣∣∣ ≤ n−2θ.

With Lemma 98 at hand, we can now give the reduction. Let B > Bo. Let H be a

graph on n′ vertices, where n′ ≤ nθ/4 and θ is as in Lemma 98. Assuming an FPRAS for the

ferromagnetic Potts model on bipartite graphs of maximum degree ∆ for some B > Bo, we

will show that we can approximate ZH(B∗), the partition function of H in the ferromagnetic

Potts model with temperature B∗, where B∗ will be determined shortly.

To do this, we construct first a graph HG. First, take |H| disconnected copies of the

gadget G in Lemma 98 and identify each copy with a vertex v ∈ H. Denote by ĤG the

resulting graph, Gv the copy of the gadget associated to the vertex v in H and by R+
v , R

−
v , Rv

the images of R+, R−, R in the gadget Gv, respectively. Finally, we denote by R the set of

vertices ∪vRv. We next add the edges of H in ĤG. To do this, fix an arbitrary orientation

of the edges of H. For each oriented edge (u, v) of H, we add an edge between one vertex

in R+
u and one vertex in R−v , using mutually distinct vertices for distinct edges of H. The

resulting graph will be denoted by HG. Note that HG is bipartite and has maximum degree

∆.

We have the following connection:
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Lemma 99. Let ∆ ≥ 3 and B > Bo. There exists B∗ such that the following holds

(
1−O(n−θ)

) qn
′
ZHG(B)

CH
(
ZG(B)

)n′ ≤ ZH(B∗) ≤
(
1 +O(n−θ)

) qn
′
ZHG(B)

CH
(
ZG(B)

)n′ ,
where CH = D|E(H)| and D = 1 + (B − 1)

(
2p(1−p)
(q−1)2 + (q − 2) (1−p)2

(q−1)2

)
.

Proof of Lemma 99. For each v ∈ H, let Yv(σ) denote the phase of a configuration σ on Gv

and let Y = (Yv)v∈H ∈ [q]H be the phase vector of vertices in H. For Y ′ ∈ [q]H , let ZHG(Y)

be the partition function of HG restricted to configurations with phase vector Y ′, that is

ZHG(Y ′) =
∑

σ:HG→[q]

Bm(σ)1{Y(σ) = Y ′},

where for a configuration σ, m(σ) is the number of monochromatic edges under σ. We may

view Y ′ as an assignment H → [q] and analogously we denote by m(Y ′) as the number of

monochromatic edges in H under Y ′. We then have

ZHG(Y ′)
ZĤG(Y ′)

=
∑
σR

µĤG(σR | Y(σ) = Y ′)
∏

(u,v)∈E(HG)\E(ĤG)

B1{σ(u)=σ(v)}

Note that µĤG(σR | Y(σ) = Y ′) =
(
1 + O(n−θ)

)∏
v∈H Q

Yv
Rv

(σRv) since ĤG is a union of

disconnected copies of G and in each copy of G we have property 2. It follows that

ZHG(Y ′)
ZĤG(Y ′)

=
(
1 +O(n−θ)

)∑
σR

∏
v∈H

QYvRv(σRv)
∏

(u,v)∈E(HG)\E(ĤG)

B1{σ(u)=σ(v)}

=
(
1 +O(n−θ)

)
Am(Y ′)D|E(H)|−m(Y ′),

where A (resp. D) is the expected weight of an edge for two gadgets which have same (resp.

different) phases. Simple calculations show that

A = 1 + (B − 1)
(
p2 +

(1− p)2

q − 1

)
, D = 1 + (B − 1)

(2p(1− p)
(q − 1)2

+ (q − 2)
(1− p)2

(q − 1)2

)
.

Letting B∗ = A/D and CH = D|E(H)|, we obtain

ZHG(Y ′)
ZĤG(Y ′)

=
(
1 +O(n−θ)

)
CH(B∗)m(Y ′) (229)

Item 1 in Lemma 98 gives that for every Y ′ it holds that

(
1−O(n−θ)

)
q−n

′ ≤
(1

q
− n−2θ

)n′
≤
ZĤG(Y)

ZĤG

≤
(1

q
+ n−2θ

)n′
≤
(
1 +O(n−θ)

)
q−n

′
. (230)
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We also have

ZHG(B) =
∑
Y
ZHG(Y) =

∑
Y

ZHG(Y)

ZĤG(Y)
ZĤG(Y) = ZĤG

∑
Y

ZHG(Y)

ZĤG(Y)

ZĤG(Y)

ZĤG

. (231)

Using the estimates (229), (230) in (231), we obtain

(
1−O(n−θ)

)
q−n

′
CHZH(B∗) ≤ ZHG(B)

ZĤG(B)
≤
(
1 +O(n−θ)

)
q−n

′
CH .

The result follows after observing that ZĤG(B) =
(
ZG(B)

)n′
and rearranging the inequality.

Proof of Theorem 18. Suppose that there exists an FPRAS for approximating the partition

function with temperature B on graphs with maximum degree ∆. First sample the graph

G. G satisfies the properties in Lemma 98 with probability 1 − o(1). Approximate the

partition function of G within a multiplicative factor 1±ε/10n′. Approximate the partition

function of HG within a multiplicative factor 1±ε/2. The bounds for ZH(B∗) in Lemma 99

are then within a factor 1 ± ε, giving an FPRAS for approximating the partition function

with temperature B∗. This, together with the result of [30], implies an FPRAS for counting

independent sets in bipartite graphs.

7.3 #BIS-hardness for the hard-core model

The following lemma captures the properties of the final gadget G = (V,E) in the case of

the hard-core model (it is similar to Lemma 98, the main difference is that in the first bullet

the probabilities of the phases are less balanced—the reason for this is that there is less

symmetry between the phases).

Lemma 100. For every ∆ ≥ 3 and λ > λc(∆), for every ε > 0, there exist constants

θ(∆, λ), ψ(∆, λ) > 0 such that for all sufficiently large n the graph G satisfies with probability

1− ε the following:

1. The two phases occur with roughly equal probability, so that for every phase i ∈ {±1},

we have ∣∣∣µG(Y (σ) = i
)
− 1

2

∣∣∣ ≤ ε.
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2. Conditioned on the phase i, the spins of vertices in R are approximately independent,

that is,

max
σR

∣∣∣µG(σR |Y = i
)

QiR(σR)
− 1
∣∣∣ ≤ n−2θ,

where Qi is the following product measure on the configurations σR : R+ ∪R− → {±1}:

Qi(σR) = (pi)|σ
−1
R (+1)∩R+|(1− pi)|σ

−1
R (−1)∩R+|(p−i)|σ

−1
R (+1)∩R+|(1− p−i)|σ

−1
R (−1)∩R+|,

where pj is the probability that the root of the infinite (∆−1)-ary has spin +1 in the ordered

phase j ∈ {±1}.

Before proceeding with the reduction we will fix some parameters. Let

U = 1− p+p+, W = 1− p+p−, V = 1− p−p−. (232)

Note that p− < p+ implies U < W < V . We also have

W 2 − UV = (p− − p+)2 > 0.

Let 0 < a < b be such that a+ b = 1 and

UaV b = W a+b. (233)

Note that for a = 0, b = 1 we have W a+b < UaV b whereas for a = b = 1/2 we have

W a+b > UaV b. Thus such an a, b with a < b exists.

Now we are ready to give the reduction. Let H be a graph with n′ vertices. We will

need to approximate a and b from the previous paragraph by integers (where the precision

depends on H). By Dirichlet’s theorem on simultaneous Diophantine approximation there

exists positive integer n′5 ≤ Q ≤ n′40 and integers a′, b′ ∈ {0, . . . , Q} such that

|aQ− a′| ≤ n′−15 and |bQ− b′| ≤ n′−15.

The gadget from Lemma 100 that we will use will have nθ ≥ n′80. Note that n is polynomial

in n′.

Again, we construct the graph HG. First, take 2|H| disconnected copies of the gadget

G from Lemma 100 and identify two copies with a vertex v ∈ H. Denote by ĤG the
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resulting graph. Let Gv,+1 and Gv,−1 denote the two copies of the gadget associated to the

vertex v in H. For each v we put a perfect matching between half of the vertices R+ in

Gv,+ and half of the vertices R+ in Gv,−, connecting the corresponding vertices. Also, for

each v we put a perfect matching between half of the vertices R− in Gv,+ and half of the

vertices R− in Gv,−, connecting the corresponding vertices. For each v call the resulting

graph Gv. Note that Gv is symmetric—this will deal with the asymmetry in Lemma 100

(intuitively, the only phase assignments that will matter are ones where Gv,+1 and Gv,−1

have opposite phases— this results in two possibilities and, by symmetry, they have equal

probability). The remaining (unmatched) R− vertices from Gv,−1 will be referred to as L−

and the remaining (unmatched) R− vertices from Gv,+1 will be referred to as L+. Let H̃G

be the union of the Gv’s.

Now for each edge {u, v} of H we 1) add matching with a′ edges between the L+ vertices

of Gu and L+ vertices of Gv and 2) add a matching with b′ edges between the L− vertices

of Gu and the L− vertices of Gv.

We have the following connection:

Lemma 101. Let ∆ ≥ 3 and λ > λc(∆). The following holds:

(
1−O(n−θ)

) 22n′ZHG(λ)

CH
(
ZG(λ)

)2n′ ≤ BIS(H) ≤
(
1 +O(n−θ)

) 22n′ZHG(λ)

CH
(
ZG(λ)

)2n′ ,
where CH = Wn′k+(a+b)Q|E(H)| and W is as in (232).

Proof of Lemma 101. For each v ∈ H and i ∈ {±1}, let Yv,i(σ) denote the phase of a

configuration σ on Gv,i. Let

Yv(σ) =

{ −1 if Yv,+ = +1 and Yv,− = −1,

+1 if Yv,+ = −1 and Yv,− = +1,

0 otherwise.

Let Y = (Yv,i)v∈H,i∈{±1} ∈ {±1}H×{±1} be the phase vector of vertices in H (each vertex

gets two phases). For Y ′ ∈ {±1}H×{±1}, let ZHG(Y ′) be the partition function of HG

restricted to configurations with phase vector Y ′, that is

ZHG(Y ′) =
∑

σ:HG→{−1,+1}

λ|σ
−1(+1)|1{Y(σ) = Y ′}

∏
{u,v}∈E(HG)

1{σ(u) 6= +1 ∨ σ(v) 6= +1}.
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Let R be the union of all R+ and R− vertices (over all Gv,+ and Gv,−) that are matched in

the construction. We have

ZHG(Y ′)
ZĤG(Y ′)

=
∑
σR

µĤG(σR | Y(σ) = Y ′)
∏

{u,v}∈E(HG)\E(ĤG)

1{σ(u) 6= +1 ∨ σ(v) 6= +1},

where the sum ranges over all σR : R→ {±1}.

Note that µĤG(σR | Y(σ) = Y ′) =
(
1 +O(n−θ)

)∏
v∈H Q

Yv
Rv

(σRv) since ĤG is a union of

disconnected copies of G and in each copy of G we have property 2. It follows that

ZHG(Y ′)
ZĤG(Y ′)

=
(
1 +O(n−θ)

)∑
σR

∏
v∈H

QYvRv(σRv)
∏

{u,v}∈E(HG)\E(ĤG)

1{σ(u) 6= +1 ∨ σ(v) 6= +1}

=
(
1 +O(n−θ)

)
Wn′k

∏
v∈V (H)

(
UV

W 2

)(k/2)1{Yv,+=Yv,−}
×

∏
{u,v}∈E(H)

F (−Yu,+,−Yv,+)a
′
F (Yu,−, Yv,−)b

′
,

where F (+,+) = U , F (+,−) = W , and F (−,−) = V .

For Y such that Yv,+ = Yv,− for some v we have

ZHG(Y ′)
ZĤG(Y ′)

≤
(
1 +O(n−θ)

)
Wn′k

(
UV

W 2

)k/2
V (a′+b′)|E(H)|. (234)

Assuming Yu,+ 6= Yu,− and Yv,+ 6= Yv,− (or equivalently Yu 6= 0 and Yv 6= 0) we have

F (−Yu,+,−Yv,+)a
′
F (Yu,−, Yv,−)b

′

W (a+b)Q
∈

{
[V −2n′−5/2

, V 2n′−5/2
] if Yu 6= +1 ∨ Yv 6= +1,

[0, (U bV a/W a+b)n
′5

] if Yu = Yv = +1.

(235)

Hence if Yu 6= 0 and Yv 6= 0 but there exists {u, v} ∈ H such that Yu = Yv = +1 then

ZHG(Y ′)
ZĤG(Y ′)

≤
(
1 +O(n−θ)

)
Wn′k+(a+b)Q|E(H)|

(
U bV a

W a+b

)n′5
V (a′+b′)|E(H)|. (236)

On the other hand, if Yu 6= 0 and Yv 6= 0 and for all {u, v} ∈ H we have Yu 6= +1∨Yv 6= +1,

then by (235) the edges of H contribute a factor in [V −2n′−1/2
, V 2n′−1/2

]. It follows that

ZHG(Y ′)
ZĤG(Y ′)

∈
(
1 +O(n−θ)

)
Wn′k+(a+b)Q|E(H)|[V −2n′−1/2

, V 2n′−1/2
]. (237)

Item 1 in Lemma 100 gives that for every Y ′ it holds that(1

2
− ε
)2n′

≤
ZĤG(Y ′)
ZĤG

≤
(1

2
+ ε
)2n′

. (238)
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We also have

ZHG(λ) =
∑
Y
ZHG(Y) =

∑
Y

ZHG(Y)

ZĤG(Y)
ZĤG(Y) = ZĤG

∑
Y

ZHG(Y)

ZĤG(Y)

ZĤG(Y)

ZĤG

. (239)

Using estimates (234), (235), (236), (237), and (238) we obtain that the contribution of

“bad” Y (that is, one with Yv = 0 or with a pair Y (u) = Y (v) = +1, {u, v} ∈ E(H)) is

exp(−Θ(n′5)) smaller than contribution of “good” Y. For good Y we have, by symmetry,

ZH̃G(Y)

ZH̃G

=
(1

2
+ exp(−Θ(n′5))

)n′
. (240)

Now using (237) we obtain the result.

Proof of Theorem 17. Suppose that there exists an FPRAS for approximating the partition

function with activity λ on bipartite graphs of maximum degree ∆. First sample the

graph G. G satisfies the properties in Lemma 100 with probability 1 − ε′, where ε′ can

be taken arbitrarily small, say ε′ = 1/3. Approximate the partition function of G within

a multiplicative factor 1 ± ε/10n′. Approximate the partition function of HG within a

multiplicative factor 1± ε/2. The bounds for BIS(H) in Lemma 99 are then within a factor

1± ε, giving an FPRAS for counting independent sets in bipartite graphs.

7.4 Proving the properties of the modified gadgets

In this section, we prove the properties of the gadgets we use, as stated in Lemmas 98

and 100. The proofs follow the same approach as in [63, Theorem 2.1]. We will need to

argue however more thoroughly for Item 1 in Lemma 98 and Item 1 in Lemma 100, since

in [63] a cruder bound for the probability that a phase appears was enough. In the case of

the Potts model, the more delicate bound will follow from the model’s symmetries, while in

the case of the hard-core model the bound will follow from the small subgraph conditioning

results of Chapter 4.

Let Σi
G be the set of configurations on G which have phase i, i.e., Σi

G := {σ : V →

[q] |Y (σ) = i}. Moreover, let Σo
G be the set of configurations σ with

∣∣ arg maxi∈[q] |σ−1(i) ∩

U |
∣∣ ≥ 2, that is, Σo

G consists of these configurations whose phase was determined by breaking

a tie. As we will illustrate, our goal is to show that Σo
G has exponentially smaller contribution

to the partition function of G than Σi
G for every i ∈ [q].
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To capture this, for a subset Σ ⊆ ΩG of the configuration space, denote by ZG(Σ) the

partition function restricted to configurations in Σ, that is,

ZG(Σ) =
∑
σ∈Σ

wG(σ).

Let π be a permutation of the colors [q] which maps color i to color j. For a configuration

σ, we denote by π(σ) the configuration π ◦ σ. Clearly, for every configuration σ ∈ Σi
G\Σo

G

we have π(σ) ∈ Σj
G\Σo

G. It follows that for every two colors i, j we have ZG(Σi
G\Σ0) =

ZG(Σj
G\Σ0

G). Since

ZG = ZG(Σo
G) +

∑
i

ZG(Σi
G\Σo

G),

to get the inequality in Item 1 of Lemma 98 it suffices to show that ZG(Σo
G) is smaller than

ZG by an arbitrary polynomial factor. In particular, note that the definition of the phase

of a configuration makes sense for configurations on G as well. For convenience, we will

henceforth use ZoG, Z
i
G as shorthands for ZG(Σo

G), ZG(Σi
G) and Zo

G
, Zi

G
for their counterparts

in G. We will show that Zo
G

is exponentially smaller than Zi
G

. To transfer this to G, note

that for every configuration on G, the multiplicative contribution of the configurations on

the trees to the partition function is at most exp(n1/2), which gives ZoG ≤ exp(n1/2)Zi
G

. It

will turn out that this is at least an exp(n1/2) factor smaller than ZiG. Summing over i ∈ [q]

will yield the desired bound.

To formalize the argument, we will have to capture how the partition functions ZG and

ZG interplay. Due to the Markov property, this happens only through vertices in W . We

will partition the sets Σo
G
,Σi

G
according to the configuration η on W . In particular, Σo

G
(η)

will be those configurations σ in Σo
G

such that σW = η and Zo
G

(η) will be the contribution

to the partition function of G from configurations in Σo
G

(η). Define similarly Σi
G

(η) and

ZG(η).

We need a final piece of notation. Denote by J the graph induced by the edges in

E(G)\E(G). Note that J is the union of the trees (with vertices in W included). Let ZJ(η)

be the contribution to the partition function of J from configurations σ (on J) such that
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σW = η. We are now able to put these definitions into work. In particular, we have that

ZiG =
∑

η:W→[q]

Zi
G

(η)ZJ(η).

We will need the following lemma, whose proof follows from the small subgraph condi-

tioning method of Chapter 4 and the phase diagram (Theorem 69) for the ferromagnetic

Potts model (note that for ferromagnetic models, the dominant phases have the same quan-

titative structure in bipartite graphs). The only part of the lemma which we have not

accounted in Chapter 4 is Item (ii), which follows from a straightforward application of

Markov’s inequality.

Lemma 102. Let G := Gn denote the distribution of the random bipartite graph G. For

B > Bo, it holds that

(i) There exist constants C1, C2, T depending only on q,B,∆, such that for every i ∈ [q]

and η : W → [q],

EG
[
Zi
G

]
= (1 + o(1))C1n

q−1C2m′
2 exp(nT ),

EG [Zi
G

(η)] = (1 + o(1))QiW (η)EG
[
Zi
G

]
.

(241)

(ii) For all sufficiently small ε > 0 and sufficiently large n, for every η : W → [q] and

i ∈ [q],

EG
[
Zo
G

(η)
]
≤ exp(−εn)EG

[
Zi
G

]
. (242)

(iii) max
i∈[q], η:W→[q]

PrG

(
Zi
G

(η) <
1

n
EG [Zi

G
(η)]

)
→ 0 as n→∞.

Using Lemma 102 we can give the proof of Lemma 98.

Proof of Lemma 98. Item 2 of the lemma follows exactly the approach in [63]. The required

reconstruction results to push the approach in [63] are given in [47, Proof of Theorem 1.4]

(ferromagnetic Potts model on the tree with constant boundary condition). Together with

Lemma 102, the proof of [63, Theorem 2.1] extends almost verbatim to our case as well.

To get Item 1, we use Lemma 102. In particular, Markov’s inequality yields

PrGrn

 ∑
η:W→[q]

Zo
G

(η)ZJ(η) > n
∑

η:W→[q]

ZJ(η)EG [Zo
G

(η)]

→ 0 as n→∞. (243)
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Item (iii) of Lemma 102 yields for every i ∈ [q]

PrGrn

 ∑
η:W→[q]

Zi
G

(η)ZJ(η) <
1

2n

∑
η:W→[q]

ZJ(η)EG [Zi
G

(η)]

→ 0 as n→∞. (244)

We also have the crude bound maxη ZJ(η) ≤ exp(o(n1/2)) minη Q
i
W (η)ZJ(η). Combining

(241), (242), (243), (244) and the symmetry argument described in the beginning of the

section yields the first item of the lemma, concluding the proof.

Proof of Lemma 100. The second item of the lemma is proved in [63], extended in [26] and

[27]. The first item in our current version of the lemma has a more delicate bound than in

[63], where the more precise bound was not needed. We show how to obtain the desired

bound.

The small subgraph conditioning method in Chapter 4 gives that for all sufficiently

large n, there exist random variables Wmn, a function of the number of cycles of length

2, 4, . . . , 2m in G, such that Zi
G

(η) = (Wmn ± ε′)EG[Zi
G

(η)] with probability 1 − ε. As we

saw, when the graph is bipartite, the random variable Wmn is bounded by a constant c > 0

for all m. Let ε′ be sufficiently smaller than c. It follows that for any ε′ > 0 sufficiently

smaller than c and any t < 1, it holds that

lim
m→∞

lim sup
n→∞

PrGrn

 ∑
η:W→[q]

Zi
G

(η)ZJ(η) < t(Wmn ± ε′)
∑

η:W→[q]

ZJ(η)EG [Zi
G

(η)]

 = 0.

(245)

and

lim
m→∞

lim sup
n→∞

PrGrn

 ∑
η:W→[q]

Zi
G

(η)ZJ(η) >
1

t
(Wmn ± ε′)

∑
η:W→[q]

ZJ(η)EG [Zi
G

(η)]

 = 0.

(246)

Note that ∑
η:W→[q]

ZJ(η)EG [Z+
G

(η)] =
∑

η:W→[q]

ZJ(η)EG [Z−
G

(η)].

It follows that letting ε′ → 0 and then t ↑ 1, the two bounds in (245) and (246) are within

a factor of 1± ε/4 from each other and the result follows.
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CHAPTER VIII

EXTENSIONS TO RANDOM REGULAR GRAPHS

In this chapter, we discuss how our results extend to random ∆-regular graphs. We are

going to establish that for ferromagnetic models our techniques can be used to completely

analyze the Gibbs distribution on a random ∆-regular graph, in a completely analogous way

as we did for bipartite graphs. For models which are not ferromagnetic, we will need the

extra assumption of semi-translation invariant uniqueness to analyze the Gibbs distribution.

8.1 Preliminaries

8.1.1 The distribution on ∆-regular Graphs

We will use the standard pairing model, introduced in [9] (see also [5]), to study random

∆-regular bipartite graphs.

For ∆ ≥ 3 and ∆n even, conside the set [∆n]. Elements of [∆n] will be called points

and a pairing of the points is a perfect matching of [∆n]. The pairing model Gn,∆ is a

probability distribution on ∆-regular multigraphs. The distribution is generated by the

following random process. First, sample a uniformly random pairing of the points. Given

the pairing, construct a graph G with n vertices by identifying for i = 1, . . . , n the points

∆(i − 1) + 1, . . . ,∆i as a single vertex. The edges of G are induced by the pairing in the

natural way.

Let G ∼ Gn,∆. G is simple if it does not contain parallel edges or self loops. Every

simple graph G corresponds to exactly (∆!)n pairings (note that this is not true if G is

not simple). Let Gsn,∆ denote the conditional distribution on the event that G is simple;

it follows that Gsn,∆ is the uniform distribution over ∆-regular graphs with n vertices. For

fixed ∆, the probability that G is simple tends to exp
(
− (∆2 − 1)/4

)
as n → ∞ ([5, 9]).

Consequently, a property holds asymptotically almost surely over the distribution Gn,∆ iff

it holds asymptotically almost surely over the distribution Gsn,∆; the distributions Gn,∆ and

Gsn,∆ are thus contiguous (see [36, Section 9.6] for an account of contiguity).
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We will invariably work with the pairing model and translate the results to Gsn,∆ per our

needs. With a slight abuse of terminology, due to the contiguity of Gn,∆ and Gsn,∆, we shall

refer to Gn,∆ as the distribution of uniformly random ∆-regular graphs; since our results

hold a.a.s. over Gn,∆, this should not lead to any confusions. We will also omit ∆ from

notation whenever the context is clear.

8.1.2 Ferromagnetic spin systems

Before giving the definition of a ferromagnetic spin system in terms of the interaction

matrix B, we note that there is no loss of generality to assume in this chapter that B is

ergodic (irreducible and aperiodic), as a consequence of the fact that a random ∆-regular

graph is almost surely connected and non-bipartite. Indeed, if B is reducible by a suitable

permutation of the labels of colors, B can be put in a block diagonal form where each of the

blocks is either irreducible or zero. The original spin system can be studied by considering

the induced sub-models of each block which correspond to irreducible symmetric matrices

(where our results apply). These sub-models are “non-interacting” for connected graphs

G, that is, the partition function for the original model is simply the sum of the partition

functions of each sub-model. Similarly, if B is periodic, its period must be two since B is

symmetric; such a model is only interesting on bipartite graphs.

To define ferromagnetic systems, recall that in Section 5.5.1 we defined antiferromag-

netic spin systems as those spin systems whose interaction matrix B has a single positive

eigenvalue and the rest are negative. Analogously, we use the following definition of ferro-

magnetic spin systems.

Definition 8. A model is called ferromagnetic if B is positive definite. Equivalently we

have that all of its eigenvalues are positive and also that

B = B̂ᵀB̂, (15)

for some q × q matrix B̂.

The most alluring aspect of this definition is that for a ferromagnetic model, neighboring

vertices prefer to have the same spin. More generally, and analogously to Lemma 60, we
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have the following simple application of the Cauchy-Schwarz inequality.

Lemma 103. Let z1, z2 ∈ Rq≥0 with ‖z1‖1 = ‖z2‖1 = 1. For ferromagnetic B, we have

(zᵀ1Bz1)(zᵀ2Bz2) ≥ (zᵀ1Bz2)2. (247)

Equality holds iff z1 = z2. Recall that for antiferromagnetic B, the inequality is reversed.

Observe that if we plug in the inequality (247) the vectors with a single 1 in the positions

i and j respectively, we obtain that any two spins i, j induce a ferromagnetic two-spin

system.

Proof of Lemma 103. Just use the decomposition (15) and use the Cauchy-Scharz inequality

on the vectors B̂z1 and B̂z2.

We also remind the reader that the definition of ferromagnetism/antiferromagnetism in

terms of the signature of the interaction matrix is invariant in the presence of external fields.

In particular, for ∆-regular graphs, any external field can be pushed into the interaction

matrix B with a congruence transformation of the matrix B. The resulting interaction

matrix, by Sylvester’s law of inertia, has the same number of positive, zero and negative

eigenvalues and in particular remains ferromagnetic/antiferromagnetic.

8.1.3 First and second moments

For a q-spin system with interaction matrix B, our goal is to understand the Gibbs dis-

tribution on a random ∆-regular graph G = (V,E) by looking at the distribution of spin

values in V . Let n = |V |. For a configuration σ : V → [q], we denote the set of vertices

assigned spin i by σ−1(i). For a q-dimensional probability vector α, let

Σα =
{
σ : V → {1, . . . , q}

∣∣ |σ−1(i)| = αin for i = 1, . . . , q
}
,

that is, configurations in Σα assign αin vertices the spin i. We will be interested in the

total weight Zα
G of configurations in Σα, namely

Zα
G =

∑
σ∈Σα wG(σ).
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We study Zα
G by looking at the moments EG [Zα

G ] and EG [(Zα
G)2], where the expectation is

over the distribution of the random ∆-regular bipartite graph, from hereon denoted by G.

Denote the leading term of the first and second moments as:

Ψ1(α) = ΨB
1 (α) := lim

n→∞

1

n
log EG

[
Zα
G

]
.

Ψ2(α) = ΨB
2 (α) := lim

n→∞

1

n
log EG

[(
Zα
G

)2]
.

(248)

8.2 Results for general spin systems

8.2.1 Reformulating the first moment

We state an analog of Theorem 5 for the class of random ∆-regular graphs. For random

∆-regular graphs, we will need the depth-one tree recursions stated in Chapter 1:

R̂i ∝
( q∑
j=1

BijRj

)∆−1
. (7)

The fixpoints of the tree recursions are those r = (R1, . . . , Rq) such that: R̂i ∝ Ri for all i ∈

[q]. We refer to a fixpoint r of the tree recursions as Jacobian attractive if the Jacobian at

r has spectral radius less than 1.

It will also be useful to reformulate the function Ψ1 into the function Φ1, as we did for

random bipartite graphs. The function Φ1 for random regular graphs takes the form

Φ1(r) =
∆

2
ln
( q∑
i=1

q∑
j=1

BijRiRj

)
− (∆− 1) ln

( q∑
i=1

R
∆/(∆−1)
i

)
, (249)

where r = (R1, . . . , Rq)
ᵀ ≥ 0. Let p := ∆/(∆ − 1). Note that (249) has the following

appealing form

exp(2Φ1(r)/∆) =
rᵀBr

‖r‖2p
, (250)

where ‖r‖p = (
∑n

i=1R
p
i )

1/p.

Lemma 104. There is a one-to-one correspondence between the fixpoints of the depth-one

tree recursions and the critical points of Φ1 (both considered for Ri ≥ 0 in the projective

space, that is, up to scaling by a constant). The following transformation r 7→ α given by:

αi = R
∆/(∆−1)
i /

∑
iR

∆/(∆−1)
i (251)
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yields a one-to-one-to-one correspondence between the critical points of Φ1(r) and the critical

points of Ψ1(α) (in the region defined by αi ≥ 0 and
∑

i αi = 1). Moreover, for the

corresponding critical points r and α one has

Φ1(r) = Ψ1(α). (252)

Finally, the local maxima of Φ1 and Ψ1 happen at the critical points (that is, there are no

local maxima on the boundary).

The proof of Lemma 104 follows the same arguments as the proof of Theorem 5 in

Section 3.2 with Cj identified with Rj and βj identified with αj and is therefore omitted.

8.2.2 Second-moment analysis in the semi-translation invariant uniqueness
regime

For general models on random regular graphs, we will be able to analyze the second moment

in the semi-translation invariant uniqueness regime, i.e., when the system of equations

Ri ∝
( q∑
j=1

BijCj

)∆−1
, Cj ∝

( q∑
j=1

BijRi

)∆−1
(8)

has a unique positive solution (up to scaling the values of the Ri’s and Cj ’s). In particular,

this implies (trivially) that the depth-one tree recursions (7) have a unique fixed point.

By Lemma 104, we have that the maximizer of the function Ψ1(α) is unique, i.e., there is

unique dominant phase α∗.

We prove the following lemma.

Lemma 105. Suppose that B specifies a model in the semi-translation invariant uniqueness

regime. Then for the unique dominant phase α∗, it holds that Ψ2(α∗) = 2Ψ1(α∗).

Proof. We first show that exp(2Ψ1(α∗)/∆) = ‖B‖p→∆. From (250) and (252), we obtain:

max
α

exp(2Ψ1(α)/∆) = max
r

rᵀBr

‖r‖2p
≤ max

r,c

rᵀBc

‖r‖p‖c‖p
. (253)

Note that the last inequality is trivial; we just enlarged the region we consider. By Theo-

rem 5, the maximum of the rhs is achieved at a semi-translation invariant fixpoint. Since

B specifies a model in the semi-translation invariant uniqueness regime, this must coincide
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with the translation invariant fixpoint and hence the maximum in the rhs of (253) must

occur at r = c. We thus obtain that (253) is satisfied at equality. On the other hand, the

rhs in (253) is equal to |B‖p→∆, while the lhs is exp(2Ψ1(α∗)/∆), thus proving the desired

claim.

Using that the second moment corresponds to a spin model with interaction matrix

B⊗B, by the same token, one has the bounds

Ψ2(α∗) ≤ max
α∈4q

exp(Ψ2(α)/∆) ≤ max
α∈4q2

exp(ΨB⊗B
1 (α)/∆) ≤ ‖B⊗B‖p→∆, (254)

Note that from E[X2] ≥ (E[X])2, we have (trivially) Ψ2(α∗) ≥ 2Ψ1(α∗). Since ‖B ⊗

B‖p→∆ = ‖B‖2p→∆ ([7, Proposition 10.3]), we obtain that (254) holds at equality. This

implies Ψ2(α∗) = 2Ψ1(α∗), as wanted.

8.3 Results for ferromagnetic spin systems

For ferromagnetic models on random regular graphs, we will use the Cholesky decomposition

of the interaction matrix B to obtain a matrix norm formulation of the first moment. This

will allow us to obtain the following analogue of Theorem 4, which we prove in Section

8.3.1. We restate the relevant theorems.

Theorem 8. For a ferromagnetic model,

max
α

Ψ2(α) = 2 max
α

Ψ1(α).

Specifically, for dominant phases α, Ψ2(α) = 2Ψ1(α).

We will also obtain the following analogue of Theorem 2 in Section 8.3.2.

Theorem 7. For a ferromagnetic model, Jacobian attractive fixpoints of the (depth-one)

tree recursions are in one-to-one correspondence with the Hessian local maxima of Ψ1.

The above connection fails for antiferromagnetic models, e.g., for the antiferromagnetic

Potts model the uniform distribution is a global maximum but it is not a stable fixpoint

of the tree recursions for small enough temperature. (In fact, for antiferromagnetic models

every solution of the depth-one tree recursions is a local maximum, see Remark 17.)
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8.3.1 Second-moment analysis

Since we assume that B is ferromagnetic we have B = B̂ᵀB̂ and hence we can write

exp(Φ1(r)/∆) =
‖B̂r‖2
‖r‖p

, (255)

where Φ1 was defined in (249). The next lemma describes the connection between Φ1 and

Ψ1. We note that Φ1 is not a reparameterization of Ψ1, however they do agree at the critical

points. This is sufficient for our purpose: to understand the maxima of Ψ1 it is enough to

understand the maxima of Φ1. The maximization

max
r≥0

‖B̂r‖2
‖r‖p

= max
r

‖B̂r‖2
‖r‖p

= ‖B̂‖p→2, (256)

is the induced p→ 2 matrix norm of B̂. The first equality in (256) follows from the fact that

the maximum on the right-hand-side of (250) is achieved for non-negative r (this follows

from the fact that B has non-negative entries).

Lemma 5 allows us to reexpress the optimization problem associated with the first

moment in terms of matrix norms.

Lemma 106. Let B be the interaction matrix of a ferromagnetic spin system. We have

max
α

Ψ1(α) = ∆ ln ‖B̂‖ ∆
∆−1
→2.

Proof. Using Lemma 5 and equations (255) and (256), we obtain

max
α

exp(Ψ1(α)/∆) = max
r

exp(Φ1(r)/∆) = ‖B̂‖p→2.

Recall, the definition of Ψ2 (see (248)) corresponding to the leading term of the second

moment. A key fact is that Ψ2 is given by a constrained first moment calculation on a

“paired-spin” model where the interaction matrix in this model is the tensor product of the

original interaction matrix with itself (see Remark 19 in Section 8.4). The second moment

considers a pair of configurations, say σ and σ′, which are constrained to have a given phase

α. We capture this constraint using a vector γ corresponding to the overlap between σ and

σ′, in particular, γij is the number of vertices with spin i in σ and spin j in σ′.
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Recall, ΨB
1 indicates the dependence of the function Ψ1 on the interaction matrix B; to

simplify the notation we will drop the exponent if it is B. More precisely,

Ψ2(α) = max
γ

ΨB⊗B
1 (γ), (257)

where the optimization in (257) is constrained to γ such that∑
i γik = αk and

∑
k γik = αi. (258)

Ignoring the two constraints in (258) can only increase the value of (257) and hence

max
α

exp(Ψ2(α)/∆) ≤ max
γ

exp(ΨB×B
1 (γ)/∆) = ‖B̂⊗ B̂‖2 ∆

∆−1
→2
. (259)

For induced norms ‖ · ‖p→q′ with p ≤ q′ it is known (Proposition 10.1 in [7]) that

‖B̂⊗ B̂‖p→q′ = ‖B̂‖p→q′‖B̂‖p→q′ . (260)

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Combining Lemma 106 and equations (259),(260) we obtain:

exp(Ψ2(α)/∆) = max
γ

exp(ΨB×B
1 (γ)/∆) ≤ ‖B̂‖2 ∆

∆−1
→2

= 2 max
α

exp(Ψ1(α)/∆).

This proves that if α maximizes Ψ1, we have Ψ2(α) ≤ 2Ψ1(α). The reverse inequality is

trivial, yielding Theorem 8.

Remark 16. We will illustrate the necessity of the ferromagnetism assumption in Theo-

rem 8 by giving an example of an antiferromagnetic model for which the second moment

fails. Consider proper 3-colorings of random 10-regular graphs. As the size of the graph

goes to infinity the probability of it being 3 colorable goes to zero. The intuitive effect of

this is that to achieve a large value in the “paired-spin” model it is better to correlate the

coordinates to agree. In terms of Ψ1 and Ψ2 we have that the maximum in the first moment

is achieved for α1 = α2 = α3 = 1/3 with Ψ1 = 5 ln 2 − 4 ln 3 < 0. To obtain a lower

bound on the maximum in the second moment we take γ11 = γ22 = γ33 = 1/3, which yields

Ψ2 = Ψ1 > 2Ψ1. The argument actually applies whenever Ψ1 < 0 (for models whose in-

teraction matrices have 0’s and 1’s). By continuity (taking small B in antiferromagnetic

Potts model) one can obtain an example of a model without hard constraints for which the

second moment fails.
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8.3.2 Jacobian stability and Hessian maxima

The proof of Theorem 7 is essentially identical to that of Theorem 2 after identifying Cj ’s

with Rj ’s and βj ’s with αj ’s. Here, we give an overview of the proof including the important

formulas.

Our starting point is the one-to-one correspondence between fixpoints of the tree re-

cursions and the critical points of Ψ1, as given in Lemma 104. We show, roughly, that

the stability of a fixpoint is equivalent to the local maximality of the corresponding critical

point. This will be done by relating the Jacobian of the tree recursions at a fixpoint with

the Hessian of Ψ1 at the corresponding critical point. More precisely, we show that the

Jacobian has spectral radius less than 1 (a sufficient condition for stability) if and only

in the Hessian is negative definite (a sufficient condition for local maximality). Both con-

straints on the matrices are independent of the choice of local coordinates (that is, they

are invariant under similarity transformations), however to make the connection between

the Jacobian and the Hessian apparent we will have to choose the local coordinates very

carefully. A further technical complication is that the tree recursions are in the projective

space and that the optimization of Ψ1 is constrained.

We give a high level overview of the Jacobian; the proofs for the ∆-regular case follow

the same reasoning as for the bipartite ∆-regular case, see Section 3.4, after simply changing

Cj ’s to Rj ’s and βj ’s to αj ’s. Assume that R1, . . . , Rq is a fixpoint of the tree recursions.

Now we consider an infinitesimal perturbation of the fixpoint R1+εR′1, . . . , Rq+εR′q and see

how it is mapped by the tree recursions. Let αi :=
∑

j BijRiRj . The right parametrization

(choice of local coordinates) is to take R′i = riRi/
√
αi, where r1, . . . , rq determines the

perturbation. Note that Ri/
√
αi depends on the fixpoint. The tree recursions map (in the

projective space) the perturbation as follows:(
R1 + εr1

R1√
α1
, . . . , Rq + εrq

Rq√
αq

)
7→
(
R1 + εr̂1

R1√
α1
, . . . , Rq + εr̂1

Rq√
αq

)
+O(ε2), (261)

where r̂i’s are given by the following linear transformation

r̂i = (∆− 1)

q∑
j=1

BijRiRj√
αiαj

rj , (262)
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and where the ri’s are required to satisfy

q∑
i=1

√
αiri = 0. (263)

The condition (263) is invariant under the map (262) and corresponds to choosing the

representative of R1, . . . , Rq with
∑

i

∑
j BijRiRj = 1.

Next we give a high level description of the Hessian; again, this is almost identical to

Section 3.4 after identifying Cj ’s with Rj ’s and βj ’s with αj ’s. Recall that Ψ1 is a function of

α1, . . . , αq. There is an alternative parameterization of Ψ1: instead of α1, . . . , αq (restricted

to
∑
αi = 1) we use R1, . . . , Rq (restricted to

∑
i

∑
j BijRiRj = 1) and use the following

αi =
∑
j

BijRiRj for all i ∈ [q]. (264)

Every α can be achieved using parameterization by R. Let α1, . . . , αq be a critical point of

Ψ1 and let R1, . . . , Rq satisfy (264). We are going to evaluate Ψ1 in a small neighborhood

around α1, . . . , αq. It is equivalent (and easier to understand) to perturb the R1, . . . , Rq

to R1 + εR′1, . . . , Rq + εR′q and evaluate at the point given by (264). Again, the correct

parameterization is to take R′i = riRi/
√
αi. This yields the following expression for the

value of Ψ1 at the perturbed point

Ψ1(α1, . . . , αq) + ε2
q∑
i=1

ri +

q∑
j=1

BijRiRj√
αiαj

rj

 q∑
j=1

(∆− 1)
BijRiRj√
αiαj

rj − ri

+O(ε3).

(265)

Note that there is no linear term, since we are at a critical point. Recall that the αi have

to satisfy
∑

i αi = 1 which corresponds to the restriction (263).

Now we are ready to prove Theorem 2. Let L be a linear map such that the Jaco-

bian (262) is (∆− 1)L. The Hessian of Ψ1 is then (I + L)((∆− 1)L− I). Finally let S be

the linear subspace defined by (263).

Proof of Theorem 7. The constraint for the fixpoint to be Jacobian attractive is that (∆−

1)L on S has spectral radius less than 1, see equation (261). The constraint for the critical

point to be Hessian maximum is that the eigenvalues of (I + L)((∆ − 1)L − I) on S are

negative, see equation (265).
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Note that L is symmetric and if B is positive semidefinite then L is positive semidefinite

(since L is congruent to B; L is obtained by multiplying B by a diagonal matrix on the left

and on the right). Hence L has non-negative real spectrum. Note that S is invariant under

L and hence the spectrum of L on S is a subset of the spectrum of L (it is still non-negative

real; the restriction wiped out the eigenvalue 1).

The constraint for the fixpoint to be Jacobian attractive, in terms of eigenvalues, is: for

each eigenvalue x of L on S

(∆− 1)|x| < 1. (266)

The constraint for the critical point to be Hessian maximum, in terms of eigenvalues, is:

for each eigenvalue x of L on S

(1 + x)((∆− 1)x− 1) < 0. (267)

Note that conditions (266) and (267) are equivalent (since x ≥ 0).

Remark 17. For antiferromagnetic models every critical point of Ψ1 is a local maximum.

Indeed, we need only to prove that equation (267) is satisfied for every critical point. The

matrix L has non-negative entries hence 1 is the largest eigenvalue and all the other eigen-

values have magnitude less than 1 (since B is ergodic). Moreover the matrix L has the

same signature as B (since they are congruent) and hence the eigenvalues other than 1 are

negative. These 2 facts imply (267).

Remark 18. Note that one direction of the implication in Theorem 2, namely, that a

Jacobian attractive fixpoint is Hessian local maximum, holds for every model (without the

ferromagnetism assumption), since (266) always implies (267). However, for the reverse im-

plication, the ferromagnetic assumption is essential. For example, in an antiferromagnetic

model, by Remark 17, every critical point is a local maximum. For the antiferromagnetic

Potts model, the only critical point is the uniform vector and hence it is always a local max-

imum for every value of B. On the other hand, it is straightforward to check that for the

antiferromagnetic Potts model the uniform fixpoint is Jacobian unstable when B < ∆−q
∆ .
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8.4 Expressions for Ψ1 and Ψ2

In this section, we derive expressions for the first and second moments of Zα
G , which will

allow us to derive explicit expressions for the functions Ψ1(α) and Ψ2(α). Our exposition

here is such that it provides a straightforward alignment with the analogous expressions in

Chapter 2. The minor differences are due to the model of ∆-regular random graphs, which

in this chapter is the pairing model G := Gn,∆ defined in Section 8.1.1.

Recall, 4t denotes the simplex

4t = {(x1, x2, . . . , xt) ∈ Rt |
∑t

i=1 xi = 1 and xi ≥ 0 for i = 1, . . . , t}. (268)

Let G ∼ G. For a configuration σ : V → {1, . . . , q}, we shall denote the set of vertices

assigned color i by σ−1(i). For α ∈ 4q and nα ∈ Zq, let

Σα = {σ : V → {1, . . . , q}
∣∣ |σ−1(i)| = αin, for i = 1, . . . , q},

that is, Σα is the set of configurations σ which assign αin vertices of V the color i, for each

i ∈ [q]. We are interested in the total weight Zα
G of configurations in Σα, namely

Zα
G =

∑
σ∈Σα wG(σ).

Note that Zα
G is a r.v., and as indicated earlier, we will look at its moments EG [Zα

G ] and

EG [(Zα
G)2].

We begin with the first moment. For σ ∈ Σα and i, j ∈ [q], let eijn denote the number

of edges matching vertices in σ−1(i) and σ−1(j). Clearly, eij = eji. It will be notationally

convenient to reparameterize the variables eij as follows: for i 6= j we set eij = ∆xij and

for i = j we set eii = ∆xii/2. Note that the xij are r.v., since they depend on the choice of

the random graph G.For future use, we denote by xG(σ) the random vector (x11, . . . , xqq).

The number of perfect matchings between 2n vertices will be denoted by (2n)!!. It is

well known and easy to see that (2n)!! = (2n)!/(n!2n). Under the convention that 00 ≡ 1,

and using the notation of Section 2.2.1 we then have

EG [Zα
G ] =

(
n

αn

)∑
x

∏
i

(
∆αin

∆xi·n

)[∏
i 6=j(∆xijn)!

]1/2∏
i(∆xiin)!!

(∆n)!!

∏
i,j

B
∆xijn/2
ij , (269)
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where the sum ranges over all the possibles values of the random vector xG(σ), that is,

x = (x11, . . . , xqq) satisfying:

∑
j xij = αi

(
∀i ∈ [q]

)
,

xij = xji ≥ 0
(
∀i, j ∈ [q]

)
.

(270)

The first line in (269) accounts for the cardinality of Σα, while the second line is EG [wG(σ)]

for a fixed σ ∈ Σα, since by symmetry we may focus on any fixed σ. The first product is

the number of ways to choose a partition of the points which is consistent with the values

prescribed by x, the fraction is the probability that the random matching connects the

points as prescribed, and the last product is the weight of the configuration σ conditioned

on x.

We next deal with the second moment of Zα
G . The desired expression may be derived

analogously to (23). For (σ1, σ2) ∈ Σα × Σα, we need to compute EG [wG(σ1)wG(σ2)].

For i, k ∈ [q], let γikn = |σ−1
1 (i) ∩ σ−1

2 (k)|. The vector γ captures the overlap of the

configurations σ1, σ2. Denote by eikjln the number of edges matching vertices in σ−1
1 (i) ∩

σ−1
2 (k) and σ−1

1 (i) ∩ σ−1
2 (l). We reparameterize as follows: for (i, k) 6= (j, l) we set eikjl =

∆yikjl and for (i, k) = (j, l) we set eikjl = ∆yikjl/2. Using the notation of Section 2.2.1, we

have:

EG [(Zα
G)2] =

∑
γ

(
n

γn

)
∑
y

∏
i,k

(
∆γikn

∆yik·n

)[∏
(i,j)6=(k,l)(∆yikjln)!

]1/2∏
i,k(∆yikikn)!!

(∆n)!!

∏
i,j

(
BijBkl

)∆yikjln/2, (271)

where the sums range over γ = (γ11, . . . , γqq), y = (y1111, . . . , yqqqq) satisfying

∑
k γik = αi

(
∀i ∈ [q]

)
,∑

i γik = αk
(
∀k ∈ [q]

)
,∑

j,l yikjl = γik
(
∀(i, k) ∈ [q]2

)
γik ≥ 0

(
∀(i, k) ∈ [q]2

)
, yikjl = yjlik ≥ 0

(
∀(i, k, j, l) ∈ [q]4

)
.

(272)

The sums in (269) and (271) are typically exponential in n. The most critical component

of our arguments is to find the quantitative structure of configurations which determine the
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exponential order of the moments. Formally, we study the limits of 1
n log EG

[
Zα
G

]
and

1
n log EG

[
(Zα

G)2
]

as n→∞. These limits are obtainable using Stirling’s approximation. In

particular, we shall use that for a constant c > 0, we have

1

n
log
[
(cn)!

]
∼ c log n+c log c−c and

1

n
log
[
(2cn)!!

]
∼ c log n+c log c+c(log 2−1). (273)

Under the usual conventions that ln 0 ≡ −∞ and 0 ln 0 ≡ 0, the above formulas are correct

even in the degenerate case c = 0.

We now derive asymptotics for the first moment EG
[
Zα
G

]
in order to obtain the function

Ψ1(α). Applying (273) yields:

Ψ1(α) := lim
n→∞

1

n
log EG

[
ZαG
]

= max
X

Φ1(α,X), (274)

where Φ1(α,x) := (∆− 1)f1(α) + ∆g1(x)

f1(α) :=
∑

i αi lnαi

g1(x) := 1
2

∑
i,j xij lnBij − 1

2

∑
i,j xij lnxij ,

defined on the region (270).

Completely analogously, for the second moment we obtain:

Ψ2(α) := lim
n→∞

1

n
log EG

[
(Zα

G)2
]

= max
γ

max
y

Φ2(γ,y), (275)

where Φ2(γ,y) := (∆− 1)f2(γ) + ∆g2(y)

f2(γ) :=
∑

i,k γik ln γik

g2(y) := 1
2

∑
i,k,j,l yikjl ln(BijBkl)− 1

2

∑
i,k,j,l yikjl ln yikjl,

defined on the region (272).

Remark 19. As for random bipartite graphs, we can interpret the second moment as the

first moment of a paired-spin model with interaction matrix B ⊗ B. Indeed, in (275), we

can interpret BijBkl as the activity between the paired spins (i, k) and (j, l), thus giving the

desired alignment.
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8.5 Small subgraph conditioning method

In this section, we give the outline for the proof of the following lemma.

Lemma 107. For every ferromagnetic model B, if α is dominant and the corresponding

fixpoint is Jacobian attractive (c.f. Section 8.3) with probability 1− o(1) over the choice of

the graph G ∼ Gn,∆, it holds that Zα
G ≥

1
nE
[
Zα
G

]
.

The proof of Lemma 107 is a minor modification of the arguments in Section 4.2.1 which

were carried out for random ∆-regular bipartite graphs. Here, we just need to account for

the ∆-regular case which turns out to be completely analogous. As such, we give only the

statements of the necessary lemmas and briefly sketch the proofs.

The main tool we are going to use is the small graph conditioning method, which we

described in Section 2.3. For convenience of the reader, we reiterate the statement of the

theorem (in a slightly weaker form this time; namely, we only state the conclusion (C1)).

Theorem 108. For i = 1, 2, . . ., let λi > 0 and δi > −1 be constants and assume that

for each n there are random variables Xin, i = 1, 2, . . . , and Yn, all defined on the same

probability space G = Gn such that Xin is non-negative integer valued, Yn ≥ 0 and E
[
Yn
]
> 0

(for n sufficiently large). Furthermore, the following hold:

(A1) Xin
d−→ Zi as n → ∞, jointly for all i, where Zi ∼ Po(λi) are independent Poisson

random variables;

(A2) for every finite sequence j1, . . . , jm of non-negative integers,

EG
[
Yn[X1n]j1 · · · [Xmn]jm

]
EG
[
Yn
] →

m∏
i=1

(
λi(1 + δi)

)ji as n→∞; (276)

(A3)
∑

i λiδ
2
i <∞;

(A4) EG
[
Y 2
n

]
/
(
EG [Yn]

)2 ≤ exp
(∑

i λiδ
2
i

)
+ o(1) as n→∞;

Let r(n) be a function such that r(n) → 0 as n → ∞. It holds that Yn > r(n)EG
[
Yn
]

asymptotically almost surely.
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To obtain Lemma 107, it should be clear that it suffices to verify the conditions of

Theorem 108 for the random variables Zα
G . Recall, we restrict our attention to α which are

Hessian dominant. For G ∼ G(n,∆), let Xi = Xin be the number of cycles of length i in G,

i = 1, 2, . . ..

The most technical part of this verification is assumption (A4) which requires computing

the precise asymptotics of the moments. This in turn reduces to certain determinants

which are not completely trivial. Nevertheless, the arguments have been carried out in full

generality in Sections 4.3 and 4.4. The only minor modification required in the present

case is to account for the random ∆-regular graph setting instead of the bipartite random

∆-regular graph setting studied in Sections 4.3 and 4.4. The arguments there extend in a

straightforward manner. We thus obtain the following lemmas.

Lemma 109. Assumption (A1) holds with λi = (∆−1)i

2i .

Lemma 110. Assumption (A2) holds with δi =
∑q−1

j=1 µ
i
j, where µ1, µ2, . . . , µq−1 are the

eigenvalues different than 1 of the matrix

M =
{BijRiRj√

αiαj

}q
i,j=1

.

For Hessian dominant α, it holds that the µi are positive and strictly smaller than 1/(∆−1).

Lemma 111. Assumption (A3) holds with

∑
i

λiδ
2
i =

q−1∏
i=1

q−1∏
j=1

(
1− (∆− 1)µiµj

)−1/2
,

where the µi’s are as in Lemma 110.

Lemma 112. For a ferromagnetic model, for all Hessian dominant α it holds that

EG
[
(Zα

G)2
](

EG [Zα
G ]
)2 → q−1∏

i=1

q−1∏
j=1

(
1− (∆− 1)µiµj

)−1/2
,

where µi are as in Lemma 110.

Proof of Lemma 107. Apply Lemmas 109–112 to obtain that the assumptions of Theo-

rem 108 hold. The lemma follows by the conclusion of Theorem 108, for r(n) = 1/n.
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8.6 Proofs of Theorems 9 and 10

Using Lemma 107, we now give the proofs of Theorems 9 and 10.

Proofs of Theorems 9 and 10. Let α be a Hessian dominant phase, whose existence is guar-

anteed by the assumptions. By Lemma 107, with probability 1− o(1) over the choice of the

graph, we have Zα
G ≥

1
nE
[
Zα
G

]
, which implies 1

n logZG ≥ Ψ1(α) + o(1).

Moreover, since the model is ferromagnetic, for ∆-regular graphs G with n vertices,

1
n logZG ≥ C for some constant C > −∞ (explicitly, one can take C := ∆

2 log maxi∈[q]Bii,

see the remarks after the statement of Theorem 9 in the Introduction). We thus obtain

lim inf
n→∞

1

n
EG [logZG] ≥ lim inf

n→∞

[
(1− o(1))Ψ1(α) + o(1)C

]
= Ψ1(α).

By Jensen’s inequality, we also have

lim sup
n→∞

1

n
EG [logZG] ≤ lim

n→∞

1

n
log EG [ZG].

All that remains to show is that 1
n log EG [ZG] = Ψ1(α)+o(1). This is straightforward; if we

decompose ZG as ZG =
∑

α′ Z
α′
G , we obtain exp(o(n))EG [Zα

G ] ≥ EG [ZG] ≥ EG [Zα
G ]. Note

the exp(o(n)) is there to allow for dominant phases which are not Hessian.

This concludes the proof of Theorem 9. The proof of Theorem 10 is completely analo-

gous.
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CHAPTER IX

CONCLUSIONS

This thesis studied the complexity of counting in spin systems on graphs of constant max-

imum degree ∆ in terms of phase transitions on the infinite tree T∆. We gave strong

NP-hardness results for a wide class of multi-spin systems, including the particularly inter-

esting cases of the k-colorings and the q-state antiferromagnetic Potts models. To obtain

these inapproximability results, we analyzed spin systems on random bipartite ∆-regular

graphs and identified a natural class of models (ferromagnetic) where our analysis extends

to random ∆-regular graphs.

We conclude by listing several problems that are closely related to the present thesis,

together with a short discussion of possible approaches to tackle them.

Problem 1. Give a proof that the uniqueness threshold on the infinite ∆-regular tree for

the q-state antiferromagnetic Potts model is at B = ∆−q
∆ .

Note that in this thesis we proved that the semi-translation invariant uniqueness thresh-

old is at B = ∆−q
∆ (see Lemma 80), but proving that this threshold coincides with the actual

uniqueness threshold is harder. In principle, an approach analogous to Jonasson’s proof for

k-colorings should be possible [41], where it is shown that the tree recursions converge to

the uniform fixpoint under arbitrary boundary conditions. It should be noted however that,

for the Potts model, the extra parameter B makes these arguments harder to carry out. On

a related note, it would be particularly interesting if one could formulate a fairly general

criterion to capture the convergence of the tree recursions for a natural class of spin systems,

e.g., systems with no hard constraints.

Problem 2. Analyze the dominant phases on random bipartite ∆-regular graphs for the

k-colorings and the q-state antiferromagnetic Potts models when k, q are odd. Note that

this would remove the conditions in Theorems 12 and 13 for k, q to be even.
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Recall that analyzing the dominant phases on random bipartite ∆-regular graphs reduces

to computing ‖B‖p→∆, where p = ∆/(∆−1) and B is the interaction matrix corresponding

to the k-colorings and the q-state antiferromagnetic Potts models. The difficulty of solving

this problem can already be seen from our work in Section 6.3.2: the solution to the natural

relaxation of the underlying optimization problem is given for all values of q,B,∆ by a

triple (q/2, q/2, 0) (see Lemmas 88 and 89). Thus, for odd q, one has to directly tackle

the integrality issue. A reasonable approach is to look at the different types of fixpoints of

the tree recursions (see Definition 12) and compare the values of the function Φ. While 2-

supported fixpoints of the tree recursions are fairly simple to compare, this is no longer the

case for 3-supported fixpoints. Local maximum considerations (see Theorem 2) can help rule

out certain types of 3-supported fixpoints, but unfortunately not all of them. Experimental

evidence suggests that the dominant phases correspond to either a (
⌊ q

2

⌋
,
⌈ q

2

⌉
, 0)-fixpoint or

a (
⌊ q

2

⌋
,
⌊ q

2

⌋
, 1)-fixpoint of the tree recursions (the latter seems to be relevant only for q = 3

and small values of ∆).

Problem 3. Do dominant phases on random bipartite ∆-regular graphs correspond to ex-

tremal Gibbs measures on the infinite tree T∆?

We have already displayed in Chapter 1 that dominant phases correspond to Gibbs

measures on the infinite tree T∆. For the hard-core model (as well as antiferromagnetic

2-spin systems) it is known that the Gibbs measures corresponding to dominant phases

are in fact extremal; see, e.g., [55] for an alternative characterization of extremality in

terms of the reconstruction problem. This is also the case for the ferromagnetic Potts

model. In an unpublished result with Daniel Štefankovič and Eric Vigoda, we have also

verified the extremality of the Gibbs measures corresponding to the dominant phases for

the k-colorings and q-state antiferromagnetic Potts models (for k, q even). It would be

interesting to generalize these model-specific results, if possible, to general spin systems

(general interaction matrix B). Such a generalization would yield that the properties of Sly’s

original gadget [63] hold for general spin systems, allowing to obtain connections between

the complexity of approximating the partition function on different spin systems (similarly
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to Theorems 17 and 18). Moreover, it would allow to remove the condition in the general

inapproximability Theorem 14 that the dominant phases are permutation-symmetric.

Problem 4. Obtain generalizations of our results for random (bipartite) regular graphs to

graph sequences converging locally to a tree.

Our analysis of the partition function for random regular graphs exploits the graph

distribution (expressions for the moments of the partition function, short cycle distribution).

Can one analyze the partition function for graph sequences converging locally to a tree, in

the sense of [53, 64, 18]? The approaches therein are based on interpolation schemes rather

than the analysis of the moments that we used in this thesis.

Problem 5. Does the existence of multiple dominant phases on random bipartite regu-

lar graphs (which correspond to semi-translation invariant measures on T∆ which are not

translation invariant) imply hardness of approximating the partition function?

Note that the general Theorem 14 applies to antiferromagnetic models, but Theorem 15

hints that the eigenvalue restriction on the interaction matrix B might not be necessary. To

remove the restriction on the eigenvalues of B, one would need to exploit our analysis of ran-

dom bipartite graphs to devise a different reduction. We remark here that for ferromagnetic

models (whose interaction matrices have only positive eigenvalues), it is fairly straightfor-

ward to show that all dominant phases correspond to translation invariant measures on

T∆.
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