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SUMMARY

In this dissertation, we investigate theory and application of decentralized op-

timization for mixed integer programming (MIP) problems. Our focus is on loosely

coupled MIPs where different blocks of the problem have mixed integer linear feasi-

ble sets and a small number of linear constraints couple these blocks together. We

develop decentralized optimization approaches based on Lagrangian and augmented

Lagrangian duals for such MIPs. The contributions of this dissertation are a) proof of

exactness of augmented Lagrangian dual (ALD) for MIPs, b) decentralized exact and

heuristic algorithms for MIPs, and c) application to decentralized unit commitment

(UC).

First, we prove that ALD is able to close the duality gap for MIPs. In particular,

we show that with non-negative level bounded augmenting functions, ALD is able

to asymptotically achieve zero duality gap for MIPs, when the penalty coefficient is

allowed to go to infinity. We further show that, under some mild conditions, using

any norm as the augmenting function ALD is able to close the duality gap of a MIP

with a finite penalty coefficient.

Nonlinear objective functions in ALD destroy the decomposability which exists in

classical Lagrangian dual for a loosely coupled MIP. A key challenge is that, because

of the non-convex nature of MIPs, classical distributed and decentralized optimiza-

tion approaches such as alternating direction method of multipliers (ADMM) cannot

be applied directly to find their optimal solutions. We propose three exact and one

heuristic decentralized algorithms based on extensions of ADMM and dual decompo-

sition techniques.

xii



Finally, we apply the developed algorithms to solve distributed UC. The UC prob-

lem deals with the on/off decisions and output power levels of generating units in a

power system over a given planning horizon. We present mathematical formulations

for the UC problem, which are appropriate for the proposed decentralized algorithms.

Privacy concerns of the participants in UC are taken into account in these formu-

lations. We propose a solution approach for decentralized UC which exploits the

structure of UC in our decentralized algorithms. We present extensive computational

experiments for solving UC instances with different decentralized approaches. We

illustrate the challenges arising from nonconvexity of UC problem and show how the

proposed algorithms overcome these challenges. We demonstrate remarkable perfor-

mance of parallel implementation of the heuristic decentralized algorithm to solve

large scale UC instances on power systems of more than 3,000 buses. We also show

that for small UC instances, the proposed exact algorithms are able to find global

optimal solutions.
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Chapter I

INTRODUCTION

1.1 Motivation and Contributions

In many real-world optimization problems, discrete integer or binary variables are

used to capture system non-convexities. Generally, Mixed Integer Programming

(MIP) problems include optimization models with continuous and discrete variables,

linear objective function, and linear constraints. Many important applications give

rise to large-scale MIP problems with specific structure of loosely coupled blocks of

constraints where different blocks of the problem have mixed integer linear feasi-

ble sets and a small number of linear constraints couple these blocks together. For

instance, energy scheduling problems in large-scale power networks have this struc-

ture. In this dissertation, we aim to develop decentralized optimization approaches

to tackle large-scale MIP problems such as unit commitment (UC) in the domain of

power systems.

The future power grid will be a very large scale dynamic and complex system in-

cluding Distributed Generation (DG) [27, 124], Home Energy Management Systems

(HEMS) [88], energy storage systems [8, 35], PHEV [157, 155, 93, 92, 71], increasing

penetration of renewable energies [67], highly elastic and flexible loads [201], micro-

grids [91, 141, 112], and communications capabilities [1, 114]. These forces introduce

new complexity, dimensionality, non-convexity, and uncertainty to the power system,

which makes its optimization and control under the existing approaches intractable

and inefficient [76, 77, 78, 181].

In the prosumer-based architecture [77, 76] for the future power grid, decentralized

control and operation of the grid can play a significant role. In this architecture, a

1



prosumer is a power subsystem that can produce, consume, store and/or transport

electricity. The prosumer concept is highly scalable, and any electric power system,

from large interconnections to homes and appliances, can be modeled as a prosumer

[77]. Without loss of generality, we assume each prosumer has a different owner.

Thus, prosumer owners are not willing to share commercial and sensitive data such

as details of cost functions, physical constraints, etc. In this thesis, we will develop a

decentralized unit commitment (DUC) approach consistent with this prosumer-based

architecture.

Although there are rapidly growing efforts on decentralized or parallel optimiza-

tion of convex problems in the literature, few solid works with strong theoreti-

cal support are available for problems with non-convexities, specifically MIP prob-

lems. For more background on decomposition and distributed optimization meth-

ods, see [18, 148, 47, 128, 69, 127, 28]. Challenges related to the non-convexity,

non-convergence, and inefficiency of naive implementation of classic decentralized ap-

proaches for UC problems were observed in [63, 171, 170, 72].

Similar to decomposition techniques, in decentralized approaches a large-scale

optimization problem is divided into smaller subproblems. The ability to solve

many smaller optimization problems in parallel can provide computational gains for

problems of realistic operational size. Decomposition methods such as Benders and

Dantzig-Wolfe use a master-slave architecture where subproblems may be solved on

separate computational nodes but are coordinated by a master problem, which then

requires the results of those subproblems to solve an iteration of its own algorithm. In

decentralized approaches, there is no master problem or central computational node.

For many MIP formulations of UC, the difference in computational time between

solving for the entire system and, for example, one utility or control area can be of sev-

eral orders of magnitude. Depending on the convergence characteristics of the overall

algorithm versus the complexity of the subproblems, even many hundreds of parallel

2



iterations may result in total computational time gains. A second motivating factor

for UC problem decomposition is the potential for neighboring control regions to co-

ordinate their operation, optimizing their interchange for global benefit. A scheme

based on MIP UC formulations, as presented in this dissertation, would not require

drastic changes to existing UC software to implement. Finally, the decomposition

presented here can preserve much more data privacy for prosumers and participants

than is possible today. Only a small amount of data regarding system state must be

communicated between neighboring prosumers at each iteration. Sensitive data, such

as generator identity, cost, constraints, etc. can remain private to each prosumer. It

is for these reasons and because of the increased relevance of storage and demand

response that we present and investigate a prosumer-based DUC.

In the case of loosely coupled optimization problems, one possible decentralized

approach is to relax the coupling constraints and solve the relaxed problem in parallel

by decomposing it into subpoblems. Unlike convex optimization problems, in general

for MIP, a non-zero duality gap may exist when coupling constraints are relaxed by

using classical Lagrangian or even augmented Lagrangian with finite penalty coeffi-

cient [193]; that is, strong duality may not hold. We first investigate the augmented

Lagrangian dual (ALD) for MIPs. We provide a primal characterization for ALD and

prove that ALD is able to asymptotically achieve zero duality gap for MIPs, when

the penalty coefficient is allowed to go to infinity. We also show that, under some

mild conditions, ALD using any norm as the augmenting function is able to close the

duality gap of the MIP with a finite penalty coefficient.

In the dual decomposition algorithm which is based on the classical Lagrangian

dual, each iteration of the algorithm can be performed by parallel computation of

subproblems. Although this method is parallelizable, it suffers from non-zero dual-

ity gap, oscillation, and traps in local optimality when it is applied to nonconvex

optimization problems. Moreover, it is not clear how to recover a primal feasible

3



solution which satisfies all coupling constraints. Contrarily, augmented Lagrangian

methods that can close the duality gap and recover primal feasible solutions are not

separable. In the context of convex optimization, a remedy for this challenge is alter-

nating direction method of multipliers (ADMM). ADMM blends the separability of

dual decomposition with the superior convergence properties of the method of mul-

tipliers (which is based on augmented Lagrangians) [28]. However, discrete variables

make MIPs nonconvex, which destroys the convergence properties of ADMM. We

propose different exact and heuristic decentralized algorithms for MIPs, which miti-

gate oscillations and traps in local optimality. The proposed algorithms are based on

extensions and modifications of ADMM and dual decomposition methods.

We present scalable mathematical formulations for the UC problem, which are

appropriate for the proposed decentralized algorithms. Privacy concerns of the par-

ticipants in UC taken into account in these formulations. We also propose a solution

approach for decentralized UC which exploits the structure of UC in our decentral-

ized algorithms. We demonstrate remarkable performance of parallel implementation

of the heuristic decentralized algorithm to solve large scale UC instances on power

systems of more than 3000 buses. We also show that for small UC instances, the

proposed exact algorithms are able to find the exact optimal solution.

1.2 Dissertation Overview

The structure of this dissertation is as follows. In Chapter 2, we investigate the ALD

for MIPs and present some theoretical results on the zero duality gap properties of

ALD with specific augmenting functions for MIPs. Considering challenges in direct

application of distributed and decentralized optimization techniques for MIPs, we

propose several exact and heuristic decentralized algorithms for MIPs in Chapter 3.

In Chapter 4, we review the UC problem along with decentralized approaches for UC.

Then, we propose a scalable method for formulating and solving a prosumer-based

4



decentralized UC problem. Extensive computational results for solving UC instances

with different proposed decentralized approaches and partitionings are demonstrated

in Chapter 5. Finally, conclusions and summary of contributions are given in Chapter

6.
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Chapter II

EXACT AUGMENTED LAGRANGIAN DUAL FOR MIPS

In this chapter, we investigate the augmented Lagrangian dual (ALD) for mixed in-

teger linear programming (MIP) problems. ALD modifies the classical Lagrangian

dual by appending a nonlinear penalty function on the violation of the dualized con-

straints in order to reduce the duality gap. We first provide a primal characterization

for ALD for MIPs and prove that ALD is able to asymptotically achieve zero duality

gap when the weight on the penalty function is allowed to go to infinity. This provides

an alternative characterization and proof of a recent result in Boland and Eberhard

[26, Proposition 3]. We further show that, under some mild conditions, ALD using

any norm as the augmenting function is able to close the duality gap of an MIP with

a finite penalty coefficient. This generalizes the result in [26, Corollary 1] from pure

integer programming problems with bounded feasible region to general MIPs. We

also present an example where ALD with a quadratic augmenting function is not able

to close the duality gap for any finite penalty coefficient.

2.1 Introduction

We consider the general mixed integer (linear) programming (MIP) problem

zIP := inf{c>x|Ax = b,x ∈ X}, (1)

and its augmented Lagrangian dual (ALD)

zLD+
ρ := sup

λ∈Rn
inf
x∈X
{c>x+ λ>(b−Ax) + ρψ(b−Ax)},

where X is a mixed integer linear set, ρ is a given positive scalar, and ψ(·) is an

augmenting function with ψ(0) = 0 and ψ(u) > 0 for all u 6= 0. Here, Ax = b are

6



the complicating constraints, and relaxing these makes the remaining problem easier.

Details of the assumptions are provided in Section 2.3. ALD provides a lower bound

for the problem (1), i.e. zLD+
ρ ≤ zIP, for all ρ > 0.

We consider non-negative level bounded augmenting functions in ALD for solving

MIPs. Because of the non-convexity in MIP (1), a non-zero duality gap may exist

[193], that is zIP − zLD+
ρ > 0. To check the possibility of zero duality gap and

exact penalization for MIPs, a possible approach is to verify the general necessary

and sufficient conditions for strong duality of augmented Lagrangians based on the

structure of value functions [33, 34, 148]. Boland and Eberhard [26] presented an

alternative approach and showed that in ALD for MIPs, with a specific class of

nonnegative convex augmenting functions, lim
ρ→∞

zLD+
ρ = zIP holds. They also proved

that if X is a finite set (e.g. a bounded pure IP), then there exists a finite penalty

coefficient which closes the duality gap.

The main contributions of this chapter can be summarized as follows:

1. We first provide a primal characterization for the ALD of an MIP. This is an

alternative characterization to the one provided in [26, Theorem 1]. Using this

characterization, the ALD of an MIP can be viewed as a traditional Lagrangian

dual (LD) in a lifted space.

2. We give an alternative proof for the asymptotic zero duality gap property of

ALD for MIPs when the penalty coefficient is allowed to go to infinity. This

was first proved in [26, Proposition 3].

3. We prove that ALD using any norm as the augmenting function with a suf-

ficiently large but finite penalty coefficient closes the duality gap for general

MIPs. This generalizes the result in [26, Corollary 1] from the case of pure

integer programming with a bounded feasible region to general MIPs with un-

bounded feasible regions.
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4. Using our primal characterization, we also present an example where ALD with

a quadratic augmenting function is not able to close the duality gap for any

finite penalty coefficient.

The chapter is organized as follows. Section 2.2 summarizes the related literature

on ALD. Section 2.3 provides definitions and surveys existing results on Lagrangian

relaxation and augmented Lagrangian relaxation of general nonlinear optimization

problems and specifically of MIPs. Section 2.4 presents a primal characterization

of the ALD of a general MIP and the zero duality gap property when the penalty

coefficient is allowed to go to infinity. Section 2.5 proves that under mild conditions

the ALD achieves zero duality gap using any norm as the augmenting function with

a finite penalty coefficient.

2.2 Related Literature

Theory and application of the Lagrangian Dual (LD) for convex optimization prob-

lems have been well-studied in the last five decades [87]. Its natural separability and

tractability features make LD an appealing decomposition technique for solving the

large-scale convex optimization problems. It can also be used to obtain better lower

bounds than linear programming (LP) relaxation for discrete optimization problems.

Contrary the convex setting, a non-zero duality gap may exist for nonconvex

optimization problems when coupling constraints are relaxed by using classical LD.

However, the duality gap can be closed if the dual problem corresponds to some

class of functions which are not necessarily affine but they are capable of penetrating

possible ‘dents’ in the value function [148] (see Definition 2.2 for value function).

To eliminate or decrease the duality gap, different forms of ALD approaches have

been introduced in, e.g. [15, 30, 29, 31, 32, 87, 109, 125, 126, 147, 148, 152, 150, 149,

151, 188, 200]. Depending on the properties of the value function of the underlying

optimization problem, different augmenting functions can be used to close the duality

8



gap. Note that under certain conditions, a zero duality gap can be reached asymp-

totically by increasing the coefficient on penalty function to infinity [188]. In some

cases, duality gap can be closed with a large enough finite value of the penalty coef-

ficient. In this case, we say that the corresponding ALD involves exact penalization

or is exact.

In the convex optimization setting, the ALD needs weaker assumptions to converge

and demonstrate more robust behavior than standard LD [148]. In contrast, nonlinear

augmented term destroys the natural separability properties of the LD. A remedy

for this drawback is the alternating direction method of multipliers (ADMM) which

combines the robustness of ALD and the separability of LD [28].

Rockafellar [147] and Bertsekas [17] used convex quadratic augmenting functions.

[15] proposes penalty/barrier multiplier methods which are nonquadratic augmented

Lagrangians. Burke [33, 34] used norms as convex augmenting functions. For these

cases, necessary and sufficient conditions for exact penalization are provided in [33,

34, 148] which we will recast in Section 2.3.

For some classes of non-convex optimization problems, the duality gap cannot

be closed by using convex augmenting functions. For these problems, more general

forms of ALD are needed. For example, level-bounded augmenting functions were

used in [87] rather than non-negative convex ones. The works in [149] and [151] used

a family of augmenting functions with almost peak at zero property, which includes

the augmenting functions in [87] as special cases. Note that the class of augmenting

functions in [149] and [151] are generalizations of convex augmenting functions in

[148]. A weaker peak at zero property was considered in [125]. A more general form

of peak at zero property was investigated in [188] to provide a unified nonlinear ALD.

Using the theory of abstract convexity, ALD was studied in [32] and [30] in Banach

and Hausdorff topological spaces, respectively. For detailed definitions of terms such

as level-boundedness, peak at zero, etc. see Appendix B.
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2.3 Preliminaries

Let R, Q, and Z denote the sets of real, rational, and integer numbers, respectively.

Let R := R ∪ {−∞,∞} be the set of extended real numbers. For any vector a and

matrix A with finite dimensions, denote their transpose by a> and A>, respectively.

For a given x ∈ Rn and δ > 0, B(x, δ) ⊂ Rn denotes the open Euclidean ball with

center x and radius δ. For any set S ⊆ Rn, let conv(S), ri(S) and cl(S) denote the

convex hull, relative interior and closure of the set S, respectively. For a set T ⊂ Rn+1

of vectors (x, ω), Projx(T ) := {x ∈ Rn : ∃ω s.t. (x, ω) ∈ T} denotes the projection

of T into the space of vectors x in Rn. Moreover, let diam(S) := sup{‖u − v‖∞ :

u ∈ S,v ∈ S} denote the diameter of set S, where ‖ · ‖∞ is the l∞ norm.

Let x ∈ Zn1×Rn2 be the vector of decision variables, where n1 and n2 are numbers

of integer and continuous variables, respectively, and n := n1 +n2. For given c ∈ Qn,

b ∈ Qm, and A ∈ Qm×n, consider the general MIP problem (1),

zIP := inf{c>x|Ax = b,x ∈ X},

where m is the number of complicating or coupling constraints, Ax = b. The case

with n2 = 0 is called a pure IP, while for a MIP we have n2 ≥ 1 and n1 ≥ 1. Denote

the LP relaxation of zIP in problem (1) by zLP. In this chapter, we consider MIP

problems that satisfy the following assumption.

Assumption 2.1. For the MIP (1) we have the following:

a) X is a mixed integer linear set given by X = {x ∈ Zn1 ×Rn2 : Ex ≤ f} for some

E ∈ Qm̄×n and f ∈ Qm̄, where m̄ is the number of the inequality constraints in

the definition of X. The problem data A, b, c, E, and f all have rational entries,

and without loss of generality, we can assume that they are integral.

b) Problem (1) is feasible and its optimal value is bounded.
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Usually problem (1) is taken to be structured so that X includes integrality con-

straints, simple bounds on variables, and other simple constraints.

Remark 1. Note that under Assumption 2.1-a, conv(X) and conv({x : Ax =

b,x ∈ X}) are rational polyhedra by Meyer’s theorem [116]. By Assumption 2.1

(rationality of input data and boundedness of zIP), the value of the LP relaxation of

MIP (1) is bounded [24], i.e. −∞ < zLP ≤ zIP < ∞. Let λ̄LP be a rational optimal

vector of dual variables for Ax = b in the LP relaxation of (1). Moreover, zIP is

attainable and the inf in the objective function of (1) can be replaced by min. That

is, there exists an optimal solution x∗ of problem (1) such that x∗ ∈ X, Ax∗ = b

and zIP = c>x∗.

It is worth mentioning that the equality relation in Ax = b does not impose any

restriction on the type of these constraints. Because any inequality can be replaced

by an equality constraint with a new non-negative slack variable. The non-negativity

of the introduced variable can be absorbed in X. Moreover, in the case of a pure

IP, this slack variable will automatically be an integer variable following Assumption

2.1-a.

Definition 2.2. (Value function). The value function (also known as the performance

function, the marginal function and the perturbation function) for problem (1) is

defined as

p(u) := inf{c>x|Ax = b+ u,x ∈ X}. (2)

Note that p(0) = zIP. The value function is a very important tool for the the-

oretical examination of constrained optimization problems [149]. The properties of

the value functions for IPs and MIPs were studied in [23, 24, 25, 117, 144]. For an

MIP problem with rational data, the value function is lower semicontinuous [117] and

piecewise polyhedral with finitely many pieces in any bounded set [23].
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Definition 2.3. (Lagrangian relaxation and dual). For a given Lagrange multiplier

vector λ ∈ Rm, the corresponding Lagrangian relaxation (LR) of (1) is given as

zLR(λ) := inf
x∈X
{c>x+ λ>(b−Ax)}, (3)

and the associated Lagrangian dual (LD) is

zLD := sup
λ∈Rm

zLR(λ). (4)

A well known primal characterization of LD is given by [73] as

zLD = inf
x
{c>x | Ax = b,x ∈ conv(X)}. (5)

Remark 2. Note that by rationality of the input data in Assumption 2.1, zLD is

attainable and inf in the objective function of (5) can be replaced by min.

Definition 2.4. (Augmented Lagrangian relaxation and dual). The augmented La-

grangian relaxation (ALR) of (1) has the following form [148]:

zLR+
ρ (λ) := inf

x∈X
{c>x+ λ>(b−Ax) + ρψ(b−Ax)}. (6)

Here, ρ > 0 is a fixed given parameter called penalty coefficient and ψ is an augment-

ing function. In this chapter, unless explicitly mentioned, we assume that ψ satisfies

the following assumption.

Assumption 2.5. ψ : Rm → R+ is a proper, nonnegative, lower semicontinuous,

and level-bounded augmenting function, that is ψ(0) = 0, ψ(u) > 0 for all u 6= 0,

diam{u | ψ(u) ≤ δ} < +∞ for all δ > 0. Moreover lim
δ↓0

diam{u | ψ(u) ≤ δ} = 0.

Note that non-negative convex augmenting functions satisfy Assumption 2.5. The

augmented Lagrangian dual (ALD) is as follows.

zLD+
ρ := sup

λ∈Rm
zLR+
ρ (λ). (7)
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Since the augmenting function ψ(·) is nonnegative, zLD+
ρ is a non-decreasing func-

tion of ρ. Moreover, since ρψ(b−Ax) ≥ 0 we have zLR(λ) ≤ zLR+
ρ (λ) for all λ ∈ Rm

and ρ > 0, because ρψ(b−Ax) ≥ 0. Therefore, zLD ≤ zLD+
ρ for any ρ > 0. Moreover

zLR+
ρ (λ) ≤ inf

x∈X:Ax=b
{c>x+ λ>(b−Ax) + ρψ(b−Ax)}

= inf
x∈X:Ax=b

c>x

= zIP,

where the inequality holds because {x ∈ X : Ax = b} ⊆ X. The first equality

follows from the facts that b −Ax = 0 for all x satisfying Ax = b, and ψ(0) = 0.

The second equation holds by definition of zIP. Thus, zLD+
ρ ≤ zIP. In summary,

−∞ < zLP ≤ zLD ≤ zLD+
ρ ≤ zIP < +∞, ∀ρ > 0. (8)

where the strict inequalities in the upper and lower bounds hold from Assumption

2.1.

2.3.1 Exact Penalty Representation

Definition 2.6. (Exact penalty representation [148, Definition 11.60]). A dual vector

λ̄ is said to support an exact penalty representation for problem (1) if, for all ρ

sufficiently large, zIP = zLR+
ρ (λ̄) and

argmin
x∈X:Ax=b

c>x = argmin
x∈X

{c>x+ λ̄
>

(b−Ax) + ρψ(b−Ax)}.

The smallest ρ which satisfies this property is called the adequate penalty thresh-

old. A criterion for exact the penalty representation presented in [148] is as follows.

Suppose that zLR+
ρ (λ) > −∞ for at least one (λ, ρ) ∈ Rm × (0,∞). Then, a vector

λ̄ supports an exact penalty representation for problem (1) if and only if there exist

an open neighborhood W ⊂ Rm of 0 and a scalar ρ̂ > 0 such that

p(u) ≥ p(0)− λ̄>u− ρ̂ψ(u), ∀u ∈ W.
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If zLD+
ρ = zIP for some ρ > 0, then ALR (6) can recover a primal solution for the

MIP problem (1).

Proposition 2.7. Suppose Assumption 2.1 holds and zIP = zLD+
ρ̂ = zLR+

ρ̂ (λ̄) for

some finite ρ̂ > 0 and λ̄ ∈ Rm. Then, any optimal solution of ALR (6) with λ = λ̄

and ρ = ρ∗ > ρ̂ solves the MIP problem (1) and vice versa.

Proof. Let ρ∗ be any scalar such that ρ∗ > ρ̂. Let x̄ be an optimal solution of MIP

problem (1). The existence of an optimal solution for problem (1) is guaranteed under

Assumption 2.1. Then, it holds that x̄ ∈ X, Ax̄ = b, and c>x̄ = zIP. Thus,

c>x̄+ λ̄
>

(b−Ax̄) + ρ∗ψ(b−Ax̄) = c>x̄ = zIP = zLR+
ρ∗ (λ̄).

where the last equality follows from the facts that zLR+
ρ̂ (λ̄) ≤ zLR+

ρ∗ (λ̄) ≤ zIP and

zIP = zLR+
ρ̂ (λ̄). Therefore, x̄ solves ALR (6) with ρ∗ and λ̄. Moreover, it shows that

the optimality is achieved for this case of ALR (6).

To prove the other side, let x∗ ∈ X be any optimal solution of ALR (6) with ρ∗

and λ̄, i.e. c>x∗ = zLR+
ρ∗ (λ̄). We claim that x∗ solves problem (1), i.e. x∗ ∈ X,

Ax∗ = b and c>x∗ = zIP. Note that as a feasible solution of ALR (6), x∗ belongs to

X. Assume by contradiction Ax∗ 6= b. Then, ψ(b−Ax∗) > 0 and therefore

ρ̂ψ(b−Ax∗) < ρ∗ψ(b−Ax∗). (9)

Moreover,

zIP = zLD+
ρ̂ = zLR+

ρ̂ (λ̄) ≤ c>x∗ + λ̄
>

(b−Ax∗) + ρ̂ψ(b−Ax∗)

< c>x∗ + λ̄
>

(b−Ax∗) + ρ∗ψ(b−Ax∗)

= zLR+
ρ∗ (λ̄),

(10)

which contradicts zLR+
ρ∗ (λ̄) being a lower bound for zIP. Therefore, Ax∗ = b. Note

that in (10) the equality relations hold by assumption, the first inequality holds by
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definition of zLR+
ρ̂ (λ̄), and the strict inequality follows from (9). Furthermore,

zIP = zLR+
ρ̂ (λ̄)

≤ zLR+
ρ∗ (λ̄) = c>x∗ + λ̄

>
(b−Ax∗) + ρ∗ψ(b−Ax∗) = c>x∗

≤ zIP,

(11)

where the first two equalities hold by assumption and the third equality follows from

Ax∗ = b. Therefore, c>x∗ = zIP which completes the proof.

Two important cases of ALR are the proximal and sharp Lagrangian. Next, we

present their definitions, and necessary and sufficient conditions for supporting an

exact penalty representation in these cases.

2.3.2 Proximal Lagrangian

Definition 2.8. (Proximal Lagrangian). An ALR generated with the augmenting

function ψ(u) = 1
2
‖u‖2

2 is called a proximal Lagrangian.

Definition 2.9. (Proximal subgradient [148, Definition 8.45]). A vector λ ∈ Rm is

called a proximal subgradient of a function f : Rm → R at ū, a point where f(ū) is

finite, if there exist ρ > 0 and δ > 0 such that

f(u) ≥ f(ū)− λ>(u− ū)− 1

2
ρ‖u− ū‖2

2, ∀u s.t. ‖u− ū‖2 ≤ δ.

The existence of a proximal subgradient at ū corresponds to the existence of a

‘local quadratic support’ to f at ū.

In a proximal Lagrangian, suppose that there exists (λ, ρ) ∈ Rn × (0,∞) such

that zLR+
ρ (λ) > −∞ . Then, a necessary and sufficient condition for a vector λ̄ to

support an exact penalty representation is that λ̄ is a proximal subgradient of the

value function p(u) at u = 0 [148].

2.3.3 Sharp Lagrangian

Definition 2.10. (Sharp Lagrangian). An ALR which uses a norm as an augmenting

function, i.e. ψ(u) = ‖u‖, is called a sharp Lagrangian.
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Definition 2.11. (Calmness [148, Ch. 8.F]). A function f : Rm → R is calm at u

from below with modulus κ ∈ R+ if f(u) is finite and on some open neighborhood V

of u, one has

f(u) ≥ f(u)− κ‖u− u‖, ∀u ∈ V.

Note that Definition 2.11 of calmness at u from below is equivalent to satisfying

the condition

lim inf
u→u

f(u)− f(u)

‖u− u‖
> −∞,

which was given in [34]. Consider a function f which is not calm at u from below.

Then, a small shift in u can produce a proportionally unbounded downward shift in

f . Calmness is a basic regularity condition under which we can study the sensitivity

properties of certain variational systems [45].

In the sharp Lagrangian, suppose that zLR+
ρ (0) > −∞ for some ρ ∈ (0,∞).

Then, a necessary and sufficient condition for the vector λ̄ = 0 to support an exact

penalty representation is that the value function p(u) is calm from below at u = 0

[33, 34, 148].

2.3.4 ALD for MIPs

For the MIP problem (1), under some technical assumptions, Boland and Eberhard

[26] showed that the duality gap for ALD, zLD+
ρ − zIP, goes to zero as the penalty

coefficient ρ goes to infinity.

Proposition 2.12. [26, Proposition 3] Suppose ψ is of the form ψ(u) = φ(‖u‖) for

some norm ‖ · ‖ in Rm where φ : R+ → R+ is a convex, monotonically increasing

function for which φ(0) = 0 and there exists δ > 0 for which

lim inf
a→+∞

φ(a)

a
≥ δ > 0

with diam{a|φ(a) ≤ δ} ↓ 0 as δ ↓ 0. Moreover, at least one of the following condi-

tions holds: 1) The solution set of the LP relaxation of problem (1) does not contain
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a lineality space. 2) The matrices A and D have rational entries and the norm ‖.‖

used in the definition of ψ is the l∞ norm. 3) conv(X) is bounded. Then

zLD* := sup
ρ>0

zLD+
ρ = lim

ρ→∞
zLD+
ρ = zIP.

Boland and Eberhard [26] also showed that if X is a finite set of discrete elements

then ρ does not need to go to infinity to close duality gap.

Corollary 2.13. [26, Corollary 1] Suppose X is a finite set and assumptions in

Proposition 2.12 hold. Then, there exists a ρ∗ with 0 < ρ∗ <∞ such that zLD+
ρ∗ = zIP.

2.4 Zero Duality Gap with ALD

In this section, we first present a primal characterization of the ALD for MIPs. Then,

we prove that strong duality holds for ALD of general MIPs when the penalty coeffi-

cient is allowed to go to infinity. Our primal characterization and the strong duality

result hold for a general, not necessarily convex augmenting function, satisfying As-

sumption 2. We also discuss the relation of our results to the recent results in [26].

2.4.1 A Primal Characterization of ALD

Similar to the equivalence of (4) and (5) for the LD, we can give a primal character-

ization for the ALD problem (7). The key observation is that (7) can be viewed as

an LD of a problem in a lifted space. Then, the primal characterization follows from

strong duality in convex optimization with usual regularity conditions.

Let us first find the primal problem for the ALD problem (7).

zLD+
ρ = sup

λ∈Rm
inf
x∈X
{c>x+ λ>(b−Ax) + ρψ(b−Ax)}

= sup
λ∈Rm

inf
x∈X,ψ(b−Ax)≤ω

{c>x+ ρω + λ>(b−Ax)} (12)

= sup
λ∈Rm

inf
x,ω
{c>x+ ρω + λ>(b−Ax) : (x, ω) ∈ conv(Sψ)}, (13)

17



where Sψ denotes the feasible region of the inf problem in (12), i.e.

Sψ :=
{

(x, ω) ∈ Rn+1 : ψ(b−Ax) ≤ ω, x ∈ X
}
, (14)

and (13) holds because the objective function in (12) is linear. Now switching the

sup and inf in (13), we have the dual problem of (13) given as

ẑLD+
ρ := inf

(x,ω)∈conv(Sψ)
sup
λ∈Rm
{c>x+ ρω + λ>(b−Ax)}

= inf
x,ω
{c>x+ ρω : Ax = b, (x, ω) ∈ conv(Sψ)}. (15)

Theorem 2.18 below shows that, under a mild regularity condition, strong duality

holds between (13) and (15), i.e. zLD+
ρ = ẑLD+

ρ . Note that (15) only involves primal

variables x, ω. Therefore, this gives a primal characterization of the ALD problem

(13). To prove this result, we need a few simple propositions and a nonlinear Farkas

lemma.

Proposition 2.14. Projx(conv(Sψ)) = conv(X).

Proof. For any (x, ω) ∈ conv(Sψ), there exist xi ∈ X and ψ(b − Axi) ≤ ωi for

i = 1, . . . , n+ 2 so that x =
∑n+2

i=1 λix
i, ω =

∑n+2
i=1 λiω

i, and
∑n+2

i=1 λi = 1 with λi ≥ 0

for all i = 1, . . . , n + 2 (by Caratheodory’s Theorem). Clearly, x ∈ conv(X), which

shows Projx(conv(Sψ)) ⊆ conv(X).

For the other direction, take any x ∈ conv(X). Then x can be written as x =∑n+1
i=1 λix

i for each xi ∈ X and λi’s form a convex combination. Let ωi := ψ(b−Axi)

and ω :=
∑

i λiωi. Then, for each i, (xi, ωi) ∈ Sψ, and (x, ω) =
∑

i λi(x
i, ωi).

Therefore, (x, ω) ∈ conv(Sψ), i.e. x ∈ Projx(conv(Sψ)). This completes the proof.

Proposition 2.15. Let S be a nonempty convex set in Rn+1. Then ri(Projx(S)) =

Projx(ri(S)).

18



This follows from the well-known fact ri(A(S)) = A(ri(S)), where A is a linear

transformation and S is a convex set. See e.g., [19].

Proposition 2.16. There exists x ∈ ri(conv(X)) and Ax = b if and only if Problem

(15) has a feasible point in ri(conv(Sψ)).

Proof. If (15) has a feasible point (x̄, ω̄) in ri(conv(Sψ)), then Ax̄ = b and x̄ ∈

Projx(ri(conv(Sψ))). by Proposition 2.15, x̄ ∈ ri(Projx(conv(Sψ))). By Proposition

2.14, we have x̄ ∈ ri(conv(X)).

For the other direction, take any x̄ ∈ ri(conv(X)) and Ax̄ = b. By Proposition

2.14, we have x̄ ∈ ri(Projx(conv(Sψ))). By Proposition 2.15, then we know that

x̄ ∈ Projx(ri(conv(Sψ))), i.e. there exists (x̄, ω̄) ∈ ri(conv(Sψ)) and Ax̄ = b.

Lemma 2.17 (Nonlinear Farkas’ Lemma (Prop. 3.5.4, [19])). Let C be a nonempty

convex subset of Rn, and let f : C → R and gj : C → R, for j = 1, . . . , r be

convex functions. Consider the set F given by F = {x ∈ C : g(x) ≤ 0}, where

g(x) = (g1(x), . . . , gr(x)), and assume that f(x) ≥ 0 for all x ∈ F . Consider the

subset Q∗ of Rr given by

Q∗ =
{
λ ∈ Rr : λ ≥ 0, f(x) + λ>g(x) ≥ 0,∀x ∈ C

}
.

Then, Q∗ is nonempty if the functions gj for j = 1, . . . , r are affine, and F contains

a relative interior point of C.

Next, we present the primal characterization of the ALD problem (7) as following

theorem.

Theorem 2.18. If there exists x ∈ ri(conv(X)) such that Ax = b, and zLD+
ρ > −∞,

then for all ρ > 0,
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zLD+
ρ = inf

x,ω
c>x+ ρω (16a)

s.t. Ax = b (16b)

(x, ω) ∈ conv(Sψ). (16c)

Proof. Essentially, we want to show that strong duality holds between the primal and

dual pair of convex programs (13) and (15), i.e. ẑLD+
ρ = zLD+

ρ (recall that ẑLD+
ρ is

defined in (15)). By Proposition 2.16, if there exists x ∈ ri(conv(X)) and Ax = b,

then (16) has a feasible point in ri(conv(Sψ)). To apply the nonlinear Farkas’ lemma,

we first rewrite the linear equality constraints in (16b) as linear inequalities Ãx ≤ b̃

with Ã = [A>,−A>]> and b̃ = [b>,−b>]>; we can also subtract ẑLD+
ρ from the

objective function of (16a) so the new optimal value is zero. Furthermore, denote the

feasible region of (16) as

F :=
{

(x, ω) ∈ conv(Sψ) : Ãx ≤ b̃
}
.

Since F contains a point in the relative interior of conv(Sψ), by Lemma 2.17, we

know that there exists a multiplier vector λ∗ ≤ 0 such that

c>x+ ρω − ẑLD+
ρ + (λ∗)>(b̃− Ãx) ≥ 0, ∀(x, ω) ∈ conv(Sψ).

From this, we obtain

inf
(x,ω)∈conv(Sψ)

c>x+ ρω + (λ∗)>(b̃− Ãx) ≥ ẑLD+
ρ

⇒ zLD+
ρ = sup

λ≤0
inf

(x,ω)∈conv(Sψ)
c>x+ ρω + λ>(b̃− Ãx) ≥ ẑLD+

ρ .

By the weak duality between (13) and (15), we already have zLD+
ρ ≤ ẑLD+

ρ , therefore,

this shows that zLD+
ρ = ẑLD+

ρ for all ρ > 0.

Remark 3. A similar primal characterization of (7) is given in [26, Theorem 1]. In

particular, the primal characterization in [26] has the following form

zLD+
ρ = min

ω̂>0

{
ρω̂ + min

x

{
c>x : Ax = b,x ∈ Xψ(ω̂)

}}
, (17)
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where Xψ(ω̂) := conv({x ∈ Rn : ψ(b −Ax) ≤ ω̂, x ∈ X}). Note that (17) first

minimizes over ω̂ then over x, whereas the primal characterization obtained in (16)

minimizes x, ω jointly. Of course, (16) can also be written in this order as

zLD+
ρ = min

ω̂>0

{
ρω̂ + min

x

{
c>x : Ax = b,x ∈ X ′ψ(ω̂)

}}
, (18)

where X ′ψ(ω̂) := {x ∈ Rn : (x, ω̂) ∈ conv(Sψ)}. The difference between (17) and

(16) is more clear if we rewrite the sets Xψ(ω̂) and X ′ψ(ω̂) as follows,

Xψ(ω̂) = Projx (conv (Sψ ∩ {(x, ω) : ω = ω̂}))

X ′ψ(ω̂) = Projx (conv (Sψ) ∩ {(x, ω) : ω = ω̂}) . (19)

From this, we can see Xψ(ω̂) ⊆ X ′ψ(ω̂). In this sense, (17) provides a stronger

characterization than (18), when the joint minimization over (x, ω) is split out in the

order of ω and x. In fact, the proof in [26] that established (17) is quite involved. The

difficulty exactly lies in characterizing the properties of the optimal objective value of

the inner minimization in (17) as a single variable function in ω. In comparison,

our primal characterization (16) bypasses this difficulty by only looking at the joint

minimization problem. It seems that this insight to view the ALD as a traditional LD

problem in a lifted space is new, which makes the derivation of (16) quite simpler.

Our primal characterization also requires less assumptions than (17). In particular,

(17) requires that the augmenting function is convex in a particular form and at least

one of the three assumptions stated in Proposition 2.12 hold, whereas our primal

characterization works for both convex and non-convex augmenting functions, and

the relative interior condition in Theorem 2.18 is a rather mild regularity condition.

In addition, as we will show now, Assumptions 2.1 and 2.5 are enough to prove the

zero duality gap result for ALD of general MIPs. A similar result is also proved in

[26, Proposition 3] through their characterization (17), again under more restricted

conditions.
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2.4.2 Zero Duality Gap for MIPs

From the primal characterization (16) we can see the zLD+
ρ is a non-decreasing function

of ρ. Since zLD+
ρ is upper bounded by zIP, therefore we have

−∞ < zLD* := sup
ρ>0

zLD+
ρ = lim

ρ→+∞
zLD+
ρ ≤ zIP.

We want to show that in fact zLD* = zIP. Recall that λ̄LP is defined as a rational

optimal vector of dual variables for Ax = b in the LP relaxation of problem (1).

Proposition 2.19. Suppose Assumptions 2.1 and 2.5 hold. For given ρ > 0 and

ε > 0, define ω∗ρ,ε as

ω∗ρ,ε := inf
x,ω

ω

s.t. x ∈ X,

ψ(b−Ax) ≤ ω,

c>x+ λ̄
>
LP(b−Ax) + ρω − zLR+

ρ (λ̄LP) ≤ ε.

(20)

Then, the limit ω∗ρ := lim
ε↓0

ω∗ρ,ε exists and lim
ρ→+∞

ω∗ρ = 0.

Proof. From definition and finiteness of zLR+
ρ (λ̄LP), and feasibility of problem (1),

we know that problem (20) is feasible. For all ρ > 0 and ε > 0, nonnegativity of ψ

implies ω∗ρ,ε ≥ 0. Moreover, the first and third constraints in (20) imply

ω∗ρ,ε ≤
1

ρ
(zLR+
ρ (λ̄LP) + ε− c>x− λ̄>LP(b−Ax)), for some x ∈ X

≤ 1

ρ
(zIP + ε− zLP),

(21)

where the second inequality follows from the facts that zLR+
ρ (λ̄LP) ≤ zIP and zLP ≤

c>x + λ̄
>
LP(b −Ax), for all x ∈ X. By taking limits ε ↓ 0 on both sides of (21) we

have

0 ≤ ω∗ρ = lim
ε↓0

ω∗ρ,ε ≤ lim
ε↓0

1

ρ
(zIP + ε− zLP) =

1

ρ
(zIP − zLP) (22)

Note that ω∗ρ,ε is non-decreasing as ε ↓ 0. Moreover, ω∗ρ,ε is upper bounded. Then,

lim
ε↓0

ω∗ρ,ε exists. By taking limits ρ→ +∞ on both sides of (22) we have lim
ρ→+∞

ω∗ρ = 0.
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Lemma 2.20. Consider ω∗ρ as described in Proposition 2.19. Let us define z̃LR+
ρ (λ̄LP)

as follows:

z̃LR+
ρ (λ̄LP) := inf

x,ω
{c>x+ λ̄

>
LP(b−Ax) + ρω}

s.t. x ∈ X,

ψ(b−Ax) ≤ ω,

(1− δ)ω∗ρ ≤ ω ≤ (1 + δ)ω∗ρ.

(23)

Then,

zLR+
ρ (λ̄LP) =z̃LR+

ρ (λ̄LP)

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax) + ρ(1− δ)ω∗ρ}

s.t. x ∈ X,

ψ(b−Ax) ≤ (1 + δ)ω∗ρ,

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax)}

s.t. x ∈ X,

ψ(b−Ax) ≤ (1 + δ)ω∗ρ,

(24)

for any 0 < δ < 1.

Proof. Clearly, zLR+
ρ (λ̄LP) ≤ z̃LR+

ρ (λ̄LP), due to the last constraint in (23). Let

αρ := z̃LR+
ρ (λ̄LP) − zLR+

ρ (λ̄LP). Assume by contradiction, zLR+
ρ (λ̄LP) < z̃LR+

ρ (λ̄LP)

or equivalently αρ > 0. Then, for all (x, ω) satisfying constraints of (23) it holds

c>x+ λ̄
>
LP(b−Ax) + ρω ≥ z̃LR+

ρ (λ̄LP) = zLR+
ρ (λ̄LP) + αρ,

which implies (x, ω) is infeasible for problem (20) if 0 < ε < αρ. Therefore, ω∗ρ,ε /∈

((1− δ)ω∗ρ, (1 + δ)ω∗ρ) for 0 < ε < αρ, which contradicts with ω∗ρ = lim
ε↓0

ω∗ρ,ε. Therefore,

zLR+
ρ (λ̄LP) = z̃LR+

ρ (λ̄LP). Inequalities in (24) hold, because ρω ≥ ρ(1− δ)ω∗ρ ≥ 0 and

ψ(b−Ax) ≤ (1 + δ)ω∗ρ, for all (x, ω) satisfying constraints of (23).
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Theorem 2.21. Suppose Assumptions 2.1 and 2.5 hold. Then, sup
ρ>0

zLD+
ρ = zIP.

Proof. Following (8), it is enough to show that sup
ρ>0

zLD+
ρ ≥ zIP. Let δ be a given

positive scalar in (0, 1). By definition of ALD, we have

zLD+
ρ = sup

λ∈Rm
inf
x,ω
{c>x+ λ>(b−Ax) + ρω : x ∈ X, ψ(b−Ax) ≤ ω}

≥ inf
x,ω
{c>x+ λ̄

>
LP(b−Ax) + ρω : x ∈ X, ψ(b−Ax) ≤ ω}

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ψ(b−Ax) ≤ (1 + δ)ω∗ρ} (25a)

≥ inf
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ κρ} (25b)

= min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ κρ} (25c)

where

κρ := diam{u | ψ(u) ≤ (1 + δ)ω∗ρ} = sup{‖u‖∞ | ψ(u) ≤ (1 + δ)ω∗ρ} <∞.

Inequality (25a) holds by Lemma 2.20, and (25b) follows from level boundedness of

ψ. Equality (25c) is valid by Assumption 2.1. By taking limits on both sides of (25b)

we have

lim
ρ→+∞

zLD+
ρ ≥ lim

ρ→+∞
min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ κρ}

≥ min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ lim

ρ→+∞
κρ} (26a)

= min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X, ‖b−Ax‖∞ ≤ 0} (26b)

= min
x
{c>x+ λ̄

>
LP(b−Ax) : x ∈ X,Ax = b} (26c)

= min
x
{c>x : x ∈ X,Ax = b} (26d)

= zIP. (26e)

where (26a) follows from lower semicontinuity of value functions for MIPs with ra-

tional data [117]. Equality (26b) holds by Assumption 2.5, i.e. lim
ρ→+∞

κρ = 0. This

completes the proof.

24



2.5 Exact ALD for MIPs

2.5.1 Pure IP case

A special case of problem (1) is the pure IP case, where all variables are integral,

i.e. n2 = 0. Zero duality gap and exact penalty representation using proximal

Lagrangian for pure IPs were established in [24, Theorem 1.5]. Boland and Eberhard

[26, Corollary 1] proved exact penalty representation for ALD of pure IPs with a

bounded feasible region, i.e. X is finite, and the augmenting functions satisfying

assumptions in Proposition 2.12. In this section, we extend this recent result to

show exact penalty representation for pure IPs under weaker assumptions on the

augmenting functions (e.g., the augmenting function does not have to be convex) and

X may not be necessarily finite.

Theorem 2.22. Suppose problem (1) is a pure IP with potentially infinitely many

feasible solutions, and Assumptions 2.1 holds. If

inf{ψ(b−Ax) : x ∈ X,Ax 6= b} ≥ δ > 0 (27)

for some strictly positive value of δ, then there exists a finite ρ∗ ∈ (0,+∞) such that

zLD+
ρ∗ = zIP.

Proof. Following (8), it suffices to find a finite ρ∗ such that zLD+
ρ∗ ≥ zIP. Let ρ̄ > 0 be

any positive penalty coefficient. By assumption, there exists a δ > 0 which satisfies

(27). Furthermore, let x0 be any arbitrary feasible solution of (1), i.e. x0 ∈ X and

Ax0 = b. Set ρ∗ = c>x0−zLP

δ
. Note that 0 < ρ∗ < +∞, because

δ > 0 and −∞ < zLP ≤ c>x0 < +∞. We claim that zLD+
ρ∗ ≥ zIP. Observe that

we have

zLD+
ρ∗ = sup

λ
zLD+
ρ∗ (λ) ≥ zLD+

ρ∗ (λ̄LP) = inf
x∈X

{
c>x+ λ̄

>
LP(b−Ax) + ρ∗ψ(b−Ax)

}
.

(28)

There are two cases.
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1. For all x ∈ X with Ax = b,

c>x+ λ̄
>
LP(b−Ax) + ρ∗ψ(b−Ax) = c>x ≥ zIP. (29)

2. For all x ∈ X with Ax 6= b,

c>x+λ̄
>
LP(b−Ax) + ρ∗ψ(b−Ax)

= c>x+ λ̄
>
LP(b−Ax) +

(
c>x0 − zLP

δ

)
ψ(b−Ax)

≥ c>x+ λ̄
>
LP(b−Ax) +

(
c>x0 − zLP

)
(30a)

≥ zLP +
(
c>x0 − zLP

)
(30b)

= c>x0

≥ zIP,

where (30a) holds because −∞ < zLP ≤ zIP ≤ c>x0 and ψ(b −Ax) ≥ δ > 0

for all x ∈ X with Ax 6= b by (27). Inequality (30b) follows by definition of

λ̄LP.

Inequalities (29) and (30) imply

inf
x∈X

{
c>x+ λ̄

>
LP(b−Ax) + ρ∗ψ(b−Ax)

}
≥ zIP.

Together with (28), we have

zLD+
ρ∗ ≥ zIP.

This completes the proof.

Note that for the pure IP case of problem (1) under Assumption 2.1, any aug-

menting function defined in Proposition 2.12 satisfies (27). Even the index function

I : Rm → {0, 1} where

I(u) =


0 if u = 0,

1 otherwise

can be used as an augmenting function ψ(·) to satisfy (27).
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2.5.2 MIP case

For a general MIP with both continuous and integer variables, we need more con-

ditions on the augmenting function to have an exact penalty representation. For

example, if ψ(·) = ‖ · ‖2
2, i.e. the proximal Lagrangian case, this augmenting function

satisfies the assumptions in Proposition 2.12 as well as (27) when X is a pure integer

set. However, for a general MIP, there may not exist a finite 0 < ρ∗ < ∞ such that

zLD+
ρ∗ = zIP under this augmenting function. In this section, we first give an example

to show that proximal Lagrangian fails to have an exact penalty representation for a

simple MIP in three variables. Then we prove that, when the augmenting function

is any norm (but not the squared norm) i.e., for the sharp Lagrangians, the ALD

always has an exact penalty representation for general MIPs. Finally, we extend this

result to some classes of augmenting functions that are not convex.

2.5.2.1 Counterexample MIP for Proximal Lagrangian

Proposition 2.23. There exists an MIP problem of the form (1) and an augmenting

function satisfying assumptions in Proposition 2.12 such that zLD+
ρ < zIP for all finite

ρ > 0.

Next, we verify this proposition with a simple example.

Example 1. Consider the following MIP problem, with one binary and two continu-

ous variables.

zIP = min
x1,x2,x3

− x1 − x2

s.t. − x1 + x2 = 0

0 ≤ x1 ≤ x3

0 ≤ x2 ≤ 1− x3

x3 ∈ {0, 1}

(31)
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The only feasible points for (31) are (x1, x2, x3) = (0, 0, 0) and (x1, x2, x3) =

(0, 0, 1) with objective value 0. Then, zIP = 0. Projection of the feasible region of

(31) without the constraint −x1 + x2 = 0 into the space of x1 and x2 contains the

blue lines in Figure 1. The points satisfying −x1 + x2 = 0 are depicted by a red line

in this space.

We show that in Example 1, for ALD with ψ(·) = ‖ · ‖2
2, zLD+

ρ < 0 for all ρ > 0.

From Theorem 2.18, ALD (15) with ψ(·) = ‖ · ‖2
2 becomes

zLD+
ρ = inf − x1 − x2 + ρω

s.t. (x1, x2, x3, ω) ∈ conv(S2)

− x1 + x2 = 0.

(32)

where,

S2 :=


(x1, x2, x3, ω) ∈ R4 :

ω ≥ (−x1 + x2)2

0 ≤ x1 ≤ x3

0 ≤ x2 ≤ 1− x3

x3 ∈ {0, 1}


.

Consider (x̂1, x̂2, x̂3, ω̂) = (0, r, 0, r2) and (x̃1, x̃2, x̃3, ω̃) = (r, 0, 1, r2) where r(ρ) =

min{1, 1
2ρ
}. Obviously, both (x̂1, x̂2, x̂3, ω̂) and (x̃1, x̃2, x̃3, ω̃) belong to S2. Then,

(x̄1, x̄2, x̄3, ω̄) := 1
2
(x̂1, x̂2, x̂3, ω̂) + 1

2
(x̃1, x̃2, x̃3, ω̃) = ( r

2
, r

2
, 1

2
, r2) belongs to Conv(S2).

x1

x2

−x1 + x2 = 0

0

1

1

r A

C

r

B

Figure 1: Projection of the feasible region of Example 1 in the space of x1 and x2.
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ρ
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−r + ρr2

−1

1 2 30

Figure 2: Value of −x̄1 − x̄2 + ρω̄ = −r + ρr2 versus ρ for ρ > 0

Projection of the points (x̂1, x̂2, x̂3, ω̂), (x̃1, x̃2, x̃3, ω̃) and (x̄1, x̄2, x̄3, ω̄) in the space

of x1 and x2 can be depicted as points A, B and C, respectively, in Figure 1. Because

(x̄1, x̄2, x̄3, ω̄) ∈ conv(S2) and −x̄1 + x̄2 = 0, the point (x̄1, x̄2, x̄3, ω̄) is a feasible

solution of (32). Therefore,

zLD+
ρ ≤ −x̄1 − x̄2 + ρω̄ = −r + ρr2 ≤ max

{
−1

2
,− 1

4ρ

}
< 0 = zIP, ∀ρ > 0 (33)

which shows zLD+
ρ < zIP for all ρ > 0, i.e. there is no finite ρ∗ such that zLD+

ρ∗ = zIP.

Note that the second inequality in (33) follows from the fact that

−r + ρr2 =


−1 + ρ× 12 = −1 + ρ ≤ −1

2
, if 0 < ρ < 1

2

− 1
2ρ

+ ρ×
(

1
2ρ

)2

= − 1
4ρ
, if 1

2
≤ ρ.

An alternative way to show this result is as follows. From relations (6) and (7),

for any λ ∈ R,

zLR+
ρ (λ) = inf

x1,x2,x3
{−x1 − x2 + λ(−x1 + x2) + ρ(−x1 + x2)2}

s.t. 0 ≤ x1 ≤ x3

0 ≤ x2 ≤ 1− x3

x3 ∈ {0, 1}

= min

{
min

0≤x1≤1
{−(λ+ 1)x1 + ρx2

1}, min
0≤x2≤1

{(λ− 1)x2 + ρx2
2},
}
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where the second equality follows from enumeration of the values of x3. Note that

min
0≤x1≤1

{−(λ+ 1)x1 + ρx2
1} =


0, λ ≤ −1

ρ− λ− 1, λ ≥ −1 + 2ρ

− (λ+1)2

4ρ
, −1 < λ < −1 + 2ρ,

and

min
0≤x2≤1

{(λ− 1)x2 + ρx2
2} =


0, λ ≥ 1

ρ+ λ− 1, λ ≤ 1− 2ρ

− (λ−1)2

4ρ
, 1− 2ρ < λ < 1.

Then, by considering all possible values of λ and ρ > 0, we have:

zLR+
ρ (λ) =



ρ+ λ− 1 ≤ −ρ, if λ ≤ −1, λ ≤ 1− 2ρ

− (λ−1)2

4ρ
≤ −1

ρ
, else if λ ≤ −1, λ > 1− 2ρ

≤ ρ− λ− 1 < −ρ, else if λ ≥ −1 + 2ρ

− (λ+1)2

4ρ
≤ −1

ρ
, else if − 1 < λ < −1 + 2ρ, λ ≥ 1

≤ ρ+ λ− 1 < −ρ, else if − 1 < λ < −1 + 2ρ, λ ≤ 1− 2ρ

min{− (λ+1)2

4ρ
,− (λ−1)2

4ρ
} ≤ − 1

4ρ
, Otherwise

≤max{−ρ,− 1

4ρ
}

Therefore,

zLD+
ρ = sup

λ∈Rm
zLR+
ρ (λ) ≤ max{−ρ,− 1

4ρ
} < 0,

which implies zLD+
ρ < 0 for all ρ > 0.

Another point of view for this example is exploring its value function with respect
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u

p(u)
g1(u)
g2(u)
g3(u)

-1

1-1 0

Figure 3: Value function and some augmenting functions for Example 1

to the first constraint, which is

p(u) = inf
x1,x2,x3

− x1 − x2

s.t. − x1 + x2 = u

0 ≤ x1 ≤ x3

0 ≤ x2 ≤ 1− x3

x3 ∈ {0, 1}.

(34)

It is easy to check that p(u) = −|u|, for any u ∈ [−1, 1]. Note that the problem (34)

is infeasible if u /∈ [−1, 1]. Consider the supporting functions g1(u), g2(u) and g3(u)

which are based on augmenting functions ψ1(u) = 1.5|u|, ψ2(u) = u2 and ψ3(u) =

0.5u2, respectively. The value function and these supporting functions are depicted in

Figure 3. From this figure, it is clear that ψ2(u) = u2 can result in a strictly smaller

duality gap comparing to ψ3(u) = 0.5u2. But, no quadratic supporting function to

p(·) can reach p(0) = 0. However, the sharp augmenting function ψ1(u) = 1.5|u|

closes the duality gap in this example.

Example 1 showed that, for ψ(·) = ‖ · ‖2
2, there may exist MIP problems such that

zLD+
ρ < zIP, for any finite value of ρ.
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2.5.2.2 Exact ALD with the sharp Lagrangian for MIPs

Next, we show that using any norm as an augmenting function with a sufficiently large

penalty coefficient closes the duality gap for the general MIPs. First, we provide a self

contained proof for this result. Another approach is to verify the calmness condition

from Subsection 2.3.3 for the value function, which we will provide as an alternative

proof.

Theorem 2.24. Consider problem (1) with both integer and continuous variables.

Suppose Assumption 2.1 holds, and ψ(·) = ‖ · ‖, where ‖ · ‖ is any norm. Then there

exists a finite 0 < ρ∗ < +∞ such that zLD+
ρ∗ = zIP.

Proof. First, let us show the result for ψ(·) = ‖ · ‖∞. Then, we extend it to any norm

by the equivalence of norms in a Euclidean space. Let ψ(·) = ‖ · ‖∞ and 1m be an m

dimensional vector with all entries equal to 1. Then Sψ is a polyhedron,

Sψ =
{

(x, ω) ∈ Rn+1 : ‖b−Ax‖∞ ≤ ω, x ∈ X
}

=
{

(x, ω) ∈ Zn1 × Rn2+1 : −1mω ≤ b−Ax ≤ 1mω, Ex ≤ f
}
.

(35)

Then, by Assumption 2.1 and due to Meyer’s theorem [116], there is a rational poly-

hedral representation for the set conv(S‖.‖∞) ∩ {(x, ω) ∈ Rn+1 : Ax = b}. Denote

this representation by H [xω] ≥ h, where H ∈ Qm̂×(n+1) and h ∈ Qm̂, for some finite

integer m̂. Then, by the primal characterization of ALD in Theorem 2.18, the ALD

problem (7) for a given ρ > 0 can be written as follows,

zLD+
ρ = inf

x,ω
c>x+ ρω

s.t. H

[
x

ω

]
≥ h.

(36)

Note that, for a given ρ > 0, problem (36) is an LP and its dual can be written as
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follows.

zDLD+
ρ := sup

y
h>y

s.t. H>y =

[
c

ρ

]
y ≥ 0.

(37)

Note that zLD+
ρ = zDLD+

ρ , since zLD+
ρ > −∞ and by strong duality for LPs. We

are interested in a finite positive ρ∗ such that zLD+
ρ∗ ≥ c>x∗, where x∗ is an optimal

solution of (1). The existence of such a ρ∗ is equivalent to the existence of (y∗, ξ∗, ρ∗)

with ξ∗ = 0 for the following feasibility problem in (y, ξ, ρ),

h>y + ξ ≥ c>x∗

H>y =

[
c

ρ

]
y ≥ 0

ρ ≥ 1

ξ ≥ 0.

(38)

Let Ξ be the projection of the feasible set of (38) into the ξ space. Note that by

Fourier-Motzkin Elimination, Ξ is itself a polyhedron. Then, Ξ is a closed set.

Consider a sequence ξk ↓ 0 as k → +∞. Since zDLD+
ρ = zLD+

ρ ≤ zIP for any ρ ≥ 0,

and ψ(·) = ‖ · ‖∞ satisfies Assumption 2.5, by Theorem 2.12, zLD+
ρ ↑ zIP = c>x∗

as ρ → ∞. By closedness of Ξ, 0 ∈ Ξ because ξ∗ = 0 is a cluster point of Ξ.

That is, there exists some y∗ and ρ∗ such that (y∗, 0, ρ∗) is a feasible solution of

(38). Therefore, zLD+
ρ∗ ≥ zIP, which along with zLD+

ρ∗ being a lower bound for zIP, we
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conclude zLD+
ρ∗ = zIP = c>x∗. Note that

zIP = sup
λ∈Rm

inf
x∈X

c>x+ λ>(b−Ax) + ρ∗‖b−Ax‖∞

= sup
λ∈Rm

inf
(x,ω)∈S‖·‖∞

c>x+ λ>(b−Ax) + ρ∗ω

= sup
λ∈Rm

inf
(x,ω)∈conv(S‖·‖∞ )

c>x+ λ>(b−Ax) + ρ∗ω

= inf
(x,ω)∈conv(S‖·‖∞ )

c>x+ λ̄
>

(b−Ax) + ρ∗ω

= inf
(x,ω)∈S‖·‖∞

c>x+ λ̄
>

(b−Ax) + ρ∗ω

= inf
x∈X

c>x+ λ̄
>

(b−Ax) + ρ∗‖b−Ax‖∞

(39)

for some λ̄ ∈ Rm, where the second equality follows from definition of S‖·‖∞ in (35).

The third and fifth equations hold because minimizing a linear objective function on

a set is equivalent to minimizing it on the convex hull of that set. The fourth equality

is valid by strong duality for LPs, because under Assumption 2.1 and due to Meyer’s

theorem [116], conv(S‖·‖∞) is a rational polyhedron. The last equality follow from

definition of S‖·‖∞ in (35). Then,

c>x+ λ̄
>

(b−Ax) + ρ∗‖b−Ax‖∞ ≥ zIP, ∀x ∈ X

Recall that for any norm ‖ · ‖ in finite dimensions there exists 0 < γ < 1 such that

1
γ
‖u‖ ≥ ‖u‖∞ ≥ γ‖u‖, by the equivalence of norms. Take ρ̂ = ρ∗

γ
. Then,

c>x+ λ̄
>

(b−Ax) + ρ̂‖b−Ax‖ ≥ c>x+ λ̄
>

(b−Ax) + ρ∗‖b−Ax‖∞, ∀x ∈ X

which implies

zLD+
ρ̂ ≥ zLR+

ρ̂ (λ̄) = inf
x∈X

c>x+ λ̄
>

(b−Ax) + ρ̂‖b−Ax‖ ≥ zIP (40)

On the other hand, zLD+
ρ̂ ≤ zIP by (8). Therefore, zLD+

ρ̂ = zIP.

Remark 4. Note that ρ̂ and λ̄ in the proof of Theorem 2.24 satisfy the assumptions

in Proposition 2.7. Therefore, any optimal solution of ALR (6) with λ = λ̄ and ρ > ρ̂

solves the MIP problem (1).
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Another approach to prove Theorem 2.24 is to show that for sharp Lagrangian

there exists some ρ ∈ (0,∞) such that zLR+
ρ (0) > −∞, and the value function of MIP

problem (1) is calm from below at 0 (see Subsection 2.3.3). In Lemmas 2.25 and 2.26

we verify these conditions.

Lemma 2.25. For a MIP problem (1) satisfying Assumption 2.1, consider ALR with

ψ(·) = ‖ · ‖ where ‖ · ‖ is any norm. Then, there exists some ρ ∈ (0,∞) such that

zLR+
ρ (0) > −∞.

Proof. Let λ̄ ∈ Rm be the vector of optimal dual values for Ax = b in the LP

relaxation of MIP (1). Then,

−∞ < zLP ≤ c>x+ λ̄
>

(b−Ax) ≤ c>x+ ‖λ̄‖2‖b−Ax‖2, ∀x ∈ X (41)

Therefore, for ψ(·) = ‖ · ‖2 and ρ = ‖λ̄‖2, zLR+
ρ (0) ≥ zLP > −∞ holds. This result

can be generalized to other norms as augmenting functions by the equivalence of

norms.

Lemma 2.26. The value function of MIP problem (1) satisfying Assumption 2.1 is

calm from below at 0.

Proof. By Assumption 2.1, we know that −∞ < p(0) = zIP < ∞. Consider a small

enough open bounded neighborhood W ⊂ Rn of 0. For an MIP problem with rational

data, the value function is lower semicontinuous [117] and piecewise polyhedral with

finitely many regions in any bounded set [23]. Then, there are finitely many, disjoint

regions W1, · · · ,Wr ⊂ W with some α1, · · · ,αr ∈ Rm and β1, · · · , βr ∈ R such that

W = W1∪· · ·∪Wr and p(u) = α>k u+βk if u ∈ Wk and u is feasible. Without loss of

generality, assume 0 ∈ cl(Wk) for all k = 1, · · · , r; otherwise W can be chosen small

enough to exclude Wk.

By lower semicontinuity of the value function p(u) at u = 0 and the fact that

0 ∈ cl(Wk) for all k = 1, · · · , r, we have α>k 0 + βk = βk ≥ p(0) for all k = 1, · · · , r.
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Let κ = max{‖α1‖2, · · · , ‖αr‖2}. For each k = 1, · · · , r, if u ∈ Wk, then

p(u)− p(0) = α>k u+ βk − p(0) ≥ α>k u ≥ −‖αk‖2×‖u‖2 ≥ −κ‖u‖2 = −κ‖u− 0‖2.

Finally, we have

p(u)− p(0) ≥ −κ‖u− 0‖2, ∀u ∈ W,

which, from Definition 2.11, concludes that p(u) is calm from below at u = 0.

Next, we show that the value of λ̄ in the proof of Theorem 2.24 really does not

matter.

Proposition 2.27. Consider problem (1) under Assumption 2.1. Suppose ψ(·) = ‖·‖,

where ‖ · ‖ is any norm. For any λ̃ ∈ Rm, there exists a finite ρ∗(λ̃) such that

zLR+
ρ∗ (λ̃) = zIP.

Proof. Let ρ̂ and λ̄ be as considered in (40). By the equivalence of norms, there exists

0 < γ < 1 such that 1
γ
‖u‖ ≥ ‖u‖2 ≥ γ‖u‖. From Cauchy-Schwarz inequality, for all

x ∈ X, it holds

λ̃
>

(b−Ax) ≥ −‖λ̃‖2‖b−Ax‖2 ≥ −
1

γ
‖λ̃‖2‖b−Ax‖,

λ̄
>

(b−Ax) ≤ ‖λ̄‖2‖b−Ax‖2 ≤ γ‖λ̄‖2‖b−Ax‖,

and consequently,

λ̃
>

(b−Ax) ≥ λ̄>(b−Ax)−
(

1

γ
‖λ̃‖2 + γ‖λ̄‖2

)
‖b−Ax‖.

Take ρ∗ = ρ̂+
(

1
γ
‖λ̃‖2 + γ‖λ̄‖2

)
. Then,

c>x+ λ̃
>

(b−Ax) + ρ∗‖b−Ax‖ ≥ c>x+ λ̄
>

(b−Ax) + ρ̂‖b−Ax‖. (42)

By taking inf
x∈X

from both sides of (42) and considering (40) it is implied that zLR+
ρ∗ (λ̃) ≥

zIP. This result along with zLR+
ρ∗ (λ̃) being a lower bound for zIP, concludes zLR+

ρ∗ (λ̃) =

zIP.
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Next, we extend Theorem 2.24 to a more general class of augmenting functions

than norms.

Theorem 2.28. Consider an MIP problem (1) satisfying Assumption 2.1. Then,

there exists a finite ρ̂ such that zLD+
ρ̂ = zLR+

ρ̂ (λ̄LP) = zIP if ψ is an augmenting

function such that

• ψ(0) = 0,

• ψ(u) ≥ δ > 0, for all u /∈ V ,

• ψ(u) ≥ γ‖u‖∞, for all u ∈ V ,

for some open neighborhood V of 0, and positive scalars δ, γ > 0.

Proof. From Proposition 2.27, there exists a finite ρ∗ such that zLR+
ρ∗ (λ̄LP) = zIP for

ψ(·) = ‖ · ‖∞. Now, consider the cases where ψ is not a norm but it satisfies the

conditions stated above. Take ρ̂ = max
{
zIP−zLP

δ
, ρ
∗

γ

}
. There are two cases.

1. For all x ∈ X such that (b−Ax) /∈ V , it holds

c>x+ λ̄
>
LP(b−Ax) + ρ̂ψ(b−Ax) ≥ zLP + ρ̂ψ(b−Ax)

≥ zLP +
zIP − zLP

δ
ψ(b−Ax)

≥ zLP + zIP − zLP

≥ zIP

2. For all x ∈ X such that (b−Ax) ∈ V , it holds

c>x+ λ̄
>
LP(b−Ax) + ρ̂ψ(b−Ax) ≥ c>x+ λ̄

>
LP(b−Ax) +

ρ∗

γ
ψ(b−Ax)

≥ c>x+ λ̄
>
LP(b−Ax) + ρ∗‖b−Ax‖∞

≥ zIP.
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Then,

c>x+ λ̄
>
LP(b−Ax) + ρ̂ψ(b−Ax) ≥ zIP, ∀x ∈ X, (43)

which implies zLD+
ρ̂ ≥ zLR+

ρ̂ (λ̄LP) ≥ zIP. This result along with zLR+
ρ̂ (λ̄LP) being a

lower bound for zIP, concludes zLR+
ρ̂ (λ̃) = zIP.

2.6 Conclusions and future work

In this chapter we studied ALD for general linear MIP problems. We presented a

primal characterization of ALD for MIPs and showed the asymptotic zero duality

gap property with non-negative level bounded and not necessarily convex augment-

ing functions. Moreover, we showed that under some mild assumptions, ALD achieves

zero duality gap for general MIPs with a finite penalty coefficient and a general class

of augmenting functions. We also show that some augmenting functions such as the

squared Euclidean norm are exact in the pure IP cases, but there exists MIP coun-

terexamples for which these augmenting functions may result in a non-zero duality

gap for any value of the penalty coefficient.

Solving IP and MIP problems by ALD may have computational advantages over

the classical Lagrangian relaxation approaches, since ALD may produce better dual

bounds and provide primal solutions. The main drawback of ALR and ALD methods

is that the resulting subproblems are not separable because of the nonlinear aug-

menting terms. In the convex setting, the alternating direction method of multipliers

(ADMM) [28] and related scheme have been developed to overcome this issue. It is not

at all clear how to decompose ALD for MIP problems and utilize parallel computation

for solving smaller subproblems. In the next chapter, we will develop different exact

and heuristic algorithms to solve loosely coupled MIPs in a decentralized fashion.
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Chapter III

DECENTRALIZED MIP ALGORITHMS

In this chapter, we propose different exact and heuristic decentralized algorithms for

mixed integer programming (MIP) problems. A key challenge is that, because of

the non-convex nature of MIPs, classical distributed and decentralized optimization

approaches cannot be applied directly to find their optimal solutions. The heuristic

method extends the ADMM to mitigate oscillations and traps in local optimality

that result from the nonconvexity of MIPs. The proposed exact algorithms are based

on adding primal cuts and restricting the Lagrangian relaxation of the original MIP

problem.

3.1 Introduction

Consider the MIP problem

zIP := min
x1,···xN

∑
ν∈P

c>ν xν

s.t. xν ∈ Xν , ∀ν ∈ P ,∑
ν∈P

Aνxν = b,

(44)

where P = {1, · · · , N} is the set of blocks. Each block ν has its own nν dimensional

vector xν of decision variables , and local linear constraints

xν ∈ Xν , (45)

where Xν is a linear mixed integer set. Different blocks of the problem (44) are linked

to each other via the following linear coupling constraints :

∑
ν∈P

Aνxν = b. (46)
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Each Aν is a m× nν matrix, for all ν ∈ P , b is a m dimensional vector, where m is

the number of coupling constraints (46).

Details of assumptions and notations are provided in Section 3.2. IfAνs are sparse

matrices and the number of coupling constraints (46) is relatively small comparing

to the total number of local constraints of type (45), then we call the problem (44) a

loosely coupled MIP.

Note that any MIP problem with bounded integer variables can be recast as formu-

lation (44). For example, two-stage 0-1 stochastic MIP programs can be represented

as (44), where each scenario is assumed to be a block and the nonanticipativity con-

straints couple different scenarios. In these problems, the sets Uis are identical and the

binary vectors uis should be the same for different scenarios, due to nonanticipativity

constraints.

Another example is the Unit Commitment (UC) problem, which is a challenging

MIP problem in power systems. In UC, each electric power generating unit has its

own variables and constraints, and only a small percentage of the constraints couple

the generators to each other. In UC, binary variables are used to represent the on/off

status of each generator at each time. In Chapter 4, we decompose the UC problem

on a region based where data privacy is an important issue for different regions.

In this chapter, we propose different exact and heuristic algorithms to solve loosely

coupled MIPs in a decentralized fashion. A key challenge is that, because of the

non-convex nature of MIPs, classical distributed and decentralized optimization ap-

proaches for convex optimization cannot be applied directly to find optimal solutions

for MIPs. The proposed algorithms are based on extensions of dual decomposition

and ADMM methods. ADMM is an algorithm that is intended to blend the decom-

posability of dual ascent with the superior convergence properties of the method of

multipliers [28]. If the problem (44) is solvable and the sets Xν are convex, closed, and

non-empty for all ν ∈ P , then ADMM can solve (44) in a decentralized framework
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(see [28] for convergence properties of ADMM). However, binary variables make the

sets Xν nonconvex, which destroys the convergence properties of ADMM.

The chapter is organized as follows. Section 3.2 provides the notations and prob-

lem statement. Section 3.3 summarizes the related literature on dual decomposition

and ADMM methods. Our exact decentralized algorithms for MIPs are presented in

Section 3.5. Our heuristic method is presented in Section 3.4. Experimental results

of implementing these algorithms for unit commitment instances will be presented in

Chapter 5.

3.2 Preliminaries

Let R and Q denote the sets of real and rational numbers. For a finite dimensional

vector a, denote its transpose by a>. For a set S, denote its cardinality by |S|. In

this chapter, we consider MIP problem (44) which satisfies the following assumptions.

Assumption 3.1. For the MIP (44) we have the following:

a) For each block ν ∈ P, Xν is a linear mixed integer set defined by

Xν := {(u>ν ,y>ν )> : uν ∈ Uν , yν ∈ Yν(uν)}, (47)

where uν ∈ {0, 1}n
1
ν and yν ∈ Rn2

ν are the subvectors of n1
ν binary and n2

ν contin-

uous decision variables, respectively, with nν = n1
ν + n2

ν.

b) In description (47) of Xν, Uν and Yν(uν) are subsets of {0, 1}n1
ν and Rn2

ν , respec-

tively. Because Uν is a finite set, it can be represented by a set of linear inequalities

and integrality constraints. For a given uν ∈ Uν, we assume Yν(uν) is a (possibly

empty) polyhedron. In particular, let Yν(uν) = {yν : Rn2
ν : Eνuν + F νyν ≤ gν},

where Eν and F ν are matrices and gν is a vector of appropriate finite dimensions,

independent of the value of uν.

c) cν, Aν, Eν, F ν and gν, for all ν ∈ P, and b have rational entries.
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d) The optimal value of the problem (44) is bounded and feasible.

Let n1 :=
∑

ν∈P n
1
ν and n2 :=

∑
ν∈P n

2
ν denote total number of binary and contin-

uous variables, respectively, and n = n1 + n2. For convenience, let

c :=


c1

...

cN

 , x :=


x1

...

xN

 , u :=


u1

...

uN

 , y :=


y1

...

yN

 ,

A := [A1, · · · ,AN ], X := X1 × · · · ×XN , U := U1 × · · · × UN ,

Y (u) := Y1(u1)× · · ·YN(uN).

Then, problem (44) can be recast as zIP = min
x
{c>x : x ∈ X,Ax = b}, which is

exactly the MIP problem (1) in Chapter 2.

By Assumption 3.1-d), there exists a solution x∗ which satisfies constraints (45)

and (46), and c>x∗ = zIP. Therefore, by data rationality assumption in part (c), the

value of the LP relaxation of (44) is bounded [24], i.e. −∞ < zLP ≤ zIP <∞.
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Example 2. Following is an example for problem (44) with two blocks.

min 70u11 + 70u12 + 110u13 + 2y11 + 2y12 + 48u21 + 48u22 + 52u23 + 3y21 + 3y22

s.t.

u12 − u11 − u13 ≤ 0,

30u11 ≤ y11 ≤ 100u11,

30u12 ≤ y12 ≤ 100u12,

−35 ≤ y12 − y11 ≤ 35,

u11, u12, u13 ∈ {0, 1},


Local constraints for block 1

u22 − u21 − u23 ≤ 0,

20u11 ≤ y21 ≤ 80u21,

20u12 ≤ y22 ≤ 80u22,

−30 ≤ y22 − y21 ≤ 30,

u21, u22, u23 ∈ {0, 1},


Local constraints for block 2

y11 + y21 = 90,

y12 + y22 = 120.

Coupling constraints

(48)

Recalling the notations described in Sections 3.1 and 3.2, u1 = (u11, u12, u13)> and

u2 = (u21, u22, u23)> are the vectors of binary variables for blocks 1 and 2, respectively.

Similarly, y1 = (y11, y12)> and y2 = (y21, y22)> are the vectors of continuous variables

for blocks 1 and 2, respectively. Then, x1 = (u>1 ,y
>
1 )> and x2 = (u>2 ,y

>
2 )> are

the vectors of decision variables for blocks 1 and 2, respectively. Moreover, u =

(u>1 ,u
>
2 ) = (u11, u12, u13, u21, u22, u23)> and y = (y>1 ,y

>
2 ) = (y11, y12, y21, y22)> are
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the overall vectors of binary and continuous variables. In this example, we have

c1 =



70

70

110

2

2


, c2 =



48

48

52

3

3


, and A1 = A2 =

 0 0 0 1 0

0 0 0 0 1

 .

Moreover,

U1 = {u1 ∈ {0, 1}3 : u12 − u11 − u13 ≤ 0},

U2 = {u2 ∈ {0, 1}3 : u22 − u21 − u23 ≤ 0},

U = U1 × U2 =

u ∈ {0, 1}6 :
u12 − u11 − u13 ≤ 0,

u22 − u21 − u23 ≤ 0

 ,

Y1(u1) =


y1 ∈ R2 :

30u11 ≤ y11 ≤ 100u11,

30u12 ≤ y12 ≤ 100u12,

−35 ≤ y12 − y11 ≤ 35


,

Y2(u2) =


y2 ∈ R2 :

20u11 ≤ y21 ≤ 80u21

20u12 ≤ y22 ≤ 80u22

−30 ≤ y22 − y21 ≤ 30


,

X1 =


x1 = (u>1 ,y

>
1 ) ∈ {0, 1}3 × R2 :

u12 − u11 − u13 ≤ 0,

30u11 ≤ y11 ≤ 100u11,

30u12 ≤ y12 ≤ 100u12,

−35 ≤ y12 − y11 ≤ 35,


,
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X2 =


x2 = (u>2 ,y

>
2 )> ∈ {0, 1}3 × R2 :

u22 − u21 − u23 ≤ 0,

20u11 ≤ y21 ≤ 80u21,

20u12 ≤ y22 ≤ 80u22,

−30 ≤ y22 − y21 ≤ 30,


.

Recalling from Section 2.3, for a given vector of the dual variables, µ ∈ Rm, the

standard Lagrangian relaxation (LR) for problem (44) is

zLR(µ) := µ>b+ min
x1,··· ,xN

∑
ν∈P

Lν(xν ,µ)

s.t. xν ∈ Xν , ∀ν ∈ P ,
(49)

where

Lν(xν ,µ) := (c>ν − µ>Aν)xν , ∀ν ∈ P ,

and the corresponding Lagrangian dual (LD) value is

zLD := sup
µ∈Rm

zLR(µ). (50)

Since (49) is a relaxation of (44), zLR(µ) ≤ zLD ≤ zIP holds, for any µ ∈ Rm. Due to

the presence of binary variables, a nonzero duality gap may exists [193], i.e. zLD < zIP

is possible. Let µ∗ be a maximizer in (50), if there exists one. Obtaining µ∗ and zLD

are not straight forward in practice. A popular and easy approach to solve (50) is

the subgradient decent method, where the problem (49) is solved iteratively and the

dual multipliers are updated at each iteration. Note that problem (49) is separable

and it can be solved by computing min
xν
{Lν(xν ,µ) : xν ∈ Xν} for each block ν.

Even with µ∗ at hand, a primal feasible solution, one that satisfies all constraints

in model (44), is not readily available. For a given û ∈ U , the best corresponding

primal feasible solution, if there exists one, and its objective value, z(û), can be

computed by solving the following LP:
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z(û) := min
y1,··· ,yN

∑
ν∈P

c>ν

[
ûν
yν

]
s.t. yν ∈ Yν(ûν), ∀ν ∈ P ,∑

ν∈P

Aν

[
ûν
yν

]
= b.

(51)

Problem (51) is an LP and can be solved with a distributed algorithm. Denote the

upper and lower bounds on zIP by ub and lb, respectively. Then, z(u) and zLR(µ)

are valid ub and lb, respectively, for all u ∈ U and µ ∈ Rm. In fact, zIP = min
u∈U

z(u).

3.3 Related Literature

Dual decomposition and ADMM are two well known distributed optimization tech-

nique in the context of convex optimization. Our decentralized MIP algorithms in

this chapter are based on extensions of these two techniques. Next, we present these

schemes.

3.3.1 Dual Decomposition

Dual decomposition is a well known technique to solve large scale optimization prob-

lems. Early works on application of dual decomposition for large scale linear pro-

gramming can be found in [16, 52, 53, 58].

Let ρkµ > 0 be the step size for updating the dual vector µ at iteration k. Algorithm

1 represents an overall scheme of a dual decomposition method to solve (44). Each

iteration of this method requires a “broadcast” and a “gather” operation. Dual

update step (line 11) requires Aνx
k
ν values from all blocks. Once µk is computed, it

must be broadcast to all blocks.

A lower bound for zIP can be obtained from Algorithm 1. If
∑
ν∈P

Aνx
k
ν = b in

some iteration k of this algorithm, xk is a feasible and optimal solution of (44). But,

this case is not likely in practice and there is no hope to find a feasible solution for
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(44) by running only Algorithm 1. Therefore, in general we cannot expect to get an

upper bound for zIP from this algorithm. A modified version of dual decomposition

technique is presented in Algorithm 5 which is able to provide upper bounds for zIP.

Algorithm 1 Basic Dual Decomposition

1: lb← −∞, µ0 ← 0, and k ← 0.
2: while some termination criteria is not met do
3: k ← k + 1
4: for ν := 1 to N do
5: solve min

xν
{Lν(xν ,µk−1) : xν ∈ Xν}

6: let vkν be the optimal value and xkν be an optimal solution
7: end for
8: if lb < µ>b+

∑
ν∈P

vkν then

9: lb← µ>b+
∑
ν∈P

vkν

10: end if

11: µk ← µk−1 + ρkµ

(
b−

∑
ν∈P

Aνx
k
ν

)
12: end while

3.3.2 Alternating Direction Method of Multipliers (ADMM)

ADMM is an algorithm that is intended to blend the separability of dual decom-

position with the superior convergence properties of the method of multipliers [28].

Recalling from Section 2.3, for ρ > 0 and µ ∈ Rm, the augmented Lagrangian with

squared Euclidean norm has the following form.

L+
ρ (x1, · · · ,xN ,µ) =

∑
ν∈P

c>ν xν + µ>

(
b−

∑
ν∈P

Aνxν

)
+
ρ

2

∥∥∥∥∥b−∑
ν∈P

Aνxν

∥∥∥∥∥
2

2

. (52)

It is obvious that L+
ρ (x1, · · · ,xN ,µ) in (52) is not separable between different blocks,

because the nonlinear (quadratic) terms are coupling different block to each other. For

convex optimization problems, a decomposable algorithm to minimize L+
ρ (x1, · · · ,xN ,µ)

over x ∈ X is ADMM [28].
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3.3.2.1 ADMM with two blocks

Algorithm 2 presents an ADMM approach for an optimization problem with two

blocks. In this algorithm, L+
ρ (x1,x

k−1
2 ,µk−1) is first minimized with respect to x1,

assuming that x2 is fixed at its previous value xk−1
2 . Then, L+

ρ (xk1,x2,µ
k−1) is min-

imized with respected to x2, assuming that x1 is fixed at its previous value xk1.

Finally, the vector of dual variables µk is updated. Note that ρ > 0 is a given and

fixed penalty factor.

Algorithm 2 ADMM procedure for two blocks

1: x0
2 ← 0, µ0 ← 0, and k ← 0

2: while some termination criteria is not met do
3: k ← k + 1
4: xk1 ← arg min

x1∈X1

L+
ρ (x1,x

k−1
2 ,µk−1)

5: xk2 ← arg min
x2∈X2

L+
ρ (xk1,x2,µ

k−1)

6: Update µk ← µk−1 + ρ× [b− (A1x
k
1 +A2x

k
2)]

7: end while

Let αk and βk denote vector of primal and dual residuals at iteration k. Then,

αk = b− (A1x
k
1 + A2x

k
2) and βk = ρA>1A2(xk2 − xk−1

2 ).

If problem (44) is solvable and the sets X1 and X2 are convex, closed, and non-

empty, Algorithm 2 can solve (44) in a decentralized framework. In this case, primal

residuals (αk) converge to zero. Moreover, dual variables (µk) and objective value

converge to their optimal values [28]. In practice, ADMM converges to modest accu-

racy –sufficient for many applications– within a few tens of iterations [28]. However,

direct extension of ADMM for multi-block convex minimization problems is not nec-

essarily convergent [42].

3.3.2.2 Global Variable Consensus Problem with ADMM

To extend ADMM for multi-block minimization problems, a global variable consensus

problem can be constructed. An equivalent optimization problem for (44) is as follows.
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zIP := min
x1,···xN ,x̄1,··· ,x̄N

∑
ν∈P

c>ν xν

s.t. xν ∈ Xν , ∀ν ∈ P ,∑
ν∈P

Aνx̄ν = b, (53a)

x̄ν = xν , ∀ν ∈ P . (53b)

Formulation (53) can be decomposed into two parts, where one part includes

variables x1, · · ·xN and constraints xν ∈ Xν , for all ν ∈ P , and the other part

contains variables x̄1, · · · , x̄N and constraints (53a). In this case, constraints (53b) are

coupling these two parts and Algorithm 2, ADMM with two blocks, can be adjusted

to solve problem (53) in a decentralized manner. Algorithm 3, consensus ADMM,

represents this process.

Algorithm 3 Consensus ADMM

1: x̄0 ← 0, µ0 ← 0, and k ← 0
2: while some termination criteria is not met do
3: k ← k + 1
4: for ν := 1 to N do
5: xkν ← arg min

xν∈Xν
L+
ρ,ν(xν , x̄

k−1
ν ,µk−1

ν )

6: end for
7: x̄k ← arg min

x̄

{
L+
ρ (xk, x̄,µk−1) :

∑
ν∈P Aνx̄ν = b

}
by using (54)

8: for ν := 1 to N do
9: µkν ← µk−1

ν + ρ× (xkν − x̄kν)
10: end for
11: end while

Let

L+
ρ (x, x̄,µ) :=

∑
ν∈P

L+
ρ,ν(xν , x̄ν ,µν),

where L+
ρ,ν(xν , x̄ν ,µν) := c>ν xν +µ>ν (xν − x̄ν) + ρ

2
‖xν − x̄ν‖2

2. Then, the subproblem

for part one is min
x
{L+

ρ (x, x̄,µ) : xν ∈ Xν , ∀ν ∈ P}, which is separable between

blocks and can be solved in parallel. Moreover, the subproblem for part two is

min
x̄
{L+

ρ (x, x̄,µ) :
∑
ν∈P

Aνx̄ν = b}
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which has a closed form solution as follows (assuming A has full row rank):

arg min
x̄

{
L+
ρ (x, x̄,µ) :

∑
ν∈P

Aνx̄ν = b

}
= arg min

x̄

{
‖x+

µ

ρ
− x̄‖2

2 : Ax̄ = b

}
= [I −A>(AA>)−1A](x+

µ

ρ
) +A>(AA>)−1b

(54)

where the second equality is well know in linear algebra for finding the orthogonal

projection of a point onto an affine subspace (see e.g. [115, 140]). In general, to

compute inverse matrices is not easy [84], but it can be done efficiently for sparse

matrices with specific structures.

In decentralized consensus optimization, ADMM has a linear convergence rate

[165]. Consensus ADMM can be interpreted as a method for solving problems in

which the objective and constraints are distributed across multiple processors. Each

processor only has to handle its own objective and constraint term, plus a quadratic

term which is updated each iteration. The linear parts of the quadratic terms are

updated in such a way that the variables converge to a common value, which is the

solution of the full problem [28].

In our context of MIP (44), consensus ADMM (Algorithm 3) can be used for

upper bounding zIP . For a set Ŝ ⊂ U an upper bounding method is as Algorithm 4.

Algorithm 4 Upper Bounding Algoritm

1: for û ∈ Ŝ do
2: compute z(û) by solving LP (51) with consensus ADMM, Algorithm 3
3: if z(û) < ub then
4: ub← z(û)
5: u∗ ← û
6: end if
7: end for

3.3.3 Combination of Dual Decomposition and Consensus ADMM

A combination of Algorithm 1 (dual decomposition) and Algorithm 3 (consensus

ADMM) can be used to generate lower and upper bounds for zIP. Algorithm 5
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presents a modified version of Algorithm 1. In this algorithm, for a given binary

vector û, Algorithm 3 (consensus ADMM) is used to refine continuous variables y,

and obtain an upper bound for zIP. Besides the issues related to the non zero duality

gap and the challenges in finding the the best dual vector µ∗, which is a maximizer

in (50), it is possible for Algorithms 1 and 5 to cycle between non-optimal solutions

forever.

Algorithm 5 Modified Dual Decomposition for MIPs

1: ub← +∞, S ← ∅, u∗ ← ∅, and k ← 0.
2: Solve LP relaxation of (44) with ADMM, Algorithm 3. Let zLP be its optimal

value, and µ0 be the dual values for the coupling constraints (46).
3: lb← zLP

4: while some termination criteria is not met do
5: k ← k + 1
6: for ν := 1 to N do
7: solve min

xν
{Lν(xν ,µk−1) : xν ∈ Xν}

8: let vkν be the optimal value and xkν = (ukν ,y
k
ν) be an optimal solution

9: end for
10: if lb < µ>b+

∑
ν∈P

vkν then

11: lb← µ>b+
∑
ν∈P

vkν

12: end if

13: µk ← µk−1 + ρkµ

(
b−

∑
ν∈P

Aνx
k
ν

)
14: if ukν /∈ S then
15: S ← S ∪ {ukν}
16: compute z(ukν) by solving (51) with ADMM, Algorithm 3
17: if z(uk+1

ν ) < ub then
18: ub← z(ukν)
19: u∗ ← ukν
20: end if
21: end if
22: end while

3.4 Heuristic Release-and-Fix Method

Recalling from Section 3.1, binary variables make the sets Xν nonconvex, which de-

stroys the convergence properties of ADMM. In this section, we propose modifications
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to the direct application of ADMM to mitigate this issue. Note that the subprob-

lems in ADMM always have quadratic objective functions because the augmenting

function is squared Euclidean norm.

3.4.1 ADMM-Relax

ADMM-Relax denotes the application of ADMM to the continuous relaxation CR(Xν)

of Xν . That is, each of the variables in uν is allowed to take any value between 0

and 1. The subproblems then become convex quadratic programs (QPs), for which

ADMM converges [28]. ADMM-Relax can provide a good lower bound when the MIP

formulation is tight. Moreover, the primal and dual solutions from this stage can be

used for warm-starting ADMM-Release, which we will describe next.

3.4.2 ADMM-Release

ADMM-Release refers to the application of ADMM where the binary variables are

required to take 0 or 1 values. In this case, the subproblems then become mixed

integer quadratic programs (MIQPs) which are much harder than the corresponding

QPs in ADMM-Relax. The computation time due to the MIQP subproblems can

be reduced by observing the transitions in binary variables. If, when solving the

MIQP subproblems, some regions do not change the values of their binary variables

for some number of consecutive iterations (i.e. some elements of uν are remaining

constant), then we may fix those binary variables temporarily. This is consistent

with the empirical observation that only a subset of binary variables are actively

being searched at any given stage of the solution process.

Furthermore, the penalty factor ρ can be decreased or increased at different points

depending on the history of solutions. If new binary solutions are needed – as in the

case that we have found a feasible global solution and wish to explore for others with

superior objective function value – ρ can be decreased to encourage exploration of

new binary values. If the ADMM-Release stage has been running for many iterations,
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ρ may be increased to force settlement on a binary solution.

3.4.3 ADMM-Fix

When a binary-feasible solution is found, the binary variables can be fixed while the

solution of continuous variables is refined through further ADMM iterations. This

differs from ADMM-Release in that the whole vector uν is fixed for all ν. Therefore,

the only active decision variables are elements of yν . With sufficiently low resid-

ual tolerances, the solution resulting from this algorithm is implementable, unlike

ADMM-Relax. Similar to ADMM-Relax, ADMM-Fix converges because the sub-

problems are convex QPs.

3.4.4 Release-and-Fix process

The flowchart in Figure 4 illustrates the basic process of the Release-and-Fix (R&F)

approach. The ADMM-Relax stage is used to provide good starting points for many

decision variables and the dual variables. The following stage is composed of cycles

between the ADMM-Release and ADMM-Fix processes where binary solutions are

explored, discovered, refined, and recorded before searching for more binary solutions.

Although, R&F algorithm provides an upper bound for the optimality gap of its

solutions, it is a heuristic method and may not provide an optimality certificate for

a given solution of a MIP problem.

3.4.5 Improvements

The performance of the R&F algorithm can be significantly improved by some of the

following:

3.4.5.1 Strengthening the CR

It is desirable to obtain as tight a formulation as possible for each of the subproblems.

Specifically, the ideal formulation for the region ν subproblem would describe the

convex hull of Sν , denoted by conv(Xν). By definition, Xν ⊆ conv(Xν) ⊆ CR(Xν).
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Figure 4: Composition of solution processes for R&F.
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Adding valid inequalities to CR(Xν) helps to better approximate conv(Xν). With a

quadratic objective, standard valid inequalities for MIPs may not be useful. Lineariz-

ing around an intermediate solution point may provide useful cuts as the solution

progresses.

One such valid inequality can be determined by solving an auxiliary MIP period-

ically. Given a solution x∗ν ∈ CR(Xν), find the gradient g := ∇xνL+
ρ,ν(xν ,µ)|x∗ν at

x∗ν . Then, solve the following auxiliary MIP problem:

αν(g) := min{g>xν : xν ∈ Xν}. (55)

Then, the following valid inequality may be added to the subproblem of region ν:

αν(g) ≤ g>xν . (56)

Validity of inequality (56) follows from the fact that αν(g) ≤ g>xν , for all xν ∈ Xν ,

by definition of αν(g).

3.4.5.2 Subproblem acceleration

Subproblems in R&F can be accelerated by several tweaks. First, in CPLEX or other

MIP solvers, selecting the appropriate root node algorithm for the subproblems can

greatly reduce subproblem solution time. When subproblems are smaller, a dual

simplex approach is more beneficial than an interior point method, and vice-versa.

Furthermore, if a simplex method is used, inheriting the basis from the solution

of a previous iteration provides even more speed. In CPLEX 12.6, it was found

that the full MIP preprocessing was often run for problems in the ADMM-Fix stage

(i.e. all binary variables fixed), even though the problem to solve was effectively a

QP. Manually changing the problem type was necessary to leverage this knowledge.

Furthermore, if memory limit is not restrictive, different IloCPLEX and IloModel

objects can be assigned for each subproblem in ADMM-Release and ADMM-Fix

phases.
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3.4.5.3 Warm start

As will be specifically seen later from experimental results, initializing the subprob-

lems with primal and dual variables from a hypothetical previous day’s solution can

sometimes significantly reduce solution time.

3.5 Exact Methods

We propose a decentralized MIP approach where each block solves its own Lagrangian

relaxation (LR) subproblem iteratively. The approach evaluates the cost of binary

solutions as candidate partial solutions and refines them to get a primal feasible

solutions to the overall problem. To improve the lower bound and prevent cycling in

Algorithm 5, the explored binary solutions are then cut-off from future consideration

in all subproblems.

This idea is similar to the scenario decomposition algorithm for two-stage 0-1

stochastic MIP problems proposed in [3]. In the two-stage 0-1 stochastic MIP model

at [3], each scenario is assumed to be a block and nonanticipativity constraints are cou-

pling different scenarios. In that model, binary variables are only present in the first

stage and they are the same for different scenarios. Therefore, it is straightforward to

cutoff explored binary solutions from the feasible regions of all subproblems. On the

contrary, in our loosely coupled MIP model (44), binary variables are not the same

for different blocks. Then, it is not clear how to cutoff a global binary solution from

the feasible regions of subproblems. For instance, in Example 2, u1 = (u11, u12, u13)>

and u2 = (u21, u22, u23)> are completely different binary vectors for blocks 1 and 2,

respectively. In Example 2, consider û = (û>1 , û
>
2 )> where û1 = (1, 1, 0)> ∈ U1 and

û2 = (0, 0, 0)> ∈ U2. Then, it is a challenge to cutoff û = (1, 1, 0, 0, 0, 0)> ∈ U1 × U2

from the local feasible regions of blocks 1 and 2 in a decentralized and parallel fash-

ion. In this section, we propose three exact algorithms to handle this process in a

distributed framework.
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For given µ ∈ Rm and S ⊂ U , we define the restricted Lagrangian relaxation

(RLR)

zRLR(µ,S) := µ>b+ min
x1,··· ,xN

∑
ν∈P

Lν(xν ,µ)

s.t. xν ∈ Xν , ∀ν ∈ P ,

u /∈ S.

(57)

Recall from Assumption 3.1, xν consists of the binary variables’ subvector u and the

continuous variables’ subvector u. Note that, ub = min
û∈S
{z(û)} and lb = min{zRLR(µ,S), ub}

are valid bounds for zIP. Moreover, zRLR(µ,S) ≤ zRLR(µ, T ) for any pair of sets S

and T such that S ⊂ T ⊂ U . Furthermore, zRLR(µ, U) = +∞. Therefore, for any

µ ∈ Rm, there exists a set S(µ) ⊂ U such that zRLR(µ,S(µ)) ≥ zIP.

For a given binary vector û ∈ {0, 1}r let us define the simple binary cut (SBC) of

û in terms of binary decision vector u ∈ {0, 1}n1
as follows:

SBC(u, û) :
∑
k:ûk=0

uk +
∑
k:ûk=1

(1− uk) ≥ 1. (58)

Then, SBC(u, û) for û = (1, 1, 0, 0, 0, 0)> in Example 2 is the following inequality:

−u11 − u12 + u13 + u21 + u22 + u23 ≥ 1. (59)

To cutoff multiple solutions, stronger cuts can be used as described in [9]. Then, the

constraint u /∈ S in (57) can be represented as SBC(u, û), for all û ∈ S. However

this constraint couples different blocks to each other and defeats the goal of problem

decomposition. For example, in constraint (59), all binary variables from blocks 1

and 2 are present. Next, we propose different techniques to overcome this issue by

introducing equivalent formulations of (57) which are decomposable.

3.5.1 Binary Variables Duplication

In our first approach of decoupling the constraint u /∈ S in (57), we propose to

duplicate the whole vector of binary variables and give a copy of it to each block.
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For each pair of ν, ν ′ ∈ P , let ũν,ν′ ∈ Ũν,ν′ ⊂ {0, 1}n
1
ν′ be block ν’s perception of uν′ ,

where Uν,ν′ is the set of all possible values for ũν,ν′ . For convenience, let ũν and Ũν

be block ν’s perception of u and U . Note that ũν ∈ {0, 1}n
1

and Ũν ⊂ {0, 1}n
1
, for

all ν ∈ P .

It can be assumed Uν′ ⊂ Ũν,ν′ for all ν 6= ν ′ where it is possible that Uν′ 6=

Ũν,ν′ . For example one may assume Ũν,ν′ = {0, 1}n1
ν′ . Therefore, it may happen

Ũν,ν′\Uν′ 6= ∅; i.e. block ν may not know any explicit or implicit descriptions of Uν′

and consequently its perception of uν can be infeasible. But, block ν should receive

an infeasibility alert from block ν ′, if ûν,ν′ /∈ Uν′ . Then, ûν,ν′ can be cut off from Ũν,ν′

using SBC(uν,ν′ , ûν,ν′) as defined in (58). In this algorithm, we assume Ũν = U , for

the sake of simplicity. Later, we will present other algorithms where the blocks do

not need to know anything about the feasibility regions of the other blocks.

For Example 2, blocks 1 and 2 perceptions of the overall binary vector u are

ũ1 = (ũ111, ũ112, ũ113, ũ121, ũ122, ũ123)> and ũ2 = (ũ211, ũ212, ũ213, ũ221, ũ222, ũ223)>, re-

spectively. In this case, ũ11 = (ũ111, ũ112, ũ113)> ∈ U1, ũ12 = (ũ121, ũ122, ũ123)> ∈ U1,

ũ21 = (ũ211, ũ212, ũ213)> ∈ U1, and ũ22 = (ũ221, ũ222, ũ223)> ∈ U2. Then, SBC(u, û)

cut (59) for û = (1, 1, 0, 0, 0, 0)> can be reformulated as

−ũ111 − ũ112 + ũ113 + ũ121 + ũ122 + ũ123 ≥ 1, (60)

and

−ũ211 − ũ212 + ũ213 + ũ221 + ũ222 + ũ223 ≥ 1. (61)

for blocks 1 and 2, respectively. Note that in inequality (60), only (perception) binary

variables from block 1 are present. in Similarly, in inequality (61), only (perception)

binary variables from block 2 are present.

An equivalent formulation for (57) can be constructed by using the binary vectors

ũ1, · · · , ũN , where all the blocks have the same perceptions of u, i.e.

ũ1 = · · · = ũN , (62)
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and the u /∈ S is replaced by

ũν ∈ U\S. (63)

In Example 2, constraint (62) has the following form

ũ111 = ũ211,

ũ112 = ũ212,

ũ113 = ũ213,

ũ121 = ũ221,

ũ122 = ũ222,

ũ123 = ũ223.

Note that for all ν ′ 6= ν, binary vectors ũν,ν′ are redundant. But, they make it

possible to cut a global binary solution û from the feasible region of all blocks. In

other words, we use ũν,ν′ for ν ′ 6= ν to handle constraint (63). Let x̃ν := (ũν ,yν) ∈

{0, 1}n1 × Rn2
ν . Note that for all ν ∈ P , uν is a subvector of ũν and consequently,

xν = (uν ,yν) is a subvector of x̃ν . Then, problem (57) can be reformulated as follows:

zRLR(µ,S) = µ>b+ min
x̃1,··· ,x̃N

∑
ν∈P

Lν(xν ,µ)

s.t. xν ∈ Xν and ũν ∈ U\S, ∀ν ∈ P

ũ1 = · · · = ũN .

(64)

In the model (64), the consensus constraints (62) are joint between different blocks.

To decouple these constraints, we use vectors of dual variables λν ∈ Rn1
, for all ν such

that
∑

ν∈P λν = 0. Then, the new restricted Lagrangian relaxation for the model

(44) is

zRLR′(µ,λ,S) := µ>b+ min
x̃1,··· ,x̃N

∑
ν∈P

L′ν(x̃ν ,µ,λν)

s.t. xν ∈ Xν and ũν ∈ U\S, ∀ν ∈ P ,
(65)

where λ = (λ1, · · · ,λN) and L′ν(x̃ν ,µ,λν) := (c>ν − µ>Aν)xν + λ>ν ũν .
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To solve problem (65), it is sufficient for each block ν to solve its subproblem of

min
x̃ν
{L′ν(x̃ν ,µ,λν) : xν ∈ Xν and ũν ∈ U\S}

Note that zRLR′(µ,λ,S) ≤ zRLR(µ,S), for all S ⊂ {0, 1}n1
, µ ∈ Rm and λν ∈ Rn1

,

∀ν ∈ P such that
∑
ν∈P

λν = 0.

Algorithm 6 Distributed MIP with Binary Variables Duplication

1: Run Algorithm 5 to initialize ub, lb, u∗, µ0 and S.
2: λ0 ← 0 and k ← 0.
3: while ub > lb do
4: Lower bounding:
5: while some termination criteria is not met do
6: k ← k + 1
7: for ν := 1 to N do
8: solve min

x̃ν
{L′ν(x̃ν ,µk−1,λk−1

ν ) : xν ∈ Xν and ũν ∈ U\S}.

9: let vkν be the optimal value and x̃kν = (ũkν ,y
k
ν) be an optimal solution

10: end for
11: if lb < µ>b+

∑
ν∈P

vkν then

12: lb← µ>b+
∑
ν∈P

vkν

13: end if
14: ūk ← 1

|P|
∑
ν∈P

ũkν

15: µk ← µk−1 + ρkµ

(
b−

∑
ν∈P

Aνx
k
ν

)
and λkν ← λk−1

ν + ρkλ
(
ũkν − ūk

)
16: end while
17: Let Ŝk = ∪ν∈P{ũkν}.
18: Upper bounding: run Algorithm 4 for set Ŝ to update ub and u∗.
19: S ← S ∪ Ŝk
20: end while

Let ρkµ, ρ
k
λ > 0 be the step size for updating the dual vectors µ and λ at iteration

k. Then, our first exact decentralized MIP method is as Algorithm 6. This algorithm

is initialized by running ADMM to solve the LP relaxation and then switches to dual

decomposition. In fact, this step initializes upper and lower bounds as well as dual

vectors. In the lower bounding loop (lines 5-16) of Algorithm 6, problem (65) is

solved in parallel by each block and the dual vectors µ and λ are updated as well

as the lower bound and candidate binary subvectors. Then, each candidate binary

subvector is evaluated by solving an LP with ADMM method. In this step, the upper
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bound is updated. Finally, the candidate binary subvectors are added to set S and

consequently are cutoff from feasible regions of all blocks. The algorithm continues

until the lower bound hits the upper bound.

3.5.2 Auxiliary Binary Variables

In Algorithm 6, each block has as many binary variables as n1, the number of overall

binaries in the original MIP problem (44). Moreover, each block ν needs to know the

constraints defining the set Uν′ , for all ν ′ 6= ν or to be able to check the feasibility

of ũν,ν′ . Next, we propose another algorithm by introducing some auxiliary binary

variables, in which different blocks do not need to know about other blocks’ binary

variables or feasible regions.

For a given S ⊂ U , let Sν , for all ν ∈ P , be the minimal sets such that Sν ⊂ Uν

and S ⊂ S1 × · · · × SN . That is for all ûν ∈ Sν and ν ∈ P , there exists a û ∈ S such

that the νth block of û is ûν . Let Sν := {1, · · · , |Sν |} and denote the lth solution of

Sν by ûν(l).

Example 3. Consider Example 2 with S = {(1, 1, 0, 0, 0, 0), (1, 1, 0, 0, 1, 1)}. Then,

it holds S1 = {(1, 1, 0)} and S2 = {(0, 0, 0), (0, 1, 1)}.

For ν, ν ′ ∈ P and l ∈ Sν′ , let wν,ν′,l be a binary variable which is 1, if block ν’s

perception of uν′ is ûν′(l), and 0 otherwise. For convenience, let wν,ν′,0 be a binary

variable which is 1, if block ν’s perception of uν′ is not in Sν′ , and 0 otherwise. Then,

wν,ν′,l ∈ {0, 1}, ∀ν ′ ∈ N, l ∈ Sν′ ∪ {0}. (66)

Then, for Example 3, block 1 has auxiliary binary variables w1,1,0, w1,1,1, w1,2,0,

w1,2,1, w1,2,2. Binary variable w111 is 1 if and only if block 1 perception of u1 are

(1, 1, 0). Binary variables w121 and w122 are 1 if and only if blocks 1 perceptions of

u2 are (0, 0, 0) and (0, 1, 1), respectively. Similarly, w110 and w120 are 1 if and only if

blocks 1 perceptions of u1 and u2 do not exist in S1 and S1, respectively. Likewise,

block 2 has auxiliary binary variables w2,1,0, w2,1,1, w2,2,0, w2,2,1, w2,2,2.
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Note that block ν does not know the length of uν′ or the values in the ûν(l),

unless ν = ν ′. Therefore, uν = ûν(l) if and only if wν,ν,l = 1. This relation between

the binary vector uν and the binary variable wν,ν,l can be imposed by constraints (67)

and (68). 
uνk ≥ wν,ν,l, if ûνk(l) = 1

uνk ≤ 1− wν,ν,l, Otherwise

∀l ∈ Sν , k = 1, · · · , n1
ν , (67)

∑
k:ûνk(l)=0

uνk +
∑

k:ûνk(l)=1

(1− uνk) ≥ wν,ν,0, ∀l ∈ Sν . (68)

Each block ν should consider exactly one of the binary solutions ûν′ in Sν′ , for all

ν ′ ∈ P , i.e. ∑
l∈Sν∪{0}

wν,ν′,l = 1, ∀ν ′ ∈ P . (69)

Inequality (70) cuts the explored binary solutions to prevent cycling.

∑
ν′∈P

 ∑
l:ûν′ (l)6=ûν′ (s)

wν,ν′,l +
∑

l:ûν′ (l)=ûν′ (s)

(1− wν,ν′,l)

 ≥ 1, ∀s ∈ S, (70)

Because of the constraints (66) and (69), constraint (70) can be strengthened as

follows: ∑
ν′∈P

l∈Sν′ :ûν′ (l)6=ûν′ (s)

wν,ν′,l ≤ N − 1, ∀s ∈ S. (71)

Constraints (67)-(69), and (71) for block 2 in Example 3 have the following form:

u21 ≤ 1− w221, u22 ≤ 1− w221, u23 ≤ 1− w221,

u21 ≤ 1− w222, u22 ≥ w222, u23 ≥ w222,

Constraint (67)

u21 + u22 + u22 ≥ w220,

u21 + 1− u22 + 1− u22 ≥ w220,

Constraint (68)

w210 + w211 = 1,

w220 + w221 + w223 = 1,

Constraint (69)
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w211 + w221 ≤ 1,

w211 + w222 ≤ 1.

Constraint (71)

Let wν be the vector of all binary variables wν,ν′,l, for all ν ′ ∈ P and all l ∈ Sν′

In the second distributed MIP approach, we use the auxiliary binary vector wν ∈

{0, 1}
|P|+

∑
ν′∈P

|Sν′ |
, for all ν ∈ P , to develop another equivalent model for (57). Con-

sidering the consensus constraints

w1 = · · · = wN , (72)

problem (57) can be reformulated as follows.

zRLR(µ,S) = µ>b+ min
x,w1,··· ,wN

∑
ν∈P

Lν(xν ,µ)

s.t. xν ∈ Xν and (66)− (69), (71), ∀ν ∈ P ,

w1 = · · · = wN .

(73)

Consensus constraints (72) are coupling different block in the problem (73). To de-

couple these constraints, we use the dual variable vectors γν ∈ R
|P|+

∑
ν′∈P

|Sν′ |
, for all

ν ∈ P such that
∑

ν∈P γν = 0. Then, the new restricted Lagrangian relaxation for

the model (44) is

zRLR′′

S (µ,γ,S) := µ>b+ min
x,w1,··· ,wN

∑
ν∈P

L′′ν(xν ,wν ,µ,γν)

s.t. xν ∈ Xν , and (66)− (69), (71), ∀i ∈ N ,
(74)

where γ = (γ1, · · · ,γN) and L′′ν(xν ,wν ,µ,γν) := (c>ν − µ>Aν)xν + γνwν .

Let ρkγ > 0 be the step size for updating the dual vector γ at iteration k. Then, our

second exact decentralized MIP approach is as Algorithm 7. The overall scheme of

Algorithm 7 is similar to Algorithm 6. The main difference is that instead of problem

(65), problem (74) is solved in parallel in the lower bounding loop (lines 6-17) of

Algorithm 7. Different blocks do not need to know about other blocks’ vector uν of

binary variables or feasible regions Uν to solve problem (74) in parallel. Moreover, in
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line 20 of Algorithm 7, a new binary solution is added to Sν which results in adding

a new corresponding binary variable w and a new dual variable γ to all blocks.

Algorithm 7 Distributed MIP with Auxiliary Binary Variables

1: Run Algorithm 5 to initialize ub, lb, u∗, µ0 and S.
2: Based on S, set up the sets Sν , for all ν ∈ P .
3: γ0 ← 0 and k ← 0.
4: while ub > lb do
5: Lower bounding:
6: while some termination criteria is not met do
7: k ← k + 1.
8: for ν := 1 to N do
9: solve min

xν ,wν
{L′′ν(xν ,wν ,µ

k−1,γk−1
ν ) : xν ∈ Xν , (66)− (69), (71)}

10: let vkν be the optimal value and (xkν ,w
k
ν) be an optimal solution

11: end for
12: if lb < µ>b+

∑
ν∈P

vkν then

13: lb← µ>b+
∑
ν∈P

vkν

14: end if
15: w̄k ← 1

|P|
∑
ν∈P

wk
ν

16: µk ← µk−1 + ρkµ

(
b−

∑
ν∈P

Aνx
k
ν

)
and γkν ← γk−1

ν + ρkγ
(
wk
ν − w̄k

)
17: end while
18: for ν := 1 to N do
19: if

∑
ν′∈P wν,ν′,0 ≥ 1 then

20: Sν ← Sν ∪ {uν(0)}
21: end if
22: end for
23: Let ũkν be the corresponding ũν ∈ U to wk

ν

24: Ŝ ← ∪ν∈P{ũkν}.
25: Upper bounding: run Algorithm 4 for set Ŝ to update ub and u∗.
26: S ← S ∪ Ŝk
27: end while

3.5.3 Auxiliary IP Approach

Next, we propose and extension of Algorithm 7 where dual vectors µ and γ are up-

dated in different loops by solving pure 0-1 and simple MIP subproblems, respectively.
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For a given ûν ∈ Uν and µ ∈ Rm, let us define

z′ν(ûν ,µ) := min
xν
{Lν(xν ,µ) : xν ∈ Xν ,uν = ûν}

= min
yν

{
(c>i − µ>Ai)

[
ûν
yν

]
: yν ∈ Yν(ûν)

}
,

(75)

and

u′ν(Sν ,µ) = arg min
uν∈Uν\Sν

{z′ν(uν ,µ)}. (76)

Note that calculating z′ν(ûν ,µ) in (75) requires solving a LP while u′ν(Sν ,µ) in

(76) can be obtained by solving a MIP problem. It is easy to check that

zLR(µ) = µ>b+
∑
ν∈P

min
xν
{Lν(xν ,µ) : xν ∈ Xν}

= µ>b+
∑
ν∈P

min
uν∈Uν

min
yν
{Lν(xν ,µ) : yν ∈ Yν(uν)}

= µ>b+
∑
ν∈P

min
uν∈Uν

z′ν(uν ,µ).

For the sake of simplicity, for fixed Sν , µ and for all l ∈ Sµ∪{0}, we denote u′ν(Sν ,µ)

and z′ν(ûν(l),µ) by ûν(0) and ẑν(l), respectively. Then,

zRLR(µ,S) = µ>b+ min
w1,··· ,wN

∑
ν∈P

∑
l∈Sν∪{0}

ẑν(l)wν,ν,l

s.t. (66), (69) and (71), ∀ν ∈ P ,

w1 = · · · = wN

(77)

Note that (77) which is a pure IP problem, has the same optimal value as (73), but

x = (u,y) is not the vector of decision variables in (77). Moreover, model (77) does

not have the constraints xν ∈ Xν , (67) and (68). The Lagrangian relaxation of (77)

can be represented as follows:

zRLR′′′(µ,γ,S) := µ>b+ min
w1,··· ,wN

∑
ν∈P

L′′′ν (wν ,µ,γν)

s.t. (66), (69) and (71), ∀i ∈ N ,
(78)

where,

L′′′ν (wν ,µ,γν) :=
∑

l∈Sν∪{0}

ẑν(l)wν,ν,l + γνwν .
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Algorithm 8 Distributed MIP with an Auxiliary IP

1: Run Algorithm 5 to initialize ub, lb, u∗, µ0, x0
ν and S.

2: Based on S, set up the sets Sν , for all ν ∈ P .
3: γ0 ← 0, k ← 0 and r ← 0.
4: while ub > lb do
5: Lower bounding:
6: while some termination criteria is not met do
7: r ← r + 1

8: µr ← µr−1 + ρrµ

(
b−

∑
ν∈P

Aνx
r−1
ν

)
9: for ν := 1 to N do
10: solve min

xν
{Lν(xν ,µr) : xν ∈ Xν ,uν ∈ Uν\Sν}

11: Let zν(0) be the optimal value and x̂rν = (uν(0),yν(0)) be an optimal
solution

12: for l := 1 to Sν do
13: Update ẑν(l)← z′ν(x̂ν(l),µ) by solving the LP in (75).
14: end for
15: end for
16: end while
17: while some termination criteria is not met do
18: k ← k + 1
19: for ν := 1 to N do
20: solve min

wν
{L′′′ν (wν ,µ

r,γkν) : (66), (69) and (71)}
21: let vkν be the optimal value and wk

ν be an optimal solution
22: end for
23: if lb < µ>b+

∑
ν∈P

vkν then

24: lb← µ>b+
∑
ν∈P

vkν

25: end if
26: w̄k ← 1

|P|
∑
ν∈P

wk
ν

27: γkν ← γk−1
ν + ρkγ

(
wk
ν − w̄k

)
28: end while
29: for ν := 1 to N do
30: if

∑
ν′∈P wν,ν′,0 ≥ 1 then

31: Sν ← Sν ∪ {uν(0)}
32: end if
33: end for
34: Let ũkν be the corresponding ũν ∈ U to wk

ν

35: Ŝ ← ∪ν∈P{ũkν}.
36: Upper bounding: run Algorithm 4 for set Ŝ to update ub and u∗.
37: S ← S ∪ Ŝk
38: end while
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Then, we propose an extension of Algorithm 7 as Algorithm 8. These algorithms

have two main differences. In the first inner while loop (lines 6-16) of Algorithm 8,

values of µ and ẑν(l) are updated by solving the MIP problem min
xν
{Lν(xν ,µr) : xν ∈

Xν ,uν ∈ Uν\Sν}, and LP (75), respectively. Note that as long as there is no change

in value of µ and set Sν these updates are not required. In the second inner while

loop (lines 17-28), values of γ and lb are updated by solving the auxiliary pure 0-1

problem (78) in parallel. In this way, binary variables wν and mixed variables xν are

decoupled for each block ν. Moreover, constraints (67) and (68) are no longer needed

to couple wν and xν .

3.6 Conclusions and future work

In this chapter, we proposed different exact and heuristic decentralized algorithms

for MIPs. These algorithms were extensions of dual decomposition and ADMM. To

mitigate oscillations and traps in local optimality, a modified version of ADMM (R&F)

was developed as a heuristic decentralized method for MIPs. In the exact approaches,

primal cuts were added to restrict the Lagrangian relaxation and improve the lower

bound on the objective function of the original MIP problem.

A possible direction for future research is to blend the speed of R&F and precision

of the exact methods. Another topic for future work is investigating stronger primal

cuts to speed up the proposed exact methods. Moreover, the proposed methods can

be improved for specific applications by exploiting the problem structures.

In Chapter 4, we decompose the unit commitment problem on a region based

where data privacy is an important issue for different regions. Then, in Chapter

5, we present extensive computational experiments for solving UC instances with

different decentralized approaches.
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Chapter IV

DECENTRALIZED UNIT COMMITMENT

In this chapter, we present the notation and the problem statement for the unit

commitment (UC) problems. Moreover, a literature review for the decentralized UC

(DUC) is provided. We also present formulations for DUC which can be solved by

decentralized MIP algorithms proposed in Chapter 3. Finally, we propose a solution

approach for DUC which exploits the structure of UC in decentralized algorithms.

This chapter and some parts of the next chapter are based on work performed

jointly with Mitch Costley. This work is described in reference [61], which Mr. Costley

and Mr. Feizollahi co-authored, and it is largely reproduced here. Mr. Costley’s

contributions included the approach to handle system reserve constraints (96), which

is described in Section 4.2.2.1, and the large-scale software systems to conduct the

centralized and decentralized experiments in Section 5.2.

4.1 Introduction

Power generating companies (GENCOs) and Independent System Operators (ISOs)

use some forms of the Unit Commitment (UC) problem to determine status of power

plants in the day-ahead to week-ahead timeframe. The UC problem deals with the

on/off decisions and output power levels of generating units in a power system over a

given planning horizon. Its objective is minimizing the total system cost or maximiz-

ing system profit depending on the market design. This problem typically considers

technological, economic and regulatory factors and constraints such as physical lim-

itation of generators or reserve requirements. For most ISOs, UC problem is solved

as part of the day-ahead market clearing process [164]. Other applications of UC
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may involve an intra-day commitment, such as [183, 184, 190]. Further, some pro-

cesses, such as hydroelectric generation scheduling, require time frames in the weeks

to months [40, 64, 7].

As power grids grow significantly in size, complexity, and user requirements, new

operational frameworks will be needed. One option is to integrate system operations

such as economic dispatch, contingency analysis, and UC at the interconnection level,

potentially leading to the formation of a system operator for the entire Eastern in-

terconnection [57, 82]. Ostensibly, the goal of such an effort would be to ensure that

coupled systems (operated by PJM, MISO, etc.) with many interfaces would be co-

ordinated in such a way that the most reliable and economic global system state is

achieved. Solving operational problems of this size in the required time scales has

proven quite difficult.

A compelling alternative is to decentralize, rather than centralize, these operations

more [75, 106]. System operators and software systems can manage smaller problems

more effectively, allowing for more detailed modeling and more modest computational

requirements. The central question then becomes how the individual neighboring

areas can coordinate to optimize economy while ensuring reliability. In this chapter,

we examine a new decentralized approach to the UC problem.

At the height of the deregulation movement in the United States, a literature

around decentralized UC (DUC) sought to investigate the market dynamics of UC

conducted by generating companies only (so-called self-commitment). In this frame-

work, the ISO posts hourly energy prices calculated based on the load forecast. Gen-

erating companies then conduct UC for their assets as price-takers [198, 169]. Addi-

tional iterations may occur to search for an equilibrium where all the load is served

with the minimum prices. The existence of such an equilibrium under certain condi-

tions was established in [121, 122] and investigated empirically in [50]. In simulation

results reported in [170], the cost of anarchy under self-commitment was found to
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be roughly 4%. Challenges related to the nonconvexity, oscillation, high cost, and

inefficiency of self-commitment were explored in [63, 171, 170, 72].

In this chapter, we do not study self-commitment as described above. The UC pro-

cess presented here differs from self-commitment DUC in that it is a direct translation

of the traditional centralized UC problem to subproblems corresponding to partitions

of the system. Works studying optimal self-scheduling and bidding strategies under

some forecast of prices, such as [169, 199, 167, 101, 104, 83], are largely concerned

with determining generating company behavior in a framework where some other co-

ordinator (e.g. an ISO) determines prices to induce desirable system-level behavior.

As a decomposition of the UC, our work is more analogous to, for example, the

reliability UC (RUC) described in [89] conducted following the day-ahead market

clearing process. The analyses of [198, 121, 122, 50, 170, 63, 171, 72] study the

revenue adequacy of market participants and describe pricing approaches to overcome

inefficiencies. In short, these works describe how pricing should occur and market

participants should respond in a system without centralized UC, whereas the process

described here retains the centralized UC functionality but decentralizes its solution.

Our work retains some of the advantages of self-commitment by ensuring the

privacy of commercial data. Further, it differs from most of the models provided in the

works mentioned above by including not only all the traditional generator temporal

constraints, but also network flow constraints, which self-commitment cannot easily

address. Subproblems can truly be solved in parallel with minimal requirements for

information exchange in each iteration. Although it is certainly possible to implement

this in a centralized scheme, it allows for entirely separate entities to coordinate their

operations even without a strong centralized computational node.

To the extent that DUC is deployed in a single computational environment in

a centralized framework, it can be compared to other problem decompositions that
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leverage parallelizable subproblems. Some of the most important decomposition tech-

niques for UC are Benders [110, 129, 142, 59, 194, 5], dual or Lagrangian [207, 187,

176, 177, 202, 79, 133, 62, 111], and Dantzig-Wolfe [65]. Decomposition methods such

as Benders and Dantzig-Wolfe use a master-slave architecture where subproblems may

be solved on separate computational nodes but are coordinated by a master problem,

which then requires the results of those subproblems to solve an iteration of its own

algorithm. In our approach, there is no master problem or central computational

node.

Other problem decompositions are more similar to that presented here in that

they have a decentralized structure without being a form of self-commitment DUC

discussed above. Batut and Renaud first applied a regional decomposition approach

with duplication of variables to power system problems in [13]. Kim and Baldick [95]

similarly used a linearized augmented Lagrangian approach along with the auxiliary

problem principle to solve optimal power flow (OPF) problems in parallel. They

then showed in [94] how to extend this formulation to use several different solution

algorithms, including ADMM (see Section 3.3.2 for details of ADMM algorithm). In

Section III.B of [94], it is highlighted that ADMM is limited in parallel applications

because of the interdependency of the two minimization problems in ADMM.

The ADMM method of solving OPF problems in a distributed manner was im-

plemented and tested in [44], but the UC master problem after the Benders decom-

position remained centralized. ADMM is also applied to solve security-constrained

OPF with AC constraints in [139]. In [130], a Lagrangian method was used to solve

the multi-area OPF problem with AC constraints. The solution computations were

largely distributed with a central coordinator needed for some simple calculations in

each iteration. An extension of [130] was presented in [75] to solve the decentralized

AC power flow using neural networks to solve the nonlinear programming subprob-

lems. Bakirtzis and Biskas [11] proposed a solution method to the DC-OPF problem
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using a similar formulation to [95] around phase angle variable duplication but with

a nearly fully decentralized solution approach.

Recently, [204] demonstrated a decentralized solution to the security-constrained

DC-OPF using a marginal equivalent decomposition that requires exchanging shift

factors and binding constraint data in each iteration. This method was proven to

converge in finite iterations to the global optimum under some mild assumptions.

Finally, Li and Luh [103] provided a DUC framework using a two-level decompo-

sition where regions solve their own optimization subproblems and communicate to

coordinate marginal prices on borders. The formulation uses shift factors, requiring

a centralized computation of line-injection sensitivities, and proposes that heuristic

methods be used to find feasible solutions to the binary variables.

Our formulation can be implemented in a peer-to-peer framework that limits in-

formation exchange between subproblems, enabling a decentralized structure while

preserving the confidentiality of data internal to the regions. Experimental results of

parallel implementation of DUC is presented in Section 5.2. In this way, we improve

upon the form of ADMM given in [94]. We also address the UC problem as opposed

to the OPF problem addressed in [95, 11, 94, 139, 130, 204]. Our formulation differs

from [13] in that we solve mixed-integer quadratic programming (MIQP) subprob-

lems instead of finding generation schedules through dynamic programming. It differs

from [103] in that we use an augmented Lagrangian formulation and a new heuristic

for finding feasible binary solutions. Further, we demonstrate the performance of our

algorithm on systems of over 3,000 buses.

The contributions of this work fall into two categories: decentralization of the UC

solution method and computational speed gain of UC solution searches. Decentraliza-

tion of UC has structural benefits in that it provides data privacy for the confidential

information of generating companies. However, as will be shown in Chapter 5, our

method can also find near optimal solutions to large-scale UC problems faster than
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conventional approaches. The boost in computational speed has impact in at least

two different ways: First, as the size of some electricity markets grow, UC solution

engines that previously performed well are now experiencing new performance chal-

lenges [43]. The improved scalability to large-scale problems may help alleviate these

emerging issues. Second, if good solutions to UC problems can be found more quickly

than in conventional approaches, then it is possible to conduct more “rolling-horizon”

UC studies throughout an operating day, adjusting commitment decisions to react

to new information about forecast of wind generation or load. For example, wind

forecasts are generally much more accurate an hour or two ahead of time than they

are 24 hours ahead. The less time that UC takes to calculate, the closer to the dis-

patch time the calculation can begin, meaning the more accurate near-term forecasts

can be used. This capability has implications for both reliability and cost of system

operation.

The remainder of this chapter is organized as follows. In Section 4.2, we review

the notation, problem statement and solution methods for classical UC problems. In

Section 4.3, we present formulations for DUC which can be solved by decentralized

MIP algorithms proposed in Chapter 3. In Section 4.4, we propose a solution approach

for DUC. Extensive computational experiments for DUC will be presented in Chapter

5.

4.2 Classical Unit Commitment Formulation

In the context of this research, we consider day-ahead, 24-hour UC problems with

the objective of minimizing total system cost over the decision variables of generator

active power outputs and on/off status. Constraints mainly include technological

aspects such as minimum and maximum operating levels of generators or thermal

limit of transmission lines. Regulatory constraints include various forms of operating

reserve and contingency constraints to protect the system against the loss of some
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generation or transmission elements.

Let the power system network be a connected graph G = (N , E), where N is

the set of nodes and E is the set of edges. In this formulation, nodes correspond to

buses and edges to branches (that is, transmission lines or transformers). Buses may

have any number of generators and loads connected to them. Detailed formulations

of the constraints and cost function for each generator and load can be found in

[38, 162, 119, 134].

Here we recast the tight MIP formulations for the UC problem presented in [119,

134] with some slight adjustments. In our formulation:

• The power system is partitioned into regions.

• DC power flow approximation is used.

• System reserve requirements are included.

• Both cold and hot startup are considered.

• Quadratic costs for power production are approximated by piecewise linear func-

tions.

• All demand is served.

4.2.1 Generator Cost Function and Constraints

For unit g at time t, let pgt, r
SR
gt , rNSR

gt , and rOR
gt be continuous variables representing

power output above the minimum output, spinning reserve, non-spinning reserve, and

operating reserve, respectively, all in MW. Moreover, suppose ugt, vgt, v
HS
gt , wgt are

binary variables for commitment, startup, hot startup and shutdown status, respec-

tively, of unit g at time t. Denote the vector of all decision variables related to unit

g by xg. Let G be the set of all generators and Gi be the set of generators connected

bus i.

74



Let P g, P g, RDg, RUg, SDg, SUg, T
CS
g , TDg, and TUg be maximum and minimum

power outputs (MW), ramp down and up rate limits (MW/h), shutdown and startup

capabilities (MW), cold startup time (h), and minimum downtime (h) and uptime

(h) of unit g. Let CCS
g , CHS

g , CSD
g , CLV

g , CNL
g , and CQ

g be cold startup, hot startup,

shutdown, linear, no-load, and quadratic costs, respectively, of unit g.

4.2.1.1 Cost function

Operational cost of thermal generating units includes:

• Fuel cost: This cost is depending on the generated power, and most often, the

incremental fuel cost is used in UC. Although in reality these functions are

possibly non-continuous and non-convex, approximate polynomial or piece-wise

linear functions are used in optimization models to prevent trapping in local

solutions [160, 161].

• Startup costs: Bringing an “off” unit into operation leads to an extra cost

due to fuel used in the controlled heating of the unit and pressurization and

decompression of the boilers. This reduces the effective life of the unit. Some

generator start up costs can be decomposed further into a hot and cold start

up costs. This is due to the fact that as these generators cool down, it becomes

more expensive to start them up. Therefore, to accurately model the practical

unit commitment problem, one would need to include these different start up

costs and their dependency to the state of the generating unit [123].

• Shutdown costs: These costs are often much lower than the startup costs, and

sometimes they are not considered in the UC, since they can be included in the

startup costs.

Then, the total cost of unit g in all times in the study horizon, Cg(xg), can be
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formulated as follows.

Cg(xg) =
T∑
t=1

[
CCS
g vgt + (CHS

g − CCS
g )vHS

gt + CSD
g wgt + CQ

g p
2
gt

+(CLV
g + CQ

g P g)pgt + (CNL
g + CLV

g P g + CQ
g P

2
g)ugt

]
.

(79)

4.2.1.2 Constraints for piece-wise linear cost functions

Sometimes instead of quadratic energy cost function, convex piece-wise linear func-

tions are used to reduce the computational burden of UC problem. In this case, the

quadratic term CQ
g p

2
gt in (79) is replaced by a non-negative continuous variable c̃gt,

along with the following constraints.

c̃gt ≥ agk + bgkpgt, ∀t = 1, · · · , T, k = 1, · · · , Kg, (80)

In this research, quadratic costs for power production are approximated by piece-

wise linear functions with Kg = 5 line segments with equal length. Specifically, we

assume bgk = 2CQ
g ×

(k−0.5)(P g−P g)

Kg
and agk = −CQ

g ×
(

(k−0.5)(P g−P g)

Kg

)2

. Note that Sim-

ilar to [119], we defined pgt as power output above the minimum output. Therefore,

0 ≤ pgt ≤ P g − P g, for all g ∈ G and t ∈ T .

4.2.1.3 Unit commitment relation with startup and shutdown variables

To facilitate startup and shutdown costs, and minimum up and down times we use

startup (vgt), hot startup (vHS
gt ), and shutdown (wgt) variables in addition to the on/off

state variables (ugt). Startup and shutdown variables are constrained by

vHS
gt ≤

t−1∑
τ=t−TCS

g −TDg

wgt, ∀t = TCS
g + TDg + 1, · · · , T, (81)

vHS
gt ≤ vgt, ∀t = 1, · · · , T, (82)

ugt − ug,t−1 = vgt − wgt, ∀t = 2, · · · , T. (83)

Let T Init
g be the number of hours unit g has been online (+) or offline (-) prior

to the first period of the commitment study. For t = 1, constraint (83) can be
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adjusted as follows. If T Init
g > 0 then vg1 = 0 and wg1 = 1− ug1. Otherwise, wg1 = 0

and ug1 = vg1. Note that vgt = 0 implies vHS
gt = 0 by (82), and there will be no

associated startup cost in (79). For the case that vgt = 1, if no shutdown happened

in [t− TCS
g − TDg, t− 1], then vHS

gt = 0 and the startup cost will be CCS. Otherwise

vHS
gt = 1 and the startup cost will be CHS by (79).

4.2.1.4 Generator output power limits

Generation limit constraint formulations depend on the generator’s minimum up time

requirement. If TUg = 1,

pgt ≤ (P g − P g)ugt − (P g − SUg)vgt, ∀t = 1, · · · , T (84)

pgt ≤ (P g − P g)ugt − (P g − SDg)wg,t+1, ∀t = 1, · · · , T − 1 (85)

If TUg ≥ 2,

pgt ≤ (P g − P g)ugt − (P g − SUg)vgt − (P g − SDg)wg,t+1, ∀t = 1, · · · , T − 1. (86)

For t = T , constraint (86) can be adjusted as

pgT ≤ (P g − P g)ugT − (P g − SUg)vgT .

4.2.1.5 Minimum up and down time constraints

If a unit must be on for a certain number of hours before it can be shut off, then a

minimum up-time is set. By contrast, minimum down-time is the number of hours

a unit must be off before it can be brought on again. Minimum up and down time

constraints are represented by

t∑
τ=t−TUg+1

vgτ ≤ ugt, ∀t = TUg, · · · , T, (87)

t∑
τ=t−TDg+1

wgτ ≤ 1− ugt, ∀t = TDg, · · · , T, (88)
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Initial minimum up and down time constraints can be enforced as follows. If

0 < T Init
g < TUg then ugt = 1, ∀t = 1, · · · ,TUg − T Init

g . If −TDg < T Init
g < 0 then

ugt = 0, ∀t = 1, · · · , T Init
g −TDg. One may also include must-run, outaged, or fixed

output power constraints for certain units in certain times [161].

4.2.1.6 Ramp up and down limits

Ramping limits can be expressed as

−RDg ≤ pgt − pg,t−1 ≤ RUg, ∀t = 2, · · · , T (89)

Constraint (89) should be modified for t = 1 as −RDg ≤ pg1 − pInit
g ≤ RUg, where

pInit
g is the initial power output (above minimum output) for unit g.

4.2.1.7 Reserve Constraints

To overcome unexpected events such as generator failures, some extra capacity is

required in UC [56, 164, 4]. The generator-level constraints for spinning, non-spinning,

and operating reserve for unit g can be modeled as follows.

rSR
gt ≤

RUg

6
ugt, ∀t = 1, · · · , T, (90)

rSR
gt ≤ P g −

(
pgt + P g

)
, ∀t = 1, · · · , T, (91)

rNSR
gt ≤ SUg

6
(1− ugt) +

RUg

6
ugt, ∀t = 1, · · · , T, (92)

rNSR
gt ≤ P g −

(
pgt + P g

)
− rSR

gt , ∀t = 1, · · · , T, (93)

rOR
gt ≤ P g −

(
pgt + P g

)
− rSR

gt − rNSR
gt , ∀t = 1, · · · , T, (94)

4.2.1.8 Variable type

The various decision variables included above are constrained as follows:

pgt, r
SR
gt , r

NSR
gt , rOR

gt , c̃gt ≥ 0, ugt, vgt, wgt, v
HS
gt ∈ {0, 1}, ∀t = 1, · · · , T. (95)
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4.2.2 Power and Reserve Requirements

For time t, let di,t and r̂qt be the expected load (MW) at bus i and system reserve

requirement for product q (MW), respectively. These requirements should be satisfied

by the power output and reserve products of generators

4.2.2.1 System requirements for reserve products

The total of each reserve product q in the system must meet the minimal system

requirement. For this study, the system requirement was equal to the size of the

largest contingency for the 10-minute contingency reserve and the size of the second

largest contingency for the 30-minute operating reserve. Spinning reserve was required

to be at least half of the 10-minute reserve. The system-level constraints for reserve

products are

∑
g∈G

rqg,t ≥ r̂qt , ∀q ∈ {SR, NSR, OR}, ∀t = 1, · · · , T. (96)

4.2.2.2 Power demand and supply balance

Generation must equal demand at each time period, expressed as

∑
g∈G

[P gugt + pgt] =
∑
i∈N

dit, ∀t = 1, · · · , T. (97)

4.2.3 Mathematical Formulations for UC

Next we present three mathematical formulations for UC which are UC without

network constraints, network-constrained UC with line sensitivities and network-

constrained UC with voltage phase angles.

4.2.3.1 UC without network constraints

In this formulation, the total system cost should be minimized subject to generator

constraints (81)-(95) for all units, reserve requirement (96), and demand and supply
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balance (97) as follows:

min
∑
g∈G

Cg(xg)

s.t. (80)− (95), ∀g ∈ G

(96), (97)

(98)

In above formulation, constraints (96) and (97) are coupling different generators to

each other.

4.2.3.2 Network-constrained UC with line sensitivities

For branch ij, let F ij be the active power flow limit. In network-constrained UC,

thermal limits are considered for branch elements. These are represented as

−F ij ≤ Fij,t ≤ F ij, ∀t = 1, · · · , T. (99)

Many UC formulations express line power flows in terms of power injections at buses

by using line sensitivities as in [110]. Under the DC power flow approximation, the

power flow in line ij at time t, which is Fij,t, is assumed to be a linear function of net

power injections P net
k,t in all buses k ∈ N ; that is,

Fij,t =
∑
k∈N

γij,kP
net
k,t (100)

and

P net
k,t :=

∑
g∈Gk

[P gugt + pgt]− dk,t. (101)

The sensitivities γij,k are the power transfer distribution factors (PTDFs), also re-

ferred to as generation shift factors (GSFs), which may be calculated according to

[96].

In network-constrained UC using GSFs, constraints (99) for the monitored lines

ij ∈ E ′ ⊂ E are added to the model (98). In practice, the set of monitored lines,

E ′, contains about 10% of all lines in E . Note that there is no need to actually add
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the additional variables Fij,t and P net
i,t and constraints (100)-(101) to the optimization

model since they can be substituted by the right hand sides of (100) and (101). Then,

constraints (99) can be recast as:

−F ij ≤
∑
k∈N

γij,k

(∑
g∈Gk

[P gugt + pgt]− dk,t

)
≤ F ij, ∀ij ∈ E ′ ⊂ E , t, (102)

Therefore, the network-constrained UC with line sensitivities can be formulated as

follows.

min
∑
g∈G

Cg(xg)

s.t. (80)− (95), ∀g ∈ G

(96), (97), (102)

(103)

In above formulation, constraints (96), (97) and (102) are coupling different generators

to each other.

4.2.3.3 Network-constrained UC with voltage phase angles

In this work, we forgo the use of sensitivity factors in order to attain better decompos-

ability. Instead, bus phase angles are treated as decision variables in order to better

formulate the mathematical line flow and bus power balance constraints. The output

of the UC process remains the generator power output set points; bus phase angles

need not be regulated set points. We seek a formulation that is as bus-centered as

possible.

Let Bij denotes element ij of the DC power flow Jacobian. Let θi,t be the voltage

phase angle at bus i and time t. Without loss of generality, bus 1 has been designated

the reference bus, giving θ1,t = 0, ∀t. Then, the DC power flow in line ij and time t

can be formulated as

Fij,t := Bij(θi,t − θj,t). (104)

In this case, constraints (99) can be represented as

−F ij ≤ Bij(θi,t − θj,t) ≤ F ij, ∀ ij ∈ E , t = 1, · · · , T. (105)
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Bus voltage phase angles should satisfy the active power balance constraints∑
g∈Gk

[P gugt + pgt]− dk,t =
∑

j∈δi
⋃
{i}

Bijθj,t, ∀k ∈ N , t = 1, · · · , T, (106)

where, δi is the set of all buses connected to bus i. Note that Bii =
∑
j∈δi

Bij, ∀i ∈ N ,

and bus balance equations (106) imply the global demand and supply equation (97).

Then, the network-constrained UC with voltage phase angles can be formulated as

min
∑
g∈G

Cg(xg)

s.t. (80)− (95), ∀g ∈ G,

(96), (105), (106).

(107)

In above formulation, constraints (96), (105) and (106) are coupling different gener-

ators to each other.

4.2.4 Other variants of UC

In addition to the UC formulations discussed in the preceding section, other variants

of UC are also used in literature. These variants differ in terms of the additional

constraints or modified objective functions they consider.

4.2.4.1 Emission constrained UC

Power generation from fossil fuels can pollute the air with different rates at startup,

steady-state, and shut down phases. The main pollutants are SO2, CO2, and NO2,

and their emission depends on the consumed fuel and generated power amount. To

manage and reduce air pollution, energy planners and regulators provide environmen-

tal cost estimates as a function of unit emission [74]. In some works, such as [74] and

[192], emission limits are enforce by adding constraints to the UC problem. Emission

constraints may limit power generation of a single unit, a group of units or the whole

system. They may be given to a specific period of time, or for a certain number of

periods [132]. In other works like [97], emissions are modeled as a part of objective

function to be minimized.
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4.2.4.2 Fuel constrained UC

In thermal units with the dominant fuel cost, managing fuel consumption becomes an

important daily task. It may have some limitations such as fuel contracts, congestion

in the fuel delivery system, and limited storage. Considering fuel management makes

the problem rather complex, modelers make some assumptions to dramatically reduce

the level of complexity. Researchers in [10, 99, 100, 186, 179, 180, 182] provide some

assumptions and formulation for fuel constrained unit commitment.

4.2.4.3 UC with combined cycle plants

Because of the advantages like high efficiency, fast response, environmental friend-

liness, flexibility, and shorter installation time, combined cycle units have become

popular in recent decades [107]. To model combined cycle units, instead of two “on”

and “off” states for the generator, several states can be considered. In [107], authors

modeled the startup cost as an exponential function of the time during which unit

was “off”. In [22, 46, 108], the authors used multiple configurations for combined

cycle units. Their common point is that they all try to approximate the non-convex

cost functions.

4.2.4.4 UC with other devices

In recent literature, scheduling methods have been introduced for thermal and energy

storage system (ESS) unit commitment [162]. Pumped-hydro storage [102, 5] and

various types of flexible loads [138] are available in the literature.

4.2.4.5 Integrating renewables in UC

Recently, new UC models were developed to include renewable [12, 189] or vehicle-

to-grid idea [156]. UC models with wind power are considered in [137, 184].
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4.2.4.6 UC under uncertainty

In the security constrained unit commitment (SCUC) (see e.g. [80, 168, 120, 70, 65,

51, 189, 21, 59, 136, 6, 163, 158, 191, 20]) different failure scenarios are considered. To

address uncertainties arising from volatile demand, unexpected failures, or variable

generations from renewable resources, robust unit commitment [118, 203, 90, 205,

191, 20] and stochastic unit commitment [37, 178, 36, 176, 179, 135, 166, 131, 12,

196, 39, 48, 154, 153, 49, 197] were developed and studied.

In other variants of UC problem, more complexities such as AC power flow re-

lations [164, 64, 110, 195, 66, 105] and frequency regulation constraints [145] are

included. Moreover, in price-based unit commitment (PBUC), generating companies

try to maximize their profit based on forecasted prices [37, 146] or prices issued from

a market [104].

4.2.5 Solution Methods

There is a rich literature of exact and heuristic solution methods for different variants

of UC problem. Some of exact methods are MIP [38, 41, 56, 79, 81, 143, 119, 134,

162, 174], Branch and Bound [98, 163], dynamic programming [173], Benders decom-

position [110, 194] and primal and dual method [55]. Besides, some heuristics and ap-

proximate methods used Lagrangian relaxation [207, 187, 176, 177, 202, 79, 133, 111],

genetic algorithm [54], harmony search algorithm [2], tabu search [113], simulated

annealing [206], fuzzy dynamic programming [175], particle swarm [68], memetic al-

gorithm [185], artificial neural networks [159], ant colony search algorithm [172], and

combination of above methods [86].

4.3 Decentralized Unit Commitment Formulation

Recalling from Section 4.2, the power system network is considered a connected graph

with N as the set of nodes (buses) and E as the set of edges (branches). Suppose
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∈ N IB
ν

∈ NBB
ν

∈ N FB
ν

Figure 5: Regions ν and ν ′ outlined with bus sets of region ν.

the power system is partitioned into n exclusive regions with respect to buses, that

is N =
⋃
ν∈P Nν and Nν ∩ Nν′ = ∅ for all ν, ν ′ ∈ P , ν 6= ν ′, with P being the set of

regions. For a region ν denote the sets of its all, internal, and boundary buses by Nν ,

N IB
ν and NBB

ν , respectively. Moreover, let N FB
ν be the set of boundary buses of the

other regions connected to ν. Note that j ∈ N FB
ν implies j ∈ NBB

ν′ for some region

ν ′, which is a neighbor of ν. See Figure 5 for an illustration of how these three sets

relate to the buses of region ν. Let δi and ∆i be the sets of all buses and regions,

respectively, connected to bus i.

In GSF network-constrained UC (103) or UC without network constraints (98), the

constraints (96), (97), and (102) are globally coupled between different regions, i.e.,

all of the regions participate in each of these constraints. We intend to decompose the

centralized UC problem (107) into sub-areas, which we will call regions or prosumers

in this research. Because each generator belongs to exactly one region, all of the

constraints and variables are directly decomposable to regions, and in fact buses,

except for the following:
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• Capacity constraints (105) on branches bridging regional boundaries (denoted

as boundary lines).

• Bus power balance constraints (106) on buses connected by boundary lines

(denoted as boundary buses).

Specifically, boundary lines and buses are coupling between only the neighboring

regions. The reserve constraint (96) is globally coupled between all regions. Next, we

propose a reformulation of model (107) that is appropriate to use in our decentralized

approach.

In model (107), θi,t is shared between different regions if i is a boundary bus.

To facilitate distributing the UC model among regions, we will assume each region ν

connected to boundary bus i has the perception θ̃ν,i,t of the voltage phase angle at bus

i and time t. This formulation is similar to that used by Kim and Baldick [95, 94] and

the one used by Bakirtzis and Biskas [11], both of which duplicated some variables

associated with buses in adjacent regions in order to seek convergence between the

regions. However, the formulation presented here differs from the those of [95, 94] by

not requiring any dummy buses – all buses belong to some region in the system. Also,

this formulation differs from the one in [11] since we use an augmented Lagrangian

with different objective terms. Reference [85] similarly uses a variable perception and

duplication strategy to formulate a frequency control problem and applies ADMM to

solve it in a distributed way.

There are three possibilities for constraints (105) of line ij. If i, j ∈ N IB
ν , then

i, j /∈ NBB
ν and constraints (105) can be used as-is internal to region ν. For the

cases with one internal and one boundary bus as end points of line ij, without loss

of generality, let us assume i ∈ N IB
ν and j ∈ NBB

ν . Then,

−F ij ≤ Bij(θi,t − θ̃ν,j,t) ≤ F ij ∀t. (108)

For the cases with one boundary and one foreign bus as end points of line ij, without
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loss of generality, let us assume i ∈ NBB
ν and j ∈ N FB

ν . Then,

−F ij ≤ Bij(θ̃ν,i,t − θ̃ν,j,t) ≤ F ij ∀t. (109)

The power balance constraint (106) for bus i ∈ Nν can be rewritten as∑
g∈Gk

[P gugt + pgt]− dk,t =
∑

j∈δi
⋃
{i}

s.t. j∈N IB
ν

Bijθj,t +
∑

j∈δi
⋃
{i}

s.t. j∈NBB
ν

⋃
NFB
ν

Bij θ̃ν,j,t, ∀t. (110)

To link the actual phase angles with the perceptions of those phase angles, we need

the additional constraints

θ̃ν,i,t = θ̃ν′,i,t, ∀ν, ν ′ ∈ P , ∀t

s.t. i ∈ NBB
ν ∩N FB

ν′ or i ∈ N FB
ν ∩NBB

ν′ .

(111)

With these, an equivalent expression of the problem (107) is

min
∑
ν∈P

Cν(xν)

s.t. xν ∈ Xν , ∀ν ∈ P ,

(96), (111),

(112)

where xν is the vector of all decision variables in region ν, including all variables of

generators in region ν, variables θi,t for internal buses i ∈ N IB
ν , and θ̃ν,i,t of all buses

i ∈ NBB
ν ∪N FB

ν , and

Cν(xν) =
∑
i∈Nν

∑
g∈Gi

Cg(xg). (113)

The set of feasible solutions, Xν , which is a linear mixed integer set is defined as

follows.

Xν :=


xν :



(80)− (95), ∀g ∈ Gi, i ∈ Nν ,

(110), ∀i ∈ Nν

(105), ∀ij ∈
{
kl ∈ E : k, l ∈ N IB

ν

}
(108), ∀ij ∈

{
kl ∈ E : k ∈ N IB

ν , l ∈ NBB
ν

}
(109),∀ij ∈

{
kl ∈ E : k ∈ NBB

ν , l ∈ N FB
ν

}


. (114)
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Note that in model (112) all of the variable and constraints are local except con-

straints (96) and (111). By relaxing these constraints, augmenting them in the ob-

jective function through use of ADMM [28], we propose an iterative method to solve

(112) in a decentralized framework.

4.4 Solution Approach for DUC

In this section, we propose an ADMM based approach to solve UC model (112) in a

decentralized fashion.

4.4.1 Application of ADMM

Recall consensus ADMM, Algorithm 53, from Section 3.3.2. At iteration m, define

¯̄θmν,i,t, ¯̄rq,mν,t and ¯̄Fm
ν,ij,t as follows:

¯̄θmν,i,t :=

∑
ν′∈∆i

θ̃mν′,i,t

|∆i|
∀i ∈ NBB

ν ∪N FB
ν , ∀t, (115)

¯̄rq,mν,t := rq,mν,t +

r̂qt −
∑
ν′∈P

rq,mν′,t

|P|
∀ν ∈ P , ∀q, ∀t, (116)

¯̄Fm
ν,ij,t : =

F̃m
ν,ij,t − F̃m

ν′,ji,t

2
=
Bij

(
θ̃mν,i,t − θ̃mν,j,t

)
−Bij

(
θ̃mν′,j,t − θ̃mν′,i,t

)
2

,

∀ν ∈ P , ∀t,∀ij : (i ∈ NBB
ν , j ∈ N FB

ν ) or (j ∈ NBB
ν , i ∈ N FB

ν ).

(117)

Here, |.| is the cardinality of a set, and ∆i is the set of regions (including region ν)

connected to bus i ∈ NBB
ν . Moreover, let λmν,i,t, ω

q,m
ν,t and µmν,ij,t be the dual variables

corresponding to deviations of θ̃ν,i,t from ¯̄θmν,i,t, r
q
ν,t from ¯̄rq,mν,t , and F̃ν,ij,t from ¯̄Fm

ν,ij,t,

respectively. For the sake of simplicity, let θ̃ν ,
¯̄θmν , rν , ¯̄rmν , F̃ ν ,

¯̄Fm
ν , λmν , ωmν and µmν

be the vectors of θ̃ν,i,t,
¯̄θmν,i,t, r

q,m
ν,t , ¯̄rq,mν,t , F̃ν,ij,t,

¯̄Fm
ν,ij,t, λ

m
ν,i,t, ω

q,m
ν,t and µmν,ij,t respectively.

Now, let the augmented Lagrangian function of region ν at iteration m+ 1 be

L+
ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν , ¯̄r

m
ν ,λ

m
ν ,µ

m
ν ,ω

m
ν

)
= Cν(xν) + λmν

(
θ̃ν − ¯̄θmν

)
+
ρ

2

∥∥∥θ̃ν − ¯̄θmν

∥∥∥2

2

+ µmν

(
F̃ ν − ¯̄Fm

ν

)
+
ρ

2

∥∥∥F̃ ν − ¯̄Fm
ν

∥∥∥2

2
+ ωmν (rν − ¯̄rmν ) +

ρ

2
‖rν − ¯̄rmν ‖2

2,

(118)
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where ρ > 0 is a given penalty factor. The terms related to F̃ ν − ¯̄Fm
ν in (118) are

not required for the augmented Lagrangian relaxation of problem (112). But, having

these terms speeds up convergence of the proposed ADMM based methods specially

for large scale DUC instances.

The dual variables are updated as

λmν = λm−1
ν + ρ

(
θ̃
m

ν − ¯̄θmν

)
,

µmν = µm−1
ν + ρ

(
F̃
m

ν − ¯̄Fm
ν

)
,

ωmν = ωm−1
ν + ρ (rmν − ¯̄rmν ) .

(119)

The primal residuals corresponding to θ̃mν,i,t, r
q,m
ν,t and F̃m

ν,ij,t at iteration m are (θ̃mν,i,t−
¯̄θmν,i,t), (rq,mν,t − ¯̄rq,mν,t ) and (F̃m

ν,ij,t− ¯̄Fm
ν,ij,t), respectively. The dual residuals corresponding

to ¯̄θmν,i,t, ¯̄rq,mν,t and ¯̄Fm
ν,ij,t at iteration m are ρ(¯̄θmν,i,t− ¯̄θm−1

ν,i,t ), ρ(¯̄rq,mν,t − ¯̄rq,m−1
ν,t ) and ρ( ¯̄Fm

ν,ij,t−
¯̄Fm−1
ν,ij,t ), respectively. Let αm and βm be the vectors of all primal and dual residuals,

respectively, at iteration m. We propose the basic DUC method as Algorithm 9.

4.4.2 Challenges and Remedies

For feasible convex optimization problems with finite optimal values, and convex

closed feasible regions for subproblems, ADMM has nice convergence properties. In

this case, primal and dual residuals converge to zero. Moreover, dual variables and

objective value converge to their optimal values [28]. Convexity may be an appropriate

assumption for the traditional economic dispatch, where all variables are continuous

and cost curves are generally convex (if not in reality, then due to market rules).

Similarly, LP relaxation of UC is a convex optimization problem.

If there are binary variables present, as there are in the UC problem, a convexity

assumption is inappropriate. Therefore, although economic dispatch or LP relaxation

of UC would have nice ADMM convergence properties, such properties are not ex-

pected for UC. In direct application of ADMM for non-convex optimization problems,

there is no guarantee to converge to the global optimal objective value. In fact, there
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Algorithm 9 Basic DUC algorithm based on ADMM

1: Initialize x0
ν , λ

0
ν , ω

0
ν and µ0

ν for each region ν ∈ P ; m← 0.
2: for ν ∈ P do
3: for i ∈ NBB

ν do
4: for ν ′ ∈ ∆i\{ν} do
5: for j ∈ δi ∩NBB

ν′ do

6: Region ν sends θ̃
m

ν,i and θ̃
m

ν,j to its neighbor ν ′.
7: end for
8: end for
9: end for
10: Region ν sends rmν to a designated region ν∗.
11: end for
12: Region ν∗ calculates ¯̄rmν , the new reserve targets for each region, by (116).
13: for ν ∈ P do
14: Region ν∗ sends ¯̄rmν to region ν.
15: for i ∈ NBB

ν do

16: Region ν computes ¯̄θmν,i, using (115) .
17: for ν ′ ∈ ∆i\{ν} do

18: Region ν sends ¯̄θmν,i,t to regions ν ′.
19: end for
20: for j ∈ δi ∩N FB

ν do
21: Region ν updates ¯̄Fm

ν,ij from (117).
22: end for
23: end for
24: end for
25: for ν ∈ P do
26: Region ν updates its primal and dual residuals, and dual variables.
27: end for
28: if m > 0, ‖αm‖ ≤ εPri and ‖βm‖ ≤ εDual then
29: Stop and output xmν as optimal decision for each region ν.
30: end if
31: for ν ∈ P do
32: Region ν solves min

xν∈Sν
L+
ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν , ¯̄r

m
ν ,λ

m
ν ,µ

m
ν ,ω

m
ν

)
to updates xm+1

ν .

33: end for
34: Update m← m+ 1 and go to Line 2.
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is no guarantee to converge and the method may oscillate for ever. Experimental

results in Section 5.1.1 confirm these issues.

Decentralized MIP algorithms proposed in Chapter 3 provide some remedies for

these challenges. Exact decentralized MIP procedures can be implemented to obtain

the optimal solution of a small UC instance. For large scale UC instances, exact

decentralized methods are inefficient while the heuristic Release-and-Fix (R&F) ap-

proach demonstrates remarkable performance. For details of these algorithms we refer

the reader to Chapter 3. Extensive computational experiments will be presented in

Chapter 5.

4.4.3 Improvements of R&F for DUC

The performance of R&F algorithm can be significantly improved by implementing

some of the following:

4.4.3.1 Phase angle perception simplifications

Suppose i, j ∈ NBB
ν , k ∈ N FB

ν ∩ NBB
ν′ , ik ∈ E , and jk ∈ E . That is, the boundary

buses i and j in region ν connected to k in region ν ′. One approach to reformulate

problem (107) is to consider separate perceptions θ̃i,k and θ̃j,k of the phase angle θk for

each of the buses i and j, respectively. Through a simple exchange of self-identified

bus names, it is possible for each region to determine whether it is multiply connected

to the same boundary bus in a neighboring region. We can therefore add the equality

θ̃i,k = θ̃j,k to the formulation to reduce the search space of the region ν subproblem

and enhance convergence. Or simply consider perception θ̃ν,k of phase angle θk for

region ν , instead of θ̃i,k and θ̃j,k as in formulation (112).

4.4.3.2 Problem reformulation

As mentioned earlier, the terms related to F̃ ν− ¯̄Fm
ν are not required for the augmented

Lagrangian (118) of problem (112). Without including these terms, we observed that
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after thousands of iterations, primal residuals (θ̃ν − ¯̄θmν ) are very small, but a consid-

erable gap between power demand and supply remains. In preliminary experiments,

we observed that large susceptance values may cause this issue. For example, in the

IEEE case with 2736 buses, for connected buses i and j, Bij in susceptance matrix

varies from 2.2 to 15873. In fact, preliminary evaluation of residual convergence be-

havior revealed that large susceptance values Bij resulted in poor solution quality.

Because the power flowing across a line ij is Fij,t = Bij(θi,t − θj,t), small absolute

differences in phase angles may result in nontrivial disagreements between regions on

boundary line power flows. To counter this problem, we include additional penalty

terms related to F̃ ν − ¯̄Fm
ν in augmented Lagrangian (118) for the actual power flows

on boundary lines.

4.4.3.3 Smart network partitioning

In some cases, partitioning the network into regions or prosumers depends on deci-

sion maker. In these cases, smart partitioning can result in dramatic speed up in

DUC. For this purpose, we designed a heuristic partitioning algorithm to pursue two

objectives. The first is minimizing the total number of boundary lines. Although this

problem is NP-hard in general, the heuristic method performed adequately. While

constructing each region, the buses with the most connections were annexed first to

limit the number of edges on the partition boundary. This objective helps to reduce

the number of quadratic penalty terms in the augmented Lagrangian of each sub-

problem. The second objective is to equalize the number of generators in each region,

since generators are the main contributor to problem complexity. Subproblems are

therefore expected to be of roughly similar sizes. Cases are easy to imagine in which

one region is significantly larger than another in terms of generators or problem size,

especially if regions are strictly considered to be utilities, generating companies, or

transmission operators. However, in these cases, a decomposition could be performed
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internal to those large regions to achieve better overall congruity.

4.4.3.4 Stopping criteria

Adjusting stopping criteria depending on the problem structure can facilitate a bal-

ance of solution speed and feasibility. For problems with many boundary lines, the

magnitudes of the primal and dual residual vectors will naturally be larger than prob-

lems with fewer boundary lines. By scaling the total residuals against the totals of

the variables they are associated with, more effective stopping criteria can be defined.

Additionally, distinct values of ε can be used for the various solution processes

of R&F in 3.4. ADMM-Release benefits from higher residual tolerances so that new

binary solutions can be explored, while ADMM-Fix requires lower tolerances so that

the binary-feasible solutions are well-refined.
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Chapter V

EXPERIMENTAL RESULTS

In this chapter, we present extensive computational experiments for solving UC in-

stances with different decentralized approaches. In Section 5.1, we present prelimi-

nary results of direct application of ADMM and R&F algorithm to solve UC instances

where the subproblems were solved sequentially. We also discuss the challenges aris-

ing from nonconvexity of UC problem. In Section 5.2, we demonstrate remarkable

performance of parallel implementation of R&F heuristic algorithm to solve large

scale UC instances. Finally, we present numerical results for exact decentralized MIP

algorithms to solve small UC instances in Section 5.3.

5.1 Preliminary Results

In this section, we present preliminary results of applying ADMM based decentralized

methods to solve different UC instances. First, we discuss the results from direct

application of ADMM to solve UC and its LP relaxation. Then, we demonstrate

the effect of power network configuration on convergence of the proposed methods.

Moreover, we present numerical results of the primitive and improved versions of

R&F algorithms. We also compare our method with self commitment approach.

Finally, we discuss the effect of partitioning approach and communication losses on

the performance of R&F.

In the experiments for this section, the subproblems were solved sequentially, but

the hypothetical parallel solution time based on the maximum computation time

of subproblems in each iteration is reported. The algorithms were coded in C++.

IBM ILOG CPLEX version 12.4 was used for solving QP and MIQP subproblems.

Experiments were conducted on a UNIX machine with four cores rated at 2.27 GHz
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Figure 6: Objective value in ADMM for LP relaxation of a UC instance.

with 24 GB RAM total.

5.1.1 Direct Application of ADMM

For convex optimization problems, ADMM has nice convergence properties. However,

directly applying classic ADMM to the DUC problem results in vulnerability to binary

variable oscillations and being trapped in local optima. UC is a nonconvex MIP

problem, while its LP relaxation is a convex optimization problem. Figures 6 and 7

show the convergence of objective value and total primal residuals, respectively, in

ADMM for LP relaxation of a small UC instance with 5 generators.

The objective value and total primal residual in direct application of ADMM to

solve the previous UC instance are depicted in Figures 8 and 9. Oscillation and

nonconverging behavior of this approach are clear in Figures 8 and 9. In Figure 10,

number of swaps in binary variables is presented. It is obvious that binary variables,

on/off state of generators, are changing in a continuing base. Therefore, objective

value and primal residuals are oscillating.

Figure 11 demonstrates the behavior of two cases of the 3,012-bus system (the
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Figure 7: Primal residual in ADMM for LP relaxation of a UC instance.

Figure 8: Objective value in direct application of ADMM for a UC instance.
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Figure 9: Primal residual in direct application of ADMM for a UC instance.

Figure 10: Number of swaps in binary variables in direct application of ADMM for
a UC instance.
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Figure 11: Optimality gaps for 3,012-bus case with classic ADMM and R&F with
20-region and 300-region decompositions.

20-region and 300-region decompositions) under classic ADMM and the improved

R&F algorithm. With the 300-region decomposition, classic ADMM converges to a

solution with 1% optimality while R&F approaches the global optimum much more

closely. The 20-region decomposition under R&F provided similar results in terms of

optimality, but the same case with classic ADMM terminated before 1,000 iterations

because of the computational time limit of four hours. Note that in the classic ADMM

for UC, subproblems are always MIQP and computationally hard to solve. This result

highlights the advantages of both more granular decompositions and iteratively fixing

and releasing binary variables in R&F.

5.1.2 Network Topology Effect

Convergence rate of ADMM for DUC depends on the topology of underlying power

network. We tested ADMM for UC instances with five differently configured networks

as follows:
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• No line (NL): In this case, UC formulation (98) without network constraints is

considered. All regions send their total power output to a designated region to

compute the discrepancy in power demand and supply.

• Path

• Circle (Cr)

• Tree (Tr)

• A meshed example from PowerWorld (PW)

Each test case has 10 prosumers, and each prosumer has 5 generators. The load is

owned by prosumer 1. Load and generators data are from the le 50 0 3 w.mod avail-

able at http://people.brunel.ac.uk/m̃astjjb/jeb/orlib/les/unitnew.zip. The demand

profile is as shown in Figure 12. For this experiment, we assumed that the capacities

of lines are not restrictive.

To better capture convergence speed of ADMM for different configurations, all

figures are in 2 different scales, one for iterations up to 150 and the other for the

remaining iterations. Figure 13 depicts the optimality gap (%) versus solution time

for LP relaxation of UC instances with different network configurations. In Figure

14, this gap is shown for direct application of ADMM. We also used the solution of

LP relaxation as warm start for direct application of ADMM for UC. The optimality

gap for this case is shown in Figure 15.

Based on these numerical results we can observe and make the following remarks.

• LP relaxation of DUC converges fast to its optimal solution.

• The realistic, meshed topology case (PW) converges faster than most of the

other configurations.

• The path topology, having the least connectivity, shows the worst behavior.

Note that for communication network, we considered the same topology as
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Figure 12: Demand profile for test cases with different network configurations.

Figure 13: Optimality gap (%) for LP relaxation of UC instances with different
network configurations.
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Figure 14: Optimality gap (%) for UC instances with different network configura-
tions.

Figure 15: Optimality gap (%) for UC instances with different network configura-
tions, using LP relaxation as warm start.
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power transmission network. Then, more connectivity in power transmission

network of regions means more information exchange between regions.

• Using LP relaxation in the first iterations improves the quality of solutions from

direct application of ADMM for UC.

• If binary variables are not fixed after a while, there is no guarantee to prevent

abnormal behaviors and large oscillations.

5.1.3 Primitive R&F Algorithm

In this subsection, we present results of testing the primitive version of R&F algorithm

on small standard UC instance. In this version of algorithm, reserve constraints were

not included. Moreover, instead of L+
ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν , ¯̄r

m
ν ,λ

m
ν ,µ

m
ν ,ω

m
ν

)
in (118), we

used L+′
ρ,ν

(
xν ,

¯̄θmν ,λ
m
ν

)
as defined below:

L+′

ρ,ν

(
xν ,

¯̄θmν ,λ
m
ν

)
:= Cν(xν) + λmν

(
θ̃ν − ¯̄θmν

)
+
ρ

2

∥∥∥θ̃ν − ¯̄θmν

∥∥∥2

2
(120)

5.1.3.1 Test cases

We used test cases available in MATPOWER package from [208] to generate our

problem instances. These test cases are mainly for optimal power flow problems and

do not have inter-temporal data such as minimum up and down times, ramp rate

limits, start-up and shut down costs, initial state of generators and demand forecast

of loads at each time period. We generated these missing data semi-randomly, as

follows:

• Minimum up and down time of a generator: Minimum up time is set to be

1, 2, 3, 5, 6 and 8 for generators with maximum capacity in (0, 50], (50, 100],

(100, 200], (200, 300], (300, 600], and (600,∞], respectively. Note that maximum

capacities for generators are available in MATPOWER package [208]. Minimum

down time is randomly chosen from integers within ±1 of minimum up time.
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Table 1: Test case details
Buses Generators Lines Cont. Var. Bin. Var. Constraints tc (s)

6 3 11 337 66 679 0.86
9 3 9 340 67 768 0.83
14 5 20 472 114 815 0.21
30 6 41 699 135 1533 203.06
39 10 46 1097 195 2389 0.25
57 7 80 817 152 1260 8.48

• Start-up and shut down costs: These costs were set to be 10% of the production

cost of maximum power output.

• Initial state of the generator: We assumed that with probability 0.2 each gen-

erator was off initially for a random number of periods between 0 and twice

minimum down time. Also, with probability 0.8, it was on for a random num-

ber between 0 and twice minimum up time. If the generator was on, the initial

power generation level of generator is randomly chosen between its minimum

and maximum operating level.

• Demand forecast of a load at time period: In the test cases of MATPOWER

[208], there is a single number as demand of the load. We considered this

demand as peak time demand and multiplied it by a load factor (see Fig. 16)

at each hour to calculate the base demand of the load. Then, demand forecast

was chosen randomly within ±15% of its base demand value.

In all of the cases, 24 hours of planning with 1 hour time granularity are considered.

In the first three columns of Table 1, the number of buses, generators, transmission

lines are shown for each case. The next three columns indicate the numbers of contin-

uous and binary variables and linear constraints of each case after the presolve stage

in CPLEX. CPU time (in seconds) needed to solve each case is presented in the last

column.

Each test case is split into different numbers of prosumers. In the first case with
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Figure 16: Load factor at each hour

39 buses and 3 prosumers (3a), each control area is assumed to be a prosumer. In

the other cases, buses and devices connected to them are partitioned into prosumers

with roughly the same number of buses.

5.1.3.2 Implementation details

We tested the primitive R&F with the following details. First, the algorithm had

10,000 iterations limit to run ADMM-Relax (see Section 3.4.1) for solving continuous

relaxation of the UC problem. In our experiments, we used the origin 0 as initial

primal and dual values. In this phase, subproblems were QPs and relatively easy

to solve. The acceptable tolerance was reaching less than 10−3 maximum and 10−1

total primal infeasibility (measured by residuals) and less than 0.5% gap between

total augmented objective values L+′
ρ,ν(x

k+1
ν , ¯̄θk,λkν) and total base objective values

Cν(x
k+1
ν ).

After terminating ADMM-Relax, R&F algorithm switched to ADMM-Release (see

Section 3.4.2). In this phase, it had 200 iterations to solve ADMM with MIQP

subproblems. After every five iterations, if there was a binary variable change, the

penalty term ρ was increased by 5%. If there was no binary variable change within
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last consecutive 30 iterations or acceptable tolerance was reached, this phase was

terminated.

Next, if the current binary solution was not previously explored, R&F algorithm

switched to ADMM-Fix (see Section 3.4.3). In ADMM-Fix, binary variables were

fixed until reaching the acceptable tolerance or maximum iterations of this step which

was 800.

In addition to the iterations spent on ADMM-Relax, the R&F algorithm had

5000 iterations to spend on ADMM-Release and ADMM-Fix. Total accumulative

time limit of 3600 seconds for the R&F was assumed.

5.1.3.3 Numerical results

Numerical results of running the primitive R&F Algorithm are presented in Table 2.

In this table, the first three columns correspond to the numbers of buses, prosumers

and boundary lines of the cases. iterRelax and tRelax stand for the number of iterations

and CPU time in seconds spent on ADMM-Relax. The rest of the columns consist

of the iterations and CPU times spent to find the first and best solutions by R&F

algorithm. iterRelease and iterFix are the number of iterations spent on Algorithms

ADMM-Release and ADMM-Fix, respectively. tR&F is time spent to find the solu-

tion. “Gap (%)” is the gap between optimal objective value of the case (which was

solved in a centralized framework beforehand for comparison) and the average of total

augmented and base objective value of the solution found by R&F. “Cycle” indicates

the number of cycles of releasing and fixing binary variables (switches between Al-

gorithms ADMM-Release and ADMM-Fix) until finding the best solution within the

iteration and time limits.
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Table 2: Numerical results for primitive R&F
First feasible solution Best feasible solution

bus pro bnd iterRelax tRelax iterRelease iterFix tR&F gap (%) iterRelease iterFix cycle tR&F gap (%)
6 3 8 45 0.27 1 60 0.9 5.18 1175 310 5 24.1 0.58

6 11 74 0.33 45 27 1.2 6.64 1634 518 7 46.7 0.52
9 3 6 72 0.30 12 27 0.8 < 0.01 12 27 1 0.8 < 0.01

9 9 359 0.88 40 387 2.9 < 0.01 40 387 1 2.9 < 0.01
14 3 9 195 1.62 1 159 3.5 17.39 1148 1600 6 45.5 < 0.01

7 14 243 1.29 1 212 2.9 3.28 570 744 3 16.4 0.17
14 20 545 2.18 1 209 3.5 14.93 694 1837 6 22.3 0.29

30 3 9 107 2.18 11 23 4.5 5.87 1743 331 10 464.1 < 0.01
5 19 259 2.89 1 75 4.6 3.67 2639 1133 15 397.3 0.04
10 30 346 2.83 1 122 4.3 4.53 2157 2158 9 173.4 1.13

39 3a 6 262 8.87 1 43 11.8 < 0.01 1 43 1 11.8 < 0.01
3b 18 858 27.11 1 172 35.0 < 0.01 1 172 1 35.0 < 0.01
5 21 845 15.52 38 279 23.0 < 0.01 38 279 1 23.0 < 0.01
10 23 900 8.37 1 570 15.8 < 0.01 1 570 1 15.8 < 0.01

57 3 15 2866 209.33 1 799 291.7 0.71 198 1598 2 491.3 0.02
10 37 5751 55.55 1158 2462 136.9 0.09 1158 2462 5 136.9 0.09
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For the cases with 9 and 39 buses, the best solutions of R&F were found in the first

cycle of releasing and fixing binary variables. For the 30-bus and 57-bus cases with

3 prosumers, because the generators are not evenly distributed between prosumers,

one of the prosumers had much harder subproblems than others. The best solution

was found within 1 minute for cases with 6, 9, 14 and 39 bus cases and between 2 to

8 minutes for 30 and 57 bus cases.

In most cases, many iterations and much time are are necessary for solving CR

with good accuracy. This phase can be eliminated or accelerated by using some

reasonable initial solutions such as primal and dual values from running R&F for the

day before.

For the cases with the same number of buses, larger numbers of prosumers cause

a decrease in t in some cases (e.g. 30 and 57 bus cases) and an increase in the

rest. Therefore, number of prosumers and the strategy for partitioning buses into

prosumers can be investigated to determine the best way of establishing prosumers.

By comparing the CPU times tR&F of primitive R&F in Table 2 and tc of the

centralized method in Table 1, we observe that in most cases (except 30 bus case),

the centralized method is faster than R&F. For the cases with 30 buses, the first

feasible solutions are found in less than 5 seconds which have less than 6 % optimality

gap, while it took 203 seconds to solve the corresponding UC problem centrally. For

these cases, the CPU times of the best solutions (which have very small optimality

gap) are also comparable to the centralized method. Although more experiments are

needed to solve larger and harder cases to observe the real effect of decentralizing the

UC problem, intuitively one expects faster parallel solution times for the cases with

thousands of buses and tens to hundreds of prosumers.

The main conclusions are:

• Although there is no theoretical proof of convergence for ADMM-type algo-

rithms applied to discrete optimization problems, in practice, optimal or near
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optimal solutions with less than 1% optimality gap and acceptable primal in-

feasibility of 10−3 were obtained by the proposed primitive R&F for the DUC

cases.

• Because of the scalability of the proposed framework, control regions of a large

power system can be modelled as prosumers where neighbors can coordinate

their operation, optimizing their interchange for global benefit.

• The proposed scheme would not require drastic changes to existing UC solution

software to implement.

• In the proposed framework, neighboring prosumers need to locally communicate

with each other. Only a small amount of data (related to boundary bus angles)

must be communicated between neighboring prosumers at each iteration. Sen-

sitive data, such as generator costs and ramp rates, can remain private to each

prosumer.

• For most of the test cases that we solved, solving a centralized UC problem

needs less CPU time than solving PDUC with Hybrid ADMM.

Next, we present the results for an improved version of R&F.

5.1.4 Improved R&F Algorithm

To speed up the R&F algorithm for solving DUC, we improved it by techniques pre-

sented in Sections 3.4.5 and 4.4.3. In this section, we test the improved version of

R&F on medium to large size standard power systems. In these instances, reserve con-

straints were not included. Moreover, instead of L+
ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν , ¯̄r

m
ν ,λ

m
ν ,µ

m
ν ,ω

m
ν

)
in (118), we used L+′′

ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν ,λ

m
ν ,µ

m
ν

)
as defined below:

L+′′

ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν ,λ

m
ν ,µ

m
ν

)
=Cν(xν) + λmν

(
θ̃ν − ¯̄θmν

)
+
ρ

2

∥∥∥θ̃ν − ¯̄θmν

∥∥∥2

2

+ µmν

(
F̃ ν − ¯̄Fm

ν

)
+
ρ

2

∥∥∥F̃ ν − ¯̄Fm
ν

∥∥∥2

2

(121)
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Table 3: Centralized Test Cases
Buses Generators Lines Cont. Var. Bin. Var. Constraints tc (s)

57 7 80 817 152 1260 8.48
118 54 186 6448 1221 10553 5194
300 69 411 9130 1487 16013 7200

3,012 496 3572 43977 8361 124793 1898

Having new terms related to F̃ ν − ¯̄Fm
ν in L+′′

ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν ,λ

m
ν ,µ

m
ν

)
speeds up

convergence of the proposed ADMM based DUC methods.

5.1.4.1 Test cases

Experiments were conducted using the IEEE 57, 118, 300, and 3,012-bus cases. These

cases are available from the MATPOWER software package [208]. As mentioned in

Section 5.1.3.1, these test cases are mainly for OPF problems and do not have inter-

temporal data for UC. With the same logic described in Section 5.1.3.1, we generated

these missing data. Divisions of each case into a specific number of regions were

determined by the heuristic partitioning method described in Section 4.4.3.3.

Table 3 reports several metrics regarding each case’s size and centralized solution

time. The load dataset for all four cases was taken from the summer peak scenario of

a large utility system and scaled to match the peak load observed in each case’s input

data. For the 3,012-bus case, a second day in the same scenario was used. Fig. 17

shows the load factors for “Day 1” and “Day 2”. A load factor of 1.0 corresponds to

a total of 1,250 MW for the 57-bus case, 4,242 MW for the 118-bus case, 23,525 MW

for the 300-bus case, and 27,170 MW for the 3,012-bus case. The cases with 57, 118,

and 300 buses had quadratic cost functions specified for generators, while the 3,012-

bus case had linear generator costs. This fact may explain the much longer solution

times necessary for the 118-bus and 300-bus cases seen in Table 3. Solution times to

reach 0% optimality are reported for the centralized cases. For the 300-bus case, an

optimality gap of 0.21% remained after two hours.
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Figure 17: Load factors at each hour for days 1 and 2 of 3,012-bus case.

5.1.4.2 Numerical results

Table 4 summarizes the results of the DUC experiments conducted with improved

R&F. The column headings “Buses” and “Prosumers” are the numbers of buses and

prosumers in each experiment. The adjacent columns iterrelax and trelax are the number

of iterations and total CPU time in seconds spent in ADMM-Relax. The next columns

iterRelease, iterFix, tR&F, and “Gap %” are, respectively, the number of iterations in

ADMM-Release, the number of iterations in ADMM-Fix, the total CPU time spent

in R&F, and the percentage gap between the best solutions found through R&F and

through centralized branch-and-cut (i.e., the cases in Table 3).

In Table 4, the solution times for all cases strictly decrease with respect to increas-

ing decomposition granularity (i.e. more and increasingly smaller regions). Although

the numbers of iterations in the various R&F stages generally increased with more

regions, total computational time decreased dramatically. Certainly the individual

MIQP subproblems required much less time with diminished size as the combinatorics

of the binary solution search would suggest, but QP subproblems were also solved

with much greater speed, as can be seen from the results of the ADMM-Relax.

The 3,012-bus case was easily the largest case tested, providing some of the most

interesting results. Most importantly, parallel solution time showed a monotonic

110



Table 4: Decentralized Test Cases and Results
Case Info CR Stage Best feasible solution

Buses Prosumers iterrelax tRelax (s) iterRelease iterFix tR&F (s) Gap %

57
3 86 4.9 486 182 410.6 < 0.01
10 220 3.7 687 899 43.8 < 0.01

118
4 85 24.0 240 40 313.1 0.14
10 89 4.2 326 50 74.9 < 0.01
20 98 1.5 519 59 33.1 < 0.01

300
4 105 24.0 532 92 668.4 0.29
10 223 12.0 368 57 413.8 < 0.01
30 283 3.5 427 168 43.2 < 0.01

3,012

10 227 278 152 1204 3449 0.01
20 218 107 179 1545 1989 0.03
50 248 67 150 1783 537 0.02
100 270 44 99 1576 215 0.11
200 241 17 147 1402 143 0.03
300 301 17 157 1527 94 < 0.01

decrease with an increasing number of regions. Although the numbers of iterations in

ADMM-Release and ADMM-Fix do not show any clear trend, the MIQP subproblems

can be solved much faster when the system is divided into more regions. For example,

while the centralized 3,012-bus MIQP took 1898 s to solve, each subproblem in the

300-region case with 3,012 buses could be solved in about 40 ms.

Figure 18 shows the solution times of the 3,012-bus scenarios for the day 1 and

day 2 load profiles shown in Figure 17. The problem for the second day was initialized

with the best solution from the first day. Even though the forecast demand is different

enough to result in a different commitment, providing a high quality binary solution

and dual variables are enough to greatly speed up the search process for the day 2

solution.

The times to discovery and the optimality gaps for each binary-feasible solution

to the 3,012-bus case are shown in Figures 19 and 20 for load profiles of day 1 and

day 2, respectively. Intersection with the horizontal axis indicates that a globally

optimal solution was found (corresponding to optimality gap 0.0%). In the 300-

region case, the global optimum objective was reached in 94 s, so the algorithm

111



Figure 18: Times to find first feasible solution for each regional decomposition of
the 3,012-bus case for days 1 and 2. The day 2 case was warm-started with the best
solution from day 1.

halted. The other cases reached one of two stopping criteria: solution time limit (1

hour) or maximum number of iterations (2000). The 300, 200, 100, and 50-region

decompositions all found many binary solutions before the first feasible solution was

found by the centralized method.

5.1.5 Self Commitment

As discussed in Section 4.1, the DUC formulation presented in this research is fun-

damentally different from a self-commitment framework. A comparison is provided

here to illustrate some differences in approach and results. The model of [171, 170]

was implemented as a representative self-commitment process. The solution process

of the self-commitment method was as follows: an auctioneer announces a set of

hourly energy prices, price-taking generators individually determine hourly commit-

ments and dispatch to maximize profit, generators submit hourly energy offers to the

auctioneer, the auctioneer adjusts the hourly energy prices, and the process repeats
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Figure 19: Feasible solution optimality gaps for 3,012-bus case with day 1 load profile
and different regional decompositions.

Figure 20: Feasible solution optimality gaps for 3,012-bus case with day 2 load profile
and different regional decompositions.
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Table 5: Comparison of R&F and Self-Commitment Optimality Gaps for 3,012-Bus
Case

Number of Regions 10 20 50 100 200 300

Self-Commitment (%) 11.7 12.5 10.8 10.1 10.5 10.5
Release-and-Fix (%) 0.03 0.02 0.07 0.15 0.04 0.24

Table 6: Details of non-uniform prosumer decomposition
Prosumer type No. of prosumers No. of buses No. of Generators
Big 10 100 15
Medium 20 50 8
Small 100 10 0–3

until sufficient generation is acquired to serve the load with minimal prices.

Similar to the findings of [171, 170], self-commitment solutions for the 3,012-bus

case with varying regional decompositions were inefficient compared to DUC with

R&F in terms of total system cost. Because the self-commitment method cannot find

minimal prices that clear the market, excess generation is always present. Heuristics

to match the generation to load following this stage are subject to being trapped in

local optima. From the results in Table 5, the cost of anarchy can be seen to be

around 10% with a self-commitment approach.

5.1.6 Effect of Partitioning Approach

In previous configurations, prosumers had roughly the same number of buses and

generators. To investigate the effect of non-uniform prosumer decompositions, we

considered a special configuration. In the IEEE 3,012 bus case, we assumed three

sizes of prosumers: big, medium and small. For each prosumer type, the numbers of

prosumers, buses and generators are reported in Table 6. There were 130 prosumers

in total. Thus, we denote it by “130 Pro”.

Figure 21 shows optimality gap versus solution time for different configurations of

IEEE 3,012. In this figure, results from non-uniform “130 Pro” are located between

“20 Pro” and “50 Pro” because the size of the big prosumers in “130 Pro” is between
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Figure 21: Optimality gap for R&F with different partitioning.

the size of big (uniform) prosumers in “20 Pro” and “50 Pro”.

5.1.7 Communication Loss

Up to now, we have assumed perfect communication; that is, every packet is trans-

mitted successfully between prosumers. In practical environments, some packets will

be lost. To investigate communication losses on R&F and quality of solutions, we

assumed that with some probability p a message is not delivered. When a prosumer

does not get a message with new angles or residuals, it uses old values from the last

successful iteration. The results for scenarios with p = 0.0%, 0.1%, 1.0%, and 5.0%

for “130 Pro” are depicted in Figure 22.

To check the robustness of the proposed algorithm to communication losses with

small probabilities, Figures 23 and 24 shows the results from 10 random runs of R&F

with p = 0.1%, 1.0%. Figure 25 presents average of 10 runs for p= 0.1 %, 1.0 %.

115



Figure 22: Optimality gap under different scenarios for communication loss.

Figure 23: Optimality gap for 10 experiments with communication loss probability
p = 0.001.
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Figure 24: Optimality gap for 10 experiments with communication loss probability
p = 0.01.

Figure 25: Average optimality gap for experiments with communication loss proba-
bility p = 0.001, 0.01.
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Table 7: Power System Test Cases

Power Number of each generator type Total Capacity
Buses Lines

System 1 2 3 4 5 6 7 8 Gens (MW)

A 19 19 23 25 25 18 8 13 150 30415 3012 3566

B 42 36 12 10 21 14 10 7 152 44107 3374 4068

5.2 Parallel Implementation of R&F with MPI

In this section, we present the results of implementing the complete version of R&F

in a truly parallel computational environment with Message Passing Interface (MPI).

Here, we consider reserve constraints as well as full version of the Lagrangian function

L+
ρ,ν

(
xν ,

¯̄θmν ,
¯̄Fm
ν , ¯̄r

m
ν ,λ

m
ν ,µ

m
ν ,ω

m
ν

)
as noted in (118).

5.2.1 Test Cases

Two power systems, A and B, were used to conduct experiments. Some basic infor-

mation regarding their structures is shown in Table 7. Network topologies for the

systems A and B are adapted from the IEEE 3,012- and 3,375-bus cases, respectively,

available in the MATPOWER software package [208]. Because one of the buses in the

3,375-bus case was not connected to the rest of the network, that bus was removed,

leaving 3,374 buses. Moreover, parallel lines between buses were replaced by their

equivalents.

In the MATPOWER cases, which were originally intended for OPF, most of the

data needed for UC such as minimum up and down times, ramp up and down rates,

and startup costs are not available. Thus, we replaced those generators with the

eight classes of generators used in [38, 134, 119] for UC problems with no network

constraints (see Table 8). In our experiments, quadratic generation costs have been

approximated by piecewise linear costs with five line segments of equal length.

The total of each reserve product q in the system must meet the minimal system

requirement. For this study, the system requirement was equal to the size of the
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Table 8: Generator Data [38]

Gen

Technical Information Cost Coefficients

P P TU/TD RU/RD T InitT cold CNL CLV CQ CHS CCS

(MW)(MW) (h) (MW/h) (h) (h) ($/h) ($/MWh)($/MW2h) ($) ($)

1 455 150 8 225 +8 5 1000 16.19 0.00048 4500 9000

2 455 150 8 225 +8 5 970 17.26 0.00031 500010000

3 130 20 5 50 -5 4 700 16.60 0.00200 550 1100

4 130 20 5 50 -5 4 680 16.50 0.00211 560 1120

5 162 25 6 60 -5 4 450 19.70 0.00398 900 1800

6 80 20 3 60 -3 2 370 22.26 0.00712 170 340

7 85 25 3 60 -3 2 480 27.74 0.00079 260 520

8 55 10 1 135 -1 0 660 25.92 0.00413 30 60

Table 9: Total Demand (% of Total Capacity)

Time 1 2 3 4 5 6 7 8 9 10 11 12

Demand 71% 65% 62% 60% 58% 58% 60% 64% 73% 80% 82% 83%

Time 13 14 15 16 17 18 19 20 21 22 23 24

Demand 82% 80% 79% 79% 83% 91% 90% 88% 85% 84% 79% 74%

largest contingency for the 10-minute contingency reserve and the size of the second

largest contingency for the 30-minute operating reserve. Spinning reserve was required

to be at least half of the 10-minute reserve.

For each power system A and B, there were three test cases. In test cases A1

and B1, we considered 24 hourly periods, where the total system demand at each

hour is determined as given in Table 9. Test cases A2 and B2 have also 24 hourly

periods, but the total system demand is obtained by shifting the demand values in

Table 9 earlier by one hour with demand from hour 1 wrapping around to hour 24

(i.e. hour 1 demand is 65%, hour 2 demand is 62%, and so on). Test cases A3 and B3

have 72 hourly periods (three days), where the demand in each of the three days is

the same as A1 and B1, respectively. Distribution of demand among buses followed

the proportions of the original load data in the MATPOWER files. To evaluate the
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decentralized approach, the systems A and B were partitioned into n regions where

n ∈ {20, 30, 40, 50, 60, 70, 75, 80, 90, 100, 120, 150, 200}.

All test case input files and regional assignments of buses in each partition are

online, available at [60].

5.2.2 Implementation Details

All algorithms were coded in C++ using CPLEX 12.6 through the Concert API.

Experiments were conducted on a UNIX cluster with cores rated between 2.0 and

3.0 GHz and addressable memory limited to 4 GB. The cluster machines are primarily

a variety of Xeon E5 and X5 models. Central UC instances were solved using internal

CPLEX multi-threading with four cores. Test cases A1, and B1 were solved using a

computational time limit of two hours, while test cases A3 and B3 had a time limit

of ten hours. All cases were solved with a 1% relative optimality gap tolerance. In

both centralized and decentralized methods, the barrier method was used to solve

root node problems.

The penalty factor ρ was initialized to a value of 2. Whenever the ADMM-Release

stage did not find a new binary solution, ρ was multiplied by 0.95 to encourage

more exploration in the space of binary variables. Relative primal and dual residual

tolerances εPri and εDual and the relative tolerance εObj between the base objective

value and augmented objective value were set to 0.5% for all cases. R&F switched

from ADMM-Relax to ADMM-Release after reaching all of the εPri, εDual, and εObj

tolerances or the iteration limit of 400.

In ADMM-Release, if there were no changes in binary variables in the last 15

iterations, or an iteration limit of 50 was reached, or the solution satisfied the εPri,

εDual, and εObj tolerances and the binary solution was not previously explored, R&F

switched to ADMM-Fix. In the test cases A1, A2, B1 and B2, the time limit to solve

each subproblem was set to 70, 50, 40, and 30 seconds for the configurations with the
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number of regions set to 20, 30, 40 and 50, respectively. For the other configurations,

the time limit was 20 seconds. For A3 and B3, the above time limits were multiplied

by 2. For each MIQP subproblem, the optimal solution of each iteration was used as

a warm start for the next iteration. When the MIQP subproblem was being solved

for the first time, since there was no warm start, the time limit was multiplied by 3

to find the first feasible integer solution. The optimality gap tolerance was set to 1%

for all MIQP subproblems.

In ADMM-Fix, if there was no decrease in primal residuals for 50 consecutive iter-

ations, that solution was considered an infeasible solution and discarded. Otherwise,

it continued until it satisfied the εPri, εDual, and εObj tolerances or reached 100 itera-

tions. At the end of this phase, if the solution satisfied the tolerances and provided

a better objective value than the best one recorded yet, the new best solution was

recorded. A total iteration limit of 2,000 was used for the whole algorithm.

The message passing interface (MPI) standard was used to develop the distributed

software. Decentralized test cases used n + 1 computational nodes where each node

used a single core. Each region was assigned to one node with the final node being

used as a simple coordinator. The coordinator node kept track of the R&F stage,

checking stopping criteria, and recording the binary solutions. Note that most of the

information internal to each region does not need to pass through the coordinator.

5.2.3 Numerical results

To provide a benchmark for the DUC approach, three centralized UC formulations

were solved for each test case: one without any network constraints, one with network

constraints represented through line sensitivities (GSFs), and one with voltage phase

angles (107). The GSF network model included only line constraints which were

binding or near binding at the optimal solution of the no-network model (98). This

corresponded to 44 lines for the A cases and 39 lines for the B cases.
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Table 10: Case Sizes in Centralized Models

No Network Model GSF Network Model Phase Angle Model

Case # Bin.
Vars.

# Cont.
Vars.

#
Constr.

# Bin.
Vars.

# Cont.
Vars.

#
Constr.

# Bin.
Vars.

# Cont.
Vars.

# Constr.

A1

A2
3,600 28,800 67,375 3,600 29,856 68,431 3,600 101,088 310,807

A3 10,800 86,400 207,199 10,800 89,568 210,367 10,800 303264 937495

B1

B2
3,648 29,184 68,323 3,648 30,120 69,259 3,648 110,160 344,539

B3 10,944 87,552 211,123 10,944 90,360 213,931 10,944 330,480 1,039,771

Table 11: Centralized Solution Information
No Network Model GSF Network Model Phase Angle Model

Case UB
($ 106)

LB
($ 106)

Gap
(%)

UB
($ 106)

LB
($ 106)

Gap
(%)

UB
($ 106)

LB
($ 106)

Gap
(%)

A1 11.298 11.261 0.33 11.314 11.275 0.34 11.316 11.276 0.35

A2 11.216 11.155 0.54 11.201 11.168 0.30 11.650 11.169 4.13

A3 33.577 33.408 0.50 33.605 33.440 0.49 35.771 33.446 6.50

B1 15.490 15.454 0.24 15.536 15.511 0.16 16.179 15.469 4.39

B2 15.496 15.461 0.23 15.544 15.516 0.19 16.020 15.489 3.32

B3 46.524 46.346 0.38 46.627 46.501 0.27 – 46.394 –

Table 10 shows the problem size of each test case under each of the models.

Table 11 shows the best upper and lower bounds discovered with the three models,

and Table 12 presents the computational time required to obtain those results. Some

cases could not be solved to 1% optimality gap under all models. For example, only

the root node relaxation was solved for the three-day case B3. Some of the cases

could be solved under the GSF network model within the time limit, but they did

not reach 1% optimality gap. In such cases, the time t1% is blank in Table 12.

Note that the lower bounds provide some validation for the models. In the model

without network constraints, the lower bounds are the smallest, whereas the lower

bounds under the phase angle formulation are the highest. This is exactly as expected

since binding line constraints drive up the total system cost. Therefore the GSF model

has a higher lower bound than the model without network constraints, and the phase

angle model has an even higher lower bound since all line constraints are included.
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Table 12: Centralized UC Solution Times
No Net. Model GSF Model P. Ang. Model

Case
tRR (s) t1% (s) tRR (s) t1% (s) tRR (s) t1% (s)

A1 3 625 26 648 32 3,975

A2 3 870 34 1,566 26 –

A3 12 6,466 170 26,520 952 –

B1 2 315 31 822 133 –

B2 2 76 29 598 108 –

B3 10 4,161 131 9,068 2,164 –

Table 13: Cases A1 and B1 Decentralized Solutions
Case A1 Case B1

#
Region

#
Iter

tbest

(s)
#

Cycle
Cost

($ 106)
Gap
(%)

#
Iter

tbest

(s)
#

Cycle
Cost

($ 106)
Gap
(%)

20 949 7,179 16.2 11.304 0.25 983 2,677 20.0 15.502 0.15

30 753 4,256 21.8 11.302 0.23 860 1,437 16.2 15.511 0.21

40 796 3,365 24.0 11.300 0.21 874 986 22.8 15.514 0.23

50 583 556 12.2 11.299 0.20 811 665 20.8 15.505 0.17

60 850 905 22.4 11.298 0.20 832 701 23.4 15.510 0.20

70 749 520 17.6 11.301 0.22 950 577 21.6 15.510 0.20

75 704 449 21.0 11.297 0.18 702 323 9.6 15.495 0.10

80 662 389 10.0 11.300 0.21 903 415 25.0 15.500 0.14

90 831 511 13.0 11.297 0.19 927 507 16.8 15.514 0.23

100 646 364 6.4 11.298 0.20 912 521 24.0 15.513 0.22

120 809 483 14.6 11.300 0.21 812 402 16.4 15.511 0.21

150 822 414 20.4 11.294 0.16 790 382 12.6 15.508 0.18

200 775 441 24.0 11.300 0.21 770 378 16.6 15.524 0.29
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Figure 26: Solution time of cases A1 and B1.

We now describe the results of the DUC experiments. Five runs were conducted of

each instance to normalize for occasional performance differences between machines

recruited by the cluster job scheduler, which can alter observed solution times. The

results in Table 13 and Figs. 26-28 are based on averages among five runs for each

instance. Table 13 reflects the results of a parallel implementation of R&F to solve

cases A1 and B1 with the number of regions varying from 20 to 200. In this table, “#

Region” indicates the number of regions (partitions) for each instance. The columns

labeled “# Iter”, “tbest” and “# Cycle” represent the number of ADMM iterations,

clock time in seconds spent to get the best solution, and the number of cycles between

ADMM-Release and ADMM-Fix, respectively. All times reported are averages of ac-

tual wall clock times. This is an important consideration since the cluster is not solely

dedicated to our problems. The “Cost” and “Gap” columns denote the augmented

Lagrangian value and relative optimality gap of the best solution found in R&F, re-

spectively. The optimality gap is based on the best lower bound (LB) obtained from

the centralized UC solutions in Table 11 as Gap = (Cost−LB)/Cost×100. Note that,

if the UC problem cannot be solved centrally and there is no lower bound available

from the central approach, we can use the optimal value at the end of ADMM-Relax

as a weaker lower bound.

As shown in Table 13 for cases A1 and B1 with the number of regions n ≥ 50,

an optimality gap of 0.3% was reached in less that 10 minutes. Between 650 and
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Figure 27: Solution time of cases A2 and B2.

Figure 28: Solution time of cases A3 and B3.

1,000 iterations and 5 to 25 cycles of ADMM-Release and ADMM-Fix were needed

in R&F. Decompositions into small numbers of regions generally did not perform

well. Specifically, the 20 and 30 region instances of case A1 took more than an hour

to reach optimality gaps less than 0.3%, which the 150 region instance achieved in

under 7 minutes. In most of the cases, in the first two cycles of ADMM-Release and

ADMM-Fix, R&F was able to achieve 1% optimality gap. Figs. 26-28 depict wall

clock time up to the point of attaining 1% optimality gap for all cases.

5.2.4 Concluding Remarks

In this work, the UC problem was formulated in a way suitable for the application of

ADMM. The mathematical formulation, addition of new heuristics, and adaptation

of parameters based on empirical observations were all studied, tested, and described.

The contributions of this chapter are as follows:

1. Specification of R&F algorithm parameters and penalty terms providing good
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performance.

2. Practical strategies for implementing R&F.

3. Experimental results demonstrating greatly superior solution time for DUC

compared to centralized UC for large-scale power systems.

4. Demonstration of scalability in terms of system size and number of regions.

The experimental results show that, under a decentralized operations framework,

a realistically-sized UC problem can be solved in reasonable time with each region

sharing only phase angle information at boundary buses. Even in centralized opera-

tions, inter-ISO transactions and even near-real-time operations can benefit from a

fast, scalable DUC methodology. In fact, the data-sharing requirements of such an

application align well with the R&F procedure since no market participant cost data

is directly exchanged. Two large ISOs would best leverage the large-scale test results

by dividing their interior problems into many regions and then exchanging data on

the bordering regions. Because of the poor behavior observed when a small number

of large regions are used (see the 20-region test cases), formulating the problem as

two ISO-sized subproblems would likely be an inefficient strategy.

Besides the enhancements to data privacy and multi-area coordination offered by

R&F to DUC, the computational speed benefit can be exploited by a single ISO with

no change in market or system control architecture. The potential speed increase is

enough to open many possibilities, such as:

• Conducting multiple studies for various scenarios under uncertainty.

• Exploring stochastic or robust UC approaches.

• Extending the time horizon or granularity of UC studies.
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Regarding the use of release-and-fix by ISOs, it should be noted that the procedure

can be used in control centers without any change in the way that generating compa-

nies determine their optimal bids for production. Therefore, as a technique for ISOs

to solve UC problems faster, our method does not pose any concerns for the general

structure of electricity markets. However, as a method for conducting decentralized

UC among the generating companies, load-serving entities, and network operators

without central coordination by an ISO, it would imply an operational structure very

different from today. Although our procedure is effectively a regional decomposition

of the centralized problem, wherein generators with high cost would tend to be com-

mitted after generators with low cost, the role of the independent market monitor

would have to be significantly expanded to mitigate the exercise of market power by

some participants since the generator “bid” information would not leave the region.

To achieve a full security-constrained UC in a decentralized setting, some addi-

tional steps are needed. A method for conducting contingency analysis without global

visibility does not yet exist but is needed even for today’s operations. It remains to

be determined whether a global contingency analysis can be conducted among decen-

tralized regions that captures full N − 1 system security. Joint security assessments

between neighboring systems are an important topic of ongoing research. Further,

the performance of R&F considering AC system constraints should be evaluated. It is

hoped that the small subproblems attainable with the DUC formulation might enable

reformulation with nonlinear voltage constraints.

It is noted that the applications of a decentralized MIP or MIQP solution method-

ology extend beyond UC and even power systems. Such an approach might be used

to coordinate energy scheduling among a campus of buildings where the number of

integer variables, representing states of load operation, may be larger than can practi-

cally be solved by other methods. It might also be used to coordinate energy schedul-

ing among a neighborhood of homes aggregated as a demand response unit without
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concentrating or communicating any data about actual appliance status within the

homes.

The future electricity grid will require decentralized operations and control archi-

tectures for many reasons outlined in Section 4.1, and the R&F algorithm is designed

with such requirements in mind. Given the experimental results obtained so far, it

appears that R&F has the potential to solve large-scale energy scheduling problems

with a highly distributed structure.

5.3 Exact DUC

In this section, we present numerical results testing the exact decentralized MIP

Algorithms 6 and 7 on small UC instances. We used 6 small UC instances with 3,

4 and 5 generators for T=12 and 24 hours of planning. Table 14 presents details

of these instances. In Table 14, “# Gen” and “Gen. types” denote the number

and types of generator in each instance (see Table 8 for details of each generator

type). The total system demand at each hour is determined as given in Table 9.

The labels “# Bin. Vars.”, “# Cont. Vars.”, and “# Constr.” denote the number

of binary variables, continuous variables, and constraints, respectively, for each test

case. Moreover, the columns zLP, zIP, “Duality Gap”, and tC represent optimal

objective value of LP relaxation and MIP formulation for UC, relative duality gap

in percentage (between zLP and zIP), and the solution time (in seconds) in central

approach, respectively. An estimation for Lagrangian dual, which is obtained as the

best lower bound in 100 iterations of the dual decomposition method, is denoted by

z̃LD. Note that finding an optimal vector of dual variables in the dual decomposition

algorithm is not guaranteed. Then, z̃LD is not necessarily equal or close to the value

of Lagrangian dual.

All algorithms were coded in C++ using CPLEX 12.6 through the Concert API.

Central UC instances were solved using internal CPLEX multi-threading with four
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Table 14: Test case details for exact algorithms

# Gen Gen.
types

T # Bin.
Vars.

#
Cont.
Vars.

# Constr. zLP zIP Duality
Gap
(%)

tC
(Sec)

z̃LD

3 6,7,8
24 216 144 891 139896 146403 4.44 0.03 139933
12 108 72 435 68212 70945 3.85 0.09 68226

4 3,5,6,8
24 288 192 1244 207068 212771 2.68 0.14 207100
12 144 96 596 101676 104381 2.59 0.09 101686

5 1,5,6,7,8
24 360 240 1514 354684 359197 1.26 0.22 354705
12 180 120 722 171099 172994 1.10 0.11 171110

Table 15: Summary of the results for the exact Algorithm 7

# Gen T t0 t1 t∗ tall iter1 iter∗ iterall # Feas. # Cut

3
24 3.85 4.02 4.67 4.69 1 5 5 12 16
12 2.16 2.23 2.59 3 1 4 7 12 19

4
24 4.54 4.7 7.4 193.1 1 11 118 90 530
12 2.23 2.31 5.36 34.9 1 16 61 38 252

5
24 5.07 5.29 97.08 1621.72 1 42 190∗ 303 1004
12 2.18 2.29 3.01 715.88 1 5 190∗ 290 962

cores. The step sizes ρµ, ρλ and ργ were set to be 0.01, 10 and 50, respectively. The

algorithms start with running ADMM to solve the LP relaxations of the UC instances

to initialize the vector of dual variables µ and the lower bound lb. Then, they do 100

iterations of the dual decomposition algorithm to improve the lower bound. Then,

the main body of Algorithms 6 and 7 starts with 200 iterations limit where the first 10

iterations are spent on updating dual vectors λ and γ without adding cuts. In each

iteration, the lower bounding phase does 10 sub-iterations. Then, new candidate

binary vectors are explored by the upper bounding procedure and cutoff from the

feasible regions of all blocks.

Summary of the results for exact Algorithms 6 and 7 are presented in Tables 15

and 16, respectively. In Tables 15 and 16, t0, t1, t∗, and tall are the estimated parallel

times spent to initialize the algorithm, to find the first and best feasible solution, and

to terminate the algorithm, respectively. The exact algorithms were initialized by
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Table 16: Summary of the results for the exact Algorithm 7
# Gen T t0 t1 t∗ tall iter1 iter∗ iterall # Feas. # Cut

3
24 4.07 4.39 4.39 13.47 2 2 45 4 9
12 2.35 2.49 2.49 3.97 1 1 11 4 7

4
24 4.56 4.81 4.81 6.81 2 2 10 12 23
12 2.07 2.17 2.17 2.87 1 1 6 6 11

5
24 4.45 5.05 5.05 601.12 4 4 190∗ 84 373
12 1.98 2.19 2.19 24.06 3 3 38 54 122

running ADMM for the LP relaxation and 100 iterations of the dual decomposition.

“iter1”, “iter∗”, “iterall” are the corresponding number of iteration to t1, t∗, and tall,

respectively. “# Feas.”, “# Cut” are the number of feasible explored solutions and

cuts (all explored binary solution), respectively.

For the 5 generator cases with T=24 and 12, Algorithm 6 terminated with % 1.078

and %0.911 optimality gaps after 190 iterations. For the 5 generator case with T=24,

Algorithm 7 terminated with %0.671 optimality gap after 190 iterations. All other

cases were solved to optimality. Based on the results in Tables 15 and 16, for most

cases, Algorithm 7 outperforms Algorithm 6, in the sense that it requires less solution

time (tall), total number of iterations (iterall) and cuts. It is worth mentioning that

these exact algorithms are proof-of-concept implementations to verify possibility of

obtaining the global optimal solutions of MIPs in a decentralized manner. Hence,

the focus is not on computational times or number of iterations. With the current

implementation and numerical results, the main advantage of Algorithms 6 and 7 is

that they preserve data privacy for different blocks. Based on the results in Tables

14-16, these exact decentralized algorithms take much more time than the central

approach. In particular, the solution times for Algorithms 6 and 7 are 3 seconds to

30 minutes while the central problems are solved in less than a second.
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Chapter VI

CONCLUSIONS

In this dissertation, we investigated theory and application of decentralized opti-

mization for loosely coupled mixed integer programming (MIP) problems. We de-

veloped decentralized optimization approaches based on Lagrangian and augmented

Lagrangian duals for MIPs. The contributions of this dissertation are as follows:

• Proof of exactness of augmented Lagrangian dual (ALD) for MIPs;

• Decentralized exact and heuristic algorithms for MIPs;

• Application to decentralized unit commitment (UC).

6.1 Proof of Exactness of ALD for MIPs

For loosely coupled optimization problems, one possible decentralized approach is to

relax the coupling constraints and solve the relaxed problem in parallel by decompos-

ing it into subproblems. Unlike convex optimization problems, in general for MIP, a

non-zero duality gap may exist when coupling constraints are relaxed by using classi-

cal Lagrangian or even augmented Lagrangian. We provided a primal characterization

for ALD and proved that ALD is able to asymptotically achieve zero duality gap for

MIPs, when the penalty coefficient is allowed to go to infinity. We also showed that,

under some mild conditions, ALD using any norm as the augmenting function is able

to close the duality gap of the MIP with a finite penalty coefficient.

One possible direction for future research is the application of ALD (without de-

composition) for solving MIP problems. Iterative algorithms can be developed to

optimally solve ALDs (with specific augmenting functions) for MIPs in a central

framework. These algorithms may have computational advantages for some certain
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classes of MIPs. For example, for a linear 0-1 problem with loosely coupled blocks

of constraints, if the augmenting function is submodular, the augmented Lagrangian

will be submodular, which is known to be easy to minimize. Developing theories and

algorithms to solve ALD for MIPs in a distributed way is another future research di-

rection with utmost practical importance. Even approximate decomposable methods

in this context may produce better bounds than classical Lagrangian dual. Finally,

investigating ALD for (convex) mixed integer nonlinear programs (MINLPs) can be

pursued in future. Note that discreteness and nonlinearity in feasible MINLPs cause

challenges such as lack of closedness and optimal solutions.

6.2 Decentralized Exact and Heuristic Algorithms for MIPs

Although ALD is able to close the duality gap, nonlinear objective functions in ALD

destroy the decomposability which exists in classical Lagrangian dual for a MIP. A

key challenge is that, because of the non-convex nature of MIPs, classical distributed

and decentralized optimization approaches such as alternating direction method of

multipliers (ADMM) cannot be applied directly to find their optimal solutions. We

proposed three exact and one heuristic decentralized algorithms which are based on

extensions of ADMM and dual decomposition techniques. The proposed heuristic

method extends ADMM by periodically fixing and releasing binary variables to mit-

igate oscillations and traps in local optimality that result from the nonconvexity of

MIPs. Our exact algorithms are based on adding primal cuts and restricting the

Lagrangian relaxation of the original MIP problem. The exact algorithms evaluate

the cost of the binary solutions as candidate partial solutions and refine them to get a

primal feasible solution to the overall problem. To improve the lower bound and pre-

vent cycling, the explored binary solutions are then cut-off from future consideration

in all subproblems.
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A possible direction for future research is to blend the speed of the proposed heuris-

tic and precision of the exact decentralized algorithms. Another topic for future work

is investigating stronger primal cuts to speed up the proposed exact methods. More-

over, the proposed methods can be improved for specific applications by exploiting

the problem structures.

6.3 Application to Decentralized Unit Commitment

In the prosumer-based architecture for the future power grid, decentralized control

and operation of the grid can play a significant role. Computational speed gain, data

privacy, scalability, distributed operational databases, and multi-area coordination

are the key motivations to use decentralized UC in power systems. First, we pre-

sented mathematical formulations for the UC problem, which are appropriate for the

proposed decentralized algorithms. Privacy concerns of the participants in UC are

taken into account in these formulations. Next, we proposed a solution approach for

decentralized UC, which exploits the structure of UC in our decentralized algorithms.

Finally, we presented extensive computational experiments for solving UC instances

with different decentralized approaches. We demonstrated remarkable performance

of parallel implementation of the heuristic decentralized algorithm to solve large scale

UC instances on power systems of more than 3,000 buses. We also showed that for

small UC instances, the proposed exact algorithms are able to find global optimal

solutions.

In the context of UC, a possible future topic is application of the proposed de-

centralized algorithms for other variants of UC which have side constraints. For

example, these algorithms can be applied and customized for emission-constrained,

fuel-constrained, security-constrained, or stochastic UC problems to solve them in a

faster and decentralized fashion.
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Appendix A

NOTATION

A.1 Abbreviations

AC Alternating Current

ALD Augmented Lagrangian Dual

ALR Augmented Lagrangian Relaxation

ADMM Alternating Direction Method of Multipliers

CUC Central Unit Commitment

DC Direct Current

DUC Decentralized Unit Commitment

GENCo (Power) Generating Company

GSF Generation Shift Factor

ISO Independent System Operator

LD Lagrangian Dual

LP Linear Programming

LR Lagrangian Relaxation

MIP Mixed Integer (Linear) Programming

MIQP Mixed Integer Quadratic Programming

MISO Midcontinent Independent System Operator

NSR Nonspinning Reserve

OPF Optimal Power Flow

OR Operating Reserve

PM Pennsylvania-New Jersey-Maryland Interconnection

PTDF Power Transfer Distribution Factor
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QP Quadratic Programming

R&F Release and Fix

RHS Right hand side

SR Spinning Reserve

SCUC Security Constrained Unit Commitment

UC Unit Commitment

A.2 Nomenclature for Decentralized MIP Algorithms in
Chapter 3

A.2.1 Input Data and Other Parameters

α Vector of primal residuals

β Vector of dual residuals

Aν Matrix of coefficients for xν in the coupling constraints

A Matrix of all Aν

b RSH vector of coupling constraints

CR(.) Continuous relaxation of a discrete set

cν Vector of objective coefficients for xν

Eν , F ν , gν Matrices of coefficients for uν , yν , and RHS vector, respectively, in

description of Yν(uν)

Lν(·) Lagrangian function for block ν

L+
ρ (·) Augmented Lagrangian function

lb Lower bound for zIP

m Number of coupling constraints

n Number of decision variables for all blocks

n1 Number of binary decision variables for all blocks

n2 Number of continuous decision variables for all blocks

nν Number of decision variables for block ν
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n1
ν Number of binary decision variables for block ν

n2
ν Number of continuous decision variables for block ν

P Set of blocks, running from 1 to N

Uν Feasible set of uν

U Cartesian product of U1, · · · , UN

ub Upper bound for zIP

Xν Feasible set of xν

X Cartesian product of X1, · · · , XN

x∗ Optimal solution of MIP (44)

Yν(uν) Feasible set of yν , for a given uν

Y (u) Cartesian product of Y1(u1), · · · , YN(uN)

zLD Optimal value of Lagrangian dual for MIP (44)

zIP Optimal value of MIP (44)

zLP Optimal value of LP relaxation MIP (44)

zLR(µ) Optimal value of Lagrangian relaxation for MIP (44), for a given µ

z(û) Optimal value of MIP (44) when binary variables are fixed to be û

µ Vector of dual multipliers for the coupling constraints

ρ penalty coefficient in ADMM

ρkµ Step size for updating the dual vector µ in iteration k

ρkλ Step size for updating the dual vector λ in iteration k

ρkγ Step size for updating the dual vector γ in iteration k

A.2.2 Decision variables

uν Vector of binary decision variables for block ν

u Vector of all uν

xν Vector of decision variables for block ν

x Vector of xν
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yν Vector of continuous decision variables for block ν

y Vector of all yν

A.3 Nomenclature for UC Problems

A.3.1 Sets and Indices

ν ∈ P Regions, running from 1 to n

ν ′ ∈ ∆i Set of regions (including region ν) connected to bus i ∈ NBB
ν

g ∈ G Generating units, running from 1 to G

g ∈ Gi Generating units located in bus i

i ∈ N Set of buses, running from 1 to N

i ∈ Nν Set of all buses in region ν

i ∈ NBB
ν Set of boundary buses in region ν

i ∈ N FB
ν Set of foreign buses not in region ν connected to some bus in region

ν

i ∈ N IB
ν Set of internal buses in region ν

ij ∈ E Transmission lines, running from 1 to E

ij ∈ E ′ Set of monitored transmission lines

j ∈ δi Set of all buses connected to bus i

t ∈ T Hourly periods, running from 1 to T hours

xν ∈ Xν Set of all feasible solutions for region ν

A.3.2 Input Data and Other Parameters

αm Vector of primal residuals at iteration m

βm Vector of dual residuals at iteration m

γij,k Power flow sensitivity of line ij with respect to injection transfer

from bus k to slack bus

εDual Dual tolerance
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εPri Primal tolerance

εObj Relative objective function tolerance

λmν,i,t Value of dual variable corresponding to deviation from ¯̄θmν,i,t, itera-

tion m

µmν,i,t Value of dual variable corresponding to deviation from ¯̄Fm
ν,ij,t, iter-

ation m

ρ Penalty factor

θ̃mν,i,t Optimal value of θ̃ν,i,t at iteration m

¯̄θmν,i,t Average value for θ̃ν,i,t at iteration m

ωq,mνt Value of dual variable corresponding to deviation from r̃q,mνt

agk Intercept of kth line segment for energy cost of unit g ($)

bgk Slope of kth line segment for energy cost of unit g ($/MWh)

Bij Element ij of DC power flow Jacobian

Cν(.) Total cost function of region ν

CCS
g Cold startup cost of unit g ($)

CHS
g Hot startup cost of unit g ($)

CLV
g Linear energy cost of unit g ($/MWh)

CNL
g No-load cost of unit g ($/h)

CQ
g Quadratic energy cost of unit g ($/MW2h)

CSD
g Shutdown cost of unit g ($)

CR(.) Continuous relaxation of a discrete set

di,t Expected load at bus i, time t

Dt Total expected load at time t

F ij Active power flow limit of branch ij

F̃m
ν,ij,t Optimal value of F̃ν,ij,t at iteration m

¯̄Fm
ν,ij,t Average value for F̃ν,ij,t at iteration m

Lρ,ν(.) Augmented Lagrangian of region ν
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P g Maximum power output of unit g (MW)

P g Minimum power output of unit g (MW)

pInit
g Initial power output of unit g above the minimum output P g (MW)

r̂qν Reserve requirement for region ν, product q (MW)

r̂qsys System reserve requirement for product q (MW)

RDg Ramp-down rate of unit g (MW/h)

RUg Ramp-up rate of unit g (MW/h)

SDg Shutdown capability of unit g (MW)

SUg Startup capability of unit g (MW)

TCS
g Cold startup time of unit g (h)

T Init
g Number of hours unit g has been online (+) or offline (-) prior to

the first period of the commitment study

TDg Minimum downtime of unit g (h)

TD0
g Initial minimum downtime of unit g (h)

TUg Minimum uptime of unit g (h)

TU0
g Initial minimum uptime of unit g (h)

tRR Computational time spent solving the root relaxation node for cen-

tralized cases (s)

t1% Computational time spent finding a solution with 1% relative opti-

mality gap (s)

tbest Computational time spent finding the best binary-feasible solution

(s)

A.3.3 Decision variables

θi,t Voltage phase angle at bus i, time t

θ̃ν,i,t Perception by region ν of voltage phase angle at bus i ∈

NBB
ν

⋃
N FB
ν , time t
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c̃gt Approximated quadratic cost of unit g at hour t ($)

Fij,t Power flow from bus i to bus j at time t

F̃ν,ij,t Perception by region ν of power flow from bus i ∈ NBB
ν to bus

j ∈ N FB
ν at time t

P net
i,t Total real power injection from generators and loads at bus i, time

t

pgt Power output of unit g at hour t above the minimum output P g

(MW)

rqgt Amount of reserve product q allocated to unit g at time t (MW)

ugt Commitment status of unit g at hour t, equal to 1 if the unit is

online and 0 if offline

vgt Startup status of unit g, which takes the value of 1 if the unit starts

up in hour t and 0 otherwise

vHS
gt Hot startup status of unit g, which takes the value of 1 in the hour

t if the unit starts up and shuts down in the interval [t − TCS
g −

TDg, t− 1]

wgt Shutdown status of unit g, which takes the value of 1 if the unit

shuts down in hour t and 0 otherwise

xν Vector of all decision variables in region ν, including variables ugt,

vgt, v
HS
gt , wgt, and pgt of generators g ∈ Gν , variables θi,t(.) for

internal buses i ∈ N IB
ν , and θ̃ν,i,t of all buses i ∈ NBB

ν

⋃
N FB
ν , for

all t ∈ T
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Appendix B

SOME DEFINITIONS

Definition B.1. (Lower limits and lower semicontinuity, [148]). The lower limit of

a function f : Rn → R at x is the value in R defined by

lim inf
x→x

f(x) := lim
δ↓0

[
inf

x∈B(x,δ)
f(x)

]
= sup

δ↓0

[
inf

x∈B(x,δ)
f(x)

]
. (122)

The function f : Rn → R is lower semicontinuous at x if lim inf
x→x

f(x) ≥ f(x) or

equivalently lim inf
x→x

f(x) = f(x).

Lower semicontinuity of f on Rn is equal to the closedness of epigraph of f in

Rn × R.

Definition B.2. (Dualizing parameterization function, [87]). Consider the primal

optimization problem inf
x∈Rn

φ(x), where φ : Rn → R is an extended real-valued func-

tion. A function f : Rn×Rm → R is said to be a dualizing parameterization function

for φ if φ(x) = f(x,0), ∀x ∈ Rn.

Definition B.3. (Level boundedness, [148]). Let X ⊂ Rn be a closed subset and

f : Rn → R is an extended real-valued function. The function f is said to be level

bounded on X if, for any α ∈ R, the set {x ∈ X : f(x) ≤ α} is bounded.

Definition B.4. (Generalized augmenting function, [87]). A function σ : Rm →

R+ ∪ {+∞} is said to be a generalized augmenting function if it is proper, lower

semicontinuous, level-bounded on Rm, arg min
y
σ(y) = {0}, and σ(0) = 0.

Definition B.5. (Almost peak at zero, Definition 2.2 in [149]). Let U be a certain

set. A family (µu)u∈U of continuous functions µ defined on a normed space Z is called

an almost peak at zero one if µu(0) = 0 for all u ∈ U , and for each δ > 0 and ε > 0

there exists u ∈ U , ε′ ∈ (0, ε) and r > 0 such that
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i) µu(z) ≤ ε′/r if ‖z‖ < δ;

ii) µu(z) ≤ (ε′ − 1)/r if ‖z‖ ≥ δ;

Definition B.6. (Peak at zero, Definition 2.3 in [149]).

1. A family (µu)u∈U of continuous functions µ defined on a normed space Z is

called a peak at zero if

i) µu(z) ≤ 0 = µu(0) for all u ∈ U and z ∈ Z;

ii) for each δ > 0 there exists u ∈ U such that sup
‖z‖≥δ

µu(z) < 0.

2. A continuous functions µ defined on Z is called a peak at zero if

i) µ(z) < 0 = µ(0) for all z 6= 0;

ii) sup
‖z‖≥δ

µ(z) < 0 for all δ > 0.

Definition B.7. (Weak peak at zero, Assumption 2 in [125]). A function σ satisfies

a weak peak at zero property if:

a) σ(u) ≥ 0, for all u;

b) For any given sequence {uk} ⊂ Rm, if σ(uk)→ 0, then u+
k → 0.

Note that the above property (b) is equivalent to the following condition:

inf
{u|dist(u,Rm− )≥δ}

σ(u) > 0, ∀δ > 0.

Definition B.8. (Generalized peak at zero, [188]). Consider a continuous, not iden-

tically equal to 0 and nondecreasing function e : R → R with e(0) = 0. The variable

substitution α(u) for u is defined as

α(u) := (e(u1), · · · , e(um)).

U(r) Denotes the effective domain of the nonlinear augmenting penalty function with

respect to the dual variable u. Consider the nonlinear augmenting penalty function
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ρ : U(r)× V × R++ → R. ρ satisfies a general peak at zero condition if ∀ε > 0, and

(v, r̄) ∈ V × R++,

inf{ρ(u,v, r)− ρ(u,v, r̄)|u ∈ U(r), ‖α(u)‖ ≥ ε} > 0,∀r > r̄.

Definition B.9. (Coercivity properties, Definition 3.25 in [148]). A function f :

Rn → R is level-coercive if it is bounded below on bounded sets and satisfies

lim inf
‖x‖→∞

f(x)

‖x‖
> 0 (123)

whereas it is coercive if it is bounded below on bounded sets and

lim inf
‖x‖→∞

f(x)

‖x‖
=∞ (124)

For any proper, lower semicontinuous function f on Rn, level coercivity implies

level boundedness. When f is convex the two properties are equivalent [148].

Definition B.10. (Abstract convexity, Definition 2.1 in [149]). Let Z be a set and

H be a set of finite functions defined on Z. For two functions f and h defined on Z,

the notation h ≤ f means that h(z) ≤ f(z) for all z ∈ Z. Let f : Z → R.

1. The set supp(f,H) = {h ∈ H : h ≤ f} is called the support set of f .

2. The function coHf : Z → R, defined by coHf(z) = sup{h(z) : h ∈ supp(f,H)},

z ∈ Z, is called the H-convex hull of f .

3. f is called abstract convex with respect to H, or H-convex if f(z) = coHf(z)

for all z ∈ Z.

Classical convexity is equivalent to abstract convexity with respect to the set of

continuous affine functions [32].

Definition B.11. (Banach space, [14]). A Banach space is a vector space X over the

field real or complex numbers, which is equipped with a norm and which is complete

with respect to that norm.

143



REFERENCES

[1] Abe, R., Taoka, H., and McQuilkin, D., “Digital grid: Communicative
electrical grids of the future,” IEEE Transactions on Smart Grid, vol. 2, no. 2,
pp. 399–410, 2011.

[2] Afkousi-Paqaleh, M., Rashidinejad, M., and Pourakbari-Kasmaei,
M., “An implementation of harmony search algorithm to unit commitment
problem,” Electrical Engineering, vol. 92, no. 6, pp. 215–225, 2010.

[3] Ahmed, S., “A scenario decomposition algorithm for 0–1 stochastic programs,”
Operations Research Letters, vol. 41, no. 6, pp. 565–569, 2013.

[4] Aminifar, F., Fotuhi-Firuzabad, M., and Shahidehpour, M., “Unit
commitment with probabilistic spinning reserve and interruptible load consid-
erations,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 388–397,
2009.

[5] Amjady, N. and Ansari, M. R., “Hydrothermal unit commitment with AC
constraints by a new solution method based on benders decomposition,” Energy
Conversion and Management, vol. 65, no. 0, pp. 57 – 65, 2013.

[6] Amjady, N. and Nasiri-Rad, H., “Security constrained unit commitment
by a new adaptive hybrid stochastic search technique,” Energy Conversion and
Management, vol. 52, no. 2, pp. 1097–1106, 2011.

[7] Andrianesis, P., Liberopoulos, G., Biskas, P., and Bakirtzis, A.,
“Medium-term unit commitment in a pool market,” in Energy Market (EEM),
2011 8th International Conference on the European, pp. 461–466, May 2011.
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Decomposition techniques in mathematical programming: engineering and sci-
ence applications. Springer Berlin, 2006.

[48] Constantinescu, E., Zavala, V., Rocklin, M., Lee, S., and Anitescu,
M., “Unit commitment with wind power generation: integrating wind forecast
uncertainty and stochastic programming,” tech. rep., Argonne National Labo-
ratory (ANL), 2009.

147



[49] Constantinescu, E. M., Zavala, V. M., Rocklin, M., Lee, S., and
Anitescu, M., “A computational framework for uncertainty quantification
and stochastic optimization in unit commitment with wind power generation,”
IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 431–441, 2011.

[50] Correia, P., “Decentralised unit commitment in a market structure: problem
formulation and solution advancement,” IEE Proceedings-Generation, Trans-
mission and Distribution, vol. 153, no. 1, pp. 121–126, 2006.

[51] Daneshi, H., Choobbari, A. L., Shahidehpour, M., and Li, Z., “Mixed
integer programming method to solve security constrained unit commitment
with restricted operating zone limits,” in Electro/Information Technology, 2008.
EIT 2008. IEEE International Conference on, pp. 187–192, IEEE, 2008.

[52] Dantzig, G. B. and Wolfe, P., “Decomposition principle for linear pro-
grams,” Operations research, vol. 8, no. 1, pp. 101–111, 1960.

[53] Dantzig, G. B., Linear programming and extensions. RAND Corporation,
1963.

[54] Dasgupta, D. and McGregor, D. R., “Thermal unit commitment using ge-
netic algorithms,” IEE Proceedings-Generation, Transmission and Distribution,
vol. 141, no. 5, pp. 459–465, 1994.
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