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CONTRACT FUNDS STATUS REPORT (DD FORM 1586) 
CONTRACT NUMBER F30602-88-D-0025 

QUARTER: MAY-JUN '88 

CURRENT QUARTER FUNDING 
	

$0.00 

CURRENT QUARTER EXPENDITURES $0.00 

CONTRACT CEILING 
FUNDING TO DATE 

* PENDING COMMITMENTS 

$4,200,000.00 
$0.00 

$766,000.00 

AVAILABLE FUNDING 

FUNDING TO DATE 
YTD EXPENDITURES 

$3,434,000.00 

$0.00 
$0.00 

OUTSTANDING EXPENDITURES $0.00 

* C-8-2120 
C-8-2129 
E-8-7066 
E-8-7124 
E-8-7125 
E-8-7126 
A-8-1631 
B-8-3617 
B-8-3618 
C-8-2492 
A-8-1203 

WESTINGHOUSE/BEAUDET 
RENSSELAER/DAS 
UNIV OF PENN/STEINBERG 
BOSTON COLLEGE/McFADDEN 
BRANDEIS UNIV/HENCHMAN 
PENN STATE/CASTLEMAN 
UNIV OF PENN/STEINBERG 
GA WASHINGTON UNIV/MELTZER 
GA WASHINGTON UNIV/BERKOVICH 
GA TECH/SMITH 
GA TECH/HUGHES 

$56,000.00 
$100,000.00 
$100,000.00 
$35,000.00 
$23,000.00 
$22,000.00 

$100,000.00 
$100,000.00 
$100,000.00 
$50,000.00 
$80,000.00 

TOTAL PENDING 	 $766,000.00 



CONTRACT FUNDS STATUS REPORT (DD FORM 1586) 
CONTRACT NUMBER F30602-88-D-0025 

QUARTER: JUL-SEPT '88 

$698,034.00 CURRENT QUARTER FUNDING 

	

DO # 0001 	$56,000 

	

0002 	$95,141 

	

0003 	$78,854 

	

0004 	$230,000 

	

0005 	$45,561 

	

0006 	$25,000 

	

0007 	$20,000 

	

0008 	$98,374 

	

0009 	$29,403 

	

0010 	$19,701 

$698,034 

CURRENT QUARTER EXPENDITURES 

CONTRACT CEILING 
FUNDING TO DATE 

* PENDING COMMITMENTS 

AVAILABLE FUNDING 

FUNDING TO DATE 
YTD EXPENDITURES 

OUTSTANDING EXPENDITURES 

$0.00 

$4,200,000.00 
- $698,034.00 
- $426,563.00 

$3,075,403.00 

$698,034.00 
$0.00 

$698,034.00 

* DO # 0001 
0002 
0003 
0004 

C-8-2400 
C-8-2402 

INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
STATE UNIV OF NY/FAM 
RENSSELAER/SAULNER 

$90,729.00 
$66,680.00 
$54,154.00 
$20,000.00 
$95,000.00 
$100,000.00 

TOTAL PENDING 	 $426,563.00 



CONTRACT FUNDS STATUS REPORT (DD FORM 1586) 
CONTRACT NUMBER F30602-88-D-0025 

QUARTER: OCT-DEC '88 

CURRENT QUARTER FUNDING 

	

DO # 0004 	$66,680 

	

0006 	$54,154 

$120,834 

CURRENT QUARTER EXPENDITURES 

CONTRACT CEILING 
FUNDING TO DATE 

* PENDING COMMITMENTS 

AVAILABLE FUNDING 

FUNDING TO DATE 
YTD EXPENDITURES 

OUTSTANDING EXPENDITURES 

$120,834.00 

$28,740.82 

$4,200,000.00 
$818,868.00 
$784,729.00 

$2,596,403.00 

$818,868.00 
$28,740.82 

$790,127.18 

* DO # 0001 
0007 

C-8-2400 
C-8-2402 
B-9-3592 
N-9-5514 
C-9-2015 
A-9-1120 
E-9-7057 
E-9-7093 
S-9-7552 
C-9-2404 

INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
STATE UNIV OF NY/FAM 
RENSSELAER/SAULNER 
UNIV OF CA/DAVIS/LEVITT 
SOHAR INC./HECHT 
NCS/OINEAL 
HITEC, INC./KAZAKOS 
UNIV OF TX/ARLINGTON/FUNG 
MONTANA STATE/JOHNSON 
ALFRED UNIV/SYNDER 
STANFORD UNIV/WIDROW 

$90,729.00 
$20,000.00 
$95,000.00 

$100,000.00 
$60,000.00 
$50,000.00 

$100,000.00 
$75,000.00 
$40,000.00 
$34,000.00 
$20,000.00 

$100,000.00 

TOTAL PENDING 	 $784,729.00 



CONTRACT FUNDS STATUS REPORT (DD FORM 1586) 
CONTRACT NUMBER F30602-88-D-0025 

QUARTER: JAN-MAR '89 

CURRENT QUARTER FUNDING 

	

DO # 0001 	$90,729 

	

0011 	$75,000 

	

0012 	$75,000 

	

0013 	$59,989 

	

0014 	$49,989 

	

0015 	$70,000 

	

0016 	$43,750 

	

0017 	$30,000 

	

0018 	$22,000 

	

0019 	$38,000 

	

0020 	$20,000 

$574,457 

CURRENT QUARTER EXPENDITURES 

CONTRACT CEILING 
FUNDING TO DATE 

* PENDING COMMITMENTS 

AVAILABLE FUNDING  

$574,457.00 

$86,324.15 

$4,200,000.00 
- $1,393,325.00 
- $594,651.00 

$2,212,024.00 

FUNDING TO DATE 
YTD EXPENDITURES 

 

$1,393,325.00 
- $115,064.97 

   

OUTSTANDING EXPENDITURES 
	

$1,278,260.03 

* DO # 0007 
0011 
0012 
0015 
0016 
0017 
0018 
0019 

C-8-2404 
N-9-5732 
A-9-1476 
E-9-7110 
5-9-7559 
B-9-3621 
N-9-5308 
E-9-7119 

INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
STANFORD UNIV/WIDROW 
GRIFFIN 
BOWDOIN COLLEGE/CHONACKY 
UNIV OF LOWELL/SALES 
UNIV OF MICHIGAN/ROBINSON 
SRI/LUNT 
KAMAN SCIENCES 
DARTMOUTH COLLEGE/CRANE 

$20,000.00 
$19,568.00 
$24,700.00 
$29,783.00 
$31,250.00 
$10,000.00 
$12,000.00 
$12,000.00 

$100,000.00 
$25,000.00 
$20,350.00 
$50,000.00 
$20,000.00 
$20,000.00 
$100,000.00 
$100,000.00 

TOTAL PENDING 	 $594,651.00 



CONTRACT FUNDS STATUS REPORT (DD FORM 1586) 
CONTRACT NUMBER F30602-88-D-0025 

QUARTER: APR-JUN '89 

CURRENT QUARTER FUNDING 

	

DO # 0021 	$25,000 

	

0022 	$45,000 

	

0023 	$20,350 

	

0024 	$50,000 

	

0025 	$20,000 

  

$160,350.00 

   

 

$160,350 

   

CURRENT QUARTER EXPENDITURES 

 

$318,963.82 

CONTRACT CEILING 
FUNDING TO DATE 

* PENDING COMMITMENTS 

 

$4,200,000.00 
- $1,553,675.00 
- $718,994.00 

AVAILABLE FUNDING 

  

$1,927,331.00 

FUNDING TO DATE 
YTD EXPENDITURES 

$1,553,675.00 
- $434,028.79 

   

OUTSTANDING EXPENDITURES 
	

$1,119,646.21 

* DO # 0007 
0011 
0012 
0015 
0016 
0017 
0018 
0019 
0022 

B-9-3621 
N-9-5308 
E-9-7119 
N-9-5740 
N-9-5317 
S-9-7625 
N-9-5314 
N-9-5315 

INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
INCREMENTAL FUNDING 
SRI/LUNT 
KAMAN SCIENCES 
DARTMOUTH COLLEGE/CRANE 
CHRISTIANSON 
UNIV OF CO/NORGARD 
UNIV OF CA/DAVIS/KOWELL 
KAMAN SCIENCES 
KAMAN SCIENCES 

$20,000.00 
$19,568.00 
$24,700.00 
$29,783.00 
$31,250.00 
$10,000.00 
$12,000.00 
$12,000.00 
$54,693.00 
$20,000.00 

$100,000.00 
$100,000.00 
$15,000.00 
$50,000.00 
$20,000.00 

$100,000.00 
$100,000.00 

TOTAL PENDING 	 $718,994.00 



CONTRACT FUNDS STATUS REPORT (DD FORM 1586) 
CONTRACT NUMBER F30602-88-D-0025 

CURRENT QUARTER 
DO # 0017 

0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 

QUARTER: 

FUNDING 
$10,000 
$15,000 
$20,000 
$50,000 
$40,000 
$30,000 
$20,000 
$66,000 
$70,000 
$85,000 
$70,000 

$476,000 

JUL-SEP '89 

$476,000.00 

CURRENT QUARTER EXPENDITURES $415,422.69 

CONTRACT CEILING $4,200,000.00 
FUNDING TO DATE - 	$2,029,675.00 

* PENDING COMMITMENTS $253,994.00 

AVAILABLE FUNDING $1,916,331.00 

FUNDING TO DATE $2,029,675.00 
YTD EXPENDITURES $849,451.48 

OUTSTANDING EXPENDITURES $1,180,223.52 

* DO # 0007 	INCREMENTAL FUNDING $20,000.00 
0011 	INCREMENTAL FUNDING $19,568.00 
0012 	INCREMENTAL FUNDING $24,700.00 
0015 	INCREMENTAL FUNDING $29,783.00 
0016 	INCREMENTAL FUNDING $31,250.00 
0018 	INCREMENTAL FUNDING $12,000.00 
0019 	INCREMENTAL FUNDING $12,000.00 
0022 	INCREMENTAL FUNDING $54,693.00 

N-0-5703 	UNIV OF SOUTHERN FLA/WILSON $50,000.00 

TOTAL PENDING $253,994.00 



* 

CONTRACT FUNDS STATUS REPORT (DD FORM 
CONTRACT NUMBER F30602-88-D-0025 

QUARTER: 	OCT-DEC '89 

1586) 

CURRENT QUARTER FUNDING $292,994.00 
DO # 0001 $9,000 C-8-2129 

0011 $19,568 C-8-2400 
0012 $24,700 C-8-2402 
0015 $29,783 C-9-2015 
0016 $31,250 A-9-1120 
0018 $12,000 E-9-7093 
0019 $62,000 C-9-2109 
0022 $54,693 C-9-2404 
0028 $50,000 N-9-5308 

$292,994 

CURRENT QUARTER EXPENDITURES $286,691.16 

CONTRACT CEILING $4,200,000.00 
FUNDING TO DATE - 	$2,322,669.00 
PENDING COMMITMENTS $595,000.00 

AVAILABLE FUNDING $1,282,331.00 

FUNDING TO DATE $2,322,669.00 
YTD EXPENDITURES - 	$1,136,142.64 

OUTSTANDING EXPENDITURES $1,186,526.36 

DO # 0007 	S-8-7592 	INCREMENTAL FUNDING $20,000.00 
0029 	E-9-7119 	INCREMENTAL FUNDING $60,000.00 
0030 	N-9-5317 	INCREMENTAL FUNDING $20,000.00 
0034 	N-9-5314 	INCREMENTAL FUNDING $15,000.00 
0016 	N-9-5315 	INCREMENTAL FUNDING $30,000.00 

N-0-5703 	UNIV OF SOUTHERN FLA/WILSON $50,000.00 
A-0-1102 	UNIV OF CA/SMOOT, BARBER, GT $100,000.00 
P-0-6011 	NCSU/VANDERLUGT $100,000.00 
C-0-2456 	NEW JERSEY INST/BAR-NESS $100,000.00 
P-0-6014 	STEVENS INST/ZMUDA $100,000.00 

TOTAL PENDING $595,000.00 

WAITING FOR PROPOSALS: P-0-6018 UAH/CAULFIELD 
P-0-6021 GT/SUMNERS 
P-0-6022 CORNELL UNIV/TANG 
B-0-3353 ROCHESTER INST/LASKY 



* 

CONTRACT FUNDS STATUS REPORT (DD FORM 
CONTRACT NUMBER F30602-89-D-0025 

QUARTER: 	JAN-MAR 	'90 

CURRENT QUARTER FUNDING 

1586) 

$114,301.00 
Dn # 0007 $9,000 S-8-7592 

0029 $19,568 E-9-7119 
0080 $24,700 N--9-5317 
0036 $29,783 P-0-6014 
007 $31,250 F'-0-601 1 

$114,301 

CURRENT QUARTER EXPENDITURES $376,743.62 

CONTRACT CEILING $4,205),000.01. 
FUNDING TO DATE - $2 436,970,00 
PENDING COMMITMENTS $32.8n0.0n 

AVAILABLE FUNDING 

FUNDING TO DATE 
YTD EXPENDITURES 

$1,230,230.00 

$2,436,970.00 
- 	$1,512,886.26 

OUTSTANDING EXPENDITURES $924,083.74 

DO# 	0034 	N-9-5314 	INCREMENTAL FUNDING $15,000.00 
0035 	N-9-5315 	INCREMENTAL FUNDING $30,000.00 
0037 	P--0-601 1 	INCREMENTAL FUNDING $10,000.00 

N-0-3703 	UNIV OF SOUTHERN FLA/WILSON $50,000,00 
A-0-1402 	UNIV OF CA/SMOOT, BARBER, GT $100,000.00 
C-0-2456 	NEW JERSEY INST/BAR-NESS $100,000.00 
P-0-6021 	GT/SUMNERS $100,000.00 
P-0-6022 	CORNELL. UNIV/TANG $30,800.00 
B--0-3353 	ROCHESTER INST/LASKY $20,000.00 
P-0-6018 	UAH/CAULFIELD $77,000.00 

TOTAL PENDING $532,900.00 

WAITING FOR PROPOSALS: P-0-6018 UAH/CAULFIELD 
P-0-6021 GT/SUMNERS 
P-0-6022 CORNELL UNIV/TANG 
8-(-3353 ROCHESTER INST/LASKY 
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A Reduced Order Generalized Sidelobe Canceller Algorithm 

For Random Element Failure Compensation 

D. E. Virag 

Montana State University 

ABSTRACT 

This paper demonstrates a method of reducing an adaptive array algorithm to accommodate for 

random catastrophic element failures in an equally spaced linear narrow-band adaptive array. 

The Generalized Sidelobe Canceller (GSC) algorithm is reduced by the number of failed ele-

ments in the array. The reduced Generalized Sidelobe Canceller algorithm is shown to satisfy 

desired constraints when the number of active elements is greater than the total number of 

constraints. Several examples are presented showing improvement of the modified GSC 

algorithm over the original algorithm when failures are present. Computational considerations 

are discussed when the reduced GSC algorithm is used. Several suggestions are given for logical 

research extension relative to the reduced GSC algorithm. 

INTRODUCTION  

Adaptive array algorithms have been studied extensively over the past 30 years (1)-[4]. Several 

techniques have been shown to be effective for naffowband spatial filtering in the presence of 

noise and interference signals. While the general adaptive array problem is well formulated, 

little work has been done on array adaptation in the face of catastrophic element failure. Element 

failure effectively transforms a linear equally-spaced array into an unequally-spaced array. 

Typical research approaches have been directed at using search techniques to optimize randomly 

spaced arrays. A methodical process for optimizing the weight vector given the known infor-

mation of the array structure should be available since a linear array with element failures 



demonstrates some regularity. The Generalized Sidelobe Canceller, derived by Griffiths et al. 

[5]-[7], provides a vehicle for dealing with these element failures when the failed element 

positions are known a priori, 

OPTIMUM ARRAY PROCESSING  

Fig. 1 describes the block diagram of the typical array processing system. Given the general 

signal environment statistics, determine the optimal set of weights W. so that the output y (n) 

is optimal in some sense to the desired input d(n) in the presence of both uncorrelated white 

noise and jamming signals. 

The actual signal measured at the array is x(t) = d(t) + n (t) + i (t). where d (t) is the actual desired 

signal, n(t) is the noise present which is assumed to be Gaussian and i(t) is a signal associated 

with jamming interference. All of the second order statistics are assumed to be stationary. The 

three input signals are assumed to be uncorrelated with respect to each other, therefore 

Ru(t)= R M(t) + R„„(t)+ RAO, where 



E[d(1)d(I)] 
E[d(2)d(1)] 

Rais=[ 

E[d(n)d(1)] 

E[d(1)d(2)] 
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•• • 

E[d(1)d(n)] 
E[d(2)d(n)] 

E[d(n)d(n)] 
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E[i(1)i(1)] E[i(1)i(2)] E[i(1)i(n)] ceej" -' ceeja -  I )2  • ceej ('''''' 

E[i (2)i( 1 )] E[i(2)i(2)] E[i (2)i (n)] a?efil -2)a ce e ja -2)a 0,2ejo -2)a 

. 	I 
E[i(n)i(1)1 •• • E[i(n)i(n)] 0,2e  j(m -1)a 02e10, -2)a 0,2 e j(n -n)a 

where: 

a = 2ird sin(0) 

d is the fractional wavelength distance between elements at the desired frequency, and a is the 

variance of the ith signal. The matrix formulation for Rad assumes the desired signal is broadside 

to the array while matrix form assumes interference from angle 0 measured from broadside 

to the array. 

If minimum output power is the desired optimization condition, we have, 

minw {ERXW) HXWil = minw {W H 	 ( 1 ) 

which has the solution 

Kr, = ktirxd 	 (2) 



where: 

E[x(1)d(1)1 
E[x(2)d(2)] 

r = (3) 

E[x(n)cl(n )1_ 

This solution for the optimal weight vector is effective when the signal to noise ratio (SNR) is 

low. If the desired signal power is large compared to the interference and noise, this algorithm 

will penalize the signal by minimizing the overall power, therefore reducing the SNR. 

CONSTRAINED ARRAY PROCESSING  

The inclusion of constraints in the formulation of the optimization problem leads to more control 

over desired beam patterns in addition to the ability to null out known interference signals. The 

constraint equations are formulated as: 

CHW = f 	 (4) 

where: 

C <=> Constraint Matrix 

f a Forcing Vector 

If the desired signal is broadside to the array and is required to have 0 dB gain, and L interference 

signals from L directions are to be nulled out, the C matrix will take the form 

	

- 1 	1 	••• 	1 

	

1 	 • . • 
C= (5) 

1 of  
- nix! 	

e 
- 



where oti  = 2itd girl(%) and (); is the direction of the ith interference signal. 

C is an N x L matrix, where N is the number of elements and L is the number of desired 

constraints. 

The response vector f is 

f = [1 0 0 ... Of 	 (6) 

where the 1 represents 0db gain at broadside and the zeros correspond to 0 gain at the desired 

null angles. 

The constrained optimal weight vector is now that which is closest to the unconstrained vector 

and satisfies the constraints given. The performance measure to minimize can be given from 

(2) as 

subject to: 

which has the solution 

Minw{R.„W — rte } 

C HW =f 

Kr = RLIC (C H  RLIC) 1  f 

(7a) 

(7b) 

(8) 

GENERALIZED SIDELOBE CANCELLER  

An equivalent representation of the constrained array problem was derived by Griffiths. The 

Generalized Sidelobe Canceller (GSC) is a transformation of the general constrained optimi-

zation problem into a deterministic weight equation and an unconstrained optimal weight 

equation. This topology is more convenient for implementation due to its reduced number of 

computations. Fig. 2 shows a block diagram for the basic GSC. 
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Figure 2. 

The parallel paths of the GSC represent the quiescent weights and adaptive weights. The 

quiescent weights Wq  represent the general solution to the adaptive array problem with con-

straints and will give the desired pattern given only noise on the input elements. The constraints 

include array pattern, array sidelobe specifications, and spatial nulling. The lower path contains 

the data dependant adaptive weights, W., which are statistically determined for a mean squared 

error (MSE) approximation (neglecting constraints) to the upper quiescent weights. 

The weight vector from the general constrained array problem can be decomposed into two 

orthogonal spaces which span the range and null space of C [8]. Any desired weight vector can 

be represented as the sum of the two orthogonal vectors, one vector spanning the range space 

of C, the other spanning the null space of C. The weight vector in the null space of the constraint 

matrix will have no effect on the desired constraints and can be optimized accordingly. 

Let W = W, — V where w-4, is in the range of C and V is in the null space of C. From Fig. 2, 

V = WbW., also 141,,=c(cHc)'f to satisfy the constraint equations. Therefore, to minimize 

total output power, we get 

Minw. {(Wq  — WbW)R,„(W q  — Wb W.) H } 	 (9) 



The optimal W4  can be solved using classical optimization techniques. Define the performance 

measure J as 

J =[Wq —KW„r 	— wbvvj 	 (10a) 

= W4 R Wq  — Wt R WbW, — Wall  1.11R.,N+W.111111R,,,W I,Wa 	(10b) 

The second and third terms of (10b) are scalars and can be combined since the transpose of a 

scalar is unaffected. Taking the gradient of J with respect to W. gives 

= 0 = 	+ 	 (11) 

Solving (11) for W. we find the optimal weight vector as 

W7 = (W:1, RxxWb )-14/c1Vs 	 (12) 

An equivalent expression for the optimal weight vector is 

W7 =lel' 
	

(13) 

(13) can easily be obtained from (12) since R11 =WPR L,Wb  and Pic  =Wr 

While the quiescent weight vector 117, = C(C HC)-if is the solution for the general deterministic 

constraint problem, it is not necessarily the best due to large sidelobes close to the main lobe. 

If a weighting vector such as a Chebyshev pattern is desired [9], the quiescent weights must be 

modified. 

Consider the desired Chebyshev weight vector Wei,„h . Clearly Wpb  will not satisfy the constraint 



equation (4). A weight vector is required which satisfies the constraints of (4) and is close to 

the desired vector WA rb. This is mathematically equivalent to 

minic{ 0v; — wchebr 047, — wdifdl 
	

(14a) 

Subject to: 
	

C HWT1 =f 	 (14b) 

where Wq  is the modified weight vector to be determined. The performance measure I can be 

formed as 

J = [W q  —W chebr [W q  — W AA ] + X.(f — CW) 	 (15a) 

+W 	(I5b) 

The gradient of J with respect to Wq  is given by 

Vivi  = 0 = 2Wq  — 214 cheb  — (AC H)8 	 (16) 

Solving (16) for Wq' 

fv,"P' = wcheb  +ice 	 (17) 

Using (4) and (17) 

Xii  =2(C HC) If —2(C HC) I C HWcheb 
	 (18) 

Substituting (18) back into (17) gives the optimal modified weight vector 



1-47; . v — c (cm c ) loveheb  + wq 	 (19) 

The modification of Wq  alone will not change the overall quiescent pattern until an appropriate 

change is also made to the constraint matrix. This can be seen by the fact that W q  now contains 

components in the range space of C and in the null space of C. The addition of the component 

in the null space of C must be included in the constraint equations so that those components 

will be effectively canceled by the blocking matrix Wb. This modification adds one more column 

to C so that 

E' = [C, W,] 
	

(20) 

11  =Lill:Tv:mil-1J 
	

(21) 

where: 	 W, = Wq  — WI 	 (22) 

The new constraint matrix C is now N x M and f is an M vector where M=L+1. 

The N x (N-M) blocking matrix Wb eliminates the constraint equations so that an unconstrained 

optimization can take place. The requirements of the Wb matrix are that: 

1.) The columns of Wb are linearly independent 

2.) WI, is orthogonal to C 

A number of different blocking matrices will be adequate for any given problem. Gram-Schmidt 

orthogonalization procedures can be used to ensure that the matrices are orthogonal. For 

simulation purposes, one particular algorithm for determining the Wb matrix is: 
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(23) 

- 1 	0 

a1.1 	1 

a 1. 2 a z 1 

a22 

a 1,14 

0 

0 

atm 

0 

0 

W  b = 

0 	0 

ai.j = 1; 	 ti =1,j; j =1,N —M} 

ai.i =unknown coefficient; 	{i = j + 1, j +N — M; j =1,N —M} 

(1;4 =0; 	 otherwise. 

This matrix will structurally take the form 

where the ai.is are unknown complex elements to be solved through the linear equation 

relllwb  =o 	 (24) 

gXAMPLE  

Consider an 8 element array in which 2 pattern null constraints, 0 db gain at broadside, and a 

Chebyshev pattern are desired. The total number of constraints is 4. The constraint matrix and 

response vector will take the form 



[ C1.1 C2.  1 C3.  1 C4,1  C5,1  C6,, C7,, Cs., 

C 
.......7. 

= 
C1 

' 2 
C2,2  C3.2  C4.2  C6.2  C6.2  C7.2  C6. 2 

C1,3 %., I . , C2.3 C3.3 C4.3 C3.3  C6.3 C7.3 Cs., 

w„ Wet Wei Wd w„ 	w„ Wcd 

(25) 

(26) 

The C;, ,'s are found from (5) and the Wd 's represent the weight vectors given in (22). The 

appropriate blocking matrix will take the form 

1 	0 	0 0 
a,,, 	1 	0 	0 
au az.,  1 	0 
al., a2,2 (23, 1 	1 

at,' 02.3 a3.2 al. , 
0 	412,4 03, 3 a4, 2  
0 	0 	a3.4  a4.3 
0 	0 	0 	a41,4.... 

(27) 

Since WI, will be orthogonal to E", we can solve (24) and get the resulting matrix equation 

Wb =  



1 0 0 0" 
a,,, 1 0 0 

C2,  i C3.1 C4.1 C5,, C6.1 C7,,  C 8,  1 a,,2  at 1 0 

[

C,,, 

C1.2 C2, 2 C3.2 C4,2  C5.2 C6,2 CU  Cs.2 au  a2,2 2.2 a3., 1 
= Q (28) 

C,,3 C2.3 C3.3 C4.3  C5,3  C6,3  C7,3 Cs,3 a,,4 a2,3 a3,2 

Wet Wa Wei W,4 Wes W05  WO Wee 0 a2,4 a3,3 a4,2 

0 0 a3.4  a4. 3  
0 0 0 a4,4 

Performing the corresponding matrix multiplication and solving for the unknown al. ;  coeffi-

cients, 

C2,1 C3.1 C4,, C5.1 1 a,,, —Ct., 
C2,2 

[ 

C3,2 C4,2 C5.2 a2, 1 
= 

—C1.2 (29) 
Cz 3 C3, 3 C4,3 C5,3  a3. 1  — C 6 . 3  

We2 Wc3 Wet  Wee a4.1 — Kr 

Identical operations can be done to solve for the remaining a;.i  coefficients. 



EFFECTS OF ELEMENT FAILURES ON GSC PATTERNS  

When one or more of the N array elements fail, the overall pattern deteriorates substantially. 

Figures 3 illustrates a 32 element array with a Dolph-Chebyshev pattern with pattern nulls 

constrained at 12°,14°,16°, and 18° and an actual interference signal at 22° with 20 dB power 

relative to the desired signal. The sidelobes were specified to be at least 35 dB under the main 

lobe. Figure 4 demonstrates the same array with a single element failure (element # 3). When 

several elements fail, the pattern deterioration is catastrophic. The need for weight adaptation 

in the face of array element failure is very apparent. 

A REDUCED ORDER GENRALIZED SIDELOBE CANCELLER 

Search techniques are typically used in reconfiguring the elements of an array in which one or 

more array elements have failed. In general, such techniques can be computationally intensive 

and are not guaranteed to find the globally optimal solution. A more direct approach to 

restructuring the array weights is to reduce the order of the active array under the same constraints 

as the original array. This results in optimal array weights under the given constraints and 

conditions. 

Consider the transformation of the original array into the following system 

W' = TW 	 (30) 

where T is an N x N permutation matrix defining the condition of the array system. Ideally, if 

all elements are active, T will be equal to /N, the N x N identity matrix. If a single element fails 

in the kth position, T is defined by 



T= 

012(b _ I)  

I 0-10(k - I) 

°6V -40(k- I) 

I 

I 

I 

1 
..... 

O(k -101 
.... 

°Or -kW 

I _ 
I 

I 

Our'  _14 

O(k -1)0,1■1-k) 

4i -k)s(k -I) 

(31) 

In general, if r element failures exist, the matrix T is formed by moving each of the r rows 

corresponding to the failed elements to the top r rows of the T permutation matrix. 

The transformed quiescent vector, constraint matrix and blocking matrix are given by 

W' q =TiVg  (32a) 

C' =TC (32b) 

W 'b = TWb (32c) 

The transformed system now contains all weights associated with the r failed elements as the 

first r rows in the weight vectors which can be partitioned into subarrays representing the failed 

system elements and the remaining active elements. 

W i  1 
W P, =[ — 

W '  

tr  
VII'', = [ — 

W 
ebb  

CI] 
C ' — "- 

C2 

(33a) 

(33b) 

(33c) 



The partitions W'r, W'i„„ and C'1  

in (33) correspond to the failed elements and the remaining partitions relate to the active 

elements. 

The constraint equation (4) can now be written in terms of the transformed system as 

CHW' = f (34) 

W'r  
[C" 1 1C1 —= f (35) 

W'qb  

Or 

C'IW'r  +C'2W',, =f (36) 

Because the elements associated with the weight set W' r  are failed, these weights will have no 

effect on the constraint equation (36) and there is no loss of information if the C I  matrix is set 

to zero. The resulting equation gives 

C214P0 =f 	 (37) 

where the unconstrained estimator solution is given by 

W7 = C2(CN2 C2) if 	 (38) 

If the Chebyshev weight constraints are included in the desired solutions the WI  vector must 

be modified as before to minimize the distance from the desired Chebyshev weight vector. The 

performance minimization is given by 



— — 	 — Ire.„ 
W'r 	I 1

" w' 
min  1 

W Iqb 	 W Iqb 
(39a ) 

subject to: 

C2W' irb =f 	 (39b) 

where 

W' 
wc,b=H=TIV," 

W'd, 
(40) 

The expanded performance equation is equivalent to 

mint(w.j., — W....)2 .4.  Orr., — we." + ... + orger — Trio2+ 

(Web, — W'e„,,)2 + ... + (14Pfz,N _,  — WichN)) 	 (41) 

From the above equation, the minimization clearly takes place when the elements of HP", = Wc. 

where W',„ are the transformed Chebyshev weights corresponding to the failed elements. The 

remainder of the minimization is reduced in order to a N-r order minimization where the optimal 

quiescent solution for Wqb is identical to (14)-(19) and is given by 

W'qb =(1—c i2(c Ici2j1c1)Wi ce +vv'o, 	 (42) 

The constraint equations can be augmented to reflect the additional Chebyshev constraint as in 

(20) and (21). In this case the partitioned constraint matrix will be 



(43a) 

(43b) 

where 

W',=[

VV',,  
—=TW, 

W i  ab 

(44) 

The reduction of the active weights will also reduce the required dimensions of the blocking 

matrix W. 

Applying condition 2 of the blocking matrix on the transformed system results in 

W'i,„ 

[C', 1 c'1 - = c',w'm  +c'x',,,, =5 	 (45) 
Who  

Since C2=6, the blocking condition reduces to 

C2Wb = ti 	 (46) 

The reduced blocking matrix can take the form of (23) with reduced dimensions of (N-r) x 

(N-r-M). When the Chebyshev constraints are included as a desired constraint, the augment 

constraint matrix C' is used in (45). In this case, o, * 0 because of the augmentation, however, 

since the submatrix WI , is associated with the failed elements, the coefficients of Wi l„, can be 

set to zero reducing the equation to (46). 



The structure of the W'bi, submatrix ensures that the total blocking matrix WI, is linearly 

independent thus satisfying blocking matrix condition 1. 

Because of the reduction in the size of the blocking matrix, the adaptive weights W„ are reduced 

in number from N-M to N-M-r. The minimization of the weight distance in the two paths of 

the GSC structure determines the adaptive weights. From equation (9) we have 

minwgq.1 -[::-1wa}e4::"..1-[:#7.1w-r} 
	

(47) 

where 

	

R',.=T HR.,,,,T 	 (48) 

The upper partition of the minimization can be removed because W' qi, = 15. The lower partition 

determines the optimal weight values W4 . The optimal weights are given by 

WT = Irbb(W":/cIrt,b) tlebile.virbb 	 (49) 

The original system can be recovered through the inverse transformation 

	

Wq  = T-1 1 f ? q 	 (50a) 

	

Wb  = T-1* b 	 (50b) 

SIMULATION ISSUES  

The original GSC algorithm was programmed on a microVAX 3600 in FORTRAN [101. 

Appropriate modifications have been made to accommodate the reduced order algorithm. The 

initial condition inputs include the total number of elements, the number of failed elements and 

position of the failed elements in the array, signal to noise level, desired pattern nulls, interference 



signal strength and directions, and desired mainlobe to sidelobe ratio for a Dolph-Chebyshev 

array pattern. Pattern nulls represent anticipated directions of interference signals. The 

anticipated nulls are programmed into the initial quiescent array. The actual jamming signal 

will modify the signal statistics and will be compensated for in the adaptive weights, producing 

a null in the direction of the actual interference. The noise variance a: was set equal to 1.0 for 

reference. 

Element failure effects are modeled by modifying the correlation matrices for the interference 

and desired signals, and adjusting the input at the array element as a signal is swept between 

900and 90°. The correlation matrices are modified by setting the jth row and column to 0 

(except the diagonal component equalsa) for a element failure in the jth position. This assumes 

the noise in the failed element will be uncorrelated with any other element signal. 

The input to a failed element is simulated as 0. Although several cases are possible for a failed 

element (i.e. signal grounded, +5Vdc, etc.) it is assumed that the known failed element can 

always be forced to ground state. The only signal processed through the failed element will be 

Gaussian noise with a variance of 1.0. 

Figure 3 represents a 32 element array pattern with SNR=0.0, four desired pattern nulls at 

12°, 14°, 16°, and 18°, a 35 dB Dolph-Chebyshev pattern, and a single interference signal located 

at 22°  with a 20dB gain relative to the desired signal. Figure 4 shows the same example after 

element # 3 has failed. The pattern effectiveness has been reduced significantly with a single 

failure. Figure 5 shows the pattern obtained from the reduced order GSC algorithm. 

If multiple element failures occur, the desired pattern is distorted accordingly. Figure 6 and 

figure 7 display the failure pattern and compensated pattern respectively for the previous 



example with elements 2,5,15,17, and 30 failed. The pattern corresponding to the failed 

array is unrecognizable whereas that of the compensated array matches all the desired con-

straints at the cost of the pattern floor raising. 

If the event that array end elements fail, the array can be compensated for with the element 

failure algorithm, or as an alternative, the array can be reconfigured as a smaller array. Figure 

8 demonstrates the above example with elements 1-6 failed in the 32 element array. Figure 9 

shows the same desired pattern with an unfailed 26 element array. Both configurations meet 

the desired pattern null and adaptive null constraints. The reconfigured 26 element array matches 

the Dolph-Chebyshev pattern better than the failure compensated array. The 3dB main beam 

width is slightly smaller in the 32 element array even though 6 elements are failed. 

Figures 10-16 demonstrate a 64 element array example. A 45 dB Dolph-Chebyshev pattern is 

desired with an anticipated signal at 8° and 2 actual jamming signals appear at 12° and 19° with 

40 dB gain. The SNR is 0. Figures 10-12 represent a full array, failed uncompensated array, 

and failed array using the reduced GSC respectively. In this example, 15 simultaneous element 

failures were simulated (elements 29-43). The failed uncompensated array does not match the 

desired constraints of 0 dB gain at broadside and pattern null at 8°. The compensated array 

matches these constraints at the expense of slightly higher sidelobes. Figures 13 and 14 show 

the quiescent weight vector magnitude for the full array and fail compensated array respectively. 

The reconfigured weights tend to reflect the same Chebyshev pattern as the original weights 

with a slightly higher gain to compensate for the gain lost due to the failed elements. The failed 

element gains are set to the original weight vector gains. These values, although meaningless 

because of the failed elements, are necessary for the other weights to adjust accordingly. Figures 

15 and 16 show the quiescent weight phase for the full array and compensated array. These 

figures reflect the increase in phase variations needed to match the desired constraints. 



COMPUTATIONAL REQUIREMENTS FOR THE FAILURE COMPENSATED GSC 

Upon determination of a failed element or elements, the GSC routine must be modified to 

compensate for the failure. The major recalculations include updating the blocking matrix Wb, 

and the two weight vectors W. and W0 . These calculations may be done either on-line, pre-

calculated off-line and stored in memory, or some combination of these. 

Off-line Calculation and Storage 

Off-line pre-computation and storage requires that every possible combination of failed elements 

be determined and weight vectors and blocking matrix calculated for each scenario. The possible 

number of combinations of failed elements, assuming parameters such as pattern nulls and 

desired pattern sidelobe strength are constant, become massively large. As an example, if N=32, 

there are approximately 1.28 billion total combinations of failures of 1 element to 14 elements. 

If 32 weights are stored, each weight requiring 4 bytes, the total memory required is 164 GBytes. 

These figures do not include memory required to store the blocking matrix coefficients. From 

these results, it is obvious that 100% data storage is not possible given the current storage devices 

available. 

On-I ine Computation 

The recalculation of the GSC weights consists of determining the correct transformation matrix, 

T, recomputing the blocking matrix elements, and calculating the weight vectors W. and W. 

Recalculation of the blocking matrix coefficients requires that (N-M-r) matrix inverses of size 

M x M be calculated. If M is large, these matrix inverses may take considerable time, depending 

on the hardware used for the GSC algorithm. The weight vector W. requires a single (N-M-r) 

x (N-M-r) matrix inverse and five (N-M-r) x (N-M-r) matrix multiplications using the direct 

solution method (i.e. Itz  known a priori). The quiescent weight vector calculation requires one 

(N-r) x (N-r) matrix inverse. The advantage to the reduced order GSC is that the total number 

of computations required to determine new weights when elements fail decreases with increasing 



numbers of element failures. Table I shows various calculation times on a microVAX 3600 

for computing T, Wb, vv,,, and W„ under several conditions of element failures for a system with 

6 total desired constraints. 

Elements Failures Time (s) 

96 0 137.85 

96 48 90.89 

64 0 43.4 

64 32 26.5 

32 0. 7.26 

32 16 4.98 

16 0 2.01 

Table 1. 

FUTURE RESEARCH DIRECTIONS  

Extended research on the modified GSC and element failures can be applied in several directions. 

Some of the more important questions to be answered include: 

1. Using the direct form of calculation for computing W,,,, = nir..„, involves an N X N 

matrix inversion. If high sampling rates are required, this is computationally very difficult. 

Also, assuming stationarity, N(N+3)/2 correlation measurements may be required before R., 

and r,„, are statistically accurate, whereas, in real practice, the statistical environment is usually 

changing. An adaptive algorithm must be incorporated to estimate the statistical environment 

more efficiently with fewer calculations. 

2. Element failure can show up in various forms, including partial element failure 

(degradation of element gain). The algorithm for failure correction may be expanded to include 



modification for partial element failure. 

3. A method of on-line modification of the GSC for element failure must be found to 

gracefully modify the predefined constraint matrix and blocking matrix structures so adaptation 

time is minimized. Methods of augmenting a small off-line database with minimal on-line 

calculations must be studied to truly optimize the total reconfiguration time. 

4. Parallel processing structures must be studied to determine the optimal computational 

distribution so the GSC and corresponding failure routines can be performed on-line in a 

real-time environment. 

5. Array output sensitivity to the weight vector must be studied for large numbers of 

element failures. The off-line storage requirements may be reduced considerably if the output 

is robust with respect to weight values when large numbers of element failures are present. 

6. Multi-array modes should be studied as an option for restructuring the array in the 

event of element failure. For example, in special cases, the array may be divided into equally 

spaced sub-arrays where the GSC is applied and the total array output is weighted sums of the 

sub-array outputs. 

7. Methods for determining on-line element characterization must be found so that failed 

elements can be identified. For example, a near-field test could be conducted periodically which 

correlates the array output with a pre-stored pattern to determine if failed or deteriorated elements 

exist. 

8. The comparison of the original weight vectors with the reconfigured weight vectors 

after element failures suggest that predictions may be made to the relative importance of array 

elements in the overall pattern robustness. In certain cases, total weight reconfiguration may 

not be necessary. 

CONCLUSIONS  

This paper demonstrates a technique for adapting to random element failures in a linear nar-

row band array. A reduced order Generalized Sidelobe Canceller algorithm was shown to 



include constraints associated with the failed elements. Simulation results show an 

improvement in main beam isolation when using the corrector algorithm of greater than 30dB 

over that of an uncorrected array with a single element failure. An added feature of the 

reduced order algorithm is that the computational requirements for recomputing array 

weights reduces as the number of element failures increase. Multiple element failure exam-

ples show the reduced order algorithm matches the linear constraint conditions and the gen-

eral shape of the desired beam pattern at the expense of a decrease in the overall mainlobe to 

sidelobe isolation. 
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APPENDIX 

NOTATION 

Wq  Quiescent Weight Vector 

W'q  Transformed quiescent weight vector 

Wq  Quiescent Weight Vector modified with Chebyshev constraint 

Wh Blocking Matrix 

tri, Transformed Blocking Matrix 

W'b. Failed partition of transformed blocking matrix 

Wm, Remaining partition of transformed blocking matrix 

W. Adaptive Weight Vector 

W'a  Transformed adaptive weight vector 

W'q. Failed partition of quiescent weight vector 

W'fb  Remaining partition of quiescent weight vector 

WAth  Chebyshev weight vector 

C 	Constraint Matrix 

e Augmented Constraint Matrix (includes Chebyshev constraint) 

C'1  Failed partition of transformed constraint matrix 

C '2 Remaining partition of transformed constraint matrix 

C' Transformed constraint matrix 

L 	Number of gain constraints 

M Number of total constraints 

r 	Number of failed elements 

T 	Failure Transformation Matrix 

R. Element Correlation Matrix 

R..' Element Correlation Matrix for Active Elements 



Fortran Code Program Listing 



************************************************************************ 
* 
• THIS PROGRAM FORMS AN ADAPTIVE ARRAY PATTERN USING THE GENERALIZED 
• SIDELOBE CANCELLER (GSC). THE FOLLOWING ARRAY DATA IS INPUT: 
* 
• NEL NUMBER OF ELEMENTS, 
• DIS ■ ELEMENT SPACING IN TERMS OF WAVELENGTH, 
• RATIO ■ MAINLOBE-TO-SIDELOBE RATIO (USED TO FORM THE CHEBYSHEV WEIGHTS), 
• NANUL ■ NUMBER OF ANTICIPATORY NULLS, 
• ANUL(I) ■ ANTICIPATORY NULL LOCATIONS. 
* 
* 
• SUBROUTINE QUIESCENT.FOR IS USED TO FORM MATRUX WS AND 
• VICTOR WQ. THE FOLLOWING ENVIROMENT INFORMATION IS INPUT: 
* 
• SNR ■ SIGNAL-TO-NOIES RATIO, 
• NAJ ■ NUMBER OF INTERFERENCE SIGNALS, 
• THETA(I) ■ LOCATION OF INTERFERENCE SIGNALS, 
• JNR(I) ■ INTERFERENCE SIGNAL STRENGTH. 
* 
• THE FOLLOWING IS OUTPUT IN DATA FILE PATTERN.DAT: 

THE QUIESCENT GAIN VERSUS LOOK ANGLE (DEGREES). 
THE ADAPTIVE GAIN VERSUS LOOK ANGLE (DEGREES). 

* 
• THE FOLLOWING IS OUTPUT TO WEIGHTS: 

"NDIM"; 
"MDIM"; 
"NQH" - Vector OF DIMENSION 1 X NDIM, 

WHERE WQH IS THE HERMATIAN OF WQ; 
"NSH" - Matrix WITH DIMENSION MDIM x NDIM, 

WHERE WSH IS THE HERMATIAN OF WS; AND 
"NAM" - Vector OF DIMENSION 1 X NDIM, N 

HERE WAH IS THE HERMATIAN OF WA. 
* 

Modified to do failure simulations --- day 8-7-89 
* 
************************************************************************ 

IMPLICIT REAL*8 (A-11,0-Z) 
REAL*8 JNR 
Real Tl,delta 
COMPLEX*16 WQH, WSH, WS, R, P, TEM, WQ, NA, DET, RX, CSIMUL, T 
COMPLEX*16 RXT,RXA,RXB,RXC,RXD,TINV,WQT,NST,NQTA,NOTB 
COMPLEX*16 NOTBH,NSTB,NSTBH,WSTA 
INTEGER NEL, NANUL, MCON, fel(100),nfel 
character 	fail 
DIMENSION ANUL(20),WSH(100,100),WS(100,100), WQH(100), R(100,100), 

1 	 P(100), NA(100), RX(100,100), TEM(100,100), WQ(100), 
1 	 APJ(10), THETA(10), JNR(10), T(100,100),TINV(100,100), 
1 	 RXT(100,100),RXA(100,100),RXB(100,100),RXC(100,100), 
1 	 RXD(100,100),NST(100,100),WQT(100),WQTB(100),NQTBH(100), 
1 	 NSTB(100,100),NSTBH(100,100),WQTA(100),WSTA(100,100), 
1 	 WQM(100),NQP(100),NAM(100),NAP(100) 

COMMON NEL,RATIO,DIS,NANUL,ANUL,MCON,nfel 
OPEN(17, FILE ■ 'WEIGHTS.DAT', STATUS ■ 'NEW') 
open(18, file ■ 'STATS.DAT',statussenew') 
open(19, file ■ •WA.DAT', STATUS ■ 'NEW') 
DATA PI / 3.141592654 / 

C--INPUT THE ARRAY DATA, I.E., QUIECSENT INFORMATION: 

print*,'Is this failure simulation?' 
read(*,340) fail 
WRITE(*,210) 
READ*, NEL 
if(fail.eq.'y') then 

print*,'Number of Failed Elements' 



read*,nfel 
do 15, i=1,nfe1 

print*,'Failed Element 8' 
read*,fel(i) 

15 	 continue 
else 

fel(1)= -1 
endif 
WRITE (*, 220) 
WRITZ(*,230) 
READ*,DIS 
WRITZ(*,235) 
WRITE(*,237) 
READ*,RATIO 
WRITE(*,240) 
READ*,NANUL 
IF (NANUL 0) GOTO 10 
WRITE(*,250) 
NRITE(*,260) 
READ*, (ANUL(I), I=1,NANUL) 

C Start a Timer to determine caculation time 
T1=secnds (0.0) 

C DETERMINE THE TRANSFORMATION MATRIX T 
DO 5,I=1,nfe1 
DO 4,J=1,NEL 

T(I,J)=(0.0,0.0) 
IF(J.EQ.fel(I)) T(I,J)=(1.0,0.0) 

4 	CONTINUE 
5 	CONTINUE 

DO 7,I=1,NEL-nfel 
J=I 
DO 6,K=1,nfel 
IF(I+JO.EQ.fel(K)) JO=J0+1 

6 	 CONTINUE 
DO 8,K=1,NEL 

IF(K.EQ.J+JO) THEN 
T(I+nfel,K)=(1.0,0.0) 

ELSE 
T(I+nfel,K)=(0.0,0.0) 

ENDIF 
8 	CONTINUE 
7 	CONTINUE 

C*********** DETERMINE THE INVERSE TRANSFORM TINY 
DO 11, I=1,NEL 

DO 11, J=1,NEL 
TINV(I,J) =T (J, I) 

11 	CONTINUE 

*************** 

CXXXXXXXXXXX T Matrix print statements XXXXXXXXXXXXXXXXX 
DO 9, I=1,NZL 

c 	WRITE(*,3) (T(I,J), J=1,NEL) 
c9 	CONTINUE 
•• • • 	••• 	♦ ••• • 	•• 

 

•• • 	•• • • • 

  

C SEND THE ARRAY INFORMATION TO THE QUIESCENT WEIGHT SUBROUTINE (CONTR.FOR). 
C CONTR.FOR RETURNS WITH THE VECTOR WQT AND THE MATRIX WST, THE TRANSPOSED 
C SYSTEM BLOCKING MATRIX AND QUIESCIENT WEIGHTS. 

10 	CALL QUIESCENT(T, WST, WQT) 
DELTA=SECNDS(T1) 
print*,delta 

C************* SPLIT WST AND WQT INTO WST(A&B), AND WQT(A&B) **** * **** 
DO 13, I=1,nfel 



WQTA(/)=WQT(I) 
DO 14, J=1,NEL-MCON-nfel 

WSTA(I,J)=WST(I,J) 
14 	CONTINUE 
13 	CONTINUE 

DO 17, Dminfel+1,NEL 
WQTB(I-nfel)=WQT(I) 

DO 16, J=1,NEL-MCON-nfel 
WSTEJI-nfel,J)=WST(I,J) 

16 	 CONTINUE 
17 	CONTINUE 

C INPUT THE SIGNAL ENVIROMENT: 

WRITE(*,270) 
READ*,SNR 
WRITE (*, 280) 
READ*, NAJ 
IF (NAJ .EQ. 0) GOTO 60 
MRITZ(*,290) 
WRITE(*,300) 
READ*, (THETA(/), I=1,NAJ) 
WRITE (*, 310) 
WRITE (*, 320) 
READ*, (JNR(/), I=1,NAJ) 
Via= = (10.0**(SNR/20.0))**2.0 

C CONVERT INTERFERENCE SIGNAL INFORMATION TO RADIANS AND RATIO AMPLITUDE: 
print*,'convert to radians and ratio' 
DO 20 I=1,NAJ 

THETA(I) = THETA(I)*PI*2.0/360.0 

	

20 	APJ(I) = 10.0**(JNR(I)/20.0) 

C INPUT THE INTERFERENCE INTO THE COVARIANCE MATRIX RX: 
print*,'Input into covariance matrix rx' 
write(18,*)'Rii' 
DR = 2.0*PI*DIS 
DO 51 I=1,NEL 

DO 50 J=1,NEL 
IF (I .EQ. J) THEN 

X = 0.0 
DO 30 Kga,NAJ 

	

30 	 X = X + APJ(K)**2.0 
RX(I,J) = DCMPLX(X,0.0130) 

ELSE 
X = 0.0D0 
Y = 0.0D0 
DO 40 K=1,NAJ 

PHI = DR*SIN(THETA(K)) 
X = X + APJ(E)**2.0*COS((J-I)*PHI) 

	

40 	 Y = Y + APJ(K)**2.0*SIN((J-I)*PHI) 
RX(I,J) = dCMPLX(X,Y) 

ENDIF 

	

50 	CONTINUE 

write(18,330) (dreal(rx(i,j1)),dimag(rx(i,j1)),j1=1,nel) 
51 	continue 
C ADD THE DESIRED SIGNAL AND WHITE GAUSSIAN NOISE TO THE COVARIANCE MATRIX RX: 

print*,'add desired signal and noise' 
write(18,*)'Rxx=Rss+Rdd+Rii' 

	

60 	DO 71 I=1,NEL 
DO 70 J=1,NEL 

IF (I .EQ. J) THEN 
RX(I,J) = RX(I,J) + DCMPLX(1.0D0,0.0D0) 



1 
	

+ DCMPLX(VARDS,O.ODO) 
ELSE 

RX(I,J) ■ RX(I,J) + DCMPLX(VARDS,O.ODO) 
ENDIF 

do 61,if=1,nfel 
if(fail.eq.'y*.and.j.eq.fel(if)) then 

rx(i,j)=(0.,0.) 
endif 

if(fail.eq.'y'.and.i.eq.fel(if)) then 
rx(i,j)=(0.,0.) 

endif 

if(fail.eq.'y'.and.j.eq.i.and.i.eq.fel(if)) then 
rx(i, j)-(1.,0.) 

endif 
61 	continue 

70 	CONTINUE 
c 	 write(18,330) (dreal(rx(i,j1)),dimag(rx(i,j1)),j1=1,nel) 
71 	continue 

c 	 write(18,*)'VARDS',vards 

C************* Calculate the transformed Covariance matrix RXT ******** 
C************* 	RXT- T * Rx * TIP *************************************** 

CALL MATMUL(T,NEL,NEL,100,100,RX,NEL,100,100,TEM,100,100) 
CALL MATMUL(TEM,NEL,NEL,100,100,TINV,NEL,100,100,RXT,100,100) 

C************ PARTION RXT INTO RXA,RXB,RXC,AND RXD MATRICES ********** 

DO 73, I-1,nfel 
DO 73, J=1,nfel 
RXX(I,J)=RXT(I,J) 

73 	CONTINUE 
DO 75, I=1,nfel 

DO 75, J=nfel+1,NEL 
RXE(I,J-nfel)=RXT(I,J) 

75 	CONTINUE 
DO 77, I=nfel+1,NEL 

DO 77, J=1,nfel 
RXC(I-nfel,J)=RXT(I,J) 

77 	CONTINUE 
DO 79, I-nfel+1,NEL 

DO 79, J-nfel+l,NEL 
RXD(I-nfel,J -nfel)=RXT(I,J) 

79 	CONTINUE 

C CALCULATE THE HERMATIAN OF THE BLOCKING MATRIX (WSTBR) AND THE 
C HERMATION OF THE QUIESCENT WEIGHT VECTOR (WQTBH): 

print*,'calculating the hermatian of ws and wq' 
DO 80 I-1,NEL-MCON-nfel 

DO 80 J=1,NEL-nfel 
80 	 WSTBH(I,J) - DCONJG(WSTB(J,I)) 

DO 90 I-1,NEL-nfel 
90 	WQTBH(I) = DCONJG(MOTB(I)) 

C CALCULATE THE COVARIANCE MATRIX R AND THE VECTOR P: 
print*,'calculating covariance matrix r and vector p' 

CALL MATMUL(WSTBH,NEL-MCON-nfel,NEL-nfel,100,100,RXD,NEL-nfel, 
1 	 100,100,TEM,100,100) 

CALL MATMUL(TEM,NEL-MCON-nfel,NEL-nfe1,100,100,MSTB,NEL-MCON-nfel, 



1 	 100,100,R,100,100) 
CALL MTVTMUL(TEM,NEL-MCON-nfel,NEL-nfe1,100,100,WQTB,100,P,100) 

C SOLVE WA = R**-1 * P USING THE SUBROUTINE GAUSS: 
print*, 1 aolve wa=r**-1*p' 

CALL GAUSS(R,P,WA,NEL-MCON-nfe1,100) 
delta=secnda(t1) 
print*,delta 

C********** TRANSFORM SYSTEM WEIGHTS BACK INTO ORIGINAL SYSTEM ******* 
CALL MTVTMUL (TINV, NEL, NEL, 100,100, WQT, 100, WQ, 100) 
CALL MATMUL(TINV,NEL,NEL,100,100,WST,NEL-MCON-nfel,100,100, 

1 	 WS,100,100) 

C******** CALCULATE THE HERMITIANS OF WS AND WQ *********************** 
DO 110,I=1,NEL 

WQH(I)=DCONJG(WQ(I)) 
110 	CONTINUE 

DO 115, I=1,NEL 
DO 115, J=1,NEL-MCON-nfel 

WSH(J,I)=DCONJG(WB(I,J)) 
115 
	

CONTINUE 

C Output NEL, NEL -MCON, WQH, WSH, and WAH to 
DO 117, I=1,NEL 

WQM(I)=DSQRT(DREAL(WQ(I))*DREAL(WQ(I 
WQP(I)=(180/3.1415)*DATAN2(DIMAG(W0( 

c 	print*,i,wqm(i),wqp(i) 
117 	CONTINUE 

DO 119, I=1,NEL-MCON-NFEL 
WAM(I)=DSQRT(DREAL(WA(I))*DREAL(WA(I 
WAP(I)=(180/3.1415)*DATAN2(DIMAG(WA( 

119 	CONTINUE 
J ■ NEL -MCON -nfel 
WRITE(17,*) 'NEL=',NEL, 'J',J 
WRITE(19,*) 'NEL =',NEL 
write(17,*) ' WQ Vector' 
WRITE(19,*) 'WA VECTOR' 
write(17,*) ' 2' 
WRITE(19,*) ' 2' 
DO 118,I=1,NEL 

WRITE(17,350) I,WQM(I),WQP(I) 
118 	CONTINUE 

DO 120,I=1,NEL-MCON 
WRITE(19,350) I,WAM(I),WAP(I) 

120 	CONTINUE 

'WEIGHTS.DAT.' 

))+DIMAG(WO(I))*D/MAG(WQ(I))) 
I)),DREAL(WQ(I))) 

) ) +DII4AG (WA (I) ) *DIMAG (WA (I) ) ) 
I)) ,DREAL(WA(I))) 

C 	write(17,*) 'WS MATRIX' 
C 	DO 140 I=1,NEL 
C 140 	WRITE(17,*) (RS(I,J), J=1,NEL-MCON-nfel) 
C 	write(17,*) 'WA Vector' 

DO 150 I=1,NEL-MCON-nfel 
150 	WA(I) = DCONJG(WA(I)) 

C 	WRITE(17,*) (WA(I), I=1,NEL-MCON-nfel) 
CALL PATTERN (NEL, NEL-MCON, D IS, IIQH, WSH, WA, fel, nfel) 

C FORMAT STATMENTS: 

210 	FORMAT(/,' INPUT THE NUMBER OF ELEMENTS IN THE ARRAY: ',$) 
220 	FORMAT(/,' INPUT THE DISTANCE BETWEEN THE ELEMENTS IN THE ARRAY') 
230 	FORMAT(' IN TERMS OF THE WAVELENGTH: ',$) 
235 	FORMAT(/' INPUT THE DESIRED MAINLOBE-TO-SIDELOBE RATIO FOR THE',$) 
237 	FORMAT(' CHEBYSHEV WEIGHTS IN POSITIVE DB:',$) 
240 	FORMAT(/,' INPUT THE NUMBER OF ANTICIPATORY NULLS DESIRED: ',$) 



250 	FORMAT(/,• INPUT THE LOCATION OF THESE NULLS IN DEGREES,') 
260 	FORMAT(' (WHERE THE BROADSIDE VIEW IS ZERO DEGREES): ',$) 
270 	FORMAT(/,' INPUT THE DESIRED SIGNAL TO NOISE RATIO IN DB: ',$) 
280 	FORMAT(/,' INPUT THE NUMBER OF INTERFERENCE SIGNALS: 1 ,$) 
290 	FORMAT(/,' INPUT THE LOCATION OF THESE INTEFERENCE SIGNALS') 
300 	FORMAT(' IN DEGREES: ',$) 
310 	FORMAT(/,' INPUT THE STRENGTH OF THESE INTERFERENCE SIGNALS') 
320 	FORMAT(' WITH RESPECT TO THE NOISE, IN DECIBALS: ',$) 
330 	format(f8.1,f8.1,3x,f8.1,f8.1,3x,f8.1,f8.1,3x,f8.1,f8.1) 
340 	format (al) 
350 	FORMAT(I4,3X,F10.4,3X,F10.4) 
3 	FORMAT(8(2(F3.0,X)X)) 

WRITE(* * *) 
WRITE(*,*)' THE ARRAY PATTERN IS IN THE DATA FILE PATTERN.DAT.' 
STOP 
END 



****************************************************************;************** 
* 
* THIS PROGRAM CONTAINS A SUBROUTINE THAT CALCULATES THE QUIESCENT 
* WEIGHTS OF A GENERALIZED SIDELOBE CANCELOR (GSC). 
* THE FOLLOWING ARE INPUT TO THE SUBROUTINE: 

NEL - NUMBER OF ELEMENTS IN THE ARRAY, 
NANUL - THE NUMBER OF ANTICIPATORY NULLS, 
DIS - THE DISTANCE BETWEEN THE ELEMENTS, 
ANUL - THE LOCATION OF THE ANTICIPATORY NULLS. 

* 
* RETURNS 

WS - The Blocking Matrix 

* 
	WQ - THE QUIESCENT WEIGHT VECTOR 

******************************************************************************* 

SUBROUTINE QUIESCENT(T,WST,WQT) 
I) LICIT REAL*$ (h-H,0-6) 
COMPLEX*16 CON,CONH,CON2,WS,WQ,A,B,XY,WCHED,FCON,CSIMUL 
COMPLEX*16 CT,C1,C2,C2X,T,WCHRBT,WQA,WQB,WRA,WWWST,C2H,WQT 
COMPLEX*16 WCHEBTB 
DIMENSION ANUL(20),WCHEB(100),CON(100,100),CONH(100,100),CON2(100,100), 

& WS(100,100),FCON(100),WQ(100),A(100,100),B(100),T(100,100) 

DIMENSION CT(100,100),C2(100,100),C1(100,100),WCHEBT(100), 
& C2X(100,100),WSA(100,100),WSB(100,100),WST(100,100) 

DIMENSION WQA(100),WQB(100),WCREBTB(100), 
& C2H(100,100),WQT(100) 

COMMON NEL,RATIO,DIS,NANUL,ANUL,MCON,nfel 
integer nfel, fel (20) 
DATA PI / 3.141592654 / 
OPEN(5,FILE='MATRIX.DAT',STATUS='NEW,RECL=5000) 

C CALL THE SUBROUTINE CHEBYSHEV.FOR TO OBTAIN THE CHEBYSHEV WEIGHTS. 
C THE MAINLOBE-SIDELOBE RATIO (RATIO), AND THE NUMBER OF ELEMENTS ARE 
C PASSED; THE CHEBYSHEV WEIGHTS (WCHEB)ARE RETURNED. 

2 	FORMAT(2X,F6.3,'+y,F6.3,2X) 
CALL CHEBYSHEV(NEL,DIS,RATIO,WCHEB) 

C 	WRITE(5,*) 'WCHEB' 
DO 20, /=1,NEL 

c 	 WRITZ(5,2) WCHEB(I) 
c20 	CONTINUE 

C FORM THE CONSTRAINT MATRIX (CON) AND TEE f VECTOR (FCON) USING 
C TWO STEPS: 

NCON = NANUL + 1 
DR ■ 2.ODO*PI*DIS 

C***** STEP (1) FORM THE LOOK DIRECTION (0 DB AT 0 DEGREES) CONSTRAINT; 

DO 400 I = 1,NEL 
CON(I,1) = (1.0D0, 0.0D0) 

400 	CONTINUE 
FCON(1) = (1.0D0,0.0D0) 

C***** STEP (2) FORM THE ANTICIPATORY NULL CONSTRAINTS; 

ZF (NANUL .EQ. 0) GOTO 605 
print*,'Anticipatory null constraint matrix' 
DO 600 I = 1,NANUL 

K = I + 1 
THETA = ANUL(I)*2.0DO*PI/360.0D0 



DO 500 J • 1,NEL 
XJ • J 
X • (1.0D0-XJ)*DR*DSIN(THETA) 
CON(J,E) • DCMPLX(DCOS(X),DSIN(X)) 

500 	 CONTINUE 
FCON(K) • (0.0D0,0.0D0) 

600 	CONTINUE 

CXXXXXXXXX PRINTOUT FOR C 
C 	WRITE(5,*) 'C MATRIX' 
c 	DO 602,I-1,NEL 

WRITE(5,1),(CON(I,J), J-1,NCON) 
c602 	continue 
1 	FORMAT(16(2X F6.3,'+',F6.3,'*i',2X)) 

 

• • • 

 

** ••••••• ••• ♦ ••• • •• • • 

 

•• 	• •• • •• 

 

•• • • • 
C***** STEP (3) COMPUTE THE TRANSFORMED MATRICES CT 

CALL HATI4UL(T,NEL,NEL,100,100,CON,NCON,100,100,CT,100,100) 

CXXXXXXXXX PRINTOUT FOR CT XXXXXXXXXXMODOCCUODOODOOCC 
WRITE(5,*) 'CT' 
DO 601,I-1,NEL 

NAITZ(*,1)(CT(I,J), J•1,NCON) 
c601 	continue M••••••• •••••••• •• ••• •• • • • ••• •• ••••• • ••• 
C***** STEP (4) DETERMINE THE PARTIONED MATRICES Cl AND C2 **** 

WRITE(5,*) 'PARTITIONED Cl MATRIX' 
DO 610, I-1,nfel 

DO 611, J-1,NCON 
Cl(I,J)•CT(I,J) 

611 	 CONTINUE 
c 	write(5,1) (C1(I,J),J=1,NCON) 
610 	CONTINUE 

WRITE(5,*) 'Partioned C2 matrix' 
DO 614, I•nfel+1,NEL 

DO 615, J-1,NCON 
C2(I-nfel,J)•CT(I,J) 

615 	 CONTINUE 
c 	write(5,1) (C2(I-nfel,J),J-1,NCON) 
614 	CONTINUE 

C****** STEP (5) DETERMINE THE TRANSFORMED CHEBYSHEV-- =HEST *** 
CALL MTVTMUL(T,NEL,NEL,100,100,NCHES,100,NCHEBT,100) 

C****** WQA-WCHEBT FOR THE FAILED ELEMENTS ********** 
DO 620,/281,nfe1 

WQA(I)•NCREST(I) 
620 	CONTINUE 

C**** FORM WCHEBTI, • WCHEST FOR THE UNFAILED ELEMENTS ****** 
c 	WRITE(5,*) 	PARTION B' 

DO 630,/•nfel+1,NEL 
WCHEBTB(I-nfel)•NCHEBT(I) 

c 	 WRITE(5,1) WCHEBTB(I-nfel) 
630 	CONTINUE 

C***** WQ8•(I-C2*(C2H*C2)**-1*C2H*NCHEBTB + NO *********** 
C CALCULATE THE WEIGHTS NQ • B + C2* (C2H*C2)**-1 * FCON. 
C B • (I - C2 * (C2H * C2)**-1 * C2H) * NCHESTB MERE C2H IS THE 
C HERMATION OF C2): 

C***** STEP (1) CALCULATE C2X • C2 * (C2H * C2)**-1; 

605 	DO 640,1 • 1,NCON 



DO 640, J = 1,NEL-nfel 
C2H(I,J) = DCONJG(C2(J,I)) 

640 	CONTINUE 
WRITE(5,*) 'C2 HERMITIAN -> C2H' 

c 	DO 641, I=1,NCON 
c 	WRITE(5,1) (C2H(I,J),J=1,NEL-nfel) 
c641 	CONTINUE 

CALL MATMUL(C2H,NCON,NEL-nfe1,100,100,C2,NCON,100,100,A,100,100) 
WRITE(5,*) 'C2H*C2' 

c 	DO 643, I=1,NCON 
WRITE(5,1) (A(I,J),J=1,NCON) 

c643 	CONTINUE 

IF (NCON .EQ. 1) THEN 
A(1,1) = 1.ODO/A(1,1) 

ELSE 
XY = CSIMUL(NCON, A, B, 1E-14, -1, 100) 
IF (XY .EQ. (0.0D0,0. ODO)) THEN 

PRINT*,' 
	

AN ERROR HAS RESULTED WHEN CALCULATING' 
PRINT*,' 
	

THE (C2H * C2)**-1 MATRIX.' 
STOP 

ENDIF 
ENDIF 

WRITE(5,*) '(C2H*C2)**-1 -> 
DO 642, I=1,NCON 

WRITE(5,1) (A(I,J),J=1,NCON) 
c642 	CONTINUE 

CALL t4ATMUL (C2, NEL-nfel NCON, 100,100, A, NCON, 100,100, C2X, 100,100) 

WRITE(5,*) 'C2X=C2*C2H*C2)**-1' 
c 	DO 645, I=1,NEL-nfel 

WRITE(5,1) (C2X(I,J), J=1,NCON) 
c645 	CONTINUE 

C***** STEP (2) CALCULATE WQB = C2 * (C2H * C2)**-1 * FCON, AND 
C 	 WQB = (I - C2 * (C2H*C2)**-1 *C2H) * WCHEBTB + WQB; 

CALL MTVTMUL(C2X,NEL-nfel,NCON,100,100,FCON,100,N0,100) 

WRITE(5,*) 'WQB=C2*C2H*C2)** -1 * FCON' 
c 	DO 646, I=1,NEL-nfel 
c 	 WRITE(5,2) WQB(I) 
c646 	CONTINUE 

CALL MATMUL(C2X,NEL-nfel,NCON,100,100,C2H,NEL-nfel,100,100,A,100,100) 
DO 650 I=1,NEL-nfel 

DO 650 J=1,NEL-nfel 
IF (I .EQ. J) THEN 

C2X(I,J) = (1.0D0,0.0D0) - A(I,J) 
ELSE 

C2X(I,J) = -A(I,J) 
ENDIF 

650 	CONTINUE 

WRITE(5,*) '(I-C2*C2H*C2)**-1*C2H' 
c 	DO 647, I=1,NEL-nfel 

WRITE(5,1) (C2X(I,J), J=1,NEL-nfel) 
c647 	CONTINUE 
c 	DO 648,I=1,NEL-nfel 

WRITE(5,2) WCHEBTB(I) 



c648 	CONTINUE 

PRINT*,'MULTILPY C2X AND WCHEBTB' 
CALL MTVTMUL(C2X,NEL-nfel,NEL-nfe1,100,100,WCREBTB,100,B,100) 
WRITE(5,*) 'B(I)=(I-C2*INV(C2H*C2)*C2H)*NCHEBB' 
DO 660 I=1,NEL-nfel 

C 	 WRITE(5,2) B(I) 
660 	WQB(I) = B(I) + WQB(I) 

C********** FORMULATE THE COMPLETE WQ VECTOR 
DO 670,I=1,nfel 

WQT(I)=WDA(I) 
670 	CONTINUE 

DO 680,Imonfel+1,NEL 
WQT(I)=WQB(/-nfel) 

680 	CONTINUE 
WRITE(5,*) 'WQ TRANSPOSE' 
DO 685, I=1,NEL 

c 	 WRITE(5,2) NQT(I) 
c685 	CONTINUE 

*************** 

ccccccccccccccccccccccc I am Here cccccccccccccccccccccccccccc 

C FORM WS SO THAT ALL ITS COLUMNS ARE LINEARLY INDEPENDENT AND 
C IT SATISFIES C2H*WSB = 0: 

C******STEP (1) MODIFY CONSTRAINTS TO INCLUDE THE CREW PATTERN; 

MCON=NCON+1 
DO 700 I=1,NEL-nfel 

700 	C2H (MCON, I) = DCONJG(B(I)) 
WRITE(5,*) 'C2H APPENDED' 

c 	DO 701, I=1,MCON 
WRITE(5,1) (C2H(I,J), J=1,NEL-nfel) 

c701 	CONTINUE 

C***** STEP (2) SET UP WSB INTO THE DESIRED FORM (TO ASSURE 
C 
	

THE COLUMNS ARE LINEARLY INDEPENDENT); 

DO 705 I = 1,NEL-nfei 
DO 705 J = 1,NEL-MCON-nfel 

WSB(I,J) = (0.0,0.0) 
705 	CONTINUE 

DO 720 J = 1,NEL-MCON-nfel 
DO 710 I = J+1,J+MCON 

WSB(I,J) = (3.0D0,0.0D0) 
710 	CONTINUE 

MW(J,J) = (1.0D0, 0.0D0) 
720 	CONTINUE 

do 801,i=1,NEL-nfel 
do 801,j=1,NEL-MCON-nfel 

c 	 print*,i,j,WSB(i,j) 
801 	continue 
C***** STEP (3) DETERMINE THE REMAINING WS TERMS FROM CH*WS = 0; 

DO 900 J = 1,NEL-MCON-nfel 
C 	 PRINT*,'RON',J 

K = 1 
DO 880 I = 1,NEL-nfel 

IF (NSB(I,J) .EQ. (1.0D0, 0.0D0)) THEN 
DO 850 L = 1,MCON 

A(L,MCON+1) = -C2H(L,I) 
850 	 CONTINUE 

ELSEIF (NSB(I,J) .EQ. (3.0D0, 0.0D0)) THEN 



DO 875 L-1,MCON 
A(L,K) = C2H(L,I) 

875 	 CONTINUE 
c 	do 799, ia-1,MCON 

print*,ia,k,a(ia,k) 
c 799 continue 

K = K + 1 
=DIP 

880 	CONTINUE 
XY ■ CSIMUL(MCON, A, 8, 1.E-18, 1, 100) 

print*,'xy',xy 
IF (XY .EQ. (0.0D0,0.0D0)) THEN 

PRINT*,'AN ERROR HAS RESULTED IN THE WS MATRIX,' 
print*,'Column ',j 
PRINT*,'CANNOT CONTINUE!' 
STOP 

manr 
L 1 
DO 890 I = 1,NEL-nfel 

IF (WSB(I,J) .EQ. (3.000,0.0D0)) THEN 
WSB(I,J) ■ B(L) 
L = L+1 

=DIP' 
890 	CONTINUE 
900 	CONTINUE 

C SEND WS, AND WQ BACK TO MAIN4.1POR 

CCCCC Now formulate the complete transformed WB matrix CCCCCCCC 
DO 910, I=1,nfel 

DO 910, J-1,NEL-MCON-nfel 
WSA(I,J)=0.000 
WST(I,J)=WSA(I,J) 

910 	CONTINUE 
DO 920, I=1,NEL-nfel 

DO 920, J-1,NEL-MCON-nfel 
WST(l+nfel,J)=WSB(I,J) 

920 	CONTINUE 

RETURN 
END 



*********************************************************************** 
* 
* THIS PROGRAM CONTAINS A SUBROUTINE TO COMPUTE THE DOLPH-CHEBYSHEV 
* WEIGHTS FOR AN ARRAY WITH EQUALLY SPACED ELEMENTS. THE NUMBER OF 
* WEIGHTS MUST BE ODD. THE SIGNAL IS AT THE BROADSIDE VIEW. THE 
* ALGORITHM USED IS FROM C.J. DRAKE, JR., "DOLPH-CHEBYSHEV EXCITATION 
* COEFFICIENT APPROXIMATION," IEEE TRANS. ON ANT. AND PROP, 
* VOL. AP-12, NUM. 6, NOV. 1964. 
* 
*********************************************************************** 

SUBROUTINE CHEBYSHEV(NEL,DIS,R,N) 
implicit real*8 (a-h,o-z) 
real*8 delta 
COMPLEX*16 W 
DIMENSION 11(100) 
DATA PI / 3.14159265 / 
R • 10.0**(R/20.0) 

C---DETERMINE IF THE NUMBER OF ELEMENTS IS ODD OR EVEN: 
print*,'subroutine chebyshev' 
EVOD • NEL/2 - FLOAT(NEL)/2.0 
IF ((lod .EQ. 0.0) THEN 

N • NEL/2 
ELSE 

N • (NEL - 1)/2 
ENDIF 

C---SOLVE FOR THE DOLPH-CHEBYSHEV WEIGHTS: 

DELTA • PI*(1.-2.0d0*DIS) 
Z • DCOSH(DLOG(R + DSQRT(R*R - 1.0D0))/N) 
ALPHA • DACOS((3.0D0 - Z)/(1.0D0 + Z)) 
W(1) • ((Z+1.0D0)/(1.0DO+DCOS(DELTA)))**N 
DO 20 I-2,N 

XX - DSQRT(DFLOAT(N*N - 	+ 1 - I)**2)) 
W(I) • N*ALPHA*BESSELf(XX*ALPHA)/XX 

a 	 + N*(-1)**(2*N-I+1)* 
ie 	 DELTA*BESSELf(XX*DELTA)/XX 

20 	continue 
IF (EVOD .NE. 0.0) THEN 

C 	 CALL BESSEL(N*ALPHA,X1) 
C 	 CALL BESSEL(N*DELTA,Y1) 

N(N+1) • ALPHA*BESSELf(N*ALPHA) + DELTA*BESSELf(N*DELTA) 
ENDIF 

DO 30 Isul,N 
30 	 W(NEL-I+1) - DCONJG(N(I)) 

C---SCALE THE WEIGHTS 80 THEY ADD UP TO ONE: 

SUM • 0.0 
DO 40 I•l,NEL 

40 	SUM • SUM + CDABS(W(I)) 
DO 50 I-1,NEL 

W(I) • W(I)/SUM 
c 	 print*,w(i) 
50 	Continue 

print*,'Exit chebyshele 
RETURN 
END 

C---THE FOLLOWING FUNCTION (BESSEL) FINDS THE MODIFIED BESSEL FUNCTION 
C OF THE FIRST KIND AND FIRST ORDER: 

Real*8 FUNCTION BESSELf(X) 



real*8 x 
T ■ X/3.75 
IF (X .GT. -3.75 .AND. X .LT. 3.75) THEN 

XI ■ 0.5 + 0.87890594*T**2. + 0.51498869*T**4.+ 
0.15084934*T**6. + 0.02658733*T**8. + 
0.00301532*T**10.0 + 0.00032411*T**12. 

XI •, XI*X 
ELSE IF (X .GE. 3.75) THEN 

XI ■ 0.39894228 - 0.03988024*T**(-1.)- 
& 0.00362018*T**(-2.) + 0.00163801*T**(-3.)- 
fi 	 0.01031555*T**(-4.) + 0.02282967*T**(-5.)- 
& 0.02895312*T**(-6.) + 0.01787654*T**(-7.)- 
& 0.00420059*T*(-8.) 

XI ■ XI*X**(-0.5D0)*DEXP(X) 
ELSE 

PRINT*,' 	BESSEL ERROR' 
STOP 

ENDIF 
BESSELf ■ XI 
RETURN 
END 



************************************************************************** 
* 
* THIS SUBROUTINE USES THE GSC TO FORM THE ARRAY PATTERN. 
* THE OUTPUT DATA FILE (PATTERN.DAT) CONTAINS THE ARRAY PATTERN. 
* Note: This file was modified from the original pattern.for program 

and will be used to separate the individula outputs into their 
own files named que.dat and adapt.dat. 	(Without headers so 
they are readily accesible by pplot. 

8-7-89 dev 
* Note: Another file was added 'fail.dat' to store the information from 

the failed element. 
* 
************************************************************************** 

SUBROUTINE PATTERN (KANT, NDIM, DI S , WQH, WSH, WAR, fel, nfel) 
IMPLICIT REAL*8 (A-H 2 O-Z) 
COMPLEX*16 WQH, WSH, MAH, E, OUT, U, Y, YQ, YA ,efail(100),yqf 
integer fel(100),nfel 
DIMENSION E(100), WQH(100), WSH(100,100), WAH(100), 0(100) 
OPEN(10,FILE = 'QUE.DAT', STATUS = 'NEW') 
open(11,file = 'ADAPT.DAT',Status = 'NEW') 
open(14,file='output.dat',status='new') 
open(12,file= 'real.dat',statussonew') 
open(13,file='imag.dat',status='new') 

C 	WRITE(10,*)' THE FOLLOWING IS THE PATTERN FOR THE GSC.' 
C 	WRITE(10,*)' LOOK ANGLE (DEGREES), QUIESCENT GAIN, 

ADAPTIVE GAIN' 
C 	WRITE(10,*)2 

if(fel(1).gt.0) then 
do 30,i=1,nfel 

print*,'Failed Element!!! l',fel(i) 
30 	continue 

else 
print*,'Elements OK' 

endif 
PI = 3.141592654 
E(1) = (1.0D0,0.0D0) 
DO 1000 1=1,1801 

XI = I -1.0D0 
THET=90.0D0-(XI*180.0D0/1800.0D0) 
THETA = THET*2.0DO*PI/360.0D0 

C CALCULATE INCOMING SIGNAL: 

DO 90 J=2,KANT 
XJ = J 
PHI = (1.0DO-XJ)*2.0DO*DIS*PI*DSIN(THETA) 
E(J) = DCMPLX(DCOS(PHI),DS/N(PHI)) 

90 	CONTINUE 

if(fel(1).gt.0) then 
do 35 if=1,nfel 

efail(if)=e(fel(if)) 
e(fel(if))=(0.0D0,0.0D0) 

35 	continue 
endif 

C CALCULATE OUTPUT (Y = YQ - YA): 

YQ = (0.0D0,0.0D0) 
DO 95 J=1,KANT 

yqf=0.0D0 
do 94,if=1,nfel 

if(j.eq.fel(if)) then 
yqf=yqf+wqh(j)*efail(if) 



endif 
94 	 continue 
95 	 YQ = YQ + WQM(J)*E(J) 

CALL MTVTMUL(WSH,NDIM,KANT,100,100,8,100,U,100) 

YA = (0.0f0, 0.0D0) 
DO 100 J=1,NDIM 

100 	 YA = YA + NAH(J)*U(J) 

Y = YQ - YA 
yqfout= cdabs(yqf) 
write(12,110)thet,Dreal(yq),Dreal(yqf) 
write(13,110)thet,dimag(yq),dimag(yqf) 
yqfout= 20.0DO*Dlog10(yqfout) 
YQOUT = CDAB8(YQ) 
YQOUT = 20.0DO*DLOG10(YQOUT) 
YAOUT = CDABS(YA) 
YAOUT = 20.0DO*DLOG10(YAOUT) 
AOUT = CDAB8(Y) 
AOUT = 20.0DO*DLOG10(AOUT) 

WRITE (10, 110) THET,YQOUT,YAOUT 
write (11,120) thet,YAOUT 
WRITE (14, 120) THET,AOUT 

110 	FORMAT(2X,F15.8, 6X,F15.8,6X,F15.8) 
120 	format (2x, f15.8, 6x,f15.8) 
130 	format(2x,f15.8, 2x,f15.8,2x,f15.8,2x,f15.8,2x,f15.8,2x,f15.8) 
1000 CONTINUE 

RETURN 
END 



*************************************************************************** 
* 
* THIS PROGRAM CONTAINS THE FUNCTION CSIMUL, A GAUSS-ELIMINATION SUBROUTINE, 
* AND THREE MATRIX MULTIPLICATION SUBROUTINES. 

**************************************************************************** 
C 
*************************************************************************** 

FUNCTION CSIMUL(N,CMAT,CX,EPS,IND/C,NRC) 
C 	CSIMUL IS A COMPLEX (DOUBLE PRECISION) MATRIX INVERSION ROUTINE 
C 
C 	USE: 
C 	WHEN INDIC IS NEGATIVE, CSIMUL COMPUTES THE INVERSE OF THE N BY N 
C 	COMPLEX MATRIX CMAT IN PLACE. WHEN INDIC IS ZERO,CSIMUL COMPUTES 
C 	THE N SOLUTIONS CX(1)...CX(N) CORRESPONDING TO THE SET OF LINEAR 
C 	EQUATIONS WITH AUGMENTED MATRIX OF COEFFICIENTS IN THE N BY N+1 
C 	ARRAY CHAT AND IN ADDITION COMPUTES THE INVERSE OF THE COEF- 
C FICIENT MATRIX IN PLACE AS ABOVE. IF INDIC IS POSITIVE, 
C 	THE SET OF LINEAR EQUATIONS IS SOLVED BUT THE INVERSE IS NOT 
C 	COMPUTED IN PLACE. THE GAUSS-JORDAN COMPLETE ELIMINATION METHOD 
C 	IS EMPLOYED WITH THE MAXIMUM PIVOT STRATEGY. THE RESULTING VALUE 
C 	IN LOCATION CSIMUL IS THE COMPLEX DETERMINANT OF THE SYSTEM. 
C 

IMPLICIT COMPLEX*16 (A-H 2 O-Z) 
REAL*8 EPS 

COMPLEX*16 CMAT,CX,Y,DETER,PIVOT,CIJCZ,CSIMUL 
DIMENSION IR(100),JC(100),JORD(100),Y(100),CMAT(NRC,NRC+1) 
DIMENSION CX (NRC) 
t4AX•N 

IF(INDIC.GE.0)MAX•N+1 
IF (N . GT . NRC-1 ) THEN 

WRITE (5,200) 
CSIMUL•DCMPLX(0.0d0,0.0d0) 
RETURN 

END IF 
DETER•DCMPLX(1.,0.) 
DO 18 K•1,N 
KWIC -1 
PrVOT•DCMPLX(0.d0,0.d0) 
DO 11 I•1,N 
DO 11 J=1,N 
IF(K.EQ.1)GO TO 9 
DO 8 IS•1,KM 
DO 8 JS•1,KM 
IF(I.EQ.IR(IS))GO TO 11 

8 IF(J.EQ.JC(JS))GO TO 11 
9 IF(CDABS(CMAT(I,J)).LE.CDABS(PIVOT))G0 TO 11 

PIVOT•CMAT (I, J) 
IR(K)•I 
Jc(x)....7 

11 CONTINUE 
IF(CDABS(PIVOT).GT.EPS)G0 TO 13 

c 	print*,'pivot*,pivot 
CSIMUL=DCMPLX(0.d0,0.d0) 
RETURN 

13 DETER•DETER*PIVOT 
DO 14 J•1,MAX 

14 CMAT(IR(K),J)=CMAT(IR(K),J)/PIVOT 
CMAT(IR(K),JC(E))•1.0DO/PIVOT 
DO 18 I•1,N 
CIJCK•CMAT(I,JC(K)) 
IF(I.EQ.IR(K))GO TO 18 
CMAT(I,JC(K))•-CIJCIVPIVOT 
DO 17 J•1,MAX 



17 IF(J.NE.JC(K))CMAT(I,J)=CMAT(I,J)-CIJCX*CMAT(IR(K),J) 
18 CONTINUE 

DO 20 I=1,N 
JORD(IR(I))=JC(I) 

20 IF(INDIC.GE.0)CX(JC(I))=CMAT(IR(I),MAX) 
INTCH=0 
NM=N-1 
DO 22 I=1,1424 
IP=I+1 
DO 22 J=IP,N 
IF(JORD(J).GE.JORD(I))GO TO 22 
JT=JORD(J) 
JORD(J)=JORD(I) 
JORD(I)=JT 
INTCH=INTCH+1 

22 CONTINUE 
IF((INTC11/2)*2.NE.INTCH)DETER=-DETER 

24 IF(INDIC.LE.0)GO TO 26 
CSIMUL=DETZR 
RETURN 

C IF INDIC IS NEGATIVE OR ZERO, UNSCRAMBLE THE INVERSE 
26 DO 28 J=1,N 

DO 27 I=1,N 
27 Y(JC(I))=CMAT(IR(I),J) 

DO 28 I=1,N 
28 CMAT(I,J)=Y(I) 

DO 30 I=1,N 
DO 29 J=1,N 

29 Y(IR(J))=CMAT(I,JC(J)) 
DO 30 J=1,N 

30 CMAT(/,J)=Y(J) 
CSIMUL-DETER 
RETURN 

200 FORMAT(13H N IS TOO BIG) 
END 

*********************************************************************** 
* 
• THIS SUBROUTINE USES GAUSS ELIMINATION WITH NO PIVOTING TO SOLVE 
• THE MATRIX EQUATION Ax = b, WHERE A IS AN N BY N COMPLEX MATRIX, 
• X IS AN N BY 1 UNKNOWN COMPLEX VECTOR, AND b IS AN N BY 1 KNOWN VECTOR. 
• IT IS A WELL KNOWN FACT THAT GAUSS ELIMNATION WITH NO PIVOTING IS 
• EQUIVALENT TO LU-DECOMPOSITION. 

SUBROUTINE GAUSS(A,B,X,N,NRC) 
COMPLEX*16 A,B,X,Q 
DIMENSION A(NRC,NRC), B(NRC), X(NRC) 

C AUGMENTE THE MATRIX A TO INCLUDE B: 

DO 10 I=1,N 
10 	A(I,N+1) = B(I) 

C CHECK THE DIAGONAL OF A TO DETERMINE IF THERE IS AN 0,0 ELEMENT: 

DO 20 I=1,N 
IF (A(I,I) .EQ. (0.0D0,0.0D0)) THEN 
WRITE(*,*)' AN ERROR HAS OCCURED IN THE GAUSS SUBROUTINE.' 
STOP 
ENDIF 

20 	CONTINUE 

C ZERO ENTRIES (I+1,I), (I+2,I),...,(N,I) IN THE AUGMENTED MATRIX: 

DO 30 /=1,N-1 
DO 30 K=I+1,N 



-k(K2I)/A(I,I) 
A(K, I) ■ (0.0D0, 0.0D0) 
DO 30 J-I+1,N+1 

A (K, J) alt  Q*A(I,J) + A(K,J) 
30 	CONTINUE 

C BACKSOLVE TO OBTAIN A SOLUTION TO AX ■ B: 

X (N) ■ A (N, N+1) /A (N, N) 
DO 40 K■1 , N-1 

Q■0.0 
DO 35 J■1, K 

35 	 QiuQ+A (N-K, N+1-J) *X (N+1-J) 

	

X (N-K) 	(A (N-K, N+1) -Q) /A (N-K, N-K) 
40 	CONTINUE 

RETURN 
END 

********************************************************************** 
* 
C THE FOLLOWING THREE SUBROUTINES ARE USED TO MULTIPLY: TWO COMPLEX 
C MATRICES, A VECTOR AND A MATRIX, AND A MATRIX AND VECTOR. 
C 
C IN THE FIRST SUBROUTINE, TWO MATRICES ARE MULTIPLIED. THE FOLLOWING 
C IS INPUT: MATRICES A AND B, THE DIMENSION OF MATRIX A (K x L) , 
C THE DIMENSION OF MATRIX B (M x N) , AND THE DIMENSION OF THE ARRAYS. 
C C ■ A*B IS CALCULATED. 

SUBROUTINE MATMUL (A, K , L, KM, LM, B, N,2424, NM, C, IM, JM) 
COMPLEX*16 A, B, C 
DIMENSION A (KM, 12M) , B (1421, NM) C (IM, 014) 

DO 10 Ina, K 
DO 10 J=1 ,N 

C (I, J) (0., O.) 
DO 10 LPPool, L 

C(I,J) ■C(I,J)+A(I,LPP)*B(LPP,J) 
10 	 CONTINUE 

RETURN 
END 

C THE FOLLOWING SUBROUTINE IS USED TO MULTIPLY A VECTOR BY A MATRIX 
C C ■ A*BIS SOLVED, WHERE THE 151  1xL, THE MATRIXB IS 
C L x N, AND THE VECTOR C IS 1 x N. 

SUBROUTINE VTMTMUL (A, L, 124, B, N,I414, NM, C, JM) 
COMPLEX*16 A, B, C 
DIMENSION A (LM) B (MM, NM) C (OM) 

DO 20 I■1,N 
C(I) ■ (0.,0.) 
DO 10 J4441,L 

C(I) ■ C(I)+A(J)*B(J,I) 
10 	CONTINUE 
20 	CONTINUE 

RETURN 
END 

C THE FOLLOWING SUBROUTINE IS USED TO MULTIPLY A MATRIX BY A VECTOR. 
C C A*B IS SOLVED, MERE THE MATRIX A IS L X M, THE VECTOR B IS 24 x 1, 
c AND THE VECTOR C IS L x 1 . 

SUBROUTINE MTVTMUL(A,L,N,LM,MM,B,3M,C, IN)  
COMPLEX*16 A, B C 
DIMENSION A (L24,2414) B (.724) C (IM) 



1 
1 

DO 10 II•11,L 
C(I) in (0.,0.) 
DO 10 4.7•11,M 

C(I) In  C(I)+A(I,J)*B(J) 
10 	CONTINUE 

RETURN 
END 

I 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68

