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SUMMARY

Software Defined Networking (SDN) is widely regarded as the next generation net-

working technique, which can create programmable, automated, and agile networks whilst

reducing costs. The core of SDN is to separate and logically centralize network control

from its data plane. To achieve this separation, most SDN implementations use the de

facto southbound protocol OpenFlow as the communication interface between the control

and data planes. However, the scalability problem bottlenecks the deployment of SDN

OpenFlow for large networks. The roots of SDN OpenFlow scalability problem are the

centralized architecture of the control plane and the unmatched capabilities of OpenFlow

switches to deal with the massive events generated by the fine-grained granularity control

mechanism.

The objective of this thesis is to address the fundamental problems of scaling SDN

OpenFlow networks. On the control plane, this work first investigates the scalability per-

formance of all existing non-centralized control plane architectures versus the centralized

one in order to answer the question, “which control plane architecture scales the best?”

These comparisons are based on the observation that flow setup and statistic collection are

the two main bottlenecks which limit the scalability performance of SDN OpenFlow net-

works. The simulation results show that the hierarchical control architecture and the peer-

to-peer control architecture with local view (a.k.a., distributed control plane) are the most

two scalable control architectures. With this conclusion, this work then aims to address the

most important challenge, eastbound/westbound interface design, for the distributed con-

trol plane, which is more feasible for scaling across geographies than the hierarchical one.

Specifically, the designed protocol focuses on traffic engineering, where path aggregation

is applied to reduce the exchange message overhead and table sizes with little performance

loss. As for the data plane, this research works around the hardware manufacturing related

limitations such as CPU and bus bandwidth by improving the utilization of the existing

xv



precise hardware resources and reducing control overheads to mitigate the scalability prob-

lem. Specifically, machine learning techniques are exploited to improve proactive flow

entry deletion and flow entry eviction. The full stack of applying machine learning to solve

these two problems are presented, including dataset collection, feature definition and se-

lection, model selection and training, and how to integrate the trained model with the flow

table management policies. The provided theoretical analysis and simulation results in this

thesis lay out the foundation for the deployment of large scale SDN OpenFlow networks.

xvi



CHAPTER 1

INTRODUCTION

Software Defined Networking (SDN) is revolutionizing network deployment and manage-

ment. Google, Amazon, Facebook, and other industrial giants have heavily invested and

researched in SDN both in their data centers and wide area networks. For example, Google

leveraged SDN principles to build its Jupiter network which achieves a capacity increase of

100x [1]. NTT also launched Software Defined Wide Area Network (SD-WAN) platform

with coverage spanning over 190 countries in 2017 [2]. The core of SDN is to separate

and logically centralize network control from its data plane. With this separation, network

operators can implement any choosing control policy with small costs. In this way, the in-

troduction of network innovations can be very fast and the management of large networks

can be radically simplified and automated. To achieve this separation, OpenFlow protocol

[3] is developed to serve as the southbound protocol of SDN, which specifies the interaction

between the control and data planes.

1.1 Motivation and Research Objectives

Although the significance of SDN OpenFlow is commonly identified, its scalability prob-

lem bottlenecks the deployment of large SDN OpenFlow networks. To be specific, the

roots of SDN OpenFlow scalability problem are:

• Centralized control architecture is not scalable. In SDN OpenFlow networks, all

physically distributed switches should communicate with the logically centralized

controller through OpenFlow protocol, including path setup, statistics collection,

and state maintenance. This centralized control mechanism, on one hand, results

in large event processing delays. For example, D. Erickson measured the perfor-
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mance of different OpenFlow controllers and reported that the latency for processing

one Packet In varies between 24 us and 145 us [4]. Kuźniar et al. also found

that the state of data plane can fall behind the control plane by up to 400 ms for

Pica8 P-3290 switches [5]. On the other hand, the controller has to process a massive

amount of events, which incurs unexpected and large queueing delays, which will be

investigated in Chapter 6.

• Fine-grained control mechanism makes flow numbers explosively grow. SDN

allows fine-grained control of traffic flows in the network. In traditional networking,

a flow is typically defined as a 5-tuple: source IP address, destination IP address,

source port, destination port, and protocol. In the context of OpenFlow, the granular-

ity of a flow can be much finer. OpenFlow 1.5.0 [3] defines 45 fields which can be

used to identify a flow such as VLAN ID, TCP flags, and packet type. This means a

classical 5-tuple flow can be split into tens of flows in OpenFlow switches. Given the

number of flows following the classical 5-tuple flow definition by itself is huge, for

example, the arrival rate of flows can reach 10,000 flows per second per server rack in

data centers [6], this fine-grained control mechanism makes flow numbers even more

terrific and the consequently massive events make both switches and controllers very

stressful in terms of computational and communicational overheads.

• OpenFlow switches are not powerful. OpenFlow switches are weak in terms of

computation ability, bus bandwidth between management CPU and ASIC, and mem-

ory size due to cost control. For example, the measured loopback bandwidth between

the ASIC and the management CPU is just 80 Mbit/sec in the HP 5406zl [7]. In this

case, the latency involved in generating events can be large. According to K. He et al.

[8], the latency for an Intel FM6000 switch to generate a Packet In message can

reach 8 ms in the case of flow arrival rate = 200 flows/sec. Similar measurements on

Broadcom 956846K show that latency for flow entry insertion (modification) is 3 ms

2



(30 ms), which is much higher than what native TCAM hardware can support (100M

updates/s). Another challenge for OpenFlow switches is the limited size of flow ta-

bles. The kernel of OpenFlow is a packet processing pipeline consisting of several

flow tables. A flow table contains a set of flow entries, which are used to match and

process incoming packets (e.g., forward the packet to a port, modify the packet). In

most commodity OpenFlow switches, flow table is placed in Ternary Content Ad-

dressable Memory (TCAM) which can achieve single clock cycle lookup. Due to

power, cost, and silicon area constraints, the size of TCAM is very limited. As re-

ported by G. Lu et al., the Broadcom chipset which is widely used in commercial

switches can only accommodate 2000 flow entries [9].

This thesis focuses on designing the non-centralized control architecture, including the

relevant important applications, in order to break the limitation incurred by the centralized

control plane. On the data plane, this thesis works around the hardware manufacturing

related limitations. Instead, machine learning techniques are exploited to optimize the

existing flow table management policies. It mitigates the scalability problem from two

aspects. One is to improve the utilization of the precious flow tables such that more flows

can be handled. The other one is to reduce the control overhead such that fewer events are

needed to be processed for both the controller and switch. The objective of this work is to

address the challenges therein and thus take the deployment of large scale SDN OpenFlow

network further.

1.2 Contributions

The primary contributions of this work are:

• The first contribution (Chapter 3) is to answer the question, “Which control plane ar-

chitecture is the most scalable?” All SDN control architectures are classified into five

categories, each of which behaves significantly different from the perspective of how

3



controllers cooperate with each other. Simulation is proofed to be the best approach

to compare the scalability performance of the five control plane architectures. Fur-

thermore, simulators are developed for these five control architectures based on the

abstractions on flow setup and statistic collection processes, which are the two main

processes limiting the scalability performance of SDN OpenFlow networks. Various

simulation experiments are conducted in different networking scenarios. Through an-

alyzing the simulation results, the hierarchical and the peer-to-peer with local view

(a.k.a. distributed) control architectures are concluded as the most two scalable ar-

chitectures.

• The second contribution (Chapter 4) is that a novel eastbound/westbound protocol,

SDNi-TE, for the distributed control plane is proposed to enable traffic engineering

across SDN domains. Specifically, this protocol specifies what information is ex-

changed between neighboring domains and how the information is organized and

handled such that a consistent global view of the whole network can be constructed

for each SDN domain. To minimize message overhead and table size, path aggrega-

tion is applied in SDNi-TE where only one aggregated path for each (source, destina-

tion) pair is advertised. Experiments are conducted on various top-down hierarchical

topologies with different traffic engineering algorithms. Experiment results show

that networks operated with SDNi-TE can achieve nearly the same performance as

the one with God’s knowledge (the full information of the whole network).

• The third contribution (Chapter 5) is that Smart ProactivE Entry Deletion for Open-

flow (SPEEDO) is proposed to enable the controller to proactively delete the pre-

dicted Least Recently Used (LRU) flow entry when a flow table is close to be over-

flowed. LRU proactive deletion by itself is not practical for OpenFlow controllers be-

cause controllers cannot track the order of flow entry accesses in real time. However,

SPEEDO can learn from the historical data of flow entry installations and deletions,
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and thus predict the time when a flow entry will be last referred to. Based on the

predictions, the flow entry with the smallest last refer time (a.k.a. LRU flow entry)

is proactively deleted in the presence of flow table overload. Case studies are con-

ducted to examine the overhead and performance of this novel policy, whose results

show that SPEEDO can achieve 85%∼ 96% performance of the infeasible LRU pol-

icy. Furthermore, compared with the random deletion and First-In-First-Out (FIFO)

deletion policies, SPEEDO can achieve up to 23% fewer capacity misses, as well as

a slightly decreased (2% ∼ 8%) overhead.

• The fourth contribution (Chapter 6) is that we propose Smart Table EntRy Eviction

for Openflow Switches (STEREOS) to intelligently evict inactive flow entries when

the flow table is overflowed. Specifically, LRU policy is integrated into STEREOS

to overcome the shortcoming of machine learning errors. Detailed case studies are

presented and many practical problems for implementing STEREOS such as model

selection, model size trade-off, overhead, and feature quantization are solved, which

can be a good start point for implementation in real OpenFlow switches. In addition,

the first system-level simulation tool for evaluating the effect of different flow table

management policies on network performance is developed based on ns-3. Simu-

lations based on real network packet traces show that STEREOS can increase the

usage of the flow table by over 50% and reduce the number of wrong flow entry evic-

tion by up to 80%, compared with the LRU eviction policy. Moreover, system-level

simulation results demonstrate that STEREOS can significantly reduce the control

overhead, and thus improve network throughput by 19% and reduce packet loss rate

by 70%.

1.3 Dissertation Organization

The remaining components of this dissertation are organized into the following chapters.

Chapter 2 describes the background and related work on topics on which this work is based,
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including the reasons why SDN is promising to initiate a networking revolution, OpenFlow

protocol development, SDN OpenFlow scalability problem, eastbound/westbound protocol

design for distributed SDN, traffic engineering in SDN, and flow table management poli-

cies. Chapter 3 elaborates how different SDN architectures are abstracted in terms of flow

setup and statistic collection to build simulators such that comprehensive comparisons are

conducted to answer the question “which control architecture is the most scalable?” Chap-

ter 4 explains the novel eastbound/westbound interface (SDNi-TE) designed specifically for

traffic engineering in the distributed SDN. Chapter 5 and 6 describes how to use machine

learning techniques to optimize flow table management. A regression model is trained to

predict which flow entry has the smallest last refer time in Chapter 5 such that controllers

can cognize which flow entry should be proactively deleted when flow table overflow is

going to happen. In Chapter 6, a binary classification model is trained and integrated with

the flow entry eviction policy to help OpenFlow switches to identify and evict inactive flow

entries in the case of flow table overflow. This work is finally concluded with an eye toward

future research in Chapter 7.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 SDN and OpenFlow

In traditional networking, network devices consist of two components: data component

and control component, as shown in Figure 2.1. The data component is responsible for

doing line-rate packet switching, while the control component controls the behavior of

the data component according to the applications installed. For example, routing applica-

tion/protocol controls which port a packet should be outputted. With the traditional net-

working paradigm, networking innovations are very hard to be verified and implemented.

The main reason is that network devices are closed and vertically-integrated bundling soft-

ware and hardware. In general cases, network devices are equipped with specific soft-

ware developed by their manufacturers. The software cannot be modified by common re-

searchers to verify new ideas. In addition, to implement an innovation (e.g., access control,

load balancing), the control components have to be manually upgraded one by one in the

network since the traditional network is operated in a distributed way. Besides, the legacy

networking is also ill-suited to handle today’s heterogeneous and dynamic network traffic
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(b) Software Defined Networking(a) Traditional Networking
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Data 
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Figure 2.1: Traditional networking v.s. Software Defined Networking
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due to the following contradictions [10], [11]:

• The need of the enforcement of complex and high-level policies versus Distributed

low-level network configuration ability: In today’s network, explosively emerged

applications, including interactive and dynamic multimedia streams, Internet of Things,

e-health, e-commerce, cloud computing, and so on, require various levels of QoS/QoE.

To deliver the required QoS/QoE, network operators need to deploy complex and

high-level policies to respond to various network events (e.g., traffic shifts, intru-

sions). However, in the traditional distributed networking, this can be only im-

plemented through a highly constrained set of low-level device configuration com-

mands. What makes it worse, a policy generally involves many network devices,

which have to be configured one by one.

• Explosively growing and heterogeneous network versus Inefficient network con-

trol and management: Networks are growing explosively both in size and com-

plexity. According to Cisco, over 500 billion devices are expected to be connected

to the Internet by 2025 [12]. In addition, switches, routers and a wide range of spe-

cialized Middleboxes (e.g., network address translation, firewall, application layer

gateway) coexist in the network. All these devices are controlled by their own con-

figuration tools and operated according to specific protocols. From this perspective,

the traditional distributed networking paradigm is definitely not efficient to control

and manage these numerous and heterogeneous networking devices.

• Super dynamic network status versus Static and manual configuration adjust-

ment ability: Networks are not only growing explosively in size and complexity,

but also in dynamicity. Tremendous applications and the mobile behaviors of users

make traffic patterns and network conditions change in a rapid and significant way.

However, network configuration methods in traditional networking cannot timely re-

act to continuously changing network status. Instead, it can only handle a snapshot
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of the network state. Although external tools are developed to automate the reconfig-

uration of network devices responding to network events, frequent misconfigurations

are inevitable.

In order to resolve the above challenges, Software-Defined Networking (SDN) initiative

led by the Open Networking Foundation proposes a novel open architecture where the

control plane and the data plane are physically separated with each other, as shown in Fig.

2.1. With SDN, the control plane and data plane can evolve independently since these two

planes are not integrated. To be specific, the benefits of SDN are threefold:

• Network innovations can be introduced more easily. Instead of using a fixed set of

configuration commands in a command line interface (CLI) environment, network in-

novations can be implemented by high-level programming language (e.g., P4 [13]),

which is much more efficient for networking application development and mainte-

nance.

• Network applications can be more intelligent and elaborate. The control plane in

SDN actually plays the role of a network operating system, which provides abstrac-

tions (e.g., global network view) to applications running on it. In this way, more

intelligent and elaborate applications can be developed to handle various network

scenarios. For example, traffic engineering can be optimized since the controller

has the full knowledge (e.g., topology, traffic, link utilization) of the network in its

control [14].

• Centralized and automatic control. Since all control logic are centralized in the con-

troller, operators do not need to configure all network devices individually. Instead,

programming the applications running on top of the controller can directly manipu-

late network behaviors.

OpenFlow [3] is the de facto standard southbound protocol for SDN, which is designed

for enabling the communication between the controller and switches. As shown in Fig.
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Figure 2.2: Main components of an OpenFlow switch. This figure is regenerated from [3].

2.2, OpenFlow mainly specifies components (e.g., ports, flow table, group table) and ba-

sic functions (e.g., flow match, pipeline processing) of OpenFlow switches. In addition,

OpenFlow defines the interactions between OpenFlow controllers and switches. The for-

mats of messages are specified as well. With OpenFlow, the control logic is carried by

various flow entries in the flow tables. Each flow entry instructs the switch how to handle

the matched packets such as forwarding a packet to a specified OpenFlow port, process-

ing a packet through the specified group, and dropping a packet. These flow entries are

installed/modified/deleted by the controller according to the applications running and net-

work states collected from switches. More relevant details of OpenFlow will be discussed

in the rest of the dissertation.
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2.2 Scalability of SDN OpenFlow Networks

The scalability of a computer system is a multi-dimensional and controversial topic. It can

be defined as the system’s capability of increasing its speed in proportion to the increase

of resources (e.g., processor, memory). It can also be referred to the ability to keep the

efficiency fixed in case of increased problem size with more resources. In the context of

SDN OpenFlow, there are few efforts quantifying the scalability of SDN networks. J. Hu

et al. [15] adopted productivity based scalability metric, where the productivity is defined

as ϕT/C, ϕ is the throughput of the control plane in processing network requests, T is the

average response time of each request, and C is the cost to deploy the control plane. M.

Karakus et al. [16] used the ratio of workload (the number of flows entering the network

through the data plane) over overhead (the number of messages processed in the control

plane) to evaluate the scalability of SDN control plane. However, most researches measure

SDN OpenFlow scalability in terms of typical Quality of Service (QoS) parameters such as

throughput, path installation time, link utilization, and latency.

To scale SDN OpenFlow networks, we need to make both the control and data planes

scalable. In the control plane, we can make the controller more powerful by exploiting

parallelism to increase the speed of processing a massive amount of events. Beacon [4]

used multiple network I/O threads where each switch connection is handled by a unique I/O

thread such that the controller can simultaneously process events from all connections in its

control. However, all the events are processed sequentially by a series of event handlers. To

deal with this problem, Song et al. [17] proposed ParaFlow which explores event handler

parallelism (the event processing can be parallelized to some degree if the involved event

handlers are not interdependent) and task parallelism (multiple spawned tasks are executed

concurrently to accelerate the event handler with high computational complexity) to sup-

port fine-grained parallelism in event processing. Besides, GPU is leveraged to mitigate the

scalability problem of SDN controllers. For example, E. G. Renart et al. [18] implemented
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a mac learning switch GPU controller where Packet In processing, Packet Out and

Flow Mod generation are offloaded to the GPU. Besides designing a powerful controller,

redesigning the architecture of the control plane is another approach to improve the scala-

bility of the control plane. In general, there are four non-centralized control architectures

in addition to the centralized one: peer-to-peer (p2p) with local view (e.g., [19]), p2p with

global view (e.g., [20]), hierarchical control plane (e.g., [21]), and hybrid control plane

(e.g., [22]). Different from the centralized control plane, these four control planes contain

multiple controllers and each controller only controls a subset of SDN OpenFlow switches.

In this way, the control plane can be more scalable because multiple controllers can cooper-

ate to process the massive amount of the events generated in the network. For example, K.

Qiu et al. [23] proposed ParaCon which can distribute the load of path computation to mul-

tiple controllers and minimize the overhead between these controllers. Last but not least,

the applications running on the control plane can be optimized to decrease the interaction

between controllers and switches. For example, source routing encapsulates the flow’s path

information into the headers of its packets at the source switch [24]. In this way, there will

be no interaction with the controller for the intermediate switches along the routing path

during path setup. Another example is from [25], where a routing scheme is proposed to

select transit routers through the network at the edge routers such that the processed events

resulted from routing decisions of the controller can be reduced.

In the data plane, one of the key operations for OpenFlow switches is to conduct a series

of costly packet classifications and thus match packets with flow entries. To accelerate this

process, K. Qiu et al. [26] proposed GFlow where flow entries are organized into a directed

acyclic graph. Based on this graph, flow matching can be solved in a parameterizable and

effective way by exploiting the power of GPU. Another bottleneck for scaling the data plane

is flow table management. On one hand, the size of flow table is limited due to power, cost,

and silicon area. On the other hand, flow table update rate is also limited. R. Bifulco and

A. Matsiuk noticed that it is very fast to update software flow tables and deleting entries
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from TCAM-based flow tables is always much faster than adding them. Based on these two

observations, they presented ShadowSwitch which introduces a high-performance software

switching layer in the switch’s fast path [27]. When a flow entry needs to be installed, it

is first placed in the software switching layer and will eventually be moved to the TCAM-

based flow tables. In this way, flow entry installation time can be lowered.

Besides scaling the control and data planes, it’s beneficial for SDN OpenFlow scalabil-

ity to redefine the boundary between these two planes. Indeed, some level control logic can

be offloaded from controllers to switches. In other words, decisions only based on local

states should be made inside SDN switches but not controllers. A. R. Curtis et al. proposed

to enable OpenFlow switches to locally clone the wildcard rules and take a small set of

possible local routing actions [7]. G. Bianchi et al. [28] proposed eXtended Finite State

Machines (XFSM) based abstraction to enable stateful processing of flows in switches.

With this abstraction, the control logic such as port knocking and mac learning which can

not benefit from the controller’s network-wide knowledge can be offloaded to switches.

2.3 Eastbound/Westbound Protocol for Distributed SDN

The p2p with local view control architecture (a.k.a., distributed SDN control plane) is ap-

propriate to scale across geographies on which multiple SDN domains operated by different

administers reside. The key challenge for implementing distributed SDN control plane is

to design an efficient and effective eastbound/westbound protocol such that neighboring

SDN domains can communicate with each other to provide end-to-end network services,

just like the role which BGP is playing in the legacy networks. The first try of designing

such a protocol was SDNi proposed by Huawei [29]. The SDNi protocol is designed for

two goals: coordinate flow setup originated by applications and communicate reachability

information to enable inter-domain routing. It defines three types of messages: reacha-

bility update, flow setup/tear-down/update request, and capability update. However, this

proposal is very conceptional with only several concepts but no detail about what informa-
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tion should be included in their defined messages, neither do they provide a prototype. The

first prototype came from the DISCO project [19]. It uses an Advanced Message Queueing

Protocol (AMQP) based Messenger to provide a distributed publish/subscribe communi-

cation channel between adjacent SDN domains. On top of the channel, different Agents

are implemented to provide various functionalities such as path computation, reachability

advertisement, and QoS resource reservation. However, the details of the east-west pro-

tocol used in DISCO are not disclosed such as what information is exchanged, when the

information is sent, and how the information is handled. Without these details, we cannot

reproduce and optimize the protocol. The protocol in [30] gives the answer to the ques-

tion, what information should be shared among different SDN domains? According to the

authors’ proposal, reachability, topology, network service capabilities, forwarding capabil-

ities, and network status should be shared. Furthermore, the information must be trans-

formed through network virtualization before sharing such that the privacy and security

concerns can be well taken. However, it only supports multi-path routing based on differ-

ent source IP addresses, while we are more interested in delivering the traffic originated

from the same address with multiple paths. In addition, F. Benamrane et al. [31] proposed

and implemented a Communication Interface for Distributed Control Plane (CIDC) based

on event-driven paradigm which consists of Consumer, Producer, DataUpdater,

and DataCollector. Consumer and Producer manage the connections between

neighboring controllers. DataCollector is responsible for collecting various local net-

work status, while DataUpdater handles the received external data from the Consumer

such as directing it to some application and saving it on the console. However, it is not clear

how global routing is achieved in the paper and what network status are collected for the

routing.
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2.4 Traffic Engineering in SDN

Besides designing an eastbound/westbound protocol, developing key applications such as

traffic engineering, routing, and admission control is also critical to make distributed SDN

work. This work focuses on traffic engineering because it is not only of premier importance

to minimize congestion, delay and packet loss, but also can benefit a lot from SDN [14].

To be specific, the fine-grained control mechanism in SDN makes it possible to split a

flow into multiple sub-flows, thus improve the network resource utilization. In addition,

the centralized control plane can be implemented with more advanced path computation

algorithms fed with up-to-date network state information.

Traffic engineering (TE) is intensively researched in the area of networking and com-

munication. Within the context of SDN, most researches focus on the TE in one SDN

domain. In this case, the controller has the global network and application information

and thus can implement much more efficient and intelligent TE algorithms. Google’s B4

WAN connecting its data centers across the planet uses a centralized TE architecture [32].

It defines a bandwidth function for every application which specifies how much bandwidth

should be allocated to one application given the application’s relative priority. Based on

these bandwidth functions, the TE algorithm allocates edge bandwidth among competing

flow groups (flows in one flow group have same source address, destination address, and

quality of service) and adjusts the allocation splits to the granularity supported by the under-

lying hardware. Microsoft proposed to allocate bandwidth in strict precedence according

to applications’ priority classes, while applications with higher classes prefer shorter paths

[33]. Within a class, the bandwidth is split in a max-min fairness manner. Huawei presented

an adaptive dynamic multipath computation framework for centrally controlled SDN net-

works to provide the infrastructure and algorithms for resource control and management

[34]. In Huawei’s solution, historical data of topology, tenants, and application profiles are

stored in a data-warehouse. These data can be mined to exhibit flow patterns and generate
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features. With the found patterns and features, a combination of enhanced edge-disjoint

path algorithms and other heuristic optimization algorithms can optimally find more than 2

paths for every flow under various network state and traffic conditions.

Besides centralized SDN networks, another research scenario for TE is the hybrid SDN,

which consists of traditional networking elements and SDN elements. S. Agarwal et al.

first considered this scenario [35]. They made a slight modification on the routing table

in SDN switches to measure the amount of traffic between the switch and all other nodes

in the network. Along with the measurement, OSPF link weights and the traffic at the

links are taken into account during route computation. Specifically, they formulated the

TE problems in hybrid SDN as an optimization problem involving delay and packet loss

which tries to minimize the maximum link utilization. However, their formulation assumes

all link weights are fixed and same. In [36], the authors proposed a heuristic algorithm

for searching the optimized weight setting. Their algorithm starts from an initial weight

setting which is generated from the Floyd algorithm, and searches a better setting in terms

of maximum link utilization in the neighbor of the current setting until convergence. These

two solutions assume that SDN switches build their routing tables from OSPF, but M. Caria

et al. have a different perspective [37]. They proposed to partition the initial OSPF domain

with SDN switches into sub-domains. In this way, the routing inside a sub-domain can

be based on OSPF solely and remains unchanged. Meanwhile, the inter-sub-domain paths

updates can be overridden at SDN switches by the controller. Not only traffic splitting but

also next-hops construction (which hop a flow goes through) can impact the effectiveness

of TE. With this observation, the authors in [38] proposed a heuristic algorithm to adjust

the next-hops of SDN switches in forwarding graphs in order to maximize the minimum

satisfied percentage of all the flows. J. He et al. [39] did a similar job, except for that they

proposed a novel routing protocol for passing SDN traffic through traditional networks

and modeled the TE problems in two different network scenarios. Y. Guo et al. [40]

considered TE with multiple traffic metrics in hybrid SDN. To be specific, the authors
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optimized OSPF weights offline for legacy switches over the expected traffic metric which

is a linear combination of multiple representative traffic metrics found by data mining.

As for the case of distributed SDN, the research of TE is very primitive. The only

related publication which can be found online is a patent from Huawei [41]. This patent

presents a method for resource provisioning in distributed SDN for TE, which includes

receiving border element information from multiple SDN domain controllers, computing

allocation constraints based on the collected border element information, and sending the

allocation constraints to SDN controllers.

2.5 Flow Table Management for OpenFlow Switches

OpenFlow currently provides three mechanisms for flow table management [3]:

1. Flow expiry. The controller can set idle timeout and hard timeout for each

flow entry. If no packet refers to a flow entry within its idle timeout, the switch

will delete the flow entry. In addition, a flow entry will be removed from the flow ta-

ble after the given hard timeout regardless of how many packets it has matched.

2. Proactive deletion. The controller can delete flow entries by explicitly sending spe-

cific OpenFlow messages (e.g., OFPFC DELETE) to switches.

3. Eviction. In the case that the flow table is full, the switch can kick out existing flow

entries to install newly inserted flow entries instead of simply rejecting them.

Currently, most researches about flow table management focus on how to dynamically

and adaptively set idle timeout. For example, A. Vishnoi et al. proposed SmartTime

which employs an adaptive heuristic to compute idle timeout for flow entries [42]. In

SmartTime, the idle timeout of a flow will grow exponentially with respect to the flow

repeat count until reaches a predefined maximum timeout. In addition, idle timeout

will be reduced to the minimum timeout when a flow continues to have a bad average

hold factor (the sum of active time and idle time divided by the active time). H. Liang

et al. [43] investigated how to set effective idle timeout value for instant messaging
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applications. Based on an ON/OFF traffic model for instant messaging applications, the

authors tried to set idle timeout to minimize the weighted sum of the invalid lifetime

of flow entry and the rate of Packet In event generation. A. Zarek investigated the com-

plex relationship between timeouts, miss rate, and table occupancy and thus argues that

the OpenFlow controller should autonomously assign tuned timeouts to individual flows

such that network constraints (e.g., miss rate, table size, and power consumption) can be

satisfied. Furthermore, he proposed to combine fixed unified timeout with explicit con-

troller eviction messages [44]. H. Zhu et al. assigned suitable timeout depends on flows’

characteristics and conducted a feedback control on the maximum timeout [45]. To be spe-

cific, idle timeout is increased by the time interval between the re-triggering and the

last expire of a flow entry. In addition, a feedback control mechanism which adjusts max

timeout value is introduced to keep the flow table load at a suitable level. C. H. He et al.

[46] proposed to detect the FIN and RST packet of a TCP flow which indicates the end of

a flow. Once these packets are detected, the switch can then delete the corresponding flow

entry. In this way, no timeout is needed to be set. This method can only handle TCP flows

and does not work if a flow is defined in a smaller granularity than TCP. A more general

approach is proposed in [47], where Q-learning is used to learn traffic dynamics and data

plane performance such that different timeout values can be assigned to different rules.

As for the problem of proactive deletion, it remains largely under-explored so far. The

only related literature which can be found online is from A. Vishnoi et al [42], where a

random deletion policy (delete a random flow entry) and FIFO policy (delete the first in-

stalled flow entry) are proposed. Another possible strategy is to delete the least recently

used (LRU) flow entry. However, to apply LRU on the controller side, the controller has

to track the order of flow entry accesses in real time. This is infeasible within the frame-

work of OpenFlow because the controller only has non-real time accesses to coarse-grained

counters. Even if the controller can achieve real-time tracking, the overhead of signaling

will be intolerable.
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In previous versions of OpenFlow specification, new flow entries will not be inserted in

the flow table and an error will be returned to the controller if a flow table is full. However,

this approach is problematic because the service may be disrupted. From OpenFlow 1.4.0,

eviction mechanism is introduced to enable smoother degradation of behavior in the case

of flow table overflow. Once the flow table is full, the eviction enabled OpenFlow switch

can kick out existing flow entries of lower importance to install new flow entries instead of

simply rejecting them. For flow entry eviction, the key issue is to decide which flow entry

should be evicted. Intuitively, we can come up with three naive strategies: LRU, FIFO,

and random. These three policies evict the LRU, first installed, and random flow entry

respectively. A. Zarek compared the performance of these three strategies [44] based on

several real network traces and concluded that LRU outperforms the other two strategies.

Besides these three naive strategies, R. Challa et al. [48] employed multiple bloom filters

to encode the importance value of flows which captures both the locality and recentness of

reference. With these values, the switch can evict the “least important” flow entry in the

case of flow table overflow. T. Pan et al. [49] considered the heavy-tailed distribution of

network traffic, and proposed to use the correlation between flow size and flow entry evict

times to identify elephant flows. Based on the identification, the authors proposed Adaptive

Least Frequently Eviction to prevent elephant flows from being evicted by massive mice

flows through assigning elephant flows with higher priorities. B. Lee et al. [50] also took

network traffic characteristics into account but focused on the fair treatment of elephant

flows because these flows are more likely to be evicted when compared with mice flows.

To ensure fair treatment of elephant flows, they proposed a fair eviction strategy based on

LRU, where a new mice flow can only evict a mice flow and an elephant flow can only

evict an elephant flow. K. Kannan et al. [51] built a Markov based learning predictor

which captures the probability of transitioning between different intervals and evicts the

flow entry in the state where the transition being the least. Their approach is based on the

assumption that the arrivals of flows follow Poisson distributions.
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CHAPTER 3

SCALABILITY COMPARISON OF SDN OPENFLOW CONTROL PLANE

ARCHITECTURES

As discussed in Section 2.2, there are five SDN control plane architectures in total: central-

ized, p2p with local view, p2p with global view, hierarchical, and hybrid. A straightforward

question arises of which control plane architecture has the best scalability performance.

This question is significant because it is one of the primary questions to be answered when

network operators plan to deploy a large scale SDN OpenFlow networks. The answer to

this question determines the architecture and operation of the whole network. However,

it is difficult to answer this question because most implementations of these control plane

architectures are not publicly available (e.g., Orion [22], Disco [19]) due to security and

intellectual property concerns. As the first piece of this dissertation, the work in [52] tries

to answer this question by identifying the bottlenecks for scaling SDN OpenFlow networks

and abstracting the controller and switches in the five control architectures to some level

based on these bottlenecks. The identified bottlenecks are flow setup and statistic collec-

tion. Flow setup refers to the process where the controller setups a path for a coming flow

which cannot be matched with any existing flow entry. Statistic collection is the process

where the controller collects the information (e.g., configuration, capabilities, statistics)

from switches via the pull-based Read-State mechanism in OpenFlow. Based on the ab-

stractions on these two bottleneck processes, simulators can be built and thus simulation

experiments are conducted to compare the scalability performance of different control ar-

chitectures.
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3.1 Scalability Evaluation for SDN OpenFlow Control Planes

This section argues that simulation is the best approach to compare the scalability perfor-

mance of different control plane architectures. In general, all studies of scalability evalua-

tion for SDN can be classified into four classes in terms of the methodology used: empirical

approach, emulation approach, simulation approach, and mathematical modeling approach.

3.1.1 Empirical Approach

For the empirical approach, a real SDN network/testbed with physical switches, hosts,

controllers, and links should be deployed. For example, D. Erickson et al. [53] built the

Data Center Network Research Cluster, which contains 80 Google production servers. M.

Casado et al. [54] created a functional Ethane network which consists of 19 switches, 300

registered hosts and several hundred users. The empirical approach is accurate because it

investigates a real hardware network and employs no simplified abstractions. However, it

needs a large amount of resources (both hardware and software) to collect enough realistic

scalability statistics. This is the reason why the maximum size of SDN research testbeds

reported is less than 500 servers, which is much smaller than the required size (e.g., data

center network should be scaled up to hundreds of thousands of servers) to evaluate the

scalability of practical SDN networks.

3.1.2 Emulation Approach

The emulation approach is the most popular way to evaluate the performance of SDN net-

works. The de facto standard for SDN emulation, Mininet, is widely adopted by SDN

researchers to demonstrate the advantages of their proposals. In Mininet, virtual Ethernet

pairs and processes in Linux network namespace are employed to create a lightweight vir-

tualization of end-hosts, switches, routers, links, and controllers. In this way, a realistic

network running real kernel, switch, and application code can be created on a single ma-
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chine. Mininet provides Python-based APIs, which can be used to create custom topologies

of switches, hosts, links, and built-in controllers. Furthermore, Mininet can be connected

to external controllers, which can be running anywhere on the control network. Accord-

ingly, the prototypes of various SDN controllers can be developed and then connected to

Mininet for performance evaluation. For example, Disco controllers are deployed on Vir-

tual Machines (VMs) and connected to a Mininet emulated network (3 SDN WANs with

4 switches each and connected to each other) [19]. Orion [22] controllers are tested on an

emulated network with maximum 720 nodes in Mininet.

The emulation approach allows creating a network testbed that resembles a hardware

network. Without the overhead of the entire computer systems (OS, memory, etc.), it can

achieve similar results with significantly fewer resources. However, this approach is faced

with three challenges in terms of scalability evaluation:

1. It needs the source codes of external controllers, but most of them are not open source

(e.g., Kandoo, Orion, etc.);

2. Mininet has to be adapted to be compatible with some external controllers. For exam-

ple, Elasticon [55] is tested on an enhanced Mininet testbed which does not involve

any packet transmission in the data plane. ONOS [56] provides onos.py to help users

to emulate ONOS network with Mininet in a single VM. These adaptions are based

on the full knowledge of both Mininet and external controllers (e.g., implementation

details, software architecture, etc.). It is very difficult, if not impossible, to achieve

this knowledge for all external controllers of the five control planes;

3. Mininet has some limitations related to performance and resource usage. All the

networking elements (i.e., links, hosts, switches, controllers) in the emulated network

share CPU and memory resources in a single machine. Moreover, all Mininet hosts

share the host file system and PID space. Therefore, as J. Ivey et al. [57] found,

the performance significantly degrades when the emulated network scales to 1,000
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nodes and more because the memory of a single system is not enough to support the

virtualization of thousands of nodes1. As far as known, the maximal number of nodes

(controllers, switches, and hosts) in the network emulated by Mininet is 861 [57].

Furthermore, Mininet does not support virtual time and all timing measurements are

based on real time. Therefore, faster-than-real-time results are hard to be emulated.

In addition, high-speed links (e.g., 10 Gbps) cannot be supported in Mininet due to

the fact that all packets are forwarded by a collection of software switches (e.g., Open

vSwitch). These software switches have lower performance than dedicated switching

hardware. Finally, we cannot specify specific bandwidth limits or quality of service

on the default connections type in Mininet. In this case, we may use TCLinks which

employ the Linux traffic control program. However, the main Mininet process is

still under the control of the Linux scheduler of the system on which it is run. In this

way, the emulated nature of Mininet will not guarantee identical results as simulation

would.

3.1.3 Simulation Approach

Simulation is another option for evaluating the scalability performance of SDN control

planes. Different from emulation, simulation time is not intended to coincide with wall-

clock execution time. Another notable difference between simulation and emulation is that

simplified abstractions are widely used in simulations. For example, the flow simulator fs

operates on the higher level notion of a flowlet as its network abstraction instead of packets

[58]. Another example is that the switch and controller modules in the network simulator

ns-3 do not capture the operation of writing to the consistent distributed file system. These

abstractions will definitely have some impacts on simulation accuracy. However, a much

larger network can be evaluated by simulations with the abstractions. In addition, these

1We can limit the CPU bandwidth of Mininet hosts to scale the emulated network. However, this limitation
will impede the realism of the virtualized hosts. Furthermore, such limitations cannot be imposed on the
virtualized switches and internal controllers.
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abstractions allow verifying the design principles of SDN controllers by simulation. For

example, A. R. Crutis et al. [59] built a flow-level data center network simulator to evalu-

ate the performance of DevoFlow on a large-scale network. Their model only captures the

overheads generated by each flow and the coarse-grained behavior of flows. H. Owens et

al. [25] implemented Video over SDN and Explicit Routing in SDN based ns-3.

3.1.4 Mathematical Modeling Approach

The last approach for evaluating the scalability performance of SDN control planes is based

on mathematical modeling. J. Hu et al. [15] modeled the flow setup as an M/M/1 queueing

and derived the closed-form solution for the response time of flow initiation. However, to

get this solution, many unrealistic assumptions are introduced such as independent identical

distribution and unlimited controller bandwidth. Moreover, only flow setup is modeled

but not other processes such as stochastic collection and state management, which further

makes this mathematical approach less convincing.

Based on the above analysis, it is infeasible to evaluate the scalability performance

of the five existing SDN control plane architectures to use either empirical approach or

emulation approach. We cannot gather enough hardware and software resources to test dif-

ferent SDN controllers on a very large scale “real” network. Furthermore, we do not have

the source codes of the necessary SDN controllers (e.g., Kandoo, Orion). Even if we get

the source codes, it would also be very difficult to custom Mininet to be compatible with

these controllers. In addition, it is doubtable for Mininet to emulate tens of thousands of

nodes in a PC/server. Therefore, we can only apply the simulation method or mathematical

modeling approach to evaluate the scalability of the five SDN control plane architectures.

Compared with the simulation approach, mathematical modeling has to introduce unreal-

istic assumptions and can only model one specific process (e.g., flow setup). Thus, the

simulation approach is applied to compare the scalability performance of the existing SDN

control plane architectures in this work. The accuracy of this approach does be lower than
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empirical approach and emulation approach due to the level of abstraction, but it is the best

of the worst solutions and it can give us a good insight of the scalability performance of

different control plane architectures.

3.2 SDN OpenFlow Control Plane Architectures

Obviously, it is infeasible and unnecessary to implement every detail of the controller and

switch for simulations. Otherwise, it would be faced with similar problems as the emulation

approach. The methodology used in this work is to identify the bottlenecks for scaling SDN

networks and abstract the controller and switch to some level based on these bottlenecks.

Based on these abstractions, simulators can be built to run simulations.

The control plane in SDN is responsible for providing the SDN applications with an

abstract view of the network and configuring the network elements according to the logic

of the SDN applications. As discussed in Section 2.2, the scalability of the control plane

is restricted by the capability of the single controller and the signaling overhead between

controllers and switches. Specifically, the bottleneck for scaling the size of an SDN Open-

Flow network lies in flow setup and statistic collection [59], [60]. Flow setup refers to the

process where the SDN agent on the switch

1. executes a lookup in the flow tables when a new flow comes in;

2. if no match of this flow is found, a new flow request is sent to the controller;

3. the controller responds the request with a new forwarding rule and sends it to the

switch;

4. the switch updates its flow tables according to the received rule.2

Statistic collection is the process where the controller collects the information from switches

via the pull-based Read-State mechanism. To be specific, the OpenFlow controller can send
2Actually, this is reactive flow setup. Flow setup can also be proactive, where the controller populates the

flow table ahead of time for all traffic matches that could come into the switch. In this work, only reactive
flow setup is considered.
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Figure 3.1: Five existing SDN OpenFlow control plane architectures.

requests to switches periodically or upon the requests from control applications. These re-

quests ask switches to report its status, including changes to flow tables made by other

controllers, capabilities and configurations of existing tables, table statistics (e.g., number

of packets hitting table), meter statistics (e.g., maximum number of meters), port statis-

tics (e.g., number of received packets), flow statistics (e.g., priority of a flow entry), queue

statistics (e.g., number of packets dropped), group statistics (e.g., time a group has been

alive), and so on. In the presence of receiving a state request, the OpenFlow switch should

send reply messages to the controller according to the formats defined in OpenFlow. In

the following, the five existing control plane architectures, as shown in Figure 3.1, will be

described in terms of these two scaling limitations: flow setup and statistics collection.

3.2.1 Centralized Control Plane

In a centralized control plane, only one logically centralized controller manages the whole

network. All flow initialization requests are sent to this controller, and it sends flow in-

stallation messages to one or many related switches according to its control logic. As for
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statistics collection, the controller will periodically send state requests to all switches in its

control to gather resource states. Receiving the state request message, the switch will send

state respond messages back to the controller. Examples of the centralized control plane

are Ryu, POX, NOX, etc.

3.2.2 P2P Control Plane with Local View

In the P2P control plane, there are multiple controllers. Each controller controls a sub-

network of the whole network and these controllers have a peer relationship. The controller

has either the local view of the sub-network in its control or the global view of the whole

network. In the P2P control plane with local view, the neighboring sub-networks are ab-

stracted as logical nodes. In this way, the controller can propagate the flow initialization

request to its neighbors and thus set up global flows. Specifically, receiving a flow request,

the controller first identifies whether the destination host of this flow is in its control. If

it is, the controller responds to one or many switches in its control with flow installation

messages. Otherwise, a new flow initiation request is generated and sent to one of the

neighboring controllers. The neighboring controller processes the request as above until

the destination host is reached. As for statistics collection, each controller only needs to

collect the statistics of the sub-network it controls. (i.e., the controller sends state request

messages to the switches in its control and the switches respond with state response mes-

sages.)

3.2.3 P2P Control Plane with Global View

Different from the P2P control plane with local view, each controller has a global view

of the network and does not abstract the neighboring domains as logical nodes in the P2P

control plane with global view. This global view is acquired through the communications

between adjacent SDN controllers. With the global view, the controller by itself can process

all the flow initialization requests generated by the switches in its control. Specifically, the
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controller will send flow setup messages to the required switches regardless of whether or

not they are in its control. The statistics collection in P2P with global view is exactly the

same as in P2P control plane with local view.

3.2.4 Hierarchical Control Plane

In the hierarchical control plane (e.g., Kandoo [21]), the controllers are organized in a tree

structure. Generally speaking, there are two layers in the control plane. The top layer

consists of only one root controller while the bottom layer has multiple local controllers.

The local controller directly manages the sub-network in its control and only has the view

of the sub-network. Furthermore, there is no interconnection among the local controllers.

The root controller abstracts each local controller and its sub-network as one logic node. In

this way, the root controller can manage the local controllers and has the full view of these

logical nodes. This hierarchical structure can keep most of the frequent events handled

by the local controllers and thus shield the root controller. Within this structure, the flow

initialization request will be processed by the local controller and/or the root controller. If

the destination host and the source host of a flow are managed by the same local controller,

the flow initialization request will be only processed by the local controller. Otherwise, the

local controller will relay the request to the root controller, which will then delegate the flow

installation response to the respective local controllers. These local controllers will send

flow setup messages to their switches based on the response from the root controller. In this

way, a new global flow is established. Statistics collection in the hierarchical control plane

will be much more complex than the two planes have been discussed. The local controller

not only needs to collect the statistics from the switches but also may want to collect from

the root controller. For example, the local controller can request topology information from

the root controller. Moreover, the root controller needs to gather the statistics of the logical

nodes (note that a logical node is abstracted from a local controller and the sub-network in

its control).
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3.2.5 Hybrid Control Plane

The hybrid control plane is a combination of the hierarchical control plane and the P2P

control plane with local view. In the hybrid control plane, the whole network is divided

into several SDN domains without overlapping. Each domain is managed by a hierarchi-

cal control plane, consisting of one root controller and multiple local controllers. These

root controllers are organized in the P2P way, where the root controller only has the local

view of its domain but can synchronize the global abstracted network view through some

distributed protocol (e.g., SDNi). Within this control plane, the flow installation is straight-

forward. The flows can be divided into three types: local flow, domain flow, and global

flow. If the source host and destination host of a flow are managed by the same local (root)

controller, the flow is a local (domain) flow. Otherwise, it is a global flow. The local flow

initialization request is only processed by the local controller. The domain flow is pro-

cessed by the root controller first and then will be split into multiple local requests which

will be processed by the respective local controllers. The global flow installation involves

multiple SDN domains and is processed as the following:

1. the root controller processes the flow request in the same way as the one of domain

flow;

2. if the flow request is a global request, a new flow request (either global flow or

domain flow) is generated and sent to the neighboring root controller. Otherwise,

stop.

3. the neighboring root controller processes the received request as 1) and 2).

The statistics collection in each domain is independent and same as in the hierarchical

control plane.
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3.3 Simulation Implementation and Configuration

3.3.1 Control Plane Abstraction and Implementation

Note that we are primarily concerned with the control plane traffic load for evaluating the

scalability performance of SDN control planes, thus it is unnecessary to simulate packet

transmission on the data plane. Therefore, like in [55], an OpenFlow switch is abstracted

as an entity which sends a Packet In message to the controller when a new flow arrives

without actually transmitting packets on the data plane. Furthermore, the switch will check

whether the flow entries in the flow table are expired, which incurs Flow Removed mes-

sage transmission in the case of expiration. In addition, the switch needs to handle the re-

ceived packets (e.g., Flow Mod) from the controller. On the controller side, the controller

needs to periodically pull the statistics of the switches in its control. It also needs to han-

dle the Packet In message, including packet decoding, policy decision, and Flow Mod

transmission. Besides the switch and the controller, we abstract the control channel as a

TCP socket. To build the control channel, the switch needs to launch the connection and

the controller has to start a socket to listen for incoming connection attempts.

Based on these abstractions (shown in Figure 3.2), OpenFlow switch and controller

applications for the existing five SDN control plane architectures are individually imple-

mented in ns-3. These applications allows the nodes in the simulated topology to set

up flows and/or gather statistics. To be specific, the implementation is comprised of the

SdnSwitch class for all five control planes, SdnController class for the centralized

control plane, SdnControllerLocal for the P2P with local view, SdnControllerGlobal

for the P2P with global view, SdnLocalController and SdnHiRootController

for the hierarchical, SdnLocalController and SdnHyRootController for the

hybrid. The SdnSwitch object can establish the socket connection with the controller

object, send packets (i.e., Packet In, Flow Removed, Multipart Res messages) to

the controller, receive and handle packets (Flow Mod, Multipart Req messages), and
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Figure 3.2: The abstractions of the controller, switch and control channel used in the sim-
ulators based on ns-3.

periodically check whether the flow entries in its flow tables are expired. The SdnController

object can respond to the flow initialization request with a Flow Mod message for path

setup, periodically send Multipart Req message to the switch to gather the statistics,

and receive and handle the packets from the switch. The SdnControllerGlobal is

the same as SdnController except that it can access other controllers to get the global

view. Similarly, the SdnHiRootController is the same as the SdnController

except that it needs to respond to the Multipart Req messages from the local con-

trollers. The SdnControllerLocal extends the SdnController to be able to split a

global flow initialization request into multiple ones and send them to other controllers. The

SdnHyRootController also extends SdnHiRootController in the same way.

The SdnLocalController is slightly more complicated than SdnController be-

cause it not only needs to pull the statistics from the switches and respond to the flow

initialization request from the switches but also pull the statistics from the root controller

and process the Multipart Req and Flow Mod from the root controller.

Moreover, we need to model the time spent by the CPU in the controller in processing
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the flow initialization request. The assumption in [15] that the time for responding to

an initial flow setup packet is determined by Cg(V,E) is used to model CPU processing

time, where C is a constant representing the CPU speed, g(V,E) is the time complexity

to run the routing and/or traffic engineering algorithms in the graph (V,E). In this work,

g(V,E) = V 2 which is the complexity of the Dijkstra’s algorithm. In addition, we also

need to model the time spent by the switch in pulling the statistics from its flow tables.

According to A. R. Curtis etc. [59], the latency of statistics gathering is almost linear to the

size of the flow table. Therefore, L = KN is employed, where L is the latency, N is the

number of flows in the flow table, and K is a constant reflecting the speed of the switch to

gather the statistics from its flow tables.

3.3.2 Traffic Model and Topology

Since only flow setup and statistics collection are necessary to be simulated, the real con-

cerns for the simulations are when a flow arrives and a statistics request happens, but not

the packets in the flow (these packets go through the data plane). Moreover, we do not

care which path a flow goes through is, but only how many switches are involved in the

path. In this way, the size of the simulated network is the concern in simulations but not the

topology. This makes sense because we aim to study the scalability of the control planes

regardless of network topology. Therefore, a simplified topology, where each switch is

connected to Nh hosts and these hosts are not connected with each other, is simulated. To

model the number of switches a flow goes through, the parameter Df , which is the number

of switches a flow passes through on average, is introduced. This parameter is defined in

different ways for different control plane architectures. Df = DcDs for the P2P control

planes and the hierarchical control plane and Df = DdDcDs for the hybrid control plane,

whereDd is the number of SDN domains crossed by a flow, Dc is the number of controllers

in a domain involved in setting up a flow on average, Ds is the average number of switches

a flow goes through in a sub-network. As for the flow arrival, we assume that the time
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interval of flows at a host is subject to exponential distribution3. Therefore, the arrival of

flows at the switch is subject to the Poisson distribution with an average inter-arrival time

λ.

3.3.3 OpenFlow

This simulation-based study is based on OpenFlow 1.3, which is a generally widespread

protocol in SDN. (Since flow setup and statistics collection are same for both OpenFlow

1.3 and the latest OpenFlow 1.5 except that the latest OpenFlow defines different mes-

sages, this research can be easily extended to OpenFlow 1.5.) In OpenFlow 1.3, the flow

initialization request is packed in Packet In message and the flow installation response

is carried by Flow Mod, which instructs the switch to install a specified flow table en-

try. For statistics collection, the controller can send Multipart Req, Feature Req,

Queue Get Config Req, etc. to the switches to query the relevant information. Ac-

cordingly, the switches will respond to the controller with Multipart Res, Feature Res,

Queue Get Config Res. In this study, only the process that the controller periodi-

cally sends Multipart Req to the switches and they respond with Multipart Res

is considered. This is because Multipart Req can be used to query the states of the

flow, table, port, queue, group, meter, etc. and it is most frequently used. (Actually,

Queue Get Config Req and Feature Req no longer exists in OpenFlow 1.4 and 1.5,

and their functionalities are integrated into Multipart Req.) Furthermore, the commu-

nication between the root controller and the local controller in the hierarchical control plane

is assumed to be OpenFlow based. This is reasonable because the local controller and its

sub-network are abstracted as a logical node for the root controller. This assumption also

applies to the hybrid control plane. In addition to flow setup and statistics collection, the

flow remove process is also simulated in this study, which is critical to simulate the delay

of statistics collection. A flow entry is removed when idle timeout or hard timeout occurs.

3Actually, you can change the statistics of the distributions as you want in simulations. The exponential
distribution used here is just for illustration and comparison.
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An idle timeout happens when no packets are matched in a period time, and a hard time-

out happens when a certain period of time elapses, regardless of the number of matching

packets.

3.3.4 Simulation Parameters

Most of the parameters used in the simulations are derived from the empirical studies re-

ported in [59], [6], [61]. According to [61], the average inter-arrival time for flows at a

datacenter server is set as 30 ms. Furthermore, the number of hosts connected with one

switch is set to be 20, and the number of switches in the network to be 100 or 300. In

this way, the maximum number of nodes in our simulated network reaches 6000, which is

compatible with the size of commercial data centers reported by T. Benson et al. [6]. In

addition, the bandwidth of the control channel (BWc) is configured to be 20 Mbps4, and

statistics pulling speed to be 178us/flow based on the measurements on the HP ProCurve

5406zl [59]. As for the statistics-gathering interval, the configuration from [59] is bor-

rowed, which is 5 seconds. In addition, the flow entry timeout is set to be 10 seconds. To

summarize, the relevant parameters used in the simulations are listed in Table 3.1. Note that

the bandwidth of the channel between the root controller and the local controller is con-

figured as 1 Gbps, because the factors (e.g., the slow control datapath between the ASIC

and the management CPU in the switch, the wimpy CPU in the switch) limiting the data

rate between the switch and the controller do not exist for the channel between the root

controller and the local controller.

3.4 Simulation Results and Discussions

As discussed in Section 2.2, QoS metrics are typically used to evaluate the scalability of

the SDN control plane. In this study, three metrics: flow setup delay, statistics collection
4Generally speaking, the switch and controller are connected through a fast physical medium. However,

the switch’s management CPU is weak and cannot rapidly encapsulate packets for transmission to the con-
troller. Furthermore, the control datapath between the ASIC and the CPU is slow, which further makes the
control bandwidth low.
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Table 3.1: Simulation parameters

Parameter Value
K (speed of gathering statistics of the switch) 178 us
Nh (number of hosts connected to a switch) 20

λ (average inter-arrival time of flows at the host/server) 30 ms
C (CPU speed for processing the flow setup request) 10 ns
Ds (average number of domains a flow goes through) 2

BWc (bandwidth of control channel between the switch and its controller) 20Mbps
The frequency for statistics gathering every 5 s

The frequency for checking flow entry expiration every 1 s
The propagation delay between the controller and the switch for the

centralized and P2P control planes
1 ms

The propagation delay between the local controller and the switch 100 us
The propagation delay between the root controller and the local controller 900 us

The bandwidth of the channel between the root controller and the local
controller

1 Gbps

Flow table entry timeout 10 s
Simulation time 60 s

Table 3.2: Descriptive statistics for the control planes with Df = 8, BWc = 20Mbps, and
100 switches

Flow setup delay (ms) Statistics collection delay (s) Flow number (1e3)
Min Max Mean STD Min Max Mean STD Min Max Mean STD

Centralized 2.19 3.15 2.33 0.12 10.34 10.64 10.49 0.043 61.17 65.62 64.75 0.51
P2P with
local view 2.09 3.33 2.25 0.13 9.91 10.17 10.04 0.043 60.99 62.85 62.02 0.26

P2P with
global view 2.09 3.07 2.24 0.13 10.36 10.63 10.49 0.043 61.41 65.67 64.76 0.48

Hierarchical 2.09 3.08 2.23 0.11 9.80 10.08 9.95 0.045 60.52 62.34 61.50 0.26
Hybrid 2.09 3.37 2.22 0.11 9.58 9.85 9.72 0.040 59.20 60.91 60.08 0.24

delay, and the number of flows in the flow tables are used to evaluate the performance of

the control plane.

Figure 3.3 shows the performance of the five control planes with 100 switches (2000

hosts in total), Df = 8, and BWc = 20Mbps. And the minimum, maximum, mean, and

standard deviation of the three metrics are shown in Table 3.2. We can see that all five

control plane architectures have similar flow setup delay distributions. Moreover, among

the five architectures, the centralized one achieves worst performance. Statistics collection

delay and the number of flows share a similar distribution. This makes sense because the
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Figure 3.3: The performance of control planes with Df = 8, BWc = 20Mbps, and 100
switches.
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Figure 3.4: The performance of control planes with Df = 8, BWc = 20Mbps, and 300
switches.
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Table 3.3: Descriptive statistics for the control planes with Df = 8, BWc = 20Mbps, and
300 switches

Flow setup delay (ms) Statistics collection delay (s) Flow number (1e3)
Min Max Mean STD Min Max Mean STD Min Max Mean STD

Centralized 2.99 4.07 3.14 0.13 11.58 11.89 11.73 0.046 71.48 73.60 72.46 0.27
P2P with
local view 2.09 3.30 2.25 0.13 10.10 10.41 10.24 0.044 60.01 64.29 63.20 0.46

P2P with
global view 2.09 3.29 2.26 0.14 11.56 11.89 11.73 0.045 71.49 73.44 72.47 0.26

Hierarchical 2.09 3.09 2.23 0.11 9.79 10.07 9.93 0.042 60.44 62.22 61.34 0.25
Hybrid 2.09 3.24 2.23 0.12 10.16 10.46 10.31 0.044 60.31 64.74 63.67 0.47

statistics pooling delay is proportional to the number of flow entries in the flow tables.

The best architecture in terms of statistics collection delay and flow number is the hybrid

control plane, followed by the hierarchical one and then the P2P with local view one, the

centralized and P2P with global view control planes are the worst. Combining flow setup

and statistic gathering, it is reasonable to say that the hybrid control plane achieves the best

performance. When the simulated network scales from 100 switches to 300 switches (6000

hosts in total), as shown in Figure 3.4 and Table. 3.3, we can see that the flow setup delay

in the centralized control plane is increased by 35%. Meanwhile, the other four control

planes almost maintain the flow setup delay. In terms of statistics collection delay and

flow number, the centralized and P2P with global view control planes again share similar

distributions. These two control planes get 12% more flow entries and 12% longer statistics

collection delay, compared with the case of 100 switches. Furthermore, the performance

of the P2P with local view and hybrid control planes are also slightly degraded when the

network scales from 2000 nodes to 6000 nodes. However, the hierarchical control plane

maintains its performance regardless of the network size, and it outperforms the other four

control planes. To summarize, the P2P with global view and centralized control planes have

the worst scalability performance. In contrast, the hierarchical control plane has the best

performance, which can keep the flow setup, statistics collection delay, and flow number

almost unchanged when the network size scales from 2000 nodes to 6000 nodes.

We then increase Df from 8 to 14 (see Figure 3.5 and Table. 3.4), and try to evaluate
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Figure 3.5: The performance of control planes with Df = 14, BWc = 20Mbps, and 100
switches.
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Figure 3.6: The performance of control planes with Df = 14, BWc = 10Mbps, and 100
switches.

40



Table 3.4: Descriptive statistics for the control planes with Df = 14, BWc = 20Mbps, and
100 switches

Flow setup delay (ms) Statistics collection delay (s) Flow number (1e3)
Min Max Mean STD Min Max Mean STD Min Max Mean STD

Centralized 2.19 3.60 2.42 0.18 17.27 17.65 17.47 0.056 102.02 109.11 107.84 0.80
P2P with
local view 2.09 3.31 2.28 0.16 12.50 12.77 12.63 0.044 73.90 79.11 78.00 0.57

P2P with
global view 2.09 3.66 2.33 0.18 17.30 17.65 17.47 0.059 102.46 109.04 107.85 0.76

Hierarchical 2.09 3.14 2.26 0.12 11.80 12.06 11.93 0.047 70.01 74.57 73.63 0.53
Hybrid 2.09 5.62 2.32 0.17 16.90 17.26 17.09 0.055 100.16 106.77 105.49 0.73

Table 3.5: Descriptive statistics for the control planes with Df = 14, BWc = 10Mbps, and
100 switches

Flow setup delay (ms) Statistics collection delay (s) Flow number (1e3)
Min Max Mean STD Min Max Mean STD Min Max Mean STD

Centralized 2.27 22.95 3.37 0.86 17.30 17.63 17.47 0.055 102.15 109.09 107.84 0.80
P2P with
local view 2.18 45.22 2.62 0.36 12.50 12.77 12.63 0.043 73.74 79.24 78.00 0.57

P2P with
global view 2.18 2121 3.33 6.94 15.03 17.67 17.36 0.43 95.60 109.04 107.77 1.19

Hierarchical 2.01 8.81 2.52 0.27 11.77 12.08 11.93 0.044 70.00 74.60 73.64 0.53
Hybrid 2.18 23983 3.78 33.42 1.50 17.24 14.99 4.15 0 106.61 97.14 23.35

the effect of Df on the scalability performance. We first examine the flow setup delay. As

we can see, all five control planes have similar flow setup delay distributions. If we inspect

carefully, we can find that hierarchical control plane achieves the best performance with

regard to flow setup delay. This observation is also true for statistics collection delay and

flow number. Compared with the case of Df = 8, the performance of the centralized, the

P2P with global view and the hybrid control planes’ performance deteriorate severely, with

≥ 60% more flow entries and longer statistics collection delay. The P2P with local view

control plane outperforms these three ones, but loses to the hierarchical one. Therefore, the

hierarchical control plane achieves the best scalability performance with regard to network

diameter Df .

Finally, we vary BWc to investigate the influence of the bandwidth of the control chan-

nel on the scalability performance. Figure 3.6 and Table. 3.5 show the performance of the

five control planes with 100 switches, Df = 8, and BWc = 10Mbps. Comparing with
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Figure 3.3, we can see that all five control planes suffer from performance degradation.

The maximum flow setup delay in the hybrid control plane is increased to be around 24

seconds. And some of the switches have no flow entry in their flow tables. This is because

the large amount of Packet In, Multipart Req, Multipart Res, and Flow Mod

messages congest some control channels, which makes the flow setup delay extremely

intolerable. Furthermore, the congestion also prevents new flow entries being installed.

On the other hand, more and more flow entries expire due to the timeout. Therefore, the

measured minimum flow number reaches 0. This congestion is further demonstrated in

the other three control planes: the centralized, the P2P with local view, and the P2P with

global view. The maximum flow setup delays in these three control planes are increased by

≥ 7 times, and the average statistics collection delay and flow number by 40%. However,

this congestion is not very serious in the hierarchical control plane and this control plane

achieves the best performance.

Combining with all the simulation results above, we come to the following conclusions:

1. The hierarchical control plane has the best scalability performance and the P2P with

local view achieve second-best performance, with regard to the size, diameter, and

control channel bandwidth of the network.

2. The centralized and P2P with global view control planes have similar and the worst

scalability performance.

3. The bandwidth of the control channel plays a significant role in the scalability per-

formance. Given a small control channel bandwidth, all these five control planes get

intolerable scalability performance. Therefore, increasing the control channel band-

width (e.g., implementing strong management CPU in the switch, supporting high-

frequency communication between the ASIC and the management CPU) is necessary

for deploying a scalable SDN control plane.

4. The statistics collection delays in all the simulated networking scenarios are around
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10 seconds, which is intolerable in practice. This long delay is due to two factors.

One is the large number of flow entries in the flow table due to the scale of the net-

work. Another one is slow statistics pulling speed, i.e., K = 178us/flow which is

set according to the empirical study of A. R. Curtis et al. [59]. Therefore, we can

reduce the number of flows in the flow table and decrease K to make the statistics

collection delay tolerable. To reduce the number of flow entries in the flow table, we

can develop more intelligent flow table management algorithms which can remove

the unnecessary flow entries timely. To decrease K, we can build faster hardware

(e.g., use more powerful CPU in the switch) and develop new statistics pulling algo-

rithms.
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CHAPTER 4

SDNI-TE: AN EASTBOUND/WESTBOUND INTERFACE FOR DISTRIBUTED

SDN CONTROL PLANE

The hierarchical control plane architecture is shown to have the best scalability perfor-

mance in Chapter 3. Therefore, to deploy a large scale SDN OpenFlow network in one

location, the hierarchical control architecture should be adopted. However, this architec-

ture is not feasible if it is to be scaled up in an enterprise spread across different locations

and geographies. In contrast, the second most scalable control architecture, the p2p with

local view architecture (a.k.a., distributed control plane), can keep each SDN controller in-

dependent, with distinct policies and path setup to apply to network elements in its control.

Furthermore, the distributed control plane allows gradual deployment and continuous evo-

lution and enables flexible provisioning of the network. Therefore, the distributed control

plane is more feasible for scaling across geographies. To deploy the distributed control

plane, the key challenge is to design an eastbound/westbound interface such that peer SDN

controllers can exchange control messages with each other. Specifically, what kind of in-

formation should be communicated? How the information should be organized? When

these control messages should be exchanged? How these messages are generated and han-

dled? The second piece of this work in [62] try to solve these problems for the distributed

control plane by focusing on traffic engineering, one of the most important networking

management applications.

4.1 Network Model and Problem Formulation

To define the eastbound/westbound protocol design problem in the distributed control plane,

the network model used in this work is first presented. As shown in Figure 4.1, the network

consists of multiple SDN domains, and each domain is controlled by one controller. In
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every SDN domain, there are some border switches, which are directly connected to other

SDN domains. For example, (0,0) is one of the border switches in SDN domain #0 (a

switch/node ni,s is uniquely identified by a pair <SDN domain number i, switch number

s >). The controller has the full information about the network it controls, including the

switches, the links, and the applications. A link l is characterized by a pair (wl, Bl), where

wl represents the weight of the link, and Bl is the capacity of the link. The weight of a link

can be the delay, the number of hops, the number of concurrent connections, or any value

assigned by network operators in order to change the routing behaviors. For example, in

the Routing Information Protocol (RIP), the weight of every link is constant 1, which is

the hop count. In the Open Shortest Path First (OSPF), network operators manipulate the

weights of links to control traffic routing, which is the case for Border Gateway Protocol

(BGP) as well. Based on the definition of link weight and bandwidth, we can get the weight

of a path P:

wP =
∑
l∈P

wl, (4.1)

and the bandwidth of a path P:

BP = min{Bl : l ∈ P}. (4.2)

Furthermore, the controller also knows its neighboring SDN domains, the switches directly

connected in the neighboring SDN domains, and the external links. For example, besides

the domain it controls, the controller in SDN domain #0 also knows the switches (1,0),

(1,1), (2,0), and (2,1), as well as the links between these switches and its own border

switches.

The controller knows not only link bandwidth and weight, but also can track network

dynamics such as link load and application state. Do SDN domains need to exchange this

dynamic information? This information is definitely beneficial for many applications in-

cluding traffic engineering. For example, link load can be used to avoid link congestion.
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Application information can be helpful to deliver services with the required QoS. However,

the load of the link can fluctuate from empty to fully loaded. And the applications can start

and end at any time. To exchange this information between neighboring SDN domains,

certain measurements are required. On one hand, it would increase the control overhead

between the controller and switches and may thus lead to unpredictable instability [63].

On the other hand, the timeliness of this exchanged information would be difficult to pre-

dict. It is highly possible that the controller makes some decisions based on some invalid

information received from the neighboring SDN domains, which will definitely deteriorate

the network performance. Taking into these factors account, it is more practical to only

exchange static network information (i.e., link weight and link bandwidth) but not dynamic

network and application information1 in this work.

Based on the above discussions, the problem of designing the eastbound/westbound

interface for distributed SDN control plane can be defined as the following:

Given:

• Nc: the number of independent SDN domains

• The controller in the SDN domain i has the following information:

– Gi = (N i,Li,Bi,W i): the topology of the SDN switches in the domain, where

N i is the set of all SDN switches, Li is the set of all links between switches,

and Bi andW i are the bandwidths and weights of the links.

– Ai: the IDs of its neighboring SDN domains

– Ci,j = {ni,s ∈ N i}: the border switches directly connected to its neighboring

domain j(j ∈ Ai)

– Oi,j = {nj,s ∈ N j}: the border switches of its neighboring domains j(j ∈ Ai)

directly connected with its own border switches
1Of course, we can exchange some of this dynamic information if they are valid for a relatively long time.

For example, some multimedia applications (e.g., video game, online movie) are expected to last for tens of
minutes.
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– E i,j = {(wlp,q , Blp,q) : p ∈ Ci,j, q ∈ Oi,j}: the external links which are used to

directly connected its neighboring domain j(j ∈ Ai)

– The learned reachability information from its neighboring domains

Ri = {rkj,p,z,q = (nj,p, nz,q, w
k
nj,p,nz,q

, Bk
nj,p,nz,q

) : j ∈ Ai, nj,p ∈ Oi,j, z 6= i, k ≤ K},

(4.3)

and the information rkj,p,z,q means the kth (k = 1, 2, ..., K) path from nj,p to nz,q

has bandwidth Bk
nj,p,nz,q

and the weight of the path is wknj,p,nz,q
. Moreover, the

controller learns at most K paths from nj,p to nz,q.

Variables:

• F i,j = f i,j(·): the information SDN domain i advertises to the domain j. f i,j is a

function of network policies and information gathered by the controller i, including

Gi,Ri, Ci,z,Oi,z, E i,z(z ∈ Ai)

Constraints:

For the domain i, ∀nj,p ∈ Oi,j,∀nz,q(z 6= i)

• Reachability: if there exists a path from nj,p to nz,q, the controller i must learn that

nz,q can be reached from nj,p through the advertised information.

• Validity: if the maximal flow from nj,p to nz,q is Fnj,p,nz,q and the learned bandwidth

of the learned path from nj,p to nz,q is Bnj,p,nz,q , then Bnj,p,nz,q ≤ Fnj,p,nz,q

Objects:

• Minimize the overall signaling overhead

min

Nc∑
i=1

∑
j∈Ai

|F i,j| (4.4)
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• Maximize learned path bandwidths

max
Nc∑
i

∑
j∈Ai

∑
n∈Oi,j

∑
nz,p:z 6=i

Bn,nz,p (4.5)

4.2 BGP-Addpath

A naive solution to the above problem is to advertise all information a controller has to its

neighbors. That is

F i,j = (Gi,Ri, Ci,z,Oi,z, E i,z,∀z 6= j). (4.6)

Note it is not necessary to advertise (Ci,j,Oi,j, E i,j) to the domain j because this informa-

tion is inherently shared between the domain i and domain j according to our assumption.

This simple solution fully expose the internal topology of domain i to other domains. It

will cause great concerns about privacy and security, especially when the connected neigh-

boring domain cannot be trusted. For example, malicious domains can execute advanced

denial-of-service attacks such as link-flooding attacks [64].

To overcome the above problem, BGP only advertises reachability information2, i.e.,

F i,j = {r1i,p,z,q : ni,p ∈ Ci,j}, (4.7)

where only one path to a specific destination can be advertised. In other words, K = 1.

Note r1i,p,z,q is not directly retrieved from the setRi. Instead, it is computed by the network

policy in the domain i based on its own topology and the learned information, which is

r1i,p,z,q = P(Gi,Ri, {Ci,x,Oi,x, E i,x,∀x 6= j}, p, z, q). (4.8)

BGP achieves great success since it was introduced. However, in the context of SDN, the

2BGP advertises different attributes of a path such as LOCAL PREF, MULTI EXIT DISC, and
Community. These attributes help to select the “best” path defined by the configured policy. Here, we
abstract all these attributes as one single weight value and the best path achieves the smallest weight.
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Figure 4.1: An example topology of SDNi-TE with three SDN domains.

controller knows much more information than individual router in traditional distributed

networks. For example, the controller knows all paths and their attributes to every destina-

tion. This is particularly beneficial for traffic engineering because the controller needs to

learn multiple paths to some destination such that the traffic can be split among these paths

in order to increase link utilization and minimize link congestion. Therefore, a straight-

forward improvement to BGP is to advertise the k shortest paths to neighboring domains

instead of just one, which is referred as BGP-Addpath [65]:

F i,j = {rki,p,z,q : ni,p ∈ Ci,j, k ≤ K}. (4.9)

49



4.3 SDNi-TE Protocol

Although it is straightforward to extend BGP to BGP-Addpath such that multiple paths for

the same address prefix can be advertised, it suffers from the following three problems:

1. The message overhead is almost increased by K times. Generally speaking, there

is no direct physical link between controllers between neighboring domains. Other-

wise, the cost will be very expensive. Controllers in the distributed SDN OpenFlow

networks communicate with each other through the external links between neighbor-

ing domains, which means the controller needs to send the message to OpenFlow

switches, which then relay to neighboring switches, and finally to the neighboring

controller. As discussed in Section 1.1, OpenFlow switches are not powerful in terms

of computation ability, memory size, and bus bandwidth. The greatly increased mes-

sage overhead makes matter worse, and can easily saturate the control channel.

2. Table size is also increased by nearly K times. As reported by G. Huston [66], full

internet BGP forwarding table in AS65000 now contains over 767,000 forwarding

information base (FIB) records, which are placed in fast but very expensive memory

such as SRAM, TCAM, and RLDRAM. In addition, the size of the routing table

also reaches over 1.5 million, which requires few gigabytes RAM memory. If these

numbers are increased byK times, it will be extremely expensive to hold and process

these massive entries.

3. The advantages of SDN are not exploited at all. BGP-Addpath is an extension of

BGP, which is developed in the context of traditional networking. With SDN, the

only possible optimization is to move the routing decision from switches to the con-

troller. SDN itself cannot add more value to BGP-Addpath. For example, although

the SDN controller knows the full topology of the network in its control, the opera-

tion of BGP-Addpath is not affected.
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For example, in Figure 4.1, with BGP-Addpath, the controller in SDN domain #0 will

propagate (0, 3) → (0, 2) → (0, 1) and (0, 3) → (0, 2) → (0, 0) → (0, 1) to the controller

in SDN domain #1 through the border switch (0,3). However, for the traffic flow destined

for (0,1), the controller in the SDN domain #1 only concerns how much traffic it can send

to the switch (0,3) and what the corresponding cost is. And it does not care whether these

traffic will be delivered to (0,1) through 2 or 3 paths in SDN domain #0. Therefore, we

can aggregate the paths to one specific destination and advertise the aggregated path to the

neighboring SDN domains, in order to reduce the overhead and table size.

4.3.1 Path Aggregation

Aggregation was introduced to BGP since BGP-4 [67], which aggregates routes to indi-

vidual prefixes as one route to a less-specific prefix. For example, instead of advertising

16 individual prefixes with a length of 24 (e.g., 10.1.1.0/24, 10.1.2.0/24), routing aggrega-

tion allows to only advertise one aggregated prefix 10.1.0.0/20. In this way, the number of

prefixes announced can be greatly reduced. However, routing aggregation does not allow

routes with different MULTI EXIT DISC attributes to be aggregated. In other words, only

routes with equal weights can be aggregated. To summary, path aggregation differs from

routing aggregation in the following two ways:

1. Path aggregation aggregates multiple paths with the same destination address with

the help of SDN, while routing aggregation aggregates multiple routes with different

destination address as a route to a less-specific address.

2. Path aggregation aggregates paths with different weights/costs, while routing aggre-

gation only handle routes with the same weight.

Then how to do path aggregation? For SDN domain i, it only cares how much traffic to a

specific destination should be injected to switch nj,s ∈ Oi,j(j ∈ Ai) and its cost. Therefore,

we can apply the max-flow algorithm to compute the aggregated bandwidth and weight. We

51



should add that it is impossible to do path aggregation in the traditional networking because

routers only learn reachability information but not the topology.

4.3.2 Routing Loop

Routing loop is a common problem in the distributed routing network. In BGP, AS path is

adopted to address this problem. AS path is the list of ASes that a route goes through to

reach its destination. And route loop can be detected and avoided by checking whether its

own AS number is in the AS path received from the neighboring ASes. In the distributed

SDN, we also need domain path to detect and avoid routing loop. However, the situation in

the distributed SDN is different because aggregated paths are advertised to the neighbors.

For example, the controller in SDN domain #1 learns that (1,1) can reach (2,1) through

(1, 1)→ (0, 3)→ (2, 1) and (1, 1)→ (1, 3)→ (2, 2)→ (2, 1). The first path goes through

SDN domain #1, #0, and #2. And the later path goes through SDN domain #1 and #2.

When the two paths are aggregated as one path which would be advertised to SDN domain

#0, what should the domain path be? Simply, we have two options, i.e., intersection and

union. In the case of union operation, the domain path of the aggregated path is {2,1,0}.

Thus the controller in SDN domain #0 will discard this path since its own domain number

is in the domain path. In this case, the controller would not know that it can reach (2,1)

through (1,1). For the other case (intersection operation), the domain path is {2,1}. The

controller in SDN domain #0 would know the path from (1,1) to (2,1), but it is possible that

the traffic would be routed back to SDN domain #0. Of course, we can also simply discard

the path which can result in routing loop during path aggregation, and then apply union

operation to generate the domain path. However, this can still lead to routing loop. For

example, suppose there are three routes to the sink s from the switch m in SDN domain #0,

the domain path of these three routes are {1,0,2}, {1,0,3,4}, and {0,2,3} respectively. We

aggregate these paths as one path which will be advertised to SDN domain #4. Therefore,

the route with domain path {1,0,3,4} is discard. The rest two routes are aggregated as
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Figure 4.2: SDNi-TE protocol.

one path, whose domain path is {0,2,4}. Suppose SDN domain #4 further advertise this

aggregated path to SDN domain#3, then there will be a route from SDN domain #3 to #4

to #0 to #2, and back to SDN domain #3. Fortunately, the concept of routing loop in the

distributed SDN is slightly different from BGP. In BGP, we detect route loop based on

the assumption that AS loop implies route loop. However, in the distributed SDN, route

loop can be detected and avoided in a more precious way because the controller has the

full information about the network it controls, and domain loop does not necessarily imply

route loop. For example, the route (0, 0)→ (1, 0)→ (1, 1)→ (0, 3)→ (2, 1) is a domain

loop but not route loop. Even if route loop occurs, the controller can check the flow table

of the switch to detect it and notifies its neighboring SDN domains. Therefore, in path

aggregation, we can simply apply intersection operation to generate the domain path.

4.3.3 Information Base

Based on the above discusses, SDNi-TE protocol, as shown in Figure 4.2, is elaborated in

this section. In SDNi-TE protocol, all TE-related information is contained in three tables:

path table, topology table, and advertisement table. Path table stores all the k-shortest paths
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(represented as a list of switches) from each border switch in the SDN domain to all the

other switches in the same domain. Obviously, as long as the topology of the SDN domain

is not changed, the path table is static and thus can be computed offline. To compute this

table, multiple algorithms can be applied. In this work, Yen’s algorithm [68] is adopted.

When the network topology is updated (e.g., some switches are down, certain link is dis-

connected, a new switch is added), we can simply apply Yen’s algorithm to recompute the

paths and update the path table. If the topology is very large, then an incremental k shortest

path algorithm can be applied [69], which is out of the scope of this work.

Topology table contains two kinds of paths: the k shortest local paths from the border

switches to the switches in the local domain and the k shortest external paths from the

border switches to the switches in other domains. Local paths are originated in the local

domain and the external paths are directly learned from the peering domains. Different

from the path table, the path in the topology table is represented as a tuple (source, sink,

next, domain path, weight, bandwidth), where source is the source of this path, sink is the

destination of this path, next is the next switch from the source in this path, domain path is

the set of the SDN domains which the path goes through, weight is the sum of the weights

of the links in this path, and bandwidth is the minimum bandwidth of the links in the path.

If the path contains no link (i.e., source=sink), weight=0 and bandwidth=∞. If source =

next, the path is a local path. Otherwise, it is a cross-domain path. Based on the topology

table, we can build the advertisement table, which is exchanged between neighboring SDN

domains through SDNi-TE messages3. In the advertisement table, there is one and the only

one aggregated path to every reachable switch in the whole network for each border switch

in the SDN domain. The representation of the path is as same as the one in the topology

table, except that it does not include next. With these tables, the controller in the SDN

domain can run any traffic engineering algorithm to allocate the bandwidth to competing

applications using multiple paths [32], [70].

3The format of SDNi-TE messages is one of the future works. Right now, the readers can simply regard
the message as one entry in the advertisement table.
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4.3.4 Protocol Operation

SDNi-TE protocol has four stages: (1) Initialization initializes the three tables in the con-

troller, (2) Advertisement decides whether one specific entry in the advertisement table

should be advertised to the neighbors, (3) Update deals with how to update the three tables

when an SDNi-TE message is received, (4) Global View Construction builds a global view

of the whole network based on the learned routes from the peering domains. In the follow-

ing, this protocol is described through a concrete example. Figure 4.1 shows an example

topology with three SDN domains, where each domain has four switches. For simplicity,

we assume the links between switches are directed. And each of these links is labeled with

a (weight, bandwidth) pair.

Initialization

In Initialization, every controller initializes its own tables. For the path table, the controller

applies Yen’s algorithm to compute the k-shortest paths from each border switch to ev-

ery local switch and insert the paths into the path table, where the path is represented as

a list of switches. For example, let’s set k as 2. Then the initialized path table in SDN

domain 0 contains 15 entries such as (0,0)→(0,0), (0,2)→(0,1), and (0,2)→(0,0)→(0,1).

Based on these paths, the controller in SDN domain i can further initialize the topology

table. For every path in the path table, insert (source, sink, source, {i}, weight, band-

width) into the topology table. Therefore, the initialized topology table in SDN domain 0

also contain 15 entries such as {(0,0),(0,0),(0,0),{0},0,∞}, {(0,2),(0,1),(0,2),{0},1,2}, and

{(0,2),(0,1),(0,2),{0},1,1}. After initializing the topology table, the controller can then do

the initialization for the advertisement table. For each (source, sink) pair in the topology

table, extract the corresponding paths (at most k) in the path table to construct a subgraph,

and compute the maximum flow f ∗ of this subgraph from source to sink. For the obtained

maximum flow, insert (source, sink, {i}, w(f ∗), s(f ∗)) into the advertisement table, where

s(f ∗) is the size of f ∗, w(f ∗) =
∑

e wefe
s(f∗)

, we is the weight of the link e, and fe is the
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flow on the link e. If the subgraph only contains one node (i.e., source=sink), w(f ∗) = 0

and s(f ∗) = ∞. In our example, for ((0,2), (0,1)) pair, extracting the paths (0,2)→(0,1)

and (0,2)→(0,0)→(0,1), we can get a subgraph as shown in Figure 4.1. In this subgraph,

the size of the maximum flow from switch (0,2) to switch (0,1) is 3, and the weight is

also 3. Therefore, we insert ((0,2),(0,1),{0},3,3) into the advertisement table. For ((0,0),

(0,0)) pair, the inserted entry is ((0,0),(0,0),{0},0,∞). In total, there are 12 entries in the

advertisement table after the initialization.

Advertisement

After Initialization, the neighboring controller can exchange their advertisement tables.

There are lots of factors which may be involved when a controller decides whether to

advertise one specific piece of information to the neighboring SDN domains. For example,

business relationships between peering domains may keep a controller from advertising full

routes to a specific domain [71]. In this work, only the routing loop problem is considered,

and more complicated policies can be implemented in the future. To avoid routing loop,

the controller will check whether the neighboring SDN domain is in the domain path of

the entry in the advertisement table. If no, it can advertise this entry to the neighbor. In

our example, SDN domain #0 can propagate the whole initialized advertisement table to

domain #1 and domain #2 because none of these two SDN domains are in the domain path.

Update

The final component is to update the tables when an SDNi-TE message is received. Sup-

pose the controller in SDN domain j receives the message (ni,p,nz,s,DPni,p,nz,s ,wni,p,nz,s ,Bni,p,nz,s)

from SDN domain i, which indicates there is a path from ni,p to nz,s through the domains

in the domain path DPni,p,nz,s with weight wni,p,nz,s and its bandwidth is Bni,p,nz,s . Let’s

say the border switch nj,q in SDN domain j is directly connected to switch ni,p in domain

i, the controller in SDN domain j first updates its topology table: if there exists an entry

56



(nj,q, nz,s, ni,p, DPni,p
nj,q ,nz,s

, wni,p
nj,q ,nz,s , Bni,p

nj,q ,nz,s) in the topology table, delete this entry and

insert (nj,q, nz,s, ni,p, DPni,p,nz,s∪{j}, w0 +wni,p,nz,s , min{Bni,p,nz,s ,B0}) into the topology

table. Otherwise, just insert the new entry. This update can ensure that any two learned

paths in the topology table cannot have the same source, sink, and next.

After updating the topology table, the controller in SDN domain j should then update

its advertisement table as following:

1. If no entry in the advertisement table is with the destination nz,s, there must be one

and only one entry (nj,h, nj,q, {j}, w’, B’) for each border switch nj,h in the ad-

vertisement table. Insert the entry (nj,h, nz,s, DPni,p,nz,s∪{j}, w′ + w0 + wni,p,nz,s ,

min{B’,B0,Bni,p,nz,s}) into the advertisement table.

2. If there are entries with destination nz,s in the advertisement table, then for every

border switch nj,h in SDN domain j,

2.1) Find the K shortest path from nj,h to nz,s

i. In the topology table, for every learned path from the border switch nj,a

to nz,s, E
nx,b
nj,a,nz,s = (nj,a, nz,s, nx,b, DPnx,b

nj,a,nz,s
, wnx,b

nj,a,nz,s , Bnx,b
nj,a,nz,s), there

are at most K entries with source nj,h and destination nj,a in the topology

table, say Enj,h,k
nj,h,nj,a = (nj,h, nj,a, nj,h, {j}, wnj,h,k

nj,h,nj,a , Bnj,h,k
nj,h,nj,a) (k ≤ K).

Combine any Enx,b
nj,a,nz,s and Enj,h,k

nj,h,nj,a , we can get a path from nj,h to nz,s,

which also goes through switch nj,a and nx,b. The weight of this path is

w
nx,b
nj,a,nz,s + w

nj,h,k
nj,h,nj,a , the bandwidth is min{Bnx,b

nj,a,nz,s , Bnj,h,k
nj,h,nj,a}, and the

domain path is DPnx,b
nj,a,nz,s

∪ {j}.

ii. Among all the generated paths from nj,h to nz,s, select the K smallest

weight paths: P1
nj,h,nz,s

,...,PKnj,h,nz,s
.

2.2) Extract the selected K paths (including the paths from nj,h to nj,a extracted

from the path table, the edge (nj,a, nx,b), and the edge (nx,b, nz,s)) to form a

subgraph. In this subgraph, compute the maximum from f ∗ from nj,h to nz,s.
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2.3) If there is an entry with source nj,h and destination nz,s, delete this entry

2.4) For the computed maximum flow, insert (nj,h, nz,s, DPnj,h,nz,s , w(f ∗), s(f ∗))

into the advertisement table, where DPnj,h,nz,s =
⋂
k=1,...,K DP

K
nj,h,nz,s

, w(f ∗)

is the weight of the maximum flow, and s(f ∗) is the size of f ∗.

For example, after initialization, SDN domain #0 receives the first the entry ((1,0),(1,0),{1},0,∞)

which is from SDN domain #1. At this moment, there is no entry with destination (1,0) and

source (0,0) in the topology table in SDN domain #0. Therefore, the entry ((0,0),(1,0),(1,0),{1,0},2,3)

is inserted into the topology table. Since no entry with sink (1,0) is in the advertise-

ment table and there are three entries with destination (0,0) in the advertisement table, i.e.,

((0,0),(0,0),{0},0,∞), ((0,2),(0,0),{0},0,3), and ((0,3),(0,0),{0},0,1), the controller in SDN

domain #0 will insert ((0,0),(1,0),{1,0},2,3), ((0,2),(1,0),{1,0},2,3), and ((0,3),(1,0),{1,0},2,1)

into the advertisement table. Suppose SDN domain #0 then receives ((1,1),(1,0),{1},1,1)

from SDN domain#1 through the switch (0,2). At this point, no entry with source (0,2) and

destination (1,0) exits in the topology table. Thus, ((0,2),(1,0),(1,1),{1,0},3,1) is inserted

into the topology table. Since there are entries with destination (1,0) in the advertisement

table, the protocol searches all the corresponding entries in the topology table, namely

((0,2),(1,0),(1,1),{1,0},3,1) and ((0,0),(1,0),(1,0),{1,0},2,3). Then for the border switch

(0,3), there is one path from (0,3) to (0,0) and (0,2) respectively. Extracting these paths, we

have a subgraph as shown in Figure 4.1. In this graph, the size of the maximum flow from

(0,3) to (1,0) is 1, and the cost is 2. Therefore, the entry ((0,3),(1,0),{1,0},2,1) is inserted

into the advertisement table. After several rounds of exchanging messages, the tables in

the controller will be stable.

Global View Construction

With the stable tables, the controller needs to build the global view about the whole net-

work. Obviously, the controller has the whole information about the domain in its control,

e.g., switches, link capacity, link weight. In addition, as discussed in Section 4.1, the con-
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troller knows the external switches directly connected and the external links. Suppose this

information is abstracted as G = (V,E,C,W ), where V is the set of the switches (includ-

ing the switches which is directly connected in the neighboring SDN domains), E is the

set of the links (including the links between neighboring SDN domains), C(e) and W (e) is

the bandwidth and weight of the link e respectively. Combined G and the topology table,

the controller can construct a graph Ga = (V a, Ea, Ca,W a) to abstract the topology of the

whole network as following:

1. G is a subgraph of Ga (∀v ∈ V, v ∈ V a;∀e ∈ E, e ∈ Ea, Ca(e) = C(a),W a(e) =

W (a)). In addition, we set Vsink = ∅

2. Search the topology table to find the entries where next is not in the SDN domain

(i.e., non-local paths). For each such entry, say (s, d, n, {domain path}, w, b)

2.1) if d /∈ Vsink, Vsink ← Vsink ∪ {d}, V a ← V a ∪ {d}.

2.2) Ea ← Ea ∪ {(n, d)}, where W a((n, d)) = w − W a((s, n)), Ca((n, d)) =

min{b, Ca((s, n))}

In our example, the abstract topology of the whole network for SDN domain #0 is shown

in Figure 4.3. In this figure, we use domain number/switch id to label the node for con-

venience. For example, 0/1 represents the switch (0,1). Once the controller generates the

abstract topology, it can apply any choosing algorithm for traffic engineering based on this

global view.

4.3.5 Comparison between SDNi-TE and BGP-Addpath

The main difference between SDNi-TE and BGP-Addpath is that the advertised k-shortest

paths are aggregated into one path. In this part, we will compare the two protocols from

the perspective of table size, message overhead, and computation overhead.
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Figure 4.3: The abstract topology generated in SDN domain #0. Only parts of the edges’
weights and bandwidths are shown for simplicity.

Table Size

Suppose the number of border switches in an SDN domain isNb, the number of switches in

the whole network is M , and the number of domains in the network is Nc. In addition, let

α be the average number of border switches in other SDN domains for one border switch

is connected to. Furthermore, we assume that the whole network is connected, i.e., there is

a path between every pair of switches.

• Topology table: For SDNi-TE, the topology table first contains the K shortest paths

between its border switches and all the switches in the same domain, which isKNbM/Nc−

(K−1)Nb. In addition, for every directly connected border switch in the neighboring

domain, an aggregated path to each reachable address originated from it will be ad-

vertised, which in total account for αNb(M −M/Nc). In the case of BGP-Addpath,

the difference is that K paths from each border switch to every reachable address

will be advertised to neighboring domains. Therefore, the topology table size will be

KNbM/Nc − (K − 1)Nb + αKNb(M −M/Nc).
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• Advertisement table: For SDNi-TE, the advertisement table size is NbM . As for

BGP-Addpath, since K paths are allowed to be advertised to neighbors, the size of

the advertisement table will be KNbM .

In summary, the ratio of the table size in SDNi-TE to BGP-Addpath is

NbM +KNbM/Nc − (K − 1)Nb + αNb(M −M/Nc)

KNbM +KNbM/Nc − (K − 1)Nb + αKNb(M −M/Nc)
≈ α + 1 + (K − α)/Nc

(α + 1)K + (K − αK)/Nc

(4.10)

Message Overhead

The message overhead is directly related to the size of the advertisement table since all

entries in the table will be advertised to neighboring domain except for those which may

result in routing loop. Therefore, the message overhead of BGP-Addpath is approximately

K times to that of SDNi-TE.

Computation Overhead

At the Initialization stage, both SDNi-TE and BGP-Addpath need to apply the k-

shortest path algorithm to compute the k-shortest paths between any border switch and

all the other switches in the same domain. In this work, Yen’s algorithm is applied, thus

the computation overhead is O(KNb|V |2(|E| + |V | log(|V |))), where |V | = M/Nc is the

number of switches in the domain and |E| is the number of edges. Besides the topology

table, the advertisement table should also be initialized. For SDNi-TE, it needs to ap-

ply max-flow algorithm to compute the maximal flow between any border switch and all

the other local switches, which requires O(Nb|V |2|E|2) computation overhead (using Ed-

mondsKarp algorithm to compute max-flow). Since the time complexity of Yen’s algorithm

dominates that of EdmondsKarp algorithm, the total computation overhead for Initializa-

tion is O(KNb|V |2(|E| + |V | log(|V |))). As for BGP-Addpath, the advertisement table is

the same as the topology table at the Initialization stage, thus no extra computa-
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tion overhead is required. Therefore, both SDNi-TE and BGP-Addpath requires almost the

same computation overhead, which is O(KNb|V |2(|E|+ |V | log(|V |))).

At the Advertisement stage, both SDNi-TE and BGP-Addpath directly advertise

all satisfied entries in the advertisement table to neighboring domains. Therefore, the com-

putation overhead is linear to the size of the advertisement table, which is O(NbM) for

SDNi-TE and O(KNbM) for BGP-Addpath.

At the Update stage, the computation overhead depends on the data structures used

for topology table and advertisement table. The topology table in SDNi-TE uses a map

data structure, where the key of the map is the source and the value is the vector of all

entries have the same source. With this data structure, the time complexity for determining

whether the insertion is necessary is O(T ), and O(T ) for insertion and deletion, where

T is the number of entries with the same source. According to our discussions on table

size, T = KM/Nc − (K − 1) + αK(M − M/Nc). Therefore, the total computation

overhead for updating the topology table in presence of receiving an advertisement from a

peering domain is O(T ). As for the advertisement table, we also use the data structure of

map, where the key is the source and the value is the vector of all entries with the same

source. As discussed in Section 4.3.4, we need to compute the maximum flow from all

border switches to the sink nz,s when receiving a route to nz,s. Before we do the max-

flow computation, we first need to find the K shortest paths for any border switch to nz,s,

which requires O(NbT
2). With the selected paths, O(Nb|V ′||E ′|2) is required for max-

flow computation, where |V ′| and |E ′| are the number of nodes and edges in the extracted

subgraph, and |V ′| ≤ |V |, |E ′| ≤ |E|. Therefore, the computation overhead for updating

the advertisement table is O(NbT
2) + O(Nb|V ′||E ′|2) when a route is learned from the

peering domain. In the case of BGP-Addpath, topology table update is the same as SDNi-

TE except that the number of entries with the same source is K times more than that in

SDNi-TE. Therefore, the computation overhead is O(KT ). As for the advertisement table,

BGP-Addpath only needs to find the K shortest paths but does not need to compute the
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Table 4.1: Comparison between SDNi-TE and BGP-Addpath

SDNi-TE BGP-Addpath
Topology table NbT ≈ KNbT
Advertisement table NbM KNbM
Message overhead BGP-Addpath requires K times more overhead

Computation
overhead

Initialization Same computation overhead
Advertise O(NbM) O(KNbM)
Update topology table O(T ) O(KT )
Update advertise table O(NbT

2) +O(Nb|V ′||E ′|2) O(NbK
2T 2)

Build global view O(NbT ) O(KNbT )

Note: T = KM/Nc − (K − 1) + αK(M −M/Nc).

maximum flow. Therefore, the computation overhead for finding the K shortest paths is

O(NbK
2T 2).

At the Global View Construction stage, BGP-Addpath and SDNi-TE follow

the same procedure, which needs to go through the whole topology table. Therefore, the

computation overheads to construct the global view for SDNi-TE and BGP-Addpath are

O(NbT ) and O(KNbT ), respectively.

The differences between SDNi-TE and BGP-Addpath are summarized in Table 4.1.

From the table, we can see BGP-Addpath not only has larger tables and higher message

overhead but also requires higher computation overheads except for advertisement table

update. In general case, T is much larger than both |V ′| and |E ′| because M � |V ′|,

therefore SDNi-TE generally requires less computation overhead than BGP-Addpath.

4.4 Performance Evaluation

4.4.1 Simulator Implementation

To evaluate the performance of SDNi-TE, a flow level simulator is developed to implement

the protocol in C++ [72], whose framework is shown in Listing 1. In this simulator, SDN

domains exchange information iteratively until the topology tables of all SDN domains are

stable (line 1 - line 13). In every iteration, each SDN domain sends all satisfied entries
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Table 4.2: Main Parameters for BRITE Network Topology Generator

Parameter Value
Model Top-down hierarchical topology

Domain generation method Barabasi
Node generation method Waxman
Edge connection method Random

Inter-domain bandwidth distribution Constant (i.e.,1000)
Intra-domain bandwidth distribution Uniform (min=1, max=10)

Growth type Incremental
Waxman-specific exponent alpha=0.15, beta=0.2
number of SDN domains 10

number of nodes in one domain 30

in its advertisement table to all of its neighboring domains, and consequently updates its

topology table and advertisement table when receiving information from the neighboring

domains. Once all domains’ tables are stable, each SDN domain then generates traffic,

allocates link bandwidth, and delivers the traffic through its own domain (line 14 - line 20).

Topology Generation

In our simulations, we use BRITE [73] to generate the top-down hierarchical topologies4.

BRITE is a universal tool designed to generate topology according to a wide variety of mod-

els. The top-down hierarchical topologies used in our simulations are generated according

to the following steps: (1) generate domain-level topology according to one of the avail-

able domain-level models (e.g., Waxman, Barabasi); (2) for each node in the domain-level

topology, generate a switch-level topology using another model; (3) using an edge connec-

tion mechanism to interconnect switch-level topologies as dictated by the connectivity of

the domain-level topology. The main parameters for BRITE used in our experiments are

shown in Table 4.2.
4Use the configuration file TD ASBarabasi RTWaxman.conf provided by BRITE.
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Traffic Generation

Each node in the simulated topology generates a traffic flow with a probability 0.5. If a

node generates a traffic flow, the destination of this flow can either be in the same SDN

domain (with probability 0.1) or another SDN domain. If the destination is in the same

SDN domain as the source, we uniformly pick one node except for the source itself in the

SDN domain as the destination. If not, we uniformly pick one SDN domain from the rest

SDN domains as the destination domain and any node in the picked SDN domain as the

destination node. Furthermore, the size of this traffic flow is the product of a uniformly

picked value from a set {1,2,3,4,5,6,7,8,9,10} and the load factor σ.

Bandwidth Allocation

SDNi-TE only provides a consistent global view for each involved SDN domain, but does

not specify how to do traffic engineering. In this simulator, we implement two traffic

engineering algorithms to allocate bandwidth for flows. One is Google’s TE Optimization

algorithm [32]. This algorithm assigns a bandwidth function for each flow, and allocates

link bandwidth among flows according to their bandwidth functions such that all competing

flows on one edge either equally share the bandwidth or fully satisfy their demand. This

algorithm achieves a trade-off between fairness and throughput. The other one aims to

maximize the throughput of the whole network. It iterates until no path exists for any

traffic flow, where it finds the shortest path for every traffic flow, and saturate the shortest

one among all the shortest paths in each iteration. This algorithm aims to maximize the

throughput of the whole network, but losses fairness among flows. Each SDN domain can

use either algorithm.

Traffic Delivery

The simulator is a flow-level simulator, which does not deliver individual packets. For every

time slice (T in total), each SDN domain delivers the flows which are injected from its
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neighboring domains in the previous slice or generated in the current slice. To be specific,

for SDN domain i at time slice tl, when its TE algorithm allocates a path P for a traffic

flow f (generated locally or injected from any domain j ∈ Ai at tl−1 ), BP units traffic of

the flow f will be delivered during time slice tl. If the destination of flow f is within the

domain i, BP units traffic is delivered to the destination at tl. Otherwise, BP units traffic

of the flow f will be injected to the neighboring domain j containing the switch in P and

thus will be delivered further to the destination by domain j in the time slice tl+1.

Benchmarks

To investigate the performance of SDNi-TE, it is necessary to compare it with BGP-

Addpath. Therefore, BGP-Addpath is also implemented in the simulator. The imple-

mentation of BGP-Addpath is the same as SDNi-TE except that the behavior of updating

tables are different. Instead of aggregating the K shortest paths as an aggregated path,

BGP-Addpath selects the K shortest paths from the topology table and directly advertises

them to the adjacent domains. In addition, the perfect but impractical scenario, where

each controller has the full knowledge of the topology of the whole network, is also im-

plemented and referred as “Benchmark” in the rest of discussions. In this scenario, no

eastbound/westbound interface is needed and every controller runs its traffic engineering

algorithm based on the full network view directly. Finally, the Dijkstra algorithm is also

implemented to compare the performance of TE with no-TE. In summary, we consider four

scenarios: SDNi-TE, BGP-Addpath, Benchmark, and Dijkstra. For each of the first three

scenarios, three different TE cases are investigated: all SDN domains use Google’s algo-

rithm (labeled as Google), all SDN domains use the other algorithm to maximize through-

put (labeled as MaxThr), and each SDN domain uniformly pick one of the two algorithms

as its traffic engineering algorithm (labeled as Mix).
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Listing 1 SDNi-TE Simulator Framework
Require: simulating time T

1: notStable← true
2: while notStable do
3: notStable← false
4: for each domain i do
5: for each domain j ∈ Ai do
6: domain j send the satisfied entries in its advertisement table to domain i
7: domain i updates its topology table and advertisement table based on the re-

ceived entries from domain j
8: if the topology table of domain i is updated then
9: notStable← true

10: end if
11: end for
12: end for
13: end while
14: for time slice t < T do
15: generate traffics
16: for each domain i do
17: allocate bandwidth and consequently deliver traffics through the domain accord-

ing to the traffic engineering algorithm
18: push across-domain traffic to the neighboring domains
19: end for
20: end for
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4.4.2 Simulation Results

To evaluate the performance, we choose throughput and cost as the performance metrics.

The throughput is the sum of the received traffic on each node, and the cost is defined

as the average cost/weight to transmit one unit traffic from the source to the sink. The

performance of SDNi-TE with various loads is first investigated, which is shown in Figure

4.4. From this figure, we have the following observations:

• As the load factor σ increases, both the throughput and costs increase up to a certain

level, then stop increasing or does not increase further significantly. This is because

traffic delivery is subjected to both the traffic load and link bandwidth. When σ

is small, the dominated factor is σ and more paths are used to deliver traffic when

σ increases. Therefore, throughput increases as σ grows. Meanwhile, more sub-

optimal (in terms of cost) paths are used as σ grows such that the cost also increases.

However, when σ is increased up to some threshold such that the load is larger than

link bandwidth, throughput cannot be improved any more. This is also true for the

cost.

• SDNi-TE achieves almost the same throughput and cost than BGP-Addpath. For

example, the cost of SDNi-TE is only about 1% lower than that of BGP-Addpath.

• SDNi-TE achieves smaller throughput but higher cost, compared with Benchmark.

However, the performance loss is very small. In the case of MaxThr, SDNi-TE losses

4.5% throughput and increases < 5% cost. For Mix case, SDNi-TE achieves even

lower cost. Especially, in the most practical case Google, we can see that SDNi-TE

achieves almost the same throughput (96%) and cost (98%) as Benchmark.

• Compared with Dijkstra, SDNi-TE can achieve much higher throughput but also

results in higher cost. In the Google case, SDNi-TE achieves 238% throughput gain

but also 74% cost loss. This is because SDNi-TE provides multiple paths to deliver
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one flow while Dijkstra only provisions the shortest path for routing traffic.

Combined the discussions in Section 4.3.5, we can conclude that 1) SDNi-TE can fully

exploit the information owned by the controllers to enable better TE because it can achieve

nearly the same performance as the one which has the God’s knowledge even in the case

where different SDN domains apply different TE policies. 2) SDNi-TE achieves the same

performance as BGP-Addpath, with much smaller tables, message overheads, and compu-

tation overheads. 3) With the full information of the network state, SDNi-TE can achieve

much higher throughput than the traditional Dijkstra method, at the cost of improving the

cost of packet transmission.

We then study the relationship between the performance of SDNi-TE and the number

of paths (k). Figure 4.5 shows the simulation results. As we can see, when k increases from

1 to 4, the throughput gain is around 15% (Google), 21% (MaxThr) and 17% (Mix). This is

because, with larger k, an aggregated path with a larger bandwidth can be propagated to the

neighboring SDN domains and the capacity of the network can be better utilized. Of course,

the corresponding cost of transmitting one unit traffic is increased. The cost is increased

by 18% (Google), 13% (MaxThr), and 15% (Mix). This is because the aggregated path

consists of suboptimal paths in the case of k = 4 and the traffic flow going through the

suboptimal paths would incur higher cost. However, when k continues to be increased,

we find that the throughput cannot be increased significantly, even slightly decreased when

k = 5. This is because, in one SDN domain, the injected flow from other SDN domain

has to share the network bandwidth with other flows. Therefore, even if the size of the

injected flow is increased due to the larger aggregated bandwidth, the amount of the traffic

of the flow can be delivered through the SDN domain may not be increased because of the

network bandwidth and the competitions from other flows. Moreover, large k will definitely

increase the size of the path and topology tables. Actually, we have done experiments with

various k in different network scenarios, and the results show that k = 3 or k = 4 is a good

value for balancing the network performance and the size of the tables.
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4.5 Discussion

Besides TE, other applications can also benefit from the global view constructed based on

SDNi-TE. The first potential beneficial application is admission control. Since bandwidth

information is advertised through SDNi-TE, the controller can understand how much traffic

can be sent out through one specific crossing domain link. In this way, the controller can

check whether there is enough amount of bandwidths in the network to accept new traffic

transmission requests. In addition, load balancing can also increase resource utilization

efficiency through adjusting weights of links since the controller knows the full topology.
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Figure 4.4: The performance of SDNi-TE versus various load factor σ (Nconn = 6, k = 3).
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Figure 4.5: The performance of SDNi-TE v.s. number of paths (Nconn = 9, σ = 10).
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CHAPTER 5

SMART PROACTIVE ENTRY DELETION FOR OPENFLOW

The last two chapters focus on scaling the control plane by designing an eastbound/westbound

interface for the distributed SDN. This chapter turns to the data plane. As discussed in

Chapter 1, this dissertation works around the physical limitations on hardware capabilities

in the data plane but focuses on optimizing resource management, specifically flow table

management such that the inadequate flow table can be better utilized and the control over-

head can be reduced. In this chapter, proactive flow entry deletion which aims to prevent

flow table overflow is optimized. Proactive flow entry deletion refers to the process where

the controller commands OpenFlow switches to delete flow entries by explicitly sending

specific OpenFlow messages when the flow table is close to be overflowed. The key chal-

lenge for proactive deletion is to decide which flow entry should be deleted. If an active

flow entry is removed from the flow table, the switch has to query the controller again to

reinstall the flow entry when the packets of the flow arrive in the future. This re-installment

not only incurs unexpected delays [5] but also increases controllers’ workloads. Further-

more, evicting an active TCP flow entry can seriously degrade the performance of TCP

connections because it may result in packet loss and congestion window shrinkage for all

TCP flows which share a same switch buffer [74]. The third piece of this dissertation in

[75] proposed to use machine learning techniques to learn knowledge from historical flow

entry removals and thus predict the time when a flow entry will be last referred to. Based on

the predictions, the flow entry which is the least recently used will be proactively deleted

when the flow table is close to be overflow.
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5.1 Challenges of Proactive Flow Entry Deletion

To apply proactive flow entry deletion, two problems should be addressed. First, when

should the controller proactively delete flow entries? In general, we should not remove

flow entries if the flow table is not about to be overflowed. Otherwise, it is possible that an

active flow entry will be removed, which can hurt the performance of OpenFlow networks.

A naive solution is to set a threshold (β) for the flow table and the controller starts to

proactively delete flow entries when flow table utilization crosses this threshold. Second,

which flow entries should be deleted? Of course, we want to remove inactive flow entries,

to which no packet will refer in the future. However, it is difficult if not impossible for

the controller to exactly know which flow entries in the flow table are inactive. Therefore,

some intuitive and easy strategies are applied [42]. These strategies including deleting

a random flow entry (i.e., random policy) and deleting the first installed flow entry (i.e.,

FIFO policy). Another possible strategy is to delete the LRU flow entry. A. Zarek shows

that LRU is not a feasible approach for practical implementation because of architectural

reasons [44]. To apply LRU on the controller side, the controller has to track the order

of flow entry accesses in real time. This is infeasible within the framework of OpenFlow

because the controller only has non-real time accesses to coarse-grained counters. Even if

the controller can achieve real-time tracking, the overhead of signaling will be intolerable.

5.2 Why Machine Learning Can Help

Although we cannot know the exact order of flow entry access, can we infer the order of

accesses based on historical flow removes by exploiting machine learning techniques? To

explore this possibility, we first examine what data we can collect from the previous flow

removes. Once a flow entry is removed from the flow table due to flow expiry, proactive

deletion, or eviction, the controller can configure switches to send a Flow Removed mes-

sage to it. This message contains the remove reason of the entry, the entry duration (the
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time interval between flow entry installation and flow removal), number of packets matched

by the entry, idle timeout, hard timeout, number of bytes in packets matched by the entry,

and other experimenter-specific stats. For flow f , suppose we have already collected the

stats of n flow removals. And there is a flow entry en+1 corresponding to f in the flow table

of switch s. Can we use the stats of last n flow removals to predict the time tLastV isitf

when the last packet will be matched by flow entry en+1? If we can do this prediction

with reasonable accuracy, we can then delete the flow entry with the smallest tLastV isitf ,

which is actually an LRU-like policy.

5.3 Overhead of Proactive Flow Entry Deletion

The overhead1 of proactive flow entry deletion mainly contains two parts. One is the over-

head of deciding when proactive deletion should be started. In this work, proactive deletion

is assumed to be started when flow table usage crosses a threshold (β) chosen by the con-

troller. This mechanism is actually specified in the OpenFlow protocol, where vacancy

events are generated to warn the controller to react in advance to avoid flow table overflow.

Vacancy mechanism depends on two parameters, vacancy down and vacancy up,

chosen by the controller, and the process of generating vacancy events is shown in Listing

3. Once receiving vacancy events, the controller can commence the process of proactive

flow entry deletion. However, if the switch is configured to send a Flow Removed mes-

sage for every flow entry removal, the controller can track flow table usage in real time

because it knows the time of installation and removal for every flow entry. In this case, it

is unnecessary to generate and send vacancy events for the switch. The other part of the

overhead comes from deciding which flow entry should be proactively deleted. Machine

learning based policy depends on Flow Removed messages, but random and FIFO pol-

icy can make decisions without overheads. However, without Flow Removed messages,

the controller does not know which flow entries stay in the flow table. Therefore, it is
1In this work, the overhead of proactive flow entry deletion refers to the number of OpenFlow messages

exchanged between the controller and the switch.
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possible that the controller will instruct a switch to delete a flow entry which is actually

not residing in its flow table. On one hand, this wrong instruction (sending DELETE or

DELETE STRICT message) will intensify the switch and the controller’s workload. On

the other hand, it is highly possible that the flow table may overflow since no flow entry

is removed from the table. Flow table overflow can have serious impacts on OpenFlow

networks [74]. Firstly, flow overflow will lead to a chain reaction of flow entry eviction and

re-installment (i.e., evict an active flow entry, reinstall this flow entry in the near future,

which in turn evicts another active flow entry), which makes flow setup request rate grow

almost proportionally to flow data rates. These massive flow setup requests can overwhelm

the controller and switches’ CPUs. Secondly, flow table overflow could frequently reduce

TCP congestion window size, thus resulting in low TCP throughput and long packet delay.

Finally, flow table overflow can also lead to inference attack and privacy leakage under cer-

tain circumstances [76]. On the contrary, if sending Flow Removed messages is enabled,

there will be no such wrong instructions because the controller knows which flow entries

are in the switch’s flow tables.

Listing 2 Vacancy event generation
Require: vacancy down, vacancy up

isSendDown=True, isSendUp=True, isUpState=False
if remainSpace ≥ vacancy down and isSendDown then

isSendDown=False, isSendUp=True, isUpState=False
generate a vacancy down event

else if remainSpace ≥ vacancy up and isSendUp then
isSendUp=False, isSendDown=True, isUpState=True
generate a vacancy up event

end if

5.4 Smart Proactive Entry Deletion for OpenFlow

As discussed in Section 5.2, we can collect stats of previous flow entry removals in order

to predict the time when a flow entry is lastly referred to. Based on the predictions, we can

then derive an LRU-like proactive flow deletion policy. Motivated by such observations,
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Figure 5.1: The framework of SPEEDO.

Smart ProactivE Entry Deletion for Openflow (SPEEDO) is proposed, which is shown in

Figure 5.1. As the figure shows, SPEEDO mainly consists of two parts: offline model

training and online proactive flow deletion based on the trained model.

5.4.1 Offline Model Training

To train a machine learning model, we first need to collect appropriate datasets. According

to the discussions in Section 5.2, we need to collect data where each data sample contains

features of previous flow removals and the label tLastV isitf (i.e., the time when a flow

entry is last referred to). tLastV isitf can be computed as tStartf + tPktActivef , where

tStartf is the time when the current flow entry of flow f is installed in the flow table,

and tPktActivef is the elapsed time the flow entry has been referred to. The controller

can estimate tStartf by simply add the time when the controller instructs the switch to
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Table 5.1: tPktActive prediction features

Feature Description
numRemoval the number of flow entry removals
mean removeReason mean of removeReason
std removeReason standard deviation of removeReason
mean tDuration mean of tDuration
std tDuration standard deviation of tDuration
mean numPkt mean of numPkt
std numPkt standard deviation of numPkt
mean tInterval mean of tInterval
std tInterval standard deviation of tInterval

cur tInterval
the interval between last flow entry removal and current
flow entry installation

install the flow entry with the propagation delay between the controller and the switch.

Therefore, we use tPktActive as the label. As for features, we use the mean and stan-

dard deviation of the stats carried by Flow Removed messages, i.e., number of pack-

ets matched by a flow entry (numPkt), entry duration (tDuration), and remove reason

(removeReason2). Besides, we use the mean and standard deviation of the intervals be-

tween two successive entry removals (tInterval). We also use the number of flow entry

removals (numRemoval) and the interval between last flow entry removal and current

flow entry installation (cur tInterval) as another two features. Table 6.1 summarizes all

the features used in our machine learning model training.

With the identified features, we can then generate the dataset for training from real

network packet traces. The dataset generation process consists of two steps. The first

step is to use OpenFlow simulator (see Section 5.5 for more details) to replay a packet

trace. This simulator can simulate the behaviors of the controller and the switch when

the packets in a packet trace are presented, hence collect the stats of all flow removals

for every flow. These stats are stored in several statistic vectors: vf tStart (the vector

of flow entry installation time for flow f ), vf removeReason (the vector of flow entry

2removeReason = 0 represents the flow is removed by eviction, 1 by proactive deletion, and 2 by flow
expiry.
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removal reasons for flow f ), vf tDuration (the vector of flow entry durations for flow

f ), vf numPkt (the vector of the number of packets matched by flow entries for flow f ),

vf tInterval (the vector of the interval between two successive flow removals for flow f ),

and vf tPktActive (the vector of the elapsed time flow entries have been referred to for

flow f ). With these vectors, we can generate Nf − 1 (Nf is the number of flow removals

for flow f ) data samples for flow f as following: for 1 ≤ i < Nf , generate a data sample{
i, mean(vf removeReason[: i]3), std(vf removeReason[: i]), mean(vf tDuration[: i]),

std(vf tDuration[: i]), mean(vf numPkt[: i]), std(vf numPkt[: i]), mean(vf tInterval[:

i]), std(vf tInterval[: i]), vf tInterval[i], vf tPktActive[i+1]
}

, where vf tPktActive[i]

is the label and the others are features.

With the collected dataset, we need to select an appropriate machine learning algorithm

and tune its hyperparameters4. As we can see, the learning problem is a regression problem.

Many algorithms can be used for regression, such as support vector regression, neural

network, random forest, gradient boosting regression, and decision tree. To select the best

algorithm and tune its hyperparameters, we can apply k-fold cross validation to evaluate

the performance of different algorithms with various hyperparameter configurations, where

mean squared error is adopted as the performance metric.

5.4.2 Online Proactive Flow Entry Deletion

Once offline training is finished, we can apply the trained model for online proactive flow

entry deletion. Similar to dataset generation, the controller uses statistic vectors to record

the stats of all flow removals in each switch under its control. When a Flow Removed

message from switch s arrives, the controller will update the statistic vectors for switch s.

Besides, the controller can update the utility of the flow table (Uf ) for switch s since a flow

entry is removed from the flow table. When a Packet In message arrives, the controller

3vector[:i] represents the first i elements in the vector.
4For a machine learning algorithm, hyperparameters are parameters whose values are set manually before

the learning process begins. For example, we need to determine the number of trees before we train a random
forest model.
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will first check whether Uf > β. If yes, the controller will commence the process of

proactive entry deletion. It will first update tPktActivef for all flows (if the statistic vectors

of flow f stay same since the last update of tPktActivef , it is unnecessary to resort to the

trained model to update tPktActivef ). After all tPktActivef are updated, the flow with

smallest tStartf + tPktActivef will be searched and its flow entry will be proactively

deleted from the flow table by the controller.

5.5 Case Study

In this section, case studies on two real network packet traces will be presented to show the

performance gain of our SPEEDO. In the case studies, a flow is defined by five tuples, i.e.,

source IP address, source port number, destination IP address, destination port number, and

the protocol.

5.5.1 Data Sources

In this case study, two real network packet traces (i.e., UNIV1 and UNIV2) are used for

performance evaluation. These two traces5 are collected from university data centers by

the authors of [6]. The characteristics of the traces are summarized in Table 5.2.

As discussed in Section 5.4.1, we need to build an OpenFlow simulator which can

replay packet traces according to the OpenFlow specification. The implemented simulator

contains two objects: a switch and a controller. On the switch side, when a packet p

in the trace arrives, the switch will check whether any flow entry in the flow table can

match with p. If none of the entries can match, a Packet In message will be generated

and sent to the controller. When a flow entry is removed (because of expiry, deletion, or

eviction), the switch will send a Flow Removed message which carries the stats to the

controller. On the controller side, it will update the corresponding statistic vectors when
5They can be downloaded from http://pages.cs.wisc.edu/˜tbenson/IMC10_Data.

html. UNIV2 trace contains 9 sub-traces and collects approximately 1 billion packets in total. only the
first two sub-traces are used in this work for convenience because it takes a very long time to process 1 billion
packets in the available PC.
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Table 5.2: Summary of packet traces and generated datasets.

UNIV1 UNIV2
Duration (s) 3914 2357

Number of packets 19,855,388 23,835,028
Number of flows 577,675 61,930
Flow table size 1K, 2K, 4K 1K, 2K, 4K

Number of samples
129,479 (1K) 100,552 (1K)
92,625 (2K) 76,225 (2K)
64,779 (4K) 56,873 (4K)

Training duration (s) 1000 1000
Number of packets

within training duration 3,358,010 10,340,784

a Flow Removed message arrives. Moreover, when a Packet In message arrives, the

controller will check whether the flow table usage > β. If yes, the controller will select a

random flow entry and instructs the switch to delete the flow entry. Note here the controller

proactively deletes a random flow entry in the presence of Uf > β such that the generated

dataset can have a similar distribution as the data fed into the trained model in the online

proactive flow entry deletion. This is the foundation on which the trained model can be

generalized to handle test data.

For both traces, only the packets in the first 1000 seconds are replayed to generate

the datasets. Furthermore, the size of flow table is set to be 1K, 2K, or 4K, which are

compatible with the configurations in many studies [48], [42], [51]. Moreover, β = 0.95

is configured, which is same as [42]. In total, for each packet trace, three datasets corre-

sponding to three flow table sizes are generated, and these datasets are summarized in Table

5.2.

5.5.2 Offline Training Results

The offline training is based on scikit-learn [77], an open source machine learning

library in Python. This library provides many regression algorithms, as well as the APIs

for model selection based on cross validation. Support vector regression (SVR), neural net-
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work, random forest, and gradient boosting regression (GBR) algorithms are tried for each

dataset. Each dataset is split into a training set and a test set, and the splitting ratio is 80/20.

We then apply 5-fold cross validation on the training set to tune the hyperparameters for

each algorithm, and the hyperparameter search space for each algorithm is shown in Table

5.3. These hyperparameters are defined in the APIs for the corresponding algorithms in

sklearn library (e.g., sklearn.ensemble.RandomForestRegressor, refer to

[78] for more details about the definitions of hyperparameters), all the other hyperparam-

eters defined in the library but not included in Table 5.3 use the default values provided

by the library. The algorithm (with the best tuned hyperparameters) which can achieve

minimal mean squared error is selected as the offline training model. Interestingly, random

forest regression is proved to be the best algorithm for all six datasets, where the best tuned

hyperparameters are slightly different for each dataset. With the selected random forest

algorithm and its best tuned hyperparameters, the algorithm is trained on each dataset and

the trained model is saved with the help of joblib, which can be loaded for online flow

table management.

5.5.3 Online Simulation Results

Simulations on UNIV1 and UNIV2 packet traces are carried out with different flow ta-

ble sizes (1K, 2K, and 4K). The simulator is similar to the one used in dataset generation

except that the proactive flow entry deletion policy can be configured. Six policies are

implemented: LRU, SPEEDO(ML), random policy with/without Flow Removed, and

FIFO policy with/without Flow Removed. Although LRU is not feasible in practice as

discussed in Section 5.1, it’s good to see how big the performance gap between LRU and

SPEEDO is. For SPEEDO, the trained models in the last section will be used to decide

which flow entry should be proactively deleted, and the switch will send a Flow Removed

message to the controller whenever a flow entry is removed. For random policy, the con-

troller will proactively delete a random flow entry when proactive deletion is required. For
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Figure 5.2: The performance of different proactive deletion policies in terms of the number
of capacity misses.
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Figure 5.3: The performance of different proactive deletion policies in terms of number
of flow table overflows. With 4K flow table, for both UNIV1 and UNIV2, no flow table
overflow happened.
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Figure 5.4: The overheads of different proactive deletion policies. The first five bars are
the overheads for 1K flow table, the second five for 2K, and the last five for 4K. A right
proactive deletion is the one which can successfully delete a flow entry in the flow table,
while a wrong deletion fails to delete an entry because the entry is not residing in the flow
table.
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Table 5.3: Hyperparameter search space and results for each studied algorithm.

Algorithm HyperparametersValue

SVR C 0.01, 0.1, 1, 10
gamma 0.01, 0.1, 1

Random Forest
max features auto*-*, sqrt, log2
max depth 10, 201-1, 301-2, 1-4, 402-*

n estimators 201-1, 301-2, 1-4, 402-1, 1002-2, 2-4

Neural Networks

hidden layer sizes{3600}, {150,150}, {100,100,100},{85,85,85,85}
alpha 0.01, 0.1, 1, 10
learning rate constant, invscaling, adaptive
learning rate init 0.01, 0.1, 1, 10

GBR

n estimators 20, 30, 40, 100
max depth 10, 20, 30, 40
loss ls, lad, huber, quantile
learning rate 0.01, 0.1, 1, 10

Note: random forest regression is the best algorithm for all datasets, and the best tuned
hyperparameters are marked with {dataset-size}. For example, the hyperparameters
marked with 1-1 belongs to the algorithm on UNIV1 dataset with 1K flow table. In
addition, the * wildcard is also applied.

FIFO policy, the first installed flow entry will be proactively deleted by the controller when

proactive deletion is started. Furthermore, random and FIFO policies can be configured

with/without Flow Removed. With Flow Removed, vacancy event will not be gener-

ated. In this scenario, the controller will proactively delete one flow entry once received

a Packet In message if the flow table usage Uf > β (β = 0.95 in our simulations).

Without Flow Removed, vacancy mechanism will be turned on and the switch will gen-

erate vacancy events according to Listing 1 (vacancy up is set to be 5% of the flow table

size, and vacancy down is set to be 20% of the table size). In this case, after the con-

troller receives a vacancy up event, it will proactively delete one flow entry once receives a

Packet In message until the controller receives a vacancy down event.

First, the performance of the six proactive deletion policies are evaluated in terms of

the number of capacity misses. In OpenFlow, a flow table miss occurs if an incoming

packet cannot match any flow entry in the flow table. In general, there are two kinds of

flow table misses. One is the compulsory miss, which occurs when the first packet of a
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flow arrives at the flow table. The other one is the capacity miss, which occurs when flow

entries are discarded from the flow table because of the limitation on the size of the flow

table. Compulsory miss is inevitable and we here only consider capacity miss. It is signif-

icant to reduce capacity misses because the switch has to query the controller to reinstall

the flow entry once a capacity miss occurs. On one hand, this re-installment incurs a long

flow setup delay. On the other hand, both the switch and controller have to process more

events and thus affect their performance (e.g., flow table update rate). Moreover, removing

an active TCP flow entry can seriously degrade the performance of TCP connections [74].

Figure 5.2 shows the number of capacity misses achieved by the six proactive flow entry

deletion policies for UNIV1 and UNIV2. Here the number of capacity misses for each

policy is normalized with respect to the total number of capacity misses across all policies

for that trace. As we can see, for both UNIV1 and UNIV2, SPEEDO can achieve fewer ca-

pacity misses than the other four practical policies for all considered flow table sizes. And

the performance gain decreases as the flow table size increases. For example, compared

with random policy without Flow Removed, SPEEDO can achieve 23%, 15%, and 11%

fewer capacity misses in the case of 1K, 2K, and 4K flow table on UNIV1 trace, respec-

tively. This is because the size of the collected dataset decreases when the flow table size

increases, hence making the prediction accuracy of the trained model drop off. In addition,

the performance gain of SPEEDO on UNIV2 is smaller than that on UNIV1. For example,

compared with FIFO policy with Flow Removed, only 5% fewer capacity misses can be

reduced by SPEEDO in the case of 4K flow table on UNIV2. However, the gain is 7% for

UNIV1. This is because the Mean Squared Error (MSE) of the trained models on UNIV1

is smaller than that on UNIV2. For example, the MSE achieved by the trained RF model

on UNIV1 is 0.576 in the case of 1K flow table, but the MSE is 4.861 on UNIV2. As for

the performance gap between LRU and SPEEDO, we can see that LRU achieves smaller

capacity misses but the difference is small. For example, for UNIV1, LRU only achieves

less than 4% performance gain with 1K flow table. And for UNIV2, the performance gain
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of LRU over SPEEDO is also less than 10% with 2K and 4K flow table. However, for

UNIV1 (2K, 4K) and UNIV2 (1K), the gain of LRU over SPEEDO is more significant,

which is around 15%.

Second, the number of flow table overflows is measured because table overflows can

seriously hurt the OpenFlow network performance as discussed in Section 5.3. Figure

5.3 shows the normalized number of table overflows for all studied proactive flow entry

deletion policies. When the flow table size is 4K, no flow table overflow occurs for all

policies on both UNIV1 and UNIV2 packet traces. When the flow table is 1K, SPEEDO

results in a slightly higher number of overflows (< 1%) than random and FIFO policy

with Flow Removed. However, compared with random policy without Flow Removed,

SPEEDO results in 20% more table overflows on UNIV1 packet trace. On the other hand,

SPEEDO can achieve 22% fewer number of capacity misses and 9% fewer overheads (see

Figure 5.4) comparing with random policy without Flow Removed. This trend, more

overflows but fewer capacity misses and overheads, is also true for 1K flow table on

UNIV2. It seems that there is a trade-off between capacity misses, overheads and flow

table overflows in the case of 1K flow table. In this case, the question of which policy is

better depends on the cost of capacity misses and flow table overflows. Suppose the cost of

one capacity miss is CcapMiss and the cost of one flow table overflow is Coverflow, machine

learning policy is better if CcapMiss ∗ IncapMiss > Coverflow ∗ Deoverflow where IncapMiss

is the decreased number of capacity misses and Deoverflow is the increased number of flow

table overflows. SPEEDO outperforms random policy without Flow Removed because

IncapMiss > 18000(12000) while Deoverflow = 69(38) on UNIV1 (UNIV2) trace with 1K

flow table. As for the performance gap between SPEEDO and LRU, we again observe

that they have almost the same flow table overflows. Combined with Figure 5.2, we can

conclude that SPEEDO is a good approximation for LRU, which is exactly the goal of

SPEEDO.

Finally, the overheads of the five studied proactive deletion policies are also measured.
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The overhead is measured as the number of OpenFlow messages (including Flow Removed,

vacancy events, and proactive deletion messages) exchanged between the controller and the

switch. As we can see from Figure 5.4, SPEEDO has smaller overheads (2% ∼ 8%) than

the other four policies on both UNIV1 and UNIV2 traces, except that SPEEDO has 6%

more overheads than random policy without Flow Removed on UNIV2 trace with 4K

flow table.
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CHAPTER 6

SMART TABLE ENTRY EVICTION FOR OPENFLOW SWITCHES

In the last chapter, machine learning is employed to optimize proactive flow entry dele-

tion to mitigate flow table overflow. However, flow table overflow is inevitable. In the

presence of flow table overflow, flow entry eviction is necessary to provision non-disrupt

services. All the existing flow entry eviction policies apply some heuristics to infer which

flow entry is most likely to be inactive. For example, the least recently used flow entry is

more likely to be inactive than the most recently used one. However, the inferences based

on these heuristics cannot be very accurate, which seriously affect the usage of precious

flow table space. To improve accuracy, machine learning is a straightforward approach.

Nowadays, machine learning, especially deep learning which can automatically learn data

representations and build complex concepts out of simpler concepts using multi-layer neu-

ral networks, is widely used in commercial products (e.g., image classification, speech

recognition, natural language processing) [79]. To apply machine learning, two conditions

must be satisfied: an existed pattern and related raw data. In the case of flow entry eviction,

there exists a pattern for sure. For example, FIN packets will be sent when a TCP connec-

tion is terminated. In addition, we can collect stats of billions of packets in practice easily.

For example, Wireshark can be used to capture live network data. With the collected data,

the problem of identifying inactive flow entries is actually a binary classification problem,

where each flow entry in the flow table is classified as either active or inactive. Following

this idea, the last piece of this thesis in [80] and [81] tries to improve the accuracy of flow

entry eviction such that the precious flow table can be better utilized. To be specific, Smart

Table EntRy Eviction for Openflow Switches (STEREOS) is proposed to employ machine

learning techniques to identify and evict inactive flow entries in the presence of flow table

overflow.
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Figure 6.1: Flow setup in OpenFlow

6.1 Flow Entry Eviction

6.1.1 Flow Setup in OpenFlow

Before we dive into flow entry eviction, we first need to look at the flow setup process in

OpenFlow. In Section 3.2, we have talked about flow setup, which is the process where the

controller setups a path for a coming flow which cannot be matched with any existing flow

entry. In this section, we need to add more details to flow setup such that the mechanism

about how flow entry eviction can affect network performance can be revealed. As shown

in Figure 6.1, flow setup consists of the following steps:

1. When the OpenFlow switch receives a packet from one of its ports, it first checks its
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flow tables and tries to find one existing flow entry which can match the incoming

packet.

2. If there exists a matched flow entry, the switch will handle this packet according to

the matched entry such as outputting the packet to one specific port, dropping the

packet, and modifying the packet. If no flow entry can match the packet, it will be

sent to the datapath buffer.

3. A Packet In message including some fraction of the buffered packet header is

generated and sent to the controller.

4. The received Packet In message is queued at the RX queue in the controller and

then handled by the control application in order.

5. The controller generates Packet Out and Flow Mod events based on its logic and

the received Packet In. These two newly generated messages are then sent to the

TX buffer for transmission in order.

6. Once the switch receives the Packet Out message, it retrieves the corresponding

buffered packet from the datapath buffer and output the packet to the port specified

in the Packet Out message.

7. Once the switch receives the Flow Mod message, it installs a new flow entry into

the flow table such that all successive packets belonging to the new flow can be

automatically handled by the switch without involving the controller.

6.1.2 Why Flow Entry Eviction is Important

The flow setup process is the bottleneck which limits the performance of OpenFlow and

many efforts have been made to optimize it [82], [83]. The key challenge associated with

this process is that the messages exchanged between the controller and switches in this

process contribute the majority of the control overhead. For example, A. A. Pranata et al.
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[84] proposed an framework for the controller and switch targeted on Packet In and

Packet Out message in order to reduce control overhead. The heavy overhead of the

control channel makes OpenFlow networks less scalable because the CPU of the ASIC

based OpenFlow switch is limited in computation capacity and the bus bandwidth between

the ASIC and switch CPU is limited as well [59], [85]. This means the delay for generating

Packet In events and installing new flow entries can be unacceptable if the volume of

the control overhead is large. The measurements on Intel FM6000 OpenFlow switch show

the mean delay for generating a Packet In event is 8 ms in the case of 200 flows/s

[8]. Similar measurements on Broadcom 956846K show that the latency for flow entry

insertion (modification) is 3 ms (30ms), which is much higher than what native TCAM

hardware can support (100M updates/s). On the controller side, D. Erickson measured

the performance of different controllers and the latency for processing one Packet In

event varies between 24 us and 145 us [4]. These measurements on real devices reveal the

significance of reducing the control overhead.

Based on the above discussions, we come to the conclusion that flow entry eviction is

extremely important for OpenFlow network performance because every wrong flow entry

eviction (i.e., evicting an active flow entry) will initiate one flow setup. In general, evicting

an active flow entry will generate one extra Packet Inmessage, one extra Packet Out,

and more than one Flow Mod. Furthermore, one Flow Removed message will be gen-

erated for every eviction in general. In our system-level OpenFlow networking simulations

in Section 6.4, as shown in Figure 6.15, these four OpenFlow messages generated due to

wrong flow entry evictions can account for 70% control overhead.

6.1.3 Impacts of Flow Entry Eviction

The negative impacts caused by flow entry eviction are rooted in the datapath buffer in the

switch and the RX/TX queue in the controller. The saved packets in the datapath buffer

are retrieved until the switch receives the corresponding Packet Out messages from the
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controller. What makes it worse, all successive packets belonging to a flow have to be

buffered in the datapath buffer before the flow entry corresponding to the flow is installed in

the switch. And these buffered packets in turn generate more Packet In events. Suppose

flow arrivals follow a Poisson process with rate λ, and the packets in one flow arrive with

a constant speed γ. In addition, we let the latency between saving a packet to the datapath

buffer and installing the flow entry corresponding to the new flow be τ . Then we can prove

that the expectation of the number of packets buffered in the datapath buffer is

E[Nτ ] = 0.5λγτ 2 − 0.5γτ 2 + λτ − 0.5γτ, (6.1)

where the proof is provided in the Appendix. According to the equation 6.1, the number of

packets buffered in the datapath buffer grows linearly to τ 2. Besides, Openflow switches

have limited memory, therefore the size of datapath buffer cannot be very large. For ex-

ample, in the ofsoftswitch13 [86], a buffered packet will be dropped after 1 second.

Furthermore, λ (> 1000 flows per second [6]) and γ can be large in the real network. These

factors all together show that τ has a significant impact on the number of packets buffered

in the datapath buffer.

In general, τ consists of the latency of generating a Packet In event (e.g., 8 ms),

queueing delay in the TX/RX queues in the controller, the latency for processing one

Packet In event for the controller (e.g., 50 us), the latency for installing a flow entry

into the flow table (e.g., 3 ms), and the round-trip time (RTT) between the controller and

the switch (e.g., 1 ms). Except for the queueing delay in the controller, the other com-

ponents subject to physical constraints. For example, RTT can be reduced if switches are

physically closer to the controller. With a more powerful switch CPU, the latency of gen-

erating a packet can be decreased. As for the queueing delay in the controller, it is directly

related to control overhead. The RX and TX queues in the controller can be very large

(e.g., 4GB), but they need to buffer all packets from/to all OpenFlow switches connected
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to the controller. In addition, large queues also result in large queueing time. Suppose the

queue size is 4GB and the size of one packet is 512 Bytes, then the last packet in the buffer

needs to wait for 419s before it can be processed by the controller application if the mean

latency for processing one packet is 50 us [4].

As we discussed in Section 6.1.2, control overhead is heavily affected by flow entry

eviction policy. If wrong flow entry evictions are frequent, the control overhead will be

large such that the queueing time can be so long that the datapath buffer is overflowed. The

outcomes of datapath buffer overflow are:

1. The buffered packets are lost. The direct consequence of buffer overflow is that the

saved packets are dropped. This will increase packet loss rate.

2. Applications launch is delayed. If the dropped packets are SYN packets or ARP

packets, retransmissions have to be initiated. Accordingly, the launch of the corre-

sponding applications will be delayed because the connection cannot be built.

3. TCP connection failure. If the retransmission of SYN/ARP packet fails for several

times (e.g., 6 for SYN) because the packet is continuously deleted from the datapath

buffer, TCP and ARP protocol will stop retrying transmitting SYN and ARP request,

which means the connection cannot even be built and no packet belonging to the flow

can ever be sent.

4. TCP connection interruption. If the connection can be built, packet drop will en-

force recovery on TCP and the dropped packets will be retransmitted. This means

the congestion window size will be shrank and the effective throughput drops.

5. TCP connection drop. If a packet is retransmitted for more than certain times (e.g.,

3) before it is ACKed, the TCP connection will be closed and the rest packets in the

flow cannot be sent.
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In summarize, wrongly evicting active flow entries will increase control overhead signifi-

cantly. The massive control messages make the queueing delay in the controller unaccept-

able such that datapath buffer is frequently overflowed. This overflow can interrupt or even

stop services, which will have a serious negative impact on quality of service providing to

customers.

6.2 Smart table entry eviction

As discussed at the beginning of this chapter, each flow entry can be either classified as

inactive (positive) or active (negative). To apply this classification, we first need to train

a binary classification model. Therefore, STEREOS mainly consists of two parts. One is

offline training to generate the classification model, and the other one is online flow table

eviction utilizing the trained model.

6.2.1 Offline Training: Data Collection

First and foremost, we need to collect data for training classification model. For every data

point, it should contain two parts: features and label. Features are used to characterize the

state of one specific flow entry, and the label indicates whether this flow entry is active

or inactive. In this study, a flow is defined by five tuples, i.e., source IP address, source

port number, destination IP address, destination port number, and the protocol. With this

definition, we use the following features to characterize a flow entry: the protocol (we only

consider TCP and UDP flows in this study) of the flow (1tcp), the period of time since the

last reference of the flow entry (i.e., tidle=current time - the time when the flow entry is last

referred), the mean and standard deviation of the inter-arrival time of the last Npkt packets

referring to the flow entry (tia and tis), and the length (li) of the last Npkt packets referring

to the flow entry. tidle captures the recentness of the flow entry, and larger tidle means the

flow entry is more likely to be inactive since no packet will refer to an inactive flow entry.

tia and tis can reflect the locality of references, and the reference tends to be more local with
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Figure 6.2: Examples of flow entry feature vector with Npkt = 4.

Table 6.1: Feature List

Feature Description
1tcp whether the flow is a TCP flow
tidle the period of time since the last reference of a flow entry

tia(tis)
mean (std) of the inter-arrival time of the last Npkt packets
referring to a flow entry

li(0 ≤ i < Npkt) the length of the last Npkt packets referring to a flow entry

smaller tia and tis. li of last Npkt packets can reflect the communication state of a flow. For

example, FIN packets will be sent when a TCP connection is terminated. A larger Npkt can

provide more information but consume more OpenFlow switch memories. Therefore, we

should setNpkt as small as possible without a significant classification accuracy loss. These

features constitute the feature vector v = (1tcp, tidle, tia, tis, l1, l2, · · · , lNpkt
) ∈ RNpkt+4 for

each flow entry. For example, Figure 6.2 shows two flow entries with Npkt = 4. The upper

flow entry is UDP and it is referred by four packets until t0, with length 2, 3, 9, and 4. The

inter-arrival time of these packets are 1.5, 2, and 3. At time t0, the feature vector of this

flow entry is v = (0, 0.8, 2.17, 0.62, 2, 3, 9, 4). As for the lower TCP flow entry, there are

only two packets referred to it. In the case when there are less than Npkt packets referring

to a flow entry, we set li of the “missing” packets as 0. Therefore, the feature vector of the

lower flow entry at t0 is v = (1, 6, 3.2, 0, 0, 0, 1, 6). Table 6.1 summarizes all the features

used in our machine learning model training.
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With these identified features, we can then generate the dataset for training from real

network packet traces. The generation process is described in Listing 3, which simulates

the arrival of packets and updates the feature vector of the corresponding flow entry when a

packet arrives. The features and label of every flow entry will be outputted as a data sample

in the case of flow table overflow, where a flow entry is labeled as inactive/positive when

packet p refers to this flow entry and no more packet will refer to it in the rest of the trace.

Here we assume that a flow is dead if no packet belonging to it arrives within tthreshold.

This is reasonable if tthreshold is long enough (e.g., 1 hour). Note that all identified features

are time-varying except for 1tcp. Particularly, tidle of a flow entry changes as time elapsed

even if no more packet refers to it. In this case, there will be thousands of data samples

which are exactly the same except that their tidle are slightly different. For example, for the

upper flow entry in Figure 6.2, the feature vector v will be (0, 0.801, 2.17, 0.62, 2, 3, 9, 4) at

time t0 + 0.01 and (0, 0.802, 2.17, 0.62, 2, 3, 9, 4) at t0 + 0.02. To prevent this, we employ

trecord to record the time when the features and label of a flow entry are outputted as a data

sample. A flow entry cannot generate data samples within tinterval after its trecord if no packet

refers to it (see line 5 in Listing 3). Another important issue is which policy (e.g., random,

LRU) should be used for flow entry eviction in the case of flow table overflow. In machine

learning, we would like training data and test data sets come from the same underlying

data distribution such that the trained model can achieve low generalization error. If we

use a policy other the random policy for flow entry eviction during dataset generation, it

prefers to evict some certain flow entries and this preference is very likely to be different

from the machine learning policy we want to learn. Thus the difference of the distributions

between the generated training dataset and the test dataset will be large. Therefore, we

evict a random flow entry when the flow table is overflowed (see line 7) because there is

no preference for the evicted flow entries for the random policy. In this way, the generated

dataset will have a similar distribution as the feature vectors which are fed into the trained

model in the online flow table eviction.
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Listing 3 Dataset generation
Require: Packet trace, tmax, Nmax, tinterval, Npkt, tthreshold

1: for Tcp/Udp packet p whose arrival time tp ≤ tmax do
2: If the next packet belonging to the flow containing p will arrive after tthreshold or p is

the last packet, label the flow as inactive. Otherwise, label it as active.
3: if p cannot match any flow entry then
4: if the size of the flow table is Nmax then
5: Output the features and label of each flow entry which is recorded ≥ tinterval

ago or updated;
6: Set each flow entry as non-updated and trecord of each flow entry as tp;
7: Evict a random flow entry;
8: end if
9: Insert the flow entry subject to p in the flow table.

10: Set the flow entry as updated.
11: else
12: Update the features of the flow entry referred by p
13: end if
14: end for

6.2.2 Offline Model Training: Model Tuning

With the collected dataset, we need to select an appropriate machine learning algorithm

and tune its hyperparameters to achieve the best performance. Many algorithms can be

used for classification problems, such as nearest neighbors, support vector machine, deci-

sion tree, random forest, and multiple layer perception [87]. To select the best machine

learning algorithm for STEREOS and tune its hyperparameters, we need to select an ap-

propriate performance metric. There are many performance metrics for classification, such

as classification accuracy, recall, and F1-score [87]. If an active flow entry is evicted from

the flow table, the switch has to query the controller again to reinstall the flow entry when

the packets of the flow arrive in the future. This re-installment not only incurs unexpected

delays [5] but also increases controllers’ workloads. Furthermore, evicting an active TCP

flow entry can seriously degrade the performance of TCP connections because it may re-

sult in packet loss and congestion window shrinkage for all TCP flows which share a same

switch buffer [74]. Therefore, we want to minimize false positives (i.e., active flows are

misclassified as inactive). On the other hand, if an inactive flow entry is misclassified as
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Figure 6.3: K-fold rolling-origin cross validation (K = 5) for tuning the hyperparameters of
classification models.

active, then it will never be kicked out from the flow table which definitely wastes precious

flow table resources. From this perspective, false negatives should be minimized as well.

With this respect, we use F1 score as the performance metric. It is defined by

F1 = 2× precision× recall/(precision + recall), (6.2)

where precision = TP/(TP+FP), recall = TP/(TP+FN), TP is the number of correctly

classified inactive flow entries, FP is the number of misclassified active flow entries, and

FN is the number of misclassified inactive flow entries. According to the definition, a high

F1 score indicates low false negatives and low false positives, which are our objectives.

Based on F1 score, we can use k-fold rolling-origin cross validation, as shown in Figure

6.3, to evaluate the performance of different machine learning models with different hyper-

parameter configurations. K-fold rolling-origin cross validation is a common approach to

fine-tune model hyperparameters for time series data [88], where the whole time is first

split into a training range and a testing range such that all observations in the training range

occurred prior to any observation in the testing range. The training range is further divided
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into 2K roughly equal time slices (K=5 in Figure 6.3). For fold k = 1, 2, · · · , K, we fit a

machine learning model with its hyperparameters to the first K + k − 1 time slices, and

compute its F1 score in classifying the (K+k)th part (a.k.a., validation slice). Then we get

the average F1 score of these K fold cross validations. For every machine learning model,

we do this for many values of the hyperparameters and choose the values which makes the

average F1 score largest. In this way, we can find the best machine learning model and

its tuned best hyperparameter values such that the model can achieve the highest F1 score.

With the chosen model and hyperparameters, we can fit the model to the whole training

range and use the trained model for online flow table eviction.

6.2.3 Online Flow Table Eviction

Once offline training is finished, we can apply the trained binary classification model

for online flow table eviction. A straightforward idea of applying the trained model is to

evict all flow entries which are classified as inactive by the model. However, this native ap-

proach may suffer from serious performance degradation. On one hand, the trained model

can make wrong classifications and many misclassified active flow entries thus may be

eliminated. On the other hand, one and only one flow entry is needed to be evicted when a

new flow entry arrives. Therefore, it is a better way to evict one flow entry which is most

likely to be inactive when the flow table is full. Fortunately, most binary classification algo-

rithms cannot only predict whether one flow entry is inactive but also give the confidence

of the prediction (i.e., the probability of being inactive for the flow entry). We rely on

these probabilities for online flow entry eviction, as shown in Listing 4. Suppose we train a

binary classification model h from the collected dataset, where h(ve) gives the probability

of being inactive for flow entry e with feature vector ve (i.e., P e
inactive). A feature vector v

is associated with each flow entry to extract the features. The feature vector contains all

identified features except for tidle. In principle, tidle of a flow entry should be updated as

time elapses while the other features should be updated only when a new packet refers to
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Listing 4 Online Flow Entry Eviction
Require: Trained model h, Pmin, tinterval

1: while a packet p is arriving at the switch do
2: if p is matched with a flow entry ep then
3: update the feature vector vep associate with ep
4: else
5: if the flow table is overflow then
6: isEvicted← false
7: for every flow entry e in the flow table do
8: if ve is updated or P e

inactive is updated tinterval ago then
9: P e

inactive ← h(ve)
10: if P e

inactive > 0.9 then
11: 1) evict the entry e
12: 2) isEvicted← true
13: break
14: end if
15: end if
16: end for
17: if not isEvicted then
18: e∗ = argmax{P e

inactive}
19: if P e∗

inactive > Pmin then
20: evict the flow entry e∗

21: else
22: evict the least recently used flow entry
23: end if
24: end if
25: end if
26: send flow setup request to the controller to install flow entry for packet p
27: end if
28: end while
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the flow entry. To avoid frequent updates of tidle, the feature vector of a flow entry contains

the arrival time of the last packet referring to this entry (tlast). When the feature vector is

fed to the trained model for classification, tidle is calculated by tnow− tlast where tnow is the

current time. In this respect, when a new packet arrives, only the feature vector associated

with the flow entry the packet refers to will be updated.

Another issue is to determine when the trained model should be applied for classifica-

tion. When flow table overflow happens, we need to apply the trained model to find the flow

entry which is most likely to be inactive. Intuitively, we can use the implemented model

to compute Pinactive (the probability of being inactive for a flow entry) of all flow entries

and evict the flow entry with the maximum Pinactive. This straightforward approach suffers

from two disadvantages. First of all, it will be very computation intensive because flow

table overflow happens very frequently. The intensive computation not only incurs a heavy

workload on the weak switch management CPU but also introduces unacceptable latency.

Secondly, it is meaningless to do classification on the same flow entry again if its feature

vector has no or little change. For example, we do not want to classify a flow entry again if

its feature vector stays the same except that tidle is 1 millisecond different. To address these

problems, the time when Pinactive is last updated is recorded in our proposal. If no packet

refers to the flow entry, Pinactive cannot be updated within tinterval second, where tinterval is

a given constant (see line 8 in Listing 4). In general, large tinterval makes the classification

less intense but reduces the sensitivity to find an inactive flow entry. Furthermore, when

a flow entry is predicted to be inactive with Pinactive > 0.9, it will be evicted immediately

without updating Pinactive of other flow entries (see line 10-13). Otherwise, we have to find

the flow entry with the maximum Pinactive. In this way, the frequency of doing classification

is greatly reduced.

The last issue is how to kick out the misclassified inactive flow entries from the flow

table. For inactive flow entries, only tidle will change as time elapses. In this case, it is

possible that some inactive flow entries will always be classified as active and thus reside
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in the flow table forever. To make matters worse, these inactive flow entries will accumu-

late as time passes and occupy most of the flow table space, which seriously affects the

usage of flow tables. To address this issue, we evict the least recently used flow entry if

max{P e
inactive} ≤ Pmin (see line 22). Otherwise, the flow entry with maximum Pinactive

will be evicted (see line 20). In this way, the misclassified inactive flow entries, whose

tidle tends to be large, can be removed if no flow entry can be classified to be inactive with

probability higher than Pmin.

6.2.4 Overheads of STEREOS

The main concern regarding the overheads of STEREOS is how large the feature vector will

be, compared with the flow entry. Each flow entry contains match fields, priority, counters,

instructions, timeouts, cookie, and flags. The match fields are described using OpenFlow

Extensible Match (OXM) format, and each OXM occupied 5 to 259 bytes. For the classi-

cal 5-tuple flow match fields (i.e., protocol, source IPv4 address, destination IPv4 address,

source TCP/UDP port, destination TCP/UDP port), 4 OXMs (i.e., OXM OF IPV4 SRC,

OXM OF IPV4 DST, OXM OF TCP SRC/ OXM OF UDP SRC, OXM OF TCP DST/

OXM OF UDP DST) are required and 28 bytes will be consumed. The priority needs

2 bytes, timeout 2 bytes, cookie 16 bytes, and flags 4 bytes. Depending on which counters

are included in the flow entry, the match field of counters consumes 4 to 24 bytes. As for the

field of instructions, the number of bytes it occupies depends on what actions are included.

For example, if one output action is included, then the field of instructions will occupy 24

bytes. In summary, the overhead of one flow entry varies depending on what match fields

are used, what counters are included, and what actions are applied. For the classical 5-tuple

output flow entry, it takes 80 bytes. As for the overhead for STEREOS, each flow entry

will be associated with a feature vector, which includes idle time, the packet length and

inter-arrival time of the last Npkt packets referred to the flow entry. Therefore, if we use Bt

bytes to quantize the time features, and Bl to quantize packet length, then the overhead of
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Table 6.2: Summary of packet traces used for case study

Packet trace Duration (s) Number of packets Number of flows
TCP flow
percentage

UNIBS20090930 81,203 4,189,545 43,489 0.973
UNIBS20091001 32,407 3,321,426 39,730 0.974
UNIV1 3,914 17,131,142 439,133 0.674
UNIV2 3,558 35,243,160 38,016 0.087

machine learning eviction policy is BtNpkt +BlNpkt. We will talk about the value of Npkt,

Bt, and Bl in the following section.

6.3 Case Study

In this section, we present case studies based on four real packet traces collected from

university datacenters. Besides UNIV1 and UNIV2 used in Section 5.5, another two packet

traces, UNIBS20090930 and UNIBS20091001 which are collected on the edge router of

the campus network of the University of Brescia on two working days (i.e., 09/30/2009 and

10/01/2009) [89], are also used. They are composed of traffic generated by a set of twenty

workstations running the ground truth client daemon. For simplicity, we only consider TCP

and UDP flows in this case study. We summarize these four packet traces in Table 6.2.

6.3.1 Dataset collection

To collect data for learning, we build an OpenFlow simulator which can replay packet

traces according to the OpenFlow specification [3] and collect data according to Listing 3.

Our simulator contains two objects: an OpenFlow switch and a controller. All the packets

in a packet trace will be replayed and arrive at the OpenFlow switch. When a packet p

in the trace arrives, the switch will check whether any flow entry in the flow table can

match with p. If none of the entries can match, a PacketIn message will be sent to the

controller. Once received a PacketIn, the controller will instruct the switch to install a

new flow entry with respect to p. Furthermore, the switch will update the feature vectors
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Table 6.3: Summary of generated datasets

Packet
trace tmax tint

Train
flows

Test
flows

Cross
flows

Table
size

Dataset
size

Class
ratio

UNIBS
20090930 10000 20 11283 33076 870

1K 563537 1.022:1
2K 829985 2.023:1
4K 1037730 3.434:1

UNIBS
20091001 5000 10 7284 33181 735

1K 230977 1.610:1
2K 381279 2.958:1
4K 438524 5.110:1

UNIV1 600 1 95503 398395 54765
1K 874663 0.747:1
2K 1420374 1.462:1
4K 2472854 2.797:1

UNIV2 550 1 19073 34540 15597
1K 873753 0.070:1
2K 1336900 0.109:1
4K 2229184 0.164:1

of flow entries and output data samples according to Listing 3. For all four packet traces,

we set the size of flow table (Nmax) to be 1K, 2K, and 4K, which are compatible with the

configurations in many studies [48], [42]. As for Npkt, we set it 10 for all traces and table

sizes. All these generated datasets are summarized in Table 6.3. Here we define train flows

as the flows which start in the train duration tmax, test flows as the flows start beyond tmax,

cross flows as the flows start within tmax and end beyond tmax. The reason why we want

to distinguish these flows is that we want to figure out whether the learned pattern of train

flows can also apply to test flows. This is significant because the benefits of STEREOS will

degrade as time elapsed if the learned pattern cannot apply to test flows. In addition, we

can see that the class ratio (i.e., the ratio of positive to negative instances) increases as the

flow table size becomes larger. This is because a flow entry resides in the flow table for a

longer time and thus be more likely to be inactive when eviction happened if the flow table

is larger. Furthermore, except for UNIV2, the datasets of the other 3 traces do not suffer

from the problem of imbalance. This is because most flows in UNIV2 last for a very long

time and thus most of the flow entries in the flow table are active.
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6.3.2 Offline training results

We use scikit-learn [77], an open source machine learning library in Python, for

selecting the best machine learning models. This library provides many classification al-

gorithms, as well as the APIs for model selection based on cross-validation. As shown in

Figure 6.3, each piece of the last five periods tmax/10 is a validation set and we consider

the previous time’s data is the training set. In this way, we can apply 5-fold rolling-origin-

cross-validation to tune the hyperparameters of different machine learning algorithms. In

this study, we consider seven classification algorithms: gradient boosting tree (GBT), de-

cision tree (DT), random forest (RF), Ada boosting (Ada), logistic regression (LR), neural

networks (NN), and Gaussian naive Bayes (GNB). The advantages and disadvantages of

these algorithms are well summarized in [90], [91]. We do not consider K nearest neighbor

algorithm because it requires to memorize the whole dataset which is not feasible for the

OpenFlow switches with limited memory. We also do not consider support vector machine

(SVM) algorithm because it is very computationally expensive for training. For each of the

considered algorithm, it has many hyperparameters and we only consider some of the most

import ones1, which are shown in Table 6.4. All the other hyperparameters not specified in

Table 6.4 use the default values provided by the library.

All possible combinations of the hyperparameter values specified in Table 6.4 are evalu-

ated by 5-fold rolling-origin-cross-validation in terms of F1 score. In this way, we can pick

the best algorithm and its best tuned hyperparameters in terms of the achieved F1 score,

which are shown in Table 6.5. As we can see, GBT and RF are the best two algorithms for

all four packet traces ( their achieved F1 score fall within about 0.5% of each other), which

are consistent with the results from [92]. These two methods are both ensemble methods

which are unlikely to overfit. Another important observation is that the F1 score for the

validation on the non-cross flows of UNIBS packet traces is slightly smaller than that on

1Refer to https://scikit-learn.org/stable/supervised_learning.html#
supervised-learning for the definitions of these hyperparameters.
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Table 6.4: Hyperparameter search space for model tuning

Algorithm Hyperparameter Search space

RF
n estimators [10, 20, 30]
criterion [entropy, gini]
max depth [10, 20, 30]

DT
criterion [entropy, gini]
max depth [10, 20, 30]

Ada
n estimators [10, 20, 30]
learning rate [0.8, 0.9, 1.1]

GBT

n estimators [10, 20, 30]
subsample [0.6, 0.8, 1.0]
learning rate [0.01, 0.1, 0.5]
max depth [10, 20, 30]

LR
penalty [L1, L2]
C [0.01, 0.1, 1.0]

NN

alpha [0.01, 0.1, 1.0, 10.0]
learning rate [constant, invscaling, adaptive]
learning rate init [0.01, 0.1, 1.0, 10.0]
hidden layer sizes [(30), (15, 15), (10, 10, 10)]

the cross flows, while for UNIV packet traces, the F1 score of non-cross flows is higher

than cross ones. It demonstrates that the learned pattern of one flow can be generalized to

another unseen flow. Otherwise, the score of the non-cross flows will be much lower than

the cross ones.

After we select the best model and determine its best-tuned hyperparameters for each

dataset, we train the best-tuned machine learning model on the whole training duration tmax

and save the trained model with the help of joblib, which will be loaded for online flow

entry eviction.

6.3.3 Online simulation results

We carried out simulations on the four packet traces with different flow table sizes (1K,

2K, and 4K). The simulator is similar to the one used in dataset generation except that the

flow entry eviction policy can be configured. We have implemented two policies, machine

learning policy and LRU policy, for performance comparison. For machine learning policy,
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Table 6.5: Model selection results

Packet
trace

Table
size Best model in terms of F1 score Train

Validation
on cross
flows

Validation
on non-
cross flows

Validation

UNIBS
20090930

1K
gbt { n estimators:30; sub-
sample:0.8; learning rate:0.1;
max depth:10; }

0.98784 0.98380 0.93758 0.96171

2K
gbt { n estimators:30; sub-
sample:0.8; learning rate:0.1;
max depth:10; }

0.99499 0.99303 0.95014 0.98106

4K
gbt { n estimators:30; sub-
sample:0.6; learning rate:0.1;
max depth:10; }

0.99775 0.99494 0.94634 0.98811

UNIBS
20091001

1K
rf { n estimators:30; crite-
rion:entropy; max depth:20;
}

0.99662 0.99454 0.93710 0.97660

2K
gbt { n estimators:30; sub-
sample:1.0; learning rate:0.1;
max depth:10; }

0.99497 0.99661 0.94930 0.98861

4K rf { n estimators:30; criterion:gini;
max depth:20; } 0.99928 0.99901 0.94492 0.99526

UNIV1
1K

rf { n estimators:30; crite-
rion:entropy; max depth:20;
}

0.93629 0.79215 0.93148 0.90258

2K
rf { n estimators:30; crite-
rion:entropy; max depth:20;
}

0.96081 0.91783 0.95195 0.93946

4K
rf { n estimators:30; crite-
rion:entropy; max depth:20;
}

0.97890 0.96687 0.95983 0.96435

UNIV2
1K

gbt { n estimators:30; sub-
sample:0.8; learning rate:0.1;
max depth:10; }

0.94876 0.69402 0.93979 0.89006

2K
gbt { n estimators:30; sub-
sample:0.6; learning rate:0.1;
max depth:20; }

0.96857 0.84351 0.94421 0.90926

4K
gbt { n estimators:20; sub-
sample:0.6; learning rate:0.1;
max depth:20; }

0.98324 0.94429 0.95206 0.94790
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Figure 6.4: The performance of machine learning eviction policy and LRU policy in terms
of number of capacity misses

the switch determines which flow entry should be evicted in the case of flow table overflow

according to Listing 4, where Pmin = 0.65 and tinterval is set according to Table 6.3. And

the models used for prediction are generated in the last subsection. For LRU policy, the

switch kicks out the least recently used flow entry when the flow table is full.

First, we investigate the number of capacity misses just like in Section 5.5.3. Figure 6.4

shows the performance of STEREOS in terms of the number of capacity misses, where the

number of capacity misses of one packet trace for each policy is normalized with respect to

the total number of capacity misses across all policies for that trace. From Figure 6.4, we

have the following observations:

1. For UNIV2 trace, STEREOS can only achieve less than 5% performance gain. This

is because the number of active flows in UNIV2 is always much larger than the flow

table size, as shown in Figure 6.5. It means that most of the flow entries in the flow

table are always active, and thus STEREOS cannot outperform LRU policy since

our proposal is based on the assumption that some of the flow entries are inactive.

Fortunately, this situation is not typical in the real networks because most of the flows

in UNIV2 are UDP flows, as shown in Table 6.2. According to the report from [50],
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UDP data volume is only 3% ∼ 9% of TCP data. However, in UNIV2, most flows

are UDP and UDP data dominates the trace (refer to Table 6.2). Since STEREOS

only slightly outperforms LRU for UNIV2, we will not investigate it in the rest of

our discussions.

2. For the other three packet traces, we can see that the performance gain of STEREOS

generally decreases as the flow table size increases. In the case of 1K and 2K flow

table, STEREOS can achieve over 45% fewer capacity misses on the UNIV1 packet

trace and over 60% on the UNIBS20090930 and UNIBS20091001 traces. Especially,

for the UNIBS1001, our proposal can achieve 78% fewer capacity misses in the

case of 1K flow table. We should add that reducing capacity misses is extremely

important for OpenFlow network performance. On one hand, fewer capacity misses

will reduce the number of PacketIn events, and thus relieve the load on control

channels and controllers. On the other hand, fewer capacity misses means that fewer

TCP transmissions are interrupted. With this respect, the over 45% performance gain

in terms of capacity miss achieved by our proposal is very significant. We will further

demonstrate this argument in Section 6.4. However, with 4K flow table size, for

example, STEREOS can only reduce the number of capacity misses on the UNIV1

trace by 7% compared with LRU policy. And for UNIBS20090930, STEREOS even

performs worse than LRU. This is because it is more likely for LRU policy to remove

an inactive flow entry with a larger flow table. In addition, the class ratio is even more

imbalanced in the case of 4K flow table, which has negative impacts on the prediction

accuracy.

3. Cross flows contribute most capacity misses in the case of LRU policy although the

number of cross flows is much less than non-cross flows, as shown in Table 6.3. For

example, the number of cross flows is only 2.6% of all test flows, but cross flows

contribute more than 67% capacity misses. This is because the packet inter-arrival
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time of cross flows are larger than the non-cross flows, as shown in Figure 6.6. The

flow entry with larger packet inter-arrival time is more likely to be evicted with LRU

policy. In this way, cross flows contribute most capacity misses.

4. The performance gain of machine learning is mainly from the gain of cross flows.

For example, with 2K flow table, the number of capacity misses on cross flows is

reduced over 97% for UNIBS packet traces and 76% for UNIV1 trace. However, for

the non-cross flows, the capacity misses are surprisingly increased for UNIBS traces

and only decreased by 4% for UNIV1 trace. One straightforward guess for this is

that our machine learning model does not learn the pattern of the non-cross flows

because non-cross flows are not seen by the model during training. However, as we

discussed in Section 6.3.2, the offline training results show that the learned pattern of

train flows can be generalized to unseen flows. A capacity miss is generated when an

active flow is misclassified as inactive and thus be evicted. According to Listing 4,

STEREOS only evicts the flow entry with the highest inactive probability. Therefore,

if the classification accuracy of active cross flows is higher than that of non-cross

flows, an active cross flow entry will be much less likely to be wrongly evicted and

thus fewer capacity misses will be generated on the cross flows, which is the exact

case as shown in Figure 6.7.

Second, we investigate the number of active flow entries in the flow table. Figure 6.8

shows the active flow entries in the flow table with machine learning and LRU policies

on the UNIV1 packet trace. As we can see, the number of active flow entries in the flow

table with STEREOS is much larger than LRU. On average, STEREOS can increase the

usage of the flow table with 1K, 2K, and 4K capacity by 58%, 60%, and 54% respectively,

compared with LRU. This significant improvement is achieved because STEREOS can cor-

rectly identify and evict inactive flow entries when flow table overflow occurs. In contrast,

LRU may frequently remove active flow entries and leave inactive flow entries in the flow

table. Combining Figure 6.4 and 6.8, we can reach the conclusion that our machine learn-
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Figure 6.5: The number of active flows
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(a)

(b)

(c)

Figure 6.6: The distribution of per packet inter-arrival time. (a) UNIBS20090930; (b)
UNIBS20091001; (c) UNIV1.
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Figure 6.7: The prediction accuracy of active cross and non-cross flows with 2K flow table.
(a) UNIBS20090930; (b) UNIBS20091001; (c) UNIV1.
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Figure 6.8: Number of active flow entries in the flow table for the UNIV1 packet trace.

ing based flow entry eviction policy can achieve significant performance gain compared

with LRU policy.

6.3.4 Model size trade-off

When we do model selection in Section 6.3.2, we only consider the F1 score a model

can achieve. This may suffer from two problems. First, F1 score cannot fully describe

the performance of a model when it is applied to STEREOS. Although F1 score makes a

trade-off between false positives and false negatives, it may not perfectly reflect modes’

relative performance to reduce the number of capacity misses, especially in the case where

F1 score varies a little. Second, OpenFlow switches are always limited in memory. There-

fore, we also need to consider the model size when selecting models. Table 6.6 shows the

performance of different models with their size, where we have the following observations:
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1. The model with the highest F1 score may not achieve the best performance in terms

of reducing capacity misses. For example, in the case of UNIBS20090930 with 4K

flow table, the best model in terms of F1 score results to 1145 capacity misses, which

is actually even larger than LRU policy (i.e., 1037). However, the random forest

model (n estimators: 20, criterion: entropy, max depth: 20) achieves

only 489 capacity misses although its F1 score is slightly smaller than the “best”

model. The reason for this phenomena may due to the fact that there is some ran-

domness in terms of the number of capacity misses for models with close F1 score,

which is shown in Figure 6.9. This figure is achieved through running simulations

on UNIV1 trace with 1K flow table, where the model used for evicting flow entry is

GBT (subsample:0.8; learning rate:0.1; max depth:10) with n estimators={5,

10, 15, 20, 25, 30, 35}. As we can see, as the F1 score within the range

of [0.892, 0.898], the number of capacity misses fluctuates little.

2. Smaller model can achieve even fewer capacity misses. For example, for UNIV1

trace with 1K flow table, the “best” model (i.e., RF model) takes 41.07 MB and

achieves 49,603 capacity misses. However, the GBT model (n estimators:30;

subsample:0.8; learning rate:0.1; max depth:10) only consumes 3.31 MB

but achieves 48,719 capacity misses.

Based on the above two observations, we re-select the models for different packet traces in

the rest of our discussions considering both model size and performance, which are marked

with “?” in Table 6.6.

6.3.5 Tuning Pmin

We also investigate the effect of Pmin on our proposal. We conducted simulations on the

UNIV1 trace with 1K flow table and different Pmin. As we can see from Figure 6.10, the

number of capacity misses decreases up to a certain Pmin, then increases as Pmin grows.

For example, the number of capacity misses is reduced by 24% when Pmin is changed from
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Table 6.6: Performance and model size trade-off.

Packet
trace

Table
size F1 score

Model
size
(MB)

Model hyperparameters Capacity
misses

UNIBS
20090930

1K
0.96060 1.79 gbt? { n estimators:20; subsample:0.6; learning rate:0.1;

max depth:10; } 2227

0.95104 0.08 dt { criterion:entropy; max depth:10; } 4312

0.96171 2.75 gbt* { n estimators:30; subsample:0.8; learning rate:0.1;
max depth:10; } 2410

2K
0.98037 1.70 gbt? { n estimators:20; subsample:0.8; learning rate:0.1;

max depth:10; } 1023

0.97606 0.08 dt { criterion:gini; max depth:10; } 2623

0.98106 2.65 gbt* { n estimators:30; subsample:0.8; learning rate:0.1;
max depth:10; } 1181

4K
0.98759 1.84 gbt { n estimators:20; subsample:0.6; learning rate:0.1;

max depth:10; } 1118

0.98531 13.48 rf? {n estimators: 20, criterion: entropy, max depth: 20} 489

0.98811 2.73 gbt* { n estimators:30; subsample:0.6; learning rate:0.1;
max depth:10; } 1145

UNIBS
20091001

1K
0.97606 8.01 rf { n estimators:20; criterion:entropy; max depth:20; } 2150

0.97502 1.02 gbt? { n estimators:20; subsample:0.8; learning rate:0.1;
max depth:10; } 2074

0.97645 13.08 rf* { n estimators:30; criterion:entropy; max depth:20; } 1912

2K
0.98833 0.98 gbt? { n estimators:20; subsample:0.6; learning rate:0.1;

max depth:10; } 1406

0.98604 0.05 dt { criterion:gini; max depth:10; } 2697

0.98857 1.50 gbt* { n estimators:30; subsample:1.0; learning rate:0.1;
max depth:10; } 1705

4K
0.99515 5.21 rf? { n estimators:20; criterion:entropy; max depth:20; } 405

0.99480 0.93 gbt { n estimators:20; subsample:0.8; learning rate:0.1;
max depth:10; } 1413

0.99526 8.24 rf* { n estimators:30; criterion:gini; max depth:20; } 410

UNIV1

1K
0.89705 3.31 gbt? { n estimators:30; subsample:0.8; learning rate:0.1;

max depth:10; } 48719

0.89364 2.22 gbt { n estimators:20; subsample:0.8; learning rate:0.1;
max depth:10; } 49296

0.90258 41.07 rf* { n estimators:30; criterion:entropy; max depth:20; } 49603

2K
0.93673 14.42 rf { n estimators:10; criterion:entropy; max depth:20; } 31607

0.93385 3.34 gbt? { n estimators:30; subsample:0.6; learning rate:0.1;
max depth:10; } 30794

0.93946 46.47 rf* { n estimators:30; criterion:entropy; max depth:20; } 28428

4K
0.96389 30.88 rf { n estimators:20; criterion:entropy; max depth:20; } 22497

0.95862 3.29 gbt? { n estimators:30; subsample:0.8; learning rate:0.1;
max depth:10; } 20664

0.96435 46.14 rf* { n estimators:30; criterion:entropy; max depth:20; } 22568

Note: The best model in terms of F1 score is marked with “*”, and the re-selected model considering both
model size and performance is marked with “?”.
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0.5 to 0.65, and increased by 74% from 0.65 to 0.9. This is because small Pmin allows

the switch to evict flow entries which are classified as inactive with low confidence. In

this case, it is highly possible that a misclassified active flow entries will be evicted. In

contrast, large Pmin will prevent the switch from evicting inactive flow entries which are

not identified by the trained model with very high confidence. Actually, with large Pmin,

the switch will heavily rely on the LRU policy (line 22 in Listing 4) for eviction instead of

the machine learning one. Then, how can we set Pmin properly? According to Listing 4, a

flow entry with Pinactive > Pmin will be evicted in the case of flow table overflow (see line

20). Suppose the total number of such evictions is Ne. Then the objective of our proposal

is to maximize the number of right evictions Nright = Ne ∗ (1 − P [y = 0|Pinactive >

Pmin]), where y = 0 indicates the flow entry is active. Note that minimizing the number

of wrong evictions is different from maximizing the number of right evictions. If we want

to minimize the number of wrong evictions, we can just set Pmin = 1 such that Ne will

approximate 0. In this case, our proposal will be meaningless because eviction decisions

seldom depend on the predictions of the trained random forest model.

Given Pmin, Nright can be approximated from the dataset generated by Listing 3. In the

dataset, every data sample has a label (i.e., y). Furthermore, with the trained model, we can

calculate Pinactive for every data sample. Therefore, Nright can be estimated through:

Ne ≈ N(Pinactive > Pmin), (6.3)

P [y = 0|Pinactive > Pmin] ≈ N(Pinactive>Pmin∧y=0)
N(Pinactive>Pmin)

, (6.4)

where N(·) is a function returns the number of elements satisfying a predicate. Combining

(2) and (3), we can get

Nright ≈ N(Pinactive > Pmin ∧ y = 1). (6.5)
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Figure 6.10: The effects of Pmin on our proposal.

Therefore, we can set Pmin by

P ∗min = argmax
Pmin

N(Pinactive > Pmin ∧ y = 1). (6.6)

In the case of the UNIV1 trace with 1K flow table, Pmin generated by (6.6) is 0.65, which

is same as the optimal value in Figure 6.10.

6.3.6 Feature selection

As we discussed in Section 6.2.4, the overhead of our proposal is directly related to Npkt.

In our above experiments, we set Npkt to be 10, which may incur heavy overhead. In

this subsection, we study how Npkt can affect the performance of STEREOS on UNIV1

trace. We first generate the datasets with Npkt = 5, 6, 7, 8, 9 for UNIV1 traces. Then we

carried out simulations with 1K, 2K, and 4K flow tables, where the models used for online

flow table eviction are the ones selected in Table 6.6. The simulation results are shown
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Figure 6.11: The effects of Npkt on our proposal.

in Figure 6.11. As we can see, the number of capacity misses is generally increased as

Npkt decreased. For example, the number of capacity misses is increased by 7%, 16%,

and 17.6% when Npkt is reduced from 10 to 5 for the 1K, 2K, and 4K table, respectively.

This is because larger Npkt can, in general, provide more information for the model and

thus help increase the classification accuracy. In this way, STEREOS can be more likely

to evict inactive flow entries. On the other hand, larger Npkt means the OpenFlow switch

need more memory to store the feature vectors. For example, when Npkt is increased from

5 to 10, the memory cost of storing feature vectors will almost double. Therefore, we need

to make a trade-off between memory consumption and classification accuracy in practical

implementation.
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6.3.7 Feature quantization

Not only Npkt affects the overhead of our proposal, but also Bt and Bl. We use uniform

quantization in this study [93], i.e., the quantization level q of value v > 0 is given by

q =


2B − 1, if v > vmax

0, not exist

dv/∆ve, otherwise

(6.7)

where B is the number of bits used for quantization, vmax is the maximum value to be

quantized, and ∆v = vmax/(2
B − 1). Note there is a special case, if a value does not exist,

it also should be quantized. For example, in Figure 6.2, there is neither the third nor fourth

packet referring to the flow entry, the corresponding features for packet length should be

quantized as 0.

The size of a packet is limited, for example, Microsoft Windows computers default

to a maximum packet size of 1500 bytes for broadband connections. And the maximum

transmission unit (MTU) of Ethernet is 1500 bytes. Given these facts, we argue thatBl = 1

is enough to quantize packet length features. Accordingly, we set the vmax for packet length

to be 1500.

As for the time features (tidle and tia), we tried 1 byte and 2 bytes for quantization, and

the results are shown in Table 6.7. As we can see, the performance of our proposal slightly

degrades when quantization is applied in most scenarios. For example, for UNIV1 with

1K flow table, the number of capacity misses is increased by 2% and 1.4% with 1 byte and

2 bytes quantization, respectively. In other cases, quantization even helps to slightly im-

prove the performance of STEREOS. For example, for UNIV1 with 2K flow table, capacity

misses are reduced by 4% (1 byte quantization) and 6% (2 byte quantization). The reason

for this may due to the fact that quantization can drop some unnecessary information for

training, and thus increase the model’s accuracy. Furthermore, it does not help a lot to use
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Table 6.7: Performance of STEREOS with feature quantization

Packet
trace

Table
size LRU

No
quan

vmax
(1 B)

Capacity
misses (1 B)

vmax
(2 B)

Capacity
misses (2 B)

UNIBS
20090930

1K 6293 2150 250 2553 500 2273
2K 2973 989 300 957 600 1126
4K 1037 388 450 664 700 560

UNIBS
20091001

1K 8620 1922 250 2252 600 1957
2K 2857 1235 300 1364 1000 1371
4K 797 423 450 619 1500 517

UNIV1
1K 99032 52125 10 53193 20 52839
2K 52168 35756 10 34189 50 33638
4K 24212 24308 90 24554 150 20977

2 bytes for quantization, compared with the 1 byte case. In summary, 1 byte for quantizing

the time feature is enough to achieve very close performance to the case where no quanti-

zation is applied. So far, we have discussed the values for Npkt, Bt, and Bl, and we can say

that the overhead of STEREOS is acceptable since it only requires extra 10 bytes for each

flow entry, which typically takes more than 80 bytes according to the OpenFlow protocol

[3].

6.3.8 Model interpretation

So far, we have done a detailed investigation on the performance of STEREOS, and all

experiments show that STEREOS outperforms LRU. A straightforward question arises,

why STEREOS does better? This problem is actually about how to interpret a machine

learning model, which is still far from being solved [94].

Since this case study involves tens of models, we only try to interpret the final model for

UNIV1 trace with 1K flow table, which is GBT (n estimators:30; subsample:0.8;

learning rate:0.1; max depth:10) with Npkt = 5 and uses 1 byte to quantize the

time and packet length features. Through this interpretation, although we cannot uncover

the full truth behind machine learning’s power in flow entry eviction, some hints can be

given to make the story more understandable.

Our interpretations are based on SHAP framework [95], which assigns each feature an
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importance (i.e., SHAP value) for a particular prediction such that the generated explana-

tion model follows the definition of additive feature attribution methods and subjects to the

property of local accuracy, missingness, and consistency. The larger —SHAP value— of a

feature is, the larger magnitude change in model output due to the feature is.

We first check the global mean of the absolute value of SHAP values for each feature,

which are shown in Figure 6.12. We can see that tidle is actually the most important (1.35),

which is the only feature used in LRU policy. However, the following features (l5, l4, l1, tis)

are also important, which account for over 1.74. With this regard, it is reasonable that LRU

policy loses to machine learning one.

Since SHAP framework provides individualized explanations for every data sample, we

also plot the SHAP values of every feature for every sample, as shown in Figure 6.13. We

again observe that tidle is the strongest predictor of deciding whether one flow is inactive.

And the larger tidle is, the more contribution of this feature in determining the flow is

inactive is. This is exactly the heuristic used in LRU policy. In addition, for the feature l5,

we find the pattern that small packet indicates that the flow is more likely to be inactive and

large one indicates it is active. This is reasonable because a packet carrying data tends to be

large, and signaling packets are small. In addition, we also find that large l2 and l3 indicate

that the flow may be inactive, while small ones are good signs of the flow being active.

6.4 System-level Simulation Results

So far, we use the number of capacity misses to evaluate the performance of STEREOS.

However, we are more interested in how the reduction of capacity misses will affect the

network performance in terms of throughput, delay, and packet loss rate. To learn this, we

present system level simulation experiments based on Network Simulator 3 (NS3) in this

subsection. In these simulations, we use a classical datacenter topology as shown in Figure

6.14. This topology consists of two layers of switches. The bottom layer is referred as

the access switches, each of which is connected to 15 hosts or servers of the datacenter.
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Figure 6.12: The importance of different features of the GBT model (n estimators:30;
subsample:0.8; learning rate:0.1; max depth:10) for UNIV1 trace with 1K flow
table.
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Figure 6.13: The SHAP values of every feature of the GBT model (n estimators:30;
subsample:0.8; learning rate:0.1; max depth:10) for every data sample (repre-
sented by one dot on each row), for UNIV1 trace with 1K flow table.
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The access switches are also fully connected to the top layer of aggregate switches. In

addition, all aggregate switches connect to a single cloud switch as a simplification. This

cloud switch models the gateway for the datacenter to the broader internet. And a single

”Internet” host/server is connected to the cloud switch. Every host connected to the access

switches initiates an ON-OFF application destined to every other host in the datacenter

subjected to the constraint that there is one and only one ON-OFF application between any

two hosts. The attributes (i.e., the distribution of the duration of ON state and OFF state,

data rate in ON state, and the number of packets to send) of the ON-OFF application2 are

derived from the UNIV1 packet trace. We used the approach in [6] to determine the ON

and OFF periods for each flow, i.e., ON period is defined as the longest continual period

during which all the packet inter-arrival times are smaller than arrival95 and OFF period is

a period between any two ON periods, where arrival95 is the 95th percentile value in the

inter-arrival time distribution. According to this approach, we try to find the distribution

(among Weibull, lognormal, exponential, Pareto, Erlang, and gamma distributions) that

best fits the arrival process, which are shown in Table 6.8.

To do these simulations, we extend the ofswitch13 module of NS3 [96], [97]. On

the controller side, all switches (including cloud switch, aggregate switches, and access

switches) are controlled by an SDN controller, upon which a newly developed routing ap-

plication runs. This application finds the shortest path between the given source and desti-

nation hosts in the simulated datacenter topology, and install the corresponding flow entries

to the switches in the path. On the switch side, we modified the ofsoftswitch13 library

included in the ofswitch13 to implement the LRU eviction policy and machine learning

eviction policy for the flow table. Since we only care how the number of capacity misses

will affect the network performance, we do not implement real machine learning model for

flow entry eviction. Instead, we use a probability to control how accurate an inactive flow

entry can be detected and evicted. This is doable because we know exactly when a flow

2Refer to https://www.nsnam.org/docs/release/3.29/doxygen/classns3_1_1_
on_off_application.html for more details of the attributes for ON-OFF application
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starts and ends in the simulation environment, which is not true in real networks.

According to our previous analysis, the reason why reducing capacity misses is signif-

icant for network performance is that massive Packet-In events due to capacity misses

will cause large delay and even packet loss because the RX and TX buffers/queues in the

controller is limited in size and its CPU may be burned because of the large computation

overhead. In the simulation setup, it either requires to set small TX/RX buffers or make

very large scale simulations. Our simulation experiments are carried out on a system with

8GB RAM and a 3.6GHz Intel(R) Xeon(R) E5-1620 processor running Ubuntu 16.04. The

maximum number of hosts can be simulated is limited to a few thousand due to memory

limitation, and one simulation lasts for several days. Even we make the simulated network

scale as large as possible, which is still far smaller than the real datacenters, we do not see

obvious delay enlargement and buffer overflow. Given this fact, we can only use the other

approach, where we set the TX/RX buffer size to be 100 KB.

We first investigate the overhead of control channel with different capacity misses,

which is shown in Figure 6.15. The x-axis is the average number of capacity misses caused

by each flow entry eviction, which can be used to map the system-level simulation results

to our previous case studies such that we can infer how better our machine learning pol-

icy can perform in terms of network performance metrics compared with LRU policy. As

we can see, both the received and transmitted control messages on the control channels

increase as the number of capacity misses increases. For example, when the number of

capacity misses per eviction increased from 0.11 to 0.37, the received control messages

jump by 113% and the transmitted control messages are boosted by 130%. This is reason-

able because more capacity misses means more Packet In and Flow Removed events.

Accordingly, the controller needs to send more Packet Out and Flow Mod messages to

switches to install flow entries. Furthermore, we can see that the extra messages caused

by capacity misses account for larger proportion of the total overhead on the control chan-

nels as the number of capacity misses per eviction increases. In the case of 0.11 capacity
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misses/eviction, the messages due to wrong flow entry eviction only account for 26% of

RX messages and 32% TX messages. However, these numbers become 64% for RX and

74% for TX when it comes to 0.37 capacity miss per eviction.

We then examine network performance, which are shown in Figure 6.16. As we can see,

the throughput is decreased and the packet loss rate is increased as the number of capacity

misses per eviction increases. This is because the increased overhead of control channels

(as shown in Figure 6.15) results to TX and RX buffer overflows and thus many packets

are dropped. As for the delay, the results are against our intuition. In general, packet

delay should be enlarged as the channel becomes more congested. However, it drops as the

number of capacity misses per eviction increases. The fact that congested channel results

to large delay is due to the queueing delay in the buffer increases. In our simulation setup,

the RX/TX buffers are set to be 100KB, which can store only around 200 packets. And the

delay for processing one Packet In is 50 us, thus the largest queueing delay for a packet

is just 10 ms. In contrast, if connections are not built or closed because of packet loss, no

packet will be sent and these packets will certainly not be included for computing packet

delay. This has more weight on packet delay compared with the small queueing delay.

Therefore, the packet delay instead decreases as the number of capacity misses increases.

In addition, we map the number of capacity misses per eviction of UNIV1 trace with

1K flow table in Section 6.3 to Figure 6.16. And we can see that the throughput achieved by

machine learning eviction is augmented by 19%, from 37 MBps to 43.9 MBps. The packet

loss rate achieved by STEREOS is reduced by 70%, but the packet delay is slightly in-

creased by 8%. The system-level simulation results demonstrate that our machine learning

eviction policy can greatly improve network performance.
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Figure 6.14: Simulated datacenter topology

Table 6.8: Simulation parameters

Parameter Distribution/Value
Duration of ’On’ state lognorm(µ = −2.32, σ = 2.13)
Duration of ’Off’ state lognorm(µ = 0.70, σ = 1.99)+0.99
Flow inter-arrival time lognorm(µ = −6.33, σ = 2.02)
Number of packets to send per flow lognorm(µ = 1.87, σ = 1.08)+1.86
Size of a packet 512 bytes
Number of aggregate switches 3
Number of access switches 16
Control channel bandwidth 17Mbps
Data rate in ON state 0.842MBps
RX/TX queue size of controller 100KB
Flow table size 1024
Delay for processing one Packet-In 50 us

130



0.10 0.15 0.20 0.25 0.30 0.35
Number of capacity misses per eviction

0

200

400

600

800

1000

1200
Nu
m
be
r o
f R
X 
co
nt
ro
l m
es
sa
ge
s i
n 
th
e 
co
nt
ro
lle
r (
10
^3
)

Packet_In by capacity misses
Flow_Removed by capacity misses
Others

(a)

0.10 0.15 0.20 0.25 0.30 0.35
Number of capacity misses per eviction

0

200

400

600

800

1000

1200

1400

Nu
m
be
r o
f T
X 
co
nt
ro
l m
es
sa
ge
s f
ro
m
 th
e 
co
nt
ro
lle
r (
10
^3
)

Packet_Out by capacity misses
Flow_Mod by capacity misses
Others

(b)

Figure 6.15: Overhead of controller-switch communication. (a) received control messages
in the controller; (b) transmitted control messages from the controller.
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Figure 6.16: System-level simulation results for STEREOS and LRU policy. (a) through-
put; (b) delay; (c) packet loss rate.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

This work has covered a variety of challenges which limit the scalability of SDN Open-

Flow networks. On the control plane, all existing control plane architectures are examined

to find the most scalable architecture for deploying a large scale SDN OpenFlow network.

We argue that simulation is the best approach to study the scalability performance of dif-

ferent SDN OpenFlow control architectures. Simulators for all non-centralized control

architectures and the centralized one are developed based on the abstractions of the two

bottlenecks, flow setup and statistic collection, which limit the scalability performance of

SDN OpenFlow networks. The simulation results show that the hierarchical control archi-

tecture is the best choice if the network is constrained to some limited geographic area.

However, when the network is to scale across geographies, the peer-to-peer with local view

(a.k.a. distributed) control architecture is the most appropriate. For the distributed control

plane, a novel eastbound/westbound protocol, SDNi-TE, is designed to enable traffic engi-

neering relevant information to be exchanged between neighboring domains such that all

involved SDN domains can build consistent global views about the whole network. Based

on this global view, any traffic engineering algorithm can run in a centralized way. The

simulation results show that SDNi-TE can achieve almost the same throughput and cost as

the one which impractically assumes every domain knows the full topology of the whole

network. In summary, SDNi-TE is a protocol which makes the deployment of large scale

distributed SDN OpenFlow networks possible. On the data plane, flow table management

is optimized by applying machine learning techniques. Specifically, SPEEDO is proposed

to approximate the LRU proactive deletion policy because the LRU policy by itself is not
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feasible for the controller due to the fact the controller cannot tract the order of flow entry

access in real time. To approximate the LRU policy, SPEEDO applies regression models

to predict the time when a flow entry will be last referred to. Based on the predictions,

the controller can proactively delete the flow entry with the smallest last refer time instead

of a random one or the first installed one. Case studies demonstrate that SPEEDO can

approximate the LRU policy very well, with 85% ∼ 96% accuracy for different scenarios.

Furthermore, SPEEDO can decrease up to 23% fewer capacity misses compared with the

available random deletion and FIFO deletion policies. SPEEDO is designed to mitigate

flow table overflow. However, flow table overflow is inevitable since the number of flows

in the context of SDN is very large. In the presence of flow table overflow, we further

propose STEREOS which can identify whether a flow entry is active or inactive based on

machine learning algorithm and thus timely evict the inactive flow entries when flow ta-

ble overflow occurs. STEREOS includes collecting datasets from packet traces, training

a binary classification model based on the collected data, and applying the trained model

for online flow entry eviction. We discussed various issues for implementing STEREOS in

OpenFlow switches, including model selection, model size, overhead, and feature quanti-

zation. Our case studies show that our proposal can achieve much fewer capacity misses

and higher flow table usage, compared with the LRU eviction policy. Last but not least, we

developed the first system-level simulation tools based on ns-3 to evaluate the performance

of our proposal in terms of networking metrics. The simulation results demonstrate that

STEREOS can remarkably improve network throughput and reduce packet loss rate, with

a slight raise for packet delay.

7.2 Limitations of This Work and Recommendations for Future Research

First and foremost, this study is limited in scope. SDN OpenFlow scalability is a multi-

dimensional topic, which involves every aspect, from hardware to software, of a network

including hardware availability, manufacture cost, resource management, protocol design,
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and so on. This work only considers four typical problems related to scalability: find

the most scalable control architecture, design eastbound/westbound protocol to enable the

communications between multiple controllers, reduce control overhead, and optimize flow

table management. There are definitely other important issues to be addressed to build

scalable SDN OpenFlow networks. For example, how to set idle timeout for each

flow entry to increase flow table utilization. In addition, it is challenging and important to

make OpenFlow switches more powerful without significant cost growth.

Second, the proposals in this work offer a starting point, not a set of final solutions.

The approach simulating bottleneck processes in SDN OpenFlow networks to study the

scalability performance of different control architectures is the right direction. But more

details can be added to the current implementations. For example, not only flow setup

and statistic collection, but also how peering controllers in different domains communicate

with each other can be considered in future simulations. In addition, in current simula-

tion implementation, only flow entry expiration is simulated but not flow entry eviction

and proactive flow entry deletion. A more detailed simulator which incorporates these two

flow table management policies will be definitely beneficial for the credibility of the con-

clusions derived from the simulation results. As for SDNi-TE, the advantages of SDN are

utilized to build aggregated paths, but more complicated policies instead of simply avoid-

ing routing loop can be investigated for advertisement in the future. Another future work

which is worth investigating is to advertise some semi-dynamic information which can stay

the same in a relatively long period. For example, flow table utilization can be advertised

such that OpenFlow switches with overloaded flow tables can be removed from routing

decisions. Furthermore, we do not consider the problem of building and maintaining the

connections between neighboring domains in this dissertation. The last suggested future

work for SDNi-TE is to define the formats of the messages, just like the Update message

in BGP. For SPEEDO, we can see the performance gain is not very significant now. There-

fore, more efforts should be made to increase the regression accuracy such as trying more
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cultivated features by exploiting feature engineering. The features used in this work for

SPEEDO are the mean and standard deviation of the collected stats from switches. This

is straightforward but may not be very effective, one improvement is to use a machine

learning model (e.g., neural network) to take the raw stats and generate synthetic features.

Another possible work is to drop the current regression-based approach. In this work, a

regression model is trained to predict the last refer time for every flow entry and thus we

can know which entry is the LRU one. This is actually an indirect method, because we

only want to know the access order of flow entries but do not care when a flow entry will

be exactly last referred. Therefore, the learning goal can directly be finding the LRU flow

entry. However, in this case, one data sample should contain all stats from each flow entry,

which will result in the curse of dimensionality. For STEREOS, only the case where some

inactive flow entries exist in the flow table is considered. In the presence of no inactive flow

entry, which one should be evicted? In addition, for both SPEEDO and STEREOS, only

static cases are considered. What if the underlying traffic changes? Although the current

proposals are demonstrated to be effective within the timescale of several hours, online

models which can adapt to traffic pattern variation is necessary in the long term.

Finally, more-depth analysis of the proposed solutions are required. For SDNi-TE,

how fast it can converge is required to be investigated. Furthermore, more tests should be

conducted on SDNi-TE for the cases where a link is failed, a switch is down, and so on.

For flow table management, both STEREOS and SPEEDO should be further implemented

and tested on “real” switches such as OpenvSwitch by emulations.
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APPENDIX A

EXPECTATION OF BUFFERED PACKETS IN THE DATAPATH BUFFER

Let X = (X1, X2, ...) be the sequence of flow inter-arrival times in the Poisson process,

and the sequence of arrival times is T = (T0, T1, T2, ...), where T0 = 0, and

Tn =
n∑
i=1

Xi. (A.1)

Then within the interval τ , the number of packets saved to the buffer is

Nτ =
N∑
i=0

((τ − Ti)γ + 1), (A.2)

where N is the number of flows arrived within τ and it is a random variable. Thus, we have

E[Nτ |N = n] = E[
n∑
i=0

((τ − Ti)γ + 1)]

= n(τγ + 1)− γE[
n∑
i=0

Ti]. (A.3)

According to the equation A.1, we can get

E[
n∑
i=0

Ti] = E[
n∑
i=1

i∑
j=1

Xj]

=
n∑
i=1

i∑
j=1

E[Xj] =
1

2λ
(n+ 1)n (A.4)
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Therefore,

E[Nτ ] = E[E[Nτ |N = n]]

= E[n(τγ + 1)− γ

2λ
(n+ 1)n] (A.5)

Since N is the number of arrival flows within τ , according the properties of Poisson pro-

cess, we have

E[N ] = λτ (A.6)

V AR[N ] = λτ 2 (A.7)

Based on the above two equations, we finally get

E[Nτ ] = (τγ + 1)λτ − γ

2λ
(λ2τ 2 + λτ 2 + λτ)

=
1

2
λγτ 2 − 1

2
γτ 2 + λτ − 1

2
γτ (A.8)
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