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A STUDY OF THE EFFECTS OF VARIED STRAIN RATES ON INTERNAL 

ENERGIES AND CORRESPONDING STRESSES Y/ITHIN STRUCTURAL MATERIALS 

SUMMARY 

The purpose of this study has been to determine what influence 

rate of strain has upon stress-strain relations within the plastic range 

and to what extent these effects have been considered in the development 

of modern theories of plasticity. 

This investigation was carried out in three steps. The effects 

of rate have been clearly pointed out in the experiments discussed in 

Part I. The effect of rate on the stress-strain relations within 

single crystals was pointed out in Part II and has been shown for the 

magnesium crystal in Figure 23• It was also seen that the rate of 

strain has little effect at normal temperatures for the case of single 

crystals; however, its effects are marked at higher temperatures. A 

general study of the mechanisms of plastic deformation within crystal­

line materials was also given in Part II. Part III was a study of exist­

ing theories of plastic deformations. Most of these theories fall into 

one of two general categories, that is, they are either of the flow type 

or the deformation type. One representative theory of each of these 

types was studied along with a third theory, of recent origin, which 

does not fall into either of the above categories. 



INTRODUCTION 

It is well known that the classical theories of elasticity are 

no longer considered adeqaate for application to certain types of 

structural problems. These theories are based on the law formulated by 

Hook in the seventeenth century wherein he states that if a force is 

applied to a body the resulting deformation is directly proportional 

thereto. 

As stated by Dr. Clarence Zener^: 

Hook!s Law, as originally formulated applies only to quasi* 
static forces, i.e., to forces very slowly applied. It is evident 
that the equilibrium deformation cannot be established in a time 
less than the time required for an elastic wave to travel from the 
region of application of the force to the most remote part of the 
body and back again. 

From such a conclusion, it is seen that a force can only be classified 

as quasi-static when it is applied in a time which is relatively long as 

compared to the lowest natural frequency of the member. Under the 

application of rapidly applied forces anelastic effects result. 

It is also widely recognized that Hook's Law only applies up to 

the elastic limit of a material. This prevents its use not only in the 

special cases within the elastic range, as pointed out above, but also 

in the plastic range. 

^Melvin C. Zener, Elasticity and Anelasticity of Metals (Chicago: 
University of Chicago Press, 19ltf5)9 p. vii 

inelasticity denotes that property of a solid by virtue of which 
the functional relation between stress and strain is not single valued 
in the low stress range and no permanent set occurs. Not to be confused 
with nonelastic properties. 
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To date no completely satisfactory expressions for relating stress 

and strain within the plastic range have been worked out. In order to 

establish the authority of this statement, the following quotation is 

taken from a paper presented by Dr. S. B. Batdorf at the January, 19U°, 

meeting of the Institute of Aeronaatical Sciences? 

Present theories for the poly-axial stress-strain relation beyond 
the elastic range can be divided into two types often called flow 
and deformation theories. Theories of plastic buckling based on 
deformation theories are in better agreement with experiment than 
those based on flow theories. Cn the other hand, tests in which a 
material is compressed into the plastic range and then subjected to 
shear at constant compressive stress are in better agreement with 
flow than with deformation theories. Legitimate doubt therefore 
has existed as to the validity of any theory for the plastic buck­
ling of plates. 

It is the writer1s opinion that more satisfactory theories would 

result if the problem was attacked on the basis of the total energies 

present within the crystalline aggregate which make up a solid and the 

variations in the state of these energies under elastic and plastic 

deformations. This thesis is a study of the fundamental concepts of 

plastic deformations and their relations to existing theories, particu­

lar attention will be given to the effects of these deformations on the 

state of the energies within a crystalline aggregate. 

p 
S. B. Batdorf, "Theories of Plastic Buckling,'* Preprint No. 200, 

(New York: The Institute of Aeronautical Sciences, January, 191$), p. 1 

•Toe. cit. 



PART I 

STRESS-STRAIN RELATIONS 

The elastic properties of a material are completely specified by 

a set of elastic constants. On the other hand, the general mechanical 

properties, which include plastic deformation and fracture, cannot be 

so specified. In order that a practical analysis of the stresses be­

yond the elastic limit may be made several theories have been developed 

among which are t 

1» Tangent modulus theory^ 

2. Secant modulus theory^ 

c. 
3* Handelman Pragner theory 

U. The Elasto-Plastic Stability of Plates? 

5. Unified theory 8 

^Alfred S. Niles and Joseph S. Newell, Airplane Structures (Vol­
ume I, Third Edition^ New York: John Wiley and Sons, Inc., 1QU7)> 
PP. 332-33. 

^George Gerard, "Secant Modulus Method for Determining Plate 
Instability Above the Proportional Limit," Journal of the Aeronautical 
Sciences, Vol. 13, No. 1: pp* 38-kk and 1*8, January, 19U6. 

G. H. Handelman and ¥• Pragner, "Plastic Buckling of a Rectangu­
lar Plate under Edge Thrusts," I], S. National Advisory Committee for 
Aeronautics, Technical Note No. 15301 pp. 1-9V, August, l^b". 

?A. A. Ilyushin, "The Elasto-Plastic Stability of Plates," Trans­
lation, U. S. National Advisory Committee for Aeronautics, Technical 
Memorandum No. 1188: pp. 1-30, December, 1°U7. ' 

°Elbridge Z. Stowell, "A Unified Theory of Plastic Buckling of 
Columns and Plates," U. S. National Advisory Committee for Aeronautics, 
Technical Note No. 155S| pp. 1-31, April, 19U5V 



5 

6. Theory of Plastic Deformations by N. M. Belleau^ 

7« A Mathematical Theory of Plasticity Based on the Concept of 

Slip10 

Through the use of the above mentioned theories it has been 

possible to design metal aircraft on a basis of ultimate loads. It 

has been found through practice and experiment that none of the above 

theories is exact. Tfhile one theory -will give results which compare 

favorably for one type structure, the same theory may not be adequate 

for a different structure, even under similar loading conditions. 

Conclusive evidence of these variations is pointed out by Pride and 

Heimerl . The present theories of plastic deformation are subject to 

change, as they are in a state of development. Before an explanation 

of these theories can be given, it is necessary to make a study of the 

mechanisms influencing plastic deformations. 

Since the elastic properties of a material are determined from 

the standard stress-strain diagram, it is reasonable to assume that 

some information regarding the plastic properties might be obtained 

from the same source. The ease with which reproducible results may be 

obtained in uniaxial loading at moderate temperatures has led to the 

?L« N# Kachanov, and others, Plastic Deformation Principles and 
Theories (Brooklyn? Mapleton House, l'̂ Uti), pp. 9-12. 

B. Batdorf and Bernard Budiansky, "A Mathematical Theory of 
Plasticity Based on the Concept of Slip," U.S. National Advisory Com-
mittee for Aeronautics, Technical Note No. lb*71: pp. 1-33, April, 19U9. 

^Richard A. Pride and George J. Heimerl, "Plastic Buckling of 
Simply Supported Compressed Plates," U» S. National Advisory Committee 
for Aeronautics, Technical Note No. 1817: pp. 1-22, April, 19L&1 
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acceptance of such loading as the most common method of examining the 

mechanical properties of metals* Such an examination, known as the 

tensile test, is of such "widespread use that a terminology has arisen 

which pertains to it alone; and standard methods of representing the 

data have been almost universally adopted, 

The method of recording data in a standard tensile test is 

represented in Figure 1. Stress is regarded as the dependent variable; 

strain as the independent variable. This choice of independent and 

dependent variables is just as logical as the inverse, since in some 

testing machines, particularly of the older type, the strain is applied 

at a nearly constant rate and may, therefore, be justly regarded as the 

independent variable. 

The recorded stress is defined as the load divided by the 

original cross section of the material, as in equation 1. 

nominal stress - *»* 
Original Area 

( i ) 

Wherever danger arises that the stresses defined may be confused with 

the actual stress—namely, load divided by actual area—it is called 

the engineering stress. The justifications for the use of the engineer­

ing rather than the actual stress are that it is measured directly and 

hence not subject to computational errors and that it may be recorded 

automatically v/ith relatively simple instruments. It also offers the 

engineer a relative comparison of the overall strength properties of 

structural members. 

The strain is defined in the conventional manner, as in 
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equation 2r 

Axial strain s change in length 
original length 

(2) 

The strain at fracture is known as the elongation of the specimen and 

is usually expressed as a pereentage, From the dimensionless manner 

in which elongation is defined, it vroulc appear as if a stress-strain 

curve would be independent of the initial gage length. Such is, how­

ever, not usually the case. Unless fracture sets in prematurely, 

deformation proceeds uniformly throughout the gage length until it 

becomes localized in a restricted region. This region becomes constricted 

and is hence known as the "neck" of the specimen. The contribution of 

"necking" to the elongation is of course less the longer the gage length. 

In the interest of uniformity, specifications have been established as 

to gage length and the size of specimens in commercial testing, 

The standard plot of engineering stress versus conventional 

strain, as given in Figure 1, tells how the resistance to deformation 

of the specimen changes with continued deformation, but it does not tell 

how the material within the specimen changes. In order to show this 

information, it is necessary to plot true stress as defined in equation 3: 

true stress = load  
actual area 

(3) 
rather than engineering stress. Before discussing such a revised plot, 

it is in order to introduce a more natural definition of strain than 
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12 given in equation 2. Such a definition was introduced by Ludwik in 

1909. According to Ludwik, natural strain through its increment is 

defined by equation lu 

natural strain tt d€ a S= = 

Gensamer^ has done some work with this type stress-strain diagram; and 

though it is only of general interest, he was able to show that necking 

commences at that strain where the tangent to the stress-strain curve 

intercepts the strain axis at the value €* = -1, as illustrated in 

Figure 2. The essential features of the two type curves are compared 

in Figure 3. In contrast to the engineering stress, the actual stress 

continues to rise with increasing deformation. In other words, the 

material always strain hardens. With the standard stress-strain curve, 

the tensile load reaches its maximum value at the instant uniform 

extension of the test piece stops. It is at this point that necking 

begins and consequently the load on the test piece begins to decrease 

as indicated by the last part of the curve. 

In summarizing these differences, it might be said that the 

lower curve gives the load-extension relationship while the upper the 

stress-extension relationship. 

•^A. Nadai, plasticity (New York: McGraw-Hill Book Company, 
1931), p. 81 citing P. Ludwik, Elemente der Technologischen Mechanik 
(Berling: Springer, 1909). 

Gensamer, "The Yield Point in Metals," Transactions of the 
American Institute of Mining and Metallurgical Engineers, 12bs lOh-
117, 1938. "~—~ 
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The above mentioned curves are based on tensile tests, but 

similar relations exist for compression except for the final drawing 

down before rupture, G. I. Taylor"^ has shown that if true stress is 

plotted against natural strain for the cases of tension, compression, 

and torsion of the same metal the curves follow very closely. 

Another property of plastic flow that is evidenced from this 

type test is that stress above the elastic limit varies with the rate 

of applied strain. There are three standard types of experiments which 

demonstrate some of the effects of rate of deformation. In one ex­

periment, illustrated in Figure I4., stress-strain curves are made at 

various strain rates. It is found that the higher the strain rate, 

the higher is the stress-strain curve, the stress varying essentially 

15 
logarithmically with strain rate. 

In a second type of experiment, illustrated in Figure 5, a load 

is suddenly applied and then maintained constant, the variation of 

elongation with time being observed. One initially observes a region 

in which the rate of strain diminishes rapidly. This region is called 

the region of primary creep. Next, one observes a region in which the 

creep rate is low and remains essentially constant for a long interval 

of time. This is known as secondary creep* The creep rate finally 

increases rapidly with time and gives rise to what is known as tertiary 

creep which continues until rupture takes place. In certain cases the 

UQ. I. Taylor and H. Quinney, "The Latent Energy Remaining in a 
Metal after Cold Working," Royal Society Proceedings, A lk3t 307-326, 
January, 193U. 

% . Manjoine and A. Nadai, "High-Speed Tension Tests at Elevated 
Temperatures," proceedings of the American Society for Testing Materials, 
UO: 835 (19k0). 
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creep rate is initially zero, and a finite time elapses before the 

primary creep region is reached. Such incubation times have been 

observed in many metals containing alloying elements, but apparently 

are not present in pure metals. 

In the third type of standard test, a constant strain is suddenly 

imposed upon the specimen and is held constant while the variation of 

stress with time is measured. It is found that over a wide range of 

time, the stress necessary to maintain the strain constant diminishes 

logarithmically with time as illustrated in Figure 6. Such an experi­

ment is known as stress relaxation. 

The results of the first standard type experiment, i.e., variation 

of strain rate, will now be analyzed. These rates are relatively small 

as compared with those of the other two experiments mentioned above and, 

as is expected, the variations in the stresses are small, no variation 

whatsoever in the elastic range. This phenomenon recalls the viscous 

flow analogy, and one immediately thinks of the internal friction be­

tween the slipping particles during plastic deformation. Since the 

area under the stress-strain diagram is a measure of the work done in 

deforming the specimen, it is seen that the higher the rate of defor­

mation, the more work required, i.e., to say a finite amount of time is 

required for the energies involved to change their state. If we regard 

the strain rate as a parameter, a parameter which is held constant 

throughout any one experiment, it cannot be concluded automatically 

°M. Gensamer and R. F. Mehl, "Yield point of Single Crystals of 
Iron under Static Loads," Transactions of the American Institute of 
Mining and Metallurgical Engineers, 131: 37̂ -bli (193b) 
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that the stress is a unique function of the strain rate 6 and the 

strain e • It is possible that if C be varied during a test, 

that the prior strain rates will have an effect on the continuing 

stress-strain curve. 

With the second type experiment, it was seen that under instan­

taneous loads the strain may lag well behind the stress, even in the 

low stress ranges. As stated in the introduction, it is under this 

type condition that the classical theories of elasticity do not hold. 

As pointed out in Zener»s discussion of anelasticity, attempts were 

made by 0. Meyer and ¥. Voigt to generalize the theories of elasticity 

17 so as to include this phenomenon known as anelasticity. The essential 

of this generalization was to regard the stress as a linear function of 

both strain and strain rate. Under this assumption, the relation 

between the stress and strain for the case of uniaxial tension is 

expressed in equation 7, where o( and fi> are arbitrary constants: 

(7) 

Solids which obey this relation manifest the properties of internal 

friction and are known as "Voigt solids". The essentials of the 

mechanical properties of this type solid are illustrated in Figure 7. 

",hen a load is suddenly applied to this type solid, there is no in­

stantaneous strain. Cork is known to possess this property. According 

to equation 7, when the stress is removed, there can be no instantaneous 

Zener, op. cit., p. hi. 
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recovery as is exhibited by structural metals. It is, therefore, evident 

that his simple generalization does not correspond to actualities. 

If the properties of a solid are represented by a mechanical 

18 
model, as was first done by Poyntmg and Thomson, and an equation of 

the motion of the model is then written, a better generalization may 

19 
be obtained. This has been done by Dr. Zener. ' The mechanical model 

of the Voigt solid is shown in Figure 8, while the model assumed by 

Dr. Zener is shown in Figure 10* The model of Figure 10 will have an 

instantaneous displacement under a suddenly applied load, the magnitude 

of which will be determined by the spring constants. As the force is 

held constant, that portion of the reaction due to the dashpot is 

gradually released by its deformation. Under this arrangement when the 

force is suddenly released, there will be an instantaneous release of 

part of the energy stored in the springs. The complete release of all 

the stored energy must be a gradual process because of the dashpot, 

This more nearly approaches the actual condition in real metals. Such 

20 
a property was first noted by Weber and called "Elastic After-effect". 

The essentials of this type displacement are shown in Figure 9, The 

properties of the Voigt solid are represented in Figure 9. The equation 

corresponding to the mechanical properties of Figure 8 has the general 

form: 

Q,(T + G^Zr - &,€ + h2 i 
where a-, a?, b-,, bp are constants (8) 

18 
J, H* Poynting and J. J. Thomson, Properties of Matter, A Text-

Book of Physics (London: C, Griffin and Co., 1902), p. 57. 
l^Zener, op, cit., p. \\2 
20 
Loc. cit. 
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The general solutions of this equation with their physical in­

terpretation are presented in reference one. In the third standard 

experiment, stress relaxation type, the total strain is held constant, 

The total strain may be regarded as the sum of an elastic and of a 

plastic strain. An increase of the plastic strain is then associated 

•with a corresponding decrease of the elastic strain and therefore of 

the stress. As in the previous case, the plastic strain will increase 

logarithmically with time, and therfore the stress will decrease 

logarithmically with time, as represented in Figure 5. 

In the types of deformation already discussed, the loads were 

applied until the metal fractured. It is now necessary to inquire into 

the nature of the stress-strain relations when the test is stopped 

before fracture, the stress removed and then re-applied. Tests of this 

nature are commonly called "fatigue tests". 

If a periodic stress be applied to a solid and a plot of stress 

versus strain through a loading and unloading cycle be made, the result 

is a closed curve as indicated in Figure 11. This experiment shows that 

some of the energy of strain was lost, presumably as heat, during the 

cycle of loading and unloading. The energy lost would be measured by 

the area within the curve, and such a phenomenon is known as mechanical 

hysteresis or internal friction or damping. 

In the case of a stress cycle of this sort, it is very difficult 

to detect variations in the stress-strain relation for low values of 

stress unless very accurate loadings are applied. It is practically 

impossible to achieve these results except by the use of dead weights. 

Tests of this sort, carried out in the elastic range, produce no 
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permanent effects. Beyond the elastic limit, there is a permanent 

deformation; and when the load is removed, the metal does not return to 

its original form. This is demonstrated clearly if a tensile test is 

carried out in stages, the load being removed and repeated at the end 

of each stage. Figure 12 is a plot of the results obtained in this 

manner for a carbon steel specimen. There is in every case, on first 

loading, a part of the curve that is approximately straight. The 

curve on unloading should coincide -with the loading curve if conditions 

were purely elastic, but some small deviation is generally found. If 

the load is removed after plastic deformation has begun, the metal will 

contract a small amount elastically; but the unloading curve varies 

considerably from the loading curve, the difference being a measure of 

the permanent deformation. On reloading, a new curve is traced which 

makes the hysteresis loop with the unloading curve. Such a loop will 

be found at every stage of the loading and unloading of the curve 

shown in Figure 12. 

The same effect is more pronounced if a complete stress reversal 

is applied to the test specimen, as in the test for determining damping 

capacity. The damping capacity of metals has been shown to be identical 

with the "mechanical hysteresis effect" and has been defined by 0. Foeppl 

as follows: "Damping Capacity is the amount of work dissipated into 

heat by a unit volume of a material during a completely reversed cycle 

21 
of unit stresses". It is measured in inch-pounds per cubic inch 

G. S. Von Heydekampf, "Damping Capacity of Metals," Proceed-
ings of the American Society for Testing Materials, Vol. 31, Fart II: 

p. 15?, (Iy31). ~ ~ 
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per cycle. Figure 13 shows a hysteresis loop for a completely reversed 

cycle of stresses. The specific damping capacity has been defined as 

the damping capacity divided by the potential energy accumulated at 

the point of maximum stress for that cycle of loading. 

That is, 

p = specific damping factor 

- Area in Loop 
Area A (See Figure 13) 

where A f2 

2E approximately 

where A = potential energy of maximum stress 

f = maximum stress 

E • modulus of elasticity 

The specific damping capacity may be expressed as followsr 

' -4-
where d z damping capacity 

p = specific damping capacity. 

?2 
It has been shown by Von Heydekampf" that p is equal to twice the 

logarithmic decrement of a damped vibration. 

It would be logical to assume that rate of loading might have 

some effect on the area within the hysteresis loop for experiments of 

this type, since an increase in strain rate was found to increase the 

stress in experiments of type one which are illustrated in Figure h» 

Von Heydekampf, op. cit.a p. 1^8. 
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Becker ? has offered experimental evidence of the fact that the rate of 

loading does not affect the amount of work absorbed in the form of heat. 

He compared results obtained in a static machine requiring about five 

minutes to complete a cycle -with those obtained in fatigue machines at 

speeds up to 2,600 cycles per minute. The higher speed tests were 

made in the following way. A specimen is placed in a fatigue machine 

which has been suitable arranged so that the temperature of the speci­

men might be measured. As the machine runs, the flexing of the speci­

men generates heat in amounts proportional to the value of the maximum 

stress. This heat is the energy given off as hysteresis losses. 

If a plot of the temperature -versus time is made, the resulting 

diagram tTould be similar to that shown in Figure li*. 

At the beginning of the test, practically all the heat generated 

is absorbed by the machine and the surrounding atmosphere. Eventually 

a state of equilibrium is reached so that the specimen is generating 

the same amount of heat that it gives off. The equilibrium temperature 

is then »te» proportional to the damping capacity. This constant of 

proportionality may be determined from the cooling curve. Since the 

equilibrium temperature is known, the amount of heat given off per 

cycle can be calculated. 

23 E . Becker and 0. Foeppl, "Uber Dauerversuche," Forschungsheft, 
30U, Verin Deutscher Ingeniever Veriag, Berling, 1928 cited by G. S. 
Von Heydekampf, op. cit., p. l60. 



PART II 

MECHANISMS OF DEFORMATION IN CRYSTALLINE SOLIDS 

In order to understand the state of the energies involved and 

the mechanisms of plastic and elastic deformations within crystalline 

solids, it is necessary to begin with a few fundamentals of metallurgy. 

Physically, metals can exist in the form of gases, liquids, or 

solids. The energy content of the individual atoms which make up the 

metal will vary in any one of the three states, depending upon the 

temperature and pressure conditions. 

According to Dr. George Qamow *, at extremely high temperatures 

and pressures (such as exist in certain of the gaseous stars), there is 

a complete breakdown of the atoms themselves; and the electrons, protons, 

and nutrons move about like the atoms wi;hin the familiar gases of our 

earth. 

In this state of matter, most of the energy is in the form of 

radiation which, according to Einstein1s theory of relativity, would be 

so dense that it possesses weight. Dr. Gamow has made calculations to 

determine the density and pressures that must have been present in order 

that our earth might have evolved from a completely disassociated gas 

into its present form with its known percentages of each of the elements. 

Similar work has been done by James H. Jeans. ̂  

24 George Gamow, Atomic Energy in Cosmic and Human Life (Cam­
bridge; The University Press, 19U6)* pp. 75~tŜ » 

2-> James Hopwood Jeans, Astronomy and Cosmogony (Cambridge* The 
University Press, 1929), p. 73. 
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Under atmospheric conditions when metals transform from a gaseous 

to a liquid state or from a liquid to a solid, there is always a dis­

continuous change in the energy content of the molecules or atoms. 

This discontinuity is best shown by considering the parameters tempera­

ture and time as the metal is heated or cooled. A plot of these 

variables is shown in Figures l£a and 15b. From an examination of 

these curves, it is seen that during a cooling cycle the temperature 

drops at a uniform rate, depending upon the specific heat and the 

thermal conductivity of the metal, until the transition temperature is 

reached. At this point, the temperature of the metal remains constant 

for a finite time, indicating that a new source of energy has been 

added to the process. This new energy source is the energy of vi­

bration that is given up by the molecules as their freedom of motion 

is reduced by change from a gaseous to a liquid state or from a liquid 

to a solid state. The association which exists between the molecules 

in the different states of the metal are not completely understood; 

however, it is obvious that the attraction is greatest in the solid 

state. 

At the transition temperature between the molten and the solid 

state, nuclei begin to form; and the atoms arrange themselves in an 

orderly fashion about these to form crystals. In order to bind them­

selves into this compact unit, the molecules must give up some of their 

energy of motion, thereby supplying heat to the process. More and more 

of these nuclei begin to form until an equilibrium state between the 

heat added by the molecules and the heat taken off by the surroundings 

is reached, thereby holding the temperature constant. The crystals 
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formed in this manner continue to grow until they are obstructed by 

neighboring grains or crystals* When all the metal has solidified, the 

temperature again begins to drop. 

The particular patterns into which the atoms arrange themselves 

•within the crystal are called space lattice, or space lattice forma-

tions. In general, every metal or alloy has a particular space 

lattice formation, subject to conditions of temperature and pressure, 

The simplest of these lattice formations is the cubic lattice, T̂ hich 

is illustrated in Figure 16, part 12. In this figure only four atoms 

are shown, but a complete crystal is made up of a large number of atoms 

all in this same pattern. Each of the corner atoms is shared by each 

of the seven other cubes which form the eight octants in space. This 

means that only one-eighth of each of the corner atoms belongs to a 

space lattice. 

The fundamental characteristic of the space lattice is that 

every point (or intersection of lines forming the space net) has iden­

tical surroundings. This is to say that the grouping of lattice points 

about any particular lattice point is identical to the grouping about 

any other lattice point. Because of symmetry required by the above 

characteristic, there are only fourteen possible space lattice forma­

tions, all of which are illustrated in Figure 16. This does not mean 

that there are only fourteen different crystalline structures, for in 

nature there exists an almost unlimited number of different types of 

Carl H. Samans, Engineering Metals and Their Alloys (New York: 
The MacMillan Company, 19h9)9 pp. 7£-67. 
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crystals; but -whatever the crystalline structure, there is only one 

(sometimes two) of fourteen different ways in which it may be imagined 

sectioned off so that corresponding points of the section lines have 

identical surroundings. 

All plastic deformations of solids are the accumulative effects 

of changing the relative positions of the atoms within the crystals. 

27 
This relative shifting may take place in one of four ways ': 

(a) Slip: parallel displacement (translations) 
of the elements of the crystal. 

(b) Formation of twins: Shift, as a whole, of 
part of a crystal to a second position. 

(c) Change of position of atoms occurring because 
of agitation of atoms due to heat. 

(d) Breakdown of structure. 

Deformation due to slip is the most common type in structural 

metals; however, some twinning is nearly always present. The mechanism 

of slip can best be understood by considering the geometrical arrange­

ment of the atoms within the crystal. Because of the symmetry of the 

space lattice formation, it is possible to pass families of parallel 

planes through the crystal so that the atoms contained within these 

planes are packed closer together than they are for any other plane 

which might section the crystal. The number of directions within these 

families of close packed planes may have depends entirely upon the 

lattice formation. For instance, it is possible to pass these families 

of planes through the face centered cubic lattice in four different 

27 A. Nadai, plasticity, op. cit., pp. 30-38. 
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directions so that the arrangements of the atoms within these planes 

are not only the same but have their most dense spacing. Figure 17 

shows two of the four planes. Within these planes, the atoms are 

arranged in a symmetrical manner so than: there are also certain close 

packed directions. Figure 18 shows the arrangement of the atoms within 

one of the close packed planes of the face-centered lattice. From an 

examination of the Figure, it is seen that there are three close-packed 

directions within each of the four dense planes, making a total of 

twelve directions in space along which the atoms are most densely-

spaced. For the body—centered lattice, there are forty—eight possi­

bilities. 

If an external force is to deform a crystal, it must overcome 

the force of mutual attraction between the atoms. Naturally, less 

distorting force is required if each atom moves toward its nearest 

neighbor. It is understandable then why slip takes place along the 

planes of greatest atomic density and in the direction of the close 

packed lines within these planes, i.e., a sliding or shearing effect 

causes the atoms to slip past one another over these close packed planes 

toward one of their nearest neighbors. This type deformation is 

illustrated in Figure 19, in which the entire test specimen is assumed 

to be a single crystal and only the operating dense planes (or slip 

planes) are shown. This figure also illustrates that there must be a 

rotation of these planes during the slipping process, i.e., the angle 

Q must change. If the atoms are shifted along the slip planes to 

the extent that each atom within the plane occupies the position 

previously occupied by its neighbor, there is no tendency for it to 
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return to its original position leaving the crystal plastically de­

formed. For a cubic lattice, the atoms on the outer edges of these 

slip planes are now corners for only two space lattice instead of four, 

thus leaving the crystal slightly less stable. It is known that crystals 

which have been strained in this manner will recrystallize or their 

atoms will join themselves to other more stable crystals if their 

temperature is raised so as to make them active enough. This recrys-

tallization type of relative movement would be classified under (c) as 

described above. 

Since slipping is a shearing action, shearing stresses are 

required to produce it. With the normal tensile specimen under axial 

load, maximum shearing stresses will be developed on planes at forty-

five degrees to the direction of the load. In a general way, then, it 

is seen that the greater the number of possible slip directions, the 

greater the likelihood that one of these directions will align with the 

direction of maximum shearing stress. Under the foregoing conclusions 

it should be clear that the cubic lattice metals, such as gold, alumi­

num, iron, and copper with twelve and forty-eight slip directions, 

should be more plastic than the close-packed hexagonal lattice metals, 

such as magnesium, cadmimum, and zinc, having only one family of 

close-packed planes, i.e., the plane containing the bases of the 

hexagonal lattice. 

Twinned crystals may result from crystallization from the melt, 

recrystallization, or from mechanical deformations. The mechanism of 

mechanical twinning is more difficult to understand than that of slip 

but may also be explained on the basis of the geometrical construction 
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of the crystal. ° Yfith this type deformation, there is a simultaneous 

shifting of every atom in one part of a crystal, with respect to the 

atoms in the remaining part, so that the lattice formation in the first 

part is a mirror image of that in the second part. For this to be true, 

there must necessarily be a plane of symmetry known as the twinning 

plane. Figure 20 shows the relative movements of the atoms in a body-

centered cubic crystal, parts (a) and (c) of the figure show the 

twinning plane normal to the paper T/shile part (b) shows the plane in 

the paper. The twinning plane is indicated by the broken line. Each 

atom is numbered so as to represent its position in each view. Part (c) 

shows some of the atoms to be directly over one another, in which case 

the point has two numbers. The dotted portion of part (c) shows the 

position of the atoms after twinning has occurred and the arrows indicate 

their motion. It is seen that each atom moves by an amount proportional 

to its distance from the twinning plane, resulting in purely plastic 

deformation, since the equilibrium of the crystal is undisturbed. With 

large groups of atoms shifting simultaneously in this manner, the 

resulting deformation is instantaneous and usually creates an audible 

sound. Mechanical twinning is very prevalent in the deforming of pure 

tin, and some metallurgists explain the audible "cry" heard when a bar 

of this metal is rapidly bent as being due to a large number of twins 

formed in rapid succession* 

In order to study the mechanisms of slip and twinning from an 

co Charles S. Barrett, Structure of Metals (New York: McGraw-
Hill Book Co., 1913), PP. 313-T7I 
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experimental point of view, it is necessary to have single crystals 

29 

large enough to use as test specimens. C. F. Elam completely de­

scribes the following three methods of growing large crystals? 

(1) By solidifying from the molten state under proper 
conditions. 

(2) By a process of deforming (or straining) a fine 
grained aggregate and then heat treating so as to 
promote recrystallization and grain growth while 
in the solid state. 

(3) By a distillation or deposition from the vapor 
state. 

30 Using method one, Birdgman^ melted metal in a graphite or porcelain 

tube and instead of allowing the metal to solidify normally, he slowly 

lowered it through the bottom of a furnace so as to allow it to solid­

ify from one end only. The bottom end of the tube was tapered so as 

to allow only a single nucleus to form. As the tube is progressively 

lowered out of the furnace, the single nucleus continues to grow into 

one large crystal. 

The main objection to this method is that there is no control 

over the orientation of the crystaliographic planes. In order to 

completely analyze data obtained from testing single crystal pieces, 

it is necessary to orientate the slip planes (or planes of greatest 

atomic density) at different angles with respect to the loading axis. 

31 
Birdgman^ was able to overcome this difficulty to some extent by 

°C. F. Elam, Distortion of Metal Crystals, The Oxford Engi­
neering Science Series, (Oxford: The Clarendon Press, 1935>)> pp. 3-6 

^ P. W. Birdgman, "Certain Physical Properties of Single Crystals 
of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin," 
Proceedings of the American Academy of Arts and Sciences, 601 305-83 (192f)$, 

Loc. cit. 
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making the crucible consist of a network of tubes entering the main 

body at different angles. 

Another method, described by Eiam32, in -which large crystals 

are grown from molten metal, consists of attaching a small crystal to 

the end of a rod to use as a nucleus. The crystal is just dipped into 

molten metal and slowly withdrawn as a jet of carbon dioxide is played 

on it. If the rate of withdrawal is properly regulated to the rate of 

cooling, a rod consisting of a single crystal specimen will be formed 

and the direction of the crystallographic planes will be the same as 

those of the starting crystal. 

As previously mentioned, crystals that have been plastically 

deformed are left in a slightly less stable condition and will re-

crystallize if the atoms are excited by heating. This phenomenon is 

used to grow large crystals from the solid state. The method is used 

as follows* 

(1) Anneal the piece in which the large crystals are to 
be grown. 

(2) Strain the piece to approximately two or three per 
cent. The smallest amount of strain that will induce 
recrystallization at all produces the largest crystals. 

(3) Reheat the piece slowly and evenly. The best 
temperature can be found only by trial and error. It 
is generally found that no growth exists below a 
certain minimum temperature, but the lowest temperature 
at wh_ch growth will take place is the best. 

The deposition of crystals from the vapor phase is simplest for 

the case of zinc. Zinc is the most volatile of the commoner metals and 

large crystals can be deposited from these vapors. 

32Elam, op. cit., p. 3 
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Now that methods of growing single crystal test pieces have been 

briefly described, it is in order to discuss their deformation. If an 

isotropic material is strained in one direction, it will deform propor­

tionally in all other directions. That is, if a circular test specimen 

is strained in an ordinary tensile test, its cross-section remains 

circular* This fact is not necessarily true with single crystal 

specimens, since it may and generally does deform more in one direction 

than another causing a circular cross-section to become elliptical. 

Mark, Polanyl, and Schmidt33 found that a single crystal test specimen 

of zinc in the form of a wire could be elongated as much as seventeen 

times its original length at temperatures of 20£° C and the cross-

section changed from its originally circular form to an ellipse and 

finally into an almost flat or rectangular shape. It was found that 

this same type crystal (i. e. zinc) would be very brittle and practi­

cally no elongation could be measured prior to rupture if its dense 

planes were orientated at ̂ 0° to the axis of stress. This continues 

to uphold the shear theory, since zinc has a hexagonal space lattice 

formation and thereby only one set of slip planes. Under these con­

ditions, the phenomenon of iwinning sometimes takes place, allowing a 

rotation of the dense planes and thereby making slip more inducive. 

As soon as slip begin, two new factors must be considered: 

(1) Because of the mechanisms of slip, the angle between the 
load axis and the slip planes will be continuously de­
creasing (see Figure Ik) causing the components of the 
shearing stress on the slip planes to increase. 

3 3 H. Mark, M. Polanyl, E. Schmidt, Z. Physik, 12: 58 (1?27) 
cited by Elam, op. cit., p. 9. 
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(2) The metal work hardens, 

Since the shearing stress is continuously increasing because of 

rotation, there must be present the second factor of -work hardening; 

or the crystal would continue to slide apart without any increase in 

load. Experiments show that as one plane begins to slip, it increases 

its resistance to shear and any further deformation must be taken by a 

new slip plane, which, as previously explained, is paralleled to the 

first. The distance between active slip planes is fairly uniform for 

some metals but irregular for others; however, the greater the number 

of slip surfaces for the same system, the more plastic is the crystal, 

If two cubes cut from different crystals are acted on by equal 

shears both paralleled to the direction of slip, the resulting defor­

mations can be different, since a different number of glide planes will 

result. The plasticity of the crystal is accordingly the result of the 

number wnw of active glide surfaces per unit length vertical to the 

direction of gliding. It has been found that this number "n" changes 

in the same crystal, depending upon -which set of glide planes become 

active, and is also a function of the temperature. 

The number of glide planes is always very much less than the 

number of atomic layers. If they approached the number of molecular 

layers, the grooves seen on the surface of a deformed crystal would 

hardly be perceivable. 

It now seems conclusive that plastic deformations are, for the 

larger part, the results of slip due to shearing stresses. Consider a 

single crystal being subjected to a gradually applied load. No meas­

urable deformations will occur until a certain critical value of stress 
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is reached, this critical value being a function of the crystal orienta­

tion* Many investigators have shown that differently orientated crystals 

of a given metal will begin to slip at different values of applied 

stress; but if this stress be resolved into components parallel and 

perpendicular to the direction of slip, it is found that the parallel 

component is always the same when slip begins. It is, therfore, termed 

the critical resolved shear stress» 

Figure 21 shows a single crystal test piece sectioned along a 

slip plane. If (p is the angle between the applied force F and the 

normal to the plane and ^ is the angle between the line of maximum 

slope on the plane and the direction of slip, then the resolved shear 

stress "7""" is given by the relations 

i— 

/ = — Cos 4> Sl'rZ <f> Cos X 
A (9) 

Where A = the original cross-sectional area, F/A, is then the 

axial stress <T* . It is evident from this relation that the crystal 

orientation, number of possible slip plane orientations and slip direc­

tions available, and the crystal symmetry will have an important effect 

on experimental values obtained for 7"" critical. 

There are eight octahedral planes in a cubic crystal, of which 

four are parallel to the other four, so that from the point of view of 

distortion there are four possible slip planes ia metals such as 

aluminum having a face-centered cubic lattice. It is evident from a 

consideration of equation 9 that there will generally be one plane on 

which the shear stress is greater than on the other three because of its 

inclination to the axis of the applied stress. That plane will function 
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as the slip plane, 

There are also three possible directions of slip with this type 

lattice, but the shear stress is greatest in the direction nearest to 

the direction of maximum slope, i.e., where A is small. 

If &* denotes the shear strain parallel to the direction of 

slip because of the shear stress T then the strain in the direction 

of the applied stress (i.e., ^ ) would be given by the relation: 

^ = <fS/« <p C0 j- X 

(10) 

as seen from Figure 21. As the resolved shear stress *7~ exceeds the 

critical value 77 , then shear strain <T shows up in the form of a 

slip line in the crystal. If it were not for the ability of the crystal 

to work-harden, slip would continue with no further increase in F until 

the crystal ruptured. It is therefore evident that as slip continues, 

a progressively greater resolved shear stress "7^ is required. This 

is to say that <T is a function of T once slip begins: 

r= fir) 
(ii) 

This function has been determined experimentally for aluminum by 

G. I. Taylor^. Taylor's results show the function f to be the same 

in tension or compression and to have the form of a parabola 7*" = C V a 

G. I. Taylor, "The Distortion of Crystals of Aluminum under 
Compression," Royal Society Proceedings, Series A, 116: 16-72, (ly27). 
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while for the case of zinc the relation is almost a straight line, 

Figure 22 shows a plot of these results. Taylor also found the shape 

of the strain-hardening curve to be a function of temperature and 

rate of deformation. Figure 23 shows the relation between stress and 

strain for magnesium crystals at different temperatures. The amount of 

strain hardening decreases markedly as the temperature rises. The 

dashed lines marked 100° and 250° are for a rate of test about a 

hundred times faster than the others. It is seen that while rate has 

little effect at a temperature of 100°C, it produces very great effects 

at temperatures of 250 , 

The function as represented by the graph of Figure 22 is 

approximately: 

~r - /37o Y~T 

or 

* 6 T - 3 & x /o" <r 
(12) 

Substituting the equation 12 into equation 10 gives? 

<£• = 5.5-x/o" S*« $ Cot * 
(13) 

Substituting the relation given by equation 9, we haver 

<^r ~ " x T x T o 6 Sjn <fi Cos X 

(lii) 



31 

Equation lU gives an approximate relation between axial stress 

and plastic strain for a single aluminum crystal provided its orientation 

is known. 

Up to this point we have ^ly considered the deformation of 

single crystals. Next in the order of the discussion is the deformation 

of polycrystalline aggregates. 

If the polished face of a piece of metal that has crystallized 

from the melt is etched with appropriate etching agents, a network of 

almost straight lines arranged in a polyhedral pattern appears on the 

surface. These lines represent the outline of intersecting surfaces of 

the crystals. The formation of these crystal surfaces takes place in 

the following way. As a cooling melt reaches the transition temperature, 

nuclei begin to form; and from these nuclei, crystals grow until they 

intersect. By this process of growth, the orientation of the individual 

crystals with the aggregate is purely random; and likewise the boundary 

planes of the crystal might have any orientation with respect to the 

crystallographic planes. 

Until about ±93k, the means by which the crystals of an aggregate 

were bound together were not completely understood. Tammann^ has 

advanced the theory that the space between the crystals is filled with 

the impurities within the metal which form a complex eutectic of 

non-isomorphous materials. 4s evidence of this interstitial substance, 

the following experiment was outlined. Y/hen a metal sheet was placed 

35 Gustav Tammann, A Textbook of Metallography,Translated from 
the Third German Edition by Reginald Scott Dean and Leslie Gerald Swen-
son (New iorkt Chemical Catalog Co., Inc., Iy2f>), pp. 15-18. 



in a transparent solvent by -whose action no gas was evolved, there 

appeared on the surface of the sheet fine seams of the interstitial 

substance, forming a network which was easily shifted and broken apart 

by any motion of the solvent. 

It has already been pointed out that slip bands appear on the 

surface of a deformed crystal, and this is true whether the crystal 

stands alone or is part of an aggregate. Just how the crystals are 

able to slip within an aggregate and not separate the grains is not 

completely understood, but one thing is certain. If a piece of metal 

is ruptured at room temperature, the break is across the grains and 

not around them. The forces which band the grains together seem to be 

stronger than the grains. At higher temperatures the break is through 

the interstitial substance. 

In recent year, physicists have applied the mathematics of 

quantum mechanics to the problems of metallic solids. In his book on 

the theory of solids, Seitz^ gives a detailed development of the 

electron theory of metals. Dr. Charles Barrett-*? says it is now well 

established that the atoms in metal crystals are ionized and that a 

metal should be considered as an arrangement of positive ions immersed 

in a cloud of electrons. The electrons of this cloud are relatively 

"free"5 they are not bound by any particular ion but move rapidly 

through the metal in such a way that there is always an approximately 

36 Frederick Seitz, The Modern Theory of Solids (New York: 
McGraw-Hill Book Company, 19U0), pp. 76-96^ 

•3*7 
Jl Barrett, op. cit., p. 251. 
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uniform density of them through the interior between the ions. Metal 

crystals are held together by the electrostatic attraction between this 

so-called "gas" of negative electrons and positively changed ions. 

The binding forces in medals are thus in sharp contrast to those in 

nonnnetallic substances, where the predominating forces are from atom 

to atom or from positive to negative ions. 



PART III 

ANALYSIS OF EXISTING THEORIES ON PLASTIC DEFORMATIONS 

As previously mentioned in this paper, there are many theories of 

plasticity, none of which are completely satisfactory* All but one of 

these theories fall into two general categories. The first of these 

includes so-called deformation theories, and the latter are referred to 

as flow theories. Both type theories attempt to modify the elastic 

stress-strain relation: 

r - -£5L 

61 Cy --V E 

6\ =-£> 6L 

Tftiere C = unit strain, 

= unit s t ress , 

"Z-̂  = poisson»s ratio., 

and subscripts denote directions. (17) 

All of the deformation type theories relate stress and strain 

directly by use of the Secant modulus, ifcich varies with the stress, 

and are of the form: 

€ ~ £s 
GL 

(18) 
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where E s is the slope of the Secant line to the stress-strain curve 

shown in Figure 1. 

Flow theories are based on the tangent modulus, which is an 

incremental relation expressed as follows? 

< * • = d c r 

£t (19) 

where E t is the slope of the tangent to the stress strain curve also 

shown in Figure 1» Theories of this type have been found very satis­

factory and are simple to use for the case of uniaxial loading such as 

one would find in columns and tension members^ but when the loading 

becomes complex, such as that for a buckled plate, these theories do 

not lend themselves too readily. The various theories of plastic 

buckling which are applicable to plate problems seek to generalize 

equations 18 and 19 so as to formulate stress-strain relations for 

complex loading in the region beyond the elastic range. Both type 

theories assume that plastic laws hold while loads are increasing be­

yond the elastic limit, but that elastic relations must be used for 

conditions of unloading. This conforms closely to the physical relation 

shown in Figure 12:, if the hysteresis losses are neglected as they might 

well be under quasi-static loadings. Whether the change in stress state 

constitutes a loading or an unloading condition is dependent upon wheth­

er or not it causes an increase or a decrease in a rationally invarient 

stress function upon which these theories are based. This function, 

which is sometimes called the stress intensity, is usually given in 

terms of the maximum shearing stress. 



Stowell-5 has developed a theory for the buckling of columns 

and plates which falls under the deformation classification, while 

39 
Handelman and Pragner 7 have developed a theory of the flow type. 

These theories are representative of the two types and will be the 

only ones considered here. 

& third type theory which is based on neither of the above 

concepts, but on the physical concept of slip with the crystalline 

structure, has recently been developed by Batdorf and Budiansky. 

These theories will now be discussed in the order in which they have 

been mentioned. 

A UNIFIED THEORY OF PUSTIC BUCKLING OF COLUMNS AM) PUTES1^ 

This theory is an attempt to eliminate the necessity of having 

to use one theory when investigating axially loaded members and a 

different one when investigating members under complex loadings. Be­

ginning with the stress invariant given by Ilyushin^2, i.e., 

<£ = y ( j / + Gj - <TX 0} + 3T-2-

Q" ~W Ve* Ve; +cxzy + -f 
where 7~ = shear stress and fr = shear strain. 

(20) 

38Stowell, op. cit., pp. 1-31. 

39 

ho 

39 
Handelman and Pragner, op. cit., pp. 1-97. 

Batdorf and Budiansky, op. cit., pp. 1-33, 

^ Stowell, loc. cit. 

U2 
Ilyushin, op. cit., pp. 1-30. 
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Dr. Stowell has developed the equation of equilibrium for a buckled 

plate. 

According to the fundamental hypothesis of the theory of plas­

ticity, the stress intensity 0£ is a uniquely defined, single valued 

function of the intensity of strain 6>/ if <£• is increasing (i.e., 

under a loading condition)* If PI* is decreasing (unloading), the 

relation of 01 to Oj must be linear since this represents an 

elastic condition. (See Figure 12..) In equation 20, the material is 

taken to be incompressible, and Poissonfs ratio is then one-half. The 

stress-strain relations compatible "with equation 20 are then found to 

be 

C _ (fx ^J^B-
* £* 

r = oi - ± o~* 
S Ej 

?r -

e>, = -07-
<• a , 

(21) 

These are the same as the elastic relations developed by Timoshenko^, 

except that they are modified by the value of Es« 

By writing the differential equations of equilibrium for a 

^ S» Timoshenko, Theory of Elasticity (New York: McGraw-Hill 
Book Company, 193k)9 pp. 8-9. 
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differential element of a buckled plate and solving these with equa­

tion 21, the equations of equilibrium for the buckled plate are found 

to be 

L' 4 (a: ) U eJJdx* 6 p- V ES j^rji 

«<v 
d</: 

+ f/.i (Ik 17/ £t )7 ruj - _ JL ((rg«L.fTi>1to.,-.pu>\ 

(22) 

^ V 
where w denoted deflection and £> - — 3 — is the flexual 

rigidity of the plate # It is interesting to note that -when E s e c 3 S 

as in the elastic range and V is taken as J, this relation reduces 

to the form 

(210 

and is precisely the equation of an elastically buckled surface as 
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given by Timoshenko.^-

Dr. Stowell has applied the above equation to several basic 

types of structural members and a quantity j] , the number by which 

the critical buckling stress computed from elastic equations must be 

multiplied to give the critical stress for the plastic case, has been 

determined. The values of ^ given in the table on the following 

page were obtained by dividing the critical stress of the structure in 

the plastic range by the critical stress that would be obtained on the 

assumption of perfect elasticity. 

HANDBLSM, mGNER THEORY^ 

Instead of using the stress invariant developed by Ilyushin^" 

as used in most other theories, a new set of stress strain relations 

is worked out. The development of sach relations is quite complicated 

because the material, which was originally in a state of simple com­

pression, is not loaded in some regions and unloaded in other during 

the process of buckling. With this thought in mind, the authors of 

this theory arrived at the following relations on the basis of in­

tuitive thinking and comparative symmetry:; 

*** S. Timoshenko, Theory of Elastic Stability (New York: McGraw-
Hill Book Company, 1936) p. 32Iw ~~ 

^ Handelman and Pragner, op, cita, pp. 1-33. 

Ilyushin, op. cit., pp. 1-30. 
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TABLE I 

VALUES OF H FOR SEVERAL LOADING CONDITIONS 

Structure 

Long flange, one ^ 
unloaded edge —5. 
simply supported E 

Long flange, one ^ . t— ^r- \ 
unloaded edge _£- { Q 4xa ~h O.S72 y4r + ~^r ~jr ) 
clamped 

Long plate, both £ 
unloaded edges 
simply supported ^ 

£ (1 + JL - /Z I T 3 ) 

Long plate, botn c- / /— ——- \ 
unloaded edges — ? • (o^fZ-h 0,6^SV^ + 4; —^- J 
clamped *r Es ' 

Short plate, 
loaded as a 
column 

4 £ 
, 5 Et 

+ 4~~£ 

Square plate, 
loaded as a 
column 

Of/4 f- + 0-SS6-^-

Long column ft 
E 



£n </£* = W f i - ^ ^ J °^ o ^*-x 

*o<*> = - (v-^sr) - ^ - ^ ^ 

^cfc, = - < > + J^L) °/<rx- (v-^r)^o; 

Eo Jfy ~- z ('+?) ^^y 

The significance of the symbols is as follows: 

E0 = Young«s Modulus 

(25) 

(Jy z Infinitesimal strain increment 

7- = Shear stress 

£- = Tangent Modulus 

1^ z Poisson's Ratio 

With the above stress strain relations known, the problem is 

again that of writing the differential equations for the equilibrium 

of a buckled plate* The procedure is practically the same as for the 

case of elastic buckling as outlined by Timoshenko except that the 
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M neutral surface does not lie in the center of the plate. 

The solution of the equation yields the following results: 

7) Jl" +ZT> **<" +D ?<" - rr /, ^W 

where OU r deflection 

A. --DlJ-c 5(2- vyj 

A, --J>[l -C$(2J>-ff] 

(26) 

3 

h - plate thickness 

01---% 

c (\-n 
[lJ-4V)7i-(i-2VY} 

Hit* t~-a*;)} f^ k<° 

hi S. Timoshenko, Theory of Elastic Stability, op. cit., pp. 302-05. 
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k = (*-v)k, t (2v-i)K 

K - jx' 

K fou 
" jy1 

• 

IX. 

. -t-

_ - » 

<£ + ^d+VdT-l 

ĉ  as ratio of reduced modulus to Young*s modulus. 

This equation resembles the equation for the buckling of an anisotropic 

plate given by Timoshenko . In the case of an anisotropic plate, the 

coefficients D-Q, Dio> an<^ ̂ 22 a r e constants for the material; for the 

plastic case D-Q, EJO, and D22 are functions of the stress C . In 

other words, the plate is anisotropic but his anisotropy is caused by 

Dn DIP 
and i s a function of the compressive s t r e s s . Graphs for , , 

Do? 
and as functions of X and V are given in N&Gft Technical 

D , h? 
Note Mo. 1^30. 

U8 Ibid., p. 380. 

il9 
^7 Handelman and Pragner, op. cit. 
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A MATHEMATICAL THEORY OF PLASTICITY BASED ON THE CONCEPT OF SLIP 

The plastic deformation of a polycrystalline mass is the accumula­

tive results of the deformation of each individual crystal, the defor­

mation of the individual crystal being the results of the mechanism of 

slip. It has already been pointed out that slip within an isolated 

crystal is independent of the normal stress and is only influenced by 

two factors: namely, (1) the resolved shearing stress on the active 

planes in the direction of slip, (2) the amount of previous work 

hardening, since the minimum value of the resolved shearing stress 

required to produce slip is a function of the amount of this previous 

workhardening* Although any deformation of isolated crystals is ani­

sotropic, it is generally assumed that a polycrystalline material has 

isotropic properties and that any infinitesimal part of the substance 

may be treated as though it were a continuum* Accordingly, instead of 

considering a small slip along each of a large number of discrete planes, 

the theory contemplates an infinitesimal plastic shear strain in every 

possible direction within every possible plane that can be passed 

through each infinitesimal fraction of the continuum, 

If this small fraction of the continuum is imagined to be made 

up of an infinite number of crystals having all possible orientations 

with respect to the direction of an applied stress, it is seen that each 

of these crystals contributes to the strain by an amount which is a 

function of the shear stress T that resolves onto its active plane in 

5^ Batdorf and Budiansky, op. cit., pp. 1-33. 
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the direction of slip. 

If this small fraction of the continuum be enclosed -within a 

sphere, it is convenient to represent the orientation of a particular 

plane by the co-ordinates of the point at which it would be tangent to 

the sphere. The radius to the point of tangency is the normal to the 

plane. The axis 1 shown in Figure 2k is taken in the direction of 

the normal to the plane, and the axis 2 denotes a particular direc­

tion of slip within the plane. An infinitesimal band of planes may be 

represented by the normals to the plane included in the solid angle <//2-

and an infinitesimal band of slip directions may be represented by c/^ • 

In order to include all possible planes only once it is necessary to 

consider planes tangent to a hemisphere, 

The theory now postulates that the slip along the planes c/Ji- 9 

in the increment c//9 of slip directions, produces an infinitesimal 

plastic shear strain c/ f" associated with the 1,2 axis that is given 

by the relation 

ol^--F(T^) cfa & 

where F is a function depending only on the history of 7- , the 

shear stress in the 2 direction on a plane perpendicular to the 1 axis. 

It follows from the previous discussion concerning slip that, 

if 7- is gradually increased on any planes within the continuum, 

the function F must remain zero until a limiting value f is reached, 

if c/% " is to represent only the portion of the deformation which is 

due to slip. This limiting value of 7- and the manner in which it 

increases with work hardening has been determined experimentally for 
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certain types of single crystals by G. I. Taylor51 and others, but its 

value is also influenced by neighboring crystals when a polycrystalline 

aggregate is considered. It, therefore, seems logical to take one-half 

the elastic limit as determined from a standard uniaxial test for 71 , 

since the maximum shear stress developed at this point is one half the 

normal stress. Beyond this limiting val-ie of ^ , the function F 

varies with T in a manner which is characteristic of the material 
/A 

and is referred to in this theory as the "characteristic shear function*, 

It is now assumed that the characteristic shear curve can be 

represented by a power series of the form 

n=i L (28) 

This function would have a value of zero for o<Tt^ <T as required. 

The contribution of the inf in i tes imal shear s t r a i n c/<f* to 

the s t r a ins i n the standard x, y, and z axis may be wr i t ten in terms 

of the di rect ion cosines of the 1- axis and 2-axis . Thus, 

dc-x = ix, ?XI c/r,: • yKy = ft' ̂  +?v ?n) <t*»" 

c/e, = ;„ ?n dC • ff'x* - - ' 

d€, = 7g/ 7i2 G/KI 
(29) 

5i 
Taylor, op, o i t . , pp. 16-72. 
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where 7 7 7 are the cosines of the angles between 

x and 1, y and 1, z and 2 directions, 

In order to find the total plastic shear strains in the standard 

axes, the effects of the plastic shear-strain increments must be summed 

up over all possible directions and all possible planes. Thus 

// 

€*- ' I F(^ ) h, A, </JL c//* 

7J 
z 

**y ' I / F(T'-)(h- /W * 1* 4 ) c/-n.c//> 
» 

(30) 

where H denotes the entire hemisphere. The slip direction /? is 

integrated through 180° so as to include all possible directions only 

once. 

If the applied stresses are given in the standard co-ordinate 

system as(T' rf r? _---T" the resolved shear stress in the 1,2 

direction is given by 

TTz = &, A* <TX i- 7„ ?y* (% + ?*, hi. °7 

+ (h, ??* t /y, ?** J 7; y + f 2/ 7*. t h. 7*« ) TTCZ 

+ (?,. 7» + 7W. ?*J 3"* 
(31) 
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The next step in the development of this theory is to determine the 

characteristic shear function. Substituting equation 28 into equation 30 

gives 

c. 

TL 

JL <*«(•%-'Yh. 1» c/n c/f 
/7=, 

• 0 O O 

(32) 

Since y is the shear stress component in the 1,2 direction 

of the particular applied stress system, it is a function of CT as 

given by equation 31. The next step is then to substitute the appro­

priate part of equation 31 into equation 32, and ty/2 for 7^ , 

since it has been pointed out that the limiting value of ^1 would 

be taken as one-half the yield stress <Jl . 

In order to facilitate integration of equation 30, the authors 

of this theory developed a set of analytical expressions to transform 

the direction cosines 7 ^ - " — 2 into a polar-co-ordinate 

system. Before equations 30 are in order to integrate, it is necessary 

to select the stress system which is to be applied to the continuum. 

If the characteristic function is to be determined from the standard 

stress strain diagram, it is necessary to select uniaxial loading. 

Let this loading be applied in the direction of the z axis; then 

equation 31 reduces to // ~ /?/ (Zi &2 

Ol) 
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Substituting this relation into equation 32 gives 

_ <Z,(2?"?£ °* -I ) dad/* 
'H ' !. 

(3U) 

Integration of equation 3h gives 

£"*? <*-.?*(•%) Z 
*7=' 

(35) 

The g functions are not characteristic of the material and have been 

calculated for several values of <^Xd£ and are given in NA.CA. Report 

No. 1871.*2 

The values of the Cf^ are now determined from the stress 

strain curve of the material in the following way: if it is assumed 

that the characteristic function can be represented by a fifth power 

series, then values of gi, g2> * » • • g^ are taken from the above 

report, (T is next determined from the stress strain curve• 

From the ratios of ^/(p a_t wnich the g functions were taken, £p 

can be determined; that is, if the g function was calculated at a value 

of CT/£r ~ ^ , then (T- ka^ • With this value of (p the 

corresponding value of £ can be found from the stress strain curve. 

This is done for each of the five g values, and substitution of these 

Batdorf and Budiansky, Loc. cit. 
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values into equation 3£ yields five simultaneous equations from which 

the value of a,, a2, • • • • • a^ may be determined, 

Once the characteristic shear function has been found, it is 

only necessary to apply equations 30 and 31 to obtain the plastic 

strains resulting from any sequene of stresses, 



CONCLUSIONS 

As results of this study, the following conclusions have been 

reached: 

1. No crystalline substance obeys Hook's Law. It has been 

pointed out that very accurate measurements of stress and strain always 

indicate hysteresis losses even in the low stress range. If this were 

not true there could be no internal damping of freely vibrating members* 

2. All purely elastic deformations within crystalline sub­

stances are the result oft 

(a) a change in the dimensions of the space lattice 

(b) a change in the crystal spacing 

(c) or a combination of the two. 

It was pointed out in this thesis that any deformation due to slip was 

permanent unless removed by application of externally applied shearing 

stresses, opposite in sense to those originally producing the defor­

mation, or by recrystallization due to annealing. It was also stated 

that no measurable deformation prior to rupture was exhibited by a tin 

crystal when the stress was applied normal to its single set of slip 

planes. 

3* There can be no definite line of demarkation between elastic 

and plastic deformations within polycrystalline substances. Since it is 

the resolved shear stress that induces slip, it is evident that, with a 

random orientation of the crystals, slip is more inducive in those 

crystals which are more favorably orientated. It may therefore be 

concluded that all measurable deformations are the sura of an elastic 
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and a plastic part. Elastic after-effect as previously discussed may 

be explained on this basis if it is assumed that the elastic part of 

the deformation produces enough energy to restore the plastically 

deformed crystals by a creep effect after the stress is removed. 

k* The ionized theory of atomic binding within crystalline 

structures offers a better explanation of the following changes when 

a crystalline structure is deformed: 

(a) the density is slightly decreased 

(b) the electrical resistance is changed 

(c) the magnetic properties are changed 

(d) the thermal conductivity is changed 

(e) worked metal is more easily dissolved and more easily corroded* 

£• The results of rate of strain on corresponding stresses were 

found to be very pronounced in single crystal test specimens at relatively 

high temperatures, but of small magnitude at normal temperatures. The 

same results, but of lesser magnitude, were found to exist in poly-

crystalline materials, 

Up to the present time, very little study has been made of the 

effects of varying strain rates on internal energies, and no correlation 

has been established between internal energies and deformation in the 

plastic range» 
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,42-71 A 

71 4=7^ 

1,0 It 

£~7\ 

A UNIT CELL OF EACH OF THE FOURTEEN SPACE LATTICE FORMATIONS 

( I ) TRICLI NIC, SIMPLE i (2) MON OCLINI C* SIMPLE ', (3) MONO CLINIC, BASE CENTERED; 

(4) ORTHORHOMBIC, SI MPLE J {9 ) ORTHORHO MBIC, B ASE CENTERED; ( 6 ) ORTH ORHOMBI C, 

BODY CENTERED; ( 7 ) ORTH ORHOWBIC, FACE CENTERED, (8) HEXAGONAL; (9) RHOM-

BOHEDRAL i (10) TETRAGONAL, SIMPLE , (II? TETRAGONAL , BCDY CENTERED; 

(12) CUBIC, SIMPLE ', (13) CUBIC, BODY CENTERED,' (14) CUBIO, FAOE t ENTERED 

FIGURE 16 
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DASHED LINES INDICATE ORIENTATION OF TWO OF THE FOUR 
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FIGURE 17 

ATOM ARRANGEMENT ON ONE OF THE ABOVE CLOSE-PACKED 

PLANES. LINES INDICATE CLOSE-PACKED DIRECTIONS. 

FIGURE 18 
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(b) (a) 

DIAGRAM SHOWING RELATIVE MOVEMENT OF ATOMS IN TWINNING OF A 

BODY-CENTERED CUBIC CRYSTAL 
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COORDINATES FOR CALCULATING RESOLVED SHEARING STRESSES 
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