
DESIGN AND OPTIMIZATION OF HETEROGENEOUS FEEDFORWARD
SPIKING NEURAL NETWORK FOR SPATIOTEMPORAL DATA PROCESSING

A Dissertation
Presented to

The Academic Faculty

By

Xueyuan She

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

College of Engineering

Georgia Institute of Technology

May 2022

© Xueyuan She 2022

DESIGN AND OPTIMIZATION OF HETEROGENEOUS FEEDFORWARD
SPIKING NEURAL NETWORK FOR SPATIOTEMPORAL DATA PROCESSING

Thesis committee:

Dr. Saibal Mukhopadhyay
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Dr. Tushar Krishna
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Arijit Raychowdhury
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Christopher Rozell
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Date approved: January 11, 2022

ACKNOWLEDGMENTS

First and foremost, I want to thank my parents. My accomplishment today would not

be possible without the support from my father and mother. When I look back at the time

I have spent in schools, which is more than two decades till this moment, my parents are

always there to provided guidance and encouragement whenever I need it. They helped

me discover my potential and exceed my limit during the pursuit of knowledge. I want to

thank my parents for never compromising on my education, by providing all the resources

they could to support me during my study. I am deeply grateful to them and hope what I

have accomplished truly makes them proud.

I want to thank Dr. Saibal Mukhopadhyay who has been a great advisor and mentor.

His dedication to helping his students succeed is truly remarkable. During my study at

Georgia Tech, I learned from Dr. Saibal Mukhopadhyay not only the technical skills to be

a good researcher, but also important characteristics including patience, perseverance and

curiosity, all of which I know will be invaluable to me for the rest of my life. I also want to

thank Dr. Mircea R. Stan, who guided me, an undergraduate student knowing not what his

future should be at that time, into the world of academic research.

I am glad to have the opportunity to work with many of the current and past members

of the GREEN Lab, including Dr. Long Yun, Dr. Burhun A. Mudassar, Saurabh Dash,

Daehyun Kim, Priyabrata Saha, Minah Lee, Biswadeep Chakrabarty and Beomseok Kang.

I especially want to thank Saurabh Dash who provided highly valuable contribution to my

research.

Last but not least, I want to thank Tongshu Yang, who has always been there for me

during the past two years. She helped me greatly during the difficult times and I am very

fortunate to have her sharing my joy during the good times. The years of 2020 and 2021

were not easy in many aspects. I am grateful that we can go through it together.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . viii

List of Figures . x

Summary . xiii

Chapter 1: Introduction . 1

1.1 Thesis Contribution . 3

1.2 Thesis Organization . 4

Chapter 2: Background . 6

2.1 Spiking Neural Network . 6

2.1.1 Spiking Neuron . 6

2.1.2 Spiking-timing-dependent Plasticity Learning Rule 8

2.1.3 Approximation Theory of Feedforward SNN 9

2.2 Deep Convolutional Neural Network . 9

2.3 Spatiotemporal Data Processing . 11

2.3.1 Deep Neural Network . 11

2.3.2 Spiking Neural Network . 12

iv

Chapter 3: Spiking Neural Network with Heterogeneous Neuron Dynamics . . . 13

3.1 Overview . 13

3.2 H-SNN Simulation Platform . 13

3.2.1 Convolutional SNN . 14

3.2.2 Simulation Process Optimization 14

3.2.3 Dynamic Network Structure . 16

3.3 The Proposed H-SNN Architecture . 17

3.3.1 Heterogeneous Neuron Dynamics 17

3.3.2 Network Architecture . 19

3.3.3 Learning Process . 20

3.3.4 Memory Pathway - Hierarchical Memory Formation in H-SNN . . . 22

3.4 Results . 23

3.4.1 Parameters and Simulation Configurations 23

3.4.2 Baseline Networks . 23

3.4.3 Network Complexity and Energy Dissipation 24

3.4.4 Single-objective Prediction . 26

3.4.5 Multi-objective Prediction . 27

3.5 Summary . 37

Chapter 4: Sequence Approximation Using Feedforward-only SNN 39

4.1 Motivation: Experiments on H-SNN Configuration and Performance 39

4.2 Approximation Theory of Feedforward SNN 41

4.2.1 Definitions and Notations . 41

v

4.2.2 Modeling of Spiking Neuron . 44

4.2.3 Approximation Theorem of Feedforward SNN 45

4.3 Network Structure and Memory Pathways 49

4.3.1 Neuron Cutoff Period . 50

4.3.2 Heterogeneous Network . 51

4.3.3 Skip-layer Connection . 53

4.4 Time-varying Function Approximation . 55

4.5 H-SNN Optimization Using Approximation Theory 58

4.5.1 Network Template for BPTT Training 59

4.5.2 Network Template for STDP Learning 59

4.5.3 Implementation of Heterogeneous Conv-SNN 62

4.6 Dual-search-space Bayesian Optimization 62

4.7 Experiments . 64

4.7.1 Experiment Settings . 64

4.7.2 Optimization Process . 65

4.7.3 Effect of Dual-search-space Bayesian Optimization 66

4.7.4 Ablation Studies . 67

4.7.5 Comparison with Prior Works . 68

4.8 Network Spiking Activity . 70

4.9 Summary . 72

Chapter 5: Event-driven SNN Processing of Spatiotemporal Data 73

5.1 Background on Event-based Spatiotemporal Data Processing 73

vi

5.1.1 Neuromorphic Vision Sensor . 73

5.1.2 Conventional Machine Learning 74

5.1.3 Spiking Neural Network . 75

5.2 The Proposed Event-driven SNN Processing Method 77

5.2.1 Neuron and Synapse Model . 77

5.2.2 Event-driven Neuron Simulation 77

5.2.3 Event-driven Learning . 83

5.3 Experimental Details and Results . 84

5.3.1 Network Processing Efficiency . 84

5.3.2 SPEED Processing of H-SNN . 86

5.3.3 Experimental Configuration of Learning Event-based Datasets . . . 88

5.3.4 Accuracy Results . 89

5.3.5 Computational Performance . 91

5.4 Low-precision Networks . 93

5.4.1 Low Precision Network Activity 94

5.4.2 Low Precision Learning . 96

5.5 Summary . 98

Chapter 6: Conclusion . 99

References . 102

vii

LIST OF TABLES

3.1 Network configurations . 15

3.2 Network configurations and number of parameters 24

3.3 {R,T} prediction accuracy for unknown classes with aerial footage dataset . 25

3.4 Accuracy result of event camera dataset for networks trained with 100%,
50% and 30% of labeled training data . 26

3.5 Training accuracy of all-objective prediction with aerial footage dataset . . 30

3.6 Test accuracy of all-objective prediction with aerial footage dataset 31

3.7 Motion-agnostic class prediction: configurations for class prediction test
with unknown transformations where {s, c, a, d, o}: static, constant speed,
accelerating, decelerating and oscillating. 33

3.8 Motion-agnostic class prediction: accuracy of class prediction for different
test cases with aerial footage dataset. 34

3.9 Accuracy result for sequences generated with Fashion-MNIST 35

3.10 Impact of training data size for aerial dataset (top 3 rows) with scaling
unsupervised learning data size and Fashion-MNIST (bottom 3 rows) with
fixed unsupervised learning data size. 36

4.1 H-SNN Scaling Test Results . 40

4.2 Configuration of optimized network models 67

4.3 Ablation studies of optimization approaches: configuration of tested net-
works and accuracy results (%) . 68

viii

4.4 Accuracy (%) and trainable parameter number of tested models for DVS
Gesture dataset with varying amount of training labels 69

4.5 Accuracy (%) and trainable parameter number of tested models for N-
Caltech101 with varying amount of training labels 69

5.1 Comparison of different methods . 76

5.2 Comparison of model architectures and training rules 88

5.3 Comparison of H-SNN models tested in the experiments 89

5.4 N-Cars dataset: accuracy result and number of operations for inference . . . 90

5.5 DVS Gesture dataset: accuracy result and number of operations for inference 90

5.6 Specifications of hardware used for simulation 92

5.7 Processing speed measurements . 93

5.8 Memory requirement of network states with different synapse precision . . 94

5.9 Low-precision learning accuracy (DVS Gesture) 97

ix

LIST OF FIGURES

1.1 Objects with mixed dynamics in computer vision applications: robots in-
teracting with a rolling ball in a convex (left); an UAV analyzing movement
of a vehicle (right). 2

2.1 (a) Pre-synaptic and post-synaptic neurons connected by a synapse; (b)
spike timing of pre-synaptic and post-synaptic neuron. The post-synaptic
spike has timing different ∆t with last input spike and LTP is induced; (c)
STDP magnitude has an exponential relation with spike timing difference. . 7

2.2 The gradient-based training process of deep CNN. 10

3.1 Comparison of memory usage for three networks simulated with two ver-
sions of ParallelSpikeSim . 15

3.2 Neurons and inhibition: (a) Neuron response to input frequency; (b) neuron
decay rate; (c) illustration of cross-depth and local inhibition. 18

3.3 Architecture of the proposed network; network operation involves data flow
of three paths: learning path where STDP learning is used to modulate
synapse conductance, transfer path where learned features are transferred
to long and short term neurons, and perception path, where perceived input
spatiotemporal features are encoded in spikes. 19

3.4 Illustration of memory pathways and hierarchical learning in H-SNN. . . . 22

3.5 Illustrations of training and test sequences for the three experiments of the
aerial footage dataset. 29

3.6 Confusion matrix for (a) aerial image sequences and (b) Fashion-MNIST
sequences; for each network, the left matrix is for class prediction, the top
right for rotation and the bottom right for translation; darker color repre-
sents less instances. 35

x

4.1 (a) A time-varying input spike sequence received by two memory path-
ways: neuron membrane potential plots show the different response from
the neurons to the given input. (b) A minimal multi-neuron-dynamic (mMND)
network with m layers and n neuron dynamics. 42

4.2 Using a set of memory pathways to map a piece-wise constant function for
approximating a time-varying function. 56

4.3 MSE loss vs. number of trainable parameters for the function approxima-
tion experiments. 57

4.4 (a) MSE loss (log) of baseline network (top) and the proposed network
(bottom) for approximating functions with different parameters m and n.
(b) Heat plots of MSE loss for approximating functions with different pa-
rameters m and n. 58

4.5 H-SNN with multiple neuron dynamics and skip-layer connections train-
able with BPTT; each multi-neuron-dynamic layer contains a set of neuron
dynamics from d1 to dm; neurons with different dynamics are connected ei-
ther with synapses with trained conductance (learned synapses) or synapses
with transferred conductance from learned synapses. 60

4.6 H-SNN with multiple neuron dynamics and skip-layer connections train-
able with STDP. 61

4.7 The proposed dual-search-space Bayesian optimization process. 64

4.8 Validation error over optimization evaluations for the proposed dual-search-
space Bayesian optimization compared to the normal single-search-space
Bayesian optimization. 66

4.9 (a) Raster plot for function approximation experiment; t is the simulation
time step. (b) Raster plot for the proposed SNN trained for N-Caltech101
with BPTT; t is the simulation time step; (i), (iii) and (v) are from layer 8;
(ii), (iv) and (vi) are from the final layer. 71

5.1 The all event-based classification pipeline proposed in this chapter, which
consists of event camera as input source and CPU or GPU running event-
driven SNN processing. The two polarities of the output events, represent-
ing increase and decrease of brightness, are marked with red and blue dots,
and separated into two input channels to the network. 74

xi

5.2 Membrane potential tracked over time for discrete-time simulation and event-
driven simulation (top) and input events (bottom) with black dots as input
spikes and red dot as inhibition signal. 81

5.3 In an SNN with each neuron connecting to three neurons in the next layer,
(a) shows the event-driven neuron update process, and (b) shows the event-
driven STDP process. 82

5.4 (a) A general convolutional SNN architecture; (b) ratio of the number of
simulated neurons in event-driven networks to discrete-time simulated net-
works under different neuron sensitivity. 85

5.5 An example of H-SNN network implemented using SPEED. 87

5.6 (a) Spike activities from three simulations; each point represents a spike
from a specific neuron and time. (b) L1 and L2 distance between spike
frequency arrays for 2-bit simulations (left) and 4-bit simulations (right). . . 95

xii

SUMMARY

Over recent years, deep neural network (DNN) models have demonstrated break-through

performance for many computer vision applications. However, such models often require

a large amount of computation resources to operate, creating limiting factors for energy-

constrained hardware platforms. Training DNN models also requires a high amount of

labeled data, which could be difficult or expensive to acquire. The biologically inspired

model of spiking neural network (SNN) is another type of network that is capable of pro-

cessing computer vision data, and has the potential to achieve higher energy-efficiency than

DNN due to its event-driven operations. SNN also has the capability to learn with biolog-

ically inspired algorithm that does not require training labels, i.e. unsupervised learning.

While good performance has been shown for datasets with spatial-correlation, such as those

in image classification tasks, the accuracy of SNN is still below that of DNN when the

dataset has a higher level of complexity. This includes spatiotemporal tasks such as video

classification and gesture recognition.

In this research, we tackle this problem by proposing a design methodology for feed-

forward SNN that can be trained with either biologically inspired unsupervised learning

algorithm or supervised statistical training algorithm, to achieve spatiotemporal data pro-

cessing. The proposed model shows performance that is parallel to or better than DNN

when the amount of labeled training data is limited. We derive theoretical analysis for the

proposed design to help optimize network performance, and demonstrate with experimental

results that the proposed design can achieve improved performance while using less train-

able parameters. For event-based spatiotemporal data, we demonstrate that the efficiency of

the proposed network can be further improved with a fully event-driven processing method.

xiii

CHAPTER 1

INTRODUCTION

Spiking neural network (SNN) is a type of artificial neural network (ANN) that is con-

structed with biologically inspired neuron and synapse models. One of SNN’s main dif-

ference from conventional deep neural network (DNN) is that the neurons are dynamical

systems with internal states evolving over time. In SNN, information is encoded as spike

sequences with varying frequency (rate encoding) or delay (temporal encoding). The pat-

terns contained in the spike sequences can be learned either with statistical training methods

such as backpropagation-through-time (BPTT) [1], or with biologically inspired algorithms

such as the unsupervised spike-timing-dependent plasticity (STDP) [2, 3, 4].

The event-driven nature of SNN operation promises high energy-efficiency during net-

work operations [5]. Over the years, SNN has shown success in spatial data processing such

as image classification. While many large scale SNN models depend on conversion from

DNN [6, 7, 8] or supervised training [9, 10, 11], more recently, unsupervised learning has

shown promising results [12, 13]. However, SNNs for processing temporal or spatiotem-

poral data are still primarily based on recurrent connections [14, 15], and networks that

are trained with supervised training [16], leading to increased network complexity for pro-

cessing spatiotemporal data and high demand for labeled training data. In addition, while

promising performance have been demonstrated for SNN through empirical results, there

lacks a theoretical understanding of the approximation capability of feedforward SNN for

spike-sequence mapping functions.

One particular challenge of using SNN for spatiotemporal vision data processing orig-

inates from the complex dynamic of the changing visual patterns. For example, many

computer vision applications involve observing objects in motion [17, 18], such as shown

in Figure 1.1, where a robotic arm is interacting with a rolling object, and an unmanned

1

Figure 1.1: Objects with mixed dynamics in computer vision applications: robots interact-
ing with a rolling ball in a convex (left); an UAV analyzing movement of a vehicle (right).

aerial vehicle (UAV) analyzing the motion of a moving car. In those applications, the ob-

ject motion can be a mixture of translation and rotation, both with constant or changing

speed. Proper operation of the visual signal processing model requires two processes to

be performed: identifying class of the object and understanding dynamic of the motion.

Specifically, the model needs to correctly classify known objects with unseen motion and

recognize known motion of unknown objects. For spatiotemporal processing models that

rely on camera-captured frame sequences as input, the constant transformation of pixel-

level information makes the preceding problem challenging.

In terms of the DNN based approaches, spatiotemporal input data can be processed

with 3D convolutional layers [19] or combining spatial data processing models with re-

current connections [20]. However, such DNN models do not generalize well for features

that have been transformed. In order to achieve transformation invariant classification, data

augmentation [21, 22] is the common approach to allow the networks to learn the trans-

formed input features, and an increased amount of network parameters are needed to learn

the extra information.

Regarding the spatiotemporal data sources, besides conventional cameras that capture

frame-based images in a synchronous manner, there is another type of device, named event

cameras [23], which capture the spatiotemporal information in an event-based manner.

Event cameras use dynamic vision sensor (DVS) to capture brightness changes (increase

and decrease) in a scene as asynchronous events. Compared to frame-based cameras, event

cameras can achieve much higher temporal resolution due to the reduced data transmis-

2

sion, especially when observing scenes with few moving objects. Event camera also has

advantages such as low power consumption and high dynamic range, making it an ideal

data capturing device for applications that demand high power efficiency [24, 25, 26].

As the recent development of DNN offered state-of-the-art performance for frame-

based visual data, applying similar approaches to process event camera data has received

less attention. One type of approaches aims to convert the event based input to another rep-

resentation that is similar to frames, and train conventional models based on the converted

data [27, 28]. Such approaches take the advantage of well studied methods for process-

ing frame-based images, but require aggregation of events over a period of time thus do

not fully utilize the sparsity of event camera data. The second type focuses on designing

networks that are event driven to better match the asynchronous property of event camera

output[29, 30]. Such networks are asynchronous in nature, thus providing better efficiency

for processing the sparse event camera output. While promising results have been achieved

with both types of approaches, few has the capability of unsupervised learning. The event-

driven operation of SNN makes it inherently suitable for processing event-based data. A

system combining event camera and SNN has the potential to achieve a fully event-based

image processing pipeline with high throughput and low latency. In addition, the unsuper-

vised learning capability of SNN can be advantageous when the amount of training labels is

limited. However, similar to processing complex frame-based spatiotemporal data, event-

driven SNN processing for event camera data using STDP learning remains a challenging

task.

1.1 Thesis Contribution

The objective of this research is to explore using heterogeneous neuron dynamics in

feedforward SNN for spatiotemporal data processing, and study the learning per-

formance and computation efficiency of such design. More specifically, the following

contributions are made:

3

• We propose a novel feedforward SNN architecture consists of convolutional network

layers with crossover connections between neurons with heterogeneous dynamics, which is

capable of learning spatiotemporal patterns with spike-timing-dependent plasticity (STDP)

unsupervised learning to achieve accuracy comparable to DNN with higher label efficiency.

• We develop approximation theorem of a single spike propagation path, referred to

as a memory pathway, for any spike-sequence-to-spike-sequence mapping functions on a

compact domain, and prove that using heterogeneous neurons having different dynamics

and skip-layer connection increases the number of memory pathways a feedforward SNN

can achieve and hence, improves SNN’s capability to represent arbitrary sequences.

• We improve the proposed SNN architecture using the preceding theoretical obser-

vations and develop a dual-search-space Bayesian optimization process to experimentally

demonstrate that the SNN architecture can be trained effectively for higher classification

accuracy of complex spatiotemporal data.

• We develop an event-driven processing method for STDP and inference of event-

based data using the proposed network architecture, which significantly reduces compu-

tation and increases network throughput compared to regular discrete-time method, while

providing accuracy comparable to DNN and other SNN baselines.

• We show that the proposed event-driven SNN processing method is more robust than

regular discrete-time simulation method when synaptic conductance has reduced precision,

and delivers better accuracy with low-precision STDP learning.

1.2 Thesis Organization

In the following chapters of the thesis, we first present the background of SNN and DNN,

and review prior works in spatiotemporal data processing using different SNN and DNN

models in chapter 2. In chapter 3, we propose an architecture of heterogeneous feedforward

SNN with convolutional layers that can effectively learn and predict for frame-based spa-

tiotemporal datasets, and empirically investigate the learning performance of the proposed

4

network. Then, in chapter 4, we develop a theoretical basis for function approximation

using feedforward SNN. Based on the derived theorem and lemmas we further improve

the H-SNN design and demonstrate its performance with more complex spatiotemporal

data classification task. In chapter 5, an event-driven SNN processing method designed for

processing event camera data with the proposed architecture, is presented. The method is

demonstrated in experiments for its advantages in computation efficiency and low precision

learning. The thesis is summarized in chapter 6.

5

CHAPTER 2

BACKGROUND

2.1 Spiking Neural Network

The basic components of SNN are spiking neurons and synapses. Figure 2.1(a) is an illus-

tration of a pair of neurons connected by a synapse. The two neurons are referred to as the

pre-synaptic neuron, as shown on the left, and post-synaptic neuron as shown on the right.

We first introduce the mathematical model of spiking neurons and then the learning rule to

optimize synaptic conductance.

2.1.1 Spiking Neuron

There are different models that are developed to capture the dynamic of real biological neu-

rons such as Leaky Integrate-and-Fire (LIF) and Hodgkin–Huxley[31]. In this thesis, we

mainly study SNN constructed with the the LIF neuron model. The change of membrane

potential v for a LIF neuron can be described by the following equations:

τm
dv

dt
= a+RmI − v (2.1)

v = vreset, if v > vthreshold (2.2)

Here, Rm is membrane resistance and τm = RmCm is the time constant with Cm being

membrane capacitance. a is a parameter used to adjust neuron behavior during simulation.

I is the sum of current from all synapses that connects to the neuron. A spike is generated

when membrane potential v cross threshold and the neuron enters refractory period, during

which the neuron can not spike again.

6

-100 -50 0 50 100

0.2

0.4

0.6

0.8

Depression
Potentiation

P

Post-synapse neuronInput neuron
(pre-synapse neuron)

Plastic synapse

Pre-synaptic spikes Post-synaptic spike

Long-term
Depression

Δt

ΔG

Long-term
Potentiation

Δt t

v

v t

Pre-synaptic spike

Post-synaptic spike

(a)

(b) (c)

Figure 2.1: (a) Pre-synaptic and post-synaptic neurons connected by a synapse; (b) spike
timing of pre-synaptic and post-synaptic neuron. The post-synaptic spike has timing dif-
ferent ∆t with last input spike and LTP is induced; (c) STDP magnitude has an exponential
relation with spike timing difference.

7

2.1.2 Spiking-timing-dependent Plasticity Learning Rule

Based on the biologically plausible network model of SNN, it is possible to implement

learning algorithm that can exploit the causal relationship between spiking events [32, 33].

As shown in Figure 2.1(a), the pre-synaptic neuron emits spike signal when it reaches

threshold, and the spiking signal is conducted by the synapse to the post-synaptic neuron.

The signal excites post-synaptic neuron which accumulates membrane potential and can

also emit a spike when it reaches threshold. Synaptic conductance therefore determines

how strongly two neurons are connected. In the context of machine learning, synaptic

conductance acts as connection weight between neurons, and learning is achieved through

modulation of synaptic conductance. Meanwhile, unlike many conventional machine learn-

ing algorithms that is based on gradient descent, SNN adopts modulation rules similar to

that in biological neural systems. One type of the conductance modulation rules is spiking-

timing-dependent plasticity (STDP), which has been widely applied in SNN based machine

learning applications [34, 35, 36, 37].

In the STDP learning algorithm, there are two types of conductance modulation behav-

iors: long-term potentiation (LTP) and long-term depression (LTD), which increases and

decreases synapse conductance, respectively. LTP is induced when post-synaptic neuron

emits a spike shortly after receiving an input spike from pre-synaptic neuron, indicating

a causality between the two events; LTD is induced if the input spike is received after

post-synaptic neuron spikes. As shown in Figure 2.1(b), when post-synaptic neuron spikes

closely after a pre-synaptic spike, a positive time difference ∆t is recorded. Querlioz[36]

presents in his work an algorithm to determine the magnitude of conductance modulation

and such algorithm has been tested in machine learning applications[38]. It is defined by

the following two equations:

∆Gp = αpe
−βp(G−Gmin)/(Gmax−Gmin) (2.3)

8

∆Gd = αde
−βd(Gmax−G)/(Gmax−Gmin) (2.4)

Here, Gp is the magnitude for LTP and Gd for LTD; G is the value of synapse conduc-

tance before modulation; αp, αd, βg and βd are parameters with values above zero, Gmax

and Gmin are network parameters. Figure 2.1(c) demonstrates the relationship between

STDP magnitude with spike timing difference ∆t as defined by this algorithm.

2.1.3 Approximation Theory of Feedforward SNN

While many theoretical approaches to analyze SNN [39, 40] focus on the storage and re-

trieval of precise spike patterns, this property is different from the approximation capability

of spike-sequence-to-spike-sequence mappings functions, which is relevant to the pattern

classification tasks studied in this research. Towards the approximation capability of SNN,

a model that incorporates excitatory and inhibitory signal is shown for its ability to emu-

late sigmoidal networks [41] and is theoretically capable of universal function approxima-

tion. Feedforward SNN with specially designed spiking neuron models [42, 43] have been

demonstrated for function approximation, while for networks using LIF neurons, function

approximation has been shown with only empirical results [44]. On the other hand, the

existing works that has developed efficient training process for SNN and demonstrated

classification performance comparable to deep learning models, have mostly used simpler

and generic LIF neuron models [45, 16, 46, 47, 7, 48, 49], contrasting the lack of theoretical

basis for such networks.

2.2 Deep Convolutional Neural Network

Statistical machine learning models using deep convolutional neural network (CNN) and

gradient based optimization process has demonstrated high performance in many computer

vision application applications including image classification [50, 51, 52]. An example of

9

the architecture for deep convolutional neural network (CNN) used in computer vision is

shown in Figure 2.2. Input images are processed with convolutional layers and pooling

layers for feature extraction, and fully connected layers at the end are used to generate

prediction results.

A common training algorithm for deep CNN is gradient descent. During the gradient

descent process, the training images are used as the input to the feedforward network, which

generates predicted probabilities of each image belonging to each class. The ground truth

labels of the training images are used to compute loss values, which measure the distance

between the generated prediction and ground truth. The loss function can be chosen as

Weston Watkins formulation or cross-entropy loss, etc. Based on the chain-rule, gradient

of loss with respect to network parameters can be back-propagated through the network,

such as shown in Figure 2.2 where the gradient is back-propagated to the first convolutional

layer. The gradient information is then used to update the parameter in the direction that

would minimize the loss.

Input Images

⋯ ⋯
⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯

⋯ ⋯

Global Loss

Update parameters based on gradient

Convolution
Layer 1

Convolution
Layer 2

Pooling
Layer

F.C. Layers

Figure 2.2: The gradient-based training process of deep CNN.

The datasets used for DNN training usually contain a large number of training samples,

and it is inefficient to compute gradient over the entire training dataset. The alternative

approach commonly used in DNN training is stochastic gradient descent (SGD), where a

subset (batch) of the training set is used for each parameter update process. This is repeated

10

for all training image batches and one training epoch is complete. A network is trained over

a number of epochs until certain stopping criteria is met. During inference, target images

are processed by the feedforward network with optimized parameters, and prediction can

be generated.

The gradient descent or stochastic gradient descent based weight update process for

DNN training computes the new weight as W ′ = W − η∇L, where the gradient of loss

function L is taken with respect to weight: ∇wL = ⟨ ∂L
∂Wi

, ..., ∂L
∂Wk

⟩. Consider cross entropy

loss as an example for L, weight optimization of element i is described by:

W ′
i = Wi − η

− 1
N
∂{

N∑
n=1

[ynlog(ŷn)]}

∂Wi

(2.5)

Here η is the rate for gradient descent; N is the number of classes; yn is a binary

indicator for the correct label of current observation and ŷn is the predicated probability of

class n by the network.

2.3 Spatiotemporal Data Processing

2.3.1 Deep Neural Network

The development of deep learning over recent years leads to state-of-the-art solutions for

many computer vision problems. DNN model can be designed to process spatiotempo-

ral data with either 3D convolution layers [19] or recurrent connections [20]. However,

in those spatiotemporal networks, transformation invariance is not explicitly imposed. To

achieve transformation equivalent feature extraction, several DNN architectures have been

proposed [22, 21, 53]. While it is possible to apply those designs in the spatiotemporal net-

work, it has been demonstrated that DNNs are invariant only to images with very similar

transformation as that in the training set [54], which indicates that DNNs generalize poorly

when learning feature transformations. As a result, an increased amount of network param-

11

eters are required for conventional DNN to achieve transformation invariant classification.

For example, in [21], each pre-defined rotation angle requires an additional set of CNN

filters; in data augmentation based approaches such as [22], more parameters are needed

to learn all the rotated features. Together with the combination of 3D kernel or recurrent

connections, this leads to large complexity for spatiotemporal networks.

2.3.2 Spiking Neural Network

SNN with convolutional layers, trained with supervised and unsupervised methods, have

shown good performance in image classification [12, 13]. SNN that can be used in time se-

ries tasks have demonstrated in [15, 10, 11, 14], which mainly focus on supervised training.

Such networks are designed to predict for a single objective and do not enforce transform

invariant/equivalent learning. For most STDP based SNN designed for computer vision ap-

plications, the spatial correlation are enforced with connection styles, and the dynamic of

spiking neuron is exploited as an source of non-linearity. Within the network, all neurons

have similar parameters that are optimized for STDP learning. This design performs well

in learning spatial patterns, while for data that involve temporal dependency, change of

network connectivity to recurrent is the common practice [14, 15]. A few feedforward net-

work models have been demonstrated for spatiotemporal processing [16, 55] but are trained

with gradient descent based methods. In addition, as empirical results are promising, a lack

of theoretical understanding of sequence approximation using feedforward SNN makes it

challenging to optimize network performance for complex spatiotemporal datasets.

12

CHAPTER 3

SPIKING NEURAL NETWORK WITH HETEROGENEOUS NEURON

DYNAMICS

3.1 Overview

Biological study of nervous system has shown that neuron heterogeneity is an intrinsic

property of brains [56, 57] and potentially acts as an important role in supporting physio-

logical brain functions [58]. On the other hand, among the prior SNN models designed to

process spatial or spatiotemporal datasets [45, 16, 46, 47, 7, 48, 49], most are constructed

with homogeneous neurons. Based on this observation, we aimed to investigate how neu-

rons with heterogeneous dynamics can be combined in a feedforward network structure

and whether using heterogeneous neurons are beneficial to spatiotemporal data processing.

In this chapter, we first discuss the development of simulation platform used to support

this study, then present heterogeneous spiking neural network (H-SNN) [59] as a novel,

feedforward SNN structure with two neuron dynamics capable of learning complex spa-

tiotemporal patterns with STDP based unsupervised training. Within H-SNN, hierarchical

spatial and temporal patterns can be constructed with convolution connections and mem-

ory pathways containing spiking neurons with different dynamics. The proposed network

is tested on visual input of moving objects to simultaneously predict for object class and

motion dynamics and compared with baselines including DNN and SNN models.

3.2 H-SNN Simulation Platform

Based on the original ParallelSpikeSim (refered to as ParallelSpikeSim-v1.0) presented in

our prior work [38], which was primarily used for shallow fully-connected spiking neural

network, we made several key developments to improve the simulator as listed below. We

13

refer to the new version as ParallelSpikeSim-v2.0.

3.2.1 Convolutional SNN

While ParallelSpikeSim-v1.0 can be used to process SNN with any connection schemes, it

is primarily designed for fully-connected networks. The input signal to each spiking neuron

is calculated based on a customized CUDA kernel for matrix multiplication and reduction.

During development, we check two approaches of implementing convolution operations:

customized CUDA kernel, and functions from the cuDNN library. We observe that in order

to achieve the most efficient convolutional layers, using the cuDNN library, which contains

highly optimized convolution operation implemented by NVIDIA, is the better approach.

Therefore, we integrate the convolution operation workflow of cuDNN with the spiking

neuron simulation process of ParallelSpikeSim to achieve fast and efficient convolutional

spiking neuron layers.

Meanwhile, cuDNN does not support biologically inspired learning algorithms such as

STDP. Due to the more complex network connections in convolutional SNN than the fully-

connected SNN used in ParallelSpikeSim-v1.0, the original STDP implementation from

ParallelSpikeSim-v1.0 is no longer efficient. We therefore develop a new GPU accelerated

STDP learning process which is discussed in more details below.

3.2.2 Simulation Process Optimization

We improve the computation efficiency of the simulation process in terms of memory con-

sumption and simulation speed. ParallelSpikeSim-v1.0 uses a design of unified data type

(UDT) that combines all network parameters for neurons and synapses in one data struc-

ture. This design has the advantage of simplified software development process and fits

the memory requirement of shallow, fully-connected network architectures. However, for

convolutional SNN, the same conductance matrix is shared by neurons in the same depth.

Number of neurons are also much higher than shallow, fully-connected networks. Using the

14

Verison 1.0 Version 2.0
SNN Model 1 44 5
SNN Model 2 624 20
SNN Model 3 3648 48

1

10

100

1000

10000

M
em

or
y

us
ag

e
in

 M
B

(lo
g

sc
al

e)

SNN Model 1 SNN Model 2 SNN Model 3

Figure 3.1: Comparison of memory usage for three networks simulated with two versions
of ParallelSpikeSim

original UDT design is therefore not memory efficient as conductance matrices are stored

repetitively. In ParallelSpikeSim-v2.0, new data structures are used for different compo-

nents of the network. Instead of storing all conductance of synapses connected to each

neuron separately as in ParallelSpikeSim-v1.0, we use a new pointer-to-pointer GPU mem-

ory structure that is optimized for the weight sharing scheme of convolutional networks.

The structure is designed to be compatible with both the cuDNN convolution workflow as

well as the STDP learning process of ParallelSpikeSim.

We test memory consumption of the two versions of ParallelSpikeSim based on three

network structures. Since ParallelSpikeSim-v1.0 does not support convolutional layers, the

tested networks all contain fully-connected (F.C.) layers only, as shown in Table 3.1. Here

the notation of [784x1000] indicates a layer with 784 input and 1000 output neurons.

Table 3.1: Network configurations

Number
Model Layer Configuration of Synapses

SNN Model 1 F.C.{[784x1000],[1000x10]} 793K
SNN Model 2 F.C.{[3072x1000],[1000x10]} 3.08M
SNN Model 3 F.C.{[3072x1600],[1600x1400],[1400x10]} 7.17M

15

Memory usage values of the networks are shown in Figure 3.1. It can be observed that,

from SNN Model 1 to SNN Model 2, number of network connections increases by 3.88

times, while memory usage in ParallelSpikeSim-v1.0 increases by around 14 times. For

ParallelSpikeSim-v2.0, the increase is much more linear with respect to the scaling up of

the processed network, as memory usage is increase by around 4 times. The same trend

can also be observed for SNN Model 3. ParallelSpikeSim-v2.0 is more memory efficient

particularly in larger networks: memory usage is around 8x less than the old version for

Model 1, and 76x less for SNN Model 3. This result reflects a crucial improvement to the

platform, which allows us to fit more complex networks on GPU memory.

In terms of the learning process, ParallelSpikeSim-v1.0 implements STDP by launching

CUDA kernels for all neurons at each timestep to check for spikes that induce conductance

modulation. If a post-synaptic spike is detected, the kernel checks all pre-synaptic neurons

serially. For deep convolutional SNN, launching kernels for the large amount of neurons

inside the network is time consuming, and checking all pre-synaptic connection serially

is inefficient. To solve this problem, during spiking neuron simulation, spike events are

recorded in a spike-indicator array stored inside GPU memory. During STDP learning,

a technique called dynamic parallelism is used: learning process is launched for spiked

neurons only, and a second level of parallel processing is initiated by launching STDP

kernels for all pre-synaptic neurons.

Other minor improvements include optimization of memory control that reduces data

transfer between GPU and CPU memory; the lateral inhibition process, which was imple-

mented within STDP kernel, is now separated as layer-by-layer operation to support local

and cross-depth inhibition used by convolutional SNN.

3.2.3 Dynamic Network Structure

ParallelSpikeSim-v1.0 is designed to simulate SNN with static network structure during

each simulation process. In ParallelSpikeSim-v2.0, dynamic network structure is sup-

16

ported. Specifically, configurations of each network layer, such as depth, kernel size and

stride, and hyperparameters such as the spiking neuron parameters, can be changed while

the platform is running network simulation. To achieve this, we develop a conversion

function that changes the network structure based on the current and target network con-

figurations. The process creates a new network object by re-using the conductance matrix

and neuron object array from the original network structure in designated parts of the new

network object, and fills the remaining data structure according to the new network config-

uration. The conversion process then automatically determines and updates the simulation

parameters in all sub-modules, including the cuDNN workflow, neuron simulation, inhi-

bition and STDP learning modules, such that they operate according to the new network

structure. The support for dynamic network structure is another crucial development that

enables us to implement the heterogeneous spiking neural network with convolutional lay-

ers.

3.3 The Proposed H-SNN Architecture

3.3.1 Heterogeneous Neuron Dynamics

In SNN, spiking neurons can be used as the basic element of information retention. Long

and short retention length can be achieved if neurons have different membrane potential

decay rates. Consider the LIF neuron model, which is reproduced here:

τm
dv

dt
= a+RmI − v;

v = vreset, if v > vthreshold

With this model, consider a spiking neuron with membrane potential at vreset, which

receives input current I at t = 0, the time tdecay for the neuron membrane potential to

decay to vreset after receiving the input, can be derived by solving the differential equation

17

0 250 500 750 1000 1250 1500
-76

-74

-72

-70

-68

-66

20 30 40 50 60
0

10

20

30

(a)

0 500 1000 1500 2000
Time

-75

-70

-65

v m
em

Learner Short-term Long-term

(b)

Local Inhibition

Spiked neuron

Cross-depth
Inhibition

Inhibited neuron

(c)

0 500 1000 1500 2000
Time

-75

-70

-65

v m
em

Learner Short-term Long-term

Input Frequency

N
eu

ro
n

Fr
eq

ue
nc

y

Time

M
em

br
an

e
Po

te
nt

ia
l

Figure 3.2: Neurons and inhibition: (a) Neuron response to input frequency; (b) neuron
decay rate; (c) illustration of cross-depth and local inhibition.

Equation 2.1, leading to:

tdecay = τmln(vreset − a+
Rm

τm
I)− τmln(vreset − a) (3.1)

Equation 3.1 suggests that, by adjusting the parameters a, τm and Rm in Equation 2.1,

different information retention period can be achieved. Particularly, in the proposed H-SNN

architecture, three types of spiking neurons are used:

Learner neuron, which has a balanced decay rate and input response designed to opti-

mize STDP learning, is similar to neurons used in previous works [36, 13, 12]. Its parame-

ters are referred to as {aln, τln, Rln}.

Short-term neuron, with parameters {astn, τstn, Rstn}, has astn
τstn

< aln
τln

to create higher

decay rate. It is used to extract short term patterns from input features.

Long-term neuron, with parameters {altn, τltn, Rltn}, has lower decay rate than learner

neuron, as altn
τltn

> aln
τln

. It is designed for long term pattern recognition.

Since membrane potential of long term memory neuron decays slower, under the same

18

⋯

Input spike
arrays

⋯
⋯

Memory
Module

Learner
Module

Long-term neurons

Short-term Neurons

Learning Path Transfer Path Perception Path

Learner Neurons

Convolution Layer 1 Convolution Layer 2

⋯
⋯

⋯

Long-term neurons

Short-term Neurons

Learner Neurons

Convolution Layer N

⋯
⋯

⋯

Long-term neurons

Short-term Neurons

Learner Neurons

…

…
…

…

R

T

C

Multi-objective
Prediction Module

(MoPM)

F.C. Layer
(Output)

Figure 3.3: Architecture of the proposed network; network operation involves data flow of
three paths: learning path where STDP learning is used to modulate synapse conductance,
transfer path where learned features are transferred to long and short term neurons, and
perception path, where perceived input spatiotemporal features are encoded in spikes.

input signal, it can potentially produce output spike frequency that dominates the short term

memory neuron when the two are placed in parallel. To prevent this, Rstn

τstn
> Rltn

τltn
is used.

Figure 3.2 (a) shows responses of different neurons to pre-synaptic frequency. Long-term

neuron is able to respond to lower frequency input, due to its lower decay rate, but its post-

synaptic frequency increases slowly compared to the short-term neuron. Figure 3.2 (b)

shows that short-term and long-term neurons gain membrane potential faster than learner

neuron with a given input current, but they also exhibit different decay rates when input

current is zero.

3.3.2 Network Architecture

The architecture of H-SNN is shown in Figure 3.3. Three types of modules are connected

by three types of data flow paths between network layers. Spike signal from each layer’s

memory module is sent through perception path to deeper layers. Learning path connects

memory module to learner module in the next layer to enable STDP learning. The learned

19

synapse conductance is transferred from learner module to memory module in the same

layer. Modules are built with neurons of specific dynamics as mentioned before. Each con-

volution layer contains a learner module and a memory module. Two inhibition schemes

are implemented within the convolutional layers: cross-depth, and local (Figure 3.2 (c)).

Cross-depth inhibition is implemented to create competition between neurons with the

same receptive field. This prevents more than one kernel from learning the same pattern.

Local inhibition, where the spike of one neuron inhibits surrounding neurons in the same

depth, is used to help the network to better detect and learn translation invariant features.

Learner module is responsible for facilitating STDP learning. All the spiking neurons

in this module are learner neurons, and local inhibition is combined with cross-depth inhi-

bition. For memory module, a combination of long-term and short-term neurons are used.

Synapses in memory module are used only for perception thus not modified by STDP learn-

ing. Cross-depth inhibition is not implemented to accelerate neuron response and mitigate

the diminishing spike frequency issue. The last layer is a multi-objective prediction mod-

ule (MoPM) with each neuron fully connected to the previous layer. As will be discussed

later, MoPM is fine-tuned with supervision. To facilitate the common conversion process,

MoPM consists of all standard learner neurons. Inside the MoPM, neurons are indexed

as Ni,j where i represents one objective (section) and each j represent represent one label

(class) within that section. Here, section-lateral inhibition is implemented, which means

that spiking of neuron Ni,j sends inhibition signal to all neurons in section i while other

sections are unaffected. This enables H-SNN to simultaneously generate prediction for

independent objectives.

3.3.3 Learning Process

For H-SNN to process spatiotemporal information in a dataset, the memory modules needs

to transform the input sequences to output space that contains spatial features of target

classes and spatiotemporal features of feature motion dynamics. The last layer of H-SNN

20

trained with stochastic gradient descent (SGD) can statistically correlate those attributes in

the reduced dimension to likelihood of the input belonging to different classes.

During the learning process, each frame in the input sequences are converted to a 2D

array of spike trains; frequency of the spike train for a pixel is proportional to the pixel’s

intensity (rate encoding). The network receives one frame at a time and observes it for a

period (ttrain chosen based on input frequency range) to generate sufficient spiking events.

After all frames are learned the process repeats for the next sequence.

STDP learning of the network proceeds in a layer-wise manner. During learning of

layer 1, neurons in the learner module receive input spikes and perform STDP learning.

The learned conductance matrix is transferred to long-term and short-term neurons. Next,

learning of layer 2 begins. In this step, memory neurons in layer 1 receive input spikes

and generate spikes for the learner neurons in layer 2. After the learner neurons complete

learning of all training sequences, the conductance matrix is transferred to layer 2 memory

neurons. This process repeats for all convolution layers. While in one layer, the learner

neurons exhibit different neuron activity with the long-term and short-term neurons, such

layer-wise learning process allows the next layer to learn the changed spiking pattern using

STDP. Since multi-layer SNN experiences diminishing spiking frequency along network

layers, threshold of neurons in the memory module are scaled down to produce higher

output spiking frequency. The scaling factor for each layer is tuned as network hyper-

parameter, and its value is kept uniform within one layer to prevent distortion of output

pattern. During training of the final fully connected layer (MoPM), the perception path

produces spikes for each training sequence and spike frequency of all memory neurons in

convolution layer n is calculated. The last layer is trained with conventional SGD algo-

rithm to predict for multiple targets. The objective function of SGD is to minimize binary

cross entropy loss between label vectors that are one-hot encoded for each prediction target

and the layer output.

21

…

… Long-term
neurons

Longest memory pathway
Intermediate memory pathway
Shortest memory pathway
Learning path

Input Spikes

Learned
Pattern

Transfer knowledge
to memory pathway

Learned
Patterns

STDP
Learning

Short Memory
Pathway

t

Short-term
neurons

Perceived
Patten

Long Memory
Pathway

Intermediate
Memory PathwayShort Memory

Pathway

Perceived
Pattern

Long Memory
Pathway

Learner
neurons

…

Figure 3.4: Illustration of memory pathways and hierarchical learning in H-SNN.

3.3.4 Memory Pathway - Hierarchical Memory Formation in H-SNN

Within the perception path, long-term and short-term neurons in different layers are con-

nected with crossover connections. This establishes different memory pathways as shown

by the red, grey and blue lines in Figure 3.4. More specifically, we refer to one trace of

stacked connection of long-term and short-term neurons from the first memory module to

the last, as a memory pathway. The memory pathways in H-SNN have a wide range of time

scales. Connections consist of entirely short-term neurons, long-term neurons, and mixture

of both types of neurons create memory pathways of shortest, longest, and intermediate

time scales, respectively.

To better illustrate this, an example is shown in Figure 3.4. The memory pathways

enable hierarchical learning of temporal patterns for the target spike train shown at the

top of the figure. Learner neurons in the first layer extract correlation information from

the immediate past (single spike in Figure 3.4) and transfer such knowledge to neurons in

memory pathway (two different compositions of a single spike in Figure 3.4). The memory

of layer 1 creates a higher level of temporal abstraction of input features that are transmit-

22

ted as spike inputs to the learner neurons in layer 2. Hence, learner neuron in layer 2 learns

compositions of the higher level temporal patterns perceived by memory modules in layer

1 (see bottom of Figure 3.4 for illustration). This process is repeated throughout network

learning, creating a hierarchical learning scheme of temporal features over different time-

windows. In other words, the equivalent STDP learning window expands along network

layers, with long memory pathways creating the faster expansion and short memory path-

ways creating the slower expansion. Temporal features of different scales can therefore be

learned with the unsupervised STDP algorithm.

3.4 Results

3.4.1 Parameters and Simulation Configurations

The manually tuned neuron parameters are: for learner neurons, a is -75, τm is 100 and

Rm is 31; for short-term neurons, a is -93, τm is 50 and Rm is 23; for long-term neuron,

a is -34, τm is 100 and Rm is 16. Values of STDP parameters are: αp = 0.1, αd = 0.03,

Gmax = 1.0, Gmin = 0, τpot = 10ms and τdep = 80ms. To prevent early convergence

of synaptic conductance and allow the network to effectively learn the entire dataset, the

values of αp and αd are chosen to be relatively small, and training data is shuffled for

both class and motion categories. In terms of the simulation process, unit timestep is set

to 1 ms. Input frames are converted to spike trains with pixel intensity proportional to

spike frequency range f input
min = 0Hz and f input

max = 100Hz. Time spent on each frame is

ttrain = 300ms. All neuron states are reset to default value after learning of each sequence.

3.4.2 Baseline Networks

Five DNNs are implemented to represent baselines for spatiotemporal processing, namely,

(i) a simple 3D CNN [19] referred to as 3D CNN-α, which has similar layer configurations

23

Table 3.2: Network configurations and number of parameters

Model Convolution Layer Configuration Total Parameter

3D CNN-α Conv3D {[3x3x3,20],[3x3x3,32], 0.83M
[5x5x5,64],[5x5x5,64]}

3D CNN-β Conv3D{[3x3x3,32],[5x5x5,64], 4.5M
[3x3x3,96],[3x3x3,128]x2}

3D MobileNetV2 [60] 1.5M
3D ShuffleNetV2 [60] 1.2M

CNN+LSTM Conv2D{[3x3,64],[3x3,128],[5x5,256]} 3.7M

BP-SNN/BP-SNN-LS Conv2D{[3x3,32],[3x3,64],[5x5,128],[7x7,40]} 0.74M
H-SNN Conv2D{[3x3,32],[3x3,64],[5x5,128],[7x7,40]} 0.74M

as H-SNN, (ii) 3D CNN-β, a more complex 3D CNN with more layers and parameters,

(iii) 3D MobileNetV2 and (iv) 3D ShuffleNetV2 as implemented in [60]. The fifth baseline

for comparison is an implementation of CNN+LSTM [20]. To prevent overfitting, for 3D

CNN-α and 3D CNN-β dropout layers are applied; for all DNN baselines, early stopping

for training are used. In [61], spatiotemporal back-propagation is shown for SNN and the

trained network is tested for dynamic dataset. We implement this design with two variants

as additional bio-inspired baseline networks. The first variant is referred to as BP-SNN,

which has the same convolution layer configuration as H-SNN but does not use neurons

of different dynamics. Based on the original BP-SNN structure, we implement refractory

period to the neurons, and modified each layer to include neurons with long and short

memory, similar to H-SNN. This second variant is referred to as BP-SNN-LS.

3.4.3 Network Complexity and Energy Dissipation

The configurations of convolution layers and network parameter number are shown in Ta-

ble Table 3.2. Note, the representation of:

{[5x5, 32], [5x5, 64], [5x5, 128]}

24

Table 3.3: {R,T} prediction accuracy for unknown classes with aerial footage dataset

σts = 1 σts = 3 σts = 5
Model {R,T} {R,T} {R,T}

3D CNN-α 86.4, 88.7 60.7, 64.9 52.3, 56.3
3D CNN-β 95.2, 91.4 70.3, 65.3 61.4, 59.3

3D MobileNetV2 91.0, 83.6 67.1, 67.4 56.0, 61.6
3D ShuffleNetV2 97.5, 81.9 68.2, 62.2 67.6, 57.8

CNN+LSTM 93.1, 87.6 72.5, 66.7 63.1, 57.7

BP-SNN 84.7, 85.9 57.5, 64.2 51.4, 58.6
BP-SNN-LS 86.5, 94.8 62.3, 78.2 57.5, 60.4

H-SNN (1xU) 88.6, 91.0 68.0, 73.4 64.0, 63.2
H-SNN (5xU) 92.3, 98.4 72.7, 80.7 66.3, 70.7

denotes a network with one convolutional layer with 5x5 filter and 32 depth followed by a

layer of 5x5 filter and 64 depth followed by a layer of 5x5 filter and 128 depth. The tested

H-SNN has 0.74 million parameters. 3D CNN-α has similar complexity as H-SNN with

0.83 million parameters and BP-SNN has the same number of parameters as H-SNN. On

the other hand, 3D CNN-β and CNN+LSTM contains 4.5 million and 3.7 million parame-

ters. 3D MobileNetV2 and 3D ShuffleNetV2 has 0.5x complexity [60] and contains more

parameters than H-SNN. For CNN+LSTM, parameters in the CNN encoder is 2.7M, while

that in the LSTM decoder is 1.0M.

For H-SNN, network memory consist of two main parts: (i) synapse conductance,

which are trainable parameters, use 0.474M, and (ii) neuron state, which are non-trainable

variables, use 0.267M to store all membrane potential. The number of H-SNN’s trainable

parameters is thus significantly less than 3D CNN-β and CNN+LSTM. Moreover, it is well-

known that the event-driven nature of SNN assists in reducing network activation which in

turn reduced energy dissipation of computation. Using method presented in [62], we com-

pute the energy advantage of H-SNN over DNN baselines during inference as follows:

1.0 for H-SNN, 1.55 for 3D CNN-α and 3.37 for 3D ShuffleNetV2; 3D MobileNetV2,

3D CNN-β and CNN+LSTM consumes 9.01×, 11.80× and 28.88× higher energy than

H-SNN, respectively. BP-SNN and BP-SNN-LS uses similar energy as H-SNN.

25

Table 3.4: Accuracy result of event camera dataset for networks trained with 100%, 50%
and 30% of labeled training data

Model 100% 50% 30%

3D CNN-α 92.8 90.5 86.3
3D MobileNetV2 97.0 94.2 90.4
3D ShuffleNetV2 97.3 95.4 90.1

H-SNN 96.2 93.8 90.9
H-SNN (full data) 96.2 95.8 93.7

3.4.4 Single-objective Prediction

Experimental Details

To test the effectiveness of H-SNN in learning spatiotemporal patterns, both single-objective

and multi-objective experiments are conducted. In the single-objective experiment, an

event camera dataset of human gesture [63] is used. Here, individual events are super-

imposed onto frames with resolution of 128x128 over 20 ms window. Each generated

sequence contains one hundred frames and the network learns to predict the type of action

in each sequence. Three baseline networks are tested: 3D CNN-α as well as the more

complex 3D MobilNetV2 and 3D ShuffleNetV2.

To study the feasibility of learning with less labeled data and benefit of unsupervised

learning, three sets of experiments are performed on DNN baselines using different training

set sizes: 100%, 50% and 30% of the full training data set. In terms of H-SNN, two training

configurations are tested: one that uses the same training set as DNN for STDP learning

and SGD-based final layer tuning, referred to as H-SNN; the other, referred to as H-SNN

(full data), uses the full training set for STDP unsupervised learning, while SGD-based

tuning uses the same set as DNN.

26

Results

As shown in Table Table 3.4, accuracy results from the three sets of experiments are listed.

With full training dataset, accuracy of H-SNN is on a comparable level with 3D Mo-

bileNetV2 and 3D ShuffleNetV2 and outperforms 3D CNN-α. With less amount of labeled

training data, all networks experience performance degradation. Among tested networks,

H-SNN (full data) has the lowest accuracy decrease, while other networks lose around 7%

from 100% training data to 30%. Such difference leads to the higher accuracy of H-SNN

(full data) in low training data conditions, which indicates that unsupervised STDP learn-

ing of unlabeled data is effectively improving spatiotemporal pattern recognition in this

particular task.

3.4.5 Multi-objective Prediction

Experimental Details

The second set of experiments is designed as a multi-objective computer vision task: the

network observes a moving object as visual input to predict the class of the object and dy-

namic of its motion. We generate dataset with controlled motion dynamics by extracting

objects from an aerial image dataset [64]. A subset (20%) of the original training data for

each object class is used with label to test the benefit of unsupervised learning. In order

to generate transformation sequences, objects are placed on canvas and applied with trans-

lation and rotation, each with five possible dynamics: static, constant speed, accelerating,

decelerating and oscillating. For the training sequence, transformation dynamics are gener-

ated with parameters Ptrain. For the test sequence, objects are taken from the test set of [64]

and transformation dynamic parameters are drawn from Gaussian distribution with mean

Ptrain and standard deviation σts. As a second, non-aerial test case, we have performed

similar experiments on Fashion-MNIST dataset which are 10 classes of apparel items with

the dimension of 28 by 28, as objects. Training and test sequences are generated follow-

27

ing the same process as discussed above, except that 10% of the original training data is

used. For all generated sequences, training data is shuffled for both object class and motion

dynamic.

In addition to regular training/inference setup, to understand the network’s capability to

learn class and motion independently, a total of three sets of experiments are conducted:

• Experiment 1: all-objective prediction In this regular training/inference setup, train-

ing set contains all classes and all possible transformation dynamics, and networks are

tested for prediction of object class and its rotation/translation dynamics, which is either

static, constant speed, accelerating, decelerating or oscillating.

•Experiment 2: class-agnostic motion prediction In this experiment, networks are

trained with sequences containing objects belonging to half of all classes, and tested for

transformation dynamics prediction on the other half classes.

•Experiment 3: motion-agnostic class prediction Training sequences contain all object

classes, but with only a subset of motion dynamics. Networks are tested for accuracy of

class prediction but with unknown dynamics.

Experiment 1 is conducted on both the aerial and Fashion-MNIST dataset, while the

other two are tested on the aerial dataset only. Examples of training/test sequences for the

three experiments are shown in Figure Figure 3.5. All baseline networks as discussed in

Section subsection 3.4.2 are tested.

Training Configurations

We test H-SNN with two training schemes for the aerial dataset. The first one, referred to

as H-SNN (1xU), uses 20% of the training set mentioned before for STDP learning and

SGD-based final layer tuning. To study the advantage of training with unlabeled data, we

create a second network, H-SNN (5xU), that uses 5× more unlabeled data during STDP

learning in SNN while the SGD-based tuning of the last year still uses the original labeled

training set same as H-SNN (1xU). For Fashion-MNIST, H-SNN (1xU) uses sequences

28

Training sequence
motion parameter

Ptrain

Test sequence
motion parameter

!(Ptrain , "ts)

Experiment 1: Full-objective Prediction

Experiment 3: Motion-agnostic
Prediction

Experiment 2: Class-agnostic
Prediction

Training
sequence

Test sequence
generated with
unknown class

Training
sequence

Test sequence
generated with

unknown motion

Training Dynamics Test Dynamics

Pair I T: {s, a, d, o} R: {a, d} T: {c} R: {c, s, o}

Pair II T: {a, d} R: {s, a, d, o} T: {c, s, o} R: {c}

Pair III T: {a, d} R: {a, d} T: {c, s, o} R: {c, s, o}

Experiment 3 Configuration
Figure 3.5: Illustrations of training and test sequences for the three experiments of the
aerial footage dataset.

29

Table 3.5: Training accuracy of all-objective prediction with aerial footage dataset

Model Joint {C,R,T}

3D CNN-α 80.5 90.8, 94.9, 93.4
3D CNN-β 84.8 91.3, 96.5, 96.3

3D MobileNetV2 88.4 92.4, 97.7, 97.9
3D ShuffleNetV2 87.8 92.6, 96.8, 97.9

CNN+LSTM 86.7 90.7, 97.5, 98.1

BP-SNN 87.4 89.5, 98.9, 98.7
BP-SNN-LS 85.8 90.4, 97.5, 97.3

H-SNN (1xU) 84.8 91.4, 96.5, 96.1
H-SNN (5xU) 89.6 92.3, 98.1, 99.0

generated with 10% of original training set per class for unsupervised learning and final

layer tuning; H-SNN (10xU) uses the whole training set for unsupervised learning and the

same 600 objects per class sequences as used in H-SNN (1xU) for final layer supervised

tuning. All baselines, including DNNs and SNN trained with back-propagation, are trained

with the dataset used by H-SNN (1xU).

Aerial Footage Results

All-objective Prediction In all-objective prediction, results are measured by four met-

rics: accuracy for three separate targets and joint accuracy, which accounts for predictions

that are correct for all three separate targets. Each objective’s individual accuracy: class,

rotation and translation, is referred to as C, R and T. Training accuracy for all networks are

shown in Table 3.5. From the test accuracy results in Table 3.6, it can be observed that 3D

MobileNetV2 and 3D ShuffleNetV2 show better accuracy than 3D CNN-α while they both

fall behind 3D CNN-β and CNN+LSTM. BP-SNN-LS demonstrates better performance

than BP-SNN in rotation and translation targets, while its class prediction is similar with

BP-SNN.

With σts = 1, H-SNN (1xU) predicts with good accuracy for motion dynamics and

achieves a reasonable level of class prediction accuracy. This indicates that H-SNN is able

30

Table 3.6: Test accuracy of all-objective prediction with aerial footage dataset

σts = 1 σts = 3 σts = 5

Model Joint {C,R,T} Joint {C,R,T} Joint {C,R,T}

3D CNN-α 51.3 64.5, 87.9, 90.4 23.2 58.9, 61.9, 63.5 16.0 56.1, 51.1, 55.8
3D CNN-β 58.6 67.1, 94.7, 92.2 31.6 64.9, 66.1, 73.7 25.3 62.8, 60.3, 66.9

3D MobileNetV2 54.7 66.9, 88.3, 92.7 24.2 64.1, 53.8, 70.1 18.0 61.9, 47.1, 62.0
3D ShuffleNetV2 53.8 64.8, 89.8, 92.5 26.1 63.2, 55.8, 73.9 19.9 60.8, 49.7, 65.9

CNN+LSTM 56.1 66.2, 92.8, 91.3 28.4 63.0, 68.3, 66.0 23.3 61.3, 63.8, 59.5

BP-SNN 49.5 65.1, 86.7, 88.3 23.6 61.7, 59.2, 64.6 17.4 60.4, 50.1, 57.3
BP-SNN-LS 58.1 66.7, 92.6, 94.1 32.5 60.1, 68.8, 78.7 26.7 58.3, 65.3, 70.2

H-SNN (1xU) 56.2 66.8, 91.0, 92.4 34.0 64.4, 70.5, 74.8 29.0 63.2, 66.1, 69.7
H-SNN (5xU) 68.0 72.8, 94.4, 98.8 44.6 69.5, 78.4, 81.8 32.9 66.4, 68.3, 72.6

to learn spatiotemporal patterns from moving objects and predicts for separate objectives

based on the learned patterns. Comparing H-SNN (5xU) to H-SNN (1xU), unsupervised

learning provides considerable performance increase for all targets. With increasing σts,

accuracy for class prediction does not experience drastic degradation, showing that visual

features learned by the network have a high degree of transformation invariance.

In comparison with baseline networks, accuracy values where H-SNN exceeds all base-

lines are marked bold in Table 3.6. For σts = 1, H-SNN (1xU) outperforms BP-SNN and

3D CNN variants except for 3D CNN-β, while H-SNN (5xU) shows accuracy on a par

with 3D CNN-β and CNN+LSTM. The advantage of H-SNN (1xU) is more evident in

predicting motion with high deviation, as it achieves better results than baseline networks.

This indicates that H-SNN is able to generalize more effectively the transformation in-

variant/equivariant patterns. With extra unlabeled dataset used for SNN learning, H-SNN

(5xU) outperforms all baselines networks in most metrics. BP-SNN shows comparable ac-

curacy as H-SNN (1xU) for class prediction, while its performance for motion prediction

is noticeably lower than H-SNN (1xU), especially at higher σts. BP-SNN-LS has similar

performance with H-SNN (1xU) while still outperformed by H-SNN (5xU).

Confusion matrices for σts = 5 are shown in Figure 3.6 (a). For each of the two vari-

ants of H-SNN, results are presented with three matrics. The matrix on the left is for class

31

prediction, the top right is for rotation and the bottom right is for translation. Horizontal

axis is predicted label and vertical axis is target label, each marked with a number; for class

prediction, 0-9 represents the 10 classes of objects; for rotation and translation, 0 is static,

1 is constant speed, 2 is acceleration, 3 is deceleration and 4 is oscillation. Lighter color

represents more instances. It can be observed that, in terms of class prediction, confusion

matrices of H-SNN (1xU) and H-SNN (5xU) share similarities, while H-SNN (5xU) pre-

dicts with more consistency across all classes. For motion prediction, learning unlabeled

data has different effect: errors of H-SNN (5xU) for rotation prediction is more concen-

trated in one dynamic, while its errors for translation prediction spreads out more evenly,

compared to H-SNN (1xU).

Class-agnostic Motion Prediction Table 3.3 lists accuracy of class-agnostic motion pre-

diction. Each cell in the table contains accuracy for rotation (R) and translation (T). Result

shows that the two H-SNN implementations are able to successfully predict motion dy-

namics of objects from unknown classes. Compared to motion dynamic accuracy from

all-objective prediction, we observe that H-SNN experiences some degree of performance

degradation. However, the decrease in accuracy is not drastic, especially for H-SNN (5xU).

This shows that H-SNN is able to learn and predict motion dynamics independent of ob-

ject’s visual features on a certain level.

Among conventional deep networks, 3D CNN-β and CNN+LSTM show better accu-

racy than 3D CNN-α by a significant lead. 3D ShuffleNetV2 performs well in predicting

rotation dynamic, while 3D MobileNetV2 shows good accuracy for translation dynamic.

BP-SNN-LS has good performance for translation prediction, while the spatiotemporal pat-

terns learned by BP-SNN are less generalizable, as its performance lags behind H-SNN and

other baselines in this test. With increasing variation in transformation parameters, as ob-

served in the σts = 3 and σts = 5 cases, accuracy of all networks degrade considerably.

32

Table 3.7: Motion-agnostic class prediction: configurations for class prediction test with
unknown transformations where {s, c, a, d, o}: static, constant speed, accelerating, decel-
erating and oscillating.

Training Dynamics Test Dynamics

Pair I T: {s, a, d, o} T: {c}
R: {a, d} R: {c, s, o}

Pair II T: {a, d} T: {c, s, o}
R: {s, a, d, o} R: {c}

Pair III T: {a, d} T: {c, s, o}
R: {a, d} R: {c, s, o}

Accuracy of H-SNN (1xU) is on similar level with the more complex DNNs and BP-SNN-

LS, and higher than 3D CNN-α and BP-SNN. H-SNN (5xU) shows comparable or better

performance than best baseline performance. Similar to all-objective prediction, the advan-

tage of H-SNN (5xU) is more evident for high σts cases.

Motion-agnostic Class Prediction The three training/test pairs of motion dynamics are

shown in Table 3.7, and results for each pair is shown in Table 3.8. H-SNN is able to learn

motion invariant spatial patterns as it predicts object classes with reasonable accuracy. For

this task, accuracy of H-SNN (1xU) can again be improved further using more unlabeled

data as shown in the H-SNN (5xU) results. This indicates a better generalization ability of

H-SNN (5xU) for objects with unknown transformations.

In this test, 3D ShuffleNetV2 provides better performance than all other baselines.

Compared to other networks, H-SNN (1xU) performs well for Pair I while keeping its

advantage over 3D CNN-α and BP-SNN for all test cases. For Pair II, it is on a par with

the best baseline results. H-SNN (5xU) achieves considerable improvement for all pairs

by providing the best accuracy results except for Pair III, where it slightly falls behind

3D ShuffleNetV2. Hence, we observe that patterns learned from unlabeled data by STDP

33

Table 3.8: Motion-agnostic class prediction: accuracy of class prediction for different test
cases with aerial footage dataset.

Model Pair I Pair II Pair III

3D CNN-α 52.7 50.1 45.4
3D CNN-β 57.5 52.5 51.9

3D MobileNetV2 51.9 47.1 50.6
3D ShuffleNetV2 59.1 56.2 59.3

CNN+LSTM 56.2 56.6 53.1

BP-SNN 49.3 48.2 43.0
BP-SNN-LS 51.2 53.6 55.4

H-SNN (1xU) 60.4 54.0 53.4
H-SNN (5xU) 64.7 60.6 58.9

reduces the impact of unknown transformations to class prediction. For BP-SNN, degra-

dation from all-objective prediction is significant, which indicates that the network has

difficulty in learning spatial patterns invariant to unknown transformations. Compared to

BP-SNN, BP-SNN-LS shows improvement in Pair II and Pair III while performs similarly

in Pari I.

It is also worth noting that, compared to previously shown class prediction results, com-

binations of training/test dynamics affect network performance differently. For example,

Pair II causes more degradation to 3D CNN-β than to CNN+LSTM while Pair I has similar

influence to the two networks. For BP-SNN, Pair III shows to be most challenging. This

indicates that the spatial patterns learned by networks generalize differently for unseen

motion dynamics.

Fashion-MNIST Results

As shown in Table 3.9, both variants of H-SNN provide good accuracy for the three targets,

indicating that the network is able to effectively learn the spatiotemporal patterns in moving

apparel items, which have different visual features from the aerial footage dataset. H-

SNN (10xU) shows higher accuracy than H-SNN (1xU) for class and translation motion

prediction, while the improvement it achieves for rotation prediction is smaller.

34

Table 3.9: Accuracy result for sequences generated with Fashion-MNIST

σts = 1 σts = 3 σts = 5

Model Joint {C,R,T} Joint {C,R,T} Joint {C,R,T}

3D CNN-α 54.3 70.4, 86.4, 89.2 19.0 50.2, 57.0, 66.5 10.9 43.9, 45.9, 54.4
3D CNN-β 63.1 72.5, 92.6, 94.0 28.4 61.0, 61.3, 75.9 18.2 58.9, 53.8, 57.4

3D MobileNetV2 57.6 70.0, 94.2, 87.3 22.6 58.3, 57.4, 67.6 13.8 53.8, 48.2, 53.1
3D ShuffleNetV2 61.0 68.7, 92.3, 96.2 23.9 53.4, 56.0, 79.8 12.1 43.2, 47.5, 59.0

CNN+LSTM 55.7 69.2, 89.6, 89.8 24.2 55.3, 74.7, 58.5 18.4 53.2, 64.1, 54.1

BP-SNN 54.5 68.1, 85.7, 93.4 19.5 47.0, 56.5, 73.5 14.3 50.6, 47.5, 59.3
BP-SNN-LS 70.0 76.8, 97.1, 94.1 37.2 66.0, 71.6, 78.7 26.0 62.5, 67.3, 61.7

H-SNN (1xU) 65.6 74.1, 96.2, 92.2 38.9 64.8, 83.7, 71.8 27.6 59.2, 71.0, 65.7
H-SNN (10xU) 73.9 79.4, 96.8, 96.2 47.5 70.0, 84.9, 79.9 31.7 65.2, 71.9, 67.6

(a)
H-SNN (1xU) H-SNN (10xU)

0

9
0 9

0

4
0 4

0

3

0

Max

0 4
Predicted Label

Ta
rg

et
 L

ab
el

H-SNN (1xU) H-SNN (5xU)
0

9
0 9

0

4
0 4

0

3
0 4

Predicted Label

Ta
rg

et
 L

ab
el

(b)

Figure 3.6: Confusion matrix for (a) aerial image sequences and (b) Fashion-MNIST se-
quences; for each network, the left matrix is for class prediction, the top right for rotation
and the bottom right for translation; darker color represents less instances.

35

Table 3.10: Impact of training data size for aerial dataset (top 3 rows) with scaling unsu-
pervised learning data size and Fashion-MNIST (bottom 3 rows) with fixed unsupervised
learning data size.

σts = 1 σts = 3 σts = 5

Training Set Joint {C,R,T} Joint {C,R,T} Joint {C,R,T}

20% 56.2 66.8, 91.0, 92.4 34.0 64.4, 70.5, 74.8 29.0 63.2, 66.1, 69.7
60% 76.5 81.5, 95.2, 98.6 49.0 73.7, 81.7, 81.3 34.6 70.4, 69.0, 71.2

100% 83.5 86.3, 97.2, 99.5 54.7 77.1, 84.9, 83.5 37.8 72.9, 70.5, 73.5

10% 73.9 79.4, 96.8, 96.2 47.5 70.0, 84.9, 79.9 31.7 65.2, 71.9, 67.6
50% 77.8 81.1, 97.6, 98.3 51.5 72.3, 86.5, 82.3 34.7 68.7, 73.6, 68.6

100% 82.3 85.3, 97.9, 98.6 57.4 76.8, 87.1, 85.9 38.1 74.2, 74.0, 69.4

From the confusion matrix in Figure 3.6 (b), the two H-SNN variants show similar

profile for rotation and translation predictions while their class prediction differentiates.

With unsupervised learning, H-SNN (10xU) is able to predict more accurately for classes

that have high error rate, while the improvement on classes with lower error rate is less

noticeable.

Among the baseline DNNs, 3D CNN-β shows good result at low σts as it performs bet-

ter than other deep networks and BP-SNN, and shares similar performance with CNN+LSTM

in high σts in terms of joint accuracy while each individual target differs. BP-SNN-LS

shows considerable gain from BP-SNN and has the best performance among baseline net-

works. H-SNN (1xU) demonstrates similar accuracy as 3D CNN-β for σts = 1 while its

accuracy is lower than BP-SNN-LS. At higher σts, H-SNN (1xU) shows comparative ad-

vantage: the prediction accuracy for multiple targets exceeds all baseline networks. This

indicates that, for Fashion-MNIST, H-SNN is able to more effectively learn spatiotemporal

patterns generalizable to different transformation dynamics. With unsupervised learning of

extra unlabeled sequences, H-SNN (10xU) is able to make better prediction in almost all

individual targets, and achieves joint accuracy considerably higher than baseline networks.

36

Impact of Training Data Size

In this section, we investigate the impact of scaling labeled training data on H-SNN, with

two types of unsupervised learning setups. For the aerial dataset, unsupervised learning

and supervised training of H-SNN both use sequences generated with 20%, 60% and 100%

of the original dataset. For Fashion-MNIST, three levels of supervised training: 10%, 50%

and 100%, are tested on a network that learns 100% data without supervision. The results

are shown in Table 3.10. For the aerial dataset, it can be observed that by increasing training

data size the network experiences considerable improvement on performance. The gain in

class prediction accuracy is higher than that in motion prediction and the improvement in

general is higher for lower σts cases. When the network always learns 100% unlabeled

data, similar trend can also be observed as shown in the Fashion-MNIST result. However,

the benefit from increasing training data size is smaller than in the aerial dataset, e.g. for

σts = 1, joint accuracy increased by around 27% for aerial image, while for Fashion-

MNIST the gain is around 9%.

3.5 Summary

In this chapter, we present H-SNN as a novel spiking neural network design that is capable

of learning spatiotemporal information with STDP. For H-SNN, no recurrent connection

is needed to process temporal patterns since memory of different retention length can be

formed with crossover connections of heterogeneous neurons. The separation of memory

module and learning module makes it possible to implement a feedforward convolutional

network that can be learned with STDP unsupervised training.

We test H-SNN in computer vision tasks predicting for both single and multiple objec-

tives, and demonstrate the effectiveness of H-SNN on datasets with different visual features

and varying motion dynamics. H-SNN is compared with conventional DNN approaches in-

cluding multiple variants of 3D-CNN, CNN with recurrent connections and SNN trained

37

with back-propagation. Results show two main advantages of H-SNN. First, H-SNN has

comparable accuracy with DNN using the same amount of training data. Meanwhile, with

the addition of unlabeled data, H-SNN can be further optimized with unsupervised STDP

learning and provides higher accuracy than conventional DNN and BP-SNN. The advan-

tage over baselines is most significant when motion dynamic has high deviation from train-

ing dataset. This trend is observed for H-SNN with and without extra unlabeled data to

learn. The second advantage is that, with unsupervised learning, H-SNN demonstrates

better generalization ability to unknown motion or classes in motion-agnostic and class-

agnostic tests. Compared to BP-SNN, H-SNN more effectively learns transformation in-

variant spatial patterns as well as the general spatiotemporal patterns in the dataset. The

combination of long and short term neurons in BP-SNN-LS produces considerable im-

provement over the original BP-SNN in terms of motion dynamics prediction accuracy.

However, the supervised training method of BP-SNN-LS does not have the ability to learn

unlabeled data, thus cannot benefit from the same technique used for H-SNN (5xU) and

H-SNN (10xU) to further improve SNN performance.

In addition to the advantage in prediction accuracy, the improved performance of H-

SNN is achieved with much lower network complexity than conventional deep networks.

In conclusion, the design of using heterogeneous neuron in feedforward SNN provides

an appealing solution for learning spatiotemporal patterns encountered in computer vision

applications that have limited training data and/or constrained computing resources.

38

CHAPTER 4

SEQUENCE APPROXIMATION USING FEEDFORWARD-ONLY SNN

The empirical studies in chapter 3 show promising results of using H-SNN for spatiotem-

poral data processing, but the theoretical basis is not well understood for such networks.

This makes it difficult to optimize the network configurations of H-SNN. In this chapter,

we develop a theoretical framework for analyzing and improving spike-sequence-to-spike-

sequence approximation using feedforward SNN. We consider a feedforward connections

of spiking neurons as a spike propagation path that maps an input spike train with an ar-

bitrary frequency to an output spike train with a target frequency. Consequently, we argue

that an SNN with many memory pathways can approximate a temporal sequence of spike

trains with time-varying unknown frequencies using a series of pre-defined output spike

trains with known frequencies.

In the following sections, we discuss the motivation behind this study, and then present

the main development as well as experimental results. Our theoretical framework aims to

first establish SNN’s ability to map frequencies of input/output spike trains within arbitrar-

ily small error; next, we aim to derive the basic principles for adapting neuron dynamics

and SNN architecture to improve spike-sequence mapping function approximation. The

theoretical derivations are then investigated with experimental studies on using feedfor-

ward SNN for spatiotemporal data processing. We adopt the basic design principles for

improving sequence approximation to optimize SNN architectures and study whether these

networks can be trained to improve the performance for spatiotemporal classification tasks.

4.1 Motivation: Experiments on H-SNN Configuration and Performance

The original H-SNN uses two types of neuron dynamics for the memory modules. We

first investigate how network performance changes in correlation with the configuration of

39

heterogeneity in the network. The native event-based data from DVS Gesture is tested.

To better contrast the change of learning performance, the dataset of UCF-11, which is a

frame-based action recognition dataset that is more challenging than the DVS Gesture, is

also tested.

Based on the original H-SNN design, we test networks with an additional neuron dy-

namic creating different memory retention length from the original long-term and short-

term neurons. The configurations of the three tested networks are shown in the top of

Table 4.1. Accuracy results suggest that, in general, by increasing the level of heterogene-

ity, H-SNN can achieve higher performance. The particular amount of accuracy increase is

dependent on the chosen neuron parameters as well as the target dataset. For example, H-

SNN 3-dynamic-iii shows the best performance for both datasets, while H-SNN 3-dynamic-i

and H-SNN 3-dynamic-ii performs better for DVS Gesture and UCF-11, respectively.

Table 4.1: H-SNN Scaling Test Results

Conv. Layer Accuracy Accuracy
Network a τm Rm Number (DVS Gesture) (UCF-11)

H-SNN Original - - - 4 94.3 61.3
H-SNN 3-dynamic-i -150 50 35 4 95.1 65.1
H-SNN 3-dynamic-ii -150 100 50 4 94.5 65.7
H-SNN 3-dynamic-iii -50 200 80 4 95.6 66.0

H-SNN 3-dynamic-iii-3 -50 200 80 3 92.7 58.3
H-SNN 3-dynamic-iii-4 -50 200 80 4 95.6 66.0
H-SNN 3-dynamic-iii-5 -50 200 80 5 95.9 69.8
H-SNN 3-dynamic-iii-6 -50 200 80 6 96.0 71.2
H-SNN 3-dynamic-iii-7 -50 200 80 7 95.7 70.3
H-SNN 3-dynamic-iii-8 -50 200 80 8 95.1 68.7

In the original H-SNN design, there are 4 convolutional layers in the network. Next,

we aim investigate the performance scaling properties of H-SNN with respect to the num-

ber of convolutional layers. Since the best performing neuron dynamic configuration from

the previous test is H-SNN 3-dynamic-iii, in this experiment, we use the same neuron pa-

rameters from this network and change the number of convoluntional layers. The result is

shown in the lower-half of Table 4.1. It can be observed that by changing the layer number

40

from 4 to 3, the network performance for both DVS Gesture and UCF-11 datasets experi-

ences degradation. When the network is changed from 4 to 5 layers and from 5 to 6 layers,

accuracy is improved while the amount of accuracy increase diminishes for higher layer

numbers. From 6 layers, network performance no longer increases with additional layers

and even shows slight decline.

The preceding results suggest that the configuration of H-SNN, including network

structure and neuron parameters, has a considerable impact to network performance, and it

is not always beneficial to have deeper networks. This raises two questions: first, how to

decide the optimal configuration for H-SNN given a certain dataset to learn, and second,

given the large amount of hyper-parameters in the network configuration settings, how to

tune them efficiently. Regarding those questions, we start from the approximation the-

ory of feedforward H-SNN, then derive lemmas that correlates network structures to the

function approximation capability. Based on this insight, we develop an efficient Bayesian

optimization process to determine H-SNN configurations for a given task.

4.2 Approximation Theory of Feedforward SNN

4.2.1 Definitions and Notations

We first provide the definitions and notations used in this chapter as below.

Definition 1 Neuron Response Rate γ For a spiking neuron n with membrane potential

at vreset and input spike sequence with period tin, γ is the number of input spike n needs to

reach vth.

Definition 2 Neuron Delay tnd The time for a spike from pre-synaptic neuron to arrive

at its post-synaptic neurons.

Definition 3 Minimal-layer-size Network A minimal-layer-size network is a feedfor-

ward spiking neural network with a finite number of layers and one neuron in each layer.

Definition 4 Distinct Memory Pathways For a feedforward SNN with m layers, a

memory pathway is defined as a spike propagation path connected by neurons in m-tuple

41

(a)

Input spikes
n1 n3

n2 n4

n2 spikes

v
n1 spikesγ = 3

t

n1

n2

n3

n4

n4 spikes

n3 spikes

tnd

…
…
…

…
… Neuron Dynamic d1

One neuron
per layer per

dynamic

Layer number: m

(b)

Neuron Dynamic dn

… …

Figure 4.1: (a) A time-varying input spike sequence received by two memory pathways:
neuron membrane potential plots show the different response from the neurons to the given
input. (b) A minimal multi-neuron-dynamic (mMND) network with m layers and n neuron
dynamics.

42

P = {D1, D2, D3, ..., Dm} where Di is the set of neurons included in layer i. P and P′ are

considered to be distinct if

∀Di ∈ P and D′
i ∈ P′, ∃ i s.t. Di ̸= D′

i

Definition 5 Skip-layer Connection For a feedforward SNN with m layers, a skip-

layer connection is defined with source layer and target layer pair (ls, lt), such that ls ∈

{1, 2, 3, ..., (m− 2)}, and lt ∈ {(ls + 2), (ls + 3), (ls + 4), ...,m}. The output feature map

from source layer is concatenated to the original input feature map of the target layer.

Definition 6 Minimal Multi-neuron-dynamic (mMND) Network A densely connected

network in which each layer has an arbitrary number of neurons that have different neuron

parameters. All synapses from one pre-synaptic neuron have the same synaptic conduc-

tance.

Figure 4.1(a) shows two memory pathways receiving an input spike sequence with

time-varying periods. As the neurons have different dynamics, the two memory pathways

have different response to the input spike sequence. An example of mMND network with

m layers and n neuron dynamics is shown in Figure Figure 4.1(b). SNN with multilayer

perceptron (MLP) structure can be considered a scaled-up mMND network with multiple

neurons for each dynamic. A network with convolutional structure can be considered a

scaled-up mMND network with duplicated connections in each layer. We analyze the cor-

relation of network capacity and structure based on mMND networks, as for MLP-SNN

and Conv-SNN network the analysis can be extended according to the specific layer di-

mensions.

Notations For the analysis of spike sequence in temporal space, the notation of Tmax and

Tmin are defined as positive real numbers such that Tmax > Tmin. ϵ > 0 is the error of

approximation.

43

4.2.2 Modeling of Spiking Neuron

The spiking neuron model studied here is leaky integrate-and-fire (LIF) presented in chap-

ter 2. Its equations are reproduced here:

τm
dv

dt
= a+RmI − v;

v = vreset, if v > vthreshold

Rm is membrane resistance, τm = RmCm is time constant and Cm is membrane capac-

itance. a is a parameter used to adjust neuron behavior during simulation. I is the sum of

current from all input synapses that connect to the neuron. A spike is generated when mem-

brane potential v cross threshold and the neuron enters refractory period r, during which

the neuron maintains its membrane potential at vreset. The time it take for a pre-synaptic

neuron to send a spike to its post-synaptic neurons is tnd. Neuron response rate γ is a prop-

erty of a spiking neuron’s response to certain input spike sequence. We show how the value

of γ can be evaluated below.

Remark For any input spike sequence, individual spike can be described with Dirac

delta function δ(t − ti) where ti is the time of the i-th input spike. For the membrane

potential of a spiking neuron receiving the input before reaching spiking threshold, with

initial state at t = 0 with v = vreset, solving the differential equation (Equation 2.1) leads

to:

v(t) = vresete
− t

τm + a(1− e−
t

τm) +
Rm

τm
e−

t
τm

∑
i

G

∫ t

0

δ(t− tin)e
t

τm dt (4.1)

Here, G is the conductance of input synapses connected to the neuron. From (Equa-

tion 4.1), there exists a timestep u such that vm(t
(u−1)) < vthreshold and vm(t

u) >=

44

vthreshold. By evaluating (Equation 4.1) for u given neuron parameters and input spike

sequence, the neuron response rate γ can be found.

Remark For a sequentially connected neuron list with m neurons all with γ = 1 and

neuron delay tnd, an input spike at time t leads the neuron list to generate an output spike

at time t+mtnd

Remark For any input sequence with period tin to a spiking neuron with response rate

γ such that γ > 1, if refractory period is set to r < tin, the neuron can exit refractory period

before the next spike arrives.

4.2.3 Approximation Theorem of Feedforward SNN

To develop the approximation theorem for feedforward SNN, we first aim to understand the

range of neuron response rate that can be achieved. We show with Lemma 1 that for any in-

put spike sequence with periods in a closed interval, it is possible to set the neuron response

rate γ to any positive integer. Based on this property, we show with Theorem Theorem 1

that by connecting a list of spiking neurons with certain γ sequentially and inserting skip-

layer connections, approximation of spike-sequence mapping functions can be achieved.

To understand whether this capability of feedforward SNN relies on skip-layer connec-

tions, we develop Lemma 2 to prove that skip-layer connections are indeed necessary.

After the approximation theorem is established, in section 4.3 we investigate the corre-

lation between approximation capability and network structures by analyzing the neurons’

behavior based on their cutoff property, which can change the network’s connectivity. In

our analysis, we focus on two particular designs: heterogeneous network (Lemma 4) and

skip-layer connection (Lemma 5), and show their impact on the number of distinct memory

pathways in a network.

Lemma 1 For any input spike sequence with period tin in range [Tmin, Tmax], there exist

a spiking neuron n with fixed parameters vth, vreset, a, Rm and τm, such that by changing

synaptic conductance G, it is possible to set the neuron response rate γn to be any positive

45

integer.

Proof. For a given input spike sequence period tin, consider the maximum possible

membrane potential decay that can be reached within a period of tin. From (Equation 2.1),

when I = 0, dv
dt

< 0 and |dv
dt
| increases with higher v. Hence the maximum decay of v is

reached when initial membrane potential v(t = 0) → v−th and the neuron decays for period

tin = Tmax. The decayed membrane potential v(t = Tmax) can be derived by solving the

differential equation (Equation 2.1) for v(t) = vth at t = 0:

v(t = Tmax) = vthe
−Tmax

τm − ae−
Tmax
τm + a (4.2)

It is possible to have a spiking neuron with Rm, a and τm such that ∆v, defined as

∆v = v(t = Tmax)− v(t = 0) = vthe
−Tmax

τm − ae−
Tmax
τm + a− vth (4.3)

,

tends to zero. With this configuration, since the the highest possible decay of membrane

potential is negligible, for any target γ, it is possible to set G such that

G =
vth − vreset

γ
(4.4)

The proof is complete.

Theorem 1 For any input and target output spike sequence pair with periods (tin, tout) ∈

[Tmin, Tmax] × [Tmin, Tmax], there exist a minimal-layer-size network with skip-layer con-

nections that has memory pathway with output spike period function P (t) such that |P (tin)−

tout| < ϵ.

Proof. For any given (tin, tout), first consider the condition where tin > tout. It is

possible to construct a minimal-layer-size network N connecting m spiking neurons with

neuron response rate γ = 1 sequentially, denoted as a m-tuple of neurons {n1, n2, ..., nm}.

46

Since any configuration of skip-layer connection with source layer and target layer pair

(ls, lt), such that ls ∈ [1,m − 2], and lt ∈ [ls + 2,m], can be added, it is possible to add a

(m− 2)-tuple of skip-layer connections

Ssl = {(i,m) ∀ i ∈ {1, 2, 3, ...,m− 2}} (4.5)

Denote the synaptic conductance for all the skip-layer connections as a (m− 2)-tuple

SGsl = {Gsl
1 , G

sl
2 , G

sl
3 , ..., G

sl
m−2} (4.6)

For any tout < tin, it is possible to find a k-tuple of synaptic conductance

S ′
Gsl = {Gsl

i , G
sl
2i, G

sl
3i, ..., G

sl
ki} s.t. i = ⌊tout

tnd
⌋ and k = ⌊m− 2

i
⌋ (4.7)

Set synaptic conductance in SGsl \ S ′
Gsl to 0. Then set the conductance of synapse

connecting nm−1 and nm to 0. In such way, The output spikes from network N has period

P (tin) = ⌊tout
tnd

⌋ · tnd (4.8)

For given ϵ, it is possible to choose tnd such that tnd < 2ϵ, therefore satisfying |P (tin)−

tout| < ϵ. m can be chosen as

m =
Tmax − Tmin

tnd
(4.9)

or equivalently:

m =
Tmax − Tmin

2ϵ
(4.10)

Since Tmax−Tmin

2ϵ
is finite, m is finite.

For tin < tout, using N as described above, it is possible to achieve output spike with

47

period within ϵ of any period in (0, tin]. For a given tout, assume the configuration in

neuron list N has output spike interval t′int such that kt′int = tout, where k is a positive

integer. From Lemma 1, it is possible to set G for a neuron nm+1 such that its neuron

response delay satisfies γnm+1 = k for input spike period t′int. A new network, denoted as

N ′, can be formed by connecting nm+1 to the output of N . N ′ has output spike with period

P (tin) = kt′int = tout. Hence, to reach the given ϵ, it requires neuron list N to have output

spike interval tint such that

|tint − t′int| <
ϵ

k
(4.11)

Since k is finite, (Equation 4.11) can be achieved.

For tin >= tout, it is possible to configure network N ′ such that tint satisfies |tint −

tout| < ϵ, and the value of γnm+1 set to 1, hence |P (tin) − tout| < ϵ can be achieved. The

proof is complete.

Lemma 2 With no skip-layer connection, there does not exist a minimal-layer-size network

that has output spike period function P (t) such that for any input and target output spike

sequence pair with periods (tin, tout) ∈ [Tmin, Tmax]× [Tmin, Tmax], |P (tin)− tout| < ϵ.

Proof. A minimal-layer-size network N with m layers can be denoted as a m-tuple of

neurons {n1, n2, ..., nm} connected sequentially. Since no skip-layer connection exists,

there is only one distinct memory pathway that contains all neurons {n1, n2, ..., nm}.

Denote the set of neuron response rate corresponding to each neuron in N as

Γ = {γ1, γ2, ..., γm} (4.12)

For a given input sequence with tin, denote the timing of the first spike as tin1 , consider

the output spike sequence for network with

γi = 1 ∀ γi ∈ Γ (4.13)

48

The first output spike from N has timing t̃out1 = tin1 +mtnd, and the second output spike

has timing t̃out2 = tin1 + tin + mtnd. It can be easily derived that the period of the output

spike sequence is

P (tin) = tin (4.14)

Also consider the output spike sequence for network with

γj = 2 for any j ∈ {1, 2, 3, 4, ...,m} and γi = 1 ∀ i ∈ ({1, 2, 3, 4, ...,m} \ {j}) (4.15)

Following the same process, the period of the output spike sequence is

P (tin) = 2tin (4.16)

Since the smallest increase to any γi is by 1, there is no set of values for γ such that

the network output spike sequence has period P (tin) satisfying tin < P (tin) < 2tin. Since

within the range (tin, 2tin), there exists values of tout such that |P (tin)− tout| < ϵ does not

hold. The proof is complete.

4.3 Network Structure and Memory Pathways

Based on Theorem 1, it is possible to approximate an input to output spike sequence map-

ping function using a minimal-layer-size network with specific configuration, which can be

considered as a memory pathway. Since any continuous bounded function on a compact

interval can be approximated to arbitrary accuracy using a piece-wise constant function,

and it is possible to use a memory pathway to approximate each of the piece-wise constant

function, with increasing number of distinct memory pathways, a feedforward SNN can

achieve approximation of continuous functions with less error. In this section, we show

49

that two SNN structural designs: heterogeneous network i.e. a network having neurons

with different dynamics and adding skip-layer connections, a feedforward SNN has the

capability to achieve more distinct memory pathways.

In this subsection, we first prove the existence of a property of spiking neurons: cutoff

period, and then analyze two SNN structural designs: heterogeneous network and skip-

layer connection, for their impact on the number of achievable distinct memory pathways

in mMND networks.

4.3.1 Neuron Cutoff Period

We first show the correlation of cutoff period and spiking neuron parameters with Lemma 3.

Lemma 3 A spiking neuron has cutoff period ωc = τm ln(vreset−a

vreset−a+Rm
τm

G
) above which input

spike sequence cannot cause the spiking neuron to spike.

Proof. Consider (Equation 4.1), since the membrane potential increases at time of ti

and decays otherwise, solving for t = ti and the equation can be expanded:

vm(t
i) = vresete

ti

τm + a(1− e
ti

τm) +
Rm

τm
Ge

ti−t1

τm +
Rm

τm
Ge

ti−t2

τm + ...+
Rm

τm
G (4.17)

For input with frequency f , ti+1− ti = ∆t = 1
f

, subtracting membrane potential values

at two consecutive ti provides:

∆vm = vm(t
i+1)− vm(t

i) = vreset(e
ti+1

τm − e
ti

τm)− a(e
ti+1

τm − e
ti

τm)+
Rm

τm
Ge

ti+1−t1

τm (4.18)

setting time of first input spike t1 to zero leads to:

∆vm = e
ti

τm ((e
∆t
τm − 1)(vreset − a) +

Rm

τm
Ge

∆t
τm) (4.19)

50

As e
ti

τm > 0, and the term ((e
∆t
τm) − 1)(vreset − a) + Rm

τm
Ge

∆t
τm) does not depend on ti,

the polarity of ∆vm does not change with time. vm is either strictly increasing, staying the

same or decreasing with higher ti. This indicates that, when ∆vm ≤ 0 the post-synaptic

neuron can never spike regardless of how many pre-synaptic spike it receives. ∆vm ≤ 0

when input spike period tin satisfies

tin ≥ τm ln(
vreset − a

vreset − a+ Rm

τm
G
) (4.20)

Therefore, the cutoff period of the neuron is

ωc = τm ln(
vreset − a

vreset − a+ Rm

τm
G
) (4.21)

The proof is complete.

Remark From Lemma 3, it can be observed that the cutoff period ωc of a neuron can

be configured to any positive real number by changing the neuron parameters and synaptic

conductance G. Further, with fixed G, ωc can be configured to any positive real number by

changing the neuron parameters. Neurons that are in cutoff change the spike propagation

path in a network as they send no output spikes. This creates different memory pathways

without changing the connections in a network. In the following proof, we consider cutoff

frequency, fc = 1
ωc

of spiking neurons.

4.3.2 Heterogeneous Network

If an mMND network has the same parameters for all neurons in each layer, the majority

of the neurons are included in the same memory pathway, leading to the upper bound of

number of distinct memory pathways to be limited. With Lemma 4, we show the relation-

ship between the upper bound of the number of distinct memory pathways and the number

of different neuron dynamics in an mMND network.

51

Lemma 4 For an mMND network with m layers and {λ1, λ2, ...λm} number of different

neuron dynamics in each layer, the least upper bound of the number of memory pathways

is
∏m

i=1 λi.

Proof. Denote the set of neurons in layer l with distinct neuron dynamics as

Sl
n = {nl

1, n
l
2, n

l
3, ..., n

l
λl
} (4.22)

Since the network is mMND, |Sl
n| = λl. Denote the set of cutoff frequency correspond-

ing to each neuron in Sl
n as

F l
c = {fnl

1
c , fnl

2
c , fnl

3
c , ..., f

nl
λl

c } (4.23)

Since neurons in Sl
n can have different neuron parameters, from Lemma 3, it is pos-

sible to set the parameters such that all entries of F l
c are distinct. Hence, there exists a

permutation π such that

f
nl
π(1)

c < f
nl
π(2)

c < f
nl
π(3)

c ... < f
nl
π(λl)

c (4.24)

Denote the input spike frequency to layer l as f l
in, neuron nl

i is a part of a valid memory

pathway in the network if

f
nl
i

c ≤ f l
in (4.25)

If the input spike frequency is f l
in ≥ f

nl
π(λl)

c , all neurons in Sl
n can be a part of a valid

memory pathway of the network. For input spike frequency such that f
nl
π(i)

c ≤ f l
in <

f
nl
π(i+1)

c , i neurons can be a part of a valid memory pathway of the network.

For any input to the network fin ∈ [Fmin, Fmax], denote the number of ways different

neurons in Sl
n can be part of valid memory pathways as kl. The total number of distinct

memory pathways K in the network is

52

K =
m∏
l=1

kl (4.26)

Since 0 ≤ kl ≤ λl,

K ≤ Kmax =
m∏
l=1

λl (4.27)

For any layer l ∈ {1, 2, 3, ...,m}, the input f l
in is bounded by [F l

min, F
l
max]. kl = λl can

be achieved by setting f
nl
π(1)

c and f
nl
π(λl)

c such that:

f
nl
π(1)

c = F l
min and f

nl
π(λl)

c = F l
max (4.28)

Hence the bound is tight for (Equation 4.27). The proof is complete.

Compared to a network with homogeneous neuron parameters, in which the upper

bound of number of distinct memory pathways is λm, Lemma 4 indicates that heteroge-

neous network increases the maximum achievable number of distinct memory pathways in

a feedforward SNN.

4.3.3 Skip-layer Connection

We show that adding skip-layer connection increases the upper bound of the number of

memory pathways in a network with Lemma 5.

Lemma 5 For a mMND network with m layers and {λ1, λ2, ...λm} different neuron dy-

namics in each layer and a skip-layer connection made between layer la and lb, s.t. a, b ∈

{1, 2, ...m} and (b − a) > 1, the least upper bound of the number of memory pathways is∏m
i=1 λi + (

∏a
i=1 λi ·

∏m
i=b λi)

Proof. Denote the mMND network with skip-layer connection between layer la and

53

layer lb as P . Denote the set of all neurons in P as

SP = {n1
1, n

1
2, n

1
3, ..., n

2
1, n

2
2, n

2
3, ...} (4.29)

where n1
i is a neuron in layer l1, and n2

i is a neuron in layer l2, etc. The activation state

of a neuron onj
i

can be denoted with binary values 0 and 1 with onj
i
= 1 representing that

nj
i receives input frequency that is above its cutoff frequency f

nj
i

c .

The set of all possible neuron activation states O in P that generates non-zero network

output feature vector can be partitioned into two subsets denoted as OA and OB.

The set OA contains all states where the input frequency fk
in to any layer lk such that

a < k < b satisfies

fk
in < f

nk
i

c ∀ i ∈ {1, 2, 3, ..., λk} (4.30)

The set OB contains all the remaining neuron activation states in O, where all layers

receive input frequency higher than cutoff frequency of at least one neuron in each layer.

For all the states in OA, no spike signal is sent from layer b − 1 to layer b, since at

least one layer between la and lb generates no output. Hence, output from P is not affected

if connections between layer li and li+1, such that i ∈ {a, a + 1, ..., b − 1}, are removed.

Network P is therefore equivalent to network P ′ that has layers {l1, l2, ..., la, lb, lb+1, ..., lm}

connected sequentially.

According to Lemma 4, it can be derived that the least upper bound of the number of

distinct memory pathways in P ′ is
∏a

i=1 λi ·
∏m

i=b λi.

Hence, for all states in set OA, the least upper bound of the number of distinct memory

pathways in P is also
∏a

i=1 λi ·
∏m

i=b λi. For all states in set OB, since the activation of

neurons in the source layer of the skip-layer connection is already accounted for when

considering layer la, the least upper bound of the number of distinct memory pathways is

the same as network P that has no skip-layer connection, which is
∏m

i=1 λi according to

54

Lemma 4.

For the set of memory pathways from states in OA, denoted as MA, and the set of

memory pathways from states in OB, denoted as MB, the number of memory pathways of

network P is

K = |MA ∪MB| (4.31)

Since

|MA ∪MB| ≤
m∏
i=1

λi + (
a∏

i=1

λi ·
m∏
i=b

λi) (4.32)

,

K ≤
m∏
i=1

λi + (
a∏

i=1

λi ·
m∏
i=b

λi) (4.33)

.

From Lemma 5, the bound is tight for |MA| ≤
∏a

i=1 λi ·
∏m

i=b λi and for |MB| ≤∏m
i=1 λi. It also satisfies that MA∩MB = ∅, since all elements in MA have (m−(b−a−1))

layers, and all elements in MB have m layers. Hence the bound is tight for (Equation 4.33).

The proof is complete.

4.4 Time-varying Function Approximation

A time-varying function f(t) can be approximated using piece-wise constant function, such

as illustrated in Figure 4.2. It is therefore possible to approximate the time-varying function

with a feedforward SNN by approximating each of the constant function with a memory

pathway. In this section, we test the approximation capability of feedforward SNN for

time-varying functions using this principle. The target functions to approximate has the

form of:

55

n1 n2 … nk

Set of memory
pathways in a feedforward SNN

Memory Pathway a

n1’ n2' nk'…
Memory Pathway b…

Piece-wise

constant function

approximation

t

f(t)

Figure 4.2: Using a set of memory pathways to map a piece-wise constant function for
approximating a time-varying function.

f(x) =
xn

x−m
(4.34)

Here, x is variable; n and m are function parameters. For discrete-time simulation of

the network, we approximate the target function with

x = tin and f(x) = tout (4.35)

where tin is the input spike period and tout is the output spike period. We test ap-

proximation performance of a small-scale feedforward SNN with 6 fully-connected layers,

skip-layer connections {(2, 5), (3, 5)} and 4 neuron dynamics. The network is trained with

BPTT to minimize mean squared error (MSE) loss between the spike period of network

output t′out and target spike period tout.

To evaluate the network’s approximation performance, we construct 6 networks with

the same structure as discussed above, and change each to have different trainable parame-

ter numbers by scaling the layer size. For baseline comparison, networks with 6 layers, no

56

Figure 4.3: MSE loss vs. number of trainable parameters for the function approximation
experiments.

skip-layer connection and using homogeneous neurons, configured to have the same train-

able parameter numbers as the proposed networks, are tested. All networks are trained with

BPTT. The loss function measures the difference between the network output spike trains

and the target spike trains with MSE. Two sets of function parameters: (m = 1, n = 3.3)

and (m = 2, n = 2.1) are tested for the target functions f(x) on domain [3, 10]. The result-

ing MSE loss for different network scales are shown at the bottom of Figure 4.3. It can be

observed that the proposed networks can approximate target functions with less error than

the baseline networks at all network scales. The smallest tested networks have relatively

high losses while performance increase quickly with more trainable parameters. The rate

of performance improvement decreases when trainable parameter numbers is above 4000.

To understand the impact of the target function parameters to approximation perfor-

mance of SNN, we test the baseline and proposed network with 4167 trainable parameters

for different pairs of function parameters m and n. The resulting MSE loss is shown in

Figure 4.4 (a) and in Figure 4.4 (b). It can be observed that for all m and n value pairs, the

proposed network can achieve lower loss than the baseline network. Another observation

is that, there is no clear correlation between the value of m and approximation error. On

57

n
2.1 3.92.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

m

-2.0

1.6

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

2.0

 1.8e-1

0.7e-1

Baseline Network

n
2.1 3.92.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7

m

-2.0

1.6

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

2.0

 3.4e-3

1.8e-3

Proposed Network
(a)

(b)

n
m

Lo
ss

 (l
og

)

-6.5

-1.5

-4.0

Figure 4.4: (a) MSE loss (log) of baseline network (top) and the proposed network (bottom)
for approximating functions with different parameters m and n. (b) Heat plots of MSE loss
for approximating functions with different parameters m and n.

the other hand, for higher values of n, the approximation error generally increases for both

baseline and the proposed networks.

4.5 H-SNN Optimization Using Approximation Theory

In this section, we discuss the process to optimize H-SNN as inspired by the developed

approximation theory for feedforward SNN with an efficient dual-search-space Bayesian

optimization process. First, network templates for H-SNN, trainable with BPTT and STDP,

are defined, based on which specific network configurations, including network structure

and neuron parameters, can be optimized with the proposed Bayesian optimization process.

58

4.5.1 Network Template for BPTT Training

For H-SNN that can be trained with BPTT, the network template is shown in Figure 4.5.

Each multi-neuron-dynamic layer, which can be either convolutional or fully connected,

has heterogeneous neuron dynamics to generate each feature map. There are two types of

synapses between layers: transferred synapses marked as black dashed arrows and learned

synapses marked as red solid arrows. The conductance of learned synapses is optimized

by the BPTT algorithm during training, and the transferred synapses have the same con-

ductance as the learned synapses from the same pre-synaptic neuron. For example, the

synapses connecting neurons with dynamic dm to neurons with dynamic {d2, d3, d4, ..., dm−1}

in the next layer have conductance transferred from synapses connecting neurons with dy-

namic dm to neurons with dynamic d1.

The skip-layer connection is implemented with the output spike matrix from the source

layer concatenated to the original input spike matrix of the target layer. The skip-layer con-

nection has the same implementation as the regular connection between consecutive layers,

with both learned and transferred synapses (Figure 4.5). The last layer of the network is a

full-connected layer with homogeneous dynamic trained to generate prediction labels from

the output feature map of the last multi-neuron-dynamic layer.

4.5.2 Network Template for STDP Learning

The template of networks trainable with STDP is different from the one for BPTT, as shown

in Figure 4.6. Here, each multi-neuron-dynamic layer contains a learner module and a

memory module. Learner modules use homogeneous neuron dynamic that is suitable for

STDP learning, and memory modules consist of neurons with different dynamics. Sim-

ilar to BPTT training, there are two types of synapses: transferred synapses and learned

synapses. Between two layers, memory modules are connected with transferred synapses

and memory modules are connected to learner modules with learned synapses. Leaner

modules between layers are not directly connected.

59

…

Multi-neuron-dynamic Layers

Input
Linear

Skip-layer connection

…

Dynamic
1

He
te

ro
ge

ne
ou

s
ne

ur
on

 d
yn

am
ic

Source
layer

Target
layer

…

Dynamic
m

Dynamic
m-1

Dynamic
1

Dynamic
m

Dynamic
m-1

Transferred
Synapse

Learned
Synapse

… …

Target
Layer

…
Dynamic

1

Dynamic
m

Dynamic
1

Dynamic
m

Dynamic
1

Dynamic
m

Source
Layer

Figure 4.5: H-SNN with multiple neuron dynamics and skip-layer connections trainable
with BPTT; each multi-neuron-dynamic layer contains a set of neuron dynamics from d1
to dm; neurons with different dynamics are connected either with synapses with trained
conductance (learned synapses) or synapses with transferred conductance from learned
synapses.

60

Skip-layer connection
Memory
Module

…

Learner
Module

Input Linear

Skip-layer
connection

Multi-neuron-dynamic Layers

…

Learner
Module

He
te

ro
ge

ne
ou

s
ne

ur
on

 d
yn

am
ic

…

Memory
Module d1

Learner
Module

Transferred
Synapse

Learned
Synapse

Memory
Module

dm

Memory
Module d1

Memory
Module

dm

Target
Layer

…

Memory
Module

d1

Memory
Module

dm

Source
Layer

……

Learner
Module

Learner
Module

Memory
Module

d1

Memory
Module

dm

Memory
Module

d1

Memory
Module

dm

Figure 4.6: H-SNN with multiple neuron dynamics and skip-layer connections trainable
with STDP.

STDP training proceeds as a layer-by-layer process. During training of the first layer,

conductance of synapses connecting neurons in memory module to neurons in learner mod-

ules, referred to as learned synapses, is learned with STDP using all training data with-

out labels. Then, the learned conductance is transferred to the corresponding transferred

synapses. The memory module is then used to perceive input patterns and generate spikes

during training of the next layer. This lay-by-layer process is repeated until the layer before

the final layer finishes learning. The final linear layer is then fine-tuned using stochastic

gradient descent (SGD) based on spike frequency array from the last multi-neuron-dynamic

layer generated based on the labeled data. Skip-layer connection is implemented by con-

necting the memory module of the source layer to the target layer. The connections are

61

made with the two types of synapses and follow the same training process as the consecu-

tive layers.

4.5.3 Implementation of Heterogeneous Conv-SNN

Multi-neuron-dynamic (MND) networks with convolutional layers can be considered a

scaled-up version of the mMND network, where each neuron dynamic now contains a

matrix of neurons that receive input features from different spatial locations. To implement

heterogeneous Conv-SNN, first consider a regular Conv-SNN layer with no heterogeneity.

The spiking neuron matrix has dimension {W,H,D}, where D is the depth of the layer.

The convolution filter has dimension {C,w, h,D} where C is the number of input channels

and D is the number of output channels.

Based on this, a heterogeneous layer l can be constructed, by concatenating heteroge-

neous neuron matrices with the same W and H along layer depth. The resulting spiking

neuron matrix has dimension {W,H, λD}, where λ is the number of neuron dynamics.

Hence, layer depth i ∈ {k + 1, k + 2, k + 3, ..., k +D} have the same neuron parameters,

where 0 ≤ k ≤ λ− 1 is an integer representing the index of neuron dynamics. The convo-

lution filter has the same dimension as the regular Conv-SNN layer: {C,w, h,D}, which

is shared by layer depth with different k values. During forward pass of this layer, a convo-

lution operation is applied to generate an input signal matrix with dimension {W,H,D}.

For each value of k, neurons in depth {k + 1, k + 2, k + 3, ..., k + d} are simulated based

on the neuron parameters for such neuron dynamic index k using the signal matrix as in-

put. For the next convolutional layer l′ receiving input from layer l, the filter dimension is

{λD,w′, h′, D′} with λD input channels.

4.6 Dual-search-space Bayesian Optimization

With the addition of multiple neuron dynamics and skip-layer structure, the new H-SNN

models contain a relatively high number of hyperparameters, which could lead to difficulty

62

in the manual tuning process for better performance. We therefore develop a dual-search-

space Bayesian optimization process as an algorithmic approach to network optimization.

Bayesian optimization uses Gaussian process to model the distribution of an objective func-

tion, and an acquisition function to decide points to evaluate. For data points in a target

dataset x ∈ X and the corresponding label y ∈ Y , an SNN with network structure V and

neuron parameters W acts as a function fV,W(x) that maps input data x to predicted label

ỹ. The optimization problem in this work is defined as

minV,WP where P =
∑

x∈X,y∈Y

L(y, fV,W(x)) (4.36)

V contains the number of layers Nlayers, the number of memory dynamics Ndynmaic

and skip-layer connection configuration variables Nskip, Lstart and Lend, each controlling

the number of skip-layer connections, the first layer and last layer to implement skip-layer

connections. All of the values are discrete. W contains the values for a, τm and Rm

in (Equation 2.1), which are continuous. We separate the discrete and continuous search

spaces by implementing a dual-search-space optimization process, as shwon in Figure 4.7.

In this process, the network structural design is first optimized with fixed, manually selected

neuron parameters. After the network structure optimization is finished, neuron parameters

are optimized based on the selected network structure. This separates the search space of

network structure, which is discrete, from the continuous search space of neuron parameters

to reduce time consumption for the Bayesian optimization process.

It is also necessary to set constraints to the search spaces to guarantee the chosen con-

figurations are feasible for network construction. For example, the target layer index of a

skip-layer connection needs to be smaller than the number of layers in the network. To

achieve Bayesian optimization with constraints, we implement a modified expected im-

provement (EI) acquisition function similar to the one shown by Gardner [65], which uses

a Gaussian process to model the feasibility indicator due to its high evaluation cost. In this

work, since the constraint function can be explicitly defined, we use feasibility indicator

63

Network
Templates

Network Structure
Space Optimization

Neuron Parameter
Space Optimization

Optimized
Network
Structure

Optimized
NetworkNetwork

Evaluation
Network
Training

Parameter
Acquisition

Network
Evaluation

Network
Training

Parameter
Acquisition

Figure 4.7: The proposed dual-search-space Bayesian optimization process.

that is directly evaluated. The modified EI function is defined as:

Ic(W) = ∆(W) · max{0,P(W)− P(W+)} (4.37)

where W is the network configuration containing W and V . W+ is the test point that

provided the best result. ∆(W) is the explicitly defined indicator function that takes the

value of 1 when all constraints are satisfied and 0 otherwise.

4.7 Experiments

4.7.1 Experiment Settings

Datasets tested in the experiment include the DVS Gesture dataset [63], which is an event-

based human gesture classification dataset captured by DVS cameras, and the N-Caltech101 [66],

which is an event-based version of the Caltech101 dataset. The proposed method is also

tested for MLP-style SNN on the sequential MNIST dataset, in which the original MNIST

images are presented row-by-row sequentially. We also vary the amount of labeled data

used during training ranging from using 100% labeled data for training down to 10% la-

beled data (30% for N-Caltech101) during training. Note, during STDP training networks

always uses the entire but un-labeled training dataset; however, only the fraction of the la-

beled data is used for supervised fine-tuning of the last layer. Comparison is made for DVS

Gesture and N-Caltech101 with prior works including ConvLSNN, which is a combination

64

of convolutional SNN and recurrent SNN with long and short-term neurons trained with

BPTT [67], DECOLLE [16], which uses surrogate gradient to train a convolutional feed-

forward SNN, HATS [68], which implements time surfaces and SVM for classification and

the original H-SNN as presented in chapter 3, which uses STDP to train a convolutional

SNN with two neuron dynamics.

4.7.2 Optimization Process

During the first stage of the dual-search-space optimization process, the parameters to op-

timize include: Nlayer, Lstart, Lend, Nskip, Ndynamic, all of which are positive integers.

Specifically, Nlayer is the number of convolutional layers. For skip-layer connection, there

are three configuration parameters to optimize: starting layer Lstart, which is the source

layer of the first skip-layer connection; ending layer Lend, which is the target layer of the

last skip-layer connection; skip-layer connection number Nskip, which defines how many

connections to implement. The source layer of the Nskip skip-layer connections are placed

evenly between Lstart and Lend, each with skip length of ⌊(Lend − Lstart)/Nskip⌋, in case

((Lend − Lstart)/Nskip) ̸= ⌊(Lend − Lstart)/Nskip⌋, the value of Lend is reduced to the

maximum value that satisfies ((Lend − Lstart)/Nskip) = ⌊(Lend − Lstart)/Nskip⌋. For het-

erogeneity, the number of different dynamic Ndynamic in all layers are optimized jointly.

The constraint for the parameters is that, Nlayer ∈ [4, 15], 2 ≤ Lstart < (Nlayer − 1),

(Lstart + 1) < Lend ≤ Nlayer, and 0 ≤ Nskip ≤ (Lend − Lstart)/2 and Ndynamic ∈ [1, 10].

The manually configured neuron parameters are, τm = 100 and Rm = 300 for all neuron

dynamics, and a ∈ [−30,−5] is distributed evenly for each neuron dynamics.

Due to the exponential increase of search space with the number of neuron dynamics in

each layer, it is highly inefficient to search for every neuron parameters in each dynamic.

In the second stage of the optimization process, we choose to apply Bayesian optimization

for the parameter a of each neuron dynamic separately, while τm and Rm are optimized

jointly with the same values shared by all neuron dynamics. a values are taken to the

65

Evaluations

Evaluations

Figure 4.8: Validation error over optimization evaluations for the proposed dual-search-
space Bayesian optimization compared to the normal single-search-space Bayesian opti-
mization.

precision of 100, and τm and Rm values are taken to the precision of 101. The constraints

are a ∈ [−30,−5], τm ∈ [50, 200] and Rm ∈ [200, 400]. The value of tnd for all networks

is set to 1. The parameters of each optimized networks are shown in Table 4.2. Note, the

skip-layer connections are listed as source and target layer pairs.

4.7.3 Effect of Dual-search-space Bayesian Optimization

We compare the proposed dual-search-space Bayesian optimization with regular Bayesian

optimization using a single search space for network validation error over 5 runs. The

result from the N-Caltech101 dataset is shown in Figure 4.8. It can be observed that the

66

two optimization approaches achieve similar minimum validation error after convergence.

By separating the search spaces, the proposed optimization process reaches convergence

faster than regular single-search-space optimization. It is also worth noting that, between

the two stages in the optimization process for BPTT training, the first stage accounts for

more reduction in validation error than the second stage. This indicates that optimizing

network structure causes more impact to BPTT training than optimizing neuron parameters,

which is potentially due to the reason that network structures more heavily affects the

number of memory pathways in the network than neuron parameters. On the other hand, for

STDP training where learning behavior is sensitive to the dynamic of spiking neurons, the

reduction of validation error is more equally shared between the two optimization stages.

Over the 5 runs, among all network configurations achieved after the dual-search-space

optimization converges, we compare the configuration with the lowest number of trainable

parameters against baseline models. The specific configurations for the optimized networks

are listed in Table 4.2. It can be observed that for BPTT algorithm, the optimized networks

have more layers than the STDP trained networks, and the optimal values found for neuron

parameters are highly distinct for the two training methods.

Table 4.2: Configuration of optimized network models

Conv. Layer Skip-layer Number of Different Neuron Parameters
Network Number Connection Neuron Dynamics and a τm Rm

BPTT, Gesture 9 (2,7) 4, (-24,-17,-12,-9) 120 340
BPTT, N-Caltech 12 (2,5), (5,8), (8,11) 5, (-23,-16,-14,-11,-8) 70 300

STDP, Gesture 6 (2,4), (4,6) 4, (-26,-24,-15,-9) 110 260
STDP, N-Caltech 8 (3,5), (5,7) 6, (-21,-19,-17,-13,-9,-7) 140 240

4.7.4 Ablation Studies

To investigate the effect of using multiple neuron dynamics, for both BPTT and STDP train-

ing, we apply the same dual-search-space Bayesian optimization process for networks that

have homogeneous neuron dynamic for the same number of evaluations as the proposed

design. Such networks are referred to as Homogeneous-BPTT and Homogeneous-STDP.

67

Table 4.3: Ablation studies of optimization approaches: configuration of tested networks
and accuracy results (%)

Model Heterogeneity Skip-layer DVS Gesture N-Caltech101 S-MNIST

Homogeneous-BPTT N Y 95.0 65.3 95.5
No-skip-layer-BPTT Y N 96.5 63.5 94.8

H-SNN Optimized (BPTT) Y Y 98.0 71.2 97.3

Homogeneous-STDP N Y 91.3 37.0 94.3
No-skip-layer-STDP Y N 93.1 51.9 95.5

H-SNN Optimized (STDP) Y Y 96.6 58.1 96.1

Similarly, to study the contribution to performance gain from skip-layer connections, the

Bayesian optimization process is used for network templates without skip-layer connec-

tions. The optimization process runs for the same number of evaluations as the proposed

design and the networks are referred to as No-skip-layer-BPTT and No-skip-layer-STDP.

From the results shown in Table 4.3, it can be observed that compared to baselines,

the proposed networks achieve the best accuracy for all datasets. Specifically, when the

network contains only homogeneous neuron dynamic, the performance of STDP trained

network is noticeably lower than the proposed method for DVS Gesture and N-Caltech101

datasets, while removing skip-layer connections shows less impact. For BPTT training,

using heterogeneous network and skip-layer connections show different level of benefit for

each dataset. For sequential MNIST which has less complexity, the improvement from

using heterogeneous neurons and skip-layer connections is not as significant.

4.7.5 Comparison with Prior Works

DVS Gesture Accuracy results and the number of trainable parameters for the tested mod-

els are listed in Table 4.4. With 100% labels available during training, the proposed network

trained with BPTT demonstrates higher accuracy than all tested networks with the least

number of trainable parameters. The proposed network trained with STDP has slightly

lower accuracy than ConvLSNN and DECOLLE when 100% labels are used. With re-

duced label number, STDP training shows the advantage of unsupervised learning, and

68

Table 4.4: Accuracy (%) and trainable parameter number of tested models for DVS Gesture
dataset with varying amount of training labels

Labeled Data % In Training Parameter
Model 100% 50% 30% 10% No.

ConvLSNN [67] 97.1 95.3 92.0 84.3 2.9M
DECOLLE [16] 97.5 95.0 91.2 83.9 1.3M

HATS [68] 95.2 94.1 91.6 83.7 -
H-SNN Original 96.2 95.8 93.7 88.2 0.74M

H-SNN Optimized (STDP) 96.6 96.0 94.1 91.2 0.81M
H-SNN Optimized (BPTT) 98.0 95.3 91.1 82.4 1.1M

Table 4.5: Accuracy (%) and trainable parameter number of tested models for N-
Caltech101 with varying amount of training labels

Labeled Data % In Training Parameter
Model 100% 70% 50% 30% No.

ConvLSNN [67] 63.1 58.7 51.3 45.4 3.0M
DECOLLE [16] 66.9 61.9 56.2 50.6 2.0M

HATS [68] 64.2 61.0 54.3 48.8 -
H-SNN Original 42.8 41.9 37.0 34.6 1.7M

H-SNN Optimized (STDP) 58.1 57.8 57.2 54.6 1.4M
H-SNN Optimized (BPTT) 71.2 65.4 56.0 52.5 1.7M

outperforms all baselines including H-SNN, which also uses STDP unsupervised learning.

The accuracy improvement from the STDP trained network is more significant with less

labels. The proposed STDP network also has the advantage of less trainable parameters

compared to supervised models.

N-Caltech101 As shown in Table 4.5, the proposed network trained with BPTT out-

performs all other tested networks with both 70% and 100% training labels. It also has less

number of trainable parameters than all baselines. The un-supervised learning models i.e.,

the original H-SNN and the proposed network with STDP, show considerably lower per-

formance, compared to what was observed for DVS Gesture, than the supervised networks

when 100% labels are available. On the other hand, the proposed network with STDP

learning shows better performance than the original H-SNN at all label amounts, and out-

performs all other networks when available labels are below 50%. Its trainable parameter

69

number is also the lowest amoung all tested networks.

4.8 Network Spiking Activity

To investigate neuron spiking activity in the proposed network, for the function approxi-

mation task as described in section 4.4, with parameters (m = 1, n = 2.3) and a randomly

selected approximation point f(x = 19), we plot the timing of neuron spike at the last layer

over training epochs in Figure 4.9 (a). It can be observed that the network initially gen-

erates spikes at widely distributed timings. After the first 50 training epochs spike timing

starts to converge and remains stable at around 200 epochs. The final output spike period

is t′out = 48, which matches the target output period.

Next, we investigate spiking activity of the BPTT trained network as described in Sec-

tion subsection 4.7.5 for N-Caltech101 classification task. Three different test data points

are presented to the network, and the spikes from neurons in the first depth of layer 8 and

neurons in the final layer, are recorded and shown in Figure 4.9 (b). Here, (i), (iii) and

(v) are from layer 8; (ii), (iv) and (vi) are from the final layer. (i) and (ii) are from the

observation of a data point with class label “5”; (iii) and (iv) are from the observation of

another data point also with class label “5”; (iii) and (iv) are from the observation of a data

point with class label “1”.

It can be observed that neurons in layer 8 exhibit similar activity in (i) and (iii) as the

network is presented with data points from the same class. (ii) and (iv) show that most

spiking activity is from the neuron with index 5, indicating correct prediction for the two

data points. When a data point from a different class is presented, spiking activity in (v)

shows different patterns than those in (i) and (iii). In the final layer, neuron with index

1 generates the most spike, leading to correct prediction. However, for this data point,

neuron with index 58 is also generating a considerable number of spikes, indicating that

the network is more likely to mis-classify this data point, compared to the other two tested

data points.

70

(a)

(b)

(i) (ii)

(iii) (iv)

(v) (vi)

Figure 4.9: (a) Raster plot for function approximation experiment; t is the simulation time
step. (b) Raster plot for the proposed SNN trained for N-Caltech101 with BPTT; t is the
simulation time step; (i), (iii) and (v) are from layer 8; (ii), (iv) and (vi) are from the final
layer.

71

4.9 Summary

To achieve better understanding of the properties of feedforward SNN when used in spa-

tiotemporal data processing, in this chapter, we develop a theoretical basis for the capability

of feedforward SNN to approximate mapping functions of input-to-output spike sequence

pairs. On top of this, we analytically show how heterogeneity of neuron dynamic and skip-

layer connections can improve the function approximation ability of H-SNN. Based on the

theoretical results, the two structural designs: neuron heterogeneity and skip-layer con-

nections, are jointly implemented for two network architectures trainable with BPTT and

STDP, respectively. Compared to baseline models, the number of hyperparameters to tune

could be relatively higher for the proposed design. We therefore develop an efficient dual-

search-space Bayesian optimization process to search for H-SNN configurations that can

achieve lower validation error for given tasks. Experimental results show that the learning

performance of H-SNN can be successfully improved using the proposed methods. The op-

timized H-SNN shows advantages over baseline models in learning spatiotemporal datasets

of different complexity.

72

CHAPTER 5

EVENT-DRIVEN SNN PROCESSING OF SPATIOTEMPORAL DATA

In the previous chapters, experimental results and theoretical basis of using H-SNN for

processing spatiotemporal data are presented, and the primary focus is on the network’s

learning performance. In this chapter, we present a fully event-based processing pipeline

using neuromorphic vision sensors as the input source and H-SNN as the data processing

model aiming to improve computation efficiency. This design is named SPEED [69]: a

processing method for spiking neural network with event-driven learning and inference of

event camera data. SPEED has the potential to achieve high throughput and low latency

computer vision data processing. Figure 5.1 shows an overview of the proposed image

processing pipeline: an event camera captures brightness-change events in the original

scene and data is transmitted to an on-board event processing engine in its native, event-

by-event format. The processing platform, such as a CPU or GPU, runs unsupervised

STDP learning as well as object classification by processing the input events in real-time.

The proposed event-driven processing method significantly improves H-SNN learning and

inference speed, and delivers higher robustness when the network has reduced-precision.

In the following sections, we first discuss the background on event-based vision sensor

and existing processing methods for spatiotemporal dataset. Details of the proposed event-

driven SNN processing method is then presented and experimental results are shown.

5.1 Background on Event-based Spatiotemporal Data Processing

5.1.1 Neuromorphic Vision Sensor

Neuromorphic vision sensor [70] is a type of event-based vision sensors inspired by bio-

logical retinas. An example of such sensors is the dynamic vision sensor (DVS) used in

73

Captured Events

Event
Camera

Event Processing Engine

Δt

ΔG

STDP Learning
t

v

LIF Neuron

Event-driven SNN Simulation
CPU or GPU
Simulation

‘C ’

An all event-based image classification pipeline

… …

Figure 5.1: The all event-based classification pipeline proposed in this chapter, which con-
sists of event camera as input source and CPU or GPU running event-driven SNN pro-
cessing. The two polarities of the output events, representing increase and decrease of
brightness, are marked with red and blue dots, and separated into two input channels to the
network.

event cameras [71]. Event camera operates by capturing brightness changes (increase and

decrease) in a scene as asynchronous events. Compared to conventional image sensors that

capture frame-based data, neuromorphic vision sensors have advantages including higher

temporal resolution [72] and higher dynamic range [73]. This makes event camera an

ideal device for applications such as space-based platforms [25], driver assistance [26] and

robot navigation [74]. Processing event camera data has been achieved with different ap-

proaches [27, 68, 75]. In particular, spiking neural network (SNN) [76] is an appealing

solution for its spike-based information representation and transmission that are inherently

suitable for event-based data processing, and the unsupervised learning capability [2] that

enables learning of unlabeled data.

5.1.2 Conventional Machine Learning

As the recent development of artificial neural networks (ANN) offered state-of-the-art per-

formance for frame-based visual data, applying similar approaches to process neuromor-

74

phic vision sensor data has received less attention. Existing methods for learning event-

based visual information with conventional machine learning models can be categorized

into two types of approaches. The first type aims to convert the event based input to an-

other representation that is similar to frames, and train conventional models based on the

converted data, such as the work by Gehrig et al. [27] where events are mapped to a grid-

based representation. Another example is DART by Ramesh et al. [28], in which a log-polar

structure is used for conversion. Such approaches take the advantage of well studied meth-

ods for processing frame-based images, but requires aggregation of events over a period of

time thus do not fully utilize the sparsity of event-based input. The second type focuses

on designing networks that are event driven to better match the asynchronous property of

event camera output. Examples include work by Cannici et al. [29], and by Messikom-

mer et al. [30], where networks based on event-driven convolution operations are shown.

Such networks are asynchronous in nature, thus providing better efficiency for processing

data from event cameras. While promising results have been achieved with both types of

approaches, few has the capability of unsupervised learning.

5.1.3 Spiking Neural Network

Compared to conventional machine learning approaches, using SNN to process neuromor-

phic vision sensor data has several advantages. First, SNN is capable of transmitting infor-

mation and achieve learning using spike signals, which are asynchronous events similar to

the output from neuromorphic vision sensors. Such alignment has the potential to achieve

an all-event-based neuromorphic vision system. Another advantage of SNN is its ability

to learn the temporal correlation of spiking events [32] based on causality. This can be

achieved with an algorithm called spike-timing-dependent plasticity (STDP) [2]. Since the

STDP learning rule is unsupervised, it is possible for SNN to learn the spatial or temporal

correlation from unlabeled data. This capability is useful when the amount of labeled train-

ing data is limited. Event-based data representation in SNN simulation is demonstrated to

75

Table 5.1: Comparison of different methods

Model & Event-driven
Network Learning Rule Input Type Process

SCRNN[75] Recurrent SNN (BPTT) Frame No
SpArNet[55] Converted SNN (SGD) Frame Yes

[81] Converted SNN (SGD) Frame No
H-SNN Original Conv. SNN (STDP) Frame No

H-SNN w/ SPEED Conv. SNN (STDP) Event Yes

have improved efficiency while maintaining accuracy [77]. Simulating SNN with event-

driven approach has been shown in many prior works, but most cannot be directly used

for learning of neuromorphic vision sensor data. For example, Lytton et al. [78] presents a

variable-step integration method for local neuron update and Naveros et al. [79] implements

a combined look-up table for high complexity network simulation. The two prior works

show improved spiking neuron simulation efficiency but do not consider SNN learning.

NEVESIM [80] is an event-driven SNN simulator with the support of Hebbian learning,

but its neuron simulation and learning process are not designed for network architectures

optimal for vision-based data, such as convolutional SNN.

While some recent work, such as shown in Table 5.1, has shown promising results on

using SNN to perform classification for event camera data, many of them do not consider

unsupervised learning or event-driven simulation. For example, Xing et al. [75] shows SNN

with convolutional and recurrent connection for recognition of hand gesture captured by

event camera. Learning is achieved with temporal back-propagation, which is a supervised

training method also used in several other work [47, 82] for event-based data. Another

approach is to convert SNN from stochastic gradient descent (SGD) trained CNN as shown

by Massa et al. [81]. Besides using supervision, the network operations in those models

are not event driven, making them inefficient for processing event camera input. Khoei

et al. [55] shows event-driven SNN converted from CNN, but the input is frame-based

data instead of sparse events, and the network is trained with supervision. STDP based

76

unsupervised learning of spatiotemporal data can be achieved[83, 59], but the networks are

not event driven.

5.2 The Proposed Event-driven SNN Processing Method

In this section, based on the LIF neuron model and STDP learning rule, we present details

of the proposed event-driven inference and unsupervised learning for event-based input.

5.2.1 Neuron and Synapse Model

The networks considered here are feedforward SNN in which leaky integrate-and-fire (LIF)

neurons are connected with synapses. Two neurons connected with a synapse are called

pre-synaptic and post-synaptic neurons, and the strength of connection is determined by

synaptic conductance. For a synapse with conductance G, the change in G given the time

difference between pre-synaptic and post-synaptic spikes ∆t = tpost − tpre, is determined

with the STDP algorithm as reproduced here:

∆Gp = αpe
−∆t(G−Gmin)/(τpot(Gmax−Gmin))

∆Gd = αde
−∆t(Gmax−G)/(τdep(Gmax−Gmin))

Here, ∆Gp and ∆Gd are magnitude of LTP and LTD operation, respectively. αp and

αd are parameters that controls the magnitude of LTP and LTD operation. τdep and τpot

are time constant parameters. Gmax and Gmin are hyperparameters tuned based on specific

network configurations.

5.2.2 Event-driven Neuron Simulation

In a simulation process with global updates to all neurons at each time step, referred to in

the rest of the chapter as discrete-time simulation, the value of spiking neuron’s membrane

77

potential can be directly calculated with the current value and the change over each timestep

using differential equation defined by Equation 2.1. The data structure for discrete-time

simulation of spiking neurons in a STDP learned network thus requires three variables:

membrane potential, spike timer which keeps the elapsed time from last spike for STDP

process, and inactive timer which keeps the remaining time of an inactive neuron. Inacti-

vation occurs when a neuron receives inhibitory signal from other spiked neurons or enters

refractory period. Membrane potential is updated each time step, and inactive timer and

spike timer are also updated if needed.

When it comes to event-driven neuron simulation for sparse input, updating the state

of each spiking neuron at each time step is inefficient due to the low activity inside the

network. Ideally, only neurons that receive input spikes are updated. To achieve learn-

ing and inference with this principle, the event-driven spiking neuron is designed with

a data structure that contains four variables: last membrane potential, inactive end time,

last update time and last spike time. The last three variables keep track of the exact times-

tamp of the end of current inactive period, the timestamp of the last update to the neuron

and the timestamp of its last spike, respectively. The variable last membrane potential

records the value of vm at last update time. To process event-driven update to membrane

potential of LIF neurons, consider that in the absence of input signal, Equation 2.1 is an

ordinary differential equation with solution:

v(t) = −e(−t+C)/τm + a (5.1)

Here, C is the integration constant. With initial membrane potential value of the zero-

input period v(tlast) = vold, Equation 5.1 can be rewritten as:

v(t) = (vold − a)e−(t−tlast)/τm + a (5.2)

With last update time as tlast, and value of pre-update membrane potential as vold,

78

membrane potential at time t can be derived using the stored variables. In the actual soft-

ware implementation, a skip time tskip, which is the longest possible time for a neuron

to decay, is used. This is the time for a neuron to decay from spiking threshold to mem-

brane potential reset value without receiving any input, and is calculated at the beginning

of simulation with the following equation:

tskip = τmln(vthreshold − a)− τmln(vreset − a) (5.3)

As tskip is determined based on the neuron parameters, it is used as a global parameter

that does not need to be stored for each individual neuron. During simulation, to update

a neuron that receives input spike at time t, v(t) is set to vreset if t − tlast > tskip, oth-

erwise, Equation 5.2 is evaluated. In other words, if the gap between current time and

last update time is larger than tskip, the neuron is set to membrane potential floor without

needing extra calculation; otherwise the decayed value is calculated. This process provides

the current membrane potential if no input has been received. Now with consideration of

input signal I , if current time is larger than inactive end time meaning that the neuron is

not in inactive period, the value of RmI is added to v(t) to produce the final membrane

potential after receiving the input signal. At last, variables of the updated spiking neu-

ron: last update time and last membrane potential, are updated. If threshold is crossed,

last spike time is also updated to the current time and the neuron enters refractory period

by setting the inactive end time to a future timestamp. If the input signal is inhibitory, the

inactive end time variable is set to a future timestamp. The detailed process of event-driven

update represented in pseudocode form is shown in algorithm 1.

The event-driven neuron simulation as implemented in H-SNN is illustrated in Fig-

ure 5.3(a): when a neuron, marked in red, in layer n−1 spikes, only the three post-synaptic

neurons that are connected to the spiked neuron, marked in yellow, are updated; one up-

dated neuron in layer n crosses threshold and initiates update of its three post-synaptic

neurons in layer n + 1. Other neurons in the network, marked in gray as inactive neurons,

79

Algorithm 1: Event-driven Neuron Update
Global Data: refractory period, inhibition period, current time,

membrane resistance, t skip, v reset, v threshold
Neuron Data: last membrane potential, last update time, inactive end time,

last spike time, input current, inhibition signal
begin

if current time−last update time > t skip then
last membrane potential = v reset

else
Solve (Equation 5.2)

end
if inhibition signal then

inactive end time = max((current time + inhibition period),
inactive end time)

else
if current time > inactive end time then

last membrane potential += membrane resistance · input current
if last membrane potential > v threshold then

last spike time = current time
inactive end time = max((current time + refractory period),
inactive end time)

Initiate STDP
last membrane potential = v reset

end
end

end
last update time = current time

end

80

One input
event

Event driven
update

M
em

br
an

e
Po

te
nt

ia
l

-
-5

5
-6

0
-6

5
In

pu
t

Sp
ik

e

Time
10 20 30 40 50

In
pu

t
Sp

ik
e

Time
5 10 15 20 25

Neuron
Spike

Inhibition
Period

Event driven
updateM

em
br

an
e

Po
te

nt
ia

l
-5

0
-5

5
-6

0
-6

5

Event-driven Simulation
Discrete-time Simulation

In
pu

t
Ev

en
ts

Figure 5.2: Membrane potential tracked over time for discrete-time simulation and event-
driven simulation (top) and input events (bottom) with black dots as input spikes and red
dot as inhibition signal.

are not updated. Since each neuron needs to receive one or multiple spikes before generat-

ing one, when the input is sparse, exponential increase of signal that needs to be processed

in a multi-layer convolutional network can be prevented.

To better illustrate the difference between event-driven simulation and regular discrete-

time simulation, membrane potential of two identical spiking neurons simulated with the

two different methods is shown in Figure 5.2. The two neurons receive the same input

event sequence, which contains input spikes and inhibition signal, and the input synapses

to the two neurons have the same conductance. It can be observed that for discrete-time

simulation, membrane potential of neuron is changed at each timestep. The event-driven

neuron is updated only at time of input events, and its membrane potential at input time

closely tracks that of the discrete-time simulated neuron, while during other time its mem-

brane potential is unchanged. The two neurons cross threshold at the same time, therefore

producing the same spike timing, which is crucial to the STDP learning algorithm.

81

Layer n-1

Layer n

Layer n+1

Inactive Neuron Updated Neuron

Spiked Neuron Spike Signal

…

(a)

…

…

Spiked Neuron

Spike-time Checker

…

Recently Spiked Neuron

Spike-time Checker (STDP Initiating)

(b)

Layer n-1

Layer n

Layer n+1

…

…

…

…

…

…

…

…

layer n
learning

phase

layer n+1
learning

phase

Figure 5.3: In an SNN with each neuron connecting to three neurons in the next layer,
(a) shows the event-driven neuron update process, and (b) shows the event-driven STDP
process.

82

5.2.3 Event-driven Learning

Implementing the STDP learning algorithm requires time difference between pre-synaptic

and post-synaptic spikes. Discrete-time simulation of SNN can acquire such information

with a timer set for spiked neurons. For the proposed event-driven learning, the precise

timing of pre-synaptic and post-synaptic spikes is acquired from last spike time recorded

for the pre-synaptic and post-synaptic neurons in their data structure. To support the layer-

by-layer STDP learning process used in multi-layer SNN, which will be described later,

we implement a fixed-polarity STDP process based on the layer from which spikes are

originated.

Specifically, the event-driven learning process proceeds as this: during learning, neu-

rons that generate spikes, referred to as source neurons, initiate a checker function for all

pre-synaptic or post-synaptic neurons to the spiked neurons. The checker function com-

putes the difference between the current time and the stored last spike time of the checked

neurons as ∆t. Since the network uses convolution connections, the number of neurons

to check remains low. To further improve learning efficiency, we exploit the exponential

decaying property of STDP magnitude, and apply a time window to filter both the LTP and

LTD operations. In case of ∆t > Twindow LTP for LTP or ∆t > Twindow LTD for LTD,

STDP will not be applied. Based on the spike signal travel direction, a fixed-polarity STDP

process is applied. This process regulates that only LTP is considered if the source neu-

ron is post-synaptic, and only LTD is considered if the source neuron is pre-synaptic. In

other words, since the network learning process proceeds layer-by-layer, during the learn-

ing phase of a layer n, only spikes from neurons in layer n and n − 1 are considered for

STDP. The spiked neuron launches checker function for either its pre-synaptic neurons or

post-synaptic neurons depending on the layer it resides, and can initiate only LTP or LTD

operation, respectively.

To better explain the event-driven STDP process, an illustration is shown in Figure 5.3(b).

In this network, one neuron (the source neuron) in layer n generates a spike at the current

83

time. If the learning process is in layer n learning phase, checker function accesses the

three pre-synaptic neurons of the source neuron in the n− 1 layer. By checking the values

of last spike time, one neuron in layer n − 1 is found to have recently spiked. This indi-

cates a causal relationship between the two spiking events since pre-synaptic spike happens

before post-synaptic spike. LTP is initiated for the synapse connecting the recently spiked

neuron in layer n − 1 with the source neuron. In this scenario, the post-synaptic neurons

in layer n + 1 are not checked. On the other hand, if learning process is in the layer n + 1

learning phase, pre-synaptic neurons in layer n − 1 are not considered. In this case, spike

from the source neuron acts as a pre-synaptic spike to neurons in the next layer. Thus, three

post-synaptic neurons in layer n+1 are checked for their last spike time and one neuron is

found to have spiked recently. Since the spike timing of source neuron is later than the tim-

ing of the recently spiked neuron in layer n+ 1, LTD is applied to the synapse to decrease

the strength of connection.

5.3 Experimental Details and Results

The event-driven processing method described in the previous section is generic to most

feedforward SNN architectures using convolutional layers. In this section, we show an

investigation of efficiency of the proposed method for convolutional SNN in general, then

review the specific network architectures used in the experiments for unsupervised learning

and inference of event camera data. We compare the accuracy of H-SNN with SPEED

processing against baseline machine learning and other SNN models. We also demonstrate

the computational performance of SPEED processing in comparison to baseline discrete-

time event simulation of SNN.

5.3.1 Network Processing Efficiency

We study the efficiency of the proposed method for convolutional SNN sharing similar

convolution configurations with networks used in prior works [13, 34], such as the one

84

(a)

Twindow_LTD

Δt

ΔG
Twindow_LTP

(b)

One input
event

Neuron
Spike

Event driven
update

Event-driven Simulation
Discrete-time Simulation

Convolutional SNN Layers F.C.

Layer

Input

Neuron Sensitivity

S
im

u
la

te
d
 N

e
u
ro

n

N
u
m

b
e
r

R
a
ti
o

(a)

(b)

Twindow_LTD

Δt

Twindow_LTP

ΔG

Figure 5.4: (a) A general convolutional SNN architecture; (b) ratio of the number of simu-
lated neurons in event-driven networks to discrete-time simulated networks under different
neuron sensitivity.

shown in Figure 5.4, which contains three convolutional layers of spiking neuron and one

fully-connected layer for classification. The improvement in efficiency is evaluated by

comparing the number of neurons processed per timestep with the regular discrete-time

SNN simulation process. The number of processed neuron in an event-driven network de-

pends on two aspects: the convolution configuration which determines the range of spike

signal propagation, and the likelihood of spikes being generated from the processed neu-

rons. To help the investigation, we define a metric called neuron sensitivity, which is the

ratio between number of spiked neuron and number of total processed neuron, averaged

over the simulation period. Neuron sensitivity has a range of 0 to 1, with 0 representing

no processed neuron ever spikes and 1 representing all processed neurons always spike.

Neuron sensitivity depends on neuron dynamics as well as the distribution of input dataset.

When implementing an SNN for STDP learning, network hyperparameters are tuned to

achieve the optimal learning behavior, and the resulting neuron sensitivity often settles to

85

a value well below 1. For example, the networks implemented in our learning tests are

measured to have neuron activity on the order of magnitude of 10−2.

In this experiment, efficiency of event-driven networks with different neuron sensitivity

levels and three convolution configurations: one with 3 layers of 5x5 convolution kernel,

one with 1 layer of 5x5 and 2 layers of 3x3 kernel, and one with 3 layers of 3x3 kernel,

are studied. To investigate network activity under specific neuron sensitivity level, the net-

works consist of pseudo neurons that spike with probability equal to the current neuron

sensitivity when receiving input. The test input contains a sequence of events with ran-

domized locations, and the total number of processed neurons in all convolutional SNN

layers is recorded. In order to evaluate the reduction of neuron processing, we consider

the ratio of the number of processed neurons using the proposed method to the number of

processed neurons for a regular, discrete-time simulation process. The result is shown in

Figure 5.4(b). It can be observed that, under the rare case of neuron sensitivity near value

of 1, for all network configurations, the processed neuron number is still below 10% of

discrete-time simulation process. When neuron sensitivity is below 0.5, the event-driven

networks achieve significant reduction of neuron update operations. This reduction is also

reflected in the actual run-time measurement for learning/inference process shown in sub-

section 5.3.5.

5.3.2 SPEED Processing of H-SNN

For event camera output which contains both spatial and temporal information, a network

with H-SNN architecture is suitable for processing such type of data. To implement H-

SNN with SPEED, spiking neurons with different dynamics can be simulated by solving

the equations discussed in subsection 5.2.2 using the corresponding neuron parameters. In

terms of the event-driven learning and inference process of the entire H-SNN network, we

consider one of the networks tested in the experiment, shown in Figure 5.5, as an exam-

ple. This network contains three heterogeneous convolution layer, and one fully connected

86

…

Layer n+1

Spike Signal

Short-term Memory
Long-term Memory

Learner Module

Heterogeneous
Convolutional SNN Layers F.C Layer

Output

Input

Plastic
Synapses

Transferred
Synapses

from Learner

Figure 5.5: An example of H-SNN network implemented using SPEED.

layer. Input signal is sent to the convolution layers each consists of short-term memory,

long-term memory and a learner module. In each layer, long-term memory and short-term

memory has the same dimension and convolution settings as the learner module. Short-term

and long-term neurons have different τm and a to achieve different membrane potential de-

cay rate and different Rm for balanced input signal response.

Synapses connecting input and the first layer learner module, as well as those connect-

ing memory module and learner module after the first layer, as marked in red in Figure 5.5,

are learned with STDP. Synapses marked in blue have conductance transferred from learner

module and are kept fixed. Learner module uses spiking neurons optimized for STDP to

learn the input spatiotemporal dataset without supervision. The two memory modules are

optimized for perception of patterns with different temporal duration. The last layer is fully

connected to the memory modules in its previous convolution layer and provides classifi-

cation results.

The learned and transferred synapses that are established between long-term memory,

short-term memory and the learner module in each layer follow the same connection princi-

ple of regular convolutional layers, which can be processed by SPEED using the procedure

as presented in subsection 5.2.2. The same applies to skip-layer connections. During STDP

87

Table 5.2: Comparison of model architectures and training rules

Network Architecture Training Rule

3D CNN 4 layers 3D CNN SGD
{[3x3x3,20],[3x3x3,32],[5x5x5,64],[5x5x5,64]}

AsyNet [30] Sparse deep network (VGG13) SGD
HATS [68] Time surface histogram SVM

SCRNN [75] SNN with recurrent Conv2D BPTT
{[5x5,32],[3x3,64],[3x3,128]}

DECOLLE [16] 3 layers SNN Conv2D Surrogate
{[7x7,64],[7x7,64],[7x7,128]} Gradient

H-SNN SNN with Convolutional layers and STDP
multiple neuron dynamics

learning of H-SNN, SPEED first processes the learner module in layer 1, which learns the

entire training dataset with event-driven STDP. After the first layer learning is complete,

synaptic conductance between input and layer 1 learner module is transferred to layer 1

memory modules in which the synaptic conductance is then kept fixed. This concludes

layer 1 learning phase. During layer 2 learning, SPEED processes neurons in layer 1 and

layer 2. Layer 1 short-term and long-term memory modules generate output spikes by per-

ceiving the input, and event-driven STDP is used for layer 2 learner module to learn the

entire training dataset. This layer-by-layer learning process is repeated for all convolutional

layers. Finally the classifier layer is fine-tuned with stochastic gradient descent (SGD). The

spike frequency matrix of the last layer memory module, sampled from a sliding windows

over the observed event sequence with 50 ms width and 1 ms stride, is used as the training

input and the original training sequence label is used as the training target.

5.3.3 Experimental Configuration of Learning Event-based Datasets

In the network learning experiments, the H-SNN network models as discussed in chapter 3

and in chapter 4 processed with discrete-time simulation and the proposed method are com-

pared with different baselines as shown in Table 5.2. The configuration of {[5x5,32],[5x5,64],

[5x5,128]} represents a network with one convolutional layer with 5x5 filter and 32 depth

88

Table 5.3: Comparison of H-SNN models tested in the experiments

Network Number of Skip-layer Number of
Conv. Layer Connection Neuron Dynamics

H-SNN Original 4 N/A 2
H-SNN Optimized 6 (3,5),(5,7) 4

followed by a layer of 5x5 filter and 64 depth followed by a layer of 5x5 filter and 128

depth. The tested H-SNN models have the same configurations as presented in prior chap-

ters, and are as shown in Table 5.3.

5.3.4 Accuracy Results

The two datasets used in this test are N-Cars [68] and DVS Gesture [63]. N-Cars is a

car recognition benchmark captured with an event camera mounted on a car driving over

multiple sessions. Our experiment uses the 15422 training samples and 8607 test samples

and each sample lasts 100 ms. DVS Gesture contains human gestures recorded with an

event camera in different illumination conditions. There are 1342 recordings with various

length and in our experiment 1000 ms is taken for each training sample, and the spatial

resolution is 128x128. For both datasets, the two polarities of the events are separated to

two input channels. All models use the full training dataset. The computation cost during

inference for each model, in terms of average floating point operations required to classify

a test sequence, is also compared. The results are shown in Table 5.4 and Table 5.5.

For the N-Cars dataset, baseline networks include a conventional 4-layer 3D CNN

trained with stochastic gradient descent (SGD) using input frames converted from the event

data, AsyNet [30] that uses sparse VGG13 trained with SGD, and HATS [68] that uses

SVM to classify histograms of time surfaces. Results show that AsyNet achieves the high-

est accuracy among baselines, but at the same time uses the most operations. The event

based operation and simple classifier design from HATS provides high efficiency and good

accuracy. H-SNN Original reaches accuracy similar to HATS, while using much more op-

89

Table 5.4: N-Cars dataset: accuracy result and number of operations for inference

Accuracy Result Number of Operations
Model (%) (FLOP)

3D CNN 87.7 17.3G
AsyNet [30] 94.4 87.0G
HATS [68] 90.2 115M

H-SNN Original 91.4 12.8G
H-SNN Optimized 93.4 24.7G

H-SNN Original (SPEED) 90.3 92.8M
H-SNN Optimized (SPEED) 92.7 179.0M

erations. The SPEED implementation of H-SNN Original achieves similar accuracy as the

discrete-time simulated H-SNN Original. It also has accuracy comparable to HATS and

3D CNN, while the computation cost is lower than all baselines. The optimized version of

H-SNN reaches performance similar to the highest among baselines. This network requires

more operations than the original H-SNN during inference, but the amount is still less than

that required by AsyNet. With SPEED implementation of H-SNN Optimized, the number

of operations can be significantly reduced while the accuracy remains on similar level.

Table 5.5: DVS Gesture dataset: accuracy result and number of operations for inference

Accuracy Result Number of Operations
Model (%) (FLOP)

3D CNN 91.4 119.0G
HATS [68] 95.2 13.6G

SCRNN [75] 96.6 278.3G
DECOLLE [16] 97.5 35.6G

H-SNN Original 96.2 82.7G
H-SNN Optimized 96.6 147.1G

H-SNN Original (SPEED) 94.7 2.1G
H-SNN Optimized (SPEED) 96.0 3.83G

For the DVS Gesture dataset, the baseline networks are: 3D CNN using SGD, HATS,

SCRNN [75] that uses backpropagation through time (BPTT) to train a recurrent SNN,

DECOLLE [16] which implements surrogate gradient learning. Among baseline networks,

90

DECOLLE achieves the highest accuracy while using a moderate number of operations.

3D CNN shows to be an inefficient design as it has the lowest accuracy and uses a signif-

icant amount of operations. Similar to the N-Cars dataset, HATS achieves good accuracy

with low number of operations. The original H-SNN and H-SNN Optimized perform well

for this dataset, but their discrete-time based simulation process uses a large amount of op-

erations. With the proposed SPEED method, H-SNN Original (SPEED) shows advantage

in its low operation count per classification while achieving similar accuracy levels as H-

SNN Original. The Bayesian optimized network of H-SNN Optimized (SPEED) achieves

performance similar to DECOLLE while using noticeably less number of operations.

5.3.5 Computational Performance

In the previous subsection we show that H-SNN processed with SPEED have comparable

or better accuracy than baseline models, while being unsupervised and using less computa-

tions. In this subsection, we investigate in details the computation performance of SPEED,

by comparing the memory consumption and processing speed of discrete-time simulation

and SPEED, considering a simple H-SNN model with 3 convolutional layers that achieves

89.3% accuracy for N-Cars, and 94.3% accuracy for DVS Gesture.

Memory Requirement We derive memory requirement of all neuron and synapse vari-

ables based on number of neurons and synapses in the network and unit memory require-

ment of the two components. The result is 3.61 MB for discrete-time simulation and 4.48

MB for the proposed SPEED method. The overhead from using additional variables to

support event-driven network operations, as described in subsection 5.2.2, causes around

24.3% more memory consumption. Overall, the memory overhead from using the proposed

method is noticeable but not drastic.

Processing Speed For processing speed comparison, networks are implemented with

three different hardware: single threaded processing conducted on Intel Core i5 low power

CPU and AMD Ryzen high performance CPU, as well as parallel processing on NVIDIA

91

Table 5.6: Specifications of hardware used for simulation

TDP Core Clock Memory Clock

Intel Core i5-4278U 28 Watt 3.1 GHz 1600 MHz
AMD Ryzen 5 5600X 65 Watt 4.6 GHz 3800 MHz
NVIDIA RTX 2080 Ti 260 Watt 1.5 GHz 1750 MHz

RTX 2080 Ti GPU. The hardware specifications are listed in Table 5.6 and measurements

are shown in Table 5.7. In terms of single threaded processing, we observe over 100 times

decrease of latency in H-SNN memory module from using the event-driven operations. A

significant reduction for learner module is also observed. The resulting network throughput

is around 6.0x of discrete-time simulation for learning, and 167x for inference on high

performance CPU; on low power CPU, the improvement is 6.3x for learning and 170x for

inference. In terms of parallel processing on GPU, we observe a lower but still considerable

improvement in latency for both memory and learning modules. The throughput from using

the event-driven operations is around 3.5x for learning and 8.2x for inference, compared to

discrete-time simulation.

In general, using parallel processing that is event-driven is the optimal solution for

fast learning and inference. It is also worth noting that by using the proposed method,

inference speed on both low power and high performance CPU exceeds that on a GPU

running the regular discrete-time simulation. In terms of real-time applications of the pro-

cessing pipeline, maximum readout rate of event cameras can range from 1 MHz to 1200

MHz [23], but the actual event output rate heavily depends on the observed scenes. For

example, the N-Cars dataset records an average of 40k events per second. For such scenar-

ios, with discrete-time simulation, SNN can only processes around 10% of the generated

events on GPU implementation. While the proposed method still cannot achieve exact real-

time learning, it is able to achieve near-real-time inference with GPU. In comparison with

conventional CNN, the 3D CNN baseline implemented in PyTorch processes 4.7k events

per second when performing inference on the same event stream (batch size of 1) with

92

Table 5.7: Processing speed measurements

Discrete-time Event-driven
Single Threaded (4278U) Simulation Simulation

Memory Module Latency 10.1 ms/event 59.2 µs/event
Learner Module Latency 15.9 ms/event 5.4 ms/event
Learning Throughput 26 events/s 164 events/s
Inference Throughput 32 events/s 5424 events/s

Single Threaded (5600X)

Memory Module Latency 5.9 ms/event 35.0 µs/event
Learner Module Latency 9.1 ms/event 3.2 ms/event
Learning Throughput 46 events/s 274 events/s
Inference Throughput 55 events/s 9216 events/s

GPU Parallel (2080 Ti)

Memory Module Latency 75.9 µs/event 9.1 µs/event
Learner Module Latency 147.4 µs/event 68.0 µs/event
Learning Throughput 3224 events/s 11351 events/s
Inference Throughput 4325 events/s 35320 events/s

GPU. This speed is similar to SNN with discrete-time simulation but slower than SNN

with event-driven simulation.

5.4 Low-precision Networks

Since reduced memory consumption is an attractive property for ASIC or FPGA based

SNN learning and inference implementations, low-precision SNN models [84, 85] have

been actively studied in prior works, such as the recent development of binary SNN [86,

87]. Here, we investigate the influence of low-precision synapse conductance on the pro-

posed event-driven SNN simulation method. As shown in Table 5.8, for network model

with the same architecture as H-SNN Original, reduced precision networks provide consid-

erable reduction in memory requirement. Due to the overall reduced memory consumption,

the overhead of event-driven simulation for 4-bit and 2-bit precision increases from 30.5%

to 31.9%. Under reduced precision, for STDP algorithm to learn patterns correctly, post-

93

Table 5.8: Memory requirement of network states with different synapse precision

Floating Point 4-bit 2-bit

Discrete-time Simulation 4.59 MB 2.90 MB 2.78 MB
Event-driven Simulation 5.47 MB 3.78 MB 3.66 MB

Memory Overhead 19.3% 30.5% 31.9%

synaptic activity needs to respond to the input spikes accurately: errors in post-synaptic

timing leads to shifted STDP magnitude or even inverted polarity. Therefore, in order to

understand the effect of reduced precision on network activities in the proposed event-

driven SNN, we conduct two sets of experiments. The first one investigates low-precision

network spiking activity, and the second tests low-precision network learning.

5.4.1 Low Precision Network Activity

First, visual inspection of network activities is performed by plotting spiking events of three

networks. The first network, which is the reference design, has floating point precision (no

quantization to the conductance matrix) and uses the regular discrete-time simulation; the

second network has conductance matrix quantized to 4-bit precision and uses the regular

discrete-time simulation; the third network also has conductance matrix quantized to 4-bit

precision but uses the proposed event-driven simulation. Three networks receive the same

input pattern that starts with sparse signal then switches to dense signal. As shown in Fig-

ure 5.6(a), during sparse input, event-driven simulation produces spike activities more sim-

ilar to the reference design than discrete-time simulation. For discrete-time simulation, as

error accumulates, the deviation from reference design is more evident particularly towards

the end of sparse input phase, such as the marked area in the figure. On the other hand,

when the input becomes dense, the two networks shows similar level of activity distortion

from the reference design.

To quantitatively analyze the activity distortion observed in the visual inspection, we

again use a network with floating point precision and discrete-time simulation as refer-

94

(b)

L1

 D
is

ta
nc

e
L2

 D
is

ta
nc

e

Input Spike Density (%)

Input Spike Density (%)

Neuron Index

t

Discrete-time
Simulation 4 bit

Reference

Event Driven
Simulation 4 bit

(a)

Dense Input Period

Spike activity
deviation

Event-driven Simulation Discrete-time SimulationEvent-driven Simulation Discrete-time Simulation

Sparse Input Period

Figure 5.6: (a) Spike activities from three simulations; each point represents a spike from a
specific neuron and time. (b) L1 and L2 distance between spike frequency arrays for 2-bit
simulations (left) and 4-bit simulations (right).

95

ence, in comparison with two networks that have reduced-precision synapses simulated

with discrete-time and event-driven simulation, respectively. The three networks have the

same dimension, and are connected to input layer with the same conductance matrix. We

test all three networks with input spikes with different density, and record the generated

spike frequency array from all neurons. The distance between frequency array of the ref-

erence network and that from networks with reduced precision is measured to quantify the

level of spike activity distortion. The distance metric is L1 and L2 distance. We conduct

this experiment for two bitwidth: 2-bit and 4-bit.

The results are shown in Figure 5.6(b), where distance is plotted against input spike

density, which represents the percentage of time the input spike signal is active. It can

be observed that, at 2-bit precision as shown on the left, discrete-time simulation has in-

creasing distance below 6% density, while distance of event-driven simulation remains low

within this low input density range. Above 6%, the two simulation methods show similar

distance, while both increasing with higher input density. At 4-bit precision, a similar trend

can be observed for low density input: the event-driven method provides spike frequency

array more similar to the reference. It is also worth noting that, at this precision, distance

of the two methods do not increase significantly when density is above 10%. This result in-

dicates that, for low-precision networks, event-driven simulation has less activity distortion

than regular discrete-time simulation when the input signal is sparse, which is in alignment

with the property of event-camera data.

5.4.2 Low Precision Learning

To investigate if the reduction of spike activity distortion improves network learning capa-

bility, in this experiment, we test whether event-driven SNN simulation achieves better ac-

curacy than discrete-time simulation under low precision. For reduced-precision synapses,

gap between conductance levels is increased and the magnitude of conductance change

calculated from the original STDP equations (Equation 2.3 and Equation 2.4) is not com-

96

Table 5.9: Low-precision learning accuracy (DVS Gesture)

Model Floating Point 4-bit 2-bit

H-SNN Original 96.2% 87.9% 80.8%
H-SNN Optimized 96.6% 90.1% 83.5%

H-SNN Original (SPEED) 94.7% 90.8% 86.7%
H-SNN Optimized (SPEED) 96.0% 91.9% 88.1%

patible. To implement STDP learning for reduced-precision networks, the following rule

is used: the simulator determines STDP polarity and calculates spike time difference with

the same procedure as shown in subsection 5.2.3; if the time difference is within STDP

window manually tuned to Twindow LTP = 40 or Twindow LTD = 60, the synaptic conduc-

tance is increased/decreased by one step of the quantized conductance levels. Two network

models are compared in this experiment: H-SNN Original and H-SNN Optimized, and the

two networks are simulated with two methods: regular discrete-time simulation and the

proposed event-driven simulation process of SPEED. 2-bit and 4-bit precision levels are

compared to floating point in this experiment and the test dataset is DVS Gesture. Results

are shown in Table 5.9.

The resulting accuracy values indicate that, for both network models simualted with

discrete-time simulation, reducing precision from floating point to 4-bit or 2-bit has no-

ticeable impact to network performance. Meanwhile, with event-driven simulation, the

networks experience less performance degradation from reducing the precision, and are

able to achieve better accuracy than discrete-time simulated networks. Such accuracy ad-

vantage can be observed at 4-bit precision and becomes more obvious at 2-bit precision:

compared to discrete-time simulation, H-SNN Original (SPEED) receives around 6% accu-

racy improvement and H-SNN Optimized (SPEED) has around 4% accuracy improvement.

97

5.5 Summary

In this chapter, we demonstrate the effort to improve computation efficiency of H-SNN

using event-driven processing method. We show that H-SNN can be implemented with

the SPEED method to process event-based spatiotemporal data from neuromorphic vision

sensors, and demonstrate it to be an efficient solution for both STDP learning and infer-

ence processes. The event-driven SNN simulation process used in SPEED introduces non-

significant overhead to network memory usage and improves processing speed significantly

by reducing the number of operations. Experimental results show that the lower computa-

tion cost can be achieved while maintaining similar accuracy of the H-SNN models. The

reduced number of operations also introduce less spike-activity distortion to networks with

low-precision synaptic conductance, leading to better learning performance than discrete-

time simulated low-precision networks. SPEED therefore helps to achieve a fully event-

based vision processing pipeline that can be integrated in resource-limited platforms such

robot vision, IoT edge monitoring/computing devices, etc.

98

CHAPTER 6

CONCLUSION

This thesis presents a methodology to implement and optimize feedforward-only SNN for

spatiotemporal data processing that is able to achieve performance similar to DNN with

high computation efficiency. The proposed network architecture of H-SNN combines spik-

ing neurons with heterogeneous dynamics within each network layer. With the design of

learned synapses and transferred synapses, the heterogeneous neurons are connected in a

way such that distinct memory pathways can be formed. The collection of distinct mem-

ory pathways enables the network to approximate mapping functions from input to output

spike sequences. We demonstrate H-SNN designs that can be trained with the biologically

inspired STDP unsupervised learning rule or the supervised BPTT training algorithm based

on stochastic gradient descent. The H-SNN architecture is demonstrated for both frame-

based and event-based data classification tasks, and an event-driven processing method

for event-based data is developed to improve the computation efficiency of the proposed

design.

In chapter 3, the architecture of H-SNN is presented. Neurons with heterogeneous

dynamics and cross-over connections between long-term and short-term neurons are used

to create distinct spike propagation paths, i.e. memory pathways, within the feedforward

network. The design of separating the learner module and the memory module in each

layer facilities STDP learning for the proposed architecture. With empirical studies, we

demonstrate H-SNN’s capability to learn from spatiotemporal datasets. We show that the

proposed design with unsupervised STDP learning can achieve performance on similar

level as DNN models while using less training labels.

In chapter 4, the theoretical basis is developed to provide support for the function ap-

proximation capability of feedforward SNN. Based on this, we prove that the use of multi-

99

ple neuron dynamics and skip-layer connections increases the upper bound of the number

of distinct memory pathways in H-SNN, thus improves the network’s capability to ap-

proximate input-output spike sequence mapping functions. An efficient Bayesian-based

algorithmic approach to optimize network structure and neuron parameters is developed

and used to optimize networks for different spatiotemporal learning tasks. Ablation stud-

ies demonstrate the effectiveness of implementing the proposed optimization process for

H-SNN. Comparison with baseline networks shows that the proposed design can achieve

higher performance than the state-of-the-art SNN baselines, while requiring less trainable

parameters.

In chapter 5, an event-driven processing pipeline of event-camera data, named SPEED,

is proposed for H-SNN. The event-driven STDP learning and inference methods signif-

icantly reduce computation cost and increase network throughput compared to regular

discrete-time simulation of SNN. It is also demonstrated that the SPEED method has im-

proved robustness for reduced-precision networks when the input is sparse. For hardware

implementations of event-driven SNN, this network learning/inference method facilitates

potential designs that have reduced requirement for computation resources, while main-

taining similar level of learning performance.

In summary, theoretical and empirical research is performed on using neurons with het-

erogeneous dynamics in feedforward SNN for spatiotemporal processing. Based on this,

the architecture of H-SNN is proposed and optimized. We show that H-SNN demonstrates

learning performance comparable to DNN while being more label efficient. With the pro-

posed processing method of SPEED implemented, the computation cost of using H-SNN

for event-based data processing can be significantly reduced.

Future Works The completed work was primarily focused on computer vision related

classification tasks and future works include designing H-SNN architecture for other com-

puter vision tasks such as object tracking and segmentation, and for other applications

100

such as natural language processing. Beside expanding the application domains, another

potential direction to explore both theoretically and empirically, is to investigate the gen-

eralization capability of H-SNN in comparison with DNN and other SNN models. The

event-based pipeline of SPEED has been designed for STDP learning and future work in

this aspect can include developing SPEED for BPTT training of H-SNN, which has shown

promising results in the spatiotemporal learning experiments. Another potential future de-

velopment is to further improve SPEED and the design of H-SNN aiming specifically for

low-precision simulations.

101

REFERENCES

[1] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[2] W. Gerstner and W. M. Kistler, “Mathematical formulations of hebbian learning,”
Biological cybernetics, vol. 87, no. 5-6, pp. 404–415, 2002.

[3] C. C. Bell, V. Z. Han, Y. Sugawara, and K. Grant, “Synaptic plasticity in a cerebellum-
like structure depends on temporal order,” Nature, 1997.

[4] J. C. Magee and D. Johnston, “A synaptically controlled, associative signal for Heb-
bian plasticity in hippocampal neurons,” Science, 1997.

[5] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine intelligence with
neuromorphic computing,” Nature, vol. 575, no. 7784, pp. 607–617, 2019.

[6] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of continuous-
valued deep networks to efficient event-driven networks for image classification,”
Frontiers in neuroscience, vol. 11, p. 682, 2017.

[7] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural
networks: Vgg and residual architectures,” Frontiers in neuroscience, vol. 13, p. 95,
2019.

[8] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in
2015 International Joint Conference on Neural Networks (IJCNN), ieee, 2015, pp. 1–
8.

[9] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Frontiers in neuroscience, vol. 10, p. 508, 2016.

[10] D. Huh and T. J. Sejnowski, “Gradient descent for spiking neural networks,” in Ad-
vances in Neural Information Processing Systems, 2018, pp. 1433–1443.

[11] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks with
force training,” Nature communications, vol. 8, no. 1, pp. 1–15, 2017.

[12] G. Srinivasan and K. Roy, “Restocnet: Residual stochastic binary convolutional
spiking neural network for memory-efficient neuromorphic computing,” Frontiers
in Neuroscience, vol. 13, p. 189, 2019.

102

[13] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep spiking convolutional
neural networks with stdp-based unsupervised pre-training followed by supervised
fine-tuning,” Frontiers in neuroscience, vol. 12, p. 435, 2018.

[14] B. DePasquale, M. M. Churchland, and L. Abbott, “Using firing-rate dynamics to
train recurrent networks of spiking model neurons,” arXiv preprint arXiv:1601.07620,
2016.

[15] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long short-
term memory and learning-to-learn in networks of spiking neurons,” in Advances in
Neural Information Processing Systems, 2018, pp. 787–797.

[16] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for deep contin-
uous local learning (decolle),” Frontiers in Neuroscience, vol. 14, p. 424, 2020.

[17] I. Marković, F. Chaumette, and I. Petrović, “Moving object detection, tracking and
following using an omnidirectional camera on a mobile robot,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE, 2014, pp. 5630–
5635.

[18] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory
tracking and collision avoidance for reliable outdoor deployment of unmanned aerial
vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2018, pp. 6753–6760.

[19] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotem-
poral features with 3d convolutional networks,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2015, pp. 4489–4497.

[20] J. Donahue et al., “Long-term recurrent convolutional networks for visual recogni-
tion and description,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 2625–2634.

[21] M. Weiler, F. A. Hamprecht, and M. Storath, “Learning steerable filters for rotation
equivariant cnns,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 849–858.

[22] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural
networks for object detection in vhr optical remote sensing images,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7405–7415, 2016.

[23] G. Gallego et al., “Event-based vision: A survey,” arXiv preprint arXiv:1904.08405,
2019.

103

[24] S. Liu, B. Rueckauer, E. Ceolini, A. Huber, and T. Delbruck, “Event-driven sensing
for efficient perception: Vision and audition algorithms,” IEEE Signal Processing
Magazine, vol. 36, no. 6, pp. 29–37, 2019.

[25] S. Afshar, A. P. Nicholson, A. van Schaik, and G. Cohen, “Event-based object de-
tection and tracking for space situational awareness,” IEEE Sensors Journal, vol. 20,
no. 24, pp. 15 117–15 132, 2020.

[26] G. Chen, L. Hong, J. Dong, P. Liu, J. Conradt, and A. Knoll, “Eddd: Event-based
drowsiness driving detection through facial motion analysis with neuromorphic vi-
sion sensor,” IEEE Sensors Journal, vol. 20, no. 11, pp. 6170–6181, 2020.

[27] D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-to-end learn-
ing of representations for asynchronous event-based data,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 5633–5643.

[28] B. Ramesh, H. Yang, G. Orchard, N. A. Le Thi, S. Zhang, and C. Xiang, “Dart:
Distribution aware retinal transform for event-based cameras,” IEEE transactions
on pattern analysis and machine intelligence, vol. 42, no. 11, pp. 2767–2780, 2019.

[29] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “Asynchronous convo-
lutional networks for object detection in neuromorphic cameras,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
2019, pp. 0–0.

[30] N. Messikommer, D. Gehrig, A. Loquercio, and D. Scaramuzza, “Event-based asyn-
chronous sparse convolutional networks,” in European Conference on Computer Vi-
sion, Springer, 2020, pp. 415–431.

[31] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” The Journal of physiology,
vol. 117, no. 4, pp. 500–544, 1952.

[32] R. Moreno-Bote and J. Drugowitsch, “Causal Inference and Explaining Away in a
Spiking Network,” Scientific Reports, 2015.

[33] B. J. Lansdell and K. P. Kording, “Spiking allows neurons to estimate their causal
effect,” bioRxiv, p. 253 351, 2019.

[34] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “Stdp-based
spiking deep convolutional neural networks for object recognition,” Neural Net-
works, vol. 99, pp. 56–67, 2018.

104

[35] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-
timing-dependent plasticity,” Frontiers in computational neuroscience, vol. 9, p. 99,
2015.

[36] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device variations
in a spiking neural network with memristive nanodevices,” IEEE Transactions on
Nanotechnology, vol. 12, no. 3, pp. 288–295, 2013.

[37] X. She, Y. Long, and S. Mukhopadhyay, “Improving robustness of reram-based spik-
ing neural network accelerator with stochastic spike-timing-dependent-plasticity,”
in 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019,
pp. 1–8.

[38] ——, “Fast and low-precision learning in gpu-accelerated spiking neural network,”
in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, 2019, pp. 450–455.

[39] Y. Amit and Y. Huang, “Precise capacity analysis in binary networks with multiple
coding level inputs,” Neural Computation, vol. 22, pp. 660–688, 2010.

[40] J. Brea, W. Senn, and J.-P. Pfister, “Matching recall and storage in sequence learning
with spiking neural networks,” Journal of neuroscience, vol. 33, no. 23, pp. 9565–
9575, 2013.

[41] W. Maass, “Fast sigmoidal networks via spiking neurons,” Neural computation,
vol. 9, no. 2, pp. 279–304, 1997.

[42] N. Iannella and A. D. Back, “A spiking neural network architecture for nonlinear
function approximation,” Neural Networks, vol. 14, no. 6, pp. 933–939, 2001.

[43] H. Torikai, A. Funew, and T. Saito, “Digital spiking neuron and its learning for
approximation of various spike-trains,” Neural Networks, vol. 21, no. 2, pp. 140–
149, 2008, Advances in Neural Networks Research: IJCNN ’07.

[44] E. Z. Farsa, S. Nazari, and M. Gholami, “Function approximation by hardware spik-
ing neural network,” Journal of Computational Electronics, vol. 14, no. 3, pp. 707–
716, 2015.

[45] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Frontiers in Neuroscience, vol. 10, p. 508, 2016.

[46] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-yolo: Spiking neural network for
energy-efficient object detection,” in Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 34, 2020, pp. 11 270–11 277.

105

[47] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for spiking neural
networks: Faster, larger, better,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 1311–1318.

[48] A. Safa et al., “Improving the accuracy of spiking neural networks for radar ges-
ture recognition through preprocessing,” IEEE Transactions on Neural Networks and
Learning Systems, 2021.

[49] B. Han, G. Srinivasan, and K. Roy, “Rmp-snn: Residual membrane potential neuron
for enabling deeper high-accuracy and low-latency spiking neural network,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2020.

[50] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4510–4520.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[52] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[53] R. Zhang, “Making convolutional networks shift-invariant again,” in International
Conference on Machine Learning, 2019, pp. 7324–7334.

[54] A. Azulay and Y. Weiss, “Why do deep convolutional networks generalize so poorly
to small image transformations?,” 2018.

[55] M. A. Khoei, A. Yousefzadeh, A. Pourtaherian, O. Moreira, and J. Tapson, “Spar-
net: Sparse asynchronous neural network execution for energy efficient inference,”
in 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), IEEE, 2020, pp. 256–260.

[56] E. De Kloet and J. Reul, “Feedback action and tonic influence of corticosteroids on
brain function: A concept arising from the heterogeneity of brain receptor systems,”
Psychoneuroendocrinology, vol. 12, no. 2, pp. 83–105, 1987.

[57] R. C. Gupta, “Brain regional heterogeneity and toxicological mechanisms of organophos-
phates and carbamates,” Toxicology mechanisms and methods, vol. 14, no. 3, pp. 103–
143, 2004.

106

[58] Y.-L. Tan, Y. Yuan, and L. Tian, “Microglial regional heterogeneity and its role in
the brain,” Molecular psychiatry, vol. 25, no. 2, pp. 351–367, 2020.

[59] X. She, S. Dash, D. Kim, and S. Mukhopadhyay, “A heterogeneous spiking neural
network for unsupervised learning of spatiotemporal patterns,” Frontiers in Neuro-
science, vol. 14, p. 1406, 2021.

[60] O. Köpüklü, N. Kose, A. Gunduz, and G. Rigoll, “Resource efficient 3d convolu-
tional neural networks,” in 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), IEEE, 2019, pp. 1910–1919.

[61] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for
training high-performance spiking neural networks,” Frontiers in neuroscience, vol. 12,
p. 331, 2018.

[62] P. Panda, S. A. Aketi, and K. Roy, “Toward scalable, efficient, and accurate deep
spiking neural networks with backward residual connections, stochastic softmax,
and hybridization,” Frontiers in Neuroscience, vol. 14, 2020.

[63] A. Amir et al., “A low power, fully event-based gesture recognition system,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243–7252.

[64] G. Xia et al., “DOTA: A large-scale dataset for object detection in aerial images,”
CoRR, vol. abs/1711.10398, 2017. arXiv: 1711.10398.

[65] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P. Cunningham,
“Bayesian optimization with inequality constraints.,” in ICML, vol. 2014, 2014,
pp. 937–945.

[66] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image
datasets to spiking neuromorphic datasets using saccades,” Frontiers in Neuroscience,
vol. 9, p. 437, 2015.

[67] D. Salaj, A. Subramoney, C. Kraišniković, G. Bellec, R. Legenstein, and W. Maass,
“Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons,” bioRxiv, 2020. eprint: https : / /www.biorxiv.org /content / early /
2020/05/12/2020.05.11.081513.full.pdf.

[68] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman, “Hats: His-
tograms of averaged time surfaces for robust event-based object classification,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018,
pp. 1731–1740.

107

https://arxiv.org/abs/1711.10398
https://www.biorxiv.org/content/early/2020/05/12/2020.05.11.081513.full.pdf
https://www.biorxiv.org/content/early/2020/05/12/2020.05.11.081513.full.pdf

[69] X. She and S. Mukhopadhyay, “Speed: Spiking neural network with event-driven
unsupervised learning and near-real-time inference for event-based vision,” IEEE
Sensors Journal, vol. 21, no. 18, pp. 20 578–20 588, 2021.

[70] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240× 180 130 db 3
µs latency global shutter spatiotemporal vision sensor,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 10, pp. 2333–2341, 2014.

[71] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 db 15 µs latency asyn-
chronous temporal contrast vision sensor,” IEEE Journal of Solid-State Circuits,
vol. 43, no. 2, pp. 566–576, 2008.

[72] T. Delbruck and P. Lichtsteiner, “Fast sensory motor control based on event-based
hybrid neuromorphic-procedural system,” in 2007 IEEE International Symposium
on Circuits and Systems, 2007, pp. 845–848.

[73] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and high dynamic
range video with an event camera,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pp. 1–1, 2019.

[74] G. Chen et al., “A novel visible light positioning system with event-based neuro-
morphic vision sensor,” IEEE Sensors Journal, vol. 20, no. 17, pp. 10 211–10 219,
2020.

[75] Y. Xing, G. Di Caterina, and J. Soraghan, “A new spiking convolutional recurrent
neural network (scrnn) with applications to event-based hand gesture recognition,”
Frontiers in Neuroscience, vol. 14, p. 1143, 2020.

[76] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

[77] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. Veidenbaum, “Effi-
cient simulation of large-scale spiking neural networks using cuda graphics proces-
sors,” in 2009 International Joint Conference on Neural Networks, 2009, pp. 2145–
2152.

[78] W. W. Lytton and M. L. Hines, “Independent variable time-step integration of indi-
vidual neurons for network simulations,” Neural computation, vol. 17, no. 4, pp. 903–
921, 2005.

[79] F. Naveros, J. A. Garrido, R. R. Carrillo, E. Ros, and N. R. Luque, “Event- and time-
driven techniques using parallel cpu-gpu co-processing for spiking neural networks,”
Frontiers in Neuroinformatics, vol. 11, p. 7, 2017.

108

[80] D. Pecevski, D. Kappel, and Z. Jonke, “Nevesim: Event-driven neural simulation
framework with a python interface,” Frontiers in neuroinformatics, vol. 8, p. 70,
2014.

[81] R. Massa, A. Marchisio, M. Martina, and M. Shafique, “An efficient spiking neu-
ral network for recognizing gestures with a dvs camera on the loihi neuromorphic
processor,” arXiv preprint arXiv:2006.09985, 2020.

[82] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,”
arXiv preprint arXiv:1810.08646, 2018.

[83] F. Paredes-Vallés, K. Y. W. Scheper, and G. C. H. E. De Croon, “Unsupervised learn-
ing of a hierarchical spiking neural network for optical flow estimation: From events
to global motion perception,” IEEE transactions on pattern analysis and machine
intelligence, 2019.

[84] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C. Liu, “Ro-
bustness of spiking deep belief networks to noise and reduced bit precision of neuro-
inspired hardware platforms,” Frontiers in neuroscience, vol. 9, p. 222, 2015.

[85] S. R. Kulkarni and B. Rajendran, “Spiking neural networks for handwritten digit
recognition—supervised learning and network optimization,” Neural Networks, vol. 103,
pp. 118–127, 2018.

[86] H. Jang, N. Skatchkovsky, and O. Simeone, Bisnn: Training spiking neural networks
with binary weights via bayesian learning, 2020. arXiv: 2012.08300 [cs.LG].

[87] S. Lu and A. Sengupta, “Exploring the connection between binary and spiking neural
networks,” Frontiers in Neuroscience, vol. 14, p. 535, 2020.

109

https://arxiv.org/abs/2012.08300

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Thesis Contribution
	Thesis Organization

	2 | Background
	Spiking Neural Network
	Deep Convolutional Neural Network
	Spatiotemporal Data Processing

	3 | Spiking Neural Network with Heterogeneous Neuron Dynamics
	Overview
	H-SNN Simulation Platform
	The Proposed H-SNN Architecture
	Results
	Summary

	4 | Sequence Approximation Using Feedforward-only SNN
	Motivation: Experiments on H-SNN Configuration and Performance
	Approximation Theory of Feedforward SNN
	Network Structure and Memory Pathways
	Time-varying Function Approximation
	H-SNN Optimization Using Approximation Theory
	Dual-search-space Bayesian Optimization
	Experiments
	Network Spiking Activity
	Summary

	5 | Event-driven SNN Processing of Spatiotemporal Data
	Background on Event-based Spatiotemporal Data Processing
	The Proposed Event-driven SNN Processing Method
	Experimental Details and Results
	Low-precision Networks
	Summary

	6 | Conclusion
	References

