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SUMMARY

In this thesis we consider the broad field of simulation of barrier-hitting and extreme

events events of stochastic processes. Our focus is on the analysis of the efficiency and

accuracy of these simulation methods; especially, we are interested in providing theoretical

mathematical guarantees for efficiency and accuracy. Loosely speaking, efficiency of a

simulation algorithm is related to the time the algorithm requires to produce an output

sample; and accuracy relates to how close is the distribution of the output of the algorithm,

compared to the “true” or “target” distribution of the event intended to sample. A third

topic that permeates all aspects of this thesis, although mildly, is the simulation of reflected

processes, which is usually done by simulating the extremes of a “free” or “unreflected”

process. We now give a brief description of the parts of this thesis.

In Chapter 1 we give a general overview of Chapters 2 and 3 of this thesis. We argue that

the overarching theme connecting them is the study of efficiency and accuracy of methods

for the simulation of barrier-hitting events, extreme events, or events of reflected processes.

In Chapter 2 we consider heavy-tailed random walks with negative drift, and study the

simulation of paths of the random walk up to the first time it crosses a fixed positive barrier.

We consider the framework of exact sampling algorithms that use the change of measure

technique; in particular, with this technique the simulated barrier-hitting paths are unbiased

or completely accurate. As a consequence, our work in Chapter 2 is mostly concerned with

the study of efficiency of these methods. For that, we propose a framework to evaluate how

efficient is a change of measure for the simulation of barrier-hitting paths with the change

of measure technique. We apply this framework to evaluate the efficiency of the change of

measure of Blanchet and Glynn [1] when the random walk step sizes have regularly varying

right tails, say with tail index α > 1, and lighter left tails. We study this particular change

of measure because it has been a successful measure for the sampling of rare events for

heavy-tailed random walks with Importance Sampling. Our main contributions of Chap-
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ter 2 are the following. First, for a requirement characterizing how much more likely the

change of measure is to sample a barrier-hitting path, the Blanchet-Glynn change of mea-

sure is efficient only when the tail index α is in (1, 3/2); in particular this is the regime of

heaviest tails. Second, for a requirement quantifying the expected number of steps needed

to sample a barrier-hit with the Blanchet-Glynn change of measure, we show that the ex-

pected number of steps is infinite for α in (1, 3/2). In particular, the latter result corrects a

non-central result of [1]. We also discuss that the value α = 3/2 has arisen as a threshold

for efficiency criteria in other related algorithms for random walks with regularly varying

right tails, which raises the question of how precisely are these works connected. We re-

mark that the work in Chapter 2 was originally motivated by the design of an algorithm for

exact sampling of stationary reflected processes.

In Chapter 3 of this thesis we derive weak limits related to the discretization errors

of sampling barrier-hitting and extreme events of Brownian motion by using the Euler

discretization simulation method. In detail, we consider the Euler discretization approxi-

mation of Brownian motion to sample barrier-hitting events, i.e. hitting for the first time

a deterministic “barrier” function; and to sample extreme events, i.e. attaining a minimum

on a given compact time interval or unbounded closed time interval. For each case we

study the discretization error between the actual time the event occurs versus the time the

event occurs for the discretized path, and also the discretization error on the position of

the Brownian motion at these times. We show that if the step-size of the time mesh is 1/n

then in each of the three aforementioned events the discretization error for the times con-

verges at rate O(1/n) and the error for the position of the Brownian motion converges at

rate O(1/
√
n). We show limits in distribution for the discretization errors normalized by

their convergence rate, and give closed-form analytic expressions for the limiting random

variables. Additionally, we use these limits to study the asymptotic behavior of Gaussian

random walks in the following situations: (1.) the overshoot of a Gaussian walk above a

barrier that goes to infinity; (2.) the minimum of a Gaussian walk compared to the mini-
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mum of the Brownian motion obtained when interpolating the Gaussian walk with Brow-

nian bridges, both up to the same time horizon that goes to infinity; and (3.) the global

minimum of a Gaussian walk compared to the global minimum of the Brownian motion

obtained when interpolating the Gaussian walk with Brownian bridges, when both have the

same positive drift decreasing to zero. In deriving these limits in distribution we provide

a unified framework to understand the relation between several papers where the constant

−ζ(1/2)/
√

2π has appeared, where ζ is the Riemann zeta function. In particular, we show

that this constant is the mean of some of the limiting distributions we encounter.
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CHAPTER 1

INTRODUCTION

In this thesis we consider a classical theme in the field of Applied Probability and Com-

putational Probability: the simulation of barrier-hitting events of stochastic processes, and

also the simulation of extreme events of stochastic processes. That is, algorithms that sim-

ulate the stochastic process up to the time where a minimum or maximum (local or global)

is attained; or up to the first time it hits a certain deterministic barrier; respectively. Specif-

ically, we are interested in mathematical guarantees for efficiency and accuracy of these

type of simulation algorithms.

We focus on stochastic processes which evolve in time is as follows: the process transi-

tions between “states” as time passes by; transitions between states consists of the addition

of an uncertain quantity to the current state of the system; and each transition is indepen-

dent of both the current state of the process and current time. Two fundamental cases can

be distinguished: the discrete time case where the transitions between states are made at

discrete time steps, i.e., there is a “first” transition time, a “second” one, and so on; and

the continuous time case, where the transitions between states can occur at each of a set of

“infinitesimally small” time steps.

To further clarify the aforementioned additive property of the stochastic processes we

consider, we focus on processes such that, intuitively speaking, there is a random quantity

that is added to the current state of the process at each elapsed time step. This property

can be conceptually harder to conceive in the continuous case than in the discrete case,

since in the former the transitions occur at infinitesimal time steps. Nonetheless, the so-

called Functional Central Limit theorem and its generalizations show that the continuous

time case can be obtained by properly “zooming-out” in time-space from a discrete time

stochastic process satisfying the additive property.
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We work with discrete- and continuous-time processes which, implicitly, can be effi-

ciently simulated over finite time horizons. That is, we will assume that we have at hand

an algorithm such that, given any finite time horizon, the algorithm efficiently produces

sample paths over some or all of the specified finite time horizon. Moreover, we will either

assume that the algorithm is exact, meaning that the output of the algorithm has the desired

stochastic process distribution; or will assume that it is arbitrarily accurate, meaning the

output is distributed arbitrarily close, in some sense, to the distribution of the stochastic

process. In either case, we focus on analyzing the efficiency and accuracy of simulating

barrier-hitting or extreme events, given a simulation algorithm to sample the process with

a given accuracy.

Simulation of barrier-hitting events and of extreme events. In this thesis we study the

efficiency and accuracy of simulation algorithms that simulate either barrier-hitting events

or extreme events. We now give a loose description of such events.

We call simulation of barrier-hitting events of a stochastic process the simulation of

the process up to the first time it crosses a certain deterministic barrier. Examples can be

simulation of the wear of a production machine up to the first time it crosses a certain wear

threshold determined by quality or security purposes; or simulation of a weather forecast

model up to the first time the global temperature surpasses a critical ecological threshold.

On the other hand, we call simulation of a stochastic process up to its extreme the sim-

ulation of the process up to the first time it attains a minimum or maximum of the process,

either on a bounded predefined time interval, or on an unbounded interval. Examples can

be simulation of a stock price model up to the maximum price in a given time horizon; or

simulation of a queue up to the first time the queue attains its maximum length.
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1.1 Overarching themes.

In this section we discuss the three main themes overarching this thesis, which are the

following:

1. the efficient and accurate simulation of barrier-hitting events and extreme events of

stochastic processes;

2. the tight relation between the simulation of extreme events and the simulation of

barrier-hitting events;

3. the tight relation between the simulation of reflected processes and the simulation of

extreme events.

In the following sections we further explain each of these points.

1.1.1 Efficient and accurate simulation of barrier-hitting events and extreme events

The first overarching theme of our work is that we devise theoretical guarantees of the

efficiency and accuracy of algorithms that simulate either barrier-hitting events or extreme

events. We now go through the basic challenges that affect both the efficiency and accuracy

of these type of algorithms.

A first challenge is related to the inability to simulate continuous-time stochastic pro-

cesses, so hitting times or times of extremes may not be determined by simple inspection

of a simulated path. Indeed, because of the discrete nature of computers, simulation of

stochastic processes is limited to simulate and store only discrete objects. Therefore any

simulation procedure can only output the state of the path at a finite number of time in-

stants. Then, it can happen that with high probability the actual hitting time or time of

extreme will never be sampled.

A second challenge is that a simulation procedure may be unable to detect that an event

will ever occur in the simulation run it is producing. This can occur, for instance, when
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the barrier intended to cross is actually never going to be crossed in a path realization. If

the simulation algorithm is unable to detect this then it may never stop and therefore not

produce output.

A third challenge is that to sample extrema over unbounded time horizons the simu-

lation procedure needs to take into account information of the infinite horizon. Therefore

a naive simulation algorithm may introduce a bias in the output by stopping a simulation

without having guarantees that further extremes will not be attained if the simulation run

would instead continue.

A fourth challenge is that computer simulation is limited to work with floating point

arithmetic, which presents its own limitations; see [2] for a classical survey on the topic.

Nonetheless, in this thesis we will not consider this particular aspect of the problem and

make the blunt assumption that computers actually have infinite precision to simulate real

numbers.

All in all, the design of an accurate and efficient simulation algorithm to sample extrema

or barrier-hitting events presents various non-trivial challenges.

1.1.2 Connection of simulation of barrier-hitting events and simulation of extreme events

The second overarching theme in this thesis is that the simulation of barrier-hitting events

of a stochastic process is tightly related to the simulation of its extreme events. We now

give a brief overview of how the simulation of these two events are connected, and how it

appears in our work.

The most basic connection between barrier-hitting events and extreme events is the

following loosely stated duality relation in the case of processes taking values in R: the

maximum of a process up to a certain time, say t, is greater than a certain value, say b,

if and only if the barrier b has been hit (or up-crossed) by time t. This holds under fairly

general conditions on the regularity of the paths of the stochastic process. Consequently,

to simulate an event where the maximum of the process is greater than b by time t, it is
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enough to simulate an event where the process hits (or up-crosses) the barrier b by time t,

and vice versa.

The aforementioned basic duality relation for simulation can be generalized to simu-

late more general extreme events and for more general processes. We now mention a few

examples in the line of unbiased or exact sampling. Ensor and Glynn [3] simulate without

bias the global maximum of a light-tailed random walk by simulating a certain barrier-

crossing event. Blanchet and Sigman [4] extend the latter work to sample without bias not

only the maximum but also the path of the process up to the time at which it attains the

maximum; they do this by sampling without bias barrier-hitting paths for certain barriers.

Blanchet and Chen [5] further extend this idea to sample paths up to certain extreme events

in multiple dimensions by sampling a certain high-dimensional barrier. Overall, these ex-

amples suggest that, in some generality, the simulation of extreme-type events usually can

be addressed through simulating barrier-hitting-type events.

We now highlight, in broad terms, how some parts in this thesis use, explore, or were

motivated by the connection between simulation of barrier-hitting events and simulation of

extreme events.

The initial motivation of the work in Chapter 2 was to devise an algorithm for exact

sampling of a process up to its maximum. To do this we followed the lines of Blanchet and

Sigman [4] and Blanchet and Chen [5], who devise algorithms for exact sampling of barrier-

hitting-type events. The latter, in turn, was the essential motivation for our definition and

study of the efficiency for conditional sampling of a change of measure for exact sampling;

see Section 2.2 for further details.

In Chapter 3 we delve in a further relation between barrier-hitting and extreme events.

There, we derive limiting distributions for the normalized Euler discretization error when

estimating both barrier-hitting and extreme events. Even though both expressions are dif-

ferent, remarkably their mean agree and its value is a constant that has appeared several

times in the literature; see Section 3.3.1 for further details.
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1.1.3 Connection of simulation of extreme events and simulation of reflected processes

A third overarching theme in this thesis is that the simulation of extreme events is closely

related to the simulation of reflected processes.

Loosely speaking, a reflected processes is obtained by applying to the stochastic process

a reflection mechanism in the boundary of a pre-specified domain of the state space of the

process. We remark, though, that the term “reflection” can be misleading and counterintu-

itive, since the reflection mechanism that is applied is, generally, different from the notion

of normal light reflection that we physically observe in mirrors and the like. It usually

holds that the reflected process can be obtained by applying a deterministic (non-random)

mapping, the “reflection mapping”, to an unconstrained or free stochastic process.

As an example, we now show the reflected process obtained by applying a normal

reflection to a one-dimensional random walk when it gets to the negative orthant. Denote

the random walk by X = (Xn)n∈N and assume it starts from zero, X0 := 0; we say that

X is the free process. The reflected version of X when it gets to the negative orthant, say

Γ = (Γn)n∈N, is defined as

Γn := Xn − min
0≤k≤n

Xk,

for all n ∈ N. We remark that the latter formula is the first materialization of this part’s

theme: the joint simulation of Xn and its reflection Γn is equivalent to the joint simulation

of Xn and the extreme min0≤k≤nXk.

More generally, reflected processes are ubiquitous objects in Applied Probability. One

of the most basic examples in this field is the waiting time of a customer in a single server

queue. Indeed, the waiting time of a customer in a single server queue can be expressed

using Lindley’s recursion. Solving the recursion expresses the waiting time as the reflection

mapping of a random walk; more specifically, the random walk of service times minus

inter-arrival times. See Section 5.6 of Asmussen [6] for further details.

In simulation, the following are some examples of works using sampling of extreme
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events to sample reflected processes. Blanchet and Chen [5] obtain unbiased samples of

stationary reflected Brownian motion in multiple dimensions by sampling paths up to an

extreme event of the “free” Brownian motion. Blanchet and Sigman [4] and Blanchet and

Wallwater [7] obtain unbiased samples of one-dimensional reflected processes in stationar-

ity when the free process is a random walk, the former for the light-tailed version and the

latter for the heavy-tailed.

On a slightly different vein, Asmussen et al. [8] study the error of sampling one-

dimensional reflected Brownian motion using an Euler discretized approximation. They

derive weak convergence results for the error normalized by its convergence rate. In Chap-

ter 3 we extend the work of Asmussen et al. [8] to also study the discretization error of

the drift-derivative of reflected Brownian motion. We show that studying the discretization

error of the drift-derivative is equivalent to studying the discretization error of the time at

which extremes are attained. See Section 3.2.2 for further details.

1.2 Summary and main contributions

In this section we give an overview of the research contained in this thesis and highlight

their main contributions. In Section 1.2.1 we give an overview of Chapter 2, where we con-

sider an algorithm for exact sampling of barrier-hitting events and study its efficiency. The

stochastic process treated is on discrete time and the one-setp increments are heavy-tailed.

Then, in Section 1.2.2 we give an overview of Chapter 3, where we consider the Euler

discretization approach to simulate continuous-time stochastic processes, and study the ac-

curacy of simulating barrier-hitting and extreme events using this approach. The stochastic

process treated is Brownian motion, which is the canonical continuous-time stochastic pro-

cess.
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1.2.1 Efficiency of conditional sampling for heavy-tailed random walks

In this section we give a summary of Chapter 2. There we study the efficiency of exact or

unbiased sampling of barrier-hitting events when using the change of measure technique.

We propose a framework to study the efficiency of a specific change of measure and apply

it to the particular case of random walks with heavy-tailed one-step increments.

Setup. In Chapter 2 we consider a random walk, which is a discrete-time stochastic pro-

cess of the form S = (Sn)n∈N where for all n

Sn :=
n∑
k=1

Xk,

with S0 := 0, where (Xk)k∈N is a collection of independent real random variables having

the same distribution. We assume that the mean EXk is finite and strictly negative.

Given a fixed barrier-level b > 0 we consider the problem of simulating random walk

paths up to the first time that the walk S goes above the barrier b, conditional on the barrier

being eventually hit. Indeed, since EXk < 0 and b > 0 the probability that S goes above

b is strictly positive but also strictly less than one. Moreover, the probability that S hits

b decreases as the level b grows; thus, the event of hitting b is considered a rare event.

For simulation purposes, this means that in a straightforward sequential simulation run the

event may or may not occur.

Framework. We study the case where the random walk increments Xk are heavy-tailed,

meaning that for all λ > 0 it holds P(Xk > t)/e−λt → ∞ as t → ∞. That is, as t grows,

the tail probability P(Xk > t) decays slower than any decaying exponential function. We

focus in the particular case where the increments Xk have a regularly varying right tail;

intuitively speaking this means that, for large t, the right tail P(Xk > t) roughly behaves

like C/tα, for some strictly positive constants α and C.

We consider simulation procedures for exact sampling of the rare event, that is, that
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produce unbiased samples of the rare event, and that attain this by using the change of

measure technique. One such method is the Acceptance-Rejection algorithm; a related

method but for rare-event probability estimation is Importance Sampling. The idea of the

change of measure technique is that to sample an event of interest from a “target” distribu-

tion one instead considers an “alternative” or “proposal” distribution from which to sample

from. In the Acceptance-Rejection algorithm, for instance, theoretical conditions, if sat-

isfied, guarantee that the proposed samples are indeed distributed according to the target

distribution.

We propose a framework to analyze whether a change of measure is efficient in produc-

ing samples of the rare event. This framework consists of three conditions on the new, pro-

posed, change of measure: whether it samples the rare event with probability one; whether

with the change of measure any measurable subset of the rare event is sampled with higher

probability than with the original measure; and whether the number of step-sizes needed to

sample the rare event grows “in a reasonable way” as the barrier to be crossed grows.

Objectives. The main objective of the work shown in Chapter 2 is to study the efficiency,

according to our proposed framework, of the change of measure proposed by Blanchet and

Glynn [1], when applied for sampling heavy-tailed random walks that cross over an arbi-

trary barrier b. We study this change of measure because it proved to be very important for

the problem of rare-event probability-estimation with Importance Sampling.

Relevance. Rare events of heavy-tailed processes is a topic which has received much at-

tention from the Applied Probability field and community in the last two decades. Reasons

range from modeling to theoretical ones.

A first reason is that heavy-tailed processes are used to model several important phe-

nomena in sciences, business and engineering. Some examples are traffic in telecommu-

nications [9], stock options in finance [10], natural disasters in insurance and risk [11], to

name just a few.

9



A second reason is that barrier-crossing events of heavy-tailed processes occur in struc-

turally different forms than in the light-tailed case. Loosely speaking, in the light-tailed

case a barrier cross occurs because all steps leading to the event make a small contribution

to cross the barrier, see Heidelberger [12]. In contrast, in the heavy-tailed case it is known

that a barrier cross occurs because only one or a few increments are very large, while the

others make no special contribution to take the process above the barrier; see Rhee [13].

From a simulation perspective, the aforementioned structural difference between barrier-

crossing events of light- and heavy-tailed processes translates into both processes needing

very different approaches. While the simulation in the light-tailed case is pretty much

solved by exponential tilting, see Heidelberger [12], in the heavy-tailed case it is not clear

which is the best simulation approach.

A third reason for studying the simulation of barrier-crossing events is that they are

key in simulating extreme events and reflected processes. Both these objects are of their

own practical and theoretical interest, which reinforces the importance of studying barrier-

crossing events.

A fourth reason that makes relevant our work is that the regularly varying distributions

are, in a sense, the canonical choice of heavy-tailed distributions. Indeed, regularly varying

distributions have a very rich structure which makes their study easier. Moreover, the clean

and insightful treatment that they allow some times lead to extending results to broader

families of heavy-tailed processes.

Main contributions. The main objective in Chapter 2 is to determine if the change of

measure of Blanchet and Glynn [1] can be efficient for exact sampling of heavy-tailed

random walks given a barrier-crossing rare event. The Blanchet-Glynn measure is designed

to approximate such a conditional distribution, so one might therefore expect an answer to

this question in the affirmative. Surprisingly, we answer this question by and large in the

negative: this measure cannot be used for conditional sampling unless the tails are very
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heavy.

A central contribution in Chapter 2 is that we reveal an intriguing dichotomy on the

efficiency of conditional sampling under the Blanchet-Glynn measure: this measure is ef-

ficient for the requirement of sampling all subsets of the barrier-crossing event with higher

probability than the original measure, if and only if the tail index is below the threshold

3/2. This roughly implies that only the heaviest tails can be efficient in this setting, which

is counterintuitive as heavier tails typically make problems harder. Also, it is noteworthy

that the value 3/2 for the threshold of efficiency is not directly connected to the existence

of integer moments for the step size distribution.

We highlight the fact that the critical tail index 3/2 for regularly varying step-sizes

has already appeared in other simulation works as a threshold for efficiency. Indeed,

Blanchet and Liu [14], and Blanchet, Juneja and Murthy [15] show that their respective

proposed changes of measure are efficient for Importance Sampling only for α > 3/2.

Remarkably, there is no unified explanation as to why the same threshold appears in these

works and ours, especially since the three studies are different. Indeed, the changes of

measure proposed in [14] and in [15] are not directly related to the Blanchet-Glynn change

of measure we analyze; the problem they treat (probability estimation) is different from

ours (exact sampling); their efficiency criterion is different from ours; and they show that

heavier tails are inefficient, while we obtain that heavier tails are efficient for the criterion

of sampling subsets of the rare event with higher probability than the original measure. Our

work thus highlights the importance of studying what makes special the value 3/2 for the

tail index α.

A further contribution of our work is that it corrects Proposition 4 of Blanchet and

Glynn [1]. This result establishes that expected hitting time to a barrier b time grows

linearly in b as b → ∞ for all α > 1; in contrast we show that this is not true for α ∈

(1, 3/2) but is true for α > 2.
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1.2.2 Weak convergence of some Euler discretization errors of Brownian motion

In this section we give an overview of the work shown in Chapter 3. In short, Chapter 3 con-

siders sampling barrier-hitting and extreme events of Brownian motion using a discretized

version of the Brownian motion. We give the rates of convergence of the resulting errors

and also give closed-form analytical expressions for the limiting normalized errors. We

also translate the weak convergence results into weak limits of Gaussian random walks. In

doing the latter, we clarify the relation between several loosely connected works in the liter-

ature where the constant ζ(1/2)/
√

2π has appeared, where ζ is the Riemann zeta function;

see Janssen and van Leeuwaarden [16] for a survey on works where this constant appears.

Setup. In Chapter 3 we consider a Brownian motion B with constant drift and strictly

positive variance. In the driftless case with unit variance, so-called standard Brownian

motion in R can be defined as the only continuous-time process starting from zero at time

zero, having almost surely continuous paths, having independent increments, and having

B(t) − B(s), any t > s ≥ 0, distributed as a normal random variable with mean zero and

variance t − s. We are broadly interested in simulating barrier-hitting events and extreme

events of Brownian motion.

In general, simulation of Brownian motion is a challenging problem. Indeed, it is

a continuous-time stochastic process characterized by its self-similar structure, which is

called Brownian scaling. In contrast, computers can only simulate and store discrete and

finite objects. Therefore, simulation of Brownian motion will almost always be inaccurate,

except for a few especially structured collection of events where Brownian motion can be

simulated without bias, see e.g. Devroye [17] for a survey on such special cases.

We consider the Euler discretization approach to simulate Brownian motion, which

we describe next. For a strictly positive integer n we first consider the regular time mesh

Z+/n := {0, 1/n, 2/n, . . .}. The vector {B(0), B(1/n), B(2/n), . . .} is a Gaussian

random walk, i.e., a random walk with Gaussian iid increments, so in particular it is easily
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sampled without bias. Consequently, a possible approximation of the Brownian motion of

B = (B(t) : t ∈ R+) is to take the piecewise constant path Bn := (Bn(t) := B(bntc/n) :

t ∈ R+). We call Bn the Euler discretization approximation of B on the mesh Z+/n.

The Euler discretization approximation of Brownian motion is the easiest method to

simulate Brownian motion, since it is straightforward to produce and to store finite-time

samples of it. This makes it the most attractive approach for practitioners. Additionally,

in some situations there are physical real-world constraints that makes it the most sensible

approach to take, for instance in stock-pricing in finance, in situations where the stock price

can only be monitored at regular time intervals, see e.g. Broadie et al. [18, 19].

Our work in Chapter 3 was initially motivated by the study of simulating multidimen-

sional reflected Brownian motion (RBM) using an Euler discretization approach along the

lines of Asmussen et al. [8]. In short, RBM can usually be considered as a determinis-

tic pathwise mapping, a reflection mapping, acting on paths of an unconstrained, “free”,

Brownian motion. This reflection mapping in particular involves the local minima up to

each time. With this, a possible simulation procedure of RBM is to take the reflection map-

ping of the Euler discretization of the “free” Brownian motion; however, such approach

should inherit the inaccuracies of the Euler discretization of extremes of Brownian motion.

An analogous situation occurs when simulating the drift derivative of RBM, which roughly

consists on an sensitivity analysis on the drift of RBM. In this case, we show in Chap-

ter 3, the Euler discretization error of the drift derivative of RBM is directly related to the

discretization error of the time at which extremes are attained.

Problem studied. We broadly consider the problem of, for Brownian motion, simulating

barrier-hitting times and events, and also simulation of extreme events and their times.

More specifically, we consider a deterministic barrier function, say b := (b(t) : t ∈ R+)

with b(0) > B(0), and consider the hitting-time

τb := inf {t ≥ 0 : B(t) ≥ b(t)} .
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We wish to simulate τb in the case when τb <∞ holds. For that, we approximate the hitting

time τb by taking its counterpart on the Euler discretization Bn, i.e.,

τnb := inf {t ≥ 0 : Bn(t) ≥ b(t)} .

A similar approximation can be used for the time of minimum or maximum when it is

finite, either over bounded or unbounded time intervals.

A caveat of the Euler discretization approach is that it is especially prone to error.

Indeed, in the barrier hitting case, with probability one the barrier will not be hit on a point

in the regular mesh Z+/n for any n. The same problem occurs in the case of simulation of

extremes. This motivates the study of the error incurred when sampling barrier-hitting and

extreme events by taking their corresponding counterpart for the Euler discretization.

Our work is also motivated by the fact that results about the Euler discretization er-

ror of Brownian motion can be translated into convergence results of Gaussian random

walks. Indeed, using the Brownian scaling property of Brownian motion it holds that for

a standard Brownian motion W , for all strictly positive n the sequence (
√
nW (t) : t ∈

{0, 1/n, 2/n, . . .}) has the same distribution as (W (t) : t ∈ {0, 1, 2, . . .}). In Section 3.3

we exploit this relationship to derive convergence results of Gaussian walks.

Objective. Inspired by the inaccuracy issues of the Euler discretization approach to sim-

ulate Brownian motion, the objective of our work in Chapter 3 is to study the convergence

of the errors tn − t∗ and Bn(tn)− B(t∗), where t∗ is either a barrier-hitting time or a time

where an extreme is attained, and tn is the corresponding time for the Euler discretization

on the regular mesh Z+/n. We are interested in the convergence to zero of these errors, the

rate at which they converge, and the convergence in distribution of the errors normalized

by their convergence rate to zero.

Main contributions. The main contributions of Chapter 3 are the following.
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We show that the errorB(t∗)−B(tn) converges to zero at rateO(1/
√
n) as n→∞, and

the error t∗− tn converge to zero at rate O(1/n). Here, t∗ is either a barrier hitting time for

continuously differentiable and non-decreasing barrier; or a time of maxima over a compact

time interval; or maxima over an unbounded time interval; and tn is its corresponding time

for the Euler discretization on the regular mesh Z+/n.

We also show that the normalized errors
√
n(B(t∗) − B(tn)) and n(t∗ − tn) converge

in distribution, and we give analytical expressions in closed form for the limiting random

variables. In the particular case where t∗ is the time of minimum over a compact time

interval, our work extends the one of Asmussen et al. [8], which analyzes the error of

simulating one-dimensional RBM by using an Euler discretization scheme. In Section 3.2.1

we argue that our Theorem 3 extends [8, Theorem 1] to include the discretization error of

the drift derivative of RBM.

We also obtain weak convergence results for Gaussian walks, related to barrier-hitting

events and extreme events. These are derived as corollaries of the Euler discretization error

results. This simple derivation allows in particular to clarify the connection between several

works in the literature, theoretical [16] and applied [18], where the quantity ζ(1/2)/
√

2π

has appeared by reasons that are unclear; see Janssen and van Leeuwaarden [16].

Another contribution of our work is that we establish convergence in distribution of

Brownian motion when “zoomed-in” about either a barrier-hitting time or a time of ex-

tremes. The limiting two-sided process consists of either a Brownian motion and a Bessel(3)

process attached end-to-end in the barrier-hitting case, or a two-sided Bessel(3) processes

attached end-to-end in the extremes case. Moreover, we show that this weak convergence

holds for the weighted supremum norm, see [20, Section 11.5.2], which is a stronger topol-

ogy than the usual topology of uniform convergence over compact sets. This result has

the potential of facilitating the derivation of further weak convergence results for Euler

discretizations, “zoomed-in” operations, and random walks as in [21].
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CHAPTER 2

EFFICIENCY OF CONDITIONAL SAMPLING FOR HEAVY-TAILED RANDOM

WALKS

Abstract. We study the simulation of paths of heavy-tailed random walks up to the first

time it crosses a fixed positive barrier, when the mean step-size is strictly negative. We

consider the framework of exact sampling algorithms that use the change of measure tech-

nique. In particular, the simulated barrier-hitting paths are unbiased or completely accurate,

so in this chapter we are mostly concerned with the study of efficiency of using a change

of measure. For that, we propose a framework to evaluate how efficient is a change of

measure to sample barrier-hitting paths. We apply this framework to evaluate the efficiency

of the change of measure of Blanchet and Glynn [1] when the random walk step sizes have

regularly varying right tails, say with tail index α > 1, and lighter left tails. We study this

particular change of measure because it has been a successful measure for the sampling of

rare events for heavy-tailed random walks with Importance Sampling. The main contribu-

tions of this chapter are the following. First, for a requirement characterizing how much

more likely the change of measure is to sample a barrier-hitting path, the Blanchet-Glynn

change of measure is efficient only when the tail index α is in (1, 3/2); in particular this is

the regime of heaviest tails. Second, for a requirement quantifying the expected number of

steps needed to sample a barrier-hit with the Blanchet-Glynn change of measure, we show

that the expected number of steps is infinite for α in (1, 3/2). In particular, the latter result

corrects a non-central result of [1]. We also discuss that the value α = 3/2 has arisen as a

threshold for efficiency criteria in other related algorithms for random walks with regularly

varying right tails, which raises the question of how precisely are these works connected.
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2.1 Introduction

Barrier-crossing events of random walks appear in numerous engineering and science mod-

els. Examples range from stationary waiting times in queues to ruin events in insurance risk

processes [11, 9, 10]. Random walks with regularly varying step size distributions are of

particular interest, and their special analytic structure facilitates an increasingly complete

understanding of associated rare events.

This chapter considers the problem of sampling a path of a random walk until it crosses

a given fixed barrier in the setting of heavy-tailed step sizes with negative mean. The higher

the barrier, the lower the likelihood of reaching it. This poses challenges for conditional

sampling, since naive Monte Carlo sampling devotes much computational time to paths

that never cross the barrier and must therefore be ultimately discarded.

The ability to sample up to the first barrier-crossing time plays a central role in several

related problems, such as for sampling paths up to their maximum [4] or for sampling only

the maximum itself [3]. In turn these have applications to perfect sampling from stationary

distributions [5], [22] and to approximately solving stochastic differential equations [23].

Main contributions. The central question in this chapter is: Can the change of measure

proposed in Blanchet and Glynn [1] be used to devise an algorithm for conditional sampling

of heavy-tailed random walks given a barrier-crossing rare event? The Blanchet-Glynn

measure is designed to approximate such a conditional distribution, so one might therefore

expect an answer to this question in the affirmative. Surprisingly, we answer this question

by and large in the negative: this measure cannot be used for conditional sampling unless

the tails are very heavy. Our results are a consequence of a delicate second-order analysis

of tail probabilities of a sum of heavy tailed random variables.

This chapter reveals an intriguing dichotomy on the efficiency of conditional sampling

under the Blanchet-Glynn measure: this measure is ‘efficient’ if and only if the tail index

is below the threshold 3/2. It is worthwhile to stress two immediate consequences. First,
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our result roughly implies that only the heaviest tails can be efficient in this setting. This is

counterintuitive, since heavier tails typically make problems harder. Second, the threshold

is not directly connected to the existence of integer moments for the step size distribution.

The threshold 3/2 also arises in the simulation literature involving barrier-crossing

events with regularly varying step sizes [14, 15]. The nature of the threshold we obtain

here is however different from these works for three reasons. First, these papers focus on

estimating the rare event probability of exceeding a barrier; in contrast, our work focuses

on sampling barrier-crossing paths. Second, these papers obtain that the heaviest tails are

inefficient in their framework, while we obtain the opposite. Third, and perhaps most im-

portantly, the threshold 3/2 in the existing literature is a direct consequence of requiring

second moment conditions of the estimator, while a direct relation with moments is absent

for conditional sampling problems.

A by-product of our work is a counterexample for the statement of Proposition 4 of

Blanchet and Glynn [1]. This proposition states that, for a broad class of heavy-tailed step

sizes, the expected hitting time of the barrier grows linearly in the barrier level under the

Blanchet-Glynn change of measure. We show, though, that this result does not always hold.

This proposition is not central to the framework introduced in [1], and the issue we expose

here can also be deduced from Corollary 1 in [14], but our result reopens the question of

when the measure of Blanchet and Glynn induces a linear hitting time expectation.

Related literature. The primary means for sampling from heavy-tailed random walks is

based on the change of measure technique. Simply put, this procedure consists in sampling

from a distribution different from the desired one and determining (or computing) the out-

put using the likelihood ratio. The essential idea is that the changed distribution should

emphasize characteristics of barrier-crossing paths.

The literature of simulating paths that cross a barrier is closely related to the one of

estimating the probability of exceeding the barrier. In the heavy-tailed setting, the latter
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problem has already been studied for two decades. In contrast, the path-sampling problem

has only recently received attention, mostly driven by applications of Dominated Coupling

From the Past when in presence of heavy tails; see [22].

For the probability estimating problem under heavy tails, early approaches are [24, 25,

26]. An important contribution for the current chapter is [1], which was later followed

by [14, 15]. A recent new technique is [27], which uses Markov Chain Monte Carlo to

estimate the multiplicative inverse of the probability of crossing the barrier.

The path-sampling problem with heavy tails, on the other hand, has only recently been

tackled by [22]. The latter modifies the measure of [15], which focuses on the probability

estimation problem, and builds on the scheme for exact sampling of paths introduced in

Section 4 of [4]. The approach studied in this chapter is based on the Blanchet-Glynn

change of measure, which is conceptually simpler than the approach proposed in [22]. The

search for a simpler algorithm provided the motivation for the work in this chapter.

Outline. This chapter is organized as follows. In Section 2.2 we discuss the general

preliminaries for our conditional sampling problem: a change of measure technique and a

notion of efficiency. In Section 2.3 we state our main result of efficiency for conditional

sampling when using the Blanchet-Glynn change of measure [1] and with regularly varying

step sizes. In Section 2.4 we compare our threshold result of Section 2.3 with similar ones

in the literature of rare event sampling. In Section 2.5 we give a proof of the main result of

Section 2.4.

Notation. We denote by {Sn} the infinite length paths of the random walk. Given a

probability measure Q over {Sn}, we denote the expectation with respect to measure Q

as EQ. We write EQ
y [·] := EQ[·|S0 = y] and omit y when y = 0, as customary in

the literature. Given two probability measures P and Q over the same space, we de-

note absolute continuity of P with respect to Q as P � Q, meaning that for all mea-

surable B Q(B) = 0 implies P(B) = 0. For x, y real we denote x+ := max{x, 0},
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x− := −min{x, 0}, x ∧ y := min{x, y} and x ∨ y := max{x, y}. Also, for two functions

f and g we write f(t) ∼ g(t) when limt→∞ f(t)/g(t) = 1; we write f(t) = O (g(t)) when

lim supt→∞ |f(t)/g(t)| <∞, and f(t) = o (g(t)) when limt→∞ |f(t)/g(t)| = 0.

2.2 Preliminaries

This section gives the background necessary for the exposition of our main result. In Sec-

tion 2.1, we describe techniques for conditional sampling using change of measure tech-

nique. In Section 2.2, we give an efficiency criterion for this problem. In Section 2.3, we

briefly introduce the Blanchet-Glynn [1] change of measure.

General setting. We consider a random walk Sn :=
∑n

i=1Xi, where Xi are iid, E|Xi| <

∞ and S0 = 0 unless explicitly stated otherwise. We assume that {Sn} has negative drift,

meaning that EXi < 0. We also assume that Xi has unbounded right support; that is,

P(Xi > t) > 0 for all t ∈ R.

Given a barrier b ≥ 0, let τb := inf{n ≥ 0 : Sn > b} be the first barrier-crossing time.

Since the random walk has negative drift, we have Sn → −∞ a.s. as n → ∞, and also

P(τb =∞) > 0.

Our main goal is to study the efficiency of an algorithm to sample paths (S1, . . . , Sτb)

conditional on {τb <∞}.

We remark that for the sake of clarity of exposition we will abuse notation and write

that ‘(S0, . . . , Sτb) follows the distribution P( · |τb < ∞)’ to mean that for all finite n ∈ N

the random vector (S0, . . . , Sτb) with τb = n has the distribution P( · |τb = n).

2.2.1 Conditional sampling via change of measure

We tackle the problem of conditional sampling using the Acceptance-Rejection algorithm,

which uses the change of measure technique. Here we give a brief exposition of these two

methods.
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Change of measure technique. Let P(y, dz) be the transition kernel of the random

walk, i.e., P(y, dz) = P(S1 ∈ dz|S0 = y). We consider a “new” or “changed” transition

kernel Q(y, dz), which may be chosen state dependent, meaning that Q(y1, y1 + ·) and

Q(y2, y2 + ·) may be different measures for y1 6= y2. We assume that P(y, ·) � Q(y, ·)

for all y, which implies that the likelihood ratio function dP/dQ(y, ·) exists. Letting Q be

the distribution of {Sn} induced by the proposal kernel Q, we slightly abuse notation and

denote by dP/dQ(Sn : 0 ≤ n ≤ T ) the likelihood ratio of a finite path (S0, . . . , ST ). More

precisely, for T finite dP/dQ(Sn : 0 ≤ n ≤ T ) := LT where LT is the nonnegative random

variable satisfying EQ [1BLT ] = EP [1B] for all B in the σ-algebra σ(Sn : 0 ≤ n ≤ T ).

With this, it holds that

dP
dQ

(Sn : 0 ≤ n ≤ T ) =
dP

dQ
(S0, S1) · · ·

dP

dQ
(ST−1, ST ),

for all T finite or Q-a.s. finite stopping time. See Section XIII.3 of [6] for further details.

Acceptance-Rejection algorithm for conditional sampling. This procedure considers

the situation of a distribution that is “difficult” to sample from, and another distribution

that is “easy” to sample from; the aim is to simulate from the difficult distribution. The

Acceptance-Rejection algorithm allows one to sample from the difficult distribution by re-

peatedly sampling from the easy, “proposal”, distribution. Here we show a known special-

ization of this technique to the problem of sampling paths from the conditional distribution

P ( · |τb <∞), see [4].

Let P be the transition kernel of the random walk, and consider a “proposal” kernel

Q, possibly state dependent, such that P(y, ·) � Q(y, ·) for all y. Assume that for some

computable constant C > 0 we have

dP
dQ

(Sn : 0 ≤ n ≤ τb) · 1{τb<∞} ≤ C Q-a.s.
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If U is uniformly distributed on [0, 1] under Q and drawn independently from {Sn}, then it

can be verified that

Q
(
U ≤

1{τb<∞}
C

dP
dQ

(Sn :0≤n≤τb)
)

=
P(τb <∞)

C
, (2.1)

Q
(
{Sn} ∈ ·

∣∣∣∣ U ≤ 1{τb<∞}
C

dP
dQ

(Sn :0≤n≤τb)
)

= P ({Sn} ∈ · |τb <∞) , (2.2)

over events B ∈ Fτb such that B ⊆ {τb <∞}.

The Acceptance-Rejection procedure consists on iterating the steps: (i) sample jointly

(U, (S0, . . . , Sτb)) from Q, and (ii) check whether

U ≤
1{τb<∞}
C

dP
dQ

(Sn :0≤n≤τb) (2.3)

holds. The algorithm stops, “accepts”, the first time inequality (2.3) is satisfied, and outputs

the path (S0, . . . , Sτb). Equation (2.1) states that a sample is “accepted” with probability

P(τb < ∞)/C; and equation (2.2) assures that the distribution of the output is P( · |τb <

∞).

2.2.2 Efficiency framework for conditional sampling

We now establish a framework for when an “alternative” transition kernel Q is useful in

sampling paths up to τb from the conditional distribution P( · |τb < ∞). Simply put, it

states that crossing events occur with higher probability under the new measure than under

the original.

Definition 1 (Efficiency for conditional sampling). Let Q(y, dz) be a transition kernel such

that P(y, ·)� Q(y, ·) for all y. Let Q be the distribution of {Sn} on RN induced by Q. We

say that Q is efficient for conditional sampling from P( · |τb <∞) iff

Q ({Sn} ∈ B) ≥ P ({Sn} ∈ B) ,
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for all events B ∈ Fτb such that B ⊆ {τb < ∞}, where Fτb is the usual σ-algebra

associated to the stopping time τb.

We remark that the previous notion does not require Q(τb < ∞) = 1, although that is

true for the Blanchet-Glynn change of measure, as we will see in Proposition 2.

We remark that by the definition of likelihood ratio we have that for all B ⊆ {τb <∞}

it holds that P ({Sn} ∈ B) = EQ
[
1B1{τb<∞} · dP/dQ(Sn : 0≤n≤τb)

]
. Together with

Definition 1, this identity gives the following equivalent condition for efficiency.

Corollary 1. The following statements are equivalent:

1. Q is efficient for conditional sampling from P( · |τb <∞)

2. 1{τb<∞} · dP/dQ(Sn : 0≤n≤τb) ≤ 1 holds Q-a.s.

Another characterization of efficiency for conditional sampling ensues. Consider the

following procedure: sample a path (S0, . . . , Sτb) from Q; set I := 1 if dP/dQ(Sn : 0≤

n≤ τb) ≤ 1, and I := 0 otherwise; output (I, (S0, . . . , Sτb)). If Q(τb <∞) = 1 then parts

1. and 2. of Corollary 1 are also equivalent to the following statement: I is distributed as

a Bernoulli random variable with parameter P(τb < ∞) and if I = 1 then the sample path

(S0, . . . , Sτb) follows the distribution P( · |τb < ∞). Indeed, this characterization is direct

from (2.1) and (2.2) using C = 1, by Corollary 1 part 2. Remarkably, this procedure does

not require knowing the value of P(τb < ∞). This property has been a key component of

several recent simulation works, see e.g. [4, 23, 22, 5], and initially motivated the research

presented in this chapter of the thesis.

2.2.3 The Blanchet-Glynn change of measure

We now present the essential ideas of the Blanchet-Glynn change of measure [1]. This

measure proved efficient for estimating the probability P(τb < ∞) as b → ∞. In the

current chapter, we are interested in its use for the conditional sampling problem.
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The main idea motivating the Blanchet-Glynn change of measure is to approximate the

transition kernel of the conditional distribution. Indeed, it is well-known that the one-step

transition kernel of P( · |τb <∞), say P∗, satisfies

P∗(y, dz) = P(y, dz) · u
∗(z − b)
u∗(y − b)

,

where u∗(x) := Px(τ0 < ∞) for all x ∈ R and P is the original transition kernel of {Sn};

see Section VI.7 of [28]. Here, u∗(y − b) can be interpreted as a normalizing term, since∫
P(y, dz)u∗(z − b) = u∗(y − b) for all y. It is nevertheless impractical to simulate from

this kernel because u∗ is unknown.

The idea put forth by Blanchet and Glynn is to approximate u∗ using the asymptotic

approximation given by Pakes-Veraverbeke Theorem, see Chapter 5 of [29]. This result

states that

u∗(x) = Px(τ0 <∞) ∼ 1

|EX|

∫ ∞
−x

P(X > s) ds as x→ −∞

for random walks with negative drift and step sizes X which are (right) strongly subexpo-

nential. Inspired by this fact, the Blanchet-Glynn change of measure uses the following

transition kernel:

Q(c)(y, dz) := P(y, dz) · v
(c)(z − b)
w(c)(y − b)

, (2.4)

where

v(c)(x) := min

{
1,

1

|EX|

∫ ∞
c−x

P(X > s) ds

}

and w(c)(y − b) :=
∫
P(y, dz)v(c)(z − b) =

∫
P(y − b, dz)v(c)(z) is a normalizing term.

The constant c ∈ R is a translation parameter, which in [1] and in our work, we will see, is
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eventually chosen sufficiently large.

In proving efficiency results for this transition kernel we heavily rely on the fact that

the functions v(c) and w(c) are closely related to the residual life tail distribution of X . That

is, a random variable Z with distribution given by

P(Z > t) := min

{
1,

1

|EX|

∫ ∞
t

P(X > s) ds

}
for all t. (2.5)

We thus have v(c)(x) = P(Z > −x+ c) and w(c)(x) = P(X + Z > −x+ c) for all x. For

further details we refer the reader to [1] and Section VI.7 of [28].

2.3 Main result: a threshold for efficiency

In this section we present our main result on the efficiency for conditional sampling of ran-

dom walks with regularly varying step sizes using the Blanchet-Glynn change of measure

[1]. We give two results from which our main result easily follows. The first characterizes

efficiency for conditional sampling with the Blanchet-Glynn change of measure, and the

second explores this characterization in the case of regularly varying step sizes. Lastly, we

study the time at which the barrier is hit under the Blanchet-Glynn measure.

Main result. We now describe the main result of this chapter. We work under the fol-

lowing assumptions on the distribution of the step sizes, in addition to the assumption of

negative drift, i.e., EX < 0.

Assumptions:

(A1) The right tail P(X+ > ·) is regularly varying with tail index α > 1; that is, for all

u > 0 we have P(X > ut) ∼ u−αP(X > t) as t→∞.

(A2) The left tail P(X− > ·) decays fast enough so that there exists a function h(t) = o(t)

such that h(t)→∞ and
∫∞
h(t)

P(X− > s) ds = o(t · P(X+ > t)) as t→∞.
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(A3) The step size distribution has a continuous density which is regularly varying with

tail index α + 1.

We note that the more natural condition P(X− > t) = o(P(X+ > t)) as t → ∞ not

necessarily implies Assumption (A2); although it does imply that
∫∞
h(t)

P(X− > s) ds =

o (h(t) · P(X+ > h(t))) for all h such that h(t) → ∞. Nonetheless, Assumption (A2) is

not overly restrictive. Indeed, a stronger condition that implies (A2) is that there exists

δ > 0 such that tδ · P(X− > t) = O(P(X+ > t)) as t → ∞; the latter holds for instance

when P(X− > ·) is light-tailed, or when P(X− > ·) is regularly varying with tail index β

satisfying β > α. We also note that Assumption (A3) can be replaced by the less restrictive

assumption that the step size distribution be ultimately absolutely continuous with respect

to the Lebesgue measure, with continuous and regularly varying density. More precisely,

it can be replaced by the assumption that there exists some t0 such that on [t0,∞) the step

size distribution has a continuous density f(·) which is regularly varying with tail index

α + 1.

The main result of this chapter follows.

Theorem 1 (Efficiency for regularly varying right tails). Let Q(c) be the distribution of

{Sn} induced by the transition kernel Q(c) defined in (2.4). Under Assumptions (A1)–(A3)

the following hold:

1. If α ∈ (1, 3/2) then there exists some sufficiently large c so that Q(c) is efficient for

conditional sampling from P( · |τb <∞) for all b ≥ 0.

2. If α ∈ (3/2, 2) then for all c ∈ R and all b ≥ 0 it holds that Q(c) is not efficient for

conditional sampling from P( · |τb <∞).

It is noteworthy that the change of measure is efficient for conditional sampling only

for step sizes with very heavy tails. Indeed, recall that the tail index α is an indicator of

how heavy a tail is, c.f. E [(X+)p] <∞ for p ∈ (1, α) and E [(X+)p] =∞ for p > α.
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Proof elements. We show here the main elements of the proof of Theorem 1, and start

by investigating how the following statements are related. The proof is deferred to Sec-

tion 2.6.1.

(S1cb) The distribution Q(c) induced by the Blanchet-Glynn kernel (2.4) is efficient for con-

ditional sampling from P( · |τb <∞).

(S2) We have P(X + Z > t) ≤ P(Z > t) for all sufficiently large t, where Z has the

residual life distribution (2.5) and is independent of X .

Proposition 1. 1. If (S2) holds, then there exists some sufficiently large c so that (S1cb)

holds for all b ≥ 0.

2. Suppose that P(|X| ≤ δ) > 0 for all δ > 0. If (S1cb) holds for some b ≥ 0 and some

c ∈ R, then (S2) also holds.

We remark that part 1. says that the same parameter c, chosen sufficiently large, works

for all barriers b ≥ 0; that is, b is independent of c in this case. We also remark that in the

case of 2., applying 1. we get that (S1cb) actually holds for all b ≥ 0, possibly after changing

the constant c.

It is shown in [1] that P(X + Z > t) − P(Z > t) = o (P(X > t)) as t → ∞ for

the family of strongly subexponential distributions, which includes regularly varying tails.

Hence, the previous proposition shows that for efficiency of conditional sampling it is not

enough to know that the difference decays faster than P(X > t), we actually need the sign

of the difference as t→∞.

The following result shows that, in the case of step sizes satisfying Assumptions (A1)–

(A2), the sign of P(X + Z > t) − P(Z > t) when t → ∞ is fully determined by the tail

index α of the right tail distribution. The proof is given in Section 2.5.

Theorem 2. Assume that Assumptions (A1)–(A3) hold. Let Z be a random variable inde-

pendent of X with the residual life distribution (2.5). Then the following statements hold:
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1. If α ∈ (1, 3/2) then P(X + Z > t) ≤ P(Z > t) for all t > 0 sufficiently large.

2. If α ∈ (3/2, 2) then P(X + Z > t) ≥ P(Z > t) for all t > 0 sufficiently large.

With this, Theorem 1 is a corollary of Proposition 1 and Theorem 2.

Hitting time analysis. We now investigate the finiteness and mean value of the hitting

time τb under the Blanchet-Glynn change of measure Q(c). The motivation is that τb gives

a rough estimate of the computational effort of sampling a barrier-crossing path using the

measure Q(c).

The following result explores the hitting time in the regularly varying right tails setting

of Assumptions (A1)–(A2). Its proof is deferred to Section 2.6.2.

Proposition 2 (Hitting time under Q(c)). Let Q be the distribution of {Sn} induced by the

transition kernel Q(c) defined in (2.4). Consider the setting of Assumptions (A1)–(A3). For

any sufficiently large c the following hold for all b ≥ 0:

1. If α > 1 then Q(c)(τb <∞) = 1.

2. If α ∈ (1, 3/2) then EQ(c)
τb =∞ for all b ≥ 0.

3. If α > 2 then EQ(c)
τb = O(b) as b→∞.

We remark that part 2. of the previous proposition, although a negative result, is actually

independent of the Blanchet-Glynn measure Q(c) and holds essentially because we have

EP[τb|τb <∞] =∞ when α ∈ (1, 2), see e.g. Theorem 1.1 of [11]. In other words, if α ∈

(1, 2) no algorithm — efficient or not — sampling paths (S0, . . . , Sτb) from P( · |τb < ∞)

can produce paths of finite expected length.

We also remark that part 2. of Proposition 2 is a counterexample for Proposition 4

of [1]. Indeed, the latter result claims that we have EQ(c)
τb = O(b) as b→∞ when the step

sizes satisfy EP[Xp; X > 0] < ∞ for some p > 1. part 2. of Proposition 2 shows that the

latter condition is not enough in general. Alternatively, this issue with Proposition 4 of [1]
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can also be derived from Corollary 1 of [14]. The latter result shows that if α ∈ (1, 3/2)

no change of measure can be at the same time strongly efficient for importance sampling

and have linear expected hitting time; in contrast, Proposition 4 of [1] states that for any

α > 1 the Blanchet-Glynn measure is both strongly efficient for importance sampling and

has linear expected hitting time. Clearly both results are contradictory.

2.4 Threshold 3/2: a comparison

In this section we compare the threshold result of Theorem 1 with previous simulation

works where, when using regularly varying step sizes, some form of efficiency of the

method has given rise to the same threshold 3/2 for the tail index. We argue that the thresh-

old arises in this existing literature for reasons unrelated to our work.

Review. Previous works in which the 3/2 threshold appears in the context of efficiency

are Blanchet and Liu [14] and Murthy, Juneja and Blanchet [15]. Both papers focus on

solving the probability estimation problem via importance sampling; that is, their aim is

to estimate the probability P(τb < ∞) for arbitrarily large barriers b, using Monte Carlo

sampling from another measure. Blanchet and Liu propose a parameterized and state-

dependent change of measure, say QBL, which in the regularly varying case takes the form

of a mixture between a big- and a small-jump transition kernel. Murthy et al. propose a

similar big- and small-jump mixture kernel, say QMJB, however their change of measure

is state-independent and additionally conditions on the time interval at which the barrier-

crossing event occurs.

Both Blanchet and Liu [14] and Murthy et al. [15] have two requirements on their

proposed measures: (i) the linear scaling EQτb = O(b) as b → ∞ of the hitting time, and

(ii) strong efficiency of the estimation procedure. In short, the latter means that, under the
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proposed change of measure Q, the coefficient of variation of the random variable

dP
dQ

(Sn : 0≤n≤τb) · 1{τb<∞} (2.6)

stays bounded as b→∞; this is a second moment condition on (2.6). Both papers arrive at

the same threshold result: for regularly varying step sizes, the proposed change of measure

satisfies the previous two requirements for some combination of tuning parameters if and

only if the tail index α is greater than 3/2.

Comparison. Given that the same threshold appears, it is natural to ask if there is a

connection between our efficiency result in Corollary 1 and the results in prior work. We

now argue why there is no clear or direct connection between these results.

In Blanchet and Liu [14] and Murthy et al. [15] the threshold 3/2 is strictly related to the

second moment condition over the likelihood ratio (2.6) that is imposed by the requirement

of efficiency for importance sampling. More precisely, in both these works if a moment

condition is imposed on a different moment than the second, then we get a different thresh-

old for the admissible tail indexes. In contrast, our result arises from imposing an almost

sure condition on the Blanchet-Glynn change of measure. Indeed, by Corollary 1, effi-

ciency for conditional sampling is a Q-almost sure condition on the random variable (2.6).

In contrast, and as said before, efficiency for importance sampling is a second moment

condition on (2.6).

2.5 Proof of Theorem 2

In this section we prove Theorem 2, which is the main component of our main result of

Theorem 1. That is, we prove that the tail index α completely determines the sign of the

difference

P(X + Z > t)− P(Z > t) (2.7)
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when t is large enough. We work under Assumptions (A1)–(A3), which state roughly

speaking that the step sizes have regularly varying right tails with tail index α, and lighter

left tails. In short, Theorem 2 establishes that if α ∈ (1, 3/2) then the difference (2.7) is

negative for large t, and positive if α ∈ (3/2, 2).

The following is a roadmap for the main steps of the proof. First, in Lemma 1 we

write the difference (2.7) as a sum of several terms. Second, in Lemma 2 we carry out

an asymptotic analysis to determine which terms dominate when t → ∞. It follows that

the sign of the difference (2.7) when t → ∞ can be reduced to the sign of the sum of

dominant terms when t→∞. Finally, the latter is analyzed in Lemma 3, which reveals the

dichotomy for α in (1, 3/2) or (3/2, 2).

Before embarking on the proof, some remarks on our notation are in order. Recall that

we say that the random variable Z has the residual life distribution of X if its distribution

is given by

P(Z > t) = min

{
1,

1

|EX|

∫ ∞
t

P(X > s) ds

}
, for all t.

We write the left-most point of the support of Z as z0 := inf{t : P(Z > t) < 1}, which is

finite since EX is also finite. Additionally, we use that the density of Z is P(X > t)/|EX|

for all t > z0 and that
∫∞
z0

P(X > s) ds = |EX|. We also use the notation F (t) := P(X >

t) for all t. Lastly, we recall that Assumption (A1) establishes that the right tail P(X > ·)

is regularly varying with tail index α > 1.

We start with a general decomposition of the difference (2.7).

Lemma 1. Let X be a random variable with negative mean, and let Z be independent of

X with the residual life distribution of X . Consider any function h such that max{z0, 0} <

h(t) < t/2 for all t > max{2z0, 0}. Then the following holds for t > max{2z0, 0}:

P(X + Z > t)− P(Z > t) = p(t)− q(t) + ε1(t)− ε2(t),
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where we define for t > max{2z0, 0}

p(t) :=
1

|EX|

∫ t−h(t)

h(t)

F (t− s) · F (s) ds

q(t) :=
F (t)

|EX|

∫ ∞
h(t)

[
2F (s)− F (−s)

]
ds

ε1(t) :=
1

|EX|

[(∫ h(t)

0

+

∫ h(t)

z0

)[
F (t− s)− F (t)

]
· F (s) ds

+

∫ 0

−h(t)

[
F (t)− F (t− s)

]
· F (s) ds

]
ε2(t) :=

1

|EX|

∫ −h(t)
−∞

F (t− s) · F (s) ds.

Proof. First note that

P(X + Z > t)− P(Z > t) = P(X + Z > t, Z ≤ t)− P(X + Z ≤ t, Z > t).

For t satisfying max{z0, 0} < h(t) < t/2 we decompose the first term on the right-hand

side as follows:

P(X + Z > t, Z ≤ t) =

∫ t

z0

F (t− s) · 1

|EX|
F (s) ds

=
1

|EX|

[∫ h(t)

z0

F (t)F (s) ds+

∫ h(t)

z0

[
F (t− s)− F (t)

]
F (s) ds

+

∫ t−h(t)

h(t)

F (t− s)F (s) ds

+

∫ h(t)

0

F (t)F (s) ds+

∫ h(t)

0

[
F (t− s)− F (t)

]
F (s) ds

]
.
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A similar decomposition follows for the second term:

P(X + Z ≤ t, Z > t) =

∫ ∞
t

F (t− s) · 1

|EX|
F (s) ds

=
1

|EX|

[∫ −h(t)
−∞

F (s)F (t− s) ds+

∫ 0

−h(t)
F (s)F (t) ds

+

∫ 0

−h(t)
F (s)

[
F (t− s)− F (t)

]
ds

]
.

Subtracting both terms we obtain

|EX| · [P(X + Z > t)− P(Z > t)] =

=

∫ t−h(t)

h(t)

F (t− s)F (s) ds

−F (t)

[∫ 0

−h(t)
F (s) ds−

∫ h(t)

z0

F (s) ds−
∫ h(t)

0

F (s) ds

]

+

[(∫ h(t)

z0

+

∫ h(t)

0

)[
F (t− s)− F (t)

]
F (s) ds

−
∫ 0

−h(t)

[
F (t− s)− F (t)

]
F (s) ds

]
−
∫ −h(t)
−∞

F (s)F (t− s) ds

= |EX| · [p(t)− q(t) + ε1(t)− ε2(t)] .

The last equality comes from using the definition of p, q, ε1 and ε2, and noting that |EX| =∫∞
z0
F (s) ds and EX < 0, so we have that

∫ 0

−h(t)
F (s) ds−

∫ h(t)

z0

F (s) ds−
∫ h(t)

0

F (s) ds

= EX− − |EX| − EX+ + 2

∫ ∞
h(t)

F (s) ds−
∫ −h(t)
−∞

F (s) ds

=

∫ ∞
h(t)

[
2F (s)− F (−s)

]
ds.

This concludes the proof.

The next step consists in determining which terms dominate when t→∞; this is done
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in the following result.

Lemma 2. Let X be a random variable with negative mean satisfying Assumptions (A1)–

(A3) for some index of regular variation α ∈ (1, 2). Let Z be independent of X with

the residual life distribution of X . In the definition of p, q, ε1 and ε2 consider a function

h satisfying Assumption (A2); in particular h satisfies max{z0, 0} < h(t) < t/2 for all

t > max{2z0, 0}, and it holds that h(t) → ∞ and h(t) = o (t) as t → ∞. Then the

following hold as t→∞:

1.

p(t)− q(t) ∼ tF (t)2

|EX|

(
2

∫ 1/2

0

[(1− u)−α − 1]u−α du− 2α

α− 1

)
,

2.

ε1(t) = o
(
tF (t)2

)
and ε2(t) = o

(
tF (t)2

)
.

We remark that Lemmas 1 and 2 together establish that ifX satisfies Assumptions (A1)–

(A3) and α ∈ (1, 2) then

P(X + Z > t)− P(Z > t) ∼ KαP(Z > t)P(X > t) (2.8)

as t→∞, where

Kα := (α− 1)

∫ 1

0

(
(1− u)−α − 1

) (
u−α − 1

)
du− (α + 1).

This comes from P(Z > t) ∼ tF (t)/((α − 1)|EX|) by Karamata’s Theorem, see Theo-

rem 1.6.1 of [30]. We note that, in contrast, Proposition 3 of [1] shows that P(X + Z >

t)− P(Z > t) = o (P(X > t)), so the result (2.8) is much finer.

Proof. We start proving part 1. For that, first rewrite |EX| · (p(t)− q(t))/(tF (t)2) as

2

∫ t/2

h(t)

F (t− s)− F (t)

F (t)
· F (s)

tF (t)
ds−

2
∫∞
t/2
F (s) ds

tF (t)
+

∫∞
h(t)

F (−s) ds

tF (t)
.
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The third term goes to zero by Assumption (A2), so we can ignore it for the proof of the

statement. For the second term, note that since α > 1 Karamata’s Theorem, Theorem 1.6.1

of [30], yields

2

∫ ∞
t/2

F (s) ds ∼ tF (t/2)

α− 1
∼ 2α

α− 1
tF (t).

It remains to investigate the first term. To this end, we first rewrite the integral as

∫ 1/2

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du; (2.9)

we need to show that as t → ∞ this integral converges to
∫ 1/2

0
[(1 − u)−α − 1]u−α du. To

this end, consider δ ∈ (0, 1/2) and note that since h(t) = o(t) we can write (2.9) for all

sufficiently large t as

∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du+

∫ 1/2

δ

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du. (2.10)

We start by analyzing the second term in (2.10). Since F is regularly varying with tail

index α we get by the Uniform Convergence Theorem, Theorem 1.2.1 of [30], that

sup
u∈[δ, 1/2]

∣∣∣∣[F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
− [(1− u)−α − 1]u−α

∣∣∣∣→ 0 as t→∞,

so

∫ 1/2

δ

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du→

∫ 1/2

δ

[(1− u)−α − 1]u−α du, (2.11)

as t → ∞. We next analyze the first term in (2.10). Using Assumption (A3) we apply

the mean value theorem on the interval (0, u) to the function s 7→ F (t(1 − s)) and es-

tablish that F (t(1 − u))/F (t) − 1 = f (t(1− ξ)) tu/F (t) for some ξ = ξ(t, u) ∈ (0, u),

where f is the density of X . Additionally, we have that for all sufficiently large t it holds

that f (t(1− ξ)) t/F (t) ≤ 2(1 + 2α+1)α for all ξ ∈ (0, δ). Indeed, since f is regularly
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varying with tail index α + 1 then by Karamata’s Theorem, Theorem 1.6.1 of [30] we get

tf(t)/F (t)→ α; additionally, by Uniform Convergence Theorem, Theorem 1.2.1 of [30],

we have that for any large enough t

sup
ξ∈(0,δ)

∣∣∣∣f(t(1− ξ))
f(t)

− 1

(1− ξ)α+1

∣∣∣∣ ≤ 1,

so f(t(1− ξ))/f(t) ≤ 1 + 1/(1− ξ)α+1 ≤ 1 + 2α+1 for all sufficiently large t and for all

ξ ∈ (0, δ) ⊂ (0, 1/2). We conclude that F (t(1 − u))/F (t) − 1 ≤ 2(1 + 2α+1)α for all

large enough t. We use this inequality to bound the term in the brackets of the first term of

(2.10), obtaining that for all sufficiently large t

∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du ≤ 2(1 + 2α+1)α

∫ δ

h(t)/t

tuF (tu)

tF (t)
du.

We now argue that
∫ δ
h(t)/t

(
tuF (tu)

)
/
(
tF (t)

)
du ≤ 2δ2−α/(2 − α) for all sufficiently

large t. Indeed,

∫ δ

h(t)/t

tuF (tu)

tF (t)
du =

(∫ δt

0

−
∫ h(t)

0

)
sF (s)

t2F (t)
ds,

so using that tF (t) is regularly varying with tail index α − 1 ∈ (0, 1) we can apply Kara-

mata’s Theorem, Theorem 1.6.1 of [30], and that h(t)→∞ to get

∫ δ

h(t)/t

tuF (tu)

tF (t)
du ∼ 1

2− α

(
δ2
F (δt)

F (t)
−
(
h(t)

t

)2
F (h(t))

F (t)

)
∼ δ2−α

2− α

as t → ∞. Indeed, note that since h(t) = o(t) and s 7→ s2F (s) is regularly varying with

tail index α − 2 ∈ (−1, 0) then (h(t)/t)2 (F (h(t))/F (t)) → 0. All in all, we obtain that

the first term of (2.10) satisfies, for all large enough t,

∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du ≤ 4(1 + 2α+1)α

2− α
δ2−α.
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Lastly, note that δ ∈ (0, 1/2) is arbitrary, so letting δ decrease to 0 in the latter inequality

we get that

lim
δ↘0

lim sup
t→∞

∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du = 0. (2.12)

Similarly, letting δ decrease to 0 in (2.11) we obtain

lim
δ↘0

lim
t→∞

∫ 1/2

δ

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du =

∫ 1/2

0

[(1− u)−α − 1]u−α du. (2.13)

From (2.12) and (2.13) and the decomposition (2.10) of (2.9) we get the desired result.

We now prove part 2. First we show that ε1(t) = o
(
tF (t)2

)
. To this end, it is sufficient

to prove
∫ h(t)
0

[
F (t− s)− F (t)

]
F (s) ds = o

(
tF (t)2

)
; that is, we want to prove that the

expression

∫ h(t)

0

F (t− s)− F (t)

F (t)

F (s)

tF (t)
ds =

∫ h(t)/t

0

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du

goes to zero as t → ∞. We proceed by using the same line of reasoning used to prove

(2.12), which is delineated in the following. First, apply the mean value theorem on the

interval (0, u) to the function s 7→ F (t(1 − s)), and then use the Uniform Convergence

Theorem , Theorem 1.2.1 of [30], to get that for all sufficiently large t we have

∫ h(t)/t

0

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du ≤ 2(1 + 2α+1)α

∫ h(t)/t

0

tuF (tu)

tF (t)
du. (2.14)

Second, apply Karamata’s Theorem, Theorem 1.6.1 of [30], to obtain that

∫ h(t)/t

0

tuF (tu)

tF (t)
du =

∫ h(t)

0

sF (s)

t2F (t)
ds ∼ 1

2− α

(
h(t)

t

)2
F (h(t))

F (t)
, (2.15)

since h(t) → ∞. Third, since the function s 7→ s2F (s) is regularly varying with 2 − α ∈

(0, 1) and h(t) = o(t) then (h(t)/t)2 F (h(t))/F (t) → 0 when t → ∞. The latter fact,
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together with (2.14) and (2.15), allows to conclude the desired result.

Lastly, ε2(t) = o
(
tF (t)2

)
also holds because

∫ −h(t)
−∞

F (t− s)
F (t)

F (s)

tF (t)
ds =

∫ ∞
h(t)

F (t+ s)

F (t)

F (−s)
tF (t)

ds ≤
∫ ∞
h(t)

F (−s)
tF (t)

ds,

with the last term going to zero as t→∞ by Assumption (A2).

The previous result shows that when t → ∞ the sign of the difference P(X + Z >

t) − P(Z > t) reduces to the sign of the term p(t) − q(t). We now show that the latter is

fully determined by the tail index α being either in (1, 3/2) or in (3/2, 2).

Lemma 3. The quantity

∫ 1/2

0

[(1− u)−α − 1]u−α du− 2α−1

α− 1
(2.16)

is negative for α ∈ (1, 3/2) and positive for α ∈ (3/2, 2).

Proof. First note that for fixed u ∈ (0, 1/2) the function [(1 − u)−α − 1]u−α is strictly

increasing in α > 0, so
∫ 1/2

0
[(1− u)−α − 1]u−α du is as well. Also, since 2β/β is strictly-

decreasing for β ∈ (0, 1) then −2α−1/(α − 1) is strictly increasing in α when α ∈ (1, 2).

Thus (2.16) is strictly increasing in α for α ∈ (1, 2). Lastly, it is easy to verify that if

α = 3/2 then (2.16) is equal to zero.

With the previous lemmas the proof of Theorem 2 is straightforward.

Proof of Theorem 2. Consider in the definition of p, q, ε1 and ε2 a function h satisfying As-

sumption (A2); in particular it satisfies max{z0, 0} < h(t) < t/2 for all t > max{2z0, 0},

and h(t) → ∞ and h(t) = o (t) as t → ∞. By Lemma 1 and Lemma 2 we have that as

t→∞

P(X + Z > t)− P(Z > t)

tF (t)2
=
p(t)− q(t)
tF (t)2

+ o (1) .
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We conclude from Lemma 3 that as t→∞ the right-hand side is negative for α ∈ (1, 3/2)

and positive for α ∈ (3/2, 2).

2.6 Proof of Propositions 1 and 2

2.6.1 Proof of Proposition 1

Proof of Proposition 1. For part 1., assume that (S2) holds; that is, that we have P(X +

Z > t) ≤ P(Z > t) for all t sufficiently large. Take then c sufficiently large so that

P(X + Z > c+ t) ≤ P(Z > c+ t) holds for all t ≥ 0. Thus, we have by definition of v(c)

and w(c) that

w(c)(y − b)/v(c)(y − b) ≤ 1 for all y ≤ b. (2.17)

Using then the definition (2.4) of Q(c), the following holds for S0 = 0 and all b ≥ 0:

1{τb<∞}
dP

dQ(c)
(Sn : 0≤n≤τb) = 1{τb<∞}

w(c)(S0 − b)
v(c)(Sτb − b)

τb−1∏
n=1

w(c)(Sn − b)
v(c)(Sn − b)

≤ 1{τb<∞}
w(c)(S0 − b)
v(c)(Sτb − b)

.

It follows that, conditional on τb <∞, we have w(c)(S0−b) ≤ v(c)(S0−b) ≤ v(c)(Sτb−b),

by inequality (2.17) and monotonicity of v(c). So then we obtain that 1{τb<∞}dP/dQ(c)(Sn :

0≤n≤τb) ≤ 1. We conclude that statement (Ac
b) holds, by Corollary 1.

For part 2., assume that (Ac
b) holds, for some b ≥ 0 and some c ∈ R; i.e., that Q(c) is

efficient for conditional sampling from P( · |τb < ∞). We proceed by contradiction and

assume that (S2) does not hold, i.e., that for all t we have that there exists a t0 > 0 such

that P(X + Z > t0) > P(Z > t0). Using the fact that w(c)(y) = P(X + Z > c − y) and

v(c)(y) = P(Z > c − y), we get that the previous hypothesis implies in particular that for

all y ≤ b there exists y0 < y such that w(c)(y0 − b)/v(c)(y0 − b) > 1 holds.
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With this, we will show that necessarily the following holds

Q(c)

(
1{τb<∞}

w(c)(S0 − b)
v(c)(Sτb − b)

τb−1∏
n=1

w(c)(Sn − b)
v(c)(Sn − b)

> 1

)
> 0, (2.18)

i.e., that Q(c)
(
1{τb<∞} · dP/dQ(c)(Sn : 0≤n≤τb) > 1

)
> 0. The latter is a contradiction

with hypothesis (Ac
b), by Corollary 1. Now, to prove (2.18) the main idea is to construct

paths (Sn : 0≤ n≤ τb) under Q(c) that, before crossing the barrier b, spend a sufficiently

large amount of time in the set

Y c,b
>1 :=

{
y ≤ b :

w(c)(y − b)
v(c)(y − b)

> 1

}
.

For that we distinguish two cases: if S0 = 0 ∈ Y c,b
>1 or not. We start with the former case.

Case 1: if c and b ≥ 0 are such that S0 = 0 ∈ Y c,b
>1 . In this case we have that for all

C > 0 there exists N > 0 such that

P

(
N−1∏
n=1

w(c)(Sn − b)
v(c)(Sn − b)

> C

)
> 0.

Indeed, this comes from the fact that P(|X| ≤ δ) > 0 for all δ > 0 and that the function

w(c)(·)/v(c)(·) is continuous; hence, the random walk can stay for an arbitrary amount of

steps in a small neighborhood of S0 = 0 subset of Y c,b
>1 . It follows that we have, for a

sufficiently large N > 0,

P

(
τb = N ;

N−1∏
n=1

w(c)(Sn − b)
v(c)(Sn − b)

>
v(c)(SN − b)
w(c)(S0 − b)

)
> 0,
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since X has unbounded right support and v(c)(·) ≤ 1. Using then absolute continuity of P

with respect to Q(c) over paths with finite number of steps, we get that

Q(c)

(
τb = N ;

N−1∏
n=1

w(c)(Sn − b)
v(c)(Sn − b)

>
v(c)(SN − b)
w(c)(S0 − b)

)
> 0. (2.19)

We conclude then that (2.18) also holds, since the event in (2.19) is subset of the event in

(2.18). This proves inequality (2.18), which is a contradiction with hypothesis (Ac
b).

Case 2: if c and b ≥ 0 are such that S0 = 0 /∈ Y c,b
>1 . The idea for this case is to reduce

it to the previous one, by constructing paths that, first, move to the set Y c,b
>1 , and second,

spend a sufficiently large amount of time in Y c,b
>1 . For that, first define τ>1 := inf{n ≥ 0 :

Sn ∈ Y c,b
>1 }. Take then a compact set A ⊆ R and a large enough M > 0, so that they satisfy

P (τ>1 = M ; Sn − b ∈ A for n = 0, . . . ,M) > 0;

here, A is chosen to satisfy S0 − b ∈ int(A) and Y c,b
>1 ∩ int(A) 6= ∅. Note now that it

holds that sup
{∏M

n=1 v
(c)(yn − b)/w(c)(yn − b) : y0, . . . , yM ∈ A+ b

}
is finite, since A

is compact and v(c)(·)/w(c)(·) is continuous. With this, and using the same arguments of

Case 1, we obtain that there exists a large enough N > 0 such that

P

(
τb = N +M ;

v(c)(S0 − b)
w(c)(SN+M − b)

M+N−1∏
n=1

w(c)(Sn − b)
v(c)(Sn − b)

> 1

)
> 0. (2.20)

Indeed, it is sufficient to condition the probability on the left hand side of (2.20) on the

event {τ>1 = M ; S0, . . . , SM ∈ A + b} and use the strong Markov property. It follows

that, by absolute continuity of P with respect to Q(c) over paths with finite number of steps,

we have that

Q(c)

(
τb = N +M ;

v(c)(S0 − b)
w(c)(SN+M − b)

M+N−1∏
n=1

w(c)(Sn − b)
v(c)(Sn − b)

> 1

)
> 0. (2.21)
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Clearly then inequality (2.18) holds, since the event of the latter inequality contains the

event in (2.21). We have arrived to a contradiction with hypothesis (Ac
b).

2.6.2 Proof of Proposition 2

Before showing the proof of Proposition 2 we establish the following lemma, which is a

direct corollary of Lemma 2 of [14]. It will be used to prove part 3. of the latter result.

Lemma 4. Let Q be a measure over paths of {Sn}. Assume that we have for any large

enough b > 0 that

lim inf
y→−∞

{
EQ
y [S1 − S0]−

∫ ∞
b−y

Qy(S1 − S0 > u) du

}
> 0. (2.22)

Then EQτb = O(b) as b→∞.

Proof. The proof consists in showing that if (2.22) holds then the function h(y) := (C +

|b − y|)1{y≤b} satisfies the hypothesis of Lemma 2 of [14], for some C > 0. That is,

EQ(c)

y [h(S1)] − h(y) < −ρ for all y ≤ b and for some ρ > 0. For that, note that for y < b

we have

EQ(c)

y h(S1)− h(y)

= −EQ(c)

y [S1 − S0] +

∫ ∞
b−y

Q(c)
y (S1 − S0 > u) du− CQ(c)

y (S1 > b)

Therefore, inequality lim supy→−∞{EQ(c)

y h(S1) − h(y)} < 0 is equivalent to inequality

(2.22). Using then Lemma 2 of [14] we conclude that EQ(c)
τb ≤ h(0)/ρ = C/ρ + ρ−1b =

O(b).

Proof of Proposition 2. For part 1., we have to show that Q(c)(τb < ∞|S0 = 0) = 1 holds

for all b ≥ 0. We will actually show that this is true for all c ∈ R.

For that, first consider any c ∈ R and note that from Lemma 1 of [1] we have that

limy→−∞ EQ(c)
[S1 − S0|S0 = y] > 0. This result applies in our case because X is strongly
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subexponential, since X has regularly varying right tails with tail index α > 1. Also, it can

be checked that EQ(c)
[S1 − S0|S0 = y] = EP [X|X + Z > c+ b− y] holds, since

Q(c) (S1 − S0 ∈ ·|S0 = y) = P (X ∈ ·|X + Z > c+ b− y) , (2.23)

where X and Z are independent and Z has the residual life distribution of X .

We have thus that there exists ε > 0 and y0 ∈ R such that for all y ≤ y0 we have

EQ(c)
[S1 − S0|S0 = y] > ε. It follows that Q(c)(τy0 <∞|S0 = y) = 1 holds for all y ≤ y0.

We distinguish two cases now: if b ≤ y0 and if y0 < b. In the former case, it is direct that

Q(c)(τb < ∞|S0 = 0) ≥ Q(c)(τy0 < ∞|S0 = 0) = 1 holds, since 0 ≤ b ≤ y0. In the latter

case on the other hand, that is if y0 < b, we can use a standard geometric trials argument to

get that, for all y ≤ b,

Q(c)(τb <∞|S0 = y) ≥ Q(c)(Geom(ρ) <∞) = 1.

Here, Geom(ρ) is an independent geometric random variable with parameter

ρ := inf
y∈[y0,b]

Q(c) (S1 − S0 > b− y0|S0 = y) ,

which is finite by (2.23). In both cases we have shown that Q(c)(τb <∞|S0 = y) = 1.

For part 2., we proceed by contradiction and assume that EQ(c)
[τb] < ∞. By Theo-

rem 1.1 of [11], for α ∈ (1, 2) it holds EP [τb |τb <∞ ] =∞. But since Q(c) is efficient for

conditional sampling when α ∈ (1, 3/2), then by Corollary 1 part 2. we have

EQ(c)

[τb] = EQ(c)

[∑
n≥0

n1{τb=n}

]
≥ EP

[∑
n≥0

n1{τb=n}

]
= EP [τb1{τb<∞}] =∞,

which is a contradiction.

For part 3., by Lemma 4 it is sufficient to show that (2.22) holds. For that, note that by
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definition of the Blanchet-Glynn kernel in (2.4) and the fact that v(c)(y) = P(Z > −y + c)

and w(c)(y) = P(X + Z > −y + c) we have

Q(c) (S1 − S0 ∈ · | S0 = y) = P (X ∈ · | X + Z > −y + c) , (2.24)

where Z is independent of X and has the residual life distribution of X . With this we get

that

EQ
y [S1 − S0]−

∫ ∞
b−y

Qy(S1 − S0 > u) du

= EP [X|X + Z > −y + c]−
∫ ∞
b−y

EP [1{X>u}|X + Z > −y + c
]

du

= EP [X|X + Z > −y + c]− EP [[X − b+ y]+ |X + Z > −y + c
]
.

For the first term in the right-hand side of the previous display one obtains that

lim inf
y→−∞

EP [X|X + Z > −y + c] ≥ (α− 1) · |EPX|

by following the same arguments of the proof of Lemma 1 of [1] and using that t · P(X >

t) ∼ |EPX|(α − 1)P(Z > t) as t → ∞, which is direct from Karamata’s Theorem, see

Theorem 1.6.1 of [30]. For the second term in the right-hand side one gets that if b > 0 is

sufficiently large so that z0 > c− b then

EP [[X − b+ y]+ |X + Z > c− y
]

=
EP
[
[X − b+ y]+

]
P(X + Z > c− y)

= |EPX| v
(c)(y − b)
w(c)(y − b)

.

It follows that

lim
y→−∞

EP [[X − b+ y]+ |X + Z > −y + c
]

= |EPX|,

since v(c)(y − b)/w(c)(y − b)→ 1 as y → −∞ by Proposition 3 of [1].
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We have thus obtained that

lim inf
y→−∞

{
EQ
y [S1 − S0]−

∫ ∞
b−y

Qy(S1 − S0 > u) du

}
≥ (α− 2) · |EPX|,

so applying Lemma 4 we conclude that if α > 2 then EQ(c)
τb = O(b) as b→∞.
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CHAPTER 3

ACCURACY OF SAMPLING BROWNIAN FUNCTIONALS THROUGH EULER

APPROXIMATION

Abstract. In this chapter we derive weak limits for the discretization errors of sampling

barrier-hitting and extreme events of Brownian motion by using the Euler discretization

simulation method. Specifically, we consider the Euler discretization approximation of

Brownian motion to sample barrier-hitting events, i.e. hitting for the first time a determin-

istic “barrier” function; and to sample extreme events, i.e. attaining a minimum on a given

compact time interval or unbounded closed time interval. For each case we study the dis-

cretization error between the actual time the event occurs versus the time the event occurs

for the discretized path, and also the discretization error on the position of the Brownian

motion at these times. We show that if the step-size of the time mesh is 1/n then the dis-

cretization error for the times converges at rate O(1/n) and the error for the position of

the Brownian motion converges at rate O(1/
√
n). We show limits in distribution for the

discretization errors normalized by their convergence rate, and give closed-form analytic

expressions for the limiting random variables. Additionally, we use these limits to study

the asymptotic behavior of Gaussian random walks in the following situations: (1.) the

overshoot of a Gaussian walk above a barrier that goes to infinity; (2.) the minimum of a

Gaussian walk compared to the minimum of the Brownian motion obtained when inter-

polating the Gaussian walk with Brownian bridges, both up to the same time horizon that

goes to infinity; and (3.) the global minimum of a Gaussian walk compared to the global

minimum of the Brownian motion obtained when interpolating the Gaussian walk with

Brownian bridges, when both have the same positive drift decreasing to zero. In deriv-

ing these limits in distribution we provide a unified framework to understand the relation

between several papers where the constant −ζ(1/2)/
√

2π has appeared, where ζ is the
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Riemann zeta function. In particular, we show that this constant is the mean of some of the

limiting distributions we derive.

3.1 Introduction

Brownian motion is arguably the most important continuous-time stochastic process in

probability theory. Its relevance is only increased by its widespread use as a stochastic

model in engineering, sciences and business. On the other hand, the simulation of Brownian

motion raises fundamental challenges, since it is a continuous-time process characterized

by its violent fluctuations and self-similar-type structure in time-space, whereas computers

can only simulate and store discrete objects. This forces the simulation of Brownian motion

to be inherently inaccurate, except for a few especially structured collection of events where

Brownian motion can be simulated without bias, see e.g. Devroye [17] for a survey on such

special cases.

In this chapter we consider the simulation of Brownian motion by approximating it on

a constant, regularly spaced, time mesh; that is, we consider the Euler discretization of

Brownian paths on a regular mesh. This approximation is arguably the easiest and simplest

possible simulation method for Brownian motion, which makes it appealing from a prac-

tical point of view. Moreover, in some special practical applications there are exogenous

conditions which makes the Euler discretization the most sensible simulation method to

use; for example, in finance when a financial instrument can only be monitored at regular

time intervals, see Broadie et al. [18].

We are particularly interested in the simulation of extreme events and of barrier-hitting

events of Brownian motion. We call a barrier-hitting event an event where the Brown-

ian motion “hits” or “crosses” for the first time a given “barrier”, either constant or non-

constant. We call extreme event an event where a minimum (or maximum) of the Brownian

motion over a closed time interval is attained; in this case the time interval can be bounded

or unbounded. These two types of events are of fundamental importance, both in the the-
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ory of stochastic processes, see e.g. fluctuation theory; as well as in practice, where usually

events of critical interest can be formulated as one of these events, e.g. a stock price ever

reaching a certain value, or a natural disaster occurring in a certain time horizon.

In this chapter we study the accuracy of simulating barrier-hitting and extreme events of

Brownian motion by instead simulating the respective event for the Euler discretized Brow-

nian motion. The accuracy of the Euler discretization is a non-trivial issue, since, except

for trivial cases, with probability one none of these two events will ever occur exactly on a

regular time mesh of the form {0, T/n, 2T/n, . . .} for constant T . This raises the question

of what theoretical conditions are there that guarantee accuracy of the Euler discretization.

This question motivates the main objective of this paper, which is: the study of conver-

gence of the discretization error for these two events, as well as their rate of convergence,

and weak convergence of the normalized errors.

The work in this chapter was initially motivated by the study of the discretization error

when sampling multidimensional reflected Brownian motion (RBM) using the Euler dis-

cretization method. Indeed, multidimensional RBM can be computed as a deterministic

mapping, the reflection mapping, acting on paths of Brownian motion; therefore RBM can

be simulated by instead applying the reflection mapping to the Euler discretized Brownian

motion. In turn, the reflection mapping contains terms involving the running minimum

of each dimension of the Brownian motion path, so usually events related to RBM are

equivalent to extreme or barrier-hitting events of Brownian motion.

Our work is also motivated by the connection of Gaussian random walks with the Euler

discretization of Brownian motion. More specifically, the constant−ζ(1/2)/
√

2π, where ζ

is the Riemann zeta function, has appeared in a number of papers working with Brownian

motion and Gaussian walks. see e.g. [31, 21, 32, 16, 33, 8, 18]. Up to now it had been

unknown how these works were precisely related; in this chapter we clarify this connection.
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Main contributions. We consider barrier-hitting events of a Brownian motion B, where

the barrier function is continuously differentiable and non-decreasing on R+, and which

has initial position at time zero above the Brownian motion. We also consider the extreme

events where the Brownian motion attains a global minimum over [0,∞), or attains its

minimum over an interval of the type [0, a] for a given a > 0 finite. In any of these

three cases denote for now, if they are finite, by t∗ the time at which the event occurs and

B(t∗) the position of the Brownian motion at such time; denote analogously by tn and

Bn(tn) the respective values for the Euler discretization approximation Bn of B on the

mesh {0, 1/n, 2/n, . . .}.

A first contribution is that we show the following convergence results conditional on t∗

andB(t∗) being finite. First, we show that the absolute errors |tn−t∗| and |Bn(tn)−B(t∗)|

converge almost surely to zero at rates O(1/n) and O(1/
√
n) respectively, when n → ∞.

Second, we show that the normalized errors n (tn − t∗) and
√
n (Bn(tn)−B(t∗)) converge

jointly in distribution, and we give a closed-form analytic expression for the limiting ran-

dom variables. In the case of barrier-hitting events, the limiting random variable is related

to the overshoot above zero of an “equilibrium” Gaussian random walk. In the case of ex-

treme events, the joint limiting random variable is the same in both cases, and involves the

minimum of a two-sided Bessel process over the integers displaced by a uniform random

variable. Nonetheless, we remark that some of the derived limits in distribution were at least

partially known in the literature. Specifically, our Theorem 3 contains [34, Lemma 10.10]

in the Gaussian walk case and also contains [18, Lemma 4.2]; and our Theorem 4 contains

[8, Theorem 1]. Our work contributes in augmenting these results and also in giving a

unified derivation of them.

A second contribution of this chapter is that our Euler discretization limits in distribu-

tion allow to give rise to other limits in distribution for Gaussian random walks. These

limits are related to (1.) the overshoot of the Gaussian walk above a barrier that goes to

infinity; (2.) the minimum of the Gaussian walk compared to the minimum of a Brownian
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motion, both up to the same time horizon that goes to infinity; and (3.) the global minimum

of the Gaussian walk compared to the global minimum of a Brownian motion, when both

have the same positive drift decreasing to zero. The limiting distributions of these quan-

tities are some of the same limiting random variables obtained for the Euler discretization

errors, since the limits are derived as simple corollaries of the Euler discretization analysis.

In particular, this allows us to give a crisper intuition of the limiting distributions obtained

for the Euler discretization errors, since from the Gaussian walk perspective the limiting

random variables can be understood as the equilibrium distributions of renewal processes.

A third contribution of this work is that we demystify the relationship between several

papers in the literature where the constant−ζ(1/2)/
√

2π has appeared, where ζ is the Rie-

mann zeta function. This constant has appeared in works about Gaussian walks, [31, 21, 32,

16]; discretized Brownian motion, [33, 8, 18]; and approximations of stochastic processes,

[31, 21, 35]. As mentioned in [16], the precise connection that made the same constant

appear in these works was unclear. In part, this is because the aforementioned constant

showed up in expressions for convergence in mean, and usually this mean was derived ei-

ther using Spitzer’s identities for random walks, see e.g. [8, 33], or through cumbersome ad

hoc methods, see [19]. We show that the constant −ζ(1/2)/
√

2π is the mean of two of the

limiting distributions we derive. Indeed, [19, Theorem 1] gives convergence in mean for

the second component in the triplet in our Theorem 4; [8, Theorem 2] and [33, Theorem 1]

give convergence in mean for the second component in the triplet in our Corollary 3; and

[16, Theorem 2], [21, Theorem 1] and [35, Equations (4) and (10)] give convergence in

mean for the second component in the triplet in our Corollary 4. Our work allows to view

the aforementioned papers from a unified perspective, clarifying the relationship between

them.

An additional contribution of this chapter is that we show convergence in distribution

of Brownian motion when “zoomed-in” in time-space about the times where the barrier is

hit or an extreme is attained. We prove this convergence for a subspace of C(R), i.e. the
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continuous functions from R to R, and for the weighted-supremum metric. This metric

generates a stronger or coarser topology than the usual metric of uniform convergence

over compact sets, see e.g. Chapter 5 of Ganesh et al. [36] and Dieker [37].

Literature review. A variety of methods for simulation of Brownian motion exist, given

its popularity and usefulness. Sophisticated methods include exact simulation of some

special quantities, see Devroye [17], and the simulation of approximations of Brownian

motion that have path-wise guarantees of accuracy, see Beskos et al. [38]. On the other

hand, the Euler discretization approximation is a classic and simple approach to sample

Brownian motion and more general diffusions, see e.g. Platen [39] for a comprehensive

exposition. Nonetheless, the first approach along the lines of our work is Asmussen et

al. [8], who study the error of the Euler discretization approach to sample one-dimensional

reflected Brownian motion. We highlight the work of Broadie et al. [18, 19], which uses

the Euler discretization approximation to study the pricing of barrier and lookback options,

respectively. They justify their choice of the discretized approximation in that the financial

instruments they study can only be monitored at a pre-specified regular time mesh and

not in continuous-time. In greater generality, the last decade has seen the development of

several sophisticated methods for exact sampling of more general diffusion processes, see

e.g. Beskos et al. [40, 41]. In this line, a work related to ours is Etore et al. [42], who study

exact simulation of diffusions that involve the local-time at zero; nonetheless, their work

cannot be extended to ours since they do not treat reflected diffusions.

A central element of our work is the convergence in distribution of the Brownian motion

when “zoomed-in” in time-space about random times. The study of this convergence heav-

ily relies on path decompositions of Brownian motion; Williams [43] is the quintessential

reference in this line. For our particular study we use decompositions of Brownian mo-

tion about its global minima as Bessel process, see Rogers and Pitman [44], Bertoin [45];

and also decomposition about its local minima, see Asmussen et al. [8] and Imhof [46].
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A related work is Chaumont [47], who studies the pre- and post-minimum paths of Lévy

processes, but when process is conditioned to stay positive. In our case we do not condition

on the process staying positive.

In several works in the literature the constant −ζ(1/2)/
√

2π has appeared, where ζ is

the Riemann zeta function. These works essentially deal with extreme events of discretized

Brownian motion, e.g. Asmussen et al. [8], Calvin [33], Broadie et al. [18, 19]; with Gaus-

sian random walks, e.g. Janssen and van Leeuwaarden [16], Chang and Peres [32]; and

with approximations of stochastic processes, e.g. Chernoff [31], Siegmund [21], Comtet

and Majumdar [35]. More generally, Biane et al. [48] gives an overview of multiple random

variables related to Brownian motion where the Riemann zeta and Jacobi’s theta functions

appear.

In Section 3.5 we work with a Polish metric space which allows to derive stronger,

in a sense, weak convergence results of stochastic processes over unbounded time hori-

zons. This space uses the weighted-supremum metric, see e.g. Section 11.5.2 of Whitt [20].

This framework has mostly been used in the queueing theory literature to derive large-

deviations-type limits, see e.g. Chapter 5 of Ganesh et al. [36] and Dieker [37].

Outline. In Section 3.2 we show the main results of this chapter concerning the Euler

discretization error of Brownian motion about random times of interest. In detail, in Sec-

tion 3.2.1 we treat the error for barrier-hitting events; in Section 3.2.2 the error for extreme

events on compact time intervals, and in Section 3.2.3 we treat the error for extreme events

on unbounded closed time intervals.

In Section 3.3 we transform the convergence in distribution of the normalized Euler

errors into asymptotic results for Gaussian walks. More precisely, in Section 3.3.1 we

analyze the overshoot above a barrier when the barrier goes to infinity; in Section 3.3.2 we

study the minimum of a Gaussian walk compared to the minimum of a Brownian motion,

both up to the same time horizon that goes to infinity; and in Section 3.3.3 we analyze the
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global minimum of the Gaussian walk compared to the global minimum of a Brownian

motion, when both have the same positive drift decreasing to zero.

Section 3.4 is dedicated to the proofs of the main results in Section 3.2. For that, in

Section 3.4.1 we write the discretization errors as mappings of Brownian “zoomed-in”

about the random time of interest; then in Section 3.4.2 we prove that such zoomed-in

processes converge in distribution; and in Section 3.4.3 we give the actual proofs of the

main results of this paper, Theorems 3, 4 and 5 of Section 3.2.

Finally, in Section 3.5 we show the convergence of the Brownian motion “zoomed-in”

about times of barrier-hit or times at which extremes are attained.

Notation. We denote as R+ and Z+ the nonnegative real numbers and integer numbers,

respectively. The function dxe denotes the integer part of the number x. Also, C (R) and

C (R+) are the set of real functions defined on all real numbers and on the nonnegative real

numbers, respectively. We call standard Brownian motion and standard Bessel(3) process

as the Brownian motion and Bessel(3) process, respectively, with no drift and unit variance.

Unless otherwise stated, we assume that all process start from zero at time zero.

3.2 Main results

In this section we show our main results about the error convergence when simulating bar-

rier hitting and extreme value events of Brownian motion by using an Euler discretization

approach. In Section 3.2.1 we focus on the error of estimating barrier hitting events with

the Euler discretization. In Section 3.2.2 we consider the error when sampling extreme

values of the Brownian motion over a fixed finite horizon. In Section 3.2.3 we extend the

analysis to extreme values over an infinite horizon.

Consider a Brownian motion B = (B(t) : t ∈ R+) with constant drift µ and variance

σ2. For n > 0 integer, letBn = (Bn(t) : t ∈ R+) be the piecewise constant process defined
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as

Bn(t) := B (bntc/n) for all t ∈ R+; (3.1)

that is, Bn is the Euler discretization of B on the mesh {0, 1/n, 2/n, . . .}.

3.2.1 Error of barrier hitting times

We consider first the error of estimating barrier hitting times using the Euler discretization

of the Brownian motion. Consider a deterministic barrier function b = (b(t) : t ≥ 0)

satisfying the following assumptions:

(Hb) The function b : R → R is continuous and nondecreasing on R+, continuously

differentiable on R+\{0}, and b(0) ≥ 0.

We want to estimate the time

τb := inf {t ∈ (0,∞) : B(t) ≥ b(t)} ; (3.2)

for which we use the approximation

τnb := inf {t ∈ (0,∞) : Bn(t) ≥ b(t)} , (3.3)

whereBn is the discretized version ofB defined in (3.1). Here we use the usual convention

that inf ∅ = +∞. Our objective is to study the error of τnb − τb and Bn(τnb ) − B(τb). The

following result establishes the convergence rate and limiting distribution of these errors.

Theorem 3. Consider a barrier function b = (b(t) : t ≥ 0) satisfying (Hb). Conditioned

on the event {τb <∞}, as n→∞ the triplet

(
n (τnb − τb) ,

√
n (Bn(τnb )−B(τb)) , dnτbe − nτb

)
, (3.4)
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converges jointly in distribution to the triplet

(U + min{k ≥ 0 : W (U + k) > 0}, σW (U + min{k ≥ 0 : W (U + k) > 0}) , U) ,(3.5)

where W = (W (t) : t ∈ R+) is a standard Brownian motion independent of B, and U is a

uniformly distributed random variable on (0, 1) which is independent of B and W .

We remark that the limiting random variable (3.5) can be understood in the following

way. Consider a uniform random variable U in (0, 1) and a sequence of iid standard normal

random variables (X∗k)k≥0, and define a modified Gaussian walk S∗ = (S∗k : k ≥ 0) as

S∗0 :=
√
UX∗0 and S∗k := S∗k−1 +X∗k for k ≥ 1. Denote the first strictly positive time τ+ of

S∗ as

τ+ := min{k ≥ 0 : S∗k > 0}.

Then the triplet (
U + τ+, σS∗τ+ , U

)
is equal in distribution to the limiting random variable (3.5).

3.2.2 Error of minimum on finite horizon

We consider now the error of estimating the minimum on bounded time intervals by using

the Euler discretization of the Brownian motion. Consider a time interval [0, a] such that

0 < a <∞. We want to estimate the time

Tmin,a := inf

{
t ∈ [0, a] : B(t) = min

s∈[0,a]
B(s)

}
; (3.6)

for which we use the approximation

T nmin,a := inf

{
t ∈ [0, a] : Bn(t) = min

s∈[0,a]
Bn(s)

}
; (3.7)
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where the discretized version Bn is defined in (3.1). Note that Tmin,a is the almost surely

unique value satisfying B(Tmin,a) = mins∈[0,a]B(s); however, because of how Bn is de-

fined, {
t ∈ [0, a] : Bn(t) = min

s∈[0,a]
Bn(s)

}
=

[
T nmin,a, T

n
min,a +

1

n

)
.

We want to study the error of T nmin,a − Tmin,a and Bn(T nmin,a) − B(Tmin,a). The following

result establishes the limiting distribution and convergence rate of these errors.

Theorem 4. The triplet

(
n
(
T nmin,a − Tmin,a

)
,
√
n
(
Bn(T nmin,a)−B(Tmin,a)

)
, dnTmin,ae − nTmin,a

)
, (3.8)

converges jointly in distribution to the triplet in

(
U + arg min

k∈Z
R(U + k), σmin

k∈Z
R(U + k), U

)
, (3.9)

whereR = (R(t) : t ∈ R) is a two-sided Bessel(3) process and U is a uniformly distributed

random variable on (0, 1) which is independent of R. Here we have abused notation by

denoting as arg min in (3.9) the almost surely unique value k at which the minimum is

attained.

We remark that the convergence of the second component of the triplet in (3.8) corre-

sponds to Theorem 1 of Asmussen et al. [8]. Their limit however contains an extra time

term which in our framework would correspond to
√
a; this term appears because they

consider a discretization with step size a/n, whereas we consider 1/n. They also show

convergence of all finite moments and show that

β := E
[
min
k∈Z

R(U + k)

]
= −ζ(1/2)√

2π
. (3.10)

The objective of Asmussen et al. [8] is to study the Euler discretization error ΓB(t) −
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ΓBn(t) of the reflected Brownian motion ΓB. Here, Γ is the reflection mapping, defined

for all trajectory X with X(0) = 0 as

ΓX(t) := X(t)− inf
s∈[0,t]

X(s),

Our work extends theirs in the following way. Let the busy period mapping Γ′ be

Γ′X(t) := t− sup {s ∈ [0, t] : ΓX(s) = 0} = t− sup

{
s ∈ [0, t] : X(s) = inf

u∈[0,s]
X(u)

}

for X trajectory with X(0) = 0. Alternatively, Γ′ can be seen as the drift derivative of the

reflection mapping; see Dieker and Gao [49] for further details on the latter process. It is

easy to show that if Bn is the Euler discretization with stepsize 1/n as defined in (3.1) then

n (Γ′B(t)− Γ′Bn(t)) = 1 + n
(
T nmin,t − Tmin,t

)
and

√
n (ΓB(t)− ΓBn(t)) =

√
n
(
Bn(T nmin,t)−B(Tmin,t)

)
.

In particular, Theorem 4 gives the joint limit in distribution of these Euler discretization

errors.

Another related work is Broadie et al. [18], which studies the problem of pricing barrier

options that can only be monitored at regular time intervals. They are interested in express-

ing the event {Bn(t) > y, τnb ≤ t} in terms of B(t) and τb; here, B is a Brownian motion,

τb is its hitting time to the barrier b, and Bn and τnb are the analogous discretized versions.

Essentially, they show the approximation

P(Bn(t) > y, τnb ≤ t) = P(B(t) > y, τb+σβ/√n ≤ t) + o(1/
√
n),
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for t in the discretization mesh, where β is as defined in (3.10). In view of Theorem 4

above, the latter approximation can be heuristically understood as

{Bn(t) > y, τnb ≤ t}

=

{
B(t) > y, max

s∈[0,t]
B(s) ≥ b+

1√
n

√
n

(
max
s∈[0,t]

B(s)− max
s∈[0,t]

Bn(s)

)}
≈
{
B(t) > y, max

s∈[0,t]
B(s) ≥ b+

1√
n
E
[√

n

(
max
s∈[0,t]

B(s)− max
s∈[0,t]

Bn(s)

)]}
≈
{
B(t) > y, max

s∈[0,t]
B(s) ≥ b+

1√
n
σβ

}
=
{
B(t) > y, τb+σβ/√n ≤ t

}
,

for t in the discretization mesh. Dia and Lamberton [50] use this idea to extend the work

of Broadie et al. [18, 19] to jump diffusions.

3.2.3 Error of minimum on an infinite horizon

We consider now the error of estimating the minimum on unbounded time intervals by

using the Euler discretization of the Brownian motion. We want to estimate the time

Tmin,∞ := inf

{
t ∈ [0,∞) : B(t) = min

u∈[0,∞)
B(u)

}
; (3.11)

which we approximate as follows by using the discretized path Bn defined in (3.1):

T nmin,∞ := inf

{
t ∈ [0,∞) : Bn(t) = min

u∈[0,∞)
Bn(u)

}
. (3.12)

For that, we study the errors T nmin,∞ − Tmin,∞ and Bn(T nmin,∞)− B(Tmin,∞). The following

result establishes their convergence rate and limiting distribution.

Theorem 5. As n→∞, the triplet

(
n
(
T nmin,∞ − Tmin,∞

)
,
√
n
(
Bn(T nmin,∞)−B(Tmin,∞)

)
, dnTmin,∞e − nTmin,∞

)
,(3.13)
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converges jointly in distribution to the same triplet in (3.9).

We remark that we are not claiming that both triplets (3.8) and (3.13) converge jointly

together to the same limit (3.9).

3.3 Extension to Gaussian walks

In this section we extend our weak convergence error results to the setting of Gaussian

walks. A Gaussian walk is a discrete time stochastic process S = (Sk : k ≥ 0) where

Sk :=
∑k

i=1Xi and the increments Xi are iid normal random variables. We will see

that several important phenomena of these processes can be described using the limiting

distributions found in the Theorems 3, 4 and 5.

3.3.1 Corollary 1: limiting overshoot for increasing barrier

Consider a Gaussian walk S = (Sn : n ≥ 0) starting at zero, with nonnegative drift ES1 =

ν ≥ 0 and with variance E(S1 − ν)2 = σ2. For any fixed “barrier” m > 0 consider its

barrier-hitting time τm:

τm = min {k ≥ 0 : Sk ≥ m} .

We want to analyze the distribution of the overshoot Sτm −m as m grows.

We use the modified Gaussian walk S∗ = (S∗k : k ≥ 0) defined as S∗0 :=
√
UX∗0 and

S∗k :=
∑k

i=0X
∗
k for k ≥ 0, where X∗k are iid standard normal random variables for k ≥ 0,

and U is a uniform random variable on (0, 1) independent of (X∗k)k≥0. Define its first

strictly positive time τ+ as:

τ+ := min {k ≥ 0 : S∗k > 0} .

Corollary 2. As m→∞, the overshoot Sτm −m converges in distribution to σS∗τ+ .

The proof is a straightforward corollary of Theorem 3. Indeed, using Brownian scaling
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the overshoot Sτm −m is equal in distribution to the second component of (3.4) for µ = ν,

barrier b = 1 and n = m2.

Broadie et al. [18] compute the mean of the limiting overshoot S∗τ+ in the Gaussian walk

case by matching the expression for the mean limiting overshoot for general random walks

in Theorem 10.55 of [34] to the expression shown in Corollary 1 of [31]. They obtain that

the mean in the Gaussian walk case is

E
[
S∗τ+
]

= E [W (U + min{k ≥ 0 : W (U + k) > 0})] = −ζ(1/2)√
2π

, (3.14)

which we have already denoted as β. Interestingly, recall that in equation (3.10) we have

already seen that β = E [mink∈ZR(U + k)]. In other words, two limiting random variables,

W (U + min{k ≥ 0 : W (U + k) > 0}) and mink∈ZR(U + k), coming from different but

related problems have the same mean; c.f. Theorems 3 and 4. A question then is if both

distribution are the same. Simulating these random variables, however, suggest that the

answer is negative; see the Appendix of [8] for an algorithm to simulate mink∈ZR(U + k).

3.3.2 Corollary 2: running minimum asymptotics

Consider a Gaussian walk S = (Sn : n ≥ 0) starting at zero having drift ES1 = 0 and

variance E(S1)
2 = σ2. We want to study the random variables arg mink=0,...,n Sk and

mink=0,...,n Sk by comparing them to their Brownian counterparts arg mint∈[0,n]B(t) and

mint∈[0,n]B(t), respectively, where in both cases we refer to arg min as the almost sure

unique values at which the minimums are attained. More precisely, assume that the proba-

bility space is sufficiently rich so that there exists a Brownian motion B = (B(t) : t ≥ 0)

starting from zero, with zero drift and variance σ2, and such that Sn = B(n) for all n ∈ Z+.

Corollary 3. As n→∞, the pair

(
arg min
k=0,...,n

Sk − arg min
t∈[0,n]

B(t), min
k=0,...,n

Sk − min
t∈[0,n]

B(t)

)
(3.15)
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converges in distribution to the pair

(
U + arg min

k∈Z
R(U + k), σmin

k∈Z
R(U + k)

)
, (3.16)

where R = (R(t) : t ∈ R) is a two-sided Bessel(3) process and U a uniformly distributed

random variable on (0, 1) that is independent of R. Here we have abused notation and in

all cases the arg min operations corresponds to the almost surely unique value at which

the minimum is attained in each case.

The proof is straightforward when noting that, using Brownian scaling, the pair (3.15)

is equal in distribution to the first two terms of the triplet in (3.8) of Theorem 4.

Comtet and Majumdar [35] study the mean of the running maximum for general random

walks and compare it to the mean of the running maximum of Brownian motion, i.e.,

E
[

max
t∈[0,n]

B(t)

]
− E

[
max
k=0,...,n

Sk

]
,

as n → ∞, where S is a general random walk. In the Gaussian walk case they obtain

the limiting mean β = −ζ(1/2)/
√

2π, which is equal to E[mink∈ZR(U + k)], as we have

already discussed in (3.10).

3.3.3 Corollary 3: minimum as drift vanishes

Consider a Gaussian walk S = (Sn : n ≥ 0) starting from zero, with strictly positive drift

ES1 = ν > 0 and variance E(S1 − ν)2 = σ2. We want to study the values arg mink∈Z+
Sk

and mink∈Z+ Sk as the drift ν decreases to zero, and we do it by comparing them to their

Brownian counterparts arg mint∈R+
B(t) and mint∈R+ B(t), respectively, where in both

cases we refer to arg min as the almost sure unique values at which the minimums are

attained. More precisely, assume that the probability space is sufficiently rich so that there

exists a Brownian motion B = (B(t) : t ≥ 0) starting from zero, having drift ν > 0 and

variance σ2, and such that Sn = B(n) for all n ∈ Z+.
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Corollary 4. As the drift decreases to zero, ν ↘ 0, the pair

(
arg min
k∈Z+

Sk − arg min
t∈R+

B(t), min
k∈Z+

Sk − min
t∈R+

B(t)

)
(3.17)

converges in distribution to the pair in (3.16). Here we have abused notation and in all

cases the arg min operations corresponds to the almost surely unique value at which the

minimum is attained in each case.

The proof is direct from Theorem 5, since using Brownian scaling we obtain that (3.17)

is equal in distribution to the first two terms of the triplet in (3.13) with drift µ = 1 and

n = ν−2.

The convergence of the moments of mink∈Z+ Sk−mint∈R+ B(t) has already been stud-

ied. Janssen and van Leeuwaarden [16] gave an exact expansion of the first moment in

terms of the drift ν and found that the leading term was −ζ(1/2)/
√

2π, which is equal

to E[mink∈ZR(U + k)], see (3.10). Later in the follow up paper [51] they extend their

approach to express higher moments in a similar way. On a related vein, Siegmund [21]

studies approximating the expected maximum of general random walks with mean −ν,

ν > 0, by comparing it to the expected maximum of Brownian motion with drift −ν, i.e.,

E
[
max
t∈R+

B(t)

]
− E

[
max
k∈Z+

Sk

]
.

He obtains an expansion of the latter difference when ν ↘ 0 and the leading term is the

mean limiting overshoot E[S∗τ+ ], see Theorem 1 of [21]. In the Gaussian case this value is

β = −ζ(1/2)/
√

2π, see equation (3.14), and in turn this value is equal to E[mink∈ZR(U +

k)], c.f. (3.10).
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3.4 Proof of Theorems 3, 4 and 5

In this section we show the proof of Theorems 3, 4 and 5. The main idea is to write

the discretization errors as mappings of the original Brownian motion and then apply the

continuous mapping theorem, or an argument of that type, to show weak convergence of

the errors. We do this by first, in Section 3.4.1, writing the discretization errors as mappings

of the original Brownian motion “zoomed-in” about the random time of interest. Then, in

Section 3.4.2 we show that the zoomed-in processes converge in distribution. Lastly, in

Section 3.4.3 we tie all things together and prove Theorems 3, 4 and 5.

For the sake of clarity of exposition, we briefly recall the notation used. For a Brownian

motion path B with drift µ and variance σ2 we consider its Euler discretization Bn on the

mesh {0, 1/n, 2/n, . . .} as Bn(t) := B(bntc/n) for all t ≥ 0. Also, recall that the times

τb, Tmin,a and Tmin,∞ are defined as follows:

τb := inf {t ∈ (0,∞) : B(t) ≥ b(t)} ,

Tmin,a := inf

{
t ∈ [0, a] : B(t) = inf

u∈[0,a]
B(u)

}
,

Tmin,∞ := inf

{
t ∈ [0,∞) : B(t) = inf

u∈[0,∞)
B(u)

}
;

and also that their discretized counterparts τnb , T nmin,a and T nmin,∞ are defined analogously

by replacing B by Bn in the previous definitions. Recall too that by Assumption (Hb)

the function b = (b(t) : t ≥ 0) is continuous and nondecreasing on R+, continuously

differentiable on R+\{0}, and with b(0) ≥ 0. We onwards assume that B is actually a

two-sided Brownian motion B = (B(t) : t ∈ R) with B(0) = 0.

3.4.1 Discretization errors as mappings of zoomed-in processes

In this section we show that the discretization error expressions in Theorems 3, 4 and 5

can be rewritten as mappings of certain centerings and scalings of the original Brownian
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motion B; we call these the zoomed-in processes. We remark that these processes are

separate entities from the Euler discretization Bn of the Brownian motion B.

Definition 2. 1. Under {τb <∞}, for m > 0 define

U
(m)
hit,b := dmτbe −mτb, (3.18)

the zoomed-in process Z(m)
hit,b =

(
Z

(m)
hit,b(s) : s ∈ R

)
as

Z
(m)
hit,b(s) :=

√
m
(
B
(
τb + s

m

)
−B (τb)

)
, s ∈ R, (3.19)

and

b
(m)
hit,B(s) :=

√
m
(
b
(
τb + s

m

)
− b (τb)

)
, s ∈ R+. (3.20)

2. For m > 0 define

U
(m)
min,a := dmTmin,ae −mTmin,a (3.21)

and the zoomed-in process Z(m)
min,a =

(
Z

(m)
min,a(s) : s ∈ R

)
as

Z
(m)
min,a(s) :=

√
m
(
B
(
Tmin,a + s

m

)
−B (Tmin,a)

)
, s ∈ R. (3.22)

3. Under {Tmin,∞ <∞}, for m > 0 define

U
(m)
min,∞ := dmTmin,∞e −mTmin,∞ (3.23)

and the zoomed-in process Z(m)
min,∞ =

(
Z

(m)
min,∞(s) : s ∈ R

)
as

Z
(m)
min,∞(s) :=

√
m
(
B
(
Tmin,∞ + s

m

)
−B (Tmin,∞)

)
, s ∈ R. (3.24)
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Intuitively, as m grows, the processes (3.19), (3.22) and (3.24) can be understood as

“zooming-in’s” of the Brownian path in time-space respectively about the points (τb, B(τb)),

(Tmin,a, B(Tmin,a)) and (Tmin,∞, B(Tmin,∞)).

We now rewrite the discretization errors in Theorems 3, 4 and 5 as mappings of the

processes Z(m)
hit,b, Z

(m)
min,a and Z(m)

min,∞, the times Tmin,a and Tmin,∞, and the random variables

U
(m)
hit,b, U

(m)
min,a and U (m)

min,∞.

Lemma 5. 1. Under {τb <∞, τnb <∞}, almost surely we have

 n (τnb − τb)
√
n (Bn(τnb )−B(τb))

 = Ehit

(
U

(n)
hit,b, Z

(n)
hit,b, b

(n)
hit,B

)
, (3.25)

where the mappingEhit : R×C (R)×C (R+)→ (R∪{+∞})×(R∪{∂}) is defined

as

Ehit(u, f, g) :=

 u+ min {k ∈ Z+ : f(u+ k) > g(u+ k)}

f (u+ min {k ∈ Z+ : f(u+ k) > g(u+ k)})

 , (3.26)

where for completeness we use the convention min ∅ := +∞ and for f ∈ C (R) we

define f(+∞) := ∂.

2. It holds that n
(
T nmin,a − Tmin,a

)
√
n
(
Bn(T nmin,a)−B(Tmin,a)

)
 = E

(n)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
(3.27)

where for all m ∈ Z+ the mapping E(m)
min,a : R× C (R)× (0, a)→ R2 is defined as

E
(m)
min,a(u, f, t) :=

 u+ arg infk∈Z∩[−dmte,ma−dmte] f(u+ k)

infk∈Z∩[−dmte,ma−dmte] f(u+ k)

 , (3.28)
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where we have abused notation and actually denote arg infs∈N g(s) := inf{s ∈ N :

g(s) = infu∈N g(u)} for g ∈ C (R), N ⊆ R compact and inf ∅ := +∞.

3. Under {Tmin,∞ <∞} we have that

 n
(
T nmin,∞ − Tmin,∞

)
√
n
(
Bn(T nmin,∞)−B(Tmin,∞)

)
 = E

(n)
min,∞

(
U

(n)
min,∞, Z

(n)
min,∞, Tmin,∞

)
(3.29)

where for all m ∈ Z+ the mapping E(m)
min,∞ : R× Cinf(R)× R→ (R ∪ {+∞})× R

is defined as

E
(m)
min,∞(u, f, t) :=

 u+ arg infk∈Z∩[−dmte,∞) f(u+ k)

infk∈Z∩[−dmte,∞) f(u+ k)

 , (3.30)

where, for completeness, we denote Cinf +(R) := {f ∈ C (R) : limt→∞ f(t) = ∞}

and arg infs∈N g(s) := inf{t ∈ N : g(t) = infs∈N g(s)} for g ∈ Cinf +(R) and

N ⊂ R closed, with the convention inf ∅ =∞.

The proof of the previous result is a straightforward but non-illuminating calculation,

so it is deferred to the Section 3.6.

3.4.2 Weak convergence of the zoomed-in processes

In this section we show that the zoomed-in processes defined in Definition 2 converge

in distribution. We endow the space C (R) of continuous real functions on R with the

metric of uniform convergence over compact sets, say ‖ · ‖K, defined for all f in C (R)

as ‖f‖K :=
∑∞

A=1 2−A min{1, supt∈[−A,A] |f(t)|}. It holds that ‖f‖K = 0 if and only if

sups∈[−A,A] |f(s)| = 0 for all A > 0 finite, which motivates the name of the metric. The

space C (R) endowed with the topology generated by this metric is a Polish space, i.e., a

complete and separable topological space; see e.g. [52] for further details. We also use a

one-sided version of the metric space (C (R), ‖ · ‖K), which is defined analogously to the
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two-sided version (C (R), ‖ · ‖K).

Lemma 6. 1. Given t > 0 the process Z(m)
hit,b conditioned on {τb = t} converges in

distribution on (C (R), ‖ · ‖K) to (σR(−s) : s ≤ 0 ; σW (s) : s ≥ 0) as m → ∞,

where W is a standard Brownian motion and R is a standard Bessel(3) process

independent of W .

2. Given t ∈ (0, a), l < 0 and y > 0, conditioned on {Tmin,a = t, B(Tmin,a) =

l, B(a) = l + y} the process Z(m)
min,a converges in distribution on (C (R), ‖ · ‖K)

to σR as m → ∞, where R = (R(s) : s ∈ R) is a two-sided standard Bessel(3)

process.

3. Given t > 0 and l < 0, conditioned on the event {Tmin,∞ = t, B(Tmin,∞) = l} the

process Z(m)
min,∞ converges in distribution on (C (R), ‖ · ‖K) to σR as m→∞, where

R = (R(s) : s ∈ R) is a standard two-sided Bessel(3) process.

We remark that in all three parts of Lemma 6 the convergence in distribution also holds

unconditionally, since the limiting processes do not depend on the values of the condition-

ing. Note that none of these results explicitly depend on the drift µ of the Brownian motion

B.

Proof of Lemma 6. For the sake of clarity of the exposition, we always assume that the

treatment is conditioned on the events {τb < ∞, τnb < ∞} and {Tmin,∞ < ∞} when

dealing with the processes Z(m)
hit,b and Z(m)

min,∞ respectively.

We start by proving (i). By the strong Markov property the process (Z
(1)
hit,b(s) = B(t +

s)−b : s ≥ 0) conditioned on {τb = t} is distributed as a Brownian motion with drift µ and

variance σ2. In particular, (Z
(1)
hit,b(s) : s ≥ 0) is independent of (Z

(1)
hit,b(s) : s ≤ 0). Then,

by Brownian scaling (Z
(m)
hit,b(s) : s ≥ 0) is equal in distribution to a Brownian motion with

drift µ/
√
m and variance σ2. Since it converges almost surely to σW on (C (R+), ‖ · ‖K)

as m → ∞, where W is a standard Brownian motion, then it also converges weakly on

(C (R+), ‖ · ‖K).
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On the other hand, the process (−Z(1)
hit,b(−s) = b − B(τb − s) : s ∈ [0, t]) condi-

tioned on {τb = t} is distributed as a Bessel(3) process conditioned on being at b at

time t, see Theorem 3.4 of Williams [43]. Applying Lemma 1 of [8] we obtain that

(−
√
mZ

(1)
hit,b(−s/m) : s ≥ 0) converges weakly to σR on (C (R+), ‖ · ‖K) as m → ∞,

where R is a Bessel(3) process independent of W . This proves part (i).

Part (ii) corresponds to Lemma 1 of [8].

Finally, we prove (iii). The process (Z
(1)
min,∞(s) = B(Tmin,∞+ s)−B(Tmin,∞) : s ≥ 0)

conditioned on the event {Tmin,∞ = t, B(Tmin,∞) = l} is distributed as a Bessel(3) process

with drift µ, see Corollary 3 of [44]. Then, by Brownian scaling of the Bessel processes,

(
√
mZ

(1)
min,∞(s/m) = Z

(m)
min,∞(s) : s ≥ 0) is distributed as a Bessel(3) process with drift

µ/
√
m. Such a process converges almost surely in (C (R+), ‖ · ‖K) to a Bessel(3) process

with no drift, say to R+, so it also converges in distribution to R+.

On the other hand, by Theorems 2.1 and 3.4 of Williams [43] we have that (Z
(1)
min,∞(−s) :

s ∈ [0, t]) conditioned on {Tmin,∞ = t, B(Tmin,∞) = l} is distributed as a Bessel(3)

process conditioned on being at −l at time t. We conclude using Lemma 1 of [8] that

(
√
mZ

(1)
min,∞(−s/m) = Z

(m)
min,∞(−s) : s ≥ 0) converges weakly to σR− on (C (R+), ‖ ·‖K)

as m→∞, where R− is a Bessel(3) process independent of R+. This proves (iii).

3.4.3 Proofs

In this section we prove Theorems 3, 4 and 5. The idea is to apply the continuous mapping

theorem, see Chapter 3.4 of Whitt [20]. We do this inspired by Lemma 5, which shows that

the errors are mappings of the zoomed-in processes Z(n)
hit,b, Z

(n)
min,a and Z(n)

min,∞ and other ran-

dom variables, and Lemma 6, which shows weak convergence of the zoomed-in processes.

The following result shows the weak convergence of the random variables U (n)
hit,b, U

(n)
hit,b

and U (n)
hit,b to uniform random variables. This result motivates the weak convergence of the

pairs (U
(n)
hit,b, Z

(n)
hit,b), (U

(n)
min,a, Z

(n)
min,a) and (U

(n)
min,∞, Z

(n)
min,∞) as n→∞, with all the limiting

distributions independent of the random variables τb, Tmin,a and Tmin,∞. We defer its proof
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to the Section 3.6.

Lemma 7. Consider a nonnegative random variable T which has a distribution that is

absolutely continuous with respect to the Lebesgue measure. Then as n → ∞, dnT e −

nT converges in distribution to a uniformly distributed random variable on (0, 1), which

moreover is independent of T .

With the previous result we are now able to prove the main results of this paper.

Proof of Theorem 3. First recall that by Lemma 5, conditioned on {τb <∞, τnb <∞} we

have that

(n (τnb − τb) ,
√
n (Bn(τnb )−B(τb))) = Ehit

(
U

(n)
hit,b, Z

(n)
hit,b, b

(n)
hit,B

)
.

The plan of the proof is to first show that the triplet

(
U

(n)
hit,b, Z

(n)
hit,b, b

(n)
hit,B

)
(3.31)

converges in distribution, then show that the function Ehit is continuous, and conclude the

desired convergence of the errors using the continuous mapping theorem. We will use the

metric of uniform convergence on compact sets ‖ · ‖K for the weak convergence of Z(n)
hit,b

and for the continuity of the mapping Ehit.

We first argue that the triplet in (3.31) converges in distribution on (R × C (R) ×

C (R+), | · | × ‖ · ‖K × ‖ · ‖K) where, recall, ‖ · ‖K is the metric of uniform convergence on

compact sets. Indeed, by Lemmas 6 and 7 conditional on {τb <∞} the pair (U
(n)
hit,b, Z

(n)
hit,b)

converges in distribution to (U, (−σR(−s) : s ≤ 0;σW (s) : s ≥ 0)), where the weak

convergence of Z(n)
hit,b is on (C (R), ‖ · ‖K). Here, R and W are standard Bessel(3) and

Brownian motion processes, respectively; U is uniformly distributed on (0, 1); and R, W ,

U and τb are all independent. Additionally, the function b(n)hit,B almost surely converges to 0

on (C (R+), ‖ · ‖K), i.e., to the zero function. Indeed, b(n)hit,B is continuously differentiable
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on R+\{0} by Assumption (Hb), and τb > 0 almost surely, so for all k > 0 it holds almost

surely that

sup
t∈[0,k]

∣∣∣b(n)hit,B

∣∣∣ =
√
n sup
t∈[0,k]

∣∣∣∣b(τb +
t

n

)
− b(τb)

∣∣∣∣ =
√
n sup
t∈[0,k]

∣∣∣∣b′(τb +
ξ

n

)
t

n

∣∣∣∣→ 0

as n → ∞, where the last equality holds for some ξ ∈ (0, k) by the mean value theorem.

With this, we conclude that the triplet (3.31) converges in distribution as n → ∞ to the

triplet

(U, (−R(−s) : s ≤ 0;W (s) : s ≥ 0), 0) (3.32)

on (R× C (R)× C (R+), | · | × ‖ · ‖K × ‖ · ‖K).

The next step is to show that the mapping Ehit defined in (3.26) is continuous on a

measurable set, say Shit, containing the support of the limiting random variable (3.32). We

consider the set Shit defined as

{
(u,w, 0) ∈ (0, 1)× C (R+)× {0} : sup

k∈Z+

w(u+ k) > 0, w(u+ k) 6= 0 for all k ∈ Z+

}
.

Clearly it is measurable and the support of (3.32) is contained in Shit. In particular, the

mapping Ehit on Shit takes values in R2. Note now that by composition of continuous

functions it is sufficient to only show the continuity of the mapping

(u,w, 0) ∈ Shit 7→ min{k ∈ Z+ : w(u+ k) > 0}. (3.33)

To see that the function (3.33) is continuous, first take any (u,w, 0) ∈ Shit and a sequence

((U
(n)
min,a, wn) : n ≥ 0) in R×C (R+) such that ‖wn−w‖K + |U (n)

min,a− u| → 0 as n→∞.

Denote K∗ := min{k ∈ Z+ : w(u+ k) > 0} and δ∗ := min{|w(u+ k)| : k = 0, . . . , K∗},

and note that δ∗ > 0 by definition of Shit. Since (U
(n)
min,a, wn)→ (u,w) on | · | × ‖ · ‖K then
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in particular supk∈Z+∩[0,K∗]

∣∣∣w(u+ k)− wn(U
(n)
min,a + k)

∣∣∣ < δ∗ for all n ≥ n∗, for some n∗

sufficiently large. In particular, for all n ≥ n∗ the values wn(U
(n)
min,a+k), k = 0, . . . , n∗, are

all different from zero and have the same sign ofw(u+k), k = 0, . . . , n∗, respectively. This

implies that min{k ∈ Z+ : wn(U
(n)
min,a + k) > 0} = K∗ = min{k ∈ Z+ : w(u + k) > 0}

for all n ≥ n∗. We have shown that the mapping (3.33), and thus Ehit, is continuous on

Shit, which contains the support of the limiting random variable (3.32).

It follows that applying the continuous mapping theorem, see Theorem 3.4.3 of [20],

the random variable Ehit(U
(n)
hit,b, Z

(n)
hit,b, b

(m)
hit,B) converges to Ehit(U, (−σR, σW ), 0) in

distribution as n → ∞. Lastly, note that P(τnb < ∞|τb < ∞) → 1 as n → ∞, so we can

drop the condition τnb <∞. This concludes the proof of the Theorem 3.

Proof of Theorems 4 and 5. We show only the proof of Theorem 4, since the proof of The-

orem 5 is analogous.

To prove the joint convergence of the normalized discretization errors n
(
T nmin,a − Tmin,a

)
and
√
n
(
Bn(T nmin,a)−B(Tmin,a)

)
recall first that by Lemma 5 they can be written as

 n
(
T nmin,a − Tmin,a

)
√
n
(
Bn(T nmin,a)−B(Tmin,a)

)
 = E

(n)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
.

Inspired on this we first show that the following vector converges in distribution as n→∞:

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
. (3.34)

We would then like to conclude the joint convergence of the normalized errors by using

the generalized continuous mapping theorem, see Theorem 3.4.4 of [20]. This considers

showing that, in a sense, the mapping limn→∞E
(n)
min,a is continuous for the metric ‖ · ‖K

on the support of the limiting distribution of (3.34); however this is not true. Nonetheless,

we show that this problem can be circumvented by first restricting to compact time inter-

vals, then using there the continuous mapping theorem, and then increasing the size of the
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compact time interval.

We start by arguing that as n→∞ the random variable in (3.34) converges in distribu-

tion to (U, σR, Tmin,a), whereR is a standard Bessel(3) process, U is uniformly distributed

on (0, 1), and R, U and Tmin,a are all independent. Indeed, by Lemmas 6 and 7, as n→∞

the pair (U
(n)
min,a, Z

(n)
min,a) converges in distribution to (U, σR), where the weak convergence

of Z(n)
min,b is on (C (R), ‖ · ‖K), and moreover U and R are independent of Tmin,a.

The rest of the proof consists on showing that the following limit in distribution holds

lim
n→∞

E
(n)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
= E

(∞)
min,a (U, σR, Tmin,a) , (3.35)

where the mapping E(∞)
min,a is defined as

E
(∞)
min,a(u, f, t) :=

(
u+ arg inf

k∈Z
f(u+ k), inf

k∈Z
f(u+ k)

)
, (3.36)

where f takes values in Cinf ±(R) := {f ∈ C (R) : limt→±∞ f(t) = ∞}. By Lemma 5

this would conclude the proof of Theorem 4. To prove the limit (3.35) we first restrict, in

a sense, the mappings E(m)
min,a to compact time intervals of the form [−A,A], then prove the

weak convergence there, and then take the limit A→∞.

Define for all m ∈ Z+ and A > 0 the mapping E(m,A)
min,a : (0, 1) × C (R) × (0, a) → R2

as

E
(m,A)
min,a (u, f, t) :=

 u+ arg infk∈Z∩[−dmte, ma−dmte]∩[−A,A] f(u+ k)

infk∈Z∩[−dmte, ma−dmte]∩[−A,A] f(u+ k)

 , (3.37)

where we have abused notation and actually denote arg infs∈N g(s) := inf{s ∈ N :

g(s) = infu∈N g(u)} for g ∈ C (R), N ⊆ R compact and inf ∅ := +∞. By the gen-

eralized continuous mapping theorem, see Theorem 3.4.4 of [20], as n → ∞ the vector
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E
(n,A)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
converges in distribution toE(∞,A)

min,a (U, σR, Tmin,a), where

E
(∞,A)
min,a (u, r, t) :=

(
u+ arg min

k∈Z∩[−A,A]
r(u+ k), min

k∈Z∩[−A,A]
r(u+ k)

)
. (3.38)

Indeed, for all (u, r, t) ∈ (0, 1) × C (R) × (0, a) such that all the values {r(u + k) :

k ∈ Z} are different it holds that E(n,A)
min,a (un, rn, tn) → E

(∞,A)
min,a (u, r, t) for any sequence

(un, rn, tn) in (0, 1) × C (R) × (0, a) such that un → u, rn → r and tn → t, where the

convergence of rn is with the norm ‖ · ‖K. This implies that, with probability one, the

limiting random variable (U, σR, Tmin,a) does not take values on the set where E(∞,A)
min,a

is discontinuous; therefore the generalized continuous mapping theorem applies and we

obtain the desired convergence in distribution.

Now note that the following limit in distribution holds

lim
A→∞

E
(∞,A)
min,a (U, σR, Tmin,a) = E

(∞)
min,a (U, σR, Tmin,a) ,

with E(∞)
min,a is as defined in (3.36), because the convergence actually holds almost surely.

Therefore, abusing notation, we conclude that

lim
A→∞

lim
n→∞

E
(n,A)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
= E

(∞)
min,a (U, σR, Tmin,a) , (3.39)

where both limits and the equality are in distribution.

On the other hand, for all n

lim
A→∞

E
(n,A)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a) = E

(n)
min,a(U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
(3.40)

in distribution, since the convergence holds almost surely.
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We now show that, in a sense, the following interchange of limits holds

lim
n→∞

lim
A→∞

E
(n,A)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
= lim

A→∞
lim
n→∞

E
(n,A)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
,

where the limits and the equality are in distribution; note that this would conclude the limit

in distribution (3.35). The latter interchange of limits, we will see, is a consequence of the

limit

lim
A→∞

lim sup
n→∞

P
(

min
k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]C

Z
(n)
min,a

(
k + U

(n)
min,a

)
<ξ

)
= 0,(3.41)

which holds for all ξ ∈ R. Indeed, (3.41) is just Lemma 4 of [8], which is easily checked

by using the definitions of Z(n)
min,a and U (n)

min,a in Definition 2. The limit (3.41) in turn implies

that the lim supA→∞ of the lim supn→∞ of the following probability converges to zero:

P

(
U

(n)
min,a + arg min

k∈Z∩[−dnTmin,ae, na−dnTmin,ae]
Z

(n)
min,a

(
k + U

(n)
min,a

)
∈ [−A,A]C

)
, (3.42)

since

lim sup
A→∞

lim sup
n→∞

P

(
U

(n)
min,a + arg min

k∈Z∩[−dnTmin,ae, na−dnTmin,ae]
Z

(n)
min,a(k + U

(n)
min,a) ∈ [−A,A]C

)

= lim sup
A→∞

lim sup
n→∞

P
(

min
k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]C

Z
(n)
min,a(k + U

(n)
min,a)

< min
k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]

Z
(n)
min,a(k + U

(n)
min,a)

)
≤ E

[
lim sup
A→∞

lim sup
n→∞

P
(

min
k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]C

Z
(n)
min,a(k + U

(n)
min,a) < ξ∣∣∣∣ min

k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]
Z

(n)
min,a(k + U

(n)
min,a) = ξ

)]
= 0,

where in the inequality we used the reverse Fatou’s lemma. It follows that for all s, t, u
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in R we have

∣∣∣∣∣P
(
U

(n)
min,a + arg min

k∈Z∩[−dnTmin,ae, na−dnTmin,ae]
Z

(n)
min,a(k + U

(n)
min,a) ≤ s,

min
k∈Z∩[−dnTmin,ae, na−dnTmin,ae]

Z
(n)
min,a(k + U

(n)
min,a) ≤ t, U

(n)
min,a ≤ u

)
− P

(
U

(n)
min,a + arg min

k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]
Z

(n)
min,a(k + U

(n)
min,a) ≤ s,

min
k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]

Z
(n)
min,a(k + U

(n)
min,a) ≤ t, U

(n)
min,a ≤ u

)∣∣∣∣
≤ P

(
U

(n)
min,a + arg min

k∈Z∩[−dnTmin,ae, na−dnTmin,ae]
Z

(n)
min,a(k + U

(n)
min,a) ∈ [−A,A]C

)

+ P
(

min
k∈Z∩[−dnTmin,ae, na−dnTmin,ae]∩[−A,A]C

Z
(n)
min,a(k + U

(n)
min,a) ≤ t

)
.

Using the limits (3.41) and (3.42) one obtains that the difference in the previous display

goes to zero when taking lim supn→∞ and then lim supA→∞. Together with the limit (3.39)

we conclude the limit in distribution

lim
n→∞

E
(n)
min,a

(
U

(n)
min,a, Z

(n)
min,a, Tmin,a

)
= E

(∞)
min,a (U, σR, Tmin,a) ,

i.e., the limit (3.35), which is what we wanted to prove.

This proves Theorem 4. The proof of Theorem 5 is analogous.

3.5 Strengthened convergence of the zoomed-in processes

In this section we give an alternate approach to tackle the proof of Theorems 4 and 5.

Recall that in Section 3.4 we proved these two theorems by using an ad-hoc continuous

mapping theorem-type result where we first restricted to compact time-horizons of the form

[−A,A] and then made A → ∞. In this section we show a different approach to prove

Theorems 4 and 5 where the aim is to be able to directly apply the continuous mapping

theorem to conclude the convergence of the normalized discretization errors. This approach
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consists on using another metric on the space C (R), the weighted-supremum metric, which

is briefly introduced in Section 3.5.1, and which is intended to make continuous the errors

mapping E(∞)
min,a defined in (3.36). In Section 3.5.2 we depict to which extent we can show,

with this alternative metric space, the convergence in distribution of the normalized Euler

discretization errors. Lastly in Section 3.5.3 we show that the zoomed-in processes actually

converge in distribution for this alternative metric space. We focus on showing the alternate

approach only for Theorem 4; the case of Theorem 5 is completely analogous.

3.5.1 Weighted-supremum metric

In this section we introduce the weighted-supremum metric and show its basic properties.

We consider the weighted-supremum metric, denoted ‖ · ‖1, defined as

‖f‖1 := sup
t∈R

|f(t)|
1 + |t|

. (3.43)

We work on the subspace C1(R) of C (R), defined as

C1(R) :=

{
f ∈ C (R) : f(0) = 0, lim

t→+∞

∣∣∣∣f(t)

t

∣∣∣∣ and lim
t→−∞

∣∣∣∣f(t)

t

∣∣∣∣ exist and are finite
}
.

We also consider a one-sided version of the metric space (C1(R+), ‖ · ‖1), which is defined

analogously to the two-sided version (C1(R), ‖ · ‖1).

It holds that (C1(R), ‖ · ‖1) is a Polish space, i.e., a complete and separable metric

space, since it is isometric to the space (C0(−1, 1), ‖ · ‖∞), where C0(−1, 1) := {f ∈

C (−1, 1) : f(0) = 0} and ‖ · ‖∞ is the usual supremum norm1. Moreover, the topology

generated by ‖ · ‖1 is stronger or finer than the one generated by the metric of uniform

convergence on compact sets ‖ · ‖K, that is, the former topology contains the latter one. In

particular, mappings on C1(R) that are continuous for the metric ‖ · ‖K are also continuous

1Note that x 7→ x/(1−|x|) is a bijective mapping from (−1, 1) to R. Thus, the mapping (f(y) : y ∈ R) 7→(
f( x

1−|x| )

1+| x
1−|x| |

: x ∈ (−1, 1)
)

is a bijective isometry from (C1(R), ‖ · ‖1) to (C0(−1, 1), ‖ · ‖∞).
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for ‖ · ‖1; or equivalently, sequences that converge for the metric ‖ · ‖1 also converge for

‖ · ‖K. As a consequence, weak convergence on (C1(R+), ‖ · ‖1) implies weak convergence

on (C1(R+), ‖ · ‖K). See Chapter 5 of Ganesh et al. [36] and Dieker [37] for further details.

We consider the metric space (C1(R), ‖ · ‖1) because it makes continuous some map-

pings that are not continuous for the metric ‖ · ‖K of uniform convergence over compact

sets; this is a direct consequence of ‖ ·‖1 inducing a stronger topology than the one induced

by ‖ · ‖K. Consider for example the mapping

r ∈ C (R) 7→ min
t∈R

r(t) + δ|t|, (3.44)

which by Lemma 2 of [37] is continuous for the metric ‖ · ‖1 when restricted to the space

C1,0(R) :=

{
f ∈ C1(R) : lim

t→±∞

f(t)

t
= 0

}
.

In contrast, the mapping is not continuous for the metric ‖·‖K of uniform convergence over

compact sets; see the counterexample in Section 3.4 of [37].

3.5.2 Discretization errors with the weighted-supremum metric

In this section we show how to apply the metric spaces (C1(R), ‖·‖1) and (C1,0(R), ‖·‖1),

defined in the previous section, to derive weak convergence of the normalized discretization

errors by directly using the continuous mapping theorem. We focus the discussion only on

an alternate proof for Theorem 4; the discussion for Theorem 5 is analogous.

We are motivated by the fact that the mapping E(∞)
min,a stands a chance to be continuous

for the metric ‖ · ‖1, where we defined E(∞)
min,a in equation (3.36) as

E
(∞)
min,a(u, f, t) :=

(
u+ arg inf

k∈Z
f(u+ k), inf

k∈Z
f(u+ k)

)
, (3.45)

for f in Cinf ±(R) := {f ∈ C (R) : limt→±∞ f(t) = ∞}. Indeed, E(∞)
min,a is of the form

77



of the mapping in equation (3.44), which is continuous for the metric ‖ · ‖1. We remark

that in Section 3.4.3 we showed that the generalized continuous mapping theorem can be

applied when, essentially, with probability one the limiting random variable does not take

values in the set of discontinuity points of E(∞)
min,a. On the other hand, as n → ∞ the

zoomed-in process Z(n)
min,a converges in distribution on (C1(R), ‖ · ‖1) to σR, as we will

see in Proposition 4 of Section 3.5.3. Together with Lemma 7, this implies that the pair

(Z
(n)
min,a, U

(n)
min,a) converges in distribution to (σR, U), with U a random variable uniformly

distributed on (0, 1) and independent of R. Therefore, to be able to apply the generalized

continuous mapping theorem to conclude Theorem 4 it is only left to prove that the mapping

E
(∞)
min,a is continuous for the metric ‖ · ‖1. In the following we will see that this is actually

not true; nonetheless in Proposition 3 we show a slightly weaker version of Theorem 4 that

we are able to conclude with the framework shown in this section.

We start by analyzing the continuity of the mapping E(∞)
min,a for the metric ‖ · ‖1. First

note that for all δ > 0 the modified mapping

(u, r) ∈ (0, 1)× C1,0(R) 7→

 u+ arg infk∈Z r(u+ k) + δ|u+ k|

infk∈Z r(u+ k) + δ|u+ k|

 (3.46)

is continuous for the metric ‖ · ‖1 on the support of the random variable (U, σR); this is

a simple consequence of the continuity of the mapping (3.44) for the metric ‖ · ‖1. Here,

(U, σR) is the limiting random variable in Proposition 4 part (ii) of Section 3.5.3, which we

assume true for the moment. The continuity of the mapping (3.46) implies the following

limit in distribution for all δ > 0 as n→∞ U
(n)
min,a + arg mink∈Z∩[−dnTmin,ae, na−dnTmin,ae] Z

(n)
min,a(U

(n)
min,a + k) + δ|U (n)

min,a + k|

mink∈Z∩[−dnTmin,ae, na−dnTmin,ae] Z
(n)
min,a(U

(n)
min,a + k) + δ|U (n)

min,a + k|


→

 U + arg mink∈Z σR(U + k) + δ|U + k|

mink∈Z σR(U + k) + δ|U + k|

 ,
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by the generalized continuous mapping theorem, see Theorem 3.4.4 of [20]. Using the

definition of E(m)
min,a in Definition 2 it can be checked that the latter limit corresponds to the

following convergence in distribution.

Proposition 3. The following limit in distribution holds for all δ > 0 as n→∞

 n
(
T n,δmin,a − Tmin,a

)
√
n
(
Bn,δ(T n,δmin,a)−B(Tmin,a)

)
 →

 U + arg mink∈ZR(U + k) + δ|U + k|

mink∈ZR(U + k) + δ|U + k|

 ,

where U is a uniform random variable and R a standard two-sided Bessel(3) process in-

dependent of U . Here, Bn,δ is the piecewise-constant Euler discretization of the process

(B(t) +
√
nδ|t− Tmin,a| : t ≥ 0) on the mesh Z+/n = {0, 1/n, 2/n, . . .}, i.e.,

Bn,δ(t) := B

(
bntc
n

)
+
√
nδ

∣∣∣∣bntcn − Tmin,a

∣∣∣∣ ,
and T n,δmin,a is the minimum time in [0, a] where Bn,δ(t) attains its minimum, i.e.

T n,δmin,a := min

{
t ∈ [0, a] : Bn,δ(t) = min

s∈[0,a]
Bn,δ(s)

}
.

Note that Theorem 3 states that in Proposition 3 the result also holds for δ = 0.

Nonetheless, the case δ = 0 cannot be deduced using the generalized continuous map-

ping theorem as in the proof of Proposition 3. Essentially, because the limiting random

variable (U, σR) of part (ii) of Proposition 4 with probability zero takes values on the set

where the mapping

(u, r) ∈ (0, 1)× C1,0(R) 7→

 u+ arg infk∈Z r(u+ k)

infk∈Z r(u+ k)

 (3.47)

is discontinuous for the metric ‖ · ‖K. Indeed, consider any pair (u, r) ∈ (0, 1) × C1,0(R)

such that limt→±∞ r(t) = ∞ and such that infk∈Z r(u + k) > 0; clearly with probability
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one (U, R) lies in the set of these type of pairs (u, r). Now define the sequence (rn)n as

follows: for all n ≥ 1, rn is identical to r, except that on (n − 1, n + 1) the function r is

modified continuously so as to make rn(n) := n−1 infk∈Z r(u+k). The sequence (rn)n is in

C1,0(R) and ‖rn−r‖1 → 0 as n→∞; however infk∈Z rn(u+k)→ 0 < infk∈Z r(u+k) as

n→∞. This shows that Theorem 3 cannot be deduced by directly applying Proposition 4

and the generalized continuous mapping theorem, see Theorem 3.4.4 of [20], using the

Polish metric space (C1(R), ‖ · ‖1).

3.5.3 Strengthened convergence of the zoomed-in processes

In this section we show that the zoomed-in processes Z(m)
hit,b, Z

(m)
min,a and Z(m)

min,∞, defined in

Defintion 2 converge in distribution on the space (C1(R), ‖ · ‖1). This is done in Propo-

sition 4. This result relies heavily on Lemma 8, which roughly speaking analyzes how

local behavior as Bessel process propagates into a global behavior when “zooming in” in

time-space by using Brownian scaling.

Proposition 4. 1. Under {τb < ∞}, almost surely for all m > 0 the zoomed-in pro-

cess Z(m)
hit,b takes values in C1(R). Moreover, given t > 0 the process Z(m)

hit,b condi-

tioned on {τb = t} converges in distribution to (σR(−s) : s ≤ 0 ; σW (s) : s ≥ 0)

on (C1(R), ‖ · ‖1) as m → ∞, where W is a standard Brownian motion and R is a

standard Bessel(3) process independent of W .

2. Almost surely for all m > 0 the zoomed-in process Z(m)
min,a is in C1(R). Moreover,

given t ∈ (0, a), l < 0 and y > 0, conditioned on {Tmin,a = t, B(Tmin,a) =

l, B(a) = l + y} the process Z(m)
min,a converges in distribution on (C1(R), ‖ · ‖1)

to σR as m → ∞, where R = (R(s) : s ∈ R) is a two-sided standard Bessel(3)

process.

3. Under {Tmin,∞ < ∞}, almost surely for all m > 0 the zoomed-in process Z(m)
min,∞

is in C1(R). Moreover, given t > 0 and l < 0, conditioned on the event {Tmin,∞ =
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t, B(Tmin,∞) = l} the process Z(m)
min,∞ converges in distribution on (C1(R), ‖ · ‖1)

to σR as m → ∞, where R = (R(s) : s ∈ R) is a standard two-sided Bessel(3)

process.

We remark that in all three parts of Proposition 4 the convergence in distribution also

holds unconditionally. Also note that these results do not depend on the value of the drift µ

of the Brownian motion B. We also remark that Proposition 4 implies Lemma 6, since the

topology generated by ‖ · ‖1 is stronger than the one generated by ‖ · ‖K.

The proof of Proposition 4 relies on the following result, which analyzes how local

behavior as Bessel process propagates into a global one when “zooming in” using Brow-

nian scaling. Its proof delves into the technicalities of weak convergence of processes on

(C1(R+), ‖ · ‖1), see e.g. [37] for further details.

Lemma 8. Let X = (X(s) : s ≥ 0) be a stochastic process almost surely taking paths

in C1(R+). Assume that there is a strictly positive random variable T such that, given

u, v > 0, conditioned on {T = u, X(T ) = v} the process (X(s) : s ∈ [0, u]) has the same

distribution as a standard Bessel(3) process conditioned on being at v at time u. Then as

m → ∞ the process (
√
mX(s/m) : s ≥ 0) converges in distribution on (C1(R+), ‖ · ‖1)

to a standard Bessel(3) process.

Proof of Lemma 8. We follow the usual approach of showing consistency and tightness to

prove convergence of probability measures over the space of continuous functions C (R+);

see Section 7 of Billingsley [53] for a classical reference on this approach. However, the

method has to be strengthened due to the fact that we want weak convergence on the space

(C1(R+), ‖ · ‖1). Indeed, Lemma 4 of [37] shows that in this case the proof consists of two

parts. The first is to restrict the process to (C1[0, k], ‖ · ‖∞), any k > 0 and where ‖ · ‖∞ is

the supremum norm, and prove its weak convergence on this space. The second step is to

prove the following tail limit

lim
k→∞

lim sup
m→∞

P
(

sup
s≥k

|
√
mX(s/m)|

1 + s
≥ ξ

∣∣∣∣T = u,X(T ) = v

)
= 0, (3.48)
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for all ξ > 0.

For clarity of exposition, we write P(u,v)(·) := P ( ·|T = u,X(u) = v) in the remainder.

We start with the weak convergence on (C1[0, k], ‖ · ‖∞) for k > 0 arbitrary. First recall

that under P(u,v) by hypothesis (X(s) : s ∈ [0, u]) is distributed as a standard Bessel(3)

conditioned on being at v at time u. Hence, by Brownian scaling, (
√
mX(s/m) : s ∈

[0,mu]) is distributed as a standard Bessel(3) conditioned on being at
√
mv at time mu.

In particular, for all m ≥ k/u we have that (
√
mX(s/m) : s ∈ [0, k]) is distributed as a

standard Bessel(3) process conditioned on being at
√
mv at time mu. Weak convergence

on (C1[0, k], ‖ · ‖∞) is then concluded by using e.g. Lemma 1 of [8].

We now prove the tail limit (3.48). We actually show that the following holds

lim
m→∞

P(u,v)

(
sup
s≥k

|
√
mX(s/m)|

1 + s
≥ ξ

)
= P

(
sup
s≥k

R(s)

1 + s
≥ ξ

)
, (3.49)

where, recall, we write P(u,v)(·) = P ( · |T = u,X(u) = v), and where R is a standard

Bessel(3) process under P. In this case (3.48) would easily follow. To prove the limit

(3.49) we start by decomposing the probability on the left hand side as follows:

P(u,v)

(
sup
s≥k

|
√
mX

(
s
m

)
|

1 + s
≥ ξ

)

= P(u,v)

(
|
√
mX

(
k
m

)
|

1 + k
≥ ξ

)
(3.50)

+P(u,v)

(
sup

s∈[k,mu]

|
√
mX

(
s
m

)
|

1 + s
< ξ, sup

s>mu

|
√
mX

(
s
m

)
|

1 + s
≥ ξ

)
(3.51)

+P(u,v)

(
|
√
mX

(
k
m

)
|

1 + k
< ξ, sup

s∈[k,mu]

|
√
mX

(
s
m

)
|

1 + s
≥ ξ

)
. (3.52)

The proof essentially consists of showing that (3.50) converges to P (R(k)/(1 + k) ≥ ξ) as

m→∞, (3.51) vanishes to zero, and (3.52) converges to

P
(
R(k)/(1 + k) < ξ, sup

s≥k
R(s)/(1 + s) ≥ ξ

)
.
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In that case it is clear that (3.49) holds.

We start by showing that (3.50) converges to P (R(k)/(1 + k) ≥ ξ) as m → ∞. By

hypothesis, (X(s) : s ∈ [0, u]) is distributed under P(u,v) as a standard Bessel(3) process,

so for all m > k/u we have

P(u,v)
(
|
√
mX(k/m)| ≥ ξ(1 + k)

)
= P

(
R (k) ≥ ξ(1 + k)

∣∣∣∣ 1√
m
R(mu) = v

)
,

where we used Brownian scaling. It follows that

lim
m→∞

P
(
R (k) ≥ ξ(1 + k)

∣∣∣∣ 1√
m
R(mu) = v

)
= P (R (k) ≥ ξ(1 + k)) .

Indeed, using that the transition kernel density of the Bessel(3) process is

Px (R (s) ∈ dv)/dv =

√
2

πs

v

x
e−

x2+v2

2s sinh
(xv
s

)
, (3.53)

which is continuous and bounded for (s, x, v) ∈ (0,∞)× [0,∞)2, we obtain from Bayes’

theorem that

P
(
R (k) ≥ ξ(1 + k)

∣∣∣∣ 1√
m
R(mu) = v

)

=

∫ ∞
ξ(1+k)

P
(

1√
m
R(mu) ∈ dv

∣∣∣R(k) = x
)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

P (R (k) ∈ dx) (3.54)

=

∫ ∞
ξ(1+k)

Px
(

1√
m
R(mu− k) ∈ dv

)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

P (R (k) ∈ dx)

=

∫ ∞
ξ(1+k)

Px/√m (R(u− k/m) ∈ dv)/dv

P (R(u) ∈ dv)/dv
P (R (k) ∈ dx)

→ P (R (k) ≥ ξ(1 + k)) as m→∞,

where Px(·) := P(·|R(0) = x), and where we used dominated convergence and also Brow-

nian scaling of the Bessel(3) process.
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We now show that (3.51) converges to 0 as m→∞. Indeed, it is bounded by

P(u,v)

(
|
√
mX(mu/m)|

1 +mu
< ξ, sup

s>mu

|
√
mX(s/m)|

1 + s
≥ ξ

)
= 1{

v
1/
√

m+
√
mu

<ξ
}P(u,v)

(
sup
s>u

|X(s)|
1/
√
m+

√
ms
≥ ξ

)
= 1{

v
m−1+u

<
√
mξ

}P(u,v)

(
sup
s>u

|X(s)|
m−1 + s

≥
√
mξ

)
→ 0 as m→∞,

where we used that X almost surely takes paths in C1(R+).

Lastly, it remains to prove that as m→∞ the term (3.52) converges to

P
(
R(k)/(1 + k) < ξ, sup

s≥k
R(s)/(1 + s) ≥ ξ

)
.

Again, by hypothesis, under P(u,v) the process (X(s) : s ∈ [0, u]) is distributed as a stan-

dard Bessel(3) process, say R. Thus, for all m > k/u we have

P(u,v)

(
|
√
mX(k/m)|

1 + k
< ξ, sup

s∈[k,mu]

|
√
mX(s/m)|

1 + s
≥ ξ

)

= P

(
R(k)

1 + k
< ξ, sup

s∈[k,mu]

R(s)

1 + s
≥ ξ

∣∣∣∣∣ 1√
m
R(mu) = v

)
,

where we used Brownian scaling.

We now argue that as m→∞

P

(
R(k)

1 + k
< ξ, sup

s∈[k,mu]

R(s)

1 + s
≥ ξ

∣∣∣∣∣ 1√
m
R(mu) = v

)
→ P

(
R(k)

1 + k
< ξ, sup

s≥k

R(s)

1 + s
≥ ξ

)
.

To prove that, we again use that the transition kernel of the Bessel(3) process has the con-
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tinuous and bounded density (3.53); similar to (3.54) we obtain that

P

(
R(k)

1 + k
< ξ, sup

s∈[k,mu]

R(s)

1 + s
≥ ξ

∣∣∣∣∣ 1√
m
R(mu) = v

)

=

∫ ξ(1+k)

0

P
(

sups∈[k,mu]
R(s)
1+s
≥ ξ, 1√

m
R(mu) ∈ dv

∣∣∣R(k) = x
)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

P (R(k) ∈ dx)

=

∫ ξ(1+k)

0

Px
(

sups∈[0,mu−k]
R(s)

1+k+s
≥ ξ, 1√

m
R(mu− k) ∈ dv

)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

·P (R(k) ∈ dx) , (3.55)

where we used the Markov property in the last equality. It remains to show that, for all

x ∈ (0, ξ(1 + k)], as m→∞ it holds that

Px
(

sups∈[0,mu−k]
R(s)

1+k+s
≥ ξ, 1√

m
R(mu− k) ∈ dv

)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

→Px
(

sup
s≥0

R(s)

1 + k + s
≥ξ
)
.(3.56)

Proving the latter would conclude the proof, since it would imply that as m→∞ we have

P

(
R(k)

1 + k
< ξ, sup

s∈[k,mu]

R(s)

1 + s
≥ ξ

∣∣∣∣∣ 1√
m
R(mu) = v

)
→P

(
R(k)

1 + k
< ξ, sup

s≥k

R(s)

1 + s
≥ ξ

)
.

The interchange of limit and integral in (3.55) holds by bounded convergence, since

Px
(

sups∈[0,mu−k]
R(s)

1+k+s
≥ ξ, 1√

m
R(mu− k) ∈ dv

)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

= Px

(
sup

s∈[0,mu−k]

R(s)

1 + k + s
≥ ξ

∣∣∣∣∣ 1√
m
R(mu− k) = v

)

·
Px/√m

(
R(u− k

m
) ∈ dv

)
/dv

P (R(u) ∈ dv)/dv

with the transition kernel (3.53) being bounded.
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To prove the limit (3.56) we define for a, b ∈ R the stopping time

Ha,b := inf {s ≥ 0 : R(s) ≥ a+ bs}

and use that by Theorem 1.6 of [54] it has a density with respect to the Lebesgue measure.

We have thus that for all x ∈ (0, ξ(1 + k)] it holds

Px
(

sups∈[0,mu−k]
R(s)

1+k+s
≥ ξ, 1√

m
R(mu− k) ∈ dv

)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

=
Px
(
Hξ(1+k),ξ ∈ [0,mu− k], 1√

m
R(mu− k) ∈ dv

)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

=

∫ mu−k

0

Px
(

1√
m
R(mu− k) ∈ dv

∣∣∣Hξ(1+k),ξ = y
)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

Px
(
Hξ(1+k),ξ ∈ dy

)

=

∫ mu−k

0

Px
(

1√
m
R(mu− k) ∈ dv

∣∣∣R(y) = ξ(1 + k + y)
)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

Px
(
Hξ(1+k),ξ ∈ dy

)

=

∫ mu−k

0

Pξ(1+k+y)
(

1√
m
R(mu− k − y) ∈ dv

)
/dv

P
(

1√
m
R(mu) ∈ dv

)
/dv

Px
(
Hξ(1+k),ξ ∈ dy

)
=

∫ mu−k

0

Pξ(1+k+y)/√m
(
R(u− k+y

m
) ∈ dv

)
/dv

P (R(u) ∈ dv)/dv
Px
(
Hξ(1+k),ξ ∈ dy

)
→
∫ ∞
0

Px
(
Hξ(1+k),ξ ∈ dy

)
= Px

(
sup
s≥0

R(s)

1 + k + s
≥ ξ

)
as m→∞,

where we used bounded convergence and continuity of the transition kernel (3.53) in the

limit equation; we used Brownian scaling in the last equality; and the strong Markov prop-

erty in the third equality. This concludes the proof.

We are ready to prove Proposition 4.

Proof of Proposition 4. For the sake of clarity of the exposition, in what follows we always

assume that the treatment is conditioned on the events {τb <∞, τnb <∞} and {Tmin,∞ <
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∞} when dealing with the processes Z(m)
hit,b and Z(m)

min,∞ respectively.

First we note that for all m > 0 the processes Z(m)
hit,b, Z

(m)
min,a and Z(m)

min,∞ almost surely

take paths in C1(R). Indeed, by definition,

Z
(m)
hit,b(0) = Z

(m)
min,a(0) = Z

(m)
min,∞(0) = 0,

and by the strong law of large numbers we have that

lim
|t|→∞

∣∣∣Z(m)
hit,b(t)

∣∣∣
1 + |t|

= lim
|t|→∞

∣∣∣Z(m)
min,a(t)

∣∣∣
1 + |t|

= lim
|t|→∞

∣∣∣Z(m)
min,∞(t)

∣∣∣
1 + |t|

= |µ|

holds almost surely.

We now prove (i). For that, note that conditioned on {τb = t}, by the strong Markov

property the process (Z
(1)
hit,b(s) = B(t + s) − b : s ≥ 0) is distributed as a Brownian

motion with drift µ and variance σ2. In particular, (Z
(1)
hit,b(s) : s ≥ 0) is independent of

(Z
(1)
hit,b(s) : s ≤ 0). By Brownian scaling, (Z

(m)
hit,b(s) : s ≥ 0) is thus equal in distribution to

a Brownian motion with drift µ/
√
m and variance σ2. Since it converges almost surely to

σW on (C1(R+), ‖ · ‖1) as m→∞, where W is a standard Brownian motion, then it also

converges weakly on (C1(R+), ‖ · ‖1).

On the other hand, the process (−Z(1)
hit,b(−s) : s ≥ 0) almost surely takes paths in

C1(R+), and (−Z(1)
hit,b(−s) = b − B(τb − s) : s ∈ [0, t]) conditioned on {τb = t} is

distributed as a Bessel(3) process conditioned on being at b at time t, see Theorem 3.4

of Williams [43]. Applying Lemma 8 we obtain that (−
√
mZ

(1)
hit,b(−s/m) : s ≥ 0) con-

verges weakly to σR on (C1(R+), ‖ · ‖1) as m → ∞, where R is a Bessel(3) process

independent of W . This proves part (i).

We now prove (ii). The process (Z
(1)
min,a(s) = B(t + s) − l : s ≥ 0) conditioned on

{Tmin,a = t, B(Tmin,a) = l, B(a) = l + y} almost surely takes paths in C1(R+), and also

(Z
(1)
min,a(s) : s ∈ [0, a− t]) is distributed as a Bessel(3) process conditioned on being at y at

time a− t, see Proposition 2 of [8]. By Lemma 8, (
√
mZ

(1)
min,a(s/m) = Z

(m)
min,a(s) : s ≥ 0)
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converges weakly to σR+ on (C1(R+), ‖·‖1) asm→∞, whereR+ is a Bessel(3) process.

Analogously, (Z
(1)
min,a(−s) : s ≥ 0) almost surely takes paths in C1(R+), and also

conditioned on {Tmin,a = t, B(Tmin,a) = l, B(a) = l + y} the process (Z
(1)
min,a(−s) =

B(Tmin,a − s)−B(Tmin,a) : s ∈ [0, t]) is distributed as a Bessel(3) process conditioned on

being at −l at time t, see Proposition 2 of [8]. Applying Lemma 8, (
√
mZ

(1)
min,a(−s/m) =

Z
(m)
min,a(−s) : s ≥ 0) converges weakly to σR− on (C1(R+), ‖ · ‖1) as m→∞, where R−

is a Bessel(3) process independent of R+. This proves (ii).

Finally, we prove (iii). The process (Z
(1)
min,∞(s) = B(Tmin,∞+ s)−B(Tmin,∞) : s ≥ 0)

conditioned on the event {Tmin,∞ = t, B(Tmin,∞) = l} is distributed as a Bessel(3) process

with drift µ, see Corollary 3 of [44]. Then, by Brownian scaling of the Bessel processes,

(
√
mZ

(1)
min,∞(s/m) = Z

(m)
min,∞(s) : s ≥ 0) is distributed as a Bessel(3) process with drift

µ/
√
m. Such a process converges almost surely in (C1(R+), ‖ · ‖1) to a Bessel(3) process

with no drift, so it also converges in distribution, say to R+.

On the other hand, (Z
(1)
min,∞(−s) : s ≥ 0) almost surely takes values in C1(R), and by

Theorems 2.1 and 3.4 of Williams [43] we have that (Z
(1)
min,∞(−s) : s ∈ [0, t]) conditioned

on {Tmin,∞ = t, B(Tmin,∞) = l} is distributed as a Bessel(3) process conditioned on being

at−l at time t. By Lemma 8 we conclude that (
√
mZ

(1)
min,∞(−s/m) = Z

(m)
min,∞(−s) : s ≥ 0)

converges weakly to σR− on (C1(R+), ‖ ·‖1) as m→∞, where R− is a Bessel(3) process

independent of R+. This proves (iii).

3.6 Proofs of Lemmas 5 and 7

Proof of Lemma 5. We first prove (i). Using that τnb ≥ τb almost surely, because Bn(t) =

B(bntc/n) is piecewise constant as a function of t and b is nondecreasing, we obtain that

n (τnb − τb) = nmin{q ∈ Z+/n ∩ [τb,∞) : B(q) ≥ b(q)} − nτb

= nmin{q ∈ Z+/n ∩ [τb,∞) : B(q) > b(q)} − nτb,
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where the second equality holds almost surely for the Wiener measure. By B(τb) = b(τb)

it follows that

= min

{
k∈Z+ ∩ [dnτbe,∞) :

√
n

(
B

(
k

n

)
−B (τb)

)
>
√
n

(
b

(
k

n

)
− b (τb)

)}
−nτb

= min

{
k∈Z+ :

√
n

(
B

(
k + dnτbe

n

)
−B(τb)

)
>
√
n

(
b

(
k + dnτbe

n

)
− b(τb)

)}
+dnτbe − nτb

= min

{
k∈Z+ : Z

(n)
hit,b

(
k + U

(n)
hit,b

)
>
√
n

(
b

(
τb +

k + U
(n)
hit,b

n

)
− b(τb)

)}
+ U

(n)
hit,b,

where we used that U (n)
hit,b = dnτbe−nτb by definition. Now noting that τnb ∈ Z+/n we can

use the previous identity for τnb to obtain that

√
n (Bn(τnb )−B(τb)) =

√
n (B (τnb )−B(τb))

=
√
n

(
B

(
τb +

n (τnb − τb)
n

)
−B(τb)

)
= Z

(n)
hit,b (n (τnb − τb))

= Z
(n)
hit,b

(
min{k ∈ Z+ : Z

(n)
hit,b

(
k + U

(n)
hit,b

)
>
√
n(b(τb+

k + U
(n)
hit,b

n
)−b(τb))}+U (n)

hit,b

)
.
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We now prove (ii). Using the definition U (n)
min,a = dnTmin,ae − nTmin,a it holds

n
(
T nmin,a − Tmin,a

)
= n

(
−Tmin,a + arg min

q∈Z+/n∩[0,a]
B (q)

)

= −nTmin,a + arg min
k∈Z+∩[0,na]

B

(
k

n

)
= −nTmin,a + arg min

k∈Z+∩[−dnTmin,ae,na−dnTmin,ae]
B

(
k + dnTmin,ae

n

)
+ dnTmin,ae

= U
(n)
min,a + arg min

k∈Z+∩[−dnTmin,ae,na−dnTmin,ae]
B

(
Tmin,a +

k + U
(n)
min,a

n

)

= U
(n)
min,a+ arg min

k∈Z+∩[−dnTmin,ae,na−dnTmin,ae]

√
n

(
B

(
Tmin,a +

k + U
(n)
min,a

n

)
−B (Tmin,a)

)
= U

(n)
min,a + arg min

k∈Z+∩[−dnTmin,ae,na−dnTmin,ae]
Z

(n)
min,a

(
k + U

(n)
min,a

)
,

and since T nmin,a ∈ Z+/n then using the previous identity for T nmin,a we obtain that

√
n
(
Bn
(
T nmin,a

)
−B (Tmin,a)

)
=
√
n
(
B
(
T nmin,a

)
−B (Tmin,a)

)
=
√
n

(
B

(
Tmin,a +

n
(
T nmin,a − Tmin,a

)
n

)
−B (Tmin,a)

)
= Z

(n)
min,a

(
n
(
T nmin,a − Tmin,a

))
= Z

(n)
min,a

(
U

(n)
min,a + arg min

k∈Z+∩[−dnTmin,ae,na−dnTmin,ae]
Z

(n)
min,a

(
k + U

(n)
min,a

))
= min

k∈Z+∩[−dnTmin,ae,na−dnTmin,ae]
Z

(n)
min,a

(
k + U

(n)
min,a

)
.

The proof of (iii) is analogous to the two previous ones.

Proof of Lemma 7. It will be sufficient to prove that for all u ∈ (0, 1) and all t such that

P(T ≤ t) > 0 we have P (dnT e − nT ≤ u | T ≤ t)→ u as n→∞.
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For that, note that for all n we have

P (dnT e − nT < u|T ≤ t) =
∞∑
k=1

P (dnT e − nT ≤ u, dnT e = k|T ≤ t)

=
∞∑
k=1

P
(
T ∈

[
k − u
n

,
k

n

]∣∣∣∣T ≤ t

)
=
∞∑
k=1

∫ k/n

(k−u)/n
ft(v)dv,

where ft is the density with respect to the Lebesgue measure of T conditioned on {T ≤ t}.

On the other hand, it also holds that

∞∑
k=1

∫ k/n

(k−u)/n
ft(k/n)dv =

∞∑
k=1

ft(k/n)

(
k

n
− k − u

n

)
=
∞∑
k=1

ft(k/n)
u

n

=
∞∑
k=1

ft(k/n)u

(
k

n
− k − 1

n

)
= u

∞∑
k=1

∫ k/n

(k−1)/n
ft(k/n)dv,

and additionally

u
∞∑
k=1

∫ k/n

(k−1)/n
ft(v)dv = u

∫ 1

0

ft(v)dv = u.

It follows that since ft is Riemann-integrable then as n→∞

∣∣∣∣∣
∞∑
k=1

∫ k/n

(k−u)/n
ft(v)dv −

∞∑
k=1

∫ k/n

(k−u)/n
ft(k/n)dv

∣∣∣∣∣→ 0

and ∣∣∣∣∣
∞∑
k=1

∫ k/n

(k−1)/n
ft(k/n)dv −

∞∑
k=1

∫ k/n

(k−1)/n
ft(v)dv

∣∣∣∣∣→ 0.
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Thus, P (dnT e − nT < u|T ≤ t)→ u as n→∞, since

|P (dnT e − nT < u|T ≤ t)− u|

≤

∣∣∣∣∣P (dnT e − nT < u|T ≤ t)−
∞∑
k=1

∫ k/n

(k−u)/n
ft(k/n)dv

∣∣∣∣∣
+

∣∣∣∣∣u
∞∑
k=1

∫ k/n

(k−1)/n
ft(k/n)dv − u

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

∫ k/n

(k−u)/n
ft(v)dv −

∞∑
k=1

∫ k/n

(k−u)/n
ft(k/n)dv

∣∣∣∣∣
+ u

∣∣∣∣∣
∞∑
k=1

∫ k/n

(k−1)/n
ft(k/n)dv −

∞∑
k=1

∫ k/n

(k−1)/n
ft(v)dv

∣∣∣∣∣ ,
which concludes the proof.
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