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SUMMARY

In this thesis, we present a blind adaptive speech dereverberation method based on the
use of a reduced mutually referenced equalizers (RMRE) criterion. The method is based
on the idea of the inversion of single-input multiple-output FIR linear systems, and as such
requires the use of multiple microphones. However, unlike many traditional microphone
array methods, there is no need for a specific array configuration or geometry. The RMRE
method finds a subset of equalizers for a given delay in a single step, without the need
for the typical channel estimation step. This makes the method practical in terms of
implementation and avoids the pitfalls of the more complicated two step dereverberation
approach, typical in many inversion methods. Additionally, only the second-order statistics
of the signals recorded by the microphones are used, without the need for utilizing higher-
order statistics information typically needed when the channels have a nonminimum phase
response, as is the case with room impulse responses.

We present simulations and experimental results that demonstrate the applicability of
the method when the input is speech, and show that in the noiseless case, perfect derever-
beration can be achieved. We also evaluate its performance in the presence of noise, and we
present a possible way to modify the proposed RMRE to work for very low SNR values.
We also explore the problems when model-order mismatches are present, and demonstrate
that the under-modeling of the channel impulse responses order can be combated by in-
creasing the number of microphones. For order over-estimation, we will show that RMRE

can handle such errors with no modification.
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CHAPTER I

INTRODUCTION

1.1 Signal Multipath Propagation

The problem of acoustical reverberation falls under the more general category of multi-
path signal propagation problems. The multipath phenomenon occurs in many engineering
problems and emerges regularly in new applications. Some of the areas where multipath
propagation occurs are in seismology (1], wireless communication [2] and sonar processing
[3]. For example in some sonar applications, a hydrophone array is used to locate underwa-
ter objects by listening to the reflection of a transmitted signal. However, the problem of
multipath occurs in shallow water when reflections from the sea bed, in the form of clutter,
interfere with the signal reflected from the object of interest. Another example is in wire-
less communications where the terrain and buildings may create multiple reflections of the
radio signals from wireless devices. The common thread in all of all these problems is the
reflection (and in some cases diffraction) of an emitted signal by various barriers such as
walls, water in the atmosphere or foliage. Thus, the receiver, which may take the form of
an antenna or microphone array, will receive the original signal plus echoes of that signal.
We use the term echoes here in general sense to mean attenuated and delayed versions of
the original signal.

The goal in most multipath problems is to recover, or approximate as close as possi-
ble, the original signal by eliminating and reducing the echoes. Some problems are more
concerned with obtaining information about the environment that caused the multipath,
as is the case in underground exploration. What makes multipath problems more difficult
compared to other signal interference problems is that the original signal and its echoes have
the same statistical characterization. A common formulation of the multipath problem is
to think of it as a signal passing through a system (or a channel) that causes the echoes,

and the receiver records the resulting system output. If the output is further assumed to be



the result of a convlutional operation, then the problem of multipath interference becomes
more specific and is referred to as a deconvolution problem or as an nverse problem.

Generally, deconvolution problems can be classified by the amount of a-prior knowledge
that is available. For example in some problems, the emitted signal is known while other
problems may have a complete model of the multipath propagation. Some applications
have knowledge of the source location that is emitting the original signal, and other prob-
lems have complete specification of the receiver configuration. Problems with no knowledge
about the specific emitted input signal nor knowledge about the system are called blind
deconvolution problems. Those with some partial knowledge are called semi-blind. While
the deconvolution problem, or more generally the multipath problem, is common in many
engineering contexts, the solution to it is very dependent on the problem constraints, as-
sumptions made, and permitted solution complexity.

In this thesis, our focus is on the acoustical multipath phenomena that occur in a closed
room. More specifically, the problem is referred to as reverberation and the solution is called
dereverberation. The effect of reverberation on speech, recorded by a microphone at some
distance from the speaker, has been experienced by almost everyone at some time or another
and is usually described as talking into a barrel. The effect is annoying, reduces intelligi-
bility and causes listening fatigue. Thus, a method to eliminate or reduce reverberation in

communication systems is a worthwhile objective with immediate benefits.

1.2 Teleconferencing Requirements

The need for high quality teleconferencing solutions (or more generally videoconferenc-
ing) is of major benefit and importance to many businesses and organization. However, the
adoption of such systems is still in its infancy due to the quality of the communications.
Just as email was the killer application that popularized the internet, the emergence of
robust high quality teleconferencing can be the application that drives up the popularity of
high speed internet connections. Many large companies such as Lucent, Microsoft and ATT
are working actively on such systems, and many experts believe that once teleconferencing

solutions reach maturity and improve the audio and image quality, they will reduce the need



for travel and the associated expenses. The teleconferencing problem has many aspects that
include the acoustical aspect, video and image processing problems, and the issue of net-
work management in multiparty systems. The interest and demand for teleconferencing is
also matched by the parallel increased interest in hands free telephony systems such as the
ones used in cars.

The speech reverberation problem is one component of the acoustical problem. While
many teleconferencing solutions have been proposed, they all suffer from various acoustical
degradation problems such as reverberation. In our view, an effective dereverberation sys-
tem should meet some basic assumptions. For example, since it is not known beforehand
what a speaker will say, the dereverberation algorithm must be blind, meaning it can not
require prior knowledge of the input signal. The solution must be adaptive to compensate
for any changes that may occur in the room, such as a change in speaker location or orien-
tation or the movement of objects. An additional constraint we imposed on the problem is
the need for minimal calibration in terms of knowing where the speaker may be located or
the geometric configuration of the microphones. This contrasts, for example, with beam-
forming dereverberation methods that require the speaker location and microphone array
configuration to be known. We do assume the availability of at least two microphones that
are separated by some distance. These assumptions and constraints, in addition to more

specific ones related to our approach, will be discussed in more detail in the next chapter.

1.3 Inversion Based Dereverberation

The problem of speech dereverberation is a well researched problem going back to late
1960’s, as for example described in [4]. Over the decades many methods and algorithms have
been proposed and developed. However, as explained earlier, the problem of dereverberation
depends on the constraints, and assumptions imposed on the problem. For example, the
earliest methods were nonadaptive. The problem remains interesting and challenging to this
day and continues to be actively researched. There is no single approach that has proved
to be universal in its applicability or superior performance in all situations. As suggested

earlier, if the reverberation is considered to be the result of a system (a channel), then it is



natural to aim for the design of an inverse system. However, it is well known that acoustic
inversion suffers from many problems. This has been the case for a long time, but some
important developments have occurred over the last decade. The first of these was the
discovering of the multiple input-output inverse theorem (MINT) developed by [5]. They
demonstrated that by using multiple microphones, many of the traditional restrictive and
unrealistic assumptions that apply to the single microphone case can be removed. The most
important of these is the minimum phase condition on the system. The use of microphone
arrays is now a common approach to many acoustical problems such as speaker tracking or
dereverberation [6].

While MINT provided a way to find the inverse, it assumed that the degrading system
was known or could be estimated. This meant the users had to calculate room impulse
responses and design the inverses based on these responses. Unfortunately these impulse
responses can vary considerable with slight changes in speaker position or head orientation,
and thus any change in the speaker location or room impulse responses required remeasuring
and redesigning the inverse. So the question that arises is how can the impulse responses
be obtained without requiring the user to do the continuous calibration and measurement
procedures ? The answer to this question came from another multipath problem, the
problem of channel equalization in wireless communications. The pioneering work of Tong
et. al. [7] demonstrated that when multiple channels are available, it is possible to estimate
the channels by using only the second-order statistics of the outputs, under certain channel
assumptions. In other words, blind channel identification was possible without resorting to
the higher order statistics methods that had dominated blind identification methods up to
that point. Second order identification procedures are more robust, less computationally
intensive and lend themselves to adaptive implementations.

This combination of multiple channel inversion and blind channel estimation break-
throughs is what motivated us to choose a microphone array inversion based on second
order statistics of the received signal as our speech reverberation solution strategy. While

inversion methods are generally more computationally demanding than other methods, we



believe this will be less and less of a problem with continuing increases in the computa-
tional power of microprocessors and dedicated signal processing processors. We compare
and contrast some of the other approaches to dereverberation in the next chapter and show

how they differ from the inversion approach.

1.4 Applications of Speech Dereverberation

Speech dereverberation is not limited for use only in teleconferencing. We list some of

the other major applications of speech of dereverberation with a brief description of each.
1.4.1 Blind Source Separation

The problem of blind source separation is also commonly referred to as the cocktail
party problem. The goal here is to separate (unmix) independent signals that have been
mixed by convolutional channels. However, in the presence of reverberation, many blind
source separation methods may give less than optimal solutions or even fail as discussed in
[8]. By using a dereverberation method as a preprocessor for blind source separation, the

performance of unmixing can be improved.
1.4.2 Speech Recognition

In speech recognition, the use of dereverberation can help improve the environmental
robustness of a speech recognition system. For example, a user may train the speech recog-
nition software in one room with one specific reverberation level, but later use it in another

room. By reducing the reverberation, some measure of robustness in recognition is obtained.
1.4.3 Awudio Recording

Professional recording requires expensive custom built rooms that reduce reverberation
in addition to high quality audio recording equipment. By eliminating the reverberation,
the need for custom built rooms is eliminated. Another related recording application is in

surveillance where a microphone must be placed at some distance away from the source.



1.5 Thests Scope and Organization

In this thesis, our focus is on the adaptive dereverberation of acoustical signals in a closed
room using a microphone array and utilizing only second-order statistics of the output.
Some of the related problems to investigate are the nature of acoustical reverberation in
such rooms and how to model it, the modeling and simulation of room impulse responses,
and the effect of noise in the recording equipment on the performance of the proposed
method. Our focus is on a single speaker talking at a time located some distance away from
the microphones. We do not take into account noise sources due to interference such as fans
in the room, since many successful methods have been developed to deal with this problem

as described in [9].

e In Chapter 2, we give a survey of the major speech dereverberation methods and
contrast their advantages and disadvantages. We also discuss some related speech

enhancement problems and clarify how they are different from dereverberation.

e In Chapter 3 we investigate the room impulse response, its statical characterizations

and methods for measuring the room impulse response.

e In Chapter 4 we discuss our proposed dereverberation approach based reduced MRE
(RMRE) method. Experimental results are provided to demonstrate the applicability

of the RMRE approach to the dereverberation problem.

e Chapter 5 discusses the problems of over and under-modeling. Also the impact of

measurement noise is evaluated on the proposed method.

e Chapter 6 is a conclusion, with some ideas for further research.



CHAPTER II

PROBLEM BACKGROUND AND SURVEY

In the previous chapter, some of the highlights of the reverberation problem were de-
scribed. In this chapter, we expand on the problem formulation, problem assumptions and
the constraints imposed on our problem solution. Additionally, we discuss the difference
between dereverberation and several related speech enhancement problems. Finally, we pro-
vide a survey of the major dereverberation approaches found in the literature and compare

their advantages and disadvantages.

2.1 Reverberation In a Closed Room

Consider a speaker located some distance away from a microphone in a closed room as
shown in Figure 1. Since sound waves travel radially outward from a source, reflections
from the walls, floor and furniture will be recorded by the microphone some time after the
recording of the direct path signal, a phenomenon called reverberation. This reverberation
leads to the acoustical degradation of the transmitted speech signal and causes listening
fatigue.

One possible approach to modeling the reverberation phenomenon is by using partial
differential equations that describe the propagation and reflection of sound in air. Such a
physical and complex approach may be necessary in situations that require the design of
unique enclosures and rooms such as concert halls. For most other applications, a much
simpler and more effective approach is to treat reverberation as a lumped phenomenon
that can be described by a single linear system. With this approach, the reverberation can
be completely modeled by the impulse response of the room h(n), also called the acousti-
cal transfer function (ATF). Using this formulation, the reverberation and dereverberation

systems can can be cast in the standard linear convolutional system formulation shown
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Figure 2: Linear system formulation-of dereverberation.

in Figure 2, where s(n) is the clean speech signal (unreverberated) and z(n) is the rever-
berated speech signal recorded by the microphone and $(n) is the dereverberated speech.
The primary goal of dereverberation is to undo this convolutional effect, i.e. to perform
deconvolution on the received reverberated speech signal. The term deconvolution has been
traditionally used to describe problems that are nonadaptive in nature and is widely used in
the signal processing community. The term equalization is more frequently used when the
deconvolution is preformed in an adaptive setting such as in communication systems and
is more popular in the telecommunications community. Since we are considering adaptive

deconvolution methods, the two terms mean the same thing for our purposes and we use



them interchangeably. In Chapter 1, we alluded to some key engineering design issues that

define this research and differentiate it from other dereverberation methods that we survey

in later sections. We list the most important issues next:

1.

[)

We assume the availability of multiple microphones, i.e. a microphone array. This
is true in many existing teleconferencing systems especially ones that have a camera
tracking component as in [6]. By employing multiple microphones, there are several
approaches for performing deconvolution, as will be described in the survey of dere-
verberation methods. The use of multiple microphones adds only a small increase to

the overall system cost.

The deconvolution must be blind. This is because neither the room’s acoustical im-

pulse response nor the input (the clean speech) signals are known a-priori. The room’s

impulse response is assumed to be unknown because the speaker may move from one
position to another in the room or the room environment may change (doors open-
ing or closing, chairs moving and so on). By imposing no constraint on knowing the
room’s impulse response, the proposed system becomes independent of the room ge-
ometry, and requires no calibration by the user. The input (speech) signal is assumed
to be unknown simply because we cannot predict what users will say. Additionally,

speech signals are non-white and non-stationary in nature.

. In keeping with the minimal calibration theme, no assumptions are made about the

microphones locations or the array pattern they form. This means the user can simply

place the microphones anywhere in the room at some distance from each other.

. The proposed method must be adaptive in nature as opposed to a batch processing

method. The reason for this is that system must cope with the changes in the room

environment such as users leaving or changes in speaker location.

Finally, we make the minimal number of assumptions about the nature of speech
signals. This means that no need exists to segment speech into segments of various

pitch and periodicity. This helps in making the method applicable to other audio
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signals such as music and makes it less demanding in terms of human interaction.

2.2 Related Speech Enhancement Problems

A number of important and related speech enhancement problems that sometimes get
lumped with with the dereverberation problem are noise reduction, echo cancelation and
the cocktail party problems. These problems, while related to the general goal of speech
enhancement, differ greatly in their basic problem formulation, assumptions and solution
approach. In this section we discuss three related problems: the acoustical echo cancelation
problem, interference reduction and the cocktail party problem and show why they differ

from and must not be confused with the goal of dereverberation.
2.2.1 Acoustical Echo Cancelation

The acoustical echo cancelation problem is common in hands free full-duplex telephony
systems. The basic cause of the problem is the recording by a microphone the signal
emanating from a loudspeaker in a room. To fully understand the echo cause, consider two
speakers in two different locations as depicted in Figure 3.

One speaker is located in what is called the near end (speaker A) and the other is in the
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far end (speaker B). As speaker A talks into the microphone (the near end speech denoted
by s(n)), the loudspeaker in room A is broadcasting the speech from the far end. The signal
from the loudspeaker gets picked up by the microphone in room A in the form of echoes,
and gets transmitted to the user in room B. The purpose of the acoustical canceler function
is to reduce this echo [10]. Acoustic cancelers are implemented as adaptive systems and
their objective is to approximate the impulse response h(n) between the microphone and
loudspeaker in room A. If we denote the far end speech as the signal z(n) and the signal
recorded by the microphone as d(n) = s(n)+z(n)*h(n), then the goal of the adaptive filter

w(n) would be to minimize the error signal
e(n) = d(n) —w(n) xz(n) = s(n) + h(n) * z(n) — w(n) * z(n).

The minimum error occurs when the adaptive filter converges to the impulse response h(n).
Part of the difficulty of the problem is that the impulse responses can be very long and
some nonlinear effects can occur in the loudspeaker system. Much of the research into echo
cancelation has focused on ways of modeling the impulse response and developing efficient
adaptive structures to speed up the convergence and reduce the computational complexity.
Another major problem is the need to detect speech or silence in the communication.

A closely related echo cancelation problem is the one that occurs in telephone networks
due to the electric hybrids. The cause of the echoes in this problem is the impedance
mismatch in these hybrids which causes the signals to be reflected along the telephone
lines. This type of problem is easier than the acoustical echo cancelation problem because
the impulse response that models the echo path is much simpler and shorter than the ones
associated with room impulse responses.

It is important to highlight the difference between the reverberation and echo cancela-
tion problems since they appear the same at first glance. The main difference lies in the
availability of the far speech signal z(n) in acoustical echo cancelation. This means that
an error signal can be generated as described above and the problem takes the form of a
system identification problem, i.e. that of identifying the impulse response h(n). In the re-

verberation problem, all that is available is the signal recorded by the microphone. Neither

11
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the room impulse response nor the input is known.
2.2.2 Interference Cancelation

The interference cancelation problem is the result of a noise source, such as a fan or
ventilation duct, that interferes with the speech recorded by a microphone. The most
common way to deal with such a problem is by the use of reference microphone that is
placed near to the noise source. The primary microphone is placed near the talker, as
illustrated in Figure 4.

The goal of the adaptive filter w(n) is to get v2(n) to be as close as possible to v1(n). The
error signal in this case is given by e(n) = s(n) +v;(n) —w(n) * v2(n). A more complicated
problem is when cross talk occurs, as discussed in [9], between the reference and primary
microphones. One way of dealing with this problem is to use a second adaptive filter in the
error signal feedback loop as illustrated in Figure 5. The primary microphone in this case
records y;(n) = s1(n) + vi(n) and the reference microphone records yo(n) = s2(n) + va(n).
In most cases the amplitude of sa(n) is much less than that of s;(n). This means that s2(n)
acts as interference in the reference signal y2(n). The function of the additional filter wa(n)
is to approximate sy(n) as accurately as possible by using the signal e;(n) = s1(n), thus
removing its effect from y2(n). The error signal es(n) will equal va(n) if the adaptive filter

wa(n) is effective, and it can be used as the reference signal for wy(n) as in the simpler no
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Figure 5: Interference cancelation with cross talk system setup.

cross-talk case discussed earlier.
It is also possible to eliminate the need for a reference channel if the speech periodicity
is utilized as detailed in [9], but these methods require pitch extraction and other speech

specific processing techniques.
2.2.3 Blind Source Separation

The cocktail party problem, or more formally the blind source separation problem, is one
of the most interesting new signal processing problems and has applicability to biomedical,
geophysical, image and speech processing. The problem is usually described in terms of a
listener in a party trying to concentrate on single distant speaker while hearing the chatter
of other speakers. The listener hears a mixture of the speakers in the party and the goal
is to undo this mixing and listen to only one speaker. The problem mathematically can be

formulated as a multichannel linear convolutional system given by the equation

x(n) = Hs(n),

where x(n) is the signal recorded by a group of sensors, H is the unknown channel matrix
and s(n) is a vector of source signals that is also unknown. The problem is a blind since
both H and s(n) are unknown. Generally, it is required that the number of sensors be

equal to or greater than the number of sources, but this is not always necessary. The design
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objective is to find a matrix W that will unmix the effect of H. To illustrate how this can
be done, we consider the simple case of a symmetric and nonsingular H. We also assume

that the sources s(n) are spatially uncorrelated and that the correlation is given by
Els(n)sT(n)] = I.
The sensors’ correlation matrix is then given by
E[x(n)xT(n)] = Rx = HR,HT

which simplifies to Rx = H? by invoking the symmetry of H and the unit variance of the

sources. Applying an eigenvalue decomposition to the sensor matrix yields
Ry =V, D, VI,
which implies that the demixing matrix is given by
W = R"/? = VD5 '*VT,

More complicated structures for the mixing matrices and correlated sources naturally re-
quires more sophisticated approaches as described in [8].

It is worthwhile to note that reverberant environments degrade the performance of source
separation problems. The reason for this is that blind many source separation methods re-
quire that the number of microphones and sensors be known, and the effect of reverberation
is to create spurious sources. An insightful relation between blind source separation and
adaptive beamforming that further elaborates on the problem of reverberation can be found

in [11].
2.3 Previous Dereverberation Methods

In this section we discuss some of the more popular approaches to dereverberation and
discuss the advantages and disadvantages associated with each method. In general there

are four broad approaches to accomplish dereverberation, which are

1. Cepstral subtraction based methods.
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Dereverberation Method Advantages Disadvantages

. Conceptually simple, Artifacts in enhanced speech,
Cepstral subtraction well researched nonadaptive
. . Requires speaker location,
Beamforming Robust, adaptive requires array calibration
Good dereverberation results, Require segmentation,

Model based methods can be adaptive work only for speech

Most accurate theoretically,

) multisensor methods make no . .
- . nain

Inversion methods restrictive assumptions, Computationally demanding

adaptive in nature

Figure 6: Comparison summary of dereverberation methods.

2. Microphone array beamforming methods.
3. Model-based methods.

4. Room impulse response inversion methods. These can be either single microphone o1

microphone array based.

All of these methods continue to be active areas of research and are used in various ap-
plications depending on the exact nature of the dereverberation problem and the system
requirements. Figure 6 gives a summary of the pros and cons of each approach.

Our proposed method falls under the fourth category. We discuss some of the basics
of each approach, but our focus and most detailed exposition will be limited to the room

impulse response inversion methods.
2.3.1 Cepstrum-Based Methods

The cepstrum-based approach is one of the earliest approaches to dereverberation, dating
back to the early beginnings of digital signal processing in the late 1960’s [4]. Cepstrum-
based methods are based on homomorphic filtering theory as explained in [9, 12]. The
cepstrum of a signal s(n) is defined as

™
e(n) = 1/27r/ log ‘S(ej“’")’ejw"dw,
-
where S(e/¥") is the Fourier transform of the signal s(n). The nonlinear log function

converts the convolutional channel model into an additive model. This can be clearly seen
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by noting that

y(n) = s(n) * h(n) <5 Y (w) = S(w) H(w),

and by taking the log of the FT domain expression (for simplicity, the phase arguments are
ignored) we obtain

log |Y (w)| = log |S(w)| + log |H (w)|.

Thus, the convolutional nature of the channel is transformed into an additive effect which
is more easily compensated for.

Cepstrum-based methods can be either single or multi-microphone in nature. For ex-
ample in a single microphone approach such as the one described in [13], a procedure was
developed to segment the reverberated speech signal. Using these speech segments, an aver-
aging procedure is used to estimate the cepstrum. It turns out that the cepstral components
caused by the room impulse response manifest themselves in the form of cepstral peaks.
Identifying these peaks and removing them from the cepstrum reduces the reverberation.

Recent cepstrum-based methods use multiple microphones. For example in [14, 15], a
two microphone method was used to perform dereverberation of speech signals. This method
uses cepstral methods to estimate the phase of the channels which are modeled as an all-
pass component and a minimum phase component. Under some channel constraints, such as
when assuming FIR channels and no channel zeros on the unit circle, it is possible to find the
two components by using phase information only. Cepstral methods have improved in their
ability to accomplish dereverberation, but they continue to suffer from major drawbacks.
They are rarely able to completely remove room reverberation and they are computationally
expensive. This limits their applicability to be mainly used as post processing methods
rather than real-time adaptive methods. In addition, audible artifacts can usually be heard
in the restored signal due to the differences in the spectral subtraction from one frame
of processed speech to another. The assumption of no zeros on the unit circle is also

questionable for long acoustical reverberation channels, as we will show in Chapter 3.
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2.3.2 Beamforming microphone array methods

Beamforming methods are simply spatially selective filters. They can be applied to the
speech dereverberation problem by steering a microphone array to a speaker in a known
location. A microphone array with proper steering can then attenuate any signal coming
from a direction other than the one to which the microphone array is steered. A common
type of beamformer that is used to suppress interference is the generalized sidelobe canceler
(GSC). The GSC is used when the source location is known. The GSC is composed of
a nonadaptive filter portion and an adaptive filter portion as shown in Figure 7. The
nonadaptive adaptive filter g is steered in the direction of the signal s(n). The adaptive
portion is constructed as the cascade of a blocking matrix B and and an adaptive filter
w(n). The purpose of the blocking matrix B is to stop the desired signal s(n) from feeding
into the adaptive portion of the system. Thus, the adaptive filter w(n) will try to match
the interference in the adaptive branch to as close as possible to the interference in the
nonadaptive branch. This setup is very reminiscent of interference cancelation described

earlier. The optimal filter w(n) is found by minimizing the energy of the error signal
e(n) = g7 s(n) — BwT (n)s(n).

The blocking matrix B is usually not unique, and is usually dependent on the problem
formulation. Thus, with the GSC-based dereverberation approach, if we consider reverber-
ation to be the interference coming from directions other than the direct path and assume

that the speaker’s location is known, we can reduce the amount of reverberation.
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The GSC and other adaptive beamforming variants are described in [16, 17, 18, 19, 20,
21, 22, 23]. For example, in [23], in addition to using a classic delay-and-sum beamformer,
the author adds a post-processing Wiener filter to reduce the effect of noise. In [17] the
authors use a subspace approach to minimize the reverberation in a bank teller booth
environment by building a microphone array into the frame of the window. In a more
recent approach by [24], a frequency-domain approach is used for computational efficiency.

Many of the beamforming subspace methods described have the advantage of being able
to handle noise in addition to reducing the reverberation. This makes such methods very
applicable for use in noisy environments such the inside of a car as described in [25].

The biggest advantage of the beamforming methods methods are their simple imple-
mentation and robustness with respect to noisy settings. However, as stated earlier, these
methods require that the position of the speaker be known in advance and require a pre-

designed optimal array geometry.
2.3.3 Model-based methods

One of the more recent approaches to dereverberation can be described as model-based
enhancement. These methods utilize the fact that reverberant speech signals posses different
statistical properties than clean speech. For example, some methods exploit pitch period-
icity as in [26], but these methods are best at handling noisy speech and not reverberation.
One of the newest methods is that described in [27] and has sparked the interest of many
other researchers. This method is based on the analysis of short reverberant speech seg-
ments and identifying regions where the reverberation is interfering with the clean speech.
The authors explain that by calculating the linear prediction (LP) residual of the reverber-
ant speech signal, it is possible to identify these regions. The reason for this is attributed
to the fact that clean speech has a peaked damped sinusoidal pattern while reverberant
speech exhibits a more smeared characteristic. This leads to a reduction in the flatness of
the reverberant speech spectrum. The problem is then formulated as a problem of trying to
find a way to increase the flatness of the spectrum. The authors suggest using a smoothing

procedure based on calculating the entropy in the LP residual. While the authors make it
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clear that this method does not remove reverberation completely, it does reduce it more
than traditional methods such as cepstral methods. The ideas above have been recently
extended by [28] to an adaptive implementation. Instead of relying on entropy calculations,
the authors exploit the fact that the LP residual of reverberant speech has a small kurto-
sis. By maximizing the kurtosis of the of LP residual in the reconstructed speech signal,

dereverberation is accomplished.

2.3.4 Channel Inversion Methods
2.3.4.1 Multichannel Inversion Methods

Inversion methods eliminate reverberation by undoing, i.e. inverting, the effect of the
room impulse response. While these methods are theoretically the most accurate solutions
for the deconvolution problem, their usefulness has been limited in the single microphone
environment because of the constraints imposed, such as requiring the channel to be min-
imum phase. In addition, early inversion based methods were not truly blind since they
required that the impulse response be known, i.e. they had an impulse response identifica-
tion step. This required careful measurements and meant the early systems were tied to a
given room environment.

The breakthrough in acoustical inversion methods came with the development of the
multiple input output theorem (MINT) [5]. The MINT theorem is essentially a restatement
of the Bezout equation and it shows that by using multiple microphones (channels), it is
possible to find an exact inverse for channels modeled as FIR filters based on the Bezout
equation. One of the most recent methods to follow this approach is discussed in [29]. How-
ever, the MINT theorem does not provide a way to accomplish truly blind dereverberation,
since the method only provides a way for finding the inverses once the channels have been

determined.
2.5.4.2 Blind Channel Identification

The next breakthrough for inversion methods came in the form of new blind channel
identification methods for single-input multiple-output (SIMO) FIR channels, using only

the second-order statistics (SOS) of the output. These methods were developed in response
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to the need to equalize wireless communication channels. Blind equalization has long been
a topic of interest in communication theory. The reason is that in wireless environments,
the cost of channel training and the rapid changes in the channel make classical channel
identification too costly and limited in value. The first generation of blind equalization
methods relied on using higher-order statistics (HOS) to estimate the channel. However,
these methods suffer from one or more problems of slow convergence, high computational
complexity or local minima. It is for this reason that blind system identification and equal-
ization methods using second-order statistics brought on much interest and excitement.
The multichannel single-input multiple-output (SIMO) FIR channel model can arise
either in the context of multiple channels, as in our case of multiple microphones, or from
the oversampled output of the channels as described, for example, in [30]. The equalization

of SIMO FIR channels can fall under one of three broad categories.

1. Blind channel identification followed by inversion.
2. Direct design of equalizers with no channel estimation step.
3. Direct recovery of the original signal.

The methods in the first category are the most common and most studied and un-
derstood in terms of performance and limitations. Dozens of such methods exist, such as
subspace methods [31, 32, 33], cross-relation methods {34, 35], frequency domain methods
[36, 37], outer product method [38] and smoothing methods [39, 40]. The subspace methods
decompose the correlation matrix of the output into a signal subspace and a noise subspace.
By knowing the eigenvectors associated with the smallest eigenvalues in this matrix and ex-
ploiting the fact that the noise subspace is orthogonal to the convolutional channel matrix,
the channels can be found. Some methods are a hybrid, such as the linear prediction
methods [41, 42, 43| which provides a bridge between the first and second categories.

The third approach while is the most direct, usually requires that the input signal come
from a finite alphabet set as described for example in [44] or be an independent, identically
distributed (i.i.d.) input. For signal processing applications, such as speech signals, no such

constraints can be imposed and so we will not discuss these methods further.
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In the next section, we discuss the first SOS blind identification algorithm and explain

its relation to the well known ESPRIT spectrum estimation method.
2.3.4.8 The TXK Algorthm

As noted earlier, the key step to most channel inversion methods is how to identify the
channel, i.e. the room impulse response in our case. An added complication is that room
impulse responses are generally nonminimum phase. To see why this is a complication,
consider the output y(n) of a linear system h(n) excited by a stationary signal s(n). The
output spectrum contains no phase information about the system since the spectrum of the
output is given by

Y () = |H (ejw){QS (ejw) .

Thus, the only way to obtain a channel estimate H (ejw) is to make the minimum phase
assumption. If the use of higher-order statistics (HOS) is possible, then several methods can
be used to obtain A (e’*) without the minimum phase assumption as detailed in [45, 46, 47).
However, it is well known that obtaining HOS information from short data segments is not
robust and tends to suffer severe performance limitations in an adaptive implementation.
This means that HOS methods are of limited used in practical blind equalization and channel
identification problems.

An important first step in the quest for SOS blind identification was proposed by Gar-
dener who noted that if the output y(n) was cyclostationary, then identifying the channel
reduces to finding the GCD of the various cyclic spectra as described in [48]. However, Gar-
dener’s proposed method still requires a training sequence (a predetermined input signal
s(n)), meaning that it is not blind.

The first published result on the feasibility of blind channel identification, based solely on
the availability of SOS output (receiver) information, was performed by Tong, Xu, Kailath
(7] and their method has become known as the TXK algorithm. The authors showed that by
having a single-input multiple-output FIR channel (SIMO) model, and assuming the input
s(n) was independent and identically distributed (i.i.d.), it is possible to identify all the FIR

channels in the SIMO system. A SIMO system is easily obtained from SISO system either



by having temporal or spatial oversampling. For example, having multiple microphones or
antennas instead of one creates a SIMO model. The TXK algorithm starts by considering

the output of an M sensor SIMO system as given by:

1 (1) ha (4)
2 (n) L | he (i)
=> s(n — 1) (1)
i=0 | :
_27,\/[ (n)— _hM (L)_
or more compactly in matrix form,
x(n) = Hs(n),

where the channel matrix H is Toeplitz. It is important to note that in addition to having
M sensors, the impulse responses are modeled as FIR filters of order L, or equivalently
as FIR filters with L 4+ 1 taps. A critical design parameter that is not explicitly shown
in the above equation is the output data window size K, also called the smoothing factor
[49]. The parameter K must be chosen so that H is full rank, i.e. tall and skinny. The
value of K is chosen based on prior knowledge about the estimated channel order. This
concept of knowing how long the channels are is important to all SOS blind identification
methods. We elaborate on this point in subsequent chapters. The TXK method notes that

the correlation matrix Ry of the output data at lag zero is given by
Ry (0) = HE[s(n)sT (n)]HT = HIHT,

where I is the identity matrix. Note that since H is full column rank, the correlation
matrix Rx(0) will be also full rank. Assuming that H is real, it can be calculated up
to an orthogonal transformation @ such that the estimated channel is given by F = HQ
since FFT = HQQTHT = HHT. The problem is then how to determine Q to resolve the
uniqueness problem. The key to the solution is to realize that the correlation matrix at lag

one can be easily found and is given by
Ry (1) = HE[s(n + 1)sT (n)]HT = HJHT,
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where J is the backward shift matrix with ones along the subdiagonal. The main difference
between the two lag matrices is that Rx(1) has a rank that is one less than Rx(0), i.e. Rx(1)
has a nullspace of size one. This nullspace plays a crucial role in identifying the orthogonal
matrix (). Since F' can be calculated, its pseudoinverse can be also calculated and is given

by F' = QTH'. Pre-and post-multiplying Ry (1) by FT yields
C = F'R(1)(FNT =QTJQ,

or equivalently as CQT = QT J. Denoting the last column of QT by g, the following relation
holds
Cla @ - am ] = [ © ¢ ... 0 J

Cgm =0,
and hence the nullspace of C gives the last row of @ up to a scale factor. The remaining

columns of Q7 can be found recursively using the relationship

Car—1 = qk

where k =0:m — 1.

The TXK algorithm uses the same approach of considering different snapshots as the
ESPRIT algorithm developed by [50]. The ESPRIT algorithm was proposed for the spectral
estimation of the sum of sinusoidal signals in white noise. To see the similarity between the
two approaches, consider a signal x(n) composed of the sum of p sinusoids in white noise
w(n) as given by

x(n) = Sz(n),
where S is a Vandermonde matrix and z is a vector of complex coefficients. This means the
correlation of x(n) is given by

R.(0) = SPSH,
where P is a diagonal matrix. In additive noise w(n) of unit variance, the signal model is
y(n) = x(n) + w(n),
and the correlation is given by

R, (0) = SPSH +1.
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If we consider the next frame of the signal y(n+ 1), the correlation with the previous frame
is then given by

R, (1) = SPefsH 4 J,

where O is a diagonal matrix that contains the phase shift due to the one sample displace-

ment. Thus, the signal correlations x(n) at lag zero and one are given by

R.(0) = R, (0) — [ = SPSH
R.(1)= R, (1) - J = SreXs.

Subtracting these two correlations from each other yields
Sp(1-ef1) st =o,

which is the equivalent of a generalized eigenvalue problem in which the diagonal of © plays
the role of generalized eigenvalues ;. Finding these eigenvalues yields the frequencies that
compose the Vandermonde matrix S(n). In the TXK algorithm, the channel matrix H plays
a role similar to S and the idea of using the correlation matrices at two different lags for
the identification of the null space and decomposing the signal space into two orthogonal
components.

As important as the TXK algorithm was and its results were, it raised some critical
questions. For example what conditions must the channels meet to be identifiable, or what
conditions must be imposed on the input? Is there an explicit SIMO system structural
property that allows identifiability? The answer is yes to both of these questions as we

explain in the next section.
2.8.4.4 Channel Identifiability Conditions

Blind SOS channel identification is only possible under some conditions. The first re-
quirement is that the channels have no common zeros, which is the same as requiring
that the channels be coprime. This condition is equivalent to requiring that the compos-
ite channel matrix be of full column rank as explained in [51, 52]. The second condition

for identifiability is that the input signal be persistently exciting, a condition required by
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many classical system identification methods as described in [53]. Thus, the identifiability

conditions for a SIMO system can be summarized as:
1. The channel matrix H must be of full column rank.

2. The channels h1(n), h2(2), ..., Aar(n) must be coprime, meaning that the channels must

not share any common zeros.
3. The input signal s(n) must be persistently exciting.

The persistent excitation condition is required for a unique solution in the finite output
data case and when the input data is considered to be an unknown deterministic signal as
detailed in [49]. The coprime channels requirement raises an interesting question in the case
of acoustical channels. If two microphones are placed in close proximity together, would we
expect their impulse responses to be very similar and violate the coprimeness condition?
A preliminary answer to this question is no. This is because while the impulse responses
may be very similar to each other, i.e. the coefficients of the FIR filters may be very nearly
equal, a polynomial with slightly perturbed coefficients compared to another polynomial
will not have near equal roots. We elaborate more on this issue in the next chapter when
we discuss acoustical impulse responses.

The next class of methods we discuss are the subspace methods. What these methods

reveal is that it is the structure of the SIMO system output that allows for identifiability.
2.3.4.5 Subspace methods

As explained in the previous section, the TXK method assumes that the input signal
is i.i.d. and makes no explicit use of the data output structure. The subspace approach
is exemplified by the subchannel matching approach described in [40] and [54]. In the
simplest case of two channels as shown in Figure 8, two unknown channels hi(n), ho(n)
with no common zeros are to be identified. It is clear that in this case the error e(n) is

given by

e(n) = zi1(n) * vi(n) — x2(n) x va(n) = s(n) * (h1(n) * vi(n) — ha(n) * va(n)) .
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Figure 8: Subchannel approach.

Thus, for the error to be zero, the filter v;(n) must be proportional to ha(n) and va(n) be
proportional to h;(n). A more compact way to write the above relation is
Vi
e(n) = x{ —xg = 0.
\p)
The subchannel approach can be easily extended for multiple channels. For example in the

three channel case, the pairwise relationships might be given by

xI' —xI' 0 vi
T T =
x¥ 0 -x7 Vo

2.8.4.6 Linear Prediction approach

The linear prediction approach to the problem of SOS blind deconvolution developed
by [43] is one of the more interesting and versatile approaches to the problem of blind SOS
identification. Linear prediction is a well established method for deconvolution problems,
especially in seismology where the inverse filters are also referred to as spiking filters.

The linear prediction formulation once again begins by considering a SIMO FIR channel
system output as given in Equation (1). The z-transform of the SIMO impulse response

has the form of a vector given by



where the individual entries hy(z), ..., har(2) are the z-transforms of the individual impulse
responses h(n), ..., hpr(n). The generalized Bezout equation states that it is possible to find

another vector of polynomials g(z) such that the equation
g’ (2)h(z) =1 (2)

holds under the assumption that h(z) is irreducible, i.e. no common zeros between the
various impulse responses. Thus, it is possible to consider the vector polynomial g(z) as
acting as an inverse filter for h(z). This is a sharp contrast to the single channel case where
an FIR filter requires an IR filter for exact inversion. Also, note that the output of a SIMO
system can be expanded into the sum of individual vectors as given by:
1 (n) L Mm@ h1 (0) hi (L)
x(n)=|: =Z : sn—1i)= | s(n)+...+| ! s(n—1L1),
1=0

Ty (n) har (%) has (0) har (L)

where M, L are the number of channels and channel order respectively. If the inverse filter
g(z) is applied to x (n — k) then the result is s(n — k). Using this result, we can rewrite

Equation (3) in term of the previous output samples as given by:

h1(0) ha (1) ha (L)
x(n)=|: s(n)+ | gl x(n—14...+ | : gl(z)x(n—L).
~————— —_—
hat (0) har (1) =) har (L) s
%(n)

Equation (4) has the form of a linear prediction term %(n) plus an innovation term (the
prediction error term). The blind linear prediction identification algorithm utilizes this fact
and under the assumption that input s(n) is i.i.d., the vector hg = [hy (0), ..., has (0)]7 can

be identified using the correlation:
E [(x(n) = %(n)) (x (n) = %(n))" | = hoh{.

Once hy is found, it is possible to obtain the input sequence directly using the relation

“n:—l—xn—ﬁn =L S
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where §(n) is the estimated input signal. Once s(n) is estimated, a nonblind system iden-

tification formulation can be used to find the channels if required.
2.8.4.7 Direct Inversion

The combination of the MINT theorem and the blind SIMO FIR channel identification
methods has been applied to the dereverberation problem. For example in the method
described in [54], the authors used a blind procedure to identify two acoustical channels.
Another method based on a cross relation method is described in [55] and the method was
extended recently in [56]. While all these methods can estimate the acoustical channels,
they all require a two-stage process for dereverberation; a channel identification stage and
then an inversion stage based on the MINT theorem or some variant of it. This approach
is not optimal since it requires a two-stage process. An error in the estimated channels
leads to the design of inverse filters that do not truly invert the system. Also, the two-stage
process means that tracking and convergence issues in an adaptive system become critical.
It is for this reason we have avoided a two-stage procedure and prefer to have a single stage
method for dereverberation.

As suggested by the linear prediction approach, it is possible to obtain s(n) directly once
an inverse has been found. This led to the development of new methods that attempt to
bypass the channel identification stage and attempt to find the inverse FIR filters directly
as described in [57, 58, 59, 60, 61, 62, 63, 64, 65]. For example in [63], the cross correlation
function needed to find the MSE equalizer is found directly (with some assumptions on
the nature of the input). In [58], the authors formulate blind equalization as a generalized
eigenvalue problem and develop a criterion for finding the optimal delay equalizer under
the assumption that the input signal is constant modulus. In [60], the authors adapt some
of the blind array processing methods based on Capon’s method to find the equalizers.

A very interesting method, with links to linear prediction, that finds the equalizers di-
rectly is the mutually referenced equalizers (MRE) method described in [59, 62, 64]. This
method finds all the equalizers at all possible delays. The method has a simple adaptive

formulation and makes only very mild assumptions on the nature of the input. In fact, the
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MRE method has proven to be very versatile and has been applied to other applications
such as multichannel image deblurring as described in [66]. It is exactly because of these ad-
vantages of the MRE method that we propose a method based on a modified MRE method
for the speech dereverberation problem. However, before discussing the MRE and the re-
quired modifications, we discuss the issue of room impulse response modeling, measurement

and related acoustical issues in the next chapter.
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CHAPTER III

ROOM IMPULSE RESPONSE SIMULATION AND
MEASUREMENT

In this chapter, we continue our investigation of the room impulse response. While the
modeling and simulation of acoustical reverberation is a complicated and difficult problem,
the focus here will be only on those aspects that are of most relevance to this research;
namely the simulation and measurement of room impulse responses. It is important to note
that not all reverberation is undesirable. In concert halls, a certain amount of reverberation
enhances the sound quality and contributes to the richness of the sound. However, when

speech is involved, the reverberation blurs and smears the speech signal.

3.1 The Physical Modeling of Reverberation

The simplest physical explantation for reverberation is based on the reflection and ab-
sorbtion of acoustical waves by various surfaces in a closed room. Because of the nonlinear
absorbtion and reflection from nonuniform surfaces, the acoustic waves are attenuated and
diffused. As explained in Chapter 1, the phenomenon of reverberation can be viewed either
as a lumped process modeled by a linear system or as a physical model governed by differ-
ential equations that describe the propagation of the sound waves. The simplest physical
model is the propagation of a sinusoidal wave of frequency w in a rectangular room (with
rigid walls) of dimension L,, Ly, L,. The wave equation in this case simplifies to the well

known Helmholtz equation given by:
5
++—;+T+k2p=o, (5)

where p is the sound pressure and k is the wavenumber. The above equation is separable,

and utilizing the boundary conditions that must be satisfied, the general solution at point
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(z,y, 2) at time ¢ is given by:

Nym

p(z,y,z,t) = Acos [nzch cos [ T y] cos l:nzﬂ'z} exp(jwt), (6)
T Y z

where A is a constant dependent on the boundary conditions [67]. The wave number k

parameter is related to the wavenumber in each variable by

ng\ 2 ny\ 2 o\ 2 2
k= —z v &
(&) @) - (E) ]

and each wavenumber % defines an oscillation mode. When a sound source excites the room

and the associated modes, the modes resonate at their corresponding frequency. Once the
excitation terminates, these modes decay at different rates depending on location, time,
boundary conditions, and the associated wavenumber. The superposition of all these de-
caying modes is what creates the reverberation. However, this complex phenomena of rever-
beration is usually quantified with a scalar quantity called the reverberation time, denoted
by Tso. Sabine’s pioneering work on room acoustics and the quantification of reverbera-
tion led him to define the reverberation time Tgy as the time required for the initial sound
pressure pg to decay by 60dB. Obtaining such a quantity requires the measurement of the
reverberation time, but a simple approximation exists for rectangular rooms of moderate

size with rigid walls, and is given by:

V

Teo = K

where K is is a proportionality constant that depends on the reflectivity of the room surfaces,
V' is the room volume, and A; is the effective surface area of the i — th absorbing surface
in the room. The parameter A; is the product of the absorbing surface size S; and the

absorption coefficient a;. In the idealized case of hard walls, T4 is approximated by:

Vv
Teo = 0.161 .
60 =0 SA (8)

Equation (7) can be extended to larger rooms if the absorption of the air in the room is

taken into account. In this case, the reverberation time is given by:

V

Teo = 0.161 ————,
60 SA +mV
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Figure 9: Simplified impulse response of a room.

where m is the absorption coefficient of air at a given temperature. One interesting point to
note is that none of these reverberation time equations depend on the locations of the source
or microphone inside the room. This is a consequence of the fact that the reverberation
time Ty is an average measure of the decay time of all the various decaying modes that
result from the solution of the Helmholtz equation. In addition, the fact that reverberation
at a given location in a room is the superposition of all the decaying modes, it is reasonable
to model the phenomenon as a linear system defined by the convolution of the impulse
response between a source and receiver.

In the next section, we discuss the simulation of the room impulse responses. It turns
out that the most effective room impulse response simulation methods rely on the physical

modeling of the reverberation described above.

3.2 Room Impulse Response Simulation

The typical shape (of a simplified) room impulse response shown in Figure 9. As illus-
trated, the typical impulse response can be considered to be made up of three segments
described as the direct path, the early reverberation, and the late reverberation. The ap-
proximate shape of the impulse response follows that of a decaying exponential. The direct
path signal is not always (but frequently is) the maximum of the impulse response since

the early reverberation can add up constructively and create a larger amplitude. The early
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reverberation is associated with those surfaces closest to the microphone, such as tables.
The late reverberation forms the tail of the impulse response, and involves a dense collection
of smaller valued echoes that are the result of the diffusivity of the reflected echoes.

The modeling of realistic and accurate sounding impulse responses is a non-trivial math-
ematical endeavor, but some well established modeling methods have been developed. The
earliest reverberation model was proposed by Schroeder, and consisted of a bank of comb
filters connected in parallel, which in turn was connected in series to a group of allpass filters
connected in series. The purpose of the comb-filter was to create the decaying exponential
shape associated with a typical impulse response, while the allpass filter bank purpose was
to create the smear and blur effect associated with a typical impulse response. While the
model captures the overall features of reverberation, it usually lacks sufficient echo density
in the tail. Other more natural sounding filtering approaches for creating reverberation
impulse responses, such as the Jot reverberator, are described in [68]. However, in most
of these models, it is difficult to relate the filter’s parameters to the physical room that is
being simulated. A more successful and realistic approach to modeling the room impulse
response is auralization. Auralization is the use of the physical model of sound propagation
and reflection, along with room size, and absorption parameters to simulate the room im-
pulse response. The image method, developed by Allen and Berkley [69], is one of the most
frequently used methods for generating the impulse response in a room between an arbitrar-
ily positioned source and microphone. The method calculates the impulse response by using
the wave propagation equation, in conjunction with the image method for the modeling of
the sound reflections. The image method, popular in optics, is illustrated in Figure 10. A
source wave is reflected by a wall at an angle f and is recorded by the microphone. To the
microphone, the acoustical reflection is equivalent to receiving a direct path signal from a
virtual source, i.e. an image of the original source. The same principle can be extended to
multiple images as illustrated in Figure 11. A FORTRAN77 implementation of the image
method is given in [69], and Matlab implementations of the image method can be found in

[6, 70]. The input parameters to the image method are the:

e Room dimension
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Source location

Microphone location

e Six reflection coefficients of the various walls and surfaces

Sampling rate

The reverberation time Tgo is not a parameter that is defined in the image model,
but rather it is a quantity that must be calculated from the room impulse response. The
backward integration method proposed by Schroeder [71] is the most frequently used method

because of its robustness. Statistically, the room impulse response can be modeled as:
—-n
hin)=e Tr(n) + oyw(n), (9)

where 7 is a decay time constant and o, w(n) is white gaussian noise with standard deviation
oy to model the background noise in a room. The variable r(n) is a random variable that
models the amplitude of the recorded echoes. A good choice for r(n) is the Rayleigh
distribution defined by:

2
-n
r(n) = %e /202,
o

where o2 is the average power of the received signals. The Rayleigh distribution is frequently
used to model the amplitude of received signals in a multipath environment. Since the Tgg
time is a measure of the time needed for the initial energy to decrease by 60dB, the squared

impulse response given by:

) = () = (v + awfw<n>)2,

and f(n) is utilized to create a new curve called the integrated energy decay curve (IEDC).
Noting that f(n) is in reality a continuous signal f(t), the IEDC is defined as a tail inte-
gration (or more accurately as a summation in the discrete case) of f(t),
loo
IEDC (t) = f(u) dt.
t

While the echoes theoretically never decay to zero, there comes a time when the ambient

noise becomes larger than the echoes , and the value of t, is chosen to be that time. The
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Figure 12: (a) Decaying exponential, (b) Decaying exponential with random amplitude.

IEDC, under the assumptions above, resembles a linear curve when plotted as a logarithmic
quantity. In the noiseless and pure decaying exponential case, the curve will be linear, but
under more realistic conditions, it exhibits a fluctuation about the ideal case. In such a
case, a linear interpolation is performed on the IEDC curve to obtain 7. Figure 12 shows
a pure decaying exponential impulse response and decaying exponential with a Rayleigh
distribution random amplitude model as given in Equation (9). The IEDC curves shown in
Figure 13 were obtained using a modified version of the original Schroeder implementation
described in [72].

The case of random amplitude shows the IEDC curve deviating towards the end. A
more realistic impulse response will exhibit more deviations throughout as will be shown

later.
3.2.1 Image Method Simulation Results

We consider the simulation of a few room impulse responses using the image method for
later comparison with the measured impulse responses of room 352 in the GCATT building.
The room size is {z,y, z] = [18,21,9]ft = [5.49, 6.40, 2.74]m.

For the first simulation, the sampling rate is chosen to be 8kHz; the reflection coefficients

are chosen to be 0.5 for the walls and 0.4 for both the floor and ceiling. The source signal
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Figure 13: (a) Decaying exponential, (b) Decaying exponential with Rayleigh distributed
random amplitude.

is defined to be at ry = [z,y,2] = [1.67,11.17,3.17]ft and the microphone is chosen to
be at r, = [z,y,z] = [8.25,8.58,2.5]ft. The resulting impulse response, along with the
corresponding IEDC curve are shown in Figure 14. Next, we consider a small change in
the position of the microphone to rp,, = [z,y, 2] = [8.25,8.33,2.5]ft, and once again the
resulting impulse response, along with the corresponding IEDC curve are shown in Figure
15. Note that the reverberation time changed only slightly, and the impulse response has
a few main differences in the early reverberations. Figure 16 shows the difference between
the above two impulse responses. The pole-zero plot of the impulse responses in Figures
14 and 15 is shown in Figure 17 (the impulse responses were truncated to 1000 samples).
While the pole-zero plots seem very similar, zooming in as in Figure 17b shows that it is
unlikely the zeros of the two impulse responses will coincide and violate the common zeros
condition discussed in Chapter 2 for the SOS blind equalization and identification of SIMO
channels. Also, separating the microphones by a larger distance creates a greater difference
in the impulse responses and reduces the possibility of common zeros even further.

The reverberation time is more dependent on the reflection coefficients than on the
distance between the speaker and microphone in a room. To illustrate this, we consider

the simulation of a room with the reflection coefficients chosen to be 0.7 for the walls and
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Figure 14: (a) Impulse response ry, = [z,y, z] = [8.25,8.58, 2.5] ft., (b) IEDC.

Room Impulse Response, r.=[1625 11375  3.125], r =825 8375 25 Integrated Impulse Decay Curve (IEDC)
1 v T T T v T — T 0 T N T T T
T 60dB decrease level

ook 4 ok Linear interpotation of IEDC

08 I B 5705 Braiing poor=0:4 4 ol

0.7H B

-30f

08 L 4
@ —40r
3 osf 1 @
é_ o
< 04 | 50+

Q3K b -0

0.2 -1 70

Q1 F -

—GO}» b
o4
L L L n L L " _90 " L s " P L "
o 50 100 150 200 250 300 350 400 450 500 0 20 40 60 80 100 120 140 160 180 200
Time, (ms) Time (ms)

(b)
Figure 15: (a) Impulse response for r,, = [z,y, z] = [8.25,8.33, 2.5 ft., (b) IEDC.
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Figure 18: (a) Impulse response, (b) IEDC.

0.6 for both the floor and ceiling. The microphone is placed again at r,,, = [8.25, 8.33,2.5].
The new reverberation time is calculated to be Ty = 0.323sec, and the resulting impulse

response and [EDC curves are shown in Figure 18.

3.3 Room Impulse Response Measurements

The simplest, and most obvious, way to obtain the room impulse response is by creating
an impulsive signal at some distance away from a microphone, and then recording the
resulting impulse response. Three problems arise with this type of approach. The first is
the difficulty in creating an exact delta function even with the use of an exploding balloon or
gunshot. The second problem is the poor SNR such a method would yield due to the small
amount of energy in the delta function. The third drawback is the difficulty in repeating
the experiment with an identical input. For example, no two balloons would pop in the
same way.

Another method of obtaining an impulse response, albeit indirectly, is by using a sinu-
soidal sweep signal. This approach gives the Fourier transform of the impulse response over
a certain frequency range. While this method is widely used, it suffers from nonlinearity
problem inherent in the speakers and some of the recording equipment [67].

The third approach involves using a maximum length sequence (MLS) as the excitation
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Figure 19: MLS sequence, N=16.

signal. MLS signals are deterministic in nature but appear as a random binary sequence.
The generation of an MLS sequence depends on defining a primitive polynomial m(x) (in
GF(2)) of order N. This is equivalent to having a sequence of shift registers in cascade that
implements a difference equation with the output taken mod2. Depending on the value of
N chosen, an MLS sequence with a period of 2" —1 samples is generated. For example with
N = 16, a sequence of 65535 samples is generated. When played back at a sampling rate
of 8k H z, this corresponds to an audio signal that is approximately 8.1s long. What makes
the MLS sequence s(n) very useful in measuring the room impulse response is that it has

correlation properties similar to white noise. For example, the auto-correlation of s(n) is:

1<
r(n) = i z s(1)s(i +n) = é(n).
i=0

Thus, the sequence s(n) has a flat power spectrum. For example, for N = 16, Figure 19
shows the first 100 samples of s(n). Figure 20 shows the autocorrelation of the sequence
s(n) and how it approximates an impulse, and Figure 21 shows the power spectrum of the
sequence s(n). If we denote the impulse response by h(n), the recorded signal z(n) is given

by x(n) = s(n)*h(n). Cross-correlation of z(n) with the input s(n) gives the room impulse
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Figure 22: (a) Arbitrary shaped impulse response, (b) Resulting estimated impulse re-
sponse using correlation.

response h(n),

1 N-1 N-1
% D sn+i)z(i) =+ D s(n+1) (h(n) = s(n)) = h(n).
=0 T =0

As a simple example, consider the arbitrary impulse response h(n) shown in Figure 22a.
An MLS signal with N = 16 was filtered with h(n) and the result z(n) was cross
correlated with s(n). The resulting cross correlation is shown in Figure 22b.
Note that in practice, the procedure of exciting the room with s(n) may be repeated
several times to improve the SNR. While the procedure described above is simple from a
theoretical standpoint, its implementation is nontrivial in a real environment because of the

nonlinearities in speakers and the ambient noise we had in our audio lab.

3.4 Impulse Response Measurements in Room 352

While the theory and mathematics behind room impulse response measurement may
seem simple and easy to implement, the actual realtime implementation is very difficult
and involved. We opted for the use of a commercial package called RAE [73] to do our
room impulse response measurements. While many packages exist for this task, we have
found the low price, flexible hardware requirements and good results obtained with RAE to

be unmatched. The closest room to an anechoic chamber available to us was Room 352 in
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Figure 23: Calibration module.

the GCAT'T building. However, in the course of our experiments we have discovered some
flaws in the room; specifically we have found that the ventilation system was louder than
normal, and even when we turned it off, there was a humming sound emanating from the
ceiling. However, we still were able to manage to do some experiments on measuring the

impulse response.

3.4.1 Calibration

The first step in doing the measurement is the calibration of the required speaker volume
and the length of the MLS excitation signal. This process is automated as shown in Figure
23. As can be seen in Figure 23, we consistently got an SNR of approximately 40dB.

Anechoic chambers have an SNR range between 60dB and 80dB.
3.4.2 Measurement

Once the calibration has been performed, the impulse response is measured using the

module shown in Figure 24.
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Figure 24: Measurement module.

3.4.3 Reverberation Time Calculations

After the measurement of the impulse response, the reverberation time calculation mod-
ule can be used to obtain the reverberation time of the measured impulse response as shown
in Figure 25. The measured Tyy time calculated by RAE was found to be 0.16s, which
matches well with the estimated Typ time of approximately 0.19s found from the simula-
tions. However, we want to emphasize that while the reverberation times are close, the
impulse responses will not be equal on a sample by sample basis. Figure 26 shows the sim-
ulated and measured impulse responses (adjusted for peak amplitudes to match for easier
comparison). The measured impulse response exhibits more peaks due to the many reflect-
ing surfaces found in Room 352, especially the large wooden table located near the center
of the room.

These comparisons allow us to use the simulated impulse response in the next chapter

when it is convenient, especially when considering many microphones.
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Figure 26: Comparison of simulated and measured impulse responses, x is the measured
impulse response and o is the simulated impulse response.
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3.5 Summary

In this chapter, we have discussed the image method and compared it to actual measured
impulse responses, showing that the image method gives a good approximation to the
measured impulse response in terms of reverberation time. We also described how the

reverberation time is measured and why it is an important quantity for room acoustics.
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CHAPTER IV

SPEECH DEREVERBERATION BASED ON THE RMRE
METHOD

In this chapter, we discuss the dereverberation approach based on the mutually refer-
enced equalizers (MRE) method and the reduced MRE (RMRE) method. We point out the
limitations of the MRE method and why modifications are necessary. Experimental results
are provided to demonstrate the applicability of the RMRE approach to the dereverberation
problem. Finally, we provide some theoretical results that shed light on the RMRE method

and possible ways of further reducing computational cost.

4.1 Multiple FIR Channel Inversion

Before discussing the MRE method, we give a brief exposition of the underlying principle
of single-input multiple-output (SIMO) FIR channel equalization (inversion). The solution
to the problem depends on finding a solution to the Bezout equation, which states that
given two polynomials Hy(z) and Hs(z), there exists a pair of polynomials G1(z) and Ga(z)
such that H1(z)G1(z) + H2(2)G2(z) = 1, under the assumption that no common zeros exist
between H(z) and Ha(z), i.e. that they are coprime. The relationship is extendable to L

polynomials, and the generalized Bezout equation in this case is given by
H1(2)G1(2) + ... + Hi(2)GL(2) = =%, (10)

where d is a positive integer. A proof of Equation (10) is given in [74]. One remarkable
feature of the Bezout equation is that it does not require that the roots of the polynomials
H;(z),i = 1,2 lie inside the unit circle (no minimum-phase requirement), as is required in
the single channel (SISO) case.

In the case of of two microphones, let the (FIR) impulse response between the speaker

and the microphones be denoted by the polynomials H;(z) and Hs(z), and the order of
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both polynomials be M, i.e. each channel is modeled as an FIR filter with M + 1 taps.
The Bezout equation can be written in this case as a dot product of two vector polynomials

given by:

Hl(z) —d
[ Gi(z) Ga(z) } ) =z " (11)
a2(z

In the time domain, the relation in Equation (11) can be written as a linear system of
equations given by:
81
[Hy, Hy) = €q,
g2

where the matrices H;,7 = 1,2 are convolution matrices

- hi (M) = (M+N)XN

and the vector e, is a unit vector with a 1 in the d —th position. One point that we have not
yet specified is: what is the minimum required order for the polynomials G;(z),7 = 1,2 7
It can be shown that the minimum required order is M — 1, i.e. the FIR filters g;(n), go(n)
have to be one point shorter than the impulse responses (channels). A formal proof of this
fact and the more general L-channel case requires some knowledge of matrix polynomial
properties, but we provide here our alternative (and simpler) plausibility demonstration
based solely on the rank properties of matrices.

Lemma 1: Given L channels H;(z) each of order M, the minimum equalizer G;(z) order

=

is:
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Proof: The Bezout equation in the time domain has the form
g1
[Hl,...,HL] = €q
8L
HyminvyxLng = €4,

where the rank of H is M + N. Multiplying by H”, we obtain

HTH(M+N)XLNg = H7e,, or equivalently
Rinxing =hy
Since the rank of the deterministic correlation matrix R is LN — (M + N), this implies

the solution g will have LN — (M + N) + 1 zero elements. Note that N (a user defined

parameter) must be chosen to satisfy:

N> (M—l"’

L—-1
so that equation (12) will have a solution. l
It is possible to find equalizers of higher order that are also solutions, but in this case,
the solution is no longer unique. As a simple example, consider H;(z) = 1+8z71 + 4272 —
2273, Hy(z) = =3+ 3271 — 7272 + 273, The roots of Hy(z), Ha(z) are [—7.43,—0.88,0.31]
and [0.42 + 1.427,0.42 — 1.42i,0.15] respectively. Then the solution to Equation (11) for
d=0is:

[G1(2),G2(2)] = | 0.092 — 0.242 1 +0.034272, —0.3 —0.1421 + 0.06822

As noted, higher order solutions exist, one example of which is given by:

T T
G1(z) 0.09 — 0.2327! 4+ 0.022272 + 0.019z73 — 0.0027z 4

Ga(z) ~0.3 —0.14271 +0.087272 4+ 0.012273 — 0.0054z~*

It is generally desirable to have the lowest order solution, but in some circumstances higher
order solutions provide robustness against model order mismatches. We discuss this issue

in the next chapter.
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It is important to emphasize that in the two channel example, the polynomials G;(z), Ga(z)
must work as a pair to produce the desired impulse at a given delay d. Applying G1(z) to
H;y(z) alone does not yield a useful result. For equalization purposes, a result of the form
ad(n—ng), for a nonzero scale factor «, would be still considered as an exact equalizer since
the result is only scaled and delayed. In the next sections we explain the basics of the MRE

method and point out to its advantages and limitations for the dereverberation problems.
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4.2 The Mutually Referenced Equalizers Method

The mutually referenced equalizers (MRE) method [59] is a method developed for the
direct blind equalization of wireless communication channels modeled as FIR filters. As
with many of the SIMO deconvolution methods, it only uses second-order statistics of the
channel outputs. The method is based on the formulation of a constrained multidimensional
MSE criterion. Minimizing this criterion gives the equalizers for all possible delays.

What makes the method applicable to the dereverberation problem is the fact that it
makes very mild assumptions about the nature of the input signal and channels. Although
the problem is formulated by assuming a PAM/QAM channel, the method does not assume
that the input signal is white. This feature makes the algorithm applicable to speech
signals. Additionally, the ability to implement the MRE method adaptively makes it ideal

for situations where the channels or input are time varying.

If we assume the existence of L channels, and that each channel is modeled as an FIR
filter of order M, as depicted in Figure 27, then the output of the channels at time n is

given by the linear convolutional model in Equation (13)

__Unknown Parameters Equalizers resulting in delay 4

— xl(n) 1
By (n) 1 % vl,d(n)l

AN
s(n) .
X,(n) [
h,(n) | %\ v, 4 (1) rr— Y —r—

hL (n) | % XL &
L

Figure 27: SIMO block diagram showing unknown channels,the input s(n) and equalizers.
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x1 (n) H,

= s(n) = xn = Hs(n) (13)
| xc(n)| | Hi]
where ) ) ) )
z; (n) s(n)
x; (n) = ,8(n) = :
_J:i(n——N—}-l)d _-xi(n—K-f-l)_
hi(0) hi(M)
H; =
hi(0) hi(M)

The matrix H is a composite channel matrix (usually referred to as a Sylvester matrix) of
dimension LN x K where K = M + N and N is a user defined parameter that defines the
output’s data window size. Notice how the channel order M is implicitly defined by K.
As discussed in the previous section, it is possible to find a set of equalizers, i.e. inverses,
denoted by w; g(n) in Figure 27. If these inverses are found, the resulting output will a
delayed and attenuated version of s(n) denoted by ad(n — d).

To make the above definitions more concrete and help us explain the development of
the MRE method, we consider the simple example of a two microphone system (L = 2)
with each channel being three taps long (M = 2). We define the output over a window of

N = 3 samples which implies that the number of columns is K = M + N = 5. The system
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output in this case is given by

[6x1] -
(14)

To be able to find a left inverse for H, it is required that H be of full column rank, i.e. that
the number of rows be greater than or equal the number of columns. The full column rank
condition is another way of stating the coprimeness condition since a Sylvester matrix is of
full column rank if the polynomials generating it are coprime. This makes picking the data
window size N critical and closely tied to knowing the order of the channels. If N is chosen
correctly as prescribed in the proof of Lemma 1, then the channel matrix is overdetermined
and it is possible to find an inverse (a pseudoinverse). Notice that in a single channel
deconvolution problem, the channel matrix would be underdetermined (corresponding to a
short and wide matrix). We next describe how the MRE method can obtain the equalizers
(inverse) using only knowledge of x,.

Denote the (pseudo)inverse of H by the matrix VT = H. If H is m x n, then V7T will
be n x m and the product of VT H will be equal to I,,xn, where I is the identity matrix.
Thus, V7T acts as what is commonly referred to in communication theory as a zero-forcing
equalizer [75]. If we denote each row of of V7T by viT,i = 0:m— 1 then the product can be

written as in Equation (15):

eiT, (15)

<
~
s
Il
—
<
=~
~
—
1

where e; is an impulse vector with a 1 at the ¢ — th position, and v;fi, j =1: L are the
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Ch_annel 1 output _ i Channel 1 _ s(n —2)
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individual components of the equalizers as illustrated in Figure 27. This important idea of

considering the various rows of V7T to be equalizers with different delays is illustrated in

Figure 28.

Figure 28: Rows of the inverse can be thought of as equalizers.

The set of K — 1 equalizers can be referenced with respect to each other to form a set

error relations of the form:

2
Ji= | vTHs(m) —vI Hs(n+1) | | (16)
—— ——
ef eiT+1

each of which will be zero if the equalizers are exact. If the various error functions for the

equalizers are incorporated into a sum of squares of the form
Jure =D+ ...+ k-1, (17)

then minimizing Jy;re will yield a set of optimal equalizers. This simple, yet powerful,
point of view of the equalizers, and the fact that the input is a time shifted version of a
common signal from one sample to the next lies at the heart of the MRE method.

Building on our previous example, V7 is given by

T __ gyt —
vV —H[5x6]_ vg . (18)

55



Since the matrix V7T is an inverse for H, the product VI H = I. Thus, [vg][lw]H =
[1,0,0,0,0] which implies that v is the zero delay equalizer. This extends to [v{][lxﬁ]H =
[0,1,0,0,0] and so on. In general va is the j** delay equalizer. The goal of the MRE method
to find these equalizers in HT from knowledge only of the outputs x,. The key to the solu-
tion is to realize that v{x, = v§ Hs, = [1,0,0,0,0]s, = s(n) and v{x,,; = vIiHsp, 1 =
[0,1,0,0,0]sp+1 = s(n). Subtracting these two relations yields vIx, — v x,11 = 0. Ad-
ditional relationships can found by noting that v{xn - v%an = O,VQTxn - vgan =
0, vgxn —va,H_ 1 = 0. The result is a total of 4 equations. Thus, the MRE criterion (which
is the sum of the MSE of the above difference relations) is given by:
InrE(Vo, Vi, Vo, V3, V) = E |v0Tx[n] — v{x[n + 1]’2 +F lv{x[n] — VQTx[n + lH2
+E ‘vgx[n] —vix[n+ 1]'2 +E 'vgx[n] —vIx[n+ 1]'2
= [v{ Rz [0]vo + v] Ry [0]v) — 2v{ Ry [1]v1]
+ [V Ry [0]vi + vI Ry [0]vo — QV{Rz[l]VQ]
+ [v] Rz [0]ve + vi Ry[0vs — 2vI Ry [1]vs]
+ [ngw [0]vs + vI R,[0]v4 — 2V3TRI[1]V4] .
If the quadratic cost function above is differentiated w.r.t. each equalizer v; and each

derivative is set to zero, the resulting linear system of equations take the form

| R0 -RT[L o 0 0 _ v
Rl 2R0] -RTO] 0 0 vi
0 —R.[1] 2R,[0] —RI[1] O vz -0
0 0 ~R.[l] 2R.[0] —R;[l] v3
K 0 0 —Ry[1] Re[0] jsox30] L V4 ] gox)
~ v

This linear system is a block tridiagonal system that only depends on the lag zero and lag

one correlation matrices. If we assume that s,, is white noise for the time being, then we
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can derive a simple expressions for R.[0], Ry[1];

Rz[o][Gxﬁ] = E[XnXZ] = E[HSnSZHT] = HH"

Rl[l][ﬁxﬁ‘ = E[Xn+1XT’Z;] = E[H5n+1S’£HT] - H 0

0

0

[ - =]

0

0
0

0
0

1

0

(21)

In general the k" lag correlation matrix can be written as R[k] = HJ*HT and R[—k| =

RT[k]. Notice that the backward shift matrix J of size p x p is zero for k > p— 1 (nilpotent

matrix). Thus, the equalizers can be found by utilizing only outputs of the channels to form

the block correlation matrix.
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4.3 The Reduced MRE Method

While the MRE method is well suited for wireless channels that are often modeled as
FIR filters with a small number of taps, the MRE method is not very well suited for longer
channels. The reason for this is that the MRE method finds the equalizers for all possible
delays. While this feature makes the solution more robust against noise as explained in
[59, 64], it makes the solution too computationally expensive. For example, two channels
each with 100 taps would mean that the minimuin size for the channel matrix H is 198 x 198.
This means the total number of taps required is 1982 = 39204. Clearly, this makes the MRE
method as originally proposed impractical for longer channels.

For the acoustical dereverberation problem, it would be sufficient to have only a subset
of all possible equalizers. The simplest approach would be to reformulate the MRE criterion
with a reduced number of equalizers. In our illustrative example, let us assume we are only
interested in obtaining the zero delay equalizer and the lag one equalizer. This modifies the

MSE criterion to have a single difference relation
2
Jure(vo,vi)=FE fvgx[n] —vIixn+ 1. (22)

Expanding this equation and differentiating w.r.t to each equalizer yields:

R.[0] —RI vo
! ¢ =0. (23)

—R;[1] R:[0] 21
While a solution to the above system exists, it does not correspond to an equalizer for the
complete channel matrix H. The interesting thing about the solution that comes from this

reduced MRE criterion is the structure of the result:

T
Vo
H.

T
Vi

In the ideal case, the result would be two scaled impulses §(n) and §(n—1). For the reduced

MRE however, the solution is more similar to:

T

) a b ¢ d e 0
- f g

v 0O abcde f - g
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where the elements on each diagonal have the same value. As a simple example consider a

two channel system defined by

Then a solution to (23) yields

; 0.1071 -0.4200 0.6922 - 0.5247 - 0.0000
H[2><6|H[6><5] =

- 0.0000 0.1071 - 0.4200 0.6922 - 0.5247
The above solution is unacceptable as an equalizer because it would mean each recovered
sample §(n) would the result of FIR filtering the original speech signal with an FIR filter
with coefficients [a, b, ..., g], and note that these coefficients are unknown when the equalizers
are calculated. Hence, the problem here is that we have multiple diagonals when we desire

only two impulses as defined by

1 00 00

i —
Hpyy g Hexs) = @

01 000

The problem can be traced to the lack of constraints in the reduced criterion. To understand

this better consider

Sp, Sn+1
Sp—1 Sn,
Sy = Sp—2 Spn41 = Sn—1 ’
Sn—3 Sp—2
L Sn—4 ] L]
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where the common samples are boxed. The goal is to find a vo and v; such that

- - -
S, ( Sn+1
Sn—1 Sn
Vg]{ Sp—2 ::v{]{ Sn—1
Sn—3 Sp—2
| Sn—t Ny

Clearly one solution would be for ng = [ 10 0 0 0 ] and vF{H = [ 01000 } .

However, another possibility is for ng = { 11110 ] and v]TH = [ 011 1 1 } ;
In other words, because we have a set of shared samples, the solution is not unique.
Our initial approach to deal with this problem was to reduce the number of common

samples. The simplest way to do this would be to consider

- - _ -
Sn Sn+4
Sn—1 Sn+3
Sn = | Sp—2 | +Sn+4 = Sn+2
Sn—3 Sn+1
i Sn—4 ] | Sn ]
The only possible solution nowisforviH=|1 0 0 0 0 | andv] H = { 00 00 1 }

Now we it is possible to obtain the edge equalizers without the problem of multiple diagonals,
an idea hinted to by [59]. The modified error criterion for the previous example problem
is Jyre(vo,va) = F |vg x[n] — V4Tx[n + 4]|2. Once again by expanding and differentiating

we get a system of linear equations given by

Rg[0] —RI[4] || vo

—R.[4]  R.[0] vy
In the general problem, the problem of multiple diagonals is eliminated if we consider
the input samples at s(n) and s(n+ K — 1), since these share only the sample at time n. In
such a case, the edge equalizers (delay zero and delay K — 1) can be found and these form

a reduced set of equalizers as stated in Lemma 2.
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Lemma 2: Assume that K is known (or estimated) and assume that v x, = vk _ 1\ Xnt (K1)

holds for all n. Defining the reduced error criterion
2
Jrmre(Vo, Vik—1) = E |vix[n] — vk _1x[n+ K —1]|",

and minimizing this criterion yields the linear system

R.[0] ~RTIK —1] Vo
—Rl-[K - 1] Rw[O] VEK_1

The equalizers VOT, v};vl will be the zero delay and delay K — 1 equalizers such that,

\% 1 0 -+ 0
[HlLnxw) =@ ’ (24)
v};’ ] 0o -.. 0 1
T (2% LN] [2x K]
vT

where a is nonzero a scale factor.

Proof:
Let

; . T
Sp = [:'517.+(R'—l)v Sn4(K—2)s++ =350y Sn—1s-+ s '5n—(K—1)] )

and note that the difference relationship
vix[n] —vEk_ix[n+ K — 1]
may be written as
[ 10 } Vix, = [ 0 1 ]VTanK_l)-

Expanding this expression yields

[ 10 } VT Hs, = [ 0 1 } VT Hspy (k1)

[1 O]VTH[OK_l IK}Sn:[O 1]VTH{IK Ok 1 }S}L-
We omit S, since it appears on both sides of the above equation, and we can consider only

o =[] o

[Wu Wi - WlK][0K~1 IK}Z[WN Wag  --- W2K][IK OK—l]
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which is satisfied if

Wi Wi - Wik
Wo Wo - Wog
has the form
1 0 --- 00
« |
o --- 0 01

The proof of Lemma 2 is similar in construction to the general case given in [59], and
Lemma 2 shows that instead of needing to obtain all the equalizers, we can obtain a partial
set consisting of the two edge equalizers. While this approach seems promising in terms of
reducing the overall number of required equalizers, it suffers from a lack of robustness. The
main problem is that the edge equalizers are very susceptible to noise and the nonwhite
nature of the input signal. The reason for this is that they rely on the lag zero correlation
matrix and lag K — 1 correlation matrix and there are fewer samples available to estimate
R[K — 1]. To overcome this problem, we propose that for the speech dereverberation
problem, to use an MRE criterion with three equalizers corresponding to two edge equalizers
and a “middle” (central) equalizer vq}; /o 88 proposed by us in [76]. Additionally, in Chapter
5, we will see that the middle equalizer tend to cause less noise amplification resulting in
reconstructed speech signals with less hissing. Thus, by using three equalizers instead of
two, it is possible to obtain the “middle” equalizer with additional robustness added to
the problem. Of course the disadvantage is that we have increased the number of required
equalizers from two to three.

From our previous example, if we only seek the equalizers VOT , v% /2,v£_1, then the

reduced MRE (RMRE) criterion can be formulated as:

T T 2 T T 2
Trarre (Vo Viess, vie) = B VExln] = vEox(K/2)| + [VEpx(K/2) - vE_xIK —1][).

(25)
The resulting block correlation matrix R in this case is given by:
R;0] -RI[5] o
~R,[¥] 2R.[0] -RI[E] (26)
0 -R[4] RO



Similar to Lemma 2, Lemma 3 demonstrates minimizing Equation (25) yields the two edge
equalizers and a central equalizer. The proof is similar in construction to that of Lemma 2.

Lemma 3. Consider the reduced MRE (RMRE) criterion defined in (25), and the re-
sulting block correlation matrix R in this case is given by Equation (26). Minimizing this

criterion will result in equalizers such that:

T

Vo 1 o - 0
v}:,/Q H=a|... 0 1 0 - |,
_VIT\'—l_ 0o - 0 1

where o nonzero scale factor.

Proof.

Let S(n) be defined as in Lemma 2, and define So(n) = [S,H(K_z), . ,sn+1\',5(n)} .
The second difference relation can be written as:

[1 0 O}VTHS(H)=[0 1 o]VTHS(nHK)/z)

[ 10 0 ] vTH { Ox_o Ox_1 Ix }52(72) = {0 10 ] vTH [ Ox_o Ix Ox_, ]Sz(n)-
The same formulation can be applied to the first difference relation to obtain:

[0 1 O]VTH[OIH Ik OK_1]§2(H)=[O 0 1]VTH[1K Ox_1 OK_Q]Sg(n).

Omitting the dependence on S(n) we obtain the following pair of relations:
[1 0 O]VTH[OK_Q 0k ; IK]Z[O 1 O}VTH[O;H Iy OK_l]

[0 1 O}VTH[OK_Q Ix OK_l]Z[O 0 1}VTH[1K Ox_1 OK_Q].,

which are satisfied only if

Vi
v£/2 H
| Vi-1]
has the form
1 0 0
a 0 1 0 u
0 0 1
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As in the case of the full adaptive MRE formulation, it is possible implement the RMRE
method adaptively. We first assume that that the input signal s(n) satisfies the property
that E{s(n)s(n+m)] = 0 for some integer m. For the case of white noise as input, it clearly
satisfied for m = 1. For a nonwhite persistently exciting input signal, such as speech, the
relation E[s(n)s(n +m)] = 0 will be true for some “relatively” large value of m. Also, we
remind the reader that typical room impulse responses are at least hundreds of taps long,
which implies that the value of K = M + N will be larger than the channel order. The first

step towards an adaptive formulation of the RMRE is to find and define a new vector z,

such that
R, [0] _RT [%] 0
Elznzy] = | ~R[X] 2R.[0] -RT[E] |,
0 —-R [%] R, [O]

and this will be the case if z,, is defined as
Xn

Zn = | — K +X

Xn+ K n+ &+ K

Xn+2K

While it is possible to implement the MRE and RMRE using the LMS algorithm, the
performance and convergence rate will be very slow for long channels and nonwhite input.
The optimal convergence rate is achieved with the RLS algorithm. As described in [59],
an efficient way to implement is by using a linear prediction framework. This essentially
is equivalent to constraining the first coeflicient of the vg equalizer to be one. To see this
consider z,, again, but this time x,, has been partitioned into the first sample z;(n) and the

remaining samples as X,

z1(n)

Xn z1(n)
Zy = =

X K + x’ﬂ+%+K 2”

Xn+2K ]

Thus if the error signal is e(n) is defined to be z1(n) — ¥7ZZ in the RLS algorithm, and we

see that it the same approach linear prediction follows. Another possibility would be the
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use of a combination of the backward and forward prediction error terms like in the Burg

method.

4.4 Effect of the Number of Microphones

One design advantage in the acoustical dereverberation problem is the ability to increase
the number of microphones available. This adds minimal cost to the overall system. The
advantage of doing so lies in the fact that as the number of channels L increases, the total
number of taps required is reduced for certain values of L. In our previous two channel
examples, given H;(z), Ha(z) each of order M, then each equalizer V} 4(z), V2 4(2) for a given
delay d had to be at least of order M — 1. Recall that it is the pair of equalizers working

together according to the Bezout equation that permits Vi g(z)H1(z) + Vaa(z)Ha(z) = zd
Hi(z)

or in vector notation as | V] 4(z) Vi 4(2) = z~% As the number of channels
Hy(z)
increases, the number of taps in the equalizers is reduced for certain values of L. The reason

for this is that the number of rows in the H matrix grows much faster (number rows =LN)
than the number of columns (number of columns K = M + N) as new channels are added.
Since L is increasing, the window length N can be made smaller. For our reduced RMRE

criterion, the total number of taps in all three equalizers is given by

T 3L {M—l]

L-1
where T is the total number of taps in all three equalizers, M is the channel order, and L is
number of channels. In the two channel case, where each channel is of order M, equalizers

V1,4(2), Va.4(z) had to be at least of order M — 1 to satisfy
Via(z)H(2) + Vaa(2) Ha(2) = 2%
For a three channel setup

Vi,a(2)Hi(2) + Vaa(2)Ha(2) + Vs a(2) Ha(2) = 27¢,

each filter v; 4 is required to be l_%] taps long.

The limiting case is when the number of microphones equals the channel order, and in

this case a single tap is allocated to each equalizer. The total number of equalizers versus
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Figure 29: (a) Total number of equalizers taps versus number of channels for M = 500,
(b) M = 1000.

the number of microphones is shown in Figure 29 for M = 500 and M = 1000. It can be
seen that increasing the number of microphones to twenty, the value of 7" is close to the
limiting case. Notice that certain values of L are no better than using two microphones in
terms of reducing the total number of taps. For the M = 500 channels case, even in the
case of four microphones, there is a one-third reduction in the total number of taps when
compared to the two-microphone case. A similar conclusion can be drawn to the M = 1000
case, which leads us to suggest using no more than a dozen microphones in order to achieve

a significant reduction in the total number of taps for typical room impulse responses.
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4.5 Experiments and Simulation Results

In this section, we present a number of experimental results. The purpose of each
experiment is to demonstrate some interesting point about the RMRE method or provide a
demonstration of how the various parameters and conditions influence the algorithm. In all
of these experiments, the sampling rate used is 8000Hz, and the input signal s(n) is a clean
speech signal recorded by a speaker that is very close to the microphone. The T time
for the simulated channels, i.e. ones generated using the image method, is approximately

190ms, in keeping with the Ty time for Room 352.
4.5.1 Experiment A: Two Nonminimum Phase Synthetic Channels

The goal of the first experiment goal is to demonstrate the nonminimum phase response
of the channels does not limit our ability to find a solution. In order to exaggerate the
zeros’ locations in the channels, two synthetic channels of order M = 99 are shown in
Figure 30, along with their frequency response and pole-zero plots shown in Figures 31
and Figure 32, respectively. We use the term synthetic here to emphasize that the impulse
responses in this experiment were not generated using the image method. The approach we
used to generate the impulse responses in this experiment was by multiplying a decaying

2" with a normally distributed random sequence with zero mean and

exponential signal e~
unit variance. Since the channel order is M = 99, the equalizers will be specified to be the
minimum order required, i.e equalizers have an order of 98. Since we are finding a total
of three equalizer pairs vj 4,24, the total number of unknown taps is (3)(99 x 2) = 594.
Applying the RMRE adaptive RLS implementation, we obtain the learning curve shown
in Figure 33. One notable feature of the RMRE approach (in the absence of noise and
model order mismatches) is the bend, or knee, in the learning curve. We have found this
behavior to be characteristic, and the bend occurs roughly after m iterations where m is
the number of taps in all three equalizers. For example, in Figure 33, the curve starts at
around sample iteration number 250 and the bend occurs at around sample 900, which

implies the dip occurs after approximately 650 samples. The total number of all taps (in

all three equalizers) is 594. The resulting equalizers are shown in Figure 34. In order to
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Figure 30: Impulse responses of two synthetic channels.

reduce the number of (sub)plots and emphasize that it is the equalizer pair that results in
equalization, we denote v4 as the composite delay d equalizer formed from the concatenation
of v14 and vy 4. Thus, vq = [v14,v24] and in Figure 34, the first 99 samples in each
subplot are vy 4,d = 0,99, 198 and the remaining samples belong to v3 4,d = 0,99, 198. The
most interesting feature about the equalizers is that they have the same sort of decreasing
amplitude shape as the channels. The result of applying the equalizers to the two channels

is shown in Figure 35, and as expected, three scaled impulses at various delays are obtained.
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ALS learning curve for 3 the equalizer case
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Figure 33: Learning curve based on RLS adaptive filter.
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Figure 34: Resulting equalizers at various delays where v 4, v2 4 are concatenated to form

Vg = [U1,4,v2,4],d = 0,99,198. The first 99 samples in each subplot are vy 4,d = 0,99, 198
and the remaining samples belong to v 4,d = 0,99, 198.
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Result of applying 3 equalizers to the channel matrix H
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Figure 35: Result of applying the three different equalizer to the channels.
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4.5.2 Experiment B: Two Simulated Channels of Order M = 199.

In this experiment, we utilize the image method to generate our impulse responses
and consider a slightly longer channel. Figure 36 shows the two simulated channels using
the image method. The original impulse responses were longer, but in this example we
truncated the simulated impulse response after 200 taps. The room size in this experiment
is [10, 15, 12.5] ft, the source is located at rs = [2.5,8.3,3.3]ft, and the microphones were
chosen to be at [4.2,0.8,5]ft and [5.8, 0.8, 5] ft. The effective reverberation time Tgo in this
example is 135ms. The reverberant speech signals were generated by filtering the clean

speech signal with each impulse response (creating two reverberant speech signals). Figure

Original channels each 200 taps long

Amplitude

n s L n
20 40 60 80 100 120 140 160 180 200

Channel 2
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1

s s L
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Sample number

Figure 36: Impulse response of the two channels.

37 shows the frequency response of the two channels and Figure 38 shows their pole-zero
plot. Note these channels are again nonminimum phase, and that most of the zeros lay
near the unit circle.  Using the adaptive formulation of the reduced MRE, we obtain
the learning curve shown in Figure 39. Notice once again that the algorithm converges
approximately after 1200 iterations, which is close to the number of total equalizer taps
of 1194. The resulting equalizers at various delays are shown in Figure 40 and the result

of applying the equalizers to the channel matrix H is shown in Figure 41. We see from
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RLS learning curve for 3 equalizer case
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Figure 39: Learning curve based on RLS adaptive filter.

Figure 41 that the equalizers do invert the channel yielding the impulses at two edges and
a central impulse. By applying any one of these three equalizers to the reverberant speech
signal, the reverberation is removed. However, we will see in chapter 5 that in the presence

of noise, the middle equalizer is the best one for use in dereverberation.
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Figure 40: Resulting equalizers at various delays, where v, 4, v2 4 are concatenated to form
Vg = [v1,4,v24],d = 0,199, 398. The first 199 samples in each subplot are v, 4,d = 0,199, 398
and the remaining samples belong to v 4,d = 0,199, 398.
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Figure 41: Result of applying equalizers to the channels.
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Two reverberant channels M=619
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Figure 42: Plot of two reverberant channels.

4.5.3 Experiment C: Two Measured Channels of Order M = 619

In this experiment instead of using the simulated impulse responses, we use some of our
measured impulse responses (as described in Chapter 3) and shown in Figure 42, and the
impulse responses are much longer than the previous experiment. The reverberation time for
these impulse responses is approximately 160ms. Using the adaptive RLS implementation
of the RMRE method we obtain the learning curve shown in Figure 43. The resulting
equalizers are shown in Figure 44, and the resulting delta functions in Figure 45. It can be
seen that the equalizers do indeed result in three impulses at predefined delays, and we see
that the RMRE finds a solution in this case, just like in the simulated impulse responses

example.
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Figure 43: Learning curve based on an RLS adaptive filter implementation.
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Figure 44: Resulting equalizers at various delays, where vy 4,v2 g4 are concatenated to

form v = [v1,4,v24],d = 0,620,1238. The first 619 samples in each subplot are v; 4,d =
0,620, 1238 and the remaining samples belong to vy 4,d = 0, 620, 1238.
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Result of applying 3 equalizers to channel matrix H
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Figure 45: Result of applying equalizers to the channels.
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Original channels each of order M=619
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Figure 46: Impulse response of four simulated impulse responses.

4.5.4 Experiment D: Four Simulated Channels of Order M = 619

In this experiment, we increase the number of microphones to four and use the image

method to simulate four impulse responses shown in Figure 46. The room size in this case is

the same as that of Room 352 ([18, 21, 9]ft.) The source was located at [1.67,11.17, 3.17] ft,

and the microphones were chosen to be located at

5.33 6.1

8.25 8.5
Ty =

8.25 1.5

| 533 12

2.5

2.5
ft.

]

5
2.5

The reverberation time Tgg was approximately 190ms for these four channels. Using the

adaptive RLS implementation of the RMRE method we obtain the learning curve shown in

Figure 47. The resulting equalizers are shown in Figure 48. Notice that in this case we are

concatenating four filter v; 4,4 = 1 : 4 but they are of shorter length individually compared

to the to two-channel case. The resulting Delta functions are shown in Figure 49.
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Figure 47: Learning curve based on an RLS adaptive filter implementation.
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Figure 48: Resulting equalizers at various delays, where v; 4,7 = 1 : 4 are concatenated to
form vg = [v1 4, ..., v44],d = 0,414, 826.
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Result of applying equalizers to original channels
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Figure 49: Result of applying the three equalizers to the channels.
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Figure 50: Plot of four reverberant channels.

4.5.5 Experiment E: Four Measured Channels of Order M = 619

In this experiment, we use four measured channels as described in Chapter 3, truncated

to order M = 619, as shown in Figure 50. The microphones were placed at

rm—

5.33
8.25
8.25

| 1.67

61 25 |
85 2.5

ft.
15 25
14.16 0.83 |

and the source was at [1.67,11.17,3.17]. The reverberation time for these channels was

approximately 160ms. Using the adaptive RLS implementation of the RMRE method we

obtain the learning curve shown in Figure 51. The resulting equalizers are shown in Figure

52, and the resulting Delta functions in Figure 53 Once again, it can be seen that the

equalizers do indeed result in impulses at predefined delays.
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Figure 51: Learning curve based on an RLS adaptive filter implementation.
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Figure 52: Resulting equalizers at various delays, where v; 4,7 = 1 : 4 are concatenated to
form vy = [v1 4, ..., v44].d = 0,414, 826.
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Result of applying 3 equalizers to H
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Figure 53: Result of applying equalizers to the channels.
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Original channels each of order 799
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Figure 54: Plot of eight reverberant channels.

4.5.6 Experiment F: Eight Simulated Channels of Order M = 799

In this final experiment, we simulate channels that are in a more reverberant envi-

ronment by changing the reflection coefficients of the image method from the previous

examples. The resulting impulse response are shown in Figure 54 and have an approximate

reverberation time of approximately 280ms. The microphones were located at

[ 5.33
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2.5 ]
2.5
2.5
2.5
2.5
2.5
2.5

2.5 |

ft.

Using the adaptive RLS implementation of the RMRE method we obtain the learning

curve shown in Figure 55. The resulting equalizers are shown in Figure 56, and the re-

sulting Delta functions in Figure 57. A plot of the original (clean) speech signal and the
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RLS learning vurve for 3 equalizers case

50 T T T T —

|

o

=]
T

-180-

10*log10(abs(e.?))

2001

1 — —
0 2000 4000 6000 8000 10000 12000
Sample number

Figure 55: Learning curve based on an RLS adaptive filter implementation.
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Figure 56: Resulting equalizers at various delays, where v; 4,7 = 1 : 8 are concatenated to
form vg = [v1 4,...,v8,4],d = 0,458, 914.
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Result of applying 3 equalizers to the channel matrix H
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Figure 57: Result of applying equalizers to the channels.

dereverberated speech (after proper scaling) signal are shown in Figure 58, and Figure 59

shows the difference between the two signals, which is very small is and primarily due to

rounding errors.
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Original and reconstructed speech signals
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Figure 58: Original and reconstructed speech signals.
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Figure 59: Difference between original and reconstructed speech signals.
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4.6 Further investigation into reducing the number of re-
quired equalizers

We demonstrated in the previous sections how it is possible to obtain a partial set of
equalizers depending on how the MRE criterion is formulated. The case of three equalizers
seems to provide a good compromise between robustness and computational complexity
associated with the long channels associated with the acoustical dereverberation problem.
The question that we continue to investigate in this section is how to modify and reformulate
the MRE method with all its advantages to obtain an adaptive implementation using only
two equalizers other than the edge equalizers. While we have not been able to obtain a
robust adaptive implementation of the ideas presented here, we feel that they do provide
some theoretical insight into the problem and further the understanding of the MRE and
RMRE approach. We assume that the input is white for the sake of simplicity.

Recall in the case of Jyrre(vo,vi) = E 'vgx[n] — v?x[n + 1]'2, diffrentiating this cri-

terion and setting the result equal to zero yields the system of equations given by

R0} —RIO | vo |

SR RO | v |
As explained before, the solution yielded equalizers that produced multiple diagonals instead
of impulses. Our aim now is to show how it is possible to obtain the middle/central equalizers

instead of the edge equalizers. Let v,, v, denote the two central equalizers and let us define

a new criterion of the form
J(vq,vp) =FE ‘vaTx[n] —vix[n+ 1]|’2 st. VIR [k]vy =0, (27)

where R, [k] is some correlation matrix for some lag k to be determined. In the case of white
noise as input, Ry [k] has an especially simple formula given by R,[k] = HJ*HT where J*
as defined before is the backward shift matrix raised to the k — th power. The idea behind
the constraint can be seen by considering the expression v. R,[k]vy, = vIHJ*H v, =
ng (JFYTHTv, = 0. This constraint is essentially a statement of Q orthogonality that
is commonly used to describe conjugate directions. By imposing this constraint on the

equalizers, we force the result of el = vI H to be orthogonal to J¥ and e,7 = ng to
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be orthogonal to (J¥)T. The intersection of these two conditions results in equalizers that
make e, and e, the remaining basis for (J’“)T + Jk.
To better explain the idea behind the constraint, consider L = 2 channels, each with

10 (M =9) taps and a data window of 11 samples for each channel. This implies that our

[H1] .
channel correlation matrix will have the form H = . Thus, the criterion we

[H2]

[22% 20!
seek to minimize is

mine? = (vix([n] — v{ x[n + 1] )2 s.t vIRy[—11]vy = 0.
The value of k = —11 was picked based on the fact that

VIR -1y =vIHJY H vy =v] H(J")T H v, .
N—— N—— S—— N —~
eg‘ €y eg‘ q
This means the only possible solution would require e, and e, be the remaining basis for
(JII)T + JU_

This constraint can be easily incorporated by using the Lagrange multipliers method.

The resulting cost function is now
¢? = & + AIR,[-11]vy = vI R[0]v, + v} R[0]vy — 2vI R[—1]vy + AVI Ry [—11]v,

where A is any nonzero scale factor. Differentiating the result w.r.t. to each equalizer and

setting the result to zero yields the following linear system:

2R[0] —2R[—1] + AR,[-11] va
—2R[1] + AR,[11] 2R[0] v

[44x44]

Notice how the R matrix in this case relies on correlation matrices at lag zero, one and
eleven and how the off-diagonal terms contain the sum of two correlation matrices. The
problem with the above correlation matrix is that it is difficult to find a rank one update for
an adaptive formulation. That is to say, there exists no u(n) such that R(n) = R(n — 1)+
u(n)u’(n). It is possible to find a rank two update, and it is also possible to find a rank

one update formula of the form R (n) = R(n — 1) +u(n) vl (n). As an example of a rank
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R(0) ~R(~1)+ R(-11)

one update, to obtain R = , requires writing R
—R(1)+ R(11) R(0)
as the product of
R (0) SREDERE | (] Xk Xeem ok })
- n n+50 TAn4l n+36
“R(l) + R(ll) R(O) —Xn+1 + Xnt61 i " "

| R(0)+R(25) + R(=25) + R(50) —R(—1)+ R(—11)— R(—24) + R(36)
—R(1) + R(11) — R(—49) + R(61) R(0) — R(—35) — R(60) + R (25)

B R(0) —R(=1)+ R(-11)
~R(1) + R(11) R(0) '

Modifying the classic RLS adaptive filter requires rewriting the updated inverse using
the matrix inversion lemma. The main problem with the block correlation matrix above is
that it is very sensitive with respect to its structural properties. For example, consider two

correlation matrices defined by

. _ 2R[0] —2R[-1] + R[-11] ]
1 —2R[1] + R[11] 2R[0]
L - (44xa4]
f | 10001 x 2R(0)  —2RI=1) + R[-11)
“ | —2muy+ RO 2R(0] ’

= = [44x44]

where Rs is the likely result of a rank one nonsymmetric update. To obtain the central

Vg

equalizers for each case, we solve the system of equations defined by Ryv = R =0
Vb
Va v
and Rov = Ry = 0. The result F = H is shown in Figure 60. Notice how
T

the second set of impulses impulses associated with Ry is badly scaled with scale factor of
1 x 10712,

Understanding how the constraint allows us to obtain the central equalizers sheds light
on the possibility of finding only one central/middle equalizer. The simplest approach would
be to find the null space of (R,[11] + RT[10]) = null (H (J“ + (JlD)T) HT ) . Looking at
an image of J' + (J lO)T( dark cells indicate ones), we can see that the only component

orthogonal to this matrix is an impulse at delay 10. In the case of constant modulus input
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Figure 60: (a) F for the case of Ry, (b) E for the case of Rs.

Figure 61: Plot of J!! + (JlO)T
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signals, there exists a criterion described in [58] which finds the optimal delay value. Some

of these ideas and issues discussed here may provide the basis for future reseach.

4.7 Summary

In this chapter, we explained the basics of the MRE method, and we demonstrated
theoretically and experimentally the applicability of the RMRE method for accomplishing
blind dereverberation of speech signals. Our experimental results were performed on both
synthetic and measured room impulse responses using speech as an input signal. Finally,
we discussed some theoretical results and associated problems that can be used to further

reduce the computational cost of the RMRE.
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CHAPTER V

RMRE PERFORMANCE IN THE PRESENCE OF
MODELING ERRORS AND MEASUREMENT NOISE

In this chapter, we discuss some of the remaining issues that are required for a real-world
implementation of our proposed method described in Chapter 4. Some of the issues, such as
the need for model order determination have been mentioned in the previous chapters. In
particular, we discuss the issues of under and over-modeling of the room impulse responses,
the impact of measurement noise, and possible methods to improve robustness in the pres-
ence of noise. Experimental results and simulations are included where appropriate to help

us clarify and explain some of our observations and results.

5.1 Model Order Determination

So far, we have assumed that the channel, i.e. impulse response, order is known or
can be accurately estimated by some pre-processing step. However, in any practical imple-
mentation, the channel orders must be estimated. While there are many classical methods
to accomplish this, such as AIC and MDL described in [53], there is some evidence, for
example in [77], that these methods are not accurate in the context of blind identification
and equalization. Additionally, not all blind identification and equalization methods using
second-order statistics are robust with respect to errors in the channel order estimates as
explained in [78, 79]. For example, subspace and related methods such as the TXK algo-
rithm are not forgiving with respect to model order mismatches. One advantage of the MRE
method, and by extension the RMRE method, is that it has demonstrated some robustness
with respect to certain types of channel order estimation errors [80]. However, we must
point out that the model order determination of FIR filters in a SIMO system remains an
open problem that requires further study. The problem is even more complicated when

the input is non-stationary and non-white, as in the case of speech, and when the channels
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exhibit the long tails typical of acoustical channels.
5.1.1 Under-modeling of the Room Impulse Response

The problem of under-modeling arises when the true order of the FIR channels in a SIMO
system is underestimated. For example, let us consider the case of a two-channel system,
with FIR channel impulse responses hq(n), ho(n) of order M = 199, i.e. 200 taps long. From
the Bezout equation and inversion principles discussed in Chapter 4, any equalizer pair
v1 4, 2,4 for a specified delay d must have an order of at least M = 198, i.e. vy 4(n),v2,4(n)
must be each at least 199 taps long. If the estimated order is M = 189, then the original
impulse responses can be thought of as being composed of two parts; the primary (or main)
M =189 segment, denoted by h; p(n),7 = 1,2, and a tail segment denoted by h;+(n),i = 1,2
compromising the truncated end of the impulse responses. The output of the SIMO system

is then given by:
zi(n) = (hip (n) + hig (n)) * s (n) = zip(n) + is(n),

for ¢ = 1, 2. Thus, it can be seen that z;;(n) behaves as colored noise when under-modeling
occurs. However, more ominously, the Bezout equation does not state that an inverse of
order less than m = 198 can be found to invert the pair of channels hi(n) and hg(n). Thus,
if the estimated order is M = 189, and we attempt to find equalizers of order 188, the
resulting equalizers will not be inverses. To further illustrate these concepts, consider the
two impulse responses given in Figure 62 and a magnified portion of the tail shown in Figure
63 Instead of estimating the true order m = 199, we underestimate the order to M = 198,
and attempt to find the equalizers. The resulting learning curve is shown in Figure 64, and
clearly since no equalizer exists for this case, the algorithm does not converge. For the sake
of completeness, Figure 65 shows the resulting equalizers and Figure 66 shows the result
of applying the equalizers to the original channels, which is supposed to at least resemble
impulses at various delays. These results indicate that the RMRE method fails in the case
of under-modeling, a not-so-surprising result considering the lack of an inverse in such a
case.

One possible way to combat the under-modeling breakdown of the RMRE method is by
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Figure 63: Original channels, tails portion.
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RLS learning curve
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Figure 65: Resulting equalizers, where v; 4,7 = 1 : 2 are concatenated to form vy =
(1,4, v2,4],d = 0,193, 396.
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Result of applying 3 equalizers to the channels
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Figure 66: Result of applying equalizers to the channels in the under-modeled case.

increasing the number of microphones. We have already demonstrated in Chapter 4 that
increasing the number of microphones helps us achieve some reduction in the total number

of required equalizers taps. Recall that the order of the L filters v; 4(n),i =1 : L (for a

M—-1
L-1]’

where M is the order of the room impulse responses. If we underestimate the order M by

delay of d samples) is given by

4, then the number of taps is given by

M-1-61_[M-1 4§ 7_ o P
L-1 “|lL-1 L-1| |"L-1 L-1}|'

where C' and r are the integer and remainder of the parts of the division of (M —1)/(L—1).

As long as ;=5 > LL_l, then the operation of rounding up to the nearest integer will not
be affected by the order under-modeling, and the equalizers can be found. For example,
consider the example of L = 20 channels, each with M = 199 and (synthetic) impulse

responses shown in Figure 67. Assume that we underestimate the true number of taps by

199 7 9 7
[Tg - Tg] = {101—9 - 1—91 =1L

98
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Original channels each of order M=199
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Figure 67: Original channels.

which is the same the number of taps for the equalizers as if we had not under-estimated the
true channel order. Figure 68 shows the learning curve for the case when under-modeling
by & = 7 occurs, and the resulting equalizers along and the result of applying the equalizers
to the channels are shown in Figure 69 and Figure 70 respectively. Thus, we see that

under-modeling can be partially alleviated by the use of more microphones.
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Figure 68: RMRE under-modeling RLS learning curve for L = 20,6 = 7.

3 Equalizers v s and Vato

0 V1o

Amplitude

plitude

Am|
s
4]

©

A_gwplitude

Sample number

Figure 69: Resulting equalizers for L = 20,8 = 7, where v; 4,7 = 1 : 20 are concatenated
to form vy = [Ul,da Ugo’d], d = 0,106, 210.
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Result of applying the equalizers to the channels
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5.1.2 Over-modeling of the Room Impulse Response

The over-modeling situation occurs when the order of the channels is over-estimated.
The disadvantage of over-modeling is the increase in the number of parameters, and hence
the computational cost. However, the over-modeling situation is handled easily by the
RMRE, since the Bezout equation permits the existence of higher order equalizers, albeit
ones that are non-unique. However, we do not wish to imply that the gross over-modeling
can be allowed. For example, using the channels from the example in the previous section,
we over estimate the channels by forty taps, and the resulting learning curve is shown in

Figure 71. The resulting equalizers along with with the result of applying the equalizers
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Figure 71: RMRE under-modeling RLS learning curve in the over-modeling case.

to the channels are shown in Figure 72 and Figure 73. As can be seen in Figure 71, a
longer number of iteration is required for convergence, and since more parammeters exist,
computational cost also has increased. In addition, it means the equalizers calculated will
cause a larger lag and delay than is necessary in the reconstructed (dereverberated) speech

signal.
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Figure 72: Resulting equalizers in the over-modeling case, where v, 4, v2 4 are concatenated
to form vy = [v1,4,v24],d = 0,220, 438..
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Figure 73: Result of applying equalizers to the channels in the over-modeling case.
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Figure 74: SIMO system with measurement noise.

5.2 Impact of Measurement Noise

So far, our focus has been solely on the problem of dereverberation, and we have not
discussed the issue of measurement noise. Generally, inversion methods are notorious for
their sensitivity to noise and usually require regularization. The MRE criterion combated
the noise problem by considering the entire set of all possible equalizers, which added a
certain measure of robustness to the method, as detailed in [59]. This result is interesting,
in part, because the MRE method is based on a zero-forcing criterion, which is known to
be less than optimal in presence of noise. However, for the RMRE criterion, the robustness
inherent from the computation of all the equalizers is not an option, and in addition the
long room impulse responses complicate the problem further. In this section, we explain the
problem of noise in a SIMO FIR system, and then discuss the performance of the RMRE
method. Finally, we explain one possible way to enhance the robustness of the RMRE
method in the presence of noise.

Consider the SIMO system with measurement noise w;(n),s = 1 : L, as shown in Figure
74. We assume that the measurement noise is white Gaussian noise with zero mean and
a known variance o2, If the RMRE approach is applied directly with no modifications to
account for the noise, the required equalizers will be found but noise amplification will
occur. The cause of the noise amplification is not because of division by small values of

the frequency response, as is the case in single channel inversion, but instead it is due to
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the coloration and increase in the variance of the noise as the result of applying the filters
via(n),i = 1 : L. To illustrate this, assume a two-channel system for which the equalizer
pair v; 4(n), v24(n) at delay d of minimal order M — 1 have been calculated. In this case,

the estimated input signal §(n) is given by

8(n) = vi.a(n) * ((s(n) x k1 (n)) + wi(n)) + va,a(n) ((s(n) * hz (n)) + wa(n))

(28)
=a |s(n—d)+vq(n)* wl(nJ)—f-EJg,d(n) *wo(n)| ,

~" -~

i1{n) ia{n)
where a is non-zero scale factor. The quantities i1(n),i2(n) are the sources of the noise
amplification. To see why, let us assume that wq(n) is white gaussian noise with zero mean

and variance o2. Then the variance of the signal i;(n) is given by

M-1
¢ 2
ol =02 Y (via(k))?,
k=0

and a similar expression applies to the variance of iz(n). If we define i(n) to be i(n) =

i1(n) + i2(n), then the variance of i(n) will be given by

M—1 M-1 M—1 ‘
o2 =03 |3 wialk)?+ 3 (0200 + Y (vra(kys,alk))?
k=0 k=0 k=0

An interesting question is: does increasing the number of microphones, and consequently
decreasing the length of the equalizers help in reducing the magnitude of noise amplification?
The answer is that for the room impulse response case, using fewer microphones is better.
Since the room impulse responses have shapes similar to decaying exponentials (as explained
in Chapter 4), the inverses also tend to have a decaying exponential form, for example as
was shown in experiment A in Chapter 4. Increasing the number of microphones makes
the equalizers exhibit a more uniform variation and resemble less the decaying exponential
shape as, for example, in experiment F in Chapter 4. This in turn makes the norms of the
filters v; 4,7 = 1 : L larger.

The RMRE method, as proposed, gives good dereverberation results at an SN R of ap-
proximately 98dB. The SN R of high quality recording equipment and sound cards, such as
the Soundblaster Audigy 2 Platinum, is around 106dB. To demonstrate the performance of

the RMRE at SINR = 98dB, we use the two measured channel impulse responses described
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Figure 75: Plot of two measured impulse responses.

in Experiment E of Chapter 4, and specify M = 199 as shown in Figure 75. The direct
application of the adaptive RMRE method described in the previous chapter yields the
learning curve shown in Figure 76. Notice how the convergence is slower and the sharp
decrease in the curve is now replaced by a more gradual transition. The resulting equalizers
are shown in Figure 77. The norms of the equalizers vy, vigg, v3gs are [40.26,2.973,6.135].
In Figure 78 we apply the three equalizers to the impulse responses, and we can see that
that the results resemble impulses, especially for the middle equalizer vigg. Using the mid-
dle equalizer vigg for dereverberation, we plot the original and restored speech signals along
with the difference between the two in Figure 79. The M SE of the difference is 3.24 x 1074.

In the previous chapter, we claimed that middle equalizer performs better than the
edge equalizers in the presence of noise. This is illustrated in Figure 80 where the MSFE
of the zero delay equalizer is larger and is equal to MSE = 0.00156. Listening to the
reconstructed speech signal from the vy equalizer reveals a significantly more noticeable
hissing sound associated with the amplification of the noise caused by the larger norm of

V.
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RLS learning curve , SNR=98dB
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Figure 76: Learning curve using RLS adaptive filter at SNR=98dB.
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Figure 77: Resulting equalizers at various delays, where v; 4,¢ = 1 : 2 are concatenated to
form vg4 = [v) 4,v24],d = 0,199, 398.
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Result of applying the three different equalizers to the original channels
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Figure 78: Result of applying equalizers to the channels at SN R = 98dB.
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Figure 79: (a) Original and reconstructed speech signals SNR = 98dB utilizing vig9, (b)
difference between original and reconstructed signals, M SE = 3.24 x 10~4.
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Figure 80: (a) Original and reconstructed speech signals SN R = 98dB utilizing v, (b)
difference between original and reconstructed signals, M SE = 0.00156.
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RLS learning curve, SNR=65dB
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Figure 81: Learning curve using RLS adaptive filter at SNR=65dB.

The RMRE method also gives acceptable dereverberation results at an SNR of ap-
proximately 65dB. To demonstrate this, we use the same channels as the SNR = 95dB
experiment shown in Figure 75. The direct application of the adaptive RMRE method
described in the previous chapter yields the learning curve shown in Figure 81. The re-
sulting equalizers are shown in Figure 82, and the norms of the equalizers vq, vigg, v3gg are
[16.17,1.211,2.832]. In Figure 83 we apply the three equalizers to the impulse responses,
and in this case, we see less of a resemblance to the desired impulses. Using the middle
equalizer vigg for dereverberation, we plot the original and restored speech signals along
with the difference between the two in Figure 84, and the M SFE of the difference is 0.0378.
Once again, the delay zero equalizer reconstruction is shown in Figure 85 where the M SE
of the zero delay equalizer is larger and is given by MSE = 0.0475. Listening to this recon-
structed speech signal from reconstruction using v reveals a significantly more noticeable
hissing sound associated with the amplification of the noise caused by the larger norm of

vo.
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Figure 82: Resulting equalizers at various delays, where v; 4,7 = 1 : 2 are concatenated to

form vgq = [v1 4, v24],d = 0,199, 398.
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Figure 83: Result of applying equalizers to the channels at SNR = 65dB.
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Figure 84: (a) Original and reconstructed speech signals SN R = 65dB utilizing vigg, (b)
difference between original and reconstructed signals, M SE = 0.0378.
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Figure 85: (a) Original and reconstructed speech signals SNR = 65dB utilizing vo, (b)
difference between original and reconstructed signals, M SE = (0.0475.
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5.2.1 Constrained Norm RMRE

While some other dereverberation methods deal with robustness by implementing a
noise reduction step and then a dereverberation step, or use a Wiener filter as some of
the beamforming methods described in Chapter 2 do, we have opted to seek a way to
reformulate the RMRE criterion so that noise immunity is part of the method, and maintain
a single stage dereverberation approach. Before discussing our specific modification, we
want to emphasize that our goal is not the removal of measurement noise, but rather is a
dereverberation approach that will work in the presence of noise.

From the above discussion, one remedy to the problem of noise amplification is to
constrain the energy of the equalizers, possibly by imposing a unit norm constraint. The
RMRE criterion defined in Equation (25) can be reformulated in terms of a constrained

(quadratic) minimization of the form
min v Rv = v (Ry + Ry)v st.viv=1, (29)

where Ry is given by
R:[0] -R{[§] 0O
~R. [§] 2R.[0) -R7[%] |-
0 R [5] R0

Ry, = 0220 27
1

Minimizing the criterion in Equation (29) is equivalent to finding the minimum eigen-

T .
¥ T}z". To demonstrate the performance of this

value associated with the Rayleigh quotient S

approach, we consider the previous system with the two channels shown in Figure 62.
Finding the minimum eigenvalue and associated eigenvector gives us all three equalizers
V0, V200, V39s, and Figure 86 shows the middle equalizer, along with one of the edge equaliz-
ers for comparison at an SNR=45dB. Notice how the edge equalizer has a larger amplitude

(and hence norm). The result of applying the middle equalizer to the noisy reverberated
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Figure 86: (a) Middle equalizer at an SNR=45dB., (b) Edge equalizer vsggz at an

SNR=45dB.

speech recording x1(n),z2(n) is shown in Figure 87, and the mean square error in this case
is MSE = 1.69 x 10~°. However, the approach described above breaks down at lower SN R,
for example at an SNR = 24dB, the noise amplification becomes unacceptable and the
M SE increases dramatically, as illustrated in Figure 88 where the M SE = 0.0011.

For the low SN R case, we have found that applying a weighting matrix 7" to the noise
correlation matrix helps in reducing the M SE. To explain this idea, we consider the modified

criterion

min VI Rv = vl (Rx + TRw)v s.t.vIv =1, where T = (—MQH) I

I

The role of the block diagonal matrix T is to further increase the penalty on the energy in
the middle equalizer and dampen its oscillatory behavior. We arrived at the scale factor
(M + 1)/2 through trial and error, and found that it yields the M SE for a broad range
of SNR values. Additionally, our experiments with various permutations of the weighting
blocks in T" showed that other structures increase the M SE. Figure 89 shows a comparison
between the middle equalizer magnitude in the un-weighted and weighted criterion case.

Using the middle equalizer with a weighting matrix 7" applied to the previous case of an
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Figure 88: (a) Original and reconstructed speech signals SNR = 24dB, (b) difference

between original and reconstructed signals, MSE = 0.0011.
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Figure 89: (a) Middle equalizer with no weighting matrix, (b) with weighting matrix 7.

SNR = 24dB, the MSE = 5.39 x 10~ in this case, and Figure 90 shows the resulting
reconstructed speech signal, along with the difference between the original and reconstructed
speech signals. Notice how there is less noise amplification especially in the silent regions
of the speech signal. Listening to the reconstructed signal from the approach involving the

matrix 7" leads to less noise amplification and little residual reverberation in it.

5.3 Summary

In this chapter, we discussed and investigated some of the issues that are needed for any
real world implementation of the RMRE method. We demonstrated that under-modeling
problems can be combated by increasing the number of microphones, and that over-modeling
poses to no problem to the RMRE approach. Additionally, we investigated the effect of
measurement noise on the RMRE, and proposed an approach to reformulate the problem

in the presence of noise.
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Figure 90: (a) Original and reconstructed speech signals SNR = 24dB with weighting
matrix 7', (b) difference between original and reconstructed signals, M SE = 5.39 x 1074,
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CHAPTER VI

CONCLUSION

In this thesis, we have demonstrated the benefit of using the RMRE method for the
dereverberation of speech signals in a closed room environment. The RMRE is a modified
MRE criterion, adapted for long acoustical impulse responses. The RMRE method finds
a subset of three equalizers instead of all possible delay equalizers. The middle equalizer
tends to be the most robust one in noisy environments. The ability of the proposed method
to adaptively find the equalizers directly without the requirement for a channel impulse
response estimation stage, and having no requirement on microphone locations to be in
any predefined array geometry makes the method appealing when minimal calibration is
required. The RMRE method is able to remove reverberation completely in the noiseless
case, and a significant amount of reverberation can be removed at high SNR values. We
also proposed a constrained norm RMRE approach that is able to handle lower SNR lev-
els without having the noise amplification problem associated with the standard RMRE
method.

Some further issues are worth investigating for both theoretical and practical reasons.
The problem of under-modeling may benefit from further investigation to see if the RMRE
may be modified to explicitly handle under-modeling errors. In our opinion, this problem
is intimately related to robustness of the RMRE in the presence of colored noise.

For any practical real world implementation, where hardware costs must be minimized,
it is desirable to find less computationally demanding adaptive algorithms. Advances in
the acoustical echo cancelation problem provide many approaches and methods that are
applicable to the dereverberation problem. For example, many fast RLS implementations
have been developed over years with varying degrees of stability and computational com-
plexity [81]. Affine projection adaptive (APA) filters may also be of value. APA is usually

described as having a computational complexity and convergence rate that lies between the
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LMS and RLS adaptive methods [10]. Subband adaptive filters are also appealing because
of their inherent parallelism. A major problem with critically sampled subband adaptive
methods is the spectral leakage that occurs due to the analysis filter bank. One the earliest
studies and remedies of this problem was done in [82] and suggests the use of “cross term”
adaptive filters. However this only adds more adaptive filters that need to be adapted and
complicates implementation. Some recent research on the use of subband filters for blind
channel identification has been proposed by [56]. However, this method requires the use
of single sided subbands analysis filter bank leading to complex adaptive filters. A more
promising approach in our view is that based on using oversampled filterbanks as described
in [83]. While this approach may not be as optimal as critically sampled subband methods,
it may add only a small amount of extra processing.

The implementation of a separate noise reduction stage, as a preprocessor for the RMRE
method may be worth a second look if it is desired to implement dereverberation in a very
noisy environment. Also, the use of the RMRE method as a preprocessor for blind source
separation methods, and the performance of the RMRE in a multiple speaker environment

are problems that may provide further research topics.
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