
Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

Effects of Reconfiguration on Performance
in Configurable Operating Systems :

Practical Predictability Strategies ?
Raj Krishnamurthy(rk@cc.gatech.edu) and Karsten Schwan(schwan@cc)

1.0 Introduction
Critical systems must be configured to meet changing functionality, time-criticality and

fault-tolerance needs. Configurations may be performed statically at operating system

build or boot -time. Dynamic configurations are also possible during ‘run-time’, when the

operating system is loaded and running. For example, operating sytem kernel modules,

operating system components, middleware and application programs may all be config-

ured statically or dynamically. Operating systems may be configured to scale from ROM-

able versions to full-fledged multiprocessor clusters, which we term, the ‘horizontal‘

configurability feature. In addition, to address different types of applications, operating

systems may be configured with enhanced or reduced functionality, which we term the

‘vertical‘ configurability feature. Finally, when such configurations are performed, higher

level operating system components, middleware, and other Commercial Off-The-Shelf

(COTS) software products expect to experience the gains derived from such configura-

tions in terms of enhanced performance or predictability.

A structured way to study the performance of a configurable target system is by use of

benchmarks. The benchmarks designed and used in this paper aim to evaluate the relation-

ship between the functionality, predictability of components and configured systems. The

effects of reconfiguration on overall performance may be studied by execution of the

benchmarks before and after reconfiguration. This paper considers the performance effects

of ‘vertical’ and ‘horizontal’ reconfiguration on some operating systems, by executing

operating system primitives across a variety of configurations.

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

The primary contributions of this paper include a benchmark suite for study of perfor-

mance variations and a ‘cost-graph‘ strategy for performance prediction in configurable

operating systems. A ‘cost-graph‘ for each operating system primitive of interest, is built

on system creation and re-built each time the system is reconfigured. The purpose of the

‘cost-graph’ is to capture actual system performance and its derivation relies on both pre-

dicted and observed system behavior.

The paper is organized as follows: Section 2 discusses horizontal and vertical config-

urability. Section 3 discusses the effect of reconfiguration on performance. Section 4

details the benchmark suite. The experimental infrastructure used for studying perfor-

mance variations is described in Section 5. The results of our reconfiguration-performance

variation studies are described in Section 6 and explained in Section 7. Section 8 describes

the ‘cost-graph’ approach for predicting performance and applies it to measurements and

configurations appearing in Section 6 and Section 7. Other potential applications of the

‘cost-graph’ strategy are explained in Section 9. Section 10 concludes the paper.

2.0 ‘Horizontal‘ and ‘Vertical‘ Configurability
‘Horizontal’ configurability allows the operating system to be scaled from small footprint

ROMable versions to full-fledged heavyweight multiprocessor clusters. The operating sys-

tem must provide facilities and services to allow the operating system to scale and run on

multiple platforms, to harness in full the architectural capabilities available on a platform.

In Vxworks [vxworks] for example, the operating system may be scaled from a unipro-

cessor installation to a multi-processor installation by use of VxMP. VxMP provides

shared objects to allow syncronization across multiple processors. ‘Horizontal’ is used

here to indicate an increase in the scale - number of processors. A highly ‘horizontal’-ly

configurable operating system would be one, where from a single object or source code

base, operating systems may be built to occupy varying footprints to run on a range of

hardware platforms. ROMable kernels occupy a small footprint, are lightweight and may

contain minimal data structures and minimal operating system facilities. Kernels for uni-

processor systems may be large, with a number of kernel data structures maintaining sys-

tem state and a full complement of operating system facilities. Kernels for multiprocessors

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

must maintain system state for multiple processors and manage resources across the multi-

processor cluster and are expected to be even more heavyweight.

‘Vertical‘ configurability allows the operating system to be scaled in functionality up or

down in the ‘vertical’ direction on a fixed hardware platform(with fixed architectural capa-

bilities). For example, on a hardware platform of choice, to suit the needs of multiple

applications, the operating system may be varied in functionality based on footprint-per-

formance constraints of a target application. Kernel richness may be enhanced by layering

functionality or functionality may be reduced to suit the needs of an application. Func-

tionality may be specified in terms of system call sets (blocking, non-blocking, preempt-

able etc.) or operating system facilities(VM management, IPC facilities etc.) .

Reconfiguration to introduce or remove functionality may cause performance variations

in certain operating system primitives. This is because enhanced functionality may cause

extra data structures to be introduced into the execution path of a primitive, more facilities

requiring execution, leading to increased execution time. Actions in the reverse direction

may also be true. Fewer data structures may require maintenance and fewer facilities may

require execution in the case kernels are scaled down to remove redundant functionality.

This can lead to reduced execution times for operating system primitives.

3.0 Reconfiguration and Performance Variations
Consider process dispatch latency time, a popular measure to evaluate operating systems

[Furht]. The operations involved when a lower priority task is preempted to run a higher

priority task on receipt of an interrupt are shown in figure 1.

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

Hardware latency lumps the electrical delays, bus delays and other hardware related

delays introduced by the system. Exception processing refers to the latencies caused by

state maintenance in processors due to precise and imprecise exception handling [patter-

son]. Preprocessing delay includes state/context saving, setting up a stack for the interrupt

service routine, locating the interrupt service routine (may or may not involve trap to

operating system, depending on implementation). The interrupt service routine is executed

and may be preempted (depending on the implementation) to accommodate nested inter-

rupts. Post processing involves restoration of registers and stack and exit of the interrupt

service routine. The scheduler is then invoked to run the higher priority process. A context

switch may be required to run the higher priority process.

The effects of reconfiguration of the operating system on this metric may be incurred as a

direct cost and/or as an indirect cost. The next two sections describe the direct and indi-

rect costs of operating system reconfiguration on the process dispatch latency metric.

 Hardware Latency

Preprocessing

 Execute ISR

Post-processing

Scheduling Delay

Context Switch

Exception Processing

Figure 1: Process Dispatch Latency
Higher priority process runs

Interrupt to a low priority task

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

3.1 Direct Costs

Direct costs are incurred due to components directly in the execution path of a metric. In

the case of the process dispatch latency metric, this could be because of the facility cur-

rently executing, preprocessing, the interrupt service routine itself, post processing, sched-

uling or the final context switch. Effects of reconfiguration due to components directly in

the execution path of the metric are considered in the following sections.

3.1.1 Preemptable Services

Operating system kernels may be fully preemptable, non-preemptable or non-interrupt-

ible. Fully preemptable kernels require multiple kernel stacks and additional kernel struc-

tures so that the execution context of any service may be saved and resumed later upon

interruption. Certain sections of a preemptable service may require preemption or inter-

rupt lock-out to protect critical sections. Extra overheads in terms of execution time may

be incurred by implementation of a fully preemptable kernel or service. A non-preempt-

able kernel may not need additional kernel stacks and data structures and will have lower

space requirements.

Consider a configuration where a non-preemptable service is in operation. This may have

been chosen in the initial configuration to reduce kernel space requirements. Upon receipt

of the interrupt, the service routine is run. The service routine is completed and the non-

preemptable service initially in operation may have to be completed, before the higher pri-

ority process is scheduled. The time taken to complete the non-preemptable service adds

to the dispatch latency metric. The same operating system kernel is then reconfigured stat-

ically or dynamically to include a fully preemptable version of the same service as the

above configuration. In this configuration, the higher priority process may be scheduled

immediately after the interrupt service routine is completed. By trading speed for size, the

process dispatch latency metric is improved in the second configuration. The effects of

reconfiguration in this case are to improve the process dispatch latency metric.

Similarly, in the case a fully preemptable service replaces a non-interruptible service,

improvement will be seen in the metric as the interrupt service routine may be executed

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

directly upon receipt of the interrupt. The effects of reconfiguration again in this case are

to improve the process dispatch latency metric.

3.1.2 POSIX and Native Services

Commercial operating systems implement native services and corresponding POSIX ser-

vices in a number of ways. Solaris implements POSIX message queues as wrappers

around SVR4 message queue calls, QNX implements POSIX message queues as an exter-

nal process outside of the kernel. Vxworks implements POSIX message queues and native

message queues in the kernel.

Consider the process dispatch latency metric. The interrupt service routine is invoked and

sends a message using the native message queue facility. If the kernel is reconfigured to

include the POSIX message queue facility then, variations in the latency metric may be

observed. This is could be because of the difference in implementation of the native mes-

sage queue (in the kernel) and the POSIX message queue (as a separate process).

3.1.3 Scheduling Delays

Operating systems may be built as cyclic executives, with fixed or dynamic priority sched-

ulers. A high level scheduling policy may also be implemented with processes running

under fixed or dynamic process scheduling. Preemptive or non-preemptive schedulers are

also implemented. Schedulers are also implemented with different data structures and this

can affect the scheduling delays. Consider a configuration built with a certain scheduler

(with a single or multiple scheduling policy). If the kernel is reconfigured to include a dif-

ferent scheduler then, variations in the process dispatch latency metric may be seen. This

may be because of implementation costs of a different scheduler and/or the scheduling

policy. The implementation costs a scheduler may be simply because of different data

structures used in the scheduler. In Vxworks for example, a constant ready queue insert

time implementation may be included. This adds 2K to the size of the kernel but, helps in

overall scheduling when large number of task are ready to run.

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

3.2 Indirect Costs

Reconfiguration of the kernel or any service may also affect the performance of a metric

in an indirect way. Direct costs are because of components directly in the execution path

of a metric, whereas indirect costs are due to components not directly in the execution path

of a metric. The indirect influence of components may be pronounced in some cases and

cannot be neglected. Inclusion of virtual memory, Shared objects or network services can

all affect the performance of a metric in an indirect manner. This section identifies some

indirect costs in the case of the process dispatch latency metric.

3.2.1 VM Subsystem and Network Services

Consider the process dispatch latency metric, if the interrupt handler is in physical mem-

ory or is pinned in memory then, the interrupt handler may be invoked directly. If recon-

figuration of the kernel leads to inclusion of the VM subsystem, then, it is possible that the

interrupt handler may not be locatable in physical memory and may have to invoked after

a page-in leading to poor overall performance of the metric.

Similarly, consider a configuration where the kernel has been reconfigured to include net-

work services. During execution of the components leading to dispatch of the higher prior-

ity process, the network may require service (queues full because of packet arrivals). This

can add to the execution cost of the metric.

3.2.2 Interrupt Priority Management

A well-designed interrupt handling mechanism, will allow the currently executing task to

be interrupted by interrupts tied to only a higher priority task. With hardware support for

interrupt priority ‘bridging’(between software tasks and hardware interrupts) in the Intel

i960 processor for example, software task priorities are saved in registers so that, only

interrupts tied to a higher priority task may interrupt the currently executing task. Consider

a configuration where support for interrupt priority ‘bridging’ is not included. In this case,

interrupts from lower priority sources than the currently executing task may repeatedly

interrupt leading to possibly poor dispatch latency times. If the kernel is reconfigured to

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

allow priority ‘bridging’, only interrupts from higher priority tasks than the task currently

executing may be received, resulting in improved dispatch latency times.

3.3 Tracking Performance Variations

The preceding sections detail the effect of reconfiguration on the process dispatch latency

metric. The costs may be incurred in terms of direct and indirect costs. Similarly, this can

be easily extended to other operating system primitives of interest. This is easily seen, if

we consider the execution path of a primitive to be decomposable into one or more stages.

Reconfiguration may affect the configuration of one or more stages in the execution path

of the primitive. This may increase or decrease the execution latency of one or more

stages, resulting in an effect on the execution latency of the primitive as a whole. This is

incurred as a direct cost. Reconfiguration costs may also be incurred indirectly. Schedul-

ing of a service during the execution of a primitive, increases the execution latency of a

primitive. This may not be incurred directly, as the service may not be in the execution

path of the primitive.

If the performance of certain operating system primitives are of interest to a target system

and application, then it is essential to track the performance variations due to reconfigura-

tion. This may be done by maintaining a cost-graph data structure. Each primitive is

described by a cost-graph. The cost-graph records the execution latency of each stage in

the execution path of a primitive. Execution latencies for stages may be lumped in the case

that latencies for individual stages are not individually measurable. Each direct reconfigu-

ration action may introduce an additional stage or it may affect the execution latency of an

individual stage. If an additional stage is introduced then , the stage may supply to the

cost-graph, the worst-case execution time on that particular platform. This is important in

the case apriori performance measurements are needed. Also, if desired, the cost-graph

may be updated or supplemented with execution latencies obtained by execution of the

primitive immediately after reconfiguration. Indirect costs may be represented in the cost-

graph by lumped worst-case execution times.

Each reconfiguration action is represented in the cost-graph by its corresponding cost. The

cost may be supplied apriori by the reconfiguration action or may be determined by execu-

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

tion of the primitive. By recording each reconfiguration action and representing the action

by its corresponding execution cost in the cost-graph, the variations may be tracked.

A benchmark suite for measuring the effects of reconfiguration on some operating system

primitives of interest is described in the next section.

4.0 Benchmark Suite
The objective of this paper is to study the effects of reconfiguration on certain operating

system primitives. A set of metrics has been chosen that capture important aspects of an

operating system‘s behavior. These metrics have been selected from the rhealstone bench-

mark suite [Dr dobbs] , the SSC benchmarks [nuclear physics citation] and the Hartstone

benchmark suite [cmu]. The basic idea is to select or choose different operating system

configurations and study the effect of varying the configurations on operating system per-

formance. The variations (if any) in the selected metrics will be indicative of the effects of

reconfiguration on operating system performance.

The benchmark suite consists of low-level benchmarks and high-level benchmarks. Low-

level benchmarks are based on the Rhealstone and SSC benchmarks, whereas the high-

level benchmarks are based on the Hartstone benchmarks. The following sub-sections

describe the level one (low-level suite) and the level two(high-level suite).

4.1 Level one Suite

The low-level suite is based on basic operating system primitives. The low-level metrics

chosen are : context switch time < task preemption time >, semaphore shuffle time, inter-

task message latency, memory allocation overhead and process dispatch latency. The met-

rics are measured in the following manner :

4.1.1 Context Switch Time

This metric measures the time to context switch between two tasks of equal priority. This

involves saving the context of the current task, loading the context of the other task and

rescheduling. A controller task creates two tasks of equal priority and allows scheduling of

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

the two tasks by lowering its priority. The two tasks ping control from one another over a

large number of iterations. The average context switch time may be measured along with

the min and max context switch times.

5.0 Providing an Experimentation Infrastructure
The VxWorks development infrastructure consists of a Sun Ultra based host and Pentium

II based dual processor target. The development host consists of a Tornado shell, Target

Server, Host Symbol table (may be synchronized with target symbol table). The Vxworks

target consists of an agent that communicates with the host environment. The target may

also contain a symbol table for synchronization with the host. New objects may be

dropped into the target. The target dynamically links the object with the operating environ-

ment and executes the code. This interaction is shown in figure 2.

DEVELOPMENT
HOST

Tornado
Shell

Sym
Tab

Tar
get

Svr

Vxworks
Target

Agent

Fig.2 . The Vxworks Infrastructure

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

5.1 A Device Handler to Support Kernel Instrumentation

As the figure shows, the target interacts with the development environment. The develop-

ment environment allows the ability to launch instrumentation probes into the kernel. The

kernel must be instrumented to accept the probes. The target contains a network interface

to interact with the host development environment. The Vxworks development environ-

ment provides a PCI Bus library [vxworks], to support PCI bus transactions on a PCI

based host. The device handler provides the interface between the Operating System and

the Network interface card.

5.2 A Timestamp Driver

The Pentium II has hardware counters and for fine-grain resoultion, it is important to inter-

face to the Pentium II hardware counters directly. The Timestamp driver interface from the

Operating System to the API have already been constructed. The interface from the Oper-

ating System to the hardware counters are being constructed.

5.3 Cross Development Environment

A Cross Development environment has been constructed to compile code directly from

Sun Ultras to the Pentium II. Upon compilation, the code is downloaded to the target.

6.0 Performance Methodology
First, core operating system primitives are identifed. In this case, they are interrupt dis-

patch latency(process dispatch latency), Semaphore ping and Message Passing. The Oper-

ating system is then reconfigured (different facilities, services added). For each

reconfiguration, the performance of the metrics is measured. The measurement of the met-

rics is performed by performing an operation and iterating over large iterations (around

10000)

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

7.0 Performance Measurements
The performance measurements were made for the following three core operating system

primitives - Process Dispatch Latency, Semaphore Ping and Message Passing.

7.1 Process Dispatch Latency

This is shown in Table 1 . This benchmark is measured by using three interrupt sources -

Timer, Bus and Interprocessor. A task is spawned and the task blocks on a semaphore.

Once the interrupt arrives, the interrupt service routine releases the semaphore. The task

with the blocked semaphore then, timestamps the event.

The columns denote Wind scheduler, POSIX scheduler and a combination of the Shared

Memory Objects and the wind scheduler.

PIT is the PIT clock that generates interrupts at the rate of 60,000 per second. A bus inter-

rupt is generated from an external source. In this case it is the second CPU in the machine.

In the case of the Interprocessor interrupt, a mailbox interrupt is used and one CPU places

a data value into a one-byte write mailbox. This is a “location monitor” style of interrupt

management. The write mailbox is basically a bus address, that interrupts another CPU.

Table 1. Interrupt Source and PDLT

Interr
upt

Source

Wind POSIX SM
sched sched

 Wind
 sched

 <------- microsecs -------->

PIT 17 34 40

Bus 50 90 120

Inter-
proces-

sor

55 95 130

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

In the case of the PIT, use of the POSIX scheduler seems to increase the Process Dispatch

latency. As this may be layered on top of the native wind scheduler. Also, use of Shared

memory objects further increases the Process dispatch latency to 40 microseconds.

In the case of the bus interrupt, the same the increasing trend is seen. Here, it must be

noted that the differentials are much larger than the case of the PIT timer. This might be

due to the effect of bus delays, I/O bridging etc.

This is also true in the case of the interprocessor interrupt. The same increasing trend is

seen, all the way from the wind scheduler to the combination of the Shared memory

objects and the Wind scheduler case.

Fig. 2 graphs the OS state as a function of time. levels 1 and 2 are for tasks. They may

represent priority levels. Level 3 is for interrupts and interrupt service routines.

Fig.2 shows in the case of the PIT timer interrupt, the variation of the OS state and time.

The task is initially, in level 1, transitions to level three in the case of an interrupt, flips

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

O
S

St
at

e

Time (Micro)

Time(micro) OS State

PIT Interrupt

Fig. 2 OS State as a function of time

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

back to state two (in this case a process is spawned). The process or task may be deleted

and OS state may return back to state 1 again.

The OS state transition is shown again in figure for the case of bus interrupts. In this case,

the OS transitions back to the level of task, after executing the interrupt in state 3.

7.2 Ping Semaphore

For this metric, two tasks ping a semaphore between each other. This is done over large

number of iterations. The results are shown in the table below. The latency for POSIX

semaphores is higher than that for wind native semaphores. This is true in the case of

using either the wind scheduler or the POSIX scheduler.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

O
S

St
at

e

Time (Micro)

Time(micro) OS State

Bus Interrupt

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

7.3 Message Passing

For this metric, two tasks exchange messages between each other. This is done over large

number of iterations. The results are shown in the table below. The latency for POSIX

message queues is higher than that for wind native message queues. This is true in the case

of using either the wind scheduler or the POSIX scheduler. The queues in both the cases

are of fixed length.

Table 2. Semaphore Ping
Sched wind Posix
 <-- microsecs -->

Wind 225 250

Posix 225 240

Table 3. Message Passing
Sched wind Posix

<-- microsecs -->

Wind 300 350

Posix 300 340

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

7.4 Effect of Operating System Stacking on Context Switch Time

Table 4: Effect of “Stacking” on Context Switch Time

Module Change
 (micro)

For-
matted

I/O

-

HW FP

INSTR
UMEN
TATIO

N

+20%

I/O -

LOAD
ER

LOG -

MEM_
MGER

-

MMU_
BASIC

-

MMU
FULL

-

MSG
Q

-

NET-
WORK

-

NFS
SERV

ER

-

PIPES -

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

Table 4 shows the “stacking” effect on the Vxworks operating system. In the case of intro-

ducing the shared memory objects, the context switch time goes up by about 10%. This

may be due to additional processing being performed during a context switch. Task hooks

are kernel call-outs. They are executed at the time of a context switch. Even for a null or

kernel call-out with no function defined, an increase of 10% in the context switch time is

seen. In the case of the constant ready queue, a 10% enhancement in performance is seen

by use of constant insert time ready queues.

SEM_
BINAE

Y

-

SEM_
COUN
TING

-

SEM_
MUTE

X

-

SIG-
NALS

-

SM_O
BJ

+10%

SYM_
TAB

-

TASK_
HOOK

S

+10%

CONS
TANT_
RDY_

Q

10 %

Table 4: Effect of “Stacking” on Context Switch Time

Module Change
 (micro)

Effects of Reconfiguration on Performance in Configurable Operating Systems : Practical Predictability Strategies ?November12,2001

8.0 The Cost-graph Approach to Performance Predictability
We implement a cost-graph, which is placed into usrConfig.c. As the kernel is reconfig-

ured, the Cost-graph is updated statically. The same function may be used for dynamic

reconfigurations. Upon completion of benchmarks, the cost-graph may be downloaded to

the host for analysis.

9.0 Conclusions and Future Work

•Developed infrastructure for real-time experimentation - NI

handler and Timestamp handler (port to MMX counters

required).

•Reconfiguration affects performance !

•Both direct and indirect

•Large reconfiguration space (cross product) - Find useful ones

•Enhance timer resolution

•Look at Shared memory backplane network closely (on Vxworks

adds constant or varying overhead).

References

[Furht] Furht et al, “Real-time Unix”, Kluwer Academic Publishers, 1991.

[VxWorks] Wind River Corp. “Vxworks Programmer’s Guide”, 1997.

