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This paper presents a hybrid active and passive control 
scheme for control ling the motion of a lightweight flexible 
arm. A straightforward developement of LaGrange's equations 
using a series expansion of assumed flexible modes provides a 
time domain model for contro11er design. The active control
ler design was approached as a steady state linear quadratic 
continuous regulator. A constrained viscoelastic layer treat
ment was employed to achieve passive damping. The passive 
damping treatment serves to enhance the system's stability 
whi le providing sound justification for the use of a highly 
truncated dynamic model and reduced order controller. Initial 
experim~ntal results comparing controller performance with 
and without passive damping demonstrate the merit of the 
proposed combined active/passive approach. 

Introduction 
-----------~ 

Recently a considerable volume of literature has been 
devoted to the problem of controlling the motions of struc
tures having flexible structural members. While much of this 
research is performed in the interest of control ling large 
spac~craft, several investigators [1-6J have considered 
applying similar principles to the control of industrial 
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manipulators in the interest of improving manipulator 
performance and relaxing the structural stiffness requirement 
imposed by the more conventional rigid body control tech
niques. Such is the motivation for the work presented in this 
paper. 

Although manipulators are somewhat complicated struc
tures having sever-al flexible 1 inks and joints' that move 
independently, many problems associated with control ling such 
devi ces can be approached, without loss of genera 1 ity, by 
considering a simple single link, single axis configuration. 
The present investigation concentrates on a single link arm 
which rotates in the horizontal plane about a pinned end. The 
authors apply established methods for developing a time 
domain dynamic model and active controller. Active control is 
appl ied to only the first two flexible modes and the rigid 
body mode. In order to reduce the effect of the ignored 
flexible modes a constrained viscoelastic layer damping 
treatment is applied to the surface of the flexible beam. 
This approach invol ves sandwiching a thin layer of visco
elastic material between the flexible member's surface and a 
stiff elastic constraining layer. When elastic deformation of 
the structure occurs, shear induced plastic deformation 
imposed in the viscoelastic layer provides the desired 
mechanical damping effect. Lane [7J has shown, analytically, 
that the incorporation of the prescribed passive damping 
treatment can result in faster settling times and consider
able improvements in system stability. This paper presents 
the fesults of initial experiments performed with the aim of 
verifying this assertion. 

I!£~ri~~~1~1 £~~ilj11 

, The experimental facility is a complete laboratory for 
examining the control of flexible arms with frequencies as 
high as 100 Hz. The system consists of a flexible arm with 
payload, DC torque motor with servo-amp, AID and DIA conver
sion for measurement sampling, signal conditioning and 16 bit 
computer system for implementation of control algorithms. The 
control computer is equipped with floating point hardware, 64 
megabyte hard storage, 24 channels of AID conversion and 2 
channels of DIA conversion. A typical value for 32 bit float
ing point multiplication is 17 microseconds. T,he physical 
configuration of the flexible arm, torque motor and sensors 
is illustrated in figure 1. Figure 2 is a block diagram of 
the system components. The arm is a four foot long rectangu
lar aluminum beam with cross sectional dimensions of 3/4 x 
3/16 inches. With the active feedback controller operating, 
the first two natural frequencies of the beam approach its 
clamped-free modes, accordingly these are the modes assumed 
in modeling the arm's dynamics. The clamped-free frequencies 
of the arm with the payload in place are 2.0 and 13.5 Hz. 
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Figure 1. Experimental Arm 
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Figure 2. System Block Diagram 

Q1~~~j~ ~~£~lj~~ 

The first step in controller design .is to construct an 
analytical model of the physical system. The model must 
include the major features of the real system, yet still lend 
itself to available analysiS tools. A truncated series of 
assumed modes was selected, with the first mode being a rigid 
body rotation. Two additional· flexible modes corresponding to 
clamped-free beam vibrations complete the series. LaGrange's 
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equations are formulated for the three mode series after 
normalizing the flexible modes. The resulting dynamic equa
tions are then linearized by assuming small motions and 
neglecting terms of higher order than one. The equations can 
then be organized into a sixth order state space model of the 
following form: 

m = [::: .. <:~] m + [~:J u 

x = 

x - measured state vector 

z - unmeasured state vector 

r - input vector 

q - flexible mode 

z ~ [::J 
e - joint angle 

• - time derivative 

u - control torque 

( 1 ) 

( 2 ) 

A detai led description of the model ing procedure may be found 
'in [8,9J • 

.... Modal Reconstruction 
----- ------------~-

Th~ control system employed requires the entire state 
vector be identified for the control law. Direct measurement 
of the modal quantities is not possible, however, modal 
displacements can be calculated as 1 inear c6mbinations of 
strain measurements. Equation 3 is the basic relationship 
between the flexible modes and the strain. Since we are 
interested in reconstructing two separate modes, two strain 
measurements are made, one from the base of the beam and one 
from the midpoint. Four active gages are used in a full 
bridge at each measuring point. This implementation compen
sates for torsional, axial and transverse strains that would 
otherwise reduce disturbance rejection. Equation 4 is the 
form of the reconstruction relation used to obtain the modal 
amplitudes from the strain measurements. 

The coefficients for the reconstruction can be deter
mined. by inserting the assumed mode functions into equation 
4. Experiments agreed well with the analytical model, result
ing in a nearly orthogonal r~lationship between the modes 
providing 6 to 8 decibels of rejection between the recon-
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structed modes. A reduced order luenberger observer was 
employed to estimate the modal velocities from the modal 
amplitudes. 

.\ 
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r:::(y) - indicates strain at position y 

~(y) - spatial mode functions 

q(t) - time dependent modal ampl itude 
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( 3 ) 

( 4 ) 

The objective of fast response of the flexible arm's 
payload to commanded positions, is in opposition to minimiz
ing excitation of the flexible modes. The first requires high 
rates and torques, whi le the latter favors smooth application 
of smaller torques. This problem is an excellent candidate 
~or optimal control, which provides a solution with relative 
weighting on the various states. 

Equation 5 is the standard formulation of a linear 
quadratic continuous transient regulator problem where X is 
the full state vector. The steady state solution of the 
control law was computed using subroutines in the ORACLS [10J 
software package. The basic problem was modified [llJ so that 
the closed loop poles of the system could be specified with 
an arbitrary degree of stabi 1 ity. 

where 

and 

P = J( X T Q X + R d) d t 

u = KTx 

Q,R = weighting matrices 

KT = control law 
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The selection of the elements of the weighting matrices 
rGmains to a large degree trial and error. In this system it 
is noted that the second flexible mode is very energetic and 
large penalties on the second mode velocity or states coupled 
to the second mode result in high gains on the second state. 
These high gains result in excessive control action. Addi
tional 1y the second mode is not a static deflection mode and 
high state gain causes problems due to measurement errors. 
The control objective in the second mode is therefore damping 
rather than steady state error reduction. 

E~~~l~~ ~!!}.I21~!l 

Lane [7J introduced the concept of control ling a flexi
ble manipulator arm using a hybrid active/passive control 
strategy. Passive control involves moving the flexible 
system's poles to the left by physically adding mechanical 
damping to the system. This has the effect of improving 
stability and response of the overall system while reducing 
the detrimental effects of both control and observation 
spillover. The application of constrained viscoelastic damp
ing layers was proposed as a passive control measure. The 
approach involves sandwiching a thin film of viscoelastic 
material between the flexible member's surface and an elastic 
constraining layer. Materials having high elastic moduli 
provide the most effective elastic constraining layers. When 
elastic deflection of the structure occurs, shear induced 
plastic deformation is imposed in the viscoelastic layer. The 
energy dissipation associated with the plastic deformation 
provides the desired mechanical damping. This concept is 

, ,i, 1 1 u s t rat e din Fig u r e 3. For fur the r d eta i 1 s reg a r din g the 

Elastic Constraining Layer 

Figure 3. Treated Beam Element Under Flexure 
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theory associated with constrained viscoelastic layer damping 
the reader is referred to references [12-15J. 

Plunkett and Lee [12J have observed that a relationship 
exsists between the length of the elastic constraining layer 
and the damping ratio. For example, if the constraining layer 
is very long, relatively little shear is induced in the 
viscoelastic layer at locations remote to the endpoints. 
Conversly, if the constraining layer is very short, a more 
uniform shear distribution results, however the plastic 
deformation is of small magnitude, even at the endpoints. 
This suggests the existence of some optimal length, to which 
constraining layer sections could be cut to provide the 
optimal damping for a given configuration. Plunkett and Lee 
have developed a method for calculating this optimal section 
length. The damping obtained through application of con
strained viscoelastic layers is frequency dependent and 
accordingly section length optimization is performed with 
respect to a prescribed frequency. With regard to the present 
application the section length has been select~d so as to 
optimize the damping in the vicinity of the lowest frequency 
uncontrol led modes. It is important to note that when the 
constraining layer is not sectioned, the damping is optimal 
for very low frequencies and consequently, non-sectioned 
treatments generally will not enhance the control of. flexible 
structures significantly. Figure 4 compares theoretically 
~alculated damping ratios for sectioned and non-sectioned 
treatments. The data represents the aluminum beam discussed 
above, with a .002 inch viscoelastic layer and .010 inch 
thick steel constrai.ning layer partitioned into 1.72 inch 
~Sections. The treatment is applied to both sides of the beam. 
It is evident from these curves that the damping for the 
frequency range of interest is substantially increased by 
simply cutting the constraining layer into sections. Figure 4 
also includes the experimentally measured damping ratios for 
the treated beam described above. Figure 5 presents a compar
ison between the frequency response for an untreated beam and 
one incorporating the sectioned constrained layer treatment. 

Upon examination of the sectioned constraining layer 
data presented in figure 4, one finds that while the shapes 
of the experimental and theoretical curves are in reasonable 
agreement, the damping ratios are significantly overestimated 
by Plunkett and Lee's method. The authors find that for very 
thin constraining (.0015 inch steel) layers the experimental 
and theoretical values agree within about 10%, however when 
the constraining layer thickness is increased, in the inter
est of increasing the damping provided, the agreement tends 
to be. poor. The authors bel ieve that this trend may be attri
buted to a number of simplifying assumptions made by Plunkett 
and Lee, which provide adequate results for thin constraining 
layers, but may be violated as constraining layer thickness 
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is increased. Probably foremost among these is the assump
tion that the constraining layer experiences only axial 
stress that is uniform throughout its thickness. Alberts is 
presently investigating the extension of Plunkett and Lee1s 
model to accommodate thicker constraining layers. 
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Although the performance of the damping treatment falls 
short of the theoretical predictions, the constrained layer 
damping technique remains a 1 ightweight, unobstructive, in
expensive and highly effective means of reducing the vibra
tions of the higher modes. The treatment described adds 
approximately 0.024,' inches to the thickness of the beam and 
0.42 pounds per square foot of treated surface to its weight. 
In applications where very light weight is desired, treat
ments utilizing carbon fiber composites as the constraining 
layer material provide performance simi lar to steel but weigh 
only 0.094 lbs. per square foot of treated surface. 

I!E~rjm~~1~1 ~~~11~ 

The results of employing the active controller described 
in previous sections in connection with control ling a beam 
with no passive damping treatment are represented by the time 
response curves of figure 6. From these results the effect
iveness of the modal feedback for settling the first mode of 
v i bra t ion i s rea d i 1 yap par e n t • The sec 0 n d f 1 e x·i b 1 e mod e I s 
amplitude is too small to view in this plot however the 
effect of the active controller on this mode is evident from 
frequency response curves (figure 9). It was observed that 
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Figure 6. Time Response of Stable System Without 
Passive Damping 

I 

4.5 

by increasing the gain on the rigid body mode, instability 
could be induced in the uncontrolled modes. This proved to be 
a good opportunity to demonstrate the stabi lizing effect of 
the proposed passive damping method. Starting with the gain 
matrix used to generate the results of figure 6, the rigid 
body gains were progressively increased until instabil ity was 
induced in the lower uncontrol led modes. In this condition 
the arm was initially quiescent, but the application of a 
step position command resulted in growing osci 1 lations in the 
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uncontrol led flexible modes. Figure 7a represents the response 
of the untreated beam with rigid body position and rate 
feedback only. In this case instability occurs at about 22 
Hz. whic~ apparently corresponds to the system's third closed 
loop pole as shown in figure 9. When modal feedback is 
included (figure 7b) the instability occurs at 41 Hz. which 
corresponds with the fourth closed loop pole. 
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Figure 7. Time Response of the Unstable System Without 
Passi ve Damping 
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Without changing the gain matrix, the arm in the experi
mental system was replaced by an identical arm incorporating 
the constrained layer damping treatment. As shown in figures 
8a and 8b the treatment has eliminated the instability. 
Figure 9 represents the transfer functions between input 
torque and payload acceleration for the open-loop system and 
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the colocated rate and position feedback system, both with 
passive damping. The frequency response of this system with 
full modal feedback is very similar to the colocated feedback 
case with the lower frequency poles slightly attenuated and 
broadened, as might be expected. 

20.000-r-__ ...... ___ ~-.-;_~ __ --'-__ --l ___ -'--..,.-

LSMAS 
DB 

---- Open Loop 

-- Closed Loop 

-50.000-4-__ --,-___ .--__ -r-__ -,-__ --,r--__ ,--'-

0.0 HZ . 30.000 

Figure 9. Frequency Response of Open Loop System and Closed 
Loop, Colocated Feedback System With Passive Damping 

The con t r 0 1 0 f the rig. i d bod y mod e and the fir s t two 
flexible modes of a lightweight arm has been demonstrated 
using a standard steady state linear quadratic regulator. 
Increasing the rigid body mode feedback gains was found to 
1 ead to instabi 1 ity in the low frequency uncontroll ed modes. 
A constrained viscoelastic layer damping treatment, incorpo
rating the notion of length optimized, sectioned constraining 
layers has been shown to provide an easy to apply and inex
pensive method of stabilizing these uncontrol led modes. 

In obtaining the initial results presented, the 
weighting matrices, degree of stabi lity and the estimator 
dynamics were chosen rather arbitrarily. The authors acknowl
edge that the values selected for the initial tests may not 
be the most appropriate selections. The authors are presently 
working towards "tightening up" the control loop such that 
the full performance capabilities of the system may be 
realized. 

11 



T.E. ALBERTS, G.G. HASTINGS, W.J. BOOK AND S.L. DICKERSON 

Finally, it may be appropriate to note that util izing 
the proposed hybrid control scheme in space may pose some 
problems not experienced in earthly appl ications insofar as 
the physical properties of viscoelastic material s are some
what dependent upon temperature and apparently certain visco 
elastic materials are subject to degradation and outgassing 
[16J when exposed to the space environment. Nonetheless, the 
appl ication of viscoelastics to damping problems in space is 
an area being actively pursued. Trudell, et.al. [16J suggest 
that the adoption of passive damping measures will playa 
crucia 1 ro1 e in the successful sol ution of in 1 arge space 
structure vibration control problems. 

A~~.Q..2.!!.l~i9.!!!~.Q.!'?' 
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