Line-Based Structure From Motion for Urban Environments

Grant Schindler, Panchapagesan Krishnamurthy, and Frank Dellaert
Georgia Institute of Technology
College of Computing
{schindler, kpanch, dellaert} @cc.gatech.edu

Abstract

We present a novel method for recovering the 3D-line struc-
ture of a scene from multiple widely separated views. Tra-
ditional optimization-based approaches to line-based struc-
ture from motion minimize the error between measured line
segments and the projections of corresponding 3D lines. In
such a case, 3D lines can be optimized using a minimum of
4 parameters. We show that this number of parameters can
be further reduced by introducing additional constraints on
the orientations of lines in a 3D scene.

In our approach, 2D-lines are automatically detected in
images with the assistance of an EM-based vanishing point
estimation method which assumes the existence of edges
along mutally orthogonal vanishing directions. Each de-
tected line is automatically labeled with the orientation (e.g.
vertical, horizontal) of the 3D line which generated the mea-
surement, and it is this additional knowledge that we use to
reduce the number of degrees of freedom of 3D lines dur-
ing optimization. We present 3D reconstruction results for
urban scenes based on manually established feature corre-
spondences across images.

1 Introduction

We are interested in building line-based 3D models of urban
environments from multiple images taken at or near ground
level and separated by a wide baseline. We show that there
is a large amount of knowledge about the 3D structure of
urban scenes that we can exploit at every step of the re-
construction process, from detecting features, to matching
features, to finally optimizing the 3D structure of the scene.

The problems of urban scene reconstruction, line-based
structure from motion, and the related issue of 3D line rep-
resentation have received a large amount of recent attention.
Architectural reconstruction has been approached via both
manual [10] and automatic [13, 5] methods, many of which
produce polyhedral models as output and use a mix of point-
and line-features for matching and reconstruction. Werner
and Zisserman present a well-developed method for auto-

Figure 1: 3D reconstruction based on automatically de-
tected and classified lines in 11 images. Optimization over
structure and motion takes advantage of additional knowl-
edge provided by line classification.

mated architectural reconstruction across image triplets in
[13]. They perform a preliminary step in which lines are
classified according to principal orthogonal directions, and
these classifications are used to constrain 3D line estima-
tion. A line-based reconstruction method was presented in
[3] which extracts and matches line features across image
triplets under trifocal constraints. The method recursively
updates structure over an extended sequence of images sep-
arated by a small amount of motion. More recently, Rother
presented a linear reconstruction method for lines using a
reference plane [8]. Metric reconstruction can be achieved
using a virtual reference plane, such as that provided by as-
suming three mutually orthogonal vanishing directions in a
scene. Bartoli and Sturm [2] developed an orthonormal rep-
resentation for 3D lines which they show can be updated
during non-linear minimization with the minimum 4 pa-
rameters. They list several scenarios, including the case of
fixed 3D line direction, in which prior knowledge can be
exploited by optimizing over a subset of the 4 update pa-
rameters.

We fully explore this idea from [2] by enumerating the
specific types of prior knowledge we can exploit in the case
of urban environments and demonstrating how to acquire

s
S ML\ T

f, Ny RS

Figure 2: 2D line features are automatically detected by grouping edge pixels according to vanishing directions.

this knowledge directly from images. Specifically, we ex-
tend the framework of [11] to develop distinct differentiable
mappings for a each type of 3D line which we encounter
in urban scenes. The major contribution of this paper is
to demonstrate how knowledge about the structure of 3D
lines in urban environments can be used to improve the
processes of feature detection, feature matching, and struc-
ture optimization. An illustrative example of our approach
is that given a specific pixel in an image, we will already
know most of the parameters of the 3D line which gen-
erated this pixel before we have detected 2D lines in the
image, matched 2D lines across images, or performed any
structure optimization on the 3D lines. Thus, we are free
to use this 3D knowledge throughout each of the remaining
steps in the reconstruction.

2 2D Line Features

The first step toward a line-based 3D reconstruction is the
detection of 2D lines in photographs. We are interested
specifically in detecting lines that correspond to real 3D
structure lying along dominant orthogonal vanishing direc-
tions. In the case of images separated by a wide baseline,
both manual [8] and automatic [1] methods of line detection
and matching have been employed. We adopt the approach
of [4, 9] to classify image edges at the pixel level and then
group pixels into a large number of line segments, each la-
beled with the direction of the corresponding 3D line.

2.1 Pixel Classification with Vanishing Points

Our 2D line detection method is based on the assumption
that the 3D scenes depicted in our images have at least 3
mutually orthogonal vanishing directions. These vanishing
directions are represented as a set of 3D vanishing points
V P where we always fix the first three points as V P, 3 =
{[0,0,1,0]%,[0,1,0,0]%,[1,0,0,0]7}. Given an image I,

we would like to estimate a label A for each pixel in the
image to indicate that the pixel was generated by a 3D line
vanishing at V' Py. In order to do this, we must also estimate
any additional 3D vanishing points V' P, (for a scene with
N vanishing directions), a camera calibration C = {K, R}
with rotation R and intrinsic parameters K.

We briefly outline the expectation-maximization method
of [9] used to estimate vanishing point assignments for ev-
ery pixel in the image . In the E-Step, given fixed cam-
era calibration C' and fixed set of vanishing points V Py,
for each image pixel we compute the probability that it be-
longs to an edge oriented along each vanishing direction. In
the M-Step, the camera parameters C' and vanishing points
V P, n are optimized based on the computed distributions
over each pixel’s vanishing direction. After EM converges,
we compute an image I, containing the maximum a posteri-
ori vanishing point label for each pixel in the original image
1. For pixels which do not fall on any edge in the image, or
which fall on edges not oriented along a dominant vanish-
ing direction, we set the value of A to OF F or OTHER,
respectively. Note that we can also project the 3D vanishing
points V P;_ into the recovered camera C' to obtain the set
of 2D vanishing points vp;. n.

2.2 2D Line Detection

The features we detect from our images are labeled 2D line
segments f = {(x1,41), (x2,y2), A\} parameterized by two
endpoints and a label A indicating the vanishing point V Py
of the 3D line to which the feature corresponds. We begin
extracting 2D line features by first performing connected
components analysis on the resulting image I, from Section
2.1, grouping neighboring pixels that have the same vanish-
ing point label \. For each connected component, we create
a corresponding feature f which takes on the common label
A of pixels in the component. To determine the endpoints
of the line segment, we first compute the line /,,, joining the
centroid c of the pixels in a component to the 2D vanishing

point vp) corresponding to the component’s label. The end-
points (z1,¥1), (z2,y2) of the detected line segment f are
computed by intersecting the line [, with the bounding box
of pixels in the connected component. The result is a set of
labeled line segments oriented precisely along the image’s
vanishing directions.

The significance of the label A for each 2D feature is that
it directly determines the class of the corresponding 3D line,
and as we we will see, the number of free parameters in the
structure. All 2D line features for which A = 1 correspond
to vertical 3D lines, while those with A = 2.. N correspond
to horizontal 3D lines. Note that when A\ = OT HER, the
corresponding 3D line is unconstrained, and we determine
the line /., according to the the method in [7]. We ignore
connected components for which A = OFF as they, by
definition, do not correspond to edges in the image.

2.3 2D Line Matching

The establishment of correspondences between 2D lines
across images is a necessary step in our 3D reconstruction.
A standard approach similar to [1] is to use RANSAC to
find a set of line correspondences which satisfy trifocal con-
straints [6] across image triplets. RANSAC demands a set
of putative correspondences over which to sample, and in
the case of small motion over sequential images, potential
feature matches are usually constrained to lie within a local
neighborhood of each other. In the case of wide baseline
matching, we cannot take advantage of the physical prox-
imity of features. Instead we can constrain the set of pu-
tative correspondences by matching line features f against
only those lines with the same vanishing point label A, thus
reducing the combinatorial complexity of the matching pro-
cess and allowing RANSAC to draw fewer samples. Once
we have established matchings between sets of line features,
we consider corresponding features to be measurements of
the same 3D line.

3 Reconstruction

We formulate the reconstruction problem as in [12], in
terms of an objective function O that measures the total
squared distance between the observed line segments (mea-
surements) and the projections of the reconstructed lines in
the image, minimizing O with respect to the camera and
structure parameters. We differ from the approach of [12] in
our representation of 3D lines (structure), the computation
of error function in the image (rather than the image plane),
and use of non-linear least squares optimization to minimize
O. We extend the work of C.J. Taylor and D.J. Kriegman
[11] by defining different local parameterizations for sev-
eral classes of 3D lines in light of available prior knowledge
about the scene.

T

,” R@ax+by)

v %

(0,0,1)

(ab0)

X X

Figure 3: 3D Line Representation. The line can be visual-
ized as being initially (left) parallel to the Z-axis and pass-
ing through the point (a, b) (point on the line closest to the
origin) in the XY-plane, and then rotated by R (right) into
its new position (passing through R(a% + by)) and orienta-
tion (along the direction RZ).

3.1 3D Line Geometry

We represent lines in R by the set of tuples £L =
{(R, (a,b)) € SO(3) x R?} (see Figure 3). L defines an
algebraic set which is a 4-dimensional manifold embedded
in SO(3) x R?.

3.1.1 The Projection Function

We project 3D lines down to 2D lines in an image via the
usual steps of transformation of the 3D line into the camera
coordinate frame, perspective projection of the transformed
line onto the image plane at z=1, and bringing the projection
into image space according to the camera calibration.

1. Transformation into camera coordinate frame

A line in the world coordinate frame (R, (@, by)) is
transformed according to the rotation R’ and transla-
tion ¢’ of a camera in world coordinates. During the
transformation, the rotation R,, is affected only by the
orientation of the camera RY and (a,,, by,) is affected
only by the translation ¢} of the camera. Thus, we can
obtain the line (R, (ac,b.)) in the camera coordinate
frame as follows:

R. = R“R,
(tor by, tz) = (Ru)"tY
(aa bc) = (aw - twa bw - tu)

2. Perspective Projection
We represent projections in R? as the set of homoge-
nous vectors ¢ = {(mg,my, m.) : mux + myy +

3D Line Class

Degrees of Freedom \ Free Parameters \ Exponential Mapping

general 4 o, B, Wy, Wy L,

horizontal 3 a, B,w, Lps

vertical 2 a, 8 L,

horizontal (fixed direction) 2 a, 3 Lo
fixed 0 - -

Table 1: 3D Line Classes. We define different local parameterizations for a number of line classes. By classifying lines in
images of urban scenes, we reduce the degrees of freedom of the 3D lines over which we optimize.

m, = 0}. We compute the projection m.;, € ¢ in
the image plane as the cross product of two vectors
[12]: R.Z and R.(a.%X + b.¥), respectively the direc-
tion of the 3D line in the camera coordinate frame and
the point on the line closest to the origin. The result of
this cross product is:

Meip = acRCQ - bcRcl

where R.; and R. denote the first and second
columns of R, respectively.

3. Image Space
Given the internal calibration matrix KX of the camera,
the projection m; (in the image) corresponding to the
projection 1, (in the image plane) can be computed
as:
Mei = (KT)ilmcip

3.1.2 The Objective Function

We define our objective function O as the sum, over all im-
ages and 3D lines, of the errors between the projection of
a 3D line and the corresponding measurement in an image
[12], computing this error in the image, rather than the im-
age plane as in [12].

3.2 Optimization

Our representation parameterizes a 3D line with 11 param-
eters (9 for R and 2 for (a, b)) while it has only 4 degrees of
freedom (DOF). This causes singularity issues when we try
to perform non-linear optimization over the lines. We avoid
such singularities by constructing a local parameterization
[11] around any point (R, (a,b)) € £ mapping an open re-
gion in R* (in the case of generic 3D lines) onto a local
neighborhood of (R, (a, b)) on the manifold (L, : R*— £)
as follows:

We
Lg(w.tvaaaalg) = <R6Ip{‘] wy
0

b(a+a,b+8))

where exp is the matrix exponential operator, and J(w) is
the skew symmetric operator [11].

3.2.1 3D Line Classes

The local parameterization presented above can be applied
to any general 3D line resulting in a line with 4 degrees of
freedom. However, in reconstructing an urban scene pre-
dominantly composed of mutually orthogonal lines, not all
3D lines will have the full 4 degrees of freedom. For ex-
ample, a vertical line in the 3D world has only 2 degrees
of freedom (its intersection with the XY plane). Our 2D
line detection algorithm presents us with this valuable infor-
mation about the orientation of the corresponding 3D line
which we can use to reduce its degrees of freedom, thus
resulting in quicker convergence during optimization. We
now present the different local parameterizations of the var-
ious line types (summarized in Table 1).

1. Horizontal Lines
A horizontal line has only 3 degrees of freedom - trans-
lation along Z (the z-axis), translation within the hori-
zontal plane, and rotation about Z. The local parame-
terization Ljs : R3— L for a horizontal line is defined

as:
0

Lh3(w27a76) = <R€$p{J 0 }7(a+a7b+ﬂ)>
Wy

These lines can be initialized with an R corresponding
to a pure rotation of 5 about y (the y-axis).

2. Vertical Lines
A vertical line has only 2 degrees of freedom, corre-
sponding to its intersection with the XY plane. The
local parameterization L, : R?2— L for a vertical line
is defined as:

L,(o,8) = (R, (a+ a,b+ 3))
where R = I, the identity matrix.

3. Horizontal Lines with fixed direction
Often, it is the case that a horizontal line in our scene
lies parallel to X (the x-axis) or §. The direction of
such a line is fixed, leaving only 2 degrees of freedom.

The local parameterization Ly : R2— L for this line
type is:

Lh2(avﬁ) = <R7 (a + O‘7b+ﬁ)>

Lines of this type can be initialized with an R corre-
sponding to a rotation of 7 either about ¥ (in the case
of lines parallel to X) or X (in the case of lines parallel
to y).

3.2.2 Elimination of Gauge Freedoms

Every reconstruction task faces the problem of gauge free-
doms — the fact that we can translate (3 DOF), rotate (3
DOF), or scale (1 DOF) the entire scene (cameras and 3D
lines) as a single unit and still observe the same error. Fail-
ure to eliminate these 7 gauge freedoms can cause the opti-
mization to get stuck along flat regions in the error surface.
Our problem is not amenable to the traditional approach of
fixing a camera at the origin because the world coordinate
frame must be consistent with the horizontal and vertical
lines in the scene. Instead, we can completely remove these
degrees of freedom by placing additional constraints on the
scene in the form of three completely fixed 3D lines L;,Lo,
and L3. We do this in the following manner:

o [- Vertical line fixed as the Z-axis

We choose an arbitrary line that we know to be vertical,
and fix it to be the Z-axis of the world. We initialize
this line as L; = (I, (0,0)). By doing so, we remove
all degrees of freedom of the reconstruction that may
alter the position and orientation of this line. In this
case, we remove 4 degrees of freedom viz. rotation
about X and ¥, and translation in the XY plane.

e L5 - Horizontal line fixed as the X axis
We choose any horizontal line coplanar with L; and
fix it to be the X-axis of the world. We initialize this
line as Lo = (Ry, (0,0)) where Ry corresponds to a
rotation about ¥ of 7. By doing so, we reduce 2 more
degrees of freedom of the reconstruction viz. transla-
tion along Z, and rotation about Z.

e L3 - Horizontal line parellel to Lo, intersecting L1
We choose any horizontal line parallel to Ly, and
coplanar with L; and Lo, and fix it to be a line par-
allel to X and intersecting the Z-axis (now L1) of the
world at (0,0,1). This removes the final remaining
degree of freedom viz. scale. We initialize this line as
L3 = (Ryg, (1,0)) where Ry is the same as that of Lo.

Note that while lines L1,Ls, and L3 remain fixed through-
out the optimization (i.e. they have no degrees of freedom),
the errors between the projections of these lines ¢ and their
measurements f in the images still contribute to the objec-
tive function against which the optimization is performed.

4 Results

We tested our method on an urban scene containing mul-
tiple buildings with orthogonal structure. We captured 11
images of the scene, 10 of which were taken from ground
level while walking around a city block, and one of which
was taken from the fifth floor of one of the buildings in the
scene. All images were taken with the same 3.2 megapixel
digital camera.

Line detection was performed on each image at half reso-
lution (1024x768 pixels). Despite the presence of trees and
cars, the vanishing directions were successfully estimated
in all images (see Figure 2), resulting in a large number of
automatically detected and classified features (roughly 4000
per image). The resulting 2D lines were used as the basis
of a manual feature correspondence step in which 469 of
the features were chosen as measurements on 110 different
3D lines. Note that more than one feature in a single im-
age can correspond to the same infinite 3D line (e.g. in a
row of windows on a building, although the top edges of
all the windows correspond to the same 3D line, the feature
detector returns many short line segments corresponding to
the edges of individual windows). While the large number
of features generated for a given image suggests an almost
impossibly large combinatorial problem for any RANSAC-
based trifocal matching scheme, this many-to-one mapping
(from features to 3D structure) simplifies the true combina-
torics of the problem.

Of the 110 3D lines, 38 were vertical (depicted as blue
lines in all figures) and 72 were horizontal, with 47 paral-
lel to the x-axis (red in all figures), and 25 lines parallel to
the y-axis (green in all figures). Note that we automatically
extract this information about the 3D structure of the scene
before any reconstruction or optimization.

Initialization of the scene structure and camera param-
eters is an important step, and the method of [8], for ex-
ample, would provide a suitable unconstrained estimate of
structure as an initialization to our non-linear minimization
method. In the present case, since we have classifications
for all lines, we can initialize exactly half of the 3D line pa-
rameters in the scene according to Section 3, as well as the
three lines we choose to fix our gauge freedoms. Camera
rotation and intrinsic parameters are initialized based on the
results of the feature detection stage, which computes these
values in the process of classifying edge pixels. The recon-
struction results presented here were initialized with manual
estimates of camera translation and some scene structure.

Using the optimization method of Section 3, we were
able to successfully reconstruct the 3D structure of the scene
(see Figure 1 and Figure 5). Figure 5 shows synthesized
views of the 3D structure and optimized camera poses. All
images of the 3D reconstruction show the projections of the
2D measurements onto the reconstructed 3D lines.

Figure 4: Line features are reliably detected and classified across a wide range of urban scenes.

5 Conclusion

We have demonstrated how knowledge of urban scene
structure can be used effectively throughout the entire pro-
cess of line-based structure from motion estimation, im-
proving feature detection, feature matching, and optimiza-
tion. We have defined a number of local parameterizations
of different line types for use during non-linear optimiza-
tion, and demonstrated the effectiveness of this approach
through experimental results for 3D line-based reconstruc-
tion. In future work, we plan to fully automate the feature
matching and initialization steps.

References

[1] C. Baillard, C. Schmid, A. Zisserman, and A. Fitzgib-
bon. Automatic line matching and 3D reconstruction
of buildings from multiple views. In ISPRS Confer-
ence on Automatic Extraction of GIS Objects from
Digital Imagery, IAPRS Vol.32, Part 3-2W35, pages 69—
80, September 1999.

[2] A. Bartoli and P. Sturm. Structure-from-motion us-
ing lines: Representation, triangulation and bundle ad-
justment. CVGIP:Image Understanding, 100(3):416—
441, 2005.

[3] P.A. Beardsley, PH.S. Torr, and A. Zisserman. 3D
model acquisition from extended image sequences. In
Eur. Conf. on Computer Vision (ECCV), pages I11:683—
695, 1996.

[4] J. Coughlan and A. Yuille. Manhattan World: Com-
pass Direction from a Single Image by Bayesian Infer-
ence. In Intl. Conf. on Computer Vision (ICCV), pages
941-947, 1999.

[5] A.R. Dick, PH.S. Torr, and R. Cipolla. A Bayesian
estimation of building shape using MCMC. In Eur.
Conf. on Computer Vision (ECCV), pages 852-866,
2002.

[6] R. Hartley and A. Zisserman. Multiple View Geome-
try in Computer Vision. Cambridge University Press,
2000.

[7] P. Kahn, L. Kitchen, and E.M. Riseman. A fast line
finder for vision-guided robot navigation. /[EEE Trans.
Pattern Anal. Machine Intell., 12(11):1098-1102, Nov
1990.

[8] C.Rother. Linear multi-view reconstruction of points,
lines, planes and cameras, using a reference plane. In
Intl. Conf. on Computer Vision (ICCV), pages 1210-
1217, 2003.

[9] G. Schindler and F. Dellaert. Atlanta World: An
expectation-maximization framework for simultane-
ous low-level edge grouping and camera calibration
in complex man-made environments. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR),
2004.

[10] CJ. Taylor, P.E. Debevec, and J. Malik. Recon-
structing polyhedral models of architectural scenes
from photographs. In Eur. Conf. on Computer Vision
(ECCV), pages 659-668, 1996.

[11] CJ. Taylor and D.J. Kriegman. Minimization on the
lie group SO(3) and related manifolds. Technical Re-
port 9405, Yale University, New Haven, CT, April
1994.

[12] CJ. Taylor and D.J. Kriegman. Structure and mo-
tion from line segments in multiple images. IEEE
Trans. Pattern Anal. Machine Intell., 17(11):1021-
1032, November 1995.

[13] T. Werner and A. Zisserman. New techniques for auto-
mated architecture reconstruction from photographs.
In Eur. Conf. on Computer Vision (ECCV). Springer-
Verlag, 2002.

(b) (©)

Figure 5: 3D line structure was successfully reconstructed based on 439 measurements of 110 3D lines across 11 images.
Figures (a) and (b) show synthesized views from novel viewpoints. Red, green, and blue lines correspond to lines along the
X, Y, and Z axes, respectively. The single yellow, orange, and pink lines in each image indicate those lines fixed to eliminate
gauge freedoms. Figure (c) shows the reconstructed lines from directly overhead, as well as the position and orientation of
all 11 cameras. To provide scale, grid lines in the bottom image are spaced at intervals of 5 meters.

R4

|

Figure 6: We captured 11 images of an urban scene, 5 of which are displayed above in the left-hand column. The middle
column shows the subset of automatically detected features from each image which were used as measurements during
reconstruction. The right column displays the projections of the reconstructed 3D lines into the recovered camera associated
with each image. 8

