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SUMMARY 

 

Immunotherapies are currently investigated as a potential treatment for cancer. 

Compared to traditional chemotherapies, adoptive T cell transfer therapy has shown 

promising results in clinical trials for patients with solid tumors. However, the complete 

remission success rate is still low, around 10%. This treatment relies on the rapid ex vivo 

expansion of CD8+ cytotoxic tumor-specific T cells and their reintroduction in the 

patient’s body to fight the tumors. Successful treatment requires the reintroduced cells to 

retain tumor antigen specificity, effector function and to maintain proliferative potential; 

yet T cells like other somatic cells have a finite replicative potential and multiple rounds 

of antigenic stimulation required for rapid expansion result in a state of 

immunosenescence characterized by absence of proliferation, resistance to apoptosis and 

decreased effector functions. The reintroduction of those non-functional senescent cells 

has been highlighted as a potential reason for the relatively high failure rate. 

The objective of this thesis is to offer two approaches towards an improvement of 

treatment efficacy. First, a ‘senescence metric’ can be generated from identification of 

biomarkers of senescence and could be used in the clinic towards predicting age and 

responsiveness of T cells prior to transfer. The second approach is to understand at the 

molecular level the changes that occur during ex vivo expansion to devise improved 

expansion culture conditions. In particular, we focused in this thesis on the shift towards 

a pro-oxidizing environment and its potential effects on Ca
2+

 signaling. Microfluidic tools 

were extensively developed and used to acquire experimental data of quality and 

computational models for subsequent data analysis and prediction.  



xiv 

 

To identify biomarkers of aging and generate our ‘senescence metric’, we 

reproduced the adoptive T cell transfer culture conditions and characterized signaling 

dynamics, surface marker expression, cell cycle, cellular morphology and senescence-

related protein expression at the single cell and population level at different time in 

culture. We designed a new microfluidic platform to assay signaling information with 

excellent time-resolution. This two-module device performs simultaneously multi-time 

point cell stimulation with chemical stimuli and subsequent lysis and fixation of the same 

initial stimulated cell population. Followed with a multiplexed phospho-protein assay, a 

single experiment yields 48 signaling measurements with time points ranging from 30 

seconds to 7 minutes, with only 5% of the number of cells that would be needed in a 

traditional assay which makes this device attractive for clinical use or applications with 

rare cells. The dataset containing dynamic and static measurements was analyzed using a 

partial least square regression (PLSR) model. Despite a large donor-to-donor variability 

the model is able to determine relative contributions of each metric to the phenotype of 

replicative senescence and predict T cell age with an accuracy of 95%. It highlights the 

importance of using a combination of metrics rather than a single one to predict age in 

culture and in particular emphasizes the importance of early signaling dynamics and 

population noise as a metric to explain and predict T cell age.  

In this study, we observed a gradual decrease in protein phosphorylation 

dynamics with time in culture, which would suggest reduced Ca
2+

 dynamics, as it has 

been observed in T cells from elderly subjects and murine models; yet we did not observe 

decreased Ca
2+ 

amplitude or sustained levels with time in culture. Counterintuitively, 

older T cells displayed overall faster dynamics. Gene expression analysis showed mRNA 
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overexpression of the plasma membrane Ca
2+

 channel and pumps, respectively ORAI1 

and PMCA; yet based on our current understanding of the Ca
2+

 signaling network, these 

changes should not result in faster dynamics. To understand this puzzling result we 

constructed a deterministic ODE-based model of T cell Ca
2+

 signaling that can 

recapitulate main features of Ca
2+

 signaling after TCR stimulation in Jurkat cells, a T cell 

model cell line and young primary CD8+ T cells. The model suggests IP3R, SERCA and 

STIM1 as targets of regulation that may be altered by post-translational modifications 

during in vitro aging, possibly oxidation.  

Because ROS is a hallmark of aging in many cell types, we investigated whether 

oxidative damage occurs in long-term cultured cells for ACT. Using quantitative RT-

qPCR, HPLC and redox western blots, we show that in vitro expanded T cells behold a 

redox remodeling towards a pro-oxidative environment, similar to what has been 

observed in vivo. This result points towards a possible addition of antioxidants in cell 

culture or using hypoxic culture conditions to prevent oxidative damage. 

Our modeling analysis of Ca
2+

 signaling dysregulation during in vitro aging 

pointed to several kinetic parameters associated with purported oxidative modifications 

on Ca
2+

 channels. Several other disease states, such as Alzheimer’s or Parkinson’s 

disease, are characterized by a high oxidative environment and improper Ca
2+

 signaling. 

Because regulation of the levels of these two signaling molecules is tightly 

interconnected, we expanded our Ca
2+ 

signaling model to incorporate the numerous 

ROS/Ca
2+

 cross-talk and used frequency response analysis to periodical stimuli of 

oxidative damage to analyze the system. The model predicted cells act like a low-pass 

filter with a bandwidth dependent on input concentration and cell compartment, 
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highlighting robustness in the cellular network able to reject high frequency disturbances 

at low concentration of oxidative stress but taking these signals into account for higher 

input concentration. To validate this model, an experimental platform able to retain T 

cells in specific locations while exposing them to periodical stimuli was required. To 

meet those needs, we designed a new deterministic single-cell trap array for imaging of 

Ca
2+

 dynamics in single T cells and imaged single cell response to periodical H2O2 

stimuli. At the population level, T cells are able to follow the sinusoidal input stimulus; 

yet a large heterogeneity in responses is observed at the single cell level, in particular in 

amplitude and phase. Although our experimental data show large non-linearities that are 

not well captured by the model, this study is an important proof of concept. It highlights 

the feasibility of experimentally probing the frequency response of non-adherent 

mammalian cells to extract important features of regulation.        
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CHAPTER 1  

INTRODUCTION 

 

The goal of cancer immunotherapies is to boost the immune system’s ability to 

detect tumor antigens and mount an effective anti-tumor immune response. Currently, 

adoptive T cell transfer therapy (ACT), the administration of ex vivo expanded 

autologous tumor-specific T cells, is one of the most promising immunotherapies to 

induce durable clinical responses in significant number of cancer patients (1, 2); yet, its 

efficacy has been limited so far with a mere 10% complete remission rate in the most 

successful clinical trials (3). The prolonged ex vivo culture process is a potential reason 

for this ineffectiveness because the transfused cells may have reached a state of 

replicative senescence and immunosenescence and no longer be responsive (4, 5). 

Although the mechanism leading to immunosenescence is not fully understood, current 

theories implicate telomere shortening (6) and an oxidative shift in the intracellular 

environment leading to the cumulative damage in mitochondrial DNA, proteins and lipids 

by reactive oxygen species (ROS) (7-11). Because ROS are used as second messengers, 

alteration in ROS regulation can lead to changes in gene expression, replication and in 

impaired immunity or inflammatory responses. ROS has been postulated as being a key 

effector inducing cell senescence. However the mechanism by which ROS production 

and regulation is altering signaling in aging peripheral T cells is poorly understood. 

Microfluidic devices are excellent tools to perform biological experiments. Along 

with reduced reagent consumption and sample handling error, microfluidics 
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 offers the ability to tightly control chemical environments and cellular location (12-15). 

The combined development and use of microfluidic technologies and computational 

models will improve our understanding of the phenotypic and dynamic changes occurring 

in T cells during the course of immunosenescence and promise to have a significant 

impact on the design of future cancer immunotherapy protocols.   

 

1.1. Research objectives 

The objectives of this research are to develop new microfluidic tools and use 

computational models in order to: (1) Characterize phenotypic and dynamic changes 

occurring during ACT compatible long-term culture of CD8+ T cells; (2) Develop a 

quantifiable measure of T cell quality or degree of senescence prior to adoptive transfer; 

(3) Assess the redox status of the cell during in vitro aging and quantify its impact on cell 

signaling, more specifically Ca
2+

 signaling.  

Based on these research objectives, the specific aims of this thesis are as follows: 

 

Aim 1: Develop a method to quantify and predict responsiveness in senescing 

T cells cytotoxic T cell using signaling and static biomarkers: The purpose of this aim 

was to characterize changes in cell phenotype and signaling during in vitro aging under 

culture conditions consistent with in vitro expansion prior to adoptive transfer and use 

these features to create a metric of cell senescence. We designed a microfluidic platform 

to sample phosphorylation events occurring in the first few minutes after TCR 

stimulation by simultaneously fixing and lysing a fraction of stimulated cells. Combined 

with differentiation surface marker expression, cell cycle and selected senescence-related 
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protein expression, we built a large dataset of age-related changes in CD8+ T cells. To 

analyze this dataset we applied a partial least square regression (PLSR) model and 

extracted the most important metrics of in vitro aging. Characterization of signaling 

dynamics and phenotypic changes during in vitro aging as well as extraction of the best 

biomarkers of senescence are described in Chapter 3.  

 

Aim 2: Characterize changes in redox status and Ca
2+ 

signaling in aging 

CD8+ T cells: The purpose of this aim was to determine if culture conditions used for T 

cell expansion prior to adoptive transfer results in reduced Ca
2+

 signaling and a pro-

oxidizing shift in redox environment as observed in vivo. To assess changes in redox 

status, we measured mRNA levels of a set of 84 genes involved in the oxidative stress 

and antioxidant pathways, protein levels of a subset of sources of ROS and antioxidants 

as well as the redox potential of the thioredoxin (Trx-1) and glutathione couple 

(GSH/GSSG). Ca
2+

 dynamics after TCR stimulation were measured and a computational 

model of Ca
2+

 signaling was developed to provide insight into potential targets of age-

related modifications resulting in altered Ca
2+

 dynamics. The modeling analysis pointed 

to several kinetic parameters that are likely altered during the aging process; these 

parameters provide avenues for further investigation by suggesting post-translational 

modifications of the Ca
2+

-related proteins. Chapter 4 presents results of our 

characterization of redox-related changes in these culture conditions. Chapter 5 presents 

changes in Ca
2+

 dynamics and the mathematical model used to infer potential 

perturbation in nodes of the network resulting in these changes. 
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Aim 3: Investigate cross-talk between ROS and Ca
2+ 

as it pertains to 

signaling and pathologies: The purpose of this aim was to create a map of interactions 

between these two signaling molecules and understand how oxidative stress can modulate 

Ca
2+ 

signaling. To permit the acquisition of single-cell live imaging data of Ca
2+

 signaling 

under temporally varying conditions of oxidative stress, we designed a deterministic, 

high-density single-cell trap array microfluidic platform for semi-automated cell trapping, 

stimulation and imaging. Because of the large degree of cross-talk between ROS and 

Ca
2+

 that are hard to independently examine experimentally, we developed an ODE-

based computational model and analyzed it in the frequency domain to discriminate 

interactions in terms of timescales. Validation of the model was experimentally 

performed using the single cell trap microfluidic platform and periodic stimulation of T 

cells. The microfluidic platform used to acquire live single cell experimental data is 

presented in Chapter 6, while the ROS/Ca
2+

cross-talk computational model and its 

validation are described in Chapter 7. 

 

1.2. Significance of results 

ACT efficacy largely depends on the quality of the transferred cytotoxic tumor-

specific lymphocytes in terms of specificity, functionality and further in vivo 

proliferation. Transfusion of cells in a state of senescence would therefore hinder the 

immunotherapy’s effectiveness. Currently, there is no standard method to assess the 

quality of a mixed CD8+ T cell population’s immune response and its degree of 

senescence. Loss of CD28 has been associated with senescent CD8+ T cell population 

(16); yet its expression can be modulated by inflammatory cytokines  (17-19) and CD28
-
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cells have been shown to still be able to proliferate (20). A more robust metric for 

senescence requires a combination of biomarkers and therefore there is a need for a large 

scale characterization of the alterations occurring during in vitro aging. A reliable 

‘senescence metric’ would have a significant impact on the efficacy of the treatment but 

also on the design of new culture expansion methods. 

Because of the role of ROS as both a signaling molecule in normal physiology 

and a damaging agent during oxidative stress that can lead to acquisition and 

maintenance of a senescence phenotype (21), the characterization of the cellular redox 

environment during in vitro aging can provide new insight into the potential efficacy of 

antioxidant treatment or hypoxic culture conditions.  

The union of microfluidics and computational modeling is central to acquire and 

analyze experimental datasets, and then gain a better understanding of the biological 

system to further generate and test new hypothesis. In particular, the development of new 

microfluidic platforms for high-throughput analysis of single live cells and robust 

generation of biochemical samples enables the acquisition of high-quality experimental 

data at the single cell and population level to study T cell aging. We envision these 

platforms to be used in a clinical setting, for drug screens or to study other fundamental 

biological processes. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 The aging of the immune system or immunosenescence 

As a result of advances in medicine, the overall life expectancy of an individual has 

increased, and the US Census Bureau predicts that 25% of the US population will be 

comprised of individuals over 65. Living longer is good news, but it is also associated 

with chronic disease, increased susceptibility to infections, cardiovascular diseases, 

cancers, autoimmune disorders, chronic inflammatory diseases. Although aging affects 

multiple organs, the impact of aging on the immune system has widespread repercussion, 

in terms of response to vaccines and infections, as well as cancer (22-24).  

Immunosenescence is the name given to the global age-associated immune 

dysfunctions. Although it is generally accepted that some aspects of innate immunity are 

well preserved during aging, the existence of age related alterations on the innate system 

have been reported (25-28). More attention has been paid to age related changes in the 

adaptive immune system. Thymus involution results in an inability to produce new naïve 

T cells and T cell repertoire shrinkage (29). Fewer number of CD4+ T cells express 

CD28 (30). The number of terminally differentiated cytotoxic CD8+/CD28- memory T 

cells increase (31-33). These cells have shortened telomeres, mainly because of the loss 

of the costimulatory receptor CD28 and are unable to further proliferate.  

Pawelec introduced the concept of an “immunological space” filled with 

unresponsive, non-proliferative and resistant to apoptosis T cells (34).  Many of these 

CD8+ cells carry receptors for CMV, EBV or HSB (persistent herpes viruses), suggesting 

immune exhaustion due to chronic antigenic stress (35, 36).  
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Immunosenescence has very serious clinical consequences. It is partly responsible for 

the increased incidence of autoimmune diseases, infections or cancers, and subsequently 

decreased longevity.  

 

2.2 Adoptive T cell transfer therapy and immunosenescence 

Adoptive transfer is based on the principle of isolation and infusion of antigen 

specific or nonspecific lymphocytes with the aim of replacing, repairing or enhancing 

immune function. In particular, adoptive T cell therapy (ACT) has induced regression of 

malignant solid tumors in early-stage clinical trials for cancer patients with metastatic 

melanoma, malignant gliomas, renal carcinoma and ovarian cancer (37). The success of 

this therapy depends on the ability to optimally select or genetically engineer cells with 

targeted antigen specificity and then induce the cells to proliferate in vivo while 

preserving their effector function and engraftment and homing abilities. A potential cause 

of previous unsuccessful ACT clinical trials may have been the reintroduction of a non-

functional T cell population that had reached or was near replicative senescence (38). 

Preservation of replicative potential by telomere engineering or optimized culture 

condition might improve the engraftment and persistence of adoptively transferred cells. 

  

2.3 CD8+ T cell signaling in aging 

In addition to the study of age-related modifications in elderly CD8+ T cells, in vivo 

model of replicative senescence have been developed, replicating characteristics observed 

in elderly (39). Senescent cells are unable to respond to antigenic cues or IL-2 

stimulation, present striking alterations in functions and gene and protein expression 
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leading to decreased IL-2 production, irreversible cell cycle arrest, and resistance to 

apoptosis (23). In an earlier study, almost all molecules of the signaling pathways elicited 

by TCR were found to have decreased activation in human or mouse T cells with aging 

(40). Loss of CD28 (30), or deficiencies in lipid raft functions, leading to impaired 

membrane protein motility necessary to form the immune synapse with an antigen 

presenting cell (APC) (41-43) are possible mechanisms leading to the decreased 

activation. However, despite these general principles, some debate exists on specific 

proteins. Depending on the mammalian model and the cell differentiation status, there is 

no consensus on the alterations of those proteins (44, 45).  

 

2.4 Quantifying and predicting senescence 

The OCTO and NONA longitudinal study had the aim of defining an “immune risk 

profile”, based on the immunophenotype of elderly populations. Predictive factors 

extracted from the study comprise high CD8/CD4 ratio, few naïve cells and increased 

numbers of late differentiated CD8+CD28- T cells but it was found later that the 

“immune risk profile” characterized previously did not apply to centenarians (46). A 

similar metric has been developed by Hirokawa et al. to assess the extent of the age-

related decline of immune functions of individual before and after immunological 

restoration (47).  

Certain immunotherapies utilize solely CD8+ T cells and cannot use the metrics 

previously described as they rely mainly on the ratios of different cell subpopulations. It 

has been proposed to use the absence of CD28 (31) or the appearance of late 

differentiation marker CD57 (48) as markers of T cell senescence. However, univariate, 
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static assays measuring expression of surface markers alone are not always accurate for 

prediction of senescence (17-19) and combinations of biomarkers need to be considered 

to quantitatively predict the level of senescence in a population (49-52). To date, prior 

proteomic and microarray studies have not attempted to determine the most informative 

metrics of cellular senescence for the purposes of generating predictive models of T cell 

function, and relate to functional dynamics of TCR activation.  

 

2.5 ROS in lymphocyte aging 

The imbalance between the production of free radicals and antioxidant defenses is a 

characteristic of the aging process. In other cellular systems, it has been shown that while 

antioxidant defenses decrease (53, 54), production of ROS from mitochondrial leakage 

(55, 56) or overexpressed NADPH oxidases (57, 58) lead to an oxidative shift in the cell 

cytoplasm.  A dynamic feedback loop between ROS production and DNA damage 

response induced senescence has been demonstrated in human fibroblasts to maintain the 

senescence state (59), as well as a ROS-mediated bystander effect to spread senescence in 

fibroblasts cell clusters (60). 

Lymphocytes are affected by non-specific sequels of the aging process such as 

oxidative stress or glycation (10, 11, 61, 62). DNA damage and repair increase (63, 64) 

while proteasomal (11, 65) and methionine sulfoxide reductases A (66) activities 

decrease leading to the accumulation of oxidized non-functional proteins. Increase in 

mitochondrial leakage (67-69) and resulting mitochondrial DNA damage (70) has been 

demonstrated. However, to our knowledge, the alterations in the intracellular antioxidant 
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and ROS production capacity by NADPH oxidases with in vitro aging have not been 

characterized.  

Clinical trials involving antioxidant supplementation have shown mixed results so far. 

In rodents, overexpression of catalase (71) and thioredoxin (72) or intake of the 

antioxidant thioproline (73) resulted in increased lymphocyte function and overall 

lifespan (73). In humans, antioxidant intake was inconclusive (74-76).   

 

2.6 ROS as a signaling molecule in lymphocytes  

During T cell receptor engagement, a rapid oxidative burst occurs to regulate and 

enhance downstream protein activation. The generation of free radicals by the 

mitochondria has been proposed as a source of early TCR stimulated ROS (77). 

However, the majority of ROS production has been attributed to non-phagocytic NADPH 

oxidases, Duox1 and Nox2 (78, 79). The Ca
2+

 sensitive Duox1 is responsible for the early 

phase of H2O2 generation occurring within 2 to 4 minutes after TCR stimulation (79). 

Nox2 gets activated 20 minutes later and produces superoxide anions (78, 80). Key 

regulators of T cell activation can be glutathionylated, leading to an increase (Ras) or 

decrease in their activity (MEKK1). Protein phosphatases are also known to be regulated 

by glutathionylation or disulfide formation (81). Intracellular glutathione levels are 

tightly controlled in lymphocytes (82) and the intracellular redox network tightly 

controlled to protect against deviations in the redox states (83).  
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2.7 Ca
2+

 as a signaling molecule in lymphocytes  

Ca
2+

 is a ubiquitous second messenger regulating signaling in lymphocytes. When a 

ligand binds to the TCR, tyrosine kinases Lck, LAT and Zap70 are recruited to the 

TCR/CD3 complex and ultimately activate phospholipase-C (PLC-). Phosphorylated 

PLC-cleaves PIP2 to generate IP3. IP3 binds to the IP3 receptors (IP3R) on the ER 

membrane and activates Ca
2+

 release. STIM1, an ER transmembrane protein, can sense 

Ca
2+

 store depletion, by the dissociation of Ca
2+

 from a binding site in the luminal 

portion, triggering a structural change. STIM1 then forms oligomers that migrate to ER-

plasma membrane appositions in tens of seconds and recruits ORAI1, a pore subunit of 

the CRAC (Ca
2+

 release activated channel) channels located on the plasma membrane, 

and opens it possibly by binding to an N-terminal region of ORAI1 (84). To prevent early 

closure of the CRAC channel, mitochondria migrate to the immunological synapse and 

buffers local Ca
2+

 (85). SERCA on the ER membrane and PMCA pumps on the plasma 

membrane act as exit channels for Ca
2+

, either by resequestration or release into the 

extracellular space. 

An interesting feature of Ca
2+

 signaling is its ability to present oscillatory behaviors. 

At resting levels, random spontaneous spikes of Ca
2+

 release have been reported, 

probably due to stochastic IP3 receptor clustering (86, 87). When challenged with low 

levels of stimulation or partial depletion of stores, 5-10 mHz Ca
2+

 oscillations occur (88). 

Ca
2+

 oscillations enhance the efficiency of signaling to the nucleus and the oscillation 

frequency contributes to specific activation of transcription factors (89, 90). Evidence 

suggests that the oscillations are derived from the repetitive and coordinative opening and 

closing of CRAC channel, rather than from repetitive Ca
2+

 release from the ER. Intrinsic 
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delays might occur when STIM1 senses changes in store content, oligomerizes and 

migrates before opening the CRAC channel. 

  

2.8 Known interactions between ROS and Ca
2+

 signaling 

As described in section 5, ROS is a signaling molecule able to modulate strength of 

signaling. This section will focus on the interactions and cross-talk between ROS and 

Ca
2+

 signaling as it pertains to lymphocyte signaling. Excellent recent general reviews of 

cross-talk between ROS and Ca
2+

 can be found in (91-94).  

In B lymphocytes, Ca
2+

 and ROS generated upon BCR activation engage in a 

cooperative interaction that acts in a feedback manner to amplify the early signal 

generated (95). This cooperativity acts by regulating the concentrations of Ca
2+

 and 

Duox1 produced ROS. The latter inactivates receptor-coupled phosphatases, fine-tuning 

kinases activity and, as a result, the net strength of the initial signal. In T cells, activation 

of Duox1, associated with the IP3R depends on Ca
2+

 release from the ER and potentially 

phosphorylation of PKC (79).  

The influence of Ca
2+

 on ROS signaling can be summarized in a first approximation by 

Ca
2+

 binding on Duox1. High concentration of mitochondrial Ca
2+

 triggers mitochondrial 

permeability transition pore opening and enhances ROS production in isolated 

mitochondria (96-98). 

 The influence of ROS on Ca
2+

 signaling on lymphocytes is more complex. It is believed 

that oxidation increases activity of IP3R (99) and RyR (100, 101). The close proximity of 

the mitochondria leaking free radicals might be responsible for stochastic modulation of 

these Ca
2+

 release channels and subsequent Ca
2+

 spikes. Oxidation also affects STIM1 
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and ORAI1, suggesting a role for ROS in the time delay in the opening of the CRAC 

channel. However, the role of ROS in SOCE (store-operated Ca
2+

 entry) is not clear yet 

(102). During oxidative stress in B lymphocytes, Hawkins et al. showed that S-

glutathionylation of STIM1 leads to a decrease in Ca
2+

 binding, mimicking empty Ca
2+

 

stores, and leading to constitutive activation of the CRAC channels, independently of ER 

Ca
2+

 concentration (103); conversely Prins et al. demonstrated binding of STIM1 to the 

ER oxidoreductase ERp57, inhibiting SOCE, suggesting a negative role of oxidation on 

STIM1 (104). Orai1 has been reported to be activated in a STIM1–dependent manner 

after H2O2 exposure (105); but in another study, in T lymphocytes, ORAI1 was observed 

to be inhibited by oxidation of Cys195 by H2O2 (106). Finally evidence on other model 

systems shows that Ca
2+

 uptake channels, such as SERCA on the ER (107-110) or PMCA 

(111, 112) on the plasma membrane are affected by ROS.  

   

2.9 Microfluidics as an excellent tool for biological experiments 

Microfluidics or lab-on-a-chip is an emerging area wherein biological samples are 

manipulated on the micron length scale, or pico- to nano-liter by volume (113).  

Microfluidics is particularly suitable for high-throughput analysis and automation; 

because of the laminar flow conditions attainable on-chip, momentum, energy, and mass 

transport are deterministic and easily described by a set of well-known equations (114).  

Microsystems have made possible the study of very complex biological networks (115-

121), and single-cell analysis (122) by enhancing uniformity and controllability in sample 

handling and treatment (12, 123, 124). Microfluidics also allows for generating complex 

temporal stimuli (125-127). Single cell analysis on non-adherent cells has been enabled 
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by the design of cell traps (128, 129), however there is an unmet need to balance the 

fabrication complexity and operational complexity and also enable large-scale high-

resolution imaging.  

 

2.10 Using computational modeling tools to extract dominant 

signaling features and processes 

Cells process a multitude of external stimuli through receptor and adaptor proteins 

that converge on a core set of signal-transduction pathways. The picture gets even more 

complicated when cross-talk and feedbacks are incorporated. How are such complex 

inputs converted into robust signaling outputs? Mathematical methods have been 

developed to identify the dominant molecular signals that contribute to the cell response.  

Partial least square (PLS) regression analysis models have been applied previously to 

understand complex signaling networks involving multiple inputs and multiple outputs, 

without prior knowledge of the network structure (130-134). This data-driven modeling 

technique reduces the dimensionality of the dataset, extracts relationships between 

variables and can generate predictions.  

Approaches based on control systems theory have been proposed and applied to 

determine (1) pathways that dominate observed dynamics; (2) how the network decodes 

different frequencies; (3) whether it may be blind to specific frequencies. By measuring 

amplitude and phase responses of S. cerevisiae to imposed artificial oscillations of 

osmotic choc, Mettetal. et al. reconstructed an abstract model of the osmotic stress 

response (135). Bennett et al. discovered a previously unknown level of regulation in the 

galactose-response pathway in S. cerevisiae by monitoring metabolic gene regulation to 
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periodic changes in the external carbon source (136). Chemotactic responses of E. coli to 

time varying stimuli revealed the structure of the feedback transfer function linking the 

amplification and adaptation modules (137). These studies exemplify an important, 

emerging niche for biological analysis, involving the union of microfluidics, real-time 

imaging of biochemical cellular responses, and computational modeling. The essence of 

this experimental approach is captured through precise, reproducible delivery of well-

controlled patterns of stimulation to cells, real-time imaging of cellular responses, and 

effectively recapitulating these stimulation patterns in a computer model to see how the 

in vivo and in silico models compare (138). Studies involving mammalian cells bypassed 

cell exposure to periodical stimuli by using naturally occurring noise in protein 

expression as a diagnostic that can excite the system at many frequencies at once (139) or 

by creating an ODE model fitted to step induced experimental time courses and 

simulating in silico the frequency response of the pathway (140). 

Optimization of microfluidic setups for mammalian cells with high-throughput 

capabilities, and fast-switching, versatile stimulation patterns will enable the validation of 

models generated with traditional ODE tools but analyzed in the frequency domain. 
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CHAPTER 3  

PHENOTYPICAL AND SIGNALING BIOMARKERS OF 

SENESCENCE IN IN VITRO LONG-TERM CULTURE OF 

CYTOTOXIC T CELLS 

3.1. Introduction 

Immune cell-based therapies hold promise in cancer therapy by harnessing the 

body’s natural defense mechanisms against tumors, while leaving healthy cells unharmed 

(141, 142). Among those  therapies,  adoptive transfer of T cells (ACT) has resulted in 

encouraging clinical trials for treating metastatic melanoma as well as non-Hodgkin’s 

lymphoma, chronic lymphocytic leukemia and neuroblastoma (143-145). Although 

cancer cells are less immunogenic than pathogens, the adaptive immune system is able to 

recognize and eliminate tumor cells. Adoptive therapy with cytotoxic CD8+ cells (CTLs) 

relies on the isolation of functional and tumor specific T cells and large in vitro clonal 

expansion.  Once transferred back in the cancer patient, CTLs need to retain tumor 

specificity and proliferate further in vivo to establish an effective in vivo response and 

tumor shrinkage. In vivo persistence is a critical factor for elimination of residual or 

recurring malignant cells. The encouraging results of adoptive transfer therapy could be 

improved by enhancing the quality of transferred T cells. Cells derived from aged cancer 

patients have a skewed immune repertoire towards cells that underwent extensive clonal 

expansion against persistent antigens, resulting in few tumor-specific CTLs (22, 23, 32).  

Adapted from Rivet, C. A., A. S. Hill, et al. (2011). "Predicting cytotoxic T-
cell age from multivariate analysis of static and dynamic biomarkers." Mol Cell 
Proteomics 10(3): M110 003921. 
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Once isolated the tumor infiltrating cells go through a prolonged ex vivo culture 

process. T cells, as other somatic cells, have a finite clonal lifespan. Extensive in vitro 

proliferation and clonal expansion result in T cell differentiation and ultimately 

replicative senescence (146). To obtain sufficient number of cells before transfer, tumor 

specific CTLs are activated and undergo several rounds of divisions, resulting in the 

progressive shortening of telomeres. Chronic antigenic stress and critically short telomere 

length lead CTLs to enter a state of senescence characterized by functional changes. 

Although extensively cultured CTLs retain antigen specificity for the tumor (147), they 

present striking alterations in function and gene and protein expressions (23), e.g. they 

are in an irreversible cell cycle arrest, apoptosis resistant, with short telomeres and unable 

to respond to antigenic cues or IL-2 stimulation. Once transferred in the cancer patient, 

these replicative senescent cells will not be able to eliminate tumor cells and further 

proliferate, thereby hindering the efficacy of these therapies (148, 149).  

To ensure success of adoptive transfer therapy, it is desirable to evaluate T cell 

clones before transfer based upon their specificity or functionality, regardless of diverse 

in vivo priming, selection, or expansion methods. Similarly, evaluation of T cell clones in 

elderly population, or “immune signature”, can enable the identification of immune risk 

profiles correlated with increased risk of immune dysfunction and increased mortality 

(150). Phenotypic markers, such as the loss of expression of co-stimulatory markers 

CD27 (151) and CD28 (31), have been associated with senescent CD8+ cell population; 

however, individual biomarkers are not sufficient to measure the fraction of senescent 

non-responsive cells. Previous proteomics and microarray studies suggest that clusters of 

parameters would be more appropriate to quantify age-related alterations (49, 51, 52, 
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152), and yet to date, prior proteomic and microarray studies have not attempted to 

determine the most informative metrics of cellular senescence for the purposes of 

generating predictive models of T cell function. To enable quantification of the “age” of 

T cells as they expand in culture through combinations of biomarkers, we applied a 

partial least square regression (PLSR) modeling analysis from data obtained under 

conditions consistent with in vitro expansion prior to adoptive transfer in patients. The 

multivariate model developed in the present study assesses the quality of T cell function 

through the use of phenotypic markers and protein signaling dynamics. To acquire 

signaling dynamics, we adapted a previously developed microfluidic device (12) to 

sample rapid phosphorylation events by simultaneous lysing and fixing of stimulated 

cells. This technology takes advantage of the uniformity and controllability in sample 

handling and treatment to reduce error associated with biochemical assays; at the same 

time, it requires a small number of cells and performs the assay in a high-throughput and 

parallel fashion (12, 123, 124). Lysates provide population-averaged measurements 

compatible with downstream proteomic techniques, while fixed cells analyzed by flow 

cytometry reveal subpopulations and phenotypic variations within genetically identical 

cells.  The dataset containing signaling dynamics, cellular morphology, and surface 

expression levels acquired under the uniform, precise conditions of the microfluidic chip 

allowed the model to determine relative contributions of each metric to the phenotype of 

replicative senescence despite large donor-to-donor variability. The multivariate analysis 

highlights the importance of both averaged values and heterogeneity in the cell 

population for prediction of the replicative senescence within a T cell population. 
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3.2. Results 

3.2.1. Parallel multi-time point cell stimulation and lysis on-chip for 

studying early signaling events  

This microfluidic device has been developed in collaboration with Dr. Alison Paul 

during my Master’s Thesis. It resulted in the following publication (12). The microfluidic 

chip used in this study is largely inspired by this previous work. 

 

High time resolution acquisition of signaling dynamics is necessary to understand 

many biological processes related to cancer, immune responses or drug response and to 

generate quantitative data for accurate computational model generation. We have 

developed a robust two-module microfluidic platform for simultaneous multi-time point 

stimulation and lysis of T cells with a resolution down to 20s using only small amounts of 

cells and reagents (Figure 3.1) (12).  
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Figure 3-1: A schematic of the devices showing inlets, tubing, pressure drop channels and cell 

lysate outlets for sample collection. The respective residence time t in each unit is noted in a red 

box. Inset (a) shows a close-up of Module 1 and (b) the whole device setup. (Adapted from [20]) 

 

Fast mixing of reagents (stimulus and lysis buffer) with cells is achieved by chaotic 

mixing through herringbone structures (153). Parallel and uniform acquisition of eight 

different stimulation time points from the same initial cell population is enabled by the 

use of tubings of different lengths and diameters between both microfluidic modules. The 

flexible nature of this modular design allows easy adjustment of time points without 

changing the device or operation conditions. Operation of the device does not elicit 

adverse cellular stress and allowed for the generation of 48 protein measurements from a 

single experiment and only 10 million Jurkat cells, 5% of the amount that would be 

required in conventional methods. 
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3.2.2. Multi-time point cell stimulation and simultaneous lysis and fixation 

on-chip. Device design and operation. 

We have adapted the two-module microfluidic chip presented in Figure 3.1 to allow 

simultaneous lysis and fixation of primary CD8+ T cells (Figure 3.2). This single-layer, 

modular microfluidic chip is capable of precisely stimulating suspended cells and 

subsequently lysing and fixing the flowing cells in parallel. In the first module, cells and 

soluble -CD3 and -CD28 antibody stimuli are mixed by chaotic mixing using the 

staggered herringbone mixers (SHM) in the channels (12, 153), and split into 8 different 

channels, corresponding to 8 different time points sampled (12). Channel height (90 

versus 70 m) has been optimized to CD8+ T cell size.  We have previously shown that 

eight cycles of herringbones are sufficient to mix the solutes completely, but we observed 

that this configuration leads to a predictable cell focusing pattern in specific outlets, 

insensitive to the additional number of cycles of SHM used or the Reynolds number. To 

redistribute cells more evenly to facilitate the downstream cell and lysate collection, 

grooves with randomizer geometries were added after 9 cycles of herringbones, as well as 

a large splitting area. A flow rate of 44 L/min was chosen as it led to the most uniform 

cell distribution in the 8 outlets (Figure 3.2b).  

The second module receives the cells that have been stimulated for the desired time in 

the tubings. The length of the tubings was determined using the following formula:  

   
   

    
  (3.1) 

where    represents the length of a tubing, t represents time spent in the tubing, Q is the 

volumetric flow rate and   corresponds to the radius of a tubing. Time spent in the 

tubing is defined as: 
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               (3.2) 

where 

 
   

     

 
 (3.3) 

represents the time spent in the first module and in the pressure drop channels with 

rectangular cross sections (L, H and W are respectively the length, height and width of 

the channels) and          is the total stimulation time desired.  

We used de novo pressure drop channels to ensure all cells are maintained at the same 

flow rate (Figure 3.2c) and modified its geometry to minimize shear forces cells are 

subjected to. These spiral pressure drop channels did not cause measurable inertial 

focusing or separation of cells. After stimulation, cells are split into two equal 

populations for lysis or fixation to quench the reaction. Thus, one single experiment 

yields 8 lysates and 8 fixed cell populations for 8 different time points. Since we were 

interested in sampling early dynamics after TCR engagement, we chose to look at the 

first seven minutes of dynamics, the earliest time point being 30 seconds. Each of the 

eight lysates was analyzed for six proteins; therefore each experiment resulted in 48 

dynamic measurements. 
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Figure 3-2: Microfluidic Device for cell stimulation and simultaneous fixing or lysing.  

a) Schematic of the two-module microfluidic chip.  Module 1 receives the cells (1) and soluble 

stimuli (2), mixes these solutions and splits in 8 equals outlets.  Module 2 is linked to module 1 

by 8 tubings of different lengths and diameters and receives the cells in the circular pressure drop 

channels.  Stimulated cells are mixed either with a fixing solution, here formalin (3) or lysis 

buffer (4).  Lysates (5) and fixed cells (6) can be collected.  b) Superposition of inverted bright 

field images showing cell distribution in the splitting area of module 1 at 44 µL/min. White dots 

are individual cells.  c) Spiral shaped pressure-drop channel and splitting area for cell fixation or 

lysis (colors are from food coloring dye solutions that fill the channels).  d) Mixing of cells 

(yellow) with lysis buffer (blue) or formalin (green). 

 

 

Figure 3.3 compares the dynamics of ERK phosphorylation acquired by flow 

cytometry and Luminex bead-based assay for different donors and different times in 

culture. The trends of the signaling dynamics are conserved between both methods with a 

Pearson’s correlation coefficient R = 0.61 (Figure 3.3c). The flow cytometry analysis in 

general is able to detect higher activation slopes than those achieved with a Luminex 
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assay, suggesting a higher sensitivity, and/or specificity likely due to the antibody used 

and the nature of the assay. Furthermore, although phosphatase inhibitors were present in 

our lysis buffer and most phosphatases are sensitive to fixation (154), a differential 

inactivation of those phosphatases in the two sample acquisition methods might also 

explain differences observed in phosphorylation levels between those two assays. 

 
Figure 3-3: Dynamics of ERK phosphorylation measured by flow cytometry on fixed samples 

and bead-based immunoassay on lysates. a-b) Representative traces of ERK phosphorylation for 

donor 2 at days 11 and 13. Flow cytometry and lysate data are normalized so that the mean value 

of the time course is equal to 100. c) Linear correlation of ERK phosphorylation between fixed 

and lyzed samples. Data with residuals larger than expected in 90% of the observation were 

considered as outliers and removed from the regression.  d) Representative flow cytometry time 

course of ERK phosphorylation (also displayed in 3.3a) showing analog activation.   
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3.2.3. Global characteristics of age-associated protein expression and 

activation changes in human CD8+ T cells 

Although aging of immune cells has been the focus of intense research, it is difficult 

to reconcile reports characterizing a variety of biomarkers over a range of culture 

conditions. By maintaining uniform expansion and sampling conditions, we obtained the 

data in Figure 3.4 presenting trends across multiple donors for limitations of population 

doublings, cell growth arrest, surface marker expression, and T cell activation dynamics. 

The final dataset consists of >2500 measurements generated from 4 donors.  
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Figure 3-4: Complete dataset. For each donor, dendrograms were generated with signaling 

measurements from lysates (left and middle), protein phosphorylation quantification and instant 

derivatives of those measurements. Flow cytometry dendrograms (right) contain ERK 

phosphorylation, cell cycle, cell morphology, surface marker, profilin-1 and p16
ink4

 expression. 

Each row of 3 dendograms corresponds to a different donor. In each dendogram, a row 

corresponds to a sampled time. Each column corresponds to a particular variable measured.   

Human CD8+ T cells cultured with IL-2 and bead-based CD3/CD28 stimulation reach 

replicative senescence after 12 population doublings: Primary CD8+ T cells, cultured 

with chronic bead-based -CD3, -CD28, and IL-2 stimulation, achieved 12.2 ± 0.9 

population doublings, i.e. about 1,000-fold expansion, which is consistent with previous 
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observations (155, 156). After 12 population doublings, an increase in IL-2 stimulation or 

in the number of beads did not allow for further growth (Figure 3.5). The cell population 

could be maintained in culture for several weeks with appropriate culture conditions (IL-

2 stimulation and fresh media), suggesting the state of replicative senescence had been 

reached (157).  At different stages in culture, cells were sampled in order to observe 

changes in cell morphology, cycle, phenotypical markers and signaling as they “aged” in 

culture. 

 
Figure 3-5: Time course of population doublings for each donor. The dark grey boxes correspond 

to times when cells were sampled to assess their phenotype and function through static expression 

levels and dynamic phosphoprotein dynamics. Donor 4 cells were sampled at different days in 

culture to correspond with equivalent population doublings. 

 

 

Changes in cell morphology and cell growth arrest: We observed a progressive decrease 

in cells in S/G2 phase as cells expand in culture, as others have reported (158). At the end 

of the proliferation phase, cells were found primarily in the G0/G1 phase of cell cycle 
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(Figure 3.6a). We also observed changes in cell size and shape as cells age through 

forward and side scatter detection by flow cytometry. Cell size progressively decreased 

with age and the variance in cellular shape increased (Appendix A.S1). Prior proteomic 

analysis of in vitro cultured CD4+ T cells identified profilin-1 as a potential biomarker 

for senescence (51); therefore this protein was included in our panel. However, no 

statistically significant changes in profilin-1 expression were observed in our CD8+ cell 

population as a function of days in culture (Appendix A.S1). Accumulation of the cell 

cycle checkpoint p16
ink4 

has been observed in senescent T cells (159, 160). However, in 

our study, the increase in p16
ink4 

expression during in vitro aging was found to be not 

significant (Appendix A.S1). 

 

Changes in surface marker expression with time in culture: Phenotypic markers of 

differentiation or co-stimulation have been associated with immunosenescence (151, 161-

163). We observe a drop in CD28 expression (Appendix A.S2), from 84 ± 4% of CD28+ 

cells at PD 2 to  21 ± 3% at PD 12,  consistent with replicative senescence (164). We also 

observe a decrease in CD27 expression (Figure 3.6b and Appendix A.S2). Although the 

number of cells expressing the marker remains around 95%, there is a continuous 

decrease in mean fluorescence intensity, indicating a decrease in the number of 

costimulatory molecules present on the surface of each cell.  After an initial drop in the 

number of CD57+ cells early in culture, the level of cells expressing CD57 remained 

constant (Appendix A.S2). We did not observe significant changes in the memory 

phenotype surface marker CD45RO (Appendix A.S2).  
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Overall decrease in protein activation following T cell receptor stimulation: Along with 

changes in surface marker expression, it has been proposed that T cell function decline 

with age could be due to the development of defects in the transduction of mitogenic 

signals following T cell receptor stimulation (165). From the lysates yielded by the 

microfluidic chip, we quantified the levels of phosphorylated CD3, Lck, Zap70, LAT, 

ERK and CREB following T cell receptor ligation using a high-throughput, multiplex 

bead-based assay (12). We chose to examine early phosphorylation events within 7 

minutes of stimulation. T cell receptor stimulation led to an increase in the levels of 

phosphorylated proteins, with the magnitude and kinetics of activation dependent on the 

protein, the donor and the age of the cell population (Figure 3.6c and Appendix A.S3). In 

general, a global decrease in the magnitude of the peak activation levels was observed 

(Figure 3.6c and Appendix A.S3). Along with those lysates, the microfluidic chip 

provides fixed cells that have encountered the same stimulation conditions and that can 

be used for further single cell studies.  
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Figure 3-6: Cell cycle, surface marker expression and signaling trends over time in culture.  

a) Percent of cells in the G0/G1 phase determined by the Dean Jett Fox model. Restimulation 

with -CD3, -CD28 was performed at passage 6 and 10. b) CD27 expression over time in 

culture (representative donor data). c) Lck and pErk activation profiles over time in culture. The 

green line corresponds to the mean of our 4 donors. The box plot represents the median, the 25
th
 

and 75
th
 percentile as well as outliers. 
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ERK activation has been shown to be essential in mediating proliferation and 

telomerase activation (166, 167) and displays digital or analog activation patterns 

depending on the strength and the nature of the stimulus (168-170); thus we investigated 

this protein by single cell analysis. Analog activation appeared with -CD3-CD28 

stimulation on our CD8+ T cell population throughout the duration of culture (Figure 

3.3d). This analog activation is consistent with observations by Singh et al. who also 

relied on -CD3/CD28 as the means of T cell activation (169). As with the lysate 

dynamics, an overall decrease in signaling was observed with time in culture. We also 

measured the heterogeneity in cellular ERK activation within the population, as 

determined by the coefficient of variation (CV) of the histograms for each time point. 

Higher coefficients of variations are observed very early and late with respect to culture 

time (Appendix A.S4). Heterogeneity in the composition of the initial cell population 

isolated (naïve vs. effector) might result in this high CV observed early in culture. 

Extraction of biomarker combinations of cellular age in culture and prediction of cellular 

age and quality: Several biomarkers present modest correlation with time spent in 

culture; however their rate of change is very donor-specific and therefore individual 

markers are not sufficient to distinguish non-senescent populations with early-senescent 

populations. We therefore sought a combination of markers suitable for quantifying age 

in the cell populations.  Hierarchical clustering is a common method used in microarray 

analysis to extract clusters of genes or proteins having similar response to the same 

environmental factors (171). Applied to our signaling and flow cytometry data, 

hierarchical clusterical of the protein phosphorylation time courses suggested higher 
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phosphorylation values in “young” cells (Figure 3.4). However, the clusters are very 

donor-specific. Combinations of biomarkers consistent for all donors do not emerge. In 

addition, this cluster analysis technique, very useful to interpret large dataset and group 

“like” variables, cannot convey quantitative contributions of markers with predictive 

power of T cell “age” or quality. Therefore, we applied further analytical methods for 

extracting markers of aging and their relative contribution to aging that would be 

universally predictive across donors. 

3.2.4. A combination of dynamic signaling and expression metrics (Lck, 

ERK, CD28 and CD27) are the most informative markers in predicting 

cellular age. 

To relate cell age to network activation and phenotypic markers, we constructed a 

PLSR model. This data-driven modeling approach allows for complexity reduction in 

multivariate protein expression and signaling data to identify the most informative 

variables, and has been previously used to predict cellular fate or cytokine production 

(131, 132).  The 140x18 data matrix was parsed by defining the dynamic activation 

profiles of 6 proteins phosphorylated after T cell receptor ligation (time-course 

measurements and instantaneous derivatives), cell morphology, cell cycle, costimulatory 

and differentiation surface markers, and heterogeneity in the population for the flow 

cytometry data all as independent, predictor variables (i.e. X-block) in our data matrix 

(Figure 3.4 and Appendix A.T1). The number of days spent in culture or number of 

population doublings were defined as variables that depend on the X-block (i.e. Y-block) 

for regression purposes. The principal components derived by the PLSR model contain 

linear combinations of the predictor variables optimized for maximum covariance with 
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the dependent outcomes. From this initial optimization, a pruning step was implemented 

by removing variables with both low importance in the projection and high uncertainty as 

determined by jack-knifing. The resulting 71x18 data matrix was fitted with a 3-

component model with R
2
Y = 0.96 (goodness of fit). The model captures variance in the 

data with a Q
2 

= 0.78 (measure of the cumulative fraction of the total X-block variation 

that can be predicted by all components).  Individual observation sets, defined as all 

measurements for a specific donor for a specific day in culture, were mapped onto the 

first two principal components via their scores to determine how observations from 

different experimental conditions influenced the overall age prediction.  Samples from 

late days in culture segregate with positive PC1 loadings, suggesting that the first 

component can be coarsely defined as an “age” axis (Figure 3.7a). This first component 

can effectively estimate cell age with a R
2
Y = 0.667, Q

2 
= 0.53. The second component 

captures additional 23% of the variance in the data. 

Clusters of predictor variables that are highly correlated with outcome variables can 

be visualized by their proximities to one another on the weight plots in principal 

component space (Figure 3.7b). Signaling information is mostly anti-correlated to age, 

consistent with the general understanding of altered signaling dynamics. An analysis of 

the weight of each variable highlights the importance of the proteins ERK, Lck and LAT 

for predicting cellular age (Appendix A.T2-3). CD27 and CD28 expression, and number 

of cells in the G2/M cycle phase appear to be heavily negatively weighted in the first 

component. Somewhat surprisingly however, the heterogeneity of the cell population in 

cellular shape, the heterogeneity in CD57 expression, and the basal level in 

phosphorylated ERK emerged as being highly positively correlated with cellular age 
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(Figure 3.7c). The heterogeneity in ERK phosphorylation in stimulated cells emerges as 

important in the second component (Figure 3.7d).  P16
ink4

 influence was largest in the 3
rd

 

component (not shown) and was positively correlated to age. This comprehensive model 

is capable of accurately predicting day in culture and number of divisions with regression 

coefficients (R
2
Y) of 0.91 and 0.98 respectively (Figure 3.7e-f).  The robustness of the 

predictions was tested by iteratively omitting one donor set at a time and re-applying the 

algorithm on the remaining three donor sets. The regression is performed on the mean of 

four different predictions; errors in the predicted value generated in this manner (Figure 

3.7e-f) reflect variation in the ability of the model to be applied to new donor datasets 

that it has not been previously been trained on. 
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Figure 3-7: Cellular age prediction with signaling measurements and phenotypic markers using a 

multivariate regression model. a) Loading plot of the observations in the reduced principal 

component space. b) Score plot of the predictor variables on the principal components space. Y-

variables are highlighted in red box. c-d) Weight of the most important variables (weight>0.4) in 

the first (c) and second component (d). e-f) Prediction of day (e) and number of divisions in 

culture (f). 
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Signaling information alone is sufficient for aging prediction: While surface markers are 

commonly used as metrics of aging, to date a multivariate characterization of replicative 

senescence as a function of signaling dynamics has not been attempted. We sought to 

determine if a model containing only signaling information from lysates and flow 

cytometry enabled cell age prediction. The X-variance captured by this reduced model is 

lower than in the model previously described, with a Q
2
=0.54;  however this model is still 

able to accurately predict the number of days since isolation or the number of population 

doublings with a regression coefficient R
2
Y of respectively 0.84 and 0.94 (Figure 3.8). 

As in the previous model containing all types of data, the first component is loosely 

partitioned as a measure of age (Figure 3.8a). The instant derivatives of signaling at very 

early time points enabled by the fast sampling of the microfluidic device are important in 

this model (Appendix A.S4-5); the instant derivative of ERK phosphorylation after one 

minute of stimulation emerged as the most significant anti-correlated variable while the 

model also extracted the instant derivative of Zap70 phosphorylation at 1.5 min as a 

significant predictor. A simple multiple regression based on just ERK and Zap70 metrics 

enables age prediction with R
2
 = 0.65. The most heavily weighted signaling variables 

have been sampled between 1 and 3.5 min after stimulation, pointing to the importance of 

very early signaling dynamics (Figure 3.8b and Appendix A.T4). An analogous modeling 

exercise was performed with only surface marker data (Appendix A.S5). CD27 and 

CD28 expression, as well as CD57 coefficient of variation emerged as the most 

informative metrics. The PLSR prediction of days in culture was improved in the 

signaling model (R
2
Y = 0.84 vs. 0.78) but slightly less accurate in predicting population 

doubling (R
2
Y = 0.95 vs. 0.98). 
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Figure 3-8: Cellular age prediction from signaling data only. a) Loading plot of the observations 

in the reduced principal component space. b) Score plot of the predictor variables on the principal 

components space. c-d) Prediction of day (c) and number of divisions in culture (d). 

 

 

Signaling information can predict co-stimulatory molecule expression: CD27 co-

stimulation with TCR enhances cell expansion and promotes cell survival (172). The co-

stimulatory molecule CD28 is involved in T cell receptor signaling amplification by PI3K 

activation and downstream Ca
2+

 mobilization (173) as well as indirect ERK activation via 

Lck (174, 175). Therefore, the loss of CD28 and CD27 with cellular age would be 

expected to be directly correlated to altered T cell receptor downstream signaling. To test 

these relationships, we built a model that predicts phosphorylation levels from surface 

protein expression markers. This model behaved poorly (R
2
Y=0.27; Q

2
=0.1). The 



38 

 

expression of CD27 and CD28 is not sufficient to accurately predict any of the signaling 

variables. In contrast, a model based on signaling time courses and regressed against 

costimulatory surface marker expression is able to successfully predict both CD28 and 

CD27 surface expression with a correlation coefficient ranging from 0.75 to 0.91 (Figure 

3.9c-e). CD27 mean fluorescence intensity is highly correlated to the instant derivative of 

ERK phosphorylation after one minute of stimulation and anti-correlated to the slope of 

deactivation of CREB after 2.5 min of stimulation. Lck phosphorylation is strongly 

correlated to CD28 expression and the rate of decay in LAT phosphorylation after 3.5 

min of stimulation is strongly anti-correlated to CD28 expression. Globally, CD28 

expression clusters with early dynamics (0.5-3.5 minutes) of ERK, Lck and LAT (Figure 

3.9b). 

 
Figure 3-9: Surface marker prediction from signaling information during the aging process.  

a) Loading plot of the observations in the reduced principal component space. b) Score plot of the 

predictor variables on the principal components space. c-e) Prediction of the percentage of 

CD28+ cells (c),  and CD27 (d) and CD28 (e) mean expression. 
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3.3. Discussion 

The outcome of immune based therapies, such as adoptive T cell transfer therapy or 

engineered vaccines, is dependent on the quality of T cell clones used (148). Progress has 

been achieved towards improved T cell expansion methods in the past few years (176):  

new culture mediums as well as improved stimulation techniques have been developed 

(177-179), and cord blood has been harnessed as a source of non-senescent lymphocytes 

for tumor immunotherapy (180).  

To assess the quality of expanded cells, researchers/clinicians generally perform 

functional assays (e.g. cytokine production (181) or cytotoxic T-lymphocyte (CTL) 

assays) or examine surface marker expression, such as the extent of CD28 loss or the 

appearance of late differentiation markers such as CD57 (162).  Univariate, static assays 

measuring expression of surface markers alone are not always accurate for prediction of 

cell functionality. While CD28 is considered as a biomarker of immunosenescence, its 

expression can be downregulated by tumor-necrosis factor (TNF) (17, 18)  or upregulated 

by IL-12 in CD4+ cells (19). It was also shown that CD8+CD28- cells are able to 

proliferate (20) and therefore the loss of CD28 is not necessarily associated with 

senescence. There is also contradictory evidence concerning loss of the co-stimulatory 

molecule CD28 and altered downstream signaling. Larbi et al. suggested that differential 

localization of CD28 in lipid rafts and not the actual number of receptor could explain 

disparities in response to stimulation for CD4+ cells (182). Hence, CD28 alone cannot be 

considered as a direct marker of senescence, and combinations of biomarkers need to be 

considered to quantitatively predict the level of senescence in a population.  



40 

 

To measure T cell response, different assays exist to measure early (calcium influx, 

protein phosphorylation within a few minutes after stimulation), intermediate 

(degranulation or cytokine production) or late functions (proliferation and apoptosis) 

(183).  Although cytolytic assays are very informative in assessing cell functionality, they 

rely on bulk population measurements which may mask deficiencies in subpopulations 

and usually require additional culture preparation of target cells (184). The analysis of 

signal transduction protein phosphorylation after T cell receptor stimulation can be used 

as a proxy for cell functionality, and offers insight on mechanistic details (166, 185). 

Flow cytometry can provide additional information regarding the heterogeneity of the 

early phosphorylation events in T cell signaling, while lysates provide multiplexed 

capabilities of many measurements at once. Although a combination of the two 

acquisition methods provided the optimal model, our results suggest that signaling 

information alone is comparable in prediction of cellular age and can also predict surface 

marker expression. In contrast, the reverse is not true: while surface markers alone 

provide information on cellular differentiation state and can predict cell age, they cannot 

predict protein phosphorylation changes as a measure of cell functionality (data not 

shown).  

 

Determination of clusters of biomarkers and aging quantification is largely facilitated 

by the development of computational models, and several efforts to model and quantify 

cellular age in various cellular model systems have been published recently. Lawless et 

al. developed estimates of fraction of senescent cells in human and mouse fibroblasts 

using growth curves and candidate markers, such as p21 or DNA damage foci loci in 
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paraffin-embedded tissue sections (186). Tsygankov et al.  created a stochastic model that 

links p16
ink4 

expression with aging (187). Proteomic analysis of elderly patient-derived T 

cells expanded in vitro to senescence used statistical discriminant analysis to identify 

potential biomarkers (51). Each of these prior studies has relied on static information 

from the cells rather than functional dynamics of TCR activation. As there is no 

consensus for the best biomarkers of in vitro aging for CD8+ T cells, we chose to utilize a 

multivariate approach, combining surface phenotype of CD8+ lymphocytes and 

intracellular signaling.  

In this work, we developed a microfluidic tool and a statistical model to evaluate cell 

responsiveness and accurately predict cell “age” and quality respectively. It has been 

observed that T cells are able to stimuli within seconds, such as TCR ligation initiating a 

burst of calcium (188). The design of the microfluidic device enabled sampling of the 

rapid protein phosphorylation dynamics in the first few minutes following stimulation 

with minimal standard error, and allowed us to obtain accurate measurements in a high-

throughput manner. As shown previously, chaotic mixing and flow in narrow channels at 

low Reynolds number does not elicit adverse stress response (12). The ability to 

reproducibly sample with 30-90 second intervals enabled the use of instant derivatives as 

additional variables in the regression model; thus, the microfluidic device provided an 

additional benefit in enhancing the information content from the signaling data. Although 

others have reported derivatives of time courses to be less informative in PLSR analysis 

(130-132, 189, 190), these studies relied on signaling dynamics that extended for hours 

rather than minutes. Because the device can stimulate a small number of cells with high 

temporal resolution and subsequently lyse and fix them in parallel, we could seamlessly 
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“stitch” together complementary measurements for our statistical analysis from 

populations of cells treated identically, not only from day to day, but also within a 

particular stimulation experiment. Because donor-to-donor variability is a confounding 

factor in deriving robust biomarkers of senescence, the technological platform minimizes 

the experimental data variance so that meaningful dimension reduction could be 

performed, as shown by the conserved trends of signaling of phosphorylated ERK 

(Figure 3.3). Cheong et al. have developed a microfluidic device able to measure time 

courses of signaling responses to continuous or with wave form soluble stimuli with 

immunofluorescence on chip on adherent cells (124). In contrast to our design that 

performs off-chip biochemical and cellular analysis, their immunostaining was performed 

on chip. Their device provided single-cell data on fixed cells, similar to live cell imaging 

and could be used to discriminate single cell versus population signaling dynamics. As 

with flow cytometry or microscopy, however, one is limited by the number of proteins 

that can be measured simultaneously. With the microfluidic chip presented here, the 

simultaneous fixing and lysing of cell populations which have encountered the same 

environmental conditions allowed us to use multiplexed capabilities of lysates while 

being able to probe for the heterogeneity in ERK phosphorylation in aging populations 

with flow cytometry. This technique could also prove useful in future applications for 

distinguishing signaling in different subcellular compartments, e.g. nuclear transcription 

factors, not directly accessible with detergent-based lysing.  

We developed multiple partial least square regression models to explore properties of 

the data and be able to predict physiological age of ex vivo expanded cells.  PLSR models 

have been applied previously to understand complex signaling networks involving 
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multiple inputs and multiple outputs, without prior knowledge of the network structure 

(130-132, 189, 190). Prior application of this type of modeling approach has 

demonstrated that antigenic information content is encoded within downstream 

phosphorylation events in T cells (132). This data-driven modeling technique is 

particularly well suited to carry multivariate analysis and predictions in extensive 

datasets, and therefore could be applied to extract correlations between age, signaling, 

and surface phenotype expression. From the analysis, CD28 and CD27 expression 

emerged as key markers in determining cellular age and also correlated strongly to 

intracellular phospho-protein dynamics. Interestingly, the model did not find any positive 

correlation between the effector memory surface markers CD57 and CD45RO and age in 

culture, contrary to a previous observation (162). This might be due to the culture 

conditions specific to each study. It has been reported that -CD3/CD28 artificial 

antigen-presenting cells as used here preferentially expand CD45RO- cells (178). CD57 

is a marker associated with the end-stage T cell differentiation. Elevated expression of 

CD57 has been observed on tumor-specific T cells. It may be the consequence of 

persistent chronic antigen stimulation, resulting in the accumulation of cells capable of 

rapidly secreting cytokines but that lack proliferative capacity (162). IL-2 

supplementation may have induced an increased loss of CD28 expression (191), blocking 

cell proliferation before CD57 upregulation. Thus, this model is limited in scope to the 

culture conditions assayed yet provides a generalizable approach that could be used for 

other expansion methods.  

Our model emphasizes the importance of early signaling dynamics (1-3.5 min after 

TCR engagement) to explain and predict cellular age. Others have reported alterations in 
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early signaling events in old mice (192) and in human T lymphocytes from elderly 

patients (193), furthering the common characteristics between ex vivo culture expansion 

and immunosenescence. Three major proteins, Lck, LAT and ERK, were extracted from 

the model as having primary roles in accurately predicting cellular age. Lck is the first 

protein to be phosphorylated after TCR engagement, leading to phosphorylation of the 

adaptor protein LAT via Zap70, and downstream phosphorylation of ERK. Impaired 

redox regulation (194), reduced calcium release (192, 195) and altered membrane rafts 

composition (194) are possible explanations for the impaired activation of those proteins.  

Previous studies have reported higher cell-to-cell variation with increasing age (196, 

197); however the modeling results suggest that this trend is more nuanced and depends 

on the protein in question. We find that the heterogeneity in CD57 protein expression and 

cellular shape is correlated with cellular age. In contrast, no direct correlation between 

age and cell-to-cell variation of ERK phosphorylation was discovered (Appendix A.S4), 

and yet as part of a multivariate analysis this CV variable still possesses a high predictive 

power. This suggests robustness in ERK response to intracellular noise created with 

aging (198). 

The multivariate PLSR model is able to assess the age and therefore the quality of a cell 

population for cells expanded using CD3-CD28 bead stimulation with IL-2 

supplementation. Past multivariate models associated signaling information with cellular 

fate (189), cytokine production (132), or drug response (199). These models enabled the 

creation of new hypotheses to test the validity of the model. In this application, aging is 

not a cell fate that we can modify and the biomarkers extracted are not correlated in a 

causal fashion to the age of the cells. This lack of a testable mechanism poses a limitation 
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to the study; however, the model yields novel insight on the most informative markers of 

the array selected for sampling, and predicts cellular age from those specific markers. We 

also envision this model to be a possible diagnostic tool to quantify immune age of 

elderly individuals or individuals presenting accelerated immunosenescence, such as HIV 

patients.  

 

3.4. Conclusion 

In summary, the design of a novel microfluidic chip enabled the statistical analysis of 

T cell aging by minimizing error in the sample handling between days and across 

multiple donors. We took advantage of chaotic mixing geometries and a modular chip 

design to capture the early phosphorylation events associated with TCR ligation, which in 

turn proved to be highly informative in the partial least square regression prediction of 

population doubling and days spent in culture. Our findings point to a cell signaling-

based assessment method that could quickly evaluate patient-derived cells for degree of 

population doubling. The general approach described here, combining fixation and lysing 

on-chip, can facilitate the integration of single-cell information with population-averaged 

techniques such as multiplexed immunoassays or mass spectrometry. 

 

3.5. Material & Methods 

3.5.1. Cell isolation and expansion  

Following institutional review board (IRB) approval, CD8+ T cells were obtained 

from blood donors using standard isolation procedures. Briefly, 40 mL of fresh blood was 

collected in EDTA coated tubes from four healthy donors (21-35 years old) under written 
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informed consent. Peripheral blood mononuclear cells were isolated by density 

centrifugation using Lymphoprep (VWR), and CD8+ T cells further purified using the 

Dynabeads® Untouched™ Human CD8 T Cells isolation kit (Invitrogen) (>92 % purity 

as checked by flow cytometry). The cells were expanded in RPMI 1640 medium with L-

glutamine (Sigma- Aldrich) with 10 mM HEPES, 1 mM sodium pyruvate, and 1X MEM 

nonessential amino acids, and 100 units.mL
-1

 penicillin/streptomycin (Cellgro) and 10% 

certified heat-inactivated fetal bovine serum (Sigma-Aldrich). The culture medium was 

supplemented with 50 U/mL of recombinant IL-2 (Sigma-Aldrich) and Dynabeads® 

Human T-Activator CD3/CD28 (Invitrogen) at  1:1 bead to cell ratio (kept  constant for 

the entire culture period) for rapid cell expansion (200, 201). Cell cultures were checked 

daily and resuspended in fresh medium when needed. The number of population 

doublings (PDs) was calculated from the average cell count using the following equation:  

   
                     

      
 (3.4) 

where npost represents the number of cells counted after expansion and ninit represents the 

number of cells initially seeded.  

The following table presents the different time points at which 26·10
6 

cells from each 

donor cell culture were assayed for signaling, intracellular and surface marker expression. 

Sample times were chosen when the total number of cells in culture for each donor 

exceeds 32·10
6 

cells.  
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Table 3-1: Day in culture when assayed and corresponding PD for each donor. 

Donor 1 Donor 2 Donor 3 Donor 4 

Day PD Day PD Day PD Day PD 

4 2 6 3.8 4 2.5 6 4 

6 4.1 8 6.5 6 4.1 9 6.5 

8 5.9 11 9.5 8 7.3 13 8.1 

11 8.6 13 10.5 11 9.7 16 10.8 

13 9.1 

  

13 10.9 

   

3.5.2. Microfluidic device fabrication 

The two-module device was fabricated using standard soft lithographic techniques 

(12, 202). Briefly, the modules were molded in poly-(dimethylsiloxane) (PDMS) (Dow 

Corning Sylgard 184, Essex-Brownwell Inc.) from a two-layer SU-8 (Microchem Corp.) 

master. One layer of 70 m thick SU-8 2050 was spun onto 100 mm silicon wafer, 

prebaked, and exposed under UV light to define a negative image of the channel system 

in the resist, following the manufacturer’s instructions. After postbaking to crosslink the 

exposed resist, another layer of 40 m thick SU-8 2020 was spun on top. This layer 

formed the staggered herringbone arrays (12). After the same prebake and expose 

process, the wafers were developed using propylene glycol monomethyl ether acetate 

(Doe & Ingalls, Inc.). The wafer surface was treated with vapor-phase tridecafluoro-

1,1,2,2-tetrahydrooctyl-1-trichlorosilane (United Chemical Technologies, Inc.) for  

passivation. PDMS was cast on the SU-8 master and baked for 3 h at 70
o
C to cross-link. 

The PDMS was then peeled off from the mold and individual devices were cut to size. 
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Access holes were punched using stainless steel needles (McMaster Carr). The devices 

were plasma bonded to glass slides or PDMS. Medical grade polyethylene (PE) tubing 

(Scientific Commodities) of various lengths and inner diameters were used for fluidic 

connections.  

 

3.5.3. Device operation  

A syringe pump (Chemyx Fusion 200 series) controlled the flow to the four inlets at 

44 L·min
-1

.  Before running an experiment, a solution of 2% BSA in PBS was flown 

through the device with plugged outlets to pressurize the device and remove any air 

bubbles. Then the outlets were opened to atmospheric pressure and PBS with 2% BSA 

was flowed through the device for an additional 15 min. Seven hours before the device 

operation, 20·10
6
 cells were resuspended in fresh medium without IL-2 and -

CD3/CD28 beads. During device operation, cells were delivered in 1.5 mL of a PBS + 

7% w/v dextran solution to match the cell density and avoid cell settling (12). To further 

avoid cell loss in the syringe, a small cubic magnet with 2-mm edges was inserted with 

the cell suspension, and intermittently agitated during the experiment. The stimulus 

consisted of PBS supplemented with 2 g/mL of -CD3, clone OKT3 (eBioscience), and 

2 g/mL of -CD28 (BD Bioscience).  Ice-cold freshly-prepared lysis buffer as 

previously described (12) and a 10% formalin solution (Sigma-Aldrich) were delivered at 

the inlets of the second module. Cells, stimulus, lysis buffer and fixing solution were 

flown for 9 min to allow steady state for the different time points to be reached before the 

8 fixed samples and 8 lysates were collected in ice-cold 96-well plates covered with 

paraffin for 20 additional min. 
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3.5.4. Signaling measurements  

Total protein concentration of the lysates was determined with a BCA assay kit 

(Pierce). The analysis of phosphorylation dynamics was performed with a Bio-Plex 200 

instrument (Bio-Rad) using commercially available Luminex bead assays. The 

quantification of proteins downstream of TCR (Beadlyte 7-plex Human T cell Receptor 

Signaling Kit, Millipore) was completed according to manufacturers’ protocols. Results 

for all data are presented as the average of triplicates, normalized to values from GAPDH 

beads (Millipore), and further normalized to the maximum value for separate sets of 

proteins per donor. Phosphoprotein staining was performed as described in Krutzik et al. 

(203). Briefly, formalin-fixed stimulated cells eluted from the device were washed with 

PBS, permeabilized with ice-cold methanol and stored at -20
o
C. Cells were stained with 

pERK antibody pT202/pY204 (BD Bioscience) at a dilution of 1:100 (in 2% BSA in 

PBS). After 30 min of incubation at 4
o
C, cells were washed and resuspended in PBS with 

-mouse Alexa488 antibody (Invitrogen), incubated for 30 additional min at 4
o
C, washed 

and analyzed by flow cytometry.   

 

3.5.5. Flow Cytometry analysis 

Surface marker protein expression was determined by direct immunostaining. Stimulated 

CD8+ T-cells (5·10
5
 total) were removed from the beads and resuspended in 500 L 

solution of PBS, 2% BSA, with the following antibodies: 10 L of PE-labeled-CD27, 

10 L PeCy5-labeled-CD28, 10 L FITC-labeled-CD57 and 2.5 L PeCy7-labeled-

CD45RO (BDBioscience). After 30 min of incubation on ice, cells were washed with 

PBS and analyzed by flow cytometry. To determine p16
ink4

 and profilin-1 expression as 
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well as cell cycle, stimulated CD8+ T-cells were removed from the beads, resuspended at 

10
7 

cells·mL
-1

 in ice cold methanol and stored at -20
o
C. After being washed in PBS, cells 

were resuspended at 10
7 

cells·mL
-1 

in 50 L of PBS, 2% BSA, and incubated for 30 min 

with profilin-1 antibody (Cell Signaling) , washed in PBS, incubated with FITC-labeled 

p16
ink4 

antibody (BD Bioscience) and rabbit R-PE antibody (Invitrogen) for an 

additional 30 min at room temperature.  After the final wash step, cells were resuspended 

in 500 L of PBS and 2.5 L of 7-AAD to measure DNA content. After 30 min of 

incubation at room temperature, samples were analyzed by flow cytometry.  A minimum 

of 10,000 cells per condition were analyzed on a BD LSR II flow cytometer. Flow 

cytometry data were analyzed with appropriate gating and compensation controls using 

the software FlowJo (TreeStar, Inc.). Cell cycle analysis was performed on the FlowJo 

cell cycle analysis platform using the Dean Jett Fox model.  

  

3.5.6. Partial Least Square Modeling 

Statistical modeling was performed using the SIMCA-P software (Umetrics). All 

signals were mean centered and unit variance scaled prior to analysis to allow all 

variables to be considered equally scale in principal components (130). The data set was 

divided into two matrices: Y ε R
18*2 

consisting of measures of age in culture (dependent 

variable block), and X ε R
18*140

, denoting the measured protein phosphorylation signals 

as well as surface markers, cell morphology and intracellular proteins (independent 

variable block). Instantaneous derivatives of the signaling dynamics, corresponding to the 

slopes of the phosphorylation dynamics signals, were also added to the X block. PLSR 

can accommodate data sets that are not fully complete (i.e., yielding matrices that are not 
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of full rank), providing the missing values are randomly distributed. The quality of a 

PLSR model can be summarized by two primary metrics: how well it is able to 

mathematically reproduce the data of the training set (given by the parameter R
2
Y) and 

how reliably we can predict the next experiment’s outcome (given by Q
2
). A good Q

2
 is 

considered to be above 0.5.  

      
   

           
 (3.5) 

      
     

           
 (3.6) 

where RSS represents the residual sum of squares of predicted Y, SSYtot.corr the total 

variation in the Y matrix after mean centering and scaling and PRESS, the predictive 

residual sum of squares defined as  

      ∑(       ̂)  (3.7) 

calculated by cross validation. The appropriate number of components is defined as the 

optimum trade-off between goodness of fit and predictive ability. For more detailed 

description on PLSR modeling we refer to a previous explanation (204).  
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CHAPTER 4  

REDOX-RELATED MARKERS OF SENESCENCE ARE ALTERED 

BY IN VITRO LONG- TERM CULTURE OF CD8+ T CELLS 

 

4.1. Introduction 

Immunosenescence is characterized by a decreased ability of the immune system to 

respond to foreign antigens and to maintain tolerance to self-antigens resulting in 

increased incidence of cancer, infection and autoimmune diseases in the elderly (23). The 

inability to respond to antigenic stimulation is also observed at the cellular level in vitro 

using long-term culturing conditions (205). In addition to being an in vitro framework of 

in vivo aging, T cells reaching senescence  after many divisions are also a pitfall of large-

scale T cell clonal expansion for immunotherapies, e.g. adoptive T cell transfer therapy 

(ACT)  (38). Improvement of ex vivo cell expansion for these therapies requires a better 

understanding of the changes occurring at the molecular levels during in vitro aging. 

Reactive oxygen species (ROS) are generated by the mitochondria during normal 

metabolism and NADPH oxidases during signaling, but can be effectively eliminated by 

cellular antioxidant defense mechanisms. Although T cells modulate their redox status for 

signaling purposes (206-209), excessive production of ROS can overwhelm the 

antioxidant defense system, leading to oxidative stress, improper signaling and tissue and 

DNA damage. Increased ROS levels could therefore be a potential molecular mechanism 

for the altered signaling dynamics in in vitro aging T cells described in Chapter 3. 

Immunosenescence of T cells can be linked to the free-radical theory of aging. 

Increased mitochondrial leakage (68, 210, 211) and resulting mitochondrial DNA damage 
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(212) have been shown in aging lymphocytes. DNA damage increases and repair 

decreases (213, 214), advanced glycation end products (AGE) and oxidized non-

functional proteins accumulate due to reduced proteasomal and methionine sulfoxide 

reductases activities (215-219). 

Recent comprehensive microarray studies have been conducted to compare gene 

expression profiles in T cells between young and old mice or human subjects (220-222). 

These studies suggest the differential expression of several key redox regulatory genes, 

such as the upregulation of genes involved in oxidative phosphorylation (221) or the 

monotonic decline in antioxidant defense, more specifically in glutathione metabolism 

(222). At the proteomic level, Gautam et al. reported an age-dependent  monotonic 

increase in the levels of lipid peroxidation and protein oxidation, as well as an age-

dependent monotonic decline in glutathione levels and activities of the major antioxidant 

enzymes catalase, superoxide dismutase (Sod), glutathione reductase (GR), glutathione 

peroxidase (GPx) and glutathione S-transferase (GST) in mixed human T cell populations 

from various age groups (223).  This study demonstrates a pro-oxidant shift in redox 

potential in vivo; yet such changes have not been characterized in vitro cell models, and 

in particular in culture conditions that mimic expansion methods for ACT.  

Using quantitative RT-qPCR technologies, we report in this study that a similar redox 

remodeling towards a pro-oxidative environment occurs in CD8+ T cells aging in vitro. 

Older T cells overexpress the NADPH oxidase Duox1 and downregulate key antioxidant 

enzymes, leading to an overall higher cellular redox potential as determined by the Trx 

and glutathione redox couples. Our results indicate that in vitro culture conditions 

consistent with ACT recapitulate features of the cellular redox status observed in vivo. 
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4.2. Results 

4.2.1. RT-qPCR gene expression profile of young CD8+ T cells 

We previously used an in vitro aging framework to identify biomarkers of aging 

associated with early T cell signaling and observed altered phosphorylation patterns in 

long-term cultured cells (224).   Using the same in vitro aging conditions, the goal of this 

study was to determine the effects of in vitro aging on the redox status of CD8+ T cells. 

We extracted RNA from young (up to 3 population doublings) and old  (more than 8 

population doublings) CD8+ T cells of young healthy donors and measured gene 

expression profiles of 84 antioxidant and redox related genes (Appendix B.T1) using the 

Human Oxidative Stress and Antioxidant Defense PCR Array. Out of these 84 genes, 

only 58 were expressed in T cells. The normalized mRNA levels of individual genes 

expressed in the young CD8+ T cells are presented as ΔCT ± SEM in Table 4.1. The 

inter-array coefficient of variation (CV) represents the donor to donor variability in gene 

expression and ranged from 0.9% to 19.06%, with a mean percentage of 4.4%.  

Out of the 58 genes, p22-phox, a subunit of superoxide producing NADPH oxidases, is 

the most highly expressed in the young cells. At similar levels, several families of 

antioxidants are expressed including superoxide dismutases (Sod), glutathione 

peroxidases (Gpx) and peroxiredoxins (Prdx). Sod1, Gpx4 and Prdx6 are the most highly 

expressed antioxidant genes, followed by other isoforms Prdx3, Prdx2, Prdx5 and Prdx4, 

Gpx1 and Gpx7 and the mitochondrial Sod2. 
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Table 4-1: Normalized mRNA levels of individual genes expressed in young CD8+ T cells, 

ranked in descending order of expression (n=6). 

Symbol Protein Name 
Mean ΔCt ± 

SEM 
% CV 

CYBA P22-phox 3.77 ± 0.4 10.64 

CCL5 Chemokine (C-C motif) ligand 5 3.58 ± 0.68 19.06 

SOD1 Superoxide dismutase 1, soluble 4.19 ± 0.23 5.56 

GPX4 
Glutathione peroxidase 4  

(phospholipid hydroperoxidase) 
4.38 ± 0.40 9.24 

PRDX6 Peroxiredoxin 6 4.60 ± 0.30 6.48 

GTF2I General transcription factor IIi 4.79 ± 0.28 5.93 

PRDX3 Peroxiredoxin 3 4.61 ± 0.46 9.98 

PRDX2 Peroxiredoxin 2 4.78 ± 0.35 7.24 

GPX1 Glutathione peroxidase 1 5.17 ± 0.23 4.48 

CSDE1 
Cold shock domain containing E1, RNA-

binding 
5.19 ± 0.23 4.48 

FOXM1 Forkhead box M1 5.39 ± 0.18 3.44 

PRDX5 Peroxiredoxin 5 5.38 ± 0.28 5.25 

ATOX1 ATX1 antioxidant protein 1 homolog (yeast) 5.60  ± 0.21 3.70 

TXNRD1 Thioredoxin reductase 1 6.17 ± 0.08 1.33 

DHCR24 24-dehydrocholesterol reductase 6.38 ± 0.18 2.83 

RNF7 Ring finger protein 7 6.58 ± 0.21 3.13 

SOD2 Superoxide dismutase 2, mitochondrial 6.59 ± 0.21 3.12 

OXSR1 Oxidative-stress responsive 1 6.98 ± 0.10 1.47 

CAT Catalase 6.78 ± 0.4 5.92 

PRDX4 Peroxiredoxin 4 6.99 ± 0.36 5.18 

MGST3 Microsomal glutathione S-transferase 3 7.18 ± 0.23 3.22 

MPV17 MpV17 mitochondrial inner membrane protein 7.18 ± 0.23 3.21 

GLRX2 Glutaredoxin 2 7.39 ± 0.18 2.49 

GSS Glutathione synthetase 7.37 ± 0.28 3.81 

BNIP3 
BCL2/adenovirus E1B 19kDa interacting 

protein 3 
7.38 ± 0.34 4.62 

SELS Selenoprotein S 7.78 ± 0.28 3.62 

STK25 Serine/threonine kinase 25 7.98 ± 0.10 1.24 

TXNRD2 Thioredoxin reductase 2 7.79 ± 0.34 4.43 

NUDT1 
Nudix (nucleoside diphosphate linked moiety 

X)-type motif 1 
8.18 ± 0.09 1.04 

PNKP Polynucleotide kinase 3'-phosphatase 7.99 ± 0.31 3.89 

GPX7 Glutathione peroxidase 7 8.00 ± 0.31 3.89 

OXR1 Oxidation resistance 1 8.19 ± 0.23 2.85 

PRDX1 Peroxiredoxin 1 8.19 ± 0.30 3.70 

CCS Copper chaperone for superoxide dismutase 8.80 ± 0.19 2.13 

IPCEF1 
Interaction protein for cytohesin exchange 

factors 1 
8.57 ± 0.58 6.78 

MTL5 Metallothionein-like 5, testis-specific (tesmin) 8.97 ± 0.31 3.46 

SIRT2 Sirtuin 2 9.01 ± 0.38 4.20 
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Table 4-1 continued 

Symbol Protein Name 
Mean ΔCt ± 

SEM 
% CV 

PREX1 
Phosphatidylinositol-3,4,5-trisphosphate-

dependent Rac exchange factor 1 
9.18 ± 0.23 2.49 

GSTZ1 Glutathione transferase zeta 1 9.19 ± 0.37 4.07 

NCF2 Neutrophil cytosolic factor 2 9.38 ± 0.39 4.20 

NCF1 Neutrophil cytosolic factor 1 9.00 ± 0.89 9.91 

SRXN1 Sulfiredoxin 1 10.18 ± 0.23 2.26 

MSRA Methionine sulfoxide reductase A 10.18 ± 0.3 2.93 

    

DUSP1 Dual specificity phosphatase 1 10.19 ± 0.43 4.19 

GPX3 Glutathione peroxidase 3 (plasma) 10.37 ± 0.49 4.76 

SEPP1 Selenoprotein P, plasma, 1 10.57 ± 0.29 2.80 

PRNP Prion protein 11.01 ± 0.10 0.90 

GSR Glutathione reductase 10.78 ± 0.34 3.17 

PDLIM1 PDZ and LIM domain 1 10.98 ± 0.3 2.79 

TTN Titin 11.19 ± 0.42 3.79 

MT3 Metallothionein 3 11.4 ± 0.73 6.40 

ANGPTL7 Angiopoietin-like 7 12.17 ± 0.23 1.87 

ALOX12 Arachidonate 12-lipoxygenase 12.17 ± 0.42  3.48 

EPX Eosinophil peroxidase 12.58 ± 0.41 3.29 

DUOX1 Dual oxidase 1 12.78 ± 0.34 2.68 

SFTPD Surfactant protein D 12.57 ± 0.76 6.07 

PXDN Peroxidasin homolog (Drosophila) 13.21 ± 0.62 4.70 

GPX2 Glutathione peroxidase 2 (gastrointestinal) 13.99 ± 0.47 3.36 

 

 

4.2.2. Age-related modifications in gene expression of redox-related proteins 

The effects of in vitro aging on CD8+ T cell gene expression are shown in Figure 

4.1 and Appendix B.S1. The list of all targets, their corresponding fold changes and p-

value can be found in Appendix B.T2. Large age-related changes (fold change>1.5) were 

observed in 8 genes, 4 of them downregulated and 4 upregulated (p<0.1, Figure 4.1). 

Angiopoietin-like 7 (Angptl7), an ECM deposition protein (225), Titin (Ttn), a 

cytoskeletal protein, Dual oxidase 1 (Duox1), a H2O2-producing enzyme and Glutathione 

peroxidase 3 (Gpx3), the extracellular isoform of Gpx are upregulated during in vitro 

aging. It is interesting to note that all these targets are expressed at very low levels in 
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young cells, Gpx3 for example being the Gpx isoform with the least mRNA copy 

numbers in the young cells. Downregulated targets are Elfin, PDZ and LIM Domain 

Protein 1 (Pdlim1), involved in the reorganization of microtubules at the immune synapse 

(226), Metallothionein-like 5 (Mtl5), a zinc-binding protein acting as an antioxidant, 

Glutaredoxin 2 (Glrx2), a mitochondrial oxidoreductase (227) and Thioredoxin reductase 

1 (Txnrd1), a central component of the antioxidant thioredoxin system.  

 
Figure 4-1: Fold changes in gene expression of redox related proteins during in vitro aging. Points 

above the dotted red line represent targets that show significant statistical difference (at p < 0.05) 

between young and old samples. Points above the filled red line represent targets with significant 

statistical difference (at p < 0.1). The blue lines represent fold changes above 1.5 fold up or down. 

(n=6) 

 

 

4.2.3. Age-related modifications in total protein amounts of the redox-

related proteins Prx2, Grx1, Duox1 

To compare our measurements in mRNA levels to protein expression, we 

conducted semi-quantitative Western blot analyses to determine the relative protein level 

of Duox1, Prx2 and Grx1.  
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The PCR array identified upregulated levels of Duox1 mRNA in older cells. 

Western blot analysis confirmed this increase at the protein level (Figure 4.2).  

 
Figure 4-2: Duox1 protein levels. a) Representative Western Blot for 2 different donors.  

b) Quantification of the Western Blots. Protein levels are normalized to the young cells protein 

expression level.  * p<0.05 (paired 2-tail t-test). 

 

Prx2, one of the most highly expressed Prx isoforms in T cells (Table 4.1) has 

been reported to be downregulated in aging bone marrow (228). Although it did not show 

significant downregulation of mRNA levels in our study, we probed its protein 

expression by Western blot, as protein levels do not always correlate directly to mRNA 

levels. Consistent with the mRNA results, we observed no significant changes in Prx2 

levels with age (p=0.05) despite a decreasing trend (Figure 4.3). In addition, we chose to 

probe for Grx1, a glutaredoxin isoform not found in the PCR array. Grx1 has been shown 

to be a survival factor that protects cells against apoptosis (229), a process altered in 

aging senescent T cells (230).  As with Prx2, Grx1 protein levels show a decreasing 

trend, but no statistically significant changes (Figure 4.3). However to confirm these 

results, a higher sample number might be required as well as an additional timepoint (day 

24) 
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Figure 4-3: Relative fold changes in Grx1 and Prx2 protein expression (normalized to actin). 

Relative protein levels are normalized the levels at day 8.  

 

 

4.2.4. Age-related modifications in overall cellular redox status 

Due to the technical difficulties of directly assessing oxidant levels in living cells 

(231), we measured the cellular redox couples as indirect measures of oxidative stress.  

Several indicators of in vivo redox status are available, including the ratios of GSH to 

GSSG, and the balance between reduced and oxidized thioredoxin (232).  

Glutathione redox couple: Glutathione (γ-L-glutamyl-L-cysteinylglycine) is a tripeptide 

that functions as the major intracellular antioxidant and redox buffer against 

macromolecular oxidative damage. The glutathione thiol/disulfide redox couple 

(GSH/GSSG) is the predominant mechanism for maintaining the intracellular 

microenvironment in a highly reduced state that is essential for antioxidant/detoxification 

capacity, redox enzyme regulation, cell cycle progression, transcription of antioxidant 

response elements (ARE) and adequate immune response (233-236). Total levels of 

glutathione did not change significantly with time in culture (p=0.13); however, the ratio 
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of oxidized to reduced glutathione increased with age, as indicated by an increase in the 

GSH/GSSG redox potential measured with HPLC (Figure 4.4). 

 

Figure 4-4: Total glutathione levels (a) and corresponding GSH/GSSG redox potential (b) in 

CD8+ T cells with time in culture determined by HPLC (n=3). Statistical analysis: one-way 

Anova (p=0.038) followed by Scheffe’s post-hoc test * p<0.05 between day 8 and day 16 

 

 

Thioredoxin redox couple: The thioredoxin reductive system is also an essential cellular 

mechanism facilitating the reduction of ROS by supporting the peroxidase action of 

peroxiredoxins (Prx) and directly repairing oxidatively damaged proteins (237). Pooled 

total levels of Trx-1 did not show significant changes among our four donors (data not 

shown); yet at the individual donor level, total Trx-1 expression was reduced at longer 

time in culture compared to day 4 and 8 (Figure 4.5a).  Reduced and oxidized forms of 

Trx1 were determined by redox Western blots. The proportion of oxidized Trx1 increased 

with age (Figure 4.5a), leading to an overall increase in the cellular Trx1 redox potential 

between young and old cells (Figure 4.5b). 
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Figure 4-5: Trx levels in CD8+ T cells with time in culture. a) Total, reduced and oxidized Trx 

levels for a representative donor. DTT-treated lysates is included as a reduced control and 

diamide-treated lysates is included as an oxidized control. b) Cellular redox potential with respect 

to Trx1 (n=4). Statistical analysis: one-way Anova (p=0.007) followed by Scheffe’s post-hoc test 

* p<0.05 between day 4 and days 16-24. ** p<0.05 between days 8-12 and days 20-24. 

 

4.3. Discussion 

T cell responses in elderly humans show a dysregulation in intracellular transduction 

capacity, impaired proliferation in response to mitogenic stimuli and changes in cytokine 

production (238-240). We have observed a similar decrease in T cell activation in in vitro 

aging CD8+ T cells (224). A controlled T cell redox environment is essential for T cell 

activation and proliferation (236, 241); hence a dysregulation in cellular redox status 

would result in impaired signaling. For instance, a 10-30 % decrease in intracellular GSH 

abrogates TCR stimulated Ca
2+

 signaling (242). 

In many tissues and cell types, aging is characterized by an imbalance between the 

formation and clearance of free radicals, resulting in a state of oxidative stress (243). 

Increased amounts of free radicals have been reported in cells of the immune system 

(218, 244) and also specifically in T cell populations from elderly subjects (223). In this 
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study, we have assessed changes in redox status in in vitro long term cultured CD8+ T 

cells, as a potential biomolecular mechanism for the previously observed impaired T cell 

activation.  

We used quantitative expression analysis of genes associated with the oxidative stress 

and antioxidant pathway in T cells to identify sources of ROS production and 

antioxidants in primary CD8+ T cells. Large amounts of the superoxide producing 

NADPH oxidase 2 (Nox2) subunits including p22phox, p47phox and p67phox are 

expressed in T cells as well as low levels of the H2O2 producing dual oxidase (Duox1). 

We did not detect the Nox5 and Duox2 isoforms that have been reported to be present in 

the Jurkat T cell line (245), while superoxide dismutases, glutathione peroxidases and 

peroxiredoxins were found to be expressed in high levels. Gpx4 and Gpx1 are 

selenoproteins, involved in the reduction of  H2O2 into water using reduced glutathione as 

a specific electron donor substrate (246). These two isoforms had previously been 

identified in Jurkat T cells as the predominant selenoproteins isoforms and have been 

reported to decrease during HIV infection, an accelerated immunosenescence state (247). 

Prdx 2, 3, 5 and 6 are expressed in similar high levels in CD8+ T cells. Peroxiredoxins 

are low efficiency antioxidant enzymes that reduce H2O2 using thiols as reductants (248) 

and have also been reported recently to be involved in cancer, inflammation and innate 

immunity (249).  

 

Previous microarray results suggest that several key redox regulatory genes are 

differentially expressed in lymphocytes from young and old individuals (220-222). Cao et 

al. reported upregulation of genes involved in oxidative phosphorylation in CD8+ T cells 
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from old healthy human subjects (221) while others observed a monotonic decline in 

antioxidant defense, more specifically in glutathione metabolism (222). In this study, we 

focused on changes in oxidative stress and antioxidant gene expression patterns during in 

vitro aging. Out of the genes expressed in T cells, 14% showed significant changes with 

age (Figure 41). Two structural proteins are upregulated with age, Angiopoietin-like 7 

(Angptl7) and Titin (Ttn). Angptl7 is a secreted protein involved in blood vessel 

formation with an additional role in lipid metabolism by inhibition of phospholipid 

lipase. Plasma Angptl4, another Angtptl isoform had been previously shown to be 

positively correlated with age (250). Titin is a giant protein controlling the structure and 

elasticity of vertebrate muscle sarcomeres (251).  Its role in lymphocytes is not clearly 

defined but it has been identified as a gene signature for chronic lymphocytic leukemia 

(CLL) (252). An additional gene upregulated during in vitro aging is the H2O2-producing 

enzyme Duox1. We confirmed this increase by measuring protein levels of Duox1 in 

young and old T cells (Figure 4.2). Although it is the first time Duox1 is reported to be 

upregulated during aging, increased levels of other NADPH oxidases isoforms have been 

documented. Nox2 shows an age-dependent increase in the aging stomach (253), Nox2 

and Nox4 an age-dependent increase in aging myocytes (254).  

The decreased expression of major antioxidants is consistent with the microarray 

results mentioned above. Metallothioneins are low molecular weight proteins, scavenger 

of free radicals, associated with lifespan in mice and humans (255) and shown to be 

downregulated with age in vivo and in vitro systems of CD4+ T cells (256). Glrx2 has 

been described as a critical component for the regulation of the mitochondrial redox 

status (227). A decrease in the Glrx2 levels would result in the dysregulation of the 
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mitochondrial detoxification system and mitochondrial oxidative stress, a central dogma 

of aging (257). Txnrd1 is a major redox regulator by reducing and activating thioredoxin 

and the thioredoxin system has previously been shown to be impaired during aging. 

Reduction in Trx1 and Trx reductase mRNA levels has been shown in skeletal muscles 

(258) and kidneys (259) from old rats.  

Our RT-qPCR results (Figure 4.1) suggest a redox remodeling in various cellular 

compartments of in vitro aging T cells that would result in higher levels of cellular 

oxidation. Our group had previously demonstrated systemic remodeling of the redox 

regulatory network due to perturbation of specific antioxidant enzymes in Jurkat cells 

resulting in adaptation but differential response to exogenous oxidative stress (245). In 

both studies, insularity between the cytosol and mitochondrial compartments as well as 

strong covariance between peroxiredoxins and Prx2 and Grx1 were conserved. But in 

contrast to redox remodeling due to shRNA perturbation, remodeling of the redox 

regulatory pathway in aging T cells shows an upregulation of the ROS producing enzyme 

while major antioxidant enzymes transcripts levels are reduced. This suggests that redox 

remodeling during aging may be the result of a lost ability of the cell to adapt to an initial 

perturbation in its antioxidant pathway leading to a pro-oxidative environment.  

Consistent with this adaptation, large changes in redox potential were observed for 

the Trx redox couple. Compared to redox potentials of the Jurkat cell line (260), young 

primary CD8+ T cells show a more oxidized Trx redox couple simultaneously but a more 

reduced GSH redox couple. In particular, the GSH redox potential of old CD8+ T cells 

has the same order of magnitude as Jurkat cells challenged with a 100 M H2O2 bolus. 
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These dissimilarities suggest different contributions of the Trx and GSH redox 

machineries in the overall redox buffering system in related cell types 

In vivo studies have shown decreases in total levels of glutathione (223, 261); yet 

despite a decreasing trend, the total protein levels of Trx1 and glutathione did not show 

significant changes in long-term cultured CD8 T cells. To validate this result, the 

experiment needs to be rerun with a higher sample number in order to mask donor-to-

donor variability and increase statistical significance. In addition, direct techniques to 

probe ROS levels using ROS specific dyes, such as the H2O2 specific dye H2-DCFDA or 

the superoxide specific indicator DH2 have been used to compare cytoplasmic ROS levels 

in young and old lymphocytes (215) or in young and old human fibroblasts (262). The 

general consensus in the literature is that cytoplasmic ROS levels increase with age. We 

attempted to determine cytoplasmic H2O2 and mitochondrial superoxide levels in living 

cells at various time in culture using H2-DCFDA and the mitochondrial superoxide 

indicator Mitosox but did not observe any significant trends with aging; however this 

might be due to limitations in the assay such as dye leakage or autoxidation (231).  

 

4.4. Conclusion 

The study in this Chapter suggests that there is a shift towards a pro-oxidizing cellular 

environment in in vitro aged CD8+ T cells. Although hyperoxic conditions of in vitro T 

cell culture might contribute to this phenotype, the upregulation of an H2O2-producing 

enzyme and downregulation of key antioxidant proteins are also potential mechanisms 

resulting in this elevated oxidative state. Because T cell function relies on a controlled 
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intracellular redox status, elevated ROS levels in aged CD8+ T cells are a possible cause 

of altered signaling observed in Chapter 3. 

 

4.5. Materials & Methods 
 
 

Primary T cell isolation, cell culture and expansion have been described in Chapter 3. 

 

4.5.1. RNA extraction and purification 

Total RNA from CD8+ T cells was extracted using the RNeasy Mini isolation kit 

(SABiosciences, Frederick, MD) with RNase-free DNase set (Qiagen, Valencia, CA) 

according to the manufacturer's protocol. The integrity and concentration of intact total 

RNA was verified with a NanoDrop 1000 Spectrophotometer (Thermo Scientific). 

 

4.5.2. Real-time quantitative reverse transcriptase PCR 

Real-time PCR was performed with a StepOnePlus RT-qPCR System instrument 

(Applied Biosystems, Carlsbad, CA) using the Human Oxidative Stress and Antioxidant 

Defense PCR Array (SABiosciences) containing 84 predesigned gene-specific primer and 

probe sets (PAHS-065C, SA Biosciences), according to manufacturer’s protocol. A list of 

targets included in the array can be found in the Appendix B.T1. Briefly, 1 g of total 

RNA was reverse transcribed and amplified using the RT2 First Strand Kit (Quiagen) 

following the manufacturer’s instructions. Amplified cDNA was mixed with RT2 SYBR 

Green ROX qPCR Mastermix (Quiagen) and Nuclease-Free Water (Quiagen) and loaded 

on the PCR array plate. Initial denaturation of DNA was carried out at 95°C for 10 min. 
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Forty amplification cycles were performed, each cycle consisting of denaturation (95°C, 

30 s) and annealing and extension (65°C, 1 min). Two individual arrays were performed 

for each donor, one for young cells and one for older cells. Relative expression levels 

were calculated using the ΔCT method (2
-ΔCT

) (263) and results were normalized using 

the geometric mean of the housekeeping genes GAPDH and HPRT1 (hypoxanthine 

phosphoribosyltransferase 1). Reference gene selection among the five housekeeping 

genes on the PCR array plate was performed by calculating the fold change and its 

corresponding p-value for the two age groups for any combination of one or more 

housekeeping genes. The gene combination with the highest p-value and the fold change 

closer to 1 was selected.  

 

4.5.3. Cell lysis for western blotting 

For western blotting, 8 × 10
6 

cells were lysed in 100 μl lysis buffer buffer containing 2% 

NP-40, 50 mM β-glycerophosphate, 10 mM NaP, 30 mM NaF, 50 mM Tris, pH 7.5, 150 

mM NaCl, 1 mM benzamidine, 2 mM EGTA, 100 μM sodium orthovanadate, 1 mM 

DTT, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 μg/ml pepstatin, 1 μg/ml microcystin-LR, 

and 1 mM PMSF. Cells were lysed on ice for one hour and lysates stored at -80°C until 

analysis. Protein concentration was determined with the Micro BCA™ Assay Kit 

(ThermoFisher Scientific, Waltham, MA). For non-reducing western blot analysis, cells 

were lysed in a G lysis buffer (recipe: 2% NP-40, 50 mM Tris, pH 7.5, 150 mM NaCl, 1 

mM benzamidine, 2 mM EGTA, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 μg/ml 

pepstatin, 20 mM ethylmaleimide, and 1 mM PMSF) with 9.3 mg/mL iodoacteic acid 

(IAA) for 30 minutes at 37°C. Lysates were spun through a G25 spin column to remove 
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excess IAA and frozen at -80°C until use. Total protein content was measured using a 

BCA modified by addition of iodoacetamide buffer.  

 

4.5.4. Western blotting 

For western blots, 20 to 40 μg of total protein/sample was subjected to SDS-

PAGE and transferred to PVDF membranes. For redox western blots, native gel 

electrophoresis was performed under non-reducing conditions as previously described 

(264). The membrane was blocked with Near Infra-Red Blocking Buffer (Rockland 

Immunochemicals, Gilbertsville, PA) overnight at 4°C. Primary antibodies were used at a 

dilution of 1:1000 in 10 ml blocking buffer and incubated over night at 4°C, followed by 

three washes in TBS-T. Secondary antibodies (IR dye 680CW donkey anti-mouse, IR dye 

800CW anti-goat or IR dye 800CW donkey anti-rabbit, all from LI-COR Biosciences 

(Lincoln, NE), were all used at a dilution of 1:10000 in 10 ml blocking buffer and 

incubated for 1h at room temperature. This was followed by two washes in TBS-T and 

one wash in TBS. Imaging and image analysis were done using the Li-Cor Odyssey 

Infrared Imaging System with the Odyssey 2.1 software. β-actin was used as loading 

control. Primary antibody for Grx1 was purchased from R&D Systems (Minneapolis, 

MN), for Trx1 from Sekisui Diagnostics (Framingham, MA), for Duox1 from Novus 

Biologicals (Littleton, CO), for Prx2 from Abcam (Cambridge, MA), and for β-actin 

from Sigma-Aldrich.  

 

S 
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4.5.5. Measurement of intracellular GSH and GSSG  

GSH and GSSG were measured by high-performance liquid chromatography (HPLC) as 

S-carboxmethyl N-dansyl derivatives using γ-glutamylglutamate as an internal standard 

(265). 

 

4.5.6. Measurement of cellular redox potential  

Cellular redox potential with respect to glutathione and thioredoxin was 

calculated using the Nernst equation:           
  (

  

  
)    

      

      
 for glutathione  

and           
  (

  

  
)    

        

       
 for thioredoxin, where R is the gas constant (9.315 

J K
-1

 mol
-1

), T the absolute temperature (298.15 K), z the number of transferred electrons 

(2), and F is the Faraday constant (96.485 C mol
-1

).  

The standard redox potential of glutathione at pH 7     
  is -264mV (266, 267). The 

standard redox potential of thioredoxin 1 at pH 7     
  is –254mV (268). 
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CHAPTER 5  

CALCIUM SIGNALING IS ALTERED IN IN VITRO LONG-TERM 

CULTURED CD8+ T CELLS 

 

5.1. Introduction 

 Calcium signaling is an essential step in T cell activation and regulates diverse 

cellular functions, such as proliferation, apoptosis, differentiation, effector function and 

gene transcription (269). Because of its importance, the Ca
2+

 signaling pathway has been 

extensively studied in T cells, with the discovery of new regulatory molecular 

mechanisms in the past few years (269-273). Briefly, after T cell receptor ligation, 

phosphorylation of PLC leads to IP3 formation and rapid Ca
2+

 release from the ER stores 

through the IP3 receptor channels. T cells sustain elevated cytoplasmic Ca
2+ 

levels for 

gene transcription, by balancing store-operated Ca
2+

 entry (SOCE) through the plasma 

membrane and Ca
2+ 

buffering by the mitochondria.  

T cell function declines with age, rending elderly more susceptible to cancer, 

infections and autoimmune diseases. The exact causes of T-cell functional decline are not 

known and several studies have demonstrated the development of defects in the early 

signal transduction events inducing Ca
2+

 release following mitogenic stimulation during 

the course of immunosenescence (224, 239). Altered Ca
2+

 dynamics in T cells have been 

associated with several age-related diseases, such as neurodegenerative, autoimmune and 

inflammatory disorders (274). More specifically, diminished activation-induced Ca
2+
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fluxes has been reported in CD8+ T cells from aged mice (275, 276) and T cells from 

elderly humans  (277, 278) but predominantly in the CD4+ subset (279).  

Computational models are useful tools to systematically analyze mechanisms in 

complex systems, interpret experimental data and provide new experimentally testable 

predictions. Because of the importance of Ca
2+

 signaling in various cellular systems, 

substantial efforts have been devoted at modeling Ca
2+ 

dynamics. Most of these models 

describe Ca
2+

 dynamics in excitable cells, i.e. in neurons (280-282), cardiomyocytes and 

muscle cells (283-288) that display oscillations. Fewer computational models describe 

Ca
2+

 dynamics in non-excitable immune cells, and specifically T cells. Ahnadi et al. and 

Kim et al. published deterministic models of Ca
2+

 kinetics after T cell engagement in 

respectively Jurkat and murine T cells (289, 290). These models are able to reproduce 

cytoplasmic Ca
2+

 rise after T cell stimulation but do not include extracellular space, 

mitochondrial buffering and mechanistic details of SOCE. A more detailed computational 

model of Ca
2+

 dynamics in immune cells has been reported by Maurya et al. (291). This 

model predicts temporal responses of Ca
2+

 concentrations for various doses of stimulus 

and network perturbations in RAW 264.7 macrophages (291, 292).  

Using an in vitro aging framework of CD8+ T cells (205, 293), we have shown an 

overall decrease in protein phosphorylation after T cell receptor ligation in Chapter 3 

(224). Based on the in vivo data and the decreased protein phosphorylation after TCR 

stimulation, reduced Ca
2+

 dynamics are expected. Here, we report that amplitude of Ca
2+

 

signaling does not change with age in culture; counterintuitively, we observed a faster 

Ca
2+

 rise and a faster decay in older T cells. Gene expression analysis of Ca
2+ 

channels 

and pumps expressed in T cells by RT-qPCR identified overexpression of the plasma 
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membrane CRAC channel subunit ORAI1 and PMCA in older T cells. To test whether 

overexpression of plasma membrane Ca
2+

 channel is sufficient to explain the kinetic 

information we adapted the Maurya model  (291, 292)  with additional details on the 

SOCE process to recapitulate Ca
2+

 dynamics after T cell receptor stimulation and 

determine the defects in the Ca
2+

 signaling pathway responsible for alterations in Ca
2+

 

dynamics during aging. Results of the model show that upregulation of these Ca
2+

 

channels is not sufficient to explain the observed alterations in Ca
2+

 signaling and 

suggests changes in kinetic parameters associated with the IP3R and SERCA channels as 

potential causes. This computational model is a useful tool to study T cell behavior and 

uncover dysregulated mechanisms in disease state and aging that alter Ca
2+

 fluxes. 

 

5.2. Computational model of calcium dynamics in T lymphocytes 

We developed a mathematical model for calcium signaling after T cell receptor ligation. 

The model comprises a simplified module for IP3 formation, and calcium fluxes from the 

three major cellular compartments: cytosol, endoplasmic reticulum (ER), mitochondria as 

well as the extracellular space. It is based on previously published models of calcium 

dynamics (291, 294-296) with additional terms reflecting the recently discovered stromal 

interaction molecule STIM1 and CRAC subunit Orai.   

 

5.2.1. Model Description 

Figure 5.1 shows an overall schematic of the computational model. The binding of a 

peptide/MHC complex to the TCR triggers the recruitment of tyrosine kinases Lck, LAT 

and Zap70 to the TCR/CD3 complex, ultimately resulting in the phosphorylation and 
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activation of phospholipase C-PLC- The model represents these receptor-initiated 

events as a one-step input to phospho-PLC- levels. Activated PLC-cleaves PIP2 in the 

plasma membrane to generate diacylglycerol (DAG) and 1, 4, 5-inositol triphosphate 

(IP3). Binding of IP3 to the IP3 receptor (IP3R) triggers the release of Ca
2+

 stored in the 

ER (JIP3). The resulting drop in ER Ca
2+

 levels activates the ER Ca
2+

 sensor STIM1, 

which translocates to the ER-PM (plasma membrane) junctions to activate a more 

sustained influx in the cytosol through the calcium release activated Ca
2+

 channels 

(CRAC) on the PM (Jcrac) (297, 298). The PM Ca
2+

 ATP-ase (PMCA) pumps Ca
2+

 out of 

the cytosol and maintains a steep gradient of Ca
2+

 concentration from 50 nM inside the 

cell to 1.5 mM in the extracellular space (Jpmca). Because of this steep gradient, we 

assume there is a very small Ca
2+

 leak inside the cytosol from the extracellular space 

(JPMleak). The Sarco/ER Ca
2+

 ATP-ase (SERCA) pumps cytosolic Ca
2+

 back in the ER 

stores to maintain an ER luminal concentration of 350 M (Jserca). Similarly, we consider 

a small leak of Ca
2+

 ions from the ER to the cytosol (JERleak). Mitochondria are essential 

for the activation and maintenance of the store-operated calcium entry (SOCE) by 

buffering Ca
2+

 ions and preventing the negative feedback of Ca
2+

 on the CRAC channels 

(299). Uptake of Ca
2+

 ions in the mitochondria is mediated through the Ca
2+

 uniporter 

(Jmitin) and extrusion through the Na
+
/Ca

2+
 exchanger (Jmitout).   
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Figure 5-1: Schematic of the Ca
2+ 

signaling model 

 

The fundamental equations of Ca
2+

 kinetics in the various cellular compartments are 

described as follows:  

      

  
   ((                     )  (                ) 

  (                     )) 

(5-1) 

     

  
 

   

   
(                     ) 

 

(5-2) 
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(                ) (5-3) 

Cacyt, Camit and CaER denote the concentration of free Ca
2+

 in the cytosol, mitochondria 

and ER respectively.             are the ratio of free to total Ca
2+

, assuming fast 

buffering with calcium-binding proteins in the cytosol, ER and mitochondria respectively 

(291, 296). In this model, we assume that the ratio of free to total Ca
2+

 is constant in the 

three cellular compartments and do not model explicitly the dynamics of free calcium-

binding proteins.      ,      are the ratios of the ER and mitochondria volume to that of 

the cytosol.   

 

IP3 production: Initiation of Ca
2+

 signaling after TCR binding requires formation of IP3 

through PLC- phosphorylation. We modeled PLC-activation as a simplified one step 

mass action kinetics (5-5) following ligand (R) unbinding from the TCR (5-4):  

  

  
            (5-4) 

     

  
                          (5-5) 

where         is the rate constant for PLC-phosphorylation and           the rate 

constant for PLC- dephosphorylation.  

 

The production of IP3 depends on the levels of phosphorylated PLC- and cytoplasmic 

Ca
2+

 levels, creating a positive feedback enhancing IP3 formation: 

    

  
                                 (5-6) 
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where          is the rate constant for IP3 production and         the rate constant for IP3 

degradation. 

 

Ca
2+

 flux through the IP3R: IP3R is a tetramer of four identical subunits. Each unit has 

one IP3 binding site and two Ca
2+ 

binding sites, one for activation and one for inhibition. 

The channel activity is cooperatively regulated by binding/unbinding of IP3 and Ca
2+

 at 

these binding sites. A number of mathematical models of IP3R activation have been 

constructed, including Bezprozvanny et al. (300), De Young and Keizer (301), Atri et al. 

(302), Li and Rinzel (303), Sneyd et al. (304). In these models, the IP3R is assumed to be 

modulated by cytosolic Ca
2+

 in a biphasic manner with Ca
2+

 release inhibited at low and 

high cytosolic Ca
2+

 levels, and facilitated by intermediate levels. We used the Li-Rinzel 

description of the IP3R (303). The flux of Ca
2+ 

through the IP3R is given by: 

                    (5-7) 

where VIP3 is the maximum flowrate and PIP3 the IP3R open probability. PIP3 is assumed to 

be an instantaneous function of Ca
2+

, IP3 concentration and the fraction of IP3R not 

inactivated by Ca
2+

 bound to the inhibitory site,  .  PIP3 is described as: 

     ((
   

        
) (

     

          
) )  (5-8) 

where      is the IP3 dissociation constant from the IP3 binding site and      the affinity 

of Ca
2+ 

to the activating site. 

The fraction of inactivated IP3R (1- ), is a function of cytoplasmic Ca
2+

 and  , the 

effective affinity of Ca
2+

 to the inhibitory site.   

  

  
  ((   )(       )       ) (5-9) 
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 (5-10) 

where   is a variable controlling the relative time scales between the differential 

equations,     , the Ca
2+

 affinity to the Ca
2+

 inhibitory site and         the affinity of IP3 

to the IP3 binding site when the Ca
2+

 inhibitory site is occupied. 

 

Ca
2+

 leak from the ER: Because of the gradient of concentration between the ER and the 

cytosol, there is a constant leakage of Ca
2+ 

ions from the ER to the cytoplasm. JERleak can 

be described as: 

                     (5-11) 

 

Ca
2+

 flux through the SERCA pumps:  

              
     

 

     
        

  (5-12) 

where        is the maximum flux across the SERCA pump and        the SERCA 

activation constant by Ca
2+

. Although T cells express both SERCA 2b and SERCA 3 

isoforms, which have different affinities for Ca
2+

 and maximal pumping rate, we 

simplified the model by lumping these two isoforms into one average SERCA pump with 

a unique maximum velocity and Ca
2+  

affinity. 

 

Ca
2+

 fluxes through the mitochondria: Ca
2+

 intake in the mitochondria through the 

uniporter is modeled with a 4
th

 order Hill function (278, 294):  

              
     

 

     
        

  (5-13) 
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where        is the maximum rate of Ca
2+

 uptake in the mitochondria and        the 

apparent Ca
2+

 affinity of the uniporter.  

Ca
2+

 efflux from the mitochondria through the Na
+
/Ca

2+
 exchanger and permeability 

transition pores (PTP) is given by the lumped expression (291, 296): 

                      
     

 

     
         

  (5-14) 

where         is the maximum rate of Ca
2+

 efflux and         the half maximum Ca
2+

 

concentration for efflux.  

 

Ca
2+

 fluxes through the plasma membrane: The details of store operated calcium entry 

(SOCE) have only been uncovered recently and previous mathematical descriptions of 

Jcrac include order 2 Hill dynamics in respect to IP3 levels (291) or cytoplasmic Ca
2+

 

levels (305) as well as a phenomenological model involving a diffusible messenger, Ca
2+

 

diffusible factor (CIF) (306). More recently, after the discovery of the STIM1 and ORAI1 

proteins and their interaction, Liu et al. (295) and Chen et al. (307) have attempted to 

provide a more accurate mathematical description of SOCE, by including activation of 

STIM1, dimerization, association with the ORAI1 CRAC channels and CRAC activation. 

More specifically, Liu et al. designed SOCE as a feedback controller to reject 

disturbances and track Ca
2+

 levels in the cytosol and in the ER (295). We simplified this 

system by neglecting the delay formed by STIM1 activation and assuming that the 

binding of STIM1 to ORAI is at a steady state only depending on the concentration of 

Ca
2+

 in the ER. Therefore, Jcrac can be expressed as:   

                 
     

          
 (5-15) 



79 

 

where       is the maximum Ca
2+

 influx through the CRAC channels,      is the 

Michaelis-Menten concentration for extracellular Ca
2+

,       and      the fraction of 

ORAI channels bound to STIM1. 

Based on experimental data from Luik et al. (308) and steady state modeling of Liu et al. 

(295), we chose to model      as a 3
rd

 order Hill function depending on ER Ca
2+

: 

     
    

 

    
       

  (5-16) 

where       is the dissociation constant of ER Ca
2+

 to STIM1. 

Ca
2+ 

influx through the plasma membrane is also permitted through a plasma membrane 

leak and is given by: 

                      (5-17) 

where         is the rate of leakage through the plasma membrane. 

 

Ca
2+

 efflux from the cytosol to the extracellular space is mainly due to the PMCA pumps 

and is described as:  

            
     

 

     
       

  
    

 

    
           

  (5-18) 

where       is the maximal PMCA efflux rate and       the Ca
2+

 affinity to the PMCA 

pump. STIM1 was recently shown to modulate PMCA mediated Ca
2+ 

clearance in a 

nonlinear manner (294). We chose to represent this modulation by a 2
nd

 order Hill 

kinetics with           being the dissociation constant of ER Ca
2+ 

on STIM1 allowing it 

to become activated and interact with PMCA probably through a conformational 

coupling mechanism. 
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5.2.2. Model Optimization and Simulation 

The series of differential equations were solved using Matlab R2011a (Mathworks, 

Natick, MA). The ODE solver for stiff system ode23s was used. Initial conditions were 

chosen according to published experimental data before parameter optimization or 

computed at steady state (Table 5.1). 

Table 5-1: Initial conditions 

State Variable Value Reference 

PLC 70 nM This work 

IP3 0.54 M (309) 
Cacyt 50 nM (310) 
CaER 350 M/400 M  (310) 
Camit 0.1 M (311) followed by steady state 

computation: Jmitin=Jmitout 

h 0.02 (292) 

 

Parameter estimation was performed by estimating the difference between the 

experimental data and the corresponding model prediction (sum of squared error) using a 

genetic algorithm followed by a combination of pattern search, simulated annealing and 

constrained nonlinear programing (Matlab Global Optimization Toolbox). Since the 

model parameters were estimated to fit different experimental conditions, the objective 

function consisted in the sum of errors across experimental conditions:  

  ∑ ∑ ∑(
     (     )      (     )

     (     )
)

  

   

 

   

    

   

 (5-19) 

where      is the maximal simulation time,   the number of state variables used for 

optimization and    the number of experimental conditions being optimized. 

The parameter bounds were chosen based on previously published experimental or 

modeling parameter data (Table 5.2). The parameters         and           were fitted 

separately to fit our experimental data of PLC- phosphorylation dynamics. The 
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remaining parameters were fit to three experimental datasets of Ca
2+

 dynamics following 

TCR ligation under no inhibitor, 50 M EGTA or 100 M TMB-8 inhibitor condition.  

Table 5-2: Model parameters bounds for optimization 

Parameter Bounds Source/Explanation 

   [0.001 1] SS value: 0.009 (298) 

    [0.001 1] SS value: 0.196 (298)  

     [0.001 1] 0.0025 (297, 298) 

    0.015 (312) 

     0.08 (312)  

        [0.001 0.01] s
-1

 0.047 (290)  

          [0.01 0.1] s
-1

  

         [0.1 10] M
-1 

s
-1

  1 (290) 

        [0.001 0.1] s
-1

  

     [0.05 10] s
-1

 0.189 (291), 3 (294), 1.11 (305), 66.6 

(307) 

     [0.1 5] M 0.136 (291), 0.13 (305), 1 (307), 3 (294) 

     [0.05 0.5]M 0.0814 (291), 0.08 (305), 0.4 (307), 0.13 

(294) 

  [0.01 0.5]  0.104 (291), 0.032 (305), 0.5 (307) 

     1 M 1 (291) 

        [0.5 1.5] M 1.05 (291) 

        [0.0005 0.05] s
-1

 0.002 (291), 0.02 (305), 0.0009 (307), 

 0.01 (294), 0.002 (295) 

       [0.2 250] M
 
s

-1
 114 (291), 0.9 (305), 1 (307), 0.27 (294), 

1 (290) 

       [0.15 0.8] M 0.754 (291), 0.1 (305), 0.15 (307), 0.175 

(294), 0.2 (290) 

       [100 800]M
 
s

-1
 300 (296), 506 (291) 

       [0.5 1.5] M 0.8 (296), 1 (291), 0.6 (294) 

        [5 500] M
 
s

-1
 125 (296), 476 (291) 

        [1 10] M
 
 5 (291, 296) 

      [0.01 10]M
 
s

-1
 0.226 (291), 8.85 (295), 0.01 (289) 

     [100 1000]M
 
 500 (295) 

      [100 300] M 152.3 (272) 

        [2.5e-7 3.5e-5] s
-1

 5.6e-6 (289), 2.6e-7 (305), 4.6e-7 (294), 

3.3e-5 (291) 

      [0.01 50] M
 
s

-1
 0.05 (289), 0.01 (305), 0.013 (294), 

0.0893/0.59 (291), 38 (295) 

      [0.1 0.5] M 0.12 (305), 0.2 (294), 0.113/0.44 (291), 

0.5 (295) 

          [150 450] M Range in ER Ca
2+

 concentration 

 



82 

 

Sensitivity analysis was performed by perturbing each parameter value (one at a time) by 

1 to 20% and comparing the new peak time, amplitude and decay constant to the feature 

values without perturbation:  

            
                

    
 (5-20) 

where   is the specific parameter used to perform the sensitivity analysis. 

 

5.3. Results 

5.3.1. Parameter and species fitting 

The Ca
2+

 signaling model presented here consists in 7 state variables and 29 parameters. 

It is divided into two major submodules. The first one represents TCR stimulation and 

PLC-phosphorylation. The second module corresponds to IP3 formation and the 

downstream cytoplasmic Ca
2+

 increase. The first module has only two parameters, 

corresponding to PLC-phosphorylation and degradation and was fitted individually to 

experimentally acquired dynamics of phosphorylated PLC- after TCR stimulation in 

Jurkat cells (Figure 5.2).  

 

Figure 5-2: PLC- phosphorylation dynamics following TCR stimulation in Jurkat cells 
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Using this specific PLC- function, the second module was fitted to temporal 

changes in IP3 concentration in the presence of EGTA (309) and Ca
2+

 time courses model 

in the absence or presence of the chemical inhibitors EGTA and TMB-8. EGTA is a Ca
2+

 

chelator that buffers extracellular Ca
2+

 and will reduce external Ca
2+

 entry through the 

CRAC channels and PM leakage. TMB-8 is an IP3R blocker that will prevent the opening 

of the IP3R channel and therefore limits ER store Ca
2+

 release. To fit the time courses 

with the inhibitors, two additional parameters were added, 1 and 2 that represent 

respectively the percent reduction in extracellular Ca
2+

 and in JIP3. After fitting, 1 is 

equal to 0.45 and 2 to 0.32. With a unique set of parameters, the model can recapitulate 

cytosolic Ca
2+

 dynamics in the presence or absence of inhibitors (Figure 5.3). Figure 5.3 

also presents the model prediction for the Ca
2+

 levels in the T cell ER and mitochondria, 

which have not been measured experimentally in the current literature.   
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Figure 5-3: Time course of IP3 and Ca
2+

 in the various cellular compartments in response to TCR 

signaling in the presence of 50 M EGTA, 100 M TMB-8 and in the absence of inhibition in 

Jurkat cells. The filled black squares correspond to experimental data and the red curves to model 

predictions.  

 

 

The same computational model was optimized to fit time courses from low 

passage primary CD8+ T cells, while keeping the PLC-activation module conserved 

between both cell types. For the “young” CD8+ T cell model, parameter estimation was 

performed using constrained nonlinear programing and pattern search algorithms with the 

best fit Jurkat parameter for initial values. Figure 5.4 shows the experimental time 

courses and model predictions of IP3 and Ca
2+

 in the cytosol, mitochondria and ER. The 

model was fitted to no inhibitor conditions and can also predict Ca
2+

 dynamics in the 

presence of chemical inhibitors. 
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Figure 5-4:  Model predictions of IP3 and Ca
2+

 in the various cellular compartments in response to 

TCR signaling in CD8+ T cells. The filled black squares correspond to experimental data and the 

red curves to model predictions. Top: Cytosolic Ca
2+

 dynamics in the absence (left) or presence 

of inhibitors (middle, right) at the same concentration as for Jurkat cells. Bottom: model 

predictions for other state variables in the no inhibitor simulation. 

 

Because the time scales of Ca
2+

 dynamics are quite different in the Jurkat CD4+ T cell 

line and primary CD8+ T cells (rise time of 30 sec versus 150 sec), the optimized 

parameter values are quite different for those two cell types, especially the maximum 

velocities (Table 5.3), for instance the fluxes through the IP3R and SERCA are 

respectively 5 and 2 times higher in primary cells.  

 

Table 5-3: Optimized parameter values for the Jurkat cell model and the "young" CD8+ T cell 

model 

Parameter Jurkat T cells Primary CD8+ T cells 

   0.1678 0.0045 

    0.0467 0.0153 

     0.716 1.13 

    0.015 0.015 

     0.08 0.08 
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Table 5-3 continued: 

Parameter Jurkat T cells Primary CD8+ T cells 

        0.0045 s
-1

 0.0045 s
-1

 

          0.0396 s
-1

 0.0396 s
-1

 

         0.258 M
-1 

s
-1

 0.1142 M
-1 

s
-1

 

        0.0208 s
-1

 0.009 s
-1

 

     1.626  s
-1

 8.004 s
-1

 

     0.106 M 0.1945 M 

     0.16 M 0.48 M 

  0.0917 0.0885 

     1 M 1 M 

        0.771 M 0.956 M 

        0.003 s
-1

 0.0101 s
-1

 

       85.8M
 
s

-1
 187.88 M

 
s

-1
 

       0.4477 M 0.508 M 

       794.07 M
 
s

-1
 378.1 M

 
s

-1
 

       1.24 M 0.594 M 

        484.44 M
 
s

-1
 261.67 M

 
s

-1
 

        8.1285 M
 
 4.114 M 

      3.1046 M
 
s

-1
 0.3962 M

 
s

-1
 

     996.83 M
 
 4863 M 

      195.73 M 321 M 

        2.5e-7 s
-1

 2.258e-5 s
-1

 

      1.805 M
 
s

-1
 4.32 M

 
s

-1
 

      0.1269 M 0.5665 M 

          394 M 279.88 M 
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5.3.2. Ca
2+

 signaling of in vitro aging T cells 

Ca
2+ 

signaling has been previously reported to be dampened in CD8+ T cells from 

old mice (276) or in T cell populations of elderly individuals (277-279); yet so far, the                                                                                                                                                                                                             

biochemical basis leading to this impairment are not known. With in vitro replicative 

senescence being used as a model for in vivo aging, we sought to determine what effects 

in vitro aging of cytotoxic CD8+ T cells have on Ca
2+

 dynamics and use our 

computational model to infer potential biochemical mechanisms responsible for the 

differences observed.  

Using the long-term culturing protocol to accelerate human primary T cells to 

immunosenescence presented in Chapter 3, we measured baseline Ca
2+

 and dynamic 

responses to TCR activation by flow cytometry. We previously established that 

immunosenescence, as defined by an inability to divide, is achieved within 12 population 

doublings in about 24 days in culture (224). In resting CD8+ T cells, we observed 

elevated baseline levels of cytoplasmic Ca
2+

 very early and late in culture, when the cells 

had reached senescence (Figure 5.5a). To quantitatively define the differences observed 

among the dynamic traces,  we defined the following parameters from a representative 

Ca
2+

 time course: peak amplitude, time to peak, area under the curve as well as four 

additional parameters to describe the decay due to the SERCA and CRAC channel 

opening, A1, A2, 1 and 2 (Figure 5.5b). From these 7 parameters, only the time to peak 

and the fast decay constant showed significant differences with time in culture (p<0.05). 

Older T cells reach their peak amplitude faster and have a faster decay time constant 

(Figure 5.5c-d). We did not observe monotonic trends in peak amplitude, integral or the 

second decay time constant (Appendix C.S1).  
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Figure 5-5: Age related Ca
2+ 

changes in CD8+ T cells. a) Cytoplasmic Ca
2+ 

levels in resting T 

cells. Mean and SEM from 4 different donors. b) Representative trace of Ca
2+ 

dynamics following 

TCR stimulation with the related parameters studied, peak time, peak amplitude, baseline and 

decay. The integral corresponds to the colored area under the curve. c) Time to peak in seconds. 

d) Fast decay time constant in minutes. For c-d), the data represents the mean of each calculated 

parameters for each donor and its standard deviation. The red diamonds correspond to the 

parameter calculated if the Ca
2+

 time courses are averaged for all donors for a specific day in 

culture.    

 

5.3.3. Changes in mRNA levels of plasma membrane channels are not 

sufficient to explain age-related changes in cytoplasmic Ca
2+

 dynamics 

To determine if changes in Ca
2+ 

signaling dynamics are due to changes in 

expression of the proteins involved in the Ca
2+ 

signaling pathway, we measured mRNA 

levels of the major Ca
2+ 

channels and pumps expressed in T cells (IP3R2, IP3R3, 

SERCA2B, SERCA3, ORAI1 and PMCA) for young (days 4-8 in culture) and old cells 

(days 20-24 in culture) (Appendix C.T1). Out of these six targets, PMCA and ORAI1 

showed significant upregulation (p < 0.05) with age (Figure 5.6).  
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Figure 5-6: Changes in mRNA levels of Ca
2+ 

channels and pumps with age (n=6). Points above 

the red line represent targets that show significant statistical difference (at p < 0.05) between 

young and old samples. The blue lines represent fold changes that are above 1.5 fold up or down.  

 

We then asked if the model could be used to determine if changes in PMCA and 

CRAC channels are sufficient to explain the faster peak time and decay observed during 

aging. The absolute number of channel/pumps proteins will affect directly the maximum 

flux through these proteins; hence we used the model described above and let the 

parameters      ,       vary up to 100 times to fit data from old cells (day 20-24 in 

culture).  These two parameters alone were not sufficient to fit simultaneously the time-

to-peak, decay time constant and amplitude (Appendix C.S2 presents the best fit in 

respect to amplitude, time-to-peak and decay time constant).  
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5.3.4. Model Predictions  

To determine which parameters are most responsible for the features time-to-peak 

and decay time constant, a sensitivity analysis was performed on the “young cell” model 

(Figure 5.7). Each parameter was perturbed individually and the features (peak time, peak 

amplitude and decay time constant) measured for the new model output. For these three 

features, several parameters exhibit nonlinear behaviors; for instance certain parameter 

combinations led to oscillatory behaviors which might affect the calculated features. 

Higher parameter sensitivity to the feature decay time than peak time can be observed; 

however, the parameters involved in altering both the peak time and decay time constant 

are consistent. Amongst the initial 24 parameters tested, five parameters were identified 

as being the main drivers of the observed changes with age, all involved with Ca
2+ 

exchange with the ER stores. Increases in       ,      and decreases in     ,        and 

          result in reduced peak time and faster decay, signatures representative of old T 

cell Ca
2+

 dynamics.  
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Figure 5-7: Model sensitivity analysis. a) Parameter sensitivity to the feature peak time.  

b) Parameter sensitivity to the feature decay time constant 1. Parameters values were perturbed 

by a percentage up to 20% up and down and were clustered for easier visualization. 

 

To ensure these parameters were the drivers of the observed old T cell phenotype, 

we used the parameter set from the “young cell” model and simultaneously varied these 

five parameters to fit the old T cell time course. The objective function consisted in the 

sum of squared difference between the model and the experimental time course, with 

additional constraints for peak amplitude, peak time and decay time constant. Figure 5.8 

presents the best “old T cell” model fit. The new optimized parameter set shows up to 8 
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% difference compared to the “young T cell” model best parameter set, with no changes 

for        and       , 8 % upregulation for     , 1 % downregulation for     , and 8 % 

downregulation for          .   

 

Figure 5-8: Model predictions of Ca
2+ 

dynamics in old T cells. a) Time to peak. b) Decay time 

constant 1.  c) Ca
2+

 time course for young cells (day 4-8) d) Ca
2+

 time course for old cells (day 

20-24). 

 

5.4. Discussion 

 

 
T cell responses from aged donors are typically slower and of lower amplitude than 

those from younger individuals, whether the response is measured in terms of cytokine 

production (240), gene activation for cell cycle entry and transcription (221, 313) or 

activation of protein kinase pathways (239). We have shown, along with other research 

groups, that the kinase activation upstream of  Ca
2+ 

release from the ER stores are 

downregulated with time in culture (224, 239), which would suggest reduced Ca
2+ 

signaling. Induction of a sustained Ca
2+ 

signal is critical for CD8+ T cell effector function 

(314, 315) and downstream gene regulation through the NFAT pathway; therefore a 
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strong Ca
2+

signal is required for an efficient tumor-specific immune response in the 

context of adoptive T cell transfer. The literature is conflicted in the consequences of age 

on calcium mobilization. Although Ca
2+ 

mobilization has been shown to be impaired in 

old mice for both CD4+ and CD8+ T cell subsets (275, 276, 316), in humans, CD8+ T 

cells from elderly donors had a slightly greater Ca
2+

 response to stimulation than CD4+ 

cells but a larger reduction in their proliferative potential (279). Similarly, reports of 

baseline Ca
2+

 levels in healthy elderly subjects have been controversial, with reports of 

unchanged  (317) or reduced (277) basal Ca
2+

 levels. The differences between murine 

models and human aging suggest that the effects of in vitro aging on Ca
2+

 signaling, and 

in particular culture conditions consistent with ACT, may not be intuitive.  

In our culture model, we did not observe a clear trend in baseline Ca
2+

 levels, or a 

reduction in peak amplitude or sustained levels after stimulation (Figure 5.5 and 

Appendix C.S1). We hypothesize that the high Ca
2+

 level that we observe at day 4 

(Figure 5.5a) is a consequence of the high Ca
2+ 

levels required for proliferation, and the 

elevated levels towards the end of our long-term culture to cellular damage. More 

importantly, we observed altered T cell dynamics after stimulation in older CD8+ T cells, 

these cells interestingly presenting faster dynamics, in particular a faster decay rate and a 

time to peak 20 second faster (Figure 5.5).  

To find an underlying mechanism for these dynamic differences, we measured 

mRNA levels of the main channels and pumps involved in Ca
2+ 

handling in T cells and 

found a small but significant overexpression of the plasma membrane ORAI1 channel 

and PMCA4b pump in older T cells while expression of the IP3R and SERCA isoforms 

remained unchanged (Figure 5.6). There are very few studies concerning transcript levels 
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of Ca
2+ 

channels during aging, and to our knowledge none performed on lymphocytes. 

Zaidi et al. observed a general loss of PMCA and reduction of PMCA activity from the 

membrane of murine brain synaptic membranes (318). Another recent study reported 

reduced expression levels of STIM1 and ORAI in muscle fibers isolated from aged mice 

(319). Levels of SERCA2b have been shown to stay constant in old rat thoracic aortas 

(320), while levels of SERCA3 mRNA decreased in old rat central neurons but without a 

corresponding decrease in the SERCA3 protein levels (321). Aging was accompanied by 

a significant increase in the mRNA levels of IP3R1 in a rat’s heart (322). These 

differences from our findings might be a result of using excitable cells and various animal 

models.  

Intuitively, if the activities of Ca
2+

 channels and pumps in T cells are reduced with 

age, as it occurs in other cell types (318), simultaneous overexpression of the Ca
2+ 

influx 

and efflux mechanisms from the plasma membrane may be a compensatory way for the 

older cells to sustain high levels of calcium for downstream signaling. Based upon the 

current knowledge of molecular mechanisms of Ca
2+

 signaling, this is an unlikely 

molecular basis for the faster time to peak and decay time constant. To gain a better 

understanding of the Ca
2+

 signaling pathway and the relative contribution of each flux 

towards an integrated dynamic cell response, we built a deterministic computational 

model of Ca
2+

 signaling in T cells after TCR stimulation. Single cell analysis of Ca
2+

 

signaling in T cells show a variety of Ca
2+

 signals ranging from infrequent spikes to 

sustained oscillations and plateaus (310, 323). Because lymphocyte Ca
2+

 oscillations are 

not synchronized, we have chosen to model Ca
2+

 dynamics from a population rather than 

the dynamics of a single T cell.  
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Using sets of parameters found in previously published models of Ca
2+

 dynamics 

coupled with our PLC- activation module did not recapitulate experimental time 

courses, which is not surprising as parameter values were collected across various cell 

types and in vitro conditions. To fit the parameters, we took an approach similar to 

Maurya et al. (292). For each flux, we perused the literature for a mathematical 

formulation, parameter values, and in vitro experimental data, which allowed us to 

specify upper and lower parameter bounds. It is interesting to notice that there is a large 

discrepancy in legacy values among similar parameters that can be estimated to be three 

orders of magnitude different (Table 5.2). The experimental dataset used to optimize the 

model summarizes the main molecular mechanisms of the Ca
2+

 signaling pathway after 

TCR stimulation, with the TMB-8 inhibitor condition emphasizing the early ER Ca
2+

 

store release and the EGTA inhibitor condition the importance of extracellular Ca
2+

 to 

sustain elevated Ca
2+

 levels after ER stores have been emptied. If optimized using only 

the no inhibitor condition, the model will tend to fit the cytosolic Ca
2+

 time course by 

adjusting the rates of influx and efflux at the plasma membrane; however this set of 

parameters does not reproduce experimental data acquired under inhibitor conditions. By 

fitting the model simultaneously to our three experimental conditions we achieve sets of 

parameters that recapitulate Ca
2+

 under all experimental conditions. Confidence in our 

parameter would be improved with additional experimental data, for instance Ca
2+

 time 

courses from cell organelles.  

Because experimental data on PLC- and IP3 dynamics were acquired on Jurkat cells, 

a model CD4 T cell line easy to manipulate, we initially created a “Jurkat cell” model. 

This model and its parameter values were used as a starting point to create the “young” 
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primary CD8+ T cells model. Parameter values between both cell types show significant 

differences (Table 5.3), reflecting the differences in the Ca
2+

 time courses between those 

two cell types. These differences in time scale might be due to differential protein 

expression (Appendix C.S1, (324)) and are reflected by large variation in the maximal 

velocity parameters between these two cell types.  

For both cell types, the model is able to capture the fast initial rise and sustained 

elevated levels of cytosolic Ca
2+

. Interestingly, the model predicted a slow replenishment 

of the ER stores, and a fast Ca
2+ 

buffering by the mitochondria, mirroring Ca
2+ 

dynamics 

in the cytosol. Although the model does not include any spatial components and any 

additional control feedback, the network structure combined with optimized parameters 

under different inhibition conditions seems to recapitulate the role of the mitochondria at 

the ER/mitochondrial junctions (92) and SOCE-dependent Ca
2+ 

release via IP3R/RyR 

while the stores are being replenished (325). The model demonstrates that a 2-fold 

overexpression of PMCA and 1.5 fold overexpression of ORAI1 maximal velocities 

result in a delayed Ca
2+

 rise of slightly lower amplitude and significantly lower sustained 

Ca
2+

 levels. Because changes in mRNA levels might not translate directly into the same 

fold changes in the maximal velocities, we varied those parameters in an attempt to 

recapitulate Ca
2+ 

dynamics in aged cells but the best fit was not able to accurately 

reproduce these dynamics (Appendix C.S2). Sensitivity analysis of the model identified 

perturbations in SERCA pump and IP3R as best candidates of age-related alterations 

(Figure 5.7); yet when all 5 selected parameters were allowed to vary, IP3R and STIM1-

mediated PMCA inhibition emerged as being the most important parameters to 

recapitulate dynamic information of aging cells. Interestingly, despite the importance of 
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Ca
2+

 buffering by the mitochondria, the model did not recognize this organelle as being a 

major contributor to the old T cell phenotype.  

Increase in IP3R activity, simultaneously with decreased PMCA inhibition by 

STIM1, can be a consequence of post translational modifications in these proteins such as 

oxidation (326). PMCA, STIM1 and IP3R contain several cysteine residues and are 

highly susceptible to oxidation (91, 103). IP3R function has been reported to be affected 

by ROS by increasing IP3R sensitivity to cytosolic IP3 levels (327) and inducing 

conformational change on the luminal side leading in modified channel activity (328). 

Additional experimental studies need to be performed to measure the overall redox status 

of in vitro aged T cells and the redox status of these proteins in young versus old cells. 

Single Ca
2+

 oscillations have not been the main focus of this study; however as 

intracellular Ca
2+

 signaling patterns reflect the differentiation status of human CD4+ T 

cells (329), a better discrimination between young and old T cells could be achieved by 

quantifying the heterogeneity of Ca
2+

 signaling patterns in young versus old cells and 

incorporating these features into our model of Ca
2+

 signaling.   

5.5. Conclusion 

Altered Ca
2+

 signaling is a hallmark of aging and other various disease states, yet the 

biomolecular mechanisms leading to these alterations are unknown. To guide new 

experimental studies, we constructed a computational model of Ca
2+

 signaling in T cells 

that is capable of recapitulating key features of a typical Ca
2+

 time course in both a T cell 

line and primary T cells. The model suggests targets of regulation that may be altered 

during in vitro aging. 
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5.6. Materials & Methods 

 

Primary T cell isolation, cell culture and T cell expansion have been described in Chapter 

3. 

 

5.6.1. Ca
2+

 kinetics acquisition 

Jurkat cells were incubated in phenol red free RPMI 1640 medium with 5 M 

Fura Red, 3M Fluo-3 (Molecular Probes) and 0.05% Pluronic F127 for 40 minutes at 

37°C, washed three times with cold PBS and resuspended in warm phenol red free 

medium in the presence or absence of specific chemical inhibitors (30 min pretreatment 

at the appropriate concentration). Cell fluorescence was read on a BD LSR II 

flowcytometer for 3 minutes to obtain the Ca
2+ 

level baseline. 2g/mL CD3 (clone 

OKT3), CD28 antibody was added to the cells to activate the calcium signaling 

pathway then cell fluorescence was read for 30 additional minutes. CD8+ T cells were 

preincubated at 4°C with Fluo3, Fura Red and Pluronic F127 at the same concentrations 

with 2g/mL CD3 (clone OKT3), CD28 for 40 minutes. After a wash step in cold 

PBS, primary cells were resuspended in cold phenol red free media and fluorescence was 

read for 3 minutes to acquire the Ca
2+

 baseline. To activate the TCR pathway, cells were 

diluted 10 times in a 37°C solution of 20 g/mL -mouse IgG to crosslink the CD3 

antibody and cell fluorescence was recorded for an additional 30 minutes. The ratio of 

Fluo3/Fura Red fluorescence was used to analyze the Ca
2+ 

traces.  
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5.6.2. Ca
2+

 time course preprocessing and kinetic parameter determination  

All Ca
2+

 traces were first registered to ensure stimulation occurred at the same 

time. Time courses were smoothed using Savitzky-Golay filtering and normalized to the 

baseline fluorescence. Peak time, peak amplitude and integral under the curve were 

calculated using custom Matlab scripts (R2011a (Mathworks, Natick, MA)). Decay 

parameters were obtained by fitting the decay portion of the dynamics to a sum of 

exponentials: 

         
 
      

 
   (5-21) 

 

5.6.3. Signaling measurements  

To determine the levels of phosphorylated PLC- following T cell receptor 

stimulation, Jurkat cells were stimulated with 2g/mL CD3 (clone OKT3), CD28 

antibody for the desired time and lysed.  Total protein concentration of the lysates was 

determined with a BCA assay kit (Pierce). Lysis and quantitative analysis of 

phosphorylation dynamics was performed with a Bio-Plex 200 instrument (Bio-Rad) 

using commercially available Luminex bead assays (EpiQuant Technology, Millipore 

EMD) according to manufacturers’ protocols.  

 

5.6.4. RNA extraction and purification 

Total RNA from CD8+ T cells was extracted using the RNeasy Mini isolation kit 

(SABiosciences, Frederick, MD) with RNase-free DNase set (Qiagen, Valencia, CA) 

according to the manufacturer's protocol. The integrity and concentration of intact total 

RNA was verified with a NanoDrop 1000 Spectrophotometer (Thermo Scientific). 
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5.6.5. Real-time quantitative reverse transcriptase PCR 

Real-time PCR was performed with a StepOnePlus RT-qPCR system instrument 

(Applied Biosystems, Carlsbad, CA) using predesigned gene-specific primer and probe 

sets for Actin, ORAI1, SERCA2b, SERCA3, PMCA, IP3R2 and IP3R3 (SA 

Biosciences). Briefly, 1 g of total RNA was reverse transcribed and amplified using the 

RT-PCR kit (Quiagen) following the manufacturer’s instructions. Each 20 L reaction 

mixture aliquot contained 1 L of primer mixture (SA Biosciences), 2 L of universal 

PCR Master Mix (Quiagen) and 1–4 L of cDNA or water as a negative control. Initial 

denaturation of DNA was carried out at 95°C for 10 min. Forty amplification cycles were 

performed, each cycle consisting of denaturation (95°C, 30 s) and annealing and 

extension (65°C, 1 min). Each sample was amplified in triplicate. Relative expression 

levels were calculated using the ΔCT method (2
-ΔCT

) and results were normalized using 

the housekeeping gene actin (330). Paired t-tests were performed for each normalized 

target for each donor to find significant changes in expression between young and aged 

cells.  
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CHAPTER 6  

IMAGING SINGLE-CELL SIGNALING DYNAMICS WITH A 

DETERMINISTIC HIGH-DENSITY SINGLE-CELL TRAP ARRAY 

 

6.1. Introduction 
 

Clonal cell populations exhibit large heterogeneities in mRNA and protein transcripts 

at the single cell level, due to stochastic effects in gene expression (331, 332). A current 

view is that noise arising from stochastic fluctuations plays an essential role in key 

cellular activities (333-337). At a systems level, an effective immune response requires 

the cooperation of a mixed T cell population in terms of number of replication and 

differentiation status. We have previously observed impaired CD8+ T cell activation 

(338) , altered Ca
2+

 dynamics (Chapter 5) and redox status (Chapter 4) in a population of 

aging T cells. A better understanding of these age-related changes requires simultaneous 

single-cell assessment of the differentiation status and single cell signaling dynamics 

tracking. At present, such experiments can be technically challenging if the cells of 

interests, such as T cells, are non-adherent, if stimuli need to be delivered, or if studies on 

long time scales are desired.  Flow cytometry is often the technique of choice to measure 

heterogeneity of suspension cell populations, as it is high-throughput and can distinguish 

subpopulations of cells.  

 

 
Adapted from Chung, K., C. A. Rivet, et al. (2011). "Imaging single-cell signaling 
dynamics with a deterministic high-density single-cell trap array." Anal Chem 
83(18): 7044-7052. 
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However, this technology is capable of neither monitoring temporal changes within 

the same cell, nor distinguishing population from noise due to temporal fluctuation within 

one cell. Quantitative time lapse microscopy is often required for these measurements, 

but it presents additional challenges, such as low throughput and movement of the target 

cells during imaging. It is particularly challenging to image suspension cells; one could 

use adhesion to a solid surface by use of an artificial membrane and receptor binding, but 

this may alter the biological behavior of the cells.  

 

To overcome limitations of traditional real-time microscopy, microfluidics can be 

used to allow for increased throughput, control of cell location and extracellular 

conditions. Various microfluidic techniques have been developed to capture cells, retain 

them in a specific location, and control the environment surrounding them. Although very 

powerful, these methods have a limited throughput because the cell traps are spaced 

sparsely enough such that per view only a small number of cells are captured, and some 

are difficult to implement, or have side effects or other limitations. For example, active 

single-cell capture mechanisms use valves (339, 340) to control flow or dielectric forces 

with DEP (341, 342) or optical tweezers (343) to control the location of cells in various 

environments. The use of dielectric forces on living cells limits cell viability due to buffer 

cytotoxicity and heat damage. Passive capturing mechanisms have also been proposed 

using gravity (344-347) or fluid flow (348) to direct cells into traps. Most microwell 

arrays rely on gravity to capture cells. Careful design of the microwells enables up to 

70% single cell capture in densely packed wells, but once trapped, exposure to varying 

chemical solutions and manipulation of the cells are limited because the cells are not 

actively held in the wells (344-347). Flow by diverting streamlines towards traps can also 
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be used to transport and dock cells at specific locations (129, 348-351). Once a trap 

contains cells, fluid towards the trap is significantly reduced, and therefore incoming cells 

will be diverted to the next empty trap. Optimization of trap dimensions, location and 

spacing has been performed to increase capture efficiency or single cell trapping (129, 

351, 352). However, in most designs to date, there is a compromise between cell trap 

density per area and single cell capture efficiency.       

To address the need of high-density and high-efficiency cell traps, we designed a 

microfluidic high-density single cell capture, stimulation, and imaging platform. The 

design principles of this chip were adapted from our previous work for high-density 

single embryo trapping (353) to accommodate single cells, using hydrodynamic flow in 

conjunction with a careful disposition of the cell traps in an array formed by a serpentine 

channel. Our device is capable of passively trapping thousands of cells in less than a 

minute with a single-cell loading efficiency of 95%. Cells are captured sequentially and 

deterministically on chip with minimal shear. At low magnification, the trap array 

enables tracking of hundreds of cells simultaneously over time. At high magnification, 

spatial information can be resolved on a few precisely located single cells. Imaging can 

be performed on either live or immunostained cells. We show that various soluble stimuli 

can be delivered to the captured cells, and the trap arrays can be easily integrated with 

upstream microfluidic components capable of multiplexing several experiments on a 

single chip. As an application of this microfluidic platform, we studied the heterogeneity 

in calcium dynamics in resting and stimulated single Jurkat T cells. 
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6.2. Author’s contribution 

This work has been performed in collaboration with Dr. Kwanghun Chung. CAR 

participated in device design, cell loading testing, loading efficiency characterization, 

immunostaining and acquisition and analysis of calcium signaling dynamics and drafted 

the manuscript. KC participated in device design, fabrication, cell loading testing and 

manuscript drafting.  

 

6.3. Results 

6.3.1. Design of an efficient microfluidic single-cell trap array 

To allow imaging of a large number of cells in a field of view, single cells need to 

be arranged with high efficiency and with uniform trapping conditions in an array of 

densely packed traps.  To satisfy these requirements, we adapted the design principles 

that were previously developed in our group for high-density embryo trapping (353), and 

achieved capture of 4,000 single cells on 4.5 mm
2
 in 30 seconds, and with a loading 

efficiency over 95%.     

The microfluidic devices made from one layer of polydimethylsiloxane (PDMS) 

contain arrays of highly packed single cell traps (Figure 6.1).  Each array consists of a 

wide serpentine cell-delivery channel arranged in 26 column format and an array of 

cross-flow channels that connect each section of the serpentine channel (Figure 6.1a-b).  

The width (~ 25 m) and height (14 m) of the cell-delivery channel are large enough to 

ensure cells easily moving without clogging.  Each column includes 24 single cell traps 

(Figure 6.1b-c) in the middle and 8 dummy traps at each end (Figure 6.1d).  The size of 

the cell trap is similar to that of cell of interest so that once a cell occupies a trap, it 
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physically excludes the next cell and reduces the possibility of trapping of more than one 

cell.  The cell traps are connected to the 1.8 m deep shallow cross-flow channels (Figure 

6.1b inset).  By minimizing space between neighboring traps (~ 8 m in a column, ~ 33 

m between columns), we achieved a density of 860 traps / mm
2
.  

If flow through the traps has large variations throughout the array, the trap 

occupancy will be severely compromised.  To make the trapping condition uniform, we 

engineered the geometry of the channels so that cells experience similar flow rates near 

each trap.  Cells passing the focusing zones along the wide delivery channel are focused 

toward the traps by diverging (blue arrows in Figure 6.1e) and converging flow (red 

arrow in Figure 6.1e) through the dummy traps (Figure 6.1d-e).  The number of the 

dummy traps is optimized to make cells move closer to the trap after passing the focusing 

zone.  This increases the frequency with which cells contact the traps and are loaded into 

them (Figure 6.1g). After passing the focusing zone, cells close to a trap experience two 

streams; main stream (Q) flowing along the delivery channel and a stream (q) directing 

the cell into the trap (Figure 6.1f).  If the Q/q is in a proper range, as described previously 

(349, 351, 353), cells can be guided into the trap and docked.  Once all the traps in one 

row are occupied, extra cells pass another cell focusing zone without getting trapped and 

move to the next row.  Despite the proximity of the dummy traps, cells are not captured 

because the size of the dummy traps is smaller than that of the cells.  By optimizing 

various geometric parameters, such as the width and height of the channels and the 

number of traps, we were able to achieve over 95% single cell trapping efficiency 

throughout the device (Figure 6.1c). 
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Figure 6-1: Design and principle of single-cell trapping array. a) Optical micrograph of the trap 

array fabricated via soft lithography. b) Details of cell trap design (boxed region in panel a). The 

inset shows dimensions of a single trap. Scale bar, 10 μm. c) Overlay of phase contrast and 

fluorescent images showing single cells trapped in the array. d) Schematic drawing of three 

columns of the array showing trajectory of cells. Cell suspension enters the array from the top left 

and exits at the bottom right. Dotted lines represent trajectory of cells. e) Boxed region in panel d 

showing cell focusing mechanism. Converging flow (red arrow) and diverging flow (blue arrow) 

through the dummy traps focus cells toward the traps. f) Boxed region in panel e describing two 

major streams that cells experience: main stream (Q) flowing along the delivery channel and a 

stream (q) directing the cell into the trap. g) Overlay of a series of 1045 images showing cell 

trajectories during loading. 
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6.3.2. Optimization of single cell loading efficiency 

Geometries of the docking sites were optimized in order to deterministically trap a 

single cell per trap. A cell close to a trap experiences forces in two directions due to the 

combined effect of the mainstream bulk flow (Q) and the cross-flow (q); large bulk flow 

moves the cell along the main channel and significant enough cross-flow guides the cell 

into the trap.  However, with too large a cross-flow, additional cells can be forced to pile 

onto the already-occupied trap, reducing single-cell trapping efficiency.  By optimizing 

the fluidic resistance of the cross-flow channel with respect to the resistance of the 

delivery channel, conditions for trapping a single cell in a single trap can be met. More 

specifically, if the cross-flow channel has significantly higher hydrodynamic resistance 

than that of the main delivery channel, Q/q stays relatively constant throughout the large 

array, ensuring Q/q at each traps being in a proper range for trapping single cells.  By 

varying the length (L), width (w), and depth (hgap) of the trapping area and the overall 

depth of the main channel (hmc) (Figure 6.2a), we were able to empirically determine the 

optimal geometry for trapping Jurkat cells (9 ±1 m of diameter).  Figure 6.2b presents 

the experimentally determined probability for a trap to be filled (blue circles) as well as 

the probability for single-cell occupancy (red diamonds).  A low resistance ratio results in 

all traps being occupied, at the cost of having multiple cells per trap (Figure 6.2c).  For 

high resistance ratios, the flow going through the trap is not sufficient for optimal 

loading, resulting in very few traps being occupied but when occupied, only one cell is 

present (Figure 6.2e).  At the optimal ratio, 93±2% of the traps are occupied with 94±1% 

of the occupied trap with a single cell trapped (Figure 6.2d).  
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Figure 6-2: Characterizing trapping efficiency of the devices with various geometric dimensions. 

a) Schematic representing the variables involved in loading efficiency optimization. b) Plot 

showing probability of trap occupancy (blue circles) and probability of single-cell occupancy (red 

diamonds) for varying ratios of resistance (Rch/Rtrap). The trapping efficiency in a single device 

will be represented by a red and a blue point. Blue and red lines are guides for the eye. c-e) 

Representative micrographs of cell trapping: (c) Rch/Rtrap ∼ 110; (d) Rch/Rtrap ∼ 255; (e) Rch/Rtrap∼ 

500. 

 

6.3.3. On-chip microscopy and cell study 

We showed that this microfluidic platform can successfully capture and 

immobilize both fixed and live cells (Figure 6.3).  To ensure trapping and perfusion rate 
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do not induce undesirable shear stress for long-term studies, we also performed a viability 

study on chip. Jurkat cells were loaded into the chip and perfused with medium for up to 

24 hours in a microcontrolled chamber. After 24 hours, 94% of Jurkat cells were still 

viable by live-dead stain, comparable to conventional cell culture techniques in flasks. 

Viability was also observed to be uniform throughout the trap array chamber, suggesting 

the absence of high shear stress zones in the chamber and the compatibility of the chip 

with long-term dynamic studies. 

Another advantage of the device is that the high trap density allows for imaging 

large number of cells. For very bright signals, such as a DNA stain or calcium staining 

with Fluo3, low NA (low magnification) objectives can be used, and up to 800 single 

cells can be monitored in a field of view (Figure 6.3a).  

The microfluidic chip is also compatible with immunostaining. Fixation, 

permeabilization, immunostaining and necessary wash steps can be performed on chip 

following standard protocol after cells are loaded into the traps. It is also possible to 

capture already immunostained cells, although chances of having multiple cells per trap 

increase due to the increased probability of adhesion of fixed cells to each other or to the 

device. Figure 6.3b presents Jurkat cells immunostained off chip for calnexin 

(endoplasmic reticulum), profilin-1 (cytoplasmic cytoskeletal protein) and Hoechst 

(nucleus) and imaged by confocal microscopy (Figure 6.3b). 

One advantage over flow cytometry is that our microfluidic chip coupled with 

real-time microscopy allows tracking of dynamic behavior of hundreds of cells and 

monitoring temporal changes within single cells, which cannot be measured by flow 

cytometry. As a proof of concept, we performed live cell imaging of intracellular calcium 
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concentration in Jurkat cells (Figure 6.3c). Two hundred trapped cells in a single 

chamber, loaded with a fluorescent intracellular dye specific for unbound calcium, were 

imaged every 3 seconds for duration of 15 minutes. The heat map presented in Figure 

6.3c highlights heterogeneity in behaviors of individual clonal cells. About 25% of these 

cells exhibited calcium oscillations under resting conditions, and removal of extracellular 

calcium abolished the oscillations in all of these cells.  

 

Figure 6-3: Use of the array chip for high-resolution imaging of cellular features and activities.  

a) Fluorescent microphotograph of two cell trap chambers (boxed areas). b) Fluorescent image of 

immunostained Jurkat cells with confocal microscopy (100X). In blue, Hoechst for the nucleus; 

in green, calnexin, an ER-bound protein; and in red, profilin-1, a cytoplasmic protein. c) Calcium 

dynamics in resting Jurkat cells: 216 cells are imaged every 3 s for 15 min. Each line corresponds 

to an individual cell in the array. The heat map indicates low (in blue) to high (in red) 

intracellular calcium concentration. 
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The trap arrays can also be easily integrated with upstream microfluidic 

components capable of multiplexing experiments, where one expose cells to different 

extracellular conditions on a single chip. To demonstrate this capability, we coupled the 

cell trap chambers with a linear serial dilution generator (354) to expose each chamber to 

a different concentration of the stimulus. By fluorescence measurement, the gradient of 

concentration was observed to be linear and not disturbed by the high resistance of the 

loaded cell traps (Figure 6.4b inset). After loading cells containing Fluo-3, more than 

1,000 individual cells were monitored for an hour after the addition of different 

concentrations of the calcium ionophore ionomycin. Ionomycin increases intracellular 

calcium via mobilization of both extracellular and intracellular calcium stores (355) in T 

cells. As expected, increased concentration of stimulus lead to increased average 

intracellular calcium concentration (Figure 4b). Interestingly, when individual cells are 

monitored, it appears that only a fraction of the cell population are responding to the 

stimulus (Figure 6.4c-d), and the fraction of responding cells increases linearly with 

increasing concentration of stimulus (R
2 

= 0.88) as shown by unsupervised clustering for 

each chamber in Figure 6.4c and Table 6.1. Cellular response in terms of amplitude and 

duration of cytoplasmic calcium influx was not dependent on their respective position in 

the array nor to the presence of oscillations prior to stimulation.  
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Figure 6-4: Calcium dynamics in response to ionomycin stimulation of multiple cells tracked on 

chip. a) Microphotograph of cell trap arrays interfaced with a concentration gradient generator. 

The numbers represent the chamber number. b) Average single-cell calcium response for 

different concentrations of ionomycin. The inset shows the linearity of the concentration gradient 

(n = 4). c) Single-cell response to ionomycin. Each line of the heat map corresponds to the 

dynamics of a single cell. The heat map is subdivided into eight smaller heat maps, which 

correspond to decreasing ionomycin concentrations (cf Table 6.1 for details about number of cells 

imaged and ionomycin concentration). In each subset, unsupervised clustering has been 

performed to cluster cells with similar responses. d) Traces of single-cell responses to 2.5 μM 

ionomycin. The red line corresponds to the average response ± SEM. The black arrow represents 

time of ionomycin addition. 
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Table 6-1:  Calcium response to various ionomycin concentrations 

 

Chamber N
o
 

Number of  

tracked cells 

Ionomycin conc.  

(M) 

%  Responding 

cells 

1 342 2.5 44% 

2 328 2.2 33.2% 

3 263 1.8 31.9% 

4 322 1.4 31.1% 

5 287 0.8 25.4% 

6 273 0.5 19.1% 

7 306 0.2 17% 

8 250 0.08 4% 

 

6.4. Discussion 

In aging, cancer and auto-immune disease states, cellular response is not 

homogeneous amongst genetically identical cell populations (197, 356). Improved 

therapies could be devised based on a better understanding of heterogeneity in cell 

populations and cellular response; however, technology is still a limiting factor to relate 

cell phenotype to cell signaling dynamics. The microfluidic platform presented here is a 

first step towards a fully automated and integrated platform for deterministic single-cell 

trapping, culture, stimulation and imaging. It is capable of passively trapping 4,000 single 

cells on a 4.5 mm
2
 footprint in 30 seconds, with a single-cell loading efficiency of 95%.  

Cell trapping chambers were designed so that single cells could be trapped in a 

deterministic fashion. When a cell enters the trapping area, hydrodynamic forces will 

focus the cell towards a trap. However, once all the traps in one row are occupied, 

incoming cells will not experience enough vertical flow to be focused towards filled traps 

and will pass another cell focusing zone and move to the next row. Similar to the fly 

embryo trap array previously designed in our group (353), the cross-flow channel 
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requires a significantly higher hydrodynamic resistance than that of the main delivery 

channel, resulting in a relatively constant Q/q ratio throughout the large array, ensuring 

Q/q at each traps being in a proper range for trapping single cells. This overall concept 

being robust to objects ranging from 500 m (fly embryo longer axis) to 10 m (Jurkat 

cells) diameters suggest that it could also be optimized for trapping smaller cellular 

systems such as yeast and bacteria (10 m). In addition, although the device geometry 

was optimized for Jurkat cells (10 m), using the same optimized device, we were able to 

trap efficiently other cell types (e.g. primary T cells and mouse embryonic stem cells size 

varying from 8 to 20 m), suggesting that the optimal resistance ratio is conserved in this 

size range. 

 

Deterministic trapping of spherical beads has been demonstrated in the past, using 

perpendicular hydrodynamical forces on the beads at the intersection of a bypass channel 

and a main channel (349). Our trapping mechanism also relies on diverging flow from a 

main channel, the bypass channel being composed of a series of parallel traps in an array 

format. This particular geometry ensures identical flowrates throughout the entire 

chamber and allows packing of traps at a higher density. Our design allows us to achieve 

a trap density of 860 traps / mm
2
,  which is 2-3 orders of magnitude higher than what has 

been previously reported for deterministic single cell traps (175 ~ 700 traps/cm
2
) (351). 

This high trap density allows for imaging large number of cells in a field of view. For 

very bright signals, such as a DNA stain or calcium staining with Fluo3, low NA (low 

magnification) objectives can be used, and up to 800 single cells can be monitored in a 

field of view (Figure 6.3a), allowing us to achieve similar statistical significance as 
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flowcytometry with a largely reduced cell number (Appendix D.S1). More specifically, a 

typical flow cytometry experiment requires 1,000 to 10,000 data points, each data point 

corresponding to an individual cell. For kinetic reads, 100 to 500 data points are read 

every second, resulting in ~ 300,000 cells read for a 10 minute time course. Our system 

allows us to achieve a comparable resolution with only 250-800 cells. Moreover, flow 

cytometry does not enable to monitor the early kinetics after addition of the stimulus (20 

seconds), and because fluctuations within one cell cannot be quantified, flow cytometry 

cannot easily discriminate between responding and non-responding cells. This technique 

is also not capable to measure single cell spiking or oscillatory behaviors.  

 

Compared to most cell trap designs to date, including microwells (344-347) or 

hydrodynamic flow focusing (129, 348) that follows Poisson statistics, deterministic 

trapping allows us to increase single cell trapping efficiency from 70% to 95%. We also 

note that an additional benefit of this trap array design is the sequential capture of 

incoming cells, preventing undesirable cell loss. Of a small number of cells (e.g. 100 

cells) entering the cell trap chamber, all cells will be effectively captured. This could be 

especially useful for precious sample capturing where the tolerance of cell loss is very 

low. In addition, loading efficiency is independent of the initial cell concentration; cell 

concentration only affects loading time with high concentration loading faster. Using 

10,000 cells at 5×10
6
 cells mL

-1
, full loading of a chamber takes less than a minute at a 

flow rate of 1 l hr
-1

. At lower flow rates, loading time is longer and cells tend to settle in 

the inlet reservoir. For flow rates above 6 l hr
-1

, cells will experience high shear stress 

and sometimes squeeze through the 1.8 m deep shallow channel, but the time-saving is 
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not significant, so in normal use of the device, we chose a flow rate of 1-2 l hr
-1

. Similar 

flowrates need to be used when delivering chemicals to trapped cells. These very low 

flowrates limit the use of a syringe pump to drive the flow; however, for most 

applications, it is possible to use gravity driven flow in a controlled manner. At such 

flowrates, diffusion plays a very important role, which ensure no large delay in chemical 

delivery between cells in the top and the bottom row of a chamber is introduced 

(Appendix D.S2).  

 

Cell imaging at high and low resolution is facilitated by our chip. Cells are always 

located next to the coverslip, enabling high spatial resolution imaging of a few single 

cells at high magnification (Figure 6.3b). This is a benefit compared to cells trapped in 

microwells that are not always compatible with high magnification imaging due to the 

depth of the substrate forming the wells. In addition, because the cells are at known 

locations on the chip in an arrayed format, thousands of cells can be imaged in one single 

device repeatedly. Compared to the microwell technology, our system allows chemical 

stimulus delivery without disturbing cell position in the chip as well as easy integration 

with upstream chemical gradient generator.  

 

Using this microfluidic platform, we observed heterogeneous calcium patterns among 

resting Jurkat cells, ranging from a steady-state baseline to periodic oscillations and 

random spiking. The molecular mechanism governing these asynchronous oscillations is 

not clearly defined and may arise from stochastic fluctuations in ER calcium channels 

clustering (87). This heterogeneity in the resting state is still present after stimulation. 
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When challenged with a calcium ionophore, only a fraction of cells are respondent, 

fraction that depends on the stimulus concentration. And amongst cellular responses, 

different response patterns can be defined such as fast, high amplitude oscillations or 

sharp calcium rise and sustained levels. Partial calcium response of a cell population to 

external stimulus is not unprecedented; as reported for clonal human embryonic kidney 

293 cells when challenged with caffeine, only 40% respond with an elevation in 

intracellular calcium due to in endogenous protein expression levels (357).  

 

6.5. Conclusion 

We present here a microfluidic platform for single-cell capture, stimulation, and 

imaging capable of passively trapping 4,000 single cells on a 4.5 mm
2
 footprint in 30 

seconds, with a single-cell loading efficiency of 95%. The array format and optimized 

geometry allows for easy, robust and efficient single-cell loading, while maintaining 

captured cells in a low shear stress environment for long-term studies. Because cells are 

captured sequentially, this system is adequate for rare cell samples. Compared to previous 

designs, our higher cell trap density allows for imaging of increased cell numbers, 

therefore increasing throughput of single cell experiments, while being compatible with 

high resolution imaging at high magnification. Trapped cells can be exposed to various 

environmental conditions and chemical stimulus and their dynamic response can be 

monitored over time. The information gained from high-throughput, single-cell time 

lapsed imaging presents new opportunities in quantifying cellular responses, as averaged 

information by other measurement methods eliminates sub-population phenotypes. 

Because of the ease of use of this system, we envision this platform to be used for diverse 



118 

 

applications, such as fundamental studies of stochastic behavior, diagnosis of patient 

samples, drug screens in cancer biology, stem cell biology and aging. 

 

6.6. Materials & Methods 

6.6.1. Fabrication of polydimethylsiloxane (PDMS) devices  

The microfluidic devices were fabricated using soft lithography (202).  Negative 

molds were fabricated by UV photolithographic processes using a negative photoresist 

(SU8-2010, 14-16 μm, and SU8-2002, 1.5-3 μm in thickness) (Microchem, Newton, 

MA).  Patterned wafers were then treated with tridecafluoro-1,1,2,2-tetrahydrooctyl-1-

trichlorosilane vapor (United Chemical Technologies, Bristol, PA) in a vacuum 

desiccator to prevent adhesion of PDMS (Sylgard 184, Dow Corning, Midland, MI) 

before the molding process.  PDMS mixture of A and B in 10:1 ratio was poured onto the 

mold to obtain a 5-mm thick layer and then fully cured at 70°C for 2 hours. The PDMS 

was peeled off the mold and individual devices were cut to size.  Medical grade 

polyethylene (PE3) tubings (Scientific Commodities) were used for fluidic connections.  

Holes for fluidic connections were punched with 19 gauge needles. PDMS devices were 

plasma bonded onto either a cover glass or slide glass depending on applications.   

 

6.6.2. Cell culture, stimulation and staining 

Jurkat E6-1 human acute T cell lymphoma cells (ATCC) were cultured in RPMI 

1640 medium with L-glutamine (Sigma-Aldrich, St. Louis, MO) with 10mM HEPES, 

1mM sodium pyruvate, 1X MEM nonessential amino acids, and 100 units mL
-1

 penicillin 

streptomycin (Cellgro), supplemented with 10% certified heat inactivated fetal bovine 
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serum (Sigma-Aldrich, St. Louis, MO), at 37°C in a humidified 5% CO2 incubator. For 

nuclei visualisation, Jurkat cells were incubated with Hoechst 33258, at a final 

concentration of 1 μg mL
-1

, at 37 ºC for 20 minutes. Cells were checked for viability 

using Live/Dead stain (Invitrogen) following manufacturer’s protocol. For high 

resolution microscopy, 10
6 

cells were fixed in a 5% formalin solution (Sigma-Aldrich, St. 

Louis, MO) for 15 minutes at 37°C, washed three times with cold PBS, and resuspended 

in 100 μL of ice cold 90% methanol. Immunostaining was performed on fixed cells using 

Hoechst 3342 for DNA staining, mouse α-calnexin (Abcam) for ER staining, and rabbit 

α-profilin-1 (Cell Signaling), as a cytoplasmic localized protein. Incubation with the 

primary antibody for one hour at room temperature was followed by three wash steps 

with a solution of 2% BSA in PBS and incubation for 40 minutes at room temperature 

with the following secondary antibodies, Alexa 488 α-mouse (Invitrogen) and goat α-

rabbit TRITC (Southern Biotech).To monitor calcium signaling, Jurkat cells were 

incubated with 5 μM Fluo-3 (Invitrogen) for 20 minutes at 37°C, washed with cold PBS 

and loaded into the cell traps. Trapped cells were stimulated with ionomycin (Sigma, St. 

Louis, MO) at various concentrations to release intracellular calcium. 

 

6.6.3. Microfluidic system operation 

Before each experiment, the microfluidic devices were primed using a solution of 2% 

BSA in PBS to remove any air bubbles and prevent undesirable cell adhesion to the wall. 

A pressure difference of 3.5 kPa (5.5 kPa for devices with upstream serial-dilution 

gradient generator) created by gravity was used to drive the flow, resulting to an average 

flow rate of ~ 2 μL h
-1

. Cell loading was obtained by pipetting 2 μL of 5.10
6 

cell mL
-1 

of 
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cell suspension on the chip positioned on the microscope stage. Further experiments 

(staining, stimulation) were performed by adding 5 μL of 4× chemicals in the inlet hole 

and flowing over the trapped cells for the desired time. All experiments were performed 

in a microcontrolled environment (temperature set at 37°C in a humidified 5% CO2 

environment). Details on device setup and operation for cell loading are presented in 

Appendix D.S3. 

 

6.6.4. Quantification of the trapping efficiency 

 To determine trapping efficiency, devices with varying geometries were built (Figure 

6.2). The height of the main channel (hmc) was varied from 14 to 16 μm. Width of the 

traps (w) was varied from 8 to 15 μm. The length of the narrow microchannel (L) was 

varied from 3.3 to 8 μm. The height of the narrow microchannel (hgap) ranged from 1.5 to 

3 μm. Conserved lengths are: width of the main channel (30 μm), total width of a trap 

(pocket and wall included: 25 μm) as well as total length of the trap (20 μm). Resistance 

of the main channel above a trap was estimated by 

    
  

      
     

  

      
  (6-1) 

 

and resistance of the trap 

      
    

     
  

 

      
  (6-2) 
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6.6.5. Data collection and analysis 

High resolution microscopy was performed on a 2-photon confocal microscope 

(Zeiss LSM 510 NLO). Time-lapse microscopy and device characterization experiments 

were performed on an epifluorescent (Nikon Eclipse Ti) microscope with an environment 

controlled chamber. Images from individual chambers were captured sequentially using 

an automated XYZ stage with a 0.7 second delay between each chamber. Custom 

Matlab® (MathWorks) scripts were written for semi-automated image processing. 

Briefly, images were cropped to contain the cell trapping area and a mask of the traps 

drawn from each picture by finding the areas of higher intensities. The ratio of the 

number of objects in the overlay of the mask on the original picture to the number of 

traps corresponds to the percentage of traps occupied. To discriminate traps occupied by 

a single versus multiple cells, several features were measured for each object, including 

area, convex area, eccentricity, solidity, perimeter, extent and orientation. A principal 

least square analysis (SIMCA-P, Umetrics) was run on a known dataset of objects to 

determine the two most informative predictors of the number of cells contained in an 

object. The perimeter and the extent (ratio of pixels in the object to pixels in the total 

bounding box) were found as being the most informative. To quantify single cell trapping 

efficiency, the distribution of objects in the perimeter-extent space was fitted to a 2-

component Gaussian mixture model for each chamber trap array. The maximum 

likelihood parameters from each of the two subpopulations were retrieved and 

represented respectively the percentage of single cell objects and multiple cell objects. 

Single cell response intensities were obtained by tracking the mean intensity of each 

object considered as a single cell in the overlaid mask and image over time.  
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CHAPTER 7  

FREQUENCY RESPONSE ANALYSIS OF CROSS-TALK BETWEEN 

ROS AND CALCIUM 

7.1. Introduction 

Ca
2+

 and reactive oxygen species (ROS) share features of second messenger 

signaling molecules and are central to the regulation of various cellular functions.  Ca
2+

 

regulates proliferation, apoptosis, differentiation or gene transcription in T cells (269). 

ROS, on the other hand, can be deleterious to the cell at high concentration, but at low 

concentration is essential for regulating cell signaling (358). The Ca
2+ 

and ROS signaling 

systems are integrated such that Ca
2+

-dependent regulation of components of ROS 

homeostasis influences intracellular redox balance, and vice versa  (91, 92, 94, 359). 

Disruption in the ROS balance resulting in oxidative stress and improper Ca
2+

signaling 

has been associated with several diseases, including Alzheimer’s and Parkinson’s disease, 

diabetes, cardiac pathologies as well as aging (94, 360).  

We have observed in long-term cultured T cells an increase in the intracellular 

redox status with age (Chapter 4) and altered Ca
2+ 

signaling (Chapter 5). Our modeling 

analysis of Ca
2+ 

signaling dysregulation as a function pointed to several kinetic 

parameters associated with purported oxidative modifications on calcium channels. To 

explore the network of complex interactions between Ca
2+ 

and ROS further, we chose to 

take a different computational modeling approach in order to (1) draw a map of the 

interactions between these molecules in T cells and (2) understand these interactions and 

their role in signaling and pathophysiology. 
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The ROS/Ca
2+ 

cross-talk system is composed of many interactions forming 

various feedback mechanisms occurring on different timescales. The sum of these 

interactions determines the cell response to a perturbation; yet weighing the effects of 

each interaction at a specific timescale is required for a solid understanding of the system. 

Control systems engineers have developed tools to study dynamic behaviors of 

mechanical and electrical systems and have in particular derived the frequency response 

analysis to address time-varying processes. This analysis considers the system as a black-

box and determines its overall behavior based on input-output relationships when the 

system is probed at different frequencies. This methodology has been recently applied to 

biological systems to study bacterial chemotaxis (361, 362) and cell signaling in yeast 

(135, 136, 363). In mammalian systems, due to technical limitations, it is difficult to 

probe cellular response to chemical stimuli of varying frequencies. Fourier analysis has 

been applied in in silico models to show the importance of inherent noise to drive 

sustained oscillations in the p53-Mdm2 naturally oscillating feedback system (364) and 

the low-pass filter effect of a three component AKT pathway resulting in the decoupling 

of the peak amplitudes of receptor phosphorylation and that of downstream effectors 

(365). However, in the latter example, validation of the model was performed in the time 

domain. 

With the advance of the microfluidic field, generating controlled complex 

chemical patterns is now possible (366-369). Although very elegant, these techniques are 

often hard to implement and to integrate with cellular systems. When integrated with 

cellular systems for downstream biological applications, chemical pulse generation is 

either performed off-chip (135, 362), using on-chip valves (363) or laminar flow 
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properties (370, 371). However, all these techniques used yeast or adherent cells. Non-

adherent cells, such as T cells, present an additional challenge as they require to be 

retained in specific location over time while exposed to changing stimuli. We have 

presented in Chapter 6 a new microfluidic platform for single T cell trapping, exposure to 

step stimuli and imaging. Integration of this platform with a chemical wave synthesizer 

would allow for validation of frequency response type models generated for non-adherent 

cells.  

In this Chapter we present a model of ROS/Ca
2+

 cross-talk in T cells, based on the 

Ca
2+ 

signaling model presented in Chapter 5, with the addition of a ROS homeostasis 

module. In silico frequency response analysis to periodic ROS stimuli suggests that the 

cell acts as a low pass filter with a larger bandwidth in the cytoplasm compared to the 

ER. In vitro single cell response to periodic H2O2 stimulation shows a large heterogeneity 

in response amplitude and phase shift. We also observed a high Ca
2+

 response 

dependence on the stimulus amplitude. In average at lower H2O2 concentration, cells 

follow the input stimulus with a larger delay compared to higher input concentrations. 

These non-linear effects can be recapitulated by the model when probed in silico for 

different stimulus amplitude.   

 

7.2. Computational model of calcium-ROS cross-talk in T lymphocytes  

7.2.1. Model Description 

Ca
2+

 influences ROS metabolism while ROS can modulate or even impair Ca
2+

 

signaling. To better understand cross-talk effects between these two ubiquitous second 

messengers, we adapted the model of Ca
2+

 signaling in T cells presented in Chapter 5 and 
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incorporated ROS and Ca
2+

 interactions with proteins regulating ROS and Ca
2+

 

metabolism in different cellular compartments. Figure 7.1 presents an overall schematic 

of the model. The model can be subdivided in two tightly interconnected modules that 

span across the various cellular compartments: cytosol, endoplasmic reticulum (ER), 

mitochondria as well as the extracellular space. The first module describes relatively 

simply ROS metabolism in the cytosol and ER (in maroon). The second module describes 

Ca
2+

 fluxes in the cell and is adapted from Chapter 5 (in black). The combination of these 

two modules provides a comprehensive description of ROS and Ca
2+

 cross-talk in T cells. 

 

Assumptions: Species concentration is assumed to be spatially uniform in all 

compartments. Modulation of Ca
2+ 

channels and pumps by ROS and effect of Ca
2+

 on the 

ROS metabolism pathway have not been mathematically described in the past. We have 

chosen to represent these biological processes as enzymatic reactions using Michaelis-

Menten and Hill type functions.   
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Figure 7-1: Schematic of the Ca

2+
/ROS cross-talk model in T cells. The Ca

2+ 
signaling module is 

depicted in black. The ROS metabolism module is depicted in maroon. Dashed lines correspond 

to inhibition, plain lines to activation. A black arrow on a maroon line represents positive 

modulation of a ROS flux by Ca
2+

. A maroon dashed line on a black arrow corresponds to ROS 

inhibition of a Ca
2+ 

flux. 

 

 

7.2.2. Module 1 

Module 1 describes ROS production and clearance mechanisms in basal 

conditions but also in response to extracellular ROS influx. This model does not 

discriminate between different sorts of ROS and lumps superoxide anions, H2O2 and 

nitric oxide as a global species, i.e. ROS. Our group had previously published a 

comprehensive model of cytosolic H2O2 clearance from Jurkat cells including pseudo-

enzymatic oxidative turnover of protein thiols, the enzymatic actions of catalase, 



127 

 

glutathione peroxidase, peroxiredoxin, and glutaredoxin, and the redox reactions of 

thioredoxin and glutathione (260). Because a very detailed analysis of the antioxidant 

system is beyond the scope of this study, only the major production and clearance fluxes 

in each compartment are described.  

 

The fundamental equations of ROS metabolism in the various cellular compartments are 

described as follows:  

       

  
                                          (7-1) 

      

  
 

 

   
(                        ) (7-2) 

       

  
        (7-3) 

ROScyt, ROSER and ROSext denote the concentration of reactive oxygen species in the 

cytosol, ER and extracellular space.      is the ratio of the ER volume to that of the 

cytosol.   

 

ROS influx from the extracellular space to the cytosol: Rate of ROS transport across the 

cell membrane is described as in Adimora et al. (260): 

      (             )        (7-4) 

where       is the permeability coefficient of ROS through the cytoplasmic membrane. 

As in (260), the value of       is adjusted to take into account cell surface area and 

concentration. 
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ROS production in the cytoplasm: There are several sources of ROS production inside the 

cell. Electron leakage from the mitochondrial respiratory chain results in superoxide 

production (        ). During signaling, NADPH oxidases are activated and produce 

either superoxide or H2O2. T cells express two NADPH oxidases isoforms, respectively 

Nox2 (    ) and the Ca
2+

 sensitive Duox1 (     ) (372, 373).    

 

Mitochondrial respiration is a constant source of ROS,         . It is suggested in 

the literature that during signaling and apoptosis, ROS production from the mitochondria 

increases. However, how mitochondrial Ca
2+ 

buffering modulates ROS generation is still 

unknown; available results on this issue are conflicting. Ca
2+

 induces ROS production if 

mitochondria are treated with some inhibitor but reduces it under normal conditions (374, 

375). For this reason, we chose to describe         as a constant production rate.     

                  (5-5) 

 

Mature T cells express the phagocyte-type NADPH oxidase Nox2 that regulates 

elements of TCR signaling (372). Because of its importance in phagocytic oxidative 

burst, this Nox isoform has been extensively studied. Activation of Nox2 occurs through 

a complex series of protein/protein interactions, involving recruitment of the p22phox, 

p47phox and p67phox subunits and Rac2 to the membrane bound gp91phox subunit 

(376). Phosphorylation of specific subunits is required for proper Nox activation (377). A 

recent computational model of NADPH oxidase activation in endothelial cells developed 

by Yin et al. only considered activation and translocation of the Nox1 (isoform of 

gp91phox) and p47phox subunits to describe Nox activation (378). We further simplified 
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this representation by describing Nox activity as a sole function of IP3, based on the fact 

that the same upstream reaction by PLC- that generates IP3 and subsequent Ca
2+

 release 

also initiates diacylglycerol activation of protein kinase C (PKC), which phosphorylates 

p47phox (379) and Rac1/2 indirectly through Ras (380). Therefore, ROS production 

through Nox2 is given by:  

         

   

        
 (7-6) 

where       is the maximal ROS production rate by Nox2 and      the half maximal IP3 

concentration resulting in Nox activation. 

 

Duox1, a Ca
2+ 

dependent nonphagocytic NADPH oxidase, has been reported to be 

responsible for rapid TCR stimulated generation of H2O2 (373). Duox1 does not need to 

be associated with cytosolic factors to be active but is regulated by Ca
2+ 

through two 

canonical EF-hand motifs and PKA/PKC-dependent phosphorylation (381). ROS 

production through Duox1 is therefore described as a linear function of IP3 and a 2
nd

 

order Hill function depending on cytosolic Ca
2+ 

levels:  

                
     

 

     
       

  (7-7) 

where        is the maximal ROS production rate by Duox1 and       the cytosolic Ca
2+ 

dissociation constant. 

 

ROS scavenging in the cytoplasm: Adimora et al. generated a network model of major 

redox reactions and cellular thiol modifications involved in H2O2 metabolism in response 

to oxidative stress (260). We lumped all these reactions into a single 1
st
 order mass action 
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kinetic function with a scavenging rate constant       that fits the predicted cytosolic 

H2O2 concentration showed in (260).  

                   (7-8) 

 

ROS influx from the cytosol to the ER: Previous studies reported increased ER ROS 

levels upon the bolus addition of H2O2 (382), suggesting an ability for cytoplasmic ROS 

to enter the ER, either by diffusion or active transport. We represented this flux as driven 

solely by changes in steady state cytoplasmic ROS levels:  

        (                 )          (7-9) 

where         is the ER permeability membrane to ROS and            the basal ROS 

concentration in the cell.  

 

ROS leakage from the highly oxidized ER environment into the cytosol has not 

been demonstrated in the literature. In fact, an ER luminal H2O2 sensor is oxidized while 

a similar reporter bound to the cytosolic ER membrane side is not (382). This flux has 

consequently not been included in our model. 

 

ROS production in the ER: To maintain the high oxidative environment necessary for 

proper protein folding, the ER is rich in sources of ROS, including oxygenases and 

oxidases which often produce ROS as a byproduct (383). The membrane associated 

flavoprotein Ero1 is a significant source of oxidized equivalents for the ER lumen and 

thus is responsible for setting the ER oxidation state (384, 385). Ero1activity can be 

modulated by changes in the redox state of its regulatory cysteine pairs as part of a 
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homeostatic feedback system in the ER that allows the cell to rapidly offset potentially 

detrimental fluctuations in the ER redox environment (386). A simplified description of 

ER ROS production by ERO1is therefore given by:  

             (
     

     

     
           

     
) (7-10) 

where       is the maximal ROS production rate by Ero1,       is an equivalent oxidized 

species affinity constant to the regulatory cysteine pairs, and       the Hill coefficient. 

 

ROS scavenging in the ER: The ER contains several reductants, such as the thiol/disulfide 

system including glutathione and newly synthesized proteins, glucose-6-phosphate (G6P) 

or pyridine nucleotides (379). Similar to the approach taken for the cytosolic scavenging 

system, we have lumped all these antioxidant systems into one single ROS degradation 

reaction. Using an ER-targeted H2O2-sensitive fluorescent probe Hyper, Enyedi et al. 

showed a decrease in ER H2O2 levels after Ca
2+

 mobilization from the ER stores 

independently of ERO1 activity, suggesting an effect of intraluminal Ca
2+

 on ER ROS 

degradation (381). This hypothesis is compatible with the well-studied ER stress process, 

where low intraluminal Ca
2+

 leads to an increase in misfolded proteins, a consequence of 

altered redox status (387). We have thus selected the following mathematical 

representation: 

                     (
       

     

    
             

     ) (7-11) 

where         is the maximal ROS scavenging rate in the ER and         the equivalent 

half maximal ER Ca
 2+ 

concentration leading to inhibition of the scavenging system and 

      the Hill coefficient.  
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7.2.3. Module 2 

Module 2 describes Ca
2+ 

fluxes between the cytosol, ER, mitochondria and 

extracellular space to a known function or a steady input of IP3. Mathematical description 

of each flux is identical to ones used in Chapter 5, with the addition of ROS modularity 

effects. Briefly, binding of IP3 to the IP3 receptor (IP3R) triggers the release of Ca
2+

 

stored in the ER (JIP3). The resulting drop in ER Ca
2+

 levels activates the ER Ca
2+

 sensor 

STIM1, which translocates to the ER-PM (plasma membrane) junctions to activate a 

more sustained influx in the cytosol through the calcium-release-activated Ca
2+

 channels 

(CRAC) on the PM (Jcrac) (297, 298). The PM Ca
2+

 ATP-ase (PMCA) pumps Ca
2+

 out of 

the cytosol (Jpmca). There is an additional very small Ca
2+

 leak from the extracellular 

space into the cytosol (JPMleak). The Sarco/ER Ca
2+

 ATP-ase (SERCA) pumps cytosolic 

Ca
2+

 back in the ER stores (JSERCA), while small quantities of Ca
2+

 ions leak from the ER 

to the cytosol (JERleak). Cytosolic Ca
2+

 is buffered by the mitochondria (Jmitin, Jmitout). IP3 

production and degradation are not included in this module.  

 

As in Chapter 5, the fundamental equations of Ca
2+

 kinetics in the various cellular 

compartments are described as follows:  

      

  
   ((                     )  (                )  (            

         )) 

(7-12) 
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Cacyt, Camit and CaER denote the concentration of free Ca
2+

 in the cytosol, mitochondria 

and ER respectively.             are the ratio of free to total Ca
2+

.      ,      are the 

ratios of the ER and mitochondria volume to that of the cytosol.  Several Ca
2+ 

binding 

proteins involved in Ca
2+

 buffering in the cytosol and ER have been shown to be redox 

sensitive. The effect of oxidation on those proteins results in both increased and 

decreased affinity to Ca
2+

 depending on the protein (94). Because of these mixed effects, 

we omitted description of the redox effects on Ca
2+

 buffering.  

 

Ca
2+

 flux through the IP3R: IP3R channels are the primary Ca
2+

 release channel in the ER 

in T cells and contain several cysteine residues; for instance IP3R1 has 60 Cys residues, 

70% of them being kept in reduced state with variable accessibility and variable 

regulatory significance (388). Oxidation of certain –SH groups via exposure to thimesoral 

or GSSG sensitizes IP3R activation by IP3, so that even resting levels of IP3 would 

activate IP3R modified by oxidation (327, 389, 390). Duox1 has been shown to be co-

expressed with IP3R T cells (108) which may imply a role of Duox1 H2O2 production as a 

positive feedback to maintain IP3R open and amplify the Ca
2+

 signal. In addition, recent 

studies have suggested a possible link between the ER redox state and IP3R function 

(391-393); however, cysteine residues responsible for redox modifications of IP3R 

activity have not been identified, and it is still not very clear when, where and how these 

modifications take place. 

Therefore we only described ROS effect on IP3R as a ROS-dependent modulation of IP3 

affinity constant. The modified flux of Ca
2+ 

through the IP3R is given by: 

                    (7-15) 
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where VIP3 is the maximum flowrate and PIP3 the IP3R open probability. PIP3 is assumed to 

be an instantaneous function of Ca
2+

, IP3 concentration and the fraction of IP3R not 

inactivated by Ca
2+

 bound to the inhibitory site,  .  PIP3 is described as: 

     ((
   

           
) (

     

          
) )

 

 (7-16) 

where         is the ROS-modulated IP3 dissociation constant from the IP3 binding site 

and      the affinity of Ca
2+ 

to the activating site. 

            (
       

       

      
               

       ) (7-17) 

where       is the unmodulated IP3 dissociation constant from the IP3 binding site. 

        is the half maximal ER ROS concentration that leads to a change in IP3-binding 

affinity and         the Hill coefficient. 

 

The fraction of inactivated IP3R, 1- , is a function of cytoplasmic Ca
2+

 and  , the 

effective affinity of Ca
2+

 to the inhibitory site.   

  

  
  ((   )(       )       ) (7-18) 

      (
           

           
) (7-19) 

where   is a variable controlling the relative time scales between the differential 

equations,     , the Ca
2+

 affinity to the Ca
2+

 inhibitory site and         the affinity of IP3 

to the IP3 binding site when the Ca
2+

 inhibitory site is occupied. 
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Ca
2+

 leak from the ER: Increased levels of intraluminal ROS result in a temporary 

increase in nonselective membrane permeability, which would allow the escape of a 

larger number of Ca
2+ 

ions from the ER to the cytoplasm. Modified JERleak can be 

described as: 

                     (  
               

         
) (7-20) 

where          is the unmodulated ER Ca
2+

 leak rate and           the resting ROS level 

in the ER. 

 

Ca
2+

 flux through the SERCA pumps: SERCA pumps plays a key role in maintaining low 

cytoplasmic Ca
2+

 levels by actively sequestering Ca
2+

 into the ER. The different SERCA 

isoforms channels contain from 22 to 28 cysteine residues, most of which display redox 

sensitivity resulting in inhibition of the Ca
2+

 pump to cytoplasmic oxidative stress (108-

110). The luminal regulation of SERCA2b isoform also involves a redox component. At 

high ER Ca
2+

 levels and oxidizing conditions, the oxidoreductase ERp57 bound to 

SERCA C-terminal tail promotes disulfide bridge formation that reduces pump activity. 

For simplification purposes, we only modeled a general cytoplasmic ROS modulatory 

effect on SERCA activity, and the modified         is given by: 

              (
     

 

     
        

 )  (
         

         

      
                   

         ) (7-21) 

where        is the maximum flux across the SERCA pump and        the SERCA 

activation constant by Ca
2+

,
            the half maximal cytosolic ROS concentration 

responsible for pump inhibition and           the Hill coefficient. Again, as in Chapter 
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5, we did not discriminate between different SERCA isoforms despite their differential 

Ca
2+

 affinities and susceptibility to redox inhibition (108).  

 

Ca
2+

 fluxes through the mitochondria: There are no reports of direct redox modulation of 

the uniporter or the mitochondrial Na
+
/Ca

2+
 exchanger; hence we did not alter the 

expressions for mitochondrial Ca
2+

 uptake and efflux described in Chapter 5:  

             (
     

 

     
        

 ) (7-22) 

where        is the maximum rate of Ca
2+

 uptake in the mitochondria and        the 

apparent Ca
2+

 affinity of the uniporter.  

                      ( 
     

 

     
         

 ) (7-23) 

where         is the maximum rate of Ca
2+

 efflux and         the half maximum Ca
2+

 

concentration for efflux.  

 

Ca
2+

 fluxes through the plasma membrane: Store operated calcium entry (SOCE) relies 

on ER Ca
2+

 store depletion, activation of STIM1, dimerization, association with the 

ORAI1 CRAC channels and CRAC activation (298, 308). Redox regulation of SOCE is 

not clear (102). Hawkins et al. studied redox mediated activation of STIM1 and found 

that oxidative stress leads to gluthationylation of STIM1’s cysteine 56, triggering STIM1 

oligomerization and punctae formation independently of ER Ca
2+

 levels (103); yet Prins 

et al. demonstrated that the ER oxidoreductase ERp57 is a binding partner with STIM1 

and ERp57 deficiency results in increased SOCE, suggesting a negative role of oxidation 

on STIM1 (104). Orai1 is reported to be activated in a STIM1–dependent manner after 
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H2O2 exposure (105); however, in another study, ORAI1 was observed to be inhibited by 

oxidation of Cys195 (106). Because of these discrepancies in the literature (102), we 

chose to ignore redox effects on CRAC channels. Jcrac is therefore expressed as in 

Chapter 5:   

            (
     

 

    
       

 )  (
     

          
) (7-24) 

where       is the maximum Ca
2+

 influx through the CRAC channels,       is the 

dissociation constant of ER Ca
2+

 to STIM1 and      the Michaelis-Menten concentration 

for extracellular Ca
2+

,      .   

 

Permeability of the plasma membrane has not been shown to be redox-dependent; hence 

we have used the PM Ca
2+ 

leakage expression from Chapter 5: 

                      (7-25) 

where         is the rate of leakage through the plasma membrane. 

 

As with the SERCA pump, the PMCA pump is also inhibited by oxidation, though at 

higher levels of ROS (394, 395). Ca
2+

 efflux from the cytosol to the extracellular space is 

therefore described as:  

            (
     

 

     
       

 )  (
    

 

    
           

 )

 (
        

        

      
                 

        ) 

(7-26) 

where       is the maximal PMCA efflux rate,       the Ca
2+

 affinity to the PMCA 

pump,           the dissociation constant of ER Ca
2+ 

on STIM1 allowing it to become 
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activated and interact with PMCA.           is the half maximal cytosolic ROS 

concentration responsible for pump inhibition and          the Hill coefficient. 

 

7.2.4. Model Optimization and Simulation in the Time Domain 

The series of differential equations were solved using Matlab R2011a 

(Mathworks, Natick, MA) using the ODE solver for stiff system ode23s. Initial 

conditions were chosen according to published experimental data before parameter 

optimization or computed at steady state (Table 7.1). There is very little information 

available in the literature concerning concentrations of ROS in living cells. Enyedi et al. 

reported an ER H2O2 concentration similar to the cytosolic H2O2 concentration after a 

bolus addition of 90 M H2O2, suggesting ER ROS levels to be in the tens of M. The 

ER environment being largely more oxidized than the cytosol (~ -130mV difference in 

the redox potential) (396), we assumed the cytoplasmic concentration to be in the nM 

range, consistent with other estimates (260).  

Table 7-1: Initial conditions 

State Variable Value Reference 

ROScyt 1 nM (260) 

ROSER 85 M (382) 

Cacyt 50 nM (310) 

CaER 350 M  (310) 

Camit 0.1 M (311) followed by SS computation Jmitin=Jmitout 

IP3 0.54 M (309) 

h (fraction active IP3R) 0.02 (292) 

 

 We performed initial parameter estimation on each module individually, to 

constrain the number of free floating parameters to estimate. Parameter estimation for 
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Module 2 was described in Chapter 5. For Module 1, IP3, Cacyt and CaER were maintained 

at steady state and unknowns were fitted to four different datasets: cytoplasmic ROS 

clearance after bolus addition of exogenous H2O2 (260) (represented by an abrupt change 

in initial ROSmedia concentration), as well as three datasets acquired by Enyedi et al. 

representing ER ROS dynamics in response to DTT (represented by 8-fold increase in the 

ROS scavenging rate in the cytosol and ER), thapsigargin (represented by a 85% 

reduction in the maximal SERCA pumping velocity) and histamine (382). Because the 

histamine Ca
2+ 

time course resembled a Ca
2+ 

trace after TCR stimulation, we used a 5 

min pulse IP3 input function. Once parameters were found that fit all four datasets, we 

allowed the Ca
2+

 fluxes in the various cellular cellular compartments to vary and 

empirically adjusted the velocities of the Ca
2+

 channels and pumps modulated by ROS. 

The other parameters in Module 2 were left unchanged and the parameters in Module 1 

adjusted to fit the four datasets. This parameter set was used as a starting point for more 

robust parameter estimation based on constrained non-linear programming, with the 

objective function S consisting in the squared sum of errors across experimental 

conditions: 

  ∑ ∑ ∑(
     (     )      (     )

     (     )
)

  

   

 

   

    

   

 (7.27) 

where      is the maximal simulation time,   the number of state variables used for 

optimization and    the number of experimental conditions being optimized. 

Table 7.2 presents the optimized parameters as well as the parameter bounds used.  
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Table 7-2:Model parameter values 

Parameter Optimized 

Value 

Bounds Source/Explanation 

      4e-3 s
-1

 [1e-2 1e-1] Adapted from (260),  

       (
  

 
)      (

 

   )  

 (   )            

 
  with 

      ,             

corresponding to 10 m diameter 

cell and 5*10
6
 cells.mL

-1
 

         1.2e-6 M
 
s

-1
 1.2e-6 SS analysis:                 

        

     1e-6 M
 
s

-1
 [1e-7 1e-4]  

     5 M [1 8] Physiological levels of IP3 after T 

cell stimulation 

      1e-6 M
 
s

-1
 [1e-7 1e-4]  

      0.15 M [0.05 1] Physiological levels of cytosolic 

Ca
2+

 after T cell stimulation 

      1.2e-3 s
-1

 1.2e-3 calculated from (260) 

        4e-2 M [0.1 1e-4]  

           0.0015 M [0.001 0.05]  

      3e-3 M
 
s

-1
 [1e-4 1e-2] Assuming [ERO1]= 0.05 uM,  

           (   )  

     (  ) (397) 

      95 M [85 120] ER ROS levels > steady-state 

      3 [1 6]  

        5.45e-5 s
-1

 5.45e-5 s
-1

 Computed at SS with respect to 

        

        280 M [150 350] Physiological ER Ca
2+

 levels   

      2 [1 6]  

     1.626  s
-1

 [1 2] Ch. 5 

     0.16 M 0.16 M Ch. 5 

     0.2915 M [0.1 5] M Modulated from 0.106 (Ch. 5) 

        0.0442 M 0.0442 M Fitted from (327) assuming 1 M 

thimesoral results in generation of 

10 nM ROScyt.  

        0.462 0.462 

     1 M 1 M 1 (291) 

        0.771M [0.5 1.5] M 1.05 (291) 

  0.0917 [0.01 0.5]  Ch. 5 
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Table 7-2 continued: 

Parameter Optimized 

Value 

Bounds Source/Explanation 

        0.003 s
-1

 [0.001 0.005] s
-1

 Ch. 5 

       233.75M
 
s

-1
 [85.8 300] M

 
s

-1
 Modulated from 85.8  (Ch.5) 

       0.4477 M 0.4477 M Ch. 5 

          1.151  M 1.151 M Fitted from (110), assuming the 

SERCA pump is exposed to 

ROScyt=10
-3

*(ROSext)  

          0.38 0.38 

       794.07 M
 
s

-1
 794.07 M

 
s

-1
 Ch. 5 

       1.24 M 1.24 M Ch. 5 

        484.44 M
 
s

-1
 484.44 M

 
s

-1
 Ch. 5 

        8.1285 M
 
 8.1285 M

 
 Ch. 5 

      3.1046 M
 
s

-1
 [1  10] M

 
s

-1
 Ch. 5 

     996.83 M
 
 [200 1500]M

 
 Ch. 5 

      195.73 M 195.73M Ch. 5 

        2.5e-7 s
-1

 [1.5e-7 3.5e-7] s
-1

 Ch. 5 

      4.96 M
 
s

-1
 [1.5 10]M

 
s

-1
 Modulated from 1.805 (Ch. 5) 

      0.1269 M 0.1269M Ch. 5 

          394 M 394 M Ch. 5 

         0.258 M 0.258 M Fitted from (395), assuming the 

SERCA pump is exposed to 

ROScyt=10
-3

*(ROSext) 

         1.147 1.147 

    0.015 0.015 (312) 

     0.08 0.08 (312) 

   0.1678 0.1678 Ch 5.  

    0.0467 0.0467 Ch. 5 

     0.716 0.716 Ch. 5 

 

 We included in this model Nox and Duox as sources of ROS production that are 

activated during T cell signaling. Because the datasets used to fit Module 1 are primarily 

related to ER redox balance and the effect of Ca
2+ 

depletion on the ER redox status and 

not to ROS effects on a Ca
2+

 time course after T cell stimulation, the confidence on those 

parameters is very low. Additional optimization on experimental Ca
2+

 time course in the 

presence of NADPH oxidase inhibitors and combinations of Ca
2+

 channels and pumps 
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inhibiters are required to improve the confidence in the parameters and the quality of the 

fits.  

 We opted for an alternative approach for model validation. ROS-Ca
2+ 

cross-talk 

occur on different timescales based on various fluxes and affinities to the second 

messengers; therefore, the measured output to a step or impulse is the sum of 

simultaneous events occurring over a range of timescales. Usual time course analysis 

techniques do not easily discriminate these events and their respective contribution. The 

engineering community has long applied frequency response methodologies to address 

time-varying processes in mechanical and electrical systems. This methodology is only 

valid on linear systems, which is not the case with biological systems. For instance, 

saturation of an enzyme is an example of non-linear behavior. However, if a system 

operates close to its operating point or with small perturbations, it will behave as a linear 

system. As a first approximation, we will make the assumption that using small 

amplitude stimuli will not drive our biological system to saturation and hence be able to 

analyze it in the frequency domain. Coherence analysis can be performed to validate the 

frequency range in which the system is linear. 

 

7.2.5. Frequency Response Analysis 

 Frequency response analysis is a method where the behavior of a system is 

characterized by its response to sinusoidal input signals. It relies on the decomposition of 

an input and output signal into its principal frequency components and the comparison of 

the output signal to the input in the frequency domain. Importantly, this technique does 

not require prior knowledge of the system. 
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Briefly, any signal can be decomposed as a sum of sine waves via Fourier transform. The 

Fourier coefficient,  ̂( ) of a signal  ̂( ), at the angular input frequency   can be 

described as: 

 ̂( )  
 

  
∫       ( )  

  

 

 (7.28) 

where 
  

 
  is the period of the input signal and n the number of periods sampled. 

 

 The result of this integral is a complex number whose norm | ̂( )| corresponds 

to the amplitude of the output signal and whose argument     ( ̂( )) is 90 degrees below 

the output phase at frequency w.  

 Traditionally the frequency response of a system is assessed by measuring the 

output response to sinusoids of a given amplitude and different frequencies. The ratio of 

the amplitude of the output to the amplitude of the input represents the gain of the 

system. The time delay between the input and output signal corresponds to the phase of 

the system. Gain and phase of a system over a range of frequencies provides sufficient 

information to characterize the system’s frequency-dependence and can be displayed in 

Bode plots.  

 The Bode plots provide direct insight into the dynamic behavior of the system. 

The gain plot presents the system’s response to a perturbation at different timescales, in 

particular the frequency filtering properties of the system. The phase plot contains 

additional information about the way in which the system acts when connected to other 

systems, in cascade or in the presence of feedback, as well as delays. 
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 Bode plots are generally constructed by experimentally probing a physical 

system. Although experimentally probing the response of a biological system to stimuli 

of different periods has been used in the past on bacteria (361, 362) and yeast (135, 136, 

363, 398), technical hurdles make it difficult to apply it to mammalian cells. An 

alternative approach is to build the Bode plots in silico and use these modeling 

predictions as a tool to guide experimental validation using a selected few frequencies to 

probe.  

  

 Once in Bode plot form, it is possible to fit a mathematical description to the 

system’s behavior.  This mathematical representation takes the form of a transfer 

function. In the Laplace domain L, it can be described as:  

 ( )  
 ( )

 ( )
 
   ( ) 

   ( ) 
  

∏      

∏      
 (7.29) 

where Y(s) is the Laplace transform of the output signal  ( ), U(s), the Laplace 

transform of the input signal  ( ), m, the number of zeros in the nominator and n, the 

number of poles in the denominator with    .    and    correspond respectively to 

the zeros and poles of the system. When evaluated at     , the Laplace transform 

yields the Fourier transform and  (  ) the frequency response of the system at this 

frequency.  

 

 It is also possible to evaluate the form of the transfer function based on the 

mechanistic ODE description of the system by linearizing around the operating point of 

the system. In this case, all poles and zeros of the transfer function are a function of the 

ODE model kinetic parameters and the Bode plots can be generated from the symbolic 
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version of the transfer function. Although extremely useful for simpler systems, this 

methodology is not adequate for complex systems with highly non-linear differential 

equations. Thus we chose the reverse approach of determining the Bode plots by probing 

our ODE system to periodic inputs and backcalculating the transfer function. This 

technique offers an additional advantage: the transfer function fitted to the Bode plots 

contains parameters that generally do not have a physical meaning; however it is often 

possible to find a description in the frequency domain with fewer parameters compared to 

the model in the time domain.   

 Systems identification is a common control-based approach to build mathematical 

models of dynamical systems. Most systems identification methods rely on statistical 

methods to fit parameters to a model structure. In our case, we attempt to fit a transfer 

function of the form presented in (7.29) to the in silico computed Bode plots. Before any 

fitting is attempted, the form of the transfer function must be specified. Corner 

frequencies correspond to the presence of a zero or pole (Appendix E.S1 for an example 

on a second order low-pass filter). The slope between these corner frequencies 

corresponds to the difference between the orders of the denominator and nominator of the 

transfer function (   ) for the zeros and poles with values below the specified corner 

frequency. For instance, a slope of -20 dB/decade would correspond to (   ) =1, while 

-40dB/decade would correspond to (   ) =2. Once the transfer function’s 

mathematical form has been specified, we fitted the parameter values (zeros and poles) 

using non constrained optimization algorithms based on gradient search methods 

(fminsearch). 
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7.3. Results & Discussion 

7.3.1. Cellular redox status affects Ca
2+

 response to T cell stimulation by  

-CD3 and H2O2 

Ca
2+ 

channels and pumps have been shown to be redox-sensitive in vitro and in 

vivo assays (103-105, 108-110, 327, 376, 377, 388-395). However, most of these assays 

have been performed in excitable cell types with large concentrations of exogenous H2O2.  

To verify if ROS plays a physiological role in Jurkat T cell signaling, we measured Ca
2+

 

dynamics in response to TCR stimulation in the presence of various ROS inhibitors 

(Figure 7.2).  

 

Figure 7-2: Average traces of Ca
2+ 

dynamics following TCR stimulation with 2 g/mL -CD3 in 

no inhibitor condition (blue), 5mM NAC (green), 2 M DPI (black) and 10 M Apocynin (red). 

(n=3)  
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Compared to the no inhibitor condition, the addition of N-acetylcysteine (NAC), a 

precursor of intracellular cysteine and GSH that acts like a non-specific cytosolic ROS 

buffer, and of DPI and apocynin, two specific NADPH oxidase inhibitors result in an 

overall decrease of Ca
2+

 signaling. Both the amplitude of the signal and the sustained 

Ca
2+

 levels are reduced, suggesting a ROS-dependent effect on IP3 release and SOCE. 

These results also suggest the importance of early ROS production by NADPH oxidases 

after TCR stimulation to promote signaling. Compared to NAC inhibition, the decay time 

constant (defined as in Chapter 5) is also altered, suggesting inhibition of the SERCA 

pump. These results are consistent with the recent findings of Kwon et al. who observed 

inhibition of SOCE in Duox1
-/-

 Jurkat cells (108). Contrary to antioxidant treatment, 

addition of low amounts of H2O2 (25 M) results in increased cytosolic Ca
2+ 

levels 

(Appendix E.S2). Pretreatment with the external Ca
2+ 

chelator EGTA or the non-specific 

cation channel blocker flufenamic acid (FFA) slightly reduces the signal while 

pretreatment with TMB-8, an IP3R inhibitor completely abrogates the signal. These 

results suggest an initial effect of oxidation on the IP3R that will in turn trigger SOCE. 

We observed smaller effects of oxidation on extracellular Ca
2+

 influx.  

Because of the complexity of the Ca
2+ 

signaling pathway and the number of 

simultaneous interconnected fluxes that occur, experimentally determining the effect of 

ROS on Ca
2+ 

signaling requires a large number of additional experiments using chemical 

inhibitors and knock-down cell lines. We chose computational modeling as an alternative 

approach to investigate hypothetical features of cross-talk occurring between Ca
2+ 

and 

ROS in T cells in the resting state and during stimulation. 
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7.3.2. Computational Model of Ca
2+

/ROS cross-talk 

This model of Ca
2+

/ROS cross-talk is based upon the Ca
2+ 

signaling model 

described in Chapter 5 with an additional module of ROS homeostasis in the ER and 

cytoplasmic compartment. In addition, fluxes through redox-sensitive Ca
2+

 channels and 

pumps are modulated by ROS levels to reflect the effect of an oxidative environment on 

Ca
2+

 levels. The final model contains 7 ordinary differential equations and 48 parameters, 

divided into two tightly interconnected modules. Because we optimized most of the 

parameters of the Ca
2+ 

module in Chapter 5, we focused parameter optimization on the 

ROS homeostasis module and while constraining the Ca
2+

 parameters (Table 7.2). The 

ROS module can be further subdivided into two semi-independent submodules consisting 

of the cytoplasmic and ER compartments. In the cell, these two compartments are largely 

insulated; the cell maintains a rather reduced redox level in the cytosol while a highly 

oxidizing environment is necessary in the ER for proper protein folding. The primary 

connection between those two modules is a unidirectional ROS flux from the cytosol to 

the ER when cytosolic ROS levels are above a threshold. Figure 7.3 depicts the ability of 

the cell to respond to the exogenous addition of DTT followed by a wash step and bolus 

of H2O2. The experimental values were digitized from the measurements of Enyedi et al., 

acquired with a novel H2O2 specific-fluorescent protein targeted to the ER (382). This 

model can also predict Ca
2+ 

dynamics in the ER and cytoplasm after a bolus addition of 

H2O2 and shows rapid depletion of the ER Ca
2+

 stores (Appendix E.S3). 
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Figure 7-3: Cell response to 5 min perfusion with DTT (modeled as an 8-fold increase in the 

cytosolic and ER scavenging rate). DTT was then washed out of the medium for 15 min (modeled 

as a return to 1.2*baseline cytosolic and ER scavenging rate) and 100 M H2O2 was applied. In 

blue, ROS levels in the ER. In red, cytoplasmic ROS levels. Digitized experimental data are taken 

from (382). Model is fitted to the ER ROS levels. Cytoplasmic levels are predicted.   

 

The model can recapitulate the drop in ER ROS due to ER Ca
2+

 depletion observed by 

Enyedi et al. (382) assuming that the scavenging rate alone depends on luminal Ca
2+

 

levels (Figure 7.4). The reduction in ROS ER levels in the model are not as pronounced 

as in the experimental data probably because of a model constraint that does not allow 

ER Ca
2+

 to drop below 200 M. Model predictions for the levels of cytoplasmic ROS, 

Ca
2+ 

and ER Ca
2+ 

are presented in the Appendix E.S4 and E.S5. 
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Figure 7-4: ER ROS levels after Ca2+ release from the ER intracellular stores. a) in response to 

thapsigargin treatment (modeled as a 85% reduction in SERCA maximal velocity). b) in response 

to histamine treatment followed by a bolus of 100 M H2O2 (histamine treatment modeled as a 

pulse of 5 M IP3 between 5 and 10 min). Treatment time is at 5 min. Digitized experimental data 

are taken from (382). 

 

To further optimize and validate the model, we applied the frequency response analysis 

methodology described above and generated in silico the system’s output to sinusoidal 

stimuli of various frequencies. Because the output measured experimentally is 

cytoplasmic Ca
2+

, details of the frequency response for this variable is described in the 

main text. Time courses and frequency response of the other species are described in the 

Appendix E.S6-10. 

 

7.3.3. Ca
2+

/ROS cross-talk model frequency response 

To generate the frequency response of the system, we applied in silico a 

sinusoidal wave of 25 M ROS of various periods. We chose a small ROS concentration 

to allow the system to stay in a relatively linear range. Each simulation was run for 18 

periods, with a minimum of 250 sample timepoints by period (set in the ODE solver). 

Ca
2+

 time course response to a sinusoidal input of ROS with a 10 min period 

(corresponding to 1.7 mHz frequency) is represented in Figure 7.5. After a brief transient, 

cytoplasmic Ca
2+

 settles in a sinusoidal pattern of its own. The Ca
2+

 oscillation period is 

conserved. 
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Figure 7-5: Transient response of cytosolic Ca

2+ 
in response to a 10 min period ROS input. 

When compared across different periods of input stimuli, Ca
2+

 response in the time domain 

exhibits time delays and lower steady state amplitude for shorter periods (Figure 7.6). For 

instance, the 30 second period exhibits a 45deg phase shift between the input and output. At 10 

minutes and 60 minutes both signals are in phase and share the same steady state concentration. 

These time courses suggest that the bandwidth of the system for cytoplasmic Ca
2+ 

is between 30 

seconds and 10 minutes. Time courses for the other species at different periods are depicted in 

Appendix E.S6-10. 
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Figure 7-6: Cytosolic Ca

2+ 
in response to ROS stimulus input of different periods. a) 30 second 

period. b) 10 minutes period. c) 1hour period.  Note the time scales on the x axis are different. 
 

From these time courses, several interesting features emerge. In addition to a 

change in the amplitude and phase shift with frequency, we observe that the ER displays 
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highly non-linear behavior and functions as an integrator that accumulates the input 

signal over time (e.g. at 30 seconds). In addition, the output response of several species to 

the sinusoidal input is a periodic signal with the same frequency but not the same shape. 

This is particularly visible with ER Ca
2+

; however it is also the case with cytoplasmic 

Ca
2+

 at lower frequencies, which suggests non-linearity of the system with the addition of 

new frequency components. 

As an initial approach, we used these time courses and their Fourier transform to generate 

the Bode plots (Figure 7.7). 
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Figure 7-7: Bode plots of the multiple output system. In red, the gain of the system is displayed. 

In blue, the phase plot is displayed. Frequencies for which an output displayed a non-steady linear 

behavior is not displayed here. 

 

From these Bode plots, we note that the ROS buffering capacity in the cytosol 

behaves like a first order low-pass filter with a bandwidth of about 2 minutes. This 

behavior is closely followed by cytosolic Ca
2+

 with a slightly larger bandwidth. The 

mitochondrial Ca
2+

 behaves like a second order low-pass filter of similar bandwidth. This 

difference may arise from the very fast mitochondria buffering kinetics compared to the 
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cytoplasmic Ca
2+ 

homeostatic system. Both Ca
2+ 

and ROS ER components display higher 

order transfer functions. 

As described earlier, a mathematical description of these Bode plots can be given as the 

transfer function. Figure 7.8 shows the transfer function for the output cytoplasmic Ca
2+

. 

The best fit is given by the following transfer function:  ( )   
 

    
  where is the cut-

off frequency, here 10.6 mHz, and K the gain of the system, here K=0.05. 

 
Figure 7-8: Fit of a first order transfer function for cytosolic Ca

2+
. Gain K=0.05; Corner 

frequency fc = 10.6 mHz. 

 
This result suggests that a cell probed with exogenous ROS can follow the input stimulus 

if its period is greater than 1.5 minute. In terms of phase shift, at the 1.5 minute time 
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period, a 45deg phase shift will correspond in a 47 second delay. It is interesting to notice 

that such a complicated system can be reduced to a single parameter to describe the Ca
2+ 

response to a specific input and be able to predict Ca
2+ 

response to any kind of other ROS 

input shape. This feature of parameter reduction is a powerful motivation for utilizing the 

frequency response analysis for complex systems. 

To test this model‘s predicted Ca
2+ 

response to exogenous addition of ROS, H2O2 

must be measured. We chose to probe the system at different periods that would capture 

characteristics of the Bode plots, for instance, 30seconds, 1 minute, 2minutes, 5minutes, 

10 minutes and 30 minutes. Delivering chemical pulses is not feasible with common 

techniques and requires the use of microfluidics to deliver controlled chemical waves. 

 

7.3.4. Generation and delivery of chemical pulses to Jurkat cells 

In the past three years, following the publication of the seminal papers using 

frequency response analysis to better understand signaling pathways in yeast, there has 

been a growing interest in creating tools able to deliver periodic signals (370, 371, 399, 

400). When applied to biological systems, most designs to date have been focusing on 

delivering chemical waves to adherent cells. Our model cell line poses an additional 

challenge as these cells are non-adherent and will get washed away with fluids if not 

retained in a specific location over time. We presented in Chapter 6 a new microfluidic 

platform for single-cell imaging that traps very efficiently single cells in specific location 

in a dense array (323). We have also shown that a simple step input stimulus can be 

delivered to the cells. To deliver chemical pulses to the trapped cells, this microfluidic 

platform needs to be coupled with a microfluidic chemical pulse generator. Most designs 
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to date are not compatible with our microfluidic cell trap array because of the extremely 

low flowrates (2-5 L/hour) required to avoid shear stress on the trapped cells. Off-chip 

components, such as pinch valves or switching valves, will create a well-defined pulse 

close to the valve but diffusion and Taylor dispersion in the tubing will smooth the plug, 

and the signals seen by the trapped cells will be an average of both solutions. Relying on 

laminar flow, it is possible to create chemical pulses by co-flowing two solutions and 

varying the flowrate of one versus the other automatically using a controllable syringe 

pump. Again, the low flowrates required lead to mixing by diffusion and large switching 

time. We used a simple alternative approach to create chemical waves in our microfluidic 

cell trap array by manually switching the inlet tubing connected to one of two solutions. 

Figure 7.9 shows the chemical signal, measured as FITC-BSA intensity delivered to the 

cells based on a theoretical input pulse (in blue) for different days and devices. The 

period of the signal is conserved with a maximal error of ±3%. The presence of cells in 

the trapping area does not affect the quality of the pulses. For larger periods, the shape of 

the signal is maintained; however for higher frequencies, pulses become sinusoids 

because of diffusion. Device to device variability is significant (up to 20%); hence 

calibration of the device with a fluorescent solution is required after completion of a 

biological experiment (Appendix E.S11). Because of the slow flowrates and the 

combination of parallel and perpendicular flow in the trap array, there is an additional 

delay effect between the signal seen in the top and the bottom of the chamber (Appendix 

E.S12). Due to these limitations, this technique limits the frequency domain that can be 

experimentally probed to periods ranging from 6 minutes to 60 minutes.   
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Figure 7-9: Characterization of on-chip chemical pulses. In blue is represented the theoretical or 

ideal input function. In other colors are represented the signals measured for 3 different devices 

for different input frequencies. 

 

7.3.5. Cell response to a periodic input of H2O2 

Figure 7.10 shows single-cell response to a 10 minute period application of 50 

M H2O2. Similar to our observations of Jurkat cell response to an ionomycin pulse 

(Chapter 6), there is a very large heterogeneity in cell response that includes a fraction of 

cells not responding to the stimulus. In average, cell response follows the input stimulus 

with a delay of 3 minutes for the first period; the magnitude of the delay keeps increasing 

with the number of periods. The average oscillation period of the averaged cell response 

is equal to 10.5 minutes, which is very close to the input signal period, given 

experimental errors in delivering the oscillations. In addition, the oscillations are 
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dampened (Figure 7.10a). At the single cell level, different patterns of behavior can be 

observed among responsive cells ranging from sustained oscillations to dampened 

oscillations or accumulation. The new steady state achieved as well as the phase shift 

between the single-cell response and the input greatly vary from cell to cell and does not 

correlate with cell position in the chip (Figure 7.10b). These large differences in 

amplitude and phase in single cell may arise from different mRNA copy numbers due to 

stochasticity in gene transcription (401) and consequently Ca
2+

 channel and pump levels.  

Fourier analysis of single cell traces shows that periodic stimulation shifts the basal 

cellular oscillation frequency of around 5 minutes to a slower oscillation frequency of 

about 16 minutes. This average has been computed by retaining the three major 

frequency components of the Fourier spectra for each single cell (Figure 7.10c).  
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Figure 7-10: Single cell analysis of calcium responses to waves of H2O2 (10 min period, 50 M) 

and quantified for oscillations in fluorescence. a) Representation of experimental output from 250 

cell traps. Each line is a time-dependent trace of fluorescence for a single cell. H2O2 introduced at 

frame 50. The black line represents the input wave and the red line the average of cellular 
oscillations of the heatmap displayed above. b) Selected single cell traces (in red) and input signal 

(in black). c) Fourier transform of data showing distribution of basal (blue) and stimulated cell 

(red) frequencies for the 10 min period condition (1.7 mHz). 
 

Based on this unique assayed frequency, there are large discrepancies between the 

model and the experimental data. For a 10 minute period oscillation, the model predicted 

a sinusoidal Ca
2+ 

time course in phase with the input signal (Figure 7.8). Experimentally 

the Ca
2+

 time course is a periodic signal displaying ramping, dampened oscillations. 

Because the Ca
2+

 response is not sinusoidal, we further investigated if the concentration 

of 50 M H2O2 resulted in non-linear effects due to saturation. For this 10 minute period 

input signal, we varied the applied H2O2 concentration from 25 to 1000 M (Figure 

7.11). At the lowest concentration, the cells did not respond to the signal at all and 
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maintained their baseline spiking patterns. At the intermediate concentrations 50 and 200 

M, the average cell response followed the input oscillation pattern with noticeable 

differences. Lower concentration results in higher phase shift and more pronounced 

transient behavior. The higher concentration leads to dampened oscillations around a 

steady-state while at the lower concentration, the oscillations - although dampened in 

amplitude - are integrating the input signal. At the highest concentration, 1mM H2O2, 

cells display a first peak of large amplitude and return to baseline.     

 

 
Figure 7-11: Impact of stimulus input amplitude on single cell response to a 10 minute period 

H2O2 treatment. In black, the input signal. In red, the average cell response. 

 

Non-linearities in the system were predicted by the model. We constructed the 

Bode plots of our system for input concentrations ranging from 8 to 200 M ROS (Figure 

7.12 and Appendix E.S13). The model pointed to amplitude-related effects on the 

frequency response that are species dependent. For instance, frequency responses of ROS 
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in the cytosol and in the ER are not amplitude dependent (Appendix E.S13). On the other 

hand, Ca
2+

 frequency response is highly dependent on input amplitude in terms of gain 

but also bandwidth (Figure 7.12). Higher input concentration results in larger gain and 

bandwidth, suggesting the ability of the cell to filter high frequency, low amplitude ROS 

inputs, considered as noise by Ca
2+

 in the cell, and therefore preventing the elicitation of 

a cell response to noise. In contrast, at the input amplitude sampled, ROS does not have 

an amplitude-dependence, suggesting a higher sensitivity and large buffering system to 

clear out perturbances of various amplitudes. The shift in bandwidth with concentration 

was observed experimentally with the phase shift reduction between our 50 and 200 M 

H2O2 datasets.  

 
Figure 7-12: Effect of the input amplitude on cytosolic Ca

2+ 
gain and phase. 

 

 

7.4. Conclusion 

Although the model can fit a subset of experimental data in the time domain, 

analysis of the network in the frequency domain show discrepancies between the 

experimental and modeling data. In particular, our experimental results indicate a higher 
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degree of non-linearity of the system than predicted by the model, suggesting errors in 

parameter values, inaccurate mathematical formulation of specific interactions or missing 

interactions in the network. For instance, this model does not take into account redox 

dependence of IP3 formation, of Ca
2+

-binding protein to effectively buffer Ca
2+

 in the 

cytosol and ER. We also did not explicitly model the impact of Ca
2+

 buffering by the 

mitochondria on its ROS production. We also did not take into account the various 

isoforms of Ca
2+

 channels and pumps expressed in T cell. Their relative levels as well as 

their differential redox sensitivities and Ca
2+

 affinity may be a very important mechanism 

for the cell to regulate global Ca
2+

 levels in the cell. Redox effects on SERCA are 

concentration and ROS dependent –between nitric oxide, superoxide and H2O2- with 

activation at low ROS levels (402) and deactivation at higher levels (108, 110); yet we 

only modeled all types of ROS as a single ROS species and did not take into account 

concentration-dependent activation and deactivation of the pump. The understanding of 

oxidation on proteins involved in the Ca
2+

 signaling pathway is still in its infancy and 

large number of reports are contradictory  (102, 371). When possible we used data 

acquired in T cells for lower levels of oxidation, however to be predictive in terms of 

signaling and response to oxidative stress, the ROS concentration dependence needs to be 

clearly formulated. Another important assumption in this model is that species are 

spatially uniformly distributed, which is physiologically not the case during signaling. 

ROS production for signaling purposes is believed to be heavily localized close to its 

targets, which results in very high concentrations in very specific microdomains. For 

example, co-localization of Duox1 with IP3R on the ER membrane (373) suggests that 

once Ca
2+

 release from the ER stores have begun, some of these ions will bind to 
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Duox1’s EF hands and lead to localized ROS production that will enhance IP3R 

activation. However, these ROS might not affect Ca
2+

 channels on the plasma membrane. 

Similarly mitochondria-ER microjunctions, pivotal to Ca
2+

 buffering during ER store 

depletion, might also play a role in increasing the local ROS concentration to modulate 

Ca
2+

 channel dynamics (366). 

 

Our approach consisted in creating the model, measure its frequency response in 

silico, compare it to experimentally acquired cell response to a few selected frequencies 

and refine the model in terms of parameter values and network connections. However, we 

encountered several technical difficulties. We were only able to measure a single output, 

cytosolic Ca
2+

. To validate the model accurately, measurement of ROS levels in the 

various cellular compartments during stimulation would be required. However, to date, 

there are very few reversible commercially available ROS sensors, making those 

measurements difficult, if not impossible in response to periodic stimuli.  Additionally, 

the approach used to generate chemical pulses is limited in terms of repeatability and 

range of frequencies sampled. On-chip production of chemical waves in a robust and 

controllable manner, coupled with multiplexing to allow several frequencies to be 

simultaneously generated and delivered to cells, will allow easier Bode plot creation.  

 

Model validation of the frequency response does not necessarily require 

experimentally probing the cells to periodic stimuli. One advantage of a transfer function 

is its ability to predict a system’s output to any input. Therefore the system can be tested 

measuring cell response to a single pulse of varying lengths and duty ratios or cell 
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recovery after a few periods. Although easier experimentally, analysis might be more 

challenging. An additional assumption of the model was its linearity for low stimulus 

concentration. We showed experimentally that this assumption was not valid. To improve 

the fits, it is possible to add a non-linear rectifier (135). However in our case, it will 

probably not be sufficient, and a non-linear control theory approach might be necessary 

to properly examine the frequency response of the system.  

 

Despite these shortcomings, an important proof of concept was demonstrated by 

our approach. Non-adherent mammalian cells have never been investigated by testing a 

range of periodic stimuli. This work demonstrates that by selecting an appropriate output 

measurement, we can observe response features that confirm global properties of the 

model simulations. Although model refinement is necessary to fully capture the observed 

cellular behavior and technical improvements to the device are needed to broaden the 

range of delivered frequencies, control systems analysis can yield insight in the 

regulation of complex biological signaling networks. 

 

7.5. Materials and Methods 

7.5.1. Cell culture, stimulation and staining 

Jurkat E6-1 human acute T cell lymphoma cells (ATCC) were cultured in RPMI 

1640 medium with L-glutamine (Sigma-Aldrich, St. Louis, MO) with 10mM HEPES, 

1mM sodium pyruvate, 1X MEM nonessential amino acids, and 100 units mL
-1

 penicillin 

streptomycin (Cellgro), supplemented with 10% certified heat inactivated fetal bovine 

serum (Sigma-Aldrich, St. Louis, MO), at 37°C in a humidified 5% CO2 incubator. To 
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monitor calcium signaling, Jurkat cells were incubated with 5 μM Fluo-3 (Invitrogen) for 

40 minutes at 37°C, washed in PBS, resuspended in phenol-red free media and loaded 

into the cell traps. Trapped cells were stimulated with H2O2 (Thermo-Fisher) at various 

concentrations to monitor cellular response to pulses of oxidative stress. 

 

7.5.2. Fabrication of polydimethylsiloxane (PDMS) devices  

Single-cell trap microfluidic chips were fabricated as described in Chapter 6. 

Medical grade polyethylene (PE3) tubings (Scientific Commodities) were used for fluidic 

connections.  Holes for fluidic connections were punched with 19 gauge needles. PDMS 

devices were plasma bonded onto slide glass.   

 

7.5.3. Device operation 

Operation of the single-cell trap microfluidic platform has been described in 

Chapter 6. Briefly, devices were primed using a solution of 2% BSA in PBS and 5*10
5
 

cells resuspended in phenol-red free media loaded using gravity-driven flow. Once 

efficient loading was achieved, the inlet hole was connected to a syringe filled with 

phenol-red free media via tubing. The syringe was placed above the microscope stage and 

the outlet tubing height adjusted to ensure on-chip flowrates in the proper range. This 

step allows excess cells remaining in the inlet hole to be washed away before the 

beginning of an experiment.  
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7.5.4. Delivery of oscillatory input 

Chemical pulses were delivered to trapped cells by manually switching solutions 

in the inlet. More specifically, the two solutions (phenol-red free media and phenol-red 

free media supplemented with stimulus, here H2O2) were stored in two 5 mL syringes 

above the microscope stage. The syringes were connected to 25 cm long PE-3 tubings 

and liquid allowed to fill the entire length of the tubing. Once filled, the tubing ending 

was raised and taped at syringe’s height to prevent fluid leakage. To deliver the chemical 

pulses, the current tubing attached to the chip was removed 15 seconds before the time 

point and the other tubing connected to the inlet hole, making sure not to introduce any 

bubbles. All experiments were performed in a microcontrolled environment (temperature 

set at 37°C in a humidified 5% CO2 environment).  

 

7.5.5. Data collection and analysis 

Time-lapse microscopy experiments were performed on an epifluorescent (Nikon 

Eclipse Ti) microscope controlled with the NIS Element software in an environment 

controlled chamber. Images were acquired automatically at the desired sampling rate at a 

predefined location using the same exposure time and gain. Image analysis was 

performed using a custom Matlab® (MathWorks) script. 

 

Chemical pulses characterization: Initial characterization of the chemical pulses was 

performed without any cells, with solutions of either PBS and PBS supplemented with 

BSA-FITC or water supplemented with red and green food coloring. Each frame was 

background substracted and intensity in different locations in the array recorded for each 
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time point and averaged across these locations. When experiments were performed with 

color pictures, intensity was recorded for both the red and green channel of the RGB 

image and the ratio of intensities taken. 

  

Analysis of cell response to periodic stimuli: After acquisition of a time course, all data 

points were projected onto a single image representing the average of the time course to 

define the location of each individual cell. Single cells were either cropped manually or 

using a mask of the traps created by finding the areas of higher intensities. Once the 

location of each cell was defined, its mean fluorescence intensity (MFI) was calculated 

for each frame. For each cell, calcium time courses were normalized to the first half-

period of chemical stimulation to correct for uneven dye loading and normalized by the 

standard deviation of the time course. For Fourier analysis of individual time course, we 

adapted a previous protocol for performing spectral analysis of Ca
2+ 

oscillations using 

Matlab (403). 

 

Device calibration for periodic stimuli: Due to chip to chip variability, chemical 

oscillation amplitude and phase shift differed from experiment to experiment. Because 

fluids used in the chemical pulses were neither fluorescent nor colored, each device 

required pulse characterization after an actual experiment to ensure proper analysis of 

cellular response. This calibration was performed with FITC-BSA as described in the 

chemical pulses characterization section, by switching the phenol-red free media solution 

with a FITC-BSA solution. A sinusoidal wave was fitted to the calibration output using 

the following equation: 
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        (  
 

 
  ) (7.30) 

 

where A is the amplitude of the sinusoidal wave, T the period of the sinusoid and   the 

phase shift. The parameters A, T and were fitted to the experimental time course 

between tcalib1 and tcalib2, where tcalib1 and tcalib2 correspond respectively to the beginning 

and the end of the calibration period. Using the fitted function, the input oscillatory 

pattern delivered to the cells could be backcalculated. 
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CHAPTER 8  

CONCLUSION AND FUTURE DIRECTIONS 

 

I present in this dissertation an innovative combination of microfluidic tools and 

computational modeling to study age-related changes in ex vivo expanded T cells for 

adoptive T cell transfer therapy (ACT). Our biological findings point towards the 

acquisition of a senescent phenotype within 3 weeks of culture with an overall decrease 

in protein phosphorylation in signaling cascades activated downstream of the T cell 

receptor (TCR), loss of the co-stimulatory molecule CD28 and CD27 (Chapter 3), an 

increase in intracellular redox potential (Chapter 4) and altered Ca
2+

 dynamics (Chapter 

5). The development of a new modular microfluidic platform for simultaneous multi 

time-point cell stimulation, fixation and lysis enabled the acquisition of early protein 

signaling dynamics with higher-throughput, controllability and robustness compared to 

traditional methods. Computational modeling was central to this study as it allowed us to 

identify biomarkers of in vitro aging, create a ‘senescence metric’ and determine 

potential targets of post-translational modifications responsible for altered Ca
2+ 

signaling.  

In the second part of this dissertation we focused on the cross-talk between 

reactive oxygen species (ROS) and Ca
2+

, interactions that are fundamental for proper cell 

signaling and that are known to be altered in many age-related disorders, such as 

neurodegenerative or autoimmune diseases. We introduced a new microfluidic single-cell 

imaging platform and an original computational modeling approach to unravel features of 

cellular response to oxidative stress.  
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The contributions of this thesis to the scientific field are multiple. In terms of 

biological advances, this is the first large scale characterization of age-related changes in 

cell signaling and phenotype in ACT-consistent ex vivo cell expansion culture conditions 

with -CD3/CD28 coated beads (404-408). Compared to traditional models of in vitro 

aging used to study in vivo aging, such as the clonal model of replicative senescence 

developed by the Pawelec and Effros groups (205, 409), T cells expand and reach 

senescence faster. However, most changes that we observed, pointing towards a loss of 

function, are consistent with the literature. This suggests that ex vivo expanded T cells 

share common features with cells found in the elderly, thereby limiting the efficacy of 

ACT. It is also the first time that a ‘senescence metric’ for in vitro cultured T cells is 

described. The idea of a predictive senescence metric is not new. The OCTO and NONA 

longitudinal study defined an “immune risk profile”, based on the T cell repertoire of 

elderly populations (410, 411), but this metric relies on ratios of CD4/CD8 T cells and is 

not compatible with ACT that uses solely on CD8+ T cells. We found that a combination 

of metrics had the best descriptive potential compared to a single one, and interestingly 

very early signaling dynamics as well as heterogeneity in the cell population was heavily 

weighted in the final predictive metric. The importance of kinetic analysis was again 

demonstrated a few months after the publication of our article in a large microarray study 

wherein gene expression differences between young and old mice before and post TCR 

stimulation revealed novel age-related alterations (313). The ‘senescence metric’ we 

developed has however a few limitations. It predicts very well age in culture, 

characterized by the number of days in culture or the number of time the population has 

doubled. It can also predict surface marker expression from signaling information; yet 
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surface marker expression alone is not predictive of signaling, ie cell function. This 

highlights once again that a single metric is not sufficient to quantify senescence. An 

ideal ‘senescence metric’ would be able to determine quantitatively the fraction of 

senescent cells in a population and correlate it to the overall level of responsiveness of 

the population. Quantifying the percentage of senescent cells has been shown recently in 

fibroblasts, using a combination of markers including -Gal staining and p21 (186), 

markers that have not been directly linked to senescence and loss of function in T cells. 

Single cell analysis of ERK phosphorylation after TCR stimulation, alone or in 

conjunction with markers of senescence profilin-1 and p16
ink4

, did not result in distinct 

subpopulations that would either be responsive or not responsive. This may suggest that 

the loss of T cell responsiveness and acquisition of a senescence phenotype is a 

continuous rather than a switch-like process. This is consistent with the recent findings of 

Nelson et al. who demonstrated senescence-induced-senescence via cell-cell contact ROS 

exchange (60). Despite being semi-quantitative, our ‘senescence metric’ can still be very 

useful in studies that aim at improving culture conditions for immunotherapies, the 

present culture conditions being the reference point.        

Another notable biological finding is the increased intracellular oxidation in aging 

T cells, due to a reduction of the antioxidant capacity and overexpression of the NADPH 

oxidase Duox1. Nox2 and Nox4, other NADPH isoforms, have been shown to be 

upregulated with age (253, 254); yet this the first report of an age-related increase in 

Duox1 expression. Although we did not prove a direct causal effect between increased 

ROS levels and altered Ca
2+

 and TCR signaling cascade dynamics, increased intracellular 

redox potential is generally linked with oxidative damage and a large number of 
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pathologies (412). Therefore preventing oxidative damage in long-term T cell culture by 

the use of antioxidants or hypoxic culture conditions may have beneficial effects. 

This dissertation also significantly contributes to the microfluidics field. I present 

two distinct microfluidic platforms to study cellular processes in non-adherent cells. The 

first one performs controlled cell stimulation, followed by simultaneous lysis and 

fixation. The main advantages of this chip compared to traditional assays are: (1) its 

ability to reduce experimental variance in time and between samples due to sample 

handling, (2) the use of lower amounts of costly reagents and precious primary T cells, 

(3) the ability to robustly obtain stimulation time points with a high time resolution 

(down to 20 seconds). Its modular design allows versatility in the time-points sampled. A 

limiting factor however is its relatively large size and complexity, making the fabrication 

process in PDMS tedious (large number of holes). Although more expensive, if fabricated 

in glass, this chip would be reusable and could become a very useful part of a biologist’s 

lab equipment or in a clinical setting. 

Our second microfluidic platform, developed in collaboration with Dr K. Chung, 

allows passive hydrodynamic single-cell trapping and imaging. Compared to competing 

microfluidic technologies (129, 339-352), the advantages of our design include: (1) higher 

single-cell trapping efficiency due to deterministic cell trapping (up to 95% single cell 

trapping compared to 80%), (2) higher cell trap density (up to 100 fold), (3) ability to 

deliver a chemical stimulus or perform immunostaining on chip while retaining the cell in 

its location (compared to microwell technologies), (4) sequential cell trapping, avoiding 

loss of precious cells (5) easy to use (biologists with no microfluidics hands-on 

experience have been able to operate it alone). Data acquired with this chip is of similar 
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quality as flowcytometry data, while using 1000 fold less cells and being able to follow 

the signaling dynamics of the same individual cell over time. A potential limitation of 

this technology is the very low flowrates required to avoid shearing the cells, resulting in 

a very important diffusion effect. Although it is not an issue for cell loading, staining or 

stimulation with a simple step stimulus, we have found this the limiting factor to deliver 

complex temporal stimuli on chip. Use of this microfluidic platform has been essential to 

observe Ca
2+

 spiking in resting Jurkat cells, to study Ca
2+

 single cell response to gradients 

of ionomycin or H2O2 and show the very large heterogeneity in cell response to a uniform 

stimulus. 

Finally this work demonstrates the utility of computational modeling in biological 

systems. I used three different modeling approaches: a black-box modeling approach in 

Chapter 3, a deterministic modeling approach in Chapter 5 and a combination of both in 

Chapter 7. In Chapter 3 a partial least square regression (PLS) model was applied to 

identify the most significant biomarkers of aging and predict T cell age, without knowing 

any causal relationship between the input variables measured. This modeling technique 

had been used in the past to understand complex signaling networks and predict the 

behavior of a cellular system to new perturbations (189, 413, 414); however we added an 

additional dimension to this analysis by stitching together datasets from single cells and 

averaged populations as well as dynamic and static information. In Chapter 5, we 

developed a mechanistic model of Ca
2+

 signaling after TCR stimulation. Although there 

has been a considerable effort to model of Ca
2+

 dynamics in excitable cells, there are very 

few models of Ca
2+

 dynamics in immune cells, especially for T cells. The model 

presented here is the most complete to date, based on the current knowledge of the Ca
2+
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signaling pathway. It would be a very nice addition to the immunologist’s toolbox. 

Lastly, we present a new modeling approach in Chapter 7 that relies on the union of time 

domain and frequency analysis, in order to understand the biochemical network of 

interactions between ROS and Ca
2+

. Tools from control theory have been used 

extensively to study biological self-oscillatory and chaotic systems (415-418); however 

it’s only recent that they have been used to study cell signaling (135, 361, 364). So far 

control-theory based mathematical models of mammalian signaling dynamics have not 

been validated in the frequency domain due to experimental limitations. Our approach, 

though in its infancy, shows the potential of ODE-based models analyzed and validated 

in the frequency domain to gain a better understanding of cellular regulatory systems.    

 

FUTURE RESEARCH DIRECTIONS 

Senescence Metric 

Immunosenescence is thought to be a leading cause of aging due to its 

involvement in autoimmune disorders, inflammation or cancer. More specifically T cell 

immunosenescence has been linked with HIV (419, 420) and poor immunotherapy 

efficacy, including vaccination (421)  and ACT (38). A reliable T cell ‘senescence 

metric’ would therefore be an invaluable tool for HIV patient prognosis, design of 

personalized vaccines and as described in this study improve ACT efficacy. We have 

presented here a first ‘senescent metric’. This metric has been generated from a rather 

large but not exhaustive experimental dataset, chosen to mimic metrics that a clinician 

could easily acquire in the hospital. During the course of this dissertation, we have 

collected additional data relating age to Ca
2+

 signaling, mRNA levels of proteins 
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involved in ROS and Ca
2+

 homeostasis. Including these data into the original model 

would probably result in a more powerful senescent metric. The model has predictive 

power; however we were not able to verify its efficacy in vivo in the clinic, for example 

by correlating the predicted quality of T cell clones injected in the cancer patient to the 

clinical outcome of the treatment. We also have not verified whether the set of identified 

biomarkers is conserved in in vivo models of aging, such as elderly human subjects but 

also animal models extensively used in aging research. It is interesting to mention that 

during the course of this study, a similar approach was taken by a large European project, 

the MARK-AGE Project (2008-2013) to: “conduct a population study (3700 probands) in 

order to identify a set of biomarkers of ageing which, as a combination of parameters 

with appropriate weighting, would measure biological age better than any marker in 

isolation”. 

Our model weighted heavily population variance in our ‘senescence metric’, 

suggesting that population heterogeneity is representative of the senescence process. Our 

lab has recently developed a method to easily perform single-cell PCR (unpublished 

data). Coupled with our single-cell microfluidic chip, heterogeneity in T cell population, 

in terms of differentiation status, dynamics, and transcriptomics could be assessed in 

young and old patient samples and incorporated in our ‘senescence model’, thereby 

providing new information regarding how the heterogeneity of the T cell repertoire 

affects the system’s overall response in aging. 
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Ca
2+

 oscillations in T cells 

We have observed via our single-cell trap microfluidic platform a large 

heterogeneity in dynamic Ca
2+

 patterns in resting T cells, with a large distribution of 

spiking frequencies in the frequency spectrum. Currently the mechanisms leading to these 

fluctuations are not understood, and there is controversy whether it is a deterministic or 

stochastic process (422). When stimulated with ionomycin, the frequency spectra 

tightens, but is not correlated to the initial oscillation frequency (data not shown). A 

seminal paper in Ca
2+

 signaling in lymphocytes showed compelling evidence towards a 

direct relationship between Ca
2+

 oscillation frequency and downstream gene activation 

(423); yet how the cell is able to transmit information through frequency encoded-Ca
2+ 

signal is still not fully understood. Computational modeling has provided some initial 

insights into protein phosphorylation driven by intracellular calcium oscillations (424, 

425), but there is very limited amount of experimental data to support this theory. 

Coupled with various fluorescent protein reporters, our single-cell microfluidic platform 

would be an excellent tool to further study Ca
2+

 oscillations in T cells and how they affect 

downstream signaling. Of particular interest would be the effect of Ca
2+ 

oscillations on 

ROS production through Duox1. We can hypothesize that its close proximity to the IP3R, 

and its activation by Ca
2+

 binding to its EF-hand and phosphorylation make it a good 

candidate for frequency-encoded regulation. 

 

Using control theory to understand complex biological systems 

Feedbacks, robustness and sensitivity are central to biological systems, therefore 

providing great value to tools developed by the control engineering community. The last 
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part of this thesis was a proof on concept that control systems theory could be applied to 

gain a better understanding of Ca
2+

/ROS cross-talk in T cells. Model refinement is 

necessary to reduce discrepancies between our modeling and experimental results. The 

addition of non-linear rectifiers and additional points of feedback control can be included, 

in particular in the mitochondria and in the Ca
2+

-binding protein buffering system. An 

interesting feature of this control theory based analysis is its ability to reduce the system 

into a few lumped parameters. For example, two parameters were sufficient to describe 

Ca
2+

 response to any input of oxidative stress. However, finding a biological meaning to 

these lumped parameters can be challenging and become a large hurdle for data 

interpretation. 

Since it has been suggested that Ca
2+

 protein redox sensitivity might be ROS 

concentration dependent (94), this model could be subdivided into two ROS/Ca
2+

 cross-

talk models with distinct parameter sets, one for signaling and one for pathologies 

involving high levels of ROS, such as inflammation, autoimmune disorders or aging. We 

also have been limited by the range of frequencies we could sample experimentally. To 

generate periodical stimuli of higher quality and increase the experimental throughput, 

our microfluidic chip must be integrated with on-chip chemical wave generators, 

potentially allowing several frequencies to be probed simultaneously in different 

chambers. Possible designs include on chip side valves, fully closed valves or simply 

alternating flowrates by gravity in a T junction. If modeling validation is not possible by 

directly sampling cell response to periodical stimuli, there are alternative methods such as 

measuring cell responses to a single pulse of different duration or to a ramp of 

concentration (362). Once validated, the impact of each flux or molecular interaction on 
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the overall system’s dynamic behavior can be sampled in the frequency domain and a 

minimal model of ROS/Ca
2+ 

cross-talk generated. Because ROS and Ca
2+ 

are tightly 

regulated in many cell types and perturbations in these interactions result in pathologies, 

this model could provide new molecular targets for drug design.  
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APPENDIX A 

APPENDIX CHAPTER 3 

 
Figure A.S1: Flow cytometry data of intracellular protein expression p16

ink4
, profilin-1, and 

robust coefficient of variation of cell side scatter versus population doubling averaged for all 

donors ± s.e.m. 
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Figure AS2: Flow cytometry data of surface marker expression CD27, CD28, CD45RO and 

CD57 versus population doubling. The mean fluorescence intensity of positively gated cells for 

all donors is represented ± standard error of the mean. 

 



182 

 

 
Figure A.S3: Signaling dynamics of pZap70, pLAT, pCreb and pCD3 at low, intermediate and 

late population doublings. The data is aggregated for the 4 donors. The green line corresponds to 

the mean signaling activation. The box plot presents the median, the 25
th
 and 75

th
 percentile as 

well as the outliers. A reduction in donor-donor variation as well as an overall decrease in protein 

activation occurs with time in culture for most proteins. 
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Figure A.S4: Changes in the robust coefficient of variation of pERK versus day or PD in culture 

or stimulation time for all four donors. 
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Figure A.S5: Model prediction with surface markers only. 
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Table A.T1: Prediction of number of day post-isolation and population doublings from signaling 

information and phenotypic markers: importance of the variables in the model projection. 

  Variable Variable Importance 
 in the projection 

   Variable Variable Importance 
 in the projection 

1 cd27 mean 2.10807  36 $1stDer:lck5 0.85869 

2 $1stDer:fERK_1 mean 1.81841  37 lck0.5 0.848903 

3 cd57 cv 1.807  38 lat1 0.842587 

4 cd27 % 1.68825  39 fERK_2 cv 0.839392 

5 ssc cv 1.61624  40 fERK_2 mean 0.834191 

6 erk2 1.39899  41 fERK_0.5 cv 0.831355 

7 lck2 1.39456  42 fERK_2.5 mean 0.827579 

8 $1stDer:erk1 1.3839  43 erk0.5 0.826384 

9 lck3.5 1.23829  44 G1% 0.823208 

10 cd28 mean 1.22894  45 lat0.5 0.819776 

11 cd28 % 1.21613  46 $1stDer:erk2 0.815989 

12 G2% 1.21511  47 ssc mean 0.795274 

13 $1stDer:zap1.5 1.20099  48 fERK_3.5 cv 0.791876 

14 fsc mean 1.18049  49 fERK_1.5 cv 0.789518 

15 lck5 1.17463  50 p16ink4 mean 0.769161 

16 $1stDer:creb1.5 1.15728  51 $1stDer:lat2 0.765128 

17 erk3.5 1.15398  52 cd57 mean 0.764364 

18 cd57 % 1.10823  53 lat7 0.741126 

19 $1stDer:erk1.5 1.10066  54 fERK_1 cv 0.735429 

20 erk2.5 1.07066  55 $1stDer:lck0.5 0.728781 

21 lck1.5 1.04008  56 $1stDer:creb2.5 0.697429 

22 lck2.5 0.996836  57 $1stDer:lat0.5 0.682517 

23 lat3.5 0.965031  58 fERK_3.5 mean 0.657546 

24 lat2.5 0.951935  59 $1stDer:lat1 0.643804 

25 $1stDer:lat3.5 0.944874  60 $1stDer:creb2 0.613796 

26 fERK_1 mean 0.913745  61 $1stDer:lat5 0.595329 

27 creb2 0.911948  62 creb3.5 0.579102 

28 fERK_0.5 mean 0.892883  63 $1stDer:erk2.5 0.573141 

29 cd45ro mean 0.892613  64 $1stDer:erk3.5 0.537731 

30 fERK_7 mean 0.892168  65 cd3_1 0.534886 

31 $1stDer:cd3_2 0.888851  66 creb2.5 0.525642 

32 lck7 0.881107  67 cd3_7 0.478706 

33 $1stDer:lat2.5 0.871192  68 creb7 0.43545 

34 fERK_5 cv 0.87054  69 lat5 0.404435 

35 ferk0.5/prof mean 0.866683     

 

 



186 

 

Table A.T2: Prediction of number of day post-isolation and population doublings from signaling 

information and phenotypic markers: loadings of each variable on each of the 3 principal 

components of the model. 

Variable w*c1 w*c2 w*c3 

$1stDer:erk1 -0.174735 -0.232134 -0.0908695 

$1stDer:erk1.5 -0.141475 -0.140367 0.0938994 

$1stDer:erk2 -0.0400459 0.156462 0.22918 

$1stDer:erk2.5 0.0235261 0.114418 -0.0987679 

$1stDer:erk3.5 0.0470348 -0.0870041 -0.026013 

$1stDer:lat0.5 -0.070525 0.0865824 -0.0125435 

$1stDer:lat1 0.0586355 -0.100333 -0.0723623 

$1stDer:lat2 -0.0966445 0.0486441 0.0881639 

$1stDer:lat2.5 0.0185698 0.21766 0.161683 

$1stDer:lat3.5 0.0979825 -0.122032 -0.120035 

$1stDer:lat5 0.0374719 -0.0550591 -0.238662 

lat7 -0.101512 -0.0587873 -0.133811 

$1stDer:lck0.5 -0.0985907 0.0243995 0.0392244 

$1stDer:lck5 0.111655 -0.0445989 -0.082137 

lck7 -0.0520531 0.177655 0.0661075 

$1stDer:creb1.5 -0.158113 -0.135792 0.0328304 

$1stDer:creb2 -0.0723707 0.0504469 0.10062 

$1stDer:creb2.5 0.0743857 -0.0590914 -0.173382 

creb7 -0.0209155 -0.0946879 -0.146686 

$1stDer:zap1.5 0.139095 0.224472 0.200751 

$1stDer:cd3_2 -0.12688 -0.0150167 -0.0308176 

cd3_7 -0.035225 -0.101849 -0.146221 

$1stDer:fERK_1 mean -0.24009 -0.271943 -0.198951 

fERK_7 mean -0.116391 0.0485745 0.061525 

fERK_0.5 cv -0.0599215 -0.141795 0.172195 

fERK_1 cv -0.044347 -0.111548 0.193492 

fERK_1.5 cv -0.0521471 -0.112453 0.214379 

fERK_2 cv -0.0589488 -0.136059 0.191647 

fERK_3.5 cv -0.0749687 -0.0937896 0.198218 

fERK_5 cv -0.0967359 -0.149134 0.0697603 

G1% 0.0814985 0.0461585 0.298878 

G2% -0.166292 -0.133064 -0.195532 

ferk0.5/prof mean -0.0948355 0.101555 0.0956114 

p16ink4 mean 0.0494111 0.0397929 0.335506 

cd27 mean -0.273023 -0.320813 -0.318153 

cd57 mean -0.102538 -0.0255534 0.115956 

cd45ro mean -0.110102 0.0594298 -0.069633 

cd28 mean -0.170269 0.0216645 -0.00581737 

cd27 % -0.187458 -0.337764 -0.191858 
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Table A.T2 continued 

 

Variable w*c1 w*c2 w*c3 

cd57 % -0.131084 0.0944223 0.165044 

cd28 % -0.169856 0.00777489 -0.049675 

cd57 cv 0.250044 0.210905 0.220344 

fsc mean -0.154655 0.0643096 0.0367591 

ssc mean -0.0973969 0.0645275 0.0766865 

ssc cv 0.209221 0.25699 0.156991 

erk0.5 0.084169 -0.0273094 -0.26052 

erk2 -0.191871 -0.178974 -0.0401264 

erk2.5 -0.145261 0.0359882 0.0279075 

erk3.5 -0.165977 -0.0557326 -0.0843158 

lat0.5 -0.0905345 0.0844512 -0.055538 

lat1 -0.107915 0.051968 -0.0199517 

lat2.5 -0.12794 0.0358534 -0.0166383 

lat3.5 -0.0870264 0.150741 0.127775 

lat5 -0.0480701 -0.0298783 -0.119469 

lck0.5 -0.07377 0.121421 -0.0759082 

lck1.5 -0.0563096 0.213791 0.0513851 

lck2 -0.19943 -0.0241239 -0.013126 

lck2.5 -0.0913042 0.151789 0.0127265 

lck3.5 -0.160331 0.0707907 0.0988252 

lck5 -0.126817 0.143191 0.110661 

creb2 -0.130935 -0.0722269 -0.00750945 

creb2.5 -0.0757922 -0.0189477 -0.0162422 

creb3.5 -0.0688577 -0.100416 -0.114246 

cd3_1 -0.0681207 -0.0696301 -0.119838 

fERK_0.5 mean 0.0146629 0.223794 0.134271 

fERK_1 mean -0.123783 -0.058126 -0.176445 

fERK_2 mean -0.113237 0.0275411 0.0266794 

fERK_2.5 mean -0.109112 0.0421655 0.0298007 

fERK_3.5 mean -0.0866206 0.0309205 -0.0206491 

day max 0.207256 0.212431 0.0985998 

pd max 0.222709 0.166709 0.104857 
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Table A.T3: Prediction of number of day post-isolation and population doublings from signaling 

information: importance of the variables in the model projection. 

 Variable Variable Importance 
 in the projection 

1 $1stDer:fERK_1 mean 1.73925 

2 $1stDer:erk1 1.37537 

3 lck2 1.30379 

4 erk2 1.28032 

5 lck3.5 1.23145 

6 fERK_1.5 mean 1.20802 

7 $1stDer:zap1.5 1.17241 

8 lck5 1.17047 

9 fERK_7 mean 1.10426 

10 erk3.5 1.09963 

11 erk2.5 1.08298 

12 $1stDer:creb1.5 1.05263 

13 lck2.5 1.02912 

14 $1stDer:erk1.5 0.984998 

15 creb2 0.8756 

16 $1stDer:lck5 0.872824 

17 lat2.5 0.831813 

18 $1stDer:cd3_2 0.823419 

19 fERK_1 mean 0.804746 

20 cd3_2 0.777253 

21 fERK_3.5 mean 0.733821 

22 lat7 0.66729 

23 cd3_2.5 0.569716 

24 $1stDer:creb2 0.51115 

25 creb3.5 0.496587 

26 cd3_1 0.475836 

27 $1stDer:zap5 0.303936 
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Table A.T4:  Prediction of number of day post-isolation and population doublings from signaling 

information: loadings of each variable on each of the 2 principal components of the model. 

Variable w*c1 w*c2 

$1stDer:erk1 -0.24672 -0.38857 

$1stDer:erk1.5 -0.19976 -0.20195 

lat7 -0.1433 -0.08372 

$1stDer:lck5 0.157624 -0.15764 

$1stDer:creb1.5 -0.22323 -0.15839 

$1stDer:creb2 -0.10215 0.055449 

$1stDer:zap1.5 0.196364 0.362386 

$1stDer:zap5 0.065958 0.00881 

$1stDer:cd3_2 -0.17908 -0.06051 

$1stDer:fERK_1 
mean 

-0.33898 -0.41176 

fERK_7 mean -0.16431 0.287251 

erk2 -0.2709 -0.19745 

erk2.5 -0.20507 0.163903 

erk3.5 -0.23431 0.02781 

lat2.5 -0.18062 -0.02704 

lck2 -0.28153 -0.01044 

lck2.5 -0.12888 0.311747 

lck3.5 -0.22634 0.209863 

lck5 -0.17902 0.294292 

creb2 -0.18484 -0.13825 

creb3.5 -0.0972 -0.11608 

cd3_1 -0.09614 -0.0992 

cd3_2 -0.14474 -0.20543 

cd3_2.5 -0.10951 -0.14011 

fERK_1 mean -0.17474 -0.06953 

fERK_1.5 mean -0.25161 0.075366 

fERK_3.5 mean -0.12228 0.161131 

day max 0.284475 0.317873 

pd max 0.304778 0.277479 
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Table A.T5: Prediction of CD27 and CD28 expression from signaling information: importance of 

the variables in the model projection. 

  Variable Variable Importance  
in the projection 

1 $1stDer:fERK_1 mean 1.64652 

2 fsc mean 1.31774 

3 lck0.5 1.28017 

4 fERK_1 mean 1.19866 

5 lck2.5 1.19778 

6 S% 1.18034 

7 lck2 1.17869 

8 lck1 1.11446 

9 lck5 1.10784 

10 erk2 1.10597 

11 lat0.5 1.09658 

12 fERK_1.5 mean 1.09389 

13 lck7 1.07056 

14 $1stDer:erk1 1.06315 

15 lck1.5 1.05297 

16 lat3.5 1.02674 

17 ssc mean 1.02009 

18 lat2.5 1.0044 

19 G1% 0.980289 

20 G2% 0.952699 

21 erk5 0.923509 

22 $1stDer:lat3.5 0.908869 

23 lck3.5 0.871187 

24 $1stDer:creb2.5 0.855285 

25 fERK_2.5 mean 0.849749 

26 $1stDer:cd3_2 0.81324 

27 erk2.5 0.810829 

28 $1stDer:lat2 0.810352 

29 fERK_5 mean 0.778315 

30 $1stDer:lck0.5 0.769653 

31 $1stDer:creb2 0.699023 

32 erk3.5 0.657731 

33 ferk0.5/prof mean 0.58108 

34 $1stDer:fERK_3.5 mean 0.515929 

35 fERK_3.5 mean 0.469756 
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Table A.T6: Prediction of CD27 and CD28 expression from signaling information:  loadings of 

each variable on each of the 2 principal components of the model. 

variable w*c1 w*c2  variable w*c1 w*c2 

$1stDer:erk1 0.12008 0.272438  lat0.5 0.192487 -0.14947 
$1stDer:lat2 0.16138 0.084998  lat2.5 0.207234 -0.01226 
$1stDer:lat3.5 -0.18408 0.038984  lat3.5 0.17758 -0.14594 
$1stDer:lck0.5 0.157396 0.057062  lck0.5 0.144682 -0.29628 
lck7 0.137086 -0.22996  lck1 0.23133 0.041295 
$1stDer:creb2 0.135048 -0.06005  lck1.5 0.173469 -0.16749 
$1stDer:creb2.5 -0.15006 -0.14962  lck2 0.212305 0.194088 
$1stDer:cd3_2 0.168263 -0.00377  lck2.5 0.176806 -0.22559 
$1stDer:fERK_1 mean 0.17111 0.433016  lck3.5 0.180062 0.046183 

$1stDer:fERK_3.5 
mean 

0.082579 -0.08656  lck5 0.203264 -0.12889 

G1% -0.17027 0.137734  fERK_1 mean 0.171662 0.271177 
G2% 0.186448 -0.07271  fERK_1.5 

mean 
0.178424 0.216498 

S% 0.169039 0.26703  fERK_2.5 
mean 

0.107858 0.207303 

ferk0.5/prof mean 0.115097 -0.03849  fERK_3.5 
mean 

0.059045 0.115159 

fsc mean 0.269496 -0.03853  fERK_5 mean 0.158098 0.065121 

ssc mean 0.207179 -0.04014  cd27 mean 0.15003 0.409394 

erk2 0.134016 0.275733  cd28 mean 0.250892 0.057859 
erk2.5 0.162519 0.080063  cd27 % 0.013671 0.439324 
erk3.5 0.130078 0.072976  cd28 % 0.255681 -0.01462 
erk5 0.164127 -0.1211     
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APPENDIX B 

APPENDIX CHAPTER 4 

Table B.T1: List of all oxidative stress and antioxidant PCR primer targets on the PCR array. 

Red genes represent targets that are not expressed in CD8+ T cells. 
ALB Albumin GLRX2 Glutaredoxin 2 MTL5 Metallothionein

-like 5, testis-
specific (tesmin) 

PTGS1 Prostaglandin-
endoperoxide 

synthase 1 
(prostaglandin G/H 

synthase and 
cyclooxygenase) 

 
ALOX12 Arachidonate 

12-lipoxygenase 
GPR 
156 

G protein-
coupled receptor 

156 

NCF1 Neutrophil 
cytosolic factor 

1 

PTGS2 Prostaglandin-
endoperoxide 

synthase 2 
(prostaglandin G/H 

synthase and 
cyclooxygenase) 

 
ANGPTL

7 
Angiopoietin-

like 7 
GPX1 Glutathione 

peroxidase 1 
NCF2 Neutrophil 

cytosolic factor 
2 

PXDN Peroxidasin homolog 
(Drosophila) 

 
AOX1 Aldehyde 

oxidase 1 
GPX2 Glutathione 

peroxidase 2 
(gastrointestinal) 

NME5 Non-metastatic 
cells 5, protein 
expressed in 
(nucleoside-
diphosphate 

kinase) 
 

PXDNL Peroxidasin homolog 
(Drosophila)-like 

APOE Apolipoprotein 
E 

GPX3 Glutathione 
peroxidase 3 

(plasma) 
 

NOS2 Nitric oxide 
synthase 2, 
inducible 

 

RNF7 Ring finger protein 7 

ATOX1 ATX1 
antioxidant 
protein 1 

homolog (yeast) 

GPX4 Glutathione 
peroxidase 4 
(phospholipid 

hydroperoxidase
) 
 

NOX5 NADPH oxidase, 
EF-hand calcium 
binding domain 

5 

SCARA
3 

Scavenger receptor 
class A, member 3 

BNIP3 BCL2/adenoviru
s E1B 19kDa 
interacting 
protein 3 

GPX5 Glutathione 
peroxidase 5 
(epididymal 
androgen-

related protein) 
 

NUDT1 Nudix 
(nucleoside 
diphosphate 
linked moiety 

X)-type motif 1 

SELS Selenoprotein S 

CAT Catalase GPX6 Glutathione 
peroxidase 6 

(olfactory) 
 

OXR1 Oxidation 
resistance 1 

SEPP1 Selenoprotein P, 
plasma, 1 

CCL5 Chemokine (C-C 
motif) ligand 5 

GPX7 Glutathione 
peroxidase 7 

 

OXSR1 Oxidative-stress 
responsive 1 

SFTPD Surfactant protein D 

CCS Copper 
chaperone for 

superoxide 
dismutase 

 

GSR Glutathione 
reductase 

PDLIM
1 

PDZ and LIM 
domain 1 

SGK2 Serum/glucocorticoi
d regulated kinase 2 
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Table B.T1 continued 
CSDE1 Cold shock 

domain containing 
E1, RNA-binding 

 

GSS Glutathione 
synthetase 

IPCEF1 Interaction protein 
for cytohesin 

exchange factors 1 

SIRT2 Sirtuin 2 

CYBA Cytochrome  
b-245, alpha 
polypeptide 

 

GSTZ1 Glutathione 
transferase zeta 

1 

PNKP Polynucleotide 
kinase 3'-

phosphatase 

SOD1 Superoxide 
dismutase 1, 

soluble 

CYGB Cytoglobin GTF2I General 
transcription 

factor IIi 

PRDX1 Peroxiredoxin 1 SOD2 Superoxide 
dismutase 2, 

mitochondrial 
 

DGKK Diacylglycerol 
kinase, kappa 

KRT1 Keratin 1 PRDX2 Peroxiredoxin 2 SOD3 Superoxide 
dismutase 3, 
extracellular 

DHCR24 24-
dehydrocholester

ol reductase 
 

LPO Lactoperoxidase PRDX3 Peroxiredoxin 3 SRXN1 Sulfiredoxin 1 

DUOX1 Dual oxidase 1 MBL2 Mannose-
binding lectin 
(protein C) 2, 

soluble 
 

PRDX4 Peroxiredoxin 4 STK25 Serine/threonin
e kinase 25 

DUOX2 Dual oxidase 2 MGST
3 

Microsomal 
glutathione S-
transferase 3 

 

PRDX5 Peroxiredoxin 5 TPO Thyroid 
peroxidase 

DUSP1 Dual specificity 
phosphatase 1 

 

MPO Myeloperoxidas
e 

PRDX6 Peroxiredoxin 6 TTN Titin 

EPHX2 Epoxide hydrolase 
2, cytoplasmic 

MPV1
7 

MpV17 
mitochondrial 

inner 
membrane 

protein 

PREX1 Phosphatidylinosito
l-3,4,5-

trisphosphate-
dependent Rac 

exchange factor 1 
 

TXNDC
2 

Thioredoxin 
domain 

containing 2 
(spermatozoa) 

EPX Eosinophil 
peroxidase 

MSRA Methionine 
sulfoxide 

reductase A 
 

PRG3 Proteoglycan 3 TXNRD
1 

Thioredoxin 
reductase 1 

FOXM1 Forkhead box M1 MT3 Metallothionein 
3 

PRNP Prion protein TXNRD
2 

Thioredoxin 
reductase 2 
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Table B.T2: Exhaustive list of fold changes and their corresponding p-values in targets expressed 

in CD8+ T cells. A fold change below 1 corresponds to a downregulation (2
-CT

). 

Symbol Protein Name 
Fold Change 
Old/Young 

p-value 

PDLIM1 PDZ and LIM domain 1 0.17 0.01 

ANGPTL7 Angiopoietin-like 7 2.93 0.01 

MTL5 Metallothionein-like 5, testis-specific (tesmin) 0.45 0.01 

NUDT1 
Nudix (nucleoside diphosphate linked moiety X)-type 
motif 1 

0.99 0.01 

TTN Titin 2.14 0.01 

DUOX1 Dual oxidase 1 1.68 0.03 

GPX3 Glutathione peroxidase 3 (plasma) 2.55 0.04 

GLRX2 Glutaredoxin 2 0.47 0.06 

PRNP Prion protein 1.45 0.07 

TXNRD1 Thioredoxin reductase 1 0.31 0.08 

PRDX1 Peroxiredoxin 1 0.74 0.13 

CCL5 Chemokine (C-C motif) ligand 5 3.81 0.15 

TXNRD2 Thioredoxin reductase 2 1.15 0.18 

GPX2 Glutathione peroxidase 2 (gastrointestinal) 2.15 0.20 

SEPP1 Selenoprotein P, plasma, 1 0.34 0.21 

ATOX1 ATX1 antioxidant protein 1 homolog (yeast) 0.50 0.22 

BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 1.12 0.23 

CCS Copper chaperone for superoxide dismutase 0.22 0.23 

PX1 Glutathione peroxidase 1 0.18 0.23 

PREX1 
Phosphatidylinositol-3,4,5-trisphosphate-dependent 
Rac exchange factor 1 

0.90 0.24 

PRDX5 Peroxiredoxin 5 0.80 0.29 

CSDE1 Cold shock domain containing E1, RNA-binding 0.49 0.30 

SIRT2 Sirtuin 2 1.25 0.32 

FOXM1 Forkhead box M1 1.78 0.33 

GTF2I General transcription factor IIi 0.52 0.34 

GSS Glutathione synthetase 0.26 0.37 

NCF1 Neutrophil cytosolic factor 1 9.32 0.42 

ALOX12 Arachidonate 12-lipoxygenase 0.60 0.46 

STK25 Serine/threonine kinase 25 4.65 0.46 

GPX4 
Glutathione peroxidase 4 (phospholipid 
hydroperoxidase) 

0.02 0.47 

SELS Selenoprotein S 0.10 0.48 

MPV17 MpV17 mitochondrial inner membrane protein 0.57 0.49 

MGST3 Microsomal glutathione S-transferase 3 0.49 0.50 

GSR Glutathione reductase 0.73 0.51 

PRDX2 Peroxiredoxin 2 0.75 0.51 

SOD1 Superoxide dismutase 1, soluble 6.52 0.51 

SRXN1 Sulfiredoxin 1 0.12 0.52 

CAT Catalase 122.49 0.56 

MSRA Methionine sulfoxide reductase A 0.79 0.57 

MT3 Metallothionein 3 0.28 0.59 

NCF2 Neutrophil cytosolic factor 2 1.49 0.59 

OXR1 Oxidation resistance 1 0.02 0.59 
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Table B.T2 continued: 

Symbol Protein Name 
Fold Change 
Old/Young 

p-value 

GPX7 Glutathione peroxidase 7 0.17 0.60 

EPX Eosinophil peroxidase 0.83 0.64 

CYBA Cytochrome b-245, alpha polypeptide 0.41 0.65 

GSTZ1 Glutathione transferase zeta 1 1.89 0.65 

PRDX6 Peroxiredoxin 6 3.93 0.65 

IPCEF1 Interaction protein for cytohesin exchange factors 1 0.65 0.66 

PRDX4 Peroxiredoxin 4 2.87 0.70 

SOD2 Superoxide dismutase 2, mitochondrial 0.33 0.70 

DUSP1 Dual specificity phosphatase 1 4.56 0.71 

RNF7 Ring finger protein 7 6.55 0.71 

SFTPD Surfactant protein D 3.35 0.72 

DHCR24 24-dehydrocholesterol reductase 0.57 0.82 

PRDX3 Peroxiredoxin 3 1.60 0.84 

OXSR1 Oxidation resistance 1 2.20 0.95 

PNKP Polynucleotide kinase 3'-phosphatase 1.59 0.98 
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Figure B.S1: Heatmap representing gene expression for all expressed genes in young 

(Column 1-6) and old T cells (Column 7-12). Each gene has been normalized to its CT 

mean value Higher expression is displayed in red, lower in blue. 
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APPENDIX C 

APPENDIX CHAPTER 5 

 

 
Figure C.S1: Age related Ca2

+ 
changes in CD8+ T cells. a) Amplitude of the exponential decays. 

b) Area under the curve.  c) Second decay time constant. d) Peak amplitude For c-d), the data 

represents the mean of each calculated parameters for each donor and its standard deviation. The 

red diamonds correspond to the parameter calculated if the Ca
2+

 time courses are averaged for all 

donors for a specific day in culture.    
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Figure C.S2: Effect of increased expression of PMCA and CRAC channels.  

a) Time to peak b) Decay time constant 1.  c) Ca
2+

 time course for young cells (day 4-8) d) Ca
2+

 

time course for old cells (day 20-24). 

 

 

 
Table C.T1: Relative mRNA levels of the major Ca

2+ 
channels and pumps expressed in primary 

CD8+ T cells (n=6) and Jurkat cells (n=2). Relative gene expression is presented in terms of CT 

normalized to actin levels. 

 Young T cells Old T cells Jurkat T cells 

SERCA 2b     4.78 ± 0.1     4.94 ± 0.2 4.98 ± 0.23 
SERCA 3     4.89 ± 0.27     4.68 ± 0.3 5.52 ± 0.61 
PMCA     7.41 ± 0.29     6.60 ± 0.25 3.70 ± 2.8 
IP3R2     5.31 ± 0.25     4.96 ± 0.34 9.01 ± 2.1 
IP3R3     9.23 ± 0.09     9.46 ± 0.21 8.95 ± 2.1 
ORAI1     8.81 ± 0.3     8.04 ± 0.29 3.33 ± 1.2 
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APPENDIX D 

APPENDIX CHAPTER 6 

 

Figure DS1. Calcium kinetics of Jurkat cell in response to 2.5 M of ionomycin.  

a) Measurements using microfluidic single-cell trap array. b) Measurements by flow cytometry. 
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Figure D.S2. Calcium kinetics of Jurkat cell in response to 2.5 M of ionomycin. The average 

response of ~ 70 cells in the top 3 rows and bottom 3 rows of the trap array shows little delay in 

the arrival of the stimulus for cells in the top versus the bottom of the array. 
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Standard Operating Procedure for Cell Traps  

Catherine Rivet, Kwanghun Chung, Melissa Kemp, Hang Lu 

March 2012 

 

Required Items: 

1. One microfluidic cell trap chip 

2. A 5mL syringe filled with a 

solution of PBS, 2% w/v BSA (at 

room temperature) connected to a 

0.2m syringe filter (VWR 

#28144-050) and a 23 gauge needle 

(McMaster-Carr) 

3. A pipette tip for 20-200L pipettes 

4. A 1.5mL tube containing 10
6
 cells in 250 L of media 

5. 25 cm of polyethylene tubing (0.023’’ ID; 0.039’’ OD, Scientific Commodities, 

BB31695-PE/3) 

 

Procedure: 

1. Connect the syringe to the tubing and fill the tubing with the PBS, 2% BSA solution to 

remove any residual dust inside the tubing. 

NB:  Prepare 50mL of sterile filtered solution PBS, 2% BSA to test several chips. Leftover 

solution can be stored at 4C. 

2. Connect the tubing to the outlet of the device (Figure 2).  

Figure 1: Required Apparatus 



202 

 

NB: The inlet hole is the hole with the 

biggest outer diameter on the provided 

chips. 

3. Place the chip connected with the 

syringe on the microscope stage 

(Figure 3a).  

NB: To facilitate handling of the chip, 

it is easier to tape the syringe higher up 

than the microscope stage to allow liquid flow in the chip. 

4. Press on the syringe to fill the device with solution. Make sure there are no leftover 

bubbles in the inlet filter area (Figure 3b). A small drop of solution should form on the 

inlet hole (Figure 3c). 

NB:  Priming the device with a solution of PBS, 2% BSA allows for the removal of any 

remaining bubbles and also prevents undesirable cell sticking to the channels by coating the 

surface with BSA. 

 

Figure 3: Chip priming. a) Place the chip on the microscope stage. b) Fill the chip with the PBS, 2% BSA 

solution. c) A small drop of liquid forms on the inlet hole. 

 
 

5. Wet a pipette tip and insert it in the inlet hole (Figure 4a-b). Keep pressing on the syringe 

to ensure sufficient volume of solution in the pipette tip (~ 1cm high). 

Figure 2: Connect a tubing filled with PBS, 2% BSA 

solution to the chip outlet. 
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6. Clean the surface of the chip to get rid of excess solution. Disconnect the syringe from 

the tubing and tape the tubing below the chip (~15cm) to allow some solution to flow 

through the device (Figure 4c).  

Figure 4: a-b) Insert a pipette tip in the inlet hole. c) Tape the outlet tubing below the microscope stage. 

7. Pipette 10L of cell solution in the inlet pipette tip. Wait for a few minutes for the cells to 

settle down in the pipette tip and start arriving in the chip. When the cells arrive in the chip, 

adjust the height of the outlet tubing to avoid large flowrate leading to cells squeezing 

through the trap gap (Figure 5).  

NB1: If one desires to load cells faster, directly 

pipette the cells (10 L) inside this inlet hole, 

making sure that no air bubbles are getting 

introduced.  Make sure to break cell clumps 

before loading. If the cells to be used tend to be 

very sticky, use a cell strainer before loading 

them.  

NB 2: Because cells have different sizes and 

mechanical properties, the height of the outlet 

tubing should be adjusted empirically. A typical 

flowrate to be used to trap cells and to deliver 

chemicals to trapped cells ranges from 1-5L/hour.  

Figure 5: Cell loading. 
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NB 3: For long term experiments, 

one should equilibrate the 

microfluidic chip at the appropriate 

environmental conditions to allow 

cell survival (O2, CO2, and 

temperature). 

NB 4: If the flow stops, or cells 

come out of the traps, make sure 

there is no air bubble or debris clogging the device.  
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APPENDIX E 

APPENDIX CHAPTER 7 

 

 

Figure E.S1: Bode plots (gain and phase) for a second order low pass filter transfer function  
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Figure E.S2: Representative traces of Ca

2+ 
dynamics following exogenous addition of 25 

O2 in no inhibitor condition (blue), 5mM NAC (green), 2 M DPI (dark green), 10 M 

Apocynin (light blue), 0.05 mM EGTA (magenta), 100 M TMB-8 (red) and 100 M FFA 

(pink). 
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Figure E.S3: Model predictions to a bolus of 100 M H2O2 at t=10 min. Note the faster Ca

2+ 

dynamics than ROS to return to steady state levels. 

 

 

 

 

 
Figure E.S4: Model predictions to thapsigargin treatment at time=5min, modeled by reducing the 

maximal velocity of the SERCA pump to 85% its initial value. ER Ca
2+ 

is depleted to 200 M 

and cytoplasmic Ca
2+ 

levels stay elevated to 0.5 M.  
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Figure E.S5: Model predictions to histamine treatment at time=5 min followed by a bolus of 100 

M H2O2 at time t=25 min, modeled by forcing the IP3 levels to be at 5 M between t=5 min and 

t=10 min. We observe an increase in cytoplasmic Ca
2+ 

in response to histamine and H2O2 

treatment. 

 
A7S6: Time course of the various species in the system to a 30 seconds period input stimulus. 

Note the non-linear behavior of both species in the ER. 



209 

 

 
Figure E.S7: Time course of the various species in the system to a 3 min period input stimulus. 

The ROS levels in the ER now follow the input stimulus. The Ca
2+ 

levels in the ER and in the 

mitochondria show a periodic behavior; however they do not display a perfectly sinusoidal 

behavior. 
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Figure E.S8: Time course of the various species in the system to a 10 minute period input 

stimulus.  
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Figure E.S9: Time course of the various species in the system to a 30 minute period input 

stimulus. 
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Figure E.S10: Time course of the various species in the system to a 30 minute period input 

stimulus. 
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Figure E.S11: Calibration example. After the completion of a biological experiment, periods of 

buffer and a fluorescent fluid should be generated in the same device to measure the oscillation 

pattern and quantify the time delay of the real signal from the ideal input. A sinusoidal curve can 

be fitted to the experimental data and be used as the real input signal when cell responses are 

quantified. 
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Figure E.S12: Characterization of a 10 min chemical pulse in terms of position in the chip.  

a) Comparison of a theoretical pulse input and the signal observed by the cells in different 

locations in a specific chip. b) Quantification of the delay, defined as the time difference between 

the maximum of the output and the maximum of the input, if considered as a sinusoid. Data are 

displayed as mean ± sd, averaged across 4 periods and 3 different devices.    
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Figure E.S13: Amplitude effect on the phase and gain of the system demonstrating the non-

linearity of the system. 
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APPENDIX F 

CA
2+ 

SIGNALING MODEL 

%% Model for parameter optimization  

%%-------------------------------------------------------------------%% 

function S = OFModel11(b) 
global tdata xdata x0 CaEx 
    %% EGTA Model  
    function dx = f1(t,x) 
      CaEx=500; 
      dx = zeros(7,1); 
      Jplcact= 0.0045*x(3); %activation of PLCp by ligand binding 
      Jplcdeact= 0.0396*x(2); %dephosphorylation of PLCp 
      dx(3)=-Jplcact; %Ligand 
      dx(2)= Jplcact-Jplcdeact; %PLCgammap 

         
      Jplc= b(14)*x(2)*x(4); %production of IP3 from PLCp 
      Jip3deg= b(15)*b(14)*x(1); %degradation of IP3 by phosphatase 
      dx(1)=Jplc-Jip3deg; 

         
      Jserca=b(1)*x(4)^2/(x(4)^2+b(2)^2); %%serca 
      Jerleak = x(6)*b(5); 

                    

Jip3=x(6)*b(10)*(x(1)/(x(1)+b(12)))^3*(x(4)/(x(4)+b(13)))^3*x(5)^

3;  
      b20=1*(x(1)+b(12))/(x(1)+b(20)); 
      dx(5)=b(19)*(b20-x(5)*(x(4)+b20)); %h 

         
      Jpmleak=b(8)*CaEx; 

Jcrac=b(7)*(b(9)^3./(b(9)^3+x(6)^3))*CaEx/(b(24)+CaEx);       

Jpmca=b(3)*(x(4).^2./(x(4).^2+b(4)^2))*((x(6).^4)./(x(6).^4+b(22)

.^4));         

Jmitin=b(16)*(x(4).^4./(x(4).^4+b(17)^4));  
Jmitout= b(18)*x(7)*(x(4)^2/(x(4)^2+b(23)^2));  
Jmitleak=b(6)*x(7); 

         
      dx(4)=b(27)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 
      dx(6)=b(11)*Jserca-b(11)*Jip3-b(11)*Jerleak; %CaER 
      dx(7)=b(21)*Jmitin-b(21)*Jmitout; %Camit 
    end 

 
 %% No inhibitor condition model 
function dx = f2(t,x) 
      CaEx=1500; 
      dx = zeros(7,1); 
      Jplcact= 0.0045*x(3); %activation of PLCp by ligand binding 
      Jplcdeact= 0.0396*x(2); %dephosphorylation of PLCp 
      dx(3)=-Jplcact; %Ligand 
      dx(2)= Jplcact-Jplcdeact; %PLCgammap 

         
      Jplc= b(14)*x(2)*x(4); %production of IP3 from PLCp 
      Jip3deg= b(15)*b(14)*x(1); %degradation of IP3 by phosphatase 
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      dx(1)=Jplc-Jip3deg; 
      Jserca=b(1)*x(4)^2/(x(4)^2+b(2)^2); %%serca 
      Jerleak = x(6)*b(5); 

             

Jip3=x(6)*b(10)*(x(1)/(x(1)+b(12)))^3*(x(4)/(x(4)+b(13)))^3*x(5)^

3; %Maurya , Chen... 
      b20=1*(x(1)+b(12))/(x(1)+b(20)); 
      dx(5)=b(19)*(b20-x(5)*(x(4)+b20)); %h 

         
      Jpmleak=b(8)*CaEx; 
      Jcrac=b(7)*(b(9)^3./(b(9)^3+x(6)^3))*CaEx/(b(24)+CaEx);  

Jpmca=b(3)*(x(4).^2./(x(4).^2+b(4)^2))*((x(6).^4)./(x(6).^4+b(22)

.^4)); %pmca 
      Jmitin=b(16)*(x(4).^4./(x(4).^4+b(17)^4));  

Jmitout= b(18)*x(7)*(x(4)^2/(x(4)^2+b(23)^2;        

Jmitleak=b(6)*x(7); 

         
      dx(4)=b(27)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 
      dx(6)=b(11)*Jserca-b(11)*Jip3-b(11)*Jerleak; %CaER 
      dx(7)=b(21)*Jmitin-b(21)*Jmitout; %Camit 
end 
 

%% TMB8 Model 
function dx = f3(t,x) 
      CaEx=1500; 
      dx = zeros(7,1); 
      Jplcact= 0.0045*x(3); %activation of PLCp by ligand binding 
      Jplcdeact= 0.0396*x(2); %dephosphorylation of PLCp 
      dx(3)=-Jplcact; %Ligand 
      dx(2)= Jplcact-Jplcdeact; %PLCgammap 

         
      Jplc= b(14)*x(2)*x(4); %production of IP3 from PLCp 
      Jip3deg= b(15)*b(14)*x(1); %degradation of IP3 by phosphatase 
      dx(1)=Jplc-Jip3deg; 

         
      Jserca=b(1)*x(4)^2/(x(4)^2+b(2)^2); %%serca 
      Jerleak = x(6)*b(5); 

             

Jip3=x(6)*b(10)*(x(1)/(x(1)+b(12)))^3*(x(4)/(x(4)+b(13)))^3*x(5)^

3; %Maurya , Chen... 
      b20=1*(x(1)+b(12))/(x(1)+b(20)); 
      dx(5)=b(19)*(b20-x(5)*(x(4)+b20)); %h 
      Jip3=b(28)*Jip3; 

         
      Jpmleak=b(8)*CaEx; 
      Jcrac=b(7)*(b(9)^3./(b(9)^3+x(6)^3))*CaEx/(b(24)+CaEx);  

       

Jpmca=b(3)*(x(4).^2./(x(4).^2+b(4)^2))*((x(6).^4)./(x(6).^4+b(22)

.^4)); %pmca 
      Jmitin=b(16)*(x(4).^4./(x(4).^4+b(17)^4         
      Jmitout= b(18)*x(7)*(x(4)^2/(x(4)^2+b(23)^2));  
      Jmitleak=b(6)*x(7); 

         
      dx(4)=b(27)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 
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      dx(6)=b(11)*Jserca-b(11)*Jip3-b(11)*Jerleak; %CaER 
      dx(7)=b(21)*Jmitin-b(21)*Jmitout; %Camit 
    end 

 
%% numerical integration set up 
tspan = [0:0.1:max(tdata)]; 
[tsol1,xsol1] = ode23s(@f1,tspan,x0); 
[tsol2,xsol2] = ode23s(@f2,tspan,x0); 
[tsol3,xsol3] = ode23s(@f3,tspan,x0); 

 
%% find predicted values x(tdata)  
xpred1 = interp1(tsol1,xsol1,tdata); 
xpred2 = interp1(tsol2,xsol2,tdata); 
xpred3 = interp1(tsol3,xsol3,tdata); 

  
%% compute total error  
S=0; 
for i=1:length(tdata) 
        S = S + ((xpred1(i,1)-xdata(i,1))./xdata(i,1)).^2 ... 
            +((xpred1(i,4)-xdata(i,5))./xdata(i,5)).^2 ... 
            + ((xpred2(i,4)-xdata(i,4))./xdata(i,4)).^2 ... 
            + ((xpred3(i,4)-xdata(i,8))./xdata(i,8)).^2; 
end 

  
end 

 
%% Parameter optimization  

%%-------------------------------------------------------------------%% 

function paramFitOFModel11 

  
% main program for fitting parameters of an ODE model to data 
% the model and the error function are defined in the file OFModel11.m 

  
clearvars -global 
global tdata xdata x0 CaEx; 

 
%% initial conditions 
x0(1) = 0.54; x0(2) = 0.07; 
x0(3) = 10; x0(4)=0.05; 
x0(5)=0.1; x0(6)=350; 
x0(7)=0.1; CaEx=500; %uM 

 
%% data for the model 
load ExpData 
xdata(:,2)=x0(2)*xdata(:,2); %plcgamma 
xdata(:,4)=x0(4)*xdata(:,4); %Cacyt 
xdata(:,5)=x0(4)*xdata(:,5); %Cacyt EGTA 
xdata(:,8)=x0(4)*xdata(:,8); %Cacyt TMB8 

 
%% initial guess of parameter values 
lb=zeros(1,28); 
ub=ones(1,28); 

  
lb(14)=0.1; ub(14)=1; 
lb(15)=0.01; ub(15)=0.1; 
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lb(1)=0.2; ub(1)=250; %Vserca 
lb(2)=.15; ub(2)=0.8; %kserca 

  
lb(3)=0.01; ub(3)=50; %Vpmca 
lb(4)=0.1; ub(4)=0.5; %kPMCA 
lb(22)=5; ub(22)=450; %% kSTIMPMCA full ER stores of Calcium 300uM 

  
lb(5)=5e-4; ub(5)=0.05; %ERleak 
lb(6)=1e-4; ub(6)=1e-2; %DirTransf 
lb(10)=0.05; ub(10)=80; %IP3R 
lb(12)=.1; ub(12)=1; %kIP3R 
lb(13)=0.05; ub(13)=0.5; %kIP3Rca 

  
lb(7)=0.01; ub(7)=10; %STIM 
lb(8)=2.5e-7; ub(8)=3.5e-5; %PMleak 
lb(9)=150; ub(9)=250; %kStim 

  
lb(19)=0.01; ub(19)=0.5; %IP3Rinh 
lb(20)=0.5; ub(20)=1.5; %IP3Rrecov 
lb(21)=0.1; ub(21)=10; %kg 

  
lb(16)=100; ub(16)=800; %Vmitin 
lb(17)=0.5; ub(17)=1.5; %kMITIN 

  
lb(18)=50; ub(18)=1000; %Vmitout 
lb(23)=1; ub(23)=10; %kMITOUT 

  
lb(11)=1; ub(11)=500; %ratio volume cytoplasm to ER  
lb(24)=50; ub(24)=1000; %ratio volume cytoplasm to mitochondria 
lb(25)=0.1; ub(25)=1; 
lb(26)=1; ub(26)=8; 
lb(27)=1e-3; ub(27)=10; 
lb(28)=0.1; ub(27)=0.5; 

  
popsize=100; 
 M=zeros(popsize,length(lb)); 
for i=1:popsize 
    for j=1:length(lb) 
        M(i,j)=10^(log10(lb(j))+rand*(log10(ub(j))-log10(lb(j)))); 
    end                                                                                             
end 

  
%% minimization step 
load('bfinal'); 
b= bmin; 

  
% options=gaoptimset('PopulationSize',popsize,'InitialPopulation',M,... 

%'PlotFcns',{@gaplotbestf,@gaplotscores,@gaplotselection,@gaplotdistanc

e}); 
%[bmin,Smin,exitflag]=ga(@OFModel11,length(lb),[],[],[],[],lb,ub,[],opt

ions); 

 
% options=optimset('PlotFcns',{@optimplotfval,@optimplotstepsize}); 
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% [bmin, Smin,exitflag] =  

fmincon(@OFModel11,b,[],[],[],[],lb,ub,[],options); 

  
% options=psoptimset('PlotFcns',{@psplotbestf,@psplotmeshsize}); 
% [bmin, Smin,exitflag] =  

patternsearch(@OFModel11,b,[],[],[],[],lb,ub,[],options); 

  
% options=saoptimset('PlotFcns',{@saplotbestf,@saplotbestx, @saplotf, 

@saplottemperature}); 
% [bmin, Smin,exitflag] =  simulannealbnd(@OFModel11,b,lb,ub,options); 

  
disp('Estimated parameters b(i):'); 
disp(bmin) 
disp('Smallest value of the error S:'); 
disp(Smin) 
save('bnice2','bmin') 
end 

 

%% Solve nodel once parameters are known and plot  

%%-------------------------------------------------------------------%% 

function solveModel11 
global b CaEx x0 tdata xdata 

 
%% data for the model 
x0(5)=0.5; 
load ExpData 
xdata(:,2)=x0(2)*xdata(:,2); %plcgamma 
xdata(:,4)=x0(4)*xdata(:,4); %Cacyt 
xdata(:,5)=x0(4)*xdata(:,5); %Cacyt EGTA 
xdata(:,8)=x0(4)*xdata(:,8); %Cacyt TMB8 

  
tdata1=60*[0 1 2 3 5 10];  
xdata1=[0.54 2.46 4 5.62 3.38 1.54]; 
xdata2=[1 12 8.9 6.5 4.6 1.9]; 

  
load('bfinal'); 
b= bmin; 
binit=b; 

 
tspan = [0:0.1:3*max(tdata)]; 
[tsol1,xsol1] = ode23s(@f1,tspan,x0); 
[tsol2,xsol2] = ode23s(@f2,tspan,x0); 
[tsol3,xsol3] = ode23s(@f3,tspan,x0); 

  

  
% figure (1), 
%     plot(tdata1,x0(2)*xdata2,'x','MarkerSize',6); 
%     hold on 
%     plot(tsol2(1:end),xsol2(1:end,2),'r','LineWidth',3); 
%     ylabel('pPLCgamma (uM)') 
%       xlabel('time (s)') 

 
figure (2), 
    subplot(4,3,1) 
    plot(tdata1,xdata1,'o','MarkerSize',1); 



221 

 

    hold on 
    plot(tsol1(1:end),xsol1(1:end,1),'k','LineWidth',3); 
    ylabel('IP3 (uM)'); ylim=([0 6]);   xlabel('time (s)'); 

title('EGTA'); 

     
    subplot(4,3,2) 
    plot(tdata1,xdata1,'o','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,1),'k','LineWidth',3); 
    ylabel('IP3 (uM)'); ylim=([0 6]);   xlabel('time (s)'); title('No 

Inhibitor'); 

     
    subplot(4,3,3) 
    plot(tdata1,xdata1,'o','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,1),'k','LineWidth',3); 
    ylabel('IP3 (uM)');  ylim=([0 6]);  xlabel('time (s)'); 

title('TMB8') 

     
%     subplot(2,3,1) 
%     plot(tsol1(1:end),xsol1(1:end,3),'r','LineWidth',3); 
%     ylabel('Ligand (au)'); 
%     xlabel('time (s)') 
%      
%     subplot(2,3,2) 
%     plot(tdata1,xdata2,'x','MarkerSize',6); 
%     hold on 
%     plot(tsol1(1:end),xsol1(1:end,2),'r','LineWidth',3); 
%     ylabel('pPLCgamma (uM)') 
%       xlabel('time (s)') 

       
    subplot(4,3,4) 
    plot(tdata(1:end),xdata(1:end,5),'o','MarkerSize',6); 
    hold on 
    plot(tsol1(1:end),xsol1(1:end,4),'k','LineWidth',3); 
    ylabel('Cacyt (uM)');ylim=([0 0.5]); xlabel('time (s)') 

      
    subplot(4,3,5) 
    plot(tdata(1:end),xdata(1:end,4),'o','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,4),'k','LineWidth',3); 
    ylabel('Cacyt (uM)'); ylim=([0 0.5]); xlabel('time (s)') 

     
    subplot(4,3,6) 
    plot(tdata(1:end),xdata(1:end,8),'o','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,4),'k','LineWidth',3); 
    ylabel('Cacyt (uM)'); ylim=([0 0.5]); xlabel('time (s)') 

     
    subplot(4,3,7) 
    plot(tdata(1:end),xdata(1:end,6),'o','MarkerSize',6); 
    hold on 
    plot(tsol1(1:end),xsol1(1:end,6),'k','LineWidth',3); 
    ylabel('CaER (uM)'); ylim=([0 400]); xlabel('time (s)') 
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    subplot(4,3,8) 
    plot(tdata(1:end),xdata(1:end,6),'o','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,6),'k','LineWidth',3); 
    ylabel('CaER (uM)');ylim=([0 400]); xlabel('time (s)') 

     
    subplot(4,3,9) 
    plot(tdata(1:end),xdata(1:end,6),'o','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,6),'k','LineWidth',3); 
    ylabel('CaER (uM)');ylim=([0 400]); xlabel('time (s)') 

      
    subplot(4,3,10) 
    plot(tdata(1:end),xdata(1:end,7),'x','MarkerSize',6); 
    hold on 
    plot(tsol1(1:end),xsol1(1:end,7),'k','LineWidth',3); 
    ylabel('CaMit (uM)'); ylim=([0 10]); xlabel('time (s)') 
       subplot(4,3,11) 
    plot(tdata(1:end),xdata(1:end,7),'x','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,7),'k','LineWidth',3); 
    ylabel('CaMit (uM)'); ylim=([0 10]); xlabel('time (s)') 
        subplot(4,3,12) 
    plot(tdata(1:end),xdata(1:end,7),'x','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,7),'k','LineWidth',3); 
    ylabel('CaMit (uM)'); ylim=([0 10]); xlabel('time (s)') 

     
    figure (2), 
    subplot(4,3,1) 
    plot(tdata1,xdata1,'o','MarkerSize',1); 
    hold on 
    plot(tsol1(1:end),xsol1(1:end,1),'k','LineWidth',3); 
    ylabel('IP3 (uM)'); ylim=([0 6]);   xlabel('time (s)'); 

title('EGTA'); 

     
    subplot(4,3,2) 
    plot(tdata1,xdata1,'o','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,1),'k','LineWidth',3); 
    ylabel('IP3 (uM)'); ylim=([0 6]);   xlabel('time (s)'); title('No 

Inhibitor'); 

     
    subplot(4,3,3) 
    plot(tdata1,xdata1,'o','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,1),'k','LineWidth',3); 
    ylabel('IP3 (uM)');  ylim=([0 6]);  xlabel('time (s)'); 

title('TMB8') 

     
%     subplot(2,3,1) 
%     plot(tsol1(1:end),xsol1(1:end,3),'r','LineWidth',3); 
%     ylabel('Ligand (au)'); 
%     xlabel('time (s)') 
%      
%     subplot(2,3,2) 
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%     plot(tdata1,xdata2,'x','MarkerSize',6); 
%     hold on 
%     plot(tsol1(1:end),xsol1(1:end,2),'r','LineWidth',3); 
%     ylabel('pPLCgamma (uM)') 
%       xlabel('time (s)') 
      figure (3) 
    subplot(4,3,4) 
    plot(tdata(1:end),xdata(1:end,5),'o','MarkerSize',6); 
    hold on 
    plot(tsol1(1:end),xsol1(1:end,4),'k','LineWidth',3); 
    ylabel('Cacyt (uM)');ylim=([0 0.5]); xlabel('time (s)') 

      
    subplot(4,3,5) 
    plot(tdata(1:end),xdata(1:end,4),'o','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,4),'k','LineWidth',3); 
    ylabel('Cacyt (uM)'); ylim=([0 0.5]); xlabel('time (s)') 

     
    subplot(4,3,6) 
    plot(tdata(1:end),xdata(1:end,8),'o','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,4),'k','LineWidth',3); 
    ylabel('Cacyt (uM)'); ylim=([0 0.5]); xlabel('time (s)') 

     
    subplot(4,3,7) 
    plot(tdata(1:end),xdata(1:end,6),'o','MarkerSize',6); 
    hold on 
    plot(tsol1(1:end),xsol1(1:end,6),'k','LineWidth',3); 
    ylabel('CaER (uM)'); ylim=([0 400]); xlabel('time (s)') 

     
    subplot(4,3,8) 
    plot(tdata(1:end),xdata(1:end,6),'o','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,6),'k','LineWidth',3); 
    ylabel('CaER (uM)');ylim=([0 400]); xlabel('time (s)') 

     
    subplot(4,3,9) 
    plot(tdata(1:end),xdata(1:end,6),'o','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,6),'k','LineWidth',3); 
    ylabel('CaER (uM)');ylim=([0 400]); xlabel('time (s)') 

      
    subplot(4,3,10) 
    plot(tdata(1:end),xdata(1:end,7),'x','MarkerSize',6); 
    hold on 
    plot(tsol1(1:end),xsol1(1:end,7),'k','LineWidth',3); 
    ylabel('CaMit (uM)'); ylim=([0 10]); xlabel('time (s)') 
       subplot(4,3,11) 
    plot(tdata(1:end),xdata(1:end,7),'x','MarkerSize',6); 
    hold on 
    plot(tsol2(1:end),xsol2(1:end,7),'k','LineWidth',3); 
    ylabel('CaMit (uM)'); ylim=([0 10]); xlabel('time (s)') 
        subplot(4,3,12) 
    plot(tdata(1:end),xdata(1:end,7),'x','MarkerSize',6); 
    hold on 
    plot(tsol3(1:end),xsol3(1:end,7),'k','LineWidth',3); 
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    ylabel('CaMit (uM)'); ylim=([0 10]); xlabel('time (s)') 

 

function dx = f1(t,x) 
   global b  
      CaEx=750; 
      dx = zeros(7,1); 
      Jplcact= 0.0045*x(3); %activation of PLCp by ligand binding 
      Jplcdeact= 0.0396*x(2); %dephosphorylation of PLCp 
      dx(3)=-Jplcact; %Ligand 
      dx(2)= Jplcact-Jplcdeact; %PLCgammap 

         
      Jplc= b(14)*x(2)*x(4); %production of IP3 from PLCp 
      Jip3deg= b(15)*b(14)*x(1); %degradation of IP3 by phosphatase 
      dx(1)=Jplc-Jip3deg; 

         
      Jserca=b(1)*x(4)^2/(x(4)^2+b(2)^2); %%serca 
      Jerleak = x(6)*b(5);    

        

Jip3=x(6)*b(10)*(x(1)/(x(1)+b(12)))^3*(x(4)/(x(4)+b(13)))^3*x(5)^

3; %Maurya , Chen... 
      b20=1*(x(1)+b(12))/(x(1)+b(20)); 
      dx(5)=b(19)*(b20-x(5)*(x(4)+b20)); %h 
         

Jpmleak=b(8)*CaEx; 
      Jcrac=b(7)*(b(9)^3./(b(9)^3+x(6)^3))*CaEx/(b(24)+CaEx);  

Jpmca=b(3)*(x(4).^2./(x(4).^2+b(4)^2))*((x(6).^4)./(x(6).^4+b(22)

.^4)); %pmca 
      Jmitin=b(16)*(x(4).^4./(x(4).^4+b(17)^4));  

Jmitout= b(18)*x(7)*(x(4)^2/(x(4)^2+b(23)^2));        

Jmitleak=b(6)*x(7); 

         
      dx(4)=b(27)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 
      dx(6)=b(11)*Jserca-b(11)*Jip3-b(11)*Jerleak; %CaER 
      dx(7)=b(21)*Jmitin-b(21)*Jmitout; %Camit 

  
function dx = f2(t,x) 
    global b 
      CaEx=1500; 
      dx = zeros(7,1); 
      Jplcact= 0.0045*x(3); %activation of PLCp by ligand binding 
      Jplcdeact= 0.0396*x(2); %dephosphorylation of PLCp 
      dx(3)=-Jplcact; %Ligand 
      dx(2)= Jplcact-Jplcdeact; %PLCgammap 

         
      Jplc= b(14)*x(2)*x(4); %production of IP3 from PLCp 
      Jip3deg= b(15)*b(14)*x(1); %degradation of IP3 by phosphatase 
      dx(1)=Jplc-Jip3deg; 

         
      Jserca=b(1)*x(4)^2/(x(4)^2+b(2)^2); %%serca 
      Jerleak = x(6)*b(5);      

        

Jip3=x(6)*b(10)*(x(1)/(x(1)+b(12)))^3*(x(4)/(x(4)+b(13)))^3*x(5)^

3; %Maurya , Chen... 
      b20=1*(x(1)+b(12))/(x(1)+b(20)); 
      dx(5)=b(19)*(b20-x(5)*(x(4)+b20)); %h 
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      Jpmleak=b(8)*CaEx; 

Jcrac=b(7)*(b(9)^3./(b(9)^3+x(6)^3))*CaEx/(b(24)+CaEx);         

Jpmca=b(3)*(x(4).^2./(x(4).^2+b(4)^2))*((x(6).^4)./(x(6).^4+b(22)

.^4)); %pmca 
      Jmitin=b(16)*(x(4).^4./(x(4).^4+b(17)^4));         
      Jmitout= b(18)*x(7)*(x(4)^2/(x(4)^2+b(23)^2));  
      Jmitleak=b(6)*x(7); 

         
      dx(4)=b(27)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 
      dx(6)=b(11)*Jserca-b(11)*Jip3-b(11)*Jerleak; %CaER 
      dx(7)=b(21)*Jmitin-b(21)*Jmitout; %Camit 

  
function dx = f3(t,x) 
    global b 
        CaEx=1500; 
        dx = zeros(7,1); 
        Jplcact= 0.0045*x(3); %activation of PLCp by ligand binding 
        Jplcdeact= 0.0396*x(2); %dephosphorylation of PLCp 
        dx(3)=-Jplcact; %Ligand 
        dx(2)= Jplcact-Jplcdeact; %PLCgammap 

         
        Jplc= b(14)*x(2)*x(4); %production of IP3 from PLCp 
        Jip3deg= b(15)*b(14)*x(1); %degradation of IP3 by phosphatase 
        dx(1)=Jplc-Jip3deg; 

         
        Jserca=b(1)*x(4)^2/(x(4)^2+b(2)^2); %%serca 
        Jerleak = x(6)*b(5); 

            

Jip3=x(6)*b(10)*(x(1)/(x(1)+b(12)))^3*(x(4)/(x(4)+b(13)))^3*x(5)^

3;  
      b20=1*(x(1)+b(12))/(x(1)+b(20)); 
      dx(5)=b(19)*(b20-x(5)*(x(4)+b20)); %g or inactivation of IP3R by 

Cacyt 
      Jip3=b(28)*Jip3; 

       
      Jpmleak=b(8)*CaEx; 
      Jcrac=b(7)*(b(9)^3./(b(9)^3+x(6)^3))*CaEx/(b(24)+CaEx);  

Jpmca=b(3)*(x(4).^2./(x(4).^2+b(4)^2))*((x(6).^4)./(x(6).^4+b(22)

.^4)); %pmca 
      Jmitin=b(16)*(x(4).^4./(x(4).^4+b(17)^4));          

Jmitout= b(18)*x(7)*(x(4)^2/(x(4)^2+b(23)^2));        

Jmitleak=b(6)*x(7); 

         
      dx(4)=b(27)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 
      dx(6)=b(11)*Jserca-b(11)*Jip3-b(11)*Jerleak; %CaER 
      dx(7)=b(21)*Jmitin-b(21)*Jmitout; %Camit 
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APPENDIX G 

ROS/CA
2+ 

SIGNALING MODEL 

function solveROSCaModel1 
clearvars -global 
global b CaEx x0 tdata IP3 ROSerinit 

 
%% data for the model 
x0(1)=1.4e-3; x0(2)=0.0014; x0(3)=85; 
x0(4)=0.05; x0(5)=0.02; x0(6)=350; x0(7)=0.1; 
IP3=0.54; CaEx=1500; ROSerinit=x0(3);  

  
b=zeros(1,44); 
b(1,1:9)=[6.4e-3 1.2e-6 1e-6 5 1e-6 0.15 1.2e-3 40e-3 0.0015]; 
b(1,10:12)=[3e-3 95 3 ]; 
b(1,13:15)=[b(10)/55 280 2]; %[0.5e-3 95 3 b(10)/54.5 300 3]; 
b(1,16:22)=[1.626 0.16 0.106*2.75 0.15 2 0.771 0.0917]; 
b(1,23:31)=[3e-3 85.8*2.75 0.4477 0.1 2 794.07 1.24 484.44 8.1285]; 
b(1,32:41)=[0 3.1046 195.73 996.83 2.5e-7 1.805*2.75 0.1269 394 10 2]; 
b(1,42:44)=[0.1678 0.0467 0.716]; 

  
binit=b; 
tdata=1:1:1800; 
kscaverinit=binit(13); 
kscavinit=binit(7); 
Vsercainit=binit(24); 

 
% t1=0; 
% t2=600; 
% [T,y] = ode15s(@f1,[t1 t2],x0); 
% subplot(2,2,2), plot(T,y(:,3)); title('ROSer') 
% subplot(2,2,1), plot(T,y(:,2)); title('ROScyt') 
% subplot(2,2,4), plot(T,y(:,6)); title('Caer') 
% subplot(2,2,3), plot(T,y(:,4)); title('Cacyt') 
% y0=[1.4;y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
% t3=1800; 
% [T,y] = ode15s(@f1,[t2 t3],y0); 
% subplot(2,2,2), hold on, plot(T,y(:,3)); %title('ROSer') 
% subplot(2,2,1), hold on,plot(T,y(:,2)); %title('ROScyt') 
% subplot(2,2,4), hold on,plot(T,y(:,6)); %title('Caer') 
% subplot(2,2,3), hold on,plot(T,y(:,4)); %title('Cacyt') 
%  
% figure(1),  
% T1=0:60:30*60; 
% ROSer=[3.1 3.1 3.1 3.1 3.1 3.1 1.35 0.9 0.85 0.8 0.8 0.8 0.9 1 1.3... 
%     1.55 1.85 2.1 2.35 2.6 2.65 2.66 2.67 2.68 2.69 2.7 3.8 3.8 3.8 

3.8 3.8]; 
% scatter(T1, ROSer,'b') 
%  
%  
%  
% t1=0; 
% t2=300; 
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% [T,y] = ode15s(@f1,[t1 t2],x0); 
% hold on, plot(T,y(:,3)*(3.1/ROSerinit)) 
% ax1 = gca; 
% set(ax1,'YColor','b') 
% ylim([0 4]) 
% ax2 = axes('Position',get(ax1,'Position'),... 
%            'YAxisLocation','right',... 
%            'Color','none',... 
%            'YColor','r') 
%        ylim([0 1]) 
%         
% hold on, plot(T,y(:,2),'r','Parent',ax2) 
% y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
% t3=680; 
% b(13)=kscaverinit*7; 
% b(7)=kscavinit*7; 
% [T,y] = ode15s(@f1,[t2 t3],y0); 
% hold on, plot(T,y(:,3)*(3.1/ROSerinit),'Parent',ax1) 
% hold on, plot(T,y(:,2),'r','Parent',ax2) 
%  
% y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
% t4=1500; 
% b(13)=kscaverinit*1.25; 
% b(7)=kscavinit*1.25; 
% [T,y] = ode15s(@f1,[t3 t4],y0); 
% hold on, plot(T,y(:,3)*(3.1/ROSerinit),'Parent',ax1) 
% hold on, plot(T,y(:,2),'r','Parent',ax2) 
% y0=[1;y(end,2);y(end,3);y(end,4);y(end,4);y(end,6);y(end,7)]; 
% t5=65*60; 
% b(13)=kscaverinit; 
% b(7)=kscavinit; 
% [T,y] = ode15s(@f1,[t4 t5],y0); 
% hold on, plot(T,y(:,3)*(3.1/ROSerinit),'Parent',ax1) 
% hold on, plot(T,y(:,2),'r','Parent',ax2) 

  
%% response to calcium release 
%  figure(2),    
T2=0:60:30*60; 
T3=0*60:2.5*60:25*60; 
ROSerthapsigargin=[3.1 3.1 3.1 2.7 2.2 2 1.9 1.8 1.7 1.6 1.6]; 
Ca=[0.45 0.45 0.45 0.75 0.65 0.5 0.45 0.45 0.45 0.45 0.45]; 
ROSerhistamine=[3.1 3.1 3.1 3.1 3.1 3.1 3 2.8 2.6 2.5 2.4 2.35 2.37 

2.38 2.4... 
2.45 2.55 2.6 2.65 2.7 2.75 2.8 2.8 2.8 2.8 2.8 3.7 3.8 3.8 3.8 3.8]; 
% hold on 
subplot(2,2,1) 
% , scatter(T3, ROSerthapsigargin,'g') 
hold on 
scatter(T2, ROSerhistamine,'b') 
%  
% y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
y0=x0; 

  
t1=0; 
t2=5*60; 
[T,y] = ode15s(@f1,[t1 t2],y0); 
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   subplot(2,2,1), 
hold on, plot(T,y(:,3)*(3.1/ROSerinit),'b') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=5; b(24)=0.9999*Vsercainit; 
t3=11*60; 
[T,y] = ode15s(@f1,[t2 t3],y0); 
subplot(2,2,1),hold on, plot(T,y(:,3)*(3.1/ROSerinit),'b') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=0.54; b(24)=Vsercainit; 
t4=25*60; 
[T,y] = ode15s(@f1,[t3 t4],y0); 
subplot(2,2,1), hold on, plot(T,y(:,3)*(3.1/ROSerinit),'b') 
y0=[1.5;y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
t5=35*60; 
[T,y] = ode15s(@f1,[t4 t5],y0); 
subplot(2,2,1), hold on, plot(T,y(:,3)*(3.1/ROSerinit),'b') 
y0=x0; 
t1=0; 
t2=5*60; 
[T,y] = ode15s(@f1,[t1 t2],y0); 
   subplot(2,2,2),hold on, plot(T,y(:,2),'r') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=5; b(24)=0.9999*Vsercainit; 
t3=11*60; 
[T,y] = ode15s(@f1,[t2 t3],y0); 
   subplot(2,2,2),hold on, plot(T,y(:,2),'r') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=0.54; b(24)=Vsercainit; 
t4=25*60; 
[T,y] = ode15s(@f1,[t3 t4],y0); 
   subplot(2,2,2),hold on, plot(T,y(:,2),'r') 
y0=[1.5;y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
t5=35*60; 
[T,y] = ode15s(@f1,[t4 t5],y0); 
   subplot(2,2,2),hold on, plot(T,y(:,2),'r') 
y0=x0; 
t1=0; 
t2=5*60; 
[T,y] = ode15s(@f1,[t1 t2],y0); 
   subplot(2,2,3),hold on, plot(T,y(:,6),'b') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=5; b(24)=0.9999*Vsercainit; 
t3=11*60; 
[T,y] = ode15s(@f1,[t2 t3],y0); 
   subplot(2,2,3),hold on, plot(T,y(:,6),'b') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=0.54; b(24)=Vsercainit; 
t4=25*60; 
[T,y] = ode15s(@f1,[t3 t4],y0); 
   subplot(2,2,3),hold on, plot(T,y(:,6),'b') 
y0=[1.5;y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
t5=35*60; 
[T,y] = ode15s(@f1,[t4 t5],y0); 
   subplot(2,2,3),hold on, plot(T,y(:,6),'b') 
y0=x0; 
t1=0; 
t2=5*60; 
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[T,y] = ode15s(@f1,[t1 t2],y0); 
     subplot(2,2,4),hold on, plot(T,y(:,4),'r') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=5; b(24)=0.9999*Vsercainit; 
t3=11*60; 
[T,y] = ode15s(@f1,[t2 t3],y0); 
     subplot(2,2,4),hold on, plot(T,y(:,4),'r') 
y0=[y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
IP3=0.54; b(24)=Vsercainit; 
t4=25*60; 
[T,y] = ode15s(@f1,[t3 t4],y0); 
     subplot(2,2,4),hold on, plot(T,y(:,4),'r') 
y0=[1.5;y(end,2);y(end,3);y(end,4);y(end,5);y(end,6);y(end,7)]; 
t5=35*60; 
[T,y] = ode15s(@f1,[t4 t5],y0); 
     subplot(2,2,4),hold on, plot(T,y(:,4),'r') 

  
function dx = f1(t,x) 
global b CaEx ROSerinit IP3 x0 tdata 
    dx = zeros(7,1); 

     
    %ROS in media 
    Vcytin=-(x(2)-x(1)).*b(1); 
    dx(1)=-Vcytin; 
    % dx(1)=amp*(1./2*pi*freq)*cos(2*pi*freq*t); 
    Vmitprod=b(2); 
    Vnox=b(3).*IP3./(IP3+b(4)); 
    Vduox=b(5).*IP3.*x(4).^2./(b(6).^2+x(4).^2); 
    Vscav=b(7).*x(2); 
    Verin=b(8).*(x(2)-b(9)); %influx of ROS from cytoplasm 

    dx(2)= Vcytin+Vnox+Vduox-Vscav+Vmitprod-Verin; 

  
    %production of ROS in ER 
    Verprod=b(10)*b(11)^b(12)./(b(11)^b(12)+x(3).^b(12)); %production 

from ero1alpha, redox dependent 
    Verout=b(13)*x(3)*((b(14).^b(15))./(b(14).^b(15)+x(6).^b(15))); 
    dx(3)=1/0.015*(Verin+Verprod-Verout); 

  
    %IP3 flux 
    Kip3ros=b(18)*(b(19)^b(20))/(x(2)^b(20)+b(19)^b(20)); 
    Jip3=x(6)*b(16)*(IP3/(IP3+Kip3ros))^3*(x(4)/(x(4)+b(17)))^3*x(5)^3;  
    Q=1*(IP3+Kip3ros)/(IP3+1.05); 
    dx(5)=b(22)*(Q-x(5)*(x(4)+Q)); %h 
    Jerleak = x(6)*b(23)*(1+((x(3)-ROSerinit)/ROSerinit));    

    

Jserca=b(24)*(x(4)^2/(x(4)^2+b(25)^2))*(b(26)^b(27)/(b(26)^b(27)+

x(2)^b(27))); %%serca 
      Jmitin= b(28)*(x(4).^4./(x(4).^4+b(29)^4)); 

Jmitout= b(30)*x(7)*(x(4)^2/(x(4)^2+b(31)^2));    

Jcrac=b(33)*(b(34)^3./(b(34)^3+x(6)^3))*CaEx/(b(35)+CaEx);     

Jpmleak=b(36).*CaEx;     

Jpmca=b(37)*(x(4).^2./(x(4).^2+b(38)^2))*((x(6).^2)./(x(6).^2+b(3

9).^2))*(b(40)^b(41)/b(40)^b(41)+x(2)^b(41)); %pmca 

         
    dx(4)=b(42)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 



230 

 

    dx(6)=(b(43)/0.015)*(Jserca-Jip3-Jerleak); %CaER 
    dx(7)=(b(44)/0.08)*(Jmitin-Jmitout); %Camit    

     
%% Solve nodel once parameters are known in the frequency domain  

%%-------------------------------------------------------------------%% 

function solveROSCaModelFreq2 
clearvars -global 
global b CaEx x0 IP3 ROSerinit amp freq 
%% data for the model 
x0(2)=0.0014; x0(3)=85; 
x0(4)=0.05; x0(5)=0.02; x0(6)=350; x0(7)=0.1; 
IP3=0.54; CaEx=1500; ROSerinit=x0(3);  

  
b=zeros(1,44); 
b(1,1:9)=[0.4e-2 1.2e-6 1e-6 5 1e-6 0.15 1.2e-3 40e-3 0.0015]; 
b(1,10:12)=[3e-3 95 3 ]; 
b(1,13:15)=[b(10)/55 280 2]; %[0.5e-3 95 3 b(10)/54.5 300 3]; 
b(1,16:22)=[1.626 0.16 0.106*2.75 0.15 2 0.771 0.0917]; 
b(1,23:31)=[3e-3 85.8*2.75 0.4477 0.1 2 794.07 1.24 484.44 8.1285]; 
b(1,32:41)=[0 3.1046 195.73 996.83 2.5e-7 1.805*2.75 0.1269... 
    394 10 2]; 
b(1,42:44)=[0.1678 0.0467 0.716]; 

  
binit=b; 

  
%% creation of the Frequency Response 
t1=0; 
freqstep=logspace(-4,-1,100); 
Amp=30; %%there is a ratio factor : 100uM corresponds to 1.5 
X0=0.25*Amp+1.1e-3; 
ls=length(Amp); %length of the parameter to sweep 
periodstep=1./freqstep; 
FqcySweepLength=length(freqstep); 
c={'r','g','b','k','y','m','c'}; 
    j=1; 
    n1=1; 
    mag_x=cell(1,ls); 
    idx_x=cell(1,ls); 
    px=cell(1,ls); 
    id=ones(length(freqstep),7); 
    MaxO=ones(length(freqstep),7); 
    for i=freqstep %in seconds 
        freq=i; tstep=1/freq;  
        t2=18*tstep; stepxi=tstep/1000; 
        xi=0:stepxi:t2;  
        options=odeset('MaxStep',tstep/250); 

                   
                for n1=1:ls 
                amp=Amp(n1); x0(1)=X0(n1); 
                n1 
                y0=x0; 
                [T{n1},y{n1}] = ode15s(@f1,[t1 t2],y0,options); 
                    for k=1:7 %for each species 
                        z{n1}(:,k)=interp1(T{n1},y{n1}(:,k),xi'); 

z{n1}(:,k)=z{n1}(:,k)-

mean(z{n1}((end+1)/2:end,k)); %remove bias 
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                        zou=z{n1}(14*length(xi)/15:end,k); 
                        MaxO(j,k)=max(zou); 
                        id(j,k)=max(find(zou==max(zou)));  

                        % Z{n1}(:,k)=fft(z{n1}(:,k)); %take the fft 
% [mag_x{n1}(j,k) idx_x{n1}(j,k)] = 

%max(abs(Z{n1}(ceil((t2-

%6*tstep+1)/stepxi):end,k))); % Determine the 

%max value and max point. 
% px{n1}(j,k) = angle(Z{n1}(idx_x{n1}(j,k),k)); 

% determine the phase difference at the max 

point 
                        % clear z 
                        % clear Z 
                    end 

   
                    end 
                 end 
                n1=n1+1; 
                j=j+1 
    end 

         
    A={freqstep,MaxO,id}; 
    save ('Amplitude500','A') 

  
function dx = f1(t,x) 
global b CaEx ROSerinit IP3 x0 tdata amp freq 
    dx = zeros(7,1); 

     
    %ROS in media 
    Vcytin=-(x(2)-x(1)).*b(1); 
%     dx(1)=-Vcytin; 
    dx(1)=amp.*(1./2*pi.*freq).*cos(2*pi.*freq.*t); 
    Vmitprod=b(2); 
    Vnox=b(3).*IP3./(IP3+b(4)); 
    Vduox=b(5).*IP3.*x(4).^2./(b(6).^2+x(4).^2); 
    Vscav=b(7).*x(2); 
    Verin=b(8).*(x(2)-b(9)); %influx of ROS from cytoplasm, if more 

than homeostatic levels  
    dx(2)= Vcytin+Vnox+Vduox-Vscav+Vmitprod-Verin; 

  
    %production of ROS in ER 
    Verprod=b(10)*b(11)^b(12)./(b(11)^b(12)+x(3).^b(12)); %Ero1alpha 
    Verout=b(13)*x(3)*((b(14).^b(15))./(b(14).^b(15)+x(6).^b(15))); 
    dx(3)=1/0.015*(Verin+Verprod-Verout); 

  
    %IP3 flux 
    Kip3ros=b(18)*(b(19)^b(20))/(x(2)^b(20)+b(19)^b(20)); 
    Jip3=x(6)*b(16)*(IP3/(IP3+Kip3ros))^3*(x(4)/(x(4)+b(17)))^3*x(5)^3; 

    Q=1*(IP3+Kip3ros)/(IP3+1.05); 
    dx(5)=b(22)*(Q-x(5)*(x(4)+Q)); %h 

     
    Jerleak = x(6)*b(23)*(1+((x(3)-ROSerinit)/ROSerinit));    

       

Jserca=b(24)*(x(4)^2/(x(4)^2+b(25)^2))*(b(26)^b(27)/(b(26)^b(27)+

x(2)^b(27))); %%serca 
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      Jmitin= b(28)*(x(4).^4./(x(4).^4+b(29)^4));  
Jmitout= b(30)*x(7)*(x(4)^2/(x(4)^2+b(31)^2));    

Jcrac=b(33)*(b(34)^3./(b(34)^3+x(6)^3))*CaEx/(b(35)+CaEx);  
      Jpmleak=b(36).*CaEx;    

    

Jpmca=b(37)*(x(4).^2./(x(4).^2+b(38)^2))*((x(6).^2)./(x(6).^2+b(3

9).^2))*(b(40)^b(41)/b(40)^b(41)+x(2)^b(41)); %pmca 
    dx(4)=b(42)*(Jcrac-Jpmca-Jserca+Jerleak+Jip3+Jpmleak+Jmitout-

Jmitin); %Cacyt 
    dx(6)=(b(43)/0.015)*(Jserca-Jip3-Jerleak); %CaER 
    dx(7)=(b(44)/0.08)*(Jmitin-Jmitout); %Camit    
 

 

%% Solve nodel once parameters are known in the frequency domain  

%%-------------------------------------------------------------------%% 

load Amplitude25 
Freq=A{1,1}'; TimeDelay=A{1,3}'; Amp=A{1,2}'; 
Gain=Amp; Phase=TimeDelay; Period=1./Freq; 

 
for i=1:7 
    Gain(i,:)=Amp(i,:)./Amp(1,:); 
    Gain(i,:)=20*log(Gain(i,:)); 
end 

  
for i=1:7 
    Phase(i,:)=(TimeDelay(i,:)-TimeDelay(1,:)); 
end 
 

Gain=[Gain(2,:);Gain(3,:); Gain(4,:);Gain(6,:);Gain(7,:)]; 
Phase=[Phase(2,:);Phase(3,:); Phase(4,:);Phase(6,:);Phase(7,:)]; 
 

for i=1:5 
   subplot(5,2,2*i-1) 
   hold on, semilogx(Freq, Gain(i,:),'g*') 
   subplot(5,2,2*i) 
   hold on, semilogx(Freq, -0.36*Phase(i,:),'g*') 
   ylim([-180 180]) 
end 

 
% Freq2=logspace(-4,-1,100); Freq2=Freq2(1,1:85); 
% Gain2=zeros(6,length(Freq2)); 
% Gain2(3,:)=interp1(Freq,Gain(3,:)',Freq2); 
% Phase2=zeros(6,length(Freq2));  
% Phase2(3,:)=interp1(Freq,Phase(3,:)',Freq2); 
% A2=zeros(1,length(Freq2)); 
% A2=interp1(Freq,(Amp(3,:)./Amp(6,:))',Freq2); 
%  
% % num=0.001; den=[200 1];  
% % sys=tf(num,den); grid;  
% % hold on, bodeplot(sys) 
% error=[]; 
% for tau=90:0.05:100 
% K=0.05; tau=94.5 
% figure,  
% subplot(2,1,1) 
%    hold on, semilogx(Freq2, Gain2(3,:),'r*')  
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%    hold on, semilogx(Freq2,+20*log(K)-20*log((1+(Freq2.^2*tau^2)))) 
% %    hold on, semilogx(Freq, Gain(3,:),'b*')  
%    subplot(2,1,2) 
%    hold on, semilogx(Freq2, -0.36*Phase2(3,:),'b*') 
%    hold on, semilogx(Freq2,-360/(2*pi)*atan(Freq2*tau)) 
% S=0; 
%    for i=1:length(Freq2) 
%     S=S+((+20*log(K)-20*log((1+(Freq2.^2*tau^2)))-

Gain2(3,:))/Gain2(3,:))^2+... 
%         ((-360/(2*pi)*atan(Freq2*tau)+0.36*Phase2(3,:))/(-

0.36*Phase2(3,:)))^2; 
%     end 
% error=[error S] 
% end 
% plot(Freq,Phase(3,:)) 
% figure,  
% for i=1:5 
% subplot(5,1,i) 
% semilogx(Freq, Phase(i,:),'*') 
% end 
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APPENDIX H 

MATLAB SCRIPT SINGLE CELL ANALYSIS 

 

 

 

clear all 
%----------------------------------------------------------------------

----   
% Load Images 

  
N = 423; 
Im = cell(1,N); 
FNAMEFMT = 'switch5min_50umh2o2001t00%d.tif'; 
FNAMEFMT2 = 'switch5min_50umh2o2001t0%d.tif'; 
FNAMEFMT3 = 'switch5min_50umh2o2001t%d.tif'; 
for i=1:9 
  Im{i} = imread(sprintf(FNAMEFMT,i)); 
end 
for i=10:99 
  Im{i} = imread(sprintf(FNAMEFMT2,i)); 
  i 
end 
for i=100:N 
  Im{i} = imread(sprintf(FNAMEFMT3,i)); 
  i 
end 

  
for j=1:N 
    Im{j}=Im{j}(:,:,2); 
end 

  
clear FNAMEFMT FNAMEFMT2 FNAMEFMT3 
save Im 
% clear all 
%----------------------------------------------------------------------

---- 

 
% clear all 
%------------------------------------------------------------------ 

  
%% Create the composite image to get the background and the individual 

cells from. 

  
load Im 
N = 423; 

  
% Create Packs of pics for each semi period 
Npack=20; %nb of pics per semi period 
Nstack=21; %nb of semi periods (4+10+8) 
for i=1:Nstack 
Stack{i}=Im(Npack*(i-1)+1:Npack*i); 
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end 

  
% For each stack of pics, create a composite of all the pics 
Y=cell(1,Nstack); 
for j=1:Nstack 
    Y{j}=uint8(zeros(1040,1392)); 
    j 
    for i=1:Npack 
        Y{j}=imadd((1./Npack)*Stack{1,j}{1,i},Y{j}); 
%         figure, imshow(Y{j}) 
    end 
end 
for i=1:Nstack 
figure, imshow(Y{i}) 
end 

  
%composite of all 
N2=239; %number of pics before calibration 
Ytotal=uint8(zeros(1040,1392)); 
for j=1:N2 
    Ytotal=imadd((4/N2)*Im{j},Ytotal); 
end 
imshow(Ytotal) 
clear Y 
save Step2 

 
% load Step2 

  
%% Crop the picture from the best composite 

  
% Crop a few backgrounds and get the means 
N2=239; 
IM=Ytotal; 
Nbackgrounds=4; 
for i=1:Nbackgrounds 
[X,Y,Icrop,rect] = imcrop(IM); 
XX{i}=X; YY{i}=Y; 
IIcrop{i}=Icrop; 
Rect{i}=rect; 
end 

  
% apply the backgrounds to the various pics 

  
for j=1:N 
    for i=1:Nbackgrounds 
        Imcropbckground{j,i}=imcrop(Im{j},Rect{i}); 
    end 
end 

  
Cbckgd=zeros(Nbackgrounds,N); 
C=zeros(Nbackgrounds,N2); 
for j=1:N 
    for i=1:Nbackgrounds 
        Abckgd=mean(Imcropbckground{j,i},1); 
        Bbckgd=mean(Abckgd,2); 
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        Cbckgd(i,j)=Bbckgd; 
    end 
end 
BCKGD=mean(Cbckgd); 
plot(BCKGD) 
BCKGDoriginal=BCKGD; 

  
%% Get the calibration data and the Input curve 
Calib=BCKGD(N2-1:N2+130); 
plot(Calib) 
hold on, plot(1:length(Calib),mean(Calib),'r') 
hold on, plot(1:length(Calib),mean(Calib)+1*std(Calib),'r-') 
hold on, plot(1:length(Calib),mean(Calib)-1*std(Calib),'r-') 
OutlierIndex=[]; 
for i=1:length(Calib) 
    if Calib(i)>mean(Calib)+1*std(Calib)|Calib(i)<mean(Calib)-

1*std(Calib) 
        OutlierIndex=[OutlierIndex i]; 
    end 
end 
for i=3:length(OutlierIndex) 
    Calib(OutlierIndex(i))=0.5*(Calib(OutlierIndex(i)-

2)+Calib(OutlierIndex(i)-1)); 
end 

  
BCKGD=[BCKGD(1:N2-2) Calib BCKGD(N2+131:end)]; 

  
figure, plot(1:N,BCKGD) 

  
T = 15;                       % Sample time 
Fs = 1/T;                     % Sampling frequency 
L = length(Calib);            % Length of signal 
t = (0:L-1)*T;                % Time vector 
y=Calib; 
figure,  
plot(t,y) 
title('Signal'); xlabel('time (seconds)') 

  
Calib1=Calib; Calibmean=mean(Calib1); 
ff = fittype('sin1'); %a*sin(b*x+c) 
t1=15*(N2-1:N2+130) 
[c2,gof2] = fit(t1',(Calib1-Calibmean)',ff); 

  
%% input the function  
Tf=2*pi/c2.b1; 
INPUT=c2.a1*sin(((2*pi/Tf)*(15*(1:N)))+c2.c1)+Calibmean; 

  
figure, plot(15*(1:N), INPUT) 
hold on, plot(15*(1:N),BCKGD,'r') 

  
xlswrite('25uMH2O2',[Cbckgd' BCKGD'],'background') 
xlswrite('25uMH2O2',INPUT','predicted input') 

  
clear Abckgd Bbckgd C Calib Calib1 Calibmean Cbckgd Fs IIcrop... 
    Icrop Imcropbckground L Nbackgounds Npack Nstack OutlierIndex... 
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    Rect Stack X XX Y YY c2 ff gof2 i j rect y t t1 
save Step3 

 
% load Step3 
% imshow(imadjust(IM)) 
%---------------------------------------------------------------- 
%% Crop a few cells and get the traces 
Ncell=252; 
for i=1:Ncell 
[X,Y,Icrop,rect] = imcrop(imadjust(IM)); 
XX{i}=X; YY{i}=Y; 
IIcrop{i}=Icrop; Rect{i}=rect; 
end 

  
% apply the ROI to the various pics 
for j=1:N 
    for i=1:Ncell 
        Imcrop{j,i}=imcrop(Im{j},Rect{i}); 
    end 
end 

  
% Get MFI for each ROI 
C=zeros(Ncell,N); 
for j=1:N 
    for i=1:Ncell 
        A=mean(Imcrop{j,i},1); 
        B=mean(A,2); C(i,j)=B; 
    end 
end 
C=C(:,1:N2); 
figure, imagesc(C) 

  
% Substract Background 
temp=xlsread('25uMH2O2','background'); 
BCKGD=temp(1:N2,4); 
clear temp 

  
C2=zeros(Ncell,N2); 
for i=1:Ncell 
C2(i,:)=C(i,:)-BCKGD'; 
end 
figure, imagesc(C2(:,1:N2)) 
xlswrite('50uMH2O2',C','celldata') 
xlswrite('50uMH2O2',C2','celldatanormalized') 
clear A B IIcrop Icrop Imcrop Nbackgrounds Rect X XX Y YY i j rect 
save Step4 
clear all 

  
N2=239; 
Ncell=252; 
C=xlsread('50uMH2O2','celldata'); C=C'; 
C2=xlsread('50uMH2O2','celldatanormalized'); C2=C2'; 
A=xlsread('50uMH2O2','background');  
INPUT=xlsread('50uMH2O2','predicted input'); INPUT=INPUT'; 
BCKGD=A(1:N2,4); 
plot(BCKGD) 



238 

 

hold on, plot(1:length(BCKGD),mean(BCKGD),'r') 
hold on, plot(1:length(BCKGD),mean(BCKGD)+0.5*std(BCKGD),'r-') 
hold on, plot(1:length(BCKGD),mean(BCKGD)-0.5*std(BCKGD),'r-') 
OutlierIndex=[]; 
for i=3:length(BCKGD) 
    if (BCKGD(i)>mean(BCKGD)+0.5*std(BCKGD))|(BCKGD(i)<mean(BCKGD)-

0.5*std(BCKGD)) 
        OutlierIndex=[OutlierIndex i]; 
    end 
end 
for i=1:length(OutlierIndex) 
    BCKGD(OutlierIndex(i))=0.5*(BCKGD(OutlierIndex(i)-

2)+BCKGD(OutlierIndex(i)-1)); 
end 
hold on, plot(BCKGD,'r') 
subplot(3,1,1) 
imagesc(C2,[-4 12]) 
C3=C2; 
for i=1:length(OutlierIndex) 
    C3(:,OutlierIndex(i))=0.5*(C3(:,OutlierIndex(i)-

2)+C3(:,OutlierIndex(i)-1)); 
end 
subplot(3,1,2) 
imagesc(C3,[-5 15]) 

  
%% additional outliers at positions: 
OutlierIndex2=[21 47 78 145 212 223]; 
for i=1:length(OutlierIndex2) 
    C3(:,OutlierIndex2(i))=0.5*(C3(:,OutlierIndex2(i)-

1)+C3(:,OutlierIndex2(i)+1)); 
end 
subplot(3,1,3) 
imagesc(C3,[-5 15]) 
C3orig=C3; 

  
C3origmean=mean(C3orig); 
ff = fittype('exp1'); %a*exp(b*x) 
t1=1*(1:N2); 
[c2,gof2] = fit(t1',C3origmean',ff); 

  
% input the function  
TREND=c2.a*exp(c2.b*t1); 

  
figure, plot(1:N2, TREND) 
hold on, plot(1:N2,C3origmean,'r') 
hold on, plot(1:N2,C3origmean-TREND,'g') 
%-------------------------------------------------------------------- 
C4=C3; 
for i=1:Ncell 
    C4(i,:)=C3(i,:)-TREND+ones(1,length(TREND)); 
end 

  
CC4=[]; %% to have an idea of how to limit the colorbar 
for i=1:Ncell 
CC4=[CC4 C4(i,:)]; 
end 
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figure, hist(CC4,1000) 
figure, imagesc(C4,[-6 10]) 

  

  
%-------------------------------------------------------------------- 
AverageBeforeStim=mean(C4(:,5:40),2); 
C5=C4; 
for i=1:Ncell 
C5(i,:)=sgolayfilt(C4(i,:),3,9); %filter/smoothen 
% figure, plot(C3(i,1:N2)) 
% hold on, plot(C2(i,1:N2),'r') 
% C5(i,:)=C5(i,:)./AverageBeforeStim(i); 
end 

  
figure, imagesc(C5,[-3 8]) 
colorbar('EastOutside') 
xlim([0 N2]); 
ax1=gca; 
ax2 = axes('Position',get(ax1,'Position'),... 
'YAxisLocation','right',... 
'XAxisLocation','top',... 
'Color','none','YColor','k'); 
hold on, line(1:N2,mean(C5),'Color','r','LineWidth',3.5,'Parent',ax2) 
xlim([0 N2]); ylim([-0.5 4.5]); 
hold on, line(1:N2,0.05*(INPUT(1:N2)-

mean(INPUT))+mean(C5(80:end)),'Color','k','LineWidth',3.5,'Parent',ax2) 
xlim([0 N2]); 
title('Cell Response to 10min period 50uM H2O2 ') 
cmapuv=colormap; 

  
%% -------------------------------------------- 

  
CC5=[]; %% to have an idea of how to limit the colorbar 
for i=1:Ncell 
CC5=[CC5 C5(i,:)]; 
end 
figure, hist(CC5,1000) 
figure, imagesc(C5,[-8 12]) 

  
% normalize each cell trace between 0 and 1 
C4=C3; 
l=20; 
subplot(2,4,1) 
for i=1:l 
    hold on, plot(C4(i,:)) 
end 
subplot(2,4,2), imagesc(C4(1:l,:)) 
title('Only Normalized to buffer levels') 

 
C4mc=C4; C4uv=C4; C4minmaxnorm=C4; 
for i=1:Ncell 
    C4mc(i,:)=C4(i,:)-mean(C4(i,:))*ones(1,N2); 
%     C4uv(i,:)=C4mc(i,:)./std(C4mc(i,:)); 
    C4uv(i,:)=C4mc(i,:); 
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    C4minmaxnorm(i,:)=(C4(i,:)-min(C4(i,:)))./max(C4(i,:)-

min(C4(i,:))); 
end 
subplot(2,4,3) 
for i=1:l 
    hold on, plot(C4mc(i,:)) 
end 
subplot(2,4,4), imagesc(C4mc(1:l,:)) 
title('MeanCentered') 

 
subplot(2,4,5) 
for i=1:l 
    hold on, plot(C4uv(i,:)) 
end 
subplot(2,4,6), imagesc(C4uv(1:l,:)) 
title('MeanCentered and UV') 

 
subplot(2,4,7)  
for i=1:l 
    hold on, plot(C4minmaxnorm(i,:)) 
end 
subplot(2,4,8), imagesc(C4minmaxnorm(1:l,:)) 
title('MinMax') 

  
CC4uv=[]; %% to have an idea of how to limit the colorbar 
for i=1:Ncell 
CC4uv=[CC4uv C4uv(i,:)]; 
end 
figure, hist(CC4uv,1000) 

  
figure, imagesc(C4uv,[-5 5]) 
colorbar('EastOutside') 
xlim([0 N2]); 
ax1=gca; 
ax2 = axes('Position',get(ax1,'Position'),... 
'YAxisLocation','right',... 
'XAxisLocation','top',... 
'Color','none','YColor','k'); 
hold on, line(1:N2,mean(C4uv),'Color','r','LineWidth',3.5,'Parent',ax2) 
xlim([0 N2]); ylim([-0.5 2]); 
hold on, line(1:N2,0.05*(INPUT(1:N2)-

mean(INPUT))+mean(C4uv(80:end)),'Color','k','LineWidth',3.5,'Parent',ax

2) 
xlim([0 N2]); 
title('UV and MeanCentered') 
cmapuv=colormap; 

  
figure, imagesc(C4minmaxnorm) 
colorbar('EastOutside') 
xlim([0 N2]); 
ax1=gca; 
ax2 = axes('Position',get(ax1,'Position'),... 
'YAxisLocation','right',... 
'XAxisLocation','top',... 
'Color','none','YColor','k'); 
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hold on, 

line(1*(1:N2),mean(C4minmaxnorm(:,1:N2)),'Color','r','LineWidth',3.5,'P

arent',ax2) 
xlim([0 N2]); 
hold on, line(1:N2,0.05*(INPUT(1:N2)-

mean(INPUT))+mean(mean(C4minmaxnorm(80:end))),'Color','k','LineWidth',3

.5,'Parent',ax2) 
xlim([0 N2]); 
title('MinMax') 
cmapminmax=colormap; 

  
Cluster1=clustergram(C4minmaxnorm,'Cluster',1,... 
    'Standardize',3,... 
    'DisplayRange',1,'Symmetric',false,'Colormap',cmapminmax) 
addTitle(Cluster1,'MinMax Clustergram') 

 
Cluster2=clustergram(C4uv,'Cluster',1,... 
    'Standardize',3,... 
    'DisplayRange',3,'Symmetric',false,'Colormap',cmapuv) 
addTitle(Cluster2,'UV MC Clustergram') 

  
%% manually oscillating cells 
ID=[2 18 23 31 34 44 47 122 148]; 

  
for i=1:length(ID) 
subplot (3,3,i) 
plot(0.2*(INPUT(1:N2)-

mean(INPUT))+mean(C4minmaxnorm(80:end)),'Color','k','LineWidth',3.5) 
hold on, plot(C4minmaxnorm(ID(i),:),'r','Linewidth',3) 
xlim([0 N2]) 
end 

  
xlswrite('50uMH2O2',C4uv','celldatanorm_smoothed_uvmc') 
xlswrite('50uMH2O2',C4minmaxnorm','celldatanorm_smoothed_minmax') 
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