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SUMMARY 

 

Understanding microbial evolution lies at the heart of microbiology and 

environmental sciences. Numerous studies have been dedicated to elucidating the 

underlying mechanisms that create microbial genetic diversity and adaptation. However, 

due to technical limitations such as the high level of uncultured cells in almost every 

natural habitat, most of current knowledge is primarily based on axenic cultures grown 

under laboratory conditions, which typically do not simulate well the natural 

environment. How well the knowledge from isolates translates to in-situ processes and 

natural microbial communities remains essentially speculative. 

The recent development of culture-independent genomic techniques (aka 

metagenomics) provides possibilities to bypass some of these limitations and provide 

new insights into microbial evolution in-situ. To date, most of metagenomic studies have 

been focused on a few reduced-diversity model communities, e.g., acid mine drainage. 

Highly complex communities such as those of soil and sediment habitats remain 

comparatively less understood. Furthermore, a great power of metagenomics, which has 

not been fully capitalized yet, is the ability to follow the evolution of natural microbial 

communities over time and environmental perturbations, i.e., times-series metagenomics. 

Although the recent developments in DNA sequencing technologies have enabled 

(inexpensive) time-series studies, the bioinformatics approaches to analyze the resulting 

data have clearly fallen behind. Taken together, to scale up metagenomics for complex 

community studies, three major challenges remain: 1) the difficulty to process and 

analyze massive short read sequencing data, often at the terabyte level; 2) the difficulty to 



 xvii 

effectively assemble genomes from complex metagenomes; and 3) the lack of methods 

for tracking genotypes and mutational events such as horizontal gene transfer (HGT) 

through time. Therefore, developing efficient bioinformatics approaches to address these 

challenges represents an important and timely issue.  

This thesis aimed to develop novel bioinformatics pipelines and algorithms for 

high performance computing, and, subsequently, apply these tools to natural microbial 

communities to generate quantitative insights into the relative importance of the 

molecular mechanisms creating or maintaining microbial diversity. The tools are not 

specific to a particular habitat or group of organisms and thus, can be broadly used to 

advance our understanding of microbial evolution in different settings. 

In particular, the comparative whole-genome analysis of 24 Escherichia isolates 

form various habitats, including human and non-human associated habitats such as 

freshwater ecosystems and beaches, showed that organisms with more similar ecologies 

tend to exchange more genes, which has important implications for the prokaryotic 

species concept. To more directly test these findings from isolates and quantify the 

patterns of genetic exchange among co-occurring populations, three years of time-series 

metagenomics data from planktonic samples from Lake Lanier (Atlanta, GA) were 

analyzed. For this, it was first important to develop bioinformatics algorithms to robustly 

assemble population genomes from complex community metagenomes, identify the 

phylogenetic affiliation of assembled genome and contig sequences, and detect horizontal 

gene transfer among these sequences. Using these novel algorithms, in situ bacterial 

lineage evolution was quantitatively assessed, especially with respect to whether or not 

ecologically distinct lineages evolve according to the recently proposed fragmented 



 xviii 

speciation model (Retchless and Lawrence, Science 2008). Evidence in support of this 

model was rarely observed. Instead, it appeared that rampant HGT disseminated 

ecologically important genes within the population, maintaining intra-population 

diversity.  

By expanding the previous approaches to include methods to assess differential 

gene abundance and selection pressure between samples, it was possible to quantify how 

soil microbial communities respond to a decade of warming by 2 0C, which simulated the 

predicted effects of climate change. It was found that the heated communities showed 

significant shifts in composition and predicted metabolism, reflecting the release of 

additional soil carbon compared to the unheated (control) communities, and these shifts 

were community-wide as opposed to being attributable to a few taxa. These findings 

indicated that the microbial communities of temperate grassland soils play important 

roles in mediating the feedback responses to climate change. 

Collectively, the findings presented here advance our understanding of the modes 

and tempo of microbial community adaptation to environmental perturbations and have 

important implications for better modeling the microbial diversity on the planet. The 

bioinformatics algorithms and approaches developed as part of this thesis are expected to 

facilitate future genomic and metagenomic studies across the fields of microbiology, 

ecology, evolution and engineering. 
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CHAPTER 1 

An introduction to the mechanisms of microbial genome evolution and the 

limitations in quantifying their relative importance under natural settings 
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INTRODUCTION 

Microbes represent convenient systems to understand evolution due to their short 

generation time and advantages related to (easy) manipulation and handling under 

laboratory settings (1). Numerous microbial studies have been conducted to better 

understand the molecular mechanisms underlying evolution and their impact on 

adaptation (2-4). It is now clear that the evolution of microbial genomes is realized by 

different types of mutational events such as spontaneous single nucleotide substitutions 

(5, 6), gene duplication, loss, gain, and innovation (7-9), synteny change (10-12), and 

horizontal gene transfer (HGT; import of genetic material from non-parents) (13-16). 

These mechanisms frequently act in parallel and while the final outcome and the speed of 

evolution is controlled by several essential parameters, such as mutation rate, effective 

population size, HGT rate, genome size, etc (17-22). The process of evolution is also 

deeply intertwined with the ecology/environment (e.g., selection pressure) (11, 23-25) 

and population/community structure (26, 27). However, most of the studies to date were 

limited to pure cultures or mixtures of a few species under laboratory conditions that 

rarely simulate well natural settings (4, 16, 17, 21, 28, 29). For instance, microbes rarely 

live in isolation in nature, from the deep ocean hydrothermal vents (30) to the human gut 

(31, 32), and usually a natural microbial community harbors hundreds, if not thousands, 

of species (33). It is likely that the lessons learned from laboratory incubations do not 

apply to natural conditions and within highly complex microbial assemblages (34). For 

instance, Weinberg et al found that in marine communities, large non-coding RNAs are 

abundant and carry out complex biochemical functions, which is rarely observed under 

laboratory conditions (35). Therefore, it is essential to directly assess the natural 



3

processes in order to obtain a more realistic and accurate understanding of microbial 

evolution.  

The advent of whole genome shotgun (WGS) metagenomics, which do not 

require cultivation in the laboratory (i.e., culture-independent), provides the means to 

sidestep several of the previous limitations (29), and has already revolutionized our 

knowledge of microbial community diversity, function and dynamics (36, 37). Several 

metagenomics studies have attempted to assess microbial evolution under natural settings 

using metagenomics and demonstrated that metagenomics is a powerful tool for such 

purposes (38-40). For example, Allen et al compared an environmental population with 

its corresponding isolate and identified genes that under positive selection in situ. Denef 

et al directly assessed the in-situ mutation rate for the first time ever for a natural 

population (41). 

However, the communities studied to date were from extreme environments and 

their complexity was several orders of magnitudes lower than those in the major natural 

habitats (42) such as oceans, freshwater lakes, and soil. To study the latter communities, a 

large volume of sequence data is necessary, in excess of 10-20 Gbp per sample for 

adequate coverage. The recent advancement in sequencing technologies can now deliver 

tera-bytes of DNA sequences with a relatively low cost (a few thousand dollars). 

However, the volume and type of data, e.g., short, error prone sequencing reads, has 

created several new technical challenges. For instance, a typical Illumina HiSeq-2000 

single lane yields ~50 Gbp, which makes analysis computationally expensive or even 

prohibitive for personal computers, even small computer clusters (43). It is therefore 

critical to design methods that can effectively handle and analyze metagenomic data. 
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Addressing these challenges would very likely provide unique opportunities to study in 

situ community processes and deepen our understanding of microbial evolution and 

ecology. 

This chapter represents a literature review of the current understanding of 

microbial evolution and the remaining challenges and knowledge gaps, along with an 

introduction into the relevant state-of-the-art bioinformatics techniques. The chapter 

concludes with the outline of this dissertation and the specific scientific questions as well 

as the computational challenges that I specifically sought to address with my research. 
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BACKGROUND 

Next generation sequencing (NGS) and metagenomics 

With the release of the first bacterial genome (Haemophilus influenzae), 

sequenced by the traditional Sanger sequencer in 1995 (44), microbiology entered its 

genomic era. At that time, sequencing an average bacterial genome usually cost at least a 

couple hundred thousand U.S. dollars and a significant amount of time. The advent of 

next-generation sequencing (NGS) technologies around 2005 substantially changed the 

outlook of microbial genomics. The intense competition in the NGS market, driven 

primarily by human genetics and cancer research (e.g., the completion of the human 

genome), resulted in rapid drop in cost per base and fast increase in throughput. For 

example, the growth of NGS throughput has outpaced the Moore’s law; and it is expected 

that in less than five years, a human genome would be completed for $1,000 in the 

commercial market, which could translate to $1 bacteria genomes. By providing low cost 

and ease of use, NGS has clearly revolutionized several aspects of microbiology. 

In general, NGS platforms fall into two categories, template amplification-based 

and single-molecule sequencing (45). The template amplification based methods include 

some early stage technologies such as Roche 454 pyrosequencing. They usually require 

cloning and immobilization of a prepared DNA library, and have been widely used in 

profiling universally conserved housekeeping genes (e.g., those genes used in multi-loci 

genotyping) such as the 16S rRNA gene as well as lower-throughput metagenomes. The 

other category does not require library preparation; instead, it employs an initial DNA 

fragmentation step. In practice, the fragmentation step resembles a random sampling 
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across the length of the (fragmented) target DNA sequence, and this feature is critical for 

several types of analyses, including those presented in this thesis. The fragmented DNA 

molecules are then sequenced, often in pair-end manner, and the resulting reads are 

usually short (e.g., 75-150 bp for Illumina platforms) but massive in numbers, e.g., a run 

of Illumina HiSeq-2000 typically generates 200-500 Gbp of sequence data. 

Previous studies have shown that the great majority (>99%) of the 

microorganisms in the natural environment are uncultured and thus, cannot be efficiently 

studied using conventional isolate-based approaches (46). Due to this limitation, many 

critical questions in microbiology have not been addressed. For instance, a robust 

understanding of the rates of genetic exchange among distinct bacterial species under 

natural conditions and the influence of the ecological settings on the rates remain elusive. 

It also not clear how the enormous bacterial species diversity is maintained under natural 

settings in light of high rates of horizontal gene transfer (HGT). For instance, 

introduction of ecologically advantageous genes into a recipient population via HGT is 

thought to result in two possible outcomes: either the individuals with these genes 

outcompete the remaining individuals of the population, decreasing intra-population 

diversity [population sweeps (47)]; or these genes are sweeping through the population 

via rampant HGT between the individuals of the population, maintaining intra-population 

diversity (sexual speciation). Due to the complexity of the ecological niche of a 

population and the possibility that several HGTs could occur simultaneously, the positive 

and negative advantages of different HGT events can also cancel each other out, 

preventing populations sweeps [balancing selection; (48, 49)]. However, these theories 

primarily originated from experiments with isolates in the laboratory; thus, it is 
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imperative to obtain the necessary experimental data from natural population to test the 

theories. Based on the capabilities provided by NGS technologies, metagenomics 

provides now the means to begin to collect the appropriate data to better understand 

population emergence and evolution (50). By directly sequencing the microbial genomes 

from the environment, bypassing isolation in the laboratory, metagenomics can provide 

new insights into (natural) population diversity, functions and dynamics.. 

Metagenomics started with the efforts to profile microbial communities by 

sequencing 16S rRNA gene amplicons, initially proposed by Pace and colleagues (51). 

However, more strictly speaking, metagenomics should be defined as the WGS-based 

sequencing of whole microbial communities. Although it is still debatable whether or not 

16S rRNA gene amplicon-based approaches should be considered as metagenomics 

studies, in this thesis, metagenomics will refer only to community WGS data. The first 

such project was carried out in 2002 by Breitbart et al on a marine viral community (52), 

and soon followed by several milestone studies including the Global Ocean Sampling, the 

study on acid mine drainage communities, and the Human Microbiome Project (53-55). 

Several important discoveries have been made by metagenomics studies to date. Surveys 

of the oceanic communities showed that natural populations are not clonal but encompass 

higher intra-population diversity that previously anticipated (56, 57). Hehemann et al 

found that lateral transfer of polysaccharides-digesting enzymes from marine bacteria 

into gut microbiota of Japanese populations played an important role in improving 

nutrient absorption from seaweeds. Weinberg et al found that a few exceptionally large 

complex non-coding RNAs are abundant in marine bacterial communities, encoding yet-
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to-be-determined functions that are highly likely to be responsible for survival in the 

marine environment (35). 

For all metagenomics studies, bioinformatics represents an indispensible 

component of the analysis part. The most challenging bioinformatics task is probably to 

assemble individual reads into longer contigs or even draft genomes from complex 

community metagenomes. For longer-read sequencing (e.g., Roche 454 FLX, PacBio) 

overlap-based assemblers are generally used, which is also facilitated by the smaller 

throughput (compared to short-read sequencing) and thus lower requirement for 

computational resources. For example, Newbler (58) is generally used for Roche 454 

reads, and assembling a typical metagenomic sample of moderate species complexity 

usually requires about 5Gbp of RAM and a few hours of running time. Other assembly 

software in this genre include Celera, CABOG, etc (59). However, for short reads such as 

Illumina GA II and AB SOLiD, De Bruijn graph-based algorithms are more suitable 

because overlap-based algorithms are not efficient with short reads and the large amount 

of data produced by the latter sequencers, typically a couple orders of magnitude more 

data compared to Roche 454 (60). ALLPATHS (61) and Velvet (62), and their 

derivatives [e.g., metaVelvet, Velvet-SC, meta-IDBA, ALLPATHS-LG (63-66)] 

represent the current state-of-the-art implementations for short read assembly. Aside from 

generalized assembling protocols that aim at resolving the assembly for the whole 

community, specialized approaches that focus on specific genes have also been 

developed recently. For example, EMIRGE (67) was designed to reconstruct 16S rRNA 

gene sequences from short read metagenomes. It is important to note, however, that some 

challenges cannot probably be resolved bioinformatically without further advancements 
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in sequencing technologies. For example, the complications introduced by genomic 

variation regions and repeats could not be explicitly resolved unless longer reads (longer 

than the repeat region for example) become available. 

With the progress in bioinformatics approaches, direct recovery of genomes from 

metagenomes has become a possibility, which provides new means for more in-depth 

investigations. For example, Iverson et al demonstrated the successful recovery of the 

genome of a previously unknown, abundant euryarchaean directly from two marine 

datasets, sequenced by the SOLiD platform, and clarified the origin of the 

proteorhodopsin (68). Denef et al recovered the dominant chemolithoautotrophic 

Leptospirillum group residing in an acid mine drainage using a time series metagenomic 

dataset spanning a period of ten years, estimated in situ mutation rate, and reconstructed 

the ancestral genome (41). Wrighton et al reconstructed 49 partial or near-completed 

genomes from a temporal collection of samples from an acetate-simulated underground 

aquifer community and found unique physiological characteristics for three abundant yet 

uncultivated anaerobic bacterial populations (e.g., a hybrid RuBisCo for fermentation). 

Based on the previous examples, it is strongly anticipated that both time- and spatial-

gradient collections of datasets from various habitats would become available in the 

immediate future. Such datasets can be used to tackle more complicated questions such as 

what is the role of HGT in lineage evolution and what is the relative importance of the 

different HGT mechanisms (e.g., viral- vs. conjugative pilus mediated) under natural 

settings and over periods of time that matter for human activities (e.g., days or months). 

However, the bioinformatic approaches that are necessary for these types of metagenomic 

data and analyses have not been developed yet, and therefore are in urgent need.  
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In situ bacterial lineage evolution 

To better understand how bacterial lineages emerge, are maintained and evolve 

represents one of the most pressing questions in microbiology. A quantitative 

understanding of these questions will also lead to a better definition of bacterial species, a 

highly controversial yet, of great practical importance, issue for microbiology (69). 

Historically, isolate-based studies were employed to reveal the underlying molecular 

mechanisms of population evolution. After decades of research, it is now clear that the 

mechanisms include point mutations, intra-genome homologous recombination, and 

horizontal gene transfer and the strength of selection or neutral drift determine the 

outcome for the population. What is lacking is a complete understanding of how 

individual populations (or species) maintain their homogeneity and distinctiveness via the 

interplay of these mechanisms (70). For example, neutral drift and geographical or 

ecological barriers can diversify a population and drive the descendants into different 

lineages (candidates of novel species). On the other hand, homologous recombination or 

selective sweeps events purge population diversity and keep the individuals together as a 

distinct population (forces of population cohesion). HGT can potentially both 

homogenize and diversify a population (69). Researchers assessed the impacts of 

homologous recombination and horizontal gene transfer on population differentiation. 

Shapiro et al showed that inter-lineage gene exchanges are correlated with the relatedness 

between gene functions and ecological niches; and thus genes, instead of genomes, sweep 

through populations (11, 49). In natural settings, however, all these mechanisms are 

probably occurring simultaneously and their relative importance for bacterial genome 

evolution and adaptation is not well understood.  
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Among all the isolate-based studies, the most thoroughly investigated system is 

probably the long-term evolution study of E. coli lineages carried out in the Lenski Lab at 

Michigan State Univeristy, for more than twenty years now (translating to abuot fifty 

thousand generations) (71). By repeated daily transfers of 12 replicate E. coli populations 

into new flasks, these researchers have posed a strong selection pressure on the E. coli 

populations while, by studying frozen isolates from different time points of the 

experiment, they were able to reconstruct the mutations that occurred in the genome and 

compare these changes to the ancestor genomes. For example, Barrack et al studied the 

relationship between the rates of genomic evolution (e.g., accumulation of point 

mutations) and adaptation (e.g., reproducing rate) by complete genome sequencing of 

isolates from different time points during a 40,000-long generation period. They found 

that the genomic evolution rate was constant for the first 20,000 generation and most of 

the mutations were beneficial. However, after a frameshift mutation in the mutT gene at 

around generation 26,500, one lineage accumulated increased mutations and resulted in 

elevated whole genome mutation rate and fitness level compared to the other parallel 

lineages. This study demonstrated how mutation rate could change abruptly and affects 

the process of lineage adaptation (17). Other key issues investigated include the effect of 

co-existing lineages on the process of adaptation (72), and a functional innovation 

conferred by a mutation caused by tandem repeat (73, 74). 

Although valuable insights were obtained from these and similar studies, the E. 

coli system described above cannot account for two important mechanisms that are 

highly relevant in nature. The first mechanism is HGT. By using pure cultures, it is 

impossible to evaluate how HGT would affect the path of evolution.  The second 
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mechanism is lack of interactions with co-occurring (distinct) species. The existence of 

other species may alter the evolutionary path of a lineage significantly (e.g., by altering 

the strength of selection). Therefore, the lessons learned from pure cultures may not 

translate well to natural populations and studying the latter populations may provide new, 

and more practical, insights. 

Toward this direction, a few studies appeared recently that targeted several 

housekeeping genes that are easy to amplify and compare. For example, by comparing 

the sequences of four housekeeping genes (hsp60, mdh, adk, and pgi), Hunt et al 

discussed the spatial and temporal resource partitioning among closely related, sympatric 

strains of Vibrionaceae retrieved from coastal bacterioplanktonic communities (75). They 

found that ecological specialization and differentiation within the same population might 

be a driving force or trigger speciation. Cordero et al further discussed the relationship 

between ecologically specialized Vibrionaceae populations and sensitivity to antibiotics 

(76). These authors found that groups with similar habitat associations tend to act as 

cohesive units with respect to resistance as well as production of antibiotics. These 

studies show that overlapping ecology (e.g., sympatric species) plays an important role in 

the evolution of bacterial lineages. 

With the aid of high-throughput sequencing, it is now possible to begin genome-

centric as opposed to gene-centric in these previous studies investigations of in situ 

microbial evolution using. A series of comparative metagenomic studies of ecologically 

distinct cyanobacterial Prochlorococcus populations uncovered several population-

specific adaptations mediated by shifts in the relative abundance of genes within the 

population. For example, due to different nitrogen availability with depth in the oceans, 
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distinct, depth-stratified Prochlorococcus ecotypes (subgroups of a species that are 

adapted to a particular set of environmental conditions) have arisen and are easily 

discernible at the sequence level (77). Along the same line, Coleman and Chisholm 

reported that the relative abundance of phosphate-related gene differ between 

Prochlorococcus populations in the Pacific and Atlantic Oceans, consistent with stronger 

phosphorus limitation in the Atlantic Ocean (78).  

Most, if not all studies to date, have focused on single lineages and intra-species 

diversity patterns, while in nature, many species often co-occur in the same inhabit. How 

to investigate natural populations within complex communities remains technically 

challenging however. 

 

Horizontal gene transfer and its role in bacterial evolution 

Horizontal gene transfer (HGT) represents a unique aspect of microbial evolution 

compared to higher eukaryotes and, as mentioned aboce, it can both diversify and 

homogenize a population, depending on the specific details. Various HGT mechanisms 

have been elucidated in the laboratory over the past few decades. The known mechanisms 

include transformation (naked DNA uptake from the environment), conjugation 

(intercellular DNA transfer mediated by conjugative pilli), transduction (phage-mediated 

DNA integration), gene transfer agents (phage-like DNA-vehicles), extracellular 

membrane vesicles (MVs; DNA-containing vesicles that could fuse into the cellular 

membrane of another species), and the more recently discovered inter-species nanotubes 

(DNA transfers between neighboring cells via tubular protrusions) (79). The factors that 
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determine HGT rates in-situ include the selection pressure on the gene transferred, the 

phylogenetic (sequence) and the ecological (physical) relatedness between the donor and 

the recipient, and the function of the transferred gene (79). What is missing is a 

quantitative understanding of the relative importance of these mechanisms and their 

cumulative impact on natural populations. 

Substantial efforts have been made to evaluate the impacts of the previous factors. 

The rate of gene acquisition was estimated by Babic et al by visualizing conjugation 

events of a fluorescence gene in E. coli (80). These authors later carried out a similar 

experiment in B. subtilis to measure the dissemination of mobile elements (integrative 

and conjugative transposons?) within a bacterial colony (81). It was found that stochastic 

properties in the evolutionary history of a lineage could greatly impact the outcome of 

HGT and the likelihood of gene fixation. Further, it has been estimated that 18% of the 

total genes in E. coli were horizontally acquired after its split with Salmonella (estimated 

to have occurred about 100,000 years ago) and overall about 75% of the whole genome 

had an alien origin (82). Nonetheless, the E. coli genome size has probably remained 

relatively stable over this period. Therefore, equilibrium between gene acquisition and 

gene loss has been proposed. The high rate of HGT was further corroborated by the 

uneven distribution of age among the majority of genes present in the E. coli genome (82). 

The impact of ecology and phylogeny on the rates of HGT are complicated, and a 

variety of methods have been developed to assess their relative importance. For instance, 

Popa et al developed a directed network of lateral gene transfer (dLGT) to integrate 

genomic similarity, phylogeny, and gene transfers into a graph representation (83). 

Smillie et al examined the network of recent HGT event among over two thousand 
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complete genomes of human-associated bacteria (84), and show that it is driven 

principally by ecology rather than phylogeny or geography. These authors also showed 

that, within the human microbiome, bacteria sharing a more similar ecological niche, 

evident, for instance, by simialr oxygen level tolerance or pathogenicity level, are 

significantly more likely to engage in HGT.  

All these investigations have pointed to the importance of ecology on the 

frequency of HGT. Yet, few studies so far have considered a natural community in which 

species co-occur and share the same geography. For instance, the estimated HGT rate 

using complete genomes is likely an underestimate, since the genomes used were often 

recovered from geographically and/or temporary separated samples. To test these 

findings from isolates, it is important to investigate natural communities, and track 

natural populations over time. Simmons et al investigated the HGT events among a few 

closely related (94-99.5% average nucleotide sequence identity) subpopulations of 

Leptospirillum Group II within an acid mine drainage biofilm community, and found that 

horizontally exchanged plasmid/phage-like regions frequently contained functionally 

important genes (38). However, this study could not represent the average case in nature 

for two reasons. First, the acid mine drainage community is a reduced-diversity 

community, composed of (only) a few species. Second, the community is a closed, nearly 

perturbation free system, while in nature, the majority of the communities are constantly 

facing perturbations such as seasonal and weather changes (85) and migrations of 

exogenous species. Thus, investigating HGT events within complex natural communities 

is important. 
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OUTLINE OF DISSERTATION 

The previous section underlined the importance of studying microbial evolution in 

situ as well as the need for developing bioinformatics/computational approaches that 

would enable such studies. Although substantial advancements in metagenomics have 

been made, several bottlenecks remain, especially with respect to the bioinformatics 

analysis of metagenomic data. During my Ph.D. research, I have undertaken several 

novel paths of research, and as a consequence, I was often faced with situations that no 

suitable solution was available. I developed a set of novel approaches, both conceptual 

and computational implementations, to achieve the objectives of my research. These 

novel approaches are expected to broadly benefit the scientific community. Using these 

novel approaches, several important discoveries have been made in the context of 

microbial evolution in complex communities. 

Specifically, my Ph.D. research started with the project described in chapter 2, in 

which efforts were made to investigate how ecology played a role in speciation of the 

model bacterial species, the Escherichia coli. Nine Escherichia isolates recovered from 

diverse natural environments such as freshwater lake beaches, were sequenced 

(environmental genomes) and compared to available Escherichia isolates from the gut of 

warm-blooded animals (enteric genomes). The nine strains spanned four different clades, 

filling up the phylogenetic space between E. coli and its closest known relative, E. 

fergusonii. The apparent ecological difference between the environmental and the enteric 

strains offered an opportunity to evaluate the relative importance of ecology and 

phylogeny in shaping gene content and frequency of HGT. By comparing the clade-

specific gene content and the patterns of inter-clade gene exchange, I found that ecology 
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played a more important role than phylogeny in driving the speciation of the Escherichia 

genus. The ecological barriers were not obvious previously due apparently to sampling 

and isolation biases (e.g., focus on clinical isolates). These findings have also major 

implications for the current bacterial species definition, which does not take into account 

ecological relatedness but is almost exclusively based on genetic relatedness. 

In theory, time series metagenomics should address some of the critical questions 

in bacterial evolution under natural settings such as the rate and pattern of horizontal gene 

transfer. However, I soon realized that several major technical challenges remained 

before metagenomics can be employed for these purposes. Firstly, long-read sequencing 

technologies such as Roche 454 were not able to generate sufficient sequencing depth to 

fully recover the diversity and complexity of a medium or high complexity natural 

community such as the planktonic communities of freshwater Lake Lanier (Atlanta, GA). 

One appealing solution was to use the high throughput short-read sequencing 

technologies such as Illumina, but it was not clear whether these technologies could 

assemble long contigs and draft genomes from community metagenomic data. 

Chapter 3 and 4 thoroughly assessed this issue. In chapter 3, Roche 454 and 

Illumina GA II technologies were directly compared based on the same community DNA 

sample. It was found that assemble sequences from the Illumina metagenome contained 

fewer errors and recovered more diversity compared to the Roche 454 ones, mostly due 

to the higher coverage obtained with Illumina. Roche 454 and Illumina showed strong 

agreement on the relative abundance of the sequences shared by the two assemblies. 

Using the principles learned from this work, I assessed how robustly a genome can be 

assembled from short-read community metagenomes, and investigated the relationship 



18

between sequencing coverage and the quality of the recovered genome sequences in 

chapter 4. The analysis showed that, with ~15X coverage or better, a high quality genome 

sequence was obtained in terms of single base calling error rate, frameshift error rate, etc. 

Combining the conclusions from these two studies, it was clear that Illumina short-read 

sequencing technology was appropriate for addressing the biological questions of my 

thesis project. 

Another challenge became obvious during my work; namely, how to accurately 

identify the taxonomic origins of assembled contig or raw metagenomic sequences. 

Because a metagenome is a mixture of numerous co-occurring species, the assembly 

represents a mixture of contigs from different genomes. It is difficult, yet important, to 

bin these contigs into population genomes, to facilitate downstream analysis. The 

available methods for these purposes were not adequate, especially for taxonomically 

classifying a large fraction of metagenomic sequences that represent novel taxa. Thus, I 

developed a fast and accurate classifier, MeTaxa, which showed improved performance 

compared to other algorithms. MeTaxa’s advantage is rooted to the use of every gene in a 

query sequence as a classifier, weighting each gene differently based on its 

(predetermined) classification power. MeTaxa outperformed other available algorithms in 

accuracy and especially in determining the level of novelty (e.g., novel species, genus or 

phylum) of sequences representing novel taxa. MeTaxa’s framework and performance 

benchmarking are introduced in chapter 5. 

I applied these bioinformatics approaches on time series metagenomes from two 

real environmental systems. The first represented comparative metagenomic analysis to 

evaluate the responses of soil microbial communities to a decade of warming by 2°C 
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against the control communities (adjacent soils that underwent no warming), described in 

chapter 6. During this work, several novel computational pipelines were developed to 

handle and analyzed the massive data available (in excess of 50 Gbp in total). 

Community-wide adaptations to warming were observed and several essential pathways 

related to Carbon and Nitrogen cycles and the metabolism of greenhouse gases were 

enriched in the heated communities, suggesting potential exacerbating feedback from the 

soil microbial community to the greenhouse gas concentration. These discoveries 

collectively improved our understanding of how complex soil communities respond to 

environmental perturbations. 

The second system represented a 2.5 years long collection of time series 

metagenomes from a freshwater lake planktonic community. The goal of this project was 

to quantify HGT in situ furing the period spanned by our samples. No suitable approach 

was available to carry out this task, and hence I developed two sets of computational 

solutions to address the bioinformatics challenges. The first challenge was to bin 

metagenomic contigs that represented the same population and, based on the binned 

contigs, to predict and quantify HGT events between the populations represented by the 

contigs. For the former, I developed an approach that utilizes the pair-end read links, 

contig coverage co-variance in the time series data, and tetranucleotide statistics to bin 

contigs into population genomes. For the latter, I developed an algorithm, metaHGT, to 

accurately predict HGTs based on pair-end read mapping information. Both approaches 

can be broadly applied to other systems such as the human microbiome and laboratory 

microcosms. Based on these novel approaches, I identified surprisingly high frequency of 

HGT between distantly related organisms, and some of them presumably underlay 
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important community adaptation to short-term environmental perturbations and 

population dynamics. These methods, approaches and discoveries are described in 

chapter 7. 
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CHAPTER 2 

Genome sequencing of environmental Escherichia coli expands understanding  

of the ecology and speciation of the model bacterial species 

Parts of this chapter have been published in the article: C. Luo, S. T. Walk, D. M. 
Gordon, M. Feldgarden, J. M. Tiedje, and K. T. Konstantinidis. Genome sequencing of 
environmental Escherichia coli expands understanding of the ecology and speciation of 
the model bacterial species. Proc. Natl. Acad. Sci. U. S. A. 2011, 108(17): 7200-5. 
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INTRODUCTION 

The current bacterial species definition (1), while pragmatic and universally 

applicable within the bacterial world (2), remains controversial because it is difficult to 

implement due to technological limitations in identifying diagnostic traits, resulting 

frequently in species that are not adequately predictive of phenotype (3, 4). Further, and 

perhaps more importantly, it remains unclear whether the processes driving 

diversification and adaptation of bacteria produce sufficiently discrete groups of 

individuals (species) as opposed to a genetic continuum (4, 5) [“fuzzy” species, (6)]. An 

improved understanding of bacterial species and its definition has important broader 

impacts, such as for reliable diagnosis of infectious disease agents, intellectual property 

rights, international and national regulations for transport and possession of pathogens, 

bioterrorism agent oversight and reporting, and quarantine. Since the scientific, medical, 

regulatory, legal communities as well as the public expect species to reasonably reflect 

the phenotype and ecology of an organism, efforts towards a more refined definition of a 

bacterial species are needed. 

The case of E. coli captures many of the problematic aspects of the bacterial 

species issue and has additional important ramifications for diagnostic microbiology and 

for assessing fecal pollution of natural ecosystems. Microbiological dogma is that E. coli 

strains live within the gastrointestinal tract of humans and other warm-blooded animals, 

are transmitted to susceptible host via the fecal-oral route, and do not survive for 

extended periods outside its host. E. coli is phylogenetically distinct (monophyletic) as 

are the other know Escherichia species, E. fergusonii and E. albertii (7). Despite their 

phylogenetic cohesiveness, however, E. coli strains are ecologically and phenotypically 
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heterogeneous (3, 7) and, in fact, a few strains have been assigned to a different genus 

(e.g. Shigella flexneri), based primarily on their distinct clinical presentation and 

importance as human pathogens (8). Whether pathogens, like Shigella, or other 

delineable groups of strains deserve their own taxonomic classification is currently based 

on subjective observations rather than empirical ecologic or phylogenetic data. This is 

attributable, at least in part, to the lack of data concerning truly innocuous 

(nonpathogenic) strains that are more relevant for comparisons to the life-threatening, 

pathogenic strains (e.g. negative controls). Furthermore, recent environmental surveys 

have repeatedly recovered substantial E. coli populations from soils and freshwater 

habitats (9, 10), indicating that “naturalized” (innocuous) strains (11) may be widespread 

in nature. These findings also imply that the current view of E. coli biodiversity and 

ecology might have been biased by the isolation procedures and/or the traditional focus 

on clinical samples. To what extend the latter populations represent truly autochthonous 

members of the natural communities sampled and how they differ genetically from host-

associated E. coli remain elusive, however. Addressing these questions will have 

additional global consequences for the current practice of assessing fecal contamination 

based on E. coli cell counts (10). 
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MATERIALS AND METHODS 

Information for each of the 25 Echerichia genomes used in this study is provided 

in Table 2.1. Twelve of the genomes (nine Escherichia spp. and two E. albertii) were 

sequenced as part of this study, using either the Illumina GA-II genome analyzer or the 

Roche 454 Sequencer available at the Genomic Facility at Michigan State University 

(Table 2.2). For sequencing, a pair-ended sequencing strategy (76-bp-long reads, 300-bp 

library insert size) was used that yielded ~300X coverage for each genome (one genome 

per Illumina lane). The accession numbers of the genomes sequenced in this study are 

provided in Table 2.2. 

The 76-bp-long paired-ended reads first were clustered into two groups based on 

their quality score and length using the K-means algorithm, and the low-quality group 

was discarded. Sequences were trimmed further on both the 5’- and 3’-ends, baded on a 

threshold of Q=20, and were assembled using the Velvet algorithm (12). The K-mer 

parameter was varied to maximize the N50 of the resulting assembly for each genome 

(high stringency). Detailed statistics of each genome assembly are provided in Table 2.2. 

Comparisons of the assembly of genome TW10509 and the assembly performed at the 

Broad Institute based on independent, high-coverage 454 data revealed that our contigs 

had very low sequencing error (<0.01%) and contained no misassemblies or 

contaminating sequences (Figure 2.1). Our in silico evaluation also suggested that our 

assemblies recovered at least 98% of the core and 95% of the total genes in the genome 

(Figure 2.1). The few genes missing from our assemblies did not affect our conclusions 

because our analyses were based primarily on core genes recovered intact in all genome 
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sequences. Genes on the assembled contigs were identified by the GeneMark pipeline 

(13) and annotated as previously described (14). 
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Table 2.1. The genomes used in this study. 

    Genome   Strain Sample 

Strain Lineage Ecotypea Pathotypeb sourcec Origin source type  

MG1555 E. coli GIT commensal NCBI CA, USA Human feces 

HS E. coli GIT commensal NCBI MA, USA Human  feces 

SE11 E. coli GIT commensal NCBI Japan Human  feces 

IAI1 E. coli GIT commensal NCBI France Human  feces 

ED1a E. coli  GIT commensal NCBI France Human  feces 

Sakai E. coli GIT EHEC NCBI Sakai, Japan Human  feces 

EDL933 E. coli GIT EHEC NCBI MI, USA Food ground beef 

UTI89 E. coli GIT/UT UPEC NCBI unknown Human unknown  

536 E. coli GIT/UT UPEC NCBI unknown Human unknown 

CFT073 E. coli GIT/UT UPEC NCBI MA, USA Human blood 

O1 E. coli  GIT/Other APEC NCBI USA Chicken lung 

ATCC E. fergusonii multiple multiphle NCBI USA Human             feces 

TW08933 E. albertii GIT serotype 7 This study Bangladesh Human feces 

TW15818 E. albertii GIT/Other diarrheic This study Australia Poultry feces 

B156 E. albertii GIT/Other avirulent Broad Inst. Australia Magpie feces 

TW10509 Escherichia Clade I GIT ETEC This study India Human feces 

TW15838 Escherichia Clade I GIT avirulent This study Australia Environment freshwater 
sediment 

TW09231 Escherichia Clade III ENV avirulent This study MI, USA Environment freshwater 
beach 

TW09276 Escherichia Clade III ENV avirulent This study MI, USA Environment freshwater 
beach 

H605 Escherichia Clade IV ENV avirulent Broad Inst. Australia Human feces 

TW14182 Escherichia Clade IV ENV avirulent This study MI, USA Environment freshwater 
beach 

TW11588 Escherichia Clade IV ENV avirulent This study Puerto Rico Environment soil 

E1118 Escherichia Clade V ENV avirulent Broad Inst. Australia Environment freshwater 

TW09308 Escherichia Clade V ENV avirulent This study MI, USA Environment freshwater 
beach 

CT18 S. typhi GIT typhoid NCBI Vietnam Human unknown 

          

aEcotype designation is based on the frequency of isolation from various hosts (gastrointestinal tract, GIT, 
or urinary tract, UT) and the environment (ENV). 

bPathotype refers to the interaction between a particular strain and its host. Commensal strains do not cause 
disease and are commonly found in the GI tract of healthy humans, enterohemorrhagic E. coli (EHEC) 
strains cause bloody diarrhea in humans, urinary pathogenic E. coli (UPEC) cause urinary tract infections 
in humans and animals, avian pathogenic E. coli (APEC) cause a range of diseases in birds, enterotoxigenic 
E. coli (ETEC) cause watery diarrhea in humans, and avirulent strains have not been associated with a 
particular disease or a commensal phenotype. 



 32

cPublically available genomes were downloaded from the National Center for Biotechnology Information 
(NCBI) or the Broad Institute (Broad Inst.). 
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Figure 2.1. Assessing Illumina assembly quality against a reference genome. The genome of 

strain tw10509 was sequenced independently and assembled at the Broad Institute based on high-

coverage 454 data (final genome is in nine supercontigs, each at least 2Kbp long). Comparisons 

of this genome assembly with the Illumina-based assembly determined by this study for the same 

strain showed that our assembly was of high quality and recovered almost all (>98-99%) of the 

core genes in the genome. In particular, the two assemblies typically disagreed in <20 nucleotide 

bases over a 10-Kbp window (second circle), and only 57 genes were missing from our assembly 

compared with the reference assembly. About half of the missing genes were 

integrases/transposons (24 genes); 20 genes were of hypothetical function; and eight genes had 

multiple copies in the genomes. Of the genes in our assembly, 229 (4.4% of total) were recovered 

truncated (i.e., <85% of the total gene sequence was recovered); only 25 of the truncated genes 

appear to be core genes (i.e., present in >18 genomes). The absence of misassemblies or genes 
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specific to our assembly indicates that the aliquot sequenced was free of contaminating DNA. 

Furthermore, our analysis showed that our TW10509 assembly was evenly covered by Illumina 

reads; i.e., 96% of the contigs had sequencing depth (coverage) between 280X and 320X. Similar 

results were obtained for the other sequenced genomes. Finally, the quality of our assemblies was 

evaluated further as follows: four Illumina sequencing datasets were generated in silico from the 

Escherichia fergusonii ATCC 35469, Escherichia coli O157:H7, EDL933, MG1655, and UTI89 

complete chromosomal sequences using a custom Perl script (available from the authors upon 

request) and the same sequencing error, coverage, read length, and library insert size as in the real 

Illumina data. These in silico reads were assembled using the protocol and parameters described 

for real data. The resulting assembly recovered the complete sequence of 95.88% of the genes; 

0.55% of genes were missed, and the remaining genes were recovered incomplete (truncated); 

sequencing error in the consensus sequence was limited to 0.009% bases, on average. These 

finding indicate that our draft genome sequences covered at least 95% of the genome of the 

isolates. 

 

After all mobile elements (transposase, integrases, and so forth) and truncated 

gene sequences were removed, and all-versus-all BLAST search was carried out using all 

protein-coding genes annotated in all genomes. Alignments with coverage lower than 

85% of the length of the query protein sequence were discarded. The analysis identified 

1,910 genes that constituted reciprocal best matches in all pair-wise genome comparisons 

(core orthologs). These genes subsequently wer aligned using ClustalW2 (15), and the 

resulting alignments were concatenated to provide the whole-genome alignment and the 

Neighbor-Net algorithm (16) of the SplitsTree package and is shown in Figure 2.2. It 

should be noted that the set of 1,910 genes represents a subset of the total core genes 
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shared among the genomes analyzed (estimated to be around 2,200-2,500 genes, given 

that about 20-25 core genes were missed in each genome assembly and that we analyzed 

12 draft genomes; Figure 2.2); it does not include truncated genes or genes not recovered 

in our assemblies. Nonetheless, the missing genes are highly unlikely to have a 

significant impact on the derived whole-genome phylogeny (because of the large number 

of genes included in the underlying alignment) or on the results of the horizontal gene 

transfer (HGT) analysis (see below), because they represented a small number of the total 

core genes in the genome and were distributed randomly around the genome (Figure 2.3). 

To identify genes that recently were exchanged horizontally among the 

Escherichia clades, we used the approach outlined in Figure 2.4. In brief, the protein 

sequences of core orthologs (1,910 genes) were aligned using ClustalW2 (15). The 

corresponding nucleotide sequences of the aligned protein sequences subsequently were 

aligned, codon by codon, using the pal2nal script, with “remove mismatched codons” 

enabled and the protein alignement as the guide (17). Synonymous substitutions per site 

(Ks) were calculated based on the method described by Goldman and Yang (18) using 

KaKs_Calculator (19). To capture only recent HGT events, a Ks-based filter was applied 

to qualify orthologous genes that (i) has Ks values ! 0.02 (recentHGT events); ii) were 

not short (i.e., <300 bp) or truncated; and (iii) had a sequence that was not typically 

highly conserved within the Escherichia genus (i.e., the genes did not rank in the lower 

15% of Ks values in all pair-wise genome comparisons). The cutoff Ks = 0.02 was used 

because it represented the average Ks among orthologs of genomes of the same lineage; 

hence, it was optimal for evaluating interlineage HGT events (we did not assess 

intralineage HGT). In addition, genes in the low Ks ranks that represented informational 
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genes, such as the ribosomal genes and DNA/RNA polymerases, were removed manually 

from further analysis because it could not be established whether the identity patterns 

observed were caused by genetic exchange or high sequence conservation. Fewer than 

100 genes were removed. Embedded quartet decomposition analysis (EQDA) (20) was 

used subsequently to inferinterclade HGT events as follows. Embedded quartet analysis 

was applied to two clades at a time, using two genomes per clade (i.e., four genomes in 

total). The resulting phylogeny was bootstrapped and compared with the whole-genome 

tree topology. Only quartets incongruent with the genome topology and at least 95/100 

bootstrap support were selected to represent HGT events. Noncore genes shared by at 

least two clades were assessed in the same way as core genes (Figure 2.4). 

Although it is possible that our approach did not filter out a few informational 

genes that show high sequence conservation, this possibility should have no effect on our 

conclusion about the relative importance of HGT between commensal and environmental 

genomes, because HGT was assessed based on the same core genes for all genomes and 

genome quartets that showed comparable intergenome evolutionary relatedness. We also 

evaluated the extent to which EQDA analysis might be affected by the sequences used in 

the analysis; for instance, whether orthologous sets with high sequence similarity showed 

more false positives than more divergent orthologs because of the weak phylogenetic 

signal resulting from highly identical sequences. Our results which are summarized in 

Figure 2.6, suggested that our EQDA is impervious to such artifacts and that our 

approach did not underestimate the number of recently exchanged genes. 
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RESULTS AND DISCUSSION 

Environmentally adapted E. coli lineages 

We recently described five Escherichia clades (C-I to C-V) that were recovered 

primarily from environmental sources and are indistinguishable from typical E. coli based 

on traditional phenotypic tests included in either the API20E Identification System 

(biMerieux, Inc.) or the BBL Crystal Identification System (Becton, Dickinson and 

Company) (ref). To provide genomic insights into the phylogenetic diversity and 

metabolic potential of these clades, we sequenced the genome of nine representatives 

from clades C-I, -III, -IV, and -V (Table 2.1 and 2.2, and Figure 2.1). Whole-genome 

phylogenetic analysis confirmed our earlier observations based on multilocus sequence 

typing that the clades span the phylogenetic tree between E. coli and E. albertii, forming 

a genetic continuum within the Escherichia genus. In particular, C-I appears to be a sister 

clade of typical E. coli, being only slightly more divergent than the B2 phylogenetic 

lineage that includes uropathogenic E. coli (UPEC). The remaining clades are more 

divergent from typical E. coli (Figure 2.2). In agreement with previous phenotypic testing, 

the genomes of the strains of the four clades encode all genes shared by the available E. 

coli genomes (i.e., the E. coli core gene set) (Figure. 2.3A and Figure 2.4). Thus, the 

clades appear to be phenotypically and genetically (e.g., in gene content) 

indistinguishable from typical E. coli. Based on this information and the current genomic 

standards for species demarcation (21), these clades would be justifiably classified as E. 

coli. 

The orders-of-magnitude higher abundances of these clades in environmental 

samples relative to those in human feces and the clinic (10) indicate that they represent 
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truly environmentally adapted organisms (meaning that they are not associated primarily 

with mammal hosts). Consistent with this interpretation, a recent study found that strains 

of clades C-III, -IV, and -V form biofilms more readily, outcompete typical E. coli strains 

at low temperatures (which characterize the environment compared with the 

gastronintestinal tract of warm-blooded hosts), and are nonpathogenic in a mouse model 

of septicemia (22). Furthermore, screening of 2,701 strains from humans, animals, and 

the environment identified an additional 57 environmental clade strains, and these strains 

were found more often in environmental and bird samples than in human samples (10). 

These studies consistently support the hypothesis that the environmental clades 

substantially expand the known ecological niche of E. coli. 
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Figure 2.2. Whole-genome phylogeny of the Escherichia genomes used in this study. The 

phylogenetic network shown was constructed with the SplitsTree software (16), using as input the 

concatenated alignment of 1,910 single-copy core genes. (Inset) The graph represents the amount 

of recent horizontal transfer of core genes between the genomes of the clades. The thickness of 

the line is proportional to the number of genes transferred (scale at upper left in figure). 
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Functions important in the gut 

Comparisons between the environmental genomes and their commensal or 

pathogenic (enteric) counterparts provided insights into the functional differentiation of E. 

coli strains. Consistent with the core gene results described above, we found almost no 

genes specific to enterics when queried against all genomes of environmental clades 

(Figure 2.4). However, when the C-I clade was included in the enteric group (strains of 

C-I have been isolated from humans, and this clade does not appear to be overrepresented 

in environmental samples) and the stringency of the comparisons was relaxed to allow 

one or two genomes in each group not to encode the gene in question, we identified 84 

and 120 genes as being specific to or highly enriched in the environmental and enteric 

groups, respectively (Figure 2.3B and Table A1). The environment-specific gene set 

included several genes of unknown function as well as the complete pathway for diol 

utilization (energy substrate) and the gene for lysozyme production (hydrolysis of 

bacterial cell walls). These functions apparently are important for resource acquisition 

and survival in the environment. In contrast, the enteric-specific functions included genes 

involved in the transport and use of several nutrients that are thought to be abundant in 

the gut, such as N-acetylglucosamine, gluconate, and 5-C and 6-C sugars such as fucose 

(23). The latter genes were significantly enriched in the recently determined human 

microbiome (24), further corroborating their importance for colonization of the gut. 

Therefore, these genes characterize enteric E. coli strains relative to their environmental 

counterparts and may represent robust biomarkers for the development of molecular 

assays to count commensal E. coli cells in environmental samples more accurately than 

done by current methods. The enteric gene set also includes several prophage genes, 
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consistent with recent finding from metagenomic studies indicating that the human 

virome is highly specialized to its host and differs from viromes of environmental 

ecosystems (25). 

 

Figure 2.3.  Gene-content signatures of Escherichia clades. Heatmap of gene presence 

(yellow) and absence (blue) in 20 selected genomes, using all nonredundant genes that were 

found in at least two of the genomes as reference. (A) Genomes were clustered based on the 

presence/absence of genes; values in red represent bootstrap support from Jackkinifing 

resampling with 100 replicates. (B) genes and pathways distinguishing enteric and environmental 

genomes were expanded (underlying data are provided in Table A2). 1, acetylglucosamine 
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transporter; 2, fructose transporter; 3, diol utilization operon; 4, lysozyme production. (C) 

Occurrence of the genes composing the Escherichia pangenome in the 20 genomes ranges from 

one (a genome-specific gene) to 20 (a core gene). 
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Figure 2.4. Summary of differences in gene content between Escherichia clades or groups of 

selected genomes. The centroid of the eclipse corresponds to the pair of clades in the comparison, 

and the height and width are proportional to the size (see key in figure) of the gene set that 

differentiates the clades (i.e., 

  

a = X ! Y  and 

  

b = X ! Y , where X and Y are the sets of shared 

genes within the corresponding clades on the x and y axis, respectively). 
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Ecologic barriers to gene flow within Escherichia 

The availability of several genome sequences that span the Escherichia tree 

provided the opportunity to evaluate the importance of interclade genetic flow for E. coli 

evolution with greater phylogenetic coverage than previously achieved (7, 26). To this 

end, we devised a strategy to assess recent genetic exchange events based on embedded 

quartet decomposition analysis (EQDA) (refer to materials and methods for details; 

Figure 2.5 and 2.6). We focused on recent events only because historic genetic exchange 

of core genes (mediated by homologous recombination) frequently was impossible to 

detect robustly because of multiple (old) recombination events on the same segment of 

the genome and the process of amelioration of the newly introduced DNA sequence into 

the recipient cell (27). 

We observed detectable genetic exchange of core genes within the environmental 

clades, within enterics, and between C-I and enterics but not between enterics and the 

remaining environmental clades or E. albertii (Figure 2.2 Inset and Figure 2.8). The core 

genes exchanged were distributed randomly in the genome and did not show any strong 

biases in terms of function when compared with the rest of the genome (Figure 2.9 and 

Table A2). These findings are consistent with a generalized mechanism for the transfer of 

genetic material (e.g., transformation or conjugation) and incorporation into the recipient 

genome via homologous recombination. They also confirm the closer affiliation of C-I 

with typical E. coli relative to the other clades and reveal reduced genetic flow between 

environmental and enteric genomes, presumably because of ecological barriers. 

Nonetheless, the number of core genes exchanged within the evolutionary time 

that corresponded to 0.002 synonymous substitutions per site (the divergence time 
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typically separating the genomes of the same clade) accounted for only a small portion of 

the total core genes in the genome (0.06-2.33%). We also observed that noncore 

(auxiliary) genes were exchanged among the clades less frequently than core genes 

(Figure 2.2 and 2.8 and Table A2 and A3). Given also that more than 50% of the total 

unique genes of the E. coli pangenome are genome or clade specific (Figure 2.3C), our 

observations suggest that asexual divergence coupled with clade-specific gene acquisition 

or deletion dominates interclade recombination in driving Escherichia evolution. 

 

 

 

 

Figure 2.5. Flowchart of the horizontal gene transfer (HGT) network analysis. A shows the 

approach used to remove genes (<100) whose sequence typically was highly conserved within the 
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Escherichia genus from further analysis. B represents the embedded quartet decomposition 

analysis (EQDA), performed essentially as described in Materials and Methods. 
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Figure 2.7. Robustness of the EQDA to phylogenetic noise. An in silico evaluation was 

performed based on the recA DNA sequences were mutated in silico. Subsequently, the mutated 

sequences were aligned by ClustalW2 and analyzed by EQDA, using the procedure used with real 

sequences. Thus, any bootstrapped tree based on a set of mutated sequences that was inconsistent 

with the [(A,B),(C,D)] topology was considered noise. The analysis revealed that when internal 

branch length exceeded 0.008 (x axis), no bootstrapped tree showed incongruence regardless of 

terminal branch length (y axis). In our study, we analyzed only orthologs that showed at least 0.01 

internal branch length (e.g., the distance between the genomes compared was at least 0.02 in 

terms of Ks); thus, our EQDA was robust against phylogenetic noise. 
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Figure 2.8. Recent genetic exchange of genes between clades. The graph represents the amount 

of recent horizontal transfer of core (A) and noncore (B) genes between the genomes of the clades 

(nodes on the tree). The thickness of the line is proportional to the number of genes transferred 

(see scaled in figure). The color of the line indicates whether the HGTs are within environmental 

(green) or between environmental and enteric (red) clades (note that no core gene transfer was 

observed between C-III, C-IV, or C-V and enteric clades). Panel A represents the full version of 

the figure shown in Figure 2.2 Inset. 
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Figure 2.6. Chromosonal position of the genes identified as horizontally transferred between 

clades on the MG1655 (E. coli K-12) genome. From outermost of innermost, circles represent 1: 

E. coli MG1655 chromosome; 2: G+C content; 3: core genes involved in recent HGT events; 4: 

noncore genes involved in recent HGT events. Gene occurrence is indicated by gray scale in the 

outermost circle; occurrence ranges from one (a genome-specific gene) to 20 (a core gene). The 

possible partners in the HGT event are denoted by color (see key in figure). Intra-enteric, both 

clades involved in HGT are enteric; intra-Env., both clades involved in HGT are environmental; 

enteric-Env., HGT event is between enteric and environmental clades. 
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Test of the fragmented speciation model 

It has been proposed recently that organism of the Escherichia genus evolve 

according to a fragmented speciation model (28) and that the model may be applicable to 

additional bacterial groups (29). If the model were true, one would expect that genomic 

islands that differentiate two ecologically distinct populations to be flanked by regions of 

increased nucleotide divergence, because such population-specific islands are free from 

the homogenizing effects of recombination. In other words, because interpopulation 

homologous recombination is halted around the genomic island (the sequence is not 

conserved in the population that does not carry the island), the genetic variation of the 

flanking DNA would be increased between the two populations compared to within either 

of the individual populations (Figure 2.10 gives a graphical representation for the 

expected signature of the model). 

Our results strongly indicate that the environmentally adapted genomes are 

ecologically differentiated as compared with their enteric counterparts and thus are more 

appropriate for testing the model directly than are the divergent Salmonella genomes used 

previously (28). Although several candidate (ecologically relevant) genomic islands were 

identified (such as the islands encoding the fucose and gluconate utilization operons), and 

these islands were flanked by DNA sequences that were conserved and syntenic in the 

environmental strains, no island showed the predicted signature of the fragmented 

speciation model. Instead, the level of nucleotide divergence in the flanking regions of 

the islands covaried between the environmental and enteric genome (Figure 2.10). 

Similar patterns were observed when the analysis was restricted to commensal vs. 

pathogenic E. coli for the genomic islands that encode the know pathogenicity factors of 
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the latter genomes (Figure 2.11). Thus the predicted signature of the model was not 

observed even in comparisons of genomes that show both higher genetic relatedness and 

genetic flow than observed between environmental and enteric strains. In a few of the 

genomic islands examined, the flanking genes did show increased nucleotide divergence 

between ecologically distinct genomes. However, this pattern typically was associated 

with genes that were interrupted by the insertion of mobile elements; because of relaxed 

functional constraints, the truncation of gene(s), rather than the action of recombination, 

presumably caused an increased accumulation of mutations. Such truncated genes or their 

remnants may underlie some of the incongruent phylogenetic signal observed previously 

(29). 
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Figure 2.10. Lack of evidence in support of the fragmented speciation model. A 

representative  example of the nucleotide divergence patterns, measured as the number of single 

nucleotide substitutions (or SNPs, y-axis), observed in flanking regions of a genomic island (x-

axis) that differentiates environmental from enteric genomes. The island shown encodes the genes 

for utilization of fucose, a sugar commonly found in the glycan structures of the cell wall of 

animals.
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Figure 2.11. SNP levels in flanking regions of known pathogenicity islands. Three previously 

described pathogenicity islands are shown. (A) LEE in E. coli O157:H7 Sakai (GenBank 

accession No. NC_002965, coordinates 4580769..4623562). (B) PAI III536 in E. coli 536 

(GenBank accession No. NC_008253, coordinates 294319..269466). (C) PAI SHI-II in Shigella 

flexneri (GenBank accession No. NC_004337, coordinates 3806404..3831722). Commensal 

genomes represent the average of four genomes (MG1655, IAI1, SE11, and HS). 



 55

Conclusions and perspectives 

Our results collectively suggest that asexual divergence coupled with clade-

specific gene acquisition or deletion has a much stronger influence on the evolution of the 

Escherichia genus than homologous recombination (sexual reproduction). These results 

differ quantitatively from those reported previously (7, 26). The difference is caused, at 

least in part, by the different genomes and methods used in the analysis. For instance, the 

previous studies evaluated the intraclade level, whereas our analysis was focused on more 

divergent genomes, an approach that is advantageous for unequivocally detecting recent 

gene exchange and recombination events (14, 30). Although our results do not rule out 

the existence of high levels of recombination within a clade, they do reveal that genetic 

exchange between incipient ecologically distinct clades of E. coli may not be as 

pronounced or prolonged as would be expected by the fragmented speciation model (28), 

and this reduced level of exchange probably accounts for the lack of evidence in support 

of the model. 

Data described here concerning the environmental Escherichia clades show that 

justifiable species, which are ecologically distinct, sexually isolated, and phylogenetically 

tractable, may be identifiable even in cases of apparent phenotypic identity or a genetic 

continuum (such as revealed within the Escherichia genus in Figure 2.2). These findings, 

which also are consistent with recent metagenomic studies of natural populations, suggest 

that a more ecologic definition for species is more appropriate than the current definition 

that is heavily based on genetic distinctiveness alone. Comparative genomic analyses 

linked a substantial fraction of the clade-specific gene acquisitions (and deletions) to the 

unique ecology of the clade (e.g., Figure 2.3B). These findings further corroborate the 
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notion that it is time to start replacing traditional approaches of defining diagnostic 

phenotypes for new species with omics-based procedures. 

What the preferred ecological niche or host (if any) of clades II-V is and whether 

the clades actually can persist in the external environment in the absence of fecal inputs 

(i.e., represent truly free-living bacteria) remain elusive, and additional data need to be 

collected before more robust conclusions can emerge. For instance, strains of clades II-V 

have been recovered occasionally from birds and ruminant mammals (10), but the extent 

to which these results are influenced by the processes of strain migration and extinction 

(as opposed to persistence within the host) is unclear. What our genomic data as well as 

data from physiological studies and environmental surveys performed previously (10, 22) 

suggest is that clades II-V are better at surviving in the external environment than is 

commensal E. coli and are poor competitors in the human gastrointestinal tract relative to 

successful clonal complexes such as those represented by CFT073 and MG1655 strains. 

Therefore, clades II-V are highly unlikely to represent a risk to public health. 

Of practical significance, the cryptic clades represent microorganisms that show 

worldwide distribution (Table 2.2) and have been readily identified as typical E. coli by 

expert microbiologists in the laboratory and by managers of water quality who use this 

organism to assess fecal pollution of surface waters. However, these organisms probably 

should not be considered E. coli and are highly unlikely to represent an environmental 

hazard, according to our analyses. These findings underscore the need to reevaluate 

coliform testing and the microbiologic dogma that the niche of enteric microbes, such as 

E. coli, is the mammalian intestinal tract. 
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CHAPTER 3 

Direct comparisons of Illumina vs. Roche 454 sequencing technologies  

on the same microbial community DNA sample 

Parts of this chapter have been published in the article: C. Luo, D. Tsementzi, N. 
Kyripides, T. Read, and K. T. Konstantinidis. Direct comparisons of Illumina vs. Roche 
454 sequencing technologies on the same microbial community DNA sample. PLoS ONE, 
2012, 7(2): e30087. 



61

INTRODUCTION 

From the human gastrointestinal tract to the abyss of oceans, whole-genome 

shotgun metagenomics is revolutionizing our understanding of the structure, diversity, 

and function of microbial communities (1-4). The next generation sequencing (NGS) 

technologies, such as the Roche 454, Illumina/Solexa, and, to a lesser extent, ABI SOLiD, 

have been cornerstones in this revolution (5-7). The high coverage of the indigenous 

communities provided by NGS has made it possible, for instance, to quantitatively assess 

the impact of diet on human gut microbiota (8) and the diversity of metabolic pathways 

within marine planktonic communities (9). NGS platforms produce millions of short 

sequence reads, which vary in length from tens of base pairs (bp) to ~800 bp. Even 

though the read length increases as the technologies advance, it is still far shorter than the 

desirable length (e.g., the average bacterial gene length is ~950 bp) or the length of the 

traditional Sanger sequencing. Therefore, a desirable, first step in the analysis of 

metagenomic data frequently is to assemble sequences into longer contigs and, ultimately, 

into complete genome sequences. Analyzing raw (not assembled) reads, as opposed to 

assembled contigs, is typically restricted to cases of too high community complexity for 

the sequence coverage obtained or in specialized studies that aim to determine in-situ 

abundance and/or population genetic structure and recombination (4, 10). 

It is critical to assess the quality of the derived assemblies and several studies 

have recently attempted to evaluate the sequencing errors and artifacts specific to each 

NGS platform. For instance, it has been established that Roche 454 has a high error rate 

in homopolymer regions (i.e., three or more consecutive identical DNA bases) caused by 

accumulated light intensity variance (5, 11) and up to 15% of the resulting sequences are 
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often products of artificial (in vitro) amplification (12). Illumina does not appear to share 

these limitations but it has its own systematic base calling biases (13). Most importantly, 

different tiles of the sequencing plate tend to systematically produce reads of different 

quality (14), the 3’ end of the resulting sequences tends to have higher sequencing error 

rate compared to the 5’ end (15), and increased single-base errors have been observed in 

association with GGC motifs (16). Algorithms that detect and correct these errors are 

being developed and incorporated into existing data processing pipelines. 

It should be noted, however, that most of the previous error estimates and 

sequencing biases have been determined based on simple DNA samples (e.g., a single 

viral genome) and thus, their relevance for complex community DNA samples remains to 

be evaluated. More importantly, it is currently unclear how the above limitations affect 

the quality of the gene and genome sequences assembled from complex DNA samples, 

and whether the technologies differ with respect to the diversity recovered from a sample 

due to their different chemistries and protocols. To provide new insights into these issues, 

we evaluated the two most frequently used platforms for microbial community 

metagenomic analysis, the Roche 454 FLX Titanium and the Illumina GA II, by 

comparing and contrasting assemblies obtained from the same community DNA sample.  
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MATERIALS AND METHODS 

Sampling, DNA extraction, and sequencing 

 Samples were collected from Lake Lanier, Atlanta, GA, below the Browns Bridge 

in August 2009 and community DNA was extracted as described previously (17). The 

DNA sample was divided into two aliquots of equal volume. One aliquot was sequenced 

with the Roche 454 FLX Titanium sequencer (average read length, 450 bp) and the other 

one with llumina GA II (100 !  100 bp pair-ended reads) available at the Emory 

University’s Genomics Facility.  

Raw (not assembled) read comparisons 

We compared the reads from the Lanier.Illumina dataset against the Lanier.454 

dataset to identify the fraction of reads shared between the two datasets. Shared reads 

were defined as those that mapped on reads of the other dataset using Bowtie with default 

settings (18). For comparing gene calling accuracy on unassembled reads, we employed 

FragGeneScan (19) to predict genes on Lanier.454 and Lanier.Illumina reads, using 454 

1% error rate model and Illumina 0.5% error model, respectively. We extracted the 

predicted gene sequences from the reads and the corresponding amino acid sequences 

were searched against the genes of the reference assembly of the same dataset using 

BLAT (20). The matching gene of the assembly from the protein search using BLAT was 

compared to the gene matched by the raw read using Bowtie and the cases of agreements 

(matched genes), disagreements (mismatched genes) and “not match found” (BLAT 

search did not match a gene while Bowtie mapping did) were counted and reported in 

Figure 3.1B. 
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To estimate the errors associated with GGC motifs in Illumina reads described 

previously (21), we selected as reference sequences the Roche 454 reads that were 

covered by at least 10 Illumina reads per base, on average, in Bowtie mapping (~86.6 

Mbp of reads in total). An in-house package written in Python and Perl identified 

disagreements between Illumina and the reference Roche 454 reads associated with GGC 

motifs using the rules described previously (21) and counted the number of errors (scripts 

available upon request). 

Metagenome assembly and contig error calculation 

 Lanier.454 and Lanier.Illumina reads were trimmed at both 5’ and 3’ ends using a 

Phred quality score cutoff of 20. Sequences shorter than 200 bp and 50 bp (after trimming) 

were discarded, respectively. Newbler (version 2.0) was used to assemble Lanier.454 

with parameters set at 100 bp for overlap length and 95% for nucleotide identity. For 

Lanier.Illumina, the SOAPdenovo (22) and Velvet (23) de novo assemblers were used to 

pre-assemble short reads into contigs using different K-mers. We performed six 

independent assemblies, using K=21, 25, 29 for the three SOAPdenovo runs and K=23, 

27, 31 for the three Velvet runs. The resulting contigs were merged into one dataset, and 

Newbler was used to assemble this dataset into longer contigs, using the same parameters 

as in the assembly of Lanier.454 data. Our previous evaluation showed that our hybrid 

protocol outperforms other approaches for assembling metagenomic and genomic data 

(24). Individual reads were mapped against the assemble contigs using Bowtie with 

default settings to calculate average contig coverage. Protein-coding genes encoded in the 

assembled contigs were identified by the MetaGene pipeline (25). Contigs were defined 

as shared between the assemblies of the Lanier.454 and Lanier.Illumina data when they 
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shared at least 95% nucleotide sequence identity and overlapped by at least 80% of their 

length (for the shorter contig). The same cut-off was used to map raw reads on contigs. 

The 95% identity cut-off was used to accommodate the maximum sequencing error 

observed in raw reads of an isolate genome (about 5%); other cut-offs are not as 

appropriate as the one used above and were not evaluated. 

Homopolymer error rate 

 We assessed homopolymer error rate in metagenomic data using two different 

strategies. First, by examining disagreements in gene sequences annotated on contigs 

larger than 500 bp and shared between the Lanier.454 and Lanier.Illumian assemblies. 

For this, Blastn (26) was employed to search all gene sequences annotated in the 

Lanier.454 assembly against those in the Lanier.Illumina assembly. Reciprocal best 

matches (RBMs), when overlapping by at least 500 bp and showing higher than 95% 

nucleotide identity, were identified and re-aligned using ClustalW2 (27). Homopolymer 

disagreements between the sequences in the alignment were identified and counted using 

a custom Perl script (the same approach was applied to the isolate genome data as well). 

Second, by directly assessing homopolymer error rate against reference genomes from 

GenBank that represented close relatives (average amino acid identity >70%) of the 

microorganisms sampled in the lake metagenome. To select appropriate genomes, we 

first identified the putative phylogenetic affiliation of each assembled contig (genus level) 

of the Lanier.454 and Lanier.Illumina datasets and ranked genera in terms of their 

abundance. Abundance was determined based on the number and coverage of the contigs, 

as described elsewhere (17). Six genomes that represented abundant genera in the lake 

metagenome were identified this way. The genomes were: Candidatus Pelagibacter 
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ubique HTCC1062 (! -Proteobacteria), Opitutus terrae PB901 (Verrucomicrobia), 

Polaromonas sp. JS666 ("-Proteobacteria), Polynucleobacter necessarius STIR1 

("-Proteobacteria), Synechoccocus sp. RCC307 (Cyanobacteria), and Synechoccocus sp. 

PCC6803 (Cyanobacteria). The protein-coding sequences of these genomes were 

compared against their homologs from the two assemblies to determine homopolymer 

errors, as described above for direct comparisons between the two assemblies. In order to 

account for possible biases introduced by uneven genus abundance and provide 

statistically robust estimates, we employed a Jackknifing resampling method. We 

sampled 50% of the total homopolymers at random and estimated homolopolymer rate in 

this subset. The results reported represented averages from 100 iterations. A similar 

strategy based on reference genome sequences was used to identify and count non-

homopolymer-related, single-base errors. 

Analysis of isolate genome data 

 Assemblies of isolate genome sequences (closed or high-draft) were downloaded 

from the NCBI RefSeq database (called “reference assemblies” for convenience); raw 

Illumina and Roche 454 sequencing reads were available through the Joint Genome 

Institute (JGI, www.jgi.doe.gov). To compare the quality of Illumina vs. Roche 454 

contigs assembled from isolate genome data the following approach was followed: 

Illumina data for each genome was randomly sampled to form several technical replicate 

datasets, each of which provided about 100X coverage of the reference assembly, on 

average. Velvet was used to assemble each of these Illumina datasets with K-mer set at 

31. Newbler was used to assemble Roche 454 replicate datasets (about 20X coverage on 

average), using 50 bp minimal alignment length and 95% alignment identity. The amount 
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of Illumina and Roche 454 input sequence data was chosen so that the ratio of the two 

was similar to the ratio in the metagenomic analysis (i.e., 2.5 Gb Illumina reads versus 

500 Mb Roche 454 reads, or 5:1). Between 10 and 15 replicate datasets for each genome 

and each sequencing platform where analyzed; the exact number depended on the amount 

of total data available for each genome. Gene sequences from assembled contigs were 

extracted and ClustalW2 (27) was used to align the sequences against their orthologs 

from the reference assembly. The alignments were used to count frameshift errors, 

separately for each Illumina or Roche 454 dataset. We also measured the percent of the 

reference genome recovered in each assembly and the degree of chimerism of contigs as 

follows: A 500 bp window was used to slide through all assembled contig sequences 

longer than 500 bp with a step of 100 bp. This resulted in a set of 500 bp long sequence 

fragments, which were subsequently mapped onto the reference assembly using Blastn. 

The percent of the reference genome recovered by these fragments as a fraction of the 

total length of the reference assembly was calculated using a custom Perl script. Similarly, 

the reference assembly sequence was cut into 500 bp long fragments and mapped onto 

assembled contigs longer than 500 bp; the unmapped regions of latter contigs were 

identified as chimeric sequences and their total length (as a fraction of the total length of 

the contigs) represented the degree of chimerism for each dataset. Finally, we calculated 

the average single-base call error rate and gap opening error rate of individual reads of 

each dataset as follows: raw reads were trimmed using the same standards as described 

above and subsequently mapped onto the corresponding reference assembly from RefSeq. 

Base call errors and gap opening errors were identified as discrepancies between the read 

sequence and the reference assembly sequence using a custom Perl script. 
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Assessing the effect of assembly parameters 

 We used the isolate genome data to evaluate the effect of the parameters 

of the assembly on the quality of the contigs as follows: a series of assemblies were 

obtained for genomes of low (Arcobacter nitrofigilis, 28%), medium (Fibrobacter 

succinogenes, 48%), and high (Cellulomonas flavigena, 74%) G+C% content. For each 

genome, we varied the amount of sequences input to the assembly and the primary 

parameters of assembly (K-mer for SOAPdenovo and Velvet, and minimal alignment 

length for Newbler). Assemblies were obtained for each possible combination and the 

base call error and gap opening error of the resulting assemblies were determined as 

described for individual reads above. 



69

RESULTS 

Genetic diversity recovered in raw (not assembled) reads and assembled contigs 

We obtained a total of 513 Mbp (~450 bp long reads) and 3,640 Mbp (100 bp 

pair-ended reads) Roche 454 and Illumina sequence data, respectively, from the same 

community DNA sample. The sample represented mostly the prokaryotic fraction of a 

planktonic microbial community from a temperate freshwater lake (Lake Lanier, Atlanta, 

GA); the complexity of the community sampled (in terms of species richness and 

evenness) was estimated to be comparable to that of surface oceanic communities, but 

lower than that of soil communities (17). For convenience, we called the two sequence 

data sets Lanier.Illumina and Lanier.454, respectively. We applied widely used protocols 

to assemble both sets of reads (see Material and Methods for details), which substantially 

collapsed the datasets into 57 Mbp and 46 Mbp of total unique sequences, respectively; 

57.7% and 49.5% of the total reads in each dataset were singletons (i.e., remained 

unassembled), respectively. For this analysis, we considered only contigs longer than 500 

bp because shorter contigs were usually characterized by low coverage and thus, were 

error-prone (Figure 3.2A, inset; and in (24)). We found that about 90% of the Roche 454 

unique contig sequences overlapped with Illumina contig sequences (Figure 3.1C). It is 

also possible that the remaining ~10% of the contigs might had been associated with the 

community DNA of the original sample not splitting perfectly in half in the two aliquots 

sequenced and the fact that the diversity in the sample was not saturated by sequencing 

(e.g., estimates based on rarefaction curves indicated that we sampled about 80-85% of 

the total diversity in the Illumina data). Consistent with the results based on assembled 

contigs, we obtained ~90% of overlapping sequences (~80% when the overlapping 
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sequences were expressed as a fraction of the total Illumina dataset) between the two 

datasets when we performed a similar analysis using all raw (not assembled) reads 

(Figure 3.1A). These results revealed that, in general, the two platforms sampled the 

same fraction of the total diversity in the sample. We also estimated the abundance of 

each contig shared between the two assemblies by counting the number of reads 

composing the contig, which can be taken as a proxy of the abundance of the 

corresponding DNA sequence in the sample (28). We found a strong linear correlation (r2 

> 0.99) between the Roche 454 and Illumina data with this respect (Figure 3.1D). 

Therefore, the two platforms provided comparable in-situ abundances for the same genes 

or genomes. 
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Figure 3.1. Genetic diversity and gene abundance in Roche 454 vs. Illumina data. (A) Venn 

diagram showing the extent of overlapping and platform-specific raw reads between the 

Lanier.454 and Lanier.Illumina datasets (without assembly). (B) Protein sequences annotated on 

raw (not assembled) reads matched genes in the reference assembly more frequently for the 

Roche 454 than the Illumina data. Conversely, protein sequences annotated on Illumina reads 

more frequently matched to the wrong protein sequence in the refernce assembly (mismatched 

genes) or did not match any reference gene (unmatched genes). (C) Assemblies were obtained 

from 502 Mbp of Roche 454 and 2,460 Mbp of Illumina data using established protocols. Venn 

diagram showing the extent of overlapping and platform-specific sequences of assembled contigs 

longer than 500bp. (D) Number of Roche 454 (x axis) and Illumina (y axis) reads mapping on the 

same contig shared between the two assemblies. 
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Illumina-specific unique contig sequences (16 Mbp) were more than three times 

as many as the Roche 454-specific ones (5 Mbp), and these additional contigs were 

attributed to the larger Illumina dataset rather than sequencing artifacts or errors. For 

instance, analysis of the assemblies of isolate genomes that were sequenced using both 

platforms (see also below), revealed that the extent of chimeric contigs, i.e., contigs that 

contained contaminating or in-vitro generated sequences, in the Illumina (or the Roche 

454) assemblies was small, i.e., less than 0.2% of the total length of the assembled 

contigs, on average. Although low coverage contigs (i.e., 1 to 5X) are likely to contain a 

higher fraction of chimeric sequences than 0.2% according to our previous study (24) 

such contigs were rare in the results reported above, which included only contigs longer 

than 500 bp that showed, on average, 10X coverage or higher (only about 3% of the 

contigs showed less than 5X coveage; Figure 3.2A, inset). Illumina contigs were 

generally longer than Roche 454 contigs, i.e., the assembly N50 (the contig length that 

50% of the entire assembly is contained in contigs no shorter than this length), was 1.6 

Kb versus 1.2 Kb, respectively. Even when only a fraction of the total Illumina dataset 

was used in the analysis, which was comparable to the size of the Roche 454 dataset (i.e., 

500 Mbp), the derived Illumina assemblies were comparable to the Roche 454 ones (e.g., 

N50 values were 990 bp for Illumina and 1193 bp for Roche 454, respectively; Figure 

3.2B).  
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Figure 3.2. Average length and sequence accuracy comparisons of the Roche 454 and 

Illumina assembled contigs. (A) Length and coverage distribution of the contigs assembled from 

the Lanier.Illumina dataset. Note that contigs shorter than 500bp (red) were numerically more 

abundant than longer contigs (green) but were characterized by substantially lower coverage 

(inset). (B) Graph shows the comparison of the contig length of three assemblies plotted against 

the N statistic of the assembly [for instance, N40 (x axis) is equal to about 1 kbp (y axis), which 

means that (100-40=60) % of the entire assembly is contained in contigs no shorter than 1 Kbp]. 

Due to frameshifts caused primarily by homopolymer-associated errors in the derived consensus 

sequence of the contigs, genes from Roche 454 assembly had fewer complete matches in the NR 

database relatively to their Illumina counterparts (inset; results are based on a total of 72,709 gene 

sequences annotated on contigs that were shared between the two assemblies and were longer 

than 500bp). 
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Sequencing errors in assembled contigs 

 We evaluated the types and frequency of errors in assembled contigs from 

metagenomic data using both a comparative and a reference genome approach. In the 

former approach, we examined protein-coding sequences recovered in contigs longer 

than 500 bp that were shared between the Lanier.454 and Lanier.Illumina assemblies. We 

identified 0.4 million homopolymers (three identical consecutive nucleotide bases or 

more), 14 thousand of these (i.e., 3.3% of the total) disagreed on length between the two 

assemblies and resulted in alternative amino acid sequences for about 7% of the total 

72,709 gene sequences evaluated. Among the latter genes, Roche 454 data appeared to 

have the wrong (artificial) sequence more often than Illumina data. For instance, 

searching all genes shared between the two assemblies against NCBI’s Non Redundant 

(NR) protein database (Blastx) returned more complete matches with the Illumina than 

the Roche 454 data, regardless of the identity and e-value threshold used (14% more on 

average; Figure 3.2B, inset). These results were attributable to a higher number of 

(artificial) frameshifts, caused by homopolymer-associated or single base call errors, 

present in the Roche 454 versus the Illumina assembled sequences.  

In the reference genome approach, genes annotated in Lanier.454 and 

Lanier.Illumina contigs were compared against their orthologs in publicly available 

genomes, and homopolymer errors were identified assuming the latter sequences 

contained no errors. We found that homopolymer errors affected 2.13% to 2.78% and 

0.32% to 1.02% of the total genes evaluated for the Roche 454 and Illumina data, 

respectively (range was estimated from 100 replicates using Jackknife resampling), 

despite the fact that sequencing error in the raw reads of the two platforms was 
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comparable (~0.5% in our hands). These percentages were comparable to that reported 

above based on the comparative method (i.e., 3.3% of homopolymers disagreed between 

the two datasets, which includes both Roche 454- and Illumina-specific homopolymer 

errors). A closer investigation revealed that Roche 454 homopolymer sequence errors 

were biased toward A’s and T’s over C’s and G’s, and the errors were more frequent in 

homopolymers of higher length (Figure. 3.3). This pattern that was not as pronounced in 

the Illumina data, revealing that Illumina errors were (more) randomly distributed relative 

to Roche 454 errors (see for instance Figure 4, which is based on isolate genome data).  

 

 

Figure 3.3. Characteristics of homopolymer-related sequence errors in Roche 454 

metagenome assembly. (A) A’s and T’s contribute significantly more homopolymer errors than 

C’s and G’s. The average G+C% content of the metagenome was 47.4%; thus, our results are not 

simply attributable to higher abundance of A’s and T’s in the metagenome. (B) Error rate (as a 
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percentage of the total genes evaluated, y axis) increases as homopolymer length increases (x 

axis). 

 

Single-base sequencing errors increased by about 2%, on average, for both 

platforms when non-homopolymer-associated errors were also taken into account. The 

frequency of single-base errors decreased with higher coverage of the corresponding 

contigs, i.e., the frequency dropped by about ten fold in contigs with 20X coverage 

relative to contigs with 2X coverage, and reached a plateau at about 20X coverage, i.e., 

we did not observed a significant difference in error frequency in contigs with higher than 

20X coverage (see also our previous study, which defines standards on length and 

coverage for identifying error-prone Illumina contigs (24)). Given that the single-base 

error of individual reads was comparable between Lanier.454 and Lanier.Illumina (~0.5 

%), our results reveal that the lower single-base error rate of Illumina contigs (i.e., ~3% 

vs. ~4.5% for Roche 454) is primarily due to the higher coverage obtained. Consistent 

with these interpretations, we found that the single-base error of Illumina contigs 

increased by about 0.07% when we reduced the average coverage of the Illumina contigs 

to the average coverage of the Roche 454 contigs (~8X). Obtaining, however, similar 

coverage to the Illumina data with the Roche 454 is economically unfavorable currently 

(see also Discussion below).  

We also found that the systematic single-base errors associated with GGC-motifs 

in Illumina data reported recently (16) represented only a minor fraction of the non-

homopolymer-associated errors (frequency estimated to 0.015% of total bases analyzed, 

which is consistent with the frequency reported in the original study). Hence, the great 
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majority of non-homopolymer-associated errors remain challenging to model and thus, 

correct. Finally, gene calling on individual reads (as opposed to assembled contigs) was 

found to be less error prone in Roche 454 reads relative to the Illumina reads, due mainly 

to the longer read length. For instance, protein sequences called on Roche 454 reads had 

more Blastp matches in reference genes from the Lanier.454 assembly compared to 

protein sequences from Illumina reads against the Illumina reference assembly by about 

10%, on average (Figure 3.1B). Thus, Roche 454 is advantageous with respect to gene 

calling when working with unassembled reads.  
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Figure 3.4. Roche 454 and Illumina GA II read sequence quality based on isolate genome 

data. Roche 454 sequencing quality is evaluated in panels A through D, which show: (A) base 

call error rate of individual reads (x-axis) for each genome evaluated (y-axis); (B) base call error 

rate (y-axis) plotted against the G+C% of the genome; (C) gap opening error rate of individual 

reads (x-axis) for each genome evaluated (y-axis); (D) gap opening error rate (y-axis) plotted 

against the G+C% of the genome. Illumina GA II sequencing quality is evaluated in panels E and 

F, which show: (E) base call error rate of individual reads plotted against the G+C% of the 

genome; and (F) gap opening error rate of individual reads plotted against the G+C% of the 

genome. Panels A and C represent the variation observed in reads from different (replicate) 

datasets of the same genome; red bars represent the median, the upper and lower box boundaries 

represent the upper and lower quartiles, and the upper and lower whiskers represent the largest 

and smallest observations. All 2D plots (panels B, D, E, and F) represent the arithmetic average 

of the medians of each dataset for the same genome; Illumina medians were identical among 

replicate datasets; that’s why only one value is shown in panel E. The results show that Illumina 

sequence quality is affected less than that of Roche 454 by the G+C% content of the sequenced 

DNA (note the lower r-squared value and the slope in E). Thus, the results reported for Illumina 

based on the metagenome of Lake Lanier (47 G+C%) should be also applicable to metagenomes 

with different G+C% contents.

 

 

Analysis on isolate genome data 

To validate our findings from metagenomics, we performed similar comparative 

analyses based on eighteen isolate genomes that were sequenced by both Illumina and 
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Roche 454 and showed a range of genome sizes and G+C% content (Table 2.1). 

Consistent with the metagenomic observations, we found that Roche 454 assemblies from 

genome data contained a significantly higher portion of frameshift errors compared to 

Illumina assemblies from the same genome. Specifically, in genomes of about 50% 

G+C% content (similar to the G+C% of the Lake Lanier metagenome, 47%), Roche 454 

assemblies showed about 5% more frameshift errors than Illumina ones. This 

corroborated our estimated error rate in metagenomic data (i.e., Lanier.454 assembly was 

estimated to have 7% more frameshift sequences than Lanier.Illumina assembly, Figure 

3.2). Noticeably, due to the inherent biases of the Roche 454 sequencing approach to 

produce more frameshifts in A and T rich DNA (Figure 3.3), low G+C% genomes may 

have 20% or more genes with frameshift errors compared to Illumina, which is not 

affected as much by the G+C% of the sequenced DNA (Figure 3.4). These findings call 

for special attention in cases where the sequenced DNA (e.g., community or isolate 

genome) is of low G+C%. Further, the single-base sequence error and gap opening error 

of individual reads were typically higher for the Roche 454 reads compared to the 

Illumina ones by 0.5% (i.e., 99% vs. 99.5%) and a factor of about 10, respectively, and 

despite the fact that reads were trimmed based on the same quality standard prior to the 

analysis (Figure 3.4). Similar gap opening errors were observed for the metagenomic 

reads of the two platforms while single-base accuracy was comparable among the two 

platforms, 99.34% vs. 99.46% for the Roche 454 and Illumina metagenomic reads, 

respectively, as also noted above. The slightly higher single-base accuracy of Roche 454 

metagenomic reads relative to the average of the isolate genome reads is presumably due 

to the use of the latest, optimized Roche 454 protocol in the former case and slight 
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differences in the performance of the sequencers used. Finally, in all genomes analyzed, 

Illumina assemblies consistently recovered a larger percentage of the reference genome 

than Roche 454 assemblies (two tailed Whitney-Mann U test p-value=0.014; Figure 3.5), 

which was also consistent with our observations on the assembly N50 values of the 

metagenomes (Figure 3.2).  

 It should be mentioned that the RefSeq reference genome sequences (complete or 

high draft) used in our reference genome approach to detect errors in assembled contigs 

or genes were not independent of the Illumina and Roche 454 data used in our analysis 

but typically represented the consensus sequence assembled using all Illumina and Roche 

454 data available for each genome (hybrid assembly). To eliminate the possibility that 

our results were biased by the selection of reference genomes, we used the reference 

assembly of Fibrobacter succinogenes subsp. succinogenes S85, which was sequenced 

independently by the Institute for Genomic Research (TIGR GenBank accession: 

CP002158.1; JGI GenBank accession: CP001792.1). We aligned the assembled contigs 

from 9 Illumina and 8 Roche 454 assemblies from JGI data for the same genome against 

the TIGR reference assembly and calculated base call error rate and gap open error rate 

as described above for JGI genomes. Although the use of the TIGR reference assembly 

resulted in slightly higher number of sequence errors for both Illumina and Roche 454 

data, Illumina consistently showed a smaller number of sequencing errors and the relative 

error rate between the two platforms was similar, independent of the reference genome 

used (Figure 3.6). The higher sequence error rate observed for the TIGR reference 

genome might be due to the different strain of F. succinogenes sequenced or differences 

in the sequencing platform or the assembly protocol used between JGI and TIGR. Finally, 
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our evaluations showed that the choices of parameters and amount of input sequence of 

the assembly did not have any dramatic effect on the quality of the resulting contigs for 

both Illumina and Roche 454 assemblies (Figure 3.7); thus, the assembly step did not 

affect substantially downstream analyses and our conclusions. 
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Table 3.1. Isolate genomes used in the analysis. 

Species RefSeq Genome 
size 

(Mbp)

GC 
(%)

% 
coding

Protein 
coding 
genes

Size of 
454 
data 

(Mbp) 

Size of 
Illumina 

data (Mbp) 

Acetohalobium 
arabaticum DSM 5501

NC_014378 2.47 36 85 2,282 603 2,982 

Arcanobacterium 
haemolyticum DSM 
20595

NC_014248 1.99 53 86 1,731 252 2,871 

Archaeoglobus 
profundus DSM 5631

NC_013741 1.56 42 91 1,819 600 4,479 

Arcobacter nitrofigilis 
DSM 7299

NC_014166 3.19 28 92 3,126 504 6,087 

Bacillus tusciae DSM 
2912

NC_014098 3.38 59 84 3,150 124 2,285 

Brachyspira murdochii 
DSM 12563

NC_014150 3.24 27 85 2,809 331 5,115 

Cellulomona flavigena 
DSM 20109

NC_014151 4.12 74 90 3,678 563 3,394 

Chitinophaga pinensis 
DSM 2588

NC_013132 9.13 45 88 7,192 161 3,769 

Conexibacter woesei 
DSM 14684

NC_013739 6.36 72 93 5,914 303 2,578 

Fibrobacter 
succinogenes substr. 
succinogenes S85

NC_013410 3.84 48 90 3,085 769 3,275 

Haloterrigena 
turkmenica DSM 5511

NC_013743 3.89 65 84 3,739 205 2,581 

Ignisphaera aggregans 
DSM 17230

NC_014471 1.88 35 86 1,930 258 2,739 

NC_014632 2.95 34 85 1,889Ilyobacter polytropus 
DSM 2926 NC_014633 

(plasmid)
0.96 34 83 992

210 5,854 

Olsenella uli DSM 7084 NC_014364 2.05 64 86 1,739 248 3,542 
Segniliparus rotundus 
DSM 44985

NC_014168 3.16 66 90 3,006 245 3,170 

Spirochaeta 
smaragdinae DSM 
11293

NC_014363 4.63 48 92 4,219 509 3,306 

Streptosporangium 
roseum DSM 43021

NC_013595 10.34 70 85 8,945 373 2,506 

Thermosphaera 
aggregans DSM 11486

NC_014160 1.32 46 90 1,387 243 3,181 
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Figure 3.5. Percentage of reference genome recovered by Illumina (yellow) and Roche 454 

(green) assemblies. Graph shows the variation observed in assemblies from different (replicate) 

datasets of the same genome; red bars represent the median, the upper and lower box boundaries 

represent the upper and lower quartiles, and the upper and lower whiskers represent the largest 

and smallest observations. Note that Illumina assemblies recover a significantly larger fraction of 

the reference genome than Roche 454 assemblies on average (two tailed Whitney-Mann U test p-

value = 0.014), which is consistent with the results from the metagenomes (Figure 3.2). The 

results for the isolate genomes were based on Illumina input reads that were about 5 times more 
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compared to Roche 454 input reads to provide a ratio that was similar to the ratio in the 

metagenomic comparisons (5:1). 

 

 

 

 

Figure 3.6. Comparisons of Illumina and Roche 454 assemblies against an independently 

sequenced reference genome. Nine Illumina and eight Roche 454 assemblies from independent 

replicate datasets of the Fibrobacter succinogenes subsp. succinogenes S85 genome sequenced at 

JGI were compared against the reference assembly from the JGI and TIGR genome projects of 

Fibrobacter succinogenes subsp. succinogenes S85. Graphs show the calculated base call error 

rate (A) and gap open error rate (B) for each comparison (figure key). Red bars represent the 

median, the upper and lower box boundaries represent the upper and lower quartiles, and the 

upper and lower whiskers represent the largest and smallest observations. 
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Figure 3.7. Dependence of the quality of assembled contigs on the parameters of the 

Illumina assembly. Assembly parameters (primary and secondary x-axes) were evaluated for 

low (Arcobacter nitrofigilis, 28%; left), medium (Fibrobacter succinogenes, 48%; middle), and 

high (Cellulomonas flavigena, 74%; right) G+C% genomes. For each genome, a 2D-grid 

assembly was performed, varying the size of input sequences (20X, 30X, 40X, …, 130X) and the 

K-mer (21, 23, 25, …, 37) of each of the assemblers used (SOAPdenovo and Velvet). The quality 

of the resulted contigs was examined in terms of base call error (A) and gap opening error (B), 

which revealed that the combination of the parameters of the assembly did not have a dramatic 

effect on the quality of the contigs (see projected contours on x-z and y-z space). Similarly for the 

Roche 454 data, a 2D-grid assembly was performed, varying the size of input sequences (20X, 

30X, 40X, …, 130X) and the minimal aligned length to merge contigs or reads (30bp, 40bp, …, 

100bp) for Newbler. The quality of the resulted contigs was examined in terms of base call error 

(C) and gap opening error (D), which revealed that the combination of the parameters of the 

assembly did not have a dramatic effect on the quality of the contigs except in the extreme values 

of the minimal aligned length (see projected contours on x-z and y-z space), which were avoided 

in our direct comparisons of Illumina versus Roche 454 assemblies. 
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DISCUSSION 

Here we assessed the advantages and limitations of the Roche 454 and Illumina 

platforms for metagenomic studies based on the sequencing of the same community DNA 

sample. The two platforms agreed on over 90% of the assembled contigs and 80% of the 

unassembled reads as well as on the estimated gene and genome abundance in the sample 

(Figure 3.1). These findings suggest that NGS technologies represent reliable means for 

assessing quantitatively genetic diversity within natural communities. Moreover, Illumina 

yielded longer and more reliable contigs (e.g., fewer truncated genes due to frameshifts) 

despite the substantially shorter read length relatively to Roche 454 and the comparable 

average sequencing error in the raw reads of the two platforms (~0.5% in our hands; 

Figure 3.2B). Given also the cost savings (e.g., we obtained the Illumina data for about 

one fourth of the cost of the Roche 454 data), Illumina, and short-read sequencing in 

general, may represent appropriate methods for metagenomic studies. We also assessed 

quantitatively the errors in the consensus sequences of the derived assemblies. Roche 454 

recovered 14% fewer complete genes than Illumina (Figure 3.2B, inset) and this was 

primarily attributable to a higher sequencing error rate associated with A- and T-rich 

homopolymers (Figure 3.3), which is in agreement with previous results (5, 11). These 

errors were not observed in the Illumina data, presumably due to the high sequence 

coverage that greatly facilitated the resolution of homopolymer ambiguities and less 

pronounced sequencing biases of Illumina (Figure 3.4). Nonetheless, about 1% of the 

total genes recovered in the Illumina assembly contained homopolymer-associated 

sequencing errors and this number increased to about 3% when non-homopolymer-

associated errors were also taken into account (for contigs showing 10X coverage, on 

average). These results reveal the type and frequency of sequencing errors to expect when 
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performing NGS-enabled metagenomic studies. Although Illumina provided, in general, 

at least equivalent assemblies with Roche 454, there may be cases where Illumina might 

be inferior to Roche 454. For example, Roche 454 sequencing may be advantageous for 

resolving sequences with repetitive structures or palindromes or for metagenomic 

analysis based on unassembled reads, given the substantially longer read length. 

Although our metagenomic analysis is based on a single community sample, we 

believe it is robust and informative. Our previous study (17) as well as those of others (29, 

30) reported high reproducibility of Illumina-based and 454-based DNA sequencing of 

the same community sample, respectively. More importantly, most of our findings from 

metagenomic data were reproducible in data from isolate genomes, which were 

sequenced by both sequencing platforms and showed a range of G+C% content (Figures 

3.4-6 and Table 3.1). Simulations with the isolate genome data also revealed that our 

conclusions were not affected substantially by the assembly protocols and amount of 

input data used (Figure 3.7). Some of our results (e.g., assembly N50 comparisons, 

Figure 3.2) should be independent of the NGS platform considered and be broadly 

applicable to short-read sequencing as well. Lastly, our preliminary evaluation indicates 

that the latest Illumina sequencer (Hi-Seq 2000) performs similar to Illumina GA-II in 

terms of read length and quality; hence, our results should be applicable to this sequencer 

as well. 

 NGS platforms continue to improve, while new major advancements in 

sequencing chemistries are on the horizon (31), creating a lot of excitement among 

microbial ecologists and engineers. The results presented here revealed the errors and 

limitations as well as the strengths in current metagenomics practice, and should 
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constitute useful guidelines for experiment design and analysis. Our work also provides a 

methodology for evaluating and comparing metagenomic data from NGS platforms. 
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CHAPTER 4 

Individual genome assembly from complex community 

short-read metagenomic datasets 

      Parts of this chapter have been published in the article: C. Luo, D. Tsementzi, N. C. 

Kyrpides, and K. T. Konstantinidis. Individual genome assembly from complex 

community short-read metagenomic datasets. 2012, (6): 898-901. 
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INTRODUCTION 

Next generation sequencing (NGS) technologies such as the Roche 454 and the 

Illumina/Solexa (1, 2) are revolutionizing the study of natural microbial communities (3-

5). A major objective of metagenomic studies is to recover the genome sequence, 

complete or draft, of a genotype or species from a sample. Short-read (e.g., 50-100 bp) 

NGS technologies are becoming increasingly popular due to their high throughput, but it 

remains unclear whether these technologies can be used to robustly recover individual 

genomes from complex communities. Several recent studies have attempted to evaluate 

the sequencing errors and artifacts specific to each NGS platform (6-8); however, most of 

these studies have not assessed assembly quality and/or have employed simple DNA 

samples (e.g., single viral genomes) and thus, the relevance of their results for complex 

community samples remains to be evaluated. Moreover, the presence of closely related 

species in the sample may also complicate the assembly of a single genotype. 
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MATERIALS AND METHODS 

Sampling, DNA extraction, and sequencing 

Samples were collected from Lake Lanier, Atlanta, GA, below the Browns Bridge in August 

2009. A horizontal sampler (Wildco Instruments) was used to collect samples of planktonic 

microbial communities at 5m depth. A total of 10 L of water was pre filtered through ~1.6 

µm GF/A filters (Whatman) and cells were collected on 0.22 µm Sterivex filters (Millipore) 

using a peristaltic pump. DNA was extracted from the Sterivex as previously described (3), 

with minor modifications. Briefly, lysis buffer was added to the filters (50 mM Tris-HCl, 40 

mM EDTA, and 0.75 M sucrose, 1mg/ml lysozyme, 150 mg/ml RNAse), followed by 30 min 

incubation at 37 oC. Lysates were further incubated at 55 oC for 2h after addition of 1% SDS 

and 10 mg/ml proteinase K. DNA extraction was performed with phenol and chloroform, and 

DNA was precipitated with ethanol at -20 oC overnight. DNA pellets were washed with 70% 

ethanol, and diluted in TE buffer. DNA extracted from four sterivex filters was combined and 

the resulting sample was sequenced with the llumina GA II (100 bp pair-ended reads) at the 

Emory University’s Genomics Facility. For convenience, we called this dataset 

Lanier.Illumina. The insert size of this Illumina library was 150 bp (i.e., the two sister reads 

overlapped by ~50 bp). We also sequenced and evaluated larger insert size Illumina libraries 

from the Lake Lanier planktonic community, up to ~300 bp; we obtained similar results to 

the ones reported for the Lanier.Illumina dataset (data not shown but available from the 

authors upon request). The soil metagenome included in this study originated from a bulk 

soil sample from Norman (Oklahoma, USA), which was processed using the PowerSoil® 

DNA isolation kit from MO-BIO (Carlsbad, USA) and sequenced using a similar strategy 

and to the same coverage (~2.5 Gb of data) as the Lake Lanier sample. Its detailed analysis 
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will be presented elsewhere (data available from the authors upon request). The 

bioinformatic analyses described below for the Lanier.Illumina dataset were also applied to 

the soil dataset, when appropriate. The data of the cow rumen and human metagenomes (9, 

10) were downloaded from NCBI (accession number: SRR094166) and EBI (accession 

number: ERR011333), respectively. 

 

Assembly and gene calling 

 Lanier.Illumina reads were trimmed at both 5’ and 3’ ends using a Phred quality score 

cut-off of 20. Sequences shorter than 50 bp (after trimming) were discarded. The 

SOAPdenovo (11) and Velvet (12) de novo assemblers were used to pre-assemble short reads 

into contigs using different kmers (usually ranging from 21 to 31). We also evaluated other 

popular assemblers, such as ALLPATHS2 (13) and ABySS (14). The combination of Velvet 

and SOAPdenovo was chosen because of its overall higher accuracy, computational 

efficiency, and complementarities of the two assemblers. We performed six independent 

assemblies, using K=21, 25, 29 for the three SOAPdenovo runs and K=23, 27, 31 for the 

three Velvet runs. The resulting contigs were merged into one dataset, and Newbler (version 

2.0) was used to assemble this dataset into longer contigs, with parameters set at 100 bp for 

overlap length and 95% for nucleotide identity. This hybrid protocol provided significantly 

longer contigs, of comparable or higher accuracy with the contigs of Velvet or SOAPdenovo 

for metagenome (Figure 4.1) and isolate genome data (data not shown). Different 

combinations of kmers, e.g., K=25, 31, 35 for Velvet, and K=29, 33, 37 for SOAPdenovo, 

did not provide substantially different assemblies with the hybrid protocol (data not shown).  
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 Protein-coding genes encoded in the assembled contigs were identified by the 

MetaGene pipeline (15). The six Escherichia sp. genomes (Table 4.1) used in the in silico 

simulations were sequenced previously using the Illumina GA II platform at ~600X coverage 

(76 !  76 bp pair-ended reads). The reads for each genome were first assembled into contigs 

by Velvet, using one fifth of the total data (i.e., ~100X coverage). The remaining reads 

(~500X coverage) were subsequently mapped onto the resulting scaffold to further improve 

base calling, using a consensus strategy (>80% agreement among overlapping reads). The 

assembled genomes were annotated using GeneMark (16). The genome sequences of the six 

Escherichia sp. strains have been described in more detail elsewhere (17).  

 

Single and multiple genotype assembly simulations 

 To select appropriate reference genomes with abundant relatives in the Lake Lanier 

metagenome, Lanier.Illumina reads were searched against all fully sequenced genomes from 

NCBI (as of March, 2011) using blastn, and were assigned to the genus level based on best 

matches (minimum cut-off for a match: at least 50 bp alignment length and 85% nucleotide 

identity). Representative genomes of the genera that recruited the highest number of reads 

(Figure 4.4) were used as reference genomes. Reads of the reference genome(s) (Illumina 

reads for Escherichia sp. strains, and in silico generated reads for Synechococcus RCC307 

and Burkholderia ambifaria MC40-6) were merged with (spiked in) the Lanier.Illumina 

dataset at different abundances (1X to 35X coverage for single genotype test, 5X to 35X for 

multiple genotype test) to form a series of in silico generated metagenomes of different 

abundance of the reference (target) genotype(s). Reads for Synechococcus RCC307 

(GenBank accession: NC_009482) and B. ambifaria MC40-6 (GenBank accessions: 
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NC_010551, NC_010552 and NC_010557, the plasmid sequence was excluded) were 

generated in silico using a custom Perl script that simulated real Illumina data (i.e., the script 

reproduced the error rates on both 3’- and 5’-end, read quality, insertion length, etc). The 

same assembly protocol as described above for community metagenome was employed to 

assemble each in silico generated (mixed) metagenome. In order to eliminate possible biases 

introduced by different read length (100 bp vs. 76 bp for the Lake.Illumina and genome data, 

respectively), Lanier.Illumina reads were trimmed to 76 bp prior to the assembly. 

Subsequently, the assembled contigs were searched against the reference genome sequence to 

identify parts of the genome that were recovered in the assembly of the mixed metagenome. 

A sequence (e.g., a gene or a contig) was defined as “recovered” if it shared at least 80% of 

its length and 95% (for single genotype tests) or 90% nucleotide identity (for multiple 

genotype tests) with the corresponding sequence from the reference genome. The 80% length 

cut-off was employed to ensure that the same gene or contig, as opposed to just a conserved 

domain or a fragment of it, was recovered. The 95% identity cut-off (single genotype tests) 

was used to accommodate the maximum sequencing error observed in raw reads of an isolate 

genome (about 5%) and the sequence heterogeneity within populations frequently observed 

in nature (18); the 90% identity cut-off (multiple genotype simulations) was used to 

accommodate the sequence diversity among the genomes used (average genome-aggregate 

average nucleotide identity was about 95%) and the sequencing error. Other cut-offs are not 

as appropriate as the ones used above and were not evaluated. This way, non-target 

sequences, i.e., sequences that did not match or only matched the reference genome at a 

lower identity and thus, did not belong to the reference but were found in the same contig 

with target sequences (chimeric contigs), were also identified. Nucleotide mismatches and 
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frameshifts between recovered (target) gene sequences and their orthologous gene sequences 

of the reference genome were detected based on ClustalW2 alignments and counted using 

custom Perl scripts. 
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RESULTS AND DISCUSSION 

Assembling genomes from metagenomes 

To provide quantitative insights into the issues above, we generated a series of in 

silico metagenomes by spiking reference genome reads into a background metagenome 

(Lanier.Illumina) and compared the derived assembly against the assembly of the 

reference genome from the genome reads alone (Figure 4.1). For this analysis, we used 

the Escherichia sp. strain TW10509, whose genome sequence we described previously 

(19) and which has no close relatives in the Lake Lanier sample (Figure 4.2), as 

reference. The Lanier.Illumina dataset was described in detail elsewhere (20), originated 

from a freshwater planktonic community sample from Lake Lanier, Atlanta, GA, and 

represents a total of 3,640 Mbp sequence data (100 bp pair-ended reads; average G+C 

content ~50%) obtained using the Illumina GA-II sequencer. The community complexity 

in the sequenced sample (in terms of species richness and evenness) was comparable to 

that of previously characterized open ocean communities (20). 

 

 

Table 4.1. The Escherichia sp. strains used to construct the in silico generated metagenomes. 
The genome sequences of these strains were described previously (17). 
 

Strain Lineage Genome size (Mbp) GC% Strain source 
TW10509 Clade I 5.19 50.29 Human feces 
TW08933 E.albertii 4.51 49.74 Human feces 
TW09276 Clade III 4.47 50.69 Freshwater 
TW09231 Clade III 4.73 50.69 Freshwater 
TW14182 Clade IV 4.68 50.43 Freshwater 
TW15818 E. albertii 4.73 49.57 Poultry feces 
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Figure 4.1. Comparisons of assemblies obtained using Velvet, SOAPdenovo, and the hybrid 

protocol developed in this study. An in silico synthetic metagenome was created from 100 

randomly selected, fully sequenced bacterial genomes available in NCBI (plasmids excluded), 

using a custom Perl script (available from the authors upon request). The metagenome was 

composed of 76 bp pair-ended reads, which were characterized by 0.5% sequencing error and an 

average 300 bp long insert (insert sizes were normally distributed around the average with a 

standard deviation of 50 bp), to simulate a real metagenome. Velvet and SOAPdenovo were 

individually employed to assemble this metagenome with K=19, 23, 27, 31, 35 and K=21, 25, 29, 

33, 37, respectively (kmer sets were as shown on the x-axis of Panel A). A hybrid protocol was 

also used to assemble the resulting contigs from three Velvet and three SOAPdenovo individual 

runs with different kmer as described in the Materials and Methods section. N50 of Velvet and 

SOAPdenovo assemblies varied, depending on the kmer sizes (Panel A; N50 values were 

grouped by kmer size); the corresponding assemblies of the hybrid protocol showed much smaller 

variation (data not shown). The hybrid protocol yielded substantially more assembled sequences 

compared to the Velvet and SOAPdenovo assemblies (B), and longer contigs (C), with 
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comparable single base call error (D), fraction of non-targeted (chimeric) sequence (E), and 

frameshift error frequency (F). Red bars represent the median, the upper and lower box 

boundaries represent the upper and lower quartiles, and the upper and lower whiskers represent 

the largest and smallest observations. Outliers are represented by red asterisks. 

 

 

 

 
 

Fig. 4.2.  The reference genome (TW10509) used in assembly simulations has no close 

relatives in the Lanier.Illumina (A) or the soil metagenome (B). Blastn was used to search all 

reads of the two metagenomes against the reference genome. Only matches with nucleotide 

identity higher than 75% are shown (~48,000 reads or ~0.2% of all total reads for the 

Lanier.Illumina dataset). The coverage plot was constructed as described previously (18) and 

clearly shows that there are no close relatives to TW10509 in the Lanier.Illumina or soil 

metagenomes (denoted by the shortage of reads with higher than 90% identity to the reference 

sequence). Even the few reads showing 80-90% identity to the reference genome encode highly 

conserved genes such as rRNA operon genes and thus, presumably originate from non-E. coli 

organisms. 
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We varied the reference genome abundance, measured by the average coverage of 

the genome in the final in-silico generated metagenome, more than thirty fold (i.e., 1X to 

35X). As expected, the fraction of the reference genome recovered increased 

exponentially in the low coverage range and reached a plateau at about 20X coverage 

(Figure 4.3D). We also observed that greater than 20X coverage did not improve the 

recovery of the target genome substantially; thus, obtaining greater coverage is not 

recommended (unless a different library insert size is used for closing purposes). 

Surprisingly, more than 10% of the total assembled contigs that belonged to the reference 

genome (i.e., contained target sequences) were contaminated by non-target sequences at 

low coverage (1X), and this portion decreased to ~0.2% when coverage exceeded 15X 

(Figure 4.3C). Similar results were obtained when the reference genome represented an 

organism with close relatives in Lanier.Illumina (Figs. 4.4-9), albeit the sequences of the 

relatives generally had a positive effect on the quality of the derived assemblies (Fig. 4.6-

7). We also quantitatively assessed the errors in the consensus sequences of the derived 

assemblies. About 1% of the total genes recovered in the Illumina assembly at 15X 

coverage contained homopolymer-associated sequencing errors (i.e., three or more 

consecutive identical DNA bases), resulting in truncated protein sequences or 

frameshifts. This number increased to about 3% when non-homopolymer-associated 

errors were also taken into account. Preliminary analyses revealed that most of the 

findings reported above were also applicable to a more complex soil metagenome, 

originating from a temperate (bulk) soil sample (Figure. 4.3B-C), although the average 

length of the assembled contigs of the reference genome was consistently shorter in the 
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soil spiked-in dataset (Fig. 4.3A) due to the higher complexity of the soil community 

(Fig. 4.10). 

Table 4.2. Summary statistics of individual genome assembly from the Lake Lanier 

metagenome. The values shown are based on the single genotype spike in experiments described 

in the main text and should be applicable to other metagenomes of similar complexity to that of 

the Lake Lanier one. 

Quality Target genotype abundance in the sample 

 5X 10X 15X 20X 

Genome recovery (%) ~50 ~90 >95 >95 
Gene recovery (%) ~80 ~90 >95 >95 
Base call error (%) 0.5 0.2 0.1 0.01 

Frameshift error (per gene, %) 3~5 1~2 0.5~1 <0.5 
Chimerism (in genes, %) ~5 1~2 1 <1 
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Figure 4.3. Sequence errors and artifacts in assembled contigs of a target genotype from a 

complex metagenome. The assembly of a reference genome (Escherichia sp. TW10509) based 

solely on its own reads (reference assembly) was compared to the assembly of the genome from the in 

silico metagenome, which was composed of Lanier.Illumina spiked in with reads of the reference 

genome. (A) Comparison of N50, i.e., the contig length that 50% of the entire assembly is contained 

in contigs no shorter than this length, between the latter and the reference assemblies over different 

reference genome coverage (abundance). (B) Single base call error rate decreased dramatically as 

reference genome abundance in the metagenome increased and reached a plateau at about 20X 

coverage. (C) At low coverage, contigs from the metagenome assembly had a substantial portion of 

non-targeted (chimeric) sequences. (D) Frequency of frameshift errors as a function of the reference 

genome abundance. Results from similar analyses using a higher-complexity (Figure 4.11) soil 

metagenome of similar size to the Lanier.Illumina metagenome are also shown for comparison.  
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Figure 4.4. Bacterial genera present in Lake Lanier metagenome (A) and relatedness to 

Synechococcus and Burkholderia reference genomes (B). (Panel A) The Illumina reads were 

assigned to a genus based on blastn best match searches against all available fully sequenced 
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genomes (as of March, 2011). (Panel B) Assembled contigs of the two most abundant genera, 

Burkholderia and Synechococcus, were selected and the corresponding reference genomes (B. 

ambifaria MC40-6 and Synechococcus sp. RCC307, respectively) were fragmented into 100 bp 

pieces using sliding windows with a 10 bp step width. These 100 bp fragments were mapped on 

the contigs. The distributions of the nucleotide identities between the reference genome fragments 

and the contigs reveal that the reference genomes used in this study have relatives of varied 

genetic relatedness in the metagenome. Escherichia sp. TW10509 has no relatives (Figure 4.2); 

B. ambifaria MC40-6 has moderately related relatives (~75% ANI); and Synechococcus sp. 

RCC307 has close relatives (~85% ANI). 

 

 

 

 

 
Figure 4.5. Recovery of the reference genome sequence (A) and number of genes (B) as a 

function of the abundance of the genome in the metagenome. The fraction of the reference 

genome sequence and number of gene sequences assembled from the in silico generated (spiked-

in) metagenomes increased exponentially at low genome coverage and reached a plateau at about 

15X coverage, for all three reference genomes used in the analysis. Horizontal dashed lines 

represent the total number of genes in each reference genome (panel B). The small difference in 

the slope between Escherichia sp. TW10509 and B. ambifaria MC40-6 or Synechococcus sp. 
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RCC307 is probably due to real Illumina data (Escherichia sp. TW10509) vs. in-silico generated 

(simulated) Illumina data (B. ambifaria MC40-6 or Synechococcus sp. RCC307). 

 

 

 

 
 

Figure 4.6. Assembly N50 of Synechococcus sp. RCC307 (A) and Burkholderia ambifaria 

MC40-6 (B) genomes as a function of coverage in metagenomic vs. genomic data. Note that 

assembly N50 is always larger in genome data alone (reference assembly) than genome data 

spiked in the Lanier.Illumina metagenome (metagenome assembly) except in the low coverage 

range, where N50 of the metagenome is larger due to the reads of the close relatives present in the 

metagenome. As coverage increases, however, the reads of the reference genome spiked-in the 

metagenome outweigh the reads of the natural population in the assembled consensus sequence 

and thus, N50 drops temporarily (5-10X coverage range) before it starts increasing steadily due to 

the higher abundance of spiked-in reference reads. This pattern at low coverage was not observed 

for the Escherichia sp. TW10509 reference genome (Figure 4.3A) due to lack of relatives in the 

metagenome.
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Analysis of frameshift error 

 We also observed a non-monotonic relationship between frameshift frequency 

and the level of coverage of the target genome (Figure 4.4D and Figure 4.7). A possible 

explanation for this observation is that at low coverage, easy-to-assemble genes were 

recovered first, with low frameshift error; subsequently, difficult-to-assemble genes (e.g., 

due to repetitive sequence or conflicting reads covering the genes) were recovered. The 

latter genes tended to contribute more frameshifts than the average, resulting in a 

temporal increase in frameshift error as coverage increased. At higher coverage, all genes 

were covered by many reads, so the consensus sequence had fewer frameshifts overall. 

Such a non-monotonic curve was not observed for Synechococcus RCC307 and 

Burkholderia ambifaria MC40-6, presumably due to the additional coverage provided by 

the reads of relatives in the metagenome (equivalent to ~5X coverage). Therefore, if 

avoiding frameshifts is important, it is critical to obtain greater than 5X coverage of the 

target genome(s), which corresponded to the highest frequency of frameshifts in our 

study. 

 

Reference genomes with relatives in the metagenome 

In addition to evaluating genome assemblies from a complex metagenome using 

Escherichia sp. TW10509 genome sequence as a reference (Figure 4.3), which had no 

close relatives in the Lake Lanier sample, we analyzed reference genomes that had 

relatives in the Lake Lanier metagenome. We used Burkholderia ambifaria MC40-6 

(heterotrophic b-Proterobacterium, 7.64 Mb genome size) and Synechococcus sp. 

RCC307 (photosynthetic Cyanobacterium, 2.2 Mb genome size) whose relatives in the 

metagenome showed ~75% and ~85% ANI (average nucleotide identity) to the reference 
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genome, respectively (Figure 4.4). In both of the cases, more than 95% of the reference 

genome was recovered at about 20X coverage, similar to the results reported for 

Escherichia sp. TW10509 (e.g., Fig. S4), although the quality of the assemblies, assessed, 

for instance, by the frequency of frameshift errors, was noticeably better in the reference 

genomes with relatives in the sample (Fig. S5-S7). The latter results were presumably 

attributed to the additional sequences originating from the relatives present in the 

community metagenome, which were included in the calculation of the assembled 

consensus sequences. In other words, the consensus sequence had higher coverage in the 

case of reference genomes with relatives compared to reference genomes with no 

relatives for the same amount of reference genome reads (coverage) spiked in the in silico 

metagenome, which improved the quality of the consensus sequence. 

 We were also able to recover sequence discrete populations with both 

Synechococcus and Burkholderia reference genomes in the multiple genotype analyses, 

similar to the results we obtained with Escherichia genomes (data not shown). These 

findings reveal that the results reported in Figure 2 are applicable to three different levels, 

i.e., no relatives in the sample; relatives that are moderately related (~75% ANI, 

Burkholderia case) and closely related relatives (~85% ANI, Synechococcus case). 

Simulations, which included Salmonella (80% ANI to E. coli) and Yersinia (70% ANI to 

E. coli) in addition to E. coli genomes spiked in a metagenome, showed that only when 

relatives show the whole gradient of nucleotide identities from 70% to 95% ANI to the 

reference genome, were we unable to retrieve sequence discrete populations. Finally, we 

did not assess the multiple genotype analyses with a higher number of reference (spiked 

in) genomes because our goal was to evaluate whether or not NGS can reveal intra-
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population genetic structure. Performing the analysis with, for instance, 50 as opposed to 

just 5 genotypes (our study), should not differentiate our conclusions substantially as long 

as the additional genomes show similar genetic relatedness to the genomes used (i.e., 90-

100% ANI). In all natural samples analyzed today (with the probable exception of soil 

samples, which have not been fully investigated yet), there are thousands of genomes 

comprising a population but these genomes are typically derived clonally from only one 

or a few distinct genotypes. Thus, our in silico experiments were designed to represent 

natural populations as closely as possible. 

By spiking reads of a reference genome into a real metagenome dataset, we 

estimated that a typical bacterial genome (such as an E. coli genome) must have at least 

15X sequence coverage (20X recommended) in order to recover more than 95% of its 

genome using Illumina short read sequencing (Figure 4.3). This is slightly higher than the 

coverage required to obtain the same assembly quality based on genome data alone, i.e., 

10X coverage [Figure 4.3; and in (21)]. The difference is presumably due to the 

unavoidable interference of background reads in the metagenome case. In other words, 

reads with high sequencing errors or non-target (i.e., not derived from the reference 

genome) reads diverted the assembler to incorrect paths, which resulted in contig 

extension failure; such events were apparently less frequent in the assembly of the 

genome data compared to the metagenome data and in the Lake Lanier compared to the 

soil metagenome data (Figure 4.3A). 
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Figure 4.7. Frameshift error frequency with increasing genome coverage. Note that 

frameshift error frequency shows a non-monotonic behavior in Lanier.Illumina metagenome 

assemblies in the case of Escherichia sp. TW10509 but not with Burkholderia or Synechococcus. 

This is attributable to sequences of relatives in the metagenome, which improve the derived 

consensus (see also supplementary discussion). When these sequences of relatives were removed 

from the analysis prior to the assembly step, the monotonic behavior was observed for 

Burkholderia and Synechococcus as well (dashed lines). 
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Figure 4.8. Frequency of single base error in assembled consensus sequence as a function of 

coverage. Note that the higher error rate in the case of Synechococcus sp. RCC307 is primarily 

due to sequences of close relatives in the metagenome. These sequences contained substantial 

single nucleotide polymorphisms (SNPs) relative to the reference genome sequence (Figure 4.4) 

that thus, contributed SNPs (errors) to the assembled consensus in the low coverage range (where 

they outweighed the reference sequences spike-in). In contrast, Escherichia sp. TW10509 has no 

relatives in the metagenome and the relatives of B. ambifaria MC40-6 were not of high enough 

identity to be included in the consensus sequence based on the cut-offs used in the assembly step 

(Figure range compared to Synechococcus sp. RCC307. In all cases, the rate of single base error 

decreased with higher coverage and converged to the same value. 
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Analysis of chimeric sequences 

 At low coverage, assembled contigs containing target sequences also contained a 

substantial fraction of non-target (chimeric) sequences (12% at 1X in this study, Figure 

4.3C and Figure 4.9) and, as a result, in silico generated, artificial genes (6% of total 

predicted genes, about 40% of which occurred in contigs shorter than 500bp in the 

Escherichia sp. TW10509 case). The majority of the artificial genes were hypothetical, 

meaning that they did not have a significant match in nr database (1009/1548, or 65% in 

the Escherichia sp. TW10509 case); over 50% of the remaining genes with a match in nr 

database also matched hypothetical or conserved hypothetical genes (Figure 4.9). 

Therefore, special caution should be exercised when drawing conclusions based on low-

coverage contigs. Many natural communities are characterized by low-abundance 

species, i.e., species than make up <0.1% of the community. Such species would be 

covered at the 1-2X level or less based on the amount of sequencing usually obtained in 

current studies. Thus, our findings explain, at least in part, why metagenomes typically 

have fewer genes with matches to the public databases than complete genomes of isolates 

(i.e., they contain more chimeric, artificial sequences). Such chimeric sequences likely 

contribute to the high sequence diversity observed in several assembled metagenomes, 

particularly those from soil, as well. On the other hand, when single genome abundance 

was higher than about 10X, which corresponded to a N50 longer than 2 Kb, the 

percentage of non-target sequences dropped below 1%. These results provided a practical 

threshold for identifying reliable contigs based on their length and coverage.  
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Figure 4.9. Analysis of the non-target (chimeric) sequences in assembled contigs. The 

fraction of non-target sequence (A) and non-target genes (B) in assembled contigs of the 

reference genome from the spiked-in Lanier.Illumina metagenome (y-axes) is shown as a 

function of the abundance of the reference genome (x-axes) for each reference genome (figure 

key). Target and non-target sequences were defined as described in the Materials and Methods. 

The distribution of the non-target genes (as a fraction on the total non-target genes, x-axis) in four 

functional categories (figure key) for assemblies of different coverage of the reference genome in 

the mixed metagenome (y-axis) is also shown (C). This analysis revealed that the close relatives 

present in the Lanier.Illumina metagenome contribute a larger fraction of non-target sequences in 

the B. ambifaria MC40-6 and Synechococcus sp. RCC307 compared to the Escherichia sp. 
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TW10509 assembly (no relatives in the metagenome). In contrast, most non-target sequences in 

the Escherichia sp. TW10509 case, especially in the high coverage range, were genes with no 

homologs in Escherichia sp. TW10509 or the non-redundant database (nr). 

 

 

 
 

Figure 4.10. Comparison of the complexity of the Lake Lanier (A) and the soil (B) 

metagenomes used in this study to selected metagenomes reported previously. The graphs 

show the number of contigs (y-axes) plotted against the number of reads composing the contig (x-

axes) resulting from the assembly of each corresponding metagenome. Exponential regression 

was fitted to the data using the cftool module in MatLab and the fitted curves are shown. The cow 

rumen and human metagenomes were reported previously (9, 10); a randomly drawn subset of the 

latter metagenomes, which was similar in size to the Lake Lanier and soil metagenomes, was 
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used in the analysis. Note that our approach takes into account both the relative abundance 

(evenness; represented by the number of reads per contig) as well as the number of unique 

populations (richness; represented by the number of contigs) of the communities. Therefore, the 

larger the absolute value of b (i.e., the steeper the curve) the higher the complexity of the 

metagenome. Also note the difference in scale of the y-axes between panels A and B relative to C 

and D. 

 

 

Investigating intra-population genetic structure 

Natural populations are frequently composed of several closely related genotypes 

as opposed to a single genotype. It remains challenging to use metagenomics for the 

robust assessment of intra-population genetic structure, e.g., to detect heterogeneous 

populations. To this end, we expanded the single genotype analysis to include five 

additional Escherichia sp. genomes, which showed pairwise genetic relatedness ranging 

from 90% to 95% average nucleotide identity [ANI, (22); Table 4.1 & Figure 4.11]. 

Regardless of the composition of the target population in the in silico generated 

metagenome, the six genomes were recovered as a discrete sequence cluster when all 

metagenomic reads were mapped on the reference Escherichia sp. strain TW10509 

genome (Figure 4.12). The sequence-discrete clusters were obvious for other reference 

populations as long as no close relatives with higher than ~85% ANI to the population 

were present in the metagenome. Furthermore, the shape of the coverage plot reliably 

reflected the target population genetic structure: when the population was homogeneous 

(i.e., all genomes were spiked at similar abundances) the shape of the coverage plot 

approximated a normal distribution around the average ANI of the six genomes (~92%); 
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when the population structure was heterogeneous (e.g. one genome more abundant than 

the others), the shape of the coverage plot deviated from the normal-like distribution and 

quantitatively reflected the variations in individual genome abundance. However, we 

were unable to recover robust assemblies of individual genotypes, even in trials where the 

target genotype consisted more than 50% of the population (Figure 4.13) or when a high 

nucleotide identity cut-off in the assembly was used due to the fact that assemblers apply 

consensus strategy when encountering polymorphisms.  

 

Figure 4.11. Genetic relatedness among the six Escherichia sp. genomes used in the study. 

The sequence of each genome was cut into non-overlapping consecutive 500 bp long fragments, 

and these fragments were searched against the TW10509 reference genome draft using blastn. 

The graph shows the number of fragments (y-axis) plotted against their nucleotide identity to the 

reference (x-axis) for each genome (graph key).  
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Figure 4.12. Assessment of intra-population genetic structure based on sequence coverage 

plots. The total number of reads of the reference population spiked into the Lanier.Illumina 

metagenome was fixed at 35X coverage, but the proportions of the different genotypes making up 

the population varied as represented by the pies (inset). The graph represents a coverage plot, 

constructed as previously described (18), and shows the nucleotide identity (x-axis) of all contigs 

from the in silico generated metagenome (target and non-target) that map on the TW10509 

genome sequence (y-axis), which was used as reference. Note that a genetic discontinuity in the 

75-80% nucleotide identity range was always observed, regardless of the genotype composition 

of the population. Also note that when the portion of TW10509 reads in the metagenome 

increased (from 16.67% in trial 1 to 54.55% in trial 3), the coverage plot reflected the shifts in the 

higher portion of reads in the 98-100% range (contributed by the TW10509 reads). 
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Figure 4.13. Recovery of the genome of a single genotype from a heterogeneous population 

spiked into a complex metagenome. The total number of reads of the reference population 

spiked into the Lanier.Illumina metagenome was fixed at 35X coverage, but the proportions of 

the different genotypes making up the population varied as represented by the pies (inset). The 

graph shows the fraction of the genome (y-axis) of a single target genotype (x-axis) that was 

assembled from the in silico generated metagenome. Note that we were unable to recover more 

than 50% of the genome of the target genotype regardless of the relative abundance of the 

genotype in metagenome or the genotype used in the analysis and that there was a marginal 

increase in the fraction of the genotype recovered with increase genotype abundance. This was 

mostly attributed to the fact that assemblers apply a consensus strategy when encountering 

polymorphisms and hence, the assembled contigs are weighted average sequences. 
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CHAPTER 5 

MeTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences 

 

 
 

 

 

 

 

 

 

 

 



 126 

INTRODUCTION 

Culture-independent whole genome shotgun (WGS) DNA sequencing has 

revolutionized the study of the diversity and ecology of microbial communities during the 

last decade (1, 2). However, the tools to analyze metagenomic data are clearly lagging 

behind the developments in sequencing technologies, with the probable exception of tools 

for sequence annotation and assembly (1, 3-5). Perhaps most importantly, the taxonomic 

identity of the majority of sequences assembled from a metagenomc dataset frequently 

remains elusive, severely impeding communication among scientists and scientific 

discovery across the fields of ecology, systematics, evolution, engineering and medicine. 

This is due, at least in part, to the fact that the great majority of microbial species in 

nature, >99% of the total in some habitats (6), resist cultivation in the laboratory and thus, 

are not represented by sequenced reference representatives that can aid taxonomic 

identification. Single-cell techniques can potentially overcome these limitations by 

providing the genome sequence of uncultured organisms (7). However these techniques 

are not amenable to all organisms or habitats and the 16S rRNA gene, which serves as the 

best marker for taxonomic identification due to the availability of a large database of 16S 

rRNA gene sequences from uncultured organisms (8, 9), is often missed or not assembled 

during single-cell (and WGS metagenomic) approaches. The 16S rRNA gene also 

provides limited resolution at the species level, which represents a major limitation for 

epidemiological and microdiversity studies (10). To overcome these limitations, whole-

genome-based approaches and tools, comparable to those already available for the 16S 

rRNA gene, are highly needed. It is also important for these tools to scale with the 

increasingly large volume of sequence data produced by the new sequencers and to be 
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able to detect and categorize novel taxa, e.g., determine if the taxa represent novel species 

or genera.  

The previous methods to taxonomically identify metagenomic sequences fall into 

two categories: composition-based, such as PhylopythiaS and NBC (11, 12); and 

homology-based, such as CARMA and MEGAN4 (5, 13). Although composition-based 

methods do not depend on the availability of a reference database and are typically faster 

to compute, their accuracy is usually significantly lower than homology-based methods, 

especially for regions of the genome that are characterized by abnormal statistics 

compared to the genome average, due, for instance, to horizontal gene transfer (HGT) 

(14). On the other hand, homology-based approaches such as those employing BLAST 

(15) and HMMER3 (1) searches of assembled or unassembled sequences against known 

reference database(s), have become a nearly indispensible component of metagenomic 

studies (4). Even naïve implementations of simple classification algorithms such as best 

hit (BH) or lowest common ancestor (LCA) usually provide comparable accuracies with 

some sophisticated composition-based approaches (1). The main limitation of the 

homology-based approaches is the lack of a comprehensive database of reference genome 

sequences. Accordingly, query sequences representing novel taxa provide only low-

identity matches or no matches to the reference sequences and, in a typical metagenomic 

study, the majority of sequences cannot be robustly classified. Low-identity matches 

represent a challenge to the identification of the degree of novelty of the query sequence, 

particularly for naïve classifiers, which are based on pre-set, and frequently arbitrary, 

thresholds. In such cases, a dynamic approach that takes into account the level of identity 

of the match and the classification power of the corresponding gene or sequence (e.g., the 
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16S rRNA gene provides robust resolution at the genus level and higher but poor 

resolution at the species level) are advantageous. However, most, if not all, of the 

dynamic approaches developed for these purposes rely on some unrealistic assumptions 

such as that genes within the same protein family are characterized by the same mutation 

rate, and lack a robust framework for determining the degree of novelty of a query 

sequence (4, 5, 13). 

Here we present a novel framework, MeTaxa, which overcomes several of the 

previous limitations and can accurately classify metagenomic and genomic sequences 

with low computational requirements. MeTaxa considers all genes present in an unknown 

sequence as classifiers and quantifies the classifying power of each gene using 

predetermined weights. The weights are for i) how well the gene in question resolves the 

classification at a given taxonomic level based on its degree of sequence conservation, 

and ii) how frequently the gene phylogeny deviates from the species phylogeny due 

(primarily) to horizontal gene transfer. Based on these weights and the top homology 

matches of the genes in the query sequence against a pre-clustered reference gene 

database, a maximum likelihood analysis is performed to choose the most probable 

taxonomic assignment and to decide the lowest taxonomic rank for the query sequence. 

We show that MeTaxa significantly outperforms state-of-the-art tools for the same 

purposes in both sensitivity and specificity of the taxonomic assignments and can easily 

incorporate additional reference gene sequences as these become available through future 

isolate genome and single cell sequencing projects to provide for a more comprehensive 

coverage.  
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MATERIALS AND METHODS 

Gene clustering  

The predicted protein-coding genes of 1,480 completed and 1,687 drafted microbial 

genomes were downloaded from NCBI’s FTP server (ftp.ncbi.nih.gov) in July 2012. An all-

versus-all search of all genes was carried out using USearch (version 5.0) (16). Orthologs 

were defined as the reciprocal best match (RBM) genes between any two genomes, with 

percentage amino acid identity higher than 40%, no less than 70% coverage of the length of 

the shorter gene by the alignment, and e-value smaller than 1! 10-12. Neo4j (www.neo4j.org) 

was subsequently used to construct a graph in which the nodes were genes and the edges 

were RBM relationships. Genes were grouped in gene clusters based on the graph by an 

agglomerative hierarchical approach. Non-RBM (paralog) genes were searched against the 

resulting gene clusters using the same USearch search as described above; genes with 

matches above the previous cut-off were merged into the corresponding best-match gene 

cluster. In total, 850,629 gene clusters (singletons included) comprising 4,665,401 genes 

were obtained. 

 

Genome-aggregate average amino acid identity (AAI)  

To measure the overall genetic relatedness between any two genomes, we used the 

AAI, a robust and universal measure (17). AAI was calculated as the arithmetic average of 

the amino acid identity of all RBM conserved genes between two genomes. By comparing 

the AAI values among genome pairs grouped at different taxonomic ranks (e.g., phylum, 

class, etc), it became evident that phyla, genera and species are clearly distinguishable from 
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each other (Figure 1). Therefore, MeTaxa considers only these three taxonomic ranks when 

classifying query sequences. 

 

Gene cluster parameterization  

We quantified the classifying power of each gene cluster at each of the three 

taxonomic ranks. The classifying power was defined by: i) how well the gene separates intra-

group members from inter-group ones based on the degree of sequence conservation 

(measured by D). For instance, the 16S rRNA gene is highly conserved and thus can resolve 

well the phylum and genus levels but poorly the species level; several rapidly evolving 

protein-coding genes resolve well the species and genus levels but poorly the phylum level 

(e.g., permissible mutations are saturated at the phylum level). And ii) how consistent the 

gene phylogeny is with the species phylogeny, the latter approximated by the AAI distance 

tree (measured by M).  

 To quantify D, the identities (or distances) among all gene sequences of a gene cluster 

were calculated in a pair-wise mode and categorized into “intra-group” (the two 

corresponding genomes that encode the genes were assigned to the same taxon) and “inter-

group” (the two genomes were assigned to different taxa). The distributions of the distances 

of the two categories were then estimated by a kernel density estimator (KDE) with a 

Gaussian kernel function using bandwidths selected by Scott’s rule (18). Therefore, the 

classifying power of a gene cluster c as a function of the amino acid identity of the gene 

obtained from the gene sequence comparison (e.g., a query sequence against the database) h, 

denoted as 

  

Dt
c (h), for a given taxonomic rank t, was calculated as: 
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gene cluster c at taxonomic level t, respectively (Figure 5.1). 

 

 

 

 

Figure 5.1. The workflow of the MeTaxa algorithm. The input to MeTaxa are the top N matches of 

the genes encoded in an unknown sequence (or gene fragments for shorter sequences) against a 

reference database of gene families. The identity of the match(es) and the gene family(ies) that are 

represented among the top N matches are modeled (online part) based on predetermined weights for 

the classifying power of each gene family considered (offline part) to determine the lowest taxonomic 

rank that the query sequence should be assigned to. More specifically, we grouped all genes from 
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available complete genomes into clusters (box A), and calculate the weights D (how well the gene 

resolves the taxonomic rank) and M (how consistent the gene phylogeny is to the species phylogeny) 

for each cluster and taxonomic rank considered (i.e., phylum, genus, and species). To quantify D, the 

identities (or distances) among all gene sequences of a gene cluster were calculated in a pair-wise 

mode and categorized into “intra-group” (the two corresponding genomes that encode the genes were 

assigned to the same taxon) and “inter-group” (the two genomes were assigned to different taxa). The 

larger the difference between the inter-group vs. the intra-group identities the larger the classifying 

power of the gene with respect to D (an example of the distribution of identities is represented by the 

histogram shown in box B). To quantify M, we extracted all possible triplets from the phylogenetic 

tree of all sequences of a gene cluster, and compared them with the species tree, the latter 

approximated by the AAI tree (distance tree). Therefore, the triplets were either “concordant” or 

“discordant” with species tree (lower panel in box B). During the sequence assignment (“online” part), 

external users provide a list of matches of the genes in a query sequences and the corresponding 

identities from a similarity search (e.g., Blastn, BLAT) against a reference gene database such as 

GenBank (box C). MeTaxa takes this input and maps the matches onto the reference gene clusters 

generated from the offline part, based on the accession numbers of the (matching) genes from 

GenBank. The corresponding D and M weights are extracted for each rank that the taxon encoding the 

matching gene sequence is assigned to. If different genes of a query sequence or matches of a single 

gene suggest different classifications (i.e., matching taxon differs), each classification receives a 

likelihood score by merging the identity of the match and the corresponding D and M weights (see 

Online Methods for the exact equation used). If the total likelihood score of a classification (from the 

sum of the likelihoods of each match that supports the exact same classification) is below a minimum 

threshold, the classification is discarded. MeTaxa reports the classification that receives the largest 

likelihood score above the threshold at each taxonomy rank, together with its likelihood score 

(marked in red in box D). 
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 To quantify M, we first constructed a phylogenetic tree of all gene sequences of a 

cluster using FastTree(19) with default settings, and then extracted all possible triplets from 

the tree. Each triplet was compared against the corresponding species tree constructed based 

on AAI values. Therefore, the triplets were either “concordant” (tree topology consistent with 

species tree), or “discordant” (topology inconsistent with species tree). Hence, the degree of 

gene cluster c being consistent with the species phylogeny at taxonomic level t, denoted as 

, was calculated as: 

  

Mt
c =

Nt
c (concordant)

Nt
c (concordant) + Nt

c (discordant)
 , 

where 

  

Nt
c (concordant)  denotes the number of concordant triplets and 

  

Nt
c (discordant) 

denotes the number of discordant triplets for gene cluster c at taxonomic level t. 

 

Monte-Carlo method for estimating weights of large size gene clusters  

For gene clusters with more than 5,000 members (40 such clusters were obtained, 

in total), it was computationally prohibitive to exhaust all possible triplets among the 

members. We employed a simple Monte-Carlo method to estimate the M values for these 

gene families. The method was applied as follows, separately for each of the three 

taxonomic ranks considered: 

1. Initialization;  

 Set M=s, N=number of genes in the cluster; set number for concordant triplet, 

c=0; and number of discordant triplet, d=0. 

2. Random sampling; 
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              10,000 gene triplets are sampled from the gene cluster uniformly at random 

without replacing; the corresponding species triplets are constructed from the 

species tree. 

3. Calculate new M; 

               The 10,000 gene triplets are compared against the corresponding species triplets. 

If they are concordant, then c=c+1; otherwise d=d+1. The new M, M’, is 

calculated as M’=c/(c+d). 

4. Termination. 

               If |M’-M|<0.01, then exit the algorithm and return M’; 

               Otherwise, M=M’, return to step 2. 

 

To avoid being trapped at local maxima, we repeat the process with initializing M to be 

different values (in 0 to 1 with 0.1 increment, e.g., 0, 0.1, 0.2, …, 1.0). If there were 

multiple estimated M’s, we repeat the process until it converges to a single value. 

 

Classification step and likelihood score calculation  

For an unknown sequence U (e.g., an assemble contig from a metagenome), we 

denote the genes encoded on it as G={g1, g2, …, gn}. In the online part of the algorithm, these 

genes are searched against a reference database (e.g., the gene clusters described above) and 

the returned m matching genes for gi are denoted as Hi={h1, h2, …, hm}, the corresponding 

percentage amino acid identities as Ii={i1, i2, …, im}, and the bit-scores as Si={s1, s2, …, sm}. 

For each match in Hi, we denote the corresponding taxonomic classification as Ti={p1, p2, …, 

pm}, which represents the taxonomic affiliation of the genome that encodes the matching 
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gene; and at taxonomic rank t, the labels (taxa) are 

  

Ti
t = {p1

t , p1
t ,..., pm

t }. We also denote the 

gene cluster each query sequence is assigned (matched) to as Ci={c1, c2, …, cm}. The top N 

matches of the lth gene against the reference database are used to weight different taxa 

(superscripted as k) at a specific rank (subscripted as t),  , and the weight is: 

  

Wl (pt
k ) = Dt

c j (i j )wt
D + Mt

c j wt
M[ ]s j

{ j | pt
j = pt

k }

N

! , 

where  and 

  

wt
M = 1! wt

D  are the weights for D and M at taxonomic level t, respectively. 

To select the optimal  and , a grid search was carried out to maximize the algorithm’s 

performance (see grid search below). Therefore, the relative weight of   for the lth gene, 

  

Ll (pt
k )  is normalized to the sum of weights over different k (i.e., different taxonomic 

classifications): 

  

Ll (pt
k ) =

Wl (pt
k )

Wl (pt
k )

k
! . 

And, the likelihood score of a specific taxon k at rank t, , over the whole query sequence 

is: 

  

L(pt
k ) =

Ll (pt
k )

l=1

m

!

Ll (pt
k )

l=1

m

!
k
!

. 

If the top-scored taxon at this rank passes the likelihood score cutoff (see also score cut-off 

estimation below), MeTaxa predicts the query sequence to belong to this specific taxon and 

moves to the lower rank (if any) and calculates the likelihood score for this rank in a similar 

fashion. If likelihood is below threshold, MeTaxa marks the current and lower ranks (if any) 

as unknown (novel) taxon.  
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Test datasets and measuring accuracy  

1,351 drafted microbial genomes were downloaded from NCBI’s ftp site in 

February 2012. A custom Perl script was employed to randomly sample pieces of 

sequences from the drafted genomes at designated lengths (e.g., 100bp, 800bp, etc; see 

Table S1). These sequences formed the synthetic test datasets. At a given taxonomic rank, 

each sequence was denoted as “known” if the same taxon (i.e., species, genus or phylum) 

was also represented by at least one of the completed genomes, or “unknown” if the same 

taxon was not represented among the completed genomes. Assessing MeTaxa’s 

performance on these test synthetic metagenomes was performed as described in the main 

text. 

For evaluating MeTaxa on real metagenomes, a human stool sample microbiome 

(accession number: SRX023971, including both assembled scaffolds and the original 

paired-end Illumina reads) was downloaded from the Human Microbiome Project (HMP) 

Consortium webpage (www.hmpdacc.org). The gene sequences annotated on the scaffold 

sequences were searched against all completed genomes in NCBI using BLAT (16), and 

the taxonomy assignment was carried out by MeTaxa using default settings. Trimmed 

paired-end reads were mapped onto the scaffold to calculate the coverage (in-situ 

abundance) of the corresponding population using BLAT with default setting and a 

minimum cut-off of aligned length: 50bp, nucleotide identity: 70%, and e-value: 1e-10 

for a match. The reads encoding fragments of the 16S rRNA gene were identified by a 

BLAT search against the reference 16S rRNA gene sequence from E. coli with the 

following cutoff: 70% nucleotide identity, 1e-10 e-value, and 50bp aligned length, both 

sister read matching above the cut-off. These sequences were extracted from the 
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metagenome using a custom PERL script and were searched against the GreenGenes 

database (20). Reads were assigned to taxa based on their GreenGenes match and the 

abundance of each taxon was approximated by the number of assigned reads, normalized 

by the rRNA copy number of the taxon reported in the literature. These data provided the 

community composition of the metagenome based on the 16S rRNA gene shown in 

Figure 4.  

 

 A sequence from the synthetic test datasets was labeled either “known” or 

“unknown” at a given taxonomic level. The taxonomic assignment of a “known” 

sequence by MeTaxa or another algorithm was denoted as “true prediction” (TP; 

predicted taxon matches the actual taxon), “wrong prediction” (WP; predicted taxon does 

not match the actual taxon), or “false negative” (FN; predicted as “unknown”); while the 

assignment of an “unknown” sequence was denoted either “false positive” (FP; predicted 

to match a specific taxon), or “true negative” (TN; predicted as “unknown”). Accordingly, 

the sensitivity of the algorithm was defined as: 

  

Sn =
1

N + M
nTP
i

ni
+

nTN
i

mi
i=1

M

!
i=1

N

!
  

#   
% 

&    , 

where N is the total number of taxa for the “known” sequences, and M is the total number 

of taxa for the “unknown” sequences. ni is the number of “known” sequences for each 

taxon, and mi is the number of “unknown” sequences for each taxon.  is the number 

of TP in the ith taxon and  is the umber of TN in the ith taxon. Similarly, the 

specificity of the algorithm was defined as: 

  

Sp =
1
N

nTP
i

n ii=1

N

! . 
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Weight optimization based on a grid search  

D and M weights were generated independently and thus, could not be integrated 

directly. To find the optimal combination of D and M, we defined (wD, wM) as the relative 

power of these two parameters, and the combined weight was 

  

W = wDD + wM M . The 

sum of wD wM should equal 1; therefore, we only need to optimize the algorithm 

performance over one of them, e.g., wD. A grid search was employed for this purpose and 

the 1000bp test dataset was used. For each possible (wD, wM) pair (wD was set to be 0.05, 

0.1, 0.15, …, 0.95), we sampled 10% of the 1000bp test dataset at random ten times 

(replicates) and make MeTaxa assignments. The assignments were evaluated by their 

accuracy as described above, and the corresponding weight pair with the highest accuracy 

was selected. 

 

Impact of the number of matches and score cutoffs on classification accuracy  

In MeTaxa, the top N number of matches of genes are used in predicting the 

taxonomic identity of the query sequence. When N=1, MeTaxa is equivalent to a 

weighted lowest common ancestor (LCA) algorithm; and when N= , MeTaxa considers 

all taxa in the reference database. Further, the larger the N value the larger the CPU and 

memory requirements. The choice of N has a complicated impact on prediction accuracy, 

and for practical reasons, we have tested N=1, 2, …, 10, and found that for most cases, 

N=5 offers optimal performance (Figure 5.2. Similarly, we evaluated the impact of 

likelihood score cutoffs on accuracy. We found that 0.5 usually provides the best 

performance (Figure 5.3). 
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Figure 5.2. The impact of the number of matches used in the analysis on the classification 

accuracy of MeTaxa. The impact of the number of top matches analyzed, N, on MeTaxa 

accuracy was evaluated, for query sequences of varied length (figure key) and each taxonomic 

rank (labels on top). N = 5 typically performed the best, both in terms of accuracy (y-axes) as 

well as computational demand (data not shown). 
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Figure 5.3. The impact of the likelihood score cutoff on the classification accuracy of 

MeTaxa. The impact of different likelihood cut-offs in the maximum likelihood analysis was 

evaluated in a mode similar to that shown in Figure 5.2. Scores of 0.5 typically perform the best 

(y-axes) and were efficient in terms of computational demand (data not shown). 
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RESULTS AND DISCUSSION 

Standardizing novel taxa based on Average Amino-acid Identity 

 For correct and high-throughput taxonomic classification of an unknown 

sequence, it is essential to have a robust and standardized reference taxonomy system. 

The current taxonomic system, especially the ranks higher than the species rank, is 

primarily based on the grouping patterns of the 16S rRNA gene phylogeny but no 

standards exists on the degree of genetic relatedness of the organisms grouped at different 

ranks. Accordingly, adjacent ranks are highly overlapping with this respect. For instance, 

organisms representing different species of the same genus are often (>30% of the cases 

examined) as divergent from each other as many genera of the same family are (21). 

These inconsistencies can complicate taxonomic identification of unknown sequences. 

Indeed, several commonly used approaches including PhyloPythiaS and MEGAN have 

significantly lower specificity above the species level (12). 

 To examine in depth the inconsistencies in the current classification system, we 

analyzed 410 closed bacterial genomes (410 X 410 = 168,100 genome pairs, in total) 

using the genome-aggregate average amino acid identity (AAI) to measure the genetic 

relatedness among the genomes (17). Our results confirmed previous findings that high 

overlap exists among adjacent ranks (e.g., phylum vs. domain) but also revealed that the 

species, genus, and phylum ranks are rarely overlapping, i.e., the inter-taxon divergence 

is typically higher than the intra-taxon diversity for these three ranks (Figure 5.4). In 

particular, organisms grouped at the “species” level typically show >95% AAI among 

themselves and are clearly distinguishable from those grouped at the genus (showing 60-

80% AAI) and the phylum levels (showing <40% AAI). MeTaxa essentially employs 
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these AAI standards and examines the degree to which an individual gene reflects the 

genomic AAI, as described in the Online Methods, to determine the taxonomic rank of a 

sequence representing a novel organism, i.e., a species, genus or phylum. The latter also 

represent the three most important ranks of prokaryotic taxonomy. 

 

 

 

Figure 5.4. Relationships between taxonomic designations and genome-aggregate average 

amino-acid identity (AAI). The taxonomic designations of 410 fully sequenced genomes were 

compared to identify the lowest taxonomic rank shared by each pair of genomes (410 X 410 = 

168,100 pairs, in total), essentially as described previously (21). For each taxonomic rank (figure 
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key), the corresponding line shown represents the distribution of the 16S rRNA gene identity 

(top) and AAI (bottom) values among all genomes grouped at the rank. Note that species, genera 

and phyla are clearly distinguishable from each other based on AAI and correspond to 95-100%, 

60-80% and <45% AAI, respectively.  

 

 

Computing the weights of the classifying power of each gene. 

 To determine the weights of each gene, we built clusters for all genes present in 

all completed bacterial and archaeal genomes as of August 2012 (n=1,480). We 

determined the classifying power of each gene cluster by comparing how well the 

identity between two genes of the cluster reflected the taxonomic rank of the genomes 

encoding the genes, separately for each of the three taxonomic ranks considered. The idea 

is analogous to the use of AAI above to examine overlap between the taxonomic ranks, 

applied to individual genes. A second weight was calculated for each gene cluster based 

on how frequently the ortholog gene phylogeny deviates from the species phylogeny, the 

latter approximated by the AAI-based tree, due (primarily) to horizontal gene transfer. 

The weights were stored in a structured database, and the preceding analysis is referred to 

as the “offline” part of MeTaxa (external users do not repeat this part). For the “online” 

part, an external user submits a file that contains the results of a search, by BLAST, 

HMMER3 or other algorithm, of the sequence in question against the reference database 

of gene clusters. In fact, the search is not necessary to be against our reference database 

as long as the input file contains the accession number of the best matching gene(s) in 

GenBank database and the amino acid identity of the match. MeTaxa then employs a 

maximum likelihood analysis of the pre-calculated weights for the gene cluster that 
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provided the best match of the query sequence and the identity of the best match to 

determine the taxonomic identity of the query sequence and provide a statistical 

probability for the assignment. Therefore, the most computationally intensive part is 

calculated offline, perhaps only once or twice a year (to update weights as more genomes 

become available), and MeTaxa requires significantly lower computational resources 

during the online part of the analysis compared to similar previous methods.  

MeTaxa performance 

We evaluated the performance of MeTaxa against that of other existing tools 

based on the following approach. For classifying sequences that represent organisms 

present in the database (100% AAI match) or close relatives of these organisms (e.g., 

>95% AAI for organisms of the same species), the algorithm should (correctly) identify 

the sequence to the lowest level possible. The latter was typically the species level, unless 

the reference organism has not been assigned to a known species yet. For sequences 

representing, for instance, an unknown (novel) genus of a known phylum, the algorithm 

should ideally identify the correct phylum, predict the genus as the lowest taxonomic 

rank and denote it as a novel genus; similarly for novel phyla and species. Based on this 

framework, we sampled, at random, 1,687 draft genomes to produce six test, in-silico 

generated, metagenomic datasets that were composed of sequences of different length, 

ranging from 100bp (simulating Illumina reads), 500bp (simulating Roche 454 Titanium 

FLX reads), 800bp (simulating Roche 454 FLX+ reads), 1,000bp (representing the 

average bacterial gene length), 1,500bp, to 2,000bp. We employed 1,480 completed 

genomes from GenBank to serve as the reference database and build the gene clusters and 
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associated weights (Tables 5.1 and 5.2). Thus, the sequences in the test metagenomes 

were labeled “known” or “unknown” depending on whether or not a completed genome 

of the same species as the draft genome was available and the algorithms were evaluated 

on the number of correct assignments (predictions) made.  

 

Table 5.1. The number of known and unknown taxa in draft genomes (synthetic 

metagenomic data) compared to completed genomes (reference database).  

Rank Number of known taxa; percentage (%) Number of unknown taxa, percentage 

(%) 

Phylum 20;  87.0% 3; 13% 

Genus 143; 50.7% 139; 49.3% 

Species 136; 18.5% 600; 71.5% 

 

 

 

 

Table 5.2. The number of known and unknown sequences at different ranks in the synthetic 

metagenomic data used for performance evaluation. 

Phylum Genus Species Length 

(bp) Known Unknown Known Unknown Known Unknown 

100 954676 7168 814224 121620 527684 408160 

500 493493 4234 429146 69981 290555 208572 

800 494576 3909 430989 67496 287334 211151 

1000 494186 3534 423663 73757 268881 228539 

1500 296648 1536 252148 46036 148360 149824 

2000 198286 1242 172622 26906 110584 88944 
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 For the homology-based algorithms, we ran a BLAT (16) search of the six test 

metagenomes against the reference database, and the search results were used as input for 

the algorithms. For composition-based algorithms, we classified test metagenomes using 

the default settings of each algorithm. Since composition-based methods tend to classify 

more sequences compared to homology-based methods (e.g., they do not depend on the 

availability of a comprehensiveness reference database), we compared all methods based 

on sequences classified by all approaches, i.e., sequences that had at least one significant 

match in the BLAT search. 

The results revealed that MeTaxa consistently outperformed other tools (Table 5.3 

for all results; Figure 5.5 shows the results for the 800bp dataset). For example, at the 

species level (800bp test dataset), it was, on average, 17.8%, 6.9%, 25.1%, and 9.2% 

more accurate than best hit (BH), lowest common ancestor (LCA), MEGAN4, and MG-

RAST, respectively. Furthermore, as the length of query sequences increased, the 

advantage of MeTaxa was also more pronounced (Figure 5.6). NBC provided more 

correct classifications compared to the other composition-based methods, consistent with 

previous findings (11). MeTaxa outperformed NBC by 10.6%, 11.2%, 17.0% at the 

phylum, genus, and species levels, respectively (average of all test metagenomes).  

We also calculated the sensitivity (Sn; portion of sequences from known taxa 

correctly assigned) and specificity (Sp; portion of sequences from unknown taxa 

correctly identified as unknown at the lowest rank possible) for all methods (Figure 5.7). 

MeTaxa showed both high sensitivity and specificity in all three taxonomic ranks 

evaluated, e.g., at species level, MeTaxa is on average 5% more sensitive and 3% more 

specific than other methods. Moreover, the sensitivity and specificity of MeTaxa did not 
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seem to depend on the length of the input sequences, while most composition-based 

approaches showed strong length-dependent variance in both sensitivity and specificity 

(Figure 5.7).  

 

 

 

Fig. 5.5. MeTaxa performance and comparison with other methods. Each bar represents the 

relative distribution of the different types of predictions (figure key) made by each of the methods 

evaluated (x axis), at each taxonomic rank considered (labels on top). FN, false negative 

(sequence from a known taxon predicted as unknown); FP, false positive (sequence from an 

unknown taxon predicted as known); WPre, wrong prediction (the known taxon did not match the 

predicted taxon); TN, true negative (sequences from an unknown taxon were predicted as 

unknown); TP, true prediction (the known taxon matched the predicted taxon). RAIPhy is not 

applicable to the species level. The results are based on the 800 bp long test metagenome. 
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Figure 5.6. Accuracy of MeTaxa in comparison with other homology-based methods at the 

species level. The accuracy (TP+TN) of different methods (figure key; y-axis) as a function of 

the length of the query sequence (x axis) is shown. Note that MeTaxa correctly assigns at least 

3%, and up to 32%, more sequences than any other method, depending on the length of the query 

sequences. Figure S4 is similar to Figure 3 but represents the sum of the true positives (TP) and 

true negatives (TN) results, zooming in at the species level.  
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Figure 5.7. Sensitivity and specificity of MeTaxa and comparison with other methods. Each 

line represents the sensitivity (y-axes; upper panels) or specificity (y-axes; lower panels) of a 

method (figure key) on different lengths of input sequences (x axes). Sensitivity and specificity 

were defined as described in the text.  
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Table 5.3. Detailed performance on synthetic metagenomic datasets. This data underlie the 

results shown in figure 5.5. 

 
Phylum Genus Species  

TP6 TN WP FP FN TP TN WP FP FN TP TN WP FP FN 

 

 

95.6 0 3.1 0.8 0.5 80 1.2 10.4 3.8 4.7 33.4 8.0 30.8 21.6 6.2 MeTaxa 

78.4 0 20.8 0.7 0.2 69.7 0 26.1 4.0 0.2 34.5 0 41.2 24.0 0.2 BH2 

95.0 0 2.9 0.9 0.2 77.8 1.5 6.9 10.8 7.6 30.6 8.0 13.3 27.5 20.6 LCA3 

95.6 0.2 1.5 0.5 2.1 70.2 2.9 2.2 4.2 20.5 17.5 21.7 2.0 13.5 45.3 MGR4 

93.1 0 6.0 0.9 0 26.8 0 65.5 7.8 0 26.4 0 38.1 35.5 0 MEGAN4 

42.1 0.1 19.1 0.5 38.2 10.5 6.8 3.1 0.5 79.1 2.4 33.8 2.5 1.2 60.1 PPS5 

82.2 0 16.8 0.9 0 66.6 0 25.7 7.7 0 32.1 0 32.6 35.4 0 NBC 

10
0b

p 

53.5 0 43.4 1.0 2.1 17.6 0 73.9 7.7 0.7 N/A1 RAIPhy 

96.9 0.1 1.9 0.4 0.7 78.6 2.9 7.5 3.7 7.3 33.4 16.1 23.2 15.1 12.2 MeTaxa 

87.4 0 11.8 0.4 0.4 75.9 0 17.7 5.9 0.3 32.9 0 38.7 28.0 0.3 BH 

95.5 0 2.0 0.5 2.0 77.8 3.3 6.1 5.7 7.1 35.2 9.9 9.9 25.8 19.1 LCA 

97.4 0.1 0.6 0.6 0 71.0 3.4 1.7 0.7 16.6 15.8 24.7 1.6 18.2 39.8 MGR 

93.8 0 5.6 0.4 1.5 25.9 0 65.1 9.0 0 27.5 0 36.8 35.7 0 MEGAN 

44.7 0.4 17.4 0.3 37.1 12.3 7.9 2.9 0.4 76.4 2.5 34.6 2.2 0.8 59.9 PPS 

87.5 0 11.9 0.6 0 73.8 0 17.2 9.0 0 36.9 0 27.4 35.7 0 NBC 

50
0b

p 

82.1 0 15.6 0.5 1.6 48.8 0 41.7 8.9 0.5 N/A RAIPhy 

97.6 0 1.4 0.3 0.6 79.1 3.0 7.2 3.6 7.1 35.4 17.2 20.0 14.9 12.6 MeTaxa 

86.0 0 13.2 0.3 0.4 74.4 0 19.4 5.7 4.2 32.9 0 38.5 28.2 0.3 BH 

95.9 0 1.4 0.4 2.3 76.1 3.6 5.3 5.3 9.6 34.2 12.0 7.6 24.8 21.4 LCA 

98.0 0.1 0.4 0.3 1.2 71.4 3.5 1.2 9.3 14.6 16.4 26.2 1.2 22.2 33.9 MGR 

94.3 0 5.3 0.4 0 26.2 0 64.8 9.0 0 26.6 0 36.6 36.8 0 MEGAN 

48.3 0.2 12.6 0.2 38.7 13.5 8.5 2.0 0.4 75.6 2.5 35.8 2.2 1.0 58.5 PPS 

85.9 0 13.7 0.4 0 70.7 0 20.3 9.0 0 34.3 0 29.0 36.8 0 NBC 

80
0b

o 

87.4 0 10.8 0.4  56.5 0.1 34.2 8.9 0.3 N/A RAIPhy 

97.7 0 1.3 0.3 0.6 78.1 3.7 7.0 4.0 7.2 34.3 19.8 17.7 15.7 12.4 MeTaxa 

88.7 0 10.6 0.3 0.5 75.5 0 19.0 7.7 0.6 35.5 0 31.9 32.2 0.4 BH 

95.6 0 1.3 0.3 1.2 73.9 4.7 4.9 5.6 10.8 31.9 15.0 6.3 25.4 21.4 LCA 

98.0 0.1 0.4 0.3 1.2 71.4 3.5 1.2 9.3 14.6 16.4 26.2 1.2 22.2 33.9 MGR 

94.1 0 5.5 0.3 0 27.5 0 62.2 10.3 0 25.5 0 34.0 40.5 0 MEGAN 

50.0 0.2 11.1 0.1 38.5 14.6 9.8 1.8 0.5 73.2 2.8 39.4 2.3 1.1 54.4 PPS 

88.2 0 11.2 0.6 0 67.9 0 21.8 10.3 0 35.6 0 28.6 35.8 0 NBC 

10
00

bp
 

88.9 0 9.5 0.3 1.3 58.6 0 30.8 10.3 0.3 N/A RAIPhy 

98.0 0 1.2 0.2 0.6 77.2 4.3 6.2 4.6 7.7 32.5 23.7 14.0 17.4 12.3 MeTaxa 

86.4 0 10.6 0.3 0.5 72.3 0 19.0 7.7 0.6 33.4 0 29.8 36.3 0.4 BH 

95.6 0 1.3 2.9 2.8 74.3 4.3 4.7 6.3 10.4 30.7 15.1 5.5 29.3 19.4 LCA 

98.0 0.1 0.4 2.9 1.2 71.0 3.8 1.1 10.6 0 15.3 30.2 0.9 25.5 28.2 MGR 15
00

bp
 

94.1 0 5.5 0.3 0 27.6 0 61.7 10.7 0 24.2 0 31.4 44.4 0 MEGAN 
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Table 5.3 (continued) 
50.0 0.2 11.1 0.1 38.5 18.7 10.1 1.6 0.6 69.0 3.4 42.7 2.8 1.7 49.4 PPS 

88.3 0 11.3 0.4 0 67.3 0 22.0 10.7 0 31.7 0 23.9 44.4 0 NBC 

 

91.9 0 6.8 0.2 1.0 64.2 0 25.0 10.6 0.2 N/A RAIPhy 

98.1 0 1.0 0.2 0.6 80.6 3.7 4.8 4.2 6.8 34.3 21.7 15.0 15.0 14.0 MeTaxa 

82.8 0 16.4 0.2 0.6 71.7 0 21.1 6.6 0.6 34.1 0 34.4 31.0 0.5 BH 

95.8 0 1.0 0.3 2.9 77.2 4.0 3.6 5.4 9.8 30.9 14.8 5.1 24.7 24.4 LCA 

97.8 0 0.5 0.3 1.3 71.0 4.3 1.5 10.0 13.1 16.2 28.9 1.7 25.1 28.1 MGR 

94.3 0 5.4 0.3 0 26.6 0 64.1 9.4 0 28.8 0 31.7 40.0 0 MEGAN 

61.2 0.2 7.1 0.1 31.3 25.1 8.8 1.4 0.6 64.1 4.6 37.7 4.2 1.9 51.7 PPS 

88.3 0 11.3 0.4 0 68.2 0 21.5 10.3 0 37.0 0 21.2 41.8 0 NBC 

20
00

bp
 

93.1 0 5.6 0.3 1.0 70.4 0.1 20.0 9.3 0.2 N/A RAIPhy 

* The numbers represent percentages of the total; 
1 N/A, not available, RAIPhy does not provide species level prediction; 
2 BH, best hit; 3 LCA, lowest common ancestor; 4 MGR, MG-RAST (4); 5 PPS, PhyloPythiaS 

(12); 
6 TP, true prediction; TN, true negative; WP, wrong prediction; FP, false positive; FN, false 

negative. 

 

Novel diversity revealed in the human microbiome  

We also evaluated MeTaxa on real metagenomes, using the assembled scaffolds 

of the human gut microbiome project (GenBank accession number: SRX023971). In 

addition to MeTaxa analysis of the assembled scaffolds, we also mapped raw reads on the 

scaffolds to estimate relative in-situ abundance of the corresponding organisms, 

essentially as described previously (22). The resulting taxa abundance profiles were 

compared to those from the analysis of 16S rRNA gene fragments recovered in the 

metagenome, which represents the most popular approach to perform community 

composition analysis (23). 
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Community composition was highly similar between MeTaxa and 16S rRNA 

gene-based results, at both the phylum and genus levels. For example, the 16S rRNA 

gene analysis revealed that the relative abundance of the three most abundant genera, i.e., 

Bacteriodes, Prevotella, and Roseburia, was 45.6%, 9.2%, and 5.6%, respectively; 

MeTaxa results for the same genera were 41.5%, 9.4%, and 6.1%, respectively (Figure 

5.8). These findings demonstrate the high accuracy of MeTaxa in profiling real 

metagenomes. In addition, MeTaxa detected several organisms missed by the 16S rRNA 

gene survey and identified most sequences to the species level, which is typically 

inaccessible to 16S rRNA gene analysis. For example, at phylum level, MeTaxa 

identified that 0.16% of the overall reads were contributed by Fusobacteria, which have 

been shown to be associated with colon cancer and ulcerative colitis (24). This phylum 

was missed by the 16S rRNA gene analysis presumably due to the fact that rRNA genes 

represent only a small portion of the whole genome, and thus are likely to be missed 

during WGS sequencing by chance alone. In contrast, MeTaxa represents a genome-

based approach and thus, it is less likely to miss low-abundance community members. 

MeTaxa analysis also showed that an average of 22.3% of the total sequences assigned to 

each of the top 20 most abundant genera were contributed by novel species, which are not 

currently represented by genome sequences, draft or complete. For instance, in Prevotella 

and Paludibacter genera, which represent keystone members of the three proposed 

human gut microbiome enterotypes (2), novel species represented 52.8% and 44.6% of 

the total sequences assigned to the genus level, respectively (Figure 5.8).  
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Figure 5.8. Genus-level community composition and abundance of novel taxa in the human 

microbiome based on MeTaxa and 16S rRNA genes. 16S rRNA gene results were based on all 

reads that were recovered in the WGS metagenome (accession number: SRX023971) and 

encoded fragments of the 16S rRNA gene. These reads were analyzed using established tools, as 

described in the Online Methods. MeTaxa analysis was performed as described in the text. Each 

color represents a different genus and the most abundant genera are labeled. Grey bars on the left 

panel represent the amount of sequences predicted by MeTaxa to represent novel species within 

each of the corresponding genera. The analysis revealed that MeTaxa shows comparable accuracy 

and higher sensitivity to detect low abundance taxa compared to the 16S rRNA gene-based 

analysis. For instance, note that a larger fraction of sequences remained unassigned (denoted as 

“Unknown” on the graph) for the 16S rRNA gene results, mostly due to the short length of 16S 

rRNA gene-encoding reads (lack of resolving power), which is typical of short-read-based 

shotgun or gene amplicon surveys. 
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DISCUSSION 

We have shown that MeTaxa accurately classifies at least 5%, and up to 25%, 

more query sequences compared to other methods for sequences representing previously 

described taxa, independent of the length of the sequences (Figure 5.5, 5.7, 5.9-10). The 

advantage of MeTaxa is rooted to the construction of a likelihood framework that 

integrates the matches of individual genes with weights for the classifying power of each 

gene to achieve a better prediction. This approach is categorized into a broad genre of 

optimizations, often referred to as “the wisdom of the crowd”. Indeed, a greater 

advantage of MeTaxa over other methods was observed when the query sequences were 

longer (Figure. 5.6), presumably due to more information (genes) available. Accordingly, 

MeTaxa can also facilitate taxonomic studies of whole genomes, complete or draft, and 

be complementary to 16S rRNA gene-based classifications since it provides higher 

resolution at the species level. MeTaxa has also a clear advantage over other methods in 

identifying the rank of sequences representing novel taxa due to the use of an AAI-based 

framework that emerges from the current classification system but it is more standardized 

(Figure 5.4). This is particularly useful to the study of communities that are not well 

represented by reference genome sequences (the majority of microbial communities) and 

can help identify abundant, and thus, presumably important, members of the community 

that should be targeted for single-cell or cultivation efforts. Indeed, MeTaxa analysis of a 

human microbiome sample revealed several abundant (novel) species that are not 

represented by genomes of isolates, despite the large number of isolates sequenced as part 

of the Human Microbiome Project. For instance, although a large number of Prevotella 

isolate genomes are available (50 of the total 1,569 used in this study, including draft 
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genomes), MeTaxa suggested that several key members of this genus are still awaiting 

genomic characterization. 

 Despite the significant improvements achieved by MeTaxa, assigning sequences 

at the species level remains problematic; mostly due to the lack of representative 

sequences for several species (e.g., Figure 5.7). However, the recent developments in 

DNA sequencing technologies, especially single cell approaches, has greatly increased 

the number and phylogenetic diversity of available genomes so that the reference genome 

database will not represent such a major limitation in the near future. What, however, will 

still represent a limitation for automatic, high throughput taxonomic identification are the 

inconsistencies in the current classification system. While we employed a standardized 

AAI-based system to determine the degree of novelty of a sequencing representing a 

novel taxon, we relied on the existing system for sequences representing previously 

described taxa. The weights of gene clusters are expected to significantly improve if a 

standardized system, which will limit overlap between adjacent taxonomic ranks in terms 

of the genetic relatedness of the grouped organisms, will become available for previously 

described taxa. MeTaxa is also scalable to a higher volume of input data in that the 

computational demand for the online part of the algorithm represents a linear function of 

the number of input sequences. MeTaxa is not specific to the homology search algorithm 

used; thus, if new faster algorithms become available, e.g., BLAT (25), they can be easily 

compatible with MeTaxa. 

 One advantage of composition-based methods is that they are able to classify 

sequences that show no significant homology to the reference database. However, it 

remains unclear how accurate these predictions are. Genes with no significant homology 
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to known genes are highly likely to represent taxon-specific functions and their 

evolutionary history is often inconsistent with that of the genome (e.g., acquired via 

horizontal gene transfer) (26). In our datasets, NBC’s accuracy on “unknown” sequences 

was on average 20% lower compared to those with matches in the reference database, 

which was largely attributable to a higher wrong prediction rate (Figure 5.10). Therefore, 

if classifying more sequences is more important than high accuracy in the classifications, 

a hybrid approach that combines composition-based and homology-based methods may 

be advantageous. 

 In addition to the applications mentioned above, MeTaxa can also be used to 

assist studies that aim to detect HGT between genomes or contigs assembled from a 

metagenome and the genomes represented in the reference database, e.g., by scanning the 

query sequence in windows of specific length and compare the taxonomic affiliations of 

the resulting sequence fragments. It can also assist in validating the taxonomic identity of 

contigs binned into population genomes during metagenomic studies, especially for 

populations representing previously described taxa. Thus, MeTaxa can find several 

important applications in microbial identification and diversity studies and provide new 

insights into the tremendous complexity of microbial communities.  
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Figure 5.9. Accuracy of MeTaxa in comparison with other homology-based methods at the 

species level. The accuracy (TP+TN) of different methods (figure key; y-axis) as a function of 

the length of the query sequence (x axis) is shown. Note that MeTaxa correctly assigns at least 

3%, and up to 32%, more sequences than any other method, depending on the length of the query 

sequences. This figure is similar to Figure 5.7 but represents the sum of the true positives (TP) 

and true negatives (TN) results, zooming in at the species level.  
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Figure 5.10. Performance of composition-based methods on sequences that did not have 

significant matches in the reference database. Significant lower accuracies were observed on 

these sequences compared to those with significant matches, e.g., NBC’s accuracy was 16.9% 

versus 36.9% at the genus level, respectively; presumably due to the fact that sequences with no 

significant matches tend to represent taxon-specific genes, which are often the product of 

horizontal gene transfer (27). The types of predictions are color-coded in the same way as in 

Figure 5.5. 
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CHAPTER 6 

Soil microbial community responses to a decade of warming 

as revealed by comparative metagenomics 
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INTRODUCTION 

Extant biodiversity has been recognized as telling the evolutionary history of life 

while also providing an evolutionary scaffold for the future. Consequently, one of the 

great challenges in the natural sciences is to better understand how the inventory of 

biodiversity determines the evolutionary path(s) that will shape the future. Prokaryotes 

(bacteria and archaea) represent the largest component of the biodiversity on Earth, not 

only in terms of gene and sequence diversity but also in total biomass; yet, their natural 

communities remain the “black box” of biodiversity (1). Soil prokaryotic communities, in 

particular, are composed of thousands of distinct species (2-4), each of which typically 

makes up a rather small fraction (i.e., <0.1%) of the total community and encodes 

hundreds of species-specific genes of unknown function (5, 6). How such complex 

communities respond to natural as well as anthropogenic fluctuations in the environment, 

including major perturbations such as global climate change, is poorly understood. For 

instance, little is known about what genomic adaptations, interactions and feedback 

mechanisms occur among members of the community during perturbations that simulate 

the predicted effects of climate change such as increased ambient temperatures and 

carbon dioxide (CO2) concentrations (7, 8). Advancing these issues would also lead to a 

more predictable understanding of the role of the soil ecosystem and its biota for models 

of climate change.  

 The recent advances in sequencing technologies provide an opportunity to 

comprehensively assess community-wide shifts in response to environmental 

perturbations. Several studies have recently attempted to quantify the impact of elevated 

CO2 levels (9), input of exogenous organic matter of varied degrees of recalcitrance (10, 
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11), and different regimes of nitrogen fertilization (12) on soil microbial communities. 

Most of these studies analyzed small subunit ribosomal RNA (16S rRNA) gene 

sequences recovered from the indigenous communities and revealed important 

differences in community composition in response to the perturbations. Although the 16S 

rRNA gene successfully serves as the best phylogenetic marker to identify the taxa 

present in a sample, it represents just one of the genes in the genome while important 

levels of functional and ecological differentiation frequently underlie identical 16S rRNA 

gene sequences (13). Thus, in order to better understand and model the functional 

significance of the shifts in species composition observed, it is important to analyze the 

whole genome level. A recent study highlighted the power of whole genome approaches 

by linking methane (CH4) emissions from a thawed permafrost soil to specific genes and 

species of the indigenous communities (14).     

 In this study, we report on the whole-genome shotgun metagenomic analysis of 

microbial communities of temperate grassland soils (well-aerated soil, in Oklahoma, 

USA) that experienced 2°C infrared heating for 10 years. Our analyses show that even 

such mild and relatively short-lived perturbations can induce significant changes in the 

composition and functional potential of the indigenous microbial community as well as 

the interactions among community members. In the Midwestern grassland soils studied 

here, these community changes appear to promote the respiration of the additional plant-

derived soil carbon fixed as an effect of warming, which has important implications for 

better understanding and modeling the effects of global climate change. 
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MATERIALS AND METHODS 

Experimental setup and sampling  

This study was conducted at the Kessler Farm Field Laboratory (KFFL) located at 

the Great Plain Apiaries in McClain County, Oklahoma, USA (34°58'54"N, 

97°31'14"W). This is an old field tallgrass prairie that had been abandoned from 

agriculture for more than 30 years. The herbivores were excluded at this site in 2002 to 

prevent grazing. The grassland is dominated by C4 grasses (Andropogon gerardii, 

Sorghastrum nutans, Schizachyrium scoparium, Panicum virgatum, and Eragrostis spp.), 

C3 forbs (Ambrosia psilostachyia and Xanthocephalum texanum), and C3 annual grass 

(Bromus japonicas) (15, 16). Based on Oklahoma Climatological Survey from 1948 to 

1999, the mean annual temperature at this site was 16.3ºC with the lowest, 3.3ºC, in 

January and the highest, 28.1ºC, in July, while the mean annual precipitation was 

967mm, which was highest in May and June (240 mm) and lowest in January and 

February (82 mm). The soil is silt loam (36% sand, 55% silt, and 10% clay in the top 15 

cm) and part of Nash–Lucien complex, which typically has high fertility, neutral pH, high 

available water capacity, and a deep moderately penetrable root zone. 

 The experiment was established in November 1999 with a blocked split-plot 

design, in which warming is a primary factor. Two levels of warming (ambient and +2ºC) 

were set for six pair of 1 m ! 1 m subplots by utilizing a “real” or “dummy” infrared 

radiator (Kalglo Electronics, Bethlehem, Pennsylvania) as the heating device, suspended 

1.5m above the ground in warming plots. In control plots, the dummy infrared radiator is 

also suspended (but not functional) to exclude the shading effect of the device itself. The 

12 soil samples were taken from 0-15 cm layer in 6 warming and 6 control plots in 
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October 2010. Each sample was composited from two soil cores (2.5 cm diameter !  

15 cm deep) and was sieved by 2mm sieves prior to being transported to the laboratory 

and stored at -80oC. The annual temperature measured on actual soil samples was on 

average 1.2 0C higher in heated vs. control plots at 15cm depth (Table 6.3), confirming 

that our heating strategy was effective. 

 

DNA extraction and sequencing 

Ten grams (10 g) of soil was used for DNA extraction for each sample. DNA was 

extracted by freeze-grinding mechanical lysis as described previously (17) and was 

purified using a low melting agarose gel followed by phenol extraction. DNA quality was 

assessed based on the ratios of 260/280 nm and 260/230 nm absorbance by NanoDrop 

ND-1000 Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE) and the 

yield of purified DNA was in the range of 1-2 " g/g, depending on the sample considered. 

Final DNA concentrations were quantified by PicoGreen (18) using a FLUOstar Optima 

(BMG Labtech, Jena, Germany). Library preparation, cluster generation, and sequencing 

followed the instructions of the manufacturer (Illumina, Inc., San Diego, CA). Briefly, 1-

2 " g of genomic DNA from each of the 12 soil samples was used to construct 350 bp 

long insert sequencing libraries (hence, the derived metagenomes represent the microbes 

present in about 1g of soil sample). DNA was first fragmented using the Covaris system 

(Covaris, Woburn, Massachusetts), and was end-repaired and ligated with adapters using 

the TruSeq DNA Sample Prep Kit. The resulting libraries were subjected to cluster 

generation using TruSeq PE Cluster Kit v2 on cBot and massively parallel sequencing 

using TruSeqSBS 200 cycle kit on the Hi-Seq 2000 instrument.
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Physicochemical measurements 

The soil pH, soil moisture, total soil C and N, soil labile and recalcitrant C, soil 

microbial biomass, soil ammonia and nitrate content, soil temperature, soil nitrification 

and denitrification potentials were measured as previously described (19-23). 

Sequence processing 

Illumina read trimming was carried out using an in-house python script (available 

from the authors upon request). The script trimmed each pair-ended read based on the 

following sequential steps: i) trim the read from both 5’- and 3’-ends until a base with 

Phred score >20 is met; ii) use a sliding 3bp-long window to examine the quality of the 

remaining sequence from step (i). If the average Phred score of a window is lower than 

20, create a cut at that position; iii) keep the remaining sequence if it is longer than 50bp 

and contains no more than 1 N (ambiguous base); otherwise discard the sequence. Only 

reads that both sister reads passed the trimming cut-offs were used for further analysis 

(Table 6.1). This method was applied on all samples, including the publicly available 

metagenomes used in this study for consistency purposes.  
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Table 6.1. Sequencing and assembly statistics for each soil metagenome. Sample replicates 

(denoted by “rep” in the Table) denote technical replicates, i.e., same library sequenced 

independently in two different lanes of the Illumina HiSeq2000 instrument.  

  
Size (! 106 reads) Assembly (Kbp)a Taxonomy composition (%) Sample 
Raw Trimmed N50 Max Total Bacterial Archaeal Viral Eukaryotic Other 

C1.rep1 47.1 38.3 0.79 11.47 517 90.8 1.7 0.2 7.1 0.2 
C1.rep2 39.8 32.9 0.71 5.89 305 90.8 1.7 0.1 7.3 0.1 
C2 190.1 134.3 0.76 39.94 3,320 90.9 1.7 0.2 7.0 0.2 
C3.rep1 96.6 70.8 0.68 6.59 976 91.4 1.8 0.2 6.6 0.1 
C3.rep2 81.1 62.8 0.73 7.13 1,482 89.7 1.9 0.2 8.1 0.2 
C4 150.4 118.8 0.69 4.71 1,223 90.6 1.6 0.2 7.2 0.1 
C5 134.9 102.7 0.73 7.67 3,656 91.2 1.8 0.2 6.9 0.1 
C6 176.3 127.0 0.81 18.16 1,741 90.8 1.7 0.2 7.2 0.1 
H1 107.0 83.9 0.72 27.19 4,616 91.0 1.7 0.2 7.0 0.1 
H2 110.1 85.8 0.72 9.03 860 90.9 1.8 0.2 7.0 0.2 
H3 103.9 81.5 0.67 3.6 936 91.0 1.7 0.2 6.9 0.1 
H4.rep1 58.3 45.7 0.69 3.36 449 91.1 1.8 0.2 6.9 0.1 
H4.rep2 57.9 45.6 0.72 3.63 459 91.0 1.7 0.1 6.9 0.2 
H5 104.4 82.1 0.71 15.84 2,554 90.6 1.7 0.2 7.4 0.1 
H6 113.4 89.9 0.67 3.43 752 90.8 1.7 0.2 7.2 0.1 
a Only contigs longed than 500bp were used. 
 
 
 
Table 6.2. Site information where samples were taken. 

Item Unit, if applicable Content 
Investigation type  Metagenomics 
Location  Oklahoma, USA 
Latitude, longitude  34°58#54$N, 97°31#14$N 
Collection date  August, 2010 
Environment (biome)  Grassland 
Environmental package  Soil 
Sample collection device  Soil corer 
Sampling depth cm 0-15 
Sequencing method  Illumina HiSeq-2000 
Current land use  Grassland 
Current land vegetation  Grass 
Previous land use  Pasture 
Sample weight for DNA extraction g 10 
Mean annual temperature °C 16 
Total organic carbon, avg % 1.24 
Total organic C method  Shimadzu TC analyzer 
Total nitrogen, avg % 0.11 
Total nitrogen method  Shimadzu TC analyzer 
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Table 6.3. Physicochemical measurements of soil samples. 

Item Year H1 H2 H3 H4 H5 H6 C1 C2 C3 C4 C5 C6 
Moisture (%) 08 17.5 16.0 13.2 13.0 14.5 13.2 15.0 16.3 15.5 14.5 14.8 15.2 
Average annual soil 
temperature (°C) 

07 16.1 16.3 15.7 15.6 17.0 16.7 14.7 15.0 15.0 14.8 15.6 15.0 

pH 08 8.03 8.08 8.03 7.64 6.61 7.07 7.98 7.87 8.02 7.75 6.57 7.70 
NO3 08 3.17 4.97 3.23 8.23 5.29 1.45 5.77 4.06 2.12 14.8 2.86 2.61 
NH4 08 6.02 4.25 3.96 7.43 22.5 9.9 8.31 7.17 5.21 6.66 11.9 8.12 
Total soil N (%) 08 0.13 0.13 0.09 0.14 0.17 0.11 0.13 0.16 0.09 0.22 0.14 0.21 
Total soil C (%) 08 2.81 3.96 2.56 2.54 2.12 1.28 2.75 3.63 2.58 3.27 1.57 2.44 
Total soil organic 
matter (%) 

08 4.84 6.83 4.41 4.38 3.66 2.21 4.74 6.26 4.45 5.64 2.71 4.21 

Microbial N (mg/kg) 03 90.9 67.3 90.6 125.6 90.7 74.4 87.4 28.0 67.0 67.1 71.5 72.5 
Microbial C (mg/kg) 03 676.3 770.8 847.5 715.3 570.7 810.7 352.2 174.1 418.9 488.4 457.7 591.3 
Soil labile C pool 1 
(mg/kg) 

08 3.75 2.80 1.66 2.49 3.59 2.23 2.26 4.66 2.31 3.18 2.43 1.79 

Soil labile C pool 2 
(mg/kg) 

08 3.83 3.79 2.33 4.95 6.64 4.49 2.00 4.36 2.88 4.66 5.39 3.76 

Recalcitrant C pool 
(mg/kg) 

08 4.34 3.87 3.41 10.5 5.32 4.66 4.51 3.90 3.98 10.0 4.15 2.47 

Soil labile N pool 1 
(mg/kg) 

02 
32 32 24 28 28 24 28 28 16 25 24 28 

Soil labile N pool 2 
(mg/kg) 

02 
84 72 68 75 75 76 80 88 64 76 88 60 

Soil Respiration  07 2.86 2.13 2.48 3.36 1.97 3.07 2.10 1.89 2.23 2.71 1.64 1.68 
Nitrifiction rate  10 0.01 0.01 0.07 0.15 0.01 0.01 0.01 0.01 0.01 0.10 0.02 0.02 
Denitrification rate  10 7.30 6.35 8.63 11.3 - 10.1 6.31 6.90 5.45 11.3 12.3 5.75 

 

Table 6.4. Plant information for the soil samples analyzed in this study. 

Item Year H1 H2 H3 H4 H5 H6 C1 C2 C3 C4 C5 C6 
Total peak biomass 
(July or August, g/m2) 

07 281 268 262 334 288 347 192 173 181 453 200 196 

5 year averaged total 
peak biomass (July or 
August, g/m2) 

03-07 225 217 240 373 327 315 217 227 240 317 307 223 

Forbs (C3; g/m2) 07 75 72 71 86 76 88 22 5 12 256 29 25 
Grasses (C4; g/m2) 07 206 195 191 248 212 259 170 168 169 198 171 171 
5 year averaged forbs 
(C3; g/m2) 

03-07 49 43 50 39 50 56 37 24 26 172 41 42 

5 year averaged grasses 
(C4; g/m2) 

03-07 176 174 190 334 277 259 180 203 214 145 266 181 

C3 plant leave N (%) 08 0.83 1.27 1.19 1.67 1.61 1.04 1.07 1.32 1.00 2.26 1.29 1.64 
C4 plant leave N (%) 08 0.67 0.48 0.65 0.76 0.88 0.76 0.75 0.61 0.80 0.77 0.85 0.82 
C3 litter N (%) 06 0.51 0.40 0.48 0.99 0.45 0.41 0.59 0.75 0.46 0.75 0.60 0.73 
C4 litter N (%) 06 0.57 0.46 0.63 0.54 0.52 0.43 0.58 0.56 0.83 0.72 0.54 0.48 
Root biomass (g/m2) 05 290 111 131 139 335 215 150 185 116 92 187 128 
Root N (%) 05 0.58 0.51 0.60 0.77 0.49 0.68 0.65 0.49 0.67 0.94 0.71 0.60 
Normalized difference 
vegetation index 

07 0.49 0.39 0.47 0.45 0.50 0.55 0.39 0.42 0.47 0.53 0.51 0.45 

Leaf area index 07 1.45 0.95 1.28 1.13 1.46 1.59 1.45 1.35 1.45 1.24 1.13 1.05 
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16S rRNA gene encoding read analysis 

To identify reads encoding 16S rRNA gene fragments, we used the nucleotide 

sequence of the 16S rRNA gene of E. coli strain K-12 as reference (GenBank accession 

number: NC_000913). Reads were identified using a Blastn (24) search (settings: “-m 8 –

v 1 –b 1 –X 150 –q -1 –F F –e 1e-12”, remaining parameters at default settings) and the E 

coli sequence as a reference database and a cut-off for a match of at least 70% nucleotide 

sequence identity and 50bp alignment length. The matching metagenomic reads were 

extracted and searched against a reduced version of the GreenGenes database (25), in 

which all GreenGenes sequences were first pre-clustered at the 99% nucleotide sequence 

identity level (OTUs). Pair-ended reads with both ends matching the same OTU with 

higher than 99% nucleotide identity were assigned to that OTU. The relative abundance 

of different genera/phyla in each sample was quantified by the number of reads assigned 

to each taxon, normalized by the sample size (assuming each community/sample is 

characterized by the same rRNA copy number per genome, on average). The normalized 

counts for genera/phyla were subjected to PCoA analysis as implemented in MatLab and 

genera/phyla that were significantly differentially present were identified using the paired 

t-test from statlib in Python (Figure 6.1). 

 To perform FastUniFrac analysis (26), the 16S rRNA gene encoding reads from the 

previous step were aligned to E. coli 16S rRNA gene sequence using CLUSTALW2 (27). 

A 50 bp window was used to count the number of aligned reads at different positions 

across the gene sequence (Figure 6.7A). Following visual inspection, four regions with 

high read coverage (755-804bp, 882-931bp, 1061-1110bp, and 1187-1236b; in the 
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proximity of the V5 to V8 regions) were selected and the corresponding 50 bp-long, fully 

overlapping, aligned sequences were extracted and served as the input alignment for 

FastUniFrac. The four regions targeted are not fully overlapping with the V5 to V8 

regions and typically show higher sequence conservation thus, underestimating OTU 

diversity. However, our FastUniFrac analysis was restricted to the phylum level, where 

the varied degree of sequence conservation among the regions does not have a significant 

effect. 

 

Non 16S rRNA gene encoding read analysis and sequence discrete populations 

Reads not encoding 16S rRNA gene fragments were searched against all the 

complete and draft bacterial genomes available in NCBI at the end of 2011 

(www.ncbi.nlm.nih.gov) using BLAT (cut-off for a match: E-value <1e-10, alignment 

length >50bp, and nucleotide identity >80%). Only sister reads that had the same genome 

sequence as their best match were considered for further analysis. Reads were assigned to 

a genus based on the taxonomic classification of the genome that provided the best 

match. The number of reads recruited by each genome was normalized for the sample 

size by dividing by the total number of reads of the sample. The normalized read counts 

were used as a proxy of the genus abundance in the corresponding sample. The 

correlation of the abundances of any two genera between all samples was calculated 

using the Pearson correlation (statlib in Python), and a genus co-occurrence network was 

built using pairs of genera with correlation coefficient > 0.7 and P-value < 0.01 (Figure 

6.12). To identify discrete populations, reads were mapped onto assembled contigs from 
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each metagenome (see below), using Blastn and a cut-off for a match of at least 70% 

nucleotide sequence identity and 50bp alignment length. We also used MG-RAST (28) 

on unassembled reads to estimate the fraction of bacteria, archaea, viruses, and 

eukaryotes in each metagenome. The results showed that the non-bacterial fraction was 

rather small (<10% of the total) and the viral and eukaryotic fractions were similar across 

the samples (Table 6.1). It is unlikely that genome size or domain-level differences in 

abundance have significantly affected our results and hence we have preferentially 

focused on the bacterial fraction in our results and discussions.  

 

Metagenome assembly and gene annotatio  

The assembly of metagenomes was carried out using a hybrid protocol that 

combines Velvet (29), SOAPdenovo  (30), and Newbler 2.0 (Table 6.1), as described 

previously (31). MetaGeneMark (32) was employed to identify protein-coding genes in 

assembled contigs, and a Blastx search against nr database was used to functionally 

annotate the genes. Protein-coding genes on individual reads were identified by 

FragGeneScan (33) using Illumina 0.5% error model and default settings. The amino acid 

sequences of these genes were searched against the SEED database (34) by BLAT (35) 

using default settings. The best match for each read, when better than a minimum cut-off 

of e-value <1e-10, alignment length >20 amino acids (a.a.), and a.a. identity >30%, 

against the SEED genes was recorded and the number of best-matching reads was taken 

as a proxy of the abundance of the SEED genes and subsystems in each sample, after 

normalizing for the sample size.  
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Differentially present pathways 

To identify pathways that were significantly differentially present between the 

control and the heated samples, we employed an approach combining re-sampling 

techniques, the DESeq package (36), and binomial testing (Figure 6.9). A jackknife 

method was used to generate all combinations of three control and three heated samples 

(from a total of six samples in each set). For each combination, a count table was 

generated. Each row of the table represented a SEED subsystem, each column 

represented a sample, and each element was the normalized number of reads from the 

sample assigned to the SEED subsystem from the previous BLAT search (counting reads 

that were assigned to all genes that constitute the subsystem). DESeq was then used to 

detect the difference between heated and control samples for each SEED subsystem. For 

the same SEED subsystem, the log2 fold changes from the DESeq analysis of all 

combinations of samples followed a distribution, the mean of which represented the best 

estimate of fold change, while the variance reflected the reliability of the estimate. A 

binomial test was carried out to test the significance of the log2 fold changes, and the P-

value was adjusted for false discovery rate using the Benjamini-Hochberg method. SEED 

subsystems that recruited at least 100 reads in one sample with P-value <0.01 and a fold 

change > 5% are reported in Table B1. 

 To test whether the observed changes in a SEED subsystem relative abundance were 

community-wide or instead attributable to the emergence/disappearance of a few taxa, we 

first extracted the nucleotide sequences of the genes that constitute the pathway in 

question. A Blastx search was carried out to identify the homologs of each gene in nr 

database (cut-off: 80% alignment length and 70% a.a. identity). The potential nr 
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homologs with ambiguous tags such as “putative”, “hypothetical”,  “possible” were 

removed. The remained sequences and the SEED genes were merged to form a reference 

database, against which the pair-ended reads were searched using Blastx (same cutoff). 

For each a gene, a multi-sequence alignment (MSA) was constructed of all reference 

homolog sequences by MUSCLE (37), and the metagenomic reads were aligned to the 

MSA based on their Blastx search results. A 20 amino acid window was applied to scan 

the final MSA read alignment. Regions with coverage (number of reads per amino acid) 

two standard deviations higher than average coverage of the whole gene sequence were 

discarded, because it is likely that such regions encode universally conserved motifs and 

thus recruit false positive reads (i.e., reads representing other genes). The regions with 

coverage of at least 300 reads were extracted, and the aligned a.a. sequences were used as 

a guide to produce the corresponding codon by codon nucleotide sequence alignment. 

FastTree (38) was employed to reconstruct the phylogenetic tree of all reads based on 

their nucleotide alignments. CD-HIT (39) was used to collapse the reads into OTUs based 

on the level of nucleotide sequence identity (three levels were used, 80%, 85% and 90% 

identity). The results based on different identity thresholds were highly similar (data not 

shown); thus, 80% was used for further analysis. Note that we did not use higher identity 

thresholds (e.g., 95%), even though such thresholds would have captured better the 

nucleotide identity range that corresponded to the genetic discontinuities observed 

between sequence-discrete populations, because only a few clades containing enough 

sequences for downstream analysis were observed with higher thresholds. The percent of 

the total reads in each OTU that represented reads of control samples was counted and 

reported in Figure 6.12-13. 
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Soil comparative metagenomic analysis 

Publically available metagenomes used in this study included: Alaska permafrost 

samples (14), which were downloaded from the ftp site of the Joint Genome Institute 

(www.jgi.gov); ocean samples (GOS257, GOS258, GOS259, GOS262, GOS263, and 

GOS264) from the Global Ocean Sampling expedition (40), which were downloaded 

from the trace archive database (www.ncbi.nlm.nih.gov/Traces/trace.cgi); and planktonic 

samples from Lake Lanier (Atlanta, GA) from our previous study (41). The permafrost 

and freshwater lake raw reads (Illumina) were trimmed as described above, while the 

ocean samples (Sanger sequences) were trimmed with comparable standards and 

randomly sampled to produce 100bp long reads that were comparable to the Illumina 

reads.  

 To compare the complexity of samples from different environments, we applied an 

in-house developed parallelized algorithm. The algorithm subsamples and calculates the 

portion of non-unique reads at a given amount of reads (sequencing throughput). By 

varying the input amount of reads to this algorithm (to the amount that is computational 

tractable to search all reads against themselves) and performing multiple replicates 

(resampling), a saturation curve that resembles a rarefaction curve is produced, which 

reflects the complexity of the sample. An exponential regression is subsequently fit to the 

calculated “read uniqueness” values, with the goal to minimize the summed squared error 

(SSE). The degree of complexity of different samples is quantitatively assessed by 

comparing the slopes of the regression lines (the lower the slope, the more diverse the 

community sampled, Figure 6.1A). The exponential function used in the regression 

analysis was: 
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, 

where y is the percentage of non-unique reads, x is the amount of reads in gigabytes. The 

fitting was carried out in R. 

 To compare the datasets in terms of gene relative abundance, all trimmed reads in 

each dataset were then searched against the genes recovered on the assembly of the 

dataset (cut-off for a match: Blastn; e-value: <1e-12; nucleotide identity: >70%, and 

alignment length: >50bp), and the number of reads matching each gene represented the 

relative abundance of the gene in the corresponding sample (normalized for the sample 

size). A hierarchical clustering of the samples was carried out based on the abundances of 

all genes found in all samples (Figure 6.4).  

 The Oklahoma and Alaska samples were also compared at the read (read vs. read) 

and contig coverage (read vs. contig) levels, using the same Blastn parameters and cut-

offs as described above. In the read comparison, we assessed what fraction of the reads of 

one dataset was shared by the other dataset. The taxonomic information of the read was 

obtained from its best match against the available genome sequences in nr database as 

described in the previous section as long as the match was of at least 95% nucleotide 

sequence identity. In the contig comparison, the percent of a contig covered by a 

metagenome was estimated based on the length of the contig covered by metagenomic 

reads divided by the total length of the contig. 
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RESULTS AND DISCUSSION 

Community complexity, comparisons to other habitats and sequence-discrete 

populations. 

 Community DNA was extracted and sequenced from six replicate samples 

representing the heated soils (H1 to H6) and six samples representing the adjacent 

unheated soils (controls; C1 to C6). Sequencing was performed using the Illumina HiSeq-

2000 platform and yielded about 10-15 Gb of short pair-ended (PE) sequence data per 

sample (100 X 100 bp; Tables 6.1 and 6.2). Prokaryotes represented the great majority of 

each community sampled based on the fact that an average of 92% of the total genes 

recovered had best matches (average amino acid identity ~35%) against bacterial and 

archaeal genomes in MG-RAST database (42). Due to the high complexity of the soil 

communities in terms of species richness, the assembly of the metagenomes using 

established algorithms such as Velvet (29) or our recently described hybrid protocol (31) 

yielded only short contigs (e.g., N50 = 500 to ~1,000bp) while the majority of the reads 

remained unassembled (Table 6.1). The community complexity was quantitatively 

evaluated based on the fraction of unique reads in randomly drawn subsets of the data 

and was compared to the complexity of metagenomes from permafrost soils and aquatic 

habitats. The soil community was estimated to be eight times more complex in terms of 

species richness than the planktonic communities of the open ocean or Lake Lanier 

(Atlanta GA), assuming an average genome size three times larger in the soil than the 

aquatic communities (43), and two and a half times more complex compared to the 

permafrost soil community reported recently (14) (assuming similar genome sizes; Figure 

6.1A). Lake Lanier was previously estimated to contain about 500 operational taxonomic 
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units (OTUs; defined at the 97% 16S rRNA gene sequence identity level) and to show 

comparable diversity to the open ocean (41). Therefore, the number of OTUs in a gram of 

soil for our samples was extrapolated to be about 4,000, which is in 

 

 

Figure 6.1. Soil community complexity and dominance of sequence-discrete populations. (A) 

The percentage of non-unique reads (defined as reads with at least one match at 95% nucleotide 

identity level; y-axis) as a function of the size of randomly drawn subsamples from whole-

genome shotgun metagenomes of different habitats (x-axis) is shown. Solid lines represent 

averages, shadowed regions represent 1 standard deviation from the average based on 1,024 

random subsamples, and dashed lines represent the fitted exponential curves. (B) Eight contig 

sequences, assembled from a control metagenome (C5), were used as references to recruit reads, 

essentially as described previously (44). The graph shows the identity of each read against the 
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reference sequence (y-axes) plotted against the position of the read on the reference sequence (x-

axes). The histogram on the top represents the read coverage across the length of the contigs; the 

histogram on the right represents the number of reads recruited per unit of nucleotide identity. 

Note the genetic discontinuity typically observed in the 95-98% nucleotide identity range. 

 

 

 agreement with previous estimates (2), but it likely represents an underestimate of 

species richness due to the high conservation of 16S rRNA gene sequences (45). 

Although the average amount of sequence diversity (or community complexity) was 

comparable between heated and control samples, heated samples showed significantly 

less variability in their diversity estimates (Figure 6.2), indicating that warming drove the 

community to a more defined (non-random) direction. We also estimated that about 337 

Gb of sequencing would be required to cover 95% of the sequence diversity within each 

sample used in the study (95% confidence interval: 331.6-341.7 Gb). Finally, the twelve 

samples typically shared >90% of the OTUs recovered based on 16S rRNA gene 

fragments encoded on metagenomic reads and the majority of the non-16S rRNA gene 

encoding reads (Figure 6.3). Given also that sequencing did not saturate the total 

diversity in the samples, these results revealed that the communities sampled by the 

twelve samples were highly overlapping in terms of species present. 
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 Figure 6.2. Community complexity in the samples used in this study. The percentage of non-

unique reads (defined as reads with at least one match at 95% nucleotide identity level; y-axis) as 

a function of the size of randomly drawn subsamples of the metagenomes used in tis study (x-

axis) is shown. Solid lines represent averages, shadowed regions represent 1 standard deviation 

from the average based on 1,024 random subsamples. Note that, although the average level of 

community complexity was comparable between heated and control samples, heated samples 

showed significantly less variability in their diversity estimate (red ribbons are contained within 

the blue ribbons), indicating that warming drove the community to a more defined (non-random) 

direction. 
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Figure 6.3. Overview of read-based comparisons between Oklahoma temperate soil and 

Alaska permafrost soil samples. The graph on the top (A) shows that about 1/3 of the reads 

from the Alaska sample (C2.AL.D2) have a match in Oklahoma sample C2 (left panel; cut-off, e-

value: 1e-12 and alignment length: 50bp). The shared reads showed an average nucleotide 

sequence identity of ~90% (B). The reads that showed higher than 95% nucleotide sequence 

identity were extracted and searched against completed and drafted genomes from NCBI, and the 

relative abundances of the top 10 most abundant genera are shown in C. For comparison, a 

randomly drawn subsample from the Oklahoma C1 sample, which was similar in size to the 

Alaska sample C2.AL.D2, was also searched against the Oklahoma C2 (right panels). Note that 

the reads of the Oklahoma samples overlapped two times more frequently compared to the Alaska 
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sample (61.2% vs. 32.7% of reads overlapped, normalized to the smallest dataset; panel A) and 

the overlapping reads were of significantly higher nucleotide identity (panel B). 

  

 

The temperate soil microbial communities sampled in this study were also 

compared to previously characterized communities from other habitats based on the 

abundance of genes recovered in the corresponding metagenomes. The analysis revealed 

that the former communities were distinctly different from those of the permafrost soil or 

aquatic environments. In fact, temperate and permafrost soil communities were only 

slightly more similar to each other compared to aquatic communities (Figure 6.4), 

indicating greater diversity among soil microbial communities compared to communities 

within other environments. Despite the high diversity among soil communities, a 

substantial part of the permafrost metagenomic reads (about 33% of the total) had high 

sequence identity (average ~90%) matches to reads of the temperate soil metagenomes 

(Figure 6.3), revealing the existence of a core set of (closely related) organisms that are 

present in soils of different type and geographic regions. Fragment recruitment plots 

against available genome sequences confirmed these interpretations and revealed that, 

although the majority of organisms in soils are still not represented by genome sequences 

in the public databases, several species with sequenced representatives appear to 

represent cosmopolitan soil inhabitants such as Conexibacter, Rhodopseudomonas, and 

Bradyrhizobium. These findings also corroborated previous 16S rRNA gene based 

findings (46). Interestingly, the permafrost community that underwent thawing (14) 

resembled more the temperate soil communities than the original (un-thawed) community 
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(Figure 6.5), indicating that temperature represents a major driver of community diversity 

in these soil ecosystems.  

 

 
 
Figure 6.4. Clustering of metagenomics samples from different environments. Freshwater 

samples: Lake Lanier time series; Ocean samples: selected samples from the Global Ocean 

sampling Survey (GOS); Temperate soil samples: samples of this study; Permafrost samples: 

samples reported by Mackelprang and colleagues, using the naming of the samples provided by 

the authors, i.e., C1/C2, core 1/2; AL, active layer; PF, permafrost; D2/7, day 2/7). Clustering was 

based on the abundance of the top 500 most abundant genes (averaged across all samples). Gene 

abundance represented the number of reads matching the gene, normalized by the total number of 

reads in the sample. 
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 A recent synthesis of the findings from previous metagenomic studies has 

revealed that microbial communities of many habitats such as the open ocean, freshwater 

ecosystems, the human gut, iron-reducing biofilms, and phosphorus removal bioreactors 

are predominantly composed of sequence-discrete populations and these populations may 

represent the important units of microbial diversity (47). Due to unavailability of 

appropriate datasets from soil communities, it has not yet been possible to test the 

applicability of these findings to soil ecosystems. Fragment recruitment plots using the 

contigs assembled from the temperate soil metagenomes as references revealed that 

sequence-discrete populations dominate the soil microbial communities, similar to other 

habitats (Figure 1B). Using the number of reads recruited by each contig (at the >95% 

nucleotide identity level) as a proxy for in-situ abundance and the phylogenetic affiliation 

of the housekeeping genes encoded on the contigs, we found that Burkholderia sp. 

Conexibacter sp. and Rhizobacter sp. were the most abundant species in the samples and 

no single species recruited more than 0.1% of the total reads.  
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Figure 6.5. Coverage of assembled Oklahoma soil contigs by Alaska sample reads. Each row 

represents an Alaska permafrost metagenome and each column represents an Oklahoma soil 

metagenome; the percentage of Oklahoma soil contigs covered by Alaska reads is represented by 

the color intensity (see scale). For the naming of samples, see Figure S3. Note that, after quality 

read trimming, core 1 metagenomes were % of the size of the corresponding core 2 metagenomes, 

on average, and this probably accounts for the higher number of reads shared between core 2 and 

Oklahoma metagenomes and that the samples of the Alaska active (thawed) layer were more 

similar to Oklahoma soil samples compared to the deeper, permafrost layer. 

 

 

Taxa distribution and co-occurrence patterns as an effect of warming.  

 At the sequencing depth of about 100 million PE reads per sample, no domain-

level abundance differences were observed as an effect of warming (Table 6.1). Within 

the bacterial domain, however, several significant differences were observed. Based on 
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the 16S rRNA gene fragments recovered in the metagenomes, the most abundant phyla, 

i.e., Proteobacteria, Acidobacteria, Planctomycetes, and Bacteroidetes, were 

significantly differentially present between heated and control datasets [P<0.05 paired t-

test, Benjamini-Hochberg (B-H) adjusted for false discovery in multi-testing; Figure 

6.6A], albeit the difference was not dramatic, 2% on average. PCoA projection using 

phylum relative abundance confirmed that the samples from the two different treatments 

clustered separately, which was primarily attributable to the differences in the four 

aforementioned phyla (Figure 6.6B). These results were reproducible (Figure 6.7) when 

the analysis was performed using the FastUniFrac algorithm (26) and for different 

regions of the 16S rRNA gene sequence.  

To determine the taxa whose abundance correlated (potential synergistic interactions) or 

anti-correlated (potential antagonistic interactions) as an effect of warming, a genus co-

occurrence network of was constructed based on the abundances of all bacterial genera 

present in all 12 samples, the latter defined by the number of reads recruited by available 

representative genomes of each genus. The resulting network was composed of four 

major well-connected subgraphs, representing  -Proteobacteria, # , /%-Proteobacteria, 

Actinobacteria, and Acidobacteria/Verrumicrobia (Figure 6.6C). We observed mostly 

positive correlations within a subgraph whereas only negative correlations were typically 

observed between genera from different subgraphs. These findings indicate that genera of 

the same subgraph (corresponding  
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Figure 6.6. Taxa abundance shifts and co-occurrence network as an effect of warming. (A) 

Rings represent the average abundance (from six replicate samples) of phyla that made up at least 

1% of the whole community; phyla that were significantly different in abundance between heated 

and control samples are marked by asterisks (P<0.05, two-tailed paired t-test). (B) PCoA analysis 

of the phylum abundance values separated heated from control samples. Arrows point to the 

direction that the corresponding phylum distinguishes the samples, and their length is 

proportional to the degree of the differences in abundance observed. (C) Co-occurrence network 

based on Pearson correlation analysis of the relative abundance of genera in the twelve soil 

samples (only genera with Correlation coefficient > 0.7 and P < 0.01 are shown). Each node 
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represents a genus, color-coded for the phylum the genus is assigned to; the size of the node is 

proportional to the genus average relative abundance across the twelve samples. Each line 

represents a significant correlation between the two genera it connects; red denotes positive 

correlations, blue denotes negative ones. 

 

usually to the phylum or order levels) act synergistically among themselves, as a cohesive 

unit, and antagonistically to genera of different subgraphs upon environmental 

perturbations. Similar patterns were reported previously for soil communities, using 

different approaches. For example, based on BrdU-labeled 16S rRNA gene quantification 

by PhyloChip, Goldfarb and colleagues reported antagonistic interactions among 

bacterial phyla in response to carbon substrate addition (10); and Barberán and colleagues 

concluded that taxa within the same phylum tend to co-occur more often than expected 

based on the analysis of 151 soil 16S rRNA gene amplicon datasets (48). These 

observations across different soil and data types collectively reveal a hierarchical 

structure within soil microbial communities. It is important to note, however, that co-

occurrence does not necessarily indicate direct interactions between the taxa, as co-

occurrence may be due to hidden (indirect) factors. For instance, the more abundant 

phyla in heated samples include many copiotrophic (r-strategists) members (e.g., 

Proteobacteria) compared to phyla more abundant in the control (e.g., Actinobacteria, 

and Verrucomicrobia) and a higher concentration of available labile organic carbon was 

observed in heated samples (see also below). Functional experiments will be necessary to 

elucidate the mechanisms that underlie the correlation patterns revealed here. 

 Interestingly, a significant increase in the G+C% content of the 16S rRNA gene 

encoding sequences (~0.3% on average) or all reads (~1% on average) assigned to the 
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four most abundant phyla was observed in the heated metagenomes (P<0.05 paired t-test; 

B-H adjusted; Figure 6.8). The increased G+C% likely represents a genomic adaptation 

to exposure to higher temperatures as suggested in previous comparative genomics 

studies based on the higher thermo-stability of GC bonds relative to AT ones (49). Other 

factors, such as shifts in organic nitrogen availability in heated samples (see also below), 

might have also contributed to the higher G+C% content of heated datasets (50).  

 

 
 

Figure 6.7. 16S read recruitments and FastUniFrac analysis. (A) 16S rRNA gene encoding 

reads were recruited to E. coli 16S rRNA gene reference sequence and are plotted based on their 

nucleotide identity (y-axis) and aligned position (x-axis) on the reference. (B-E) Four 50bp long 

regions with the highest number of recruited reads were selected for PCoA analysis in 

FastUniFrac (marked by the red bars in A and referred to as R1 to R4; these regions are adjacent 

to the V5 to V8 regions as shown in Panel A, respectively), and the results for each region are 

shown in the bottom panels. 
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Figure 6.8. G+C% differences between control and warming samples over different phyla. 

Changes in abundance of the major phyla and their G+C% content were consistent between the 

16S rRNA gene (A) and the whole genome levels (B). Black bars represent the median and white 

stars represent the mean, the left and the right box boundaries represent the first and the third 

quartiles, respectively, and the left and the right whiskers mark the 1.5 inter-quartile range. 

Outliers are plotted using red crosses. 
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Relative abundance of metabolic pathways in heated vs. control metagenomes  

 The protein-encoding PE reads were assigned to pathways in the SEED database 

(34) based on homology searches of the protein sequence encoded on the reads, and the 

number of reads was taken as a proxy of the relative abundance of the pathway in the 

corresponding sample (between 30 to 40% of the total reads in each sample were 

assignable to the SEED database). A statistical approach was developed, which employed 

Jackknife resampling and the B-H method for adjusting P-values, to identify pathways 

differentially presented between the heated and control datasets (Figure 6.9). Consistent 

with the low-impact perturbation applied (2 0C warming, for 10 years), the differences in 

pathway abundances between heated and control samples were small, typically <5% 

change. Nonetheless, several significant changes were also noted and these were 

reproducible in biological and technical replicates (Figure 6.10). A large portion of 

pathways involved in carbon source utilization and degradation, and nitrogen cycle 

showed significant changes in relative abundance (Figure 6.11). In particular, several 

pathways that are involved in labile carbon source metabolism were enriched in heated 

samples, such as glycerate metabolism (+13%), cellulose degradation (+13%) and  -

glucuronide utilization (+22%). The opposite trend was observed for pathways related to 

(more) recalcitrant carbon sources, such as chitin utilization (-9%) and lignin degradation 

(-18%). These observations were consistent with field physicochemical measurements, 

which showed higher labile organic carbon content and higher primary production in 

heated soils (Figure 6.11; Table 6.3), driven mostly by aboveground plant communities 

(Table 6.4), and previous results based on GeoChip analysis of samples from the same 

site but different years (51). Furthermore, the enriched pathways in  
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Figure 6.9. Flowchart of identifying significantly shifted pathways. The number of reads 

recruited to each subsystem was converted to a raw count table (with rows representing 

subsystem abundance and columns representing samples) and Jackknife resampling was then 

carried out to resample three heated samples and three controls each time without replacement 

(three samples were used instead of the total six samples to provide enough replicate datasets for 

statistical analysis). Each of the sub-sampled tables was fed into R package DESeq (36) to infer 

the log2 fold change. The inference followed a normal distribution with a mean of 0 if no change 

between heated and control samples, positive if increased in heated samples, negative otherwise. 

To test if the fold changes were significant, a binomial test was carried out (1 for DESeq 

inference with positive log2 fold change, and 0 otherwise), and the P-values were adjusted using 

the Benjamini-Hochberg method. The subsystems with more than 5% change, P-value <0.05, and 
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more than 100 recruited reads (averaged across all samples) were identified as significantly 

differentially present (red dots on the scatter plot). 

 

 

 
 

Figure 6.10. Clustering of samples and replicates based on SEED subsystem relative 

abundance. Each column represents a SEED subsystem (with at least ten thousand reads 

recruited per sample, on average), and each row represents a sample. The abundance of the 

subsystem, normalized for the sample size by dividing by the total number of reads in the sample, 

is represented by the color intensity (see scale). Hierarchical clustering was carried out to group 

samples using Euclidean distance. Note that the technical replicates (e.g., C1.rep1 and C1.rep2) 

and control vs. heated samples were clustered together, consistent with our expectations. The 

exceptions to this pattern were the clustering of control C5 sample with the heated samples and 

the heated sample H2 with the control samples, which may be due to soil heterogeneity and the 

pH, e.g., the pH value of the C5 sample was lower and more similar to the pH of the heated 

samples compared to the other control samples. Differentially present subsystems are annotated 

in Table 6.5. 
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Figure 6.11. Changes in pathway relative abundance as an effect of warming. The heatmap 

on the left represents changes in abundance of different pathways (rows) for each pair of samples 

(columns), color-coded based on the magnitude of the change (see scale on the top left). For 

selected pathways related to the emission of greenhouse gases, the relative abundance of the 
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individual genes that constitute the pathway is shown on the right (small heatmaps; rows 

represent samples, and columns represent genes). In this case, changes in abundance represent 

deviation from the average abundance of the gene in all twelve samples, are color-coded based on 

the magnitude of the difference (see scale on the bottom right), and are generally consistent with 

the results for the whole pathway. The results of physicochemical measurements are represented 

by box-plots on the top-right. The vertical line at ratio 1 indicates no change between heated and 

control samples; the median of six paired replicate samples is marked by the red bar; the first and 

third quartiles are represented by the left and right boundaries of the box, respectively; the left 

and right whiskers represent the 1.5 inter-quartile range; outliers are marked by red asterisks. 

Abbreviations denote: SC, total soil carbon; MBC, microbial carbon; LPCM1/2, labile pool 1/2 of 

carbon, microbial; RspR, respiration rate; SN, total soil nitrogen, MBN, microbial nitrogen, 

LPNM, labile pool of nitrogen, microbial. 

 

 

 

heated samples included carbon monoxide (CO) dehydrogenases, their maturation 

factors, and various respiratory pathways. These findings were in agreement with higher 

respiration and elevated carbon dioxide (CO2) emissions measured in the heated vs. the 

control soils (51). In contrast, fermentation pathways, e.g., lactate and mixed acid 

fermentation, were typically less abundant in the heated metagenomes, apparently due to 

the prevalence of oxidative (aerobic) metabolism and the availability of additional, plant-

derived labile organic soil carbon as an effect of warming.  

 In terms of nitrogen metabolism, significantly higher abundance of denitrification 

and dissimilatory nitrite reductase in heated samples were observed while nitrogen 



196

fixation genes did not significantly differ in relative abundance (Figure 6.11). These 

observations indicated higher turnover and decreased content of organic nitrogen in 

heated soils, in agreement with higher labile carbon concentration and physicochemical 

measurements (Figure 6.11, and Table 6.3). It should be also mentioned that soil 

moisture, which is typically positively associated with the prevalence of anaerobic 

conditions and processes (such as denitrification), was lower in heated vs. control 

samples by about 4% (Table 6.3) but the difference was not statistically significant.  

 Taken together, our results revealed that warming induces higher primary 

production and microbial respiration rates in the temperate soils studied here; microbial 

respiration appears to release most, if not all, of the soil organic carbon fixed by 

(primarily) aboveground plant activity to the atmosphere. In agreement with these 

interpretations, we found that although aboveground plant biomass was 10 to 30% higher 

in heated vs. control sites, depending on the site considered (Table 6.4), the total soil 

carbon concentration was not significantly different between the sites (Figure 6.11). 

Finally, a higher abundance of sporulation-related genes and pathways, e.g., spore core 

dehydration (5% difference) and spore germination (12% difference) was observed in the 

communities that underwent warming (Figure 6.11 and Table B1), which was consistent 

with our expectations. 

 

Community-wide vs. taxon-specific shifts.  

 We also evaluated whether the shifts observed between heated and control 

datasets were due to systematic community-wide adaptations or instead to the differential 

presence of a few taxa. To this end, all (control and heated) overlapping PE reads 
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encoding a gene that was found to be differentially abundant in heated vs. control 

datasets were clustered at the 80% sequence identity level, providing the operational 

taxonomic units (OTUs) present in the samples for each gene. The percentage of heated 

vs. control reads constituting each OTU was compared to determine the OTU(s) that 

contributed to the higher abundance of genes and pathways in the heated samples. 

Overall, most of the gene content shifts were attributable to many OTUs, typically more 

that 50% of the total OTUs observed for each gene analyzed, revealing that warming 

induced community-wide adaptations (Figure 6.12-13). These systematic responses and 

the shifts in G+C% and gene content mentioned above indicate that the differences 

between heated and control samples were likely attributable to long-term adaptations as 

opposed to short-term, pulse-like responses of a few taxa. 
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Figure 6.12. Changes in pathway abundance are community-wide and not attributable to a 

few taxa. Representative sequences from all OTUs (or clades) of a specific gene (in this case, a 

CO2 dehydrogenase, CD_D) were analyzed to produce the distance-based phylogenetic tree 

shown. Pie charts at the tips of the tree represent the percentage of heated vs. control reads that 

made up each OTU and the size of the chart is proportional to the number of reads in the OTU; 

only OTUs with at least 50 reads are shown for simplicity purposes. Note that no OTU was heat- 

or control-specific and about ~60% of the pie charts had a higher number of heated vs. control 

reads, revealing that many distinct taxa are responsible for the higher abundance of CO2 

dehydrogenase in heated metagenomes. This is also evident in the graph shown on the top (inset). 

In the latter graph, each circle represents an OTU; the x-coordinate represents the percent of the 

total reads of the OTU that are control reads, the y-coordinate represents a random value for 

visualization purposes. Note that more OTUs have lower than 50% control reads relatively to 

OTUs with more than 50% control reads. The histogram on the top shows the distribution of the 

percentages of control reads in all OTUs, with a fitted Gaussion curve in solid line. 
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Figure 6.13. Systematic changes in relative abundance in different pathways To evaluate 

whether the shifts in pathway relative abundance observed in Fig. 3 were attributable to 

community-wide changes as opposed to changes in the abundance of a few taxa, we identified all 

reads encoding the genes of the pathways and built phylogenetic trees of all fully overlapping 

reads from both control and heated samples (combined in one tree). The sequences in the tree 

were subsequently grouped in OTUs, using a cut-off of 80% nucleotide sequence identity, i.e., 

intra-clade nucleotide sequence diversity <20%, inter-clade >20%. Each circle represents an OTU 

and its size is proportion to the number of reads the clade contains (see figure key). The x-axis 

value represents the portion of control read in clades for characteristic genes in methanogenesis 

(fdhG), ammonification (nrfE), nitrogen fixation (nifA), and denitrification (norE). The y-
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coordinate is a noise added at random for visualization purposes. In other words, clades appearing 

on the left of the y=0 line are made up of more heated than control reads and thus account for the 

higher abundance of the corresponding subsystem in heated samples. The histogram on the top 

shows the distribution of the portions of control clades for all OTUs of a gene, with a fitted 

Gaussion curve in red. Note that many clades accounted for the differential presence of the 

pathways shown, suggesting that warming induced community-wide shifts in microbial 

communities.
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Conclusions and perspectives for the future 

 The results reported here demonstrate that metagenomics and related molecular 

techniques represent powerful means to monitor the genomic adaptations and functional 

responses of complex soil microbial communities to long-term perturbations such as the 

predicted effects of climate change. Metagenomic data obtained from replicate samples 

were quantitative (e.g., Figure 6.11), highly reproducible at the subsystems or individual 

gene levels (e.g., Figure 6.10-11), and consistent with macroscopic, biochemical and 

physicochemical measurements of soil and aboveground plant biota. These data revealed 

that soil microbial communities adapt fast to perturbations, even low-impact ones, 

perhaps faster than previously anticipated. In the case of (mild) warming, adaptation was 

evident, for instance, by significant shifts in G+C% content and metabolic pathway 

abundance in the genomes of the indigenous microbes. These adaptations apparently took 

place in less than 10 years and we find it remarkable that features like G+C% content, 

which are thought to represent stable properties of the genome and community, can 

change in such a (relative) short period of time. Our findings indicated that microbial 

communities of temperate grassland soils play important roles in feedback responses to 

exposure to elevated temperatures, at least in the short term (e.g., a decade). In the soils 

studied here, this was evident by a significantly higher abundance of respiration and 

labile carbon metabolism genes in heated vs. control samples; control samples showed 

instead a higher abundance of recalcitrant carbon degradation genes (e.g., Figure 6.11). 

This feedback appears to represent a community-wide response, as opposed to being 

attributable to the activity of a few taxa (e.g., Figure 6.12), and is presumably driven by 

complex interactions among community members (e.g., Figure 6.6). Our study also 
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highlighted the complex interactions and feedbacks between belowground microbial 

communities and aboveground plant communities and the importance of the former (in 

addition to the latter) for the models of climate change. Nonetheless, disentangling the 

direct effect of warming on the belowground microbial communities from the indirect 

effect of warming due to the stimulation of aboveground plant communities remains 

challenging. Additional samples across time and soils of different types and latitudes 

need to be examined before more robust conclusions can emerge with respect to the 

importance of the belowground microbial communities for mitigating or exacerbating the 

effects of climate change.
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CHAPTER 7 

Quantifying the role of horizontal gene transfer in maintaining microbial 

population biodiversity with time-series metagenomics 
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INTRODUCTION 

Our understanding of how bacteria evolve is mainly based on laboratory studies 

with pure cultures of a few model species (1-3). Although the genetic mechanisms 

responsible for evolution and adaptation (e.g., horizontal gene transfer, intra-genomic 

recombination, point mutation etc.) have been well documented (4-6), their relative 

importance in shaping bacterial lineages in-situ remains elusive. A major reason 

accounting for the latter is that laboratory conditions do not simulate well natural 

conditions, including the biotic interactions among co-occurring populations (7-9). 

Studying microbial populations in-situ is thus critical for advancing our understanding of 

the mechanisms that create and maintain biodiversity and for preserving the biodiversity 

on the planet.  

Horizontal gene transfer (HGT) represents an important mechanism for 

diversification and adaptation of bacteria, and the main reason that eukaryotic concepts 

do not frequently translate well in bacteria. Analysis of the genomes of isolates has 

shown that bacterial genomes are more dynamic and fluid than previously anticipated due 

to HGT. Accordingly, it is nowadays thought that HGT represents a mechanism that 

creates genomic diversity; for instance, by introducing new genes into a subset of a 

population and enable the resulting subpopulation to explore a new ecological niche 

(speciation) or outcompete its co-occurring relatives (purging population diversity) (10-

12). Yet, more recent studies have indicated that HGT, when combined with homologous 

recombination and affecting all genes in the genome (11, 13, 14), can serve as a 

population homogenizing force and maintain a population (15). The relative importance 

of these two different faces of HGT for natural populations remain essentially unknown.  
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Despite the obvious need to detect and quantify HGT in natural populations and 

the recent development of culture-independent genomic techniques to study in-situ 

processes [aka metagenomics (7, 16, 17)], there has been no effective approach to 

accomplish these tasks. The latter is primarily attributed to the high complexity of 

microbial communities, frequently composed of hundreds, if not thousands, of distinct 

species, and the fragmented sequence information provided by metagenomics techniques 

(e.g., only short and unlinked fragments of a genome are typically recovered). Therefore, 

it is essential to develop new approaches to investigate HGT and genomic adaptation 

within natural microbial communities, in real time. Such approaches will greatly facilitate 

studies of pollutant biodegradation under natural or engineering settings and spreading of 

infectious diseases and antibiotic resistance.   

Towards closing these gaps in knowledge and enabling technologies, we 

developed a robust bioinformatic pipeline, called metaHGT, to detect HGTs in time 

series metagenomic datasets. Subsequently, we applied this pipeline to metagenomes 

originating from planktonic samples collected at the same, well-oxygenated (5m depth) 

site of the mesotropic Lake Lanier (Atlanta, GA) and spanning a period of almost three 

years (August 2009 to January 2012). Our results revealed the frequency of HGT was at 

least three orders of magnitude higher compared to previous estimates, especially among 

distantly related populations of different phyla, and indicated that HGT frequently 

maintains population diversity by facilitating spreading of advantageous genes. 
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MATERIALS AND METHODS 

Sampling, DNA extraction, and DNA sequencing 

Freshwater planktonic samples were collected between August 2009 and January 

2011 (Table 7.1). All samples were collected at the same location, below the Brown’s 

Bridge in Lake Lanier (Atlanta, GA), at 5m depth (oxygenated water). Samples were 

filtered and DNA was extracted using the same protocol as described previously (18). 

High-throughput short-read sequencing were carried out on Illumina platforms; samples 

collected in 2009 were sequenced at Emory University’s Genomic Facility on an Illumina 

GA II technology; all other samples were sequenced at Los Alamos National 

Laboratory’s sequencing facility on an Illumina HiSeq-2000 technology (Table 7.2). The 

physicochemical measurements of each sample were taken at the time of sampling (Table 

71). 

 

 

Table 7.1. Physicochemical characteristics of samples. 

 09/08/26 09/08/28 09/09/07 09/11/08 10/07/06 10/09/10 10/11/14 11/01/29 
Temperature 
(°C) 

28.5 28.5 N/A 19.2 30.5 28.8 17.9 7.8 

pH 7.61 7.71 N/A 6.8 7.5 7.6 5.73 6.56 
Dissolved 
solids (g/L) 

0.032 0.033 N/A 0.030 0.027 0.03 0.03 0.03 

Dissolved O2 
(mg/L) 

7.9 7.8 N/A 7.3 8.9 7.5 5.5 4.2 
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Table 7.2. DNA sequencing and assembly information for each sample 

Sample ID Sequencing 
Platform 

Number 
of reads, 
raw 
(! 106) 

Number 
of reads, 
after 
trimming 
(! 106) 

Assembly 
length 
(>500bp, 
Mbp) 

Assembly 
N50 
(Kbp) 

Number 
of 
contigs 
(! 103) 

Percentage 
of read 
recruited by 
assembly 
(%) 

09/08/26 Illumina 
GA II 
100x100bp 

32.1 27.9 93.4 1.71 70.5 55.3 

09/08/28 Illumina 
GA II 
100x100bp 

29.6 26.0 96.3 1.78 70.9 56.2 

09/09/07 Illumina 
GA II 
100x100bp 

27.1 23.6 86.5 1.39 71.8 50.5 

09/11/08 Illumina 
GA II 
100x100bp 

34.2 27.8 97.7 1.08 96.7 38.9 

10/07/06.rep1 Illumina 
HiSeq-2000 
100x100bp 

67.6 58.0 147.0 1.29 129.2 53.3 

10/07/06.rep3 Illumina 
HiSeq-2000 
100x100bp 

68.2 59.2 145.8 1.29 128.4 47.6 

10/09/10 Illumina 
HiSeq-2000 
100x100bp 

42.6 36.3 89.9 1.71 67.1 55.2 

10/11/14 Illumina 
HiSeq-2000 
100x100bp 

47.3 41.1 77.1 1.27 68.6 39.1 

11/01/29 Illumina 
HiSeq-2000 
100x100bp 

52.3 41.2 149.8 1.01 155.4 35.7 

 

 

 

Sequencing read processing and quality check 

Read trimming was carried out using an in-house python script (available from 

the authors upon request). The script trimmed each pair-ended read based on the 

following sequential steps: i) trim the read from both 5’- and 3’-ends until a base with 

Phred score >20 is found; ii) use a 3bp-long sliding window to examine the quality of the 



 212

remaining sequence from step (i). If the average Phred score of a window is lower than 

20, create a cut at that position; iii) keep the remaining sequence if it is longer than 50bp 

and contains no more than 1 N (ambiguous base); otherwise discard the sequence. Only 

reads that both paired-end reads passed the trimming cut-offs were used for further 

analysis. This method was applied in all samples used in the study, including the publicly 

available metagenomes, for consistency purposes. 

 

Metagenome assembly and binning contigs into population genomes 

The trimmed pair-end (PE) reads were first pre-assembled, separately for each 

sample, using a hybrid protocol combining Velvet, SOAPdenovo, and Newbler 2.0 (19, 

20) as described previously (21, 22). Assembled contigs longer than 500 bp were 

subsequently binned into candidate genomes. For this, reads were mapped back to these 

contigs by BLAT (23) with a length cutoff of 50bp, a percent nucleotide identity cutoff of 

97, and an e-value cutoff of 1e-10. The number of reads recruited per 100 bp of contig 

sequence was used as a proxy of the relative abundance (coverage) of each pre-contig. 

Contigs representing presumably the same population were binned together based on 

their (similar) pair-wise tetra-nucleotide frequency correlation, linkages by PE read, and 

relative coverage, similarly to what reported previously (24, 25), and as detailed below.  

If two contigs had tetra-nucleotide Spearman’s correlation larger than 0.85, and/or 

if they had three or more PE reads linking them, the contigs were linked, and thus, binned 

together. The weight of the link was 1 if qualified by one of the two measures and 2 if 

qualified by both. It is expected that two contigs representing the same population would 

show the same relative abundance in multiple sampling points. Based on this assumption, 
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a linear regression was fit to the coverage values of every pair of contigs from the nine 

available metagenomic samples. Pairs with R2 larger than 0.85 and a slope ranging from 

0.9 to 1.1 were linked together (if they were already linked together by the previous step, 

then the link weight increased by 1). Subsequently, the individual contigs were projected 

onto a large graph, in which each contig was a node and each link was a weighted edge. 

An iterative partitioning algorithm was then carried out to bin these contigs in population 

genomes. We first used a quick k-means algorithm to find possible centroids of partitions 

by initializing the number of clusters, k, to be 10 (because our previous study (26) 

established that at least ten abundant populations were present in the 2009 samples), and 

we increased k until the Calinski-Harabasz (CH) Index (27) was maximized (converge 

condition was [CH(k+1)-CH(k)]/CH(k)<0.01). This procedure was similar to the 

approaches used by Arumugam and colleagues (28). The CH index was defined as: 

  

CH(k) =
B(k) /(k ! 1)
W (k) /(n ! k)

, 

where n was the total number of contigs; B(k) was the inter-cluster sum of squares of 

distances between contigs (the distance was defined as d=4-w, where w was the weight of 

the links); and W(k) was the intra-cluster sum of squares of distances between contigs 

(clusters in this case represented the potential genome bins). 

We retrieved 45 bins, with a total length of the binned contigs longer than 500 

Kbp for each bin. PE reads were recruited to those bins by BLAT mapping using the 

same cutoffs as described above. For each bin, we used the recruited reads to re-assemble 

them into contigs by Velvet (19) with K-mer length optimized for the longest N50. This 

approach substantially improved the quality of the assembled sequence due to the 

reduction of sequence complexity during the assembly step compared to the original 
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assembly of the whole metagenomic sample. The resulting assembly represented the final 

genome sequence of each bin (population) used for further analysis. 

 

Genome draft validation and estimate of completeness 

To validate the final assembly of each contig bin, the mapping patterns of PE 

reads were visually inspected for consistency (e.g., distance between PE reads to be 

similar to the expected distance based on library insert size, i.e., 200-300 bp) and even 

coverage. Contigs with uneven coverage were not used in downstream analysis. We 

employed other metagenomic datasets (i.e., other than the one used for the assembly) 

from this study as well as datasets from independent studies to validate our population 

genomes partitions, as detailed below. A Roche 454 metagenome was previously 

generated from the same DNA sample as the 2009/08/26 Illumina dataset used here (18, 

22). Roche 454 reads were mapped to the final contigs of bins from the latter Illumina 

dataset using BLAT (cutoff: 80% length aligned and 95% nucleotide identity) to calculate 

average per base coverage, and the coverage was visually inspected, as described above. 

18 partitions were of high quality were selected based on this analysis (one example 

given in Figure 7.1). Therefore, the rest of the study was focused on these 18 genome 

drafts. 
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Figure 7.1. Validation of draft LL3 genome by read mapping. Metagenomic reads from the 

same DNA sample (Roche 454 reads from Lake Lanier, GA, August 2009 sample) were mapped 

against the LL3 genome assembled from Lake Lanier (Atlanta, GA). Read mapping revealed even 

coverage along the genome. For instance, Roche 454 reads covered 100% of the draft genome 

with average coverage 15X (standard deviation <3 X). 

 

 

Gene calling, annotation, and phylogenetic analysis 

Protein-coding genes in the draft genomes were predicted by MetaGeneMark 

(29), and the corresponding amino acid sequences were searched against the KEGG (30), 

eggNOG (31), COG (32), and SEED (33) databases (as of May 2012) using Blastp (34). 

Only matches with at least 40% amino acid identity and 70% of the length of the query 

sequence covered in the alignment were considered further. Predicted genes sequences 

were annotated with the function of their best match when the best three matches had the 

same (predicted) function.  

To identify orthologous genes, we performed an all-vs-all Blastp search using 

protein-coding genes. Only matches with 70% or longer gene coverage in the alignment 

for both query and target gene sequences and 30% or higher amino acid identity were 

considered further. Orthologs were defined as the reciprocal best matches (RBMs) above 
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the previous cut-off. The pan-genomes of the 18 drafted population genomes were 

constructed using orthologous genes. 

While the 18 genomes represented several divergent phyla, they shared at least 

five genes (dnaK, polA, recA, lon, and mtf). Sequence alignments of these five genes 

from the 18 genomes and 29 close relatives available in NCBI were performed by 

MUSCLE 3.8 (35), using default settings. The individual gene sequence alignments were 

subsequently concatenated, and a maximum likelihood phylogenetic tree was built based 

on the concatenated alignment using PhyML3.0 (36) with gamma set to be 4, the HYK85 

model, and 1,000 bootstraps. The tree (Figure 7.4) was visualized by SplitTree 4.0 (37). 

 

The metaHGT algorithm for HGT detection in time series metagenomes 

We developed a novel algorithm, called metaHGT, to detect HGT events in time 

series metagenomic data. The basic idea of the algorithm is to detect abnormal patterns in 

pair-end read mapping onto assembled contigs. The idea is illustrated with the following 

simple example. Consider that we wish to test if a HGT event took place between species 

A and B between time points 1 and 2, and involved contig SA and SB from species A and 

B, respectively, so that 

  

SA = g1
Ag2

A ...gn
A  and 

  

SB = g1
Bg2

B ...gm
B , where n and m are 

respectively the number of genes in genome A and genome B, and  is the ith gene in 

genome 

  

!  {A,B}. The intergenic distances are denoted as 

  

DA = {di
A |1< i < n ! 1}  and 

  

DB = {di
B |1< i < m ! 1} for SA and SB, respectively. We also defined a “PE linkage”, 

  

f! (gi,g j ) , as the PE read with one end aligned to  and the other end aligned to  in 

time point . Assuming that the HGT occurred between time points 1 and 2 and created 

a novel genotype in time point 2, denoted

  

SHGT = ...gi
Ag j

B ..., we then expect that, with 
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adequate sequencing depth, 

  

f2(gi
A ,g j

B ) > 0 and 

  

f1(gi
A ,g j

B ) = 0 . We employed this concept 

to interrogate metagenomic data and patterns of PE read mapping to detect HGT events. 

However, in real metagenomes, the above ideal scenario is often complicated by 

two factors: i) local similarity between two genomes (e.g., due to paralogs or multiple 

gene copies), which leads to misleading mapping of PE reads; and ii) difference between 

the insert size of the library sequenced for each sample, which leads to incomparable PE 

linkages. To account for (i), we defined a weight  for PE read linkage 

  

f! (gi,g j )  as: 

  

! k =
2I (gi,g j )

max{I (gi,gs),I (g j ,gt )} + I (gi,g j )
# 1, 

where 

  

I! (gi,g j )is the product of the percent nucleotide identities of the two sister 

reads of a PE pair mapped to gene 

  

gi  and gene 

  

g j . Therefore, if a strong local similarity 

was introduced by other genes in the same genome (denoted by gene 

  

gs and gene 

  

gt), we 

have 

  

max{I! (gi,gs),I! (g j ,gt )}  I! (gi,g j ) , and 

  

! k = 0 ; otherwise, 

  

max{I! (gi,gs),I! (g j ,gt )} = 0, and 

  

! k = 1. Therefore, the impact of local similarity from 

adjacent gene sequences on HGT detection is normalized by introducing a weight 

, and converting the PE read linkage count K into the weighted sum 

  

! k
k=1

K

 . Note 

that the sister reads have to be mapped legally on gene 

  

gi  and 

  

g j  to be considered in 

calculation of weight i.e., being concordant with the , upposed orientation (for 

Illumina sequencing libraries, one read represents the forward strand while its sister read 

represents the reverse strand). If no such legal mapping is found, then 

  

I! (gi,g j ) = 0). 

To account for (ii) above, we introduced the alignment length cutoff e and the 

intergenic distance d. In order to extend a PE linkage between two genes d-bp apart with 
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minimal aligned length e, the corresponding insert size L of the PE read pair has to satisfy 

L>d+2e. Thus, the probability that one PE read pair, selected at random, could extend a 

PE linkage between the two genes would be the cumulative probability 

  

Pr(L ! d + 2e). 

Assuming for time points 1 and 2, the corresponding insert sizes for the paired-end (PE) 

reads follow Gaussian distributions 

  

N1(µ1,! 1
2)  and 

  

N2(µ2,! 2
2) , respectively, the 

cumulative probability can be transformed into 

  

! (Z) , where 

  

Z =
d + 2e ! µ

 
. Assuming 

also that the reads were uniformly sampled, the probability that a PE read pair links two 

genes then is 

  

1!  (Z) . Therefore, we introduce a scaling factor 

  

! 12 =
1  # (Z1)
1  # (Z2)

 to 

account for any differences in library insert size between time point 1 and time point 2. 

Next we considered 

  

hx,y
! , the normalized and weighted PE linkage count in time 

point  between two genes, 

  

gx and . In the case of 

  

SHGT = ...gi
Ag j

B ..., let 

  

x ! {i,i +1}and 

  

y ! { j  1, j} , the null hypothesis is that no HGT occurred between the two sampling 

points. Under this null hypothesis, 

  

(hi! 1,i
1 ,hi, j

1 )  and 

  

(hi! 1,i
2 ,hi, j

2 )  were drawn from the same 

binomial distribution with  denoting the probability that a randomly drawn PE read 

links 

  

gx  and 

  

gy . Obviously, the maximum likelihood estimate of  for the null 

hypothesis is 

  

p0 = (
hi, j
1

hi, j
1 + hi! 1,i

1 +
hi, j
2

hi, j
2 + hi! 1,i

2 ) /2 . 

The alternative hypothesis is that HGT occurred between the two sampling points. 

In the latter case, 

  

(hi! 1,i
1 ,hi, j

1 )  and 

  

(hi! 1,i
2 ,hi, j

2 )were drawn from two different binomial 

distributions with parameters 

  

p1 =
hi, j
1

hi, j
1 + hi! 1,i

1  and 

  

p2 =
hi, j
2

hi, j
2 + hi! 1,i

2 , respectively. We test 

the null hypothesis using a combined two-tailed binomial test such that: 
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P = B(hi! 1,i
1 + hi, j

1 ,hi, j
1 ;p0)  B(hi! 1,i

2 + hi, j
2 ,hi, j

2 ;p0), 

where 

  

B(a,b;p) gives the two-tailed P-value of the binomial test with success 

probability p for b successes among a trials. The P-values were adjusted for multi-testing 

by Benjamini-Hochberg approach (38), and only cases where |p2-p1|>0.1 were identified 

as horizontally transferred between A and B species. 

 

Population diversity calculation 

An 803 Kbp contig (contig18) from LL3 was selected for testing the impacts of 

HGT on bacterial population diversity. Genes that were exchanged between year 2009 

and 2010 were detected by metaHGT. For each gene on the contig (both non-HGT and 

HGT genes), single nucleotide polymorphism sites (SNPs) were identified as follows: if a 

base was consistent (same nucleotide) within a year (both 2009 and 2010) but different 

between 2009 and 2010, it was identified as SNP site. For example, if a base in the year 

2009 was T throughout all samples, then it was A among all samples in 2010, we would 

identify this as a T A transversion that occurred between 2009 and 2010. With this 

approach, the number of SNPs was counted for every gene on the contig (normalized to 

gene length). Genes were then grouped into two clusters: the ones that were upstream or 

downstream to an HGT gene; and the remaining genes. We varied the number of 

upstream/downstream genes considered as adjacent genes to HGT-genes from one to 

three, and compared the distributions of the number of SNPs per gene between the two 

resulting gene clusters using a two-sample t-test each time. 
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RESULTS AND DISCUSSION 

Performance of metaHGT algorithm 

We measured the accuracy of metaHGT using in silico generated HGT events and 

simulated Illumina 100bp paired-end reads. In particular, we assessed the impact of 

relative abundance, genome relatedness, and intra-population genetic diversity on the 

performance of the algorithm by measuring false positives (FP; defined as predicted HGT 

event that did not actually take place) and false negatives (FN; defined as true HGT event 

that was not predicted).  

i) Experimental set up 

We used the following genomes as the recipient of HGT events (main 

chromosomes only): E. coli MG1655 (NCBI accession number: NC_000913), 

Salmonella enterica serovar typhi CT18 (NCBI accession number: NC_003198), Vibrio 

fischeri ES114 (NCBI accession number: NC_006840), and Pseudomonas aeruginosa 

LESB58 (NCBI accession number: NC_011770); and we used E. coli MG1655 as the 

donor of the HGT event. The recipient genomes were selected to show showed a gradient 

of genetic relatedness to the donor, measured by the genome-aggregate average amino 

acid identity [AAI (39)], ranged from 41% to 87% (Figure 7.2). To assess the impact of 

intra-population genetic diversity (i.e., the existence of distinct sub-populations of the 

same species), we also used a real Illumina dataset of an Escherichia genome (TW09308) 

that showed ~95% AAI to E. coli MG1655 and was sequenced recently (40).  

We used an in-house python script to cut the original genomes into Illumina 

paired-end reads with insert size following a normal distribution with a mean size of 

350bp and standard deviation 50bp and 1% base-calling error rate (which was similar to 
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the Illumina data in this study). We then used an in-house python script to pick 100 genes 

at random to be (in-silico) horizontally transferred from the donor to the recipient 

genome. A control dataset was also produced where no HGT occurred, which represented 

time point 1. We generated in-silico Illumina reads in the same manner as mentioned 

above from the hybrid genomes (i.e., the ones encoding the in-silico horizontally 

transferred gene), and denoted these reads to represent time point 2. metaHGT was then 

applied to detect HGT genes on the data from time point 1 vs. 2, using the same settings 

as in the analysis of real metagenomes. The predicted horizontally transferred genes were 

then compared against the known (in-silico generated) HGT events, and the FP and FN 

errors were calculated. We repeated the whole process ten times per donor-recipient pair 

to obtain statistically robust estimates. 

 

ii) Impact of relative abundance. 

We varied the relative abundance of both donor and recipient genomes from 1X 

to 15X coverage. Therefore, for each donor-recipient pair, we created 15x15=225 

datasets. We observed that, at lower abundance (1-3X coverage), the false negative error 

rates were high, which was caused by insufficient coverage of the assembled contigs by 

PE reads. However, false negatives dropped rapidly as the coverage increased, and 

converged at around 1% at 10X coverage. False positive errors increased as the coverage 

increased but stabilized at around 7-8% after 10X coverage (Figure 7.3). In our time-

series metagenomes, all draft genomes had >10X coverage at the time points analyzed by 

metaHGT. 
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Figure 7.2. Performance of the metaHGT algorithm. The heatmaps show the frequency of 

false positives (FP; upper panels) and false negatives (FN; lower panels) as a function of the 

abundance of the pair of genomes participating in (the in-silico generated) HGT (x-axis: recipient 

genome coverage; y-axis: donor genome coverage). Results for different levels of genetic 

relatedness between the two genomes are shown (see AAI values on top). Note that FP and FN 

frequencies did not differ dramatically for genomes of different relatedness. 

 

 

ii) Impact of genome relatedness. 

We also explored the impact of the degree of genetic relatedness between the 

recipient and donor genomes on genome on metaHGT performance. We used recipient 

genomes that showed varied genome relatedness to the donor genome, measured by AAI. 

We found no significant correlation between FP/FN error rates and genome relatedness, 

in the 41% to 87% AAI range (P > 0.95; Wilcoxon rank-sum test), confirming that our 

analysis is unlikely to be biased by the degree of genome relatedness. However, when the 
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recipient genome belonged to the same or closely related species as the donor genome, 

the false positive error increased rapidly. For example, when using E. coli-E. fergusonii 

pair (AAI ~91%), false positive error rate increased to ~35%, while false negative error 

rate remained low (~1%). Therefore, we do not recommend metaHGT for HGT 

predictions between genomes with higher than 90% AAI. The difficulty in detecting 

HGT events among closely related genomes is not specific to metaHGT but represents a 

limitation of most, if not all, approaches. 

 

iii) Impact of closely related subpopulation(s). 

Co-occurring closely related genomes to a target genome are sometimes observed 

in metagenomic dataset, and such genomes may confound HGT detection due to high 

sequence conservation. Therefore, we investigated the accuracy of metaHGT when a 

closely related genome to the recipient genome was present in the sample. We simulated 

this scenario by spiking Escherichia sp. TW09308 reads together with the (target) E. coli 

MG1655 reads into the in-silico generated metagenomic datasets (spiking in relatives of 

the recipient genomes did not differentiate our conclusions significantly). The total 

amount reads for the “Escherichia population” was fixed at 10X; however, the relative 

abundance of the reads from each of the two Escherichia genomes used varied from 10% 

to 90% in each trial. No significant correlations between error rate and the abundance of 

TW09308 were observed (P>0.95; Wilcoxon rank-sum test), which suggested that our 

analysis was not biased the presence of closely related strains (Figure 7.3). 

Though the estimated error rates were sufficiently low for both false positives and 

negatives, we examined the genes that caused errors to obtain further insights into what 
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factors underlying the errors. We found that more than 50% of the false positive genes 

were ribosomal protein genes, and when excluded from further analysis, the false positive 

error rate dropped to ~3%. Therefore, ribosomal proteins were excluded in our time-

series metagenome analysis. 

 

 

 

 

 

Figure 7.3. Co-occurring closely related genomes had no significant impact on the accuracy 

of metaHGT. Escherichia sp. TW09308 reads together reads from the (target) E. coli MG1655 

were spiked into the in-silico metagenome. The total amount of reads from these two genomes 

was fixed at 10X but the relative abundance of reads from each genome varied. The results show 

that no significant variation was observed in the error rate of metaHGT algorithm (y-axes) in 

terms of both false positive (left) and false negative (right) when the relative abundance of the 
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donor/target genome (E. coli MG1655) varied (x-axes), for all donor-recipient pairs evaluated 

(figure legend). 

 

 

HGT events occur frequently among distantly related populations 

Our previous study characterized the planktonic microbial community of Lake 

Lanier based on both 16S ribosomal RNA gene (16S rRNA) amplicon and whole-genome 

shotgun sequencing (WGS) and revealed that the species complexity of this community is 

comparable to oceanic communities. It also showed that, with the exception of a few 

uncharacterized populations phylogenetically related to the Burkholderiales order and 

Cyanobacteria phylum, which together comprised about ~10% of the total community, 

all individual populations represented <1% of the total community (26). In the present 

study, we extended the previous efforts to sequence nine additional temporal samples 

(>40 Gb of Illumina 100-bp paired-end read data, in total) and devise a new 

bioinformatic pipeline to bin assembled contigs into population genomes for relatively 

abundant populations (making >0.1% of the community) (see materials and methods for 

details). 18 high quality (e.g., N50 > 10Kbp and estimated genome coverage > 85%) draft 

genomes were selected for further analysis (LL1 to LL18; Figure 7.4 and Table 7.3). 

Phylogeny analysis based on six universally shared genes revealed that these genomes 

represented distinct lineages of several phyla, including the previously detected 

Burkholderiales and Cyanobacteria populations (populations LL3, LL4, and LL8). These 

18 genomes also included three related low G+C% (28-32%) populations (LL9, LL35, 

and LL38 in Figure 7.4) that represent a novel phylum-level lineage according to current 

classification standards (41). 
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metaHGT analysis revealed 256 HGT events among the 18 genomes during the 

period of 2.5 years spanned by our samples (Table S4), affecting up to 2.9% of the total 

genes in a genome (LL3). Intriguingly, most of the HGT events detected were among 

different phyla and occurred at higher frequencies (e.g., up to 56 genes per year for LL3) 

than estimated previously based on available complete genomes. For instance, Lawrence 

and Ochman estimated that HGT affected about 16 Kbp / Myr when comparing E. coli 

and Salmonella sp. Genomes. Extrapolations from our estimates for the LL3 and LL4 

genome pair, which show similar genetic relatedness to that between E. coli and 

Salmonella sp. (i.e., 80% average amino acid identity), suggested up to 6.5! 107 Kbp / 

Myr affected by HGT, i.e., about four million times higher HGT frequency.  However, it 

is important to note that the HGT events detected here do not necessarily represent fixed 

mutational events but likely represent neutral and/or ephemeral mutations (see also below) 

whereas it is possible that most HGT events detected in (13) were fixed. It should be also 

mentioned that our estimates are likely underestimates of HGT frequency since our 

method considers only events that both the donor and the recipient are among the 

genomes analyzed and the genome sequences used here were not completed. 
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Figure 7.4. Phylogenetic relationships and network of horizontal gene transfer among the 

18 population genomes recovered from Lake Lanier time series metagenomes. The 

phylogeny of the 18 genomes (colored circles; color also reflects genomic G+C% content, see 

figure key on top) and selected relatives from GenBank  (black circles) is based on the 

concatenated multi-sequence alignment of five universally shared genes (polA, dnaK, recA, lon, 

and mtf). Branches with less than 90% bootstrap support from 1,000 replicates are shown in grey 

numbers. Blue lines connecting genomes denote HGT events detected between the genomes; the 

thickness of the line is proportional to the number of genes transferred (numbers are shown on the 

lanes in blue). 
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Table 7.3. Statistics of the 18 draft population genomes. 

ID Assembly size 
(Mbp) 

Number of 
contigs 

Assembly N50 
(Kbp) 

Max contig 
(Kbp) 

Protein-coding 
genes 

G+C% 

LL1 1.869 316 10.9 59.7 2,356 63.48 
LL2 2.053 99 38.3 125.9 2,315 50.38 
LL3 2.469 33 206.0 803.3 2,391 56.76 
LL4 2.644 72 94.9 157.6 2,573 54.96 
LL5 1.378 499 3.7 26.4 1,934 60.64 
LL8 1.318 100 21.4 64.1 1,412 58.86 
LL9 2.186 308 13.5 214.5 2,625 30.06 
LL10 0.979 95 16.5 71.1 1,173 44.61 
LL12 2.402 253 15.2 44.7 2,598 41.92 
LL13 1.533 219 11.2 33.3 1,714 55.26 
LL14 2.678 551 7.0 29.2 2,719 62.19 
LL15 1.341 384 5.85 65.8 1,969 52.19 
LL27 0.882 76 17.0 91.7 970 46.27 
LL28 1.138 128 12.7 39.5 1,223 56.37 
LL35 2.638 327 15.9 70.4 2,792 31.59 
LL38 2.264 559 4.0 18.5 1,996 28.27 
LL42 3.375 600 11.8 81.7 4,373 45.31 
LL43 2.747 389 13.2 67.2 2,924 37.39 
 

 

Factors driving HGTs in natural settings 

To provide insights into the molecular mechanisms that facilitated HGT, the 

(predicted) function of the transferred genes and their adjacent genes was examined. 

Transferred genes were significantly associated with mobile genes, primarily 

transposases, compared to the average gene in the genome (P < 0.05; G-test). About 25% 

of the transferred genes were found adjacent (within 1Kbp) to a transposon or integrase 

gene, while only 2/256 were found adjacent to a prophage gene (Figure 7.5A). The two 

genes adjacent to a prophage were also highly enriched in a viral metagenome originating 

from the same samples (unpublished observations), further supporting that they were 

indeed transferred via a bacteriophage. A similarly high proportion of mobile elements 

among HGT genes was observed previously based on the analysis of genomes of isolates 

from human samples (42). 
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Functional annotation of the transferred genes revealed that these were biased 

compared to the genome average toward four major categories, i.e., energy production 

and conversion, cell cycle control, amino acid and ion transport and metabolism (Figure 

7.6). For example, antibiotic-related genes, including penicillin amidase (between LL3 

and LL14), multi-drug resistance protein B (between LL2 and LL4), and penicillin-

binding protein 1A (between LL3 and LL4) and chemotaxis-related genes such as 

flagellar biosynthesis proteins (flhB; between LL2 and LL4) were enriched among the 

horizontally transferred genes. We found that functions that require fewer genes were 

more likely to be transferred. For instance, permeases and transporters of the cell 

membrane, which are typically composed of only 2-3 genes such as ammonium 

transporter and sulfate permease, were over-represented among HGT events. In contrast, 

information-processing genes such as those involved in translation apparatus were 

significantly under-represented. The strong enrichment in energy and transport related 

functions indicate that at least some of the transferred genes might offer a selective 

advantage to the recipient population and are consistent with the complexity hypothesis 

raised by Jain and colleagues (43). 

We next examined whether the degree of overlapping ecology and genetic 

relatedness among the partners significantly correlated with the frequency of HGTs. 

Previous studies have indicated that the these factors are important (11, 42) but a 

quantitative understanding of their relative importance is lacking. Though the number of 

highly related genome pairs (e.g., related at the genus or higher, corresponding to 50-80% 

AAI] was limited, a weak positive correlation between genetic relatedness and frequency 

of HGTs was observed (Figure 7.5B). We also evaluated how temporal co-occurrence 



 230

played a role in driving HGTs. A strong positive correlation was observed between the 

average relative abundance of the partners (across all sampling points) and the number of 

gene exchanged (Figure 7.5C). Given also that co-variance in abundance in the time-

series data is likely to reflect (more) overlapping ecology, our results show that both 

ecological and genetic factors determine the HGT frequency. 
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Figure 7.5. Factors driving HGT among the 18 population genomes. (A) Each draft genome is 

represented by a distinct piece of the ring. Lines represent HGT events between the genomes, 

colored-coded based on whether a transoposon/integrase (red lines; 25% of total cases) or a 

prophage gene (green lines, <1% of the cases) was found within 1Kbp from the transferred gene. 

All other cases are represented by gray lines. All transposons/integrases and prophage genes 

encoded on each genome are also marked with the same colors on the ring. (B) A weak positive 

trend between genome relatedness (measure by AAI; x-axis) and the number of HGTs (y-axis) 

was observed in the 50-80% AAI range. (C) A strong positive correlation between the relative 

abundance of the partners involved in HGT (see methods for details) and the number of genes 

exchanged was observed. Red line, all genomes pairs included; green line, the most closely 

related pair (LL3-LL4) was removed from the regression analysis. 
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Figure 7.6. Functional biases of the horizontally transferred genes. Note that genes predicted 

to have undergone HGT (right) were enriched in functions related to energy 

production/conversion, and substrate transportation and metabolism (highlighted in red) 

compared to the genome average of the 18 population genomes (left). 
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The impacts of HGT on maintaining population diversity 

It has been postulated that HGT could serve as both a diversifying and a 

homogenizing mechanism for microbial populations (15). If the transferred gene(s) 

provides a strong advantage to the recipient cell, this cell will outcompete co-occurring 

relatives, sweep through the population, and thus, cause the loss of intra-population 

diversity. Rampant HGT of the selected gene(s) will instead make the genes sweep 

though the population, maintaining intra-population genome diversity except at the loci 

of the transferred genes. Variants of the previous two theories have been also proposed 

recently. For instance, the fragmented speciation model suggests that the recipient 

organism(s) begin to accumulate mutations around the transferred gene or island 

compared to ecologically differentiated organisms that do not possess the gene because 

the inserted gene acts as a barrier to homologous recombination (12). Due to the 

complexity of the ecological niche of a population and the possibility that several HGTs 

could occur simultaneously, the positive and negative advantages of different HGT 

events can also cancel each other out, preventing populations sweeps and maintaining 

intra-population diversity [balancing selection; (10)]. 

To test these different models, we compared the 2009 to 2010 nucleotide diversity 

patterns of different regions of a large contig of LL3 (contig18, 803Kbp). Our analyses 

revealed that more than 50% of the genes immediately adjacent to a transferred gene, 

which are present in all genomes of the recipient population unlike the gene(s) that was 

predicted to be transferred and was typically present in only part of the population based 

on coverage by raw metagenomic reads, showed almost no sequence divergence (Figure 

7.7A). This contrasted with the remaining genes of the genome that showed significantly 
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higher divergence (t-test two tailed P-value: 1.98! 10-6; Figure 7.7A). The level of 

sequence divergence in the latter genes was, however, comparable among the different 

samples (i.e., maintenance of intra-population diversity).  

Moreover, the adjacent genes showing almost no divergence (<0.1 SNPs per Kbp) 

were highly enriched (19/25 genes) in secondary metabolism functions (e.g., D-lactate 

dehydrogenase) and substrate transporters (e.g., amino acid permease). For instance, the 

sox operon (sulfur oxidation function) involved in HGT between LL3 and LL5 showed no 

SNPs compared to the other genes further upstream or downstream (Figure 7.7B left). 

This finding implied that the sox operon, not the whole genome, swept through LL3 

population, presumably due to the selective advantage it offers. Further confirming these 

interpretations, genes adjacent to transferred genes with hypothetical or unknown 

functions, which are less likely to be functional and/or offer selective advantages (44), 

showed higher sequence divergence levels and hence no evidence of recombination-

mediated sweeps through the population (e.g., Figure 7.7B right).  
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Figure 7.7. Genes adjacent to horizontally transferred genes showed significantly lower 

divergence level than other genes. An 803 Kbp long contig from LL3 was used, which encoded 

60 genes predicted to be exchanged between 2009 and 2010 with other genomes. (A) 

Distributions of SNP rate (proxy for gene divergence; y-axis) for HGT-adjacent genes (red line) 

and other genes (blue line) are shown. Data are shown separately for the first, second, and third 

upstream/downstream gene adjacent to the HGT event (top panels). Note the lack of sequence 

divergence (SNPs) in the adjacent genes, especially the first one. (B) Two representative 

examples of the SNP patterns observed around a horizontally transferred gene or operon. On the 

left, the sulfur oxidation sox operon exchanged between LL3 and LL5, which showed no SNPs in 

its adjacent genes, indicating recombination-mediated spreading within the population. On the 

right, the genes adjacent to a horizontally transferred hypothetical gene showed SNP levels 

similar to that of the whole genome. See also text for more details. 
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Horizontally transferred genes correlated with community dynamics 

Carotenoid biosynthesis gene clusters were frequently observed among the 

horizontally transferred genes. Carotenoids represent a widely used class of molecules 

that carry out a variety of functions (45), including protection against sunlight radiation 

and oxidation (46, 47). This protection is presumably more important in the summer time 

(when sunlight is stronger) compared to wintertime. MetaHGT predicted that LL3 

donated carotenoid cleavage oxygenase and phytoene (precursor of carotenoid) synthase 

to LL4 in summer 2009. Specifically, two independently predicted genes, phytoene 

synthase (precursor of carotenoids) and an osmolality sensor protein gene, flanking a 9 

Kbp region in a large contig (206 Kbp) of LL3 genome (Figure 7.8A), had two to three 

times higher coverage (Figure 7.8B) than the rest of the genome LL3 (P < 0.01; G-test) 

and many PE reads links to LL4 genome, indicating recent acquisition of these genes 

from LL3. Visual inspection of the paired-end read mapping along the flanking regions 

confirmed that these patterns were not due to misassembles or multiple gene copies, 

which would have been evident, for instance, by many outward reads (i.e., not mapping 

within the region of interest) mapping on other LL3 contigs. Such patterns were not 

observed.  

We further investigated the recipient(s) of this region and found that about 70% of 

LL4 cells might acquired it in 2009, Consistent with the idea that the carotenoid 

biosynthesis genes represent an ecologically important island, we observed a high portion 

of outward reads mapping on other, lower abundance populations in 2010 that were not 

among the 18 populations primarily used in the analysis (Figure 7.8C). For instance, our 

analysis revealed that these low abundance populations contributed less than 5% of the 



 237

total reads mapping on the island in 2009, whereas their percentage of reads increased to 

~30% in 2010. A search against NCBI-NR protein revealed that most of these reads were 

contributed by populations affiliated with Thiorhodospira and Isosphaera in 2009, and 

Thioalkalivibrio in 2010. 

Interestingly, other than the phytoene synthase genes, this region also contained a 

radA homolog, which encodes repair enzymes for UV light-induced DNA damages. The 

Lake community is under higher solar radiation stress and more metabolically active, 

suggesting a higher level of oxidation stress in the summer- versus the winter-time 

(Figure 7.8C). Taken together, our findings suggested that the transferred island encodes 

ecologically important functions that can protect from sunlight radiation and oxidation 

and its horizontal transfer during the summertime might be associated with the observed 

community dynamics.  
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Figure 7.8. Carotenoid biosynthesis genes are frequently transferred during summer time in 

Lake Lanier microbial community. (A) The gene organization of the 9 Kbp region found in 

LL3 genome and predicted to be horizontally transferred to LL4 prior to August 2009. The 

flanking genes identified by metaHGT to be subjected to HGT are highlighted in red. (B) Each 

line represents the coverage of a gene, normalized to the abundance of the LL3 genome, color-

coded as in panel A. Vertical lines mark the range of coverage variation for 2009 and 2010 and 

dots mark the mean. Note that this region had 4~8 times higher coverage than the genomic 

background, further suggesting that it was transferred in other population(s).  (C) The best match 

among all assembled genomes of an outward read, whose sister read mapped on the flanking 

genes (red in A), was determined and the graph represents the identity of the best matching 

genome (see figure key). Note that most 2010 reads mapped on many different genomes 

compared to 2009 (“Unknown” segments in black), indicating that this region has spread to other 

organisms. 
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Conclusions and future perspectives 

This study represents, to the best of our knowledge, the first attempt to detect and 

quantify HGT within complex microbial communities, over time scales that are relevant 

for adaptation and human activities (e.g., a couple years), and to assess its impact on 

population diversity. Several novel bioinformatic approaches were developed to enable 

our study; most notably, how to directly recover draft genomes from time series 

metagenomes and how to detect HGTs. These approaches would be applicable to other 

natural or engineered systems, including the human microbiome.  

Our study contrasts with most, if not all, previous studies that assessed historical 

HGT, occurring over a period of thousands of years. The frequency and number of genes 

exchanged among distantly related organisms such as members of different phyla were 

substantially higher compared to what was previously anticipated, and indicated that 

barriers to HGT flow might not be as important as previous analysis of cultured 

organisms indicated (11). In other words, cultivation biases have likely biased our view 

of the role of HGT, and other evolutionary processes, for community evolution and 

adaptation. Therefore, our findings are relevant to better understand and model the 

microbial diversity on the planet, including how HGT-mediated antibiotic resistance and 

highly virulent strains emerge from within a predominantly benign, naturally-occurring 

diversity. 

At least some of the detected HGT events presumably underlay important 

community adaptation to short-term environmental perturbations and population 

dynamics. We showcased the transferred of carotenoid-related pigmentation and DNA 

repair genes that may provide protection against oxidative damage and intense solar 
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radiation during summertime. More generally speaking, functions with high probability 

to be ecologically important, such as chemotaxis genes, substrate permease/transporters, 

and antibiotics genes, were subjected to frequent HGT but also deletion. Thus, the 

obvious conflict between high frequency of HGTs and the conserved size of the genomes 

must be reconciled via low rate of fixation. Future investigations should focus to better 

understand the mechanisms of HGT among distantly related organisms, and how 

frequently the horizontally transferred genes are actually functional and confer an 

ecological advantage. The methods developed and the lessons learned here will greatly 

facilitate such studies. 
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CONCLUTIONS AND PERSPECTIVES FOR THE FUTURE 

 

As a model organism, E. coli represents the most thoroughly studied species; it is 

among the earliest genome sequenced and is now represented by a large collection of 

sequenced representative strains (n > 100). However, due to the fact that most of the E. 

coli studies have been conducted under laboratory conditions, it is still poorly understood 

how this model organism evolves under natural settings and how ecology plays a role in 

shaping its genome. Therefore, I started my research by comparing the genomes of nine 

environmental (i.e., adapted to live outside human or animal hosts) free-living 

Escherichia strains, closely related to and phenotypically indistinguishable from typical E. 

coli, against 15 selected gut-associated (enteric) E. coli strains to determine whether or 

not gene-signatures specific to the habitat of isolation (free-living vs. gut-associated) 

were detectable and assess the importance of ecology in driving gene content differences 

among these genomes and speciation. It was found that among the dispensable genes of 

the Escherichia pan-genome, ecologically advantageous genes such as genes for fucose 

utilization and acetylglucosamine transports were enriched in enteric genomes; a pattern 

that correlated with the nutrients available in the human gut and hence, ecology. 

Moreover, a higher frequency of genetic exchange was observed within enteric or 

environmental genomes compared to between genomes from the two groups, indicating 

that overlapping ecology also favors more frequent horizontal gene transfer.  

These observations suggested that it is important to consider bacterial populations 

under natural settings to better understand and quantify the role of ecology in genome and 

lineage evolution. For instance, the results from the analysis of the Escherichia genomes 
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indicted that co-occurring relatives may be directly involved in more horizontal gene 

transfer than previously thought, shaping the evolutionary trajectory of a specific lineage 

or population. It is important to note that bacteria were thought to evolve primarily 

asexually and only rarely exchange DNA about a decade ago. With these considerations 

in mind, it became obvious to me early on that studying natural communities over time 

would provide new quantitative insights into the evolution process and the underling 

mechanisms. Metagenomics is a promising approach for these purposes; however, several 

technical challenges remained at that time. 

One challenge was the inherent tradeoffs between read length and sequencing 

output among the available DNA sequencing technologies. My initial assessment 

indicated that a deep sequencing coverage was needed to robustly quantify the genetic 

events within a complex microbial community (1), which only short read sequencing 

(e.g., Illumina) could provide. To account for the limitations of the short read length and 

robustly assemble short reads into longer pieces, I developed a hybrid protocol that 

combined different assembly algorithms and cut-offs. This protocol typically offered 

~30% improvement in terms of the number of sequences assembled into longer contigs 

compared to the current state-of-the-art methods such as Velvet (2), while still 

maintaining comparable assembly quality (1). This protocol has been tested on various 

metagenomes, with robust performance (3). 

Recent developments in DNA sequencing technologies may further improve the 

assemblies. For example, the single molecule sequencing platform PACBIO RS by 

Pacific Biosciences (4, 5) offers higher sequencing depth (~150Mbp per SMRT cell, 

highly parallelizable) and longed reads (~1.5 Kbp) at low cost. However, its current high 
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error rate in base calling (~15% error rate) has limited its application in metagenomic 

studies. The highly parallelizable nanopore-based sequencing modules, such as the 

GridION and MinION provided by Oxford Nanopore Technologies (6), represent another 

promising solution. Longer reads, especially when longer than the typical 

bacterial/archaeal repeat regions, could help to resolve ambiguous assembly paths and 

thus, extend contig length. Longer reads will also substantially reduce the computational 

effort required during assembly (especially memory requirements) and thus, make 

metagenomics more accessible to laboratories with limited computational infrastructure. 

However, a careful assessment of sequencing biases and artifacts such as base call errors 

or G+C% biases, similar to those described in Chapter 4 for Roche 454 and Illumina 

platforms, is necessary before the new technologies can be used in metagenomics.  

Aside from sequencing technologies, single cell genomics (SCG) offers an 

alternative technology, highly complementary to metagenomics. By isolating and 

sequencing cells directly from environmental samples, single cell technologies bypass the 

complication of mixing genomic fragments from different organism during assembly, 

which represents the greatest challenge for metagenomics (7-9). Because SCG produces 

reference genomes without cultivation, it can be also integrated with other culture-

independent omics technologies (e.g., transcriptomics) for more robust results and 

interpretations (10). For instance, SCG could provide the reference genomes of low 

abundance (rare) members of a natural community, which are economically impractical 

to cover adequately and assemble with metagenomics, and therefore offer new insights 

into the role and activity of these organisms. Rare organisms frequently make up a large 

part of the community in natural aquatic or soil habitats (the “rare biosphere”) (11), but 
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their importance for community function remains essentially elusive (11, 12). There are 

still many questions and challenges to be addressed regarding SCG, such as biased cell 

sorting and lysis, DNA contamination (13). However, SCG represent a very promising 

technology, especially when integrated with high coverage metagenomics data. 

Another major challenge for metagenomics is to determine the taxonomic 

affiliation of assembled or raw sequences since more than 50% of the reads remain 

unassigned to a species in a typical metagenome. To overcome this limitation, a new 

approach, MeTaxa, was developed. In addition to taxonomic classification of sequences 

with previously characterized (known) close relatives, MeTaxa can identify novel 

organisms and their degree of novelty (e.g., novel species, genus or phylum). Therefore, 

MeTaxa can help identifying novel organisms that are abundant in an environment and 

thus, presumably important and preferred targets for isolation efforts and/or single cell 

genomics. MeTaxa outperformed all previously published methods in terms of the 

number of sequences accurately assigned, based on both in-silico (test) and real 

metagenomes, and requires low computational resources for the analysis part. The 

remaining challenges in this area originate from the lack of a comprehensive reference 

genome database, which renders the taxonomic assignment of a larger number of 

environmental sequences practically impossible. Certainly, the abovementioned single 

cell genomic technologies as well as international sequencing efforts to sequence a large 

number of isolates [e.g., the Genomic Encyclopedia of Bacteria and Archaea project, or 

GEBA; (14)], will very likely outgrow the previous limitation in the long term. In the 

short term, a possible solution could be to create a framework that integrates prediction 

results from different methods and thus achieves higher accuracy and prediction coverage 
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as well as to devise a framework to classify new organisms without necessarily 

cultivating them first. An analog could be found in the field of prokaryotic gene 

prediction. It was a major challenge to predict genes based on a single approach/tool 

when the number of available prokaryotic genomes was less than 200 around year 2006, 

and thus, a consensus strategy that combined several different tools was proposed and 

implemented (15). This strategy showed substantial improvement over any single method 

at the time (16), and played an important role in important new discoveries on novel gene 

functions (17).  

To quantify horizontal gene transfer (HGT) frequency within a natural microbial 

community (Chapter 7), novel methods for reconstructing genomes from metagenomes 

and detecting HGT events among these genomes were developed. My genome recovering 

pipeline is broadly applicable to time-series metagenomic data from various habitats and 

levels of community complexity, and, if combined with SCG techniques, it could greatly 

assist in expanding the collection of uncultured reference genomes. The HGT detecting 

algorithm, metaHGT, is based on changes in pair-ended read mapping and coverage 

across time-series metagenomic data and was the first tool to predict HGT events, with 

high confidence, in complex metagenomes. Thus, MetaHGT, combined with the lessons 

learned from the work described in chapters 3 and 4 on genome assembly from complex 

metagenomes, can greatly facilitate future metagenomic experiments and guide 

experimental design. 

With the tools developed as part of this thesis, I tackled several important 

evolutionary and ecological questions about natural microbial communities, using both a 

soil and a freshwater microbial system. In the comparative soil metagenomics study 
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(Chapter 6), read-centric analyses were carried out to identify the responses of the 

microbial communities inhabiting a temperate grassland soil to increased temperatures 

that simulated the global climate change (i.e., 2 0C infrared warming for ten years). The 

analyses revealed that the heated communities showed significant shifts in composition 

and predicted metabolism compared to control (un-heated) communities and these shifts 

were community-wide as opposed to being attributable to a few taxa. Key metabolic 

pathways related to the turnover of carbon, e.g., cellulose degradation (~13%) and CO2 

production (~10%), and nitrogen, e.g., denitrification (~12%), were enriched under 

warming, and these community shifts were interlinked, in part, with higher primary 

productivity of the aboveground plant communities stimulated by warming. Collectively, 

these results indicated that the microbial communities of the temperate soils play 

important roles in mediating the feedback responses to climate change and advance 

understanding of the modes and tempo of community adaptation to environmental change.  

The analyses of 3 years of metagenomic data originating from planktonic samples 

collected at the same site in Lake Lanier (Atlanta, GA) revealed a high frequency of gene 

transfer events among distantly related members of the community (e.g., inter-phylum 

gene transfers), much higher than previously anticipated (18, 19). Several of these 

transfer events were related to specific population dynamics and intra-population 

diversity patterns. For instance, it was found that genes in the carotenoid biosynthesis 

pathway, which protects cells from solar radiation and oxidative DNA damage, were 

frequently transferred horizontally and these HGT events were directly associated with 

changes in the relative abundance of several populations, especially during the 

summertime when the sunlight intensity was high. This study also provided experimental 



 251

data to test several of the prevailing theories on how diversity within bacterial 

populations is maintained. It was found that when an exchanged gene (or pathway) 

possibly introduced an ecological (selective) advantage the gene and its flanking region 

swept through the population via further genetic exchange, thus, maintaining intra-

population diversity. In contrast, when the exchanged genes were likely to be of low 

advantage to the population (e.g., hypothetical proteins), the gene and its flanking regions 

usually presented higher diversity than the genome average, indicating relaxed purifying 

selection. These findings are consistent with a more sexual evolution of bacterial 

populations than previously anticipated and do not support the fragmented speciation 

model (20) or frequent population sweeps caused by adaptive evolution (21, 22). 

However, in order for more robust conclusions to emerge, more studies that cover 

additional microbial groups and habitats are necessary. The work presented here provided 

several important findings and the enabling bioinformatics tools toward this direction.

While my studies provided important new insights, they also brought into more 

sharp focus several important questions that remain to be addressed toward a better 

understanding of the microbial world. In the first case, soil microbial communities 

harbored extreme diversity (e.g., I estimated >4,000 species per gram of soil; >350 Gb of 

data require to capture 95% of this species diversity) that cannot be efficiently covered 

based on current sequencing practices and technologies. Accordingly, the soil 

metagenomes remained largely unassembled, e.g., the assembled contigs typically 

recruited only <1% of the overall reads, despite the relatively large sequencing effort 

applied (>10 Gb of data per sample). Capturing the total diversity within communities is 

at the heart of answering several important questions such as how extremely complex 
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communities assemble (e.g., stochastic vs. driven by environmental parameters) and how 

the low abundance, “rare” members contribute to the resilience/robustness of the 

community upon perturbations. The currently proposed bioinformatics solutions to the 

assembly problem focus on reducing the read space complexity by applying compressing 

techniques such as Bloom Filter (23) and digital normalization (24) in order to provide 

the assembler with a less complex, and easily to assemble dataset. In other words, these 

approaches scale the metagenome assembly by reducing resource usage and removing 

sequencing noise. Significant improvements have been achieved; however, not at the 

level necessary to robustly assemble draft genomes from highly complex microbial 

communities such as the soil ones. New computational efforts as well as new sequencing 

technologies are still needed to further push the frontiers of soil metagenomics. For 

instance, single-molecule sequencing with longer reads (e.g., 1-2Kbp) will greatly 

facilitate the assembly; single cell genomics can recover difficult-to-culture yet important 

reference genomes. The availability of a more comprehensive collection of soil reference 

genomes will be instrumental in addressing several remaining questions such as those 

reported above but also what genetic mechanisms maintain the extremely high 

community complexity in soils and what is the extent of interactions among community 

members upon environmental perturbations. 

In the Lake Lanier time-series metagenomics study, HGT was found to frequently 

occur between distantly related yet co-habiting organisms. Although these findings 

advanced our understanding of the mechanisms and rates of HGTs in-situ, they also 

highlighted several interesting questions for future investigation. First the mechanisms 

underling HGT events between highly divergent organisms require further attention, as 
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most known agents of HGT are thought to operate among closely related organisms (19). 

Recent advancements in fluorescent in situ hybridization (FISH) and polymeric sequence 

probe technologies (25) might be helpful in this direction. On the other hand, the 

importance of the horizontally transferred genes for community evolution and adaptation 

to perturbations remains unclear for most HGT events. For example, are the transferred 

genes functional and how frequent are they fixed (selected) in the recipient population? 

How do the transferred genes, especially those that could directly alter the interactions 

among community members, impact the adaptation and evolution of the community? To 

answer these questions, high-level integration of multi-omics data and mathematical 

modeling will be necessary. HGT is an important component of understanding how 

microbial lineages evolve, and it is intertwined with other processes including functional 

innovation, diversification, and population dynamics. It remains challenging, however, to 

disentangle several of these processes; for instance, to distinguish genomic adaptation 

from the effect of interactions (e.g., competition) with other co-occurring populations and 

assess the impact of genotypes coming from outside the system (e.g., through aerial 

dispersion), as this was exemplified in the work presented in chapter 7. Novel experiment 

designs and long time series data, are expected to provide new insights into these 

remaining questions and advance our understanding of in situ microbial evolution within 

complex natural communities. 
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Table A1. List of genes distinguishing environmental from enteric genomes. This data 

underlies the heatmap shown in Figure 2B. 

Gene ID 
Gene 
name COG ID Category COG annotation 

Enriched 
section 

PAN000006     enteric 

PAN000191 ldcC COG1982 E Arginine/lysine/ornithine decarboxylases enteric 

PAN000222     enteric 

PAN000224 ECs0224 COG3455 S Uncharacterized protein conserved in bacteria enteric 

PAN000226 ECs0226 COG3521 S Uncharacterized protein conserved in bacteria enteric 

PAN000233 ECs0234 COG3157 S Hemolysin-coregulated protein (uncharacterized) enteric 

PAN000346     enteric 

PAN000347     enteric 

PAN000348 ECs0324 COG2771 K DNA-binding HTH domain-containing proteins enteric 

PAN000358     enteric 

PAN000369     enteric 

PAN000377 betA COG2303 E Choline dehydrogenase and related flavoproteins enteric 

PAN000378 betB COG1012 C NAD-dependent aldehyde dehydrogenases enteric 

PAN000379 ECs0359 COG1309 K Transcriptional regulator enteric 

PAN000381 ECs0360 COG1292 M Choline-glycine betaine transporter enteric 

PAN000392 ECs0379 COG1064 R Zn-dependent alcohol dehydrogenases enteric 

PAN000410 yaiM COG0627 R Predicted esterase enteric 

PAN000440     enteric 

PAN000534 ECs0537 COG2217 P Cation transport ATPase enteric 

PAN000638     enteric 

PAN000644 ybeF COG0583 K Transcriptional regulator enteric 

PAN000777 ybhM COG0670 R Integral membrane protein, interacts with FtsH enteric 

PAN000977 ycdG COG2233 F Xanthine/uracil permeases enteric 

PAN000978 ECs1253 COG1853 R 

Conserved protein/domain typically associated with 

flavoprotein oxygenases, DIM6/NTAB family enteric 

PAN000979 ECs1254 COG0778 C Nitroreductase enteric 

PAN000980 ycdJ COG0596 R 

Predicted hydrolases or acyltransferases (alpha/beta 

hydrolase superfamily)  enteric 

PAN000981 ycdK COG0251 J Putative translation initiation inhibitor, yjgF family enteric 

PAN000982 ycdL COG1335 Q Amidases related to nicotinamidase enteric 

PAN000983 ycdM COG2141 C 

Coenzyme F420-dependent N5,N10-methylene 

tetrahydromethanopterin reductase enteric 

PAN000992     enteric 

PAN000993 ycdQ COG1215 M 

Glycosyltransferases, probably involved in cell wall 

biogenesis enteric 

PAN000994 ycdR COG0726 G Predicted xylanase/chitin deacetylase enteric 

PAN001028 ECs1442 COG2999 O Glutaredoxin 2 enteric 

PAN001169 ycgE COG0789 K Predicted transcriptional regulators enteric 

PAN001170 ycgF_2 COG2200 T FOG: EAL domain enteric 

PAN001184 ZypjA COG3468 MU Type V secretory pathway, adhesin AidA enteric 

PAN001190     enteric 

PAN001331 ycjM COG0366 G Glycosidases enteric 

PAN001332 ycjN COG1653 G ABC-type sugar transport system, periplasmic component enteric 

PAN001333 ycjO COG1175 G ABC-type sugar transport systems, permease components enteric 

PAN001334 ECs1891 COG0395 G ABC-type sugar transport system, permease component enteric 

PAN001335 ycjQ COG1063 ER 

Threonine dehydrogenase and related Zn-dependent 

dehydrogenases enteric 

PAN001336 ycjR COG1082 G Sugar phosphate isomerases/epimerases enteric 

PAN001337 ECs1894 COG0673 R Predicted dehydrogenases and related proteins enteric 

PAN001338 ycjT COG1554 G Trehalose and maltose hydrolases (possible phosphorylases) enteric 

PAN001339 ycjU COG0637 R Predicted phosphatase/phosphohexomutase enteric 

PAN001342     enteric 

PAN001343 ycjW COG1609 K Transcriptional regulators enteric 

PAN001352 ycjZ COG0583 K Transcriptional regulator enteric 

PAN001381 ECs2010 COG0558 I 

Phosphatidylglycerophosphate synthase 

 enteric 
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Table A1 (continued) 

PAN001382 ynbB COG4589 R 
Predicted CDP-diglyceride synthetase/phosphatidate 
cytidylyltransferase enteric 

PAN001383 Z2317_2 COG0500 QR SAM-dependent methyltransferases enteric 
PAN001384 ECs2013_1 COG0671 I Membrane-associated phospholipid phosphatase enteric 
PAN001391     enteric 
PAN001420 ECs2058 COG0625 O Glutathione S-transferase enteric 
PAN001459 ECs2104 COG2207 K AraC-type DNA-binding domain-containing proteins enteric 
PAN001460     enteric 

PAN001461 ydeP COG0243 C 
Anaerobic dehydrogenases, typically selenocysteine-
containing enteric 

PAN001462 ydeS COG3539 NU P pilus assembly protein, pilin FimA enteric 
PAN001463 Z2203 COG3188 NU P pilus assembly protein, porin PapC enteric 
PAN001677 ydjE COG0477 GEPR Permeases of the major facilitator superfamily enteric 
PAN001678 ECs2479 COG1349 KG Transcriptional regulators of sugar metabolism enteric 

PAN001679 ydjG COG0667 C 
Predicted oxidoreductases (related to aryl-alcohol 
dehydrogenases) enteric 

PAN001680 ydjH COG0524 G Sugar kinases, ribokinase family enteric 
PAN001681 ydjI COG0191 G Fructose/tagatose bisphosphate aldolase enteric 

PAN001682 ydjJ COG1063 ER 
Threonine dehydrogenase and related Zn-dependent 
dehydrogenases enteric 

PAN001683 ydjK COG0477 GEPR Permeases of the major facilitator superfamily enteric 

PAN001684 ECs2485 COG1063 ER 
Threonine dehydrogenase and related Zn-dependent 
dehydrogenases enteric 

PAN001804     enteric 
PAN001853     enteric 
PAN001858 yedV COG0642 T Signal transduction histidine kinase enteric 

PAN001859 ECs2707 COG0745 TK 
Response regulators consisting of a CheY-like receiver 
domain and a winged-helix DNA-binding domain enteric 

PAN001860 ECs2708 COG2351 R Transthyretin-like protein enteric 
PAN001864 yodA COG3443 R Predicted periplasmic or secreted protein enteric 
PAN002081     enteric 
PAN002341 emrY COG0477 GEPR Permeases of the major facilitator superfamily enteric 
PAN002342 ECs3247 COG1566 V Multidrug resistance efflux pump enteric 

PAN002343 ECs3248 COG2197 TK 
Response regulator containing a CheY-like receiver domain 
and an HTH DNA-binding domain enteric 

PAN002344 ECs3249_1 COG0834 ET 
ABC-type amino acid transport/signal transduction systems, 
periplasmic component/domain enteric 

PAN002345 yfdE COG1804 C Predicted acyl-CoA transferases/carnitine dehydratase enteric 
PAN002346 ECs3252 COG0679 R Predicted permeases enteric 
PAN002347 ECs3253 COG0028 EH Thiamine pyrophosphate-requiring enzyme enteric 
PAN002348 yfdW COG1804 C Predicted acyl-CoA transferases/carnitine dehydratase enteric 
PAN002349     enteric 
PAN002351     enteric 

PAN002713 ygcY COG4948 MR 
L-alanine-DL-glutamate epimerase and related enzymes of 
enolase superfamily enteric 

PAN002726 fucP COG0738 G Fucose permease enteric 
PAN002727 fucI COG2407 G L-fucose isomerase and related proteins enteric 
PAN002728 fucK COG1070 G Sugar (pentulose and hexulose) kinases enteric 
PAN002729 ECs3664 COG4154 G Fucose dissimilation pathway protein FucU enteric 
PAN002730 fucR COG1349 KG Transcriptional regulators of sugar metabolism enteric 
PAN003148     enteric 
PAN003163 ECs4015 COG1820 G N-acetylglucosamine-6-phosphate deacetylase enteric 
PAN003654 ECs4507 COG0859 M ADP-heptose:LPS heptosyltransferase enteric 
PAN003875 ECs4696 COG0477 GEPR Permeases of the major facilitator superfamily enteric 
PAN003895 ECs4721 COG1088 M dTDP-D-glucose 4,6-dehydratase enteric 
PAN003896 rffH COG1209 M dTDP-glucose pyrophosphorylase enteric 

PAN004231 ECs5075 COG1235 R 
Metal-dependent hydrolases of the beta-lactamase 
superfamily I enteric 

PAN004232 phnO COG0454 KR 
Histone acetyltransferase HPA2 and related 
acetyltransferases enteric 

PAN004234 ECs5078 COG3454 P 
Metal-dependent hydrolase involved in phosphonate 
metabolism enteric 

PAN004235 phnL COG4778 P ABC-type phosphonate transport system, ATPase enteric 
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Table A1 (continued) 
PAN004236 ECs5080 COG4107 P ABC-type phosphonate transport system, ATPase component enteric 

PAN004237 Ecs5081 COG3627 P Uncharacterized enzyme of phosphonate metabolism enteric 

PAN004238 Ecs5082 COG3626 P Uncharacterized enzyme of phosphonate metabolism enteric 

PAN004240 Ecs5084 COG3624 P Uncharacterized enzyme of phosphonate metabolism enteric 

PAN004241 phnF COG2188 K Transcriptional regulators enteric 

PAN004242 Ecs5086 COG3639 P 

ABC-type phosphate/phosphonate transport system, 

permease component enteric 

PAN004243 phnD COG3221 P 

ABC-type phosphate/phosphonate transport system, 

periplasmic component enteric 

PAN004244 phnC COG3638 P 

ABC-type phosphate/phosphonate transport system, ATPase 

component enteric 

PAN004533 Ecs5271 COG0582 L Integrase enteric 

PAN004550 yjiE COG0583 K Transcriptional regulator enteric 

PAN004553 Ecs5288 COG3314 S Uncharacterized protein conserved in bacteria enteric 

PAN004966     enteric 

PAN004997     enteric 

PAN005007 Ecs2293 COG0243 C 

Anaerobic dehydrogenases, typically selenocysteine-

containing enteric 

PAN005008 ynfF COG0243 C 

Anaerobic dehydrogenases, typically selenocysteine-

containing enteric 

PAN005009 Ecs2295 COG0437 C Fe-S-cluster-containing hydrogenase components 1 enteric 

PAN005010 Ecs2296 COG3302 R DMSO reductase anchor subunit enteric 

PAN005305     enteric 

PAN005773 relE COG2026 JD 

Cytotoxic translational repressor of toxin-antitoxin stability 

system Env. 

PAN006230 BB0604 COG1620 C L-lactate permease Env. 

PAN006350     Env. 

PAN006400 YOL164w COG2015 Q Alkyl sulfatase and related hydrolases Env. 

PAN006404 Ecs2095_2 COG2199 T FOG: GGDEF domain Env. 

PAN006558 STM2036_1 COG4936 TK Predicted sensor domain Env. 

PAN006559 STM2037 COG0580 G 

Glycerol uptake facilitator and related permeases (Major 

Intrinsic Protein Family) Env. 

PAN006560 STM2039 COG4816 E Ethanolamine utilization protein Env. 

PAN006561 STM2040 COG4909 Q Propanediol dehydratase, large subunit Env. 

PAN006562 mll6722 COG4909 Q Propanediol dehydratase, large subunit Env. 

PAN006563 STM2042 COG4910 Q Propanediol dehydratase, small subunit Env. 

PAN006564     Env. 

PAN006565     Env. 

PAN006566 STM2045 COG4577 QC 

Carbon dioxide concentrating mechanism/carboxysome shell 

protein Env. 

PAN006567 STM2046 COG4577 QC 

Carbon dioxide concentrating mechanism/carboxysome shell 

protein Env. 

PAN006568 STM2047 COG4869 Q Propanediol utilization protein Env. 

PAN006570 STM2049 COG4576 QC 

Carbon dioxide concentrating mechanism/carboxysome shell 

protein Env. 

PAN006571 STM2050_1 COG2096 S Uncharacterized conserved protein Env. 

PAN006572 STM2051 COG1012 C NAD-dependent aldehyde dehydrogenases Env. 

PAN006573 STM2052 COG1454 C Alcohol dehydrogenase, class IV Env. 

PAN006574 STM2053 COG4656 C Predicted NADH:ubiquinone oxidoreductase, subunit RnfC Env. 

PAN006575 STM2054 COG4577 QC 

Carbon dioxide concentrating mechanism/carboxysome shell 

protein Env. 

PAN006576 STM2055 COG4810 E Ethanolamine utilization protein Env. 

PAN006577 STM2056 COG4917 E Ethanolamine utilization protein Env. 

PAN006734     Env. 

PAN006868     Env. 

PAN006880     Env. 

PAN006881     Env. 

PAN006882 rfaJ COG1442 M 

Lipopolysaccharide biosynthesis proteins, 

LPS:glycosyltransferases Env. 

PAN006883 rfaI COG1442 M 

Lipopolysaccharide biosynthesis proteins, 

LPS:glycosyltransferases Env. 

PAN006884 rfaB COG0438 M Glycosyltransferase Env. 

PAN006886 rfaQ COG0859 M ADP-heptose:LPS heptosyltransferase Env. 
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Table A1 (continued) 
PAN006887     Env. 
PAN006927     Env. 
PAN006928     Env. 
PAN007850     Env. 
PAN007949 PA5083 COG0251 J Putative translation initiation inhibitor, yjgF family Env. 
PAN007950 PA5084 COG0665 E Glycine/D-amino acid oxidases (deaminating) Env. 
PAN007951 PA5085 COG0583 K Transcriptional regulator Env. 
PAN007952     Env. 
PAN008511     Env. 
PAN008512 PA1068 COG0326 O Molecular chaperone, HSP90 family Env. 
PAN008565 STM4449 COG3077 L DNA-damage-inducible protein J Env. 
PAN008634     Env. 
PAN008640     Env. 
PAN008651     Env. 
PAN008652 STM0266 COG3515 S Uncharacterized protein conserved in bacteria Env. 
PAN008653 STM0267 COG3520 S Uncharacterized protein conserved in bacteria Env. 
PAN008654 STM0268 COG3519 S Uncharacterized protein conserved in bacteria Env. 
PAN008655 STM0269 COG3518 S Uncharacterized protein conserved in bacteria Env. 

PAN008656 STM0270 COG4455 R 
Protein of avirulence locus involved in temperature-
dependent protein secretion Env. 

PAN008657     Env. 
PAN008660 STM0274 COG3517 S Uncharacterized protein conserved in bacteria Env. 
PAN008663 STM0276 COG3157 S Hemolysin-coregulated protein (uncharacterized) Env. 
PAN008716 RSc0632 COG1064 R Zn-dependent alcohol dehydrogenases Env. 

PAN008729 Cj0599_2 COG2885 M 
Outer membrane protein and related peptidoglycan-
associated (lipo)proteins Env. 

PAN008730     Env. 
PAN008731 VC1760 COG0553 KL Superfamily II DNA/RNA helicases, SNF2 family Env. 
PAN008749     Env. 
PAN008754     Env. 
PAN008807 SMa2301 COG2199 T FOG: GGDEF domain Env. 
PAN008808 YPPCP1.07 COG4571 M Outer membrane protease Env. 
PAN008813     Env. 
PAN008829 Z0414 COG4405 S Uncharacterized protein conserved in bacteria Env. 
PAN008835     Env. 
PAN008838     Env. 
PAN008847 YPO0852 COG1874 G Beta-galactosidase Env. 
PAN008848 YPO0849 COG1609 K Transcriptional regulators Env. 
PAN008849 ECs0396 COG0477 GEPR Permeases of the major facilitator superfamily Env. 
PAN008878 AGc3846 COG3757 M Lyzozyme M1 (1,4-beta-N-acetylmuramidase) Env. 
PAN008879 BMEII0782 COG3757 M Lyzozyme M1 (1,4-beta-N-acetylmuramidase) Env. 
PAN008902     Env. 
PAN008922     Env. 
PAN008934     Env. 

PAN008966 STM1236 COG4461 S 
Uncharacterized protein conserved in bacteria, putative 
lipoprotein Env. 

PAN008974     Env. 
PAN009011     Env. 
PAN009026     Env. 
PAN009031 yjhH COG0329 EM Dihydrodipicolinate synthase/N-acetylneuraminate lyase Env. 

PAN009050 STM2396 COG2204 T 
Response regulator containing CheY-like receiver, AAA-
type ATPase, and DNA-binding domains Env. 

PAN009053 STM2398 COG1840 P ABC-type Fe3+ transport system, periplasmic component Env. 
PAN009054     Env. 
PAN009055 STM2399 COG2271 G Sugar phosphate permease Env. 

!

!
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Table A2. List of core genes found to be horizontally transferred between clades. 

Genes in close proximity to repeat regions or mobile elements and plasmid genes are 

denoted by * and &, respectively. 

Gene ID Distance from mobile 
element (bp) Annotation 

PAN002200  Uncharacterized protein involved in formation of periplasmic nitrate reductase 
PAN003853  F0F1-type ATP synthase, epsilon subunit (mitochondrial delta subunit) 
PAN001208  Predicted membrane protein 
PAN001547  Predicted periplasmic protein 
PAN002200  Uncharacterized protein involved in formation of periplasmic nitrate reductase 
PAN002260  Uncharacterized conserved protein 
PAN002841  Uncharacterized protein conserved in bacteria 
PAN002891* 33 Uncharacterized protein conserved in bacteria 
PAN003250  Uncharacterized protein conserved in bacteria 
PAN003274  Biotin carboxyl carrier protein 
PAN003288  Factor for inversion stimulation Fis, transcriptional activator 
PAN003317  DNA-directed RNA polymerase, alpha subunit/40 kD subunit 
PAN003406  Shikimate kinase 
PAN003878  Uncharacterized protein conserved in bacteria 
PAN003889  Thiol-disulfide isomerase and thioredoxins 
PAN004055* 30 Transcriptional regulator of met regulon 
PAN004097&  Preprotein translocase subunit SecE 
PAN004200  Predicted membrane protein 
PAN001208  Predicted membrane protein 
PAN001547  Predicted periplasmic protein 
PAN002891* 33 Uncharacterized protein conserved in bacteria 
PAN003250  Uncharacterized protein conserved in bacteria 
PAN003274  Biotin carboxyl carrier protein 
PAN003288  Factor for inversion stimulation Fis, transcriptional activator 
PAN003317  DNA-directed RNA polymerase, alpha subunit/40 kD subunit 
PAN003406  Shikimate kinase 
PAN003878  Uncharacterized protein conserved in bacteria 
PAN004055* 30 Transcriptional regulator of met regulon 
PAN004097&  Preprotein translocase subunit SecE 

PAN000050* 
 
17 Diadenosine tetraphosphatase and related serine/threonine protein phosphatases 

PAN000490* 13 Predicted thioesterase 
PAN000542  ABC-type uncharacterized transport system, ATPase component 
PAN000550  Predicted ATPase 
PAN000563  Malate/L-lactate dehydrogenases 
PAN000599* 29 Phosphopantetheinyl transferase component of siderophore synthetase 
PAN000607  ABC-type Fe3+-siderophore transport system, permease component 
PAN000612  Isochorismate hydrolase 
PAN000656  Rare lipoprotein B 
PAN000667  Predicted metal-dependent hydrolase 
PAN000669  2-methylthioadenine synthetase 
PAN000690* 5 Flavodoxins 
PAN000731  Biopolymer transport proteins 

PAN000747* 
 
19 ABC-type molybdenum transport system, ATPase component/photorepair protein PhrA 

PAN000755  3-carboxymuconate cyclase 
PAN000886  Permeases of the major facilitator superfamily 
PAN000931  3-hydroxymyristoyl/3-hydroxydecanoyl-(acyl carrier protein) dehydratases 
PAN000949  Ni,Fe-hydrogenase I small subunit 
PAN000968* 9 Uncharacterized component of anaerobic dehydrogenases 
PAN000988* 211 High-affinity Fe2+/Pb2+ permease 
PAN001000* 34 - 
PAN001010  Predicted phosphatase homologous to the C-terminal domain of histone macroH2A1 
PAN001022  Cytochrome B561 
PAN001075  Transcriptional regulator 
PAN001089  ABC-type spermidine/putrescine transport system, permease component I 
PAN001237  Uncharacterized protein involved in cation transport 
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Table A2 (continued) 
PAN001246  Nitrate reductase delta subunit 
PAN001362  FOG: GGDEF domain 
PAN001415  Sortase and related acyltransferases 
PAN001438  Anaerobic dehydrogenases, typically selenocysteine-containing 
PAN001473  NAD-dependent aldehyde dehydrogenases 
PAN001509  Predicted permease 
PAN001531  Adenosine deaminase 
PAN001542  Predicted EndoIII-related endonuclease 
PAN001592  - 
PAN001595  Predicted permease 
PAN001626  Threonyl-tRNA synthetase 
PAN001634  Predicted phosphatase/phosphohexomutase 
PAN001640  Alpha-galactosidases/6-phospho-beta-glucosidases, family 4 of glycosyl hydrolases 
PAN001646* 46 NAD synthase 
PAN001659  Uncharacterized conserved protein 
PAN001754  Dihydroxyacid dehydratase/phosphogluconate dehydratase 
PAN001784  FOG: CheY-like receiver 
PAN001792  - 
PAN001819  - 
PAN001842  DNA-binding HTH domain-containing proteins 
PAN002008  DNA gyrase inhibitor 
PAN002010  Exonuclease I 
PAN002061  Uridine kinase 
PAN002130* 6 Uncharacterized membrane-associated protein 
PAN002142* 60 ABC-type glucose/galactose transport system, permease component 
PAN002148  GTP cyclohydrolase I 
PAN002161  Sugar kinases, ribokinase family 
PAN002174  ABC-type uncharacterized transport system, permease component 
PAN002179  16S rRNA uridine-516 pseudouridylate synthase and related pseudouridylate synthases 
PAN002193  ABC-type transport system involved in cytochrome c biogenesis, permease component 
PAN002198  Ferredoxin 
PAN002199&  Anaerobic dehydrogenases, typically selenocysteine-containing 
PAN002201  Ferredoxin 
PAN002207  Alkylated DNA repair protein 
PAN002208  Adenosine deaminase 
PAN002210  Outer membrane protein (porin) 

PAN002246 
 Predicted pyridoxal phosphate-dependent enzyme apparently involved in regulation of 

cell wall biogenesis 
PAN002271  NADH:ubiquinone oxidoreductase subunit 1 (chain H) 
PAN002285  Acetate kinase 

PAN002298 
 ABC-type amino acid transport/signal transduction systems, periplasmic 

component/domain 
PAN002328  Phosphohistidine phosphatase SixA 
PAN002356  Response regulator of the LytR/AlgR family 
PAN002399  - 
PAN002436* 113 Uncharacterized lipoprotein 
PAN002445  Uracil phosphoribosyltransferase 
PAN002461  FOG: WD40-like repeat 
PAN002464  Enzyme involved in the deoxyxylulose pathway of isoprenoid biosynthesis 
PAN002476  DnaJ-domain-containing proteins 1 
PAN002499* 16 Nitrogen regulatory protein PII 
PAN002557  Putative Mg2+ and Co2+ transporter CorB 
PAN002561  Small protein A (tmRNA-binding) 
PAN002583  Protein involved in ribonucleotide reduction 
PAN002588  ABC-type proline/glycine betaine transport system, permease component 
PAN002615* 22 Uncharacterized NAD(FAD)-dependent dehydrogenases 
PAN002629  Formate hydrogenlyase subunit 4 
PAN002670  Predicted acid phosphatase 
PAN002672  2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 
PAN002711* 75 Signal transduction histidine kinase 
PAN002779  Prolipoprotein diacylglyceryltransferase 
PAN002787  Acyl-CoA synthetases (AMP-forming)/AMP-acid ligases II 
PAN002877  Endonuclease I 
PAN002880* 466 Putative transcriptional regulator 

PAN002881* 
 
50 

Predicted endonuclease involved in recombination (possible Holliday junction 
resolvase in Mycoplasmas and B. subtilis) 

PAN002886  Xanthosine triphosphate pyrophosphatase 
PAN003014* 274 Zn finger protein HypA/HybF (possibly regulating hydrogenase expression) 
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Table A2 (continued) 
PAN003016  Ni,Fe-hydrogenase maturation factor 
PAN003097* 32 Predicted transcriptional regulators 
PAN003135* 14 Predicted membrane protein 

PAN003160 
 Phosphotransferase system, mannose/fructose/N-acetylgalactosamine-specific 

component IIC 
PAN003179  Predicted endonuclease containing a URI domain 

PAN003215* 
 
304 

ABC-type transport system involved in resistance to organic solvents, auxiliary 
component 

PAN003224  Uncharacterized protein conserved in bacteria 
PAN003245  Glutathione S-transferase 
PAN003249  Predicted ATPase 
PAN003252  Trypsin-like serine proteases, typically periplasmic, contain C-terminal PDZ domain 
PAN003270  FOG: EAL domain 
PAN003291  Transcriptional regulator 
PAN003322  Preprotein translocase subunit SecY 
PAN003388  NAD(P)H-nitrite reductase 
PAN003402  Predicted phosphatases 
PAN003417  Disulfide bond chaperones of the HSP33 family 
PAN003430* 23 Thioredoxin-like proteins and domains 
PAN003457  Aspartate-semialdehyde dehydrogenase 
PAN003471  - 
PAN003488  N6-adenine-specific methylase 
PAN003497  - 
PAN003501  ABC-type dipeptide transport system, periplasmic component 
PAN003502  ABC-type dipeptide/oligopeptide/nickel transport systems, permease components 
PAN003507* 9 ABC-type multidrug transport system, permease component 
PAN003519  Protein involved in catabolism of external DNA 
PAN003539  Uncharacterized conserved protein 
PAN003618* 228 Glutathione S-transferase 
PAN003670  Guanylate kinase 
PAN003811  Molecular chaperone (small heat shock protein) 
PAN003835  Phosphopantetheinyl transferase 
PAN003849* 45 ABC-type phosphate transport system, permease component 
PAN003854  F0F1-type ATP synthase, beta subunit 
PAN003926  Uncharacterized protein, possibly involved in aromatic compounds catabolism 
PAN003951  Dienelactone hydrolase and related enzymes 
PAN003952  Uridine phosphorylase 
PAN003975  Flavodoxin 
PAN003976* 7 Molybdopterin-guanine dinucleotide biosynthesis protein 
PAN003990* 132 Signal transduction histidine kinase, nitrogen specific 
PAN003991* 70 Glutamine synthetase 
PAN004005  Predicted membrane protein 
PAN004047  1,4-dihydroxy-2-naphthoate octaprenyltransferase 
PAN004049  ATP-dependent protease HslVU (ClpYQ), peptidase subunit 
PAN004117  - 
PAN004142  16S rRNA uridine-516 pseudouridylate synthase and related pseudouridylate synthases 
PAN004165  tRNA-dihydrouridine synthase 
PAN004204  - 
PAN004251* 136 Signal transduction histidine kinase 

PAN004252 
 Response regulators consisting of a CheY-like receiver domain and a winged-helix 

DNA-binding domain 
PAN004280  Protein affecting phage T7 exclusion by the F plasmid 
PAN004296  Succinate dehydrogenase/fumarate reductase, flavoprotein subunit 
PAN004377  Predicted Zn-dependent proteases and their inactivated homologs 
PAN004388  Aspartate carbamoyltransferase, catalytic chain 
PAN004399* 53 DNA polymerase III, chi subunit 
PAN004401  Predicted permeases 
PAN004587* 20 16S RNA G1207 methylase RsmC 
PAN004589  Acetyltransferases 
PAN004610* 11 ATPase components of ABC transporters with duplicated ATPase domains 
PAN000542  ABC-type uncharacterized transport system, ATPase component 
PAN000563  Maltate/L-lactate dehydrogenases 
PAN000599* 29 Phosphopantetheinyl transferase component of siderophore synthetase 
PAN000656  Rare lipoprotein B 
PAN000669  2-methylthioadenine synthetase 
PAN000672* 52 Predicted sugar phosphatases of the HAD superfamily 
PAN000731  Biopolymer transport proteins 
PAN000737  Quinolinate synthase 
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Table A2 (continued) 
PAN000813  Pyruvate-formate lyase-activating enzyme 

PAN000968* 9 Uncharacterized component of anaerobic dehydrogenases 

PAN000985* 8 Delta 1-pyrroline-5-carboxylate dehydrogenase 

PAN001246  Nitrate reductase delta subunit 

PAN001312  Enoyl-(acyl-carrier-protein) reductase (NADH) 

PAN001322* 249 ABC-type oligopeptide transport system, periplasmic component 

PAN001438  Anaerobic dehydrogenases, typically selenocysteine-containing 

PAN001444* 483 Zn-dependent alcohol dehydrogenases 

PAN001595  Predicted permease 

PAN001773  SAM-dependent methyltransferases 

PAN002193  ABC-type transport system involved in cytochrome c biogenesis, permease component 

PAN002197  Polyferredoxin 

PAN002198  Ferredoxin 

PAN002199&  Anaerobic dehydrogenases, typically selenocysteine-containing 

PAN002201  Ferredoxin 

PAN002207  Alkylated DNA repair protein 

PAN002208  Adenosine deaminase 

PAN002210  Outer membrane protein (porin) 

PAN002219  Uncharacterized protein conserved in bacteria 

PAN002285  Acetate kinase 

PAN002297  ABC-type arginine transport system, permease component 

PAN002328  Phosphohistidine phosphatase SixA 

PAN002399  - 

PAN002557  Putative Mg2+ and Co2+ transporter CorB 

PAN002611* 458 Transcriptional regulators of sugar metabolism 

PAN002615* 22 Uncharacterized NAD(FAD)-dependent dehydrogenases 

PAN002617* 87 Fe-S-cluster-containing hydrogenase components 2 

PAN002624* 72 Ni,Fe-hydrogenase maturation factor 

PAN002626  Ni,Fe-hydrogenase III small subunit 

PAN002629  Formate hydrogenlyase subunit 4 

PAN002836  Glycine cleavage system T protein (aminomethyltransferase) 

PAN002854  Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase 

PAN002880* 466 Putative transcriptional regulator 

PAN002881* 

50 Predicted endonuclease involved in recombination (possible Holliday junction 

resolvase in Mycoplasmas and B. subtilis) 

PAN003105  Amino acid transporters 

PAN003178  Uncharacterized protein conserved in bacteria 

PAN003402  Predicted phosphatases 

PAN003440  Rhodanese-related sulfurtransferase 

PAN003471  - 

PAN003501  ABC-type dipeptide transport system, periplasmic component 

PAN003502  ABC-type dipeptide/oligopeptide/nickel transport systems, permease components 

PAN003503  ABC-type dipeptide/oligopeptide/nickel transport systems, permease components 

PAN003507* 9 ABC-type multidrug transport system, permease component 

PAN003572  ABC-type dipeptide/oligopeptide/nickel transport system, ATPase component 

PAN003853  F0F1-type ATP synthase, epsilon subunit (mitochondrial delta subunit) 

PAN003951  Dienelactone hydrolase and related enzymes 

PAN003952  Uridine phosphorylase 

PAN003975  Flavodoxin 

PAN003976* 7 Molybdopterin-guanine dinucleotide biosynthesis protein 

PAN003991* 70 Glutamine synthetase 

PAN004006  D-Tyr-tRNAtyr deacylase 

PAN004108 

 Dinucleotide-utilizing enzymes involved in molybdopterin and thiamine biosynthesis 

family 2 

PAN004147  - 

PAN004357  Permeases of the drug/metabolite transporter (DMT) superfamily 

PAN004386* 59 Putative translation initiation inhibitor, yjgF family 

PAN004387  Aspartate carbamoyltransferase, regulatory subunit 

PAN004587* 20 16S RNA G1207 methylase RsmC 

!

!

!

!

!

!
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Table A3. List of non-core genes found to be horizontally transferred between 

clades. Genes in close proximity to repeat regions or mobile elements and plasmid genes 

are denoted by * and &, respectively. 
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Table B1. Differentially abundant SEED subsystems between warming and control 

metagenomes. 

SEED subsystem 

Mean 

number 

of reads 

Enriched 

group
 

Log2 fold 

change 

Fold 

change 

P-value 

(B-H 

adjusted) 

Malonate_decarboxylase 844 H 0.288 22% 1.43E-72 

Ribosome_LSU_eukaryotic_and_archaeal 459 H 0.286 22% 3.56E-35 

Polysaccharide_deacetylases 367 H 0.285 22% 2.34E-53 

Phage_packaging_machinery 1644 H 0.281 21% 2.76E-86 

Cholesterol_catabolic_operon_in_Mycobact

eria 460 H 0.270 21% 4.05E-31 

Phage_tail_fiber_proteins 1429 H 0.263 20% 3.20E-119 

NAD_consumption 180 H 0.249 19% 3.20E-119 

Coenzyme_PQQ_synthesis 3704 H 0.241 18% 1.49E-52 

Tryptophan_catabolism 218 H 0.240 18% 1.60E-22 

Phosphorylcholine_incorporation_in_LPS 111 H 0.237 18% 4.67E-85 

DNA_replication,_archaeal 1928 H 0.230 17% 7.08E-93 

Terminal_AA3-600_quinol_oxidase 291 H 0.227 17% 7.17E-27 

CBSS-316273.3.peg.227 2599 H 0.225 17% 1.49E-87 

Pyrroloquinoline_Quinone_biosynthesis 3799 H 0.220 16% 5.59E-51 

Threonine_anaerobic_catabolism_gene_clus

ter 196 H 0.212 16% 3.13E-59 

Sporulation_Cluster_III_A 118 H 0.225 17% 2.69E-02 

Spore_germination 307 H 0.157 12% 4.00E-14 

SeqA_and_Co-occurring_Genes 552 H 0.197 15% 2.86E-80 

Glycerate_metabolism 34650 H 0.177 13% 2.76E-05 

CBSS-320388.3.peg.3759 4715 H 0.191 14% 2.13E-24 

Denitrification 5164 H 0.163 12% 6.68E-11 

Carbon_monoxide_induced_hydrogenase 422 H 0.189 14% 3.73E-97 

Biflavanoid_biosynthesis 1613 H 0.183 14% 5.13E-105 

Tannin_biosynthesis 1610 H 0.180 13% 3.70E-100 

Cobalt-zinc-cadmium_resistance 121204 H 0.176 13% 3.71E-90 

CRISP_Cmr_Cluster 420 H 0.174 13% 8.88E-36 

Polymyxin_Synthetase_Gene_Cluster_in_B

acillus 726 H 0.172 13% 1.75E-29 

beta-glucuronide_utilization 143 H 0.287 22% 1.35E-43 

Cellulosome 1354 H 0.171 13% 6.47E-16 

CBSS-224911.1.peg.435 3894 H 0.167 12% 5.50E-61 

Phosphonoalanine_utilization 176 H 0.165 12% 4.05E-31 

ESAT-

6_proteins_secretion_system_in_Actinobact

eria 648 H 0.160 12% 6.47E-16 

Streptococcus_pyogenes_Virulome 331 H 0.159 12% 6.00E-29 

Terminal_cytochrome_oxidases 18448 H 0.156 11% 9.20E-52 

Bacterial_Caspases 205 H 0.153 11% 3.63E-54 

Lipopolysaccharide-

related_cluster_in_Alphaproteobacteria 3328 H 0.151 11% 1.34E-65 

Bacillibactin_Siderophore 796 H 0.148 11% 1.60E-22 

Glycine_reductase,_sarcosine_reductase_an

d_betaine_reductase 1093 H 0.146 11% 3.20E-119 

Sporulation_draft 167 H 0.145 11% 3.20E-119 

Photosystem_II 267 H 0.144 11% 2.87E-38 
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Table B1 (continued) 
Multidrug_efflux_pump_in_Campylobacter

_jejuni_(CmeABC_operon) 261 H 0.142 10% 1.27E-98 

Lipid_A-

Ara4N_pathway_(_Polymyxin_resistance_) 8485 H 0.141 10% 3.73E-97 

Marinocine,_a_broad-

spectrum_antibacterial_protein 598 H 0.140 10% 1.40E-34 

Dot-Icm_type_IV_secretion_system 258 H 0.136 10% 1.75E-05 

Tricarballylate_Utilization 1572 H 0.136 10% 1.23E-116 

Translation_elongation_factors_eukaryotic_

and_archaeal 772 H 0.134 10% 1.94E-17 

Phosphoglycerate_transport_system 272 H 0.131 10% 1.40E-34 

p-cymene_degradation 362 H 0.127 9% 8.37E-63 

Pentose_phosphate_pathway 127971 H 0.126 9% 1.18E-64 

Alpha-acetolactate_operon 378 H 0.125 9% 5.76E-07 

Trans-

envelope_signaling_system_VreARI_in_Ps

eudomonas 1053 H 0.125 9% 1.02E-45 

P38_MAP_kinase_pathways 103 H 0.123 9% 2.72E-44 

Predicted_mycobacterial_monooxygenase 257 H 0.122 9% 5.50E-34 

Archease 202 H 0.122 9% 2.12E-33 

Chlorophyll_Biosynthesis 3745 H 0.121 9% 7.88E-18 

Cytochrome_B6-F_complex 196 H 0.120 9% 1.47E-39 

Ferrous_iron_transporter_EfeUOB,_low-

pH-induced 1363 H 0.119 9% 1.92E-13 

Alkanesulfonate_assimilation 28741 H 0.119 9% 8.37E-63 

Methionine_Salvage 4843 H 0.117 8% 1.27E-82 

Benzoate_degradation 3290 H 0.116 8% 1.47E-39 

cAMP_signaling_in_bacteria 93367 H 0.116 8% 1.07E-74 

Amidase_clustered_with_urea_and_nitrile_

hydratase_functions 1149 H 0.115 8% 2.74E-16 

Nitric_oxide_synthase 3089 H 0.125 9% 1.26E-02 

rRNA_modification_Archaea 264 H 0.114 8% 7.02E-06 

Selenocysteine_metabolism 23549 H 0.113 8% 2.28E-58 

Menaquinone_Biosynthesis_via_Futalosine

_--_gjo 19720 H 0.112 8% 4.67E-85 

Peripheral_Glucose_Catabolism_Pathways 283 H 0.111 8% 2.04E-28 

Omega_peptidases_(EC_3.4.19.-) 7698 H 0.110 8% 3.63E-54 

Hypothetical_Related_to_Dihydroorotate_d

ehydrogenase 1039 H 0.109 8% 1.27E-21 

Alkanesulfonates_Utilization 5962 H 0.107 8% 1.40E-34 

Proton-dependent_Peptide_Transporters 5187 H 0.105 8% 4.05E-31 

Clavulanic_acid_biosynthesis 221 H 0.105 8% 3.35E-11 

CBSS-288000.5.peg.1793 1242 H 0.104 7% 4.72E-17 

Putative_sulfate_assimilation_cluster 1257 H 0.104 7% 3.13E-59 

Calvin-Benson_cycle 22126 H 0.101 7% 6.35E-48 

Teichoic_and_lipoteichoic_acids_biosynthe

sis 4190 H 0.100 7% 3.20E-119 

Unknown_carbohydrate_utilization_(_cluste

r_Ydj_) 116 H 0.100 7% 8.79E-13 

Sporulation-related_Hypotheticals 1169 H 0.100 7% 3.20E-119 

A_Gammaproteobacteria_Cluster_Relating_

to_Translation 900 H 0.099 7% 3.20E-119 

Polyunsaturated_Fatty_Acids_synthesis 3024 H 0.098 7% 7.17E-27 

Pterin_metabolism 489 H 0.098 7% 7.88E-18 
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Table B1 (continued) 
Serotype_determining_Capsular_polysaccha
ride_biosynthesis_in_Staphylococcus 142 H 0.096 7% 6.47E-16 
LOS_core_oligosaccharide_biosynthesis 24302 H 0.095 7% 2.76E-86 
Formate_dehydrogenase 6569 H 0.095 7% 1.07E-74 
Methylglyoxal_Metabolism 30581 H 0.122 9% 3.50E-15 
Cobalamin_synthesis 17924 H 0.094 7% 2.12E-33 
Mediator_of_hyperadherence_YidE_in_Ent
erobacteria_and_its_conserved_region 153 H 0.094 7% 2.27E-25 
Vibrioferrin_synthesis 138 H 0.094 7% 2.16E-36 
CO_Dehydrogenase 32957 H 0.117 8% 2.16E-02 
Biofilm_Adhesin_Biosynthesis 463 H 0.093 7% 1.64E-57 
Carbon_monoxide_dehydrogenase_maturati
on_factors 10192 H 0.135 10% 1.14E-07 
Trehalose_Uptake_and_Utilization 11513 H 0.105 8% 4.80E-04 
Dipeptidases_(EC_3.4.13.-) 1416 H 0.092 7% 1.28E-73 
CBSS-222523.1.peg.1311 106 H 0.090 6% 5.07E-30 
At3g21300 28131 H 0.089 6% 3.70E-100 
Molybdopterin_cytosine_dinucleotide 20027 H 0.088 6% 1.22E-37 
Zinc_resistance 10081 H 0.088 6% 7.30E-26 
Dehydrogenase_complexes 96393 H 0.145 11% 1.34E-65 
Soluble_methane_monooxygenase_(sMMO
) 1090 H 0.086 6% 3.51E-47 
CBSS-243277.1.peg.4359 248 H 0.086 6% 1.75E-29 
CBSS-251221.1.peg.1863 2579 H 0.085 6% 1.27E-98 
CBSS-52598.3.peg.2843 4008 H 0.084 6% 7.88E-18 
Utilization_of_glutathione_as_a_sulphur_so
urce 12063 H 0.084 6% 6.34E-24 
Iojap 112063 H 0.083 6% 2.86E-80 
USS-DB-4 110 H 0.083 6% 2.24E-04 
Archaeal_Flagellum 195 H 0.083 6% 3.28E-40 
PA0057_cluster 303 H 0.082 6% 2.07E-08 
Indole-pyruvate_oxidoreductase_complex 621 H 0.082 6% 4.16E-13 
Group_II_intron-associated_genes 6161 H 0.082 6% 1.14E-07 
Alkaloid_biosynthesis_from_L-lysine 2909 H 0.081 6% 9.58E-21 
Formate_hydrogenase 60735 H 0.081 6% 1.02E-63 
Photorespiration_(oxidative_C2_cycle) 40992 H 0.119 9% 5.76E-07 
Multidrug_Resistance_Efflux_Pumps 57620 H 0.080 6% 1.93E-114 
Oxygen_and_light_sensor_PpaA-PpsR 414 H 0.080 6% 1.75E-108 
mycolic_acid_synthesis 736 H 0.076 5% 4.26E-05 
CBSS-316273.3.peg.922 238 H 0.075 5% 2.65E-06 
Spore_Core_Dehydration 1158 H 0.075 5% 1.61E-70 
CBSS-198094.1.peg.4426 1132 H 0.074 5% 7.88E-18 
CBSS-269801.1.peg.1725 1075 H 0.074 5% 1.61E-70 
N-
heterocyclic_aromatic_compound_degradati
on 30410 H 0.074 5% 6.52E-39 
Allantoin_Utilization 4601 H 0.072 5% 1.18E-64 
YgjD_and_YeaZ 8263 H 0.072 5% 5.50E-61 
CBSS-314267.3.peg.390 30742 H 0.072 5% 5.17E-37 
Siderophore_Pyoverdine 10139 H 0.071 5% 6.68E-11 
Phenylpropionate_Degradation 262 C 0.241 18% 9.50E-107 
Hyperosmotic_potassium_uptake 953 C 0.655 58% 2.41E-112 
SpoVS_protein_family 191 C 0.489 40% 1.02E-101 
Spliceosome 315 C 0.398 32% 2.28E-58 
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Table B1 (continued) 
Methanogenesis_from_methylated_compou
nds 107 C 0.378 30% 9.50E-107 
Sucrose_utilization_Shewanella 200 C 0.348 27% 1.61E-70 
Xyloglucan_Utilization 200 C 0.333 26% 1.08E-95 
CBSS-49338.1.peg.459 17499 C 0.322 25% 2.83E-94 
Citrate_Utilization_System_(CitAB,_CitH,_
and_tctABC) 1402 C 0.306 24% 1.27E-82 
Energy-
conserving_hydrogenase_(ferredoxin) 200 C 0.282 22% 1.68E-91 
Ketoisovalerate_oxidoreductase 529 C 0.276 21% 1.02E-101 
RNA_polymerase_III 315 C 0.264 20% 5.30E-45 
Iron_acquisition_in_Vibrio 158 C 0.261 20% 1.75E-108 
P_uptake_(cyanobacteria) 1785 C 0.258 20% 7.88E-18 
Tocopherol_Biosynthesis 438 C 0.249 19% 7.21E-41 
RNA_polymerase_II_initiation_factors 588 C 0.246 19% 3.13E-59 
L-
ascorbate_utilization_(and_related_gene_cl
usters) 328 C 0.246 19% 3.20E-119 
V-Type_ATP_synthase 1161 C 0.242 18% 2.28E-58 
Aminoglycoside_adenylyltransferases 136 C 0.235 18% 8.08E-56 
Spore_pigment_biosynthetic_cluster_in_Act
inomycetes 1289 C 0.235 18% 1.49E-66 
Cadmium_resistance 449 C 0.234 18% 2.86E-80 
CBSS-316273.3.peg.448 3313 C 0.228 17% 1.40E-34 
RNA_polymerase_I 260 C 0.218 16% 7.01E-25 
Melibiose_Utilization 410 C 0.214 16% 7.08E-93 
Protein_secretion_by_ABC-type_exporters 609 C 0.211 16% 5.51E-55 
Proteasome_eukaryotic 1305 C 0.210 16% 1.40E-34 
VC0266 317 C 0.197 15% 2.48E-103 
Mannitol_Utilization 4636 C 0.195 15% 5.13E-105 
Periplasmic-Binding-Protein-
Dependent_Transport_System_for_945;-
Glucosides 5574 C 0.195 14% 7.83E-89 
CBSS-393131.3.peg.612 196 C 0.191 14% 1.43E-72 
Fatty_Acid_Biosynthesis_FASI 3567 C 0.189 14% 5.57E-23 
Ribosome_LSU_mitochondrial 336 C 0.189 14% 1.55E-41 
CBSS-176279.3.peg.1262 150 C 0.189 14% 1.55E-41 
Dissimilatory_nitrite_reductase 607 C 0.187 14% 4.02E-79 
Flavodoxin 1033 C 0.185 14% 1.56E-71 
HtrA_and_Sec_secretion 325 C 0.185 14% 1.27E-21 
ECF_class_transporters 5913 C 0.177 13% 1.93E-114 
Sucrose_utilization 1993 C 0.174 13% 3.20E-119 
Iron_acquisition_in_Streptococcus 8142 C 0.172 13% 7.17E-77 
WhiB_and_WhiB-
type_regulatory_proteins_ 946 C 0.172 13% 2.31E-26 
Inositol_catabolism 25008 C 0.171 13% 1.93E-114 
O-
antigen_capsule_important_for_environmen
tal_persistence 112 C 0.171 13% 3.28E-40 
CBSS-344610.3.peg.2335 337 C 0.168 12% 1.93E-114 
tRNA-dependent_amino_acid_transfers 256 C 0.167 12% 5.59E-51 
Na(+)-translocating_NADH-
quinone_oxidoreductase and rnf-
like_electron_transport_complexes 1433 C 0.164 12% 2.16E-36 
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Table B1 (continued) 
CBSS-288681.3.peg.1039 118 C 0.163 12% 1.55E-41 
Sulfate_reduction-associated_complexes 342 C 0.163 12% 1.59E-67 
Cresol_degradation 126 C 0.162 12% 2.22E-27 
RNA_polymerase_II 350 C 0.160 12% 1.14E-16 
CBSS-261594.1.peg.2640 114 C 0.158 12% 1.34E-65 
Erythritol_utilization 1366 C 0.156 11% 2.28E-58 
L-fucose_utilization 679 C 0.154 11% 1.60E-22 
Choline_Transport 124 C 0.154 11% 6.67E-43 
USS-DB-1 918 C 0.150 11% 1.35E-43 
Plastoquinone_Biosynthesis 667 C 0.149 11% 2.72E-44 
Glutathione-regulated_potassium-
efflux_system_and_associated_functions 6615 C 0.149 11% 1.61E-70 
Lysine_biosynthesis_AAA_pathway_2 974 C 0.148 11% 8.00E-15 
Control_of_Swarming_in_Vibrio_and_She
wanella_species 100 C 0.146 11% 5.50E-61 
CBSS-216592.1.peg.3534 1316 C 0.146 11% 1.61E-70 
Anaerobic_Oxidative_Degradation_of_L-
Ornithine 143 C 0.141 10% 2.34E-53 
Fermentations:_Lactate 45686 C 0.141 9% 1.02E-63 
Bacitracin_Stress_Response 346 C 0.140 10% 1.64E-57 
D-allose_utilization 224 C 0.140 10% 1.34E-65 
Pseudaminic_Acid_Biosynthesis 170 C 0.139 10% 2.22E-27 
Ribosome_SSU_mitochondrial 215 C 0.139 10% 1.94E-17 
Siderophore_Aerobactin 526 C 0.139 10% 1.35E-43 
Fermentations:_Mixed_acid 24974 C 0.165 11% 8.89E-76 
CBSS-83332.1.peg.3803 290 C 0.136 10% 1.00E-03 
2-methylcitrate_to_2-
methylaconitate_metabolism_cluster 285 C 0.136 10% 5.07E-30 
Steroid_sulfates 300 C 0.134 10% 1.79E-09 
Inteins 6636 C 0.134 10% 1.07E-74 
Outer_membrane 2921 C 0.132 10% 1.86E-12 
Phage_shock_protein_(psp)_operon 919 C 0.130 9% 3.28E-40 
Resistance_to_Vancomycin 2425 C 0.128 9% 7.30E-26 
963;-Fimbriae 491 C 0.126 9% 1.96E-81 
O-
Methyl_Phosphoramidate_Capsule_Modific
ation_in_Campylobacter 147 C 0.125 9% 6.76E-28 
Chitin_and_N-
acetylglucosamine_utilization 33163 C 0.144 9% 6.52E-39 
Copper_homeostasis 52831 C 0.122 9% 3.20E-119 
CBSS-261594.1.peg.788 360 C 0.121 9% 1.49E-87 
Cell_envelope-associated_LytR-CpsA-
Psr_transcriptional_attenuators 1548 C 0.121 9% 1.35E-43 
CBSS-196620.1.peg.2477 210 C 0.121 9% 8.00E-15 
Salmochelin-mediated_Iron_Acquisition 134 C 0.121 9% 7.30E-26 
CBSS-83333.1.peg.946 207 C 0.119 9% 2.83E-94 
CBSS-235.1.peg.567 618 C 0.116 8% 1.75E-29 
CBSS-159087.4.peg.2189 457 C 0.115 8% 1.86E-12 
Conjugative_transposon,_Bacteroidales 542 C 0.114 8% 5.76E-07 
Pseudomonas_quinolone_signal_PQS 135 C 0.113 8% 1.40E-34 
p-Aminobenzoyl-Glutamate_Utilization 136 C 0.112 8% 4.21E-60 
Pterin_carbinolamine_dehydratase 13266 C 0.111 8% 6.34E-24 
Triacylglycerol_metabolism 5053 C 0.111 8% 7.88E-84 
Transport_of_Iron 1790 C 0.110 8% 6.52E-39 
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Table B1 (continued) 
Dimethylsulfoniopropionate_(DMSP)_mine
ralization 201 C 0.108 8% 5.30E-45 
CBSS-280355.3.peg.2835 258 C 0.105 8% 4.99E-10 
L-rhamnose_utilization 39375 C 0.105 8% 3.20E-119 
pH_adaptation_potassium_efflux_system 161 C 0.105 8% 4.00E-14 
Glutathione_analogs:_mycothiol 5338 C 0.105 8% 4.72E-17 
Glutathionylspermidine_and_Trypanothione 160 C 0.104 7% 5.17E-37 
Alpha-Amylase_locus_in_Streptocococcus 2964 C 0.103 7% 3.71E-90 
Streptococcus_pyogenes_recombinatorial_z
one 151 C 0.102 7% 9.20E-52 
Unspecified_monosaccharide_transport_clu
ster 1417 C 0.101 7% 9.50E-107 
Ectoine_biosynthesis_and_regulation 533 C 0.100 7% 1.16E-56 
D-galactonate_catabolism 2198 C 0.100 7% 7.88E-84 
RNA_polymerase_III_initiation_factors 128 C 0.099 7% 4.99E-10 
p-Hydroxybenzoate_degradation 4482 C 0.099 7% 1.65E-68 
Inner_membrane_protein_YhjD_and_conse
rved_cluster_involved_in_LPS_biosynthesis 131 C 0.098 7% 1.47E-39 
Siderophore_Desferrioxamine_E 161 C 0.098 7% 1.02E-45 
ABC_transporter_alkylphosphonate_(TC_3.
A.1.9.1) 6056 C 0.096 7% 9.50E-107 
CBSS-188.1.peg.6170 6866 C 0.094 7% 7.21E-41 
Na(+)_H(+)_antiporter 5567 C 0.093 7% 8.89E-76 
MLST 10256 C 0.092 7% 1.14E-16 
Na+_translocating_decarboxylases_and_rel
ated_biotin-dependent_enzymes 1504 C 0.092 7% 3.35E-11 
Nitrate_and_nitrite_ammonification 40663 C 0.091 6% 1.56E-71 
CBSS-376686.6.peg.291 232 C 0.089 6% 2.58E-20 
Biogenesis_of_cbb3-
type_cytochrome_c_oxidases 3175 C 0.088 6% 1.56E-71 
Sugar_utilization_in_Thermotogales 9550 C 0.084 6% 3.56E-35 
Choline_and_Betaine_Uptake_and_Betaine
_Biosynthesis 26768 C 0.084 6% 1.16E-56 
CBSS-342610.3.peg.1536 8422 C 0.082 6% 9.50E-107 
Lipopolysaccharide_assembly 8779 C 0.081 6% 1.92E-13 
CBSS-196164.1.peg.1690 9342 C 0.080 6% 7.17E-27 
MazEF_toxin-
antitoxing_(programmed_cell_death) 896 C 0.080 6% 8.79E-13 
L-Arabinose_utilization 20485 C 0.080 6% 3.73E-97 
LMPTP_YfkJ_cluster 5081 C 0.080 6% 4.05E-31 
Proteorhodopsin 250 C 0.077 5% 1.86E-12 
Isobutyryl-CoA_to_Propionyl-CoA_Module 635 C 0.077 5% 6.68E-11 
CBSS-290633.1.peg.1906 4458 C 0.076 5% 1.02E-45 
CBSS-228410.1.peg.134 7588 C 0.076 5% 9.50E-107 
CBSS-342610.3.peg.1794 1096 C 0.076 5% 4.05E-31 
ESAT-
6_proteins_secretion_system_in_Firmicutes 127 C 0.076 5% 4.82E-19 
Sodium_Hydrogen_Antiporter 4210 C 0.075 5% 1.94E-17 
CBSS-320372.3.peg.6046 3754 C 0.074 5% 1.49E-52 
Methanogenesis 1204 C 0.073 5% 7.21E-41 
Glycerol_and_Glycerol-3-
phosphate_Uptake_and_Utilization 47415 C 0.073 5% 1.43E-72 
Methanopterin_biosynthesis2 1425 C 0.072 5% 1.75E-29 
Mannose-sensitive_hemagglutinin pilus 2516 C 0.072 5% 7.01E-25 
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Table B1 (continued) 
BlaR1_Family_Regulatory_Sensor-

transducer_Disambiguation 42282 C 0.071 5% 1.02E-63 
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