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SUMMARY

Fluid mechanics of blood can be well approximated by a mixture model of a New-

tonian fluid and deformable particles representing the red blood cells. Experimental and

theoretical evidence suggests that the deformation and rheology of red blood cells is similar

to that of phospholipid vesicles. These vesicle have several features that also appear in red

blood cells: they are area preserving closed membranes that resist bending. Beyond red

blood cells, vesicles can be used to investigate the behavior of cell membranes, intracellular

organelles, and viral particles. Given the importance of vesicle flows, in this thesis we fo-

cus in efficient numerical methods for such problems: we present computationally scalable

algorithms for the simulation of dilute suspension of deformable vesicles in two and three

dimensions.

To design efficient methods for vesicle flows, we use the following three observations:

(i) we are interested in very low Reynolds number flows; (ii) we assume the interior and

exterior fluid to be Newtonian; (iii) we do not consider topological changes and the surface of

the vesicles in our scheme is smooth and homeomorphic to a sphere. Given this setup our best

option for a numerical scheme is to use a boundary integral formulation. This formulation

results in a set of nonlinear integro-differential equations for the vesicle dynamics. The

motion of the vesicles is determined by balancing the non-local hydrodynamic forces with

the elastic forces due to bending and tension.

We present new schemes for simulating the three-dimensional hydrodynamic interac-

tions of large number of vesicles with viscosity contrast. The algorithms incorporate a

stable time-stepping scheme, high-order spatiotemporal discretizations, spectral precondi-

tioners, and a reparametrization scheme capable of resolving extreme mesh distortions in

dynamic simulations. The associated linear systems are solved in optimal time using spec-

tral preconditioners. The highlights of our numerical scheme are that (i) the physics of

xi



vesicles is faithfully represented by using nonlinear solid mechanics to capture the deforma-

tions of each cell, (ii) the long-range, N-body, hydrodynamic interactions between vesicles

are accurately resolved using the fast multipole method (FMM), and (iii) our time stepping

scheme is unconditionally stable for the flow of single and multiple vesicles with viscosity

contrast and its computational cost-per-simulation-unit-time is comparable to or less than

that of an explicit scheme. We report scaling of our algorithms to simulations with millions

of vesicles on thousands of computational cores.
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CHAPTER I

INTRODUCTION

We consider fast and scalable solvers for the dynamics of particulate flows with deformable

particles suspended in viscous incompressible fluids. Such flows are commonly found in bio-

logical systems, the most important example of which is blood flow in capillaries. The direct

numerical simulation of blood flow in arterioles, venules, and capillaries would significantly

broaden our understanding of the microcirculation of blood. This understanding is in turn

crucial in thrombosis risk assessment, anti-coagulation therapy, and the design of microflu-

idic devices. For instance, high-fidelity numerical models can be employed to (i) estimate

the rheological properties of the blood, (ii) evaluate the local fluid stresses under different

flow regimes, (iii) analyze the formation, growth, and evolution of blood clots under differ-

ent scenarios, and (iv) facilitate the optimal design of the microfluidic chips. Optimizing

microfluidic device is an expensive and time-consuming process involving exhaustive experi-

mentation. We envision computational platforms for chip design and optimization that will

mitigate these problems. However, the simulation of complex fluids in microfluidic devices

are computationally challenging tasks as they involve large-scale particulate suspensions,

arbitrary confined geometries and multi-scale physics. Despite the significance and broad

application of high-fidelity numerical tools of microcirculation, until recently, prohibitive

computational cost has hampered their development [98].

To address the numerical challenges and to provide scalable and efficient computational

tools, we present a fast, petaflop-scalable infrastructure for Stokesian particulate flows in

two and three dimensions. Our infrastructure improves the state-of-the-art by several orders

of magnitude in term of the number of cells: the previous largest simulation, at the same

physical fidelity as ours, resolved the flow of O(10, 000) Red Blood Cells (RBCs). In our

scalability studies, we tested our code on a few time steps of the blood flow involving

262 million deformable RBCs, which corresponds to a dynamical system with 90 billion

1



unknowns in space.

Next, we give a very brief background on the subject of numerical hemodynamics, and

then, we outline our model, our contributions, and their limitations.

1.1 Background

The subject of hemodynamics consists of distinct divisions depending on the ultimate phys-

iological phenomenon under consideration. The two major divisions are (i) the flow of blood

in large arteries and veins, where the particulate nature of the suspension is a secondary

consideration; and (ii) the microcirculation, where the diameter of blood vessels is com-

parable to that of the blood cells. In this regime, the behavior of individual blood cells,

the cell-cell interactions, and cell-wall interactions all play significant roles in defining the

characteristic of the flow. Clinical needs in thrombosis risk assessment, anti-coagulation

therapy, and stroke research would significantly benefit from an improved understanding of

the microcirculation of blood.

In this context, theoretical modeling is used to quantitatively reconcile experimental

observations and hypothesized underlying mechanisms [78]. Also, modeling is a valuable tool

for rationalizing fragmented understandings under a common quantitative framework. This

is especially valuable for large systems where there are many interacting components. An

important outcome of theoretical modeling of blood flow is the estimation of unmeasurable

parameters, for instance, local fluid stresses. Theoretical models also facilitate the study of

pathological cases, impossible to produce or isolate in vivo or in vitro [78].

Nonetheless, the excessive analytical demand and prohibitive computational cost have

hampered the theoretical study of microcirculation. Consequently, most of the analyti-

cal and computational studies were limited to systems with a few blood cells and have

relied on simplifying assumptions such as non-deformable and nearly spherical of blood

cells, axisymmetric configurations, and periodic flows. Such assumptions however are in-

compatible with a wide spectrum of phenomena observed in real flows and thus, limit the

capabilities of the model to capture the characteristic cell behaviors such as flipping and

tank-treading [16, 69]. During the past decade, elimination of these assumptions from the

2



models was a major driving force in the research community and resulted in several advances

[16, 35, 66, 103, 104, 106, 152, 155, 156].

Theoretical models of blood flow in capillaries typically require three major components:

(i) a mathematical description of the cell deformation; (ii) representation of the fluid flow

around and within the cell; and (iii) the effect of the vessel wall. The composition of the

blood is a deciding factor in the choice of mathematical model and the governing equations

for the fluid flow. The blood of a healthy human is mainly composed of erythrocytes,

leukocytes, and thrombocytes that are suspended in the plasma. By volume, the RBCs and

plasma constitute about 45 and 54.3 percent of the blood, respectively. Plasma, in turn,

consists of 92 percent water and 8 percent organic molecules and proteins [57]. Plasma can

be modeled as a Newtonian fluid, but due to the existence of blood cells, the blood exhibits

viscoelastic properties. Mature RBCs lack a cell nucleus. Their resting shape is a biconcave

disk of about 8µm in diameter and 2µm in thickness. The cell wall consists of a thin (7 nm)

lipid bilayer and the interior of RBCs is a concentrated solution of oxygen-binding protein

hemoglobin which behaves as an incompressible Newtonian fluid whose viscosity is higher

than that of plasma [69]. In Table 1 the composition of the cellular phase of human blood

is given.

Table 1: Composition of cellular phase of human blood. (reproduced from [57]).

Cell type Shape
Diameter

(µm)
Number
per ml

Mean volume
fraction of

blood

Number
fraction

Erythrocyte (red cell) Biconcave disc 8 to 8.5 5×109 0.45 99.1

Thrombocyte (platelet) Thin biconcave disc 2 to 4 4×108 0.003 0.7

Leucocyte (white cell) Round or oval 10 to 22 8×106 < 0.001 < 0.2

Based on the data given in Table 1 and the previous paragraph, for the fluid-mechanical

analysis of blood flow, the important characteristics of the microcirculation can be summa-

rized as following:

• The particulate nature of the blood is important in the capillaries where the diameter

of the capillary is in the same order of the diameter of RBCs, which means in capillaries
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Figure 1: The shape of different blood cells
at rest. Scanning electron micrograph of blood cells.
From left to right: human erythrocyte, activated throm-
bocyte, and lymphocyte [source Wikimedia Commons].

up to about 80µm in diameter.

• In small capillaries, the Reynolds number, Re, is of the order of 10−3 so that inertial

effects may be neglected.

• The suspending plasma is a Newtonian fluid.

• Due to their fluid-filled bag-like structure, the RBCs are readily deformed in contrast

to the relatively rigid vessel walls, platelets, and white blood cells.

• Experimental studies indicate that the approximate ratios between bending, in-plane

shear and expansion moduli of the RBC membrane are 1:50:106 [78]. Therefore, for

all practical purposes, the membrane of the RBCs is considered non-extensible.

• Since the RBCs lack a nucleus, the dynamics of the RBC are closely captured by a

those of a deformable lipid bilayer model [16, 69, 73].

Note that the deformability of RBCs is of major physiological significance because it

enables the cell to pass through capillaries with diameters as small as 3µm. This contributes

to reducing the bulk viscosity of blood in the larger vessels, and enhances oxygen transport

to the tissues by allowing mixing of the hemoglobin.

These conditions lead to a simplified (but still realistic) model in which the RBCs are

represented as deformable elastic capsules with bending rigidity that are subject to constant

local area and constant enclosing volume constraints. These elastic capsules are also known

as vesicles. Moreover, in this model both the plasma and hemoglobin are Newtonian fluids
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Vesicles as cellular mimetics

• Vesicles are closed lipid
membranes suspended in a
viscous (typically aqueous)
solution

• They are relatively small,
intracellular,
membrane-enclosed sacs that
store or transport substances.

• They are a simple model for
blood cells

Membrane properties

1 resists bending

2 locally inextensible

Courtesy: Seifert, 2004

Cell Membrane

Figure 2: Giant vesicles. Sketch of a lipid bilayer membrane and phase contrast microscopy
picture of a giant vesicle, reproduced from [121].

whose motion is governed by the Stokes equations.

Particulate flows have been studied mostly using physical experiments. But, until re-

cently, analytical and computational analysis of the flow of a large ensemble of deformable

particles were respectively hampered by the prohibitive complexity and computational cost

of the model. Toward this end, we present a mathematical framework and develop a com-

putational infrastructure to address the following objectives:

(i) The RBC mechanical model should capture tension and bending forces and enable

simulations with highly deformable particles.

(ii) The discretization scheme should be accurate and stable and if possible, circumvent

stiffness.

(iii) The overall method should have good parallel scalability to allow direct numerical

simulations of several microliters of blood.

The first two requirements are easy to be formulated mathematically; but their numerical

solution poses significant challenges in terms of accuracy and stability. In the next section,

we present a model for direct simulation of blood flow.

1.2 Numerical Model

We model the blood as a particulate suspension of elastic membranes that resist bending and

tension and are filled with a Newtonian fluid. This type of particles are generally known as

“vesicles”, a schematic of which is shown in Figure 2. In the rest of this document we will use

the terms vesicle and RBC interchangeably referring to this elastic capsule representation.
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The suspending fluid is also assumed to be Newtonian. Results from experiments (with

vesicles) and computations that respect the above mentioned assumptions reproduce several

phenomena observed in red blood cell flows [16, 69].

The vesicle evolution dynamics is characterized by a competition between membrane

elastic energy, surface inextensibility, vanishing in-plane shear resistance, and non-local

hydrodynamic interactions. Simulation of vesicles is a challenging nonlinear free boundary

value problem, not amenable to analytical solutions in all but a few simple cases; numerical

simulations and experiments are the only options for the quantitative characterization of

vesicle flows.

The surface of the vesicles in our scheme is very smooth and homeomorphic to a sphere

and therefore our best option for a numerical scheme is to use a boundary integral formu-

lation. Boundary integral representations are well suited for the simulation of the flow of

deformable particles since they only require the discretization of the boundary of the par-

ticles (and the boundary of the domain in case of bounded flows). This formulation tracks

the trajectories of Lagrangian points on the membrane of each vesicle. In this formulation,

the evolution equation of the interface of the kth vesicle , γk, can be formally written as

∂x

∂t
= vbackground(x) + vself(x) + vinteraction(x), for all x ∈ γk (k = 1, . . . , N), (1)

where vbackground represents the imposed flow, analytically given in the case of unbounded

flows and imposed by the boundaries in case of confined flows. vself represents the effect

of the current shape of the vesicle on its evolution (for instance, the relaxation of a single

vesicle in quiescent fluid has only this term) and the last term vinteraction represents the

interaction of vesicles.

We have developed novel algorithms for the two dimensional flow of in bounded and

unbounded domains and the three dimensional flow of vesicles in unbounded domains. The

evaluation of the self-interaction term, vself , requires accurate tracking of the vesicles’ in-

terface and involves high-order derivatives of the surface of the vesicles. The high order

derivative is a source of ill-conditioning in the resulting linear system of equations. The
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self-interaction term also encompasses the singular Stokes integral, which is computation-

ally intensive. For N vesicles, the naive evaluation of the last term, vinteraction, has the

computational complexity of O(N2) that is intractable when N is large. This evaluation

can be accelerated by the fast multipole method (FMM) to a computational complexity of

O(N).

1.3 Contributions

The author had several contributions to the field of numerical simulation of deformable

particles in the form of published articles and computer software (Figure 3), which are

summarized in this section.

Dynamic simulation of locally inextensible vesicles suspended in an arbitrary

two-dimensional domain, a boundary integral method [110]. We considered nu-

merical algorithms for the simulation of hydrodynamics of two-dimensional vesicles sus-

pended in a viscous Stokesian fluid. The main contributions of this paper are (i) the

extension of the techniques developed in [74, 99, 135] to vesicle flows in confined geometry

and vesicles with viscosity contrast, (ii) the numerical investigation of the stability and ac-

curacy of the time-stepping schemes, and (iii) a preliminary validation of our methodology

by comparing our numerical results to results in the literature. The presence of viscosity

contrast between the vesicle’s interior fluid and the solvent requires a different integral equa-

tion formulation that results in non-trivial modifications to the previous numerical scheme

[135].

Our scheme is based on Lagrangian tracking of marker particles on the vesicle, semi-

implicit time discretization and spectral representation of the interface, together with high-

order accurate quadrature rules. High-order accuracy in space is ensured by using a Fourier

basis discretization for all functions and computing derivatives in Fourier domain, as well

as high-order, Gauss-trapezoidal quadrature rules [2] for discretization of single-layer po-

tentials. In time, we use a semi-implicit marching scheme [5]. This discretization yields a

linear system of equations for each time step, which is solved using GMRES. Nearly-singular

integrals, which arise when vesicles come close the fixed boundary, are resolved using the
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Figure 3: Summary of the computational infrastructure for direct numerical
simulation of blood flow. (a) The close interaction of two vesicles with viscosity contrast
in a two dimensional shear flow. The hydrodynamic interaction of vesicles is well resolved
by the boundary integral formulation and no extra collision detection algorithm is necessary
(Chapter 2). (b) The flow of a vesicle through a constricted tube. The velocity on the fixed
boundaries (thick line) is imposed. The vesicles undergo high deformations and interacts closely
with the wall (Chapter 2). (c) The spontaneous organization of vesicles in the Couette apparatus.
The simulation was started from a random distribution of vesicles. From a random distribution,
it takes about 150 non-dimensional time units and about 150,000 semi-implicit steps to reach this
steady-state configuration. This kind of simulation is facilitated mainly due to high accuracy in
space, semi-implicit time stepping scheme, the low cost of implicit solves per vesicle, and the low
cost of the evaluation of the wall effects (Chapter 3). The streamlines show the perturbation field
due to the presence of vesicles (compared to the unperturbed velocity field in the Couette machine
in the absence of vesicles). (d) The three dimensional flow of a single vesicle in shear flow. The
streamlines show the flow field around the vesicle. For the parameters of this problem, after a
transition phase, the vesicle undergoes a steady-state tank-treading motion (Chapter 4). (e) The
interaction of two vesicles with viscosity contrast in the shear flow. The viscosity contrast of
both vesicles is 10 and the reduced volume is 0.85. During this simulation we capture close
interaction, tanktreading, and tumbling of vesicles (Chapter 5).
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method proposed in [145].

One significant challenge in simulating vesicle dynamics is the numerical stiffness of

the governing integro-differential equations. To gain insight on the spectral properties of

operators we use a “frozen coefficient” analysis on the unit circle. This analysis allows

us to construct a preconditioner for the GMRES solver. Putting everything together, we

were able to achieve high accuracy in space and time, while taking large time steps without

incurring high computational costs.

Vesicle migration and spatial organization driven by flow line curvature [53].

Using the computational infrastructure described in the previous paragraph, we conducted

numerical experiments to investigate the cross-streamline migration of deformable enti-

ties. Cross-streamline migration appears in many applications, such as industrial polymer

processing [141], DNA sorting [123], drop dynamics [32], and biofluids. We carried out

simulations in a Taylor-Couette cell by taking vesicles as a model system for the suspended

entities.

Through numerical experiments, we have discovered that vesicles suspended in a flow

with curved flow lines migrate towards regions of high flow-line curvature, which are regions

of high shear rate. However, typically, deformable particles have the tendency to migrate

towards regions of low shear rates [40, 59, 65, 119, 133]. We proposed an explanation

for this different behavior and provided quantitative evidence for the case of vesicle flows.

Our finding quantitatively demonstrates a direct coupling between a microscopic quantity

(migration) and a macroscopic one (normal stress difference).

Furthermore, simulations with multiple vesicles revealed a self-organization, which cor-

responds to segregation, in a rim closer to the inner cylinder, resulting from a subtle inter-

action among vesicles. Such segregation effects could have significant impact on rheology

of vesicle flows.

A fast algorithm for simulating vesicle flows in three dimensions [136]. We

developed a new fast algorithm for the flow of three dimensional deformable particles (with

no viscosity contrast) in unbounded geometries. We extended the ideas presented in [135]
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to the general case of vesicles in three dimensions. A summary of our contributions is

as follows: (i) we developed a high-order spatial discretization for inextensible vesicles

based on spherical harmonics, combining and extending a number of previously proposed

techniques, including extending the quadrature scheme of [58] to the Stokes kernel; (ii) we

proposed a particular linearization for a semi-implicit time-stepping scheme along with

a preconditioning scheme; (iii) we analyzed the stiffness of the evolution equations and

developed a preconditioner for the linear system of equations in the semi-implicit time

scheme; and (iv) we proposed a reparametrization scheme for stabilization of time-stepping,

and analyzed its accuracy and stability.

Our method is based on Lagrangian tracking of spectral collocation points placed on the

membrane of the vesicle combined with a surface reparametrization scheme. We achieve

spectral accuracy in space by using spherical harmonics as basis. For weakly-singular in-

tegrals, we use the scheme proposed in [58], which enables high-accuracy simulations with

a small (compared to low-order schemes) number of points per vesicle. For the position

update in time, we use two variants of a semi-implicit marching scheme first derived for

advection-diffusion equations [5] and then applied on integral-equation based fluid-structure

interaction problems in [129].

The time-marching scheme requires the solution of a linear system of equations at each

time step, which we perform using a Krylov iterative method (GMRES [114]). The problem

of poor conditioning is addressed by a preconditioner based on the analytically obtained

spectrum of the operators for the special case of a unit sphere. Vesicle-vesicle interactions

are carried out using the kernel independent fast multipole method [144].

In all, we were able to achieve high accuracy while using a small number of unknowns

per vesicle for the spatial discretization and taking large time steps with a relatively low

computational cost per time step.

Three-dimensional boundary integral method for the flow of vesicles with vis-

cosity contrast [111]. We extend the formulation and numerical schemes described in

the previous paragraph to the case of three-dimensional vesicle flows with viscosity contrast,
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where the viscosity of the fluid enclosed inside each vesicle can differ from the viscosity of

the suspending fluid. This generalization poses two new types of difficulty: (i) change in

the boundary integral formulation of the solution, in which a double-layer Stokes integral

is introduced; and (ii) change of the fluid dynamics inherent to vesicle flows with viscosity

contrast.We propose algorithms to deal with these challenges. The main contributions of

this article are: (i) treatment of vesicles with viscosity contrast; (ii) proposal and analysis

of an implicit time stepping method, which does not have stability constraints for flows of

single and multiple vesicles with different viscosity contrast; and (iii) the characterization

and treatment of aliasing in differentiation.

As in [136], we present vesicles in spherical harmonics basis and singular integrals are

calculated by the scheme proposed in [58]. We show that our proposed semi-implicit method

does not have time-step stability constraints for flows with single and multiple vesicles with

different viscosity contrast and the computational cost-per-simulation-unit-time is compa-

rable to or less than that of an explicit scheme.

Petascale direct numerical simulation of blood flow on 200K cores and het-

erogeneous architectures [109]. We developed a fast, petaflop-scalable algorithm for

Stokesian particulate flows. We focused on the parallelization and performance analysis

for the computation of vself and vinteraction introduced in Equation (1). vself requires nine

different computational kernels. vinteraction uses the FMM, which in turn has five major

computational phases (tree construction, three tree-traversals, and the direct interactions).

Our key contributions are as follows: (i) We developed a hybrid-parallel implementation of

the computational kernels that are used for the computation of vself and vinteraction. The

kernels are multithreaded and work-partitioned between CPU and GPU, which execute con-

currently, thereby delivering excellent per-node performance. (ii) The most intensive kernels

in our computation have been designed for locality, accuracy, and computational efficiency,

capitalizing in particular on highly optimized BLAS3 (GEMM) operations. (iii) We further

improved the performance of the SC’09 FMM algorithm [77]. These improvements include

explicit SSE vectorization and multithreading via OpenMP, as described in prior work [33].
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In this paper, we added simultaneous asynchronous GPU acceleration. (iv) We present

single-node analysis for computations of vself and vinteraction on AMD, Intel, and NVIDIA

platforms; and (v) we present weak and strong scaling results on the Jaguar PF system at

Oak Ridge National Laboratory (ORNL).

We achieve 780 TFlop/s of sustained performance on the 196,608 cores of the AMD

Istanbul-based Jaguar PF system (4 GFlop/s per core), with 160× speedup on strong scaling

when moving from 48 to 24,576 cores (512×); and 75% efficiency for the weak scaling. On

other platforms, we demonstrate up to 18 GFlop/s per core of sustained performance on the

Intel Nehalem-EP; and up to 350 GFlop/s per NVIDIA Fermi C2050 card (both in single

precision).

In our largest simulation, we solved a problem involving 8,000 RBCs per MPI process,

on 32,768 MPI processes for a total of 196,608 cores. We discretized using 84 points per

RBC. This set of parameters results in a total of 262,144,000 RBCs (50 drops of blood) and

90 billion unknowns per time step.

Software artifacts. The algorithms presented in [110] are implemented in Matlab. The

software is utilized by different research groups for the analysis of the flow of vesicles in two

dimensions [53, 66], and resulted in significant scientific discoveries [66]. The algorithms for

the flow of vesicles in three dimension [111, 136] are also available as a Matlab library. As

we mentioned above, the algorithms in [136], were implemented and scaled to thousands of

cores in a C++ software library MoBo [109]. We designed MoBo to support parallelism at

all levels, including inter-node distributed memory parallelism, intra-node shared memory

parallelism, data parallelism (vectorization), and fine-grained multithreading for GPUs.

We have implemented and optimized the majority of the computation kernels on both

Intel/AMD x86 and NVidia’s Tesla/Fermi platforms for single and double floating point

precision.

1.4 Outline of The Thesis

Each of the aforementioned publications is individually presented in a chapter of this thesis.

In Chapter 2 we present the two dimensional flow of vesicles with viscosity contrast in
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bounded domains. In Chapter 3 we investigate the cross-streamline migration of deformable

particles using the tools developed in Chapter 2. In Chapter 4 we outline algorithms for

the simulation of vesicles in three dimensions. Chapter 5 extends the algorithms given

in Chapter 2 and Chapter 4 to the flow of vesicles with viscosity contrast in unbounded

three dimensional domains. In Chapter 6 we report the implementation and scaling of the

algorithms given in Chapter 4 to thousands of cores.

Nomenclature. For the sake of clarity, we refrain from defining universal notational

conventions for the whole document. Instead, depending on the context and objectives of

each chapter, we define the symbols and notations appropriately at the beginning of each

chapter.
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CHAPTER II

DYNAMIC SIMULATION OF LOCALLY INEXTENSIBLE VESICLES

SUSPENDED IN AN ARBITRARY TWO-DIMENSIONAL DOMAIN,

A BOUNDARY INTEGRAL METHOD

In this chapter we consider numerical algorithms for the simulation of hydrodynamics of two-

dimensional vesicles suspended in a viscous Stokesian fluid. Our method is an extension of

the work of Veerapaneni et al. [135], in which a semi-implicit time-marching scheme based

on a boundary integral formulation of the Stokes problem for vesicles in an unbounded

medium was proposed. In this chapter, we consider two important generalizations:

(i) confined flows within arbitrary-shaped stationary/moving geometries; and

(ii) flows in which the interior (to the vesicle) and exterior fluids have “viscosity contrast”.

These two problems require solving additional integral equations and cause nontrivial mod-

ifications to the previous numerical scheme. Our method does not have severe time-step

stability constraints and its computational cost-per-time-step is comparable to that of an

explicit scheme. The discretization is pseudo-spectral in space, and multistep BDF in time.

We conduct numerical experiments to investigate the stability, accuracy and the compu-

tational cost of the algorithm. Overall, our method achieves several orders of magnitude

speed-up compared to standard explicit schemes.

As a preliminary validation of our scheme, we study the dependence of the inclination

angle of a single vesicle in shear flow on the viscosity contrast and the reduced area of the

vesicle, the lateral migration of vesicles in shear flow, the dispersion of two vesicles, and the

effective viscosity of a dilute suspension of vesicles.

2.1 Introduction

Vesicles are closed lipid membranes suspended in a viscous medium. The mechanical defor-

mation of vesicles and their interaction with viscous fluids are thought to play an important
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role in many biological phenomena [73, 121] and are used experimentally to understand

properties of biomembranes [115]. In addition, vesicle mechanics have been used as models

for the motion of red and white blood cells [92, 101], whose quantitative description will

help in better understanding of blood rheology.

In this chapter, we focus on numerical schemes for continuum models of vesicle dynamics

in two dimensions. This is a challenging problem because the motion and shape of the vesi-

cles must be determined dynamically from a balance of interfacial forces with fluid stresses.

The shape dynamics of fluid vesicles is governed by the coupling of the flow within the

membrane of the vesicle with the hydrodynamics of the surrounding bulk fluid. Following

our previous publication on vesicle flows [135], we present a semi-implicit numerical scheme

for the simulation of the motion of arbitrarily shaped vesicles that can have a viscosity

contrast with the background fluid. We also extend our formulation to handle interior flows

and interaction of vesicles with other moving particles with prescribed motion.

Our method is based on an integral equation formulation. In particulate flow problems

involving vesicles, the elastic and incompressibility properties of their membranes must

be resolved and the numerical schemes must be modified in order to accommodate these

properties and to solve the resulting set of equations. Details of the boundary integral

formulation for elastic interfaces and incompressible vesicles can be found in the works of

Pozrikidis [103, 105].

The overwhelming majority of works on particulate flows uses explicit schemes that

pose severe restrictions on the time step. In contrast, semi-implicit methods result in two

to three orders of magnitude larger step size that is almost independent of the spacial grid

size [135]. In contrast to stencil-based methods (e.g., finite element methods), integral

equation formulations avoid discretization of the overall domain and instead discretize only

the vesicle boundary and the boundary of the enclosing domain. This is the main reason that

integral equations have been used extensively for vesicle, and more generally, particulate

and interfacial flow simulations [105].

The rest of this chapter is organized as follows: In the remainder of this section we

outline our contributions as well as the limitations of our work and then review the related
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work to the study of particulate flows with deformable particles in two dimensions. We fin-

ish this section with a summary the nomenclature used in this chapter. In Section 2.2, we

state the problem and its formulation. In Section 2.3, we outline the numerical scheme we

use to solve the derived equations. In Section 2.4, we report results from numerical experi-

ments we performed to demonstrate the stability of the proposed time-marching scheme in

different flow regimes and geometry configurations. In particular, we investigate the effect

of fixed boundaries on the time-stepping numerical stability of our scheme. We conclude

in Section 2.4.4 with a discussion of the rheology of dilute suspensions of vesicle flows with

viscosity contrast.

2.1.1 Contributions

The boundary integral formulation coupled to the shape dynamics results in an integro-

differential equation that is constrained by the local inextensibility. Extending our previ-

ous work [135], we use semi-implicit time-stepping, fast summation schemes, and spectral

discretization in space. The combination of these approaches for flows with interface singu-

larities is not unique. However, we are unaware of any previous analysis and application of

implicit time-stepping schemes combined with fast solvers to vesicles that have a viscosity

contrast with the surrounding fluid and are interacting with confined boundaries. These

improvements enable the simulation a large number of interacting vesicles, as described in

Section 2.3 and Section 2.4, and depicted in Figure 4. The main contributions of the work

presented in this chapter are:

• The extension of the techniques developed in [74, 99, 135] to vesicle flows in confined

geometry and vesicles with viscosity contrast.

• The numerical investigation of the stability and accuracy of the time-stepping schemes.

• A preliminary validation of our methodology by comparing our numerical results to

results in the literature.

In particular, for validation, we investigate (i) the dependence of vesicles’ inclination

angle in shear flow on viscosity contrast and reduced area; (ii) the lateral migration of
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vesicles in shear flow due to collision; and (iii) the rheology of a dilute suspension of vesicles.

(a) t = 0 (b) t = 3

(c) t = 7 (d) t = 10

Figure 4: Numerical simulation of vesicles in the Couette apparatus. In this figure, we
demonstrate the capabilities of our method; in particular, its ability to resolve complex interactions
between multiple vesicles. We simulated the motion of 192 vesicles in a 2D Couette apparatus. The
outer boundary is fixed while the inner boundary rotates with a constant angular velocity. In this
simulation, we used 64 discretization points per vesicle, 640 points on boundaries, and we took a
total of 1000 time steps. The computations were performed using MATLAB. The wall-clock time per
time-step is 80s on a Xeon processor, vesicle-vesicle and vesicle-boundary interactions are evaluated
on a NVIDIA Tesla Graphics Processing Unit with the total wall-clock time being three seconds
per time-step. Four snapshots of the simulation are shown. We zoom in on the region marked
by the broken-line square to show the details of the interaction between vesicles. Here, t ∈ [0, 10]
is the nondimensional time. In this time span, the inner cylinder makes approximately one full
rotation. The initial configuration was obtained by random distribution of vesicles. Due to bending,
the vesicle shapes are quickly smoothed to lower energy configurations. We resolve high curvature
regions (subfigures (c) and (d)), conserve vesicle areas and lengths (max |A−A0|/A0 = 2.18e−2 and
max |L − L0|/L0 = 4.69e−2), and compute the hydrodynamic interactions with sufficient accuracy
to avoid collisions without employing a collision detection algorithm. Details on the accuracy and
complexity of our method are presented in later sections.
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2.1.2 Limitations

The most significant limitation of our method is that the number of Fourier modes used to

represent the vesicle membrane and the time step are not chosen adaptively. The former

is a minor limitation (in 2D) but the latter is quite significant. Our spectral discretization

(which we combine with a special high-order scheme for singular integrals) in space results in

discretization errors that are dominated by the time-stepping scheme. In our experiments,

64 to 128 Fourier modes in space are typically sufficient to fully resolve the shapes of the

vesicles in the flow regimes we have examined. For more concentrated suspensions, adaptive

schemes combined with a posteriori estimates may be necessary.

We solve the discretized system of equations using the Generalized Minimum Residual

Method (GMRES) [114] with an appropriate set of preconditioners, which are based on the

spectral properties of the operators. Nonetheless, for very small viscosity contrasts ν � 1

(See Table 2 for its definition), the spectral properties of the operators change and a generic

preconditioner, as we use here, fails to fully compensate for the poor conditioning of the

operators.

2.1.3 Related work

Vesicles are used, theoretically and experimentally, to investigate the properties of biological

membranes [115], blood cells [92, 101], and drug-carrying capsules [125].

Integral equation methods have been used extensively for the simulation of Stokesian

particulate flows, mostly for droplets (with or without viscosity contrast) and bubbles.

These methods were introduced by Youngren and Acrivos [146] for a flow past a rigid

particle of arbitrary shape. An excellent review of numerical methods for Stokesian flows is

done by Pozrikidis [105]. The present work is based on a formulation derived by Rallison

and Acrivos [112] for two fluids separated by an interface with surface forces and the work

of Power and Miranda [99, 100] , who introduced an integral equation formulation of the

Stokes problem in two and three dimensional multiply-connected domains with Dirichlet

boundary conditions.

In spite of the large body of literature devoted to investigating the rheological properties
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of red blood cell and vesicles suspensions, to the best our knowledge, the work on numerical

methods for vesicle flows with viscosity contrast and confined boundaries is rather limited.

Freund [50] considers vesicles with no viscosity contrast in a bounded domain. In his work,

the boundaries are treated as panels fixed to their location with virtual springs. Zhou and

Pozrikidis [149] consider the flow of a periodic suspension of 2D viscous drops between two

parallel plane walls, for which an explicit expression of Green’s function is available.

Let us also mention works related to the test-case flows we have used to validate our

numerical method. Kraus et al. [73] studied the dynamics of a vesicle and its steady-state

inclination angle in the absence of viscosity contrast. Beaucourt et al. [16] tackled the same

problem in the presence of viscosity contrast. Kantsler and Steinberg [64] reported results

from experimental study of the inclination angle of vesicles and their transition from tank-

treading to tumbling. Misbah [88] looked at the theoretical aspects of a vesicle’s inclination

angle problem. Loewenberg [81] and Loewenberg and Hinch [83] studied the dispersion of

drops in shear flow and Eckstein et al. [47] investigated particle-particle interaction and their

lateral migration in an experimental setting. Rheology of (dilute) suspension of vesicles was

investigated by Danker et al. [38], Loewenberg [81], Ramanujan and Pozrikidis [113], and

Vitkova et al. [137]. Danker et al. [38] investigated the rheological properties of a dilute

suspension of vesicles in shear flow analytically.

2.1.4 Synopsis of Our Method

We propose a computational scheme for the evolution of vesicles in a confined domain. We

also extend our method [135] to the case where there is a viscosity contrast between the

suspending fluid and the internal fluid of the vesicle. Our scheme is based on Lagrangian

tracking of marker particles on the vesicle, semi-implicit time discretization and spectral

representation of the interface, together with high-order accurate quadrature rules. These

choices result in a spectrally accurate method in space and second-order accurate method

in time.

High-order accuracy in space is ensured by using a Fourier basis discretization for
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all functions and computing derivatives in Fourier domain, as well as high-order, Gauss-

trapezoidal quadrature rules [2] for discretization of single-layer potentials. In time, we use

a semi-implicit marching scheme [5]. This discretization yields a linear system of equations

for each time step, which is solved using GMRES. One significant challenge in simulating

vesicle dynamics is the numerical stiffness of the governing integro-differential equations. To

gain insight on the spectral properties of operators we use a “frozen coefficient” analysis on

the unit circle. This analysis allows us to construct a preconditioner for the GMRES solver.

Putting everything together, we were able to achieve high accuracy in space and time, while

taking large time steps without incurring high computational costs. Our formulation for

confined boundaries is based on the method in [99]. Finally, we resolve nearly-singular inte-

grals, which arise when vesicles come close the fixed boundary, using the method proposed

in [145].

2.1.5 Nomenclature

Throughout this chapter, lower case letters will refer to scalars, and lowercase bold letters

will refer to vectors. We use ⊗ for the tensor product of two vectors and | · | to denote the

measure of its argument (e.g., the Euclidean norm of a vector or the area of a domain). We

denote the jump across interfaces by JuK := u+ − u−, where u±(x) := limh↓0 u(x ± hn), n

denoting the outward normal to the boundary. We denote the convolution of an integral

kernel K with density η by K[y,η](x) :=
∫

ΓK(x,y)η(y) ds(y) where the product inside

the integral should be interpreted as a tensor operation when K is a tensor and as a dot

product when K is a vector. In Table 2, we list symbols and operators frequently used in

this chapter.

2.2 Formulation

The general formulation for the flow of vesicles in an unbounded domain was presented in

the introduction. Here we extend that formulation to the case of bounded flows. Consider

a suspension of vesicles in an ambient Newtonian fluid. Let Ω be the domain of interest, an

open bounded subset of R2 that can be multiply connected and whose boundary consists

of M + 1 infinitely differentiable curves Γ0, . . . ,ΓM , among which, Γ0 denotes the enclosing
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Table 2: Index of frequently used symbols and operators in Chapter 2. The
equation number or the section of definition is referred to inside the parenthesis.

Symbol/Operator Definition

Γ Boundary of domain Ω

∆ Reduced Area (Section 2.2.4)

Ω Domain of interest

γp Boundary of pth vesicle

ζ Traction jump across interface (Section 2.2.3)

η Double-layer density over Γ (Section 2.2.2)

µ Fluid viscosity

νp Viscosity contrast µp/µ0

σ Tension, or stress tensor

χ Shear rate

ωp Domain enclosed by γp
B(y)x Bending operator (Equation (16))

B[η,Ξ,Λ](x) Hydrodynamic operator due to fixed boundaries with density η
Rotlet strength Ξ, and Stokeslet strength Λ, evaluated at point
x (Section 2.2.2)

E [y,u, ζ](x) Hydrodynamic operator due to current configuration of vesicle
y, velocity field u, and traction jump ζ evaluated at point x
(Equation (4))

P(x) Surface divergence operator (Equation (2c))

T (y,x)σ Tension operator (Equation (16))

T Simulation time horizon

p Pressure

u Velocity

boundary of the domain. The ambient fluid has viscosity µ0. The vesicles are evolving

under the influence of an imposed velocity field. Let γp (p = 1, . . . , N) denote the boundary

of the pth vesicle, ωp denote the domain enclosed by γp, and µp denote the viscosity of the

fluid inside that vesicle (see Figure 5). Let Γ :=
⋃
k Γk and γ :=

⋃
p γp. We use x or y to

denote both a typical point in the domain Ω and a point on the interface γ. When x ∈ γ,

we define ẋ and xs as the interfacial velocity and the derivative of the x with respect to arc

length.

When the Reynolds number is based on the vesicle size, the effect of inertial forces is

insignificant and the fluid flow is governed by the Stokes equation,

µ∆u−∇p = 0, div u = 0, in Ω\γ, (2a)
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Figure 5: Schematic of the two dimensional domain. A typical domain
of interest Ω (shaded area) with boundary Γi (i = 0, . . . ,M). The boundary
of each vesicle is denoted by γj (j = 1, . . . , N). The enclosed domain by γj is
denoted by ωj.

where u(x, t) is the velocity field, p(x, t) is the pressure field, and µ is the viscosity of fluid.

We supplement Equation (2a) with the velocity no-slip condition on γp, and with velocity

Dirichlet boundary condition on Γ as

u(x, t) = ẋ(t) when x ∈ γ, and u(x, t) = U(x, t) when x ∈ Γ, (2b)

where ẋ, as we mentioned earlier, is the velocity of the points on the vesicle membrane.

The assumption that the velocity field is continuous across the vesicle interface, JuK = 0,

is implicit in our expression of no-slip condition. Henceforth, we drop the explicit time

dependence of the variables. Finally, to enforce the local inextensibility of the vesicles we

require that the surface divergence of the velocity field vanishes. That is

xs · us = 0 for x ∈ γ. (2c)

Here xs is the derivative of position of the points on γ with respect to arc length, i.e. the

tangent vector. For notational convenience, when x ∈ γ and u is defined on γ we define

P(x)u := xs · us; then the inextensibility condition can be written as P(x)u = 0 for x ∈ γ.

2.2.1 Boundary Integral Formulation

Due to the continuity of the velocity field across the interfaces, we can follow the standard

approach of potential theory [99, 102, 105], and reformulate Equations (2a) and (2b) using
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layer potentials. It follows that the velocity at a point x is formally given by

αu(x) = E [y,u, ζ](x) + B[η,Ξ,Λ](x), x ∈ Ω, (3a)

where

α =



1 x ∈ Ω\ ∪p ωp,

νp x ∈ ωp,

(1 + νp)/2 x ∈ γp,

subject to the inextensibility constraint,

P(x)u = 0, x ∈ γ, (3b)

where νp := µp/µ0 is the contrast between the viscosity of the fluid enclosed by pth vesicle

and that of the background medium, and ζ denotes the traction jump across the interface.

As it is explained in [102, 105] we have

E [y,u, ζ](x) :=
N∑
q=1

Sq[y, ζ](x) +Dq[y,u](x). (4)

Operators Sq and Dq are the single- and double-layer hydrodynamic potentials for Stokes

flow evaluated on the qth interface, defined as

Sq[y, ζ](x) =
1

4πµ0

∫
γq

(
− log ρI +

r⊗ r

ρ2

)
ζ ds(y), (5)

Dq[y,u](x) =
1− νq
π

∫
γq

r · n
ρ2

r⊗ r

ρ2
u ds(y), (6)

in which r := x − y and ρ := |r|. B is the completed double-layer operator for confined

Stokes flow with density η(y), defined as

B[η,Ξ,Λ](x) := D[y,η](x) +N0[y,η](x) +

M∑
k=1

R(x, ck)ξk +

M∑
k=1

S(x, ck)λk, (7)

where Λ = {λ1, . . . ,λM} and Ξ = {ξ1, . . . , ξM}. In Section 2.2.2, we define D, N0, R,

S, Ξ, and Λ and outline the derivation of B that is based on [99]. Taking the limit of

Equation (3a) to the boundary Γ we obtain an equation for the double-layer density η

αU(x) = −1

2
η(x) + E [y,u, ζ](x) + B[η,Ξ,Λ](x) x ∈ Γ. (8)
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Operator E represents the velocity induced by the evolution of the vesicle and operator

B corresponds to the velocity due to the imposed flow via the boundary Γ. Note that if

we replace B with a far field u∞ in Equation (3a), we obtain the formulation for the case

of an unbounded flow. Also, no that we need the traction jump ζ to evaluate E . We give

details on how to calculate the traction jump in Section 2.2.3.

2.2.2 Completed Indirect Solution of Stokes Flow in a Confined Geometry

Consider the domain Ω given in Figure 5 in the absence of vesicles. The solution of the

Stokes equation, Equation (2a), in this domain can be written as a double-layer integral

with density η [99, 102]. The velocity and pressure at a point x ∈ Ω can be written as

u(x) = D[y,η](x) =
1

π

∫
Γ

r · n
ρ2

r⊗ r

ρ2
η ds, (9)

p(x) = K[y,η](x) = −µ
π

∫
Γ

n · η
ρ2
− 2

r · n
ρ2

r · η
ρ2

ds. (10)

As it is nicely explained in [68], Equation (9) cannot represent general flow fields. In

particular, it cannot represent the flow due to rigid body motions. To compensate for this

deficiency, following [99], we add Stokeslet and Rotlet terms for each Γk (1 ≤ k ≤ M) to

Equation (9). The Stokeslet is the Green’s function for the Stokes equation, which is the

same as the single-layer kernel S given in Equation (6). The Rotlet is the antisymmetric

component of the Stokes doublet defined by

R(x,y)(ξ) :=
ξ

µ

r⊥

ρ2
, (11)

for any strength ξ. For a vector r = (r1, r2), we define r⊥ =:= (r2,−r1). Both the Stokeslet

and Rotlet are centered at an interior point ck of the domain enclosed by the boundary

component Γk. For convenience, we choose λ, the strength vector for each Stokeslet, and ξ

to depend linearly on the unknown density η in the following manner

λk,1 :=
1

2π

∫
Γk

φ1(y) · η(y) ds(y), λk,2 :=
1

2π

∫
Γk

φ2(y) · η(y) ds(y), (12)

and

ξk :=
1

2π

∫
Γk

φ3(y) · η(y) ds(y) (13)
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where φ1 = δ1i,φ2 = δ2i (i = 1, 2) are the rigid body translations in the plane and φ3 is

the rigid body rotation, that is φ3(x) = x⊥.

Since the flow is confined by the contour Γ0, as noted in [68] and [102], conservation of

mass (div u = 0) implies that the velocity field defined by Equation (9) satisfies the Stokes

equation only when η satisfies
∫

Γ0
η · n ds = 0. To enforce this orthogonality condition,

we follow [68] and add an additional operator N0[y,η](x) =
∫

Γ0
N0(x,y)η(y) ds(y) with

kernel N0(x,y) = n(x) ⊗ n(y) to the right-hand side of Equation (9). Hence, the velocity

for x ∈ Ω can be represented by

u(x) = D[y,η](x)+N0[y,η](x)+
M∑
k=1

R(x, ck)ξk +
M∑
k=1

S(x, ck)λk =: B[η,Ξ,Λ](x), (14)

where Ξ = {ξ1, . . . , ξM}, Λ = {λ1, . . . ,λM}. In this way, we obtain a system of Fredholm

integral equations of the second kind. Taking the limit of Equation (14) to points x on the

boundary of the domain, we obtain an equation for η supplemented with Equation (12) and

Equation (13) for calculation of λk and ξk

U(x) = −1

2
η(x) + B[η,Ξ,Λ](x) x ∈ Γ, (15a)

λk =
1

2π

∫
Γk

η(y) ds(y), ξk =
1

2π

∫
Γk

φ3(y) · η(y) ds(y) . (15b)

Along with η, we need the jumps at the boundaries to be able to evaluate the pressure

and stress. We have

JuK = η; JpK = −2µ(ηs · t); JσnK = 0,

in which t is the tangent vector to the boundary, ηs denotes the derivative of density with

respect to the arc length, and σ is the stress tensor on the boundary.

2.2.3 Traction Jump Across the Interface

In the absence of gravity,1 the traction jump across the interface depends exclusively on

the material properties and the configuration of the interface. The traction jump across the

interface balances the forces caused by bending and tension [105]. We can write ζ = fb+ fσ,

1We can include gravity by adding (∆ρ)(g ·x)n to the traction jump, where ∆ρ = ρout−ρin is the density
difference.
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where fb denotes the bending force and fσ is the force due to tension. Let κb denote the

bending modulus of the vesicle, σ the tension, and κ the local curvature. Then, the elastic

energy of the membrane is given by εp(κ, σ) =
∫
γp

(
1
2κbκ

2 + σ
)
ds. The forces are obtained

by taking the gradient of the membrane energy. See [105, 135] for details on the derivation

of the expressions for these forces. Accordingly, forces can be written as fb = −κbxssss and

fσ = (σxs)s, were the subscript s denotes differentiation with respect to arc length. For

convenience, we introduce the following notation

B(y)x = −κbS[y,xssss](x),

T (y,x)σ = S[y, (σxs)s](x),

L(x) = P(x)T (x,x),

M(x) = T (x,x)L−1(x)P(x),

D(y)u = D[y,u](x),

(16)

and T (x) := T (x,x).

2.2.4 Scaling

Let r̄, and t̄ denote the characteristic length and time and let L be the perimeter of the

vesicle. We define r̄ := L/2π as the radius of the circle with perimeter L, and the time scale

t̄ := µ0r̄
3/κb. We define the characteristic tension as σ̄ := κb/r̄. For the velocity scale, we

consider two cases: an unbounded shear flow and a confined flow. Shear Flow: We assume

that u∞ = χ[x2, 0]T where χ is the shear rate. The characteristic shear rate is then χ̄ := 1/t̄

and the characteristic velocity is r̄χ̄. Confined Flow: In this case, the characteristic velocity

may be defined by U as the velocity defined on the boundary.

A parameter that determines the behavior of vesicles significantly is the reduced area,

which is the contrast of vesicle’s area to that of a circle with the same perimeter, ∆ :=

A/(πr̄2).
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2.2.5 Summary of the Vesicles’ Equations of Motion in Two-dimensional Con-
fined Geometries

Incorporating the notation introduced in Equation (16), for a Lagrangian point x we can

write the governing equations as

Vesicle evolution:

αu(x) =

N∑
q=1

Bq(y)x + Tq(y)σ +Dq(y)u + B[η,Ξ,Λ](x), x ∈ γ, (17a)

Inextensibility constraint:

P(x)u = 0, x ∈ γ, (17b)

Fixed boundaries:

αU(x) = −1

2
η(x) + E [y,u, ζ](x) + B[η,Ξ,Λ](x), x ∈ Γ. (17c)

These equations are solvable for the interfacial velocity and tension, as well as double-layer

density η on the fixed boundaries.

2.3 Numerical Algorithms

We use a multistep time-marching scheme. In Section 2.3.1, we give the details of our time-

stepping schemes and in Section 2.3.2, we outline our approach to spatial discretization.

We adopt a Lagrangian formulation, which simplifies the implementation of the high-order

multistep schemes.

2.3.1 Time Discretization

We use backward difference formula to advance in time. We can write a generic form of a

backward difference formula as dx
dt ≈

βxn+1−xo
∆t , in which xo is a linear combination previous

time steps and β depends on the order. The values of xo and β are given in Table 3 for

different orders of accuracy. Then, a semi-implicit formulation of equation set (17) can be
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Table 3: Backward difference coefficients. The Backward differ-
ence coefficients for pth order accurate backward difference method.

p β xo xe

1 1 xn xn

2 3/2 2xn − 1
2xn−1 2xn − xn−1

3 11/6 3xn − 3
2xn−1 + 1

3xn−2 3xn − 3xn−1 + xn−2

4 25/12 4xn − 3 xn−1 + 4
3xn−2 − 1

4xn−3 4xn − 6 xn−1 + 4xn−2 − xn−3

written as

α

∆t

(
βxn+1 − xo

)
= Bp(ye)xn+1 + Tp(ye)σn+1 +Dp(ye)un+1 + B[ηn,Ξn,Λn](xe)

+

N∑
q=1
q 6=p

{Bq(ye)xn + Tq(ye)σn +Dq(ye)un} , x ∈ γp (18a)

βP(ye)xn+1 = P(ye)xo =: g, (18b)

αU(x) = −1

2
ηn+1(x) + E [yn+1,un+1, ζn+1](x)

+ B[ηn+1,Ξn+1,Λn+1](x), x ∈ Γ, (18c)

where, ye is the interfacial position obtained by extrapolation form previous locations (see

Table 3). We will use g to denote the right-hand side of Equation (18b). Γ is fixed or has a

prescribed motion; U may depend on time. We would like to make the following remarks

regarding our scheme:

• The vesicle-boundary interactions are treated explicitly.

• The vesicle-vesicle interactions are also explicit.

• For each vesicle, its new position and tension are computed semi-implicitly by solving

a linear system of equations.

To advance in time, first we need to solve the coupled system of equations (18a) and

(18b) to calculate the new position of the vesicle xn+1 and tension σn+1. Then, we solve

Equation (18c) to calculate ηn+1. We explore two different schemes to solve (18a) and

(18b).
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Semi-implicit scheme. Let

Enfar :=
N∑
q=1
q 6=p

{Bq(ye)xn + Tq(ye)σn +Dq(ye)un}+ B[ηn,Ξn,Λn](xe), x ∈ γp (19)

Then, we rewrite Equation (18a) as

α

∆t

(
βxn+1 − xo

)
= Bp(ye)xn+1 + Tp(ye)σn+1 +Dp(ye)un+1 + Enfar. (20)

Upon rearranging, we obtain

[
αβI − βDp − (∆t)Bp

]
xn+1 − (∆t)Tpσn+1 = q, (21)

where q := (αI − Dp)xo + Enfar. (For brevity, we have dropped the notational dependence

of the operators on ye.) Notice that

αβxn+1 = (βDp + (∆t)Bp)xn+1 + (∆t)Tpσn+1 + q.

Substituting into Equation (18b), we get an equation for tension as a function of the vesicle’s

configuration,

(∆t)Lpσn+1 = αg − Pq− P(βDp + (∆t)Bp)xn+1. (22)

Substituting this in Equation (21), the equation for the new position is

{αβI + (Mp − I) (βDp + (∆t)Bp)}xn+1 = q + TpL−1
p (αg − Pq). (23)

Explicit scheme. Let Enfar be defined as before. Another approach is to first calculate

xn+1 explicitly and then compute the corresponding σn+1. Therefore, Equation (21) can

be written as

αβxn+1 = (∆t)Tpσn + q + (βDp + ∆tBp)xe. (24)

Accordingly, the equation for tension becomes

(∆t)Lpσn+1 = αg − Pq− P (βDp + ∆tBp) xn+1. (25)

In Algorithms 2.3.1 and 2.3.2, we give the pseudocode for our numerical schemes.
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Algorithm 2.3.1 Semi-implicit time marching.

Require: Enfar, g,q
// Solving Equation (23) for the

vesicle
for p = 1 to N do
σexp ← Lpσn+1

exp = αg − Pq // Calculating the tension part of

the RHS
r← q + Tpσn+1

exp

xn+1 ← use GMRES to solve Equation (23) with right-hand side r and xe as initial
guess.
σimp ← Lpσn+1

imp = −P (βDp + (∆t)Bp) xn+1 // Solving for σ in Equation (22)
with known position xn+1

σn+1 ← (σn+1
exp + σn+1

imp )/(∆t)
end for
un+1 ← 1

∆t(βxn+1 − xo)
ζn+1 ← κbx

n+1
ssss + (σn+1xn+1

s )s
// Solving Equation (18c) for

double-layer density η

r← αU− E [xn+1,un+1, ζn+1]
ηn+1 ← (−I/2 + B)−1r // The inverse can be precomputed

return xn+1, σn+1,ηn+1

Algorithm 2.3.2 Explicit time marching.

Require: Enfar, g,q
for p = 1 to N do

r← q + (∆t)Tpσn
xn+1 ← update position using Equation (24)
σn+1 ← solve for tension using Equation (25)

end for
un+1 ← 1

∆t(βxn+1 − xo)
ζn+1 ← κbx

n+1
ssss + (σn+1xn+1

s )s
// Solving Equation (18c) for

double-layer density η

r← αU− E [xn+1,un+1, ζn+1]
ηn+1 ← (−I/2 + B)−1r

return xn+1, σn+1,ηn+1

2.3.2 Spatial Discretization

Let θ ∈ (0, 2π] be a parametrization of the interface γp and θk = 2kπ/n (k = 1, . . . , n) be n

uniformly distributed discretization points. We have

x(θ) =

n/2∑
k=−n/2+1

x̂(k)e−ikθ.
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This enables us to use FFT to calculate x̂ and derivatives of x with spectral accuracy, since

we have assumed that γ and Γ belong to C∞.

Quadrature Rule. The single-layer potential S has a logarithmic singularity. For its

integration, we use the hybrid Gauss-trapezoidal quadrature rule given in Table 8 of [2],

designed to handle this kind of singularity. Let yk = y(θk), then

S[y, ζ](x) ≈
n+m∑
k=1

wkS(x,yk)ζ(yk)|yθ,k|,

where n is the number of nodes, m is number of quadrature nodes, wk the quadrature

weights, and yθ is the Jacobian. The number m is determined by the desired order of

convergence for the integral.

The double-layer potential has no singularity in two dimensions and for x,y ∈ γ,

limx→yD(x,y) = κt⊗ t/2π. Thus, a composite trapezoidal rule will give spectral accuracy

since the integrands are periodic and smooth. Therefore,

D[y,u](x) ≈ 2π

n

n∑
k=1

D(x,yk)u(yk)|yθ,k|.

2.3.3 Analysis of the Spectral Properties

We use spectral analysis of the operators defined on the unit circle to characterize the

stiffness of the underlying problem. If we use n Lagrangian points to represent the interface,

as it is explained in detail in [135], the condition number of the single-layer potential operator

scales as O(n) and the condition number of the bending operator scales as O(n3). On the

other hand, the double-layer potential operator alters only the first three frequencies of the

integrand.

The viscosity contrast ν appears in the coefficient α =
1+νq

2 and the operator D, given

in Equation (6). Now, consider three cases where ν � 1, ν ≈ 1, and ν � 1: (i) ν � 1 : The

vesicle acts more like a rigid body and in Equation (23), 1
αD remains finite but 1

αB tends

to zero and thus the double-layer operator dominates. Therefore, the condition number of

the whole operator is bounded. (ii) ν ≈ 1 : The effect of double-layer potential is minimal

and the bending operator dominates. (iii) ν � 1 : The double-layer potential and bending

31



terms are comparable to each other. In the last two cases, the condition number of the

operator grows in cubic rate thereby requiring preconditioning for the iterative solvers. We

explore this in greater detail in our experiments in Section 2.4.1. The existence of viscosity

contrast has no effect on the tension operator and thus its spectral properties are the same

as those explored in [135].

In our time-stepping scheme, we require the solution of systems with the operators L,

and I+(M−I)(D+(∆t)B). Based on our spectral analysis here and in [135], the condition

number of these system behave as O(n) and O(n3), where n is the number of modes in space.

In [135], we proposed a set of low-cost preconditioners for the position and tension solver.

Since the tension operator is exactly the same for all cases of viscosity contrast, what we

had for the case of ν = 1 carries over to the general case. On the other hand, because the

double-layer operator has a bounded condition number, the main source of ill-conditioning

for the position solver (at least at moderate values of viscosity contrast) is the bending

operator and the preconditioner proposed in [135] applies.

2.3.4 Computational Cost of the Semi-implicit Scheme for a Single Time-step

Assume that we have N vesicles, with n discretization points per vesicle interface and m

discretization points on the boundary Γ (in the case of bounded flow, of course). The semi-

implicit scheme involves “inversion” of three operators: the prescribed-motion boundary

double-layer, the inextensibility operator, and the position-update operator. And it also

requires evaluation of single- and double-layers, and differentiations on the vesicle boundary.

The semi-implicit algorithm has two main components: one is the evaluation of the effect

of boundaries on a vesicle’s Lagrangian points and the other is the solution of Equation (23)

for the new position and tension. The are two facts that lead to a fast algorithm: 1. The

double-layer operator is well-conditioned and thus, GMRES converges to the solution in

mesh-independent manner; and 2. the boundary-vesicle and vesicle-vesicle interactions can

be accelerated by the fast multipole method. Thus, using GMRES, the calculation of the

density over Γ requires O(m) work per time step.2 The evaluation the double-layer at

2Alternatively, when the boundary with prescribed motion is fixed, one could use a fast scheme to
precompute the action of its inverse to a vector [86].
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each Lagrangian point on the vesicle interface (evaluation of B) is O(m) and, using FMM,

O(Nn + m) for all vesicles.3 Furthermore, we use FFT to calculate the derivatives, thus

the evaluation of traction jump on each vesicle requires O(n log n) per time step. When

we solve for the positions using Equation (23), at each GMRES iteration of position, we

solve for tension, which takes O(Nn log n) time and thus, each GMRES iteration requires

O(Nn log n) work. However, in Section 2.4.1, we demonstrate numerically that the number

of iterations is nearly independent of the problem size (Table 6). Hence, the overall cost of

updating the positions and the tensions for all vesicles is O(Nn log n+m).

2.4 Numerical Experiments

In this section, we present results on the convergence, stability, and algorithmic complex-

ity of the proposed methods, which we have implemented in MATLAB. We preform the

following tests:

• We consider a single vesicle in Section 2.4.1. Our goal is to demonstrate the stability

and accuracy of our scheme as a function of the parameters, specifically viscosity

contrast ν. We also report the dependence of tank-treading inclination angle on a

vesicle’s viscosity contrast and shear rate.

• We consider the dispersion of vesicles due to pairwise interaction and collision in shear

flow is studied in Section 2.4.2.

• We consider the effect of fixed boundaries in Section 2.4.3 and their effect on the

overall accuracy of our method.

• We consider the rheological properties of dilute suspensions of vesicles in Section 2.4.4.

2.4.1 Single Vesicle

We consider the case of a single vesicle with viscosity contrast ν suspended in an unbounded

shear flow. In our experiment, we consider ν to be 0.01, 0.1, 1, 10, and 100. When the

3Notice, that when the number of vesicles is high, one needs to implement a fast summation scheme
for the Rotlet and Stokeslet terms. The Kernel Independent Fast Multipole Method can be used for this
purpose [144].
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Table 4: Stable step size for a second-order semi-implicit scheme.
The initial vesicle configuration is the same as the one given in Figure 6. When
χ = 0, the vesicle relaxes to minimum energy equilibrium shape. Since there is
no input energy from the ambient fluid flow, all step sizes are permissible and do
not lead to (numerical) instability. Comparing with Table 5, we see three orders
of magnitude speedup.

∆ = .4

ν = .01 ν = .1 ν = 1 ν = 10 ν = 100

n χ = 1 10 1 10 1 10 1 10 1 10

32 4e−1 2e−2 2e−1 1e−2 2e−1 7e−2 7e−1 9e−2 7e−1 7e−2

64 4e−1 1e−2 2e−1 1e−2 3e−1 5e−2 7e−1 2e−2 7e−1 5e−2

128 9e−2 3e−3 9e−2 6e−3 2e−1 6e−2 7e−1 9e−3 7e−1 3e−2

256 1e−2 1e−3 4e−2 2e−3 2e−1 6e−2 3e−1 3e−3 3e−1 2e−2

∆ = .75

32 7e−1 3e−2 7e−1 5e−2 7e−1 7e−2 7e−1 7e−2 7e−1 7e−2

64 7e−1 3e−2 7e−1 5e−2 7e−1 7e−2 7e−1 7e−2 7e−1 7e−2

128 7e−1 5e−3 7e−1 5e−2 7e−1 7e−2 7e−1 7e−2 7e−1 7e−2

256 2e−2 2e−3 3e−2 3e−3 7e−1 7e−2 7e−1 6e−3 4e−1 3e−2

viscosity contrast is low, based on experiment and theory [64, 88], the vesicle undergoes a

tank-treading motion at an equilibrium angle φν . When the viscosity contrast is high, the

vesicle tumbles. We first investigate the stability and convergence properties of the proposed

numerical schemes. In Table 4, we report the largest uniform step-size required to maintain

numerical stability for different shear rates and viscosity contrasts for a BDF method of

order two for the semi-implicit time marching scheme. (We used a simple bisection method

to find these time steps.) The time horizon is chosen such that the vesicle reaches steady

state or the desired dynamical phenomenon (i.e., tank-treading or tumbling is observed).

The reduced area ∆ is set to .4 and .75. Comparing these results with the results of the

explicit scheme given in Table 5, we see three orders of magnitude speedup for most cases.

In Figure 6 and Figure 7, we show the configuration of the vesicle for different values of

viscosity contrasts ν and reduced area ∆. In Figure 8, we show the sedimentation shape of

the vesicle under the influence of gravity.

In Table 6, we report the number of GMRES iterations (corresponding to ∆ = .75 only).

Observe that the number of iterations for the tension solver is almost mesh independent

and viscosity contrast has no effect on the tension solver, as expected. The effect of the
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Table 5: Stable step size for the first-order
explicit scheme. Simulation parameters and the ini-
tial configuration of the vesicle are the same as the sim-
ulation shown in Figure 6.

ν = .1 ν = 1 ν = 10

n χ = 1 10 1 10 1 10

32 3e−4 2e−4 2e−3 1e−3 3e−3 1e−3

64 2e−5 2e−5 9e−5 1e−4 2e−4 2e−4

128 2e−6 3e−6 3e−6 5e−6 1e−5 2e−5

256 3e−7 2e−7 6e−7 3e−7 2e−6 1e−6

high condition number (caused by bending) becomes very pronounced in cases where the

mesh size equals 128 and 256 but our preconditioner compensates for that well.

Due to inextensibility and incompressibility, the length and area of vesicles should be

preserved. In Table 7, we report the relative error in area and length of a single vesicle in

shear flow.

ν
=

0.
01

ν
=

1

t = 0

ν
=

10
0

t = 1.5 t = 3 t = 4.5 t = 6 t = 7.5 t = 9

Figure 6: The evolution of a single vesicle with reduced area
∆ = 0.75 in an unbounded shear flow. The viscosity contrast ν = .01, 1,
and 100, χ = 1, κb = 1, and time horizon T = 9. Lagrangian points on the vesi-
cle membrane is colored for visual purposes only and has no other significance.
When ν < νc we see that the vesicle reaches an equilibrium and then undergoes
tank-treading motion (see Figure 9 for further analysis). When ν is large the
vesicle tumbles.

The inclination angle of vesicles in tank-treading motion is of physical interest since it

can be compared with experimental results. Since we consider only two-dimensional vesicle

flows, this comparison is qualitative. Based on theory, this inclination angle depends only

on the reduced area ∆ and the viscosity contrast ν. For any fixed ∆, there exists a νc such

that for viscosity contrasts larger than that, the vesicle starts to tumble. For ν < νc, there
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Figure 7: The evolution of a single vesicle with reduced
area ∆ = 0.2 in an unbounded shear flow. The rest of the
parameters are the same as the simulation shown in Figure 6.
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0
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t = 0.4
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cy = −4.4

t = 0.8 t = 1

Figure 8: The sedimentation shape for a vesicle with different viscosity
contrasts. The viscosity contrast ν = .01, 1, and 100, κb = 1, reduced area ∆ = .75,
∆ρ = 1, g = −40ey, and time horizon T = 1.

exists an angle βν in which the vesicle tank treads. We investigate the dependence of the

inclination angle βν (defined below) of a vesicle with reduced area ∆ = .75. We stopped

the simulation when the rate of change in the inclination angle was less than one percent

of the its value, i.e.
∣∣∣ 1
β
dβ
dt

∣∣∣ ≤ .01. The alignment of the vesicle with the flow increases as

the viscosity contrast is increased. A viscosity difference of νc ≈ 4.1 is the fold bifurcation

point. Vesicles with larger viscosity difference undergo tumbling. As we further increase the

viscosity contrast, the frequency of tumbling increases. However, we did not investigate the

effect of parameters on the frequency of tank-treading and tumbling motions. Our stopping

criteria explain the slight decrease in the dependence of βν versus the shear rate χ.

We define the inclination angle as the angle between the principal axis corresponding

to the smallest principal moment of inertial with the x1-axis. We calculate the moment of
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Table 6: Number of GMRES iteration averaged over 100 time steps. The
time horizon T = 2/χ (and 10 when χ = 0), κ = 1, and ∆ = .75. GMRES tolerance
is set to 10−8 for the position solver and 10−12 for tension solver. The extrapolated
position is used as starting point for the GMRES. The preconditioners are the Fourier
spectrum of the involved operator on the unit circle [135].

Position solver without preconditioner

ν = .01 ν = .1 ν = 1 ν = 10 ν = 100

n χ = 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10

32 13 19 13 11 18 10 8 14 7 6 10 7 5 8 8

64 17 35 21 17 34 20 19 29 15 14 20 11 7 12 8

128 41 82 49 43 81 46 47 72 34 34 48 23 16 27 13

256 103 194 122 108 193 116 119 178 84 85 120 55 40 64 31

Position solver with bending spectrum as preconditioner

32 14 23 21 11 23 16 11 18 12 8 10 8 4 8 6

64 11 25 25 11 25 22 13 20 15 9 11 8 4 8 7

128 13 28 26 13 28 23 14 22 17 10 12 9 4 10 7

256 14 32 29 14 32 25 15 25 18 10 13 9 4 10 8

Preconditioned tension solver

32 16 17 16 16 17 15 15 16 13 10 13 12 10 12 12

64 18 19 19 18 19 19 18 18 19 16 17 15 12 14 14

128 21 21 21 21 21 21 21 21 21 19 20 18 15 17 17

256 22 22 22 22 22 22 22 22 22 20 21 20 17 20 20

inertia tensor J by

J =

∫
ω

(
|r|2I − r⊗ r

)
dx =

1

4

∫
γ

r · n
(
|r|2I − r⊗ r

)
ds,

where r = x−c is the distance of point x from the centroid c. The principal axes of inertia

are the eigenvectors of J .

2.4.2 Multiple Vesicles

First, let us briefly investigate the numerical properties of our scheme in the case of multiple

vesicles. In Table 8, we report the stable time-step in the presence of multiple vesicles. The

vesicle-flow parameters used in Table 8 remain the same as those in Table 4. For most

viscosity contrasts, the stable time-step size is similar to that of a single vesicle. However,

for ν = 100, we observe an order of magnitude smaller time-steps. This time-step growth

was expected, if we consider the fact that we use the viscosity of the suspending fluid for
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Table 7: The relative error for area and perimeter of a vesicle in
shear flow. The error in area enA := |A−A0|/A0 and length enL := |L−L0|/L0

in the evolution of a single vesicle in an unbounded shear flow with shear rate,
χ, of 10 and 250. Time marching scheme is chosen to be second-order. Due
to inextensibility and incompressibility, the area and length should be preserved.
For these tests, κb = 1, ∆ = .75, time horizon T = 1/χ, and time step is set to
ts = T/n. At low shear rates we observed an erratic convergence behavior also
noticed in [74, 129, 135].

χ = 10, ν = .04 χ = 10, ν = 1

n enA (enA/e
n−1
A ) enL (enL/e

n−1
L ) enA (enA/e

n−1
A ) enL (enL/e

n−1
L )

32 2.49e−2 2.32e−5 3.66e−4 1.97e−4

64 6.26e−3 (3.98) 3.24e−4 (0.07) 8.70e−5 (4.20) 1.31e−4 (1.49)

128 1.56e−3 (3.99) 1.31e−4 (2.46) 2.11e−5 (4.11) 5.60e−5 (2.35)

256 3.92e−4 (3.99) 4.78e−5 (2.74) 5.23e−6 (4.04) 1.83e−5 (3.04)

χ = 10, ν = 25 χ = 250, ν = .04

n enA (enA/e
n−1
A ) enL (enL/e

n−1
L ) enA (enA/e

n−1
A ) enL (enL/e

n−1
L )

32 3.66e−4 1.97e−4 8.79e−04 2.46e−02

64 8.70e−5 (4.20) 1.31e−4 (1.49) 1.56e−04 (5.62) 6.16e−03 (3.99)

128 2.11e−5 (4.11) 5.60e−5 (2.35) 2.31e−05 (6.76) 1.50e−03 (4.09)

256 5.23e−6 (4.04) 1.83e−5 (3.04) 3.69e−06 (6.26) 3.72e−04 (4.05)

χ = 250, ν = 1 χ = 250, ν = 25

n enA (enA/e
n−1
A ) enL (enL/e

n−1
L ) enA (enA/e

n−1
A ) enL (enL/e

n−1
L )

32 2.97e−06 1.75e−04 2.39e−04 1.73e−04

64 4.50e−05 (0.07) 3.16e−05 (5.56) 1.15e−05 (20.7) 3.13e−05 (5.54)

128 7.69e−06 (5.85) 8.56e−06 (3.69) 3.02e−06 (3.81) 6.59e−06 (4.75)

256 1.36e−06 (5.66) 2.23e−06 (3.83) 6.73e−07 (4.50) 1.50e−06 (4.39)

Table 8: Stable step size for a second-order semi-implicit scheme for
two vesicles in shear flow. Both vesicles have reduced area ∆ = .75. Snapshots
of the flow with ν = 1 are shown in the plot.

ν = .01 ν = .1 ν = 1 ν = 10 ν = 100

n χ = 1 10 1 10 1 10 1 10 1 10

32 7e−1 3e−2 7e−1 5e−2 7e−1 7e−2 4e−1 5e−2 1e−3 5e−4

64 7e−1 3e−2 7e−1 5e−2 7e−1 7e−2 4e−1 4e−2 7e−3 1e−3

128 5e−2 5e−3 1e−1 1e−2 7e−1 7e−2 3e−1 3e−2 1e−2 1e−3

256 1e−2 1e−3 2e−2 2e−3 7e−1 7e−2 2e−1 9e−4 1e−2 1e−3

scaling and thus when ν = 100, vesicles behave as rigid bodies, which thus, require smaller

time steps in order to resolve their dynamics.

The collision of deformable particles has received substantial attention in the literature.
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Figure 9: Tank-treading angle as a function of shear rate and viscos-
ity contrast. For small values of viscosity contrast, a vesicle reaches steady-state
and then undergoes a motion called tank-treading (see the bottom row of plots in Fig-
ure 6). Theory and experiment suggest that the inclination angle of the vesicle during
tank-treading depends solely on the viscosity contrast ν and the reduced area ∆; this
dependence is confirmed in our computations. Here, the reduced area ∆ = .75. The
critical value for viscosity contrast is νc ≈ 4.1.

From one aspect, the particle-particle interactions in a suspension will produce irregular

motions one of which is the lateral migration of particles. This migration causes dispersion

in the suspension. Eckstein et al. [47] discussed the importance of this phenomena and

performed experiments involving rigid particles. Loewenberg and Hinch [83] performed a

numerical study of the collision of two deformable drops in shear flow.

Here, we investigate the effect of vesicles’ viscosity contrast on their lateral migration

in an unbounded shear flow. Initially one of the vesicles is located at the origin and the

other one at [−10, .5]T . The shear rate χ = 2 and vesicles’ bending modulus κb is chosen

to be 0.1. The relative orientation of vesicles is a factor in the dynamics of collision and a

statistical approach is needed to study its effect. Here, to minimize the effect of vesicles’

orientation we choose the vesicle be very close to a circle with reduced area ∆ = .98. We

define the offset between two vesicles to be δ := |cy,1 − cy,2|, where cy,i is the y coordinate

position of ith vesicle’s centroid (i = 1, 2).

In Figure 10, snapshots of the interaction between vesicles are shown. Due to the inex-

tensibility of a vesicle’s membrane and the incompressibility of its fluid, vesicles maintain

their circular shape at all times. In the last column of Figure 10, we plot the streamlines

39



−6 −3 0

−2
0

2

ν
=

0.
1

−3 0 3 −3 0 3 −3 0 3 −3 0 3

−2
0

2

ν
=

1
−2
0

2

t = 5.5

ν
=

10

t = 7.25 t = 8.25 t = 9 t = 7.75

Figure 10: Collision of vesicles in shear flow. Snapshots of the position of two
vesicles in shear flow. Initially, one of the vesicles is located at the origin and the other
one at [−10, .5]T . To minimize the effect of relative orientation of vesicles on the dynamics
of collision we choose the vesicles to be two identical ellipsoids with ∆ = .98 and κb = .1.
In the last column we plot the streamlines at an intermediate time t = 7.75. Each row
corresponds to a different viscosity contrast ν. The offset between the centroids of the
vesicles is plotted in Figure 11.

at an intermediate time.

In Figure 11, we plot the offset δ versus x for different values of viscosity contrast ν.

The qualitative dependence of the offset on position is the same. However, we can see in

the inset, the final offset δ∞ does not monotonically depend on ν. Initially, by increasing

the viscosity contrast, the final offset increases. But as ν becomes larger than one, the

offset starts to decrease. The decrease in the final offset value when ν � 1 is expected

because the vesicle behaves increasingly like a rigid particle in which case the Stokes flow is

reversible. However, the initial increase comes as a surprise. This trend is in contrast with

the monotone decrease of the final offset for bubbles [83].

2.4.3 Vesicles in Confined Domains

The main question in the confined geometry case concerns the numerical stability of our

scheme, which treats vesicle-boundary interaction explicitly. To examine the stability of

our scheme, we consider the flow of a vesicle in a constricted tube. On the fixed boundaries,

we impose velocity boundary conditions that correspond to an unperturbed Poiseuille flow.
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Figure 11: The lateral offset of vesicles in shear flow over
time. The offset δ between the centroids of two vesicles in shear flow. A
few exemplary snapshots of interacting vesicles are plotted in Figure 10. In
the inset, the offset of the vesicle at x = 10, denoted by δ∞, is plotted versus
viscosity contrast ν.

In this experiment, we consider three cases with viscosity contrasts .04, 1 and 25 respec-

tively and κb = .5. There are 400 grid points on the fixed boundary and 128 points on the

vesicle. The initial shape of the vesicle is an ellipsoid with reduced area ∆ = .94. We in-

crease the size of the vesicle compared to the opening of the channel, and monitor the error.

As a measure of the relative size, we set r := (a + b)/2c, where a and b are, respectively,

major and minor diameter of vesicle and c is the size of the gap in the tube. To have an

estimate on the errors in case of unbounded flow (and thus being able to distinguish the

effect of the walls), we also simulate the evolution of a single vesicle in unbounded Poiseuille

flow. We report the errors in Table 9. Also observe that in case of unbounded Poiseuille

flow, the vesicle starts to migrate toward the center line. This phenomenon was studied in

detail in [65].

In Table 9 we compare the stable step size corresponding to the second-order time

stepping scheme of bounded flow with that of an unbounded Poiseuille flow. For the case

of a vesicles with small viscosity contrast (ν = .2), their faster time scale makes them

responsive to the sudden outward flow in the divergent part of the tube and therefore for
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r = 0.58 r = 0.68

r = 0.78 r = 0.87

r = 0.97 r = 1.07

r = 1.12
r = 0.87

Figure 12: Evolution of a single vesicle in a constricted tube. Each subplot
corresponds to a different vesicle size: r denotes the relative size of the vesicle with respect
to diameter of the tube (defined in the text). A Poiseuille flow boundary condition on
the inlet and outlet of the tube is prescribed (vector plot). In order to investigate, the
error incurred due to explicit treatment of the walls, we repeat a “similar” test without
boundaries, in which we offset the initial position of vesicle by 1. This experiment is
depicted in the bottom-right plot. In all of the experiments , ν = 1 and κb = .5.

large vesicles, time steps should be chosen such that the vesicle does not cross the boundary

of the domain.

2.4.4 Rheology of a Suspension

In this section, we discuss numerical homogenization for suspension rheology. The effective

viscosity of a suspension can be defined as the viscosity of a homogeneous Newtonian fluid

that has the same energy dissipation per macroscopic volume element. We derive the

effective viscosity as the constant of proportionality between rates of energy dissipation with

and without the inclusions. This definition coincides with the one derived by averaging the

stress over a volume for particulate flows [62]. Here, we give a brief derivation of average

stress tensor in a vesicle suspension.

Average Stress in a Suspension of Vesicles. Consider a suspension of vesicles in an

ambient fluid with viscosity µ0. Each vesicle has a viscosity contrast νp. Let Ω denote an
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Table 9: Relative error for area and volume of a single vesicle in the
constricted tube. In this table we report errors in area eA := |A−A0|/A0 and length
eL := |L − L0|/L0 for the simulation in Figure 12. For values of r > 1.25 a vesicle
with ∆ = .94 is larger that the gap and cannot pass though it (due to inextensibility and
incompressibility).

Unbounded r (Contrast of vesicle’s representative length to the gap size)

(r = .87) .68 .78 .87 .97 1.07 1.12

ν = .2
eA 4.73e−4 1.30e−4 1.17e−4 8.02e−5 3.18e−5 3.57e−4 1.90e−4

eL 1.95e−4 2.47e−4 2.41e−4 2.39e−4 2.42e−4 1.93e−4 1.97e−4

ν = 1
eA 6.65e−4 2.19e−4 3.69e−4 4.17e−4 4.27e−4 4.30e−4 2.98e−3

eL 4.72e−4 5.25e−4 8.21e−4 9.33e−4 1.05e−3 1.19e−3 1.23e−3

ν = 5
eA 2.78e−4 2.02e−6 6.45e−6 1.46e−5 4.35e−5 1.89e−4 2.67e−4

eL 1.03e−4 2.98e−4 1.68e−4 1.05e−4 1.43e−4 1.69e−4 1.95e−4

Table 10: Stable step size for a second-order semi-implicit
scheme for a vesicle in a constricted tube.

Unbounded (r = .87) r = .87 r = 1.12

n ν = .2 1 5 .2 1 5 .2 1 5

32 7e−1 7e−1 7e−1 7e−1 7e−1 7e−1 6e−3 7e−1 7e−1

64 7e−1 7e−1 7e−1 7e−1 7e−1 7e−1 1e−2 7e−1 7e−1

128 7e−1 7e−1 7e−1 7e−1 7e−1 7e−1 3e−2 7e−1 7e−1

256 7e−1 7e−1 7e−1 7e−1 7e−1 7e−1 9e−3 7e−1 7e−1

arbitrary volume containing several vesicles; let 〈·〉 := 1
|Ω|
∫

Ω · dx, and let ω+ denote the

infinitesimally enhanced volume containing vesicles. The average stress tensor 〈σ〉 can be

broken into two parts as

〈σ〉 =
1

|Ω|

∫
Ω
σ dx =

1

|Ω|

∫
Ω\ω+

σ dx +
1

|Ω|

∫
ω+

σ dx. (26)

By definition σ = −pI + 2µD, where D is the strain rate tensor. Substituting into Equa-

tion (26), we have

〈σ〉 =
1

|Ω|

∫
Ω\ω+

−pI + 2µ0Ddx +
1

|Ω|

∫
ω+

σ dx, (27)

=
1

|Ω|

∫
Ω
−pI + 2µ0Ddx +

1

|Ω|

∫
ω+

σ + pI − 2µ0Ddx, (28)
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using the fact p = −tr(σ)/3 and the divergence theorem for the second integral we obtain

= −〈p〉I + 2µ0〈D〉+
1

|Ω|

∫
∂ω+

[σn⊗ x− 1

3
(σn · x)I − µ0(u⊗ n + n⊗ u)] ds.

(29)

For the fluid inside each vesicle, we have div σ = 0. It follows that

0 =

∫
∂ω−p

σn⊗x ds−
∫
ω−p

σ dx =

∫
∂ω−p

[σn⊗x− 1

3
(σn·x)I−µp(u⊗n+n⊗u)] ds. (30)

Taking the limit of Equation (29) and Equation (30) to γp, subtracting the results, and

denoting the trace of −〈σ〉/3 by P , we obtain

〈σ〉 = −PI + 2µ0〈D〉+
1

|Ω|
∑
p

∫
γp

[ζ ⊗ x− µ0(1− νp)(u⊗ n + n⊗ u)] ds. (31)

For dilute suspensions, the particle–particle interactions are negligible and the effective

stress can be written in terms of flow past an isolated or “reference” vesicle [12, 13]. In

simple shear flow, the ambient velocity field is given by u(x, y) = [χy, 0]T , where χ is the

shear rate. For a suspension of vesicles in such a flow, we define

[µ] :=
µeff − µ0

φµ0
=

1

χµ0T

∫ Te

Ti

〈σp12〉 dt, (32)

in which 〈σp〉 is defined above. [µ] is referred to as the “intrinsic viscosity”, φ is the areal

contrast of vesicles, and σp is the perturbation in the stress due to presence of vesicles. Ti

is the point at which we start the measurement and is chosen such that the reference vesicle

has reached a steady state (for ν < νc), Te is the end of simulation, and T = Te − Ti. In

our formulation, the traction jump across the interface is given by ζ = fb + fσ = −κbxssss +

(σxs)s. Using integration by parts, we obtain∫
γ
ζ ⊗ x ds = −

∫
γ
(κbκ

2 n⊗ n + σ t⊗ t) ds. (33)

As a validation of our scheme, in Figure 13 we report the intrinsic viscosity for a dilute

suspension of vesicles in simple shear flow. The vesicle is an ellipse with reduced area

∆ = .75 and bending modulus of 1. When 0 < ν < νc, the vesicle tank-treads. Larger

values of ν cause the vesicle to align itself with the flow thus resulting in less resistance. On

the onset of tumbling, we observe that the intrinsic viscosity increases.
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Figure 13: The intrinsic viscosity of the homogeneous fluid
vs. viscosity contrast of the suspension for different values
of reduced area ∆. As we increase ν, the vesicles align with the flow
and the intrinsic viscosity decreases. When ν > νc, tumbling occurs and
the reference vesicle does not maintain a fixed orientation. The frequency
of this tumbling motion is inversely proportional to νc: as we increase ν,
vesicles tumble faster, which in turn causes an increase in the intrinsic
viscosity [µ].

Misbah [88] derived an analytical expression for the effective viscosity of a suspension

of quasi-spherical vesicles in the tank-treading region. According to [88], we have

[µ]a :=
5

2
− (23ν + 32)∆

16π
. (34)

The dashed line in Figure 13, corresponds to [µ]a obtained from this formula. The qualita-

tive agreement between the analytical result for quasi-spherical vesicles and our numerical

simulations for 2D vesicles is good. To our knowledge, there is no analysis for the case of a

tumbling motion.

2.5 Conclusions

We proposed a semi-implicit numerical scheme to simulate the motion of inextensible vesicles

suspended in bounded or unbounded domains. For several test cases, we have demonstrated,

through the use of numerical experiments, that the proposed scheme does not exhibit a

mesh-dependent high-order stability constraint on the time-step size. Our scheme exhibits

second-order accuracy in time and spectral-accuracy in space. We have presented efficient
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low-cost preconditioners to solve the discrete evolution equations by iterative solvers. An

additional extension of our work would be to design an algorithm that allows decoupling of

the time-step size from the shear rate. We believe, however, that such an algorithm would

require the use of nonlinear solvers and contact detection methods that fully couple the

vesicle position updates. Such coupling would be more difficult to implement and analyze.

Our next step, which we will explore in Chapter 4, is the extension of this scheme to three

dimensional flows.
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CHAPTER III

VESICLE MIGRATION AND SPATIAL ORGANIZATION DRIVEN

BY FLOW LINE CURVATURE

Cross-streamline migration of deformable entities is essential in many problems such as

industrial particulate flows, DNA sorting, and blood rheology. Building upon the infras-

tructure outlined in Chapter 2, through numerical experiment, we have discovered that

vesicles suspended in a flow with curved flow lines migrate towards regions of high flow-

line curvature, which are regions of high shear rates. The migration velocity of a vesicle

is found to be a universal function of the normal stress difference and the flow curvature.

This finding quantitatively demonstrates a direct coupling between a microscopic quantity

(migration) and a macroscopic one (normal stress difference). Furthermore, simulations

with multiple vesicles revealed a self-organization, which corresponds to segregation, in a

rim closer to the inner cylinder, resulting from a subtle interaction among vesicles. Such

segregation effects could have significant impact on rheology of vesicle flows.

3.1 Introduction

Complex fluids are generally made of rigid or soft particles that are suspended in a New-

tonian fluid. Examples of complex fluids include emulsions, polymer solutions, particulate

suspensions (many food products belong to this category) and blood. One of the major

challenges in understanding the physics of complex fluids is the link between the local mi-

crostructure (i.e. spatio-temporal organization of suspended entities) and the macroscopic

rheology. Microstructures spontaneously arise in many complex fluids, and may have a

dramatic impact on flow properties [36].

A phenomenon that may induce inhomogeneous organization of the suspended entities

is lateral or cross-streamline migration. Recall that a single rigid particle immersed in a

Newtonian fluid at vanishing Reynolds number Re cannot migrate in the direction trans-

verse to the flow lines [14]. On the contrary, deformable particles have the ability to migrate
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cross-streamline, even at Re = 0 — if a certain symmetry is broken, for example the cen-

trosymmetry in linear shear flow. Symmetries may be broken due to the presence of walls,

gradient in shear rate (e.g., Poiseuille flow), or the presence of flow line curvature (e.g.,

cylindrical Couette flow).

Cross-streamline migration appears in many applications, such as industrial polymer

processing [141], DNA sorting [123], drop dynamics [32], and biofluids. A prominent exam-

ple of the latter system is blood flow in which cross-streamline migration of erythrocytes

may result in ample collapse of blood viscosity, reducing blood flow resistance in microvas-

culature (F̊ahræus-Lindqvist effect).

A common belief is that deformable particles have the tendency to migrate towards

regions of low shear rates [40, 59, 65, 119, 133]. In some circumstances, however, the

opposite is predicted, for example, the case of drops in a certain range of viscosity contrast

between the internal an external fluids [32]. In this chapter, we propose an explanation

for these differences and provide quantitative evidence for the case of vesicle flows. Our

discussion will allow us to conjecture general principles that can be used to predict lateral

migration. The study of multiple vesicles reveals a self organization in a rim.

We carried out simulations in a Taylor-Couette cell by taking vesicles as a model system

for the suspended entities. Vesicles constitute a simple model for the description of some

features of red blood cell dynamics. We have chosen to simulate the Taylor-Couette system

because it is widely used for studying the rheology of complex fluids.

3.2 Methods

The numerical simulations are carried out in two dimensions using a boundary integral

formulation. The detail of the boundary integral formulation is given in Chapter 2. The

main governing equations for the flow of vesicles are Equation (3a) and Equation (3b).

The membrane interfacial force, which has contributions from bending energy and local

inextensibility, is defined in Section 2.2.3. We used the implementation outlined in Chapter 2

to carry out our numerical experiments. To indicate the accuracy of the simulations let us

mention that the vesicle surface is conserved within a relative error of 10−6 and local contour
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imposed flow line

membrane forcex

y

Figure 14: Force distribution on vesicle membrane and local coordinate system.
The local coordinate system is used for the calculation of N in Equation (35). For this figure,
∆ = 0.7 and ν = 1.

length within 10−3.

The normal stress difference is defined as N = σxx − σyy, where σ is the stress tensor

of the suspension, computed using [12, 71]:

N =
1

Aµ0χ

[∫
γ

(xfx − yfy) ds+ 2µ0(ν − 1)

∫
γ

(nxvx − nyvy) ds
]
, (35)

where A is the vesicle area, µ0 is the viscosity of suspending fluid, χ = −2a/r2 is the imposed

shear rate, f denotes the interfacial force, ν denotes the viscosity contrast, n denotes the

normal vector to the surface γ, and v denotes the velocity. The x, y coordinate system is

relative to the instantaneous vesicle position and is defined in Figure 14. The coordinate

axes correspond to circumferential and radial directions (eθ,−er) and the origin is at the

vesicle’s center of mass. shear rate. Notice that it depends on the radial position of the

vesicle.

3.3 Numerical Experiments

First, we consider a single two-dimensional vesicle immersed in a Newtonian fluid with a

velocity field vθ = a/r, vr = 0 (for a Couette flow, vθ = a/r + b r). This is an unbounded

flow. This choice is made in order to exclude any migration due to bounding walls, allowing

us to identify the role of curvature in the flow lines. Boundaries are introduced in a second

step. Vesicles are initialized at a distance of 10r0 from the origin, where r0 =
√
A/π. The

length unit is chosen to be r0 in our simulations. The dimensionless numbers that enter

the problem are [67] the reduced vesicle area ∆ = 2
√
A/L, the viscosity contrast ν and the
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(a) (b)

Figure 15: Trajectory of a vesicle in an unbounded rotational flow. Trajectory
and contour of (a) tank-treading vesicle (∆ = 0.7, ν = 1) migrating towards high shear regions
and (b) tumbling vesicle (∆ = 0.7, ν = 4) showing no significant radial migration (after 13
revolutions and 8 tumbling periods).

capillary number Ca = µ0χr
3
0/κ. In the simulations both ∆ and ν are varied. The value of

Ca depends on the radial position, while a is fixed to a value a = −10 (a weak dependence

of vesicle dynamics on this parameter [52] is observed). We have performed three sets of

simulations for different ∆ ∈ {0.7; 0.8; 0.9}. For every set the range ν ∈ [1, 10] is explored,

a range that covers both tank-treading and tumbling regimes [16, 52, 69].

3.4 Results

Typical simulation results are shown in Figure 15. Tank-treading vesicles migrate towards

the center, while tumbling ones show a negligibly small outward migration. We have found

that the migration rate depends on the reduced area and viscosity contrast in a non trivial

way.

In Figure 16, we report the migration velocity vmig for different vesicles at fixed initial

radial position r = 10r0. Analogous results are obtained for any radial position 3 ≤ r/r0 ≤

10.In the left panel, the migration velocity is shown as a function of the two independent

dimensionless parameters explored in our simulations, namely (∆, ν).

The data do not seem to show a simple trend. For example, the lines in Figure 16(a)

for migration velocities obtained for different vesicles intersect at some viscosity contrast.

This points to the absence of a simple law in this parameter space. We have thus attempted

to rationalize these results by evoking basic physical facts that distinguish a simple fluid

from a complex one. A particular property of complex fluids is the manifestation of normal
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Figure 16: Normalized inward migration velocity. The Inward migration velocity
normalized by r0χ as a function of (a) ν and (b) N for different ∆ at fixed radial position
r = 10r0. Every point corresponds to the (ν,N) pair on the abscissas.
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Figure 17: Normalized inward migration velocities divided by normal stress dif-
ference. Inward migration velocities divided by Nr0χ as a function of (a) r and (b) 1/(r−r0)
for different ∆. Every point corresponds to the (ν,N) pair on the abscissas.

stress difference. We have thus represented the data (Figure 16(b)), in terms of the normal

stress difference N measured in the (x, y) coordinate system (see Figure 14 for notations).

Interestingly enough, we observe that the data closely collapse on a single master curve,

showing that the dynamics does not depend on the control parameters (∆, ν) independently,

but rather on their combination embedded in the function N(∆, ν).

Moreover, Figure 16(b) shows that vmig/r0χ is simply proportional to N . This result

holds for all the radial positions explored so far, 3 ≤ r/r0 ≤ 10: data collapse is manifested

within an error of 10% (or less), and the results are represented with a universal straight

line passing through the origin. The small discrepancies are believed to be due to the details

of the flow around vesicles with different shapes and orientations.

To gain further insight we have examined the migration velocity as a function of the

curvature of the flow. Figure 17(a) shows vmig/Nr0χ as a function of the radial position.
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This dependence on r is nonlinear. Expressing the results with the help of an appropriate

rescaling (Figure 17(b)) reveals that vmig/Nχ is a simple linear function of ξ := 1/(r/r0−1).

Note that, approximately, ξ is the flow curvature on the innermost part of the vesicle,

which is also the highest curvature among the flow lines passing through the vesicle. This

is considered to be due to membrane incompressibility, that propagates stresses along the

surface of the vesicle. From the above analysis, we infer the following scaling relation for

migration

vmig ∼ r0γ̇ξN (36)

This is a key result: a macroscopic measure of N (which may be a very complex function

of various parameters) directly leads to the determination of the (microscopic) migration

velocity. One might ask why should migration be dictated by normal stress difference at

all. To answer this question, one may consider the composite fluid and denote its spatial

and temporal averaged stress by σ (very much like the definition of the classical stress, as

used in Equation (35)). Let us assume stationary, circular motion, enjoying symmetry with

respect to the angle θ. Using momentum conservation in polar coordinates one can show

that [19]:

∂σrr
∂r

=
1

r

[
−ρv2

θ +N
]

(37)

where ρ is the fluid density, N = σθθ − σrr, 1/r is the flow line curvature, and −ρv2
θ/r

is the inertia term, which is absent in our case. If N 6= 0, a radial stress gradient takes

place, resulting in an inward force pushing the fluid towards the center if N > 0. No such

simple result holds in flows which do not exhibit flow line curvature. This result shows

that both N and the flow curvature cause inward motion, in accord with Equation (36).

We have performed simulations in a parallel flow having the same velocity profile as the

irrotational vortex, that is vx(y) = 1/y (in Cartesian coordinates (x, y)). Contrary to the

Couette flow, in parallel flow vesicles migrate toward regions of low shear rate despite the

fact that N > 0. This points to the conclusion that inward migration in the Couette set-up

is due to the curvature of the flow lines rather than to a shear gradient.
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(a) (b)

Figure 18: Spatial organization of vesicles in the Couette apparatus. Equilibrium
configurations in a Taylor-Couette device for (a) a single vesicle and (b) several vesicles (volume
fraction ≈ 2%). The lines represent the induced flow. Spontaneous organization in (b) is due
to inward migration and vortex interaction.

Tank-treading vesicles show positive normal stresses and they migrate inwards. In the

tumbling regime, we have found N ' 0 (averaged over a tumbling period), and a negligibly

small migration. Moreover, N vanishes for tank-treading vesicles when approaching the

transition to tumbling or when the shape is close to a sphere [38, 52]. This is consistent

with the fact that vmig → 0 with increasing ν or ∆ (Figure 16).

Having identified the basic phenomena for migration of a single vesicle, we are now

in a position to address the question of the impact of this feature on the organization

of a collection of vesicles. Here we address the case of a sufficiently dilute suspension.

In these simulations we have included confining boundary conditions [110, 135], in order

to address a realistic situation. Starting from various initial configurations (including a

randomly ordered) we have found that the mutual interactions between vesicles lead to a

nontrivial spatial organization. We present the results for a volume concentration φ ≈ 2%

in Figure 18 (we have performed simulations with concentrations between 1% . φ . 6%,

leading to the same conclusion). After a transient the vesicles exhibit a spatial order: they

organize themselves in a rim by keeping the same interdistance. The rim radius is (within

numerical uncertainties) very close to the final position of a single vesicle (Figure 18). A

single vesicle stops when the inward migration compensates the lift force due to the inner
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cylinder. The organization in a rim which has the same radius as that dictated by the final

position of a single vesicle is not obvious: indeed, the fact that the vesicles select the same

interdistance is a clear indication for their significant mutual interactions, and despite this

effect the terminal position does not seem to be affected.

For a better understanding, we have analyzed the behaviour of the flow lines. A single

vesicle creates two vortices as shown in Figure 18(a). The size of the vortices is of about

a quarter of the circumference. We thus expect vesicles to interact significantly when their

number M approaches 4. This is confirmed by our simulations that show disorder for

M < 4 and order for M ≥ 4. For M ≥ 4 vesicles keep order because deviations would cause

restoring forces due to vortex interactions. For all explored volume fractions we found

persistence of order as shown in Figure 18(b).

Finally, in view of the generality of the arguments presented for migration, it is natural

to attempt to extend them to other types of complex fluids. For example, experimental

measurements of migration are known for soft entities in Taylor-Couette and cone-plate

rheometers: drops [31, 61] and polymers in dilute suspensions [3, 26] either migrate towards

the center (cone-plate) or adopt an equilibrium position that lies between the gap centre-

line and the inner cylinder (Taylor-Couette), which corresponds to high shear rate regions.

Because drops, polymers, and vesicles have quite different properties, their similar behavior

with respect to migration supports our conjecture that the basic mechanisms governing

migration are independent of the mechanical details of the suspended entity and depend only

on the flow curvature and N . An interesting line of research would be to study the evolution

of order for higher concentrations, and provide a detailed link between microstructure and

rheology.
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CHAPTER IV

A FAST ALGORITHM FOR SIMULATING VESICLE FLOWS IN

THREE DIMENSIONS

In this chapter, we present algorithms for the simulation of general three-dimensional vesicle

flows in unbounded domains, extending our work presented in Chapter 2 for the two di-

mensional domains. The main components of the algorithm are similar in spirit to the two

dimensional case (spectral approximation in space, semi-implicit time-stepping scheme),

important new elements need to be introduced for a 3D method. In particular, spatial

quantities are discretized using spherical harmonics, and quadrature rules for singular sur-

face integrals need to be adapted to this case; an algorithm for surface reparametrization is

needed to ensure sufficient of the time-stepping scheme, and spectral filtering is introduced

to maintain reasonable accuracy while minimizing computational costs. To characterize

the stability of the scheme and to construct preconditioners for the iterative linear system

solvers used in the semi-implicit time-stepping scheme, we perform a spectral analysis of

the evolution operator on the unit sphere.

By introducing these algorithmic components, we obtain a time-stepping scheme that,

in our numerical experiments, is unconditionally stable. We present results to analyze the

cost and convergence rates of the overall scheme. To illustrate the applicability of the new

method, we consider a few vesicle-flow interaction problems: a single vesicle in relaxation,

sedimentation, shear flows, and many-vesicle flows.

4.1 Introduction

As we mentioned in Chapter 1, vesicle-inspired mechanical models can be used to approx-

imate red blood cell mechanics. For example, at equilibrium (i.e., in a quiescent fluid),

healthy red blood cells have a biconcave shape that corresponds to a minimal membrane

bending energy. Under nonequilibrium conditions, as experienced in a simple shear flow,

the best-studied features of red cell dynamics, formation of tank-treading ellipsoids and

55



tumbling motion, are shared with vesicles [16, 69, 73].

The vesicle evolution dynamics is characterized by a competition between membrane

elastic energy, surface inextensibility, vanishing in-plane shear resistance, and non-local

hydrodynamic interactions. Simulation of vesicles is a challenging nonlinear free boundary

value problem, not amenable to analytical solutions in all but a few simple cases; numerical

simulations and experiments are the only options for the quantitative characterization of

vesicle flows.

In this chapter, we present an algorithm for the simulation of general three-dimensional

vesicle flows, extending our work for two dimensional domains, presented in Chapter 2, and

3D axisymmetric vesicles [134]. To demonstrate the capabilities of our code, we depict a

few time-snapshots from a twenty-vesicle simulation in Figure 19.

To establish notation for this chapter, we start with the standard PDE formulation of

the problem:

−∆v +∇p = 0 in R3\γ (conservation of momentum in bulk fluid),

div v = 0 in R3\γ (conservation of mass),

divγv = 0 on γ (surface inextensibility),

J−pn + (∇v +∇vT )nK = fb + fσ on γ (balance of momentum on the membrane),

v − v∞ → 0, if ‖x‖ → ∞ (far field condition),

∂x

∂t
= v on γ (membrane material point motion).

(38)

In the first equation, v is the fluid velocity, p is the pressure, and γ is the vesicle membrane.

In the third equation, divγ is the surface divergence operator. In the fourth equation, JqK

denotes the jump of a quantity q across the vesicle membrane, n is the normal to the vesicle

membrane, fb is a force due to bending resistance of the vesicle membrane, and fσ is a force

(tension) that enforces the surface inextensibility constraint. In the momentum balance

equation, we assume that the mass of the membrane is negligible. In the last equation,

x is the position of a material point on the membrane. In addition, the last equation

encapsulates the fact that JvK = 0 due to conservation of mass (normal direction) and the
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 48 ∆t  56 ∆t  40 ∆t 

 20 ∆t t = 0 

 72 ∆t  88∆t 

Figure 19: Snapshots of twenty vesicles suspended in a simple shear flow. Ini-
tially, each vesicle has a non-equilibrium 2-1 ellipsoidal shape and they are arranged in a rect-
angular lattice. The shear rate is χ = 18. The number of spatial discretization points is
338(p = 12) and the average wall-clock time is 110 seconds per time-step on a 2.33 GHz Xeon
workstation with 4GB of RAM.
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non-slip condition (tangent plane).

A mathematically-equivalent formulation is based on a an explicit form of the solution

of Stokes equation in the free space:

v = v∞ + S[fb + fσ] on γ,

divγ v = 0 on γ,

∂x

∂t
= v on γ.

(39)

where S is the single-layer Stokes operator, defined in Section 4.3. The first equation

encapsulates five equations of the PDE formulation: conservation of momentum in the bulk

and on the membrane, conservation of mass, and the far-field boundary conditions for the

fluid.

4.1.1 Contributions

We extend the ideas presented in [135] to the general case of vesicles in three dimensions.

The main features of the method of [135] are an integral equation formulation, spectral

discretization in space, and a semi-implicit time-stepping scheme. In [134], an extension of

[135] to the axisymmetric case is proposed. There are several challenges specific to numerical

simulation of non-axisymmetric vesicles flows in 3D:

(i) What should the spatial discretization scheme be to maximize accuracy, computational

efficiency, and numerical stability?

(ii) Unlike 2D, using a Lagrangian frame of reference for spatial discretization of vesicle

boundary results in extreme distortions, leading to numerical instability; how can this

instability be controlled?

(iii) Bending and tension forces in the 3D case have a more complex nonlinear form; can we

design a time-stepping scheme that addresses the severe stiffness while having similar

per-time-step complexity to the explicit scheme (similar to our schemes for 2D and

axisymmetric flows [134, 135])?

A summary of our contributions is as following:

58



• We develop a high-order spatial discretization for inextensible vesicles based on spher-

ical harmonics (Section 4.4), combining and extending a number of previously pro-

posed techniques (Section 4.2), including extending the quadrature scheme of [58] to

the Stokes kernel (Section 4.4.1);

• We propose a particular linearization for a semi-implicit time-stepping scheme along

with a preconditioning scheme (Section 4.5.3);

• We analyze the stiffness of Equation (39) (Section 4.5) and use it to precondition the

linear solves in the semi-implicit time scheme;

• We propose a reparametrization scheme for stabilization of time-stepping, and analyze

its accuracy and stability (Section 4.6);

• We verify the numerical scheme by comparing vesicle dynamics obtained with the

proposed method against shapes obtained using our axisymmetric solver , which is

based on an entirely different discretization scheme, (Section 4.7);

• We present results on computing the equilibrium shapes of dilute suspension under

shear flow, examine a two-vesicle interaction problem, study the sedimentation of a

vesicle, and provide an example of a simulation with multiple vesicles (Section 4.7).

Synopsis of our method. Our method is based on Lagrangian tracking of spectral collo-

cation points placed on the membrane of the vesicle combined with a surface reparametriza-

tion scheme. We achieve spectral accuracy in space by discretizing using spherical harmon-

ics, which we use for the representation of the membrane and its spatial derivatives, for

quadratures, and for anti-aliasing (Section 4.4). For weakly-singular integrals, we use the

scheme proposed in [58], which enables high-accuracy simulations with a small (compared

to low-order schemes) number of points per vesicle. For the position update in time, we use

two variants of a semi-implicit marching scheme first derived for advection-diffusion equa-

tions [5] and then applied on integral-equation based fluid-structure interaction problems

in [129].
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The time-marching scheme requires the solution a linear system of equations at each

time step, which we perform using a Krylov iterative method (GMRES [114]). The problem

of poor conditioning is addressed by a preconditioner based on the analytically obtained

spectrum of the operators in Equation (39) for the special case of a unit sphere. Vesicle-

vesicle interactions can be carried out using the kernel independent fast multipole method

[144]. In this chapter, we focus on the mathematical formulation and not on performance

and parallelization. We report, preliminary results on a high-performance parallel imple-

mentation of this method in Chapter 6.

In all, we are able to achieve high accuracy while using a small number of unknowns

per vesicle for the spatial discretization and taking large time steps with a relatively low

computational cost per time step. Pseudocode that summarizes the scheme can be found

in Section 4.5.3.

4.1.2 Limitations

We restrict our attention to suspensions of vesicles in fluids with unbounded domains. We

have ignored inertial terms, so the overall method is restricted to low Reynolds numbers.

We only consider spherical-topology vesicles and we do not allow for topological changes,

which are present in many biophysical phenomena involving vesicles.

In our examples, we assume that the interior and exterior of the vesicles are filled with the

same liquid. The algorithm extends to the case of viscosity contrast with the introduction

of double layer potentials [104]. Additional convolution with a stresslet is required which

can be computed using the singular quadrature rule described in this paper. The detailed

algorithm for two-dimensional flow was presented in Chapter 2, in which in addition to

viscosity contrast we introduce confined flows with Dirichlet boundary conditions. The

formulation for the three dimensional case is similar. We will report the extension in

Chapter 5.

An important limitation of our scheme is the lack of adaptivity (both in space and

time). This lack of adaptivity can cause vesicle-vesicle collisions, which are not possible in

the mathematical model we use. Indeed, one can easily construct simulations where without
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a significant increase of the surface discretization size, our code fails to resolve inter-vesicle

interactions accurately. This is an open problem and we are currently working on addressing

this issue. We have also observed a dependence of the stable time step size on the shear

rate.

4.1.3 Outline of the Chapter

In the next section, we review the related work on numerical methods for vesicle flows in

three dimensions. In Section 4.3, we present the overall integral equation formulation. In

Section 4.4 and Section 4.5, we present the spatial and temporal discretization schemes

respectively. In Section 4.6, we discuss the reparametrization scheme and we conclude in

Section 4.7 with results from numerical experiments.

4.2 Related Work

Several of the algorithmic components of the proposed method have appeared in the lit-

erature. This work is the extension of our previous works on the dynamics of vesicles in

two and three dimensions [110, 134, 135, 136]. Few other closely related papers are the

work of Graham and Sloan [58] on singular quadratures for the scalar Helmholtz operator,

Zinchenko and Davis [155] on surface reparametrization schemes for drops and deformable

particles, and the work of Zhao et al. [148] on boundary integral equation based simulations

of red blood cells in shear flow, presenting a spherical harmonic discretization of membranes

with bending and shear resistance and explicit time discretization for particulate flows of

this type. To our knowledge, there is no prior work on implicit or semi-implicit schemes for

locally inextensible vesicles.

We focus our discussion of related work on three-dimensional numerical methods; we do

not attempt to perform a comprehensive review of experimental and numerical studies of

vesicle flows.

Three-dimensional vesicle flows. Stokesian particulate flow problems are solved using

a variety of methods, including unstructured finite element methods and Cartesian grids

(immersed boundary/interface, fictitious domain, phase-field and level sets). For a brief
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review of these methods, in comparison with integral equation formulations, see [20]. Several

groups have considered stationary shapes of three-dimensional vesicles using semi-analytic

[22, 28, 122], or numerical methods like the phase-field [43, 44] and finite element methods

[48, 85]. These approaches are based on a constrained variational approach (i.e., minimizing

the bending energy subject to area and volume constraints) and have not been used for

resolving fluid-structure interactions.

We restrict our discussion to integral equation formulations, which, for certain classes of

problems, offer certain computational advantages compared to stencil-based methodologies

(finite differences or finite elements). Pozrikidis [104] reviews the work on boundary integral

formulations for particulate flows prior to the year 2000.

The main features of an integral-equation vesicle flow solver are the underlying formu-

lation (direct vs indirect), the discretization of the surface, the quadrature scheme, and

the time-stepping scheme. For Lagrangian vesicle surface discretization, a form of adapting

the sampling of the surface to the deformed shape (reparametrization) is needed. To our

knowledge the majority of particulate flow solvers in three dimensions use explicit schemes

with the exception of the work of Dimitrakopoulos [39]. In that work, a Jacobian-free,

finite-difference based Newton method was used. Despite its good convergence, the cost per

iteration is somewhat higher than our approach as the method requires multiple evaluations

for each matrix-vector multiplication and no preconditioning was used. In the remainder

of the this section we discuss the related work to each of the key algorithmic component in

our work.

Integral equation formulation. Several authors [16, 29, 30, 73, 125] have used direct

integral equation formulation for simulating vesicle flows. This formulation results in a

single-layer potential for flows with no viscosity contrast and a combination of a single-

layer and a double-layer for flows with viscosity contrast [73, 104, 125, 150]. A particular

feature of vesicle flows is the local surface inextensibility constraint. Kraus et al. [73] and

Sukumaran and Seifert [125] enforce the constraint by a penalty formulation. The penalty

parameter results in artificial stiffness and loss of accuracy with respect to the constraint.
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Imposing the constraint using a Lagrange multiplier removes the stiffness and resolves the

inextensibility constraint with spectral accuracy [107, 134, 150].

Surface discretization. In particulate flows, the surface is typically represented by a

triangulation. Once such triangulation is available, either collocation or Galerkin schemes

can be used to discretize the integral equation [7]. Examples include [73, 106, 113, 125].

High-order B-spline methods were used by Zhou and Pozrikidis [150]. Pozrikidis [105]

proposes a boundary element scheme for deformable capsules with bending and in-plane

shear resistance based on six-node quadratically curved triangles and a low-order accurate

integration method. This discretization requires tracking of 1026 points per surface to

get 0.01% error in the total volume of the particle. Spherical harmonics have been used

frequently in boundary integral equations [7]. It enables spectrally accurate integration

and differentiation. Zhao et al. [148] use a spherical harmonic discretization for deformable

capsules with bending and shear resistance, but no inextensibility constraint was imposed.

Singular quadratures. Bruno and Kunyansky [27] proposed a spectral integration scheme

for weakly-singular integrals. Ying et al. [145] extended that algorithm to arbitrary-geometry

smooth surfaces. Although asymptotically optimal, this scheme is rather expensive as it

requires the use of partition of unity functions, for which derivative magnitudes rapidly

increase with order and as a consequence, a relatively large number of points is needed for

good approximation. This scheme is used by Zhao et al. [148]. To reduce the discretization

size without compromising accuracy, we use the scheme proposed by Graham and Sloan

[58]. It is only applicable on smooth surfaces of genus zero but it is quite fast. The schemes

of Bruno and Kunyansky [27] and Graham and Sloan [58] are compared by Ganesh and

Graham [51] and it is shown that the latter scheme is more accurate for small numbers of

discretization points.

Simulation of concentrated suspensions of vesicles requires evaluation of nearly-singular

integrals. Although we could use the integration scheme proposed by Ying et al. [145], we

opted for a simple upsampling-based quadrature for this work.
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Reparametrization. In the context of deformable surfaces, the need and methods for

maintaining grid quality is ubiquitous. All the resampling methods known to us in this

context focus on mesh-based surface representations (primarily piecewise-linear, but also

higher-order, e.g. [75]) and we are not aware of any methods designed for spectral dis-

cretizations.

Many approaches are based on various types of tangential mesh smoothing, often com-

bined with connectivity adaptation. For simulation of multiple interacting drops, Loewen-

berg and Hinch [82] proposed a heuristic formula for artificial tangential velocity reducing

mesh distortion. Zinchenko et al. [156] observed that the technique of Loewenberg and Hinch

[82] leads to instabilities in simulations with gravity induced motions, and constructed a

tangential velocity field by global minimization of the sum of squares of the rates of change

of the distances between adjacent vertices (tangency of the field is enforced as a constraint),

the first instance of the (passive stabilization) approach. This method was further developed

by introducing different objectives for minimization in Zinchenko et al. [157] and Zinchenko

and Davis [151], which adapted the sampling density to curvature and controlled trian-

gle quality. The more complex versions of passive stabilization methods tend to be quite

expensive as relatively complex nonlinear energies are minimized using gradient descent.

A simpler version of passive stabilization suitable for moderate deformations was used by

Zinchenko and Davis [152, 153, 155], including a distance-preserving term, and a trian-

gle “compactness” term penalizing elongated triangles. Later, Zinchenko and Davis [154]

supplemented the same simplified energy by node redistribution, aiming to equalize mesh

edge lengths. A modification of this method reducing maximal deviation from average is

described in [154]. In [37] a damped relaxation with the energy gradient projected to the

surface is used. Additionally, nodes are added by triangle quadrisection (also to minimize

the energy) and removed by edge collapse.

An advancing-front method for remeshing of quadratic triangular elements (originally

proposed by Lo [80]) adapting triangle size to local criteria such as curvature is described

in [75] and is extended in a number of subsequent papers to surfaces, in particular in [84].

Tryggvason et al. [131] briefly describe an algorithm for adapting a mesh to an evolving fluid
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interface, which uses edge length as a criterion for bisection and edge collapses to remove

small elements.

A set of algorithms for anisotropic mesh adaptation, including anisotropic smoothing,

applicable to the problem of approximating deforming surfaces, was presented by Jiao et al.

[63].

Feng and Klug [48] use subdivision finite elements, and demonstrate that local inexten-

sibility combined with a sufficiently accurate Galerkin method makes it possible to simulate

moderate deformations with fluid membranes (without fluid interaction). Ma and Klug [85]

mention that local inextensibility combined with large deformations still leads to instability,

and describe how viscous stabilization of the mesh can be achieved by minimizing an en-

ergy measuring the deviation of edge length from previous values. This approach is suitable

for computing equilibrium shapes in the absence of external forces, but not for dynamic

simulations.

Aliasing errors. While various nonlinear geometric quantities, such as mean and Gaus-

sian curvatures, can be evaluated accurately pointwise, they may contain high frequencies

which cannot be resolved properly with a small number of sampling points, leading to

aliasing errors [15, 130], i.e., discretization errors that can be resolved by increasing the

resolution. As it was experienced by Veerapaneni et al. [135], in two dimensions 64 points

were sufficient to resolve the vesicle interactions and aliasing was not an issue. In three

dimensions, however, we need to consider aliasing errors for two reasons: first, we would

like to enable accurate simulations with very few spectral collocation points (say about

100 points) to allow simulations with very large number of vesicles. In this regime, fil-

tering is required to deal with unresolved frequencies. Second, unlike capsules endowed

with strong shear resistance, vesicles are fluid membranes and as a result they experience

excessive deformations that lead to significant amplification of aliasing errors. Zhao et al.

[148] experimentally show that, typically, an aggressive upsampling of three to four times

the current order of spherical harmonics is needed for accurate evaluation of derivatives.
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4.3 Formulation

In the rest of the paper we assume that the fluids in the interior and exterior of the vesicle

have the same dynamic viscosity µ. The case of vesicles with viscosity contrast is formulated

in Chapter 5.

Notation. Before we state the overall formulation of the problem, let us set the notation.

We consider a single vesicle first:

• With γ we denote the vesicle membrane (or vesicle boundary).

• For a vector field f(y), y ∈ γ, and an arbitrary point x ∈ R3 we define the single-layer

Stokes operator as

Sγ [f ](x) :=

∫
γ
G(x,y)f(y) dγ(y), G(x,y) :=

1

8πµ

(
1

‖r‖ I +
r⊗ r

‖r‖3
)
, r = x−y,

(40)

where G is the free-space Green’s function for the Stokes equation, ‖·‖ is the Euclidean

norm in R3, and I is the 3× 3 identity operator.

• By divγ(x), gradγ(x), and ∆γ(x) we denote the surface divergence, surface gradient,

and surface Laplacian (Laplace-Beltrami operator) respectively evaluated on x ∈ γ.

• By W (x),n(x), H(x) and K(x) we denote the area element, the unit normal to γ,

the mean curvature, and the Gaussian curvature defined on a point x ∈ γ. We give

explicit formulas in Section 4.8.

• Finally, let us define the bending fb and tension fσ forces on a point x ∈ γ:

fb(x) = −κB
(

∆γ(x)H(x) + 2H(x)(H(x)2 −K(x))
)
n(x),

fσ(x, σ) = σ∆γ(x)x + gradγ(x)σ,

(41)

where κB is the surface’s bending modulus. These are obtained by taking the L2−gradient

of the surface energy E =
∫
γ

1
2κBH

2 + σ dγ. See [140] for the derivation.
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In the rest of the paper, we will frequently suppress the dependence of divγ , gradγ , ∆γ ,

H, K, fb, fσ,n on the evaluation point, which should be clear from the context. Following

[135] the evolution of a point x on the vesicle’s boundary γ is governed by

ẋ = v∞(x) + S[fb + fσ](x)

divγ (S[fσ]) = −divγ (v∞ + S[fb]) ,

(42)

where v∞ is a specified far-field velocity.

4.4 Spatial Scheme

We use spherical harmonic expansions to represent the surface and the interfacial forces.

For force evaluation we need to apply forward and inverse harmonic transforms, as well as

differentiate and integrate functions on the surface. In this section, we describe our surface

representation, spectral differentiation and quadratures used to integrate functions on the

surface, both smooth and singular, with singularity due to multiplication by the Stokes

kernel. We conclude with a brief discussion on quadratures for near-singular vesicle-vesicle

interactions.

Spherical harmonics. Let γ be a smooth surface of spherical topology and let x : U → γ

be a parametrization of γ. The domain U is the rectangle {(u, v)|u ∈ [0, π], v ∈ [0, 2π)}; u

parametrizes the latitude and v parametrizes the longitude. A scalar spherical harmonic

function of degree n and order m is given by [24]

Y m
n (u, v) =

1√
2π
P̄mn (cosu)eimv, where P̄mn (t) :=

√(
n+

1

2

)
(n−m)!

(n+m)!
Pmn (t).

(43)

Here, |m| ≤ n, Pmn denote the associated Legendre functions of degree n and order m,

and P̄mn denote the corresponding normalized associated Legendre functions. Spherical

harmonics form an orthonormal basis for square-integrable functions defined on the unit

sphere: any scalar function φ ∈ L2(S2) can be expanded as

φ(u, v) =

∞∑
n=0

n∑
m=−n

φ̂mn Y
m
n (u, v), (44)
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where φ̂mn =

∫ 2π

0

∫ π

0
φ(u, v)Y m

n (u, v) sinu du dv. (45)

For φ ∈ C∞(S2), the finite-term approximation

φ(u, v) ≈
p∑

n=0

n∑
m=−n

φ̂mn Y
m
n (u, v) (46)

is spectrally convergent [95].

Surface representation. The vesicle boundary γ is described by a set of spherical har-

monic coefficients {x̂mn |n = 0, . . . , p;m = −n, . . . , n} so that for all x ∈ γ we have:

x(u, v) =

p∑
n=0

n∑
m=−n

x̂mn Y
m
n (u, v), u ∈ [0, π], v ∈ [0, 2π). (47)

Each Cartesian component of the position vector x is expanded as a real-valued function.

In total, we need (p+ 1)2 coefficients for each Cartesian component.

Forward and inverse transforms. A standard choice for spectrally accurate integration

of a function represented by an order p spherical harmonic expansion is to use the trapezoidal

rule for v and Gaussian quadrature rule for u: we choose 2p + 2 equispaced nodes in the

v-direction {vk = πk
p }

2p+1
k=0 and p+ 1 nodes along the u-direction {uj}pj=0 given by

uj = cos−1(tj), where tj ∈ [−1, 1]. (48)

Here tj ’s are (p + 1)-point Gauss-Legendre quadrature nodes. On this grid a standard

convergence estimate holds:

Theorem 4.4.0.1. (Quadrature rule for regular integrals) For any smooth function f de-

fined on a C∞ surface γ of spherical topology, the quadrature rule∫
γ
fdγ =

p∑
j=0

2p+1∑
k=0

wjkf(uj , vk)W (uj , vk), where wjk =
π

p

λj
sinuj

(49)

is superalgebraically convergent with p. Here, λj are the Gaussian quadrature weights and

W (uj , vk) is the infinitesimal area element of γ.
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One can use fast transforms for both longitude (Fast Fourier Transform) and latitude

(Fast Legendre Transform [FLT]) so that the spherical harmonic coefficients can be com-

puted in O(p2(log p)2 + p2 log p) (see [89])1. The pseudocode for the forward spherical

harmonic transform is given in Algorithm 4.4.1. A similar algorithm can be used for the

inverse transform.

Algorithm 4.4.1 Forward spherical harmonics transform.

for j = 0 to p do
x̂m(uj) =

∫ 2π
0 x(uj , v) e−imvW (uj , v) dv, for |m| ≤ p

≈ π
p

∑2p
k=1 x(uj , vk) e

−imvkW (uj , vk) // trapezoidal rule and FFT

end for // Can be done in O(p2 log p)

for m = −p to p do
for n = |m| to p do

x̂mn =
∫ π

0 P̄mn (u) x̂m(u) du
≈∑p

j=0(λj/ sinuj)P̄
m
n (uj) x̂m(uj) // Gaussian quadrature and FLT

end for
end for // Can be done in O(p2(log p)2)

Computing derivatives. We compute derivatives of functions defined by samples on γ

by applying the forward spherical harmonic transform and using standard differentiation

formulas in the spectral domain:

xu =

p∑
n=0

n∑
m=−n

x̂mn (Y m
n )u , xv =

p∑
n=0

n∑
m=−n

x̂mn (Y m
n )v (50)

where the derivatives of spherical harmonics are:

∂kY m
n

∂vk
= (im)kY m

n . (51)

(Y m
n )u =

√
(n−m)(n+m+ 1) e−iv Y m+1

n +m cotuY m
n , (52)

(Y m
n )uu = (n+m+ 1)

√
(n−m)(2 +m+ n)e−2ivY m+2

n +

(2m+ 1)
√

(n−m)(n+m+ 1)e−iv cotuY m+1
n −m2 Y m

n . (53)

For smooth x this numerical differentiation scheme is spectrally accurate because the only

approximation made is the pth-order spherical harmonic transform.

1In our implementation, we use direct transforms since p is relatively small. As we will see, the main cost
of the computation is resolving the weakly singular Stokes single-layer potential.
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Computing differential quantities accurately requires filtering for anti-aliasing. For in-

stance, the mean curvature, H(x), of a smooth surface is a smooth function which can be

computed at sample locations from the derivatives of x (see Section 4.8). However, even if x

is bandlimited and exactly representable with the expansion of order p, this could no longer

be true for the mean curvature, and its reconstruction from the values at sample points

used for x suffers from aliasing. To reduce these errors, we upsample x using spherical

harmonics interpolation, perform differentiation, filter out the high-frequency components

and then restrict the result to the original grid. The required upsampling order depends on

the surface and also the differentiation order and p (for high-enough p, both x and H are

resolved and no filtering is necessary). In our numerical experiments, we found that upsam-

pling to a resolution two times higher than the original grid works well. We demonstrate

one such experiment in Figure 20.

ratio

1 1.28e−2 1.71e−1 1.09e−1 2.30e−1

2 2.40e−5 6.39e−3 2.70e−4 9.13e−3

4 6.29e−11 3.81e−5 3.56e−8 1.80e−5 0 5 10 15 20

10
−10

10
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n
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n
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Figure 20: Aliasing error in calculation of curvature. In the left table, we report
the relative errors ‖Hq/p −H∗‖∞/‖H∗‖∞ in the computation of the mean curvature. By Hq/p,
we denote the mean curvature obtained by upsampling a pth order representation of the x to
qth order, computing the curvature and then restricting it to the original grid. The reference
function H∗ is computed analytically. Each row corresponds to a particular ratio q/p and for

all shapes we have set p = 6. In the right figure, we plot the spectrum En[f ] =
∑n
m=−n |f̂mn |

of the functions x1(u, v) and H(u, v) corresponding to the rightmost shape in the table. The
bandwidth of the curvature, as expected, is higher than that of the positions justifying the need
for upsampling.

4.4.1 Singular Integration

For integrals involving the weakly singular Stokes kernel, we use a superalgebraically con-

vergent integration scheme. There are many techniques that can be used to resolve the

singularity accurately. As discussed in the introduction, our main goal in choosing the

quadrature scheme is to achieve spectral accuracy while maintaining good computational
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efficiency for small values of p (p ≤ 48). For smooth surfaces that admit global parametriza-

tion, there are two main approaches to singular integration: one proposed by Bruno and

Kunyansky [27] based on partitions of unity and the other proposed by Graham and Sloan

[58] based on rotations and special quadratures. The former scheme has better asymptotic

complexity O(p3) as opposed to the O(p5) of the latter. However, for the values of p that

are of interest to us (p ≤ 48), the scheme by Graham and Sloan performs much better

[51]: multiplication by the partition of unity used in the scheme of [27] results in substan-

tial increase in the integrand derivative magnitudes resulting in lower accuracy for a given

number of samples. Here, we summarize the Graham-Sloan scheme for convolutions with

the Laplace kernel 1/‖r‖ and then discuss its extension to the Stokes kernel.

Consider a smooth scalar function f(x(u, v)) : S2 → R. We compute the integral

A[f ](ut, vt) :=

∫ 2π

0

∫ π

0

f(u, v)W (u, v)

‖r‖ du dv where r = x(ut, vt)− x(u, v) (54)

and W (u, v) is the surface area term. First, we rotate the coordinate system (u, v) →

(uR, vR) so that fixed evaluation point (ut, vt) becomes (0, 0) (the north pole). The po-

sitions are modified to x(uR, vR), the density to f(uR, vR) and the surface area term to

W (uR, vR). In subsequent expressions, we drop the the subscripts from (uR, vR) and the

coordinate system should be clear from the context. Applying the smooth quadrature rule

(Equation (49)), however, may still not be efficient. As an illustration, consider the unit

sphere. In this case, xS2(u, v) = (sinu cos v, sinu sin v, cosu), W = sinu and

AS2 [1](0, 0) =

∫ 2π

0

∫ π

0

sinu√
2− 2 cosu

du dv =

∫ 2π

0

∫ π

0
cos

u

2
du dv

=

∫ 2π

0
dv

∫ 1

−1
dt

1√
1− t2

, (55)

by change of variables t = cosu. The integral has a square-root singularity at t = ±1, and

hence a Gaussian quadrature rule in the t-domain (as applied in (Equation (49)), is not

efficient.

The Graham-Sloan scheme makes use of three properties: (1) since γ is diffeomorphic

to a sphere, it reduces the problem of computing the harmonic potential on γ to a problem

of computing the harmonic potential on S2. Defining s(u, v) = (W/‖r‖)S2 = cos(u/2), we
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can write Equation (54) as

A[f ](0, 0) :=

∫ 2π

0

∫ π

0
s(u, v)

(
f(u, v)W (u, v)

s(u, v)‖r‖

)
du dv;

(2) Although the function fW
s‖r‖ can be discontinuous at the north pole, it has sufficiently well-

behaved spherical harmonic expansions; (3) The harmonic potential on S2 can be computed

analytically for spherical harmonics [90]:

∫ 2π

0

∫ π

0
s(u, v)Y m

n (u, v) du dv =
4π

2n+ 1
Y m
n (0, 0). (56)

Based on these properties, we can construct modified quadrature weights to compute

the harmonic potentials. The result can be summarized as follows:

Theorem 4.4.1.1. (Quadrature rule for singular integrals at poles) [58] For any smooth

boundary x and for any smooth function f , the quadrature rule for computing the harmonic

potential at the north-pole given by

A[f ](0, 0) =

p∑
j=0

2p+1∑
k=0

wsjk
‖x(0, 0)− x(uj , vk)‖

f(uj , vk)W (uj , vk), with

wsjk = wjk

p∑
n=0

4π√
2(2n+ 1)

Pn(cosuj)

cos(uj/2)

(57)

is superalgebraically convergent2 with respect to p.

Proof. Let

g(u, v) :=
f(u, v)W (u, v)

s(u, v)‖x(0, 0)− x(u, v)‖ .

In [58] (Lemma 4.6), it is shown that the spherical harmonics expansion of g(u, v) converges

2The proofs outlined in [58] require that the functions need to be oversampled for spectral convergence.
However, here we have assumed no oversampling. Empirically we have found that spectral convergence can
be observed even without oversampling (eg. Table 13).
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sufficiently fast to allow for spectral accuracy of the quadrature rule. Then,

A[f ](0, 0) =

∫ 2π

0

∫ π

0
s(u, v)g(u, v) du dv, (58)

=

∫ 2π

0

∫ π

0
cos(u/2)

p∑
n=0

n∑
m=−n

ĝmn Y
m
n (u, v) du dv, (59)

=

p∑
n=0

n∑
m=−n

ĝmn

∫ 2π

0

∫ π

0
cos(u/2)Y m

n (u, v) du dv, (60)

=

p∑
n=0

n∑
m=−n

ĝmn
4π

2n+ 1
Y m
n (0, 0), (61)

=

p∑
n=0

4π

2n+ 1
ĝ0
n (because Y m

n (0, 0) = 0 for |m| > 0 ), (62)

=

p∑
n=0

4π

2n+ 1

∫ 2π

0

∫ π

0
Y 0
n

W

cos(u/2)‖x(0, 0)− x(u, v)‖ f du dv, (63)

=

p∑
j=0

2p+1∑
k=0

(
wjk

p∑
n=0

4π

2n+ 1

√
n+

1

2

Pn(cosuj)

cos(uj/2)

)
W (uj , vk)

‖x(0, 0)− x(uj , vi)‖
f.

(64)

The spectral accuracy follows from the convergence rate of approximation Equation (62)

for sufficiently large p. �

Now, let us consider any general point (u, v) other than the poles. Clearly, the quadra-

ture rule Equation (57) is not efficient to compute the harmonic potential at (u, v). However,

we can rotate the coordinate system so that (u, v) becomes the north-pole and then we can

apply Equation (57).

Remark 1. As has been observed by several authors [6, 27, 58], the function fW
‖r‖ in Equa-

tion (54) is smooth in the rectangular domain U because the vanishing surface area term W

counteracts the singularity due to 1/‖r‖. Therefore, applying the Gaussian quadrature along

u-direction (as opposed to Theorem 4.4.0.1 which applies Gaussian quadrature in t-direction

where t = cosu) and the trapezoidal rule along v-direction yields spectral convergence. How-

ever, the errors for a specific p would be slightly higher using this scheme compared to the

scheme described in Theorem 4.4.1.1. The reason for this is the clustering of the sampling

points near the poles, which results in less accurate approximations for a fixed p.
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A significant part of the overall complexity of Equation (57) is due to the rotation of

the coordinate system needed for every evaluation point on the vesicle surface. Since we use

p2 evaluation points on the surface, the overall cost of the rotation for just one evaluation

point is O(p4) (mapping p2 points to p2 points). (The rotations must be applied for f and

the three coordinates of the points.)

However, the O(p4) cost per point can be reduced to O(p3) per point by rotating in the

spherical harmonic representation. Invoking the addition theorem [24], one can show that

the harmonic coefficients of degree n in the rotated coordinate system depend only on the

coefficients of degree n in the original coordinate system.

More precisely, let F := {f(uj , vk)|j = 0, . . . , p; k = 0, . . . , 2p + 1}. The rotations can

be treated sequentially, i.e., we can first rotate the grid in the v-direction in the spherical

harmonics space (which corresponds to a simple shift requiring O(1) operations) and then

use a precomputed rotation in the u-direction. Given a target point (u, 0), ( (0,0) in the

rotated system), and for each degree n we use a n× n matrix Rn(u, 0) such that

F̂′n(u, 0) = Rn(u, 0)F̂n.

We represent the combined rotations in both u and v more compactly as

F̂′(u, v) = R(u, v)F̂.

Since F̂′n can be computed with O(p2) work, F̂′ can be computed in O(p3) work. The

matrices Rn are precomputed either using recurrences or directly by the recently proposed

algorithm of Gimbutas and Greengard [54]. Due to symmetry, we only need a p/2 set of

rotation matrices.

Let P be the forward spherical harmonics transform and P ∗ the inverse spherical har-

monics transform. Algorithm 4.4.2 summarizes the computation of an integral with har-

monic potential.

Extension to Stokes kernel. Let us assume the evaluation point to be the north pole.

The Stokes kernel Equation (40) has an additional factor

K(u, v) = I +
r⊗ r

‖r‖2 , r = x(0, 0)− x(u, v)
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Algorithm 4.4.2 Computing the harmonic potential.
Input: x := {x(uj , vk) | j = 0, . . . , p, k = 0, . . . , 2p+ 1}, F := {f(uj , vk) | j = 0, . . . , p, k =
0, . . . , 2p+ 1}
Ouput: {A[f ](uj , vk) | j = 0, . . . , p, k = 0, . . . , 2p+ 1}

X̂ = PX and F̂ = PF // O(p2 log2 p)

for k = 0 to 2p+ 1 do
for j = 0 to p do

x̂′ = R(uj , vk)x̂ // R is applied to each

component of every point in

x

F̂′ = R(uj , vk)F̂ // O(p3)

evaluate the harmonic potential using Equation (57)
y(uj , vk) = P−1x̂′ and Q(uj , vk) = P−1F̂′ // y and Q, used to simplify

notation

A[f ](uj , vk) =
∑p

n=0

∑2p+1
m=0

wsnm
‖y(un,vm)−x(uj ,vk)‖Q(un, vm)W ′(un, vm)

// O(p2)

end for
end for

multiplying the Laplace kernel 1/‖r‖. At the north-pole, K is continuous but non-smooth.

Hence, it is not clear if we can use Equation (57). It turns out that the following two

properties of the Stokes kernel suffice to extend the theoretical proofs of [58].

• K(u, v) is reflectionally symmetric, that is, K(u, v) = K(−u, v + π).

• K(u, v) is an infinitely differentiable function and all its derivatives are 2π-periodic in

both u and v.

For more formal descriptions, see Definitions 4.3 and 4.5 of [58]. We use the formula

S[f ](0, 0) =

p∑
j=0

2p+1∑
k=0

wsjkK(uj , vk) f(uj , vk)W (uj , vk)/‖x(0, 0)− x(uj , vk)‖ (65)

analogous to Equation (57) for evaluating the single layer potential with spectral accuracy.

At each evaluation point, we rotate the coordinate system so that it is mapped to the

north-pole and then use Equation (65). The overall complexity of the algorithm (for a

single vesicle) is O(p5) work and O(p3) storage.

nearly-singular integrals. Vesicle-vesicle hydrodynamic interactions are not singular,

so formally the smooth integration rule Equation (49) can be used. However, for close

75



interactions the accuracy of these rules deteriorates as the integrals become nearly singular.

A robust, fourth-order accurate, near-singular integration scheme for smooth surfaces is

presented in [145]. However, the constant in the complexity estimate of that scheme is

rather high since it involves multiple evaluations and interpolations, and requires finding

nearest points on the surface.

For this paper — motivated by our empirical observation that vesicles in the parameter

ranges that we have studied tend to be well-separated3 even in relatively concentrated

suspensions, we have opted for a simpler scheme that uses upsampling and anti-aliasing. We

spectrally upsample4 all vesicle surfaces by a factor of two (similar to the medium-distance

part of the evaluation in [145]), then we compute the interactions at this higher resolution

and then downsample to the original resolution using spectral cutoff. This computation

can be done in a per-vesicle adaptive way, but in our implementation we have used uniform

upsampling across all vesicles. Let us emphasize that in our simulations, oversampling and

filtering are necessary: if they are not invoked one observes numerical blow-up (Figure 26).

For more concentrated suspensions, the more expensive scheme of [145] is likely to be

required for robustness.

4.5 Time Scheme

In this section, we discuss an explicit and a new semi-implicit scheme for the vesicle shape

evolution. With very few exceptions (e.g., [39]), explicit schemes have been the method of

choice for three-dimensional particle simulations.

Explicit schemes have low computational cost per time step but are known to suffer

from stability restrictions on size of the time step. This restriction arises due the numerical

stiffness from the high-order spatial derivatives in the bending force. Consequently, the

overall computational cost of the simulating in a fixed time horizon tends to be high,

3We consider vesicles well-separated if the minimum inter-vesicle distance is greater than the distance
between sample points on the sphere. For example, two spheres in shear flow can come arbitrarily close
whereas for droplets the distance tends to stay relatively large [83]. We observe a similar behavior for the
case of vesicles; for example, see Figure 27.

4Upsampling (or spherical harmonic interpolation) refers to mapping the function to a finer grid by
computing the spherical harmonic coefficients (using the given function values at the coarser grid) and
then evaluating the spherical harmonic expansion in Equation (46) at the finer grid points. Similarly,
downsampling (or spherical harmonic filtering) refers to mapping the function to a coarser grid.
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especially with increasing spatial resolution. For vesicles, the inextensibility constraint is

typically enforced with an explicit penalty parameter [43, 73] that introduces additional

stiffness. In our explicit scheme, the inextensibility constraint is enforced using the tension

as a Lagrange multiplier.

Semi-implicit schemes offer a trade-off between the per-time step computational cost and

stability requirement on the time-step size. However, they are more difficult to analyze,

especially for nonlinear systems. For further discussion on implicit schemes for vesicle

simulations, see [135]. Another option is to use a fully implicit scheme. In our previous

work on 3D axisymmetric vesicle flows [134], we observed experimentally that a line-search,

single-level, Newton scheme in which the Jacobian is approximated using the semi-implicit

scheme linearization scheme does not result in computational savings.

An important part of both of our explicit and semi-implicit schemes is the need for

reparametrization of the surface to minimize aliasing errors. At every time step, an auxiliary

evolution equation

x̊ = F (x) (66)

is solved. The choice of the smoothing function F and the time-stepping scheme for Equa-

tion (66) is discussed in Section 4.6.

Before we describe the time-stepping schemes, we state three spectral properties of

the Stokes, bending, and surface inextensibility operators. We can use these results to

(1) characterize the stiffness of the problem, (2) construct preconditioners for the constraint

and evolution equations , Section 4.5.4.

4.5.1 Spectral Analysis on the Unit Sphere

To characterize the stiffness of the Equation (42), we consider the case of a spherical vesicle

(γ ≡ S2) and we derive the spectrum of S, divγ S[fσ], and a simplified form of S[fb]. To

analyze the spectral properties, it is convenient to use vector spherical harmonics that form

an orthogonal basis for all vectorial functions f ∈ L2(S2). They are defined in terms of the
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scalar spherical harmonics and their derivatives by

Vm
n (u, v) := ∇γY m

n (u, v)− (n+ 1)Y m
n (u, v)n(u, v) (67a)

Wm
n (u, v) := ∇γY m

n (u, v) + nY m
n (u, v)n(u, v) (67b)

Xm
n (u, v) := n(u, v)×∇γY m

n (u, v) (67c)

where n is the normal to the unit sphere.5

For notational convenience, we suppress the (u, v) dependence. Using these definitions,

we now derive the spectra of various operators.

Theorem 4.5.1.1. (Stokes operator) On the unit sphere, the vector spherical harmonic

functions Vm
n and Wm

n are the eigenfunctions of the Stokes single-layer operator S and

S[Vm
n ] =

n

(2n+ 1)(2n+ 3)
Vm
n , (68a)

S[Wm
n ] =

n+ 1

(2n− 1)(2n+ 1)
Wm

n . (68b)

Remark 2. The proofs follow directly from the antenna theorems of [118].

Proof. The single layer potential satisfies the homogeneous Stokes PDE

−µ4u +∇p = 0, ∇ · u = 0. (69)

inside and outside of S2, combined with velocity continuity and a jump in traction across

the interface. We prove the theorem by first finding a solution to Equation (69). We write

the fluid velocity u and the pressure p as

u = f(r)Vm
n + g(r)Wm

n (70)

p =
h(r)

r
Y m
n (71)

5 Various other sets of vector spherical harmonics are used in the literature, tailored for different kinds
of problems (e.g., [90, 139]), specifically, for Stokesian flows in [34, 138]. The ones we defined here are first
proposed in Hill [60]. They are traces on S2 of a corresponding basis set in R3, usually termed as solid vector
spherical harmonics, defined as [45]

Vmn (r, u, v) = r∇Y mn (u, v)− (n+ 1)Y mn (u, v)er,

Wm
n (r, u, v) = r∇Y mn (u, v) + nY mn (u, v)er,

Xmn (r, u, v) = er × (r∇Y mn (u, v)),

where (r, u, v) are the coordinates of a point in the spherical coordinate system with unit vectors (er, eu, ev).
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and substitute in Equation (69). We get the following three ordinary differential equations

for f, g, and h:

r2frr + 2rfr −
r

2n+ 1
hr − (n+ 1)(n+ 2)f = 0, (72)

r2grr + 2rgr +
r

2n+ 1
hr − n(n− 1)g +

n

2n+ 1
h = 0, (73)

(n+ 1)rfr − nrgr + (n+ 1)(n+ 2)f + n(n− 1)g = 0. (74)

Solving these equations analytically, we obtain four sets of basic solutions,

(i) (ii) (iii) (iv)

f 1

rn+2
− n

(n+ 1)rn
0 2nrn+1

(2n+ 1)(2n+ 3)(n+ 1)

g 0 2

(2n− 1)rn
rn−1 rn+1

2n+ 1

h 0 −2n(2n+ 1)

(n+ 1)rn
0 −2rn+1

In the exterior region (r > 1), only (i) and (ii) are admissible as the other two are

unbounded when r → ∞. In the interior region, only (iii) and (iv) are admissible as the

other two are singular at r = 0. Therefore, the velocity field u can be expressed as a linear

combination of two solutions in the exterior and two in the interior, leading to four unknown

constants. Two of these are determined by enforcing the velocity continuity across S2 and

the remaining two are determined by the jump in traction. Let us first consider S[Vm
n ], for

which,

J−µ(∇u +∇uT )n + pnKS2 = Vm
n . (75)

We get two equations by taking inner products with Vm
n and Wm

n . Solving these equations,

we get a closed form expression for the velocity u which is same as the single-layer potential

and is given by

S[Vm
n ](r, u, v) =


n

(2n+1)(2n+3)rn+2 Vm
n for r ≥ 1

nrn+1

(2n+1)(2n+3)V
m
n + (n+1)(rn−1−rn+1)

2(2n+1) Wm
n for r ≤ 1.

(76)

The result Equation (68a) is obtained by substituting r = 1 in the above equation. Similarly,

79



equating the traction jump to Wm
n , we get the following solution,

S[Wm
n ](r, u, v) =


n

2(2n+1)

(
1

rn+2 − 1
rn

)
Vm
n + n+1

(2n−1)(2n+1)rnWm
n for r ≥ 1

(n+1)rn−1

(2n−1)(2n+1)W
m
n for r ≤ 1.

(77)

and Equation (68b) is obtained by substituting r = 1. �

Theorem 4.5.1.2. (Inextensibility operator) On the unit sphere, the spherical harmonic

functions are eigenfunctions of the inextensibility operator L defined as

Lσ = divγ S[σ4γx +∇γσ]. (78)

and

LY m
n = − n(n+ 1)(2n2 + 2n− 1)

(2n− 1)(2n+ 1)(2n+ 3)
Y m
n . (79)

Proof. The proof follows directly from Equation (68). First we write the integrand in terms

of the vector harmonics:

Y m
n 4γx +∇γY m

n =
(n+ 2)Vm

n + (n− 1)Wm
n

2n+ 1
. (80)

Then using Theorem 4.5.1.1, we have

S[Y m
n 4γx +∇γY m

n ] =
n(n+ 2)

(2n+ 1)2(2n+ 3)
Vm
n +

(n− 1)(n+ 1)

(2n− 1)(2n+ 1)2
Wm

n (81)

The result follows by substituting the identities

∇γ ·Vm
n = −(n+ 1)(n+ 2)Y m

n , and ∇γ ·Wm
n = −n(n+ 1)Y m

n (82)

in Equation (81). �

Theorem 4.5.1.3. (Bending operator) On the unit sphere, the vector spherical harmonic

functions Vm
n and Wm

n are eigenfunctions of the bending operator defined by B[f ] = S[∆2
γf ]

and

B[Vm
n ] =

n3(n− 1)2

(2n+ 1)(2n+ 3)
Vm
n , B[Wm

n ] =
n(n+ 1)2(n+ 2)2

(2n+ 1)(2n+ 3)
Wm

n . (83)
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Remark 3. Note that we have used a simplified expression (fb = 42
γx) that retains only

the dominant term in the bending force.

Proof. The proof follows from Theorem 4.5.1.1 and the identities 4γV
m
n = −n(n − 1)Vm

n

and 4γW
m
n = (n+ 1)(n+ 2)Wm

n . �

From Theorem 4.5.1.1, Theorem 4.5.1.2 and Theorem 4.5.1.3, we conclude that (i) S

is a smoothing operator, (ii) L and B are ill-conditioned operators, and (iii) the condition

number of L grows as O(n) and the condition number of B grows as O(n3). Therefore, we

expect severe time-step restrictions for explicit schemes. Next, we discuss such a scheme

for the vesicle evolution equations.

4.5.2 Explicit Scheme

We begin our discussion by considering the time-stepping scheme for a single vesicle. Let

4t be a fixed time-step size. Given the positions of the discrete points on the vesicle surface

{xn(uj , vk) : 0 ≤ j ≤ p, 0 ≤ k ≤ 2p− 1} at time n4t, the goal is to solve Equation (42) for

the new positions at (n+1)4t. A first-order, explicit time-stepping scheme for Equation (42)

reads

L(xn)σn+1 = −divγ (S [fnb ] (xn)) (84a)

1

4t
(
xn+1 − xn

)
= S

[
fnb + fn+1

σ

]
(xn), (84b)

where all the differentiation operators are evaluated at xn and fn+1
σ := σn+1 ∆γ xn +

gradγ σ
n+1. In the first step, we solve a linear system defined by the discretization of

Equation (84a) for the tension σn+1, given the positions at n4t. In the second step,

Equation (84b), σn+1 is used for updating the positions. To compute the bending force fnb ,

we compute the curvatures Hn and Kn of the surface xn and substitute in Equation (41).

The explicit treatment of the single layer potential means that we evaluate it by the following

formula

S[fnb ](xn) =

∫ 2π

0

∫ π

0
G(xn(u, v),xn(u′, v′))fnb (u′, v′) du′ dv′, (85)

which is computed using the quadrature rule of Theorem 4.4.1.1. For the spatial discretiza-

tion of Equation (84a) and Equation (84b) we use a collocation method (Fourier-Legendre
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quadrature points). Finally, we use a Krylov iterative solver (GMRES [114]) combined with

a preconditioner to solve the constraint equation.

This explicit scheme requires the solution of one linear system at each time step and

resolves the numerical instability due to tension. However, the bending term is treated

explicitly. Based on the spectral analysis of Section 4.5.1, we conjecture that 4t ∼ O(p−3),

which is also corroborated by our numerical tests.

The extension of the scheme given inEquation (84) to multiple vesicle suspensions is done

by treating the vesicle-vesicle interactions explicitly. Given the individual vesicle positions

{xnk}Kk=1 at time n4t, the update of positions and tensions to (n+1)4t is done in three steps:

Step 1: Evaluate bending forces

for k = 1 to K do

Compute fk,nb , fk,nσ

end for

Step 2: Compute new tensions

Compute {σn+1
j }Kj=1 by solving

L(xnk)σn+1
k = −divγ

 K∑
j=1
j 6=k

S[f j,nσ ](xk)

−divγ

v∞ +
K∑
j=1

S[f j,nb ](xk)

 , k = 1, . . . ,K

Step 3: Explicitly update positions

for k = 1 to K do

xkn+1 = xkn +4t∑K
j=1 S[f j,nb + f j,n+1

σ ](xkn)

Surface Reparametrization and tension advection

Solve:

x̊n+1
k = F (xn+1

k ) // apply tangential smoothing

σ̊n+1
k + divγ

(
σn+1
k F (xn+1

k )
)

= 0 // advect the tension
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end for

Notice that after the surface reparametrization we need to advect the tension to the new

positions so that it is available for the next time step. The advection velocity is defined by

the reparametrization of the surface.

Next, we propose a new semi-implicit scheme for which we have observed experimentally

that the time step for stability is nearly independent of the spatial discretization size, p.

4.5.3 Semi-implicit Scheme

In a semi-implicit scheme, the linear parts of the stiffest terms are treated implicitly [4].

For example if we have a linear dynamical system of the form ẋ = Ax+Bx, in which A is

the stiff operator, we can discretize it using an implicit scheme for A and an explicit scheme

for B. Such schemes have been analyzed in [5]. Our system however, is more complex: it

is of the form ẋ = Q(x)x, where Q is a nonlinear operator; to our knowledge, there is no

analysis of semi-implicit schemes for such dynamical systems. Our semi-implicit approach

is, roughly speaking, to discretize it by xn+1 − xn = 4tQ(xn)xn+1.

Because of its constituent fourth-order spatial derivatives, the bending force is the lead-

ing order term that induces stiffness into the evolution equation. Therefore, we look for a

linearization of the bending force that results in a stable scheme:

L(xn)σn+1 = −divγ S [fnb ] (xn), (86a)

1

4t
(
xn+1 − xn

)
= S

[
fn+1
b + fn+1

σ

]
(xn), (86b)

where all the differentiation operators are evaluated at xn and fn+1
σ := σn+1 ∆γ xn +

gradγ σ
n+1. Suppressing the superscripts on explicitly treated terms for notational conve-

nience, the bending force is defined as

fn+1
b = −(∆γH

n+1 + 2Hn+1(H2 −K))n, (87)

and Hn+1 =
1

2W 2

(
Exn+1

vv − 2Fxn+1
uv +Gxn+1

uu

)
· n. (88)

In the time-stepping scheme, Equation (86), we first solve Equation (86a) for the tension
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force starting from the positions at time n4t and then we solve Equation (86b) for the

bending force using the linearization defined in Equation (87)6.

The advantage of this scheme over the explicit scheme discussed in Section 4.5.2 is

that the time-step restriction is overcome with only a modest increase in computational

cost. Fully implicit schemes, on the other hand, require solution of nonlinear equations at

every time-step making them potentially more expensive. We update {xkn, σkn}Kk=1 as follows:

Interfacial forces

for k = 1 to K do

Compute fk,nb and fk,nσ

end for

Interaction forces

for k = 1 to K do

F Ik = 0

for j ∈ {(1, . . . ,K) \ k} do

F Ik = F Ik + S[f j,nb + f j,nσ ](xk)

end for

end for

Update positions and tensions

for k = 1 to K do

Solve :

L(xnk)σn+1
k = −divγ(S[fk,nb ] + F Ik ) // Tension

6Since the tension force is linear in σ we can easily treat both the tension and bending forces implicitly.
In 2D [135] such kind of schemes have superior stability properties at low shear rates. We have implemented
this scheme in 3D and noticed (via numerical experiments) no improvements over Equation (86). Compared
to Equation (86), these schemes have higher computational cost because of the need to solve coupled linear
system of equations and hence are less desirable.
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xn+1
k −4tS[fk,n+1

b ] = xnk +4t
(
S[fk,nσ ] + F Ik

)
// Position

Surface reparametrization and tension advection

Solve:

x̊n+1k = F (xn+1
k ) // Tangential smoothing

σ̊n+1
k + divγ

(
σn+1
k F (xn+1

k )
)

= 0 // Advect tension

end for

High-order variants of the explicit Equation (84) and the semi-implicit Equation (86)

schemes are readily obtained using the backward difference formula [4].

Both the explicit and the semi-implicit schemes suffer from mesh distortion in longer

time simulations. In 2D, the local inextensibility constraint prevents the mesh distortion

to a large extent. Unfortunately, this is not the case in 3D. In Section 4.6, we propose a

new reparametrization scheme that preserves the quality of the mesh in a dynamic simu-

lation. But first, let us discuss how the spectral analysis of Section 4.5.1 can be used for

preconditioning.

4.5.4 Preconditioners

Tension solver. Given the configuration of the vesicle, the inextensibility operator L,

defined in Equation (78), is solved to get the corresponding tension. Depending on the time

marching scheme, the right hand side would be some smooth function, denoted here by b.

Therefore, the equation for the tension is Lσ = b. A discrete analogue of this equation is

ill-conditioned because by Theorem 4.5.1.2, the condition number of L on S2 grows as O(p).

Following our method in [135], we propose using P−1L−1(S2)P as a low cost precon-

ditioner for the solving the inextensibility constraint on general surfaces, where P is the

projection operator that maps φ to φ̂ for any scalar function φ. The action of L(S2) on

spherical harmonics is given in Equation (79). In Table 11 we list the number of required

GMRES iterations with and without using the preconditioner. We note that the gain is

significant only for large values of p.
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Table 11: Average number of GMRES iterations for the tension solver. The
average is taken over five time steps. GMRES tolerance is 1e−8 for all cases.

p 8 16 24 32 48

Preconditioned 3.5 6.8 10 14 20

Non-preconditioned 3.6 8.8 14 20 39

Position solver. Combining equations Equation (86), Equation (87), and Equation (88)

one can see that the linear equation which is solved for the new position xn+1 is in the form

(I−∆tB)xn+1 = b, where b is some known vector and B is the bending operator. According

to the spectral analysis in Section 4.5.1 and specifically equation set Equation (83), the

bending operator’s condition number grows cubically in the spherical harmonics’ order.

To subdue its ill-conditioning, we devise a diagonal operator in the spherical harmonic

space. The preconditioner is defined as P−1ΛP where P the projection operator, and

Λ := diag{(1 − ∆tn3)−1}. In Table 12 we report the number of GMRES iterations for

the position solver with and without applying the preconditioner. We note that while the

performance of the preconditioner is extremely well for low shear rates, it deteriorates for

higher shear rates.

Table 12: Average number of GMRES iterations for the position solver in the
semi-implicit scheme. The step sizes are the largest stable time steps from Table 14 and the
average is taken over ten time steps. The GMRES tolerance is set to 10−6.

Preconditioned Non-preconditioned

p χ = 0 15 150 0 15 150

12 2.7 12 17 12 5 3

16 2.7 12 17 21 12 3.3

24 3.6 13 19 36 23 7.4

32 3.6 13 17 55 37 9.2

48 3.6 13 17 98 45 9.4

4.6 Reparametrization

When membrane shear elasticity is present, as for example in Neo-Hookean constitutive

laws (e.g., [148]), there is a built-in mechanism that prevents material points on the mem-

brane from clustering together. The local surface inextensibility of vesicles prevents the

extreme deformations that can be observed in drops. Nevertheless, the lack of in-plane
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shear resistance causes significant distortions of the point distribution, which in turn in-

troduces unresolvable high-frequency components, excessive aliasing errors, and numerical

instability (for example see Figure 22). To address these errors and enable long-time accu-

rate simulations using a small number of spherical harmonics coefficients, we reparametrize

the surface at each time step through a redistribution of points that seeks to minimize the

high-frequency component of the spherical harmonics expansion of the surface parametriza-

tion. Unlike previous work, this anti-aliasing is nonlinear: it is not done by a linear spectral

projection but by solving a nonlinear variational problem.

We define the surface γ as the image of an embedding of the sphere x(q) : S2 → R3

where q is a point on S2. We assume that x(q) ∈ X , a space of sufficiently smooth functions

on S2. The choice of space depends on the energy; for the energy we consider below any

function in L2 can be used. Many different embeddings correspond to the same surface, and

our goal is to chose one that minimizes a quality measure E(x) : X → R. To characterize

all embeddings corresponding to γ, we use its implicit representation, a smooth function

F : R3 → R, such that F (γ) = 0 and ∇F does not vanish at x on γ. Then for any

parametrization x, F (x(q)) = 0, for all q ∈ S2. The unit normal to γ can be computed as

n = ∇F/‖∇F‖. Suppose we want to choose a new parametrization y(q) of the same surface

γ, so that we minimize the energy E(y) subject to the constraint that it is defining the

same surface, i.e., F (y) = 0 for all q.7 Using this notation our problem can be formulated

as a constrained optimization problem:

min
y∈X

E(y(q))

subject to F (y(q)) = 0, ∀q ∈ S2,

(89)

that is, find a parametrization y(q) of γ minimizing the quality measure E.

In general, this may be a highly nonlinear problem requiring a computationally expensive

method. At the same time, it is generally unnecessary to obtain a precise solution. We

present a simple inexpensive method that yields a sufficiently accurate approximation at a

7Note that that while it is possible to find a multiple covering of a surface that has lower energy and still
satisfies F (y) = 0, in general any such folded surface cannot be obtained by continuous deformation of x (a
non-folded surface) while maintaining F (y) = 0.
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low cost.

By introducing a Lagrangian E(y) +
∫
S2 µF (y) and taking variations with respect to y

and the Lagrange multiplier µ := µ(q), with µ restricted to a space of sufficiently smooth

functions on S2, we obtain the (strong form of the) first-order optimality conditions

∇yE(y(q)) + µ(q)∇yF (y(q)) = 0, for all q ∈ S2 (90a)

and

F (y(q)) = 0, for all q ∈ S2. (90b)

Due to the special form of these equations, it is possible to eliminate µ by taking the inner

product of Equation (90a) with ∇F , so that

∇E · ∇F + µ‖∇F‖2 = 0, or µ = −∇E · ∇F/‖∇F‖2,

where we drop the subscript y to simplify the notation. Substituting µ into Equation (90),

we obtain

(I − n(y)⊗ n(y))∇E(y) = 0 and F (y) = 0. (91)

We solve Equation (91) using pseudo-transient continuation [70] by introducing a parameter

τ . That is, we solve

yτ + (I − n(y)⊗ n(y))∇E(y) = 0, y(0) = x, and F (y) = 0, (92)

where yτ := ∂y
∂τ . This evolution of y cannot increase the energy, since we are moving in the

constraint manifold-projected steepest descent direction.8 Our parametrization optimiza-

tion can be viewed as a discretization of this flow using an explicit scheme:

yk+1 = yk + ∆τ(I − nk ⊗ nk)∇E(yk). (93)

8This can be seen as follows. Let δy, be the change of y along the projected steepest-descent direction
scaled by some ζ > 0. That is,

δy = −ζ(I − n⊗ n)∇E = −ζ∇E + ζ(∇E · n)n, ζ > 0.

Then the change in the energy

δE = E(y + δy)− E(y) = −ζ(‖∇E‖22 − ‖∇E · n‖22).

Since ∇E = (∇E ·n)n+∇Etangent at every point and ∇Etangent ·n = 0, it follows that δE = −ζ‖∇Etangent‖22
is non-positive. Therefore, we are guaranteed to reach a stationary point.
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Notice that we do not explicitly impose the constraint F = 0. In the continuous case, it is

satisfied for all values of τ if the initial value x satisfies F (x) = 0. Indeed, by substituting

Equation (93) into F (yk+1) one can show that the former is zero to first-order approximation

and F → 0 for all τ with ∆τ → 0. Of course, one needs to control the size of ∆τ to avoid

excessive discretization errors.

Choosing the surface parametrization quality metric E. We define a discrete filter

by the attenuation factors an,m for (n,m)-th harmonic. Let y =
∑

n,m 〈Y m
n , y〉Y m

n . Then

we define the energy as

E(y) :=
∑
n,m

a2
n,m 〈Y m

n , y〉2 . (94)

The variation of E with respect to y yields

∇E =
∑
n,m

a2
n,m 〈Y m

n , y〉Y m
n .

Since we want E to penalize the high frequencies in order to minimize aliasing errors, an,m

should be small for low frequencies and should grow for high frequencies. In the special

case of perfect low-pass filter (an,m = 0 for n < ncutoff and an,m = 1 for high),

∇E =
∑

n>cutoff ,m

〈Y m
n , y〉Y m

n , (95)

We penalize the high frequency part of y.9

Integrating the solver with vesicle simulations. In the context of vesicle simulations

at the end of each time step, we perform reparametrization to improve the quality of the

surface representation, using the scheme given in Equation (93) with the quality measure E

given by Equation (95). Since the objective of reparametrization is to maximize the decay

of spherical harmonic coefficients, we choose n0 in Equation (95) to be p/3 where p is the

order of truncated spherical harmonics series of the surface.

9We also experimented with filters associated with the inverse spectrum of the Laplace Beltrami operator
on the sphere. In the spectral domain, ai is proportional to the frequency, leading, as expected, to attenuation
with coefficients proportional to the frequency squared. There is no significant difference between the two
reparametrization schemes, but the anti-aliasing properties of the scheme that we use produced slightly
better results.
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In Algorithm 4.6.1, we give the pseudocode for the reparametrization step. In the

algorithm, ∇E is given by Equation (95). Notice, that in our implementation we use

upsampling (by a factor of two). That is we first upsample x, then we pseudo-time march

to obtain the new points y, and finally we downsample to the original resolution of x. This

upsampling significantly improves the quality and effectiveness of the reparametrization.

Algorithm 4.6.1 Explicit reparametrization.

Require: x
choose ∆τ
y0 = x
g0 = −(I − n(y0)⊗ n(y0))∇E(y0)
while ‖y − y0‖ > ρy and ‖g‖ > ρg‖g0‖ do

g = −(I − n(y)⊗ n(y))∇E(y) // projected gradient

y+ ← y + ∆τg
y← y+

end while

Algorithm 4.6.1 corresponds to a sequence of steepest descent steps for the constrained

minimization problem, Equation (89). One could use a line search approach for nonlinear

programming (e.g., with an `2 merit function [91]) but this requires access to F and is more

complex to implement. Instead, in our approach, the parameter ∆τ (which corresponds to

the line search step-length) can be chosen using curvature information. That is given x so

that F (x) = 0 and a perturbation in the steepest descent direction ∆τg, then

F (x + ∆τg) ≈ F (x) + ∆τ∇F (x) · g +
∆τ2

2
z · ∇∇F (x)z =

∆τ2

2
g · ∇∇F (x)g.

The Hessian ∇∇F (x) can be computed using the parametric form of the surface. Then we

can choose ∆τ so that F (x + ∆τg) < ρF ‖x‖. (Notice that the trace of the Hessian is equal

to the mean curvature, so roughly-speaking the pseudo-time step is inversely proportional

to mean curvature.)

One additional question is how to choose ρy and ρg. Parameter ρy ensures that if the

change in y becomes small the algorithm terminates. (We choose ρy = 10−2‖xn+1 − xn‖,

where xn+1 and xn are the new and old positions of the vesicle evolution.) ρg ensures that

if the gradient becomes too small the algorithm terminates. We demonstrate the effect of

reparametrization on the stability of the time marching scheme in the the next section,
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along with numerical experiments that examine different aspects of our method.

4.7 Results

In this section, we study the accuracy, stability and complexity of our computational scheme

through numerical experiments. In particular, we test (1) the accuracy of the high-order

derivatives calculation (curvature) (Section 4.4), (2) the accuracy of the smooth, the weakly-

singular, and the nearly-singular quadratures (Section 4.4.1), (3) the need for and effects

of reparametrization (Section 4.6); and (4) the time-marching stability properties of the

explicit and semi-implicit schemes (Section 4.5). In addition to verifying our method, we

also present results on the relaxation shapes of dilute suspension under shear flow, examine

a two-vesicle interaction problem, study the sedimentation of a vesicle, and provide an

example of a simulation with multiple vesicles.

First, we define the length and time scales for the different flow regimes we consider in

our experiments. For a vesicle of area A and volume V suspended in a linear shear flow

v∞ = γ̇(x3, 0, 0), the non-dimensional parameters are given by

length scale: R0 =

√
A

4π
,

time scale: τ =
µR3

0

κB
,

reduced volume: ν =
6
√
πV

A3/2
,

shear rate: χ = γ̇τ.

Quiescent flows are characterized by the nondimensional parameter τ , and simple shear

flows are characterized by τ and χ.

4.7.1 Derivative Accuracy

Consider a vesicle’s surface defined by

x(u, v) =


ρ(u, v) sinu cos v

ρ(u, v) sinu sin v

ρ(u, v) cosu

 , ρ(u, v) = 1+e−3Re(Y 2
3 (u,v)), u ∈ [0, π], v ∈ [0, 2π].

(96)
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As we have discussed, we use Equation (50) for differentiation. In Figure 21, we report the

relative errors in computing the Gaussian curvature K, and the mean curvature H of this

surface.

M(p) H K

162(8) 2.44e−1 2.21e−1

578(16) 3.09e−3 1.68e−3

1250(24) 1.78e−6 1.36e−6

2178(32) 4.25e−10 2.94e−10

3362(40) 2.05e−11 8.40e−11

4802(48) 3.29e−11 1.27e−10

Figure 21: Relative errors in computing the principal curvatures. The mean and
Gaussian curvatures, H and K, are computed numerically on the shape shown. Here M is the
number of spatial discretization points and p is the order of corresponding spherical harmonic
approximation. The exact values of H and K are computed analytically.

The errors decay super-algebraically with p. However, for higher values of p, the round-

off errors dominate and the relative errors start to grow as O(p2ε) where ε is the machine

precision. This behavior is typical for spectral methods [41].10 In the axisymmetric case

[134], we advocated differentiating non-bandlimited functions as frugally as possible. This

approach abates the round-off error growth to some extent. Another promising approach

is proposed recently in [23] based on expressing high-order derivatives as Cauchy integrals

over circular contours.

4.7.2 Accuracy of the Numerical Integration Schemes

Our singular integral evaluation scheme outlined in Section 4.4 is spectrally accurate. Other

popular spectral method is the floating partition of unity scheme [27]. Because of the steep

gradients in the partition of unity functions, this scheme loses a few digits of accuracy. Our

scheme, on the other hand, computes singular integrals as accurately as smooth integrals.

See [51] for a comparison of those two schemes.

We report the convergence results for the smooth and singular integral computation

10In the general case, the error grows as O(pkε) when computing a kth order derivative.
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Table 13: Relative errors in computing smooth and single-layer integrals. The
relative error in (i) smooth integrals: the area, A =

∫
γ
dγ =

∫
U
W dudv, and the volume,

V = 1
3

∫
U

(x ·n)W dudv, (ii) singular integrals: harmonic and Stokes potentials of unit function
defined on the shape shown in Figure 21. The reference values are computed using a finer
discretization.

Smooth integrals Singular integrals

p Area Volume Harmonic Stokes

8 7.19e−3 1.67e−3 1.15e−2 9.90e−3

16 1.42e−6 7.53e−8 2.50e−4 2.96e−4

24 6.79e−7 2.65e−13 2.01e−5 2.00e−5

32 2.33e−8 3.21e−15 3.25e−7 2.42e−7

schemes in Table 13. We can observe that the singular integrals are computed with nearly

the same order of accuracy as the smooth integrals (compare, for instance, the harmonic po-

tential and area computations). Consequently, using very few spatial discretization points,

we are able capture the essential vesicle dynamics. We show one such example in Figure 28.

4.7.3 Reparametrization

To verify the effectiveness of the reparametrization, let us consider a single vesicle in a shear

flow. Let the bending modulus of the vesicle κ = 1e−2, the shear rate χ = 15, and the

time horizon T = 0.6. In Figure 22(a) we show the configuration of the vesicle at different

time steps for two test cases. The top vesicle snapshots correspond to the case when we

perform reparametrization, and the bottom set of snapshots is without reparametrization.

As we can see in Figure 22(b), the energy of the surface remains bounded when we use

reparametrization. In its absence, as soon as the vesicle starts tank-treading, the energy

blows up. Note that the need for maintaining the grid quality is not limited to the case

when the vesicle undergoes tank-treading motion. As reported in [156], even in the case of

axisymmetric gravity-induced motions of deformable drops, the Lagrangian points cluster

at the tail of a drop. Moreover, a simple elimination of the tangential component of the

velocity, that is, updating the positions using the normal velocity (u · n)n, suffers from

similar mesh degradations [156].
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0 200 400 600

3.6

3.7

3.8

3.9

4

4.1

4.2

Time(∆ t)

l2  e
ne

rg
y 

of
 th

e 
su

rfa
ce

 

 

q = 12
q = 6
q = 4
q = 2

(b) l2 energy vs. time

Figure 22: Effect of reparametrization. (a) Here we demonstrate the significance of
using reparametrization for the representation of the surface. In the simulation depicted on the
top row of subfigure (a), we perform surface reparametrization; in the bottom simulation we do
not reparametrize. In both cases, we have taken p = 12, shear rate χ = 15, ∆t = 3e−3, and we
have used the semi-implicit time stepping scheme described in Section 4.5.3. We observe that
without reparametrization, at t ≈ 60∆t, the surface becomes highly distorted and the method
diverges. Experimentally, the blow-up starts as soon as the vesicle begins to tank-tread. When
we do use reparametrization, at the end of simulation, the relative error in area and volume of
the vesicle are respectively 3.49e−2 and 3.86e−2. (b) Here we plot the l2 norm of the spherical
harmonics coefficients of the surface (for the case of p = 12) vs. time for different filtering
frequencies, which are denoted by q, The trend of all plots for q > 6 is similar to that of q = 12
and, for the sake of clarity, those cases are omitted from the plot.

94



4.7.4 Stability of the Time-marching Scheme

We compare the stability constraints of the explicit and the semi-implicit schemes in simu-

lating the motion of a vesicle suspended in simple shear flow (Figure 23). The initial shape

of the vesicle is given by Equation (96) in which we take ρ(u, v) = 1 + Y 0
2 (u, v). We com-

puted the stable time-step size 4t using the bisection method: starting from an arbitrary

large time step we reduce it by half until the simulation is stable within a predefined time

horizon. For this experiment, we have chosen the time horizon long enough so that the

vesicle reaches its equilibrium shape in shear flow. The stable time steps are summarized

in Table 14 as a function of the shear rate and the spatial resolution p. The explicit

Figure 23: Single vesicle in shear flow. Relaxation shape of a vesicle suspended in
simple shear flow. Due to the bending term the vesicle quickly relaxes to a shape that has small
curvature, but then it gets stretched due to the effect of the shear flow. At the final equilibrium
shape the vesicle tank treads. We have used this experiment to test the time-stepping schemes.
The corresponding results are reported in Table 14. On a 2.66 GHz Intel Nehalem with 12 GB
of memory, the average timing of a time-step for χ = 15 and different spherical harmonics order
is as following (p/singular Stokes time/total timing): 8/0.06/0.29, 12/0.44/2.61, 16/1.41/3.47,
24/21.73/22.58. The reported times are in seconds.

Table 14: Stable time step for a vesicle in shear flow. Here we report stable time-step
sizes for the explicit and semi-implicit schemes for a vesicle in simple shear flow. We observe
that the implicit-scheme requires a time step whose size is almost independent of the spatial
resolution.

Explicit Semi-implicit

p χ = 0 15 150 0 15 150

12 1.04e−2 7.81e−3 9.76e−4 5.00e−1 1.02e−2 9.77e−4

16 4.67e−3 1.59e−3 3.98e−4 3.53e−1 1.02e−2 4.51e−4

24 1.27e−3 1.17e−3 1.99e−4 2.04e−1 1.02e−2 9.56e−4

32 2.05e−4 1.70e−4 1.25e−4 1.49e−1 8.15e−3 6.79e−4

48 1.00e−4 1.00e−4 5.00e−5 1.49e−1 8.15e−3 6.79e−4

scheme has two shortcomings: (i) for a fixed p, 4t decreases as χ is increased, (ii) for a
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fixed χ and low shear rates, 4t decreases dramatically as p is increased. We can explain

these constraints as follows. Embedding the tension force and the constraint equation in a

projection operator P, we can write the non-dimensionalised evolution equation as

ẋ = P

χ

x3

0

0

+ S[−(4SH + 2H(H2 −K))n]

 , (97)

where P acts on a surface velocity field and eliminates the extensible component. We can

easily verify that P is a well-conditioned operator using the spectral analysis of Section 4.3

and it does not contribute to the stiffness. Only the second term within brackets in Equa-

tion (97) induces high-order stiffness. Now consider two extreme cases. When χ = 0, the

evolution equation is stiff and for this reason we observe a stringent restriction on the time-

step. On the other hand, when χ is high, the first term dominates and it attenuates the

stiffness arising from the second term. For this reason, the CFL appears to be milder for

χ = 150.

The semi-implicit scheme suffers only from the first constraint and its stable time-step

size is inversely proportional to χ. But it does not suffer from CFL constraint. Hence, it

allows much larger time steps, particularly for low shear rates, compared to the explicit

scheme. We have performed additional simulations, reported in Figure 28, Figure 27, and

Figure 19 in which we have observed the spatial-resolution independence of the time step.

In Figure 24 we summarize the steady-state shapes of vesicles in shear flow for different

reduced volumes and shear rates.

4.7.5 Simulations in Presence of Gravity

When there is a difference in the enclosed fluid density (ρin) and the ambient fluid density

(ρout), the governing equations in the presence of gravity are given by

ẋ = S[fb + fσ + fg], (98)

divγ (S[fσ]) = −divγ (S[ffb + fg]) , (99)
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Figure 24: Terminal shapes of vesicles in a simple shear flow for various shear
rates. Contrary to the general belief [73], we find that the terminal shapes depend on the shear
rate, especially, for vesicles of low reduced volumes. For low shear rates (equivalently, stiffer
membranes), they resemble equilibrium shapes in quiescent flows and consequently possesses
lower surface energy compared to the ones at high shear rates.

where

fg = (ρin − ρout)(g · x)n (100)

and g is the gravitational acceleration. The non-dimensional parameter ĝ =
(ρin−ρout)‖g‖R4

0
κB

characterizes gravitational flows. When ĝ is less than a threshold value ĝ∗, the vesicle

reaches its equilibrium shape and translates as a rigid body with constant velocity. When

ĝ > ĝ∗, the vesicle reaches a constant average velocity after an initial transient period

but the terminal shapes are not unique: they depend in the initial shape. We show three

examples in Figure 25. As a further validation of our code, we compare the sedimentation

shape that we computed using this code, with the sedimentation shapes computed using

our axisymmetric code [134]. We report area, volume, and position errors in Table 15.

4.7.6 Multiple Vesicles

The main additional component required for simulating vesicle-vesicle interactions is the

near singular evaluation scheme presented in Section 4.4. Because we have not incorporated
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Figure 25: Snapshots of the sedimentation of ellipsoidal vesicles. The initial shape
of the vesicle is given by (x(u, v) = (sinu cos v, sinu sin v, 2 cosu)). In all of the three cases, the
initial vesicle shape is the same but their orientations (θ) with respect to the axis of gravitational
force vary. Unlike the equilibrium shapes in the absence of gravity, the terminal shapes depend
both on the reduced volume of the vesicle and on θ. In the right image, we plot the average
height of the vesicle at a specific instant t > 0, denoted by < x3(t) >, and also the bending
energy at that instant with respect to initial orientation θ. We can conclude from this plot that
the vesicle with θ = 0 (gourd shape) is the most efficient in sedimentation and the one with
θ = π/2 (ellipsoidal-cap shape) is least efficient. The bending energy, on the other hand, is least
for the latter.

Table 15: Relative errors for the sedimentation simulation. Relative errors in the
surface area (A) and volume (V ) at the end of the simulation shown in the first column of
Figure 25. The first-order semi-implicit time marching presented in Section 4.5 is used for this
simulation. We also report the max-norm errors in positions x(T ) using the solution xaxi(T ) of
the axisymmetric solver [134] as reference. M is the number of spatial discretization points, p is

the order of spherical harmonic approximation, and the time-step size 4t is set to O
(
T
p

)
. The

axisymmetric solution is obtained using 64 spatial discretization points and a smaller time-step
size.

M(p) |A−AT |
A

|V−VT |
V

max‖x(T )−xaxi(T )‖
max‖x(T )‖

162(8) 3.1e−2 1.1e−1 1.5e−1

338(12) 4.8e−4 2.4e−4 3.2e−2

578(16) 6.1e−5 1.0e−4 1.8e−3
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collision detection, near singular integral evaluation not only effects the overall accuracy but

also the stability of the time-stepping scheme. Although more sophisticated approaches for

nearly-singular evaluations exist, we have used a simpler scheme based on upsampling. We

estimate the accuracy of using upsampling for nearly-singular integration (Figure 26). Let

us emphasize that for a provably accurate scheme for nearly-singular integrals one needs to

use the method discussed in [145].
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Figure 26: Relative error in the evaluation of nearly-singular integrals. Relative
errors ε in computing nearly-singular integrals at an evaluation point whose distance from the
vesicle is d using the scheme discussed in Section 4.4 with an oversampling ratio r. For distant
points, oversampling improves the accuracy by only a few digits and eventually as we move away
from the vesicle (eg., d > 0.6 in the rightmost figure) there is no advantage of oversampling. On
the other hand, for points closer to the vesicle, oversampling improves the accuracy significantly.
Improving accuracy for close interactions is important because it has a direct effect on the overall
stability of the numerical simulation. For instance, without any oversampling, the simulation
in Figure 27 breaks down when t > 704t because of numerical instabilities.

Next, we present two simulations with multiple vesicles. In the first simulation, presented

in Figure 27, we consider two vesicles suspended in a simple shear flow. Their initial vertical

separation δ gets magnified to ∆. In dilute suspensions, this sort of pairwise interaction is

a commonplace and exhibits similar behavior. In Figure 28, we show two simulations that

were performed using very few discretization points per vesicle.

4.8 Geometric Formulas

In Table 16, we summarize the formulas for the first fundamental form coefficients E,F and

G, the second fundamental form coefficients L,M and N , the unit normal to the surface

n, the Gaussian curvature H, mean curvature K, the Laplace-Beltrami operator 4γ , the

surface gradient ∇γ of a scalar φ, the surface divergence ∇γ · of a vector f , and the surface
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Figure 27: Two vesicles in shear flow. (a) Snapshots of two vesicles suspended in
a simple shear flow. On a 2.66 GHz Intel Nehalem workstation with 12GB of RAM, the
average timing of a semi-implicit step for different spherical harmonics order is as follow-
ing (p/interaction/singular Stokes time/total timing): 8/0.27/0.39/4.80, 12/0.53/0.86/5.09,
16/0.98/2.73/7.34, and 24/2.80/37.13/42.64. The reported times are in seconds. The reported
times are in seconds. The interaction between vesicles is evaluated directly. (b) Evolution of the
average height (< x3(t) >), or equivalently the height of center of mass, of the two vesicles. To
show convergence of the numerical scheme, we plot the result obtained using two different dis-
cretizations: a finer discretization (p = 20) marked by the solid line and a coarser discretization
(p = 12) marked by “◦”. The dashed lines represent the path each vesicle would have followed
in the absence of the other. A consequence of this pairwise interaction is that the initial vertical
separation δ of the center of masses gets magnified to ∆. This phenomenon is well studied for
suspension of drops and elastic capsules [25, 76].
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Figure 28: Examples of Vesicle flow simulations. Top row: snapshots of a freely sus-
pended vesicle relaxing to equilibrium. Bottom row: Multiple vesicle suspension in shear flow. In
this example, we used a modest 98 (p = 6) spatial discretization points per vesicle. The change
in volume and surface area due to numerical errors was less than 1%. Evidently, while finer
details are missed (see for example the simulation in Figure 19), our method captures the essen-
tial dynamics with very few discretization points. On a 2.66 GHz Intel Nehalem with 12 GB of
memory, the average timing of a time-step for different spherical harmonics order is as follow-
ing (p/interaction/singular Stokes time/total timing): 8/1.07/1.04/11.91, 12/2.30/2.52/14.28,
16/4.58/8.20/22.40, 24/13.98/110.17/130.12. The reported times are in seconds.

energy E . The bending and tension forces given in Equation (41) are obtained by taking

the L2−gradient of the surface energy, that is, the total force fb + fσ = − δE
δx . See [140] for

a detailed derivation.
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Table 16: Geometric formulas.

Symbol Definition Symbol Definition

E xu · xu N xvv · n

F xu · xv H
1

2

EN − 2FM +GL

W 2

G xv · xv K
LN −M2

W 2

W
√
EG− F 2 4γφ

1

W

(
Eφv − Fφu

W

)
v

+
1

W

(
Gφu − Fφv

W

)
u

n
xu × xv
W

4γx (4γx1, 4γx2, 4γx3)

L xuu · n ∇γ · f
Gfu − F fv

W 2
xu +

Efv − F fu
W 2

xv

M xuv · n ∇γφ
Gxu − Fxv

W 2
φu +

Exv − Fxu
W 2

φv
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CHAPTER V

THREE-DIMENSIONAL BOUNDARY INTEGRAL METHOD FOR

THE FLOW OF VESICLES WITH VISCOSITY CONTRAST

In this chapter, we consider numerical algorithms for the simulation of dynamics of three-

dimensional vesicles suspended in a viscous Stokesian fluid. Here we extend the algorithms

of Chapter 4 to flows with viscosity contrast. This generalization poses two new types

of difficulty: (i) change in the boundary integral formulation of the solution, in which a

double-layer Stokes integral is introduced, and (ii) change of the fluid dynamics inherent to

vesicle flows with viscosity contrast.We propose algorithms to deal with these challenges.

Furthermore, we formalize different time stepping algorithms under the same frame-

work, in which the accuracy of the solution dictates the choice of the method (and the

time step size). We show that a semi-implicit method does not have time-step stability

constraints for flows with single and multiple vesicles with different viscosity contrast and

the computational cost-per-simulation-unit-time is comparable to or less than that of an

explicit scheme. Some of the components of the algorithm were already present in the pre-

vious chapter, but careful treatment of details, such as aliasing, enabled us to achieve high

accuracy with very low spectral resolution. The discretization is spectral in space, and first

order in time. We conduct numerical experiments to investigate the stability, accuracy, and

the computational cost of the algorithm. Overall, our method achieves several orders of

magnitude speed-up compared to the standard explicit schemes.

5.1 Introduction

In this chapter, we present an algorithm for the simulation of general three-dimensional

vesicle flows with viscosity contrast, where the viscosity of the fluid enclosed inside each

vesicle can differ from the viscosity of the suspending fluid. This work is an extension of

Chapter 4. The main contributions of this chapter are:
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• Treatment of vesicles with viscosity contrast. The flow of vesicles with viscosity

contrast poses two types of challenges. One is the addition of a double-layer Stokes

integral with the velocity as the density to the formulation. We use the algorithm

proposed by Graham and Sloan [58] to evaluate the singular double-layer integrals.

The second challenge in this type of flow is the change of dynamics. As the viscosity

contrast of vesicles increases, they behave more like rigid bodies. This behaviour

causes the vesicles to get very close to each other under certain flow conditions. Due

to this proximity, locally implicit schemes, in which the interaction of vesicles is treated

explicitly, fails to capture the dynamics and poses strict constraint on the required

time step.

• Globally implicit solver. As we mentioned in the previous item, locally implicit

schemes pose a restriction on the required time step for the flow of vesicles with

large viscosity contrast. To remove this limitation, we propose an implicit scheme, in

which the interaction of vesicles is treated implicitly. We show that the stable time

step for this scheme is orders of magnitude larger than the explicit scheme and its

computational cost (per unit time) is superior to that of the explicit or locally implicit

schemes. For example, Pozrikidis [108] reports that a simulation1, which captures the

periodic dynamics of vesicles such as tumbling, could involve up to 4000 time steps

and may require nearly one week of CPU time on a dedicated 2.4 GHz processor

operating Linux, to achieve an error tolerance of 0.1% in volume. Using our implicit

method, on a similar platform, we are able to capture the tumbling of a vesicle in

shear flow with about one hundred time steps in about ten minutes of CPU time.

• Characterization and treatment of aliasing in differentiation. In numerical

simulations, aliasing is a source of pollution to low frequencies from the high frequency

components. In order to facilitate simulations with a small spherical harmonics’ trun-

cation order, we use two algorithms to keep aliasing under control. One is the upsam-

pling of functions in differentiation, and the other is reparametrization of the surface.

1 an explicit boundary element method for vesicle with viscosity contrast
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We demonstrate that, to maintain a tolerance in the aliasing error, the upsampling

rate for differentiation depend on the shape of vesicles and a constant upsampling

rate introduces large errors in certain vesicle configurations. Our reparametrization

scheme is the same as the one we proposed in Chapter 4.

Moreover, we use a Galerkin formulation for the boundary integral solution. In Chap-

ter 4, we used pseudo-spectral method, which has the same accuracy as the Galerkin method.

Nevertheless, because of the features of spherical harmonics, one needs twice as many vari-

ables in the pseudo-spectral method (the grid points) as in Galerkin method (spherical

harmonic coefficients).

Four of the time stepping schemes for the vesicle simulation, all can be represented under

the same framework, in which the solution to a linear system of equations is approximated

numerically. Representing the solution schemes under this unified framework, clarifies the

difference of the methods and the superiority of the implicit approach. We report numerical

experiment regarding the stability of these methods.

Synopsis of our method. Our method is based on Galerkin formulation correspond-

ing to Lagrangian tracking of spectral collocation points placed on the membrane of the

vesicle. We represent the vesicles in the spherical harmonic basis. For weakly-singular inte-

grals, we use the scheme proposed by Graham and Sloan [58], which enables high-accuracy

simulations with a small (compared to low-order schemes) number of spectral coefficients

per vesicle. For the position update in time, we present an explicit and variants of semi-

implicit marching scheme first derived for advection-diffusion equations [5] and then applied

to integral-equation based fluid-structure interaction problems in [129].

The time-marching scheme requires the solution to a linear system of equations at each

time step, which we perform using a Krylov iterative method (GMRES [114]). The problem

of poor conditioning is addressed by a preconditioner based on the analytically obtained

spectrum of the operators for the special case of a unit sphere Chapter 4. Vesicle-vesicle

interactions can be carried out using the kernel independent fast multipole method [143].

In all, we are able to achieve high accuracy while using a small number of unknowns per
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vesicle and taking large time steps with a relatively low computational cost per simulation

time unit.

Limitations. We restrict our attention to suspensions of vesicles in unbounded domains.

We have ignored inertial terms, so the overall method is restricted to low Reynolds numbers.

Only vesicles with spherical topology are considered and topological changes, which are

present in many biophysical phenomena involving vesicles, are not allowed. We extend our

method to vesicles with viscosity contrast, but our method does not extend to the limiting

cases of bubbles (λ = 0) and solid particles (λ =∞). An important limitation of our scheme

is the lack of adaptivity (both in space and time). This lack of adaptivity manifests itself in

the evaluation of nearly-singular integrals and can cause vesicle-vesicle collisions when the

viscosity contrast is high. Indeed, one can easily construct simulations with high viscosity

contrast where our algorithms fail to resolve inter-vesicle interactions accurately. This is an

open problem and we are currently working on addressing this issue.

5.1.1 Related Work

This work is an extension of [136] and we refer the reader to Chapter 4 for a review of the

related work to three-dimensional simulation of vesicles. The work of Graham and Sloan

[58] on singular quadratures for the scalar Helmholtz operator, the work of Zinchenko and

Davis [155] on surface reparametrization schemes for drops and deformable particles, and

the work of Zhao et al. [148] on boundary integral equation based simulations of red blood

cells in shear flow2 were very influential to this chapter.

In spite of the large body of literature devoted to the investigation of rheological prop-

erties of red blood cell and vesicles suspensions, to the best our knowledge, the work on

numerical methods for vesicle flows with viscosity contrast is rather limited. Pozrikidis [104]

reviews the work on boundary integral formulations for particulate flows prior to the year

2000. Bagchi and Kalluri [9, 10] consider the flow of capsules with viscosity contrast in

shear flow based on a front tracking method. Nonetheless, the capsules lack any resistance

2presenting a spherical harmonic discretization of membranes with bending and shear resistance and
explicit time discretization
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to bending. Biben and Misbah [18] outline an advected-field method for the vesicle, but

they use a radial based representation, which limits the applicability of their method to

vesicles with very high reduced area. Pozrikidis [108] present a boundary integral formula-

tion and explicit time stepping scheme, but the method suffers from large grid distortion

for low and moderate viscosity contrasts.

To our knowledge the majority of particulate flow solvers in three dimensions use explicit

schemes with the exception of the work of Dimitrakopoulos [39], in which a Jacobian-free,

finite-difference based Newton method was used. In that paper, Dimitrakopoulos considers

the flow of a single droplet (no surface inextensibility constraint) in which the bending force

is proportional to the mean curvature. To our knowledge, there is no prior work on implicit

schemes for locally inextensible vesicles with viscosity contrast in three dimensions.

5.1.2 Nomenclature

Throughout this chapter, lowercase letters refer to (infinite dimensional) scalar or vector

fields. Finite dimensional values are denoted by boldface letters and, when necessary, the

spherical harmonics’ truncation order is used as a superscript. Convolution kernels are

referred to by uppercase calligraphic script and the discretized version of a convolution

kernel is referred to by the same letter in uppercase bold. As a general rule, uppercase bold

letters denote finite dimensional linear operators. The truncation order of the spherical

harmonics expansion is generally denoted by p, and the spherical harmonics coefficients are

distinguished by a hat symbol “ ·̂ ”. We let N denote the number of vesicles. The interface

between the ith vesicle and the surrounding fluid is denoted by γi (i = 1, . . . , N) and the

union of all these interfaces is defined as γ := ∪iγi. The outward normal vector to the

membrane of vesicles (pointing toward the suspending fluid) is denoted by n. The jump

of a variable across an interface is denoted by J·K. The surface Laplacian, divergence, and

gradient operators are formally denoted by ∆γ , divγ , and gradγ , respectively. In Table 17

we list symbols we use frequently in this chapter.

Outline of the chapter. In Section 5.2, we present the overall integral equation for-

mulation. In Section 5.3, the spatial and temporal discretization schemes are presented

107



Table 17: Index of frequently used symbols and operators in Chapter 5.

Symbol Definition

‖·‖pl2 Discrete l2 on a p-grid (Equation (119))

∆γ Surface Laplacian

αi (1 + λi)/2

γi The boundary of the ith vesicle

γ ∪iγi
λi The viscosity contrast

µ Viscosity of the ambient fluid

µi Viscosity of the fluid inside ith vesicle

σ Tension

χ Shear rate

ωi The domain enclosed by γi
ω ∪iωi
Di The double-layer Stokes operator over ith surface (Equation (103))

En(·) Modular l2 norm (Equation (118))

H Mean curvature

K Gaussian curvature

N Total number of vesicles

S2 The unit sphere

Si The single-layer Stokes operator over ith surface (Equation (102))

W Area element

Ynm Spherical harmonic of degree n and order m (Equation (106))

divγ Surface divergence (Equation (125))

fσ Tensile force

fb Bending force

gradγ Surface gradient (Equation (124))

n Outward normal vector

p Order of truncated spherical harmonics expansion

u Velocity

u∞ The background velocity field

x The parametrization of the surface

respectively. In the latter part of that section we present the result of our numerical experi-

ments. The chapter is concluded with a summary of the overall algorithm and computational

complexity of different steps in Section 5.4.

5.2 Mathematical Formulation

In this section we formally express the problem statement and give its boundary integral for-

mulation. The detailed derivation of this formulation can be found in [102]. The schematic

of a typical domain is given in Figure 29.
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λi = µi/µ (viscosity contrast),

αi = (1 + λi)/2 (velocity coefficient),

ωi : The interior of the ith vesicle,

ω = ∪iωi (shaded area),

γ = ∪iγi.

Figure 29: The schematic of the domain.

The differential formulation of the problem is the same as the one given in Chapter 4

which we will not repeat here. The boundary integral formulation is different because of

the viscosity contrast of vesicles. Due to the continuity of the velocity field across the inter-

faces, we can follow the standard approach of potential theory [102, 104] and reformulate

Equation Set (38) as an integro-differential equation on the membrane of vesicles. It follows

that for all x ∈ γi (i = 1, . . . , N) we have

u(x) =
1

αi

u∞(x) +

N∑
j=1

Sj [fb + fσ](x) +Dj [u](x)

 , (101a)

divγi u(x) = 0, (101b)

∂x

∂t
= u(x). (101c)

where αi = (1 + λi)/2, and Sj [fb + fσ](x) and Dj [u](x) denote the single-layer and double-

layer convolution integrals over the ith surface with the interfacial force and velocity as

respective densities, evaluated at point x. The single-layer Stokes integral over the ith

surface, evaluated at point x is defined as

Si[f ](x) :=

∫
γi

S(x, y)f(y) dγ(y), S(x, y) =
1

8πµ

1

‖r‖

(
I +

r ⊗ r
‖r‖2

)
, (102)

where r := x − y, I is the identity operator, ⊗ denotes the tensor product, and ‖·‖ is

the Euclidean norm. The free-space double-layer integral over the ith surface, evaluated at

point x is defined as

Di[u](x) :=

∫
γi

Di(x, y)u(y) dγ(y), Di(x, y) = −3(1− λi)
4π

(r · n)(r ⊗ r)
‖r‖5 . (103)

The subscript i for the double-layer kernel Di is to emphasize its dependence on the normal
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to surface n(y) and the viscosity contrast of the ith vesicle λi. Given the initial distribution

of vesicles, the Equation Set (101) may be used to solve for their evolution over time.

Galerkin formulation. Using the spherical harmonic functions Ynm (defined in Equa-

tion (106)) as the basis set for L2(S2), one can represent the position and tension in this

basis set

x =
∞∑
n=0

n∑
m=−n

x̂nmYnm and σ =
∞∑
n=0

n∑
m=−n

σ̂nmYnm. (104)

Letting (·, ·) denote the inner product in this space — where the inner product of vector fields

is calculated element-wise — the Galerkin method seeks the solution to Equation Set (101)

by

αi (u, Ynm) = (u∞, Ynm) +
N∑
j=1

(Sj [fb + fσ], Ynm) + (Dj [u], Ynm) , (105a)

(divγi u, Ynm) = 0, for all i = 1, . . . , N, (105b)(
∂x

∂t
, Ynm

)
= (u, Ynm) (105c)

for all n = 1, 2, . . . and |m| ≤ n. The numerical solution of this set of equations involves:

• Accurate computation of interfacial forces fb and fσ, which in turn requires the accu-

rate computation of high-order derivatives on the surfaces of vesicles.

• Fast and accurate quadrature over the sphere S2.

• Numerical evaluation of the singular integrals for single- and double-layer Stokes such

that the double integral in Equation (105a) is numerically accurate.

• Fast evaluation of the the summation in Equation (105a) to facilitate simulation of a

large ensemble of vesicles.

In Section 5.3, we first outline our approach to perform computation over the surface of

vesicles using the spherical harmonics. Then, we outline a time stepping method to update

the position of vesicles and solve the evolution equation.
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5.3 Numerical Algorithms

There are many components required to build the proper numerical machinery to solve

the set of integro-differential equation given in the previous section. One needs a fast and

accurate method to represent the surface of vesicles in space, perform differentiation on

surfaces, and evaluate singular integral over the surfaces. Moreover, in order to evolve the

vesicles in time, a method needs to be devised to avoid the stiffness in the evolution equation

due to high order derivatives. In this section, we outline a fully discrete Galerkin method

in which we represent the surfaces in the spectral basis of spherical harmonics, perform

singular integrals using the properties of this representation and evolve the vesicles using a

first order semi-implicit time stepping scheme.

5.3.1 Spatial Representation

We assume that the boundary of each vesicle is globally parametrized by a smooth map

from S2 to R3. This assumption limits the application of this method to the smooth sphere-

like (genus zero) surfaces. Nonetheless a large group of biological cells and particles, most

importantly red blood cells, has genus zero. The advantage of this assumption is that it

allows us to use the spherical harmonics expansions [24, 136].

Spherical harmonics basis. Using the spherical polar coordinates, a point on S2 is

represented by (sin θ cosφ, sin θ sinφ, cos θ), where (θ, φ) ∈ U and U := [0, π]× [0, 2π). The

spherical harmonic function of degree n (n = 0, 1, 2, . . . ) and order m (|m| ≤ n) evaluated

at point (θ, φ) is defined by

Ynm(θ, φ) =
1√
2π
Pnm(cos θ)eimφ, (106)

where Pnm are the normalized associated Legendre polynomials of degree n and order m.

General properties of the spherical harmonics can be found in [24].

Quadrature and discrete inner product over S2. Given an integrable function f over

the sphere, its integral can be calculated as∫
S2
f ds =

∫ π

0

∫ 2π

0
f(θ, φ) sin θ dφ dθ =

∫ 1

−1

∫ 2π

0
f(cos−1 z, φ) dφ dz, (107)
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where we used the change of variable z = cos θ.

In this chapter, we use a tensor product quadrature rule to numerically evaluate smooth

integrals over the sphere. Given some truncation order p for the spherical harmonics expan-

sion, one needs to numerically calculate the spherical harmonics coefficients for n = 1, . . . , p

and |m| ≤ n. Requiring that these coefficients are evaluated exactly for p-bandlimited func-

tions, our quadrature rule needs to be exact for polynomials of degree 2p in the latitude

direction and trigonometric polynomials of degree 2p in the longitude direction. To this end,

we use a (p + 1)-point Gauss-Legendre rule in the z direction, and (2p + 2)-point uniform

trapezoidal rule in the φ direction. The Gauss-Legendre nodes {zi}pi=0 are the zeros of the

Legendre polynomial of degree p + 1 and {νi}pi=0 are the corresponding weights. We let

θi := cos−1 zi (i = 0, . . . , p). The longitudinal nodes are uniform {φj = πj
p+1}

2p+1
j=0 and the

weights are {µj = π
p+1}

2p+1
j=0 . In the text we refer to this grid as a p-grid. We denote the

discrete samples of the function f on a p-grid by fp := {f(θi, φj)}i,j . It follows that

∫ 1

−1

∫ 2π

0
f(cos−1 z, φ) dφ dz ≈

p∑
i=0

2p+1∑
j=0

νiµjf(θi, φj) =: qp · fp, (108)

where the second equality is the definition of the discrete integral operator qp ∈ R(p+1)(2p+2),

and the dot denotes the inner product in R(p+1)(2p+2) space. Moreover, we let Qp denote

the matrix with the entries of qp on its diagonal, i.e. Qp = diag(qp).

We use the usual inner product in L2(S2) denoted by (f, g) =
∫
S2 fg ds, where the

overbar denotes the complex conjugate. Based on the integration scheme above, we define

a discrete inner product (·, ·)p over the sphere as

(f, g)p := gpQpfp. (109)

Spectral representations. Since the spherical harmonics are the eigenfunctions of the

Laplace-Beltrami operator on the sphere, they form a basis for L2(S2) and the functions

in L2(S2) can be approximated by spherical harmonics expansion, for instance, given a
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square-integrable function f : S2 → R we can write

f(θ, φ) =
∞∑
n=0

n∑
m=−n

f̂nmYnm(θ, φ), with (110)

f̂nm = (f, Ynm) =

∫
S2
fY nm ds. (111)

Moreover, when the function f is smooth on the sphere, f ∈ C∞(S2), the sequence of finite

sums converges spectrally to f [95]. In the remainder of this chapter we let p denote the

degree of truncated spherical harmonic expansion, that is

f(θ, φ) ≈
p∑

n=0

n∑
m=−n

f̂nmYnm(θ, φ). (112)

Given a discrete p-grid and the sample of the function on this grid fp, the discrete

inner product operator, defined in Equation (109), can be used to evaluate the spherical

harmonic coefficients given in Equation (112). We define a discrete spherical harmonic

projection Yp
Proj such that

f̂
p

= Yp
Projf

p = Y
p
Qpfp, (113)

where f̂
p

= {f̂nm}n,m is the array of spherical harmonic coefficients, and Yp is the matrix

with discrete value of spherical harmonics in its columns. Each column of Yp is the function

Ynm (for some n and m) evaluated on the grid points. Now, we can simply define the inverse

spherical harmonics transfer as the multiplication of the coefficient with the discrete basis

set

fp = Ypf̂
p
. (114)

Due to our requirement on the quadrature rules to be exact for polynomials of degree

less that or equal to 2p in the latitude and the longitude direction, we have

(Ynm, Yn′m′)
p = δnn′δmm′ , for all 0 ≤ n, n′ ≤ p and |m| < n, |m′| < n′,

where δij denotes the Kronecker delta. Note that in matrix notation, this translates to

Yp
ProjY

p = YpYp
Proj = I.

However, this discrete orthogonality does not always hold when n or n′ is larger than p and

there may be cases when (Ynm, Yn′m′)
p 6= 0 for n ≤ p and n′ > p [24]. This phenomenon is

due to the aliasing effect, which we will discuss in a later part of this section.
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Representation of the surface. Using the spherical coordinates with domain U =

{(θ, φ) : θ ∈ [0, π], φ ∈ [0, 2π)}, we define a parametrization of the surface γ by x : U → R3

such that x(U) = γ. Based on our general assumption that the surfaces are smooth and

have genus zero, each Cartesian component of x = (x1, x2, x3) is a smooth function over the

sphere and we can write the truncated spherical harmonic expansion of the vector field x

as

x(θ, φ) ≈
p∑

n=0

n∑
m=−n

x̂nmYnm(θ, φ), (115)

where the spherical harmonic mapping is performed on each component of x, i.e. x̂nm :=

((x̂1)nm, (x̂2)nm, (x̂3)nm).

Integration over the surface follows from the change of variable given in Equation (107)

and the discrete integration formula, Equation (108). Hence, for a scalar field f(x) on the

surface γ we have∫
γ
f(x) dγ(x) =

∫
U
f(θ, φ)W (θ, φ) sin θ dθ dφ ≈ fp ·QpW p, (116)

where W =
√
EG− F 2 is the area element of the surface γ (with E, F , and G denoting

the coefficients of the first fundamental form of γ) Chapter 4.

Norms. We define different measures of norm in the spherical harmonic domain (or equiv-

alently on the unit sphere) as following:

l2: ‖f‖l2 :=
(∑∞

n=0

∑n
m=−n |f̂nm|2

)1/2
(117)

Modular l2: En(f) :=
(∑n

m=−n |f̂nm|2
)1/2

, (118)

Discrete l2 on a p-grid: ‖f ‖p
l2

:=
(∑p

n=0

∑n
m=−n |f̂

p
nm|2

)1/2
. (119)

Note that for the l2 norm on the p-grid, not only the series is truncated but also the

coefficients are calculated numerically on that grid using Equation (113).

When we compare the spectral coefficient, it is implied that the series is properly trun-

cated to match the discrete series. For example

‖fp − f‖p
l2

=
(∑p

n=0

∑n
m=−n |f̂

p
nm − f̂nm|2

)1/2
. (120)
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The same convention holds when we compare series with different truncation orders p and

q (p ≤ q), where we only compare coefficients with order less than or equal to p:

‖fp − f q‖p
l2

=
(∑p

n=0

∑n
m=−n |f̂

p
nm − f̂ qnm|2

)1/2
. (121)

For a vector field u = (u1, u2, u3) and any norm ‖·‖ given above, we define ‖u‖ :=(
‖u1‖2 + ‖u2‖2 + ‖u3‖2

)1/2
.

Interpolation via spherical harmonics. Given the discrete samples of the function fp

on a p-grid, one can use Equation (113) and Equation (114) to interpolate f on the nodal

points of another q-grid, where q may be larger or smaller that p. The interpolation is

performed first by mapping to spherical harmonics domain, followed by padding with zeros

or truncation of the array of spherical harmonic coefficients f̂
p
, and mapping back to the

physical space:

f̂ qnm =


f̂pnm n ≤ p

0 n > p

, for n = 0, . . . , q and |m| ≤ n. (122a)

Formally, we denote this interpolation process by

f q = Iqpf
p. (122b)

Differentiation on S2 and γ. Differentiation of functions defined on the sphere is per-

formed using their spherical harmonic expansion, for example given

f(θ, φ) =

p∑
n=0

n∑
m=−n

f̂nmYnm(θ, φ),

one can calculate

fθ =

p∑
n=0

n∑
m=−n

f̂nm(Ynm)θ, fφ =

p∑
n=0

n∑
m=−n

f̂nm(Ynm)φ. (123)

For a p-bandlimited function, this approach is exact and for a smooth function the only

approximation is in the truncation error of the spherical harmonics expansion.
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Given a scalar function f(x) on the surface γ with parametrization x : U → R3, one can

calculate the surface gradient of f by

gradγ f =

(
Gxθ − Fxφ

W 2

)
fθ +

(
Exφ − Fxθ

W 2

)
fφ. (124)

Similarly, the surface divergence of a vector field u(x) is given by

divγ u =

(
Gxθ − Fxφ

W 2

)
· uθ +

(
Exφ − Fxθ

W 2

)
· uφ, (125)

and the surface Laplacian is defined as ∆γf = divγ gradγ f .

Aliasing and its remedy. Given a discrete grid (on the real line, the sphere, or any

other domain), certain distinct functions, when sampled on this grid, are indistinguishable,

i.e. the sampled values agree although the functions are different. The simplest example of

this phenomenon is the set of trigonometric polynomials on the real line: on a uniform grid

with spacing δ with tj = jδ, eik1t and eik2t are identical on the sample points when k1 − k2

is an integer multiple of 2π
δ [130]. This phenomenon also occurs for the associated Legendre

polynomials on the Gauss-Legendre grid as it is shown in the example given in Figure 30.

Figure 30: Aliasing for associated Legendre polynomials. Aliasing effect for the
associated Legendre polynomials on a 7-point Gauss-Legendre grid on [−1, 1]. In both of the
plots, the less oscillatory functions is P4,1(z). In the left panel, P19,−2(z) is aliased to P4,1(z)
and in the right panel P64,1(z) is aliased to P4,1(z). On the sample points, which are denoted by
a dot, the value of the high frequency function coincides with that of the low frequency function.
(These instances of aliasing are found numerically.)

In case of spherical harmonics, one high frequency function may alias to many different

lower frequency functions. Suppose f is a smooth function over the sphere with the spherical

harmonic coefficients f̂nm, i.e. f =
∑∞

n=0

∑n
m=−n f̂nmYnm. Given the samples of f over
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a p-grid, one can use the discrete inner product (·, ·)p to calculate the spherical harmonic

coefficients f̂pn′m′ (n′ = 0, . . . , p, |m′| < n′) numerically

f̂pn′m′ = (f, Yn′m′)
p =

∞∑
n=0

n∑
m=−n

f̂nm (Ynm, Yn′m′)
p

= f̂n′m′ +
∑
n>p

n∑
m=−n

enm(n′,m′)f̂nm, (126)

where |enm| ≤ 1 by Cauchy-Schwarz inequality. This gives us a crude upper bound on the

estimation error as |f̂pn′m′ − f̂n′m′ | ≤
∑

n>p

∑n
m=−n |f̂nm|, that goes to zero as p→∞, due

to smoothness of f . Therefore, the smoothness of the function f (the rate of decay of f̂nm)

and the grid resolution p control the estimation error.

In a spectral setting, aliasing is the source of pollution to lower frequencies and will cause

the simulation to diverge. To control the aliasing, when computing the spectral coefficients

of a function f on a p-grid, f̂
p
, for a given tolerance ε, we require that

‖fp − f‖p
l2

‖f‖p
l2

≤ ε. (127)

Since in a numerical setting, the exact value of the function is not known, we use the values

that are computed on a fine-resolution grid as a surrogate for the exact values. The choice

of ε depends on the desired accuracy in differentiation. In the context of time stepping

methods, we chose this error to be the same order of the time stepping error. For instance,

for the Euler method, we choose ε ≤ δt2, where δt is the time step.

Nonlinear manipulations of functions in the physical space are the main sources of

aliasing. Given a band-limited function over the sphere, its derivative may not be band-

limited in the spherical harmonic basis and the spectral coefficients may decay much slower.

The best example for this, is the mean curvature:

H =
EN − 2FM +GL

2W 2
,

where E,F , and G are first fundamental form coefficients, L,M , and N are the second

fundamental form coefficients, and W is the area element. Given a p-grid samples of a

surface x, each term in the expression for mean curvature can be calculated very accurately.

Nonetheless, as it is shown in the example given in Figure 31, the mean curvature usually
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have more oscillatory components compared to the position x and decay much slower in the

spectral domain.

0 10 20 30 40 50 60

10−10

1

Expansion degree n

E
n
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En(H)

Figure 31: The Spectrum of the Mean Curvature. The modular l2 norm of the position
vector x and that of the mean curvature H for the shape plotted in the inset. The abscissa is
the spherical harmonics’ degree n and the ordinate is the modular l2 energy defined in Equa-
tion (118). The position vector is band-limited with bandwidth of 16. The bandwidth of H on
the other hand, is much wider than that of the position and its spectral coefficients decay much
slower. For the data in this figure, the calculation is performed on a 64-grid. On a 16-grid
for instance, the shape is represented very accurately. Nonetheless, if the discrete data on this
grid are used to evaluate H, through aliasing, all the high frequency components (here n > 16)

pollute the low frequency coefficients and lead to inaccurate evaluation of Ĥ16
nm.

Given the discrete samples of the surface x on a p-grid, to avoid the aliasing, one needs to

perform the calculation of the mean curvature (or any function that involves differentiation

and nonlinear manipulation) on a finer grid q and then restrict the result to the coarse

p-grid through Equation (122b). By doing this, one controls the magnitude of the error

term in Equation (126) to satisfy Equation (127). Due the highly nonlinear nature of the

functions involved in our calculation, the widely used “3/2 upsampling” rate proposed by

Orszag [94, 95] for equations with quadratically nonlinear terms does not extend to our

case. Moreover, when calculating the curvatures on a p-grid, the required resolution of the

fine grid q (or the upsampling rate υ = q/p) depends on the rate of decay of H, which

is not known a priori and depends on the shape. For example, in Table 18 we give the

upsampling rate υ required to calculate Ĥ
8

with different values of tolerance, according

to Equation (127). In Algorithm 5.3.1 we give the pseudocode to compute the required

upsampling rate υ to meet a tolerance ε. Although, we calculate the upsampling rate

for the mean curvature, we use this rate for all differentiations on the surface. During a
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Table 18: The upsampling rate for differentiation. The required upsampling rate υ
in the calculation of the spectral coefficients of the mean curvature H such that ‖Hυp−H‖pl2 ≤
ε‖H‖pl2 . We used a fine resolution q = 80 as the surrogate for the exact values.

ε
(Tolerance)

1e−1 2 2 1 2 2

1e−5 3 4 4 4 4

1e−9 4 6 7 7 7

simulation, we update the upsampling rate sporadically as the shape changes over time.

Algorithm 5.3.1 Upsampling Rate Calculation.

Require: x, ε, p, pmax

q ← p and e← 2ε
Calculate Hp using Dp as differentiation matrix
while e > ε and q ≤ pmax do
q ← q + p
Calculate Hq

p using Dq
p as differentiation matrix // Defined in Equation (128)

e← ‖Hp−Hq
p‖p
l2

‖Hq
p‖p
l2

// Defined in Equation (127)

Hp ←Hq
p

end while
return υ ← q/p

Letting Dq denote a typical differentiation matrix on a q-grid, and using the interpolation

operator given in Equation (122b), we define the discrete differentiation with dealiasing as

Dq
ph

p := (IpqD
qIqp)h

p (128)

Note, that we adapt this method to keep the representation frequency p as small as possible

without losing the accuracy in differentiation. As we will see, the computation complexity

of Stokes singular integral is O(p5) that gives us enough incentive to try to keep p as small

as possible.

In Figure 32 we show the evolution of a single vesicle in Poiseuille flow. This type of

flow is challenging because of the kind of deformation it induces on the vesicle. Nonetheless,

by treating the aliasing, we can capture the deformation of a vesicle in this flow by using

only p = 8.
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(a) t =
0

(b)
t = 100δt

(c) t = 200δt (d)
t = 300δt

(e) t = 400δt (f) t = 600δt (g) t = 800δt

Figure 32: Cross sections of a biconcave vesicle in the Poiseuille flow. The cross
sectional plots showing the evolution of a single vesicle with an initial biconcave shape in a
parabolic flow. The time stepping method is implicit, the reduced area is 0.65, and the time step
δt is 5e−2. For this simulation, where p = 8, when t ≤ 300δt the upsampling rate is 4 and when
t > 300δt the upsampling rate is 5.

Another important method to control the aliasing and the grid quality is the reparametriza-

tion algorithm proposed in Chapter 4.

Singular integrals over the surface γ. In Chapter 4, we extensively explained the

quadrature rule to evaluate singular integrals over the sphere, which was adopted from the

work of Graham and Sloan [58]. On a surface γ, the double-layer kernel is defined as

D(x, y) = − 3

4π

1

‖r‖

(
r · n
‖r‖2

r ⊗ r
‖r‖2

)
, with r = x− y.

The first term in the parenthesis satisfies the smoothness requirements outlined in [58]. The

second term is similar to the Stokes kernel. In Chapter 4, we argued that since (r ⊗ r)/‖r‖2

is reflectionally symmetric3 and smooth over the parameter space of the sphere U = {(θ, φ) :

θ ∈ [0, π], φ ∈ [0, 2π)}, the method of Graham and Sloan can be extended to the Stokes

integral. By the same argument, the double-layer integral can be accurately evaluated using

the singular quadratures given in Chapter 4. On the surface γ with a p-grid discretization

xp = {xij} and density fp = {fij}, in which xij = x(θi, φj) and fij = f(θi, φj), we denote

the discrete singular single- and double-layer operators (for all target point xp) by Spfp

3A function f is said to be reflectionally symmetric when f(θ, φ) = f(−θ, φ+ π) for all θ, φ ∈ R [58].
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and Dpfp, such that

S[f ](xij) =

∫
γ
S(xij , y)f(y) dγ ≈ (Spfp)ij , (129a)

D[f ](xij) =

∫
γ
D(xij , y)f(y) dγ ≈ (Dpfp)ij , (129b)

for all 0 ≤ i ≤ p and 0 ≤ j ≤ 2p + 2. The general algorithm to evaluate the double-layer

integral is the same as the one for the Stokes integral and we refer to Chapter 4 for the

details. Here, we report convergence results for the numerical integration of the double-layer

integral over different shapes in Table 19.

Table 19: Convergence of discrete double-layer integral. The relative error
‖Dpfp −Dqf q‖pl2/‖Dqf q‖pl2 in the computation of the double-layer integral over the depicted
surfaces for different spherical harmonic order p. The discrete double-layer operator is defined
in Equation (129b) and the discrete norm is defined in Equation (119). The error is calculated
with respect to a fine discretization with spherical harmonics order of q = 64. On each surface,
the density is chosen to be the same as the position vector (f = x).

p

8 6.29e−3 2.53e−1 8.11e−2 9.43e−2

12 6.39e−4 6.06e−2 2.61e−2 2.59e−2

16 6.56e−5 1.49e−2 9.91e−3 5.38e−3

24 6.96e−7 3.02e−3 9.28e−4 4.30e−4

32 7.19e−9 3.38e−4 9.83e−5 4.64e−5

In a Galerkin setup, numerical evaluation of a double integral is involved in the Equa-

tion Set (105), namely the singular integrals followed by the projection to the basis

(S[f ], Ynm) ≈ (Sqf q, Ynm)p and (D[u], Ynm) ≈ (Dquq, Ynm)p . (130)

The result presented in [58, mainly Theorem 4.1] requires that q > p(1 + a) for some a > 0.

However, it does not give any formula to estimate a. In our numerical experiments and

convergence analysis, we noticed that when we solve for position and tension with q = p,

the coefficients with highest order, i.e. x̂pm and σ̂pm for |m| ≤ p, are calculated with large

error. Nonetheless, this was fixed by choosing q = p+1. Combining all these computational

steps (i.e. upsampling to q, performing singular integral, and mapping back to p) together,
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we can write

Ŝpf̂
p

:= (IpqY
q
ProjS

qYqIqp)f̂
p
, (131)

for the single-layer Stokes operator in spherical harmonic domain.4 The same can also be

written for the double-layer Stokes, which we denote by D̂p.

Nearly-singular integrals. Nearly-singular integrals are a class of integral that are arti-

facts of numerical discretization. In the context of our work, let h denote the discretization

spacing for a p-grid samples of a given surface γ:

h := max
x∈xp

min
y∈xp
y 6=x

|x− y|.

Now, lets consider the single-layer integral for a target point x ⊂ R3 with density f

on surface γ, S[f ](x) = 1
8πµ

∫
γ S(x, y)f(y) dγ(y). When x ∈ γ the integral is singular and

can be numerically integrated using the algorithm mentioned above; when x /∈ γ then

d = dist(x, γ) > 0 and the integral is not singular anymore. Nevertheless, when d ≤
√
h

then the Stokes kernel becomes oscillatory and the derivative of S(x, y) with respect to

y cannot be bounded uniformly [145]. In this work, nearly-singular integrals arise when

computing the interaction between vesicles. When computing the interaction, we try to

avoid the occurrence of nearly-singular integrals by uniformly upsampling the grid points

to a finer frequency q ≈ p3/2. The choice of this upsampling frequency is based on the

argument given on [145] in order to permit d ≈ h. There are situations where the vesicles

get too close and our method breaks down (an example of this is when the viscosity contrast

of vesicles is large, say O(10)). We are currently working to incorporate algorithms to treat

the nearly singular integrals.

5.3.2 Galerkin Formulation

Using the machinery developed in the first part of this section, we use a Galerkin formulation

to solve for the evolution of vesicles — solve Equation Set (105) — in the spectral domain.

4In practice, the computationally efficient way to do this is to keep the frequencies p and q the same, but
filter the coefficients with highest degree.
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In Chapter 4, we used pseudo-spectral method, which has the same spatial accuracy as the

Galerkin method. Nevertheless, because of the features of spherical harmonics, one needs

twice as many variables in the pseudo-spectral method (the grid points) as in Galerkin

method (spherical harmonic coefficients). For this reason, we opted for the Galerkin method.

Linear interfacial forces. Following our approach in Chapter 4, given the configuration

of the vesicle γ, a new configuration defined by x+, and a new tension σ+ we define the

linear versions (with respect to x+ or σ+) of mean curvature, bending force, and tensile

force:

H(x+; γ) =
1

2W 2

(
Ex+

φφ − 2Fx+
θφ +Gx+

θθ

)
· n, (132a)

fb(x
+; γ) = −κb

[
∆γH

+ + 2H+(H2 −K))
]
n, (132b)

fσ(σ+; γ) = σ+∆γx+ gradγ σ
+, (132c)

where the H+ = H(x+; γ) and the terms with no superscript are evaluated over γ. The

discrete spectral versions of these operator can be written as f̂ b = YProjfb and f̂σ =

YProjfσ. Combining these expressions with the spectral stokes operator Equation (131),

we define two new linear operators B̂ and T̂ such that

B̂x̂+ = Ŝf̂ b, (133)

T̂σ̂+ = Ŝf̂σ. (134)

Moreover, we define the discrete, spectral, divergence operator as

P̂û = YProj divγ(Yû). (135)

When we have multiple vesicles, our notation for the bending and tension operators

needs to be more specific. We use the double subscript B̂ij , T̂ij , D̂ij (i, j = 1, . . . , N) that

implies the integral is performed on the jth surface and the target points are the grid points

of the ith surface. For the surface divergence, we append the single subscript P̂i to denote

that the divergence is taken on the ith surface. For the bending, tensile, and double-layer

operators, when i = j the integral is evaluated using the singular quadratures and when

i 6= j the integral is a smooth integral.
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System of ODEs for a suspension of N vesicles. Substituting these discrete operators

in the Equation Set (105), we get a system of ODEs for the discrete tension and position

of the ith vesicle (i = 1, . . . , N):

αiûi = û∞(xi) +

N∑
j=1

B̂ijx̂j + T̂ijσ̂j + D̂ijûj , (136a)

P̂iûi = 0, (136b)

dx̂i
dt

= ûi. (136c)

5.3.3 Time Discretization

We use a first order time discretization to approximate the time derivative of position, where

we write dx/dt ≈ (x+ − x)/δt or equivalently

dx̂i
dt
≈ x̂

+
i − x̂i
δt

. (137)

Substituting this in Equation (136c), using the result in Equation (136a) and substituting

in Equation (136b), we get a system of equations for the new position and tension

αix̂
+
i −

N∑
j=1

(δtB̂ij + D̂ij)x̂
+
j − δt

N∑
j=1

T̂ijσ̂
+
j = ri, (138a)

−
N∑
j=1

(δtP̂iB̂ij + P̂iD̂ij)x̂
+
j − δt

N∑
j=1

L̂ijσ̂
+
j = si, (138b)

where ri := αix̂i + δtû∞ −∑N
j=1 D̂ijx̂j and si := δtP̂iû

∞ −∑N
j=1 P̂iD̂ijx̂j for all i =

1, . . . , N , and L̂ij := P̂iT̂ij . Instead of Equation (136b) we use Equation (138b) — which is

derived by applying P̂i to Equation (136a) — because we know an analytical preconditioner

for L̂ii, derived in Chapter 4. This system of equations can be written in the matrix format

as

Aii

x̂+
i

σ̂+
i

+
N∑
j=1
j 6=i

Aij

x̂+
j

σ̂+
j

 =

ri
si

 , i = 1, . . . , N (139)

where

Aii :=

αiI− δtB̂ii − D̂ii −δtT̂ii

−δtP̂iB̂ii − P̂iD̂ii −δtL̂ii

 and Aij :=

 −δtB̂ij − D̂ij −T̂ij

−δtP̂iB̂ij − P̂iD̂ij −δtL̂ij

 .
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(140)

To further simplify the notation, lets write A = Ad + Ao where Ad is the block diagonal

matrix with Aii on its diagonal, and Ao = A−Ad, and write yi = [x̂i, σ̂i], y
+
i = [x̂+

i , σ̂
+
i ],

bi = [ri, si], and finally, y = [y1, · · · ,yN ], y+ = [y+
1 , · · · ,y+

N ], and b = [b1, · · · , bN ]. Now

the systems of equation that we are trying to solve can be written succinctly as

(Ad + Ao)y
+ = b. (141)

The operators Ad encompasses the self interaction of vesicles, which itself comprises evalu-

ation of interfacial forces, surface differentiation, upsampling for anti-aliasing, and singular

integration. The operator Ao is for interaction between vesicles and involves the N -body

interaction of vesicles and nearly-singular integration.

5.3.4 Solution Schemes

Given the system of equation for the evolution of vesicles, Equation (141), and the current

position and tension, there are multiple ways with different levels of accuracy one can use

to approximate the solution to this equation. On the one hand, one can perform a single

Jacobi iteration on this system and then approximate the solution of each diagonal block

with an explicit step. On the other hand, for the highest accuracy, one can solve the whole

system of equations using an Krylov space iterative method like GMRES. Here, we itemize

some of these schemes in the order of accuracy of solution.

• Explicit: Given the current position and tension, we can use them as an initial guess

for a single block-Jacobi iteration on the evolution matrix

Ady
+ = b −Aoy,

in which the diagonal blocks Aiiy
+
i = bi−(Aoy)i can be solved individually. To solve

each diagonal block, we can first solve for tension σ̂+
i

−δtL̂iiσ̂+
i = δtP̂iû

∞ + δtP̂iB̂iix̂i −
∞∑
j=1
j 6=i

P̂iD̂ijx̂j . (142)
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Then, we can explicitly update the position

x̂+
i =

1

αi

[
(δtB̂ii + D̂ii)x̂i + δtT̂iiσ̂

+
i + ri

]
.

Apart from the low accuracy of this approach in estimating the solution of Equa-

tion (139), there is another major shortcoming in this approach. The fact that we

used the explicit position to calculate tension, caused the surface velocity term to be

erroneously zero. Therefore, in presence of viscosity contrast, this method is incapable

of solving the evolution of vesicles correctly.

• Lagged tension: Following the same approach as above, we can calculate the new

tension σ̂+
i , but instead of an explicit evaluation of the new position, we can use the

first equation to solve for position, i.e

(αiI − δtB̂ii − D̂ii)x̂
+
i = δtT̂iiσ̂

+
i + ri. (143)

We used a variation of this approach for vesicles with no viscosity contrast in Chap-

ter 4. This approach, will increase the accuracy for the new position, but has the

same limitation in the presence of viscosity contrast.

• Locally implicit: To remove the limitation for cases with viscosity contrast, one can

fully solve each of the diagonal blocks Aiiy
+
i = bi − (Aoy)i. Letting y∗ denote the

exact solution to Equation (139), i.e. (Ad+Ao)y
∗ = b. The error in the new position

and tension is

‖y+ − y∗‖ = ‖A−1
d Ao(y − y∗)‖ ≤ δt‖A−1

d Ao‖‖u‖,

where u denotes the velocity field. Hence, the magnitude of the error is controlled by

δt‖A−1
d Ao‖. Since the operator matrix A depends on the configuration of vesicles,

with fixed δt, one cannot guarantee a uniform error bound for the new tension and

position over the course of a simulation. In Figure 33 we plot the relative error of one

Jacobi iteration with respect to the exact solution of the linear system for the given

configuration of two vesicles as a function of their distance. As it is shown in the

plot, when the vesicles get very close, a situation that may arise when the viscosity
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contrast is high in shear flow, doing a single Jacobi iteration introduces error with a

very large magnitude, which in turn causes the simulation to diverge. In order to have

a robust solver for the evolution of vesicles that is not sensitive to the configuration

of vesicles, instead of having a fixed number of iteration for the solver, one needs to

fix the error bound and solve the system of equations for the evolution of all vesicles

with that prescribed accuracy.

(a) The configuration of vesicles
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(b) Log-log plot for relative error

Figure 33: Accuracy of the locally implicit method for two vesicles. The relative
error when the solution of Equation (139) is approximated by the result of a single Jacobi
iteration. The configuration of vesicles is shown in the left subfigure. In the right subfigure,
the ordinate show the relative error ‖y+ − y∗‖/‖y∗‖ and the abscissa is the minimum distance
between the surfaces of the two vesicles (the gap size in the left subfigure). The reference solution
y∗ is calculated by an iterative method.

• Globally implicit: Following the argument above, the most accurate way to evaluate

the new position and tension is to solve Equation (139) to a prescribed tolerance. This

can be done by taking multiple Jacobi iterations — but for the same reason given above

the convergence rate can be very slow — or by solving the system of equation using a

Krylov subspace method such as GMRES. In this method, we solve Equation (139)

to a prescribed tolerance ε such that ‖Ay+ − b‖ ≤ ε‖b‖.

In Figure 34 we demonstrate the capabilities of the fully implicit scheme. The plots

in the figure show the interaction of two vesicles in shear flow. The viscosity contrast

of both vesicles is 10 and the reduced volume is 0.85. Since vesicles with such a
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high viscosity contrast have a tendency to get very close in the shear flow, all other

methods outlined above fail to capture their dynamics and diverge. This simulation

is very interesting because with only p = 8 and in only 330 discrete time steps, we can

capture very rich dynamics that involve close interaction of vesicles, tank-treading,

and tumbling. Tank-treading and tumbling of vesicles are distinct features of vesicle

dynamics, observed extensively in experiments [64, 120].

(a) t = 0 (b) t = 30δt (c) t = 60δt

(d) t = 90δt (e) t = 120δt (f) t = 150δt

(g) t = 180δt (h) t = 330δt

Figure 34: Two vesicles with viscosity contrast. The plots show the interaction of
two vesicles in the shear flow. The viscosity contrast of both vesicles is 10 and the reduced
volume is 0.85. The time step δt is the same as the stable time step given in Table 20. For
this simulation p = 8. Here we observe several characteristic vesicle dynamics, which are all
observed experimentally. Namely, tanktreading (notable by following the grid lines over each
surface) and tumbling of vesicles (subfigures g and h).

To demonstrate the capabilities (and limitations) of the methods outlined above, we

investigate the stable time step for these methods in case of one and two vesicles in shear

flow in Table 20. Second to sixth columns in the table show the stable time step for a
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single vesicle in shear flow. The explicit method shows stability constraint and as we refine

the spatial resolution, the stable time step decreases. The lagged tension and implicit5

methods show no dependence on the spatial resolution. For a single vesicle, the difference

between lagged tension and fully implicit methods is that we solve for tension and position

simultaneously in the latter method. The last column in the table shows the stable time

step for the interaction of two vesicles. An example of this type of simulation is shown in

Figure 34. We failed to find any stable time step for both of the Jacobi based methods.

For the globally implicit case, however, the time step is the same as for one vesicle. The

Jacobi based methods have another limitation that they cannot capture the dynamics of

vesicles with viscosity contrast. This is because, the same position vector is used as the

operand for both of the double-layer operators and they cancel each other. As we point

out in the footnote of the table, when the viscosity contrast is high (λ = 10) the vesicles

act more like rigid bodies and get very close to each other. In these situations, our simple

upsampling approach for the nearly-singular integrals fails. To correctly handle these kinds

of situations where the minimum distance of vesicles is less than the spatial grid size, a

collision detection algorithm needs to be used.

In the simulation of vesicles, the most expensive computation is the singular integration

and with a given accuracy, the choice of the time stepping method depends on which of the

solution schemes has the least number of singular integration per unit time of simulation

and is therefore faster. Since the tension is the Lagrange multiplier that enforces the local

inextensibility of the vesicles, even in the explicit case, at each time step we need to solve

for tension. In Table 21 we report the computational cost (number of singular integral per

unit time of simulation) for two of the methods. It is evident from the table that in addition

to higher accuracy, the implicit case is superior to the explicit case considering the cost per

time unit.

5For one vesicle, locally and globally implicit cases are equivalent.
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Table 20: Stable time step for vesicles with viscosity contrast. The entries in
the table are the non-dimensional stable time step multiplied by the nondimensional shear rate,
i.e χ δtstable. For all schemes we calculated the stable time step for χ = 1, 10, and 100. In
the explicit case, these values varied slightly for different shear rates and we report the largest
observed number. In other cases, no dependence on χ was observed. For all simulations, the
bending modulus was set to 0.01, the time horizon was fixed to T = 10τ/χ and was chosen such
that one tanktreading or tumbling revolution was observed, the aliasing tolerance was 1e−4,
and the reparametrization tolerance was 1e−4. In the case of two vesicles, we were not able to
successfully capture the close interaction of vesicles in the explicit or lagged tension approaches.
In both of these cases, the vesicles collide and the time stepping diverges. For a single vesicle,
locally and globally implicit schemes are equivalent and for two vesicles, the locally implicit
scheme also diverges. It is only with the globally implicit case that we can capture the dynamics
of vesicles with high viscosity contrast. In the globally implicit case we observe much larger
stable time step.

Explicit

λ p = 8 12 16 24 32 Two vesicles (p = 16)

1 2.7e−2 6.7e−3 1.7e−3 8.4e−4 2.1e−4 −
Lagged tension

1 5.4e−2 5.4e−2 5.4e−2 5.4e−2 5.4e−2 −
Globally implicit

1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1

4 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1

10 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 †
† The dynamics of vesicles with high viscosity contrast are such that the vesicles may get very
close to each other (similar to rigid bodies in Stokes flow). To simulate such flows, nearly-singular
integrals need to be properly handled (as explained in this section). This stable time step is
therefore not universal for all configurations.

Table 21: The computational cost for a single vesicle. For each method, we report
the average number of singular integrals per non-dimensional time unit of simulation. For the
implicit case, inside the parenthesis, we report the average number of GMRES iterations per
time step. We considered the flow of a single vesicle for this table. The vesicle has reduced area
of 0.85. For each case, the time step is chosen from the Table 20. The time horizon is chosen
such that tank-treading or tumbling of the vesicle is observed.

Explicit

λ p = 8 12 16 24 32

1 37 149 588 1190 4762

Implicit

1 203(42) 258(54) 268(56) 283(59) 290(60)

4 133(27) 138(28) 134(28) 136(28) 137(28)

10 88(18) 82(17) 82(17) 84(17) 84(17)

130



5.3.5 Preconditioning

Each of the solution schemes that we outlined in Section 5.3.4 involves solving linear systems

of equations of different sizes. For the explicit scheme, we solve for the tension of each

vesicle, for single Jacobi we solve for position and tension simultaneously, and in the implicit

method, we solve the whole system of equation at once. As we discussed in Chapter 4

all these linear systems are ill conditioned. The condition number of tension operator

L, Equation (142), grows as O(p), and the condition number of the position operator,

Equation (143), grows as O(p3). To improve the convergence rate of our iterative solvers,

here we use the same set of preconditioners that we proposed in Chapter 4. The tension

operator is known analytically over S2:

LS2 = diag

{
− n(n+ 1)(2n2 + 2n− 1)

(2n− 1)(2n+ 1)(2n+ 3)

}m=−n,...,n

n=0,...,p

,

and we use its inverse as the preconditioner for the tension operator. For the position

operator, we use a heuristic preconditioner that asymptotically matches the spectrum of

bending operator, i.e. M1 := diag{(1 −∆tn3)−1}. For the locally implicit scheme we use

M2 = diag{M1,L
−1
S2 } as the preconditioner; and for the globally implicit method involving

N vesicles, we use a block diagonal matrix with N of M2 matrices on its diagonal.

5.4 Overall Algorithm and Computational Complexity

In this section we will give a summary of computational steps involved in the simulation

of a suspension of vesicles. We assume that there are N vesicles in the suspension and all

of these vesicles are represented with spherical harmonics order of p. As we discussed in

Section 5.3 the upsampling rate for differentiation depends on the shape of each vesicle.

Nevertheless, for the sake of clarity, we assume that the same upsampling frequency q is

shared by all vesicles. The generalization to the case in which each vesicle has a different

spherical harmonics order and different upsampling rate is easy. The summary of the

computational steps as well as their computational complexity is as follows:

• Spherical harmonic transform: There are several algorithms for the forward and

inverse spherical harmonic transform [24]. The complexity of these algorithm ranges
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from O(p4) for direct computation to O(p2 log2 p) [89]. As it is stated in [89], the

threshold where the (asymptotically) fast method becomes faster than the direct

method is p = 128. In the range of frequencies we use, direct Legendre transform

in the latitude and FFT in the longitude direction with the complexity of O(p3) has

the fastest running time. We let CSHT(p) denote the complexity of spherical harmonics

transform for truncation order of p.

• Differentiation: Given the spherical harmonic coefficients of a function, differentia-

tion is trivial in a Galerkin setup and a computational cost in only incurred when a

mapping to the real space is performed. Since the surface differentials have geometric

terms involved, mapping to the real space is required for them. Our dealiasing algo-

rithm also includes a step where the surface is upsampled to some higher frequency

q. Therefore the complexity of differentiation over each surface is CSHT(q).

• Singular integrals: The single- and double- layer integrals over each vesicle, namely

Equation (129a) and Equation (129b), can be efficiently computed using the algorithm

given in [51, 58, 136] with complexity CSing(p) = O(p5).

• Vesicle-vesicle interaction: The vesicle-vesicle interaction involves the evaluation

of the non-singular Stokes integrals, which may involve evaluation of nearly-singular

integrals. Our current approach to avoid nearly-singular integrals is to upsample

the surfaces to some finer grid. Afterwards, we use Fast Multipole Method [142,

143, 144] to evaluate the Stokes integrals. The complexity of FMM is linear with

respect to the number of discretization points, CFMM(N, p) = O(Np2). Therefore, in a

Galerkin context, the complexity of vesicle interaction is CInter(N, p) = CFMM(N, p)+

NCSHT(p), where the second term is due to the upsampling operation.

• Evolution operator: The evolution operator, which is given in Equation (141),

involves the evaluation of singular integrals over all surfaces (Ad) and the interaction

of vesicles (Ao). The computation complexity of Ad is NCSing(p) and the complexity

of Ao is CInter(N, p).
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• Reparametrization: The reparametrization algorithm is given in Algorithm 4.6.1.

Each reparametrization step includes differentiation (to compute the normal vector)

and spherical harmonic transform for filtering. This implies that each step has the

complexity of CSHT(q). In all of our simulations, we never experienced a situation

where more than a limited number of reparametrization steps (say more than 10)

where needed. Thus, we assume CReparam(q) = CSHT(q).

• Upsampling rate calibration: The algorithm to compute the upsampling rate is

given in Algorithm 5.3.1. The body of the algorithm inside the while loop has O(q3)

complexity, and the loop is evaluated for υ times (where υ is the final upsampling rate).

Therefore, the calibration step has complexity O(p3υ4). Because the shape of each

vesicle does not dramatically change in a few steps, we only perform the calibration

occasionally and in practice this step has no extra cost compared to differentiation.

In Algorithm 5.4.1 we give the general simulation steps for a suspension of N vesicles.

5.5 Conclusions

We proposed numerical schemes to simulate the motion of inextensible vesicles suspended

in unbounded domains based on Galerkin method. We have demonstrated, through numer-

ical experiments, that the implicit scheme does not exhibit a mesh-dependent high-order

stability constraint on the time-step size and the cost per time step is superior to that of the

explicit scheme. Our schemes exhibits first-order accuracy in time and spectral-accuracy in

space. We have presented efficient low-cost preconditioners to solve the discrete evolution

equations by iterative solvers. An extension of our work would be to design an algorithm

to handle nearly-singular integrals in the context of vesicle flows.
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Algorithm 5.4.1 Main steps for simulation of vesicle flows.

(a) From the right hand side for the evolution equation (Equation (141)) using the current
position of vesicles x. // O(NCSHT(q) + Iλ6=1(NCSing(p) +

CInter(p))), where Iλ6=1 is the indicator

function, signifying the fact that the

double-layer terms are only present when

there is viscosity contrast.

(b) Approximate the solution to the evolution equation by either of the following methods:

(i) an explicit step, // O(CInter(p) + NKCSing(p)), where K
is the average number of iterations for

tension solver, Equation (142).

(ii) lagged tension method, // O(CInter(p) + N(Kp + Kt)CSing(p)),
where Kp and Kt are, respectively, the

average number of iterations for tension

and position solvers, Equation (142) and

Equation (143).

(iii) a locally implicit step, // O(CInter(p) + KNCSing(p))), where K is

the average number of iteration for the

diagonal blocks.

(iv) a globally implicit step. // O(K(CInter(p) + NCSing(p))), where K is

the average number of iteration for the

linear solver for Equation (141).

(c) Reparametrize the surfaces based on Equation (93).
// O(NCSHT(q))

(d) Calibrate differentiation upsampling rate using Algorithm 5.3.1.
// O(NCSHT(q))
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CHAPTER VI

PETASCALE DIRECT NUMERICAL SIMULATION OF BLOOD

FLOW ON 200K CORES AND HETEROGENEOUS

ARCHITECTURES

In this chapter, we present a fast, petaflop-scalable algorithm for Stokesian particulate flows.

Our goal is the direct simulation of blood, which we model as a mixture of a Stokesian fluid

(plasma) and red blood cells (RBCs). Directly simulating blood is a challenging multiscale,

multiphysics problem. We report simulations with up to 200 million deformable RBCs.

The largest simulation amounts to 90 billion unknowns in space. In terms of the number of

cells, we improve the state-of-the art by several orders of magnitude: the previous largest

simulation, at the same physical fidelity as ours, resolved the flow of O(1, 000 − 10, 000)

RBCs.

The new method has been implemented in the software library MoBo (for “Moving

Boundaries”). We designed MoBo to support parallelism at all levels, including inter-node

distributed memory parallelism, intra-node shared memory parallelism, data parallelism

(vectorization), and fine-grained multithreading for GPUs. We have implemented and op-

timized the majority of the computation kernels on both Intel/AMD x86 and NVidia’s

Tesla/Fermi platforms for single and double floating point precision.

Overall, the code has scaled on 256 CPU-GPUs on the Teragrid’s Lincoln cluster and

on 200,000 AMD cores of the Oak Ridge National Laboratory’s Jaguar PF system. In our

largest simulation, we have achieved 0.7 Petaflops/s of sustained performance on Jaguar.

6.1 Introduction

As we mentioned in Chapter 1, clinical needs in thrombosis risk assessment, anti-coagulation

therapy, and stroke research would significantly benefit from an improved understanding

of the microcirculation of blood. Toward this end, we present a new computational in-

frastructure, MoBo, that enables the direct numerical simulation of several microliters of
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blood at new levels of physical fidelity (Figure 35).MoBo consists of two key algorithmic

components: (1) scalable integral equation solvers for Stokesian flows with dynamic inter-

faces; and (2) scalable fast multipole algorithms. In terms of size alone, MoBo’s overall

simulation capability represents an advance that is orders of magnitude beyond what was

achieved in prior work in blood flow simulation.

We use an algorithmically optimal semi-implicit scheme. Unlike explicit time-stepping

schemes that require only near-neighbor communication (but are algorithmically subopti-

mal for our problem), our solver requires global communication at every time step. Conse-

quently, our solver is much more challenging to scale than an explicit solver. Nevertheless,

our results demonstrate that it is possible to successfully scale implicit solvers to hundreds

of thousands of cores.

Challenges in direct numerical simulation of blood. Just one microliter of blood of

a healthy individual contains approximately four million RBCs. The surrounding plasma,

which is a viscous fluid, mechanically couples every RBC to all other RBCs. Furthermore,

RBCs are highly deformable (it is the deformability of RBCs which determines the rheo-

logical properties of blood). The large number of cells and their complex local and global

interactions pose significant challenges in designing tools for high-fidelity scalable numerical

simulations of blood.

Due to these difficulties, multiphase blood flow simulations have been restricted to rel-

atively small number of RBCs. For example, the largest simulations today have scaled to

1,200 cells [155] (using boundary integral equations, like us) and 14,000 cells [35] (using

lattice Boltzmann methods). The latter work, which is based on an explicit time-stepping

scheme, scaled up to 64K cores but requires an excessive number of time steps due to

the non-physical stiffness introduced by the numerical scheme. Other methods that model

RBCs as rigid bodies have scaled to an even large number of RBCs; but these are crude

approximations of the blood flow. Deformable models of RBCs (Figure 35) are critical for
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Figure 35: Summary of the computational infrastructure for direct numerical
simulation of blood flow. In the top row, we depict a few snapshots from the flow of twenty
RBCs that are immersed in plasma. At every time step, a Stokes problem must be solved in the
exterior and interior of the RBCs. We have developed computational tools for this problem. The
main algorithmic components include: (a) spectral RBC shape representations and quadratures
for singular integrals on these shapes; (b) accurate modeling of the hydrodynamic interactions
between many-RBCs; (c) nonlinear solvers for the mechanics of RBC deformations; and (d,e)
parallel, kernel-independent, tree-based, fast summation methods. The advantage of boundary
integral methods is that only the RBC boundary is discretized and no discretization of the space
between RBCs is necessary. This is crucial for reducing the number of degrees of freedom and
eliminates the need for difficult-to-parallelize 3D unstructured mesh generation. Our tools enable
parallel and highly accurate simulations of microcirculation phenomena of blood flow. We have
achieved the direct numerical simulation of about fifty microliters of blood flow (One can think
of the volume of a single blood drop as being roughly equivalent to one microliter).

accurate blood flow simulations.1

6.1.1 Synopsis of Our Approach

We model RBCs as deformable viscous sacs with an inextensible, massless membrane that

can sustain bending and tension forces. The surrounding plasma is modeled as a Stokesian

fluid (we neglect inertial terms). There are several challenges in simulating such a system:

• The evolution of the RBCs requires solving the Stokes equations in the plasma—a

very complex geometric region that changes at every time step.

1For example, a 65% volume-fraction suspension of rigid spheres cannot flow; blood flows even when the
volume-fraction of RBCs in the plasma reaches 95% [8].

137



• Computing the bending and tension forces requires accurate geometric description

of the shape of the RBCs. Furthermore, these forces introduce significant numerical

stiffness.

To address these challenges, we use

• an integro-differential formulation in which we couple a boundary integral formulation

for the Stokes equations (plasma) with the RBC’s membrane elasticity;

• a semi-implicit time-stepping scheme that removes the stiffness due to interfacial

forces;

• spherical harmonics representations for the shape and the deformation of RBCs;

• the fast multipole method to accelerate the long-range hydrodynamic interactions

between cells and plasma; and

• distributed and shared memory parallelism, SIMD parallelism (vectorization), and

fine-grained multithreading via GPGPU acceleration, to expose maximum concur-

rency.

MoBo employs Fourier and Legendre transforms, adaptive fast multipole methods, Galerkin

projections, multi-step time marching, fast spherical harmonics rotations, spectral quadra-

tures for smooth and weakly singular integrals, preconditioned Krylov linear solvers, and

dense linear algebra.

Our overall formulation can be outlined as follows. We use a spherical harmonics rep-

resentation for the boundary of every RBC. This choice is mathematically equivalent to

tracking a number of points on the surface of the RBC. In our simulations, we typically

track either 84 or 312 points. The motion of each such point x is governed by

∂x

∂t
= v(x),

v(x) = vself(x) + vinteraction(x) + vbackground(x).

(144)

Here, v is the velocity of the point, which we decompose into three components: local,

global, and background velocities. Roughly speaking, the “local” velocity, vself , accounts
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for the interactions between the specific point in the RBC under consideration and all of

the other points within the same RBC. The “global” velocity, vinteraction, accounts for all

of the interactions occurring across all of the RBCs in the simulation. The “background”

velocity, vbackground, is the imposed flow field. This work builds on our previous work

on massively parallel tree-data structures [117, 127], parallel and kernel independent fast

multipole methods [33, 77, 143], and fast solvers for particulate flows (Chapter 4).

6.1.2 Contributions

In Chapter 2 and Chapter 4, we presented the details of the formulation and the numer-

ical algorithms that are required to compute vself and vinteraction. Here, we focus on he

parallelization and performance analysis for the computation of vself and vinteraction. vself

requires nine different kernels. vinteraction uses the FMM, which in turn has five major

computational phases (tree construction, three tree-traversals, and the direct interactions).

Our key contributions are:

• We present a hybrid-parallel implementation of nine computational kernels that MoBo

uses for the computation of vself and vinteraction. The kernels are multithreaded and

work-partitioned between CPU and GPU, which execute concurrently, thereby deliv-

ering excellent per-node performance.

• The most intensive kernels in our computation have been designed for locality, ac-

curacy, and computational efficiency, capitalizing in particular on highly optimized

BLAS3 (GEMM) operations.

• We further improve the performance of the SC’09 FMM algorithm [77]. These im-

provements include explicit SSE vectorization and multithreading via OpenMP, as

described in prior work [33]. In this paper, we add simultaneous asynchronous GPU

acceleration.

• We present single-node analysis for computations of vself and vinteraction on AMD,

Intel, and NVIDIA platforms.

139



• We present weak and strong scaling results on the Jaguar PF system at Oak Ridge

National Laboratory (ORNL).

Performance Highlights. We achieve 780 TFlop/s of sustained performance on the

196,608 cores of the AMD Istanbul-based Jaguar PF system (4 GFlop/s per core), with

160× speedup on strong scaling when moving from 48 to 24,576 cores (512×); and 75%

efficiency for the weak scaling. On other platforms, we demonstrate up to 18 GFlop/s

per core of sustained performance on the Intel Nehalem-EP; and up to 350 GFlop/s per

NVIDIA Fermi C2050 card (both in single precision).

In our largest simulation, we solved a problem involving 8,000 RBCs per MPI process,

on 32,768 MPI processes for a total of 196,608 cores. We discretized using 84 points per

RBC. This set of parameters results in a total of 262,144,000 RBCs (50 drops of blood)

and 90 billion unknowns per time step. (We have four unknowns per point: the three

coordinates and a scalar tension.)

Limitations. Despite its capabilities, our method has several limitations. First, Stokes

formulation and MoBo are restricted to very low Reynolds numbers and, therefore, can-

not accurately be used to simulate high-Reynolds blood flow (e.g., flow in large arteries).

Second, the discretization of the RBCs is not adaptive: all of the RBCs are approximated

using the same number of points. Third, the current version of MoBo does not support

confined boundaries. The modifications of the method for the confined boundary case has

been presented in [110] but we have not yet parallelized the method. Fourth, the memory

requirements of the method grow with the cube of the number of points per RBC.

6.1.3 Related Work

In spite of advances in understanding the complex behavior of particulate flows [104], only

recently have algorithmic advances allowed accurate 3D simulations of Stokes flows with

hundreds of deformable particles using boundary integrals. Attempts to parallelize inte-

gral equation solvers have been restricted to low-accuracy discretizations, spatially uniform

particle distributions, and have not scaled to large numbers of cores. The main challenges
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are the parallelization of the hydrodynamic interactions, the stiffness of the RBC deforma-

tions, and end-to-end scalability and performance for all of the algorithmic components of

a method.

Impressive simulations based on fictitious/immersed boundary methods have been re-

ported in [1, 8, 49, 56, 79, 132]. However, there is limited work in efficiently parallelizing

these methods and no scaling on thousand-core machines have been achieved [55, 87, 124,

147]. In blood rheology simulations, there are at least two examples of simulations with

large numbers of particles: one which models a 50µm2×500µm-capillary blood flow with 300

thousand rigid particles [97], and another in which a dissipative particle dynamics method

was used to model a few thousand deformable RBCs [46]. Lattice-Boltzmann based methods

for particle simulations have been used for blood flow but are limited to rigid RBCs [126].

An exception is the lattice-Boltzmann approach in [35], that allows for deformability of

RBCs. However, lattice Boltzmann methods are low-order accurate in space and require

small time steps due to numerical stiffness [93]. Lastly, another class of methods are based

on moving-mesh finite-element methods [128]. Such methods are difficult to parallelize in

particular, for the case of large 3D deformations due to the need for unstructured mesh

generation [21].

A different class of methods based on boundary integral equation formulations is ideal

for blood flow since it only requires discretization of the RBC membrane, which is more

scalable than discretizing the volume occupied by the plasma [17, 72, 104, 106, 148, 151].

The aforementioned successful simulation of 1200 deformable drops [155] used a boundary

integral formulation. But, that implementation was sequential and required 120 CPU hours

to complete. Overall, limited work exists in parallelizing such methods. One exception is

the parallel Stokes solver of Thien, et al. [96]; their calculations, however, were performed

using a suboptimal O(N2) algorithm and not a fast multipole method.

6.2 Formulation and Algorithms for Particulate Flows

Notation. Before we proceed with describing the kernels of MoBo, let us introduce some

notation. (We use MATLAB’s notation for linear algebra operations.) We use upper-case
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letters for matrices and lower-case letters for vectors. We use upper-case bold-face letters for

discretizations integral and differential operators, and lower-case bold-face letters to denote

vectors and points in R3.

Table 22: Index of frequently used symbols and operators in Chapter 6.

Symbol Definition

m Number of points used to discretize the
RBC surface

q Spherical harmonics expansion order

n Total number of Red Blood Cells

p Number of processors

v Velocity

F Discrete Fourier Transform operator

Pk kth-order Discrete Legendre transform

S,S−1 Forward/inverse spherical harmonics
transform

The mathematical formulation of the governing equation is given in detail in Chapter 4.

Formally, the evolution of a point on the membrane of a RBC reads as

dx

dt
= v(x), for x ∈ γk, and all k, (145)

where x denotes a point on γk. As mentioned in the introduction, the velocity v(x) can be

decomposed into three components:

v(x) = vself(x) + vinteraction(x) + vbackground(x) (146)

The first term, vself , at a point x on γk (the membrane of the kth RBC) depends only on the

shape of γk. The second term depends on the shapes of all of the RBCs in the simulation

and requires an N-body calculation. The third term, vbackground is known analytically and

depends on the numerical experiment (e.g., imposed shear flow). The precise expressions

for vself is given in Chapter 4, as the Stokes integral with the the surface forces as density.

The global velocity is easy to state:

vinteraction(xk) =
∑
i

1

ρki

(
di +

(rki · di)rki
ρ2
ki

)
, (147)

where rki = xk − xi, ρki = |rik|, di is the given density at point xi, rki · di denotes the

geometric dot product between these two vectors, and | · | denotes the vector norm in R3.
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Figure 36: An example of global and local interactions. The interaction (vinteraction)
between points on the surface of the blue membrane and points on the surfaces of the other red
membranes is global (left figure). The interaction (vself) between points on the surface of the
same (blue) membrane is an example of local interactions (right figure).

Representation of the surface. Let U = {(θ, φ) : θ ∈ (0, π), φ ∈ (0, 2π)}. Then, we

denote a parametrization of the surface by x : U → R3. θ parametrizes the latitude and φ

parametrizes the longitude. In this way, x can be represented in the spherical harmonics

basis with spectral accuracy (Chapter 4). This spectral representation enables fast and

accurate computation of high-order derivatives of x with respect to θ and φ. Such derivatives

are required for the calculation of vself . (For example, vself depends on the surface Laplacian

of the mean curvature of the membrane, the normal vector, and other geometric quantities.)

6.2.1 Overall Algorithm and the Main Computational Kernels

Due to space limitations, we describe a first-order explicit Euler time-marching scheme.

(That is explicit on the RBC membrane mechanics. The Stokes equations for the plasma

and the interior of the cells are solved always implicitly.) The actual time-stepping scheme

used in these simulations is a multistep, semi-implicit scheme and is described in detail in

Chapter 4.2

Given n RBCs, each one being represented by its surface γk a set of points on this

surface x, the algorithm proceeds as follows:

1. Compute vself(x, γk), for all x ∈ γk, k = 1, ..., n.

2. Compute vinteraction using FMM;

2The linear solves in the semi-implicit are done with a Krylov method, which requires a matrix-vector
operation. The latter has been implemented using the computational kernels described in this section.
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3. Evaluate vbackground analytically;

4. Update the position using xnew = x + ∆t(vself(x) + vinteraction(x) + vbackground(x)),

where ∆t is the time-step size.

For the semi-implicit scheme described in Chapter 4, the first step is embarrassingly

parallel across k (RBCs). For each cell, the complexity of computing vself for all x on

its surface is
(
q6). The second step involves a communication-heavy, all-to-all, N-body

calculation with the Stokes kernel. The complexity of the Stokes kernel was analyzed in

[77]. We briefly summarize the main components of FMM in the next subsection.

6.2.2 Global Interactions: FMM Kernel

The FMM consists of two main steps, the octree construction phase and the evaluation

phase. The evaluation phase consists of the computation of the far-field approximated

interactions and the exact near-field direct interaction. Specifically, the evaluation phase

involves the following substeps:

1. a bottom-up (post-order) tree-traversal to compute the multipole-moments approxi-

mation;

2. an arbitrary-order traversal to translate multipole-moments to local approximations;

3. a top-down (pre-order) tree traversal to accumulate all far-field interactions to the

target points, the so-called “VXW-list”-calculation in FMM jargon; and

4. a near-neighbor exchange at the leafs to compute the near-range interactions, the

so-called “U-list”-calculation in FMM jargon.

In parallelizing FMM, the main challenges are the tree construction, and the commu-

nication involved in step (2), which in principle is local, but involves “fat” neighbors that

can cause communication imbalance for highly nonuniform trees. One can prove, under as-

sumptions on the distribution of RBCs, that the complexity of the tree-construction phase

is O(np log n
p ) + O(p log2 p) and of the evaluation phase is O(np ) + O(

√
p), where p is the

number of MPI processes.
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In [77], a novel tree-construction algorithm, a novel hypercube-based reduction for the V-

list calculation, and a hybrid GPU-MPI implementation for the U-list and V-list calculations

were proposed. However, that approach left the multi-core CPUs that were driving the GPU

spinning idle. In , we introduced a set of optimizations that can further accelerate the CPU

computations (OpenMP acceleration and SSE vectorization).

In Section 6.3, we report results from a different multithreading strategy. We employ a

hybrid OpenMP-MPI-CUDA scheme in which we compute the dense interactions in parallel

with the far-field interactions. The CPU sockets are responsible for the far-field computa-

tions (V-list) and the GPUs are responsible for the direct interactions (U-list). In addition,

we have introduced several optimizations that are specific to our Kernel Independent FMM

[143].

We use Streaming SIMD Extensions (SSE) technology, available in a number of modern

CPUs, to speed up the floating point computations. In a nutshell, using SSE allows to per-

form basic arithmetic operations on small vectors of floating point numbers. Specifically,

vectors can consist of either four single-precision floating point numbers or two double-

precision floating point numbers (in any case vectors are 128 bit long). Arithmetic opera-

tions on different vector entries are performed by the CPU in parallel, thus speeding up the

computation (in an ideal scenario) by a factor of four or two, depending on the precision. We

use SSE to accelerate the particle-to-particle interactions (specifically, the evaluation of the

Stokes kernel). We replicate the data associated with each target point (e.g., x-coordinate)

into four entries of an SSE vector, and load another SSE vector with x-coordinates of four

different source points. Then we apply SSE vector subtraction to evaluate 4 differences in

parallel, then we square these four differences in parallel and so forth. Eventually we obtain

four potentials in an SSE register and sum them up. We use this approach for the source-to

upward equivalent densities. This work is explained in further detail in [33].

Finally, we use point-to-point interactions without precomputation in many parts of the

algorithm for improve float-to-memory access rations and improved overall performance.
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Repartitioning of Red Blood Cells. Partitioning RBCs among MPI processes is done

using the FMM underlying data structure. This is necessary because after a few time

steps the partitioning of RBCs does not match the optimal partitioning for the FMM and

this results to excessive communication. The parallel FMM code that we are using [142],

requires particles to be Morton-sorted not only locally on each MPI task but also across

MPI tasks. That is, in order to apply FMM for computations, we first have to redistribute

(“scatter”) the points between tasks so that points become Morton-sorted, then evaluate

the potentials and finally scatter the potentials back to the original layout of the points.

When using multiple (say, tens of thousands) MPI tasks, the cost of these two scatters

can become prohibitive, unless special measures are taken. We periodically re-distribute

the RBCs between MPI tasks, so that the overall distribution of points is “close” to being

Morton sorted, and thus, the scatters are relatively inexpensive. Specifically, we use the

partitioning of the space between MPI tasks produced by the last call to FMM. For each

RBC, we determine preliminary “target MPI task” for each point of the RBC. Then we

decide the final MPI task for the RBC by the voting procedure. For the actual data transfer

we employ an MPI_Alltoallv() call.

6.2.3 Local Interactions: RBC Physics Kernels

The computation of vself consists of several kernels. In the following, we discuss nine kernels

in which the majority of the computation takes place:

The spherical harmonics transform kernel. The spherical harmonics transform may

be expressed in terms of matrix operations [24]. For a spherical harmonic expansion of

order q, there are 2q points in the east-west direction and q + 1 points on the north-south

direction. Let X, Y , and Z denote matrices, each of size 2q × (q + 1), that hold the x-,

y-, and z-coordinate components of the grid points, respectively. The points are stored in

a “latitude-major order”. Then, the kth order spherical harmonic coefficients of X is given

by

X̂k = PkW(FX)Tk , k = 0, . . . , 2q, (148)
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where F ∈ R2q×2q denotes the discrete Fourier transform, W ∈ R(q+1)×(q+1) is a diagonal

matrix holding the Gaussian quadrature weights, Pk ∈ Rk×(q+1) is the kth order associated

Legendre transform and X̂k ∈ Rk×1 is the vector of spherical harmonic coefficients of the

kth order. The same formula is also true for Y and Z. Considering the fact that q is rather

small compared to the number of RBCs, it is best to perform both Fourier and Legendre

transforms as matrix multiplications [42]. This also motivates the data structure for our

implementation.

The inverse of spherical harmonics transform is given by

X = FT [PT
1 X̂1 . . . PT

2qX̂2q]
T . (149)

Hereinafter, we formally denote the forward and inverse spherical transforms by S and S−1.

When we have n surfaces, the complexity of the forward and inverse spherical harmonics

transform is O(nq3) and the depth is log q.

In order to accelerate spherical harmonics transform, we represent the transform as a

sequence of multiplications of real matrices, that is we use real DFT and not the complex

one; we use BLAS or CUDA-BLAS for all the matrix multiplications; and we use column-

wise (Fortran-style) storage for all the matrices.

The input data corresponding to different RBCs is packed into a 2q × (q + 1)n matrix.

Each row of this matrix corresponds to a particular latitude across all RBC. Each column

corresponds to a particular longitude on a particular RBC. Columns corresponding to the

same RBC are grouped together (columns related to the first RBC are followed by the

columns related to the second RBC, etc.)

We start the transform by multiplying the input matrix from the left by the DFT

matrix, thus applying DFT to each column independently. Then we transpose the resulting

matrix. Note that now each column of the transposed matrix corresponds to a particular

frequency and one of the two possible functions (sine or cosine). We then treat each column

of the transposed matrix as a (q+ 1)×n matrix (stored column-wise). Rows of this matrix

correspond to different longitudes across all RBCs, and columns correspond to different

RBCs. We then multiply this matrix from the left by an appropriate Legendre transform
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matrix, as given in Equation (148).

Note that in case of GPU computations (CUDA-BLAS), we perform both matrix mul-

tiplications and the transpose on GPU.

All the data is stored in a one dimensional array and depending on the size parameter

passed to the BLAS kernels, its content can be interpreted as matrices of different sizes.

Using MATLAB’s notation, we store the coordinates array for the kth RBC as Ck = [X(:

)T Y (:)T Z(:)T ], and for all RBCs as C = [C1 . . . Cn]. Using this structure, data can be

streamed to BLAS subroutines for the calculation of spherical harmonics transforms.

Pole rotation kernel for weakly-singular quadratures. Given the surface Ck (k =

1, . . . , n) and a target point (x, y, z) on the same surface, there exists a linear transformation

R ∈ Rm×m such that the pole for the surface C̄ = RC is located at (x, y, z). Note that the

transformation R depends on the parametrization of the surface and the target point, but

it is independent of the geometry of the surface. An example of this transformation is given

in Figure 37. Let R1, . . . ,Rq+1 be the transformations with the target point as the grid

points on the φ = 0 meridian, then the transformation for other points on the θk latitude

is a permutation of Rk [54].

Figure 37: The typical biconcave RBC shape. The plot on the right is the same surface
as in the one in the left, but the pole is moved to the point marked by the circle in the left figure.

In our simulation, we need to perform this rotation for all of the points on the surface

of a RBC. For our method, the complexity of a single rotation of the pole is O(q4) and the

memory requirement is O(q5). As we mentioned in Chapter 4, there is another algorithm for

the rotation of the pole that is based on the spherical harmonics expansion of the surface
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[54]. This algorithm reduces the complexity to O(q5) and the memory requirements to

O(q4). That algorithm has more expensive logic and it is preferable only for small number

of RBCs. Table 23 summarizes the result of our comparison between the two algorithms.

Table 23: Execution time for rotation of the pole. The execution time (ms) on a
Tesla GPU to move the pole to all points on the surface for different algorithms

Direct (cublas) Rotation via spherical harmonics

n q = 6 12 6 12

8 21.25 169.17 0.84 29.15

64 23.48 258.38 6.15 225.85

512 57.75 1360.07 47.85 1795.29

1024 98.02 2597.93 96.20 3589.00

The kernel for the weakly-singular integrals. The computation of vself(x), x ∈ γk
can be written as

vself(x) =

∫
γk

G(x,y)f(y) dy,

where G is the Green’s function for the Stokes equations. This integral has a weak-

singularity for y = x for all x in γk except the two poles. One method to evaluate the

Stokes’ integral at a point on the surface is to move the pole to that target point and eval-

uate the integral for that particular point (Chapter 4). In Algorithm 6.2.1, we outline the

evaluation of Stokes integral. For n surfaces, the work is O(nq6) and the depth is O(log q).

Algorithm 6.2.1 Evaluation of singular Stokes integral. O(q6)
D is the input density and U is the evaluated potential.

for k = 0 to q + 1 do
for l = 0 to 2q do

R← Permute Rk for the target φl
C̄ = RC, D̄ = RD,
Evaluate Ukl (by direct Stokes kernel)

end for
end for

After the multiplications by the rotation matrices R, the most costly kernel in our

simulation is the Stokes evaluation kernel. For the CPU code, this kernel is accelerated

using SSE instructions.
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The kernel for surface differentiation. The differentiation with respect to the φ pa-

rameter is a straightforward calculation using the DFT. But, differentiation with respect

to θ needs extra care. With an abuse of notation, let Hk = dPk/dθ and Wk = d2Pk/dθ
2.

Then, to differentiate a function G ∈ R2q×(q+1) on the surface with respect to the parameter

θ we have

(i) Ĝ = SG,

(ii) dG/dθ = FT [HT
1 Ĝ1 . . . HT

2qĜ2q]
T ,

(iii) d2G/dθ2 = FT [WT
1 Ĝ1 . . . WT

2qĜ2q]
T .

The complexity of these steps is the same as spherical harmonics transform and is O(q3).

With different matrices, the same kernel is used to evaluate the inverse spherical harmonics

and all the derivatives.

Other computation kernels. We have implemented several other kernels that are re-

quired for computations on the surfaces, for instance, the computation of geometric proper-

ties of the RBC. These kernels include the geometric cross (a×b), and dot (a ·b, a,b ∈ R3)

products, matrix transpose, and scaling of vectors. They have been implemented on top

of our specific data format for multiple RBCs and have been optimized on both CPUs and

GPUs.

The kernel for the FMM correction. The FMM algorithm indiscriminately calculates

all the pairwise interactions between the source and target points. When we use FMM to

compute vinteraction, we also compute the interaction between the points that belong to the

same RBC. But, these interactions need to be evaluated as local interactions. Therefore,

we need calculate and subtract these erroneous terms form vinteraction. The direct Stokes

kernel, is used to evaluate the correction.

The kernel for surface reparametrization. In a typical simulation, the RBCs go

thorough great distortion and the quality of the grid on their surface diminishes very fast.

In Figure 38, we give an example of such distortion. In Chapter 4, we proposed a tangential

correction algorithm to compensate for the distortions and maintain the grid quality. The
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reparametrization of the surface, involves calculation of the normal vector to the surface,

mapping the surface to the spherical harmonics domain, filtering the high frequencies, and

restricting the correction to the tangential direction on the surface (to keep the shape of

the RBC intact). The complexity of this kernel is O(nq3).

Figure 38: Reparameterization of RBC. The comparison between the quality of the grid
for two simulation with and without the reparametrization, i.e, the redistribution of points on
surface of an RBC in order to improve the numerical stability of the time-stepping scheme.
Without such reparametrization, the distribution of pints on the surface becomes distorted as we
march in time and the accuracy of the simulation is quickly lost.

6.3 Scalability Results

In this section, we describe the results from numerical experiments we conducted to inves-

tigate the performance characteristics of MoBo and the parallel scalability of our imple-

mentation across different architectures. Below, we summarize the different aspects of our

numerical tests.

Platforms and architectures. The large scale weak and strong scalability results have

been obtained on the Jaguar PF platform at the National Center for Computational Sci-

ences (UT/ORNL). Jaguar is a Cray XT5 system with 224,256 cores (2.6 GHz hex-core

AMD Opteron, 2GB/core) and a 3D-torus topology. Jaguar was ranked first in the top-500

list of supercomputers (www.top500.org) as of July of 2010. The GPU scalability results

have been obtained on TeraGrid’s Lincoln at the National Center for Supercomputing Ap-

plications (UIUC/NSF), a Dell cluster with NVIDIA Tesla S1070 accelerators, 1536 cores(

Intel Harpertown/2.33 Ghz dual-socket quad-core 2GB/core), 384 GPUs (4GB/GPU), and

InfiniBand (SDR) interconnect. The results on Fermi were obtained on a single node AMD

machine at ORNL. The Nehalem tests where performed in an in-house 8-node cluster, with

151

www.top500.org


16 sockets and one NVIDIA T10P-based GPU per socket. In all of the experiments on

Jaguar, we use one MPI process per socket and six threads per socket. Both vself and

vinteraction calculations have been multithreaded using OpenMP. Also, inn all of our GPU

experiments, we use one MPI process per socket.

Implementations and libraries. The code is written in C++ and the accelerator mod-

ules in CUDA. We use the PETSc [11] for profiling and certain parts of communication, and

the DENDRO [116] package for the tree construction and repartitioning of the RBCs. The

vinteraction module was implemented using our Kernel Independent Fast Multipole Method

[77]. All of the kernels required for the calculation of vself where implemented from scratch.

We used the native CRAY libsci and MKL BLAS libraries on the Jaguar and the Intel boxes

respectively.

6.3.1 Single Node Experiments

To assess the performance of our code on a single node, we performed various tests for

the vself and vinteraction calculations. The results are reported in Figure 39 for the vself

evaluation, and Figure 40 for the vinteraction evaluation. Overall, we observe little difference

between CPUs and GPUs although for higher resolutions, GPUs seem to outperform the x86

architectures. Recall that vinteraction and vself utilize both CPU and GPUs. For example, the

performance of vself on a dual socket, dual GPU node exceeds 800 GFlops/s for m = 12.

From Figure 40, we observe that the GPU accelerated version of FMM is roughly three

times faster than the CPU-only thus, delivering a combined 60–70 GFlops/s per node for

vinteraction. The only data transfers between host and device is for the FMM evaluation

in which the host collects the information from all RBCs and then invokes FMM. This

is somewhat suboptimal. We are working on having both GPU and CPU versions for all

phases of the FMM.
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Figure 39: Single node scaling for local interactions. The first figure shows the
sustained single and double precision FLOPS per second of the local kernel, on a Nehalem with
eight OpenMP threads, a Tesla, and a Fermi. The second figure is the work share of the major
components of the local kernel. For this figure, we used 8 OpenMP threads on Nehalem and 12
OpenMP threads on Istanbul.

6.3.2 MPI, Strong Scalability Tests on Jaguar

The results are reported in Figure 41. The problem size is 300,000 RBCs with 84 points per

RBC, which corresponds to 100,000,000 unknowns. The strong scalability results demon-

strate excellent speed up resulting in an unprecedented five seconds per time-step on 24,576

cores.

We get excellent speed up and we require less than 10 seconds per time step for 300,000

RBCs. The efficiency, of course, is reduced for the largest processor count as the memory

traffic dominates the computations.
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Figure 40: Single node scaling results for the global interactions. In this figure
we present results for the FMM code for various hybrid architecture setups: (a) One thread
CPU only without SSE, (b) GPU only for both direct and near evaluations , (c) Four threads
on CPU with SSE, (d) Four threads on the CPU with SSE for the V-list and asynchronous
evaluation of U-list on the GPU. On both Istanbul and Nehalem architectures we observe 1.2
(m=6)–1.7(m=12) GFlops/s per core, for the overall FMM evaluation phase.
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Figure 41: Strong scaling on Jaguar PF. The strong scalability result for 262,144 vesi-
cles, and total number of 22M grid points. There are 6 cores (and 6 OpenMP threads) per MPI
process. The finest level of the octree is nine and the coarsest is three.

6.3.3 MPI, Weak Scalability Tests on Jaguar

The results are reported in Figure 42. The problem size (number of RBCs) per core is kept

fixed to 8000 RBCs, again with 84 points per RBC for the line-distribution on the Poiseuille
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flow. We can observe the the calculation of vself remains almost constant, whereas the cost

of the tree-setup and vinteraction increase. This is due to several reasons. As we increase

the problem size, the tree gets deeper and the cost per core increases. Also for such non-

uniform trees it is difficult to load balance for all phases of FMM. The solution to these

scaling problems is to employ the hypercube-like tree-broadcast algorithm we developed in

[77] for all of the phases of FMM. (Currently it is used only in the post-order communication

phase of the evaluation phase.) Finally, the setup is not multithreaded; we are currently

working on this, and we expect a factor of four on more speed-ups in this calculation.

Despite, the need for further optimizations, we achieve good utilization of the resources:

the vself phase sustains over 18 GFlops/s per core (single precision) and the vinteraction phase

sustains over1.2GFlops/per core (double precision). Overall, the code exceeds 0.7 Petaflops

of sustained performance.
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Figure 42: Weak Scaling on Jaguar PF. The weak scalability of the simulation to 196,608
cores. We have chosen a line distribution of 8,000 RBCs with 84 points per RBC. We use one
MPI process per socket and all of the six OpenMP threads in each MPI process. The finest to
coarsest octree levels range form 24 to 4. In the largest, simulation, there are 200 million red
blood cells and 90 billion unknowns. These results represent the average timings of four explicit
Euler time steps.

6.3.4 GPU Weak Scalability Results for FMM on Lincoln

We report these results in Figure 43. We only report results for the uniform distribution

using 1M points per GPU. We use one socket per MPI process and one GPU per socket.

In this experiment we use one core per socket. The results on GPUs are excellent on up to

256 processes/GPUs. We get over a 25X per core consistently and we were able to evaluate
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Figure 43: GPU weak scaling. Here we compare CPU-only with GPU/CPU configu-
ration on up to 256 processes. For the largest run the total evaluation on 256 million
points takes 2.2 secs. Throughout the computation, we maintain a 25X speed-up over
the single-core CPU version with only one thread per socket. When multithreading and
vectorization is enabled, the differences become less pronounced as we can see in FFig-
ure 40. For the GPU runs, we use a shallower tree by allowing a higher number of
points per box. In this way, we favor dense interactions over far-field computations.
The former has a favorable computation/memory communication ratio and performs
favorably on a GPU. In this examples, we used roughly 400 points per box for the GPU
runs, and 100 points per box for the CPU runs. Both numbers were optimized for their
respective architectures. We were able to maintain a 1.8-3 secs / evaluation for the
GPU-based implementation. (This figure is reproduced from [77].)

a 256-million particle sum in 2.3 seconds for a total of approximately 8 TFlops/s.

6.3.5 Red Blood Cell Distributions and Background flow

We test a line-like distribution of cells (Figure 44) on a Poiseuille background flow.3 The

results of having a line of cells exposed to such a Poiseuille flow are easy to informally

“verify” visually. Also, such a flow results in a highly non-uniform distributions of points

as the simulation horizon increases.

3More precisely, this is a “pseudo-Poiseuille flow”, since we do not impose confinement boundary condi-
tions around the cells. Rather, we impose a free-space velocity that corresponds to a Poiseuille flow. Roughly
speaking, such background flow corresponds to an unperturbed laminar flow in a blood vessel.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 44: Snapshots of the simulation of 40,000 RBCs. In this figure, we present
results from a 40,000-RBC simulation with 84 points per RBC for a total 15,000,000 unknowns.
In the top row (a–c), we can observe the alignment of the cells with the background Poiseuille
flow as we advance in time. We can verify the need for non-uniform solvers. Every time step
of this simulation, requires a Stokes solve at the extraordinarily complicated domain defined
by the exterior and interior of the RBCs. In addition, the interfacial forces at each RBC are
computed by inverting an integro-differential operator that involves fourth order derivatives. In
the bottom row, we zoom in on different regions of the flow snapshot (c). We can observe the
different deformations of the cells in different regions of the flow. For example, (f) and (g)
depict cells from the upper tip (c) in which the shear rate is higher and the cells experience
larger deformations. Subfigures (h) and (i) depict cells from the bottom left of (c), which is
near the center of the Poiseuille flow and thus, the cells experience smaller deformations. The
visualization was performed on a single workstation using ParaView (www. paraview. org ).
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6.4 Conclusions

We have presented MoBo, a framework that enables large-scale direct simulations of blood

microcirculation. MoBo exposes and exploits concurrency at all stages of a complex multi-

physics, multiscale problem and uses several parallel programming paradigms. We showed

that we can efficiently scale the different parts of the method and we observe good scalability

across different architectures.

For the computation of vself , on a single node, we get roughly near peak performance for

GEMM on both CPUs and GPUs. Our algorithmic choices were targeted to an extensive

use of GEMM routines–without compromising overall work optimality. We are able to

deliver spectral accuracy while using only a small number of degrees of freedom per RBC

(e.g., compare to the 1000s of degrees of freedom per RBC for Lattice Boltzmann methods).

For the global interaction, we have achieved 1 GFlop/s per CPU core for the overall FMM,

which is quite remarkable given the complexity of the algorithm.

In our largest calculation on 196,608 cores, we achieved 0.7 petaflops for the multi-

physics/multiscale problem of direct numerical simulation of blood flow. Let us emphasize

that these results represent the worst case scenario with respect performance, as we use a

very small number of points per cell. If we use an m = 12 spherical harmonics approxi-

mation for the RBCs the percentage of time spent in the vself part of the calculation will

further increase.

Taken together, MoBo opens the way for blood flow simulations of unprecedented

fidelity. It enables the simulation of microfluidic and nanofluidic devices.
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CHAPTER VII

FUTURE RESEARCH DIRECTIONS

In Chapter 2 we presented a semi-implicit numerical scheme for the simulation of inextensi-

ble vesicles suspended in bounded or unbounded domains. Through numerical experiments,

we have demonstrated that the proposed scheme does not exhibit stability constraint on

the time-step size. The most significant limitation of this scheme is that the number of

Fourier modes used to represent the vesicle membrane and the time step are not chosen

adaptively. Our spectral discretization (which we combine with a special high-order scheme

for singular integrals) in space results in discretization errors that are dominated by the

time-stepping scheme. For concentrated suspensions, adaptive schemes combined with a

posteriori estimates may be necessary. Furthermore, we solve the discretized system of

equations using the Generalized Minimum Residual Method (GMRES) with an appropriate

set of preconditioners, which are based on the spectral properties of the operators. Nonethe-

less, for very small viscosity contrasts, the spectral properties of the operators change and a

generic preconditioner, as we used here, fails to fully compensate for the poor conditioning

of the operators. An additional extension of this work would be to design an algorithm

that allows decoupling of the time-step size from the shear rate. We believe, however, that

such an algorithm would require the use of nonlinear solvers and contact detection methods

that fully couple the vesicle position updates. Such coupling would be more difficult to

implement and analyze.

In the study of vesicle migration in Chapter 3, several interesting questions remain

unanswered. An interesting line of research would be to study the spontaneous organization

of vesicles for higher concentrations, and providing a detailed link between microstructure

and rheology. There are two dynamical factor contributing to the self organization of

vesicles: (1) the existence of a stable orbit (where the inward migration force balances the

wall lift force) and (2) the interaction of vesicles within such an orbit, which results in
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the uniform distribution of vesicles. In Chapter 3 we demonstrated the coupling between

deformability and the inward migration. The effect of deformability of particles on the

second step is yet to be investigated.

For the flow of vesicles in three dimensions (Chapters 4, 5, and 6), we restricted our

attention to suspensions of vesicles in unbounded domains. The inertial terms were ignored

and therefore the overall method is restricted to low Reynolds numbers. We only considered

spherical-topology vesicles and we did not allow for topological changes, which are present

in many biophysical phenomena involving vesicles. Similar to the two dimensional case,

an important limitation of our scheme is the lack of adaptivity (both in space and time).

This lack of adaptivity can cause vesicle-vesicle collisions, which are not possible in the

mathematical model we use. Indeed, one can easily construct simulations where, without

a significant increase of the surface discretization size, our code fails to resolve inter-vesicle

interactions accurately. One other important research direction is the development of ef-

ficient algorithms for the evaluation of nearly singular integrals, which arise in the close

interaction of vesicles.
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