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Abstract

In this paper, we introduce a new type system based on linear typing, and show how it
can be incorporated in a concurrent programming language to track ownership of promises.
By tracking write operations on each promise, the language is able to guarantee exactly
one write operation is ever performed on any given promise. This language thus precludes
a number of common bugs found in promise-based programs, such as failing to write to a
promise and writing to the same promise multiple times. We also present an implemen-
tation of the language, complete with an efficient type checking algorithm and high-level
programming constructs. This language serves as a safer platform for writing high-level
concurrent code.

1 Introduction

In recent decades, the prevalence of concurrent programming1 has increased as programmers
strive to take advantage of increasingly parallel machines. Unstructured concurrency has proven
to be highly error-prone, and programmers have subsequently undertaken efforts to formalize
concurrent programming using structured techniques. One such technique is the promise – a
container used to refer to a value that is produced asynchronously [14]. Promises typically include
both a “read” (or “await”) operation – which blocks until a value is available and returns that
value – as well as a “write” (or “fulfill”) operation – which provides the value for the promise.
Promises are frequently used to communicate between threads or tasks, where one thread awaits
a value and another performs some asynchronous computation before writing the value to the
promise. This creates a higher-level abstraction as compared to more traditional concurrency
primitives like the lock/mutex (which allows programs to ensure mutually-exclusive access to
shared resources) and a more general abstraction than the future (which represents a placeholder
for the result of a function being evaluated by a predetermined task or thread). In recent years,
promises have been incorporated into mainstream languages such as C++, JavaScript, and Java
as popular concurrency primitives.

Despite the value of structured concurrency in preventing bugs, these techniques – including
the promise – are not without their own share of bugs. Madsen et al. [15] identify several common
promise-related concurrency bugs, including the omitted write – a promise that is never fulfilled
– and the double write – a promise that is fulfilled multiple times. In their case study, these two
bugs are the direct cause of 6 of the 21 concurrency bugs analyzed.

In addition to the omitted write and double write bugs, there are other kinds of concurrency
errors that can occur with the use of promises. A deadlock is composed of a cyclical dependency
among a set of threads [11]. Further, an unowned write occurs when one thread assumes own-
ership over a promise only to have another thread perform the actual write operation. This is
distinct from the double write, as it can make it difficult for the programmer to reason about
the source of a promise’s fulfillment and often results in a race to fulfill the promise between

∗This work was originally presented at ECOOP 2021.
†This research was completed with the help and guidance of Dr. Caleb Voss and Professor Vivek Sarkar.
1In this paper, we use “concurrent” interchangeably with “parallel”, though we recognize that a distinction is

made between the two terms in other contexts.
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two threads. This comes in contrast to a double write to an owned promise, which would only
exhibit a race when reading2.

Each of these bugs has the potential to create critical issues in a program, ranging from
making the program inoperable to creating major security flaws. For example, both omitted
writes and deadlocks can cause a program to hang indefinitely, while unowned or double writes
may contribute to data races and, by extension, inconsistent, unpredictable, or even undefined
behavior. In fact, these bugs have been cited [9, 10] as a disadvantage of promises relative to
futures, which by definition cannot result in unowned, double, or omitted writes3.

Over the years, programmers have devised many tools that can be used to quickly detect
bugs in programs. In general, these fall into two major categories: dynamic analyses, which
attempt to identify bugs during a program’s execution, and static analyses, which attempt to
identify bugs before execution [8]. Each method has its own advantages, with dynamic analyses
generally producing fewer false positives as well as more detailed results (due to the availability
of more information about the program) and static analyses revealing possible bugs before the
code is run [7]. Beyond that, static analyses present the advantage of proving the absence of
behaviors (i.e. that a program can never exhibit a certain bug). This allows for bugs to be found
that would only appear intermittently or rarely in the running program; in contrast, such bugs
can be very challenging to find using dynamic analyses.

One particularly useful class of static analysis takes the form of type checking. Substructural
type systems are a class of type systems in which restrictions are placed on the number of times
a variable may be used. One such system is known as linear typing, in which linear variables
must be used exactly once [23]. As an example, with a linear variable x both the program x+ x
and 0 cannot be typed, as neither uses the variable x exactly once. In recent years, substructural
type systems have risen in popularity through their use in languages such as Rust [24], Haskell
[2], ATS [26], and F∗ [21].

The contributions of this paper are as follows:

1. We present the design and implementation of a new concurrent programming language
aimed at preventing certain classes of promise-related bugs.

2. We introduce a linear type system that tracks ownership of promises.

3. We provide a formal semantics for the behavior of concurrent, promise-based programs.

4. We prove that it is impossible to create double writes and unowned writes in this language,
as well as omitted writes in terminating programs.

5. We provide a decidable type checking algorithm, and experimentally evaluate its speed.

6. We demonstrate the abilities of this language to find bugs in real-world programs.

2 Language Formalisms

Our work revolves around a custom programming language intended to create safer type-level
primitives for interacting with promises. However, we believe that this approach can be incor-
porated into other strongly-typed, concurrent languages with promises. Voss and Sarkar [22]
introduce the concept of promise ownership as a key mechanism for dynamically identifying
omitted write bugs and deadlocks. Specifically, ownership of a promise p by a task T is defined
as the responsibility of T to either fulfill p or transfer ownership to another task. Based on their
approach, we leverage a linear type system to statically track promise ownership. By using the
type system, we can not only statically prevent omitted writes in terminating programs, but also

2The write permission of an owned promise is only owned by one thread at a time, so no two writers can
race to fulfill the same owned promise. Both situations can result in a race when reading, because the value read
depends on the non-deterministic order of read and write operations.

3Recall that a future can only be fulfilled as the result of a function. Given a function f known to return
exactly once, a future yielding f ’s result will be fulfilled exactly once (and only by f).
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τ ∈ Type ::= Int | Promise(τ) | Promise∗(τ) | τ1 + τ2 | τ1 × τ2 | τ1 → τ2

e ∈ Expr ::= i | x | let x := e1 in e2 | f(e) | async e | (e1, e2)
| InlτL,τR e | InrτL,τR e
| match e0 { (x1, x2)⇒ e1 }
| match e0 { Inl x1 ⇒ e1 , Inr x2 ⇒ e2 }
| promise τ | ?x | x← e

F ∈ Function ::= fun f(x : τ1) : τ2 { e }

P ∈ Program ::= F | F P

Figure 1 Syntax rules for the language.

unowned and double writes. As in their work, we can also leverage the language’s semantics to
dynamically detect deadlocks.

This notion of promise ownership is established by splitting promises into two components,
a “read-end” and a “write-end,” similar to the split between “futures” and “promises” in C++,
respectively [12]. In this system, the write-end of a promise is linearly typed so as to ensure it
is fulfilled exactly once. Compound data types, such as products and sums, are linear if they
contain one or more linear components. All other variables remain unrestricted. By applying
linear typing in this way, we enable liberal use of the read-end, while restricting the write-end
to only a single use by its owner. We formally define the programming language in three parts
(syntax, type system, and semantics), taking careful consideration to create as simple a language
as possible.

2.1 Syntax

The language consists of multi-procedure programs, which are able to spawn asynchronous tasks.
Values are integers, promise read and write handles, sums, products, and named functions.
Control flow is expressed by matching on sums and products, while looping is expressed via
recursion. Functions take a single parameter and return a single value. Types take the form of
the base Int type for integers, the promise read handle type Promise(τ), the promise write handle
type Promise∗(τ), binary sum and product types4, and function types.

Figure 1 defines the syntax, and features several interesting constructs:

• async e – Schedules the expression e to be performed asynchronously.

• promise τ – Constructs a promise of a τ , yielding a pair of the write and read handles.

• ?x – Blocks on and retrieves the value contained by a promise x (e.g. “await”).

• x← e – Writes the value of e to the owned promise x (resolving/fulfilling the promise).

2.2 Type System

Before specifying the typing rules, we must first introduce the notion of a linear type [23].
Variables of linear types have the property that they must be used exactly once along any path
of execution. For example, if a linear variable x is in scope, then the expression 1 cannot be
typed, since it does not use the linear variable x. Likewise, the expression x + x cannot be
typed, since it uses the linear variable x twice. The linear types in our language are types of the
form Promise∗(τ) (i.e. write handles) and any compound type containing at least one Promise∗.

4Unbounded data was left out of the language definition for simplicity. The language can be trivially extended
with recursive data types (Section 4.1) to allow for dynamically-sized data types. Such a modification does not
invalidate any of the language’s properties.
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IsLinear(Promise∗(τ))

IsLinear(τ1) ∨ IsLinear(τ2)

IsLinear(τ1 × τ2)

IsLinear(τ1) ∨ IsLinear(τ2)

IsLinear(τ1 + τ2)

Figure 2 The IsLinear judgment, which is used to determine whether a type τ is linear.

∅ = ∅⊞ ∅
Γ = Γ1 ⊞ Γ2

Γ, x : τ = (Γ1, x : τ)⊞ Γ2

Γ = Γ1 ⊞ Γ2

Γ, x : τ = Γ1 ⊞ (Γ2, x : τ)

Γ = Γ1 ⊞ Γ2 ¬IsLinear(τ)
Γ, x : τ = (Γ1, x : τ)⊞ (Γ2, x : τ)

Figure 3 The environment splitting relation ⊞.

Note that functions in this type system need not be linear, as the lack of closures and global
variables ensures that a call to a function cannot use a linear variable without receiving it as
a parameter or creating it. A generalization to allow closures is possible, and would require
functions to become linear when capturing linear variables5. Types are determined to be linear
by the judgment IsLinear, defined in Figure 2.

We define the typing environment Γ as a sequence of statements of the form x : τ , such that
each statement denotes the type τ of the variable x in the environment. Note that the same
environment contains both linearly and non-linearly typed variables.

Γ ∈ Environment ::= ∅ | Γ, x : τ

Following the notation of Slepak [20], Figure 3 defines the “environment splitting” relation ⊞,
such that given an environment Γ, one can state that Γ = Γ1 ⊞ Γ2 if the environment Γ can be
split into Γ1 and Γ2. This splitting relation asserts that the linear variables in the environments
Γ1 and Γ2 are disjoint and that each linear variable in Γ belongs to exactly one of Γ1 and Γ2.
However, non-linear variables can be duplicated between both Γ1 and Γ2. For example, given a
linear variable v and a standard variable w, we cannot split the environment in such a way as to
share the variable v between two scopes (i.e. if Γ = Γ1 ⊞ Γ2, then v ∈ Γ1 ⊻ v ∈ Γ2). However,
the same restriction does not apply to w, which can be present in one or both environments.

Figure 4 defines the typing rules. While most of the rules are fairly standard, it is important
to observe the mechanics used for linear typing. Each rule only allows the most restricted possible
environment6 to be present (e.g. (T-Var) operates on an environment that contains only the
referenced variable). This prevents the program from dropping a linear variable without using
it.

The (T-Weaken) rule is employed to relax the restriction of only applying a rule to the
smallest environment. Specifically, (T-Weaken) allows for unrestricted variables to be dropped
arbitrarily. For example, take the program let x := 5 in 0. Since the (T-Int) rule only operates
on an empty environment, we cannot directly apply it to type 0 as an Int with x in the context.
However, (T-Weaken) allows us to drop the variable x when type-checking 0, because x is an
unrestricted variable. In practice, this means that unrestricted variables behave exactly as they
would in languages without linear typing. Note that (T-Weaken) cannot be applied to linear
variables, since dropping a linear variable would allow it to escape from being used (breaking
the guarantee that each linear variable is used exactly once).

5A linear closure would be restricted to a single call. This is overly conservative in some cases, but has been
successfully employed in other languages with substructural type systems (e.g. FnOnce in Rust).

6This is similar to the “Small Footprint” rule used in separation logics, in that the typing rules contain the
smallest possible environment but can be generalized by (T-Weaken).
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(T-Weaken)
Γ1 ⊢ e : τ1 ∄x : τ2 ∈ Γ2.IsLinear(τ2)

Γ1 ⊞ Γ2 ⊢ e : τ1

(T-Int)
⊢ i : Int

(T-Var)
x : τ ⊢ x : τ

(T-Let)
Γ1 ⊢ ev : τv Γ2, xv : τv ⊢ eb : τb

Γ1 ⊞ Γ2 ⊢ let xv := ev in eb : τb

(T-App)
f : τ → τ ′ ⊢ f : τ → τ ′ Γ ⊢ e : τ

Γ⊞ f : τ → τ ′ ⊢ f(e) : τ ′
(T-Async)

Γ ⊢ e : Int

Γ ⊢ async e : Int

(T-Product)
Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1 ⊞ Γ2 ⊢ (e1, e2) : τ1 × τ2
(T-Left)

Γ ⊢ eL : τL

Γ ⊢ InlτL,τR eL : τL + τR

(T-Right)
Γ ⊢ eR : τR

Γ ⊢ InrτL,τR eR : τL + τR

(T-MatchProduct)
Γ1 ⊢ ev : τ1 × τ2 Γ2, x1 : τ1, x2 : τ2 ⊢ eb : τb

Γ1 ⊞ Γ2 ⊢ match ev { (x1, x2)⇒ eb } : τb

(T-MatchSum)
Γ1 ⊢ ev : τL + τR Γ2, xL : τL ⊢ eL : τb Γ2, xR : τR ⊢ eR : τb

Γ1 ⊞ Γ2 ⊢ match ev { Inl xL ⇒ eL , Inr xR ⇒ eR } : τb

(T-Promise)
¬IsLinear(τ)

⊢ promise τ : Promise∗(τ)× Promise(τ)
(T-Read)

Γ ⊢ x : Promise(τ)

Γ ⊢?x : τ

(T-Write)
Γ1 ⊢ xp : Promise∗(τ) Γ2 ⊢ ev : τ

Γ1 ⊞ Γ2 ⊢ xp ← ev : Int
(T-Func)

x : τ ⊢ e : τ ′

⊢ fun f(x : τ) : τ ′{e} : τ → τ ′

Figure 4 The typing rules for the languagea.

aThe results of (T-Async) and (T-Write) are meaningless, but evaluate to placeholder integers due to the
absence of a void/unit type.
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Listing 1 Program violating double write restriction.

1 fun doubleWrite (p : Promise∗ ( Int ) ) : Int {
2 l e t := p ← 0 in
3 p ← 1
4 }

Listing 2 Program violating omitted write restriction.

1 fun omittedWrite (p : Promise∗ ( Int ) ) : Int {
2 match I n l Int,Int 0 {
3 I n l i ⇒ 0 ,
4 Inr i ⇒ p ← 1
5 }
6 }

Environment splitting accomplishes the other half of linear typing. Whenever a linear variable
appears in the environment for an expression containing multiple sub-expressions, we must ensure
that it is only available in one sub-expression. For example, consider a product (e1, e2) and a
linear variable x. If x appeared in both e1 and e2, it would clearly allow for x to be used twice.
To circumvent this, typing rules with multiple sub-expressions split the environment into several
sub-environments, such that each linear variable appears in only one sub-environment. In this
case, x could only be in scope for one of e1 and e2.

Several rules relate directly to promises and are critical to implementing the desired safety
guarantees. Specifically, note the fact that the promise constructor in (T-Promise) returns both
a linear/owned handle for the promise and a standard handle for the promise; this creates the
split between the write-end and read-end of the promise, respectively. In the case of (T-Read),
observe that it cannot accept a write-end to a promise, as reading from the write-end would
“use” the promise and result in never writing to it. Likewise, observe that in (T-Write) the
promise must be a linear write-end, so as to enforce only writing to a promise a single time and
only in an owned context.

Put together, these typing rules enforce the critical property that promises must be written
to exactly once. Since only one un-copyable and un-droppable handle exists for writing to a
given promise, it is impossible to write to a promise twice or to forget to write to a promise.
Further, the establishment of ownership by the linear type system enforces the property that a
promise can only ever be written to by its owner.

As an illustration of the typing rules and their effects, let us consider several small programs
that fail to type check and, more importantly, demonstrate bugs that can occur via incorrect
use of promises.

Listing 1 illustrates a double write bug. When type checking this function, we must split
the environment on line 2 (via (T-Let)) such that p belongs to the right-hand side of the let
expression and is no longer owned in line 3. Thus, it becomes impossible to type check line 3 in
this context, since (T-Write) demands that p be owned when writing. In other words, there
is no way to type this function. If allowed to execute, this program would attempt to assign
a second value to the promise p. This may lead to undefined behavior; if, for example, two
threads await the promise p, they may read different values depending on when the second write
occurs. While other languages handle this scenario as a runtime error – for example, this same
error is handled as an exception future errc::promise already satisfied in C++ and by simply
ignoring subsequent writes to the promise in JavaScript – our language can statically prevent
this behavior from ever occurring.

Listing 2 demonstrates an omitted write bug, in which a promise is not fulfilled in some
paths of execution. As an analogy, compare this to how the Java compiler rejects functions
that are missing a return statement in one branch of a conditional. When type checking the
match expression on line 2 with (T-MatchSum), we split the environment between the value
being matched and the two branches, requiring that both branches type check under the same
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Listing 3 Program violating unowned write restriction.

1 fun unownedWrite (p : Promise ( Int ) ) : Int {
2 p ← 0
3 }

(T-PromiseRef)
⊢ &iτ : Promise(τ)

(T-PromiseRef∗)
⊢ &∗iτ : Promise∗(τ)

Figure 5 Typing rules for promise references.

environment. In this case, we assign an empty environment to the value being matched and an
environment consisting of p to the two branches. While the branch on line 4 type checks via
(T-Write), the variable p is unused on line 3. Since p is a linear variable, it is impossible to
eliminate p via (T-Weaken), and thus the program cannot type check. When executing this
program, the match expression would reach line 3 and fail to assign a value to p before returning.

Finally, Listing 3 demonstrates writing to a promise that is not owned. This is in contrast
to Listing 1, where a write is attempted while no promise is in scope. When attempting to type
check line 2, we find it impossible to apply (T-Write) since the type of p is not of the form
Promise∗(Int). During execution, this program would allow various bugs to occur due to the
inability to track this write operation elsewhere in the program. For example, it could perform
a second write to an already-fulfilled promise, creating a double write bug.

2.3 Operational Semantics

To define the operational semantics of a program, we must first introduce some extra syntax
to represent the runtime state of a program. First, we extend the expression syntax with the
construct &iτ , which represents a reference to the read-end of a promise of τ with the unique ID
i. We also add the construct &∗iτ , which represents a reference to the write-end of a promise of
τ with the unique ID i. We augment the type system with two new rules, defined in Figure 5,
to give the promise-reference literals a type.

Figure 6 defines the currently-executing state of a program as a binary tree of threads,
known as a fork-tree. In such a fork-tree, each node contains a thread ID and an expression.
Each fork operation splits the node to a left thread, representing the currently executing code,
and a right thread, representing the new task. These terms are composed together to create
a tree of all concurrently executing tasks. We encode the entire state of the program as the
quadruple (i, P,O, t): the next-available ID for a promise or thread, a mapping of promise IDs
to an optional value, a mapping of promises to their owner thread, and the thread tree for the
program. Semantically, P stores the values (or lack thereof) associated with a given promise,
and also indicates whether a given promise has been fulfilled. This is encoded by the type τ+ Int,
where τ corresponds to a value and Int corresponds to a placeholder for an unfulfilled promise
(the value of which is ignored). The initial state of a program is (1, ∅, ∅, ⟨0,main(0)⟩), where
main : Int→ Int.

Figure 7 defines the Isvalue predicate, used to identify expressions that are fully evaluated.
Finally, we utilize contextual semantics to simplify the notation for the operational semantics.

m ∈ Thread ID ::= i

T ∈ Threads ::= ⟨m, e⟩ | T ∥ T

Figure 6 Syntax for thread trees.
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IsValue(i) IsValue(&iτ ) IsValue(&∗iτ )

IsValue(v1) ∧ IsValue(v1)

IsValue((v1, v2))

IsValue(v)

IsValue(InlτL,τR v)

IsValue(v)

IsValue(InrτL,τR v)

Figure 7 The IsValue predicate, which determines whether an expression is a terminal value.

K ∈ Expr Context ::= · | let x := K in e | f(K) | Inl K | Inr K
| (K, e) | (e,K) | match K { Inl x1 ⇒ e1, Inr x2 ⇒ e2 }
| match K { (x1, x2)⇒ e } | ?K | K ← e | e← K

J ∈ Thread Context ::= · | J ∥ T | T ∥ J

Figure 8 K (expression-level) and J (thread-level) contextual semantics.

Specifically, Figure 8 defines two contexts K and J to represent an expression with a hole
and a fork-tree with a hole, respectively. While the normal transition rules (e.g. (S-Write))
implement the transition rules for base-case expressions, the K contextual semantics allow us to
recursively apply these transformations to sub-expressions and the J contextual semantics allow
us to apply these transformations to any thread in the tree.

Figure 9 defines the operational semantics. Of particular interest here are the rules for
modeling non-determinism. The binary fork-tree structure of the program allows us to apply
the basic stepping rules (such as function application, let evaluation, etc.) to any thread at
any time, while also enabling forking to occur at any program point. In other words, we rely
on the ability to substitute a single thread (e.g. ⟨let x := async e1 in e2⟩) with a sub-tree
(e.g. ⟨let x := 0 in e2⟩ ∥ ⟨e1⟩) to allow for forking within the scope of an arbitrary expression.

Much of the heavy-lifting with regards to concurrency occurs via the contextual semantics,
which are implemented via three transition rules: (SJ-Schedule), (SK-RunExpr), and (SK-
RunFork). (SJ-Schedule) forms the basis of the threading model, allowing us to treat any
individual task in the fork-tree as a hole (where we can apply other transition rules). In practice,
this implements scheduling for the program by picking a thread and performing transformations
on it. The two K-level rules, (SK-RunExpr) and (SK-RunFork) are extremely similar, in
that they focus on a hole in the expression tree and apply further transformations to it. In
practice, these holes take the form of larger expressions that require reduction before evaluation;
for example, consider how (S-App) requires the function’s argument to be reduced to a value
before calling the function. The two rules differ in that (SK-RunFork) specifically allows
for a fork operation to occur within the sub-expression, whereas (SK-RunExpr) runs the sub-
expression as a singular thread. As an example, imagine that the argument to a function involves
an async operation. When evaluating the argument, the hole is no longer a single expression,
but rather a fork-tree of two expressions. When substituting this subtree into the program, care
must be taken to ensure that the old thread’s expression is substituted in while the new thread
stays distinct.

The rule (S-Fork) is also of particular interest, as it is used to spawn new threads. When
(S-Fork) creates a new thread, it must assign a new thread ID to it (picking a unique value
from the state of the program i). Note that a promise write handle’s owner is the thread that
will write to that promise. That is, since two thread IDs now exist, each promise in scope will be
mapped to one of these IDs in the ownership map O. For example, if the newly spawned thread
will use an owned promise p then we must transfer the ownership of p to the new thread. This
runtime ownership tracking is used only for proofs, and can be removed from the semantics of
the language for an actual implementation without any effect. At the same time, it provides a
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(SJ-Schedule)
(i, P,O, ⟨m, e⟩) −→ (i′, P ′, O′, T ′)

(i, P,O, J [⟨m, e⟩]) −→ (i′, P ′, O′, J [T ′])

(SK-RunExpr)
(i, P,O, ⟨m, e⟩) −→ (i′, P ′, O′, ⟨m, e′⟩)

(i, P,O, ⟨m,K[e]⟩) −→ (i′, P ′, O′, ⟨m,K[e′]⟩)

(SK-RunFork)
(i, P,O, ⟨m, e⟩) −→ (i′, P ′, O′, ⟨m, e′⟩ ∥ T )

(i, P,O, ⟨m,K[e]⟩) −→ (i′, P ′, O′, ⟨m,K[e′]⟩ ∥ T )

(S-Fork)

Γ ⊢ e : τ
OL = {p 7→ m | p 7→ m ∈ O, p /∈ Γ} OR = {p 7→ i | p 7→ m ∈ O, p ∈ Γ}

(i, P,O, ⟨m, async e⟩) −→ (i+ 1, P,OL ∪OR, ⟨m, 0⟩ ∥ ⟨i, e⟩)

(S-Let)
IsValue(v)

(i, P,O, ⟨m, let x := v in e⟩) −→ (i, P,O, ⟨m, e[v/x]⟩)

(S-App)
IsValue(v)

(i, P,O, ⟨m, f(v)⟩) −→ (i, P,O, ⟨m,Body(f)[v/Arg(f)]⟩)

(S-MatchProduct)
IsValue(v1) IsValue(v2)

(i, P,O, ⟨m,match (v1, v2){(x1, x2)⇒ e}⟩) −→
(i, P,O, ⟨m, e[v1/x1, v2/x2]⟩)

(S-MatchSumL)
IsValue(v)

(i, P,O, ⟨m,match Inl v{Inl xL ⇒ eL, Inr xR ⇒ eR}⟩) −→
(i, P,O, ⟨m, eL[v/xL]⟩)

(S-MatchSumR)
IsValue(v)

(i, P,O, ⟨m,match Inr v{Inl xL ⇒ eL, Inr xR ⇒ eR}⟩) −→
(i, P,O, ⟨m, eR[v/xR]⟩)

(S-Promise)
(i, P,O, ⟨m, promise τ⟩) −→ (i+ 1, [i 7→ Inr 0;P ], [i 7→ m;O], ⟨m, (&∗iτ ,&iτ )⟩)

(S-Read)
ep = &(ip)τ P (ip) = Inl v

(i, P,O, ⟨m, ?ep⟩) −→ (i, P,O, ⟨m, v⟩)

(S-Write)
ep = &∗(ip)τ IsValue(v)

(i, P,O, ⟨m, ep ← v⟩) −→ (i, [ip 7→ Inl v;P ], O, ⟨m, 0⟩)

Figure 9 Operational semantics for the language.
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tool that could be leveraged to perform deadlock detection at runtime [22], which may be useful
for an implementation.

Finally, let us briefly consider the mechanics of the (S-Promise), (S-Read) and (S-Write)
rules. These rules all rely on the map P , which tracks each promise’s state. (S-Promise) adds
an entry for i (the ID of the new promise), mapping it to Inr 0 – a placeholder indicating that p
hasn’t been fulfilled. In (S-Write), P is extended with a mapping of ip (the ID of the promise
p) to Inl v (a value v). The use of the Inl constructor indicates that p has been fulfilled, and
the value v corresponds to p’s new value. (S-Read) checks the state of ip, and only advances
once the value stored in P (ip) is fulfilled (indicated by the Inl constructor). Once p is fulfilled,
(S-Read) evaluates to the stored value. In effect, this forces (S-Read) to block until a value
for p becomes available.

3 Theoretical Guarantees

The goal of our language is designing a system that is free of a number of common concurrency
bugs. Specifically, we argue that our language cannot exhibit an omitted write bug (creating a
promise but never fulfilling it) in terminating programs, and cannot ever exhibit an unowned
write bug (writing to a promise that is not owned by the current thread) or a double write bug
(fulfilling the same promise twice).

Theorem 1 (Linearity). Given a linear variable x : τx, if Γ, x : τx ⊢ e : τe then it is always the
case that Γ ⊢ e : τe cannot be well-typed. Likewise, if Γ ⊢ e : τe then Γ, x : τx ⊢ e : τe cannot be
well-typed. That is, a linear variable cannot be added/dropped in Γ for the same e.

Proof. We argue that whenever a linear variable x : τx exists in the environment Γ, x : τx for a
well-typed program e, then x cannot be dropped while retaining a well-typed program. Further,
whenever x : τx does not exist in Γ for a well-typed e, x cannot be added to Γ while retaining a
well-typed program. Each can be shown by trivial induction on the typing rules.

3.1 Soundness

We define soundness to mean that if a program type-checks it can only get “stuck” due to
promise dependency cycles. That is, either a program is done executing, is able to progress
via the operational semantics, or it contains a set of threads T such that every thread in T is
blocked on a promise owned by another thread in T . This is critical to proving the various other
properties of our language.

Lemma 2 (Substitution Preservation). Given a well-typed program, such that Γ ⊢ e : τ , if
Γ ⊢ x0 : τ0 and Γ ⊢ e0 : τ0 then Γ ⊢ e[e0/x0] : τ .

Proof. Observe that the typing relation is defined such that if an expression is well-typed, any
sub-expression must also be well-typed. Since x0 and e0 share the same type, substitution cannot
effect the overall typing judgment. This can be trivially shown by induction on e.

Lemma 3 (Promise Preservation). Given a promise p : Promise(τ), ⊢ P (p) : τ + Int.

Proof. First, observe that an owned promise p : Promise∗(τ) can only be fulfilled via the (T-
Write) rule on an expression p ← v, where the value v is an inhabitant of the type τ . By
definition, the value written to the promise will always match the correct type τ .

Next, observe that the write and read ends of a promise always share their type. The only
way to create a promise literal of the form &iτ or &∗iτ is via the (S-Promise) rule. By definition
this rule assigns the same unique ID to both ends, so each newly created read-end and write-end
will correspond to a matching type τ .

Finally, notice that the type of both a read-end and a write-end of a promise will never change
throughout the program. Via (T-PromiseRef) and (T-PromiseRef∗), a promise literal’s type
is directly encoded in the syntax of the promise literal. By case analysis, it is trivially true that
there is no way to transform the type encoded in the promise literal. There is no possible syntax
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that can allow for the wrong type of value to be written to a promise and there is also no possible
syntax to attempt reading a promise as the wrong type.

Thus, in any step e −→ e′ where e involves a write operation, both the value placed into
the promise and the promise itself always retain their types. Therefore it can be seen that no
possible sequence of steps can result in a promise p containing a value of the wrong type.

Lemma 4 (Local Preservation). Given a program ⟨m, e⟩ such that ⊢ e : τ , then if ⟨m, e⟩ −→
⟨m, e′⟩ or ⟨m, e⟩ −→ ⟨m, e′⟩ ∥ t it must be true that ⊢ e′ : τ .

Proof. By simple induction over the transition rules and appeal to Lemmas 2 and 3, it can be
seen that any step e −→ e′ yields e′ with the same type τ (and when forking, a second thread
with any type). Therefore, in all cases the original thread retains its type τ .

Theorem 5 (Global Preservation). For any well-typed program, any operational semantics step
taken will leave us with a well-typed program where each thread either retains its old type or has
been newly created.

Proof. By induction on the step that is taken, observe that either:

1. The program consists of a single thread and does not fork, in which case it is trivially true
that the program’s type remains globally preserved via Lemma 4.

2. A new thread is created and the parent thread is modified via (S-Fork). By Lemma 4
we know that the parent thread is preserved. Since the newly created thread was not
previously present in the tree, and the sub-expression it is created from was well-typed,
then it must be true that the new thread is well-typed.

3. A thread is modified in a program consisting of many threads, which can only be done by
using the thread-level contextual semantics to navigate to that thread’s subtree. In this
case we can apply the inductive hypothesis to the thread’s subtree in order to show that
all threads in the subtree are preserved once they are modified. The threads that were
not modified are preserved by definition, therefore it must be true that the entire tree is
preserved after substituting in the modified subtree.

Lemma 6 (No Ownership on Termination). For any thread ⟨m, e⟩ with well-typed e, e cannot
be reduced to a terminal value while still owning a promise.

Proof. Observe that, by definition, all terminal values can only be well-typed in the empty
environment. We cannot drop an owned promise (or any linear variable that might contain a
promise) via (T-Weaken). No task can terminate as a linear value, as the async expression
requires a type of Int for the spawned task and the main function evaluates to Int (i.e. all
threads evaluate to Int). Thus, before termination a thread must always eliminate all owned
promises.

Definition 7 (ContainsCycle(O, T)). Given a promise-ownership map O and a tree of tasks
T , let G be a graph containing a vertex for each task in T . Then, for every task t1 that is
currently reading a promise p, where p’s owner O(p) = t2, create a directed edge from t1 to t2.
The pair (O, T ) are said to contain a cycle iff G contains a cycle.

Theorem 8 (Progress). Given a well-typed program (i, P,O, T ), either (i, P,O, T ) −→ (i′, P ′, O′, T ′)
∨ ∀t ∈ T.IsValue(t) ∨ ContainsCycle(O, T ).

Proof. We structure our progress theorem as the statement that given a well-typed program
either the program can make progress, the program has terminated (i.e. every thread is a value
literal), or the program contains a promise dependency cycle. In any case where a step can be
made or all threads have terminated, there is nothing to show. Thus, if we assume that progress
is impossible but the program has not terminated, we argue that it must be due to the existence
of such a promise dependency cycle.
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Let us assume that all non-value threads in T are not steppable and that at least one thread
t = ⟨m, e⟩ is not reduced to a value. For a non-value thread to be un-steppable, it must be
performing a read operation applied to a promise reference: K[?(&iτ )]. This can be seen by
induction over e: if e is not a terminal value, the program can always unconditionally step
forward or reduce further using K-level contextual semantics unless it is in the form of a read
operation K[?(&iτ )] where the promise &iτ is unfulfilled (in which case e is blocked on the
promise i). Let the owner thread o = O(i), the owner of the promise i. We consider a recursive
walk through the tree of threads, in which there are three cases:

1. o refers to the current thread. In this case, we trivially observe a cycle from o to o.

2. o refers to a thread that is a basic value and cannot be further evaluated. This case is
trivially shown to be impossible, since o is unable to own the promise i via Lemma 6.

3. o refers to another blocked thread, and we recursively apply the same logic to o.

Given that there is a finite set of threads, by the pigeonhole principle we observe that the
process of traversing dependencies must eventually terminate with a cycle (note that we have
already rejected the base case of the thread being able to step forward). By this logic, it can be
seen that the only case where a program is not terminated and cannot step forward is when a
cycle exists in (O, T ).

Therefore we have shown that for any well-typed program, the condition holds that the
program is finished evaluating, can step forward, or contains a dependency cycle.

Theorem 9 (Soundness). Given a well-typed program (i, P,O, T ), if (i, P,O, T ) −→∗ (i′, P ′, O′, T ′)
then either the program T ′ can continue, all threads have reached a terminal value, or it contains
a cycle.

Proof. By induction over the set of steps (i, P,O, T ) −→∗ (i′, P ′, O′, T ′):

1. If no steps were taken, we argue that since the program is well-typed then by Theorem 8
it must be true that either T ′ can step forward, it has terminated, or it contains a cycle.

2. If at least one step (i, P,O, T ) −→ (i′, P ′, O′, T ′) has been taken, then we apply Theorem 5
to show that the program (i′, P ′, O′, T ′) remains well-typed. Now, by the inductive hy-
pothesis we argue that the rest of the sequence of steps must either be able to continue,
have already terminated, or contain a cycle.

Therefore, for any sequence of steps it must be the case that the final result can continue,
has terminated, or contains a cycle.

3.2 Additional Properties

Building on Theorem 9, we can easily show that each of the language’s guarantees still holds.

Lemma 10 (Single-Write of Promises). For any well-typed program, all promises in that pro-
gram are written to at most once. For any well-typed program that terminates successfully, all
promises in that program are written to exactly once.

Proof. This can be easily observed, as there are only two ways that an owned promise can be
used: transferring ownership via a function call/function return/alias or writing to it. Since the
single-use property of linear variables is unconditionally true in the program by Theorem 1, then
it must be the case that, for any promise p:

1. Given a write operation, a promise p is used and can no longer be reused.

2. Given a transfer operation, a promise p is used and an alias p′ is created, which must then
be used by the program.

3. Given any other operation, the promise p remains available and must be used.
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In order for the above to reach termination, it must eventually reach the base case of writing
to a promise. Therefore, for any program that has successfully terminated, all promises have
been written to exactly once. Until the point of termination, there is no operation that allows
for the duplication of a promise, and thus we can create an upper-bound of at most one write
to any promise for programs that have not yet terminated.

Corollary 11 (No Omitted Writes). If a program is well-typed and terminates successfully, all
created promises will be fulfilled during execution.

Corollary 12 (No Double Writes). If a program is well-typed, no promise will be fulfilled multiple
times.

Theorem 13 (No Unowned Writes). If a program is well-typed, any promise that is written to
will be owned by the currently executing thread (i.e. the writer).

Proof. Promises can only become owned by the currently executing thread when created in it
or when transferred to it. Transfer can only occur via async, as the only other inter-thread
communication consists of promises (which cannot contain linear values). By definition (S-
Fork) transfers ownership to the thread that will use the promise. Since the only promise we
can write to is an owned promise, and other values cannot change types to become an owned
promise by Theorem 5, then it is impossible to write to anything except a promise owned by the
current thread.

We have shown that our language does not permit double or unowned writes, and that it
does not permit omitted writes in terminating programs. Note that a diverging program may
indefinitely postpone promise writes; for example, consider a program that runs an infinite loop
before issuing a write to a promise. While this is a limit to the language’s guarantees, observe
that futures have this same limitation: a future created from a function that does not terminate
will never be fulfilled. In effect, the type system gives promises similar safety characteristics to
futures: both promises and futures will always be fulfilled at most once and only by their owner,
and will always be fulfilled exactly once if the program reaches termination. This side-steps the
safety gap between promises and futures noted by [9, 10].

Corollary 14 (Only Cyclical Deadlocks). If a program is well-typed, the program can only ever
get stuck7 due to a cyclical deadlock.

Proof. This directly follows from Theorem 9.

With the result of Corollary 14, it’s useful to note the advantages our language presents for
runtime deadlock detection. Voss and Sarkar [22] present an algorithm for dynamically detecting
deadlocks in promise-based programs, which consists of two conditions: that all promises are
fulfilled and that there are no cyclical dependencies among tasks caused by promises awaiting a
result. Since all promises are known to be eventually fulfilled by Corollary 11, simply identifying
the cycles at runtime must be sufficient to catch all possible deadlocks encountered during a
program’s execution. Notably, the thread/promise-ownership table used for deadlock detection
in their algorithm is already tracked at runtime per the operational semantics of the language. In
effect, this allows us to trivially implement dynamic deadlock detection in our language without
altering the syntax, type system, or semantics.

4 Implementation

In order to evaluate our language, we implemented a compiler that performed type checking and
translated our language to a subset of Java8. Specifically, the compiler built upon the formalisms
of the language and carefully extended it to allow for more user-friendly programming. Thanks
to the type system’s guarantees, no additional runtime overhead is added to the generated
programs.

7In the sense that no operational semantics steps can be taken and the program is not done executing.
8The implementation is included as part of the supplementary materials.
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4.1 Language Extensions

In designing the compiler, a number of additional features were added to the language that are
not represented in Section 2. First, we extended the language to allow named and recursive types,
as the current language definition only supports anonymous, non-recursive sum and product
types. Through a simple syntax for defining new types (known as “records” and “unions”), the
language is able to apply similar typing rules to the specified product and sum types, respectively.
The addition of named types follows the existing type system rules, so that IsLinear(τ) is true for
all user-defined τ that contain linear members. In other words, we can still reason about a named
type being linear, since naming a type does not hide its linearity. This generalization enables
users of the language to create and interact with various recursive types, such as linked-lists and
binary trees.

As another quality of life improvement, the language implementation was generalized to allow
N-ary functions, whereas the type system described in Section 2 only allows for unary functions
(functions with a single parameter). This, combined with support for additional types such as
Unit, Bool and String, eases translation for many real-world programs.

Both for and while loops were also added to the language. However, due to the nature of
loops – which may execute any number of times – it is impossible to guarantee that variables
in a loop will be used exactly once. For example, consider the program while condition() {
p <- 0 }. If p is a value of type Promise∗(Int), we can observe two possible bugs in the above
program. Firstly, the function condition() may initially return false, in which case the write
would never occur. Likewise, it is possible that condition() returns true multiple times in
a row, in which case the write would occur more than once. Both of these possibilities would
clearly violate the language’s guarantees, and thus must be disallowed. To do so, the compiler
prevents capturing a free linear variable in a loop. In this case, unless p is defined within the
loop, it is impossible to reference it from within the loop. Note that while such a restriction is
overly conservative (i.e. a loop could be designed to only write once), similar restrictions exist in
other substructural type systems. In practice, such a restriction has not prevented the adoption
of other substructurally-typed languages (e.g. Rust, which has partially addressed this problem
through the use of iterators).

The compiler also provides a function unsafeWrite, which enables writing to a promise’s read-
end. At runtime, this operation is equivalent to writing to the write-end, but allows for multiple
writes to the same promise during type checking. This enables an escape hatch, which can be
useful when directly translating a foreign program or dealing with conditions that are difficult to
reason about (e.g. consider a loop that only fulfills a promise on the first iteration). While this
construct introduces an unowned write bug (and potentially double writes), it does not negate
the language’s soundness and still prevents the omitted write bug. This must be the case because
of the existence of the write-end, which ensures that at least one write unconditionally occurs.
If unsafeWrite were implemented as a no-op, the program would still be sound by definition
(it is equivalent to the program without unsafeWrite). Now observe that there is no way for
an additional write to cause the program to get stuck, because threads can only block while
awaiting an unfulfilled promise. Therefore, it must be the case that all well-typed programs
remain sound with unsafeWrite enabled.

4.2 The Type Checking Algorithm

The type checking algorithm is largely built upon the notion of environment splitting. How-
ever, to perform splitting efficiently a split(Γ, e1, e2) function had to be devised such that
split(Γ, e1, e2) = (Γ1,Γ2) =⇒ Γ = Γ1 ⊞ Γ2 ∧ Γ1 ⊢ e1 : τ1 ∧ Γ2 ⊢ e2 : τ2. In other words, the
split function would inspect two expressions and assign variables from the environment to each
expression, creating their corresponding type checking environments. This is used to to mimic
the behavior of the Γ1 ⊞ Γ2 relation in the type system.

In Voss and Sarkar [22], user-supplied annotations indicate the transfer of promise ownership
between tasks. These annotations take the form of a list of promises to “move” at every async
expression, and the newly-spawned task becomes the owner of the provided promises. This
mechanism is integral to both the dynamic detection of omitted writes and the dynamic deadlock
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detection algorithm that Voss and Sarkar introduce. By encoding ownership information in the
type system and inferring the “moves” via our environment splitting algorithm, our type checker
provides a way to lower the burden of explicit annotations for such a system. The key, in this
case, is the ability of the split operation to statically determine which sub-expression (the async
task or the code that follows spawning the new task) should become the owner of any given
promise and, through the linearity constraints of promises, force this ownership model to be
adhered to.

Algorithm 1 Environment Splitting between Expressions

1: function split(Γ, e1, e2)
2: free1 ← free(e1)
3: free2 ← free(e2)
4: Γ1 ← {v : τ | v : τ ∈ Γ, v ∈ free1}
5: Γ2 ← {v : τ | v : τ ∈ Γ, v ∈ free2}
6: allUsed ← ∀v : τ ∈ Γ . v ∈ Γ1 ∨ v ∈ Γ2 ∨ ¬IsLinear(τ)
7: noneReused ← ∄v : τ ∈ Γ . IsLinear(τ) ∧ v ∈ Γ1 ∧ v ∈ Γ2

8: if allUsed ∧ noneReused then return (Γ1,Γ2)
9: else type error

The split function, defined in Algorithm 1, operates on an environment Γ and two expres-
sions, e1 and e2. It begins by finding the free variables in each expression with respect to an
empty environment, revealing which variables will be referenced in each expression (lines 2-3).
Then, it creates an environment for each expression by taking all variables from Γ that are in
that expression’s free set (lines 4-5). We then define allUsed as the statement that every variable
in Γ either appears in one of the two environments or is non-linear; that is, are 0 linear vari-
ables dropped? Next, we define noneReused to be the statement that there are no variables in
Γ that are linear and used in both environments; that is, are 0 linear variables copied? If both
conditions hold true, we return the two environments (line 8); otherwise, we throw a type error,
as the environment cannot be validly split (line 9).

Since functions are generalized to be N-ary, special care must be taken to ensure that the
environment is split correctly for each argument. Algorithm 2 thus defines a special form of the
split function called split sequence(Γ, es). This function utilizes the same approach as the
split function, but operates recursively on a single expression at a time. In doing so, it is able
to confirm that at every step the all-used and none-reused conditions still hold.

Algorithm 2 Environment Splitting between a Sequence of Expressions

1: function split sequence(Γ, es)
2: if es = [] then return []
3: else
4: expr ← head(es)
5: rest ← tail(es)
6: freeexpr ← free(expr)
7: freerest ←

⋃
e∈rest

free(e)

8: Γ1 ← {v : τ | v : τ ∈ Γ, v ∈ freeexpr}
9: Γ2 ← {v : τ | v : τ ∈ Γ, v ∈ freerest}

10: allUsed ← ∀v : τ ∈ Γ . v ∈ Γ1 ∨ v ∈ Γ2 ∨ ¬IsLinear(τ)
11: noneReused ← ∄v : τ ∈ Γ . IsLinear(τ) ∧ v ∈ Γ1 ∧ v ∈ Γ2

12: if allUsed ∧ noneReused then return append(Γ1, split sequence(Γ2, rest))
13: else type error

split sequence functions as a generalization of split, taking an environment Γ and a list
of expressions es. This algorithm recursively walks through es and splits the environment at
each expression. The base case of an empty list returns an empty list of environments (line 2).
Otherwise, the function continues to its recursive step on line 4. First, we define expr to be the
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head of the list and rest to be the remainder of the list (lines 4-5). We then find the free variables
for expr (line 6) and define free rest to be the union of the free variables for each expression in
rest (line 7). As with split, we construct a Γ for each set of free variables (lines 8-9) and then
check whether all linear variables are used and none of them are reused (lines 10-12). If so, the
current expression can be split, so we return Γ1 appended to the result of split sequence on
rest with Γ2 (line 12). Otherwise, we throw a type error to signal that the environment cannot
be split (line 13).

At a high-level, the type checker performs pattern matching against the various syntactic
constructs. Each case is handled as per the typing judgments, utilizing the split and split -
sequence functions to assign the environments for each sub-expression. For the base cases of
the type checker, special care must be taken to ensure that weakening is applied correctly; in this
case, splitting the environment between the actual expression and an empty/dummy expression
ensures that only used variables (including linear variables) remain. In the case of branches,
both branches must be split from the condition/matched value (and not from each other) so
that it is ensured that the same linear variables occur in each branch.

In Algorithm 3, the typecheck function takes an environment Γ and an expression e to
type check in Γ. The function defines a variable complete as the result of splitting Γ between
e and a dummy expression (line 2). This is used to determine whether all linear variables in Γ
are used by e: if e cannot be split, it must be due to dropping or reusing a linear variable in
Γ. Next, the function performs pattern matching against e (line 3) to determine the syntactic
construct that appears.

Lines 4-7 handle references to variables (called x, in this case). Because this is a base case,
care must be taken to ensure that no linear variables are dropped; this is done by checking
that complete references a valid environment (line 5). If so, the type of x is fetched from the
environment Γ (line 6); otherwise, the function throws a type error (line 7).

Lines 8-12 handle the let syntax. In particular, when a let expression is encountered, the
environment must be split so that the value and body are checked in different environments.
Γ is split into Γrhs and Γbody, which are used for the RHS and the body, respectively (line 9).
We recurse to determine the type of the RHS (line 10). We then add id : τrhs to the body’s
environment so that the bound variable id is available in the body’s scope (line 11). Finally, we
return the body’s type by recursively calling typecheck (line 12).

Lines 13-22 handle the if syntax. When an if statement is encountered, the environment
splitting is a little more difficult. For example, consider the case where one branch uses a linear
variable and the other does not; clearly, this would violate the language’s guarantees. Thus, we
must ensure that both branches use all linear variables that are not assigned to the condition. We
begin by splitting the environment between cond and thenBranch, and cond and elseBranch,
respectively (lines 14-15). This leaves us with two valid environments for cond and guarantees
that the two branches are split in such a way that they cannot drop any linear variables. We then
check whether the two cond environments are identical and that cond evaluates to a boolean
(line 16). If not, we throw a type error (line 22). Next, we check that the two branches evaluate
to the same type (line 19); if so, we return that type (line 20) and if not, we throw a type error
(line 21).

Lines 23-32 handle function calls. Note that in contrast to the typing rules presented earlier,
functions here are N-ary. As a result, args is a list of N arguments to the function f . We begin
by looking up the type of f in Γ to confirm it is indeed a function, calling its argument types
τexpected and return type τ ′ (lines 24-25). Whenever f cannot be found in Γ or it is not a function
type, we throw a type error (line 31). To type check the arguments, we need each to have its
own environment. To do so, we call the split sequence function on args to split Γ for each
argument (line 26). Then, we map over each argument and recursively call typecheck on it
with the corresponding environment, storing the results in τargs (line 27). When τargs matches
τexpected, we return the function’s return type τ ′ (lines 28-29); otherwise, we throw a type error
(30).

Lines 33-36 handle the async syntax. Because async only contains a single sub-expression,
knowing that the sub-expression is well-typed is enough to ensure that the entire async expression
is also well-typed; thus we do not need to check the complete property. Given an expression e to
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Algorithm 3 Type Checker Implementation for Selected Constructs

1: function typecheck(Γ, e)
2: complete ← split(Γ, e, ())
3: match e with
4: case x ⇒
5: if complete is not a type error then
6: return Γ(x)
7: else type error

8: case let id := rhs in body ⇒
9: Γrhs,Γbody ← split(Γ, rhs, body)

10: τrhs ← typecheck(Γrhs, rhs)
11: Γ′

body ← Γbody, id : τrhs
12: return typecheck(Γ′

body, body)

13: case if cond then thenBranch else elseBranch ⇒
14: Γcond,0,Γthen ← split(Γ, cond, thenBranch)
15: Γcond,1,Γelse ← split(Γ, cond, elseBranch)
16: if Γcond,0 = Γcond,1∧ typecheck(Γcond,0, cond) = ‘Bool’ then
17: τthen ← typecheck(Γthen, thenBranch)
18: τelse ← typecheck(Γthen, elseBranch) ▷ Must both typecheck in Γthen

19: if τthen = τelse then
20: return τthen
21: else type error

22: else type error

23: case f(args . . .) ⇒
24: match Γ(f) with
25: case (τexpected . . .)→ τ ′ ⇒
26: Γargs ← split sequence(Γ, args)
27: τargs ← {typecheck(Γargs,i, argsi) | i ∈ 0..length(args)}
28: if τargs = τexpected then
29: return τ ′

30: else type error

31: otherwise ⇒ type error

32: end match
33: case async e ⇒
34: if typecheck(Γ, e) = ‘Unit’ then
35: return ‘Unit’
36: else type error

37: . . . ▷ Other cases have been omitted for brevity, but follow a similar approach
38: end match
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run asynchronously, we simply typecheck it in Γ and verify that it evaluates to the unit type
(line 34). If so, we can return the unit type for the entire async expression (line 35). Otherwise,
we signal a type error (line 36).

The various other cases are left out for brevity, as they use the same techniques demonstrated
in the above cases.

Since the typecheck function visits each syntax node exactly once, and at each syntax
node performs a split operation, the time complexity is a linear function of the cost of type
checking and the cost of splitting. The complexity of splitting is proportional to the size of the
environment (i.e. the number of variables in scope) and the time complexity of the free function.
With memoization, it is possible to create an amortized O(1) implementation of the free function
since the same nodes are repeatedly visited (the worst-case – an unvisited node – being linear
with respect to the size of the subtree). Thus, we believe that with an efficient implementation
of free the amortized worst-case time complexity of typecheck is O(|Γ| × |e|), where Γ is the
environment and e is the syntax tree.

5 Evaluation

We evaluate our compiler implementation on two separate metrics. First, we measured the speed
at which a number of test programs of various sizes could be type checked. This was important
to evaluate how practical opting into such a type system would be. Second, we conduct a case
study on the language’s ability to catch bugs. This is done by translating a number of JavaScript
programs containing promise-related bugs. In performing this case study, we are able to evaluate
how useful opting into such a type system would be.

5.1 Type Checker Performance

While a theoretical worst-case time complexity was calculated for the type checker, we were also
interested in its the real-world performance. To estimate the scalability of the type checking
algorithm in realistic conditions, we created several synthetic test programs that demonstrated
various language constructs (available in the supplementary materials). These programs ranged
in length from 5 lines to 231 lines, and ranged in complexity from simple tests to programs that
implemented buffered, asynchronous reading and parsing of files. To measure the performance,
we created a benchmarking mode in the compiler. This mode allowed us to measure runtime
for 1000 runs of both the type checker and the entire compiler pipeline. Care was taken to time
only the operation in question, so that for example parsing time would not contribute to the
type checking benchmark and the overhead of file I/O syscalls would never contribute to the full
pipeline benchmark. Thus, all necessary input was pre-computed to allow for a simple loop of
the runs to be timed together.

Table 1 shows the average runtime for type checking and compiling each program, as well
as the proportion of the total compile time spent type checking. The benchmarks were run in
Windows 10 on an Intel i5-7300U CPU clocked to 2.71GHz with 8GB of RAM.

In general, we find that the results in Table 1 are empirically consistent with an approximately
linear average time complexity with respect to the length of the program. However, variance does
exist due to the actual factors (number of syntax nodes and variables in scope) not necessarily
scaling proportionally to the overall length of programs. For example, consider the worst-case for
our type checker: a program composed of one or more extremely long functions, which introduce
hundreds of variables into scope. In such a program, we might expect approximately quadratic
time with respect to the length of the program due to the cost of splitting the environment
at each syntax node. Overall, we believe that our type checker is sufficiently performant for
most real-world use cases, as our benchmarks show that the performance typically exceeds the
worst-case time complexity.

18



Table 1 Compile time evaluation

Program Lines of Code
Type Checking
µs per run1)

Full Compile
µs per run1)

% time in type checker2)

Infer 5 6.5 9.1 71.4%
Strings 6 26.3 28.8 91.3%
State 12 25.3 28.6 88.5%
Square 26 58.9 68.6 85.9%
Useful 29 59.5 64.8 91.8%
Basic 34 57.1 67.2 85.0%
Cppreference 38 76.9 109.6 70.2%
IO 45 189.5 211.6 89.6%
Long 231 1107.0 1359.8 81.4%

1) Averaged over 1000 runs.
2) The compiler performs a straight-shot translation to source-level Java, and thus requires very little time

to generate code. Type-checking therefore comprises the bulk of the work.

5.2 Case Study

Madsen et al. [15] perform a case study of common promise-based bugs in JavaScript using
programs from StackOverflow. To evaluate our compiler, we attempted to port these programs
to our language; while not all features were possible, we tried to capture the general behavior of
each program. For example, whenever callbacks were registered as event listeners, we replaced
these with asynchronous infinite loops that would conditionally call a function representing the
callback. A number of programs could not be translated to our language, as they relied on
various JavaScript features that could not be emulated. Several programs used exceptions,
which our language does not support. Several other programs passed incorrect arguments to
the .then() method, making their semantics nonsensical (e.g. using a promise value when a
function was expected). The source code of the successfully translated programs is included in
the stackoverflow/ directory of the supplementary materials.

Madsen et al. [15] identify 6 out of 21 programs as either omitted writes or double writes,
though 4 other programs also exhibit omitted writes indirectly. The additional omitted writes
were all caused by a missing return value in the .then() method; the callback for this method is
expected to return a new value for the promise, which was missing in several programs. Table 2
shows the complete set of tested questions (sourced from the original case study [15]). Since we
have proven that these bugs cannot exist in our language (Corollaries 11 and 12), we expected
that these programs would not type check.

Listing 4 Translation of StackOverflow question 42777771 with corresponding error

1 func doIt ( ) : Promise ( S t r ing ) begin
2 l e t numKeys = 1 in
3 promise p , r e s o l v e : S t r ing in
4 resolve <− ” r e s o l v e c a l l e d ! ” ;
5 f o r key = 0 to numKeys begin
6 resolve <− ” i n s i d e r e s o l v e c a l l e d ”
7 end ;
8 p
9 endCannot reuse linear variables [resolve: Promise*(String)] in both

resolve <- "resolve called!"

and

for key = 0 to numKeys begin

resolve <- "inside resolve called"

end;

p
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Table 2 Case study of JavaScript promise bugs posted to StackOverflow

StackOverflow ID Type of Bug Detected?
41268953 Omitted Write ✓
41488363 Omitted Write ✓
42304958 Double Write ✓
42551854 Double Write ✓
42672914 Omitted Write ✓
42777771 Double Write ✓
29210234 Fork in Promise Chain
41699046 Missing Return in .then ✓
41764399 .then replaces error
42163367 Fork in Promise Chain
42408234 Missing Return leads to Omitted Write ✓
42577647 Failure to Return Promise ✓
42719050 Missing Return leads to Omitted Write ✓
42788603 Missing Return leads to Omitted Write ✓
42828856 Missing Return leads to Omitted Write ✓

All 10 programs exhibiting omitted or double writes failed to compile due to a linearity error
under our type checker (e.g. Listing 4). Two other programs failed through basic type errors,
due to type mismatches between the branches of if statements.

6 Related Work

6.1 Program Analysis

In the past few decades, numerous approaches have been devised for program analysis [8]. Em-
pirical studies have demonstrated the widespread use of program analysis tools in industrial
software engineering [6]. Program analysis techniques can be divided into two classes: dynamic
analysis, which occurs during program execution, and static analysis, which occurs without
executing the program. While dynamic analysis techniques are generally able to make more
precise conclusions due to additional information available only at runtime, their results cannot
be generalized to program paths that are not executed in testing. In contrast, static analysis
often provides more conservative (and sound) results, usually with fewer or no false negatives
[7]. Christakis and Bird [6] observe that “60% [of survey respondents] reported that they would
accept a slower analyzer if it captured more issues (fewer false negatives)” and “50.7% felt that
finding more real issues was worth the cost of dealing with false positives”, showing that pro-
grammers may often find value in the more conservative nature of static analysis. In the same
study, approximately one third of respondents stated that they would like program analyzers to
detect concurrency bugs.

A large body of research has been conducted into dynamic analysis for concurrency bugs
[22, 18, 1, 17]. While these works offer promising results in precisely finding concurrency-related
bugs, dynamic analysis is not suited for all use-cases. Specifically, the inherent lack of soundness
guarantees for dynamic analysis could lead to too many false negatives in rarely executed code
paths. Likewise, in performance-critical environments, the runtime or memory overhead of
performing dynamic analysis may not be acceptable.

Voss and Sarkar [22] describe a promise ownership policy in which ownership of a promise
by a task denotes the task’s responsibility to fulfill the promise or transfer its ownership. This
policy is utilized to dynamically detect two classes of bugs: omitted writes and deadlocks. Our
static promise ownership model draws on this design, encoding the same ownership relation as
a compile-time property. In doing so, we are able to translate the dynamic detection of omitted
writes employed by Voss and Sarkar into a compile-time guarantee – precluding false negatives.
Further, although the algorithm described by Voss and Sarkar requires syntactic annotations

20

https://stackoverflow.com/questions/41268953/
https://stackoverflow.com/questions/41488363/
https://stackoverflow.com/questions/42304958/
https://stackoverflow.com/questions/42551854/
https://stackoverflow.com/questions/42672914/
https://stackoverflow.com/questions/42777771/
https://stackoverflow.com/questions/29210234/
https://stackoverflow.com/questions/41699046/
https://stackoverflow.com/questions/41764399/
https://stackoverflow.com/questions/42163367/
https://stackoverflow.com/questions/42408234/
https://stackoverflow.com/questions/42577647/
https://stackoverflow.com/questions/42719050/
https://stackoverflow.com/questions/42788603/
https://stackoverflow.com/questions/42828856/


indicating the transfer of promise ownership between tasks, our type system statically infers
the same information. As such, our type checking algorithm makes it possible to remove these
annotations, thus lowering the user cost of enabling online deadlock detection for programs
written in our language.

Two major camps currently exist for static analysis. On the one hand, many static analysis
tools are built-in to compilers, often in the form of type systems. These tools generally offer
a streamlined approach to analyzing programs as a result of their deep integration into the
language. On the other hand, third-party static analysis tools often exist as standalone programs
or frameworks meant to augment the guarantees of the language itself. These are often able to
provide a valuable addition to large/existing code bases, in that these analyses can easily be
retrofit into existing environments. At the same time, because of their nature as language
extensions, they may only be able to analyze a subset of programs (leading to situations where
errors can leak in through dependencies).

In terms of static analysis for concurrent programs, much of the research has focused on the
use of advanced type systems. Boyapati et al. [3] present an extension to Java that encodes a
partial ordering of locks using ownership types. This work provides promising results, includ-
ing preventing all data-races and deadlocks. This work predates the widespread adoption of
promises as a concurrency abstraction, and thus does not offer a similarly high-level abstraction
for writing concurrent code. The need for annotations also complicates adoption for such a
system. Westbrook et al. [25] introduce an extension to Java utilizing fractional permissions to
statically prevent data races. This provides analysis using only minor modifications over normal
Java programs and uses gradual typing to facilitate an easier translation process. This differs
from our work in that it does not allow for the compile-time detection of the promise-based
bugs our language prevents. Carbone and Montesi [4] present a deadlock-free type system based
on multiparty session types. This also provides promising results, as the language is able to
statically prevent a large class of bugs. As with our own work, this language is not based on ex-
isting mainstream programming languages. In contrast to our language, however, programming
begins with a global specification of the program’s behavior. This can then allow for projection
of the global protocol to various programming languages to implement the program’s business
logic, but due to the development methodology requires a new approach to designing concurrent
programs.

Ábrahám et al. [27] introduce a programming language that uses affine types for promises.
This is somewhat similar to our own approach of using linear types, but does not require the
programmer to fulfill all promises along each execution path (because affine types allow for
weakening, i.e. an affine variable can be left unused). This prevents the language from statically
identifying omitted writes, and by extension means that programs without any deadlocks can still
get stuck. The language also disallows promises contained in heap-allocated data, a restriction
which we have loosened in our type system. A final difference is that we introduce a deterministic
and efficient type checking algorithm for our type system, which could aid in the implementation
of such a type system.

Niehren et al. [16] present a linear type system and semantics for a lambda calculus with
promises, λ(fut). We follow a similar model in describing a type system that makes promise
handles linear. Both systems guarantee similar properties about the safety of promises, such as
all promises being fulfilled exactly once. However, λ(fut)’s linear type system is not intended to
be used for programming. It is a proof system that one may apply to an existing program to verify
correctness properties. This fundamentally differs from our language, in which the use of linear
types in the program itself enables the compiler to immediately verify these correctness properties
and enables users to build on language-defined abstractions using their safety guarantees. Beyond
that, by diverging from the λ-calculus basis of λ(fut), we provide a language more akin to
mainstream programming languages. Consequently, we believe that we have designed a linear
type system that is more intuitive for users. In practice, this means that users are better able to
translate conventional code without having to think hard about how to represent it. Additionally,
our introduction of a decidable and efficient type checking algorithm creates a simpler path for
adoption.

As compared to related works using type systems to prevent concurrency bugs [3, 25, 4,

21



27, 16], we believe that our language strikes a desirable balance between powerful high-level
abstractions, an intuitive programming model, and strong compile-time guarantees. Due to
the basis of promises as the core concurrency primitive, we believe that translation of existing
promise-based programs to our language would be relatively straight-forward. Based on the
familiar programming model (as compared to other general purpose languages) and the lack of
complex typing rules/annotations, we also believe that our type system could be easier to pick
up than similar languages. This is especially true with the introduction of substructural typing
into mainstream programming languages via Rust, which has shown that similar type systems
can be easily employed for general-purpose programming tasks [24].

6.2 Semantics for Concurrent Programs

Various works have explored formalizing the operational semantics of concurrent and/or promise-
based programs [15, 13, 16, 25]. Though other works have similar goals in defining their seman-
tics, we find that none mapped perfectly to the goals of this language.

The semantics of λ(fut) share many similarities with our own semantics [16]. For example,
our semantics models tasks and parallelism in a similar way to λ(fut) and builds on similar
concurrency constructs, such as promises and forking. In contrast, we believe that our seman-
tics better fit the characteristics of promises in most contemporary programming languages.
Specifically, λ(fut)’s semantics perform promise reads implicitly and only by need: if the value
of a promise is never used, then the program will not await the promise before continuing.
Such a system could lead to confusing semantics for users unfamiliar with non-strict evaluation
and, more importantly, cannot be retrofit onto languages with strict evaluation schemes such as
C++, Java, or JavaScript. Thus, we believe that our semantics serve a more appropriate basis
for implementation in popular programming languages.

Lee and Palsberg [13] present operational semantics for Featherweight X10, which models
threads as a tree of forked tasks. This design fits very well into our work and we drew upon these
semantics as inspiration. In contrast to the similar operational semantics of Featherweight X10,
however, our rules allow for the free use of async in any expression (via our use of contextual
semantics to substitute threads in the tree). This is advantageous in that it generalizes the
language so that spawning asynchronous tasks may occur from any expression without restricting
us to a linear instruction-based program. As an example, one could not spawn an asynchronous
task as part of the condition for an if expression or the right-hand side of a let expression in
Featherweight X10.

Westbrook et al. [25] present another operational semantics for concurrent programs. The
operational semantics introduces special tracking of heap values and their associated permissions.
This design was inspirational in terms of tracking promises and their owners in our operational
semantics. However, these semantics build heavily on notions such as permissions, which were
not included in our language. Additionally, both the semantics of Featherweight X10 [13] and
Westbrook et al. [25] are based on async-finish parallelism, which did not map well to our
language due to the lack of a finish construct.

Madsen et al. [15] focus more heavily on promise-based concurrency, defining a language λp

that formalizes the semantics of JavaScript’s promises. Our semantics share many similarities
with those of λp, such as drawing on a similar model for tracking promise states and describing
many of the same classes of promise-based bugs using our semantics. Due to the single-threaded
nature of JavaScript, however, JavaScript-style promises rely on reactions to events (such as
fulfillment or rejection of a promise) rather than distinct, parallel threads of execution. Since
our language is inherently parallel and does not feature promise reactions, we could not reuse
the same semantics to describe all possible programs in our language.

7 Conclusion & Future Work

Promises are a powerful structured concurrency primitive, which are increasingly being used in
modern programming languages. While they represent a huge step forward from unstructured
concurrency, promises can still contribute to their own fair share of bugs. To address this:
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1. We have introduced a complete language featuring a novel type system and operational
semantics for promise-based programming.

2. Utilizing a linear type system in which promises must be fulfilled exactly once, our language
precludes several classes of promise-based bugs – omitted writes in terminating programs,
double writes, and unowned writes – with no runtime overhead.

3. Further, by integrating the results directly into the language rather than an external proof
system, the language offers the advantages of first-class support for this style of program-
ming. For example, as in other advanced type systems (e.g. Rust’s substructural type
system [24]), all libraries included in a program satisfy the language’s guarantees using no
extra instrumentation or annotations. This is in contrast to gradual typing systems – such
as Flow [5] and TypeScript [19] – that can only guarantee safety properties for the subset
of code that features the proper annotations.

4. With an efficient implementation of the type checker (linearly proportional to the size of
the program times the number of variables in scope), this would enable quick verification
of large programs. In doing so, a large swathe of promise-related bugs normally only found
at runtime will always be caught before the program is ever run.

In future work, this language could be extended with several features – such as closures,
generics, and arrays – in order to incorporate its design into existing languages like Java or
C++. Further, developing a gradual type system based on our approach may serve to streamline
integration into gradually typed languages such as TypeScript. Due to the reliance on promises
as a core abstraction in JavaScript and TypeScript, this type system could have far reaching
effects in the JavaScript/TypeScript ecosystem. Likewise, Haskell could serve as an interesting
target for implementation with its recent addition of a linear typing extension.

The role that a type system with owned promises can serve in statically detecting deadlocks
remains an open question. Through the availability of more information on promise ownership
and thread relationships at compile-time, it may be possible to identify deadlocks early via
minor extensions to the type system. Finally, while data race freedom has not been proven for
the language, we believe that data races are likely impossible given our design.

We believe that our language provides a strong foundation for designing safer promise ab-
stractions in both novel and existing programming languages. Due to a decidable and efficient
type checking algorithm, we believe that the required analysis can be performed at sufficient
speeds for real-world programs. Further, we believe that accessing these new guarantees is not
overly burdensome to users, as no extra annotations are required to enforce promise ownership.
With a similar programming model to promises in C++, we believe that our language provides
the proper abstractions to write real-world code. Finally, we believe that, with minimal addi-
tions to our type system, it is feasible to extend various existing languages in order to adopt the
same guarantees.
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sions for race-free parallelism. In James Noble, editor, ECOOP 2012 – Object-Oriented
Programming, pages 614–639, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[26] Dengping Zhu. To Memory Safety through Proofs. PhD thesis, Boston University, USA,
2006.
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