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SUMMARY 

 

Malaria is one of the most deadly infectious diseases in the world and has an enormous 

public health burden with significant economic implications. The World Health 

Organization report (WHO 2015) showed a decrease in mortality of 48% between 2000 

and 2014. However, more than 3 billion people are still at risk, and 438,000 deaths are 

attributed to malaria every year, largely affecting children and pregnant women. Eighty 

percent of malaria deaths occur in just 15 countries. Among the causative agent 

Plasmodium species, Plasmodium falciparum is the most harmful, specifically in Africa, 

and most of the research is focused on this species. Plasmodium vivax is the second most 

common species and accounts for the 70% of the severe malaria cases and deaths in the 

Americas. P. vivax malaria is a debilitating, occasionally life-threatening, and 

economically burdensome disease in Central Latin America, where 70% - 80% of the 

population lives with the endemic risk of infection.  

 

Research progress for this species has been slower than for P. falciparum largely because 

P. vivax is difficult to maintain in culture, and this is reflected in the limited information 

of the species in terms of genome, transcriptome and proteome. Especially since the 

WHO (2015) reported that prevalence of severe cases of P. vivax malaria is emerging, 

while treatment failure with chloroquine for P. vivax malaria is increasing, development 

of a malaria vaccine is a top priority.  
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Advances have been made with the development by GlaxoSmithKline Ltd of the RTS,S 

vaccine (MosquirixTM) which is targeted against the P. falciparum circumsporozoite 

protein. RTS,S Phase 1, 2, and 3 trials have demonstrated efficacy and safety, and the 

vaccine seems to decrease morbidity and mortality by up to 36% in children and 26% in 

infants (RTS,S Clinical Trials Partnership, 2015) (Lancet 2015). However, protection 

with RTS,S is not guaranteed as the vaccine was tested only on a population of African 

newborns and young children, and is specific to P. falciparum. Recognizing that 

researchers at Emory and Georgia Tech recently used gene expression profiling to 

identify transcripts that both serve as biomarkers for generation of antibodies against 

influenza vaccines, and define novel immune-regulatory mechanisms that may contribute 

to the effectiveness of vaccination (Nakaya et al. 2011), we reasoned that transcriptomics 

could illuminate mechanisms of vaccine effectiveness in malaria. 

 

This dissertation describes initial gene expression profiling experiments using RNA 

Sequencing technology (RNASeq) applied to samples collected during clinical trials 

performed at the CAUCASECO research center in Cali, Colombia. I describe three gene 

expression-profiling studies. 

 

The first study leveraged an experiment that reported more severe malaria symptoms in 

subjects who had never experienced malaria before the clinical trial.  We found that there 

is no obvious difference in the transcriptomes of uninfected “naïve” compared with 

previously exposed “semi-immune” volunteers prior to infection, but several hundred 

genes showed a stronger response in the naïve individuals at the time that parasites begin 
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to appear in the peripheral blood. Notably, differential expression of both neutrophil and 

interferon-related genes was evident at onset of malaria. Also, after interaction analysis, 

175 genes showed a significant Timepoint-by-Prior-exposure effect and most of the 

genes showing this interaction effect were more strongly up- or down-regulated in the 

naïve than semi-immune individuals, falling into several pathways of interest.  

 

In the second study I report results of gene expression profiling of peripheral blood 

before and after 7 rounds of immunization with radiation attenuated P. vivax sporozoites 

(PvRAS) in 20 volunteers, as well as after controlled challenge with live P. vivax. The 

most profound changes in gene expression were observed in the contrasts between 

baseline and post- challenge, with distinct signatures differentiating protected and 

susceptible individuals. Analysis of transcriptional modules shows that aspects of B-cell 

signaling are reduced while cell cycle regulation and interferon responses, and likely 

immunoglobulin production by short-lived plasma cells, are highly elevated in 

individuals not protected by PvRAS, whereas regulatory T-cell signaling and an 

inflammatory response are elevated in protected individuals. Furthermore, subtle 

differences in the protection afforded by Duffy negative status and by PvRAS were 

observed, and vaccination itself also modified aspects of B and T cell gene expression. 

Combined with immune cell profiling we expect the systems biology approach to suggest 

adjuvants that may improve the efficacy of malaria vaccines. 

 

Finally, the third study describes pilot longitudinal profiling of the host transcriptomes of 

eight complicated malaria cases, each ascertained over four or more days of recovery.  I 



 xix 

relate the gene expression changes to clinical features including parasitemia, disease 

severity, and rate of recovery. Patient CM02, a pregnant woman with symptoms of 

preeclampsia but no history of fever, who failed to resolve her complicated malaria 

infection for over a month, showed the most perturbed gene expression. In most of the 

patients, the profiles are interpreted as providing evidence for inflammation and elevated 

interferon signaling being resolved several days after hospitalization, and of reticulocyte 

development associated with recovery from anemia occurring only after the peak of the 

complex malaria episode. While we observed some commonalities in the responses 

across patients, there was wide individual variability dominated by baseline differences in 

immune activity, and I conclude that more detailed analyses of individual cell types 

linked to cellular and humoral data will be required to resolve the nature of personalized 

mechanisms of recovery.  

 

The results presented in this dissertation explore how gene expression profiling of the 

complex mixture of cells present in whole blood can nevertheless reveal the cellular 

nature and duration of the immune response to P. vivax infection, while also highlighting 

a subset of genes that may mediate adaptive immunity. These results demonstrate the 

potential value of RNASeq for studying the response of the host transcriptome of a 

malaria infection, but also show that much more work needs to be done before genomic 

profiling can be considered for integration as a component of personalized clinical 

diagnostics. 
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CHAPTER 1 

INTRODUCTION 

 

My thesis utilizes gene expression profiling of the human immune response to malaria 

infection and vaccination in order to identify mechanisms predictive of vaccine 

immunogenicity, safety, and clinical recovery from a malaria infection, and to help to 

define the most effective strategies for vaccine implementation. This research was based 

on data collected at the CAUCASECO research center in Cali, Colombia, where blood 

samples from volunteers and patients enrolled in studies towards the development of a P. 

vivax malaria vaccine were used to perform RNAseq analysis. 

 

This thesis consists of three studies. The objective of the second chapter was to 

characterize the molecular basis for differences in clinical course of disease as a function 

of prior exposure to malaria. This study was published in PLOS Neglected Tropical 

Diseases in 2015 (9(8): e0003978). In chapter 3, I adopted a transcriptional profiling 

approach to characterize signatures of the impact of PvRAS immunization on the 

response to P. vivax malaria challenge and we are currently preparing the manuscript for 

publication.  In chapter 4, I describe a pilot study of the host transcriptomes of eight 

complicated malaria cases each over four or more days of recovery, and relate the gene 

expression changes to clinical features including parasitemia, disease severity, and rate of 

recovery.  Another gene expression study not described in this thesis concerned genomic 

classification of craniosynostosis Rojas-Pena et al, (2014) J. Genomics 2: 121-130. 

 

 

 

 



 2 

1.1 Malaria epidemiology 

 

Malaria is a protozoan disease transmitted by the female Anopheles mosquito. The 

causative agent of malaria is a parasite of the genus Plasmodium. These organisms are 

single cell eukaryotic protozoa that can infect a wide range of hosts, including humans 

(Feachem et al. 2010). There are more than 100 species of Plasmodium that infect 

different vertebrates. To date, five Plasmodium species are acknowledged to infect 

humans with malaria: Plasmodium falciparum, Plasmodium vivax, Plasmodium 

malariae, Plasmodium ovale, and Plasmodium knowlesi. P. falciparum is predominantly 

found in Africa, while P. vivax is the most widespread globally (Price et al. 2007), in 

particular accounting for more than half of the disease in Latin America. P. vivax is 

almost absent in Africa due to the high frequency of the Duffy-negative protective allele 

(Weppelmann et al. 2013; Liu et al. 2014). There are 124-283 million Malaria infections 

annually (WHO 2015), which is an enormous burden with significant economic 

implications (Sanchs and Malaney; 2002). In 2015, the World Health Organization report 

(WHO 2015) showed a decrease of 48% in malaria mortality between 2000 and 2015 

globally.  However, 438,000 deaths are still attributed to malaria every year, mostly due 

to P. falciparum infection among children under 5 years old in Africa (WHO 2015). 

 

Currently, malaria is endemic in 97 countries located mainly in tropical and sub-tropical 

regions, where there are more than 3 million of people at risk of infection (Fig. 1.1). In 

areas of low transmission, almost every person exposed has a high risk of infection; 

however, in endemic areas, infection is more restricted to tourists, children and pregnant 

women, though there are exceptions attributed to a high density of parasites in the blood 

(Desai et al. 2007; Doolan et al 2009).  
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Figure 1.1 Countries where malaria transmission is ongoing, 2013 (WHO 2015) 

 

In Colombia, the Instituto Nacional de Salud (2014) reports the presence of malaria in 

diverse regions including the Amazon basin, Central valleys, and Caribbean and Atlantic 

coasts. Malaria represents a serious public health problem due to the fact that 85% of the 

territory in Colombia is located in environmental, geographical and epidemiological 

conditions that are suitable for transmission of the disease. It is estimated that 25 million 

of people (60% of the population) are at risk of infection. The transmission of Malaria in 

the country is variable and focal. In Colombia there are three areas with active 

transmission: 1. Urabá, Cauca and south of Córdoba, 2. Pacific Coast (Valle, Chocó, 

Nariño) and 3. Orinoquia-Amazonia (Fig. 1.2). These zones contribute 45%, 30% and 

25% respectively to the total number of cases in the country.  
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Public Health Surveillance System (SIVIGILA acronyms in Spanish) reported an 

accumulation of 38,120 cases of non- complicated malaria in 2014, as well as 325 

complicated malaria cases and 19 deaths. The most frequent species were P. vivax and P. 

falciparum (Fig. 1.2), with a 37% decrease of malaria cases particularly evident for P 

vivax (SIVIGILA 2014). 

Figure 1.2. Distribution of malaria cases per city and by parasite species during 2003 to 

2012. Source: SIVIGILA (2014).  

 

1.2 Malaria Life Cycle 

The Plasmodium malaria parasite has a complex life cycle involving multiple 

transformations and two well-differentiated phases. The sexual phase takes places in the 

midgut of the female of one of many species of Anopheles mosquito, which is the vector. 

Only females, which feed on blood, are responsible for transmission. Asexual haploid 

sporozoites are stored in the salivary glands of the vector and then they are transmitted to 

the human or other mammalian host during a blood meal (Frederich et al. 2002) (Fig. 

1.3). Less than 100 sporozoites are deposited and then travel within minutes to the liver, 
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where they replicate inside the hepatocytes for approximately one week (Rosenberg et al. 

1990). Some sporozoites can stay in the dermis tissue, where even a small portion of 

them can replicate (Gueirard et al. 2010) or enter into the blood stream and migrate to the 

liver, or into the lymphatic vessels and from there to the regional ganglion (Amino et al. 

2006). Some reports suggest that migration of the parasites inside leucocytes and 

dendritic cells (Wykes et al. 2011) or macrophages (Landau et al. 1999) occurs. Once in 

the liver, sporozoites mature into merozoites. Following the asymptomatic liver stage, 

merozoites exit into the bloodstream and initiate the erythrocytic replication cycle, also 

known as the intra-erythrocyte development cycle (IDC). All primary clinical 

manifestations of malaria infection (fever, chills etc) occur as a result of blood-phase 

infection (Schofield and Grau 2005). In the case of P. vivax and P. ovale, some 

sporozoites can remain in the latent hypnozoite stage in the liver for weeks, months or 

even years, from where they can cause relapses (Frevert and Nardin 2005).  Invasion of 

red blood cells (RBCs) occurs when merozoites leave the liver and interact with the RBC 

membrane. Once it penetrates the RBC, the merozoite abandons its protective shield and 

develops a specialized vacuole (called the parasitophorous vacuole). Using the 

erythrocytic membrane as a shelter, the parasite progresses through different stages of 

growth (Cowman and Crabb 2006). The first stage is called ring, which then transform 

into trophozoites, which are characterized by increased metabolic activity. Further 

maturation occurs with the ingestion of the erythrocytic’s cytoplasm, giving rise to 

mature schizont forms (Cowman and Crabb 2006). When schizont rupture occurs, it 

releases daughter merozoites that restart the parasite cycle. Some of the parasites develop 

into sexual forms named gametocytes inside of the erythrocyte (Frederich et al. 2002), 

which the vector can acquire during feeding (Matuschewski 2006). 
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Figure 1.3 Life cycle of the malaria parasite. 

1.3 Malaria pathogenesis: Host, parasite, and environmental factors 

Malaria has a wide spectrum of clinical manifestations depending on the host and on the 

stage of the Plasmodium parasite. The WHO defines malaria as a febrile disease with an 

incubation period of less than 7 days (WHO 2015). It is well known that progression to 

complicated malaria can be influenced by parasite, host and socio-cultural factors. Most 

malaria infections are uncomplicated and if they are treated appropriately and in time, 

they can be cured. Approximately 1-2% of infections develop into complicated (severe) 

malaria cases, exhibiting a variety of clinical and laboratory defined patterns that are 

associated with an elevated risk of mortality (Tobón et al. 2006; 2009). The most 

common symptom of malaria is fever, which is classically described as periodic, even 

though this pattern is not always observed, and has been linked to spiking levels of pro-

inflammatory cytokines such as tumor necrosis factor (TNF) (Karunawera et al. 1992).  
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Other symptoms include chills, cramps, and vomiting. If the disease progresses, it can 

cause respiratory distress, which reflects severe metabolic acidosis, and severe anemia.  

Cerebral malaria is an example of how the parasite can affect multiple organs, and it may 

finally cause coma and death (Miller et al. 2002; Schofield and Grau 2005).  Moreover, in 

endemic areas, chronic P. falciparum and P. vivax infection are key contributors to 

anemia in children and pregnant women (Lamikanra et al. 2007; Anstey et al. 2009 and 

Rogerson et al. 2007).   

 

The most severe (also called complicated) forms due to P. falciparum are cerebral 

malaria and severe malarial anemia, which is the most common syndrome in African 

children and is the cause of approximately 80% of deaths (Lou et al. 2001, Marsh et al. 

1995 and Schellenberg et al. 1999).  Malaria produced by other Plasmodium species 

causes high morbidity. Among the common symptoms are fever, headache, muscle pain, 

chills, vomit and flu-like symptoms; but death is rare. If the symptoms are not treated the 

infection can evolve and developed into complicated malaria. Complicated malaria is 

initiated in the erythrocytic stage, at which time it can manifest as a vascular obstruction 

due to sequestration of infected red blood cells.  Subsequent inflammatory processes due 

to the presence of Plasmoduim parasites can cause dysfunction, damage and cell death in 

different organs (Vasquez and Tobon 2012, Bassat and Alonso 2011). The majority of 

malaria-related mortality is due to P. falciparum. It is now well known that P. vivax, 

previously considered non life-threatening, as well as P. knowlesi, can also cause severe 

and lethal infectivity (Cox-Singh et al. 2008; Tjitra et al. 2008; Genton et al. 2008; 

Kochar et al. 2009). Furthermore, malaria can lead to miscarriage and pre-term delivery 

in pregnant women, and low birth weight in infants (Rogerson et al. 2007). Case studies 

of complicated malaria caused by P. falciparum and P. vivax are studied in Chapter 4 of 

this thesis due to its immense public health importance. 
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1.4 Strategies and Treatments to Control Malaria 

Even though in 2015 the World Health Organization report (WHO 2015) showed a 

decrease of 47% in malaria mortality between 2000 and 2014 globally, there are no 

efficient, affordable and accessible antimalarial treatments for use in all malaria endemic 

areas. Use of insecticide-treated bed nets, residual sprays, and reduction of standing water 

near settlements have had the greatest public health impact.  Unfortunately, there is 

increasing Plasmodium strain resistance to the conventional drugs used as anti-malarial 

treatments, and mosquitoes are building widespread resistance to insecticides 

(Greenwood et al. 2008).  Efforts are currently directed at reducing morbidity and 

mortality, minimizing the transmission of the disease, decreasing the parasite load in 

humans, and preventing the increase in resistance to antimalarial drugs. Among the new 

treatments being considered are: the development of new antimalarial drugs, novel vector 

control strategies, and introduction of what many consider to be the theoretically most 

efficient tool, the vaccine, designed to facilitate long-term immunization.  

 

To reduce the adverse effects of malaria treatment, the WHO has recommended diagnosis 

of the presence of the parasite before administration of prophylactic treatment.  The 

presence of the parasite can be diagnosed through a microscopic “thick smear” blood test 

and/or, more accurately, by polymerase change reaction (PCR), both of which distinguish 

malaria from other febrile diseases.  This screening will help to reduce resistance to 

drugs, including chloroquine (first documented in the 1950s) and more recently 

artemisinin (discovery of which led to the award of the Nobel Prize for Physiology and 

Medicine in 2015 to the Chinese scientist, Tu Youyou).  For this reason the WHO 

recommended artemisinin-based combination therapy (ACT), in which two or more 

drugs of different classes are given jointly, for uncomplicated malaria cases. Even though 

prophylactic treatment does not give complete protection, it will decrease the probability 
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of a complicated infection.  All the drugs used for malaria treatment have secondary 

effects if used for more than six months, hence more effective strategies are needed.  

 

1.5 Malaria Vaccines 

The development of resistance to artemisinin has made it necessary to find alternative 

drug therapies and molecular targets to treat malaria and to create a vaccine. Progress in 

technologies toward the development of malaria vaccines has increased in recent years 

(MVI-PATH 2013), but the development of malaria vaccines remains a complex 

scientific and logistical challenge. The antigenic variability and complex life cycle of the 

Plasmodium parasite make the production of a vaccine particularly difficult (Engwerda et 

al. 2005), but at the same time the complexity of this cycle provides several opportunities 

for different approaches for vaccine development with different effects and kinds of 

protection (Fig. 1.4). Vaccines designed to attack exoerythrocytic stages (that is, stages 

outside the red blood cells) should be capable of inducing sterile immunity, namely 

complete absence of parasite in individuals exposed to infectious mosquito bites. 

Vaccines designed against the intraerythrocitic stage of the parasite should reduce the 

symptoms of the infection as well as mortality of affected individuals, generating what is 

called protective immunity. On the other hand, vaccines that block the transmission of the 

gametocytes, which developed in human blood, or can prevent the fertilization or 

development of the parasite in the mosquito, should protect an entire community by 

eliminating the parasite from endemic areas (Komisar 2007; Moreno and Joyner 2015).    
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Figure 1.4. Vaccine interruption in the different stages of the Plasmodium cycle (MVI-

PATH 2013). 

Vaccination is one of the key elements of malaria control programs. Progress has been 

achieved with the development of P. vivax pre-erythrocytic subunit vaccines and 

preclinical trials, using both synthetic peptides and recombinant proteins representing a 

variety of surface antigens on non-human primates (Herrera et al. 2009; 2011). Further, 

Phase 1 clinical trials in humans have been conducted with different formulations of P. 

vivax CS-derived subunit vaccines, and these indicate that the vaccines are safe and 

immunogenic (Herrera et al. 2009; 2011). However, as with most vaccination programs, 

variability in the capacity to mount an effective immune response is expected.  

 

The Malaria Vaccine Technology Roadmap is a global strategy initiated in 2006 with two 

purposes: (i) develop a vaccine that would provide 50% protection against complicated 

malaria and death by 2015, (ii) and another that would provide 80% protection in clinical 

cases by 2025 (MVI-PATH 2013).  Currently, four malaria vaccines are in field trials 

(WHO 2015). Three vaccine candidates are in phase 2B of clinical trials, while 

RTS,S/ASO1 has completed phase 3 (WHO 2015). RTS,S/ASO1, which is commercially 

known as “Mosquirix”, has been developed with the support of the Bill and Melinda 
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Gates Foundation, and through a partnership between GlaxoSmithKline Biologicals 

(GSK) and the PATH Malaria Vaccine Initiative (MVI-PATH). RTS,S/AS01 is the only 

vaccine to have entered phase 3 trials. It is an exoerythrocytic vaccine targeting 

sporozoites, specifically being formulated as a recombinant protein RTS,S between the 

C-terminal flanking region of the circumsporozoite (CS) protein and the hepatitis B 

surface antigen (HBsAg). It also contains the adjuvant AS01 which boosts the cellular 

and humoral immune response (Regules et al. 2011; Garcon et al. 2003; Bojang et al. 

2005; Ansong et al. 2011). Final results of phase 3 have recently been released by the 

RT,S Clinical Trials Partnership (Lancet 2015), for which 15,460 children and young 

infants from seven sub-Saharan African countries (Burkina Faso, Gabon, Ghana, Kenya, 

Malawi, Mozambique, and the United Republic of Tanzania) were enrolled. The results 

showed a moderate vaccine efficacy (VE) of 26-36%, with infants less protected than 

children between 5 and 15 years of age. One criticism of this extraerythrocytic vaccine 

approach is that it would be necessary to induce large quantities of antibody with high 

affinity to effectively trap the sporozoite in the skin (Riley and Stewart 2013), and this is 

never likely to be completely effective. Furthermore, the RTS,S vaccine offers no 

protection against P. vivax malaria.  

 

Numerous researchers are now evaluating the efficacy of vaccination with whole 

attenuated live parasites, as opposed to just a handful of surface proteins (Hoffman et al. 

2010; Matuschewski et al. 2011; Lindner et al. 2012). Among the various stages of 

malarial infection, sporozoite (spz) invasion and schizogonic development in the liver 

cell appear to be ideal therapeutic targets. Killing these parasite stages would prevent 

parasite development prior to infection of the blood, and therefore prevent febrile disease 

(Komisar 2007).  Early studies showed that immunization with P. yoelii and P. berghei 

irradiated sporozoites (irr-spz) can protect mice and rats against sporozoite challenge 

(Mellousk et al. 1990; Weiss 1990). Similarly, in monkeys, immunization with P. 
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cynomolgi and P. knowlesi irr-spz gives partial or total protection (Collins et al. 1972, 

Gwadz et al. 1979) and full protection in humans with P. falciparum or P. vivax irr-spz 

after multiple immunizations over the course of several months (Egan et al. 1993; Clyde 

1973; Epstein et al 2011). Therefore, irr-spz is an important model that can induce sterile 

immunity by killing the pre-erythrocytic stages of the malaria parasite, providing proof-

of-concept for this approach and can be used in different species of the parasite.  Chapter 

3 of this thesis examines the transcriptional response to irradiated P. vivax sporozoite 

vaccination in a small number of Colombian volunteers. 

 

1.6 Innate immune response of the host to malaria 

An important factor influencing the clinical course of the disease is prior exposure to 

malaria. Since there are no completely effective antimalarial treatments that are 

appropriate for use in malaria endemic areas, the human immune response remains a 

valuable line of defense against malaria. Adults and older children tend to experience 

reduced prevalence of malaria infection and have less severe symptoms in endemic areas 

(Bunn et al 2004; Doolan et al. 2009). Immunity to malaria in endemic areas is hoever 

generally regarded as short-term and never sterilizing (Doolan et al. 2009; Okell et al. 

2009).  Recent results using PCR to detect parasitemia have indicated that there are much 

higher rates of asymptomatic malaria than hitherto appreciated, and antibody arrays have 

also demonstrated that memory B cells persist in the blood for decades.  Consequently, it 

may be more appropriate to consider the relationship between host and parasite as 

involving the emergence of tolerance (Ayers et al, 2012) rather than resistance. 

  

The risk of contracting malaria and its clinical manifestations is highly correlated with 

factors related to the host. Age and genetic variation play an important role in modulating 

immunity in malaria, as does the microbiome (Idaghdour et al. 2012; Tsang et al. 2014; 

Yilmaz et al. 2014; Pulendran 2014). Also, the prevalence to erythrocytic polymorphism 
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and co-infections can influence the immune response (Schofield and Grau 2005; 

Akpogheneta et al. 2008; Pacheco et al, 2016). Just as the complex life cycle of the 

parasite can help it to avoid the immune response of the host, the human immune system 

has exerted strong positive selection on polymorphic immune-dominant antigens 

(Mackinnon and Marsh 2010).  Each stage of the intraerythrocytic development is 

characterized by the expression of specific proteins, which require immunological 

mechanisms that have high specificity to eliminate the different parasitic forms (Li et al. 

2001).   Variation in the Human Leukocyte Antigen complex is an important genetic 

mediator of natural protective immunity (Lyke et al. 2011). 

 

Protection against malaria is also been associated with selection on several loci in 

thehuman genome at which the frequency of genetic polymorphisms are correlated with 

infection. Notable examples are the Hbs allele of the β-blobin gene (the causative agent 

of sickle cell anemia); regulatorymutations in the alpha and beta globin genes (which 

cause the thalassemias); alleles leading to deficiency of glucose-6-phosphate 

dehydrogenase enzyme (G6PD) activity, or the FY*BES allele in the Duffy locus 

(abbreviated Fy-), which in find at high frequency in malaria endemic regions and 

protects against P. vivax infection (Tishkoff and Verrelli, 2003; de Mendonça et al.2012). 

 

It is likely that variation in components of lymphocyte signaling are also important 

effectors if not of resistance to malaria, then of the course of infection.  The first phase of 

the infection in humans is the liver; this stage is asymptomatic and it lasts for several 

days (Langhorne et al. 2008). The liver stage barely induces an innate immune response, 

perhaps due to the lack of antigenic stimuli capable of activating neutrophils to initiate 

the innate immune response, or simply due to the very low parasite burden (Riley and 

Stewart 2013). The first barrier to blood-stage parasitemia is nevertheless the innate 

immune response, which causes many of the clinical symptoms associated with malaria. 
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This innate mechanism leads to activation of the complement system, monocytes, 

macrophages, dendritic cells (DCs), natural killer cells (NKs), and natural killer T cells 

(NKT) (Stevenson and Riley 2004). Also, T cells have an important role as the bridge 

between the innate immune response and adaptive response, thereby controlling parasite 

growth (Stevenson and Riley 2004). However, the final stage of control and elimination 

also depends on the production of antibodies which have increased efficacy as the 

infection proceeds (Riley and Stewart 2013). The production of pro-inflammatory 

cytokines such as tumor necrosis factor (TNF-α) and interferon gamma (IFN-γ) are 

considered key factors in the initial control of the parasite burden and pathophysiology in 

humans (Clark et al. 2006; Perkins et al. 2011). This can limit the initial replication of the 

parasite in the erythrocytes, but it has to be controlled by an anti-inflammatory 

mechanism to avoid tissue damage. The anti-inflammatory molecules include interleukin 

10 (IL-10) and transforming growth factor β (TGF-β) expressed by CD4+ T-helper cells 

(Finney et al. 2010).  

 

The complexity of the mature immune response is emphasized by the engagement of 

dozens of different immune cell types.  Macrophages and monocytes also have a central 

role against malaria parasites through mechanisms such as phagocytosis of infected 

erythrocytes (iRBC), and production of nitric oxide, which reduces parasite growth 

(Stevenson and Riley 2004). Macrophages and monocytes can also mediate cellular 

cytotoxic responses dependent on antibody-based recognition of merozoites or infected 

erythrocyte antigens (Chimma et al. 2009), and they can modulate antigen presentation to 

T-helper cells (Serghides et al, 2003). TNF-α production is also known to block the 

development of trophozoites (Bouharoun-Tayoun et al. 1995).  

 

One major factor affecting the disease progression is prior exposure to malaria and 

acquisition of a semi-immune state.  More about this topic will be discussed in chapter 2. 
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The clinical presentation of clinical malaria varies according to the immune status of the 

person, as high levels of immunoglobulin are positively correlated with survival rates. It 

is thought that continuous exposure to malaria limits the likelihood of progression of 

disease severity, also due to development of immunity. However, complicated malaria is 

still observed in populations highly exposed to malaria (Doolan et al. 2009), so a pilot 

study was developed to address this process, and is discussed in chapter 4 of this 

dissertation.  
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CHAPTER 2 

2. TRANSCRIPTION PROFILING OF MALARIA-NAÏVE AND SEMI-IMMUNE 

COLOMBIAN VOLUNTEERS IN A PLASMODIUM VIVAX SPOROZOITE 

CHALLENGE 

 

 

2.1 Abstract 

Continued exposure to malaria-causing parasites in endemic regions of malaria induces 

significant levels of acquired immunity in adult individuals.  A better understanding of 

the transcriptional basis for this acquired immunological response may provide insight 

into how the immune system can be boosted during vaccination, and into why infected 

individuals differ in symptomology. Peripheral blood gene expression profiles of 9 semi-

immune volunteers from a Plasmodium vivax malaria prevalent region (Buenaventura, 

Colombia) were compared to those of 7 naïve individuals from a region with no reported 

transmission of malaria (Cali, Colombia) after a controlled infection mosquito bite 

challenge with P. vivax. A Fluidigm nanoscale quantitative RT-PCR array was used to 

survey altered expression of 96 blood informative transcripts at 7 timepoints after 

controlled infection, and RNASeq was used to contrast pre-infection and early 

parasitemia timepoints. There was no evidence for transcriptional changes prior to the 

appearance of blood stage parasites at day 12 or 13, at which time there was a strong 

interferon response and, unexpectedly, down-regulation of transcripts related to 

inflammation and innate immunity. This differential expression was confirmed with 

RNASeq, which also suggested perturbations of aspects of T cell function and 

erythropoiesis. Despite differences in clinical symptoms between the semi-immune and 

malaria naïve individuals, only subtle differences in their transcriptomes were observed, 
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although 175 genes showed significantly greater induction or repression in the naïve 

volunteers from Cali. Gene expression profiling of whole blood reveals the type and 

duration of the immune response to P. vivax infection, and highlights a subset of genes 

that may mediate adaptive immunity. 

 

This study was published as Rojas-Peña et al, 2015 (PLoS Negl. Trop. Dis. 9: e0003978). 

 

2.2 Introduction 

One of the features of Plasmodium species that make them such pernicious parasites is 

their ability to avoid the host immune system (Wright and Rayner 2014; Zheng et al. 

2014).  While this is achieved in part by virtue of their complex life cycle that includes 

intra-erythrocyte cycling and periodic sequestration in various tissue compartments 

(Zheng et al. 2014), it is also clear that Plasmodium infection causes short- and probably 

long-term modification of host immune function.  Molecular methods are shedding some 

light on the mechanisms behind these modifications. For example, it is now clear that 

exposed individuals generally do mount an antigen response to Plasmodium antigens that 

persists (Krzych et al. 2014, Stanisic et a. 2013), and that several biochemical pathways 

are engaged, including interferon and cytokine signaling, membrane lipid modification, 

and reactive oxygen species metabolism (Gazzinelli et al. 2014).  Host factors including 

genetic variation, both within and between populations, play a role in modulating 

immunity in malaria, as does the microbiome (Tsang et al. 2014; Yilmaz et al. 2014; 

Pulendran 2014; Idaghdour et al. 2012). 
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An important factor influencing the clinical course of disease is prior exposure to malaria. 

Adults and older children tend to experience reduced prevalence of malaria infection and 

have less severe symptoms (Bunn et al. 2004; Doolan et al. 2009).  Nevertheless the 

mechanisms responsible for host resistance to malaria are still poorly understood. As a 

prelude to evaluation of vaccine efficacy in a Colombian population, we recently carried 

out a challenge experiment in which we evaluated the responses of immunologically 

naïve and semi-immune individuals to deliberate infection with Plasmodium vivax 

through mosquito bites (Arévalo-Herrera et al. 2014).  All nine volunteers from a malaria 

endemic region near the town of Buenaventura were weakly positive for IgG antibodies 

to sporozoites or blood stage proteins prior to the experiment, and after challenge eight of 

them showed increased antibody titers against blood stages. Similarly, five of seven naïve 

volunteers from the city of Cali converted to sero-positivity that was generally 

maintained for at least four months.  While there was no significant difference in the time 

to first appearance of blood stage parasite assessed by thick blood smears (12 to 13 days 

in both groups) or by polymerase chain reaction (PCR) (around 9 days), the naïve 

volunteers experienced classical early malaria symptoms, whereas the semi-immune 

volunteers were for the most part nearly asymptomatic, at least at the day of diagnosis 

when curative prophylaxis was administered (Arévalo-Herrera et al. 2014). 

 

In order to begin to characterize the molecular basis for this difference in clinical course 

of disease as a function of prior exposure to malaria, we report here two types of 

transcriptome profiling of peripheral blood samples from the Colombian challenge 

experiment volunteers.  First we used targeted measurement of a set of 96 highly 
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informative transcripts by nanoscale Real Time PCR (RT-qPCR) (Spurgeon et al. 2008) 

in order to generate a time course of the infection transcriptional response.  Second, we 

used RNASeq (Cloonan et al. 2008) on a subset of six volunteers contrasting baseline and 

incident malaria, to ask whether (i) there is a difference in immune profiles between 

naïve and semi-immune individuals in the absence of infection, and (ii) patent infection 

results in a differential transcriptional response that may hint at the molecular basis of 

long-term immunity.  We also contrasted our findings with those of cross-sectional 

studies concluding that history of exposure is just one of many factors mediating host–

parasite interactions in malaria. 

 

2.3 Methods 

2.3.1 Experimental design and ethics statement 

The experimental design protocol of this research was approved by the Institutional 

Review Boards (IRB) at the Malaria Vaccine and Drug Development Center (CECIV, 

Cali) and Centro Medico Imbanaco (Cali).  It is described in more detail in Arevalo-

Herrera et al. (2014), which reports the clinical responses to malaria challenge. Sixteen 

Duffy-positive (Fy+) male and female volunteers (9 semi-immune, previously exposed to 

malaria, from Buenaventura and 7 immunologically naïve with respect to malaria, from 

Cali) were enrolled.  

Volunteers where invited to the vaccine center two days (day -2) prior the challenge day 

(day 0) for physical examination and blood sample collection.  Fig 2.1 summarizes the 

blood sampling strategy. Blood samples used for the RT-qPCR experiment were 

collected on day -2 (pre-challenge), day 5, day 7, day 9, on the day of first detection of 
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Plasmodium by thick smear test (day 12-13, Dx), and 4 months later (month 4). RNASeq 

analysis, also approved by the Georgia Tech IRB, was performed for 12 individuals (six 

each from Buenaventura and Cali) for two of the timepoints, namely the diagnosis day 

and baseline (pre-challenge day).  

For each sample, approximately 1 mL of blood in 2 mL of buffer was collected into a 

Tempus tube, which preserves whole blood RNA at 4ºC indefinitely. Whole blood 

mRNA was extracted using TempusTM Blood RNA Tube isolation kits provided by the 

manufacturer Applied Biosystems, and the sample quality was determined based on the 

Agilent Bioanalyzer 2100 RNA Integrity score (RIN).  All samples had RIN greater than 

4.0 without meaningful degradation. 

 

2.3.2 RT-qPCR 

Reverse Transcription followed by quantitative PCR (RT-qPCR) was performed using 

Fluidigm 96×96 nanofluidic arrays targeting a set of 96 transcripts that are broadly 

informative of the major axes of variation for peripheral blood gene expression from 

Preininger et al. (2013) at six timepoints (Pre-challenge, day 5, day 7, day 9, Diagnosis 

(Dx) and month 4; Table S3).  

The RT-qPCR was completed in three steps: (1) Total whole blood RNA was converted 

to single stranded cDNA using polyT priming of reverse transcription, (2) the 96 targeted 

genes were pre-amplified in a single 13-cycle PCR reaction for each sample following 

conditions outlined in the manufacturer’s protocol by combining cDNA with the pooled 

primers and EvaGreen® Mastermix (Fluidigm BioMark™), and (3) qPCR reactions were 

performed for each sample and individual gene on each sample on a 96×96 array with 30 
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amplification cycles. Average Ct value was calculated at a point in which every reaction 

is in the exponential phase to ensure accuracy and precision of amplification.  In order to 

make the analysis more easily comparable with traditional transcript abundance measures 

such as those obtained with microarrays or RNASeq, each Ct value was subtracted from 

30, setting missing values to 0.  Since small Ct values correspond to high transcript 

abundance, this subtraction yields values ranging from 0 (no expression) to 30 (very high 

abundance). 

 

2.3.3 RNASeq 

Library preparation for RNASeq was performed using the Illumina TruSeq Low 

Throughput (LT) RNA Sample Preparation Protocol. Short read sequencing was 

performed in rapid run mode with eight samples per lane on an Illumina HiSeq 2500, 

generating 100 bp paired-end libraries with an average of 15 million reads per sample,.  

The raw RNASeq reads (Fastq files) for each sample were aligned to the reference human 

genome (hg19) using Bowtie as the short read aligner, and splice junctions were 

identified using TopHat2 in the Tuxedo protocol (Trapnell et al. 2012). After alignment, 

estimation of transcript abundance measures as fragments per kilobase of exon per 

million aligned fragments (FPKM) values was performed using Cufflinks (Trapnell et al. 

2012). Genes with an FPKM greater than 2.5 averaged across the 24 samples were 

retained for downstream analyses, representing 6,154 genes.  

 

FPKM values were then transformed to logarithm base 2 to guarantee that the data were 

more normally distributed and to simplify the interpretation of the scale of differential 
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expression (each unit difference corresponds to a two-fold difference in abundance). The 

supervised normalization of microarray (SNM) procedure was then used to normalize the 

data with the R package SNM from Bioconductor (Mecham et al. 2010), fitting location 

and timepoint as the biological variables, and Individual as the adjustment variable (fit 

but not removed). All downstream analyses were performed on this normalized data set.  

The dataset has been deposited into the Gene Expression Omnibus archive (GEO) under 

accession number GSE67184 and RT-qPCR data accession number GSE67470.  

 

2.3.4 Statistical analyses 

Most statistical analyses of both the Fluidigm and RNASeq datasets were performed in 

JMP Genomics version 5 (SAS Institute, NC), starting with the Basic Expression 

Workflow, which performs principal components analysis (PCA), and computes a 

weighted total contribution of the covariates of interest to the axes (principal variance 

components analysis, PVCA). Linear regression was then used to assess the relationship 

between the individual covariates and PC, and/or analysis of variance was used to detect 

differential expression between locations or timepoints.  A Benjamini-Hochberg 5% false 

discovery rate was used to select differentially expressed genes.  Volcano plots contrast 

the significance (negative log10 of the p-value, NLP) against the fold difference 

(normalized log2 Ct or FPKM units) between specific conditions.  Hierarchical clustering 

was performed using Ward’s method. 

Blood informative transcript (BIT) axes analysis was performed by generating the first 

PC for the 10 genes that are most strongly correlated with each of the 9 Axes reported in 

Preininger et al. (2013).  These 9 Axes are consistently conserved in all human peripheral 
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blood gene expression datasets, and represent coordinated expression of hundreds to in 

some cases thousands of transcripts.  They collectively capture over half of the total 

transcript abundance, and are thought to reflect gene activity within major cell types 

(broadly speaking, T cells (Axis 1), reticulocytes (Axis 2), B cells (Axis 3), and 

neutrophils (Axis 5) or specific immune or physiological responses (Interferon signaling, 

Axis 7). Principal component one (PC1) for each of these 10 sets of BIT provide a 

summary axis score, which is then contrasted with respect to the covariates of interest 

using standard statistical tests. 

 

2.3.5 Comparison with Malarial Gene Expression in a study from Benin, West 

Africa 

In order to further infer whether location influences the axes of variation, we reanalyze 

data from Idaghdour et al. (2012) who characterized whole blood transcriptomes of 

infants from the West African Republic of Benin, infected with Plasmodium falciparum.  

They reported on 61 healthy controls from a hospital in the city of Cotonou, and 92 cases 

drawn approximately equally and without bias with respect to parasitemia levels from 

Cotonou and the village of Zinvié, located 36 km from Cotonou (GEO accession number 

GSE34404).  They identified parasitemia as the major factor influencing transcript 

abundance overall, but also described a location effect that is considered with respect to 

the BIT axes here.   
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2.4 Results 

2.4.1 RT-qPCR Comparison of Naïve and Semi-Immune Responses to Infection 

The first objective of this study was to compare the time course of transcriptional 

changes during response to infection, between naïve and semi-immune volunteers.  There 

were 16 volunteers in all, 7 from Cali who had not previously been exposed to malaria, 

and 9 from Buenaventura, a village in an endemic region for the disease, all of whom had 

experienced between 2 and 5 mild bouts of malaria.  Fig 2.1 shows results of peripheral 

blood samples from 14 volunteers at Day 5 following exposure and again at Day 7, from 

16 volunteers at Day 9 when PCR later confirmed initial appearance of blood-stage 

parasites, from 11 volunteers on Days 12 or 13 when parasitemia was diagnosed in thick 

blood smears, and from 14 volunteers four months after the initiation of the experiment.  

There were no significant differences between the two groups either in the length of the 

pre-patent period or the level of parasitemia attained before administration of a curative 

cocktail of anti-malarial drugs.   
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Figure 2.1. Experimental design. The timeline for sample collection. 86 total samples 

were collected for RT-qPCR analysis and 24 total samples for RNASeq. Green arrows 

represent timepoints where RT-qPCR was performed: Pre-challenge, 16 samples (7 Cali, 

9 Buenaventura); Day 5, 14 samples (6 Cali, 8 Buenaventura); Day 7, 14 samples (5 Cali, 

9 Buenaventura); Day 9, 16 (7 Cali, 9 Buenaventura); Diagnosis by thick blood smear 

day (Day 12-13), 11 samples (5 Cali, 6 Buenaventura) and Month 4, 15 samples (6 Cali, 

9 Buenaventura). Blue arrows shows samples used for the RNASeq analysis, 12 per each 

timepoint Diagnosis day and Pre-challenge (6 Cali, 6 Buenaventura), 24 total. 

 

Whole blood gene expression was monitored in each of the 85 samples using a 

Fluidigm nanoscale RT-qPCR array targeting 96 genes referred as “blood informative 

transcripts” (BIT).  These BIT consistently capture the covariance of over half of the 

genes expressed in blood, specifically serving as biomarkers for 10 conserved axes of 

variation.  We confirmed that the genes were also co-regulated in this dataset by 

observing a strong correlation of expression for each of the 10 BIT for each Axis, and 

then generated Axis scores as the first principal component of the variance of those 10 
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BIT.  Across all of the gene expression measurements, 30% of the variance was among 

individuals, and just 6.5% between the timepoints, with very little differentiation between 

the naïve and pre-immune volunteers (Fig 2.2). The remainder of the variance was due to 

random biological or technical noise, or to the covariance of gene expression along the 

Axes. 

 

Only two of the Axes were differentially expressed among timepoints, with the time 

at Diagnosis most divergent in both naïve and semi-immune individuals (Fig 2.3A, 2.3B).  

Axis 5 is related to innate immune signaling and neutrophil number, and seems to decline  

 

Figure 2.2. Principal component variance component analyses. Bar graphs shows the 

weighted average weighted average of the variance captured by the first five principal 

components among samples that is explained by Time (PRE, DAY5, DAY7, DAY9, 

Diagnosis, MTH4), Site (Cali, Buenaventura) and Individual, Indicating that most the 
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variability are among Individual for RT-qPCR (A) and Time (PRE and Diagnosis day) 

for RNASeq data set (B). 

 

at Diagnosis, surprisingly, implying a mild reduction in inflammatory gene activity. Axis 

7 represents Type 1 interferon induction and is, as expected, elevated at diagnosis, 

reflecting a transient specific immune response.  Both axes had returned to close to 

baseline levels three months after recovery.  No other gene expression differences 

detected by this targeted RT-qPCR analysis were associated with time or population.  

These results are consistent with previously observed stable maintenance of peripheral 

blood gene expression profiles in healthy adults (Tabassum et al. 2015). 
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Figure 2.3. Axis of variance analysis. Each plot shows the differences in Axis scores at 

6 different timepoints for RT-qPCR (A and B) and two for RNASeq (C-F); Blue solid 

point represents Cali, and red open circles represent Buenaventura. 
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2.4.2 RNASeq Comparison of Naïve and Semi-Immune Responses at time of 

Parasitemia 

In order to obtain a more comprehensive picture of the transcriptome-wide changes 

in gene expression as parasites first appear in the blood, we performed RNASeq on 6 

volunteers each from Cali and Buenaventura, both at Baseline and Diagnosis.  An 

average of 15 million paired-end 100bp short read alignments to the human reference 

genome were obtained for each sample, allowing us to estimate transcript abundance for 

each of 6,154 genes.  Analysis of variance was used to contrast gene expression relative 

to population and timepoint, and to assess the interaction between these two factors.  Fig 

2.2B shows that 25% of the total variance was among individuals, similar to the Fluidigm 

observation, and that very little differentiation was seen between populations.  However, 

just over one third of the variance was between Baseline and Diagnosis samples, 

implying a much greater response to infection than suggested by the RT-qPCR data. 

though it should be noted that only contrasting the two most different timepoints was 

expected to account for more of the variance. 

The differential expression of Axes 5 and 7 was confirmed by the RNASeq data 

(Fig. 2.3D and 2.3E), which suggested divergence of Axes 2 and 9 (Fig. 2.3C and 2.3F).  

Up-regulation of Axis 2 is likely to be a sign of elevated erythropoiesis since it is 

enriched for genes expressed in reticulocytes (Whitney et al. 2003), suggesting a mild 

physiological response to loss of red blood cell function even in the early stages of 

malaria.  Axis 9 may be reflective of decreased killer T cell function since CD8 

expression is correlated with it, but this needs to be independently verified.  Interestingly, 

the increased resolution of RNA-Seq suggests differential responses of Axes 5 and 7 
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between the naïve and semi-immune populations.  Specifically, the reduction of 

neutrophil and TLR-signaling associated with Axis 5 appears to be much stronger in the 

naïve individuals (Fig. 2.3D, solid blue points), whereas the induction of interferon 

signaling is variable in semi-immune volunteers (Fig. 2.3D, open red circles), two of 

whom showed no response.  The directional trends were the same in the Fluidigm data, 

but less apparent. 

Consistent with timepoint rather than Population explaining a large proportion of 

the variance, gene-specific differential expression analysis revealed more than 250 

transcripts up- or down-regulated at the experiment-wide threshold of p<10-5 (Fig. 2.4A), 

but only two transcripts more highly expressed in Buenaventura and none in Cali (Fig. 

2.4B). Approximately 50 genes show more than 2-fold up-regulation at Diagnosis 

relative to Baseline yet are less significant than many of the orange-colored genes (Fig. 

2.4A, green-colored genes).  The reason is that these genes are even more highly 

upregulated in a subset of individuals, namely the naïve (Cali) volunteers.  In fact, 175 

genes show a significant timepoint-by-Population interaction effect at p<0.05 (Fig. 2.4C).  

These are represented in the heat-map in Fig. 2.4C, showing two-way hierarchical 

clustering of transcripts in samples, two-thirds of the genes are actually down regulated at 

Diagnosis.  Interestingly, there was a marked distinction between the two timepoints (Fig. 

2.4C). The Baseline samples were intermingled with respect to whether they were from 

the naïve or semi-immune populations, whereas the Diagnosis ones showed a near-

perfect separation with respect to pre-immune exposure.  In other words, most of the 

genes showing an interaction effect were more strongly up- or down regulated in the 

naïve than semi-immune individuals.  An exception was a Baseline sample from a Cali 



 31 

volunteer (number 306), which clustered with the Diagnosis set but still showed a robust 

response to malaria infection along with  moderate thrombocytopenia and leukopenia, but 

so did Cali 310 who was not an outlier.) 

Figure 2.4. Differential expression in whole-blood RNASeq data set. Volcano plots of 

statistical significance vs. magnitude of differential expression for the contrasts between 

timepoint and highlights 175 interacting genes by timepoint in orange (A) and in red (B) 

by location. Y axis shows the significance as –log10 P value, and x-axis shows the 

magnitude log2. (C) Heat map showing two-way hierarchical clustering of transcripts 

(columns) in each sample (rows) of 175 genes that show a significant timepoint-by-

location interaction effect at p<0.05; red represents high expression, blue low, gray 
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intermediate. Green dots represent pre-challenge and red dots represent Diagnosis day, 

solid points represent Cali, and open circles represent Buenaventura. 

 

2.4.3 Nature of the Differential Response to Malaria 

Given the importance of cytokines to regulation of the immune response, we specifically 

analyzed the expression of all genes in the RNASeq dataset that are related to Interleukin 

(IL), interferon (IFN), tumor necrosis factor (TNF), and transforming growth factor 

(TGF) signaling. This analysis revealed three groups of samples, and three clusters of 

genes (Fig. 2.5).  Once again, the Baseline and Diagnosis samples were separated, 

excluding the outlier Cali 306 Baseline sample and two others, but in this case there was 

no clear separation relative to pre-infection malaria status.  One cluster of 14 genes, 

including IL32 and IL8, was not differentially expressed.  Another cluster of 23 genes, 

including the IL4R, IL6R, and IL7R and IL17R receptors, was upregulated at Baseline, 

particularly strongly in three volunteers (Cali 302 and Buenaventura 341 and 375). The 

third cluster of 19 genes, including TNF, IL1B and IL15, showed the opposite tendency, 

namely up-regulation at Diagnosis, particularly strongly in two samples (314 from Cali 

and 324 from Buenaventura).  These results imply that there is strong co-regulation of the 

cytokine response and infection, but that this is not mediating the differential response 

between naïve and semi-immune individuals.  This is somewhat surprising, especially 

given that the experience of fever was significantly different between the two 

populations, who might have been predicted to differ with respect to the pyrogenic 

cytokines IL1, IL6, IL8 and TNF. 
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Figure 2.5. Heat map of Interleukins, Interferon (IFN), Transforming Growth 

Factor (TGF) and tumor necrosis factor (TNF) hierarchical cluster gene expression. 

Red indicates high expression, blue low expression, and gray intermediate. Three groups 

of samples (I, II and III)), and three clusters of genes (green, blue and yellow) are 
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evident. Baseline and Diagnosis samples are separated, excluding the outlier Cali 306N 

Baseline sample and 327P and 341P. Green points represent pre-challenge and red points 

represent Diagnosis day; solid points represent Cali, and open circles represent 

Buenaventura. 

 

Closer examination of the differentially expressed genes between Baseline and 

Diagnosis suggested a complex network of cross-regulatory interactions.  The up- and 

down-regulated cytokines for example both include pro- and anti-inflammatory peptides 

and their receptors.  Similarly, there appear to be counter-balancing signal transduction 

profiles: JAK1 and RAF1 are both strongly down-regulated in all volunteers at Diagnosis, 

whereas IL6ST and SOS1 are up regulated. 

Among the genes showing a significant interaction effect, namely a stronger 

response at diagnosis in the immunologically naïve individuals, there are several types of 

gene functions of interest (Table 2.1).  These include lysosomal components (CTSH, 

RILP), regulators of macrophage activity (CD163, MMP25, SIRPA, TBC1D14, 

TNFSF13), splicing factors (EIF2C4, SNRPB2, SNRPG), lipid biosynthesis (DGAT2, 

LPPR2), solute carriers (S100P, SLC6A6, SLC11A1, SLC7A7), signal transduction 

(G3BP1, GAB3, MAPK13, TLE3) and Cell Cycle and DNA damage response (ATM, 

PRKDC, ARID4A). Some genes with an interaction effect showed stronger down-

regulation in Cali (Fig. 2.6A, ATM), or stronger down-regulation in Buenaventura (Fig. 

2.6B, EIF2C4), compared with one that showed a similar up-regulation at both locations 

(Fig. 2.6C, ATP1B3).  
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Figure 2.6. Transcriptional interaction effect between location and timepoint. 

Examples of the interaction effect showing gene ATM down-regulation in Cali (A), gene 

EIF2C4 down-regulation in Buenaventura (B) and gene ATP1B3 with no significant 

differnce in degree of up-regulation between the two sets of samples. 
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Table 2.1. Timepoint-by-Population interaction genes at p<0.05 group function.  

Gene p-value Function 

Immune Regulation 

MME 0.0438 This gene encodes a common acute lymphocytic leukemia antigen that 

is an important cell surface marker in the diagnosis of human acute 

lymphocytic leukemia 

CXCR2P1 0.0036 Interleukin 8 Receptor, Beta Pseudogene – Non annotated 

PECAM1 0.0278 Cell adhesion molecule that is required for 

leukocyte transendothelial migration (TEM) under most inflammatory 

conditions.  

MAFB 0.0234 Transcriptional activator or repressor. Plays a central role in 

controlling lineage-specific hematopoiesis repressing ETS1-mediated 

transcription of erythroid-specific genes in myeloid cells. Is necessary 

for cell differentiation of monocytic, macrophage, podocyte and islet 

beta. 

Signal transduction 

MAPK13 0.0182 Is one of the four p38 MAPKs which play an critical role in the 

cascades of cellular responses induced by extracellular stimuli like 

physical stress controlling the activation of transcription factors like 

ELK1 and ATF2 or proinflammatory cytokines. 

GAB3 0.0092 Is related to numerous growth factor and cytokine signaling pathways. 

G3BP1 0.0385 Is a heterogeneous nuclear RNA-binding protein and also an 

constituent of the Ras signal transduction pathway. 

TLE3 0.0086 Transcriptional co-repressor that binds to a diverse number of 

transcription factors. Constrains the transcriptional activation, which is 

facilitated by CTNNB1 and TCF family members in the Wnt 

signaling. 

Splicing 

SNRPG 0.0065 Plays an important role in the splicing of the cellular pre-mRNAs. 

SNRPB2 0.0173 Encoded protein might play an imortant role in pre-mRNA splicing. 

EIF2C4 0.0184 Members of this argonaute protein family are related to RNA silencing 

and are evolutionarily conserved. 

Lysosome activity 

CTSH 0.0074 Protein encoded by this gene is a lysosomal cysteine proteinase; this 

protein plays an important role in the overall deprivation of lysosomal 

proteins. 

RILP 0.0166 Related to the regulation of lysosomal morphology and distribution. 

Cell Cycle, DNA Damage Response 

ATM 0.0154 Cell cycle checkpoint kinase. This genes is involved in signal 

transduction and cell cycle control. May works as a tumor suppressor. 

 



 37 

Table 2.1 (continued) 

 

PRKDC 0.0028 Sensor for DNA damage. 

ARID4A 0.0342 Relates with a viral protein-binding domain at the retinoblastoma 

protein  (pRB) this regulates cell propagation. 

Phagocytes 

TNFSF13 0.0086 Plays a part in regulation of tumor cell growing. This gen might be 

involved in monocyte/macrophage-mediated immunological activities. 

TBC1D14 0.0101 Adverse regulator of starvation-induced autophagosome formation. 

CD163 0.0129 This gene is exclusively expressed in monocytes and macrophages. 

Functions as a severe phase-regulated receptor related to the clearance 

and endocytosis of hemoglobin/haptoglobin complexes by 

macrophage. 

SIRPA 0.0227 Facilitates negative regulation of phagocytosis, mast cell stimulation 

and dendritic cell activation. 

MMP25 0.0216 Response to bacterial infection and/or inflammation 

Extracellular sensing 

SLC6A6 0.0337 This gene encodes a multi-pass membrane protein that is a member of 

a family of sodium and chloride-ion related transporters. 

S100P 0.032 Might function as calcium sensor and contribute to cellular calcium 

signaling. 

SLC11A1 0.0398 The protein work as a divalent change metal (iron and manganese) 

transporter involved in iron absorption and host resistance to some 

pathogens. 

SLC7A7 0.0369 Is a transporter that is found in epithelial cell membranes where it 

transfers large neutral amino acids from the cell to the extracellular 

area. 

Lipid Biosynthesis 

DGAT2 0.0375 This gene encodes one of two enzymes which catalyze the final 

reaction in the synthesis of triglycerides 

LPPR2 0.012 Activity of phosphatide phosphatase 

Other 

HAL 0.0249 Histidase converts histidine into ammonia and urocanic acid 

TBXAS1 0.0027 Is an enzyme that plays a role in numerous pathophysiological 

processes that includes hemostasis, cardiovascular disease, and stroke. 

POGK 0.0123 Exact function of the protein encoded by this gene is unknown. 

FAM212B 0.0365 Uncharacterized Protein. 

KIAA0232 0.0428 Uncharacterized Protein. 
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2.4.4 Comparison with effect of parasitemia on gene expression reported from 

Benin, West Africa 

Finally, we reanalyzed an infant malarial gene expression dataset from Benin 

(Idaghdour et al. 2012). All samples were collected within a period of 10 weeks in the 

spring of 2010, and transcript abundance data was generated on Illumina HumanHT-12 

BeadChips for 155 individuals (61 controls from Cotonou, 24 high parasitemia from the 

village of Zinvie, 52 low parasitemia from Zinvie, and 18 from the city of Cotonou).  

Critical differences relative to our study include (i) comparison with P. falciparum rather 

than with P. vivax infection, (ii) infants versus young adults comparison, and (iii) cross-

sectional rather than Baseline vs Diagnosis analysis.  Nevertheless, a significant 

correlation (Fig. 2.7A-B) was observed between parasitemia and two Axes of variation, 

with an apparent interaction effect involving Axis 5, where the stronger effect was again 

observed in the less endemic location (Fig. 2.7A-B, Cotonou, blue points and regression 

line).  However, in this case there was activation of the innate immunity/inflammation 

genes as parasite burden increases.  Axis 1, which is enriched for T-cell signaling activity 

(Preininger et al. 2013), was strongly reduced as parasitemia increased, but like Axis 5, 

not significantly affected in the infants with low parasitemia. From 32 genes showing a 

significant interaction effect between timepoint and population in our challenge 

experiment, 12 were nominally differentially expressed between malaria patients in the 

city of Cotonou and rural village of Zinvie in Benin.  
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Figure 2.7. Log2 Parasitemia and Axis 2 and 5 Benin Study, West Africa. Significant 

correlation is evident between parasitemia and axis of variation, even though unrelated to 

location. A. Axis 5 B. Axis 1. Each plot shows the correlation among location and axis of 

variation, blue represents samples from Cotonou, Red represents samples from Zinvié; 

solid point represent control and open circle represent malaria samples. 

 

2.5 Discussion 

The core result of this study was that gene expression was significantly altered at the time 

of malaria diagnosis, particularly in the immunologically naïve volunteers.  Although the 

targeted expression profiling is less comprehensive and less sensitive than the RNASeq, 

it suggests that there is minimal transcriptional change in peripheral blood prior to patent 

infection, and that individual profiles return to baseline within a few months of parasite 

clearance.  No obvious difference in the transcriptomes of uninfected naïve and semi-

immune volunteers was seen, but several hundred genes showed a stronger response in 

the naïve individuals.  We cannot however conclude that prior immune exposure is the 

only reason for this difference as other lifestyle factors that distinguish the inland city of 
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Cali from the Oceanside town of Buenaventura, (where there is likely a larger proportion 

of African ancestry) may also play a role, However, the data is strongly suggestive of a 

long-term modulation of the malaria immune response involving multiple molecular 

pathways. 

By comparison with published cross-sectional studies of gene expression in malaria 

patients, and although clinically immune individuals infected with P. vivax have lower 

levels of inflammatory and regulatory cytokines than individuals with P. falciparum 

malaria (Gonçalves et al. 2012), there were some surprising observations in this study. 

Most notably, the down-regulation of multiple genes related to innate immunity, 

inflammation, and neutrophil abundance, all correlated with Axis 5, was unexpected.  

The large cross-sectional study of infants with malaria conducted in the West African 

Republic of Benin (Idaghdour et al. 2012) documented a strong up-regulation of the same 

genes, although reanalysis of their data shown in Fig. 2.7A suggests that is only true in 

the presence of high levels of parasitemia. Even more surprisingly, the reduction in 

inflammatory gene expression was stronger in the naïve than semi-immune volunteers.  

One possibility is that there is a transient reduction in relative neutrophil counts as the 

parasite first appears in the bloodstream as the lymphoid cells begin to amplify their 

response, and this is corrected as parasite levels increase and neutrophilia occurs a few 

days into the infection (McKenzie et al. 2005; Kotepui et al. 2014).  

 

An observation that is consistent with published data is the strong induction of an 

interferon response in association with blood-stage malaria (McCall et al. 2010; 

Jagannathan et al. 2014).  It is unclear whether this induction was stronger in Cali or 
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Buenaventura, since a couple of the Cali volunteers had unusually high baseline 

interferon-related gene expression captured by Axis 7.  It does appear that a few of the 

semi-immune individuals did not mount an interferon response, consistent with the 

absence of overt clinical symptoms and implying that their immunological memory was 

able to deal with at least the early stage of infection without mounting the kind of major 

immunological response observed in the naïve volunteers.  This in turn implies that the 

presence of blood stage parasites alone is not the only determinant of whether or not an 

individual mounts an interferon response.  The overall cytokine profile shifts reported in 

Fig. 2.5 did not correlate with the clinical profile differences, which suggests that the 

level of host immunity can vary due to the degree of acquired immunity through repeated 

exposure (Laishram et al. 2012).  Larger sample sizes and longitudinal profiling during 

disease may identify associations between gene expression and physiological response, 

which is also likely to involve other tissues.  

 

On the other hand, multiple classes of gene activity do seem to be differentially activated 

between naïve and semi-immune volunteers.  These include various signal transduction 

molecules, genes related to macrophage activity, and other cellular processes that are 

known to influence immune responsiveness including lipid synthesis and lysosomal 

function, concordant with Portugal et al. (2014) who suggest that as children develop 

exposure-dependent immunity to P. falciparum, the molecular responses reduce 

pathogenic inflammation and boost anti-parasite mechanisms. The study in Benin again 

provides a potential comparison, since it included the contrast between children in the 

city of Cotonou with the rural village of Zinvié.  Differences in human peripheral blood 
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gene expression according to lifestyle are prevalent, but it is nevertheless interesting that, 

of the 26 genes showing a significant interaction effect between timepoint and population 

in our challenge experiment, 9 were nominally differentially expressed between malaria 

patients from the two locations in Benin, compared with no more than three expected.  

Fig. 2.7B shows that Axis 1 (related to T-cell signaling) is down-regulated with high 

parasitemia, and consistently reduced in the village of Zinvié.  This Axis was not affected 

in our study, but collectively these observations of context-dependent alterations in gene 

expression provide further evidence that immune history is an important mediator of the 

differential clinical profiles observed among individuals. 

There is also considerable interest in the use of gene expression profiling to identify 

genes that may mediate robust vaccine responses.  Recent study reports on influenza and 

yellow fever have highlighted individual genes that are required for vaccine 

effectiveness, but have also suggested that baseline profiles of immune cell types may 

provide better predictors of antibody production (Pulendran 2014, Nakaya et al. 2011).  

Various properties of Plasmodium suggest that this organism may present a more difficult 

scenario for dissecting the molecular basis of vaccine responses, but we consider the 

results reported here to be an encouraging baseline establishing that differential responses 

to a malaria challenge can be detected by gene expression profiling.  It will be interesting 

to see whether pre-immune exposure influences the molecular basis of vaccination with 

irradiated sporozoites in the next phase of this study. 

This study shows that gene expression is particularly strong in naïve volunteers in 

comparison to semi-immune individuals at the time of malaria diagnosis. Gene 

expression profiling of lymphocytes can thus be used to identify the type and duration of 
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the immune signals that are biomarkers for vaccine immunogenicity, and establish how 

semi-immune exposure modifies their activation. 
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CHAPTER 3 

3. PROFILING GENE EXPRESSION OF THE HOST RESPONSE TO AN 

IRRADIATED SPOROZOITE IMMUNIZATION AND PLASMODIUM VIVAX 

MALARIA CHALLENGE 

 

 

3.1 Abstract 

The development of vaccines that provide sterile protection against pathogenic infection 

by the Plasmodium parasites that cause malaria is a major global public health priority. 

Development of effective vaccines requires a better understanding of the human immune 

response to vaccination. Here I report results of gene expression profiling of peripheral 

blood before and after 7 rounds of immunization with radiation attenuated P. vivax 

sporozoites (PvRAS) in 20 volunteers, as well as after controlled challenge with live P. 

vivax.  RNASeq was used to generate whole transcriptome profiles for 3 Controls, 5 

protected Duffy Fy-, 5 protected volunteers immunized with RAS, and 7 susceptible 

volunteers not protected by immunization. The most profound changes in gene 

expression were observed in the contrasts between baseline and post- challenge, with 

distinct signatures differentiating protected and susceptible individuals. Analysis of 

transcriptional modules shows that B-cell signaling is reduced while cell cycle regulation 

and interferon response, as well as a probable signature of short-lived plasma cell 

activation, are highly elevated in individuals not protected by RAS, whereas regulatory 

T-cell signaling and an inflammatory response are elevated in protected individuals. 

Furthermore, subtle differences in the protection afforded by Duffy negative status and 
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by RAS were observed, and vaccination itself also modified aspects of B and T cell gene 

expression. Combined with immune cell profiling we expect the systems biology 

approach to suggest adjuvants that may improve the efficacy of malaria vaccines.  

 

3.2 Introduction 

The development of vaccines that provide protection against pathogenic infection by the 

Plasmodium parasites which cause malaria is a major global public health priority. The most 

recent World Health Organization report (WHO, 2015) indicates that there was an encouraging 

48 percent decrease in mortality between 2000 and 2015. However, more than 3 billion people 

remain at risk, and 438,000 deaths are still attributed to malaria every year, largely affecting 

children and pregnant women (WHO 2015). Eighty percent of malaria deaths occur in just 15 

countries, predominately due to Plasmodium falciparum in Africa, on which most of the malaria 

vaccine research has been focused. New genomic approaches based on the genome of the species 

(Gardner et al., 2002), as well as its transcriptome (Bozdech et al. 2003, Le Roch et al. 2003) and 

proteome (Florens et al. 2002, Sam-Yellowe et al. 2004, Hall et al. 2005), have supported 

progress in identification of suitable vaccine targets. Most notably, the RTS,S vaccine 

(MosquirixTM) which targets the circumsporozoite (CS) protein is now in Phase 3 trials following 

demonstrated efficacy and safety, decreasing morbidity and mortality by 28% and 18% 

respectively in young children and newborns (Lancent 2015). 

 

The second most common malaria parasite is Plasmodium vivax, which accounts for 70% of the 

severe malaria cases and deaths in the Americas. Furthermore, WHO (2015) reported a rise in 

the appearance of severe cases of P. vivax malaria, as well as increasing treatment failure with 
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chloroquine.  Consequently, development of a malaria vaccine against this species is a high 

priority for Latin America. Progress has been slowed by difficulties maintaining P. vivax in 

culture, and, until recently, by relatively limited information of the genome, transcriptome and 

proteome of the species.  Nevertheless, my collaborators (Herrera et al., 2009, 2011) have 

developed an experimentally controlled P. vivax sporozoite challenge protocol for human studies 

in Colombia, and are now using this approach to evaluate malaria vaccine candidate approaches. 

 

Development of a more effective vaccine also requires better knowledge and understanding of 

the acquisition of immunity. Gene expression profiling has been used to gain insight into natural 

clinical protection (Idaghdour et al. 2012, Rojas-Peña et al. 2015), and while it is clear that 

multiple arms of the immune system are engaged, the precise mechanisms leading to immunity 

remain to be elucidated.  The pre-erythrocytic parasite stage is thought to be the optimal target of 

malaria vaccine development (Clyde et al 1973). For example, sterile immunity to malaria can be 

induced by vaccination with radiation-attenuated sporozoites (RAS) (Clyde et al. 1973, 1975; 

Rieckmann et al. 1974), which likely prevents parasite development in the liver following 

engagement of various regulatory T cell functions. Sanaria Inc. have developed an injectable P. 

falciparum RAS immunization strategy which is in phase 1 and 2 trials for vaccination of naïve 

adults (Richie et al 2015), and colleagues Socrates Herrera, Myriam Arévalo-Herrera and their 

team at Caucaseco in Cali, Colombia, have initiated similar research in relation to P. vivax. 

 

Given that P. vivax continues to affect millions of people in endemic countries, better 

understanding of the immune response established by PvRAS immunization is desirable.  To this 

end, we have conducted a Phase 1 trial in which 20 naïve volunteers (5 Duffy negative Fy- and 
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15 Duffy positive Fy+) from Cali were exposed to 7 immunizations to test the efficacy of 

immunization with radiation attenuated P. vivax sporozoites delivered by mosquito bites 

(PvRAS)(Arévalo-Herrera et al. in review). This study design allows us to contrast natural 

(Duffy negative) and induced (PvRAS) protection as well as failure of protection, since it was 

observed that just 42% (5 of 12) individuals showed sterile immunity in response to vaccination.  

None of the Duffy negative individuals showed symptoms of parasitemia, while 7 of the Duffy 

positive subjects (6 men) who received PvRAS immunizations developed parasitemia. One of 

these volunteers did not develop symptoms, and similarly one of the three non-vaccinated Duffy 

positive controls was also asymptomatic.  There was no difference in the time to first appearance 

of blood stage parasites assessed by thick blood smears (12 to 13 days in both the non-vaccinated 

and non-protected groups). The other 5 immunized Duffy positive volunteers (all women) did 

not show symptoms or parasitemia, and were therefore identified as protected against the P. 

vivax challenge. Samples from this trial provided a unique opportunity to assess the 

immunological response to vaccination with PvRAS by transcription profiling using RNASeq 

analysis of peripheral blood samples.   

 

Systems biology approaches based on gene expression profiling have been used to identify gene 

signatures associated with vaccination response in a variety of viral settings (Nakaya et al. 2011; 

Li et al. 2014, 2016). These have mostly focused on the process of vaccination itself, rather than 

its impact on challenge by the pathogen.  Here I report an initial understanding of the modular 

immune response to a P. vivax malaria challenge after protection with PvRAS. By contrasting 

blood samples drawn at baseline, following immunization but pre-challenge, and at the first day 

of diagnosis of malaria in affected subjects, I ask whether there are differences in the immune 
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profiles between volunteers (i) before and after the immunization with PvRAS, (ii) after 

experimental challenge with live P. vivax, and (iii) between naturally and vaccine-protected 

individuals.  Multiple arms of the immune system are found to be engaged in the response to live 

pathogen, and I also document systemic effects of Duffy negative status both before and after 

parasite challenge. 

 

3.3 Methods 

 

3.3.1 Clinical Study 

This study is based on a single-blind clinical trial that included healthy adult volunteers, males 

and non-pregnant females, between 19-41 years of age, who satisfied inclusion/exclusion criteria 

as determined by clinical history and serological tests, and who finished the clinical trial (see 

Arévalo-Herrera et al., submitted). Volunteers were broadly informed about the risks of 

participation. All volunteers had to pass an oral or written exam related to the trial and its risks. 

The clinical trial was registered at ClinicalTrials.gov under registry number NCT01082341. The 

experimental design protocol was approved by the Institutional Review Boards (IRB) at the 

Malaria Vaccine and Drug Development Center (CECIV, Comité de Ética Centro International 

de Vacunas, Cali), and Centro Médico Imbanaco (CMI; Comité de Ética en Investigacion, Cali), 

and subsequently the Georgia Institute of Technology IRB gave approval for the genomic 

profiling (protocol H13495).  

Fifteen malaria-naïve Duffy-positive (Fy+) (12 RAS, and 3 mock-control) and 5 Duffy-negative 

(Fy-) volunteers from Cali were included. The volunteers visited the clinic in Cali approximately 

every 8 weeks to receive ~100 bites from Anopheles albimanus mosquitoes for a total of 7 visits.  



 49 

In the case of the Fy+ RAS vaccines, the mosquitoes had been fed radiation-attenuated P. vivax 

sporozoites, whereas the Fy- volunteers were exposed to non-attenuated parasite.  Two weeks 

after the final vaccine dose, the second “pre-challenge” blood sample was drawn, and all 

participants were given a curative dose of chloroquine and primaquine anti-malarials.  A further 

six weeks later they were challenged with infection by ~100 bites from mosquitoes infected with 

live, non-irradiated P. vivax sporozoites. Approximately fourteen days later, at first diagnosis of 

infection in susceptible volunteers, the final blood “Diagnosis” blood sample was taken, and 

where necessary a curative program of anti-malarial medication was given.  The volunteers were 

followed for 60 days to ensure they were clear of malaria.   Of the mock-controls (who received 

bites from parasite-free mosquitoes during the vaccination phase), two contracted malaria after 

challenge with live parasite but one remained uninfected (parasite-free).  Of the RAS-vaccinated 

individuals, six (all women) were symptom-free, one of whom nevertheless had parasite in her 

blood.  The other six (five men, one woman) were not protected and had mild malaria.  All five 

of the Duffy negative women were naturally protected from infection as expected.  Figure 3.1 

summarizes the experimental design and blood sampling strategy for the RNAseq.  
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Figure 3.1. Experimental design and sample collection timeline. 58 total samples were used 

for RNAseq, taken at three time points represented by the green symbols: Baseline (20 samples), 

Pre-challenge (19 Samples) and day of Diagnosis (19 samples).  Controls, Fy- and Fy+ 

vaccinated individuals are represented by yellow, green and blue silhouettes respectively of 

representative genders on the left, and red shading on the right indicates which individuals were 

diagnosed with malaria.  One woman (red/blue) was positive for infection but asymptomatic.  

 

3.3.2 RNASeq 

Whole blood RNA was prepared for all 20 individuals at each of the three time points, namely 

Baseline (prefix B), Pre-Challenge (C) and at Diagnosis (D). Approximately 1 ml of blood was 

taken for each sample, and mixed with 2 ml of buffer in a Tempus tube, which preserves whole 
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blood RNA at 4°C indefinitely, but depletes the red blood cell and platelet fractions at the RNA 

extraction step. Whole blood (predominately leukocyte) mRNA was extracted using Tempus 

Blood RNA Tube isolation kits following the protocol provided by the manufacturer, Applied 

Biosystems. Sample RNA quality was determined based on the Agilent Bioanalyzer 2100 RNA 

Integrity score (RIN). Two samples of RNA from one control-pre-challenge and one Duffy-

negative-diagnosis sample were severely degraded and were not included for sequencing. A few 

samples had RIN lower than 6, but these were not found to be outliers in the analysis. 

 

Library preparation for RNASeq was performed using the Illumina Stranded mRNA Sample 

Low Throughput (LT) RNA Sample Preparation Protocol. Short read sequencing was performed 

in rapid run mode with eight samples per lane on an Illumina HiSeq 2100 at the Georgia Institute 

of Technology, generating 100 bp single-end libraries with an average of 31.8 ± 6.1 million 

single end reads per sample. 

 

The RNASeq dataset has been deposited into the Gene Expression Omnibus archive (GEO) 

under accession number GSE85263, including short read deposition in the SRA. 

 

3.3.3 Data analysis 

Raw RNASeq reads (Fastq files) were evaluated using FastQC software analysis to check the 

quality of the data for each sample. The overall alignment rate was 93%, and three samples 

(B025, DGS006 and DGS065) failed QC, so were excluded.  The 100 bp single-end reads were 

then aligned to human genome (hg19/GRCh37 assembly with the UCSC reference annotation) 

using Bowtie as the short read aligner via Tophat2 (Trapnell et al. 2012). Transcript abundance 
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was estimated at the level of the whole gene as counts per million (cpm) values using the tool 

htseq-count of the open source python package HTSeq (Andres et al. 2015). No attempt to assess 

transcript isoforms was made as the read depth was deemed not sufficient to give reliable 

estimates, and similarly exon-level data was not analyzed. 

 

To guarantee that the data were more normally distributed and to simplify the interpretation of 

differential expression, cpm values were transformed to logarithm base 2. Scale Trimmed Mean 

of the M-values (TMM) normalization was then performed using edgeR from Bioconductor, as 

described in Robinson and collaborators (2010). All downstream analyses were performed on 

this normalized data set. Differential expression was also assessed using the linear modeling 

framework for RNAseq data in edgeR. A Benjamini-Hochberg false discovery rate of 10 percent 

(approximately corresponding to a p-value of 0.0001) was used to select differentially expressed 

genes.  

 

All results were verified by a second normalization model using the SNM package in R 

(Mecham et al, 2010) to fit individual as an adjustment variable with time point and clinical 

status as biological variables, facilitating analysis of the relative changes in expression after 

adjustment for inter-individual differences.  Since all results were qualitatively the same as the 

TMM analysis, I only report the TMM.  Further analyses to establish the contributions of 

timepoint, gender, and clinical status to the overall gene expression variation, reported in Figure 

3.2, were performed using the Principal Variance Component Analysis (PVCA) routine in the 

Basic Expression Workflow in JMP Genomics (SAS Institute, Cary NC). 
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Figure 3.2. Principal Variance Component Analysis of Gene expression. Bar graph shows 

the weighted average of the variance captured by the first five principal components among 

samples that is explained by Gender, Time (Baseline, Pre-challenge and Diagnosis), DSP 

Category (Duffy, susceptible and protected), and time by category. 

 

3.3.4 Blood Transcription Modules (BTMs) and Blood Informative Transcripts (BIT) 

Modular analysis of transcript abundance was based on the reconstruction of several hundred 

gene networks from integrative analysis of over 30,000 transcriptomes in 500 public studies (Li 

et al. 2014, 2016). These modules are described as the Blood Transcription Modules (BTMs) and 

disclose distinct aspects of peripheral blood gene expression, including transcriptional 

indications of antibody responses to vaccination and other immunological functions.  In parallel, 

we also used blood informative transcript (BIT) analysis, which focuses on 10 common axes of 

variation that were detected in multiple human peripheral blood gene expression datasets of 

healthy individuals that have been found to consistently co-vary in peripheral blood (Preininger 

et al. 2013). Each axis includes between one hundred and several thousand genes that gene set 

enrichment analysis suggests are involved in particular immune functions, broadly speaking, T 
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cell signaling (Axis 1), reticulocyte number (Axis 2), B cell signaling (Axis 3), 

inflammation/neutrophil signaling (Axis 5) and Interferon signaling (Axis 7). Axes 4 appears to 

be related to house-keeping while Axis 6 is as yet undefined, while a newly identified Axis 10 is 

enriched for regulation of mitosis and cell division.   These axes are related to 28 modules of co-

expressed genes described initially by Chaussabel and collaborators (2008), and our analyses 

show that they are embedded within clusters of BTM.  In other words, BTM describe 

refinements of the course patterns of gene expression captured by the BIT Axes.  

 

Both BTM and BIT Axes are computed as first principal components (PC1) of the co-regulated 

genes, either all of the genes in each module, or the 10 axis-defining BIT for each Axis (note that 

almost identical scores are obtained with 5 or 20 transcripts: Preininger et al, 2013).  PC were 

generated in JMP Genomics version 8 (SAS Institute, NC), for each BTM, and given the high 

covariance of representative genes can be thought of as weighted averages of transcript 

abundance.  The strength of covariance is given by the percent variation of the included 

transcripts that is explained by PC1. These scores were contrasted with respect to the clinical 

status groups (protected, susceptible, and Duffy negative) across the three time points, using 

standard parametric t-tests or analysis of variance.  Two way hierarchical clustering of the BTM 

and BIT scores was used to assess the overall functional relatedness of samples and modules, 

using Ward’s method implemented in JMP Genomics. 

 

3.3.5 Variant genotype calling and ethnicity 

To avoid the confounding factor of ethnicity across the samples, I calculated the ancestry 

composition of the volunteers from genotype data inferred from the RNASeq data. The short 
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read alignments from Tophat were imported into the GATK HaplotypeCaller (McKenna et al., 

2010) for each sample at each of the three time points. Given relatively high false positive 

genotype calls from RNA sequencing, I required that a SNP was called in all three samples for 

an individual, which was performed by merging the VCF files using the vcf-merge utility from 

VCFtools.  Only common polymorphic sites also found in the 1000G public reference dataset 

(The 1000 Genomes Project Consortium) were retained for downstream analysis.  The curated 

genotypes were converted to BED/BIM/MAP format using Plink (Purcell et al. 2007), and then 

merged with data from the 1000G project.  Subsequently, the ADMIXTURE program 

(Alexander et al. 2009) was run on the final merged dataset, using k=3 theoretical populations, 

which correspond to European, Asian/Native American, and African source populations (this 

part of the ethnicity analysis was performed by Andrew Conley from Jordan Lab).  Figure 3.3 

shows that the 20 Colombian individuals in this study tend to have slightly more African 

ancestry than observed in the Medellin sample in the HapMap collection (International HapMap 

Consortium, 2003), typically consisting of 40%-60% European ancestry and up to 40% African 

and 40% Amerindian.  The 5 Fy- volunteers are the outliers with between 40% and 80% African 

ancestry. 
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Figure 3.3. Triangle plot. Ancestry proportions inferred from RNASeq polymorphisms. 

 

3.4 Results 

Peripheral blood gene expression profiles were obtained for 20 volunteers who completed a 

single blind randomized clinical trial of PvRAS immunization, as schematized in Figure 3.1.  

Five individuals were Duffy negative, and 15 were Duffy positive, including 3 mock-vaccination 

Controls and 12 PvRAS immunized volunteers. After live P. vivax challenge, five women 

showed sterile immunity while one was asymptomatic but positive for parasite, and five men and 

one woman contracted malaria despite vaccination, so were not protected.  The demographics 

and clinical attributes of the volunteers are shown in Table 3.1. RNASeq was performed for each 

individual at three different time points (Baseline, Pre-challenge and Diagnosis day), with the 

exclusion of five samples due either to low quality RNA or failure of quality control of the 
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RNASeq data. The final dataset consists of 55 RNAseq single end 100bp samples with a total of 

13,282 genes that had a cpm of 1 or more in at least 3 of the samples. 

Table 3.1. Demographics of the 20 volunteers included in the clinical trial. 

Volunteer Group Gender Age nBites Infected TBS 

002 Ctrl M 27 758 NO - 

020 Ctrl M 41 945 YES 13 

065 Ctrl M 23 963 YES 13 

038 Fy F 24 478 NO - 

058 Fy F 21 487 NO - 

066 Fy F 37 358 NO - 

075 Fy F 19 476 NO - 

084 Fy F 25 412 NO - 

005 RASNP M 30 418 YES 13 

006 RASNP M 40 497 YES 13 

009 RASNP F 33 458 YES 13 

011 RASNP M 38 423 YES 13 

017 RASNP M 35 386 YES 13 

021 RASNP M 22 442 YES 12 

026 RASNS F 36 440 YES 12 

001 RASP F 24 440 NO - 

007 RASP F 21 362 NO - 

010 RASP F 25 460 NO - 

012 RASP F 37 428 NO - 

025 RASP F 21 403 NO - 

 

RAS, radiation attenuated sporozoites (group infected with irradiated sporozoites); P, protected 

after immunization; NP, not protected after immunization; NS, asymptomatic Volunteer 026 had 

P. vivax parasitemia >1,000 parasites/µl but no malaria symptoms.  Ctrl, control (mock-

immunized with non-infected mosquitoes); Fy(-), Duffy negative; F, female; M, male; nBites, 

estimated number of bites received from infected mosquitoes for the challenge; TBS, day of 

positive thick blood smear.  
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To assess the transcriptional signatures and functional content induced by PvRAS immunization 

and the malaria challenge after immunization, I first combined data from each time point and 

analyzed them as a single data set consisting of 19 baseline, 19 pre-challenge and 17 diagnosis 

day samples. Principal variance component analysis indicated that 17 percent of the variation is 

between the three classes of individual (Duffy negative, protected, susceptible), 12 percent 

between the three time points, and 3 percent attributable to an interaction effect.  Age was not a 

significant source of variation when included in the model.  Post-hoc analysis of the major PC 

indicates that the Diagnosis day samples tend to be divergent from the Baseline and Pre-

challenge ones, and that the susceptible individuals are the most distinct at the Diagnosis day, 

accounting for the interaction effect.  Consequently, I first focus on the question of whether live 

parasite challenge induces different immune profiles according to clinical outcome.  

 

3.4.1 Differential Gene Expression at Diagnosis Associates with Protection or Susceptibility 

To do so, I applied the BTM and axes of variation frameworks to characterize the general 

patterns of differential gene expression between sample types at Diagnosis day only. 

Hierarchical clustering analysis of PC1 of the BTMs and BIT axes data revealed three distinct 

clusters of individual (Fig. 3.4). These three clusters largely distinguish between the clinical 

groups: RAS volunteers who became protected separated themselves from RAS volunteers who 

were susceptible, while the Duffy negative volunteers form a distinct cluster more similar to the 

protected RAS volunteers.  Two RAS non-protected (susceptible) individuals have aberrant 

profiles: one (RASNP 005) has a unique profile dominated by signatures of mitosis (multiple 

BTM and the new cell division Axis 10) indicating that the infection has temporarily induced 
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abnormal cell cycle regulation; the other (RASNP 021) is almost identical at Diagnosis and Pre-

Challenge and may be a sample mix-up.  

 

Both the nature of the BTM in each of the clusters, as well as of the Axis that is embedded 

within each cluster, provide evidence that multiple arms of the immune system are engaged in 

immune-protection.  Most apparent is the strong up-regulation of interferon response and mitosis 

in the non-protected RAS volunteers, contrasting with up-regulation of T-cell and B-cell 

signaling evident in both the Duffy negative and RAS protected volunteers, to varying degrees. 

Furthermore, inflammation, as well as platelet and reticulocyte differentiation, are clearly up-

regulated in protected RAS volunteers relative to Duffy negative volunteers, implying that 

natural and vaccine-mediated protection have slightly different immunological consequences. It 

is particularly noteworthy that volunteer 026, who became serologically positive for the parasite 

but did not exhibit symptoms, exhibits a combination of characteristics of non-protected 

(interferon and mitosis response) and protected individuals (platelet and inflammation).  It is also 

apparent that the two controls cluster with their respective clinical groups, namely 002 who did 

not become infected (but appears to have been exposed since his profile is related to that of the 

RAS protected volunteers and different from his Pre-challenge sample, not shown), and 020 who 

has a classical mild malaria profile. 
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Figure 3.4.  Hierarchical clustering of Blood Transcript Modules (BTMs) and Axes of 

Variation. The heat map shows two-way hierarchical clustering of the PC1 (columns) in each 

sample (rows) of 250 BTMs and 8 sets of BITs at the day of the diagnosis. Red indicates high 

expression, blue low, and gray intermediate, of genes in each module. Green sample labels 

represent Duffy negative volunteers, red labels represent susceptible PvRAS immunized 

volunteers who became infected during the challenge, blue represent protected PvRAS 

immunized volunteers, and purple, control volunteers. Nomenclature at the end of the labels 

means: F, Duffy negative; RNP, RAS non-protected; RP, RAS protected; C, control; CP, control 

protected and NS, Non symptoms.  

 

In order to obtain a more comprehensive picture of the changes in gene expression as parasites 

first appear in the blood, I studied the BITs at each of the time points and subdivided the samples 

into 9 categories, baseline, pre-challenge and diagnosis, each subdivided into Duffy negative, 

protected (individuals who after the challenge were not infected) and susceptible (individuals 

who at the time of the challenge were infected).  The results shown in Figure 3.5 confirm that T-
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cell signaling (Axis 1) is already induced at the pre-challenge in the Duffy negative individuals  

(Fig. 3.5), but delayed until the diagnosis timepoint in the pvRAS protected, while does not 

become induced in the susceptible individuals at all. Neutrophil activity (Axis 5) is generically 

reduced in the Fy- even at baseline, and does not change across time within each type, with the 

exception of a surprising slight reduction in some of the susceptible individuals (consistent with 

our previous report of the response of non-vaccinated naïve volunteers; Rojas-Peña et al, 2015). 

Interferon signaling (Axis 7) increases in most of the susceptible individuals at the time of the 

diagnosis but remains unchanged in the protected Fy- and Fy+ individuals. Similarly, mitotic 

activity (Axis 10) is dramatically up-regulated only at diagnosis in the susceptible, non-protected 

vaccines and control. 
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Figure 3.5. Differential expression of axes of variation.  Each panel shows the PC1 score for 

the indicated Axis for individuals at Baseline (green, B), Pre-Challenge (blue, C) or Diagnosis 

Day (red, D), with from left to right Duffy negative (left, F), Protected (middle, P), or 

Susceptible (right, S). Panels are top to bottom, left to right: T-cell signaling (Axis 1), B-cell 

signaling (Axis 3), Neutrophil signaling (Axis 5), Interferon response (Axis 7), Mitosis (Axis D), 

and expression of the CD38 gene. 
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Analysis of variance of the PC1 scores of the BTM modules at diagnosis across the three 

individual categories (susceptible, protected and Duffy negative) identifies 49 modules that are 

dysregulated with elevation associated with absence of parasite at diagnosis, and 48 modules that 

are associated with clinical susceptibility, being elevated in the presence of parasites (Appendix 

A). Examples of these modules are represented in Figure 3.6, which also implies that there are 

some differences in which modules are related to parasitemia and which to symptomology.  The 

red individual in the “protected” type, in the middle of each panel, is the asymptomatic but 

infected volunteer 026.  Her module score is almost always closer to that of the sick individuals, 

being more protected-like for some modules (T-cell differentiation/Axis 1, cytoskeletal 

remodeling) but susceptible-like for others (antigen presentation, CD1 and dendritic cell 

receptors).  The bottom row of panels show three modules which are up-regulated in malarial 

volunteers and 026, involving chemokine receptors, cell division, and interferon/Axis 7 

signaling, implicating these processes more in sickness or recovery than induction of sterile 

immunity. 
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Figure 3.6.  BTM and axes that distinguish Duffy Fy (-), protected and infected volunteers 

on diagnosis day. Each plot is an example of a modules or axis of variation, which differentiates 

volunteers who exhibit symptoms  (A, B, G, H and I) from volunteers who did not become 

infected (C, D, E, F). Green dots represent Duffy negative volunteers, red represent non-

protected RAS sick volunteers, blue represent RAS protected volunteers. The red dot in the 
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protected RAS column represents volunteer 026 who was semi-protected, while the purple dots 

are the controls, one of whom was unexpectedly protected. 

 

A particularly important observation involves the expression of the plasma cell marker CD38, 

which is strongly elevated at diagnosis day in susceptible but not protected individuals.  I 

identified 345 genes which are highly correlated with CD38, 63 negatively and 262 positively 

across the dataset, most of which are specifically elevated in the susceptible individuals.  Figure 

3.7 shows that these genes strongly tend to differentiate short-lived (SLPC) and long-lived 

plasma cells (LLPC) in human bone marrow (Halliley et al, 2015; S Garimalla, FE Lee, in 

preparation), with a clear bias toward up-regulation of genes enriched in short-lived 

CD19+CD38+ SLPC relative to CD19-CD38+ LLPC, and correspondingly down-regulation of 

the LLPC-enriched genes.  A similar result was observed with suspected circulating peripheral 

blood cells expressing the same markers, but with less pronounced biases reflecting the less 

strong differentiation of the transcriptomes of the blood plasma cell types.   
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Figure 3.7.  Apparent up-regulation of Short-Lived Plasma Cells in susceptible individuals.  

The plot shows all genes correlated with CD38 in this study at r>0.5, with genes positively 

correlated in red and negatively in blue, comparing susceptible and protected individuals at 

diagnosis (y-axis) and comparing SLPC and LLPC from the bone marrow of three human donors 

(x-axis) (Halliley et al, 2015). 

 

3.4.2 Differential Expression Associated with Duffy negative status 

Next, I asked whether there is any evidence for differential expression due simply to vaccination, 

as has repeatedly been reported for example in studies of influenza and yellow fever viruses.  

There is low power for this comparison given the small sample size after removing the Fy- 

individuals, who received non-attenuated parasite during the vaccination phase.  Contrasting Pre-

Challenge with Baseline in the RAS individuals revealed just a handful of genes at the stringent 

cut-off of p<0.0001 beyond which only one gene is expected by chance.   Consequently, there is 

little evidence for an impact of vaccination alone.  It should also be noted that the post-
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vaccination sample was taken two weeks after the last of seven exposures to radiation-attenuated 

P. vivax, so will not capture early responses to the vaccine.   

 

However, the contrast of Pre-Challenge with Baseline in the Fy- individuals did reveal 

substantial differential expression, which was qualitatively similar to the comparison of 

Diagnosis day with Baseline for these individuals (see Figure 3.5 for genes associated with Axis 

1).  This is as expected, since the challenge is essentially the same as their exposure to live 

parasite during the vaccination phase.  Effectively, the blood gene expression is reporting a 

response to the presence of hypnozooites in the liver, as irradiated sporozoites are unable to 

progress to the blood stage.  To establish this further, in Figure 3.8 I plot differential expression 

between Duffy pre-challenge and Baseline, contrasted with differential expression between 

individuals protected by RAS and Baseline. All of the genes significantly differentially 

expressed at Diagnosis day in the RAS individuals, even though not significant at Pre-challenge 

in the FY-, are trending in the same direction.  This is particularly notable for the T-cell genes 

(red), but is also true of the neutrophil genes (blue), which are generally lower in individuals 

offered natural protection by the Duffy antigen as see in Figure 3.5.   
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Figure 3.8.  Similarities between natural and vaccine-induced protection.  The scatter plot 

shows differential expression between pvRAS volunteers at the time of the diagnosis and 

baseline on the x-axis, and between Fy- volunteers pre-challenge and at baseline on the y-axis. 

Red circles represent 900 genes in the Axis 1, blue circles represent 1028 genes in the axis 5, and 

gray circles all remaining genes, with density distributions shown below and to the left. 

 

Despite this similarity between the protected responses to live parasite, there are some very clear 

differences between the Duffy negative and positive samples overall.  In order to ask whether 

there are differences among the sample types before challenge, we performed ANOVAs 

separately for each of the three response types, excluding the Controls.  This analysis revealed no 

significant excess of differential expression between protected and susceptible individuals either 

at Baseline or Pre-challenge, but that Duffy individuals are somewhat differentiated even when I 
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combined Baseline and Pre-challenge to increase the power for the comparison of pvRAS and 

Fy- samples.  This analysis showed that 273 genes are significantly up-regulated at FDR 5%, and 

584 genes are down-regulated, confirming that Duffy status has a marked impact on the overall 

gene expression profile of adults. 

 

The nature of this differential expression is explored further in Figure 3.9 which shows six 

examples of BTM that are differentially expressed in Duffy prior to the final malaria challenge.  

These include elevated gene expression related to subsets of chemokine signaling, B cell 

development, and integrin-mediated cell signaling, and down-regulation of neutrophil signaling, 

extracellular matrix and complement activation (suggesting reduced general inflammation at 

baseline).  
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Figure 3.9. BTMs and axes that distinguish Duffy negative and positive before malaria 

challenge. Each plot represents a BTM or axis that differentiates Duffy negative volunteers from 

the other volunteers at Baseline or Pre-challenge. Green symbols represent baseline, purple pre-

challenge and orange Duffy negative volunteers at either timepoint. 

 

3.5 Discussion 

This chapter describes a transcriptional profiling approach to characterize signatures of the 

impact of PvRAS immunization on the response to P. vivax malaria challenge. My results 

indicate that multiple innate and adaptive immune mechanisms are induced by PvRAS 

immunization and that specific signatures seem to associate with parasite clearance and with 

clinical protection from malaria symptoms. Furthermore, I was able to identify specific 

transcriptional modules that differentiate Duffy negative-mediated natural protection from 

vaccine-induced protection.  

 



 71 

Comprehensive BTM analysis suggests that both the B- and T-cell arms of the adaptive 

lymphocyte response are engaged in both natural and vaccine-induced protection.  It is known 

that a B-cell response is required for regulation and elimination of infected red blood cells 

(Perez-Mazliah and Langhorne 2015) during the blood stage of infection, and correspondingly 

remarkable that 3 of 4 susceptible individuals profiled at diagnosis showed no sign of B-cell 

activation captured by Axis 3, which is heavily enriched for genes involved in B-cell functions, 

and is up-regulated in protected individuals after challenge.  However, this deficit is offset by the 

strong up-regulation of CD38+ and hundreds of co-expressed genes that my fellow student 

Swetha Garimalla has recently observed to differentiate short- and long-lived plasma cells.  I 

have not been able to identify another cell type with a similar profile, so the results strongly 

imply that the susceptible individuals are specifically engaged in immunoglobulin-based 

clearance of the parasite, while the protected individuals have effectively engaged memory B 

cells.  We speculate that the protected individuals may have also been able to direct the precursor 

plasma cells toward a long-lived fate, since the LLPC cells express high levels of estrogen-

response genes and are presumably more primed for the switch in females, possibly explaining 

the gender-bias in the effectiveness of the pvRAS vaccine.   

 

Similarly, T cell activation and T cell differentiation were also up-regulated only in protected 

individuals, supporting previous findings reported with the RTS,S malaria vaccine, where 

proliferation of T cells was associated with RTS,S-immunized volunteers (Stoute et al. 1998, 

Dunachie et al. 2006). Other studies have also report an increase in T cell immunogenicity and a 

delayed prepatent period after malaria challenge (McConkey et al. 2003, Webster et al. 2005).  A 

new algorithm for parsing the relative prevalence of immune cell types in whole blood transcript 
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profiles, CIBERSORT (Newman, et al. 2015) applied to this dataset also suggested that Treg 

cells are activated in protected individuals, whereas memory CD4+ T cells are activated in the 

susceptible ones.  These results imply that the vaccine is facilitating the generation of specific B 

and T cell responses when it is effective. There is though some heterogeneity in the level of 

lymphocyte activation since two individuals, 007 and 012, had only a mild response.  Since the 

same two individuals have specifically elevated activity of dozens of interferon response-related 

modules, it is possible that they have a delay in the timing rather than a dampening of the 

lymphocyte response. 

 

In contrast to the protected volunteers, the non-protected individuals displayed up-regulation in 

modules related to type I interferon response, chemokine, pro-inflammatory cytokines, 

complement activation, cell migration, dendritic cells, and an extensive set of mitosis related 

modules. Previous studies have shown release of proinflammatory mediators like tumor necrosis 

factor (TNF) and interferon response to be a response to a malaria infection, which potentially 

contributes to organ damage (Miller et al. 2002).  We postulate that the vaccination has 

facilitated an immediate recall of memory cells, which either rapidly clears the parasite or 

prevents it from transitioning from the hypnozoite to the merozoite stage.  Consequently, there is 

no induction of the strong interferon response or induction of proliferation of immune cells. 

 

One volunteer, 026, who displayed parasitemia but was asymptomatic, had a hybrid profile 

consisting of the strong interferon response as well as the inflammatory activation. This suggests 

that larger studies will enable us to distinguish between pathways that provide sterile protection 

mediated by PvRAS, and ones that are more relevant to malaria symptoms. Differences were 
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observed in modules related to the cell cycle, which we also observed previously in semi-

immune individuals in response to a malaria challenge (Rojas-Peña et al. 2015) and platelet 

activation which recently was identified to have protective properties against malaria infection, 

binding the infected erythrocytes and killing the parasite specifically by factor IV activity 

(Brendan et a. 2009, Love et al. 2012, McMorran et al. 2012, 2013) 

 

Surprisingly, most of the RAS individuals that were infected after the challenge were male, 

suggesting that only women were protected by the PvRAS immunization. This is particularly 

surprising since gender is only a minor contributor to variation in overall gene expression 

profiles observed in peripheral blood, and only a few dozen X-linked genes are typically highly 

divergent (Kukurba et al. 2016, Idaghdour et al. 2010). Only 11% of the variation was explained 

by gender in our dataset (Fig. 3.2), and most of this was because of the bias between responses at 

diagnosis: just 14% of the baseline and pre-challenge gene expression is between genders. Future 

studies should be directed at understanding whether and how hormonal differences influence the 

acquisition of immunity by RAS or other types of P. vivax vaccine, focusing to begin with on the 

LLPC compartments in the blood and bone marrow. 

 

This study shows that differential expression is particularly strong in protected volunteers in 

comparison to non-protected individuals at the time of malaria diagnosis, providing a general 

picture of how the different arms of the immune system are engaged during the response to 

infection after immunization. Whole blood profiling does not generally have the resolution to 

define which immune cell sub-types are most important, and preferably should be supplemented 

with cellular immune profiling as has been used to highlight the roles of regulatory T cells and 
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dendritic cells in mediating the RAS response in the context of P. falciparum. However, it is 

apparent that signatures of these processes can be seen in the RNASeq data.  Focused 

transcriptome profiling of sorted immune subsets in larger samples, combined with knowledge of 

differences between asymptomatic and complex malaria cases, should provide further insights 

that may be useful in enhancing vaccine development for malaria. 
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CHAPTER 4 

4. LONGITUDINAL GENOMICS OF COMPLICATED MALARIA: A PILOT 

PROJECT IN COLOMBIA 

 

 

4.1 Abstract 

The majority of malaria infections are uncomplicated, and with appropriate treatment can 

be readily cured. However, with the increasing frequency of resistance to chloroquine, 

particularly of Plasmodium falciparum, there are concerns that we may see a resurgence 

not just of uncomplicated, but also complicated malaria cases.  In recent years, 

transcriptomics has emerged as a helpful tool to explore and identify the mechanics of the 

roles of complex biological systems in disease, including malaria infection. To begin 

addressing the knowledge gap between cellular immunity and recovery from complicated 

malaria, I here describe the host transcriptomes of eight complicated malaria cases each 

over four or more days of recovery, and relate the gene expression changes to clinical 

features including parasitemia, disease severity, and rate of recovery. The first five 

principal components of transcriptional variation in the eight patients with complicated 

malaria captured 53% of the total variance in expression of 13,889 genes, while the effect 

of the other variables (Plasmodium species, gender, age, and day of hospitalization), 

explained 28% of the total variance, leaving 19% due to unidentified residual sources. 

Hierarchical clustering confirms this result. Patient CM02, a pregnant woman with 

symptoms of preeclampsia but no history of fever, showed the most gene expression 

differentiation over the period of her complicated malaria infection. Failure of a pregnant 
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woman to resolve infection corresponds with her variable transcriptome profile. In most 

patients, Axes 5 and 7 are clearly lower at time point 3 and generally time point 4 as well, 

with time point 1 always the highest.  In contrast, Axis 2 tends to be highest at time point 

3. These results are easily interpreted as signs of inflammation and elevated interferon 

signaling upon hospitalization, and of reticulocyte development associated with recovery 

from anemia after the peak of the complex malaria episode. Comparison of the Blood 

Transcript Modules (BTMs) at the day of diagnosis for samples from the irradiated 

sporozoite vaccine study in Chapter 3 with the day of hospitalization samples of this 

complicated malaria pilot project, indicates overall similarity of individuals based on 

infection versus sterile immunity. While I observe some commonalities in the responses 

across patients, there is wide individual variability and it is concluded that more detailed 

analyses of individual cell types linked to cellular and humoral data will be required to 

resolve the nature of personalized mechanisms of recovery. 

 

4.2 Introduction 

The majority of malaria infections are uncomplicated, and with appropriate treatment can 

be cured rapidly and reliably (Patel et al. 2003). However, with the increasing frequency 

of resistance to chloroquine, particularly of Plasmodium falciparum, there are concerns 

that we may see a resurgence not just of uncomplicated, but also complicated malaria 

cases (Oladipo et al. 2015; WHO 2015). These are the approximately one percent of 

infections where the patient shows extreme symptoms that generally require 

hospitalization for several days and can be lethal if untreated. 
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Complicated malaria is initiated in the erythrocytic stage, at which time it can manifest as 

a vascular obstruction due to sequestration of infected red blood cells.  Subsequent 

inflammatory processes due to the presence of Plasmoduim parasites can cause cellular 

dysfunction, damage and death in different organs (Vasquez and Tobon 2012, Bassat and 

Alonso 2011). Complicated malaria during pregnancy can amplify morbidity in these 

patients, causing symptoms such as vaginal bleeding, abdominal pain, loss of perception 

of fetal movements, signs of preeclampsia and risk of early delivery (Tobon 2009), and it 

can also lead to death of the mother. Other consequences of complicated malaria include 

cerebral malaria, acute renal failure, hypoglycemia, respiratory distress syndrome, 

disseminated intravascular coagulation, hypotension and shock among others (Patel et al. 

2003).  

 

The incidence of complicated malaria is influenced by multiple factors, including the 

nature of the parasite (the species, multiplicity of infection, genetic variation, and 

parasitemia), host attributes (gender, age, nutrition level, level of immunity, and history 

of morbidity), as well as environmental (geography, weather) and socioeconomic 

conditions (access to healthcare and viable public health prevention strategies) 

(Chaparro-Narváez et al. 2016; Byakika-Kibwika, et al. 2009). Although complicated 

malaria can occur at any age, in some African regions complicated malaria is reported 

predominately in infants, while in other regions it affects both children and adults 

(Byakika-Kibwika, et al. 2009). In populations with high levels of malaria exposure 

(Bunn et al. 2004; Doolan et al. 2009) where complicated malaria is more prevalent, 

immunity developed through recurring exposure has been shown to control clinical 
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manifestations and limit the severity of infection. However, it is not known why some 

patients present complications, while others do not, or what physiological mechanisms 

are responsible for the diverse symptoms. 

 

A limited understanding of human host biology, specifically the dynamics involved in 

pathogenesis and recovery, has delayed the development of prophylaxis, including 

vaccines. Most studies of complicated malaria have been performed in countries with 

high endemicity, notably in the African Sub-Continent. There has been very little 

published concerning complicated malaria in Latin America, a region with 21 countries at 

risk of P. vivax and P. falciparum infection (Guerra et al., 2008; Guerra et al., 2010). 

Approximately 90% of the population of Colombia live in areas prone to malaria 

transmission, and the country presents 14.2% of the malaria cases in Latin America, with 

half related to P. vivax and half to P. falciparum (WHO 2015). Immune surveillance has 

shown that individuals infected with malaria release inflammatory intermediaries, like 

tumor necrosis factor (TNF) and interferon gamma (IFN-γ), which can damage organs 

such as the brain, kidneys and lungs (Miller et al. 2002). One study has associated 

incidence of complicated cases with a specific sequence of the P. falciparum genome 

(Kirchgatter and Portillo 2002), and my collaborators have demonstrated elevated 

presence of multiple haplotypes of P. vivax, indicating multiple infections, in patients 

from Colombia (Pacheco et al. 2016).  

 

In recent years, transcriptomics has emerged as a helpful tool to explore and identify the 

mechanics of the roles of complex biological systems in disease, including malaria 
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infection. For example, we have shown that naïve individuals exposed to P. vivax 

respond with divergent expression of genes with multiple roles in immunity, relative to 

semi-immune individuals (Rojas-Peña et al, 2015).  Systems biology analyses seek to 

integrate profiles of gene expression with alterations in immune cell populations and 

function, as well as with cytokine profiles, metabolomic data, and antigen production (Li 

et al. 2014, 2016). To begin to address the knowledge gap between cellular immunity and 

recovery from complicated malaria, I here describe the host transcriptomes of eight 

complicated malaria cases each over four or more days of recovery, and relate the gene 

expression changes to clinical features including parasitemia, disease severity, and rate of 

recovery.   

 

4.3 Materials and Methods 

 

4.3.1 Study area:  

Colombia is one of 21 countries in Latin America with high endemicity of malaria. The 

rate of incidence of malaria in Colombia fluctuates seasonally, with a tendency to 

increase during the wet seasons, and annual averages of between 80,000 and 120,000 

cases have been reported by the Public Health Surveillance System (SIVIGILA). In 

Colombia, P. vivax is the predominant species, being responsible for 60% of cases. 

However, this pilot study was completed on some of the notably endemic areas of the 

Pacific coast of Colombia, in the states of Choco, Valle del Cauca and Nariño, where the 

primary malaria species is P. falciparum (Fig. 4.1) (Rodriguez et al. 2011; Chaparro-

Narváez et al. 2016).  
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Figure 4.1. Complicated malaria cases distribution in Colombia between 2007 and 2013 

(Chaparro-Narváez et al. 2016) (Left). Distribution of malaria cases per city and parasite 

2013, Source: modify from SIVIGILA (2014) (Right).   

 

4.3.2 Study design 

This study, conducted over the course of 2015, was designed as a pilot project to assess 

the potential utility of longitudinal transcriptome profiling to resolve mechanisms of 

resolution of complicated malaria. A total of six P. falciparum and two P. vivax positive 

individuals were included. Individuals were enrolled in the study regardless of age, sex or 

ethnicity. Complicated malaria was defined based in the 2010 Colombian Ministry of 

Health (MoH) adaptation of the WHO guidelines (2000) to the Colombian population 

(MinSalud 2010) (Table 4.1). 
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Table 4.1. Complicated malaria classification guidelines: Ajusted from Chaparro-

Narváez et al. (2016) 

Criteria Defined before 2010 (WHO 2000) 
Defined after 2010 

(MinSalud 2010) 

Cerebral malaria 

Impaired consciousness or coma 

(Blantyre score < 3 or Glasgow 

score < 9); unconsciousness with 

the possibility of waking up 

Unchanged 

Renal dysfunction 

Serum creatinine > 3.0 mg/dL 

and/or urine vol < 400 mL in 24 h 

(adults) or <12 mL/kg of body 

weight in 24 h (children) 

Serum creatinine > 1.5 

mg/dL 

Hepatic 

dysfunction 

Serum bilirubin > 3 mg/dL and 

altered liver function tests 

Serum bilirubin > 1.5 mg/dL 

or aminotransferases > 40 

U/L 

Respiratory 

distress 

Increased respiratory rate at 

admission, presence of abnormal 

lung sounds or pulmonary oedema 

(X-rays) 

Unchanged 

Circulatory 

collapse or shock 

Systolic blood pressure (SBP) < 70 

mm Hg in adults or <50 mm Hg in 

children (3–5 years) 

SBP < 80 mm Hg in adults 

Hyperemesis >5 episodes in 24 h Not applicable 

Hyperpyrexia Axillary temperature >39.5 °C Not applicable 

Hypoglycaemia Blood glucose level < 40 mg/dL. 
Blood glucose level < 60 

mg/dL 

Severe anaemia 
Haemoglobin < 5 g/dL or 

haematocrit < 15 % 
Haemoglobin < 7 g/dL 

Disseminated 

intravascular 

coagulation (DIC) 

Abnormal bleeding in the presence 

of laboratory evidence of DIC 
Unchanged 

Acidaemia/acidosi

s and 

hyperlactemia 

Acidaemia/acidosis (clinical signs) 

Plasmatic bicarbonate < 15 

mmol/L or base excess > 

−10; acidaemia pH <7.35; 

lactate acid > 5 mmol/L 

Haemoglobinuria Macroscopic haemoglobinuria 

Macroscopic 

haemoglobinuria and 

positive urine dipstick 

Hyperparasitaemia 

>100,000 asexual parasites/μL of P. 

falciparum or in mixed infection 

with P. vivax and schizontaemia 

>50,000 asexual parasites/μL 
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Patients were enrolled into the project after full informed consent. The experimental 

design protocol was approved by the Institutional Review Boards (IRB) at the Malaria 

Vaccine and Drug Development Center (CECIV, Comité de Ética Centro International de 

Vacunas, Cali), and Centro Médico Imbanaco (CMI; Comité de Ética en Investigacion, 

Cali), with subsequent approval for genomic analysis from the Georgia Institute of 

Technology IRB. The course of disease in patients with complicated malaria was 

monitored daily at a level 3 hospital until discharge, and clinical complications 

attributable to malaria infection were recorded.  

 

4.3.3 Blood sample collection and RNA extraction 

RNASeq analysis was performed for eight individuals at four time points (days), namely 

the first day of hospitalization, two further days of hospitalization generally at daily 

intervals, and at recovery (day of discharge). For sample CM02, two sets of samples (12 

total) were collected due to a longer period of acute infection including a second malaria 

event. Approximately 1 mL of blood was taken for each sample, and was collected into a 

Tempus tube, which preserves whole blood RNA at 4°C indefinitely. Whole blood 

mRNA was extracted using Tempus Blood RNA Tube isolation kits and following the 

protocol provided by the manufacturer, Applied Biosystems/ThermoFisher Scientific. 

Sample quality was determined based on the Agilent Bioanalyzer 2100 RNA Integrity 

score (RIN).  
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4.3.4 Library construction and RNA sequencing 

Library preparation for RNASeq was performed using the Illumina TruSeq Stranded 

mRNA Sample Low Throughput (LT) preparation protocol. Short read sequencing was 

performed in rapid run mode with ten samples per lane on an Illumina HiSeq 2100 at 

Georgia Tech, generating 100 bp single-end libraries with an average of ~30 million 

single reads per sample. 

 

Quality control of the raw RNASeq reads (Fastq files) was analyzed using FastQC 

software, confirming for each sample the number of reads, GC content percent, median 

sequence length and median Phred score. The 100 bp single-end reads were then aligned 

to the human genome hg19/GRCh37 assembly using Bowtie as the short read aligner via 

Tophat2 (Trapnell et al. 2012).  The human UCSC reference annotation was used to align 

and quantify transcript abundance, which was estimated as counts per million (cpm) 

using the tool htseq-count of the Python package HTSeq (Anders et al. 2015) 13,889 

genes that had a cpm of 1 or more in at least 3 of the samples where used for subsequent 

analysis.  

 

4.3.5 Data analysis  

To simplify interpretation and to guarantee that the data were more normally distributed, 

cpm values were scaled by Trimmed Mean of the M-values (TMM) normalization and 

then log 2 transformed using code in edgeR (Robinson et al. 2010). All downstream 

analyses were performed on this TMM normalized data at the level of genes after 

collapsing of exon level estimates into a single value per gene.  No effort was made to 
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evaluate transcript isoform abundance or alternative splicing. Principal component 

variance analysis (PCVA) was performed with the Basic Gene Expression routine in JMP 

Genomics version 8 (SAS Institute, NC), which was also used to perform hierarchical 

clustering using Ward's method to identify sub-types of expression profiles.  

 

To identify enriched gene sets, functional annotation was performed using the ToppGene 

Suite (Chen et al. 2009), which uses a hypergeometric comparison of the proportion of 

genes differentially expressed in each class relative to their representation in the human 

genome. Enrichment was evaluated on various lists of genes down or up-regulated for 

sub-type comparisons (for example, Pregnant woman CM02 vs remaining 7 samples). 

Enrichment was evaluated in the gene annotation categories: molecular function, 

biological process, mouse phenotype, human phenotype, cellular component, pathway 

and disease-gene associations. 

 

Blood informative transcript (BIT) analysis (Preininger et al, 2013) was used to define 

which of 8 major axes of variation are perturbed in each individual.  Each axis is defined 

by the first principal component of 10 consistently highly co-expressed genes in blood 

gene expression datasets.  Seven of the Axes were described in Preininger et al (2013), 

while the eighth one reported here (Axis 10) has not previously been described (Axes 8 

and 9 reported in the initial study are too weak to resolve in this relatively small dataset).  

Gene set enrichment analysis of the Axes implies that they represent gene expression 

involved in particular immune functions, broadly speaking: T cell signaling (Axis 1), 

reticulocyte number (Axis 2), B cell signaling (Axis 3), inflammation/neutrophil number 
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(Axis 5), Interferon signaling (Axis 7), and regulation of the cell cycle/mitosis (Axis 10). 

Axis 4 involves generic housekeeping functions, while Axis 6 remains uncharacterized.  

Modulation of axis scores provides a high level overview of recovery of immune 

function, and is visualized for each individual on radar plots with 8 arms radiating from 

minimum to maximum scores, with polygons linking profiles from the day of 

hospitalization until the day of discharge. 

 

Blood Transcript Modules (BTM) provide an alternate mode of tracking modulation of 

immune functions.  Li et al (2014, 2016) reconstructed gene networks from over 30,000 

transcriptomes downloaded from approximately 500 studies, and identified 334 gene 

modules via reverse engineering. The Blood Transcription Modules (BTM) are thought to 

summarize distinct transcriptional indications of molecular functions such as antibody 

responses to vaccination and cytokine production. As with the BIT, BTM are defined as 

the first PC of the genes in the module. We contrasted BTM across the eight individuals 

using hierarchical clustering with Ward's method in JMP Genomics version 8 (SAS 

Institute, NC), and also compared the complicated malaria samples on day one 

(hospitalization day) with the day of the diagnosis of a set of samples from individuals 

vaccinated with irradiated sporozoites and challenged with P. vivax . 

 

4.4 Results 

A total of eight patients were recruited for this pilot project, two infected with P. vivax 

and six with P. falciparum. The patients exhibited respiratory distress, severe 

thrombocytopenia and oral intolerance among other symptoms associated with 
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complicated malaria. Over the course of hospitalization, blood samples were taken from 

the patients daily to quantify parasitemia via PCR and thick blood smear. The parasitemia 

data showed that after prophylactic treatment, all patients were able to clear the parasite 

and were discharged after approximately one week, with the exception of patient CM02, 

a pregnant woman who continued to show levels of parasitemia in her blood after day 3 

(Table 4.2).  She remained hospitalized and relapsed into complicated malaria 15 days 

later, and a second series of samples were collected for gene expression profiling from 

her. 

All of the RNA samples passed quality control filters (RIN > 6), few samples had RIN 

lower than 6, but these were not found to be outliers in the analysis. After normalization 

and filtering of raw RNASeq data, as described in the Methods, trimmed mean (TMM) 

log2 values for 13,889 genes were used for downstream analysis. 

Figure 4.2. Variance component 

analysis of gene expression profiles. 

Bars show the weighted average of 

the variance captured by the first five 

principal components of the overall 

gene expression profiles that is 

explained by individual, Plasmodium 

species, gender, age or day of the 

sampling. The largest proportion of 

the variance is among the eight 

individuals. 
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4.4.1 Individual variation dominates gene expression in complicated malaria cases 

The first five principal components of transcriptional variation in the eight patients with 

complicated malaria captured 53% of the total variance in expression of the 13,889 genes 

(Fig. 4.2), while the effect of the other variables (Plasmodium species, gender, age and 

day of hospitalization), explained 28% of the total variance, leaving 19% due to 

unidentified residual sources. This result implies that baseline differences in host 

peripheral blood transcriptomes, which we have shown known to be very consistent over 

a period of 12 months in healthy individuals (Tabassum et al, 2015), plays the dominant 

role in defining the gene expression profiles even of patients who are experiencing a 

malaria infection.  Notably, day of hospitalization had the smallest detectable influence, 

but this may in part be because patients’ profiles recover at different rates and the peak of 

disease relative to initial hospitalization was likely variable. 

 

Hierarchical clustering (Figure 4.3) confirms this result, since the four samples for each 

patient typical cluster side-by-side, or at least in the same branch for patients with similar 

overall profiles.   A notable exception was the clustering of the samples CM44 (D2) with 

CM41 (D1) and CM05 (D4), whereas samples CM09 (D3 and D4) clustered with sample 

CM44, as well as with the third sample of CM52.  
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Figure 4.3. Two-way hierarchical clustering of complicated malaria samples. The 

heat map represents the overall profiles of eight patients with complicated malaria for 

13,889 genes, standardized to z-scores across samples for each gene, such that blue 

indicates low transcript abundance and red high abundance. The heat map shows 5 

clusters, cluster IV differentiates the pregnant patient, CM02, which clusters with sample 

CM04. 

 



 89 

Table 4.2. Characteristics of study patients with complicated malaria P. vivax and P. 

falciparum. 

              

  

Code City Gender Age Spp Parasite

mia 

Clinical 

Criteria 

Laboratory 

criteria 

Hospital 

Stay 

(Days) 

CM04 

 

 

Barbacoas-

Nariño 

M 22 Pf 20800 Oral 

Intolerance 

Renal and liver 

failure 

4 

CM05 Quibdó  - 

Chocó 

F 38 Pf 11640 Respiratory 

distress 

Severe 

thrombocytopenia 

4 

CM02 Quibdó  - 

Chocó 

F 28 Pf 5200 Respiratory 

distress 

(25 weeks 

pregnancy) 

Severe Anemia 

Hb: 6,3 

11 

4300 18 

CM52 

 

 

Alto Baudó-

Chocó 

M 3 Pv 5700 Respiratory 

distress 

none 4 

CM41 San José de 

Tadó-Chocó 

F 49 Pf 142030 Oral 

intolerance 

jaundice 

Severe 

Thrombocytopenia

: 14000  

hiper 

4 

CM44 Quibdó  - 

Chocó 

F 25 Pv 5742 Oral 

Intolerance 

macroscopi

c 

hemoglobi

nuria 

Jaundice, Renal 

Injury, Severe 

Thrombocitopenya 

5 

CM14 Tumaco - 

Nariño 

M 37 Pf 19609 Oral 

Intolerance 

complication 

hepatica,  Severe 

thrombocytopenia 

:29.000, 

hemoglobinuria. 

5 

CM09 Guacarí- 

Valle del 

Cauca 

M 69 Pf 25119 Respiratory 

Distress 

Severe 

Thrombocitopenia 

15000, 

hyperparasitemia 

25119 

5 
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4.4.2 BIT expression reveals little change in gene expression for each patient at the 

four time points. 

Despite the clustering of individual samples, I asked whether there are consistent changes 

in the gene expression profiles within individuals, by following the profiles of key 

signature genes from hospitalization to discharge. To do so, I computed Blood 

Informative Transcript (BIT) scores for ten major axes of blood gene expression, and 

drew radar plots, one for each individual infection (Fig. 4.4) for each individual. In each 

plot, the darkest line represents the earliest time point, and the lightest line the last time 

point, which should be close to the individual’s healthy baseline. Each line links the eight 

summary axis scores for gene expression for each day, and each radar represents an 

individual patient.  As explained in the methods, the Axes 1-7 can be regarded as 

measures of, respectively, T-cell, reticulocyte, B-cell, general cellular function, 

inflammation, an unknown immune function, and interferon response.  Axis 10 is 

enriched for genes involved in cell cycle and mitosis. 

 

Again consistent with Figure 4.3, the daily profiles are to a large extent superimposable 

and tend to have a patient-specific shape, indicating that they do not change dramatically 

from the day of recruitment until discharge.  This is particularly notable for patients 

CM04 (Fig. 4.4A) and CM44 (Fig. 4.4B).  Upon closer examination, however, there are 

some consistent trends.  In each of patients CM05, CM09, CM14, CM41 and CM52 (Figs 

4.4C-4.4G), Axes 5 and 7 are clearly lower at time point 3 and generally time point 4 as 

well, with time point one always the highest.  In contrast, Axis 2 tends to be highest at 

time point 3.  These results are easily interpreted as signs of inflammation and elevated 
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interferon signaling upon hospitalization, and of reticulocyte development associated 

with recovery from anemia after the peak of the complex malaria episode.  

 

4.4.3 Failure of a pregnant woman to resolve infection corresponds with her 

variable transcriptome profile. 

Sample CM02 (Fig. 4.4 H-I) does not show the same pattern, which may be related to her 

failure to resolve the complex malaria.  Patient CM02 is a 28 year old Afro-Colombian 

pregnant woman from Quibdó-Chocó who was infected with P. falciparum malaria, and 

recruited on March 9, 2015. Her profiles cluster closest to those of CM04, a man infected 

also by P. falciparum, and are quite different from those of the other patients.  They also 

showed more variability in the risk radars. The patient had 3 weeks of dyspnea (labored 

breathing), cough and lower extremity edema, with no history of fever. She is of normal 

weight, but showed severe hypertensive disorder possibly related to four previous 

pregnancies, with cardiopulmonary and hematologic compromise, and had experienced 

one other malaria episode in the preceding six months. After initial treatment, the patient 

had cleared the parasite successfully, but tested positive for P. falciparum malaria two 

weeks later with 4,300 parasites per ml of blood. Since this is considered a therapeutic 

failure, she further received a prophylactic treatment with Quinine plus Clindamycin 

(April 2 – April 10), which resolved the infection as assessed by thick blood smear and 

PCR (Table 4.3). She gave birth by induced delivery on May 2nd at 34 weeks and was 

discharged two days later. 
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Figure 4.4. Complicated malaria transcriptional vectors. Each patient infection is 

represented as one radar plot, with CM02 having two successive infections shown in H, I.  

The lines on the radar plots join the Axis score (PC1 for 8 BIT across all samples in the 8 

individuals) for consecutive time points, where earlier time points have darker colored 

lines. 
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Patient CM02’s Axis 2 actually drops after several days in hospital, while her Axis 7 

fluctuates, peaking at day 8, and her Axis 5 remains high throughout.  She also has an 

increase in T-cell activity (Axis 1) at days 3 and 4, but this drops precipitously thereafter 

until the first malaria episode is resolved.  Her fluctuating gene expression profiles 

continue in the second malaria episode, which is characterized by a consistently high 

interferon response (Axis 7), a bout of high mitotic activity (Axis 10, see below), and a 

precipitous decline in B-cell signaling (Axis 3) a few days into her relapse.  It is not clear 

whether her profile at discharge represents her baseline state of gene expression, either, 

as it is actually unlike most of her other profiles.  All of this indicates a deeply disturbed 

peripheral blood profile over a period of a month in this individual. 
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Table 4.3. Pregnant women CM02 parasite history and RNAseq sampling. 

Day Date TBS PCR RNAseq 

1 3/8/2015 Blood smear with 

parasites 

- YES 

2 3/9/2015 5200 - YES 

3 3/10/2015 - - YES 

4 3/11/2015 Negative - YES 

5 3/12/2015 Negative - - 

6 3/13/2015 Negative - - 

7 3/14/2015 Negative - - 

8 3/15/2015 Negative - YES 

9 3/16/2015 Negative - - 

10 3/17/2015 Negative - YES 

 New Positive of malaria Infection 

1 3/31/2015 4300 - YES 

2 4/1/2015 10106 - YES 

3 4/2/2015 - 2100 YES 

5 4/3/2015 680 300 YES 

6 4/4/2015 600 4000 - 

7 4/5/2015 400 2000 - 

8 4/6/2015 120 - - 

9 4/7/2015 Negative - - 

10 4/8/2015 Negative - - 

11 4/9/2015 Negative - YES 

12 4/10/2015 Negative 30 - 

13 4/11/2015 Negative - - 

14 4/12/2015 Negative - - 

15 4/13/2015 Negative - - 

16 4/14/2015 Negative - - 

17 4/15/2015 Negative - - 

18 4/16/2015 Negative Negative YES 

 

4.4.4 Transcriptional changes associated with parasitemia 

In order to assess whether the transcriptional changes associated with complication in 

malaria infection are related to those observed during standard malaria, I compared the 

first day of hospitalization complicated malaria samples with samples from the diagnosis 

day from the irradiated sporozoite project described in Chapter 3 (namely, vaccinated 
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individuals challenged with P. vivax).  Degree of parasitemia captured one third of the 

variance for the first five principal components of transcriptional variation (Figure 4.5A), 

consistent with the findings of Idaghdour et al (2012) that parasite load is the major factor 

influencing transcript profiles in malarial infants in Benin, West Africa. Hierarchical 

clustering of the 250 Blood Transcript Module scores (BTMs; Li et al, 2015) confirms 

that much of this separation is between patients who were infected with the malaria 

parasite and individuals that were not infected (Fig. 4.5B).  That is to say, the 

complicated malaria samples cluster with the volunteers who failed to mount an immune 

response and thus experienced parasitemia and showed mild malaria symptoms.   

 

This analysis also confirms that the 7 Axes reported by Preininger et al (2013) cluster 

with BTM that have functions in the related components of immune function, and that 

Axis 10, which we only recently identified, is related to mitosis.  Among the responses 

that differentiate infected and resistant (whether as a result of vaccination or natural 

Duffy negative protection) individuals are the interferon response, cell cycle/mitosis, and 

general metabolic processes, all of which are up-regulated in individuals with the 

infection, and B-cell and inflammation responses which are uniformly down-regulated in 

malarial subjects. 
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Figure 4.5.  Gene profiling comparison between day one (hospitalization) of the 

complicated malaria study, and the diagnosis samples from irradiated sporozoite project 

described in Chapter 3. (A) Variance component analysis of gene expression profiles, 

showing the weighted average of the variance captured by the first five principal 

components. (B) Two-way hierarchical clustering of the 250 BTM and 8 Axis PC1 scores 

across all of the samples. The heat map represents the overall similarity whereby the 

profiles of the eight patients with complicated malaria (CM) cluster with the not 

protected (NP) vaccination study samples. Blue indicates low axis scores, and red high 

axis scores.   

Interferon B-cell Inflammation Cell cycle Cell metab 
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4.5 Discussion 

In order to obtain a better understanding of the molecular events in patients who 

experience complicated malaria, a pilot study using RNASeq to longitudinally profile 

peripheral blood gene expression during recovery after initial hospitalization was 

conducted. Each of the eight patients clustered primarily as a group, indicating that any 

changes in gene expression over the time course of recovery are modest relative to 

baseline differences. We did not include control samples from several days after the 

patients were discharged from the hospital. Colborn et al. (2015) reported modulation of 

gene expression 7-10 days after recovery from a malaria infection, slightly longer than 

the period of recovery here, consistent with an earlier report suggesting that activation of 

a transcriptional response can continue after clearance of the infection (Schaecher et al. 

2005). 

 

Patient CM02, a pregnant woman with symptoms of preeclampsia but no history of fever, 

showed the most gene expression differentiation during the complicated malaria 

infection. Her delayed malaria diagnosis may have affected the observed responses, since 

progression of the infection before receiving treatment could be related to her inverted 

interferon and reticulocyte profiles relative to the other patients.  However, her relapse 

infection was also unusual and it is further possible that the advanced pregnancy 

modulated her immune profile.  Given the potential adverse impacts of malaria during 

pregnancy for both mother and child, further studies of more cases are warranted to 

document whether her situation is typical of pregnancy, or unique to her.  It is probable 
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that such incidences of adverse trajectories of malaria resolution increase in communities 

with no access to appropriate medical services (Tobon et al 2006).  

 

Comparison of the BTMs at the day of diagnosis for samples from the irradiated 

sporozoite project with the day one samples of the complicated malaria project, indicates 

overall similarity of individuals based on infection versus sterile immunity.  A similar 

comparison with the discharge samples (typically day 4) failed to show clean separation 

of the complicated malaria patients with the malarial samples, indicating that the 

individuals had at least partially returned to normal.  Concordant with previous analysis 

(Vasques and Tobon 2012), the interferon response was found up-regulated in individuals 

with malaria infection. 

 

Two limitations of this study are (i) that we did not have healthy baseline samples, either 

before or after infection, against which the hospital profiles can be compared, and (ii) the 

sample size is too small to evaluate whether there is any association of particular modules 

of gene expression with specific symptoms.  There does appear to be some variability 

among patients in terms of how much differential expression is observed across the 4-day 

resolution of complications.  The BTM analysis indicates that hundreds of processes are 

disrupted, but also shows that these are embedded within the major axes of variation that 

dominate peripheral blood gene expression profiles (Preininger et al, 2013).  This 

suggests that continuation of the project would be more informative if sampling could be 

specifically targeted to specific immune cell types, such as T-cells, B-cells, or 

neutrophils, each of which display patient-specific responses.  Cell-type specific analysis 
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would be expected to overcome the contribution of variable abundance of the 

contributing cell types to the overall profiles obtained from RNA preserved from whole 

blood in Tempus tubes. 

 

Our results provide the first evidence of host gene expression modulation in complicated 

malaria infections. There is some evidence gene expression differs subtly among samples 

infected with the two different species of Plasmodium, but there are also clearly 

commonalities to the profiles.  Banchereau et al (2016) recently showed how longitudinal 

whole blood transcriptome profiling of 158 pediatric systemic lupus erythematosus 

patients can be used to classify eight subsets that they suggest might have different 

treatment responses.  Lupus and malaria share many features of aberrant gene expression 

as well as prophylaxis, so my results can be seen as an initial exploration of the potential 

value of RNASeq for personalized medicine.  Larger sample sizes will also be needed to 

support the bioinformatics that needs to be done before genomic profiling can be 

considered for integration as a component of personalized clinical diagnostics. 
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CHAPTER 5 

5. CONCLUSIONS 

 

 

In this thesis I have presented analyses of whole blood gene expression profiling in three 

different malaria settings with different outcomes of infection. The results provide useful 

information on the course of the immune response and pathological processes associated 

with infection with Plasmodium vivax in particular. 

 

In Chapter II my experiments revealed that differential gene expression is particularly 

enhanced in naïve volunteers in comparison to semi-immune individuals at the time of 

malaria diagnosis. In the presence of chronic exposure, the host immune system moves 

toward an equilibrium where pathogen is tolerated by mounting a measured immune 

response, without requiring complete sterile immunity that would likely have a greater 

physiological impact on the infected individuals. This in turn implies that gene 

expression profiling of lymphocytes can be used to identify the type and duration of the 

immune signals that may be biomarkers for vaccine immunogenicity, and to establish 

how semi-immune exposure modifies their activation. 

 

It would be interesting to evaluate purified CD4+T helper and Treg lymphocytes of semi-

immune individuals and contrast them against naïve individuals.  These cell types appear 

to mediate the quantitative modulation of memory responses, and are likely to be central 

to the clinical protection against malaria infection. 



 101 

 

In chapter III I showed that differential expression is particularly prevalent in non-

protected volunteers in comparison to protected individuals at the time of malaria 

diagnosis, providing a general picture of how the different arms of the immune system 

are engaged during the response to infection after immunization. Even though whole 

blood profiling does not generally have the resolution to define precisely which immune 

cell subtypes are most important, it provides an integrated picture of the combined 

immune response leading to protective immunity.  Given sufficient funds and technical 

resources, it should preferably be supplemented with cellular immune profiling. 

Interestingly, my results implicate roles for regulatory T cells and dendritic cells in 

mediating the P. vivax irradiated sporozoite response, as has been observed by flow 

cytometry in the context of P. falciparum. Also noteworthy is the evidence for strongly 

enhanced short lived plasma cell gene expression in the susceptible individuals, since 

such a specific cell type would not normally be examined by flow cytometry. It will be 

interesting to learn whether these cells differentiate in the blood or are recruited from the 

bone marrow. Focused transcriptome profiling of sorted immune subsets in larger 

samples, combined with knowledge of differences between asymptomatic and complex 

malaria cases, should provide further insights that may be useful in enhancing vaccine 

development for malaria. 

 

Blood Transcription Modules (BTM) emerged as a useful tool in blood analysis for 

evaluating host immune status and provided new insights into the immune repertoires 
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associated with malaria immunization. Combining multiple omics is critical to small “N”, 

human studies. Their integration can be driven by data mining or by knowledge models. 

Therefore describing in detail gene expression during the activation of the immune 

system against a malaria infection contributes greatly to the overall objective of 

developing a better malaria vaccine, since we can monitor the immune response in the 

blood rapidly and cost-effectively. 

 

Finally, in chapter IV, my results provide the first evidence of host gene expression 

modulation in complicated malaria infections. There is some evidence that gene 

expression differs subtly among samples infected with the two different species of 

Plasmodium, but there are also clear commonalities to the profiles. These results 

demonstrate the potential value of RNASeq for studying the response of the host 

transcriptome of a malaria infection using leucocytes as markers of the severity and 

prognostics in malaria infections, reflecting various types of immune activity. All this can 

have implications for evaluation of new vaccines or treatments. These results can also 

lead to the identification of gene expression patterns that distinguish between mild and 

complicated malaria, which may be of use in the care provided following admission of 

complicated malaria patients to hospital. 

 

To be able to continue the complicated malaria project I recommend (i) to also obtain 

healthy samples after a long period of the clearance of the infection, as these can be 

regarded as a patient’s baseline against which we can compare the aberrant hospital 

profiles and better identify specific patient-specific perturbations. This might offer insight 
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into the molecular source of the infection response that can be used to guide personalized 

health decisions, for example the means to suppress inflammation or promote the 

interferon response.  It will also be essential (ii) to increase the sample size to be able to 

evaluate whether there is any association of particular modules of gene expression with 

specific symptoms, and also to differentiate responses to different species of 

Plasmodium, and different drug treatments. 

 

From this dissertation I conclude that gene expression profiling is an extremely valuable 

tool with which to investigate the molecular features of the host's response to malaria 

immunization, malaria infection and clearance. It can offer insights to transcriptional 

mechanisms that impact both the pathogenesis of the infection and how individual people 

recover from infection. As a Colombian citizen, I am particularly hopeful that the new 

insights into the effectiveness of the irradiate sporozoite vaccine, particularly in women, 

might be used to help design adjuvants that may lead to further enhancements. 
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APPENDIX A 

BTM THAT DIFERENTIATE PARASITE AND CLINICAL 

PROTECTION 

  

BTMs -Absence of parasite (Protection) p-value 

TBA M141 1.12E-04 

complement activation I M112 0 2.96E-04 

antigen presentation lipids and proteins M28 3.70E-04 

activated dendritic cells M67 3.76E-04 

proinflammatory dendritic cell. myeloid cell response M86 1 4.99E-04 

RIG1 like receptor signaling M68 5.46E-04 

viral sensing . immunity IRF2 targets network II M111 1 6.54E-04 

viral sensing . immunity IRF2 targets network I M111 0 8.01E-04 

chemokines and inflammatory molecules in myeloid cells M86 0 8.20E-04 

TBA M121 1.00E-03 

cell division M37 3 1.04E-03 

enriched in activated dendritic cells I M119 1.20E-03 

enriched in activated dendritic cells II M165 1.22E-03 

putative targets of PAX3 M89 1 1.23E-03 

type I interferon response M127 1.30E-03 

antiviral IFN signature M75 1.38E-03 

mismatch repair II M22 1 1.46E-03 

mismatch repair I M22 0 1.51E-03 

Axis 7 2.01E-03 

proinflammatory cytokines and chemokines M29 2.01E-03 

putative targets of PAX3 M89 0 2.18E-03 

DNA repair M76 2.21E-03 

cytoskeleton actin SRF transcription targets M145 0 2.38E-03 

complement and other receptors in DCs M40 2.51E-03 

innate antiviral response M150 2.52E-03 

regulation of antigen presentation and immune response M5 0 3.55E-03 

receptors. cell migration M109 3.56E-03 

E2F1 targets Q4 M10 1 3.90E-03 

cell cycle and transcription M4 0 5.42E-03 

cell activation IL15 IL23 TNF M24 5.85E-03 
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Appendix A (Continued) 

CD1 and other DC receptors M50 6.00E-03 

mitotic cell cycle in stimulated CD4 T cells M4 9 6.23E-03 

E2F1 targets Q3 M10 0 6.30E-03 

cell division in stimulated CD4 T cells M4 6 7.55E-03 

double positive thymocytes M126 7.89E-03 

cytokines recepters cluster M115 8.97E-03 

cell cycle III M103 1.15E-02 

cell cycle II M4 10 1.17E-02 

PLK1 signaling events M4 2 1.23E-02 

mitotic cell cycle . DNA replication M4 4 1.34E-02 

cell cycle I M4 1 1.36E-02 

cell division stimulated CD4. T cells M46 1.45E-02 

mitotic cell cycle in stimulated CD4 T cells M4 5 1.55E-02 

chemokine cluster I M27 0 1.77E-02 

mitotic cell division M6 2.08E-02 

mitotic cell cycle M4 7 2.38E-02 

Axis D 3.42E-02 

cell division E2F transcription network M4 8 3.52E-02 

C.MYC transcriptional network M4 12 4.21E-02 

mitotic cell cycle in stimulated CD4 T cells M4 11 4.95E-02 

 

BTMs - Clinical Protection p-value 

plasma membrane cell junction M162 0 2.48E-05 

chemokine cluster II M27 1 3.63E-05 

TBA M70 1 1.64E-04 

TBA M120 1.90E-04 

targets of FOSL1.2 M0 1.95E-04 

nuclear pore transport mRNA splicing. processing M143 3.19E-04 

TBA M70 0 3.52E-04 

T cell activation II M7 3 3.60E-04 

nuclear pore complex M106 0 3.89E-04 

enriched in T cells I M7 0 3.99E-04 

leukocyte activation and migration M45 4.12E-04 

inositol phosphate metabolism M129 4.24E-04 

TBA M32 6 5.28E-04 

CD28 costimulation M12 5.41E-04 

TBA M148 5.53E-04 

T cell differentiation Th2 M19 5.83E-04 

TBA M161 6.39E-04 
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Appendix A (Continued) 

viral sensing . immunity IRF2 targets network II M111 1 6.54E-04 

TBA M32 5 6.64E-04 

cytoskeletal remodeling M32 8 7.71E-04 

platelet activation II M32 1 8.24E-04 

CORO1A.DEF6 network II M32 4 8.30E-04 

CORO1A.DEF6 network I M32 2 8.39E-04 

platelet activation I M32 0 8.61E-04 

Axis 6 8.93E-04 

TBA M72 0 9.28E-04 

TBA M125 9.70E-04 

Axis 4 1.08E-03 

KLF12 targets network M32 3 1.10E-03 

TBA M137 1.10E-03 

nuclear pore complex mitosis M106 1 1.54E-03 

TBA M153 1.92E-03 

phosphatidylinositol signaling system M101 2.02E-03 

MAPK RAS signaling M100 2.12E-03 

T cell activation and signaling M5 1 2.58E-03 

T cell activation IV M52 2.60E-03 

lymphocyte generic cluster M60 2.73E-03 

Axis 1 2.75E-03 

intracellular transport M147 3.02E-03 

AP.1 transcription factor network M20 3.33E-03 

TBA M151 3.44E-03 

Axis-9 4.20E-03 

enriched for ubiquitination M138 5.05E-03 

TBA M72 1 5.34E-03 

TBA M72 2 5.50E-03 

TBA M128 6.43E-03 

regulation of localization GO M63 8.52E-03 

RA. WNT CSF receptors network monocyte M23 8.57E-03 

Axis 8 1.00E-02 

amino acid metabolishm and transport M154 0 1.20E-02 

signal transduction plasma membrane M82 1.30E-02 

TBA M174 1.44E-02 

enriched in cell cycle M167 1.52E-02 

cell cycle ATP binding M144 1.59E-02 
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