
Segmenting Images Analytically in Shape Space

Yogesh Rathia, Samuel Dambrevilleb, Marc Niethammera, James Malcolmb, James Levitt a,
Martha E. Shentona, Allen Tannenbaumb

aDepartment of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA, USA;

bSchool of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA, USA

ABSTRACT

This paper presents a novel analytic technique to perform shape-driven segmentation. In our approach, shapes
are represented using binary maps, and linear PCA is utilized to provide shape priors for segmentation. Intensity
based probability distributions are then employed to convert a given test volume into a binary map representation,
and a novel energy functional is proposed whose minimum can be analytically computed to obtain the desired
segmentation in the shape space. We compare the proposed method with the log-likelihood based energy to
elucidate some key differences. Our algorithm is applied to the segmentation of brain caudate nucleus and
hippocampus from MRI data, which is of interest in the study of schizophrenia and Alzheimer’s disease. Our
validation (we compute the Hausdorff distance and the DICE coefficient between the automatic segmentation
and ground-truth) shows that the proposed algorithm is very fast, requires no initialization and outperforms the
log-likelihood based energy.

1. INTRODUCTION

Segmentation is an essential task in the analysis of medical image data as has been documented in the huge liter-
ature devoted to the subject. Of course, as in many practical problems, medical image segmentation algorithms
often have to deal with poor image contrast, noise and missing boundaries. For example, consider Figure 1(a)
which shows the intensity probability distribution of the caudate nucleus and its background learned a priori
from training data. Figure 1(b) shows the likelihood of each pixel belonging to the object (caudate nucleus)
based on the probabilities learned. Clearly the object and background distributions are quite close and hence
insufficient to perform accurate segmentation. A typical way to deal with this problem is to incorporate prior
shape knowledge in the segmentation process which brings us to the theme of this present work.

Many different methods (using both parameterized or implicit representation of shapes) have been pro-
posed1–8 to separate an object from the background using shape information. Many authors3,6, 7, 9, 10 use linear
PCA to provide shape prior in their segmentation algorithms. Specifically, a few of those6,7, 10 use an implicit
representation of shapes and do PCA on a set of signed distance functions. Recently, Dambreville et.al11 have
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Figure 1. (a) Learned probabilities: red - caudate nucleus, blue - background (b) bright pixels are candidates for belonging
to the caudate nucleus based on the probabilities learnt. (c) corresponding image slice
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shown that using PCA on a set of shapes represented as binary maps provides better shape prior compared to
a set of signed distance functions. In this work, we will use this implicit representation (binary map) in our
segmentation algorithm, the reason for which we will elucidate below.

Most of the methods mentioned above minimize an energy functional of the form: Etot = Eimage + βEshape,
where two completely different and unrelated energy functionals (Eimage - image energy, Eshape - shape en-
ergy) are linearly combined to obtain the desired segmentation. Here, one has to choose the parameter β
which can be different for different imaging modalities, and also if one is segmenting different structures (ventri-
cles,hippocampus etc).

The method proposed by Yezzi et.al7 performs segmentation by separating the mean intensities (or variances)
using a parametric evolution of the shape coefficients obtained by linear PCA on a set of signed distance functions.
This method has the advantage of using only a single image based energy functional unlike the energy Etot. It
however is too restrictive in that it uses only the first two intensity moments to perform segmentation. We
will use a generalized version of the image energy which will be the benchmark algorithm against which we will
compare the proposed algorithm.

In this work, we perform segmentation in a novel fashion by first converting the image into a representation
in shape space, and then minimizing the shape distance between the image-shape and a shape prior obtained
using linear PCA. To the best of our knowledge, this is the first time segmentation has been cast as a problem
of minimizing distance between two shapes using a single energy functional, whose solution can be obtained
analytically and thus we regard this as the main contribution of this work. As we will try to show, this can be
very useful for the segmentation of certain brain structures of interest in such diseases as schizophrenia.12

In the next section, we briefly describe the concept of linear PCA. In Section 3, we present our segmentation
algorithm, and then in Section 4, we illustrate our method with some segmentation results on the left caudate
nucleus and left hippocampus. We conclude the paper by giving future research directions in Section 5.

2. SHAPE PRIOR USING LINEAR PCA

Shape representation is an important aspect of shape learning. As mentioned earlier, we will use the binary
map representation of shapes (see the paper by Dambreville et. al.11 to get a detailed description on advan-
tages of using a binary map representation for shapes instead of the signed distance function). A binary map
representation Φ of a shape S is obtained as follows:

Φ(x) =

{
1 x is inside or on boundary of S ,

0 else .
(1)

Linear PCA (LPCA) is widely used to learn the statistical variations of a given set of data (shapes, in
our case). LPCA typically assumes that all possible shapes can be written as a linear combination of a set of
eigenshapes obtained by doing principal component analysis (PCA) on the training data set.6,7 The eigenshapes
can be obtained as follows: Let βi represent the binary map corresponding to the shape Si. The mean shape, µ,
is computed by taking the mean of the binary maps, µ = 1

n

∑
βi. The variance in shape is computed using PCA,

i.e., the mean shape µ is subtracted from each βi to create a mean-offset map β̄i. Each such map, β̄i, is placed
as a column vector in an Nd × n-dimensional matrix M, where βi ∈ RNd

. Using Singular Value Decomposition
(SVD), the covariance matrix 1

nMMT is decomposed as: UΣUT = 1
nMMT , where U = [φ1 φ2 ...φn] is a matrix

whose column vectors φi represent the set of orthogonal modes of shape variation (eigenshapes) and Σ is a
diagonal matrix of corresponding eigenvalues. An estimate of a novel shape Φ can be obtained from m principal
components using an m-dimensional vector of coefficients, α = UT

m(Φ − µ), where Um is a matrix consisting of
the first m columns of U . Given the coefficients α = [α1 α2...αm]T , an estimate of the shape Φ, can be obtained
as:6,7

Φ = Umα + µ =
m∑

i=1

αiφi + µ. (2)
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3. SEGMENTING IN SHAPE SPACE

For the purpose of comparison, we will use the log-likelihood based energy10 for parametric evolution of the
surface.7 The energy is defined as follows:

Elog(ΦPCA) = −
∫

log Pin(I(x))ΦPCA(x) + log Pout(I(x))(1 − ΦPCA(x))dx, (3)

where ΦPCA is the binary map representation of the current shape as computed from (2), Pin and Pout are
probability distributions of the object and background respectively. These distributions are learned a-priori
from the training data set using Parzen window estimation method.13 Segmentation can be performed using
gradient descent on the PCA coefficients αi by computing the gradient:

∇αi
Elog =

∫
log

(
Pout(I(x))
Pin(I(x))

)
∇αi

ΦPCA(x)dx.

This energy will be used as a benchmark for testing the performance of the proposed method. Notice however,
that the energy Elog is defined in the image domain.

The representation ΦPCA obtained is not a binary map, but contains values between [0, t], where t ∈ R. But a
binary map can be easily obtained by normalizing ΦPCA to have values between 0 and 1 and then thresholding at
the 0.5 level set to obtain a binary map representation. This operation does not affect the final segmentation, as
can be clearly seen by re-writing Elog as follows: Elog(Φ̃PCA) = − ∫

log Pin(I(x))tΦ̃PCA(x) + log Pout(I(x))(1−
tΦ̃PCA(x))dx, with thresholding applied at t/2 and Φ̃PCA is obtained by normalizing ΦPCA.

3.1 The Proposed Energy in Shape Space

To perform segmentation in the shape space, an important requirement is to convert the image itself into a shape
so that a meaningful distance can be computed between two shapes (one shape from the image and another from
the LPCA based shape prior). A simple, yet effective technique to convert an image I into a binary shape Ψ
using probability distributions is given by:

Ψ(x) =

{
1 if Pin(I(x)) ≥ Pout(I(x)) ,

0 else .
(4)

A smoother representation for Ψ can be computed using the well-known Heaviside function H:7

H(P ) =

⎧⎪⎨
⎪⎩

1 P > ε ,

0 P < −ε ,
1
2{1 + P

ε + 1
π sin

(
πP
ε

)} else,

and Ψ(x) = H (Pin(I(x)) − Pout(I(x))) . Thus, Ψ(x) is the shape map corresponding to the image I (see Fig-
ure 1(b),(c)).

Many metrics have been proposed to compute the distance between two shapes.14–16 In this work, we propose
to minimize the L2 distance between two shapes as follows:

Esd(ΦPCA) =
1
2

∫
(Ψ(x) − ΦPCA(x))2 dx, (5)

where ΦPCA is the shape prior obtained from equation (2) and Ψ(x) is computed a-priori as described before.
Of course, one could utilize any metric of similarity between shapes proposed in the literature instead of the
standard L2 metric given above in our overall framework. Our consideration for this particular choice was the
convex nature of Esd which has a well defined minimum, the low computational cost associated with computing
Esd (and its minimum) and the simplicity with which one can represent (and compute) Ψ(x). Note that, if one
were to use any parametric representation of shapes (as required for many shape metrics16), the parameterization
of Ψ(x) would become extremely complex (see Figure 1(b)). Moreover, many metrics are well behaved only if the
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shapes being compared are closed, connected and of genus zero.15,16 However, we believe that the consideration
of other possible shape metrics in order to carry out segmentation in our set-up is very important, and will be a
topic for future research.

The minimum of Esd will give us the desired segmentation. This can be obtained by solving the following
equation to obtain each αi (the PCA coefficients):

0 = ∇αi
Esd =

∫ ⎛
⎝Ψ(x) −

m∑
j=1

αjφj − µ

⎞
⎠ φi(x)dx,

=⇒ αi =
∫

(Ψ(x) − µ) φi(x)dx,

(6)

where, φi is the ith eigenshape as computed in Section 2. Thus, each αi can be analytically computed and the
final segmentation (shape) can be obtained from equation 2. Thus, the segmentation is just the projection of
Ψ(x) in the PCA basis.

4. EXPERIMENTAL VALIDATION

We applied the proposed algorithm for segmenting the left caudate nucleus and the left hippocampus from MRI
brain scans. The results were compared with those obtained using the log-likelihood based energy Elog defined
earlier in (3). For both algorithms, we used the same training data set, test volumes and the top 20 PCA
coefficients which contained 99 percent of the total shape variations. As a pre-processing step, the test images
were registered using a nonlinear registration algorithm to a template image of the training data and segmentation
was analytically obtained by projecting the corresponding shape map into the PCA basis as described earlier.

To measure the discrepancy between the segmented shape (S) and the ground truth (G) (obtained from
hand-segmented label maps by a medical expert)∗, we use the Hausdorff distance H(G,S) that measures the
maximum error between the boundary of two shapes G and S, i.e., H(G,S) = maxg∈G {mins∈S ‖ g − s ‖}. We
also measured the performance of our method by computing a different metric, the DICE coefficient, between S
and G. The DICE coefficient is given by:

D(S,G) =
V (S)

⋂
V (G)

1
2 (V (S)

⋃
V (G))

,

where V is the volume of the shape in pixels. D measures the overlap between the automatic segmentation and
ground truth.

4.1 Left Caudate Nucleus

For the left caudate nucleus, the training set consisted of 21 3D shapes. Segmentation was performed on 5
different test volumes not in the training set. Figure 2 shows the segmentation results for the proposed energy
functional Esd (5), and the log-likelihood energy Elog (3). Table 1 gives the Hausdorff error H, while Table
2 gives the DICE coefficient between the ground truth (GT) and the segmentation obtained using each of the
methods.

Table 1. Hausdorff error H (mm)

Segmentation Algorithm N=1 N=2 N=3 N=4 N=5

Log-likelihood Elog 4.69 12.15 7.55 8.89 3.18

Shape distance Esd 2.09 6.15 4.03 5.56 2.57

Table 2. DICE coefficient D

Segmentation Algorithm N=1 N=2 N=3 N=4 N=5

Log-likelihood Elog 0.840 0.796 0.822 0.801 0.811

Shape distance Esd 0.852 0.825 0.840 0.828 0.813

∗The training data (ground truth) was obtained from the NAMIC data repository of the Brigham and Women’s
Hospital, Boston, MA.
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Segmentation using energy Elog (initial, intermediate and final surface)

Segmentation using energy Esd (final surface)

Figure 2. White volume is GT. Blue volume is initialization/segmentation.

(a) (b) (c) (d) (e)
Figure 3. Caudate nucleus: White volume is GT. Blue volume is segmentation. Hausdorff error H is given in mm. (a)
Far initialization, (b)Segmentation with Elog, H = 7.55, (c) Close initialization, (d) Segmentation with Elog, H = 4.14,
(e) Segmentation with Esd, H = 4.03.

Clearly, the proposed method outperforms the log-likelihood based technique. Futhermore, the results shown
here for the log-likelihood based energy were the best after many trials and many different initializations. Contrast
this with the proposed method where no initilization is required. Figure 3 shows the segmentation from two
different starting surfaces for the log-likelihood based technique. Clearly, the energy Elog gets stuck in a local
minimum giving poor segmentation result, whereas the proposed shape based energy Esd has a global minimum
independent of the initialization. This is further illustrated in Figure 4, wherein we show the 3D isocontour lines
of Esd and Elog obtained by varying the first two PCA coefficients α1, α2. It becomes quite clear that the shape
functional Esd is very smooth and has a single global minimum. In contrast, the log based energy Elog has many
local minima within which the gradient descent algorithm gets stuck leading to inaccurate segmentation.

Note that both the energy functionals (3) and (5) use exactly the same information (Pin, Pout), however, due
to our formulation of the cost function in the shape space, we get much better results. Another important point
to note is that, the log function is not defined when either Pin orbeing a always convex functional converges to the
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Figure 4. Isocontour plot for energy Esd (left) and Elog (right) computed by varying the first 2 PCA coefficients within
±2 standard deviations.

same minimum with better results Pout is zero, whereas no such singularity occurs in the proposed formulation
(5). Furthermore, the log function descends very rapidly to −∞ as the probability goes closer to zero. Hence, the
gradient contribution from points with very small probabilities dominates the total gradient (see computation of
∇αi

Elog). The shape energy Esd, however, suffers from no such handicap.

4.2 Left Hippocampus

being a always convex functional converges to the same minimum with better results In this experiment, the
training set contained 20 shapes, with 3 test volumes. Figure 5, Table 3 and Table 4 give the segmentation
results using both methods. Once again, the shape energy performs better than the log based energy. For all
the experiments (hippocampus and left caudate nucleus) using the shape energy Esd, the final segmentation was
obtained within 2-3 seconds on a 2.5 GHz, linux machine with 4 GB RAM. The software was written in C++
using ITK. On the other hand, for the energy Elog the gradient descent step size had to be tuned to ensure that
the energy decreased at each iteration. Also, the number of iterations required for convergence varied from 25-50
and it took about 25-30 seconds to obtain the desired segmentation. Figure 6 gives the 3D isosurface plot of the
segmented caudate nucleus and hippocampus using the 3D Slicer tool developed at the Surgical Planning lab of
Brigham and Women’s hospital.

Table 3. Hausdorff error H (mm)

Segmentation Algorithm N=1 N=2 N=3

Log-likelihood Elog 3.32 2.57 6.46

Shape distance Esd 2.65 1.76 3.86

Table 4. DICE coefficient D

Segmentation Algorithm N=1 N=2 N=3

Log-likelihood Elog 0.83 0.82 0.72

Shape distance Esd 0.83 0.83 0.76

5. CONCLUSIONS AND FUTURE RESEARCH

In this work, we have presented a novel approach to perform segmentation in the shape space using L2 distance
between shapes. Our preliminary results show that the proposed energy functional gives better segmentation
results as compared to the more standard log-based energy. The segmentation is obtained completely auto-
matically with no need for initialization in contrast to many techniques reported in the literature. Also, this
is the first time an analytic technique has been proposed to obtain segmentation using a novel energy formu-
lation. Nevertheless, the proposed method has a few drawbacks. The segmentation results are sensitive to the
alignment of the test images to the template image. Error in the registration process can affect the quality of
segmentation obtained. In case the registration of images is not accurate enough, the proposed method can
at the very least serve as a very quick initialization process for a more sophisticated algorithm. Note that, no
user interaction whatsoever is required to obtain the segmentation, which is a step forward towards completely
automatic segmentation algorithms.

Proc. of SPIE Vol. 6914  691405-6



Segmentation using Elog (initial, intermediate and final)

Segmentation using Esd (final)

Figure 5. White volume is GT. Blue volume is initialization/segmentation.

Figure 6. 3D view of the segmented isosurface of the caudate nucleus (left) and hippocampus (right) using shape distance
Esd.

Future research includes exploring other metrics for computing shape distance as well as the possible use of
different representations of shape along with using other shape learning techniques like kernel PCA. Moreover,
we plan to test the methodology on more data sets as well as different structures. For example, this segmentation
could be very useful for the analysis of the prostate in surgical planning. Presumably the method could also be
included in the pipeline for the study of the statistics of populations in some of the studies being conducted in
trying to utilize shape information of various brain structures to differentiate normal from schizophrenic patients.
In summary, we believe that we have proposed an efficient and robust segmentation approach which hopefully
will find its ways into a number of medical applications.
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