
1

This is “Frank, M. and J. Foley,Inferring Behavior From
Before and After Snapshots, Technical Report git-gvu-
94-12, Georgia Institute of Technology, Graphics,
Visualization & Usability Center, April 1994.”

INFERENCE BEAR: INFERRING BEHAVIOR
FROM BEFORE AND AFTER SNAPSHOTS

Martin R. Frank          James D. Foley
{martin,foley}@cc.gatech.edu

Graphics, Visualization & Usability Center
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

ABSTRACT

We present Inference Bear (Inference Based OnBefore And
After Snapshots) which lets users build functional graphical
user interfaces by demonstration. Inference Bear is the first
Programming By Demonstration system based on the ab-
stract inference engine described in [5].

Among other things, Inference Bear lets you align, center,
move, resize, create and delete user interface elements by
demonstration. Its most notable feature is that it does not use
domain knowledge in its inferencing.

INTRODUCTION

We use a technique for demonstrating behavior which is in-
spired by the “before” and “after” pictures often found in
advertisements. Behavior is demonstrated by supplying a
Before picture, an After picture and an event that causes the
transition from the Before to the After picture. A single ex-
ample is sufficient for simple behavior, more examples are
required to infer more complex behavior.

Snapshots have been used in earlier demonstrational sys-
tems, such as [7], which lets the user take snapshots of valid
states. Before and After snapshots add sequentiality to the
demonstration.

Inference Bear is build on top of two main components. The
first component is an abstract demonstrational inference en-
gine [5], the second one is an interactive user interface
builder [6]. Consequently, Inference Bear only adds a mod-
est amount of additional code which combines these.

PROGRAMMING BY DEMONSTRATION

We shortly review previous work. Peridot [9] supports de-
signing scrollbars, buttons, choice boxes and similar objects
by demonstration. Lapidary [10] focuses on creating appli-
cation-specific objects. Metamouse [8] learns graphical pro-
cedures by example. Druid [13] lets users attach simple
functionality such as enabling, disabling, hiding and show-
ing to buttons. Eager [1] watches users perform operations

and detects and automates repetition. DEMO [14,2] uses a
stimulus-response paradigm for demonstrating the behavior
of graphical objects. Chimera [7] infers constraints between
graphical objects given multiple snapshots. Finally,
Marquise [11] uses domain knowledge in order to support
building graphical editors.

All of these systems use by-demonstration techniques but
they are not easily compared because they have different
goals and use different techniques. Nevertheless, we make
an attempt to classify them in Table 1.

The first two columns describe user interface aspects. The
first column shows if the system is constantly watching the
user during normal operation or if it is explicitly invoked.
The advantage of constant watching is that the users do not
have to learn anything new to take advantage of the system.
Some systems query the user when they make an inference
(marked with “Query” in the table), others indicate their in-
ferences by subtly displaying their prediction of what the
user is doing next (“Prediction”). The second column de-
scribes if the system asks the user for confirmation and clar-
ification after each inference. Any inferencing system will
sometimes guess wrong - the clarification dialog gives the
user an opportunity to correct and fine-tune inferred behav-
ior. The disadvantage here is that going through this clarifi-
cation process after every inference can be distracting.

The next two columns make an attempt to measure the capa-
bility of the systems. The third column indicates if the pro-
totypes can handle the creation and deletion of graphical
objects at run-time. The fourth column indicates to what de-
gree the systems can infer geometric relationships between
objects. This classification is inherently subjective because
the design goals of these systems are different (for example,
Eager does not attempt to infer geometric relationships) and
because their capabilities are different (for example, Eager
is “stronger” than Inference Bear in being able to deal with
repetition, Inference Bear is “stronger” in inferring relation-
ships). We labelled systems which can detect simple rela-
tionships such as centering and touching “Low”, systems
which can detect more general relationships “Medium” and
the most sophisticated systems “High”. This, again, is a
crude and necessarily subjective classification.

The remaining columns are concerned with the implementa-
tion of the inferencing systems. The fifth column describes



2

a. Metamouse additionally reduces the search space by only considering touch relations.
b. Note that only Druid’s demonstrational component is discussed here but not its rule-based design assistant.
c. Chimera also uses a variety of other techniques to reduce the solution cost of a demonstration.
d. A feedback window is displayed; the designer can change aspects of the behavior but does not have to.

Interface

Is Eager
(Constantly

Watches
User)

Interface

Uses A
Clarification

Dialog

Capabilities

Dynamic
Object

Creation +
Deletion

Capabilities

(Subjective)
Strength in
Geometric
Relations

Internals

Search Space
Reduction

Internals

Is Rule-
Based

Internals

Temporary
Behavior
Storage

Internals

Output

Peridot [9]
1987

Yes
(Query)

Yes No Low None Yes Snapshots One-Way
Constraints

Lapidary [10]
1989

No Yes No Low None No Snapshots One-Way
Constraints

Metamouse [8]
1989

Yes
(Prediction)

No No Medium Explicita

(Aux. Objs)
No not applica-

ble
Graphical
Procedure

Druidb [13]
1990

No Yes No None None No Event
Recording

Script

Eager [1]
1991

Yes
(Prediction)

No not applica-
ble

not applica-
ble

not applica-
ble

No Event
Recording

Macro

DEMO [2,14]
1991/92

No Yes Yes High Explicit
(Aux. Objs)

Yes
(DEMO II)

Compressed
Snapshots

Response
Description

Chimera [7]
1991

No No No High Explicitc

(Aux. Objs)
No Snapshots Two-Way

Constraints

Marquise [11]
1993

No Optionald Yes Low None Yes Event
Recording

LISP Code

Inference Bear
1994

No No Yes Medium Implicit No Ev. Rec. and
Snapshots

Script

Table 1. Overview of Demonstrational Systems

if the system reduces the number of objects that it checks for
relationships. Some systems use auxiliary objects such as
guide wires to let the user specify the relevant objects and
their relationship. Inference Bear limits the number of ob-
jects it considers implicitly but not heuristically [5]. The
sixth column describes if the inferencing is based on rules or
on an algorithm. The advantage of rule-based systems is that
they can encode commonly used behavior. The disadvantage
is that the rules can sometimes miss even simple relation-
ships while algorithm-based systems can handle all relation-
ships within a certain class. The seventh column describes
how previous demonstrations are captured. There are two
main approaches towards capturing demonstrations. Event-
recording stores the events during a demonstration by the
user. Snapshot-taking records a series of states. The last col-
umn describes the output of the inferencing process.



3

Figure 1. Overview of the Design Environment.

THE DESIGN ENVIRONMENT

Figure 1 shows an overview of our design environment. The
upper three windows with the dark background are the con-
trol panels of its main components.

The left-hand control panel belongs to theinterface builder
we are using [6]. It allows to open toolboxes and user inter-
face designs. Two such toolboxes are shown on the left
(mislabelled “Adapter”). The current user interface design is
shown in the middle of the figure (labelled “Design Mode”).
In this example, the design consists of two buttonsa andb
which are connected by lineline.

The middle control panel belongs toUIDE, the User Inter-
face Design Environment [3]. In the context of this paper, it
suffices to know that it lets you open the two text editors
shown to the right and that it can switch the current design
to run mode by reading and executing their specifications.
We will ignore the “Application Model” editor in this paper.
The “Interface Model” editor specifies the behavior of the
interface design at run time. In Figure 1, it specifies how the
line betweena andb changes whenb is moved.

Finally, the right-hand control panel provides the interface
to advancedtools that the designer can use in this environ-
ment. The “Interview Tool” helps the designer fill in the tex-
tual specifications by asking questions based on the current
user interface layout. It is described in [4] and will not be
further discussed here. The “Inference Bear” is the tool we
are concerned with - it lets designers describe the behavior
of the user interface by demonstration. For example, it can
infer the specification shown in the Interface Model editor
of Figure 1.

INFERENCE BEAR

Figure 2 shows the control panel that appears when the user
clicks on the “Inference Bear” button in the “Tools” win-
dow.

Giving one example consists of working through the four
iconic buttons from left to right. The designer first sets up
for the “Before Snapshot” by editing the current design (us-
ing the interface builder). She then clicks the “Before snap-
shot” button to tell the system that she is done.

The next step is to tell the system to what kind of event the
behavior should be attached to. This is done by first clicking
the “Start Recording” button which switches the interface
builder to event recording mode. The designer then causes
an event in the current interface design, such as a “move”,
“click” or “resize” event. She then clicks the “Stop Record-
ing” button which switches the interface builder back into
the standard editing mode.

The final step is to tell the system what should happen if the
interface is in the state given by the Before snapshot and this
event occurs. This is done by bringing the user interface de-

Figure 2. Inference Bear



4

sign to the state it should go to, and by pressing the “After
Snapshot” button to let the system know that one is done.

The system now responds by running the inference
engine [5] on this example. The designer than tests if the in-
ferred behavior is the one she had in mind by either reading
the inferred specification or by going to Run mode and test-
ing it interactively. If it is acceptable, she clicks “OK” in In-
ference Bear’s control panel which causes the inferred
behavior to become part of the overall Interface Model.

If it is not what she had in mind, she proceeds by giving an-
other example in the manner described above. The inference
engine is then called using the old examples plus the new
one. The designer now again chooses if she is satisfied with
the new behavior or wants to give more examples.

EXAMPLE 1: A COMPLETE INTRODUCTORY EXAMPLE

Let us explain this dialog between the designer and Infer-
ence Bear with a simple example. Assume the designer has
created a user interface layout consisting of a window con-
taining a single button. The behavior to be inferred is that
the button moves one button length to the right every time it
is clicked on.

She then calls the Inference Bear and provides a first exam-
ple which consists of the Before and After snapshot shown
in Figure 3. The recorded event is a click on the button.

The system responds by showing the script in Figure 4.1.

Inference Bear’s initial conjecture here is that the button
moves to the absolute position shown in the After snapshot.
The designer thus has to give another example that contra-
dicts the solution that Inference Bear has found (but which
does not contradict the behavior she wants to specify). Such

1. Keep in mind that the designer does not have to be able to read
this specification in order to use Inference Bear - she can also test
the inferred behavior interactively. We use the textual version
here to communicate the inferred behavior because there is no
good way of mapping the interactive testing to paper.

Figure 3. The first example. The Before snapshot is shown
above, the After snapshot below.

Before

After

an example is shown in Figure 5. It is identical to the first
example besides showing the button at a different position.

Inference Bear responds by refining the inference as shown
in Figure 6. It has now inferred that the new button position
is relative to the original position.

However, it moves the button by a fixed amount of pixels
rather then by one button length. The designer supplies an-
other example (Figure 7) which uses a different button
width than the previous examples.

Figure 8 shows the final inference.

Figure 4. Inference Bear’s initial conjecture.

Figure 5. The second example.

Figure 6. Inference Bear’s refined conjecture.

Before

After



5

EXAMPLE 2: COLORS

In the simplest case, the demonstrated behavior consists of
setting attribute values to constants. A single example suf-
fices to specify this behavior. For example, the designer can
demonstrate that clicking on a button changes color of the
background window as in Figure 9.

This is done through two demonstrations. In the first demon-
stration, the user takes a Before snapshot where the back-
ground color is anything but blue, clicks on the “Blue
Background” button and takes an After snapshot where the
color is blue. The inferred script is shown below.

on blue_button.PRESSED()  {
SXWorkArea.background := “blue”

}

The behavior for the “Green Background” button can be de-
fined in the same way. Alternatively, it is also possible to
simply copy the script for the “Blue Background” button in

Figure 7. The third example.

Figure 8. Inference Bear’s final conjecture.

Figure 9. Changing Colors

Before

After

the text editor and to modify it, which avoids having to give
a similar demonstration twice.

EXAMPLE 3: ADJUSTING A LINE

The name of “before” and “after” snapshots may suggest
that the technique would not be appropriate for describing
what happens “in-between”. However, this can be addressed
by letting the designer control the granularity of the events
that behavior is attached to.

Inference Bear lets the user indicate if the demonstrated be-
havior should be asserted after every move event or after the
final move event using a check box.1 These options are
available after clicking the “More” button of Inference
Bear’s main control panel (Figure 2).

Let us define how a connections behave when the elements
they are connected to are moved. This can be done using
two examples as shown in Figure 10. The triggering event is
a move event of B.

The inferred script is shown below. This example is simpli-
fied - it assumes that elements A and B have negligible
height and width. Inference Bear can also make the line po-
sition dependent on the height and width of an object (such
as “L4.y := y + 1/2*B.height”) but more than two examples
would be needed in that case. Inference Bear needs at leastn
examples to infer an assignment which hasn variables in its
right-hand side (a constant offset counts as one variable).
This is because Inference Bear does not use domain knowl-
edge in its inferencing but rather solves sets of equations.

1. The same approach was taken in Lapidary [10].

Figure 10. Continuous Resizing Example

L4
L3

B

A
L2

L1

First Before Snapshot First After Snapshot

Second Before Snapshot Second After Snapshot



6

if B.moved(Integer x, Integer y) {
L2.x := 1/2*A.x + 1/2*x
L3.x := 1/2*A.x + 1/2*x
L3.y := y
L4.x := x
L4.y := y

}

This particular example may suggest that we would be bet-
ter off using one-way constraints as the basis of Inference
Bear because we have only captured what happens whenB
is moved (nothing would happen ifA is moved). With our
event-driven assignments, the same behavior must be dem-
onstrated when A is moved while constraints could describe
how the connections resize if either is moved. However,
one-way constraints cannot adequately describe other func-
tionality such as incrementing and run-time creation and de-
letion of elements.

EXAMPLE 4: ALIGNING

The intended behavior in this example is that the left sides
of B and C aligned to the left side of A. The demonstration
consists of two examples as illustrated in Figure 11.

Here, the source variables are coordinates of the three rect-
angles. The target values are the horizontal coordinates of B
and C.

if A.pressed() {
B.x := A.x
C.x := A.x

}

Inference Bear can also infer aligning left-hand sides (B.x :=
A.x +A.width-B.width) and aligning centers (B.x := A.x+1/
2*A.width-1/2*B.width), which require more examples.

EXAMPLE 5: DRAGGING FROM A PALETTE

Many applications let users create new elements by drag-
ging prototypical elements from palettes. We handle this
case by using palettes of actual objects which are in effect
copied when they are moved on the canvas.

The demonstration consists of two examples. The first ex-
ample shows a snapshot of an empty canvas. The trigger
event is a drag event of a palette element onto the canvas.

Figure 11. Snapshots for Alignment Example

First Before Snapshot First After Snapshot

Second Before Snapshot Second After Snapshot

The After snapshot shows that a new elementn has been
created at that position and that the palette objectp returns
to its original position which is (20,40) for this example.
The second example is identical to the first one besides us-
ing a different position for the newly created object.

Inference Bear first finds a prototype by looking for the most
similar object forn which isp. It then computes the at-
tributes for n which are different from p. The only difference
is the position here..

if p.placed(Integer x, Integer y) {
object n := p.copy()
n.x := x
n.y := y
p.x := 20
p.y := 40

}

Inference Bear lets users demonstrate many flavors of creat-
ing elements by dragging from a palette. The drawback is
that the palette object itself is dragged onto the canvas and
reappears at its original position only when the mouse is re-
leased which can irritate users.

EXAMPLE 6: PARAMETERIZED OBJECT CREATION

This is another example of creating new objects. Clicking
on the “New Clock” buttonb creates a new clock object in
the canvas. Its initial position and background color are to
be taken from input fieldsX, Y andColor as illustrated in
Figure 12. (No claims are made that this is a good interface,
of course, we use it for illustration only here.)

The demonstration consists of two examples which each
show that a new object is part of the After snapshot but with
a different position and color. The position and color match
the contents of the fields.

There is no suitable prototype object for the new object here
so that Inference Bear automatically creates one. This is
done by permanently copying the new object to the upper
left corner of the canvas and making it invisible. This newly
created object is namedp below.

if b.pressed()
object n := p.copy()
n.visible := true
n.x := xfield.content
n.y := yfield.content
n.background = colorfield.content

Figure 12. Parameterized Object Creation Example



7

The visibility attribute is set because the prototype object is
invisible in this example as opposed to the prototype object
in Example 5.

INFERENCE BEAR ANATOMY

As mentioned earlier, Inference Bear uses the demonstra-
tional engine described in [5]. The most notable characteris-
tic of this engine is that it does not contain domain
knowledge. We do not want to explain the inferencing pro-
cess here but will only describe the user-visible effects of
using a domain-independent engine.

The most visible effect is that Inference Bear is “conserva-
tive” in its inferences - all its inferences are based on corre-
lating variables in a thorough manner. If there is only a
single example, e.g. the one in Figure 3, the system will not
attempt to guess a relationship to other variables. It will
rather choose the simplest possible solution which solves
the demonstration, (an assignment from a constant). Only
when the second example makes this solution invalid
(Figure 5)does Inference Bear search for a more complex re-
lationship.

A related effect is that users have to give more examples
than they would have to if they were using a rule-based sys-
tem. These systems can usually guess relationships from a
single example (assuming, of course, that the system has a
rule for e.g. moving a button one button length to its right,
and that it fires correctly). However, we feel that the incon-
venience of sometimes giving more examples is normally
offset by the higher generality of the inference engine.

Another effect introduced by using the inference engine
of [5] is that a variable has to be changed in a demonstration
before the inference engine attempts to use it in its infer-
ences. This is exemplified in the inference of Figure 6 - the
width of the button has never been changed at this point. It
takes an example with a different button width to make the
intended inference because the inference engine’s vision is
based on motion. (Another demonstrational system bases its
vision on proximity [8].) This is often puzzling to novice us-
ers. However, once they learn how to use the inference
mechanism they can use it in a wide range of situations.

USABILITY TESTING

Observing actual users is the lithmus test of any demonstra-
tional system. We have informally tested Inference Bear in
usability studies. Subjects were given the task of designing
examples similar to the ones presented in this paper. They
were not given any instructions or assistance other than
starting up Inference Bear for them. Most subjects were
members of the Graphics, Visualization and Usability Cen-
ter so that they represent a technical audience. No coherent
testing has been done on non-technical subjects. There were
a dozen subjects which used the system for about an hour
and about five dozen which have used it for about ten min-
utes.

The testing was not thorough enough to draw statistically
significant conclusions but we will present some observa-
tions.

• The first observation is that demonstrational systems are
potentially, but in no way inherently, easy to use. It took
many, often seemingly small, refinements to the user in-
terface until we achieved the performance described be-
low.

• It takes about fifteen minutes to complete the task that
specifies how the two buttons change the window color.
(More of this time is spent figuring out how to use the in-
terface builder rather than the demonstrational methodol-
ogy.)

• Users had surprisingly little trouble with demonstrations
involving a single example. Demonstrations involving
the creation or deletion objects do not seem to be more
difficult than others.

• Demonstrations involving two examples seem to be sig-
nificantly more difficult for users to understand. It takes
about fifteen more minutes to do the “moving button”
task. All of these fifteen minutes were spend trying to un-
derstand how to give the demonstration.

• As explained earlier, Inference Bear eliminates attributes
which remain constant across Before snapshots from con-
sideration as parameters. Many subjects were initially
puzzled that the Bear would solve their demonstrations
using constants (80 pixels) rather than the attribute they
meant (the width of the button) when they did not change
the width in the examples (“do what I mean!”).

LIMITATIONS

Many limitations have already been discussed, such as In-
ference Bear’s current inability to deal with general sets of
objects (sets which vary at run time) and the problem of too
much user involvement in designating where to attach in-
ferred functionality.

Another problem with Inference Bear, as with most other
demonstrational systems, is that users have to edit text di-
rectly to combine the functionality of single demonstrations
(for non-trivial designs). Thus, they cannot build a com-
plete, substantial user interface design exclusively by dem-
onstration.

CONCLUSION

Inference Bear uses an existing user interface builder and an
existing, domain independent inference engine. In this way,
we could build it in less than a month, and it contains only
about 1500 lines of C++ code.

We feel that Inference Bear shows that it is possible to build
an easy-to-use demonstrational system without coupling its
inferencing tightly to its domain. Avoiding domain-depen-
dence in this way allows several demonstrational systems to
share a common inference engine.

ACKNOWLEDGEMENTS

I would like to thank Siemens for sponsoring part of this re-
search, and Christie Gerlach and Brad Myers for their feed-
back. The camera, recorder and clock icons were designed
by Kevin Mullet of Sun Microsystems.



8

REFERENCES

[1] Cypher, A.,Eager: Programming Repetitive Tasks by
Example, Proceedings of CHI’91, New Orleans,
Louisiana, pp. 33-39.

[2] Fisher, G., D. Busse and D. Wolber,Adding Rule-
Based Reasoning to a Demonstrational Interface
Builder,  Proceedings of UIST’92, Monterey,
California, November 1992, pp. 89-97.

[3] Foley, J., W. Kim, S. Kovacevic and K. Murray,
Defining Interfaces at a High Level of Abstraction,
IEEE Software, Jan. 1989, pp. 25-32.

[4] Frank, M. and J. Foley,Model-Based User Interface
Design by Example and by Interview, Proceedings of
UIST’93, Atlanta, Georgia, Nov. 1993, pp. 129-137.

[5] Frank, M. and J. Foley,A Pure Reasoning Engine for
Programmning By Demonstration, Technical Report
git-gvu-94-11, Georgia Institute of Technology,
Graphics, Visualization and Usability Center, Atlanta,
Georgia, Apr. 1994.

[6] Kühme, T. and M. Schneider-Hufschmidt, SX/Tools -
An Open Design Environment for Adaptable
Multimedia User Interfaces,Computer Graphics
Forum, 11(3), Sept. 1992, pp. 93-105.

[7] Kurlander, D. and S. Feiner,Inferring Constraints
from Multiple Snapshots, Technical Report cucs-008-
91, Computer Science Department, Columbia
University, May 1991 (also to appear in the ACM
Transactions On Graphics).

[8] Maulsby, D., I. Witten and K. Kittlitz,Metamouse:
Specifying Graphical Procedures by Example,
Proceedings of Siggraph’89, pp. 127-136.

[9] Myers, B., Creating User Interfaces By Demon-
stration, Academic Press, Boston, 1988.

[10] Myers, B., B. Vander Zanden and R. Dannenberg,
Creating Graphical Interactive Application Objects
By Demonstrat ion,  Proceedings of UIST’89,
Williamsburg, Virginia, Nov. 1989, pp. 95-104.

[11] Myers, B., R. McDaniel, D. Kosbie,Marquise:
Crea t ing  Comple te  User  In te r faces  By
Demonstration, Proceedings of INTERCHI’93,
Amsterdam, Netherlands, April 1993, pp. 293-300.

[12] Olsen, D. and K. Allan,Creating Interactive
Techniques by Symbolically Solving Geometric
Constraints, Proceedings of UIST’90, Snowbird,
Utah, Oct 1990, pp. 102-107.

[13] Singh, G., C. Kok and T. Ngan,Druid: A System For
Demonstrational Rapid User Interface Development,
Proceedings of UIST’90, Snowbird, Utah, Oct. 1990,
pp. 167-177.

[14] Wolber, D. and G. Fisher,A Demonstrational
Technique For  Deve lop ing In ter faces Wi th
Dynamically Created Objects, Proceedings of
UIST’91, Hilton Head, South Carolina, November
1991, pages 221-230.


