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Abstract— This paper presents a novel algorithm: Verfied
Partial Object Detector (VPOD) for accurate detection of
partially occluded objects such as furniture in 3D point clouds.
VPOD is implemented and validated on real sensor data
obtained by our robot. It extends Viewpoint Feature Histograms
(VFH) which classify unoccluded objects to also classifying
partially occluded objects such as furniture that might be seen
in typical office environments. To achieve this result, VPOD
employs two strategies. First, object models are segmented
and the object database is extended to include partial models.
Second, once a matching partial object is detected, the full
object model is aligned back into the scene and verified for
consistency with the point cloud data. Overall, our approach
increases the number of objects found and substantially reduces
false positives due to the verification process.

I. INTRODUCTION

The ability to reliably detect and classify objects is crucial
to the success of robots in realisitic, human environments.
Knowledge about the existence and position of objects
within the robot’s vicinity has many practical applications
in robotics. For instance, semantic mapping, the creation of
maps that include meaning, could be enhanced by detecting
meaningful objects, such as furniture. Knowledge about
furniture helps to enable robots to understand commands
such as ”bring me the mug from the table”. In addition, the
classification of rooms can benefit from knowledge about
furniture. For example, a room with a table and many chairs
is likely to be the dinning room.

Moreover, this work is strongly motivated by recent
work in the field of Navigation Among Movable Obstacles
(NAMO) [11]. In NAMO, the robot attempts to reach a fixed
goal position in a reconfigurable environment. The planner
presented in [11] is capable of dealing with partial world
knowledge and incrementally adding new information to the
world model once it is perceived. However, in order to
transfer the planner to a physical system, the robot must
be able to detect movable objects based on real sensory
information, such as 3D point clouds obtained by a laser
range finder.

All of the examples provided above must operate in
human environments. In these environments, objects are
often partially occluded by other objects, walls, and people.
Any algorithm trying to reliably detect objects in human
environments, such as furniture, must therefore be able to
deal with occlusions and arbitrary orientations.

Previous work has shown success in classifying mostly
unoccluded objects but does not perform well in human envi-
ronments with frequent, large occlusions. This paper presents
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(a) Example of a detected chair. The (b) Example of a detected table. The
detected chair model is colored in detected table model is colored in
green. blue.

Fig. 1. Example of correctly classified furniture. The chair is correctly
detected despite the fact that only the top part of the chair is actually visible
in the scan. Similarly, the table is detected despite the fact that it is partially
occluded.

the Verfied Partial Object Detector (VPOD) algorithm that
is capable of working in these environments, even when
more than 50% of the object is occluded. VPOD segments
a point cloud of a scene into clusters by point distances and
classifies each resulting cluster. This classification is based
on a two step approach. The first step builds upon Viewpoint
Feature Histograms (VFH) [9], a descriptor for 3D point
cloud data that encodes geometry and viewpoint. The VFH
of the query object is computed and compared to VFHs in
a database composed of both full object models and auto-
generated partial object models.

A second step verifies each candidate match against the
actual full point cloud, to eliminate full positives introduced
by partial models. To verify these matches, the algorithm
maps the full model associated with each candidate into the
actual full point cloud of the scene. Points of transformed
models that are occluded by objects in the full point cloud are
eliminated from the model. The remaining points are checked
for matching points in the full point cloud. The proportion
of matching, unoccluded points yields the final classification
score. This steps ensures that matches for clusters in the point
cloud are consistent with our expectation of the model in the
context of the world and the current viewpoint.

This paper addresses this topic in the domain of recogniz-
ing furniture and is organized as follows. After discussing
related work in Section II, we will briefly describe the
basic problem of full-model VFHs in Section III. A detailed
analysis of our approach will then be provided in Section IV
and experimental results be demonstrated in V. Section V
will also discuss the limitations of our approach. The paper
will be concluded with a future work in Section VI.



II. RELATED WORK

The detection of objects in 3D laser data has been studied
intensively in various research fields. As such, we are only
addressing the work most relevant to ours.

In [8] Rusu et al. present a system for the acquisition
of hybrid Semantic 3D Object Maps for indoor household
environments based on 3D point cloud data. The authors use
a two step approach for detecting kitchen furniture based
on the detection of horizontal and vertical planes as well as
knobs.

In [3] the authors describe a mapping system acquiring 3D
object models for indoor environments. The authors present
a system for segmenting and geometrically reconstructing
cabinets, tables, drawers and shelves based on multiple scans
of the objects. Tables, the most relevant part to our work, are
detected by finding horizontal surfaces within a given height
range. This does not allow for distinguishing between, for
example, tables and shelves.

Holz et al. are using 3D Time-of-Flight cameras in [4] for
semantic scene analysis. The authors are using an MSAC-
based approach and surface information in a point’s local
neighborhood to detect table tops. This is done by assuming
that a table top point has a surface normal nearly parallel
to the z-axis and that the local surface is smooth. MSAC is
used to fit planar surface models into the table point set. This
approach yields the same limitations as [3].

Johnson et al. presents in [5] a shape-based object recog-
nition system based on matching Spin Images. Spin Images
however require a high resolution image, and as such are
difficult to use in 3D point clouds obtained by a laser.

Marton et al. incorporate in [6] 3D laser scans and 2D
vision data for object classification. They use the Radius-
based Surface Descriptor (RSD) on 3D data, extract the
region of interest into a camera image, and compute a
2D SURF vector for each patch. The final classification is
performed through a SVM. However, it remains unclear how
this work can be extended to work with furniture, which
usually lacks texture. In addition, partial occlusions would
be difficult to handle by this approach.

Steder et al. [10] demonstrated the detection of chairs and
other objects in 3D point clouds using point features from
range images. The authors use euclidean distance in a vector
space spanned by Harris feature vectors to find candidates.
GOODSAC is used to find a model transformation and false
positives are rejected based on a score function using scaled
range images. Steder also presented the normal aligned
radial features (NARF) in [1]. Interest points are detected
on stable surface areas with significant local changes. A
descriptor is then computed by overlaying a star pattern on
the range image generated by looking at the interest point
along the estimated normal for this point. The authors also
describe the potential of matching the feature descriptors as
an object recognition approach. However, we experimented
with NARF and found that the descriptor is only of limited
use in object recognition due to a lack of local texture in
range images and the loss of valuable orientation information

during normal alignment. E.g. a horizontal surface becomes
indistinguishable from a vertical one.

Viewpoint Feature Histograms as presented by Rusu et al.
[9] are encoding geometry as well as viewpoint information
into a descriptor. The authors demonstrate the effectiveness
of the descriptor on a dataset consisting of more than 60
unoccluded kitchenware objects. The first part of VPOD
builds upon this work to support partial occlusion and is
presented in the following section.

Mozos et al. [7] demonstrate a method of categorizing
partially occluded objects from object parts learned from
segmented 3D models, which are first segmented based on
the object’s structure. The database of segmented parts is
used to suggest categorizations from a scene. The candidates
are combined through Hough voting and verified through
model fitting. As this approach segments based on the
object’s structure, the segmented parts do not correspond
exactly with occlusions caused in real scenes, which is a
property of the occluding object and the scene, not the
occluded object. It remains unclear whether [7] is sensitive
to partial occlusion of the segmented parts. Our approach
segments objects based on common occlusions and relies
instead on real 3D scans of objects, which can be generated
by the robot, and not prebuilt models.

III. VIEWPOINT FEATURE HISTROGRAM

Viewpoint Feature Histograms are histograms describing the
geometrical relationship between all points in the object.
Rusu et al. [9] show that VFHs can discriminate according
to the structure of the entire object, if the entire object is
visible.

However the VFH is sensitive to partial occlusions, as in
Fig. 1(a) where only the top part of the chair is visible in the
scan. As the top part of the chair is roughly just a flat surface,
the points have an entirely different geometrical relationship
to each other than all the points for an unoccluded chair.
This results in different VFHs for the full and partial chair,
as shown in Fig. 2. The components of the VFH are described
in [9].
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Fig. 2. Example VFHs for a partial model and its associated full model

The consequence is that partially occluded objects are not
reliably detectable with VFH or any other method that works
with the properties of the full object alone.

IV. ALGORITHM
A. Approach

The key concept here is that fragments of a partially occluded
object can be treated and classified as objects themselves.



VPOD extends the VFH database to include partial models
auto-generated by occluding portions of full models. The par-
tial model generation process is designed to generate typical
occlusions occurring in the world. For human environments,
we assume that the objects are usually occluded from one
side (e.g partially behind a wall) or the bottom (e.g. a chair
underneath a table). Our algorithm therefore generates partial
models out of every full model by successively removing
points from each side of the object and from the bottom
independently. This is done for a step size s and continued
until a threshold ¢ is reached for the remaining object size on
the side currently affected by the removal. Fig. 3 shows an
example. Other types of common occlusions can easily be
added by generating additional partial models. The resulting
partial models are included in the VFH database with the full
models.
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Fig. 3. Hierarchy of full models and auto generated partial models.

Including partial models in the VFH database increases the
likelihood that a partially occluded object will be matched.
For example, it is now possible to match the back of a
chair against models in the database that represent just the
back of a chair. But this also increases the likelihood of
false positives, as the partial models are less distintive (e.g.
the back of a chair is mostly flat). Extending the database
to artificially created objects, especially pieces of objects,
allows for matches of arbitrary objects. For example, the back
of the chair could now be matched against a simple piece
of board. To compensate for this, the algorithm includes
a verification step that verifies the candidate classifications
against the actual scene in which the point cloud was
captured (called the “world” from here on).

The intuition behind this verification step is that we
can test that the full model assoicated with the matched
partial model could produce the observed cluster, given the
occlusions in the world. For example, if we matched the
back of a chair against an object in the world, then the full
chair should be consistent with the world. Which parts of a
model should be occluded can be determined by a simple
line-of-sight test against the scan of the world.

We have implemented this intuition:

1) the model, from which the matched partial model was

obtained, is mapped into the world (section IV-C)

2) the parts of the full model that should be occluded
based on information provided by the world are re-
moved from the model (section IV-D)

3) the remaining model points are checked for matches
in the world (section IV-E)

4) based on this score, the model is rejected or verified
(section IV-E)

Fig 4 shows the detailed workflow and each step is
discussed in detail in the following.
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Fig. 4. Workflow. Steps independent of the actual world are colored in

orange while world dependent steps are colored in blue.

B. Clustering

Point clouds collected by the robot are segmented into query
clusters. First, we filter the point cloud to remove outlying
points that are not near any surface or object. This type
of noise is especially common on occlusion boundaries
with laser range finders. The remaining points are then
downsampled to reduce computation time. A grid size of
1 cm was used for the downsampling in this work. Because
the sensor’s height relative to the ground is known, we can
easily remove the ground plane by discarding any points
below a given z-coordinate. With the ground plane removed,
we can then cluster the remaining points. In this work, we
require a minimum of 100 points per cluster, and allow 10cm
distance between points within a cluster. Objects such as
chairs, tables, desks, and the walls of the room are returned
as clusters. Many of these do not correspond to furniture
objects, and they are filtered by bounding box size to discard
objects that are much too large, much too small, or not near
the ground.



C. Alignment

For each candidate partial model M,, VPOD computes the
transformation matrix 7' that transforms the centroid of
the partial model M, to the centroid of the cluster C it
was matched against and apply Tcepier to M), This yields
the transformed partial model MZ') = TeenterMp. However,
models in a database usually have limited angular resolution,
e.g we might have a model of a chair rotated at 10° and at
20° in the database. The transformation might not align M,
and C optimally. In order to compensate for this, as well as
centroid computation errors, Iterative Closet Point (ICP) [2]
is performed on M}, and C. The algorithm assumes that the
objects are mostly upright and disqualifies candidate models
if the rotation around the ground plane is beyond a threshold.
The resulting transformation matrix T7cp is saved. Teenter
and Trcp are now both applied to the full model M out of
which M,, was generated yielding M J’c = TrepTecenterMy.
Consequently M J’c represents the full model My mapped into
world coordinates at the candidate location.

D. Occlusion

Each point in the mapped full model M} is checked for
occlusion. This is done through a technique similar to ray
casting. We adapted ray casting to the property of a laser
that the lateral error increases with radial distance. As such,
for each point p in M ]'c, we check if any point in W lies
within a cone originating at the viewpoint origin and facing
p. To check this easily, all the points in M J’c and the world W
are transformed to radial coordinates around the viewpoint
first. The slope of the cone is tuned to match the known
angular error of the laser. In order to compensate for noise
in the radial distance, we require the occluding point to be a
minimum distance in front of the occluded point. In addition,
because a model should not occlude itself, we remove C
from W prior to the occlusion test. Points that have been
determined to be occluded in this way are omitted from M J’c
The resulting model M} = occlude(M}, W) is then scored.

E. Scoring

The scoring of M7 is done by checking if each point p in
M7} can be matched against a point in IW. A point p in M7
is declared to have a match if W has a point within a small
sphere around p. The final score is the ratio of matched points
to points in M.

However, different scoring techniques are possible. An
additional weighting factor determined by the number of
points in M ]’5 could be added to capture the lack of evidence
that only a small number of points provides. Additionally the
scoring could be two-way. This is, ensure that not just M}
coincides with W and C' but that C' also coincides with M.
This would guarantee that most points in C' have to actually
be accounted for. Details are discussed in V-B.

V. EXPERIMENTS AND ANALYSIS

To verify our approach, we implemented the algorithm
and tested it on scans obtained through a Hokuyo laser

Fig. 5.

Experimental setup.
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(a) Sample point cloud. Red: cluster classified by VFH as the top of a chair.

(b) False positive detection.

(c) True positive detection.

Fig. 6. Example of false positive and true positive detection.

range finder on a Pan Tilt Unit. Fig. 5 shows an example
experimental scene.

We first created models of a chair and table for 7 distances
and 16 rotations from scans with the laser range finder. The
distances were chosen such that we have a constant vertical
viewpoint change on the obstacle of 9°. For our sensor height
of approximately 1.5m, this resulted in distances of 0.86m,
1.09m, 1.35m, 1.66m, 2.06m, 2.59m and 3.37m. For each of
the distances, scans of the object with a 22.5° rotational step
size were obtained. This resulted in a total of 224 scans of
full models. Out of those models, an additional 1068 partial
models were created, as described above, this was done by
consecutively removing points from bottom to top, left to
right, and right to left from the model. We have used a 10cm
step size and proceeded until the remaining model had a size
between 20-30cm on the axis currently affected by the point
removal. Fig. 3 shows an example.

We took 30 test scans of scenes in an office environment
with random configurations of up to four chairs of different
types and two tables per scan. These scenes had non-furniture
items, walls, unoccluded furniture, and partially occluded
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Dashed line marks the best possible rate, due to clustering errors.

furniture. For example, some scenes had chairs behind and
pushed under a table. An example can be seen in Fig. 6(a).
As shown in the results section, these are difficult cases for
VFH using full models alone.

When comparing the cluster VFH to the VFH database, a
chi-squared distance metric was used. Each cluster from each
test scan was compared against all partial and full models
for a full evaluation.

A. Results

Our algorithm was able to accurately classify every possible
cluster in the test scenes, which included previously unseen
furniture types (e.g. Fig 5), with a 3.3% of the false positives
introduced by VFH with full models alone. VFH with full
models did not even classify every partially occluded cluster
correctly, while providing many false positives.

Fig. 7(a), Fig. 7(b), and Fig. 7(c) show the behavior of
the classification error rates of different algorithms as the
VFH threshold is relaxed. The True Positive Rate (TPR) is
the ratio of actual furniture correctly identified; The False
Positive Rate (FPR) is the ratio of non-furniture incorrectly
identified. Due to clustering errors explained below, not all
objects in a test scene could be classified by VFH, VPOD,
or any other algorithm.

Fig. 7(a) shows the behaviour of VFH with full models on
the dataset and the same algorithm with pre-filtering of clus-
ters, as described in section V-C. Even if the VFH threshold
is relaxed greatly, allowing many false positives, VFH still
isn’t able to correctly classify many clusters due to partial
occlusions. Despite having a more than 40% false positive
rate, plain VFH was not able to achieve the maximal possible
classification rate on our dataset. Even at a low threshold,
the original algorithm still produced a 5% false positive
rate while only classifying 70%. Prefiltering provides only
a modest reduction in the false positives produced by VFH.
Pre-filtering alone does not account for all of the benefits of
VPOD.

Fig. 7(b) shows the behaviour of VFH with and without
partial models. At very low VFH thresholds, the partial
models have no effect. As the threshold increases, the partial
models are allowed to incorrectly match clusters, causing an
increase in the false positive rate relative to full models alone.
But VFH with full models can only match the unoccluded
clusters well and must allow many false positives in order
to match the partially occluded clusters. However, VFH with
partial models is able to classify all test clusters with a 23
point reduction in the FPR. This is because VFH with partial
models can match partially occluded clusters using a tighter
VFH threshold.

Fig. 7(c) shows the behaviour of VPOD compared to VFH
with full models. Fig. 7(c) shows that VPOD, through the use
of partial models as in Fig. roc-partial, properly classified all
test cases. Unlike VFH with partial models, VPOD classified
all test cases with only a 1.3% false positive rate, due to
the VPOD verification step. This allows VPOD to classify
the partially occluded objects without introducing many false
positives.

B. Examples

We disabled the pre-filtering and ICP restriction on y-axis
rotation to obtain the following examples.

Fig 6(b) demonstrates an example of the false positive
detection. VFH classification with partial models classified
the cluster marked red in Fig. 6(a) as being the top part of
a chair. The algorithm then mapped the full chair into world
and scored it. Since the sitting surface is not occluded but
also not visible in the scan this classification was rejected. In
contrast, the table behind the chairs in Fig. 6(a) was matched
by VFH with partial models and verified by the algorithm.
Note that VFH with full models alone would not be able to
classify this table due to the occlusion.

Fig. 8(b) demonstrates a typical example where our al-
gorithm fails if no pre-filtering or two-way matching is
performed. If the cluster is unreasonably large, almost any
furniture piece can be fitted in and have its points being
accounted for. In Fig. 8(b) a chair (green) is being fitted
into a big wall (fitted chair shown in blue). The algorithm
is effectively saying that the chair is lodged in the wall.
This demonstrates the necessity of pre-filtering or two-way
matching in combination with our algorithm.



(a) Example of a chair and table (b) Example of a small model fitted
being clustered together. into a big cluster.

Fig. 8. Examples of where our algorithm fails.

C. Clustering

The clustering distance is currently set to a fixed value.
This can yield results similar to Fig. 8(a) where multiple
furniture pieces have been clustered together, which hinders
classification. In future work we plan to have the clustering
distance be data driven. The basic assumption is that points
on the same object have a smaller relative distance to each
other than points between objects. We therefore plan to
evaluate the distances of points within a cluster and re-
cluster a cluster based on a new, smaller distance. Clusters
that are not classified can be progressively partitioned and
reclassified until either a match is found or the cluster size
is unreasonably small.

Further, many objects such as chairs and tables can appear
as multiple distinct parts due to self-occlusions. For example,
when observing most standard office chairs, we typically
observe the chair’s seat, back, and wheeled base, but not
the central supporting column due to the downward viewing
angle. Similar results can occur as well with other types of
furniture. To address this problem, we plan to project the
clusters down to the ground plane, find the convex hull for
each, and merge clusters that have overlap. This allows us to
consider such objects as one unit, despite being separated by
a significant vertical distance. Again, this step can be verified
by checking if the classification results have improved in
comparison to the single clusters.

D. Runtime

We are performing the occlusion and matching simultane-
ously in VPOD. As such the occlusion and matching together
takes an average of 3.3 seconds for a world scan with about
32,000 points and an average cluster size of 19,000 points. If
runtime is a concern the occluding and matching do not need
to be run against the full point cloud. Rather, it can easily
be determined which parts of the world are affecting the
current occlusion and matching operation and the operation
be performed against a subset of the world. The additional
runtime can be justified in domains that call for the greater
classification accuracy provided.

VI. CONCLUSION

In this paper we presented the VPOD algorithm for detecting
partially occluded objects by matching clusters against seg-
ments of models and verifying our expectations against the
world. VPOD extends the scope of VFH classification to the
core idea of using partial models. To reject false positives,

VPOD verifies expectations about the predicted classification
with the world. We verified the effectiveness of our approach
on real data, showing improvement on cases not handled by
VFH with full models alone.

We are currently working on improving the clustering
algorithm as described above. In addition, we are investigat-
ing techniques of enhancing the clustering through feedback
from the algorithm. It is possible to eliminate points from a
cluster which correspond with points in a matching model
and rerun the remaining cluster. For example the cluster
visualized in Fig. 8(a) was actually classified as a table by
our algorithm, the table could then be removed from the
cluster and the remaining cluster classified as a chair.

Further, we are currently integrating our algorithm into
semantic mapping and NAMO on our robot.

ROS was used for most parts of this work and the code
developed for this project will be made open source.
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