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Abstract. 

Current practice in the calibration of damage models requires downscaling the effects of experimental 

observations from macro/meso to micro. This process introduces uncertainty that is seldom quantified 

to reflect the expert’s confidence in the model predictions. A probabilistic calibration methodology can 

be introduced to overcome this problem. This paper shows a case study based on a damage rock 

mechanics model and triaxial experimental data on sandstone, where this approach is implemented to 

illustrate the impact of varying states of evidence (i.e. model complexity, experimental observations 

and expert’s judgment) on the model predictions. Herein, the probabilistic calibration method relies on 

the use of the Bayesian paradigm to assimilate experimental observations into the probabilistic 

definition of the model parameters. Results of this approach can be encapsulated into a single 

probability distribution or posterior, which is later used to assess the model performance. The proposed 

approach shows the potential to improve current practice in risk analysis, since it allows to tracing 

changes of the model performance for varying evidence conditions in damage-sensitive geo-structures, 

such as nuclear waste disposals, landfills, geothermal wells and unconventional oil and gas formations, 

among others. 

 

Rock; Damage Geomechanics, Probabilistic Calibration; Bayesian Paradigm; Uncertainty 

Quantification; Decision-Making 

INTRODUCTION 

 
One of the major challenges for the implementation of a geomechanical model is the proper 

characterization of its parameters. Nevertheless, it is common practice to ignore some or all the effects 

that evidence variability has on the model calibration resulting in a deterministic selection of model 

parameters. This implies that common sources of uncertainty may have little or no impact on the 

selection of the model parameters. In fact, two of the most frequent assumptions in the calibration of 

geomechanical parameters reflect the belief that there is only one combination of the constitutive 

parameters that can generate model predictions that best approximate the available experimental 
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 2 

observations (e.g. least-squares approach); and that the experimental data used for the model 

calibration belongs to a deterministic process. These assumptions are exacerbated in the case of 

geomechanical models used to simulate multiphysics and multiscale material behaviour (such as 

damage phenomena and thermo-hydro-mechanical-chemical couplings). That is, a large number of 

likely combinations of parameter estimates may yield similar model predictions, which may fit a single 

set of observations:  the calibration of an advanced geomechanical model is ill-posed. 

 

This problem is overcome by the use of a probabilistic calibration approach that can sample 

systematically likely combinations of the model parameters (Robert, 2007). Moreover, when using the 

Bayesian paradigm, it is possible to account for the influence of varying states of evidence (i.e. model 

complexity, experimental observations and expert’s judgment), and to quantify any changes in the state 

of uncertainty.  

 

The Bayesian approach has been used to calibrate numerous geomechanical models, such as 

liquefaction (Cetin et al., 2002), snow avalanches (Gauer et al., 2009), landslides (Ranalli et al., 2009 

and 2013), tsunamigenic rockslides (Eidsvig et al., 2009), mudslides (Medina-Cetina and Cepeda, 

2012), soils’ constitutive models (Medina-Cetina, 2006; Medina-Cetina and Rechenmacher, 2009), 

foundations (You O.K. et al., 2011; Briaud et al., 2011), and more recently multiphysics geophysical 

inversions (Medina-Cetina et al., 2013), and probabilistic damage prediction in rocks (Arson and 

Medina-Cetina, 2013). However, the Bayesian paradigm has never been used to maximize damage 

model performance. The purpose of this work is to introduce a methodology that can be easily 

extended to a broader decision-making process, requiring the definition of optimal experimental 

settings and optimal geomechanical model formulations. 

 
This paper introduces the probabilistic calibration of a damage model capable of simulating 

the evolution of the excavation damaged zone under thermo-hydro-mechanical geological conditions 

(Arson and Gatmiri 2009, 2010). Here, the damaged stiffness tensor is computed by applying the 

Principle of Equivalent Elastic Energy. Irreversible deformation induced by residual crack openings is 

related to damage, and the concept of equivalent stress state is introduced to reduce the number of 

thermodynamic postulates needed to close the formulation (Swoboda and Yang, 1999; Arson and 

Gatmiri, 2010).  
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 3 

 
An uncertainty quantification analysis is conducted assuming two scenarios: a) no availability 

of experimental observations and b) some availability of experimental observations. The latter is based 

on a triaxial compression test performed on dry sandstone (Dragon et al., 2000). This represents a 

simple case study, to illustrate the potential of the probabilistic calibration method to reproduce 

common conditions of exploratory model performance and standard calibration of constitutive 

parameters.  

PROBABILISTIC CALIBRATION 

The probabilistic calibration approach is defined within an uncertainty quantification 

framework UQ. The basis of this UQ framework is founded on the definition of a 'true process’ vector 

d , which in general represents values of observable variables (e.g., deformation, temperature, pore 

water pressure, crack density). Notice that in typical geomechanical problems or processes, d  ‘is not 

known a-priori’. However, if the true process is assumed to be random, d  can be defined as a vector of 

random variables. On the other hand, what the modeller can determine are: (1) a vector of physical 

observations obsd , and (2) a vector of model predictions predd  (prescribed at the same control points 

in space and time). Physical random deviations between d  and obsd and between d  and predd  can be 

simply expressed in the form of a vector obsd  and predd  respectively (Medina-Cetina, 2006): 

 obs obs d d d         (1) 

 pred pred predg   d d d θ d       (2) 

where predd  represents a vector of predictions stemmed from the forward model  g θ , conditioned 

on a vector of control parameters θ , which represent the experimental geometry conditions, material 

properties, initial or boundary conditions, and even hyper-parameters such as statistics defining the 

likely variations of the experimental observations or the model predictions, or even the influence of the 

computational implementation. Similarly to the vector of the process response d , θ  can be defined as 

the addition of a mean θ̂  and a random component  θ , such that: 

 ˆ θ θ θ          (3) 
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 4 

As a result, four different scenarios can be generated after combining the potential sources of 

uncertainty (Medina-Cetina, 2006). These can be generalized from the most uncertain scenario 

represented by  obs pred pred obs
     d d d d , which can be defined by a single uncertainty 

metric pred obs
    d d d .  Notice that this latter formulation is typically used in deterministic 

calibrations such as least-squares for the back-calculation of model parameters (Benjamin and Cornell, 

1970), which is only valid when the model predictions are unbiased along the domain of interest 

(where d  is defined). That is, when the probabilistic expectation of 0obs predE     d d .   

 

In this work, the probabilistic calibration consists in mapping the deformation of a rock sample during 

a triaxial test ( obsd ) onto the damage model’s governing parameters (θ ). The Bayesian paradigm 

formulates the probabilistic solution to the inverse problem as (Robert, 2007):  

 
    

    

,g

,g d

obs

obs

obs

f

f









 

d θ θ θ
θ d

d θ θ θ θ
      (4) 

where   θ  is the prior probability distribution of the model parameters encapsulating the current 

knowledge about the random nature of θ ;   ,gobsf d θ θ  is the likelihood probability density 

function, which defines a measure of the trade-off between the observations and the model predictions 

given a set of parameters θ ; and  obs θ d  is the probabilistic solution to the inverse problem or 

posterior distribution. The computational implementation of this problem follows the Markov-Chain 

Monte-Carlo approach (Robert and Casella, 2004), and requires the setting of hypotheses on the shapes 

of the probability distributions for the prior and likelihood functions based on the expert’s judgement. 

 
 
The case study discussed in this work is based on a thermo-hydro-mechanical damage model 

formulated for unsaturated porous media in geological storage conditions (the “THHMD” model: 

Arson and Gatmiri, 2009, 2010). The damage variable here is the second-order crack density tensor 

(Kachanov, 1992), noted Ω . The THHMD model is formulated in independent strain state variables: 

mechanical strains M , capillary strains Sv  and thermal strains Tv , which respectively conjugate to 
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net stress " ap    , suction a ws p p   and thermal stress Tp  (in which wp  and ap  are the 

liquid water and gaseous air pore pressures, and   is the second-order identity tensor). The 

stress/strain relationships are derived from the expression of Helmholtz free energy, which is 

postulated to be the sum of damaged deformation elastic energies and of potentials related to the 

existence of residual strains after unloading: 

       

   

1 1 1
, , , : :

2 2 2

:
3 3

s M Sv Tv M M Sv s Sv Tv T Tv

S T
M M Sv Tv

g g
g Tr Tr

           

  

  

  

e
Ω D Ω Ω Ω

Ω Ω Ω

  (5) 

 s Ω  and  T Ω are the elastic capillary and thermal moduli, defined from the thermodynamic 

conjugation relationships:   e

s Svs   Ω  and   e

T T Tvp   Ω . Mg , Sg  and Tg  are material 

parameters representing mechanical, capillary and thermal crack toughness. An associate damage flow 

rule is adopted. Damage is assumed to propagate under the influence of tensile mechanical, capillary or 

thermal stress, which are gathered into a unique variable, called the “damage driving force”: 

,   ,   s
d M M S Sv T Tv M M S Sv T Tvg g g g g g


       

       


+

d1 d1Y Y Y
Ω

  (6) 

 
To illustrate the applicability of the proposed method, a simple case study is defined. A first scenario 

assumes the absence of experimental observations, accounting only for the expert’s judgement (Case I). 

Notice that this condition is typical of exploratory model behaviour. Here, based on expert’s 

judgement, probability density functions for the prior of both mechanical and damage parameters are 

formulated, and then sampled independently using a standard Monte Carlo approach, to generate 

varying model predictions (an alternative approach would be to use well-known correlations from 

similar materials, but in that case a ‘hyper-parameter’ would be required to describe the extent or 

strength of the unknown correlation). A second scenario makes use of the previous prior distributions, 

and of newly introduced experimental data, which defines the formulation of a likelihood function. 

This allows for conducting the probabilistic calibration yielding a posterior probability distribution 

(Case II).  
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 6 

In Case II, results of triaxial compression tests performed on dry sandstone under a confining pressure 

of pc=15MPa (Dragon et al., 2000) are used as prior. For simplicity, only Young’s modulus E  and the 

damage parameter Mg  were defined as the control random parameters. In Case I, the vector of random 

parameters was  ,  ME gθ , where the mean of E  (1.17x10
10

 Pa) and the mean of Mg  (-3.2 x10
7
 

Pa) were defined from limited experimental data (Dragon et al., 2000). E  and Mg  were assumed to 

follow a lognormal distribution and an inverse exponential distribution, respectively (for both E  

and Mg : CoV=0.1). Figure 1a shows a probability map representing the independent sampling of 

combinations of E  and Mg , and Figure 1b shows a set of simulations of the damage model 

predictions, with the experimental data on the background as a reference (4,000 realizations of the 

material’s stress-strain response). 

 

Case II introduces the vector of observed data obsd . The likelihood is defined as a varying independent 

Gaussian distribution around the experimental observations, with mean equal to the experimental 

strain-stress values. Based on soil triaxial tests performed on independent samples under similar 

experimental conditions (Medina-Cetina and Rechenmacher, 2009), variance is assumed to vary as a 

linear function of the deviator stress (CoV=0.05). This estimate is suggested to define an uncertainty 

band around the experimental stress-strain curve, which can help to select of reject a set of model 

parameters proposed for fitting the experimental observations. In a more comprehensive study, the 

CoV can be defined as a hyper-parameter, and be included as part of the vector of random parameters 

θ . Figures 2 a-d present results of the resulting probabilistic calibration. The cumulative density 

functions CDF of E  and Mg  (Fig. 2.a and 2.b respectively) show a significant reduction on the 

uncertainty for both parameters after the inclusion of the experimental evidence. This is summarized by 

the joint probability map between E  and Mg  (Fig. 2.c), where a distinct correlation is observed with 

a correlation coefficient ρ=0.3. This map is comparable with figure 1.a of Case I, where there was no 

notion of any correlation between parameters. A sample of model responses (4,000 realizations) with 

the corresponding observations in the background is presented (Fig. 2.d), which further reassures the 

impact of adding evidence into the probabilistic calibration process when compared to figure 1.b. 
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Results from Case II show that larger mechanical tensile strains  

M
 (in the radial directions) are 

expected for lower Young’s moduli. Under similar loading conditions, decreased elastic moduli 

increase indeed  

M
, and therefore the damage-driving force (Equation 6). In order to maintain the 

same damage-driving force (so as to predict the observed mount of damage), Mg  should decrease 

when  

M
 increases. As a result, low values of E  are correlated to high absolute values of Mg . The 

joint probability map obtained with prior observation data (Figure 2.c) highlights this correlation. In the 

elastic domain and for a given state of stress,  

M
 increases linearly with 1/ E . For a given prediction 

on 


d1Y , the absolute value of 1/ Mg depends linearly on  

M  (Equation 6). Therefore, the correlation 

between E  and Mg is expected also to be linear. 

 

The model performance is finally measured by computing the mean and standard deviation of the 

expected behaviour of the process evaluated from the model predictions on Cases I and II (Figures 3.a. 

and 3.b respectively). The means show that on both evidence conditions the model is capable of 

matching the experimental observations. It is worth noticing that although the last few experimental 

observations seem a bit shifted from the model predictions, this is because the model in many cases 

shows brittle failure before the experimental observations, meaning that statistics about the mean at the 

end of the stress-strain response are affected by the varying number of available model predictions. On 

the other hand, a significant difference is found for the standard deviations: the deviation between the 

two states of evidence grows with the specimen deformation, reaching a maximum difference of the 

order of 5 times at about 0.01z  . Which provide a comparison metric that can serve as a reference 

for further interventions in the modelling when new data from additional physics are included, and 

when the model complexity is increased to resemble these new experimental conditions. 

CONCLUSIONS 

A probabilistic approach is proposed to assess the predictive performance of a damage rock mechanics 

model. A probabilistic calibration was performed with no experimental data (Case I), and with results 

from one single experimental test (Case II). Two material parameters were defined as random variables 

(Young’s modulus E and damage parameter gM). The posterior generated in Case II showed first and 
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 8 

second order statistics for E and gM (as opposed to deterministic calibrations which only provide a 

single vector of parameters), from which the model performance was conducted. A comparison of the 

model predictions between these two cases demonstrates a significant reduction of the uncertainty on 

the model predictions from Case I to Case II. The theoretical framework presented in this paper is 

expected to facilitate and improve the reliability and performance assessment of multiphysics and 

multiscale damage models, due its ability to quantify the state of uncertainty for varying states of 

evidence availability.  
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(a) (b) 

 

Fig. 1.  
a. Probability map representing the independent sampling of combinations of E and gM (sampling of light yellow 

nodes in Fig. 1.a). b. THHMD model predictions for a triaxial compression test on dry sandstone in Case I 

(experimental results are represented by bright green node in Fig. 1.b): in Case I, probability functions are 

defined based on expert’s opinion, assuming that the experimental data used for model verification are not 

available a priori).  d  is the deviator stress: z r z cp      d . 
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(a) (b) 

  

(c) (d) 

Fig. 2.  
Fig. 2.a and 2.b contrast the CDFs of E and gM before (prior – Case I) and after (posterior – Case II) introducing 

experimental observations (notice the change in the range for each parameter). Fig. 2.c. presents the probability 

map of the probabilistic calibration of E and gM in Case II. Fig. 4.d introduces the stress-strain THHMD model 

responses based on the sampling of the posterior given in Fig. 2.c (experimental observations plotted in the 

background). 
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(a) (b) 

 

Fig. 3.  
a. Mean of model predictions from Case I (Prior) and Case II (Posterior) compared to available 

experimental observations. b. Standard deviations of the expected model predictions for Case I and Case 

II. 
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List of notation 

 

 

d  Vector of the ‘true’ process (unknown) 

obsd  Vector of experimental observations 

predd  Vector of model predictions 

obsd  Vector uncertainty measures related to the experimental observations 

predd  Vector uncertainty measures related to the model predictions 

 g θ  Vector model predictions as a function of the vector of model parameters θ  

θ̂  Vector of mean estimates of the model parameters 

θ  Vector of uncertainty measures related to the model parameters 

d  Vector of uncertainty measures related to both the experimental observations and the model 

parameters 

  θ  Prior probability distribution 

  ,gobsf d θ θ  Likelihood probability distribution 

 obs θ d  Posterior probability distribution 

Ω  Second-order crack density tensor 

M   Mechanical strains 

Sv   Capillary strains 

Tv   Thermal strains 

"   Net stress 

   Total stress 

ap   Gaseous pressure 

   Second order identity tensor 

s   Suction
 

wp   Water pressure 

Tp   Thermal stress 

 s Ω   Elastic capillary moduli 

 T Ω   Thermal moduli 

Mg
 

Material mechanical crack toughness 
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Sg
 

Material capillary crack toughness 

Sg
 

Material thermal crack toughness 

  Rock solid matrix’s Helmholtz free energy 

Y Energy release rate (to open cracks) / affinity 

E Rock Young’s modulus 

CoV Coefficient of variation 

ρ  Coefficient of correlation 
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