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SUMMARY

In this thesis, we investigate the potential of improving demand management

activities in the global supply chains. In the increasingly global world, commerce is

becoming more complex with an incredible amount of internal and external informa-

tion available for businesses to select, analyze, understand and react. We identify

opportunities for companies to convert data and business information into actionable

intelligence.

We first study the logistics industry with real data. In the Less-than-Truckload

(LTL) market, we analyze an extensive historical shipment database to identify im-

portant factors to estimate LTL market rates. Quantifying critical expert knowledge,

we develop a price estimation model to help shippers reduce their logistics cost and

carriers to better manage their demand. In our second study, we analyze a global

supply chain in the high tech industry. Using the demand dependency structure of

certain products, we identify collaboration opportunities in the ordering practices that

results in increased forecast accuracy. In our third study, we focus on using historical

product adoption patterns for developing good pre-launch forecasts for new product

introductions. Through a normalization approach and algebraic estimation proce-

dures that use intuitive parameters, our models provide opportunities to significantly

improve pre-launch forecast accuracy. Finally, in our fourth study, we develop novel

approaches for modeling and mitigating the impact of demand seasonality in new

product diffusion context. Focusing mainly on practical applications, our research

shows that companies can find innovative ways for turning raw data into valuable

insights leading to better demand management activities.

xii



CHAPTER I

INTRODUCTION

The Supply Chain and Logistics world is in the middle of a big transformation. This

transformation is like Darwin’s natural selection theory, which eliminates companies

that are lagging behind the use of technology, real time information and data-based

decision support systems to give operational, tactical and strategic decisions. In the

internet era, what is lacking is not the data or information, but is the ability to convert

this abundant data and information to meaningful knowledge that helps foster good

decision making. The following research topics are the attempts of establishing such

data-based decision making tools into supply chain and logistics functions of the

global companies.

1.1 Less than Truckload (LTL) Market

With the globalization of supply chains in the manufacturing and retail industries,

there is an increasing need for faster delivery of smaller shipments at lower cost. Less-

than-Truckload (LTL) is a mode of transportation that serves this need by handling

shipments smaller than full truckload and larger than small package. LTL is a $34

billion industry in the U.S. and LTL freight is priced significantly higher per unit

weight than truckload (TR) freight. Given the trade off between higher service levels

and higher cost of LTL shipments, LTL purchasing managers increasingly focus on

getting better rates from the carriers. Lack of transparency and complex discount

practices make the less-than-truckload (LTL) market rates a challenging piece of

business information both for carriers and shippers. In Chapter 2 of this thesis, we

present a regression-based methodology that can estimate the Less-than-Truckload

(LTL) market rates with high reliability using an extensive database of historical
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shipments from the continental United States. Our model successfully combines the

quantitative data with qualitative market knowledge to produce better LTL market

rate estimations that can be used to produce benchmark studies allowing carriers and

shippers to identify cost saving opportunities. Model results also outline and rank

the important factors that affect LTL pricing.

1.2 Platform Products Supply Chains

In Chapter 3, we investigate a form of inter-enterprise supply chain collaboration by

exploring the value of demand information for platform products and the use of this

information in an intra-enterprise vertical collaboration setting. In the semiconductor

industry, suppliers deliver multiple components to the OEMs at different times that

are then assembled as a single platform (i.e. Personal Computer) by OEMs. We an-

alyzed scenarios where we can use this component demand dependency on quantity

and timing as advance demand information to improve forecasting accuracy. Our

approach investigates the benefits of this advance demand information (given from

customer to supplier) under stochastic demand scenarios using a Monte Carlo ap-

proach. We developed an integrated supply chain simulator to quantify the potential

benefits of the resultant forecast improvement on Intel Corporation’s global supply

chain, where the forecast improvements are used vertically within the company to

improve supply chain efficiencies.

1.3 Pre-launch Forecasting using New Product Diffusion
Models

In global economy, growing demand combined with increasing rates of innovation in

both product and process technologies drive shorter product life cycles. Forecasting

product life cycle behavior with the limited information available prior to the product

launch remains one of the most important and difficult challenges faced by many

businesses as they introduce new products. Diffusion models are good candidates

2



for providing comparisons of potential market penetration scenarios using historical

product adoption patterns.

In Chapter 4, we present a practical framework for the analysis of historical prod-

uct diffusion patterns and propose several methodologies for algebraically estimating

new product diffusion parameters. We introduce user-friendly versions of the clas-

sic Bass Diffusion Model with new sets of parameters that are more intuitive and

have natural interpretations in terms of more easily estimated market characteristics.

We test our models on high tech industry data sets and report significant forecast

improvement opportunities.

1.4 Seasonality Considerations for Diffusion Models

In forecasting new product diffusions with short life cycles, seasonality plays a signif-

icant role. Seasonal data series have not been widely used in the diffusion modeling

context as the majority of the studies focus on macro-level diffusion models that use

annual data. Increasingly, managers need to forecast new product diffusions at more

granular level both in product and time dimensions. Product-level diffusion models

that aim to produce monthly or quarterly demand forecasts, therefore require the

proper treatment of seasonality factors.

In Chapter 5, we analyze the impact of seasonality on new product diffusions and

propose models to improve forecast accuracy through better estimation of seasonality

factors. We propose two novel approaches for better identifying and removing season-

ality from the data series. Under both simulated data and real data, we show that we

can significantly improve seasonality factor estimates, especially for short data series

with nonlinear trend and high random error variance, resulting in improved potential

for higher forecast accuracy.

3



CHAPTER II

ESTIMATING AND BENCHMARKING

LESS-THAN-TRUCKLOAD (LTL) MARKET RATES: A

TOOL FOR LTL MARKET VISIBILITY

2.1 Introduction

Today’s competitive marketplace requires companies to operate at low-cost, which

increases both the importance of the market knowledge and the price companies are

willing to pay for acquiring such knowledge. According to the 18th Annual State of

Logistics report by Council of Supply Chain Management Professionals, the logistics

costs add up to $1.31 trillion in the U.S. in 2006, which constitutes 10% of the US GDP

of the same year, following an increasing trend since 2003 when the logistics costs were

$1.01 trillion with 8.6% of the US GDP (23). In order to reduce logistics cost, shippers

are trying to gain a better understanding of the market rates offered by the carriers

or other logistics providers for their services. Negotiations become an important part

of cost savings in this Business-to-Business (B2B) market environment.

With the globalization of supply chains in the manufacturing and retail indus-

tries, there is an increasing need for faster delivery of smaller shipments at lower

cost. Less-than-Truckload (LTL) is a mode of transportation that serves this need by

handling shipments smaller than full truckload and larger than small package. LTL

is a $34 billion industry in the U.S. and LTL freight is priced significantly higher

per unit weight than truckload (TR) freight (Shultz (2007) (74)). Given the trade

off between higher service levels and higher cost of LTL shipments, LTL purchasing

managers increasingly focus on getting better rates from the carriers. However, often

times neither a customer nor an LTL carrier knows how the offered rates compare

4



to the other rates for similar shipments in the industry. Since every shipper-carrier

pair contract their own rates based on many parameters, the knowledge of “market

rates” requires historical shipment data from a variety of shippers and carriers and a

systematic process for analyzing the data.

The LTL mode differentiates itself from the other modes, because the shippers do

not pay for the entire truck/container cost based on “rate per mile”, but they pay only

a portion based on their own freight. The LTL carriers are therefore interchangeably

called “common carriers” in the transportation industry. In LTL, since shipments

belonging to different shippers are carried in one truck, the pricing structure is much

more complex compared to truckload (TL) shipments. For carriers, it is a very

challenging task to estimate what the real costs are for different loads. LTL carriers

use a transportation network with break-bulk facilities and consolidate LTL freight to

a full-truck-load or break a full-truck-load into local deliveries. These facilities incur

extensive handling and planning costs, which are hard to track down to ration to each

shipper. In order to simplify the pricing structure, the carriers use industry standards

called “tariffs”. Based on these tariffs (such as “Yellow500” and “Czarlite”) the freight

is priced based on its origin-destination (O-D) zip codes, its freight class (i.e., freight

class ranges from 50 to 500) and its weight (150 lbs to 12000 lbs). However, these

tariffs are often used as a starting point for negotiations and the carriers usually offer

steep discounts (generally between 50-75%) from the tariffs.

The main goal of this study is to develop an analytical decision-support tool to

estimate LTL market rates. To the best of our knowledge, such a tool currently

does not exist in the industry. Having market rate estimates which consider various

factors such as geographic area, freight characteristics and relative market power of

the shipper (or carrier) will help shippers better understand how much they currently

pay with respect to the market and why, and whether there are opportunities for cost

savings. Shippers can also use these estimates in their network design studies as a

5



source of reliable LTL prices for the proposed new lanes. On the other hand, carriers

would benefit from market rate estimates in pricing their services. A similar-purpose

analytical benchmarking model, Chainalytics Model-Based Benchmarking (MBB),

has been developed by Chainalytics, a transportation consulting firm, for the long-

haul Truckload and Intermodal moves. MBB analyzes the cost drivers for the realized

market rates of shippers that form a consortium and share shipment data. “MBB

only shares information regarding the drivers of transportation costs - not the actual

rates themselves. ... [It] quantifies the cost impact of operational characteristics.”

(18). In our analytical model we not only quantify the impact of captured tangible

factors, but also analyze non-captured market information and provide the full view

of the cost drivers of LTL market rates. Our results show that qualitative expert

inputs - which can be crucial in LTL shipments - can be quantified and used in

the econometric models to further improve the market rate estimations. Suggested

methodology can also be applied to other Business-to-Business (B2B) markets for

improving price estimations with qualitative market information.

2.2 Literature Review

In the Less-Than-Truckload business, rates continue to rise and with the sharp in-

crease in fuel charges in recent years, LTL purchasing managers are looking for differ-

ent ways to reduce cost (Hanon 2006a (33)). A recent poll conducted by Purchasing

Magazine among LTL buyers reveals some suggestions to reduce costs such as using

standardized base rates, always asking for discounts and using online bidding tools

to level LTL rates with competitive market rates. The deregulation of LTL industry

with the Motor Carrier Act of 1980 brought today’s complex pricing structure. Leav-

ing carriers free for setting any discount levels, shipment rates started to be called

with their percent discounts off of the carrier set base prices. Later, fuel charges sky

6



rocketed when added as an additional surcharge on top of the LTL rate. Fuel sur-

charge is stated to be a major problem across the industry, which originally emerged

to protect carriers from sudden increases of fuel costs. However, the LTL industry

lacks a standard fuel surcharge program. FedEx CEO, Douglas Duncan, states that

there is “inconsistency in pricing in the LTL market since deregulation in 1980. Every

customer has a different idea of pricing in their base rates and surcharges” (Hanon

2006b (34)). Grant and Kent (2006) ((29)) survey the methods used by LTL carriers

to calculate fuel surcharges. Extra services provided by LTL carriers such as pallet

handling are charged separately under accessorial charges. Barett (2007) ((7)) ex-

plains the evolution of free market into a very complex pricing structure: “Things

soon got out of control in the newly invigorated competitive marketplace. Carriers

bulked up their base rates outrageously, to support more and more increases in those

customer-attracting discounts, and the process became self-perpetuating. Thus it is

that discounts in the 70th, even the 80th percentile have become the order of the day

now.” Recently, there are further attempts to remove remaining regulations on the

LTL industry. Surface Transportation Board (STB) (formerly, Interstate Commerce

Commission) decided on May 7, 2007 (Ex Parte No. 656) to remove anti-trust im-

munity previously enjoyed by LTL carriers who met at the National Motor Freight

Committee (NMFC) meetings to set classification of goods or at rating bureaus. The

impact could potentially eliminate the NMFC or freight classification of commodities.

Future studies could replace freight class with freight density, which are highly cor-

related. However, there is no final decision on this major change yet (Bohman 2007

(14)).

While there has been little research done to analyze industry practices in pric-

ing the LTL services, researchers investigated other interesting aspects of the LTL

industry. On the operational side, Barnhart and Kim (1995) ((6)) analyze routing

models for regional LTL carriers. Chu (2005) ((22)) develops a heuristic algorithm to
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optimize the decision of mode selection between truckload and LTL in a cost effective

manner. Katayama and Yurimoto (2002) ((45)) present a solution algorithm and cor-

responding literature review for LTL load planning problem for reducing LTL carrier

operating costs. Hall and Zhong (2002) ((32)) investigate the equipment management

policies of the long haul LTL shipments. Murphy and Corsi (1989) ((65)) model sales

force turnover among LTL carriers. Chiang and Roberts (1980) ((20)) build an empir-

ical model to predict transit time and reliability of the LTL shipments. An operations

model constructed by Keaton (1993) ((46)) analyzes and reports significant cost sav-

ing opportunities in economies of traffic density. Many mergers and acquisitions in

the LTL industry can be explained by this potential cost savings opportunity. On

the pricing side, research shows that auctions or bidding projects are important ways

of reducing transportation costs. Elmaghraby and Keskinocak (2003) ((26)) analyze

combinatorial auctions focusing on an application by The Home Depot in transporta-

tion procurement and reported significant cost savings. Smith et al. (2007) ((77))

analyze a US LTL carrier’s shipments with statistical models to estimate revenues

from different customers at different lanes. They compare the regression estimated

expected revenues with actual revenues to identify opportunities for re-negotiations

when there is a systematic difference in estimated and actual revenues. However, their

models do not estimate market rates at individual shipment level, and their analysis

is limited to the single carrier’s dataset. Market rate estimation requires a diverse

set of carriers and shippers with diverse freight characteristics. Although many arti-

cles such as Baker (1991) ((4)) and Centa (2007) ((17)) reveal that there are many

factors considered in the LTL pricing and it is a complex mechanism of convoluted

relationships and considerations, we find no study so far that attempts to analytically

model the LTL pricing structure and estimate individual LTL shipment market rates.

Our research is aimed to fill this gap by analyzing LTL industry data with statistical

methods to provide market rate estimates for the US LTL shipments. Our paper
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focuses on estimating the total line haul cost of transportation that excludes the fuel

surcharges and additional accessorial charges.

2.3 Problem Definition

The LTL Market is fragmented among hundreds of carriers, which are generally

grouped into 3 major categories based on the area they serve: regional, super-regional

and national. The pricing structure of the LTL market is mostly based on contracts

signed by these carriers and the shippers. Unlike the small package (parcel) carriers,

one cannot check the prices online from the web sites of major carriers (i.e., UPS,

FedEx, USPS) and find out the best price for a specific shipment. Even for the major

LTL carriers, prices are negotiated and contracted for at least 1 or 2 years. Hence,

the LTL prices are mostly hidden between the corresponding shipper and carrier.

The same LTL carrier most likely has different negotiated prices for different shippers

based on the desirability of the freight, suitability of the freight to the carrier’s cur-

rent network, negotiation power of the carrier relative to the shipper and many other

factors. Under this complex pricing structure, our objective is to create a robust

model that can reliably estimate LTL market rates for all possible continental US

shipments at any given time, freight class, weight and other factors.

The first challenge to achieve this objective is to obtain enough market data that

has sufficient diversity in freight class, in Origin-Destination pairs (lanes), as well as

in carrier-shipper pairs, in order to represent the current market dynamics. Also the

market data has to have some important LTL shipment information such as origin-

destination, freight class, weight, shipper-carrier information, etc. that has direct or

indirect effect on the final price.

Using Schneider Logistics’ extensive LTL market database, we obtain detailed

information about each LTL shipment that can be used as potential predictors. Our

second challenge is to analyze the pricing structure and find consistent relationships
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of final price with the limited dependent variables under the sparse data reality.

Data: We use a dataset of shipments from February to April 2005 containing

information about origin and destination zip codes, cities and states, the carrier and

shipper names, the weight, the class of the freight, the total line haul price paid to

the carrier, the unique bill of lading number, and some other operational information

such as date of shipment.

The cleaned dataset contains $90 million worth of LTL transactions incurred by

485 thousand shipments during these 3 months, spanning the freight of 43 ship-

pers moved by 128 carriers that covers 2126 state-to-state lanes (92% of all possible

state-to-state combinations inside the continental USA excluding Washington DC).

Cleaning procedure involves removing shipments that are missing or have erroneous

crucial information such as Zip code, freight class and weight. Also, the dataset is

filtered to include shipments that are within reasonable LTL market bounds such

as the weight to be between 100-12000 lbs (higher then 12000lbs is generally more

cost effective with Truckload shipments) and minimum discount is set to 40%. The

discount levels range from 50-75% for the majority of the shipments. With regards to

lane coverage, diversity of transactions among freight class and diversity of carrier-

shipper combinations, we used one of the most extensive data set available in the

industry.

Seasonality: LTL prices are negotiated for long term (i.e., one or two years) and

contracted. Price contracts cover the entire contract period with the same negotiated

prices without including possible seasonal changes of the logistics costs. Therefore,

the seasonality is generally not part of the LTL pricing (excluding the fuel surcharges

that are seasonally affected by constantly changing fuel costs). Seasonality might be

present in the spot market for last minute services such as expedited shipments during

the holiday season. However, for our study we are not considering the seasonality

effect of the LTL market rates. Since we also have only 3 months of data, we may
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not observe any seasonal effect in other parts of the year.

Descriptive Statistics: More detailed statistics are available in Appendix C.1.

The majority of the LTL shipments in the dataset are priced between $65 and $1100;

however, there are also higher priced LTL shipments up to $3000-4000 level. The

average distance of the shipments is 933 miles with an average weight of 1713 lbs.

Freight class changes from 50 to 150 for different types of freight including general

merchandise, industrial lubricants, cereal, automotive spare parts and other goods.

For some of the US regions (i.e., New York City, South Florida, Rocky Mountains),

the cost of LTL shipments might be higher or lower due to special reasons such as

congestion (New York City), supply-demand mismatch (South Florida) and level of

urbanism (Rocky Mountains).

Sparse data: Although we have an extensive database of LTL market transac-

tions with half a million records, almost no two shipments are the same in details.

For example, there exists only one LTL shipment from Atlanta, GA to Chicago, IL

of class 85 that weighs between 1000 lbs and 2000 lbs. Hence, estimating the LTL

market rate for this level of detail is not reasonable with this one shipment.

Table 1 and Table 2 show example summaries of the shipments from Atlanta,

GA indicating sparse data even at a higher detail level. In Table 2, there are no

shipments from Atlanta to New York City; and only 2 shipments to the State of New

York. There are 18 different freight classes and 6 different weight-brackets (weight

interval where the unit LTL base price is the same) and 2304 state-to-state origin-

destination couples (not even going into Zip code level detail). The combination of

these three major characteristics creates 250,000 different shipment types, leaving

less than 2 shipments on average per combination. This excludes the carrier-shipper

details, city and zip code level details, and the geographical area of the shipment.

Next, we present our statistical model that uncovers some important LTL pricing

characteristics.
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Table 1: All shipments from Atlanta to Chicago of class 85.
O City O St D City D St Class Wt Bracket Shipments Avg. c/cwt
Atlanta GA Chicago IL 85 100 to 300 2 $ 24.96
Atlanta GA Chicago IL 85 300 to 500 5 $ 17.09
Atlanta GA Chicago IL 85 500 to 1000 3 $ 13.67
Atlanta GA Chicago IL 85 1000 to 2000 1 $ 12.25
Atlanta GA Chicago IL 85 2000 to 5000 1 $ 10.07

Table 2: All shipments from Atlanta to State of New York.
O City O St D City D St Class Wt Bracket Shipments Avg. c/cwt
Atlanta GA New York NY All All 0 N/A
Atlanta GA All Cities NY 60 All 2 $ 17.50

2.4 Modeling Approach

The currently realized LTL shipment rates are based on the contracts between the

shippers and the carriers. In contract negotiations many different factors are taken

into account, some of which are captured and/or easily calculated such as Freight

Class, origin and destination zip codes, weight and mile. Some others also affect the

price significantly but generally are not captured in the data; for example negotiation

power (i.e., if the company is using a third party logistics company with combined

purchasing power), freight desirability (i.e., whether the freight is stackable or pal-

letized, whether the drivers need to wait long times to get the freight, etc.) or the

economic value that the shipper receives from this LTL service.

Our approach breaks down the above factors in two categories, namely, tangible

and intangible; and then formulates a multiple regression model using both type

of factors to estimate the total LTL service price for the specific shipments. For

the intangible factors, using expert knowledge we develop a scorecard methodology

that captures the information in a score that impacts the final price. LTL experts

could be able to evaluate (i.e., score) the majority of the shippers in the dataset

that corresponds to 75% of the total shipments. Therefore for our model, we use the

scored dataset that contains 363 thousand shipments. More details will be given on
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(a) Total Cost (Theory) (b) Total Cost (Practice)

(c) Unit Cost (Theory) (d) Unit Cost (Practice)

Figure 1: LTL Linehaul cost pricing and discount schedule. All unit discount scheme
based on weight for a given Origin-Destination zip code and freight class.

this market scorecard methodology in the following sections.

2.4.1 LTL Pricing: Discounts and Minimum Charge

In the LTL Market, in order to simplify the pricing and contracting process, the

carriers are using industry standard tariffs. These tariffs are basically tabulated

market rates that give the rate according to freight’s origin-destination (O-D) zip

codes, its freight class and its weight. There are few industry-wide tariffs that are

the most commonly used; however there are 292 internal tariffs that are being used

today according to Material Handling Management online newsletter (58).

Percent Discount: is a discount offered by the carriers off of the posted tariff

base price.
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Weight Discount: is an all-unit discount scheme with breakpoints currently set

at 500 lbs, 1000 lbs, 2000 lbs, 5000 lbs and 10000 lbs. Figure 1 presents how the

weight discounts affect the total and unit base prices posted by the tariffs.

Minimum Charge: is the base price set by the carrier (usually between $40 and

$80) for a specific O-D pair and freight class, such that any shipment that is rated

(discounted) under the minimum charge is raised to the minimum charge. Hence,

there is no shipment that costs less than the designated (in the contract) minimum

charge. In practice, today’s LTL prices are given as a percentage discount and a

minimum charge, on which the carriers and shippers contract based on the selected

tariff, O-D pair and freight class.

In this research we focus on estimating the total price of the LTL shipments.

Therefore our market rate estimates are independent of any tariff. Our aim is to

create a model that will allow us to predict the market rate for any type of LTL

shipment with high confidence given the origin-destination, freight class and weight.

Desired minimum charge level can then be applied if the market rate estimates are

less than certain minimum charge level. Next, we present this holistic approach with

multiple regression modeling.

2.4.2 Regression Model

We propose a process and a model that estimates LTL market rates. Our prediction

process has the following three steps: (1) Regionalization, (2) Multiple regression

model, and (3) Post-regression analysis (Optional).

Geographical regions impact the pricing of LTL services depending on the char-

acteristics of the carriers operating within those regions and their different pricing

policies. In our estimation process we first propose specific regions. Then we run

our multiple regression model that consists of both tangible and intangible predictors

together with Origin and Destination Region information. Finally we allow the users
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to bring their expertise into the analysis by considering other factors that may not

be captured by the general trend in the dataset.

2.4.2.1 Regionalization

With LTL expert knowledge on the current industry practice and the distribution of

regional LTL carriers’ service areas we group the US states into five non-overlapping

regions, namely, West, Mid West, South Central, South East and North East. See

Figure 2 for the regionalized US map. To add some flexibility to our process we create

a regionalization assignment table in a database. This table contains the assignment

information of all Zip3 regions (i.e., an area that is the collection of Zip5 regions with

common first three digits) in the continental US that are assigned to specific regions.

Each Zip3 belongs to a state, and each state belongs to a region as assigned.

If the user prefers to conduct analysis in much smaller regions (therefore more

number of regions), it is possible by only altering the zip3-region table. A Zip3 area

cannot be in two regions at the same time. However, by changing (squeezing) the

regions, there is a trade-off between getting more specific results and decreasing the

reliability of the estimates. Smaller regions mean fewer shipments, which translates

into less variance being captured in the region. Altering the Zip3 assignment table

option can be considered at a later stage to get more specific/precise results if we

have more historical shipments or if we increase the time-span of the data to a longer

horizon.

Regionalization of the data splits the entire database into 5 regions. One LTL

shipment can only originate from one Origin Region and can go to one Destination

Region. Looking at the distribution of shipment origin and destination regions in

Figure 3, we can say that our database of shipments is distributed almost evenly

among the regions and fairly represents the US LTL market. Mid West is the most

industrialized region, therefore it contains the most number of inbound and outbound
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Figure 2: LTL Regionalization map based on pricing structures.

Figure 3: Distribution of Shipments by Origin and Destination Region.

shipments.

2.4.2.2 Multiple Regression Model

We analyzed the initial list of important tangible and intangible factors that impact

the LTL pricing, and then we selected the most important ones to use in our regression

equation.

Tangible factors in the model are Weight (W ), Mile (M), Freight Class (FC),

Origin (O) and Destination (D) Region and Carrier Type (CT ). Instead of using

Origin-Destination Zip codes, we quantified total distance in miles. Freight Class is

the contracted type of freight being carried by the LTL service provider. Carrier Type
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is classified under Regional, Super-regional or National by Schneider Logistics based

on the number of states served by the carrier.

Freight class is found to be less relevant although it is directly included in the

base price tariff calculations. The reason is that the contracted freight class might

differ from the actual freight class that carriers see, so the carriers are not willing to

give big discounts for freight that is contracted with less than its actual freight class.

This phenomenon is observed in several instances. For example, a major retailer

found contracting its freight at a freight class of 50 (lowest freight class), although

corresponding general merchandize has a freight class of 100 or more. In comparison

with the other freight class 50 shippers, this retailer was paying significantly more

for its LTL shipments. We consider and address this issue by creating a freight class

index (Freight Index) that is modeled by expert input to be used as part of Intangible

factors.

Intangible factors in the model: Following intangible factors affect the LTL

pricing but they are not captured in the data set. However, with expert knowledge

it is possible to quantify these characteristics with a survey methodology.

• Freight Desirability: is what makes freight appealing to the carriers. The

reasons why a particular freight type is more desirable to a carrier vary; we

focus on whether or not the freight is stackable, palletized, high density and

whether driver delays occur while handling this freight.

• Negotiation Power of the Shipper: is how much influence the shipper has

with carrier. We measure negotiation power based on whether the shipper bid

its freight within the last year, whether the shipper has high freight spend

(usually above $20M/year), whether shipper uses a consulting company and

uses carrier tariffs for base price calculations.

• Economic Value Estimate: includes additional shipper factors that directly
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influence the pricing structure of the shipment. Whether the shipper is low-cost

oriented, requires time windows or guaranteed delivery and whether it prefers

national carriers are all part of this measure.

• Perceived Freight Class: is the freight class as carrier sees it based on true

product density and not as stated by the shipper.

Tangible factors such as mile and weight are easy to incorporate into the regression

model. However, for intangible factors it is hard to quantify the values of the each

or it is subject to judgment. For example, we may not know how to express the

negotiation power of the shipper or the desirability of a particular type of freight to

a carrier. To overcome this problem, we propose a market scorecard methodology

that considers all the intangible factors and weighs them to get a score for a shipper.

We create Shipper Index to relatively score each shipper based on their characteristics,

and reflect the shipper’s relative position in the market. Similarly, we create Freight

Index, which relatively defines the actual (perceived by the carrier) freight class.

Shipper index (SI): corresponds to a score between 0% and 100% and is cal-

culated by answering the survey questions under three major categories for each

shipper, namely, freight desirability, negotiation power, and economic value estimate.

The higher a shipper’s score, the higher is the LTL price that is likely to be charged

for a similar shipment. These survey questions are designed to be yes/no questions

for simplicity, and they are answered by LTL experts for each shipper in the database.

Some of the questions have a positive impact on the price for the shipper, meaning

that they “decrease” the LTL price, versus others have negative impact. Table 3

shows the 12 yes/no questions (4 for each category) presenting their relative weight

(importance level) within their category, their direction of impact (positive/negative)

and the relative contribution of each category to the Shipper Index.

The Shipper Index is the weighted average of each category scores, and shown in
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Table 3: 12 Yes/No questions within 3 categories used to calculate Shipper Index for
each shipper. Weights of questions represents their importance within each category.

(+) Stackable Freight? 20%
Freight Desirability (60%) (+) Palletized? 30%

(+) High Density? 20%
(-) Driver Delays? 30%
(+) Bid within last year? 40%

Negotiation Power (30%) (+) High Freight Spend? 10%
(+) Using Consulting Company or 3PL? 20%
(-) Using Carrier Tariffs? 30%
(+) Low Cost? 60%

Economic Value Estimate (10%) (-) Time Windows? 10%
(-) Guaranteed delivery? 20%
(-) Prefers Nat’l Carriers over regional? 10%

Equation (1).

SI =
∑
i

ciSi (1)

where i is the category index, Si is the Category Score of category i, ci is the weight

of category i as listed in Table 3. With the current category weights, Shipper Index

is calculated as follows:

SI = 0.6[Freight Desirability Score]

+0.3[Negotiation Power Score]

+0.1[Economic V alue Estimate Score]

Each category score is calculated starting with its baseline and adding and sub-

tracting the question weights that are answered “yes.” The positive question weights

are subtracted, while the negative question weights are added to the baseline. The

resulting category score is anywhere between 0% and 100%, but is a discrete num-

ber as determined by the question weights. Equation (2) shows the category score

calculations.

Si = Bi −
∑
j∈Qi+

wjyj +
∑
j∈Qi−

wjyj (2)
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where

Bi =
∑

j∈Qi+ wj, is the Baseline of category i

i = Category index

j = Question index

wj = Weight of Question j

yj =

 0, if the answer to question j is no

1, if the answer to question j is yes.

Qi+ = Positive Questions in category i

Qi− = Negative Questions in category i

With this type of formulation we allow relative scoring at two levels. The first one is

at the category level. Each shipper has a score that determines their category position

from 0% to 100%. Then these category scores are weighted again at the higher level,

which constitutes the Shipper Index. Shipper Index quantifies the currently non-

captured information on each of the three categories.

Freight Index (FI): is the second component of the relative scoring mechanism.

With data analysis and industry expert knowledge we know that some firms do not

contract with their actual freight class. The dataset captures only contracted freight

class values, not the actual freight class as perceived by the carrier. We incorporate the

Actual (Perceived) freight class into the intangible factors, specifically in the Freight

Index that we calculate. An interesting observation about the freight class is that the

freight class value, which is generally referred as the product category in the industry,

has almost a perfect correlation with the base price if considered as a value. Testing

a widely used industry tariff, we identify the linear relationship of freight class value

with the tariff’s base prices. Figure 4(a) illustrates this relationship with a linear

regression line fitted with 99.7% coefficient of determination (R-Square). Figure 4(b)

illustrates the relationship if the freight class values were taken as categories instead

of numbers. Freight class (FC) values in use today are listed in Table 4.
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Extensive testing of this linear relationship showed that the average increase in

the base price with each incremental freight class value is changing between 1.4% and

1.9% of the starting base price (i.e., freight class 50). This value varies based on origin

and destination regions, but stays practically constant for any given lane. However it

points out a very important relationship of Base Price (P) and the underlying tariff

formula. Fitted regression line has the following general form:

P̂ (FC) = αFC + β

where FC represents the freight class and the slope α is dependent on the intercept

β, as explained by this relationship. Without loss of generality we can assume that

the y-axis starts at freight class 50 (i.e.,P̂ (50) = β). Then the freight class and Base

Price relationship takes the following form:

P̂ (FC) = α(FC − 50) + β (3)

where α/β ∈ [0.014, 0.019].

We propose a method to calculate Freight Index (FI) to be used as one of the LTL

Market Rate predictors. First we define Freight Index (FI) using the regression

equation (3), such that:

FI = P̂ (FCactual) = α(FCactual − 50) + β

Our dataset has a maximum freight class of 150. Therefore, we take freight class

150 as the 100% baseline. For Freight Index (FI) to take a maximum of 100% score

(like the Shipper Index score takes 100% as the maximum score), we need to scale

this regression formula. Therefore, we set FImax = 100.

Let FCmax be the maximum freight class available in the dataset.

Then the following should hold:

FImax = P̂ (FCmax) = α(FCmax − 50) + β = 100
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Table 4: Currently used freight class categories. 18 different classes of freight.
Higher the class, more expensive the LTL shipment is with all the other variables
held constant.

Freight Class Categories
50 55 60 65 70 77.5 85 92.5 100

110 125 150 175 200 250 300 400 500

(a) Freight Class as values (b) Freight Class as categories

Figure 4: Illustration of the linear and non-linear relationship of Freight Class as
“values” and “categories” with the generally accepted LTL tariff Base Price for a
given OD pair and Weight.

Since we do not know the actual distribution of α/β, we pick Mid West Region

(that has the most number of inbound and outbound shipments) as the representative

lane and find that α/β = 0.017 is consistent for Mid West to Mid West shipments.

Substituting it to the above equation we find:

β∗ = 100
(0.017)(FCmax−50)+1

and α∗ = 1.7
(0.017)(FCmax−50)+1

.

Here scaled slope α∗ ensures that regression equation (3) gives a maximum value

of 100. Using the linear relationship, we can re-write the Freight Index formula as

in equation (4). Therefore, for a given Actual (or perceived) freight class value, the

Freight Index is calculated as follows:

FI = 100− α∗(FCmax − FCactual) (4)

Statistical results show that both Shipper Index (SI) and Freight Index (FI) we calcu-

lated for all the shippers are significant contributors of the final LTL price prediction.

In fact, Freight Index (FI) is found to be much more significant than the original

contracted Freight Class (FC).
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Multiple Regression Model: Shipper Index and Freight Index are both de-

signed to relatively quantify each shipper’s market position. Therefore, we create the

following main predictors: Mile, Weight, Freight Class, Shipper Index, Freight Index,

Carrier Type, Origin region, and Destination region. To estimate the market rates of

the specific LTL shipment we propose the following general model:

y = f(M,W,FC, SI, FI, CT,O,D) + ε (5)

where ε is the random error due to the other unobservable factors.

After extensive model building and testing steps, it is found that miles (M) and

weight (W ) are the most important factors. In addition, their interaction effect

(M ∗W ) and the quadratic effect of weight (W 2) found to be significant. The M

and W are also found to interact with the other factors. Therefore, we propose the

following regression model:

y = β0 + β1M + β2W + β3M
∗W + β4W

2 + ε,

where β0, β1, β2, and β3 are functions of the other predictors FC, SI, FI, CT,O and

D. However, β4 is taken as a constant because W 2 has no interaction with the other

factors. We use a linear predictor for each parameter βj. Thus, for each j = 0, 1, 2, 3:

βj = αj0+αj1FC+αj2SI+αj3CT [N ]+αj4CT [R]+αj5O[MW ]+αj6O[NE]+αj7O[SC]

+αj8O[SE] + αj9D[MW ] + αj10D[NE] + αj11D[SC] + αj12D[SE]

Note that the carrier type predictor is replaced with two 0-1 dummy variables CT [N ]

and CT [R], where CT [N ] = 1 when the carrier type is National and 0 otherwise

and CT [R] = 1 when the carrier type is Regional and 0 otherwise. Similarly, four

0-1 dummy variables are introduced for Origin and Destination regions, where MW ,

NE, SC, and SE stand for Mid West, North East, South Central, and South East

regions, respectively. Thus, there are a total of 13 × 4 + 1 = 53 parameters in our

regression model.
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Table 5: Mean and standard deviation of numerical predictors.
Predictor Mean St.Dev

W 1492.4 1801.7
M 1013.3 738.0
SI 27.4 24.3
FI 66.5 11.9
FC 65.2 18.5

Standardizing the Variables: Because the scales of the variables are quite

different, we standardize the numerical predictors such as Weight, Miles, Shipper

Index, Freight Index and Freight Class. This makes the relative comparison of the

coefficients meaningful.

As a general rule, the predictor X is standardized as follows:

x =
X − X̄
sx

where X̄ is the mean of the predictor X, and sx is the standard deviation of X, which is

calculated from the data. Small x is the standardized predictor. Since our predictors

are given as standardized predictors, the corresponding mean and standard deviations

are needed to use the regression model properly. Table 5 provides the necessary means

and standard deviations for convenience.

One needs to standardize any shipment with the details listed in Table 5 to be

able to use it in the regression model. Weight is given in pounds. Any interaction

can be achieved by multiplying the corresponding standardized predictors.

Model Selection: Since the initially proposed model contains 52 variables (and

thus 53 parameters including the intercept), it is difficult to interpret and use in

practice. Moreover, some of these variables may have practically insignificant effects

on the line haul price. Therefore, removing some of them will not adversely affect the

prediction, but can help in simplifying the model. We employ a backward elimination

strategy to select the best model. We start with the full model containing 52 variables

and then we eliminate the least important variable (with the least F-ratio) obeying
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Table 6: Multiple Regression Model Performance. R2 and RMSE
RSquare 0.9374
RSquare Adjusted 0.9374
Root Mean Square Error (RMSE) 37.964
Mean of Response 175.632
Observations 356,425

the hierarchical principles. This step by step procedure reduce the model size down

to 29 variables without significantly affecting the model performance.

2.4.2.3 Model Results and Interpretation

After the backward elimination steps we select the best model that gives high perfor-

mance with minimum number of variables. We observe that the selected model has

very high predictive power that explains 93.7% of the LTL market rate variability.

With such a high multiple coefficient of determination performance and also rela-

tively narrow confidence intervals, we can help the LTL market analyst to identify

a small interval that the given shipment should be priced within, according to the

current market dynamics. When building these models with real data, we know that

our dataset might have some outliers due to different reasons such as expedited ship-

ments (much higher price) and data errors (wrong weight, wrong price, wrong zip

code, etc.) due to non-standardized transaction recording methods such as typing.

After building our model, we remove only the most extreme outliers with the stu-

dentized residual method, if the prediction error is at least 4 σ (i.e., if the absolute

value of studentized residual is greater than or equal to 4). We repeat this procedure

twice and on the average remove only 1.8% of the total data. Table 6 summarizes

the results and Appendix C.1 presents all the regression parameter estimates for each

predictor.

Interpretation of the Model Results and Predictor Importance: One

of the major contributions of our paper is to capture market expertise with market

score indices to improve market rate estimations. We find both Shipper Index (SI)
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and Freight Index (FI) scores to be statistically significant predictors of the model.

Furthermore, Freight Index (FI) turned out to be much more significant than the

original contracted Freight Class (FC). While the t-ratio of FI is 301.9, it is only

30.4 for the original FC and the corresponding FI coefficient in the final model

is 22.4 while FC coefficient is 2.4, which suggests that the Freight Index (FI) we

calculated using our derived formula is almost 10 times more important than the

original contracted Freight Class (FC). These results strongly support the expert

observation that the freight classification practice is manipulated by the shippers to

get a better rate. However, carriers respond this by not giving steep discounts to those

shippers that lower their actual freight class in the contract. Therefore, actual freight

class (captured by FI) turned out to me much more significant than the contracted

freight class (captured with FC). Furthermore, FI and SI made it into the regression

model as the 5th and 10th most important variables according to the absolute effect

sizes presented in Appendix C.1. FC is the 8th most important one. Weight (W ) is

the most important predictor. W ∗M was the second most important, while Miles

(M) is the third most important predictor. Both FI and SI contributed to the model

further with their interaction variables. W ∗ FI was the 6th most important variable

in the model, while W ∗ SI is 7th.

Carrier Type (CT ) also contributed to the model performance by being the 9th

most important variable. As expected, National carriers charge more than Super-

regional carriers, which is more than regional carriers. The regression equation reveals

this effect by having parameter estimates of CT as β(National)> β(Super-regional)>

β(Regional). In the final model, Super-regional type is taken as the base line, so the

coefficient for National Carriers is found to be 10.5, while Regional Carriers coefficient

was -4.4. This shows that there is almost a $15 difference on the average between

the prices of National vs. Regional carriers. This corresponds to 8.5% difference

between National and Regional Carrier pricing considering $175.6 mean of market
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rates. Since CT also has an interaction variable with Weight (W ) and CT ∗ W

variable also presents a similar coefficient structure, we can say that this gap gets

larger for shipments with higher than average weights. This additional difference is

calculated as extra $11.25 for additional 1000lbs weight increase in the shipment from

the mean weight of approximately 1500lbs.

One important LTL market rate characteristic is the all-unit-discount schedule im-

plemented on the weight brackets. Having discounts at certain weight threshold levels

raises the question of W 2 impact. As expected, this phenomenon is also observed by

a significant W 2 parameter (which negatively contributes to the price) being the 4th

most important variable.

Regionalization presents itself by having significant interactions with other predic-

tors. During our backward elimination procedure, Destination Region (D) variables

are eliminated from the model and three groups of Origin Region (O) variables stayed.

This suggests that shipment origin is more important for an LTL shipment than the

shipment destination in pricing. Statistically significant interactions of O with M and

W ∗M are included in the final model. However, we can interpret from the regression

results that region related variables are in fact less important than the remaining

variables in the model.

Following section identifies some of the other factors that can be used to fine-tune

estimations.

2.4.2.4 Post-Regression Analysis

The final part of the LTL Market Rate estimation procedure is the post-regression

analysis. There may be some further improvement opportunities at this stage espe-

cially for special situations. Certain cases may need special analysis such as focusing

on specific cities or states that are known to have higher or lower LTL market rates.
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Below we identify some areas to consider to further refine the market rate esti-

mates:

1. Origin-Destination States: If certain states or cities are known to have

higher/lower rates (i.e., it is cheaper to ship freight out of South Florida than

into)

2. Minimum charge analysis: If there are many “low weight,” “low price”

shipments, then different minimum charge levels will affect the LTL prices sig-

nificantly. It is advised to investigate and use accurate minimum charge levels.

Regression model does not provide minimum charge considerations. However it

can also be easily automated if minimum charge levels are known with enough

confidence.

3. Complementary Network: Certain freight might be really desirable for cer-

tain carriers because it may fit into their network structure and increase their

utilization, while decreasing dead miles. In these cases, carrier can offer steeper

discounts.

The above list of special analyses is a limited catalog. However, there might be

other cases that require further investigation. If the post-regression analysis is being

done because of a benchmarking study, then the analyst should understand the nature

of the shipments (including shipper and freight) as well as the nature of the business

that the shipper practices. Some topics to keep in mind during benchmarking studies

are covered in the next section.

2.5 Benchmarking LTL Shipments

One of the most valuable uses of price predictive models in the LTL industry is the

ability to provide market rate benchmarking studies. For most of the companies that

use LTL as part of their logistics activities, LTL constitutes one of the most costly
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items in their expense list. The road for shippers to reduce cost in their LTL network

passes through self-awareness within their market, which is achieved by industry

benchmarking studies. For shippers with high LTL spend such as large retailers or

big auto makers, a few percentage point reductions in their cost might translate into

millions of dollars of annual savings.

Today, benchmarking studies are mostly conducted by experts with limited market

knowledge. If certain 3PL companies or freight payment companies have market

knowledge on certain lanes, they can provide benchmarking services to their clients

for these specific lanes. Shippers may even be able to create coalitions to leverage

each other’s knowledge. The prediction model we present in this paper provide a

significant value both from quality and coverage perspective (analytical model that

considers tangible and intangible factors to estimate market rates for entire US) and

resource perspective (automation of benchmarking process saves very valuable expert

time).

The following simple benchmarking algorithm illustrates the automation of the

benchmarking analysis.

Simple Benchmarking Algorithm:

1: Prepare the data set to be benchmarked against LTL market

1.a. Calculate “mile” column for each shipment using O-D Zip codes

1.b. Calculate Shipper Index and Freight Index for the shipper and add to

dataset

2: For each shipment in the benchmark dataset find the market rate estimate

2.a. Standardize the numerical predictors with given mean and st.dev.

2.b. Use standardized predictor columns to generate market rate estimate

3: Compare the actual LTL payment with the market estimates
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3.a. Compare the mean

3.b. Find the position in the confidence interval

4: Combine the benchmark dataset with market estimates and report

At Schneider Logistics, benchmarking algorithms are automated with user inter-

face using MS Access software package. This application enables the analysts to

benchmark thousands of client shipments with the current market rate estimates

within seconds on a shipment-by-shipment basis and results can be easily classified

and reported from different perspectives. For example, it is possible to report the

benchmark results for different regions, showing the shipper’s performance with re-

spect to market for similar freight. A shipper therefore can see which regions to focus

on for cost savings. Another reporting can be done across the same industry. If the

market data includes other companies within the same industry, then clients can see

their position within this market. Benchmarks can also show the purchasing effective-

ness of 3PL companies by comparing their current customers with other companies,

therefore showing the extra potential cost savings for 3PL’s customers.

Shipment level benchmark studies enable analysts to provide tailored and specific

benchmarks of interest. Combined with estimation models, benchmarking algorithms

are clearly a market visibility tool. It can be used to research market dynamics/trends

over time, to find market areas for developing successful new product offerings and

to enable greater negotiation leverage for both shippers and carriers.

2.6 Conclusion

The main contribution of this study is the development of a decision-support tool and

a procedure for estimating LTL market rates with minimum manual intervention. We

propose a powerful estimation model that explains a significant majority of the market

rate variability. We consider both tangible and intangible factors important to LTL

pricing and provide a scorecard method to quantify intangible factors to be used in the
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multiple regression model. Finally, we present additional opportunities for prediction

improvement for special cases as part of the post-regression analysis step.

One of the most beneficial areas to apply our predictive model is in benchmarking

studies. Our research identify best ways to exploit the predictive power of regression

models. Benchmarking algorithms provide additional value to the prediction mod-

els. It enables analysts to benchmark any company’s historical LTL shipments with

the same-dated market data. This will allow the shipper to realize its market per-

formance and position from many different perspectives, potentially leading the way

to extensive cost savings. Benchmarking algorithms offer the flexibility for analyz-

ing the market performance from multiple points of view. Algorithms compare the

shipper performance with the market rate estimates on a shipment-by-shipment basis

instead of giving an overall financial benchmark, which allows the generation of many

performance reports based on any factor or parameter. Automation of these models

and algorithms makes the process of market research much faster. This creates an

opportunity to reduce the cycle time of benchmarking studies, decreasing the time

required from experts and making it possible to serve many potential clients with a

consulting type service offering.

Overall, the ability to easily estimate and benchmark LTL market rates is a very

beneficial market visibility tool that allows analysts to do extensive research on the

LTL market. For 3PL companies, it can be a revenue source for consulting service

offerings in terms of benchmarking studies. Also it can be used as the source for

accurate market rates for doing network design studies. This research can also serve

as the baseline for potential market rate analytics projects for other B2B markets such

as truckload, small package, etc. For shipper companies, this tool can bring much

better market visibility. Even without owning the extensive LTL market data, most

up-to-date regression models can serve the shipper needs. For carriers, the market

knowledge brings a serious competitive advantage. Knowing the pricing of US LTL
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market, carriers might benefit in pricing their own services or offering new services

that can be successful in the market.

We consult with LTL market experts in order to understand the most important

factors in LTL pricing. The market score mechanism proposed as part of our ap-

proach can further be revised if the conditions on the market change. Weights in the

suggested formulas can be updated to give better correlations with the LTL prices,

or more survey questions can be added if necessary. The market scorecard method is

by no means the absolute way of quantifying the intangible factors. For our research

we find that the market scores (i.e., SI and FI) are highly correlated with the LTL

prices, which in turn improves the predictions. Future research can look into different

ways for quantifying the non-captured factors and compare with currently proposed

methodology. Similar market scorecard methods can also be tested in different B2B

markets to validate the improvement potential in prediction power.

Based on the size of the data set and distribution of shipments on different lanes,

future LTL pricing studies may consider adjustments to the regionalization map.

Regionalization step is proposed to distinguish regional pricing differences. For larger

data sets, altering the regionalization assignment table (to get more, but smaller

regions) might be considered given that smaller regions still contain enough diversity

for number of carriers and shippers as well as different freight classes involved. Smaller

regions may help to reduce errors of predictions, but this may cause the loss of

important information otherwise captured with larger regions.
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CHAPTER III

VALUE OF DEMAND INFORMATION IN PLATFORM

PRODUCTS SUPPLY CHAINS

3.1 Introduction

In this research, we focus on using advance demand information as a tool to improve

forecast accuracy and gain insights on production and inventory planning of platform

products. We define “platform product” as a group of components (or products) that

are separately available to the market, but designed to perform better when assem-

bled and/or used together. Our motivation is the latest trend in the semiconductor

industry, that is projected to have over $250B in sales in 2006, to provide platform

products that consist of components (i.e. CPU, Chipset, Wireless card) that are val-

idated to work together more efficiently in terms of higher performance with lower

energy consumption.

“Platforms” first emerged as a marketing concept in Semiconductor Industry.

The component suppliers were already supplying different components to the Original

Equipment Manufacturers (OEMs) that produce the final product, which is a personal

computer (PC). Suppliers wants to sell the whole set of components, whereas the

customers have the option of buying different components from different suppliers.

Later, this marketing concept started to show itself in the design of these components,

such that now the several components that go into a PC were carefully configured to

work together more efficiently, namely with less energy and more performance.

Platform products have two dimensions. The complementariness dimension is de-

termined by the components that complement each other to form a platform product
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(i.e. processor, chipset and wireless card). On the other hand, the substitutabil-

ity dimension is determined when the substitutable components such as different

variants of a particular component (i.e. processors with different speeds or energy

consumption levels) can be used in a platform. For simplicity, we will analyze the

complementariness dimension, and leave the other dimension as a future research di-

rection. The customers (i.e. OEMs) can buy all the complementary components from

the same supplier to form a platform, or they can purchase some of the components

from different suppliers. For a platform product supplier (i.e., Intel), this means an

ever changing market environment with different demand levels of different compo-

nents, since the market is mostly driven by continuously changing/decreasing prices

and fierce competition for market share. Some of the demand volume for individual

products/components comes from customers who eventually purchase all the compo-

nents to build a platform. However, there are also customers who purchase only some

of the components that go into a platform, but not all, as they may purchase the

other components from other suppliers (For instance, Dell buys Intel processor and

chipset but uses its own brand wireless card for some of its mobile platforms). Hence,

the demands of the components are partially dependent on each other. Generally

suppliers have no demand information at the platform level, i.e., they do not capture

whether a customer will purchase all the components in a platform, or only some,

and they manage their component supply chains independently by forecasting each

component demand separately. The lack of demand information at the platform level

has two primary causes: (i) Customers prefer to purchase the components at different

times, depending on when they are needed in the production process. They also want

to benefit from price reductions over time. Hence, they do not want to commit to

purchasing all the components in the platform at the beginning, even if they intend

to do so over time. (ii) The ordering and planning systems in many companies can

handle orders at the component level, but not as a “batch” order which includes
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multiple components.

In Semiconductor Industry the manufacturing processes are very complex and

consist of several steps with total manufacturing lead times as long as 3 to 4 months.

Long lead times combined with high demand uncertainty make the impact of forecast

error more detrimental and the coordination of component supply decisions is there-

fore harder. At each manufacturing step, the demand information can only be used

to a minimal extend to affect the output of the process, because the processes do not

allow postponement of product differentiation to later stages. Therefore, planners

need to make production planning decisions long before they have reliable demand

signals from the market.

Our goal in this paper is to answer the following research questions:

• If supplier can get demand information at the platform level (i.e., customers “or-

der as a kit” versus “order as components”), how does this information impact

the forecasting and production/inventory management process, the forecast ac-

curacy and inventory levels?

• How can we quantify the costs/benefits of the availability of advance demand

information to the supplier?

We look at this information at two levels: A customer orders the platform as a kit,

specifying (1) the platform quantity and (2) the timing of when she wants to receive

each component. In this setting, when the customer places a platform order, the

supplier will know the delivery times and quantities of the corresponding components

with some confidence, taking into account the possibility of order changes and/or

cancelations. Our model will assess the value of this advance demand information for

the whole supply chain, considering the anticipated forecast improvements, and the

supply chain inventory impact of this improvement.

The rest of the paper is organized as follows. In Section 3.2, we talk about related
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literature specific to platform products and platform strategy. We also mention ad-

vance demand information and nonstationary demand modeling literature. In Section

3.3, we present our Monte Carlo Model for analyzing the forecast improvements with

extra demand information using platform ordering. We also present our numerical

study on Intel Corporation’s global supply chain, where we quantify the potential

forecast improvement scenario. We give the results in Section 4.5.2.1, and discuss the

outcomes and future research in Section 3.5.

3.2 Literature Review

There are different streams of literature related to our research. We are focusing

on quantifying the value of a certain type of advance demand information. The ad-

vanced demand information literature offers important insights and directions for our

research. Since we are analyzing the value of this extra information on the platform

products, we are particularly interested in the platform products supply chain re-

search. Although many previously published papers are related to our research from

different perspectives, they are only similar in certain parts. Below we are presenting

the different literature as they relate to our research.

Platform products and their supply chain: Platform products are typically

investigated under product variety management, and Platform is defined as the shared

common components of a product line that is used as a strategy to reduce the cost of

manufacturing, lowering safety stock and having more accurate forecasts (Huang et

al. 2005 ((36)), Meyer and Lehnerd 1997 ((62))). Different focus areas are explored

under the platform products including more systematic approaches like optimizing

supply chain configuration and design (Huang et al. 2005 ((36)), Kim et al. 2002

((47)), Salvador et al. ((73)) and Park 2001 ((68))). Other more focused areas are

lower safety stock (Baker 1985 ((5)), Dogramaci 1979 ((25))) and simplified planning

and scheduling (Berry et al. ((13))).
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Generally speaking, enabling the platform products and the product commonality,

suppliers can deal with the “sku proliferation” or “product variety” problem by pool-

ing the common components, which improves the forecast accuracy and decreases

safety stock. Our approach for platform products is focusing on forecast improve-

ments using the demand dependency of the components that forms the platform. In

other words, we are focusing on the common parts of the platform that becomes dif-

ferent products with the addition of modular parts. The example from the computer

industry is that the PCs that are based on Intel Centrino Platforms. Intel Centrino

Platform has 3 components (i.e. CPU, Chipset and Wireless Card) and a PC that

is based on this platform can have multiple variety of hard-disk sizes, memory op-

tions and others modular options. Most of the literature focuses on the platforms as

it relates to the interaction of the platforms with the other (modular) components

that creates the product variety. For instance the PC Platform that Huang et al.

(2005) ((36)) analyze is consisting of a platform subassembly and modular option of

having either DVD Drive or CD-RW. Our research is focusing solely on the demand

dependency of components within the platform.

Advance Demand Information and Forecasting: This area of research con-

tains numerous papers on the benefit of advance demand information in the inventory

systems. Literature review of this field can be found in Gallego and Ozer (2002) ((28))

and Benjaafar et al. (2007) ((12)). The general focus of this growing literature is to

find optimal inventory/production policies under various setting of having advance

demand information. Although having an insight about optimal policies under differ-

ent settings is important, application of these optimal policies to the real life supply

chains are very limited due to the assumptions being involved with the mathematical

models and quantifying the real benefits to the supply chain may not be represen-

tative. Our research is only focusing on forecast error improvements under certain

advance demand information setting (that comes with customer platform orders) and
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tries to quantify the impact of this setting on a real supply chain using a represen-

tative supply chain simulation model. We analyzed a forecasting system where the

orders are arriving periodically and give information about both the immediate orders

(first delivery of platform components) to be filled from stock and some information

about the future orders (remaining components of the platform order). The informa-

tion about future orders has two vectors. First, the timing of the future orders, is

known and constant , and it depends on the manufacturing process of the customers

(i.e. customers require Chipset first to install onto the motherboard, they will later

require the wireless card and CPU as the last steps of their manufacturing process).

Second, the quantity of the future orders, which may change over time due to or-

der updates or cancelations. In our paper, the benefits of having this information

about future orders is used in the forecasting process and the forecast accuracy im-

provements are found using a Monte Carlo Simulation approach with demand being a

nonstationary process that change over time with the product life cycle phase of the

product and the seasonality of the demand. Advance demand information literature

focusing only on the forecasting accuracy improvements is limited. One approach of

getting extra information about the future demand is using leading indicator prod-

ucts. Time-lagged correlations of certain products might give information about the

future demand structures of other products. A study on this approach can be found

in Wu et al. (2003) ((86)).

Modeling nonstationary demand: Nonstationary demand is a part of real life

systems. Compared to the stationary demand systems, considerably fewer researchers

use nonstationary demand in their supply chain and inventory models (Graves and

Willems 2005 ((31))). This type of demand is especially applicable to high tech indus-

try where the products have short life cycles and we generally do not observe steady

demand. The techniques used to model nonstationary demand vary. Some papers

use integrated moving average techniques (Graves 1999 ((30))), some others employ
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Markov-modulated (state-dependent) Poisson demand process (Chen and Song ((19)),

Abhyankar and Graves 2001 ((1))). Johnson and Anderson (2000) ((40)) employs

nonstationary demand that has product life cycle pattern. One of the techniques for

generating nonstationary arrivals is by White (1999) ((84)), where bivariate thinning

approach is used to model customer arrivals to an electronic store that changes by

the day of the week and the hour of the day. In our paper, we modified this final

methodology to fit into supply chain context, which allowed us to model the product

life cycle pattern as well as the seasonality of the demand.

3.3 Model

In order to analyze platform ordering scenario, “Kits vs. Components”, and quantify

the benefits on the supply chain we developed two separate models. The first model is

a Monte Carlo Simulation approach, which analyzes the forecasting process in the as-

is scenario (Components ordering) and the to-be scenario (Platform ordering), then

compares the forecast errors and calculates the savings. For a numerical case study

we developed the second model, which is an end-to-end supply chain simulation of

Intel’s global supply chain. This model is integrated with optimization models to

dynamically give production planning decisions during the simulation run. This way

it represents the real system “planning” and “execution” cycles. We use this model

to quantify the supply chain wide impact of forecast error savings achieved with the

platform ordering scenario. Section 3.3.1 proposes a Monte Carlo model. In Section

3.3.2, we describe the Platform Supply Chain Simulator, which is an integrated supply

chain simulation model we used to quantify the forecast accuracy improvements we

calculated from the Monte Carlo Model.

3.3.1 Monte Carlo Simulation Model

Monte Carlo Simulation is used to test the forecasting system under stochastic de-

mand. To be able to conclude that a certain way of forecasting is better than the
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other, we cannot rely on historical demand information, since the historical demand

is only one realization of the underlying stochastic demand process. We need multiple

replications to test two different forecasting scenarios under consideration (i.e., with

or without platform orders). This enables us to find whether one method is consis-

tently better than the other. Since the difference between two forecasting methods

is coming from the usage of advance demand information, we will use a simple fore-

casting technique (i.e., single exponential smoothing) and enable the use of this extra

information in the to-be scenario forecasting.

3.3.1.1 Model structure and assumptions

A Monte Carlo Simulation model is constructed for the numerical study of a platform

product under consideration. This platform consists of three components: Chipset,

Wireless Card and Processor (CPU). There is one supplier of these components and

aggregated demand of many customers. We are given one year of historical demand

data for each of these components. We assume that in the as-is scenario, each com-

ponent demand is forecasted independently on a week to week basis with the reveal

of new demand information at each demand period. For customers ordering these

components to build a platform, we assume that they need to order the Chipset first.

Then they order the wireless card, and finally CPU order is placed, which is the cur-

rent industry process. However, the timing information is not known to the supplier.

On the other hand, not all the components from this supplier are assembled to be a

platform on the customer site, but for instance CPU components can be assembled

with a competitor’s chipset. So overall, there is no exact one-to-one relationship in

component quantities.

To-be Scenario: In the to-be scenario, currently not-captured platform orders

will be captured. Therefore, the customers place a platform order by specifying the

quantity and the time when they need each of the components. For simplicity in the
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numerical study, we assume that the lead times between Chipset and Wireless Card;

and between Wireless Card and CPU shipments are 2 weeks. Based on the historical

data, we understand that the total shipment quantities show this pattern: Wireless

Card < Chipset < CPU. We assume that the weekly platform orders should follow

the time-lagged minimum rule, such that the platform order quantity cannot exceed

the minimum quantity of the ingredient components that corresponds to the same

platform order time (i.e., Platform(t) ≤ min{Chipset(t),Wireless(t+ 2), CPU(t+

4)})

In this setting, we only get advance demand information for Wireless Card and

CPU orders, because the platform order’s first delivery is the chipset and chipset gives

the advanced demand information about the Wireless card and CPU. We assume that

platform orders are uniformly distributed between 80-90% of the minimum quantity,

which is later relaxed for sensitivity analysis. Our final assumption is that a platform

order cannot constitute perfect advance demand information for the future component

orders. In other words, we allow for randomness even for the remaining parts of

platform order, such that after the delivery of the Chipset part, we allow a quantity

change in the remaining component demands by ±10% per week until its delivery

time. This corresponds to a uniform demand of 80-120% for Wireless Card and 60-

140% uniform demand for CPU part (i.e., Pwireless(t) ∼ Uniform(0.8×Platform(t−

2), 1.2× Platform(t− 2)). This randomness is due to order cancellations and order

updates that the customers are allowed until last minute, or it can be attributed to

the randomness in manufacturing lead times (i.e., timing information), and it is a

conservative demand assumption.

As the forecasting model, we selected single exponential smoothing for its sim-

plicity and used it with a selected parameter of α = 0.7. This parameter selection

is preferred based on the performance of the method on the historical demand data

that minimized the mean absolute percentage error (MAPE) on CPU families for all
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α = {0.1, 0.2, ..., 0.9}.

3.3.1.2 Stochastic Demand Generation with Bivariate Thinning

The idea of Monte Carlo Simulation is to test two forecasting methods under random

demand. Therefore we need to characterize the randomness of the demand. In semi-

conductor industry, the demand is almost never stationary. It is observed in many

instances that the new technology products follow a short life cycle pattern with quick

ramp-up, high volume and end of life periods that is mostly single modal. This type

of demand is nonstationary as it is a time dependent process.

We modeled our demand arrivals based on the approach by White (1999) ((84))

that is nonstationary demand process with bivariate thinning. In his paper, White

shows that nonstationary Poisson process with bivariate thinning is a good approach

in modeling customer arrivals to an electronic store. Time dependent arrivals are

generated independently by day and by hour with a maximum arrival rate and the

thinning factors. This methodology was also shown recently to be appropriate for the

simulation of arrivals in traffic by Woensel (2006) ((85)). We employ the same base

method with some modifications to fit into the supply chain context for modeling the

demand arrivals to the system over a product life cycle. Therefore, we have leveraged

the thinning factors from day-hour pairs to the quarter-week pairs.

Modifications: There are two sets of modifications on the random arrival gen-

erations with bivariate thinning. The first set is due to the nature of demand in

Semiconductor industry. We do not assume that the arrivals (i.e. weekly demand

arrivals) follow a Poisson process as in White (1999) ((84)). Our nonstationary de-

mand process still follows the piecewise-constant rate, but we generate our random

demand with normally distributed noise term around the piecewise-constant mean

demand that changes by the quarter and by the week. The randomness is therefore

symmetric around the mean, which is coming from Normal(0, σ2(t)), where σ2(t) is
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the time dependent variance of the demand and calculated from the data for each

quarter (i.e. σ(1) is the standard deviation of the first quarter demand). To be able

to prevent extreme/unlikely demand quantities, we truncate the demand at ±σ.

Under this definition, the demand is nonstationary Normal(µ(tij), σ(t)2), where

• tij represents the ith week within jth quarter and i = {1, ..., 13}, j = {1, 2, ..., Q}

• µ(tij) is the nonstationary demand mean that is piecewise constant at each

{i, j} pair

• σ(tij) = σ(tj) for all i = {1, ...13}, so the demand variance is constant within

the quarter

• Truncation happens at [µ(tij) − σ(ti)]
+ and [µ(tij) + σ(ti)] for all i, j where

[x]+ = max{x, 0}.

• µ(tij) is calculated with bivariate thinning factors ηi (weekly) and δj (quarterly)

with the following equation:

µ(tij) = µmaxηiδj (6)

where

ηi =
x̄i

max(x̄i)
∀i ∈ 1, ..., 13 (7)

δi =
x̄j

max(x̄j)
∀i ∈ 1, ..., Q (8)

µmax = m(tij) for(i, j) with ηi = δj = 1 (9)

Here x̄i is the mean weekly demand for each week i = {1, ..., 13} and x̄j is the

mean quarterly demand for each quarter j = {1, ..., Q}. As proposed by White (1999)

((84)) these are calculated as:

x̄i =
1

Q

Q∑
j=1

x̄ij ∀i ∈ 1, ..., 13 (10)
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x̄j =
1

13

13∑
i=1

x̄ij ∀j ∈ 1, ..., Q (11)

Where x̄ij is the mean arrivals for given period {i, j} and Q is the number of

quarters that we have data.

Our second set of modifications to the method emerges due to this technique being

used in a supply chain context. For a given product life cycle demand, we do not have

a second chance to observe the same demand process. It is not like the electronics

store, where we can observe multiple Monday morning 10-11 a.m. periods each week.

Therefore we cannot see the same life cycle phase of the product (quarter and week)

more than once. So we replace x̄ij with xij, which is the only observed demand of a

given product in quarter j and week i. However, these observations are still smoothed

with the bivariate thinning factor calculations. One way to get multiple observations

is to use multiple products, but in general every product has its own demand and

product life cycle characteristics that may differ from each other. So this analysis is

ad hoc to the product for which we have demand data, but still gives insights about

the general short life cycle semiconductor products and the value of advance demand

information.

Having a short life cycle impacts the weekly thinning factor calculations. The

weekly patterns within the quarter may be substantially different at each stage in

the product life cycle, namely in ramp-up, high volume and end of life. Like the

separation of weekday data from weekend data in the analysis of White (1999) ((84))

and Woensel (2006) ((85)) due to distinct pattern differences, we also divide the data

into three life cycle phases: (1) Ramp-up, (2) High Volume (HV) and (3) End Of

Life (EOL). Each phase provide data for calculations of three separate sets of weekly

thinning factors {ηRamp, ηHV , ηEOL} and these weekly thinning factors are only used

for the respective quarters that are assigned to that life cycle phase. For our numerical

study, one of the products has total of Q = 11 quarters in the life cycle, first 3 of
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them are assigned to ramp-up, following 6 is high-volume and the remaining 2 are

assigned to end-of-life phase with expert judgment. This modification improved the

fit of the model to the actual demand data by reducing the mean absolute error by

45% while providing much better fits on both the ramp-up and end-of-life tails of the

demand curve.

The final modification is for the quarterly thinning factors. In his analysis, White

(1999) ((84)) used bivariate thinning for staffing decisions in an electronic store.

Therefore, the ad hoc formulation for thinning factors helped to get a smoothed

mean arrival pattern and it is aimed to staff the store with the right number of sales

associates at the right time. Looking at “mean arrivals” for the day they can optimize

the trade off between service level and number of sales associates. In the supply chain

context, service level is more related to the peak demand instead of mean demand.

Both the capacity decisions and demand fulfillment have to consider the demand

upsides to be able to provide high service levels. Also in an electronic store, or in any

kind of other retailer, customer will only experience a longer wait time in the cashier

due to low staffing, however in the demand fulfillment case if there is not enough

products on the shelf the customer may be lost to competitor and the cost of this

shortage is much more detrimental. Therefore, in order to capture the demand peaks

better we modified quarterly thinning factors δj by changing the “mean” arrivals

with the “peak” arrivals. And we observed that the model gave a better fit to the

actual data than using the mean arrivals in the thinning factor calculations. In our

numerical study, the mean absolute error is further reduced by 22% with this final

modification resulting in a total of 57% reduction of the mean absolute error over the

original method and better capturing of the demand peaks.

With all the modifications applied, the nonstationary random demand for week i

of quarter j (Dij) is generated with the following formulas from top to bottom:
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Dij ∼ Normal(µ(tij), σ
2(tj)) (12)

where

µ(tij) = µmaxη′ijδ
′
j (13)

η′ij =



ηRampi =
x̄Ramp

i

maxi(x̄
Ramp
i )

, i ∈ {1, ..., 13} j ∈ Ramp;

ηHVi =
x̄HV

i

maxi(x̄HV
i )

, i ∈ {1, ..., 13} j ∈ HV ;

ηEOLi =
x̄EOL

i

maxi(x̄EOL
i )

, i ∈ {1, ..., 13} j ∈ EOL.

(14)

δ′j =
xPeakj

max(xPeakj )
, ∀j ∈ {1, ..., Q} (15)

µmax = µ(tij), for η′ij = δj = 1 (16)

x̄Rampi =
1

|Ramp|
∑

j∈Ramp

xij, ∀i ∈ 1, ..., 13 (17)

x̄HVi =
1

|HV |
∑
j∈HV

xij, ∀i ∈ 1, ..., 13 (18)

x̄EOLi =
1

|EOL|
∑

j∈EOL

xij, ∀i ∈ 1, ..., 13 (19)

xPeakj = maxi{xij} ∀j ∈ 1, ..., Q (20)

The Monte Carlo Simulation Model is designed to run for both “as-is” and “to-

be” scenarios to use the same random numbers. Hence the use of random numbers

is synchronized to give a more precise comparison of the two alternative systems.

The model is run for 1000 replications to test the systems under almost all possible

demand scenarios. The model algorithm logic is as follows:

Monte Carlo Simulation Algorithm:

1. Load the component demand data for 3 components
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2. Construct the piecewise constant demand mean for all time periods

3. Construct the upper and lower truncation limits based on demand variance

4. Loop until replication number = 1000

(a) Generate random demand for planning horizon based on the nonstationary

demand model with bivariate thinning probabilities

(b) Generate random platform orders based on the minimum rule assumptions

(c) Component Scenario Forecasting

i. Forecast the component demand stream with as-is model

ii. Calculate forecast error

(d) Platform Scenario Forecasting

i. Forecast the platform and independent component demand stream

with to-be model using Advance Demand Information

ii. Combine the forecasts into component forecast

iii. Calculate forecast error

(e) Compare forecast errors and store results by replication number

5. end Loop

6. Publish 95% Confidence Intervals on forecast error savings

3.3.2 Platform Supply Chain Simulator

Our objective is to test different forecasting scenarios (with and without advance

demand information) and quantify its benefits on a real supply chain. Therefore we

build a simulation model that is automated to interact with optimization models for

dynamic production planning decisions in order to mimic Intel’s Global Supply Chain
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realistically. For Intel’s global supply chain, we model flow of materials, order fulfill-

ment, production processes and planning system. We call this model the “Platform

Supply Chain Simulator”. It is validated that the model gives very similar results as

real Intel supply chain gives in real life. The validation results can be found at the

end of this section.

The model is designed for the product family level. Although it is capable of

simulating SKU level details, due to the limitations on data availability and the

research scope being at a strategic level, we keep the model at family level. For

this case study, real data is used in the Platform Supply Chain Simulator. Total of

three supply chains are simulated for each of three product lines (CPU, Chipset and

Wireless Card). Data collected and used in the simulation covers one year horizon

from July 2005 to June 2006.

3.3.2.1 Modeling Approach - Why Simulation?

We quantify the forecast benefits on the Intel supply chain with a separate simulation

model. In order to realistically assess these benefits on a complex supply chain, we

need to build some of the critical complexities into the model and simplify the rest.

Simulation modeling can help us define these complexities when the closed form

analytic solutions are not available or desirable.

In the global supply chain arena, even a basic product can have a very long supply

chain from the raw material suppliers to the end consumers, including steps like sup-

plier’s supplier, supplier, manufacturer, third part logistics (3PL) companies, carriers

and even for some cases outsourced marketing and sales forces. Each entity along

this supply chain has its own decision making system either systematic or qualitative

or generally both, and the interaction of these entities along the supply chain is very

complex. Early inventory management literature assumed a centrally managed sup-

ply chain to optimize the inventory levels at each echelon. However, in today’s “era
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of outsourcing”, companies are outsourcing most of the services and concentrating

on the core competencies that creates a highly decentralized supply chain systems

that is run by many different companies in different industries with different business

objectives. Even within the same company - especially for multinational companies

- each group or function has its own goals and objectives in the supply chain, which

are usually not perfectly aligned with the overall corporate objectives. Under this

reality setting, most of the assumptions that help us build analytical models fail to

hold, which makes the results of these models less viable. Simulation models help us

define most of these complicated interactions and control rules that manage supply

chain operations.

Model Structure: Platform Supply Chain Simulator is a simulation model de-

veloped in Rockwell Automation’s Arena 10.0 Software. This simulation model is

integrated with production planning optimization models through Visual Basic for

Applications (VBA) codes embedded inside the Arena model. Arena Model auto-

matically calls ILOG OPL and Excel Optimization models for production planning

decisions. This automated system works with a network of Excel files that serves as

the intermediary input/output data storage environment.

In this structure, we have three major components besides the Excel input/output

network. Those are:

1. Arena Simulation Model that contains the supply chain logic and serves as

the mastermind of the Platform Supply Chain Simulator by calling the other

decision models.

2. ILOG OPL Optimization Model that is called each simulation month for weekly

production (wafer start) decisions for the Fab/sort Manufacturing for the next

month. It imitates the current production optimization models at Intel.

3. Excel ATM Production Model that is called each simulation month for the daily
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ATM production decisions for the upcoming month in the simulation.

At a high level, the system works the following way. At the beginning of the

simulation time (week zero), simulation starts by calling ILOG Model to get the

wafer start plan for the Fab/Sort Manufacturing. ILOG model takes the inputs

like forecasts, yields, inventory targets and previously scheduled production that are

stored in an Excel file (week zero input) and produces the output excel file (week zero

output) that contains the weekly wafer start production decisions. At the same time

Arena also calls Excel ATM Production Planning Solver to get daily ATM productions

for one month. All these production plans are loaded into Arena simulation, and the

simulation runs for one month like the real Intel supply chain runs. In this month

the orders (from historical data) arrive daily and fulfilled from component warehouse

if there is enough inventory. Inventory levels over time are tracked and written into

Excel files. One simulation-month later, the procedure repeats itself by calling the

production planning models again, but this time with the updated forecasts, inventory

levels, inventory targets and yield over time values. The model can be run as long

as we have historical data, generally as the multiples of months. Simulation length

determines how many times the following simulation cycle turns.

Platform Supply Chain Simulator - Monthly Simulation Cycles:

1. Update forecast for 3 quarters out (Read from Excel - staggered forecast file)

2. Optimize Fab/Sort and ATM Production Plans (by calling optimization models)

3. Simulate (execute) 1 month with optimized production plans

(a) Production

(b) Material flow

(c) Demand generation

(d) Demand fulfillment
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(e) Inventory check/update

4. Update ADI and CW inventory levels (continuously)

5. Update optimization model inputs

(a) Yield over time

(b) Inventory targets

(c) Penalty parameters

Model components are explained with more details as follows:

3.3.2.2 ARENA Simulation Model

We used Rockwell’s ARENA Simulation Software to model Intel’s entire global supply

chain at a high level. Arena provides connectivity options with many other appli-

cations such as optimization software and Excel. This enables the simulation model

built in Arena to exchange data at any time during the simulation run and dynami-

cally adjust to this new input stream. Arena modeling structure consists of very basic

building blocks that are required in most of the simulation models. These elementary

building blocks such as “create”, “process”, “decide”, “assign”, “hold”, “separate”

and “dispose” help us define the flow and control logic of the supply chain we are

modeling. By carefully aligning these blocks and providing them with the correct

parameters we can imitate the material flow within Intel’s supply network. Once the

flow structure is set, we use the connectivity options to imitate the decision making

in the supply chain.

Network Flow and Decision Making: For Platform Supply Chain Simulator,

after we setup the network flow with the elementary blocks we defined above, we

used ILOG OPL Studio to design a mathematical optimization model to give wafer

start production decisions and we designed an Excel model to give ATM production

decisions. These production decisions are dynamically integrated with the Arena
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model by VBA codes. Other decisions like inventory target decisions and forecasts

are deterministically given to the model, since there is not much analytics going into

these decisions and therefore it is harder to imitate these kinds of decision making

with analytical algorithms and models.

3.3.2.3 ILOG OPL Optimization Model

There are two optimization models developed in ILOG OPL Development Studio 4.2.

They are both used for FSM production plans, which are called for wafer start plans,

for CPU and Chipset supply chains. Advanced mathematical models named Build

Plan Solvers (BPS) are used at Intel that optimize weekly wafer start decisions based

on the penalty structure defined within these models.

We reviewed these solvers and simplified them for 2 product family case by re-

writing our own optimization models in ILOG OPL Studio. We changed the penalty

structure a little bit to relax the capacity considerations. We assumed no capacity

constraint and defined no penalty for capacity utilizations. However, we maintained

the inventory target penalties as well as production smoothing penalties in the mod-

els. The models we developed are end-to-end supply chain models that consider FSM

build plans, involve yield over time numbers, calculate ATM build plans and ADI

(Assembly Die Inventory) inventory levels, and finally CW (Component Warehouse

- Finished Goods) inventory levels. The models are dynamically solved every month

and they also exchange data within themselves because the previous month’s produc-

tion decisions are inputs as scheduled/fixed plans to the next month’s solver runs. In

order to accommodate this information exchange, we used Excel spreadsheets that

are connected to each other. ILOG OPL reads the inputs from the input Excel files,

and writes it to the output Excel files. But input Excel files read some of their values

from the previous months’ output Excel files and so on.

After setting up the models this way, integration of them with Arena is handled
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by VBA codes. In Arena, every month (considering 4+4+5 week split of a 13-week

quarter) a VBA script is called. This script runs the ILOG OPL application; pulls

out the correct model file of the month, and then runs this model until the solution

is found. The model automatically writes the production decisions into the output

Excel files. Script closes the ILOG OPL application and resumes the Arena model.

Arena model at this time starts with a fresh new production plan by reading the

values of wafer starts from the specified Excel file. This loop continues for 12 months

with 12 ILOG calls.

This model is an linear relaxation of a mixed integer program (MIP) with 620 con-

straints, 1019 variables and it considers end-to-end supply chain, mimics the current

solver. Objective function includes penalties for inventory targets and production

smoothing. Model is called at the beginning of each simulation month, and it solves

9 months out for weekly production quantities, each call taking less than 1 second of

CPU time.

ILOG Model Validation: In order to validate that our model works similarly

like the actual BPS models, we can check the realized wafer start per week (WSPW)

values versus the ones that are given by our models. However this is not a perfect

validation, since the real BPS outputs are judged and changed before realization by

the various management levels. We plot the actual vs. optimized WSPW graphs to

see how close plans our models give with respect to the realized production levels.

On the other hand, we also employ expert validation by consulting to the creators

of the original solvers. After analyzing the actual vs. solver results in Figure 17, the

solver team endorsed our work by acknowledging that the model is successful and the

results are close enough to what the real solver might give.
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(a) CPU Product (b) Chipset Product

Figure 5: Actual versus Solver Model wafer start per week values for two example
products

3.3.2.4 Excel Model for ATM Production Planning

This model is designed to give daily ATM production decisions both for CPU and

Chipset supply chains. Two different models for two different supply chains oper-

ate with the same logic. First of all, the daily production schedules are based on

the monthly production quantities calculated by the model. This monthly numbers

are then converted to daily numbers based on the 4+4+5 week split of a quarter.

Therefore the first month in a quarter is assumed to have 4 weeks, and this monthly

production quantity is divided by 4×7 = 28 days. This is same for the second month.

The third month of the quarter is however divided by 5 × 7 = 35 days. These daily

numbers are then read by Arena simulation model.

Like the BPS solvers, Excel ATM models are also called monthly. The inputs,

such as ADI and CW inventory levels and scheduled FSM production information

are updated and come from the Arena simulation model at the beginning of each

simulation month. The decisions for monthly ATM productions are given by a single

variable optimization model, in which the objective function is to minimize the dif-

ference between the demand and supply levels and the only decision variable is the

ATM production (supply) quantity. The constraint is the available ADI inventory for

production based on ADI inventory targets.

The decision components are illustrated in Figure 6, although the production
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Figure 6: ATM production decision components: inputs and the output

strategy changes little bit among the simulated product families with respect to the

product’s life cycle curve. For instance, new products’ build strategy is to “produce if

the demand is present” versus a mature product’s build strategy might be to “push as

many products to CW”. The reason is that for a mature product, Intel wants to push

the supply chain pipeline inventory to the CW, where it can be immediately sold to

customers before a newer product fully transitions to its place. As these production

strategies might change over time and from product to product, we try to find out

the best strategy for each product family that gives the closest estimate of the supply

chain operations for that product. We give more details on this topic in the Model

Validation at the end of this Section. The general optimization model for a product

is give below:

Minimize

|Sup(t)− [JD(t)− CW (t− 1) + CWtar(t)]| (21)

Subject to:

Sup(t) ≤ ADI(t− 1) + Sortout(t)− ADItar(t) (22)

Sup(t) ≥ 0 (23)

where,
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• t: months from 1 to 12

• Sup(t): Decision Variable, ATM Production quantity for month t

• ADI(t): ADI inventory level at the end of month t

• CW (t): CW inventory level at the end of month t

• Sortout(t): Scheduled arrivals to ADI inventory from FSM at the beginning of

month t

• ADItar(t): Target ADI inventory at the end of month t

• CWtar(t): Target CW inventory at the end of month t

• JD(t): Judged demand (forecasted demand) for month t

The above optimization model can be specified by a single formula in Excel, such

that:

Sup(t) = max{0,min{JD(t)−CW (t−1)+CWtar(t), ADI(t−1)+Sortout(t)−ADItar(t)}}

(24)

Where all the inputs are known and taken from the Arena model, and [X]+ =

max{X, 0}.

Although this supply formula (and therefore strategy) works for the newer prod-

ucts better, we can manipulate this formula for some more mature products to ac-

commodate for their production strategies. For example, after some point in time, we

may switch from this strategy to a “push” strategy by changing the above formula

to the following:

Sup(t) = max{0, JD(t)− CW (t− 1) + CWtar(t)}

In reality, knowing the build plan strategies for each product over time is very hard

to find out for historical build plans. We try several possible strategies for a product

and check the CW inventory levels over time for this product in the simulation. If
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there is a close match between these values versus the actual reported CW inventory

levels for the same time period, then we conclude that the final strategy we tried is

the best match for that specific product.

3.3.2.5 Model Validation

We built Platform Supply Chain Simulator by integrating Arena Simulation Model,

ILOG OPL Optimization Model and Excel ATM Production Planning Model with

the use of VBA codes. It is also automated so that it runs for one year (Q3’05 to

Q2’06) without any user intervention. Now we expect the model on computer to run

like actual Intel’s Global Supply Chain under the same demand stream. In order to

validate our model and ensure that it represents Intel’s supply chain, we compare the

model outputs with the actual system outputs.

The most readily available supply chain output data is the inventory levels over

time. Especially for CW inventories, we can retrieve weekly inventory level changes

for any Intel product. Therefore we use this information and compare these values

against the simulation generated CW levels over time. In these comparison graphs

we look at the point-wise correlation for the 52 pairs of values, one pair for each

simulated week. We also check on the average how close we get to the real inventory

levels. Figure 7 presents two validation graphs belonging to a CPU and a Chipset

family.

In these graphs we observe highly correlated results. We also notice immediately

that the inventory level over time patterns, such as the ones that show seasonality

within the quarter almost perfectly match. Quarter-end phenomenon, which happens

in many industries, shows itself here too. These quarter-end sudden decreases in

inventory levels are tracked each time by Platform Supply Chain Simulator.

In generation of these simulation results, all the production decision mechanisms

are modeled, automated to give the best production plan for the available supply
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chain information at the time. These mechanisms employ very similar techniques as

real planners use in today’s Intel. So the very close match between actual invento-

ries versus simulation inventory levels show that FSM and ATM production planning

models are estimating their actual counterparts pretty well. They react very simi-

larly to the changes in the demand, forecast and inventory values; therefore the final

outputs match nicely.

There is one important fact however that the product families in Figure 7 were

new products in mid 2005. This means we have zero pipeline inventories, and we

perfectly know the initial state of the supply chain before a single CPU or Chipset

was produced in Q4 of 2005. This is obviously an advantage for our model, specifically

for these products. It is clear that for the other product families, which were in their

maturity in mid 2005, having a very good validation like this is harder. One of the

reasons is that we cannot perfectly know the distribution of inventories in the supply

chain at the time of the simulation start. Another but more important reason is that

for this type of products, inventory and production strategies change over time, and

they lose their inventory, capacity and sales priority to the newer products. A lot

of human interventions to the previously set strategies occur, and as a result it gets

much harder to analytically estimate production planning decisions with the same

algorithms. For these products, as explained under Excel Model for ATM Production

Planning section, we try several strategies and decide on the best match occurred so

far.

3.4 Main Results

With the Monte Carlo approach we developed in Section 3.3.1, we analyzed the

forecast improvements of the proposed system. In the proposed system, the orders

are placed as platform orders, therefore the actual dependency between the platform

components is known to a certain extend. For instance when a customer places an
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(a) CPU Family (b) Chipset Family

Figure 7: Comparison of Simulation Model Output versus Actual inventory levels
over time

order of 100 platforms, we would know that we have to supply 100 chipsets first, then

100 wireless cards after two weeks, and finally 100 CPU’s two weeks after the wireless

card delivery. As explained in Section 3.3.1, we also consider the possibility that

some parts of platform orders might change. So a customer actually might cancel

the rest of the order after the chipset part is delivered. In order to account for order

cancelations and order changes we assume that any remaining part of the platform

order can be altered by 10% in quantity per every week until its delivery. So for our

case study, wireless card order quantity can be changed from 80% to 120% of the

original order quantity. And the demand distribution of this change is assumed to

be uniform. Similarly, CPU part of the platform order can change between 60% to

140%.

Under this setting, we run the simulation for 52 weeks. We generate the random

demand from the stochastic demand generation algorithm we developed using the

modified bivariate thinning method. The demand is generated for all three compo-

nents separately. For the first scenario (i.e. without platform demand information),

each stream of demand is forecasted separately for the upcoming week using the single

exponential smoothing technique. Every week when the new demand is revealed, it

is added to the list of historical demand data set, and used to forecast the upcoming

week of demand. After 52 weeks, the actual (generated) demand is compared with
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the forecast and forecast error is found in mean absolute percentage error.

Generating the Platform Demand: For the second scenario, we actually try

to capture the platform level demand, which is currently not captured. We know that

some parts of component demand are actually coming from platform orders. But the

platform orders are not disclosed by the customers. Since we do not have historical

data on the platform demand, we assume that most of the components are actually

going to be platforms. So first, we use minimum rule to find the most number of

platforms possible to build for each time period. This is like in any manufacturing

process, where you have multiple components to build the final product. Materials

requirement planning (MRP) uses Bill of Materials (BOM) structure to find the

maximum number of finished goods that can be produced with the current component

inventory. In our case it is easier to calculate this, because the BOM structure has

one components of each type to build the platform. But we have to consider the

time-lag that each component is ordered. In fact, the chipset ordered at time “t”,

corresponds to the CPU ordered at week “t+4”. So we used a time-lagged minimum

rule to find the maximum possible platform quantity that could be ordered in week

“t” for all “t”. After finding the maximum order quantity, we assume that platform

orders change anywhere between 80% to 90% of this maximum quantity. Therefore

the model is generating the platform orders by: (1) Finding the time-lagged minimum

of component order quantities, (2) Calculating the [80%, 90%] range of this quantity

to generate the uniformly distributed platform orders. This way, we make sure that

ordering that many platforms is feasible.

Using advance demand information: Since now we capture the platform

orders in the second scenario, we can use this extra information to tell something

about the future component deliveries, i.e. wireless card and CPU’s. Although the

remaining components may change in quantity, we still would know the average units

of wireless cards and CPU’s needed for that platform order. So we will in fact use
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these averages as the unbiased estimators of the known part of the demand, and we

will only forecast the remaining non-platform component orders, therefore reducing

the uncertainty. The value is coming from knowing the majority of the future wireless

and CPU orders with some confidence. The more we know, the more we will improve

the forecast accuracy. Running the model for 1000 replications, each with different

random demand stream, we concluded that CPU forecast error can be reduced by

4%, whereas wireless card forecast error can be reduced by 8% in MAPE. When we

convert these improvements in relative terms, it is a [9.9%, 10.7%] reduction in CPU

MAPE at 95% confidence level; and [25.5%, 26.7%] reduction for wireless card at 95%

confidence level. The reason that the Wireless card forecast improvement is more than

the CPU products is mostly from the fact that wireless cards are less in order quantity

and platforms orders constitute a bigger portion of the overall wireless card orders.

This means we know more about the wireless card future demand than we know

CPU products. Another reason to this is that the uncertainty of the future demand

associated with wireless card is less than the CPU as it only waits 2 weeks versus 4

weeks for CPU, where every week of wait adds another 10% demand variability.

Above results assume that majority (i.e. 80% to 90%) of the individual com-

ponents are part of platform orders. Iterating this assumption to understand the

impact of the proportion of platform orders on the overall order quantity, we re-run

the model by generating the platform orders as 70-80%, 60-70% and so on until the

extreme case of having no platform orders. Figure 8 shows the corresponding fore-

cast error reduction for both Wireless cards and CPU products. Starting with no

platform order case, where we have no additional information, therefore no savings,

as we increase the percentage of platform orders we observe diminishing returns.

Supply Chain Impact of Forecast Error Savings due to Platform De-

mand Information: As we mentioned previously, we build “Platform Supply Chain

Simulator” to be able to quantify the supply chain impact of the forecast figures.
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Now that we have the forecast improvement results from the Monte Carlo model, we

can run our platform supply chain simulator with the improved set of forecasts. To

be able to measure the inventory impact on the supply chain, we assume that all of

the forecast error savings are decreasing the actual forecast figures. In other words,

we assume the current forecasting system is over-estimating the demand; therefore

we use the savings to reduce the forecast numbers. After calculating forecast savings

over the 52 week horizon with the Monte Carlo Model, we recalculate the forecast

figures and re-run the platform supply chain simulator.

Platform supply chain simulator is capable of tracking inventory levels continu-

ously at any given supply chain node. We tracked and recorded the inventory levels at

the most critical nodes at Intel supply chain, which is the work-in-process inventory in

the FSM, Assembly Die Inventory (semi-finished goods) and Component Warehouse

(finished goods). Results show that the simulated CPU products can have significant

inventory reduction without any loss in the service level at the product family level.

Overall supply chain inventories are estimated to be reduced by 6.7% and 5.1% for

the two CPU product families tested.

The advantage of creating the platform supply chain simulator is many-fold. First

of all this supply chain model is validated to behave like real Intel supply chain.

So instead of forecasting scenarios, any major scenarios can be run to quantify the

performance difference of the supply chain as it relates to inventory levels. Some of

the supply chain scenarios that can be run with this model are as follows:

1. Forecasting scenarios (scope of this paper)

2. Production planning scenarios (different optimization models, different strate-

gies)

3. Lead time scenarios (transit lead times, production lead timesetc.)

4. Manufacturing Yield scenarios (yield improvement over time)
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Figure 8: Effect of Platform demand as percentage of component demand on Fore-
cast Error Reduction

5. Demand Scenarios (minor ordering pattern changes, major demand scenarios

require automated forecasting model embedded in the supply chain simulation).

Considering a relatively short runtime of the simulation (i.e., 20 minutes), all of

the above strategic supply chain scenarios are feasible to try on as necessary.

3.5 Conclusion

In this paper, we analyzed the value of advance demand information on platform

supply chains. The advance demand information is coming from the ordering system

of the customers. We assume that the customers of a supplier are placing platform

orders (i.e. CPU, Chipset and Wireless Card) instead of just giving independent com-

ponent orders. Knowing the rest of the platform order (i.e. future deliveries) gives

valuable information from the forecasting perspective. We quantify the forecast error

savings of such a system with a Monte Carlo Simulation approach using a modified Bi-

variate Thinning methodology to generate nonstationary demand structure. In order

to quantify the forecast error improvements on the supply chain level, we build a sup-

ply chain simulation model using Rockwell’s Arena software and production planning

optimization models using ILOG OPL Studio and Excel and connect them together

using Visual Basic for Applications (VBA) codes. Resultant simulation model called
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Platform Supply Chain Simulator is validated with Intel’s global supply chain and it

offers many other supply chain strategic scenario analyses. Having a multi-purpose

supply chain simulator may allow managers to test their strategic decisions on the

computer and get insights on the supply chain impact of the potential changes.

Focusing on the forecasting area, we identified a source for advance demand infor-

mation, i.e. using customer orders. The relationship between the individual compo-

nents’ demand can be also used without asking customers to place platform orders.

One of the future directions of this research is to understand the leading indicators of

CPU products from the historical time-lagged demand correlation of Chipset to CPU

products and Wireless Cards to CPU products. Another research direction is to look

at the product life cycle behavior of the dependent product families. For instance,

if a certain Chipset product family is compatible/supporting a certain CPU product

family, then how does this demand dependency shows itself in the product life cycle

stages?

The implementation of this research at Intel Corporation is continuing to focus

on the demand side of the supply chain. Therefore, future related research is on the

predictive demand models and understanding the impact of strategic decisions such

as new product introductions, price cuts and capacity creation and allocations.
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CHAPTER IV

PRE-LAUNCH FORECASTING OF NEW PRODUCT

DIFFUSIONS: DIFFUSION PATTERN ANALYSIS AND

ALGEBRAIC ESTIMATION PROCEDURES

4.1 Introduction

Shorter product life cycles and increased product variations mean managers face the

challenge of forecasting demand for new products more frequently than ever. The

success of these new products in the marketplace critically depends on having ac-

curate demand forecasts well before the product launch, since these forecasts drive

important pre-launch decisions such as capital equipment purchases and capacity

allocations that determine future product availability. In industries with long man-

ufacturing lead times, such as the semiconductor industry, supply decisions must be

made months before the product launch. Overestimating demand can lead to excess

inventories and millions of dollars in inventory writedowns. On the other hand, un-

derestimating demand can result in significant stock outs, and reduced market share.

A survey of 168 firms by Kahn (2002) ((41)) on new product forecasting shows that

informal methods based on managerial judgments and look-alike analysis are still

heavily preferred by managers over more formal structured methods such as regres-

sion or diffusion models. Kahn (2002) ((41)) found that informal forecasting methods

based on analogies is negatively correlated with the accuracy. In fact, the survey

respondents reported that only 40% to 65% of new product forecasts are reported as

accurate by the respondents; pointing out a necessity for more systematic approaches

that allow managerial judgments to provide higher forecast accuracy and ease of use.

Diffusion theory, since its introduction to management science in the early 1960s,

65



has been widely used to address many forecasting related business problems as noted

by Putsis and Srinivasan (2000) ((70)) and can be a good candidate to bridge the gap

between systematic analysis and managerial judgment. With its roots in epidemiol-

ogy, diffusion theory attempts to model the adoption of a new product or technology

over time based on certain assumptions about the target population. The most stud-

ied and widely-used diffusion models are those based on the work of Frank Bass (8).

Putsis and Srinivasan (2000) ((70)) note that most diffusion modeling studies center

around the work of Bass (1969) ((8)). Since its introduction in 1969, almost 750 pub-

lications based on the Bass diffusion model have explored extensions and applications

and analyzed more than 2200 empirical cases (see the diffusion research database in

(37)). The Bass Model forecasts the diffusion of a new product into a market over

time based on an estimate of the potential market size m and two diffusion param-

eters p (parameter of innovation) and q (parameter of imitation), which is described

in Section 4.2 in more detail. The model is simple, yet captures the essential social

dynamics in terms of how much internal and external influence (through parameter of

innovation and imitation, respectively) individuals have on their decisions to purchase

or adopt the new product. Although there have been many extensions, according to

Bass et al. (1994) ((10)) and Meade and Islam (1995) ((59)), the original Bass diffu-

sion model tends to perform as well or nearly as well as its many extensions and is

much easier to work with. Most of the extensions (discussed in Section 4.2) incorpo-

rate additional information about the market. In the case of pre-launch forecasting,

however, managers often have only very limited information about the market, and

so the simpler models that do not require many inputs are preferred. We, therefore,

base our investigation of pre-launch forecasting on the original Bass diffusion model.

Bass et al. (2001) ((9)) acknowledge that “the most critical forecast is the fore-

cast prior to product launch”1. Putsis and Srinivasan ((70)) state that “the estimates

1(9) p.S87
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of relevant diffusion model parameters early on in the diffusion process can be ex-

tremely valuable managerially and can serve a variety of purposes depending on the

strategic objectives of the firm”2. Nevertheless, pre-launch forecasting remains the

most challenging and only a limited number of methodologies and empirical stud-

ies address this important topic. Many researchers (see, for example, Thomas (1985)

((80)), Bayus (1993) ((11)), Bass et al. (2001) ((9))) have proposed adapting diffusion

model parameters from similar, previously launched products to generate pre-launch

forecasts for new products, a method generally referred to as “guessing by analogy”.

This method requires managers to assess the extent to which the new product will

exhibit a sales pattern similar to those of its predecessors. The parameters for the

new product are estimated via a weighted average of historical parameters.

Implementations based on “guessing by analogy” generally suffer two principal

shortcomings: (1) The diffusion parameters p and q often vary significantly from

product to product and (2) Managers find it difficult to relate the model parameters to

tangible product or market characteristics and so to identify appropriate adjustments

for the new product. Sultan et al. (1990) (79) note that only 30-50% of the variance

in model parameters can be explained with meta-analytical studies that attempt to

quantify how parameter values change based on the nature of the product and the

market.

In this paper, we present a practical framework for analyzing historical product

diffusion patterns based on a normalization approach that facilitates easy comparison

and enhances intuition about the relevant parameters. Commonalities among diffu-

sion curves from different generations can be obscured by differences in the market

sizes or product life times. Normalization standardizes these aspects of the process

and thereby improves our ability to identify commonalities and differences across

2(70) p. 280
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product generations. We propose several models based on the normalization ap-

proach to algebraically estimate new product diffusion parameters. We enhance the

ability of our models by incorporating parameters to replace scalar parameters p and

q that are relatively less intuitive and harder to judge. Like other algebraic estimation

methods such as those presented in Mahajan and Sharma (1986) ((55)) and Lawrence

and Lawton (1981) ((49)), some of our models allow managers to include judgmental

information about tangible product characteristics such as peak time, product life

time or first period shipments to improve forecast accuracy. We also provide means

of fine-tuning these estimates in the context of multi-generational products. We test

our models with six different multigenerational data sets. Four of these data sets

include microchip product diffusion data that are provided by a major semiconductor

manufacturer3. The other two data sets are also industry data from IBM Mainframe

Computers and DRAM generations.

The rest of the paper is organized as follows. In Section 4.2, we briefly discuss

the previous diffusion research with a specific focus on work related to early life cycle

and pre-launch forecasting. In Section 4.3, we introduce a normalization approach

and a pre-launch forecasting tool. In Section 4.4, we introduce several models that

enhance model intuitiveness and improve pre-launch forecast accuracy. In Section 4.5,

we compare the performance of the proposed models with the “guessing by analogy”

approach on the industry data sets. We compare our pre-launch forecasts for the

microchip data with those published by the company and report significant improve-

ments. Under mild assumptions, our models reduce the median pre-launch forecast

error from 30% to as low as 22%, and the average error from 46% to as low as 27%

MAPE. Better estimating time-based parameters such as peak time or product life

time can further improve the forecast accuracy. We discuss managerial insights based

on these results in Section 4.5.3. In Section 4.6, we summarize our contributions and

3Due to confidentiality, we will refer to this company as X throughout the text.
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discuss future research.

4.2 The Bass Diffusion Model & Pre-launch Forecasting

Meade and Islam (2006) ((61)) reviewed the last 25 years of diffusion literature from

single innovation diffusion models to multigenerational models, from single market

analyses to multiple country studies. Evident from the many papers they reviewed,

the classical Bass Diffusion Model (8) remains the central model. The Bass model

offers important insights and constitutes the nucleus of several more complex forecast-

ing models. We review the assumptions behind the Bass model and its key extensions

in the literature.

In his original paper, Bass (1969) ((8)) assumes a market population of m indi-

viduals, whose purchasing decisions are influenced by diffusion parameters p and q

through the Bass Model Principle that reads ”the portion of the potential market that

adopts at time t given that they have not yet adopted is equal to a linear function

of previous adopters”, which is expressed as f(t) = (p+ qF (t))(1− F (t)) (see, (37)).

Here, f(t) is the portion of the potential market that adopts at time t, while F (t) is

the cumulative fraction of the market that adopts by time t. Cumulative number of

adoptions by time t can be expressed as N(t) = mF (t); and given the three parame-

ters p, q and m, the Bass model forecasts cumulative sales as a function of time using

equation (25).

N(t) = m
[1− e−(p+q)t]

[1 + (q/p)e−(p+q)t]
(25)

The derivative of equation (25) gives the rate of sales n(t) as a function of time

shown in equation (26).

n(t) = m
(p+ q)2

p

e−(p+q)t

[1 + (q/p)e−(p+q)t]2
(26)

The Bass Model assumes that the market potential m and the diffusion parameters
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p and q remain constant over time, the buyers of the new product purchase only

one unit, and there is no interaction with previous or succeeding generations of the

product (i.e., no cannibalization effect). The literature since the original paper Bass

(1969) ((8)) has attempted to relax or eliminate many of these assumptions. Norton

and Bass (1987) ((67)) extended the original model to consider successive generations

of products and their substitution effects. Kalish (1985) ((42)) allowed the market

potential m to be a function of price over time. Sharif and Ramanathan (1981)

((75)) modeled the market potential as a function of population growth. Other works

including Kamakura and Balasubramanian (1988) ((44)) and Jain and Rao (1990)

((38)) analyzed the effect of price on the adoption rate. Kalish and Lilien (1986) ((43))

defined the parameter of imitation q as a function of changing product characteristics

over time. Bass et al. (1994) ((10)) presented the Generalized Bass Model (GBM),

allowing the inclusion of decision variables such as price or advertising as a function

of time in the original Bass model.

Mahajan et al. (1990) ((54)) state nine assumptions of the original Bass model

and review several papers that relax them. Although extensions that include decision

variables such as price and advertising are found to fit some data sets better than the

original Bass model, in most comparisons the original model provides an equally good

fit with less model complexity ((10), (54)). Mahajan et al. (1990) ((54)) concluded

that the analytical elegance surpasses the empirical validation of the derived results

for the more complex models. Moreover, complex models require more data such

as price, advertising and competition that may be hard to obtain, especially in pre-

launch contexts.

Although many researchers and practitioners share the belief that more accuracy

is needed in pre-launch forecasting, little research has been done in this area. Most

studies estimate diffusion parameters p and q, while separately estimating m from

market research studies. For example, Bass et al. (2001) ((9)), Thomas (1985)
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((80)) and Bayus (1993) ((11)) use “guessing by analogy” together with product

grouping procedures to estimate p and q. Meta-analytical studies such as Sultan et al.

(1990) ((79)) and Van den Bulte and Stremersch (2004) ((82)) draw conclusions about

how external information such as income heterogeneity, cultural index or product

characteristics impact the parameter values. Lenk and Rao (1990) ((52)) and Xie

et al. (1997) ((87)) employ Hierarchical Bayesian procedures and Kalman Filters,

respectively, to dynamically update the prior distributions for p and q.

Since the diffusion parameters p and q, do not correspond directly to intuitive

and readily measured market characteristics, some researchers attempt to estimate

these parameters from managerial estimates of other more tangible information. The

model of Lawrence and Lawton (1981) ((49)) (hereinafter referred to as the LL model)

requires three pieces of information: p + q, first period sales n(1) and the market

potential m. As Putsis and Srinivasan (2000) ((70)) observe, the drawback of this

method is that estimating p + q is difficult. Although, Lawrence and Lawton (1981)

((49)) offer general guidelines such as p + q is 0.5 for consumer goods and 0.66 for

commercial goods, such generalizations fail to represent individual characteristics of

a particular product. On the other hand, the model of Mahajan and Sharma (1986)

((55)) (hereinafter referred to as the MS model) rely only on managerial estimates of

intuitive and measurable market characteristics including the market potential m, the

time of peak sales and the peak rate of sales. However, estimating both the peak time

and the peak rate of sales is difficult. While managers may have certain expectations

about the peak time, producing a forecast for peak rate of sales with high accuracy

is more difficult.

Only a small number of studies in the literature report on actual commercial

pre-launch forecasting efforts. Choffray and Lilien (1986) ((21)) report significant

improvements in forecast accuracy at a leading paper producer and a leading zinc
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producer after implementing a diffusion-based forecasting system. The paper pro-

ducer reported projections for four-year cumulative sales with less than 30% error,

while the zinc producer achieved a pre-launch forecast error of less than 15% for the

first five years of cumulative sales (also see, Virrolleaud (1983) (83)). Lee et al. (2003)

((50)) describe a case of pre-launch forecasting in the music industry. They report a

reduction in the MAPE of pre-launch forecasts from 69% to 52%, with further reduc-

tions to 30% as sales data become available. Both Choffray and Lilien (1986) ((21))

and Lee et al. (2003) ((50)) employ a “guessing by analogy” approach together with

a database of relevant exogenous variables to enhance the parameter estimates. For

many instances, however, obtaining additional data beyond historical sales is very

difficult and without a systematic approach, the “guessing by analogy” method can

provide poor forecasts.

Our experience in implementing diffusion based forecasting models at a major

semiconductor company also suggests that managers have insights about the new

products, but are unable to translate those insights into terms compatible with the

diffusion parameters p and q. One immediate consequence is the frequent discrep-

ancies between products that managers deem similar and those that actually enjoy

similar diffusion parameter values. A little more structured guessing by analogy ap-

proach is implemented in a software program introduced by Liliean et al. (2000)

((53)), where available historical products are divided into four categories: (low p,

low q), (high p, low q), (high p, high q) and (low p, high q) to aid in managerial

judgment. However, no systematic approach is offered for selecting an analogous

product, leaving this decision to the managers, who cannot intuitively select any of

these categories.

In Bass et al. (2001) ((9)), the authors recognize that “the [art] of forecasting
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the diffusion of new products prior to product launch is still in development. Al-

gorithms for choosing analogies are being developed.”4. We contribute to the art

and science of pre-launch forecasting by introducing a normalization framework for

analyzing historical diffusion patterns. This framework helps managers better under-

stand various diffusion patterns and select the best representative pattern. In Section

4.3, we introduce volume and time normalization procedures that help isolate the

effects of the diffusion parameters p and q on the forecast. We then introduce a

pre-launch forecasting tool that allows managers to produce a pre-launch forecast by

just estimating the product life time and the market potential of a new product. In

Section 4.4, we introduce several algebraic estimation procedures to estimate the Bass

diffusion parameters from other parameters that are related to tangible market char-

acteristics and so are more intuitive to estimate. Normalization procedure is used

in the multigenerational context to help estimate these more intuitive parameters,

where management judgment can also be employed in further fine-tuning. We test

proposed models with real world data in Section 4.5 and show significant pre-launch

forecast accuracy improvement opportunities.

4.3 Normalization and Blueprint Approach

Differences in market potential and product life can obscure similarities in the dif-

fusion curves of similar products or between generations of a single product line. In

Section 4.3.1, we introduce a normalization approach to help managers identify the

similarities in historical product diffusions by scaling both volume and time. In Sec-

tion 4.3.2, we propose a simple pre-launch forecasting model, called the Blueprint

approach, where managers only need to estimate the new product’s market potential

and life time to forecast sales for the next generation product.

4(9) p. S91.
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4.3.1 Normalization Approach

Differences in market potential and product life times can obscure similarities in diffu-

sion curves of similar products and even in different generations of the same product.

The influence of market potential is immediate, intuitive and simple to identify. The

influence of product life time, however, is more subtle and is buried in the unintuitive

parameters p and q. For example, simply scaling the parameters p and q of a diffusion

curve to pT and qT with some constant T > 0 maintains the essential features of the

diffusion, but changes the time scale on which those features play out. Note that

as t goes to infinity, N(t) increases to the market potential m, i.e., if the company

continues to market the product in perpetuity, its cumulative sales will approach the

market potential and the product will saturate the market. In this sense, a Bass

diffusion curve assumes the product life time is infinite. In practice, every product

has a finite, though often indistinct product life time and organizations carefully pace

the introduction of new generations and manage product roadmaps based on these

life times. To normalize out time scale effects we need to establish a finite product

life time T that is both consistent with managerial practice and has the appropriate

analytical properties for forecasting. Among the several possible definitions, we con-

sider the following three:

Definition 1: Given a fraction 0 < α < 1, define the product life time to be the time

at which cumulative sales reach the fraction (1− α) of the market potential, i.e., the

product life time T1 is defined so that

N(T1) = (1− α)m (27)

It is not difficult to verify that

T1 =
ln(p+q−αq

αp
)

p+ q
(28)
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satisfies equation 28. This definition is simple, intuitive and is consistent with much

of industry practice. in those industries where management decides to end the ac-

tive management of a product when the remaining market size is small and moves

resources to new products instead of continuing to invest in a vanishing market. The

appropriate choice of the specific fraction α can and should change from industry to

industry, company to company and even product segment to product segment. For

high-volume, low-margin “commodity” products α should be large. For high-margin,

low-volume “customized” products, the appropriate choice of α will likely be small.

Definition 2: Given a fraction 0 < β < 1, we can define the product life time to

be the time T2, after which the rate of sales never exceeds the fraction β of the peak

sales rate, i.e.,

T2 = min{t ≥ 0 : n(τ) ≤ βn(t∗),∀τ ≥ t} (29)

It is not difficult to verify that

T2 =
ln( q(2−β)+2q

√
1−β

βp
)

p+ q
(30)

satisfies equation 30. Note that if p > q, then t∗ < 0 meaning that the sales rate

will begin below n(t∗) and decrease. This definition can nevertheless be applied if

we adopt the convention that the maximum rate of sales is taken over all values of t,

including values less than 0. Definition 2 is appropriate in capital intensive industries

where capacity utilization is a priority. When change over costs are high or economies

of scale are great, the fraction β should be larger. For flexible manufacturing systems,

where the capacity can be easily transferred to the newer generations at low cost, β

should be lower.

Definition 3: When q > p, the peak rate of sales occurs at a time t∗ > 0 and, given

a scalar k > 0, we define the product life time T3 to be (1 + k)t∗. Thus, under this

definition, the product life time is given by:
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T3 = (1 + k)
ln(q/p)

(p+ q)
(31)

This definition is preferred for situations when the end of life decisions depend

on the duration of declining sales. Since after the peak sales, the sales decline will

continue for a (relatively) long time, if the management do not redeploy assets, they

run the risk of falling behind the technology curve. For multigenerational products,

the timing of new product introductions may be seasonal, such that after the peak

season for the old generation product, there is a constant time period to introduce

the new generation on time, so that the new generation can also has its maximum

sales potential during the next peak season. For example, few months before the

holiday season, PC manufacturers are releasing their newest products so that it can

reach its maximum potential during the holiday season. However, after the peak

season, there is only a constant time until the next holiday season, therefore the

active management of each product generation ends after a constant multiple of the

peak time. Usually, the number of generations being actively managed is limited,

therefore it is also possible to end a product life cycle at the time of the newest

product introduction.

The planning and operational implications of product life time can be quite varied

ranging from the cessation of sales to moving the product into secondary markets or

shifting its production to secondary capacity, etc. Whichever definition of the life

time T we choose, we can use that value to normalize a diffusion curve so as to isolate

the effects of time from those of the diffusion parameters p and q. In particular, given

a Bass diffusion curve N(t) with market potential m, diffusion parameters p and q

and life time T , we define the normalized cumulative diffusion curve:

N(t;T ) =
[1− e−(p+q)Tt]

[1 + (q/p)e−(p+q)Tt]
(32)

Note that N(t;T ) is a Bass diffusion curve with market potential 1 and diffusion
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parameters pT and qT so that the product life time is scaled to 1 as well. Scaling time

by a factor of T scales the sales rate by the same factor, in particular, the normalized

rate of sales as a function of time is:

n(t;T ) = T
(p+ q)2

p

e−(p+q)Tt

[1 + q
p
e−(p+q)Tt]2

(33)

i.e., the normalized rate of sales is given by n(t;T ) = Tn(Tt). Each of our three

proposed definitions is consistent with this scaling in that if we define the product

life time T for the original diffusion curve N(t) according to one of those definitions,

then according to the same definition the product life time of the scaled curve N(t;T )

will be 1. This can be shown by observing that N(1;T1) = (1 − α) for Definition 1,

n(1;T2) = βn(t∗;T2) for Definition 2; and t∗ = 1/(1 + k) for Definition 3, where t∗ is

the peak time for the normalized curves for the last two observations.

Figure 9 shows the historical and normalized diffusion curves for 6 product gen-

erations from a microchip product line using each of our three definitions for product

life. As seen from this figure, eliminating the differences attributable to product life

and market potential reveals the similarities among the diffusion patterns within the

product line. In the rest of the paper, we will use the Definition 2 that relates the

end of life to the level of peak sales, a definition consistent with the semiconductor

industry.

Managers can use the normalized curves to estimate the diffusion parameters p and

q of a normalized curve for the new product, separately estimate the new product’s

life time T and market potential m and reverse the normalization process to obtain

a diffusion curve forecasting sales of the new product. In particular, the cumulative

Bass diffusion curve for the new product is:

N(t) = m
1− e p+q

T
t

1 + q
p
e

p+q
T
t

(34)

and its derivative
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(a) Original Diffusion Curves (b) Definition 1 (α = 1%). Mean α = 1%

(c) Definition 2 (β = 1%). Mean αβ = 0.3% (d) Definition 3 (k = 1). Mean αk = 2.8%

Figure 9: Original and Normalized Diffusion Curves based on Different Life Time
Definitions.
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n(t) =
1

T

(p+ q)2

p

e−
p+q
T
t

1 + q
p
e−

p+q
T
t)2

(35)

gives a forecast of the rate of sales. We refer to this process of obtaining a forecast

from a normalized diffusion curve as de-normalizing. It is instructive to observe the

effects of moving from a historical Bass diffusion curve with market potential m,

diffusion parameters p and q and product life time T to a diffusion curve for a new

product with market potential m′ and life time T ′ via this process of normalizing and

de-normalizing. The resulting forecast is a Bass diffusion curve with market potential

m′ and diffusion parameters p T
T ′

and q T
T ′

.

Section 4.3.2 introduces an approach, called Blueprint approach, that helps man-

agers select the most likely diffusion pattern for the upcoming new product, and

produce an easy pre-launch forecast using the de-normalizing.

4.3.2 Blueprint Approach

The main purpose of the normalization approach is to better identify how to select

the representative (i.e., analogous) curves. Using normalization, managers can choose

relevant curves from the pool of normalized curves for historical products that they

believe represent the upcoming product. Averaging the selected normalized curves

based on certain criteria would give a baseline expectation for the new product. We

call this curve the “Blueprint” curve, because it gives managers a blueprint or a

template to construct their future expectations.

There are multiple alternative approaches to produce a Blueprint curve from a set

of normalized curves.

1. Pick individual normalized curve and de-normalize.

2. Average the diffusion parameters of normalized curves.

3. Average the normalized diffusion curves themselves.
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4. Find a normalized curve that best fits the given normalized curves and de-

normalize that.

We now investigate each of these options based on their technical advantages and

disadvantages and their easiness for implementation.

First option is to pick individual normalized curves as representative scenarios

for the new product, and de-normalize them for forecasting purposes as explained

in Section 4.3.1. This approach is the simplest of all and it is easy to implement.

However, selecting the representative curves would require managers to analyze the

reasons of their choice and justification of why they choose a specific curve. In the

situations where the normalized curves are clearly identified and associated with cer-

tain business context, this approach can produce good forecasts. The success rate of

this method would depend on which normalized curves are chosen and whether those

curves would represent the upcoming product accurately, besides the estimates of m

and T for the new product.

Second option distributes the risk of choosing the wrong representative curve

by averaging the normalized parameters piTi and qiTi of all the historical products

i ∈ I, where I represents the set of historical products that are selected as possible

candidates. Instead of simple averages, weighted averaging can also be applied, so

that the estimated parameters p and q would equal to:

p =
∑
i∈I

wipiTi, q =
∑
i∈I

wiqiTi (36)

where the wi’s are the weights for the averaging and so are non-negative and sum to 1.

The technical disadvantage of this formulation is that the averaged parameters p and

q may not correspond to a normalized curve. In other words, their product life time

may not equal to 1, due to differences in original life times (i.e., Ti) of the normalized

curves. But since a closed-form solution for the product life time is available, we can
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scale the averaged parameters to achieve a life time of 1, such that:

p′ = pT q′ = qT (37)

where T is the life time of diffusion curve with parameters p and q, based on the

selected life time definition. Having fixed the normalization issue, this approach is

also relatively easy to implement.

On the other hand, if we average the normalized curves themselves rather than

averaging the parameters, then we obtain a curve that is generally not a Bass diffusion

curve. We cannot talk about formal normalization of this curve as it is not bound to

any specific functional form. However, the resultant curve is averaged over the unit

life cycle, therefore it will have a life cycle of 1. And since the normalized curves

captured a market volume close to 1, the averaged curve will also contain almost the

same amount until time 1. We can de-normalize this curve to obtain a forecast for

the new product. But the issue with this approach is that a resultant forecast will

not reflect a true diffusion pattern. It will correspond to average market penetration

across all historical products for a given phase in the product life cycle.

Finally, in order to find the best representative Blueprint curve, in the form of

a Bass curve, we can fit a curve to find the parameters p and q that minimizes

the (weighted) sum of the square errors between the representative curve and the

normalized historical curves, such that:

Minimize

SSE(p, q) =
∑
i

wi

∫ ∞

0

(bass(t, p, q)− ni(t;Ti))2dt (38)

Subject to:

p+ q = ln(
p+ q − αq

αp
) (39)

p > 0, q > 0 (40)

where bass(t, p, q) is the best fitted Bass curve and ni(t;Ti) is the normalized diffusion

curve for product i.
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This approach is the most complicated one among other alternatives, and it is

not practical for implementation. Although, this best fitted normalized curve may

represent the historical normalized curves with minimal sum of square error, managers

would still want to consider multiple scenarios in pre-launch forecasting and they will

want to understand a range of cases.

In order to illustrate the benefits of using the Blueprint approach and the normal-

ized curves as a visual tool, we use a product line that consists of 12 real-life product

generations. Figures 10(a) and 10(b) present the actual best fitted diffusion curves,

and their normalized versions, respectively. Using the Blueprint approach, we want

to construct a blueprint curve for the upcoming new product launch (product A13),

which is expected to have a four years of life cycle (T = 48 months) and an uncertain

market potential of 120 to 170 units. Analyzing the normalized curves, two groups

of diffusion types are identified as fast vs. slow ramp, containing 5 and 6 product

generations respectively. One of the diffusion pattern is observed to be unique, and it

is eliminated from consideration. Product A13 is assumed to belong to the slow ramp

family of products and the corresponding blueprint curve is constructed by averaging

the normalized curves of slow ramp group and de-scaling with the worst and best

case scenarios for market potential (i.e., m = 120 and m = 170) and product life

time of four years (i.e., T = 48). For comparison purposes, we assume that a naive

manager would like to use historical diffusion curves, but instead of normalizing the

curves she directly averages the p and q parameters (let us call this method “Naive

PQ”). Then she also uses the same market potential estimates as the manager using

the Blueprint approach (i.e., 120 and 170 units). Figures 10(c) shows the results of

both methods compared with the actual diffusion of product A13. Without report-

ing the obvious forecast error difference, we want to point out the importance of (1)

analyzing historical products on the same scale and understanding different diffusion

types, (2) using the estimate of product life in pre-launch forecasts.
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(a) Original Diffusion Curves (b) Normalized Curves (Def.2 with β = 1%)

(c) Comparison of the Blueprint and the Naive PQ
method

Figure 10: Pre-launch forecasting scenario using Blueprint and Naive PQ method.
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Normalization and Blueprint approaches are heuristic solutions and handy tools

for forecasters. Managerial inputs and judgments on product life time T and total

market potential m are necessary to use these tools for forecasting purposes. These

methods provide an intuitive big picture analysis by setting a standard for char-

acterization of the historical product diffusion patterns and a benchmark for easy

comparison.

One advantage of normalization is that simple features of the normalized curve

completely define the entire curve: Specifically, if we know the time t∗ of the peak of

the normalized curve and the value n(t∗) of the curve at the peak, then we know the

entire normalized curve. This suggests that rather than finding a representative curve

for the next product diffusion, we might instead find a representative for the set of

points (i.e., (t∗i , ni(t
∗
i )): i ∈ I ) that define the peak positions and therefore represent

the curves. Since normalization approach scales the peak position for the historical

products, the managerial judgment of these values would be relatively simple to do

on the same scale than judging the peak positions of the original curves with different

scales.

With this motivation, Section 4.4 introduces formal algebraic models to estimate

diffusion curve parameters from other sources of information such as percentage-

based, time-based and unit-based parameters that can be used to define the diffusion

peak position.

4.4 Algebraic Estimation Procedures for Diffusion Param-
eters

Commonly used “guessing by analogy” is designed to make it simpler for managers

to easily judge the similarity of product being launched to that of historical prod-

ucts. However, one needs to recognize that all products are different and it is hard

to standardize the basis of the managerial judgments. For example, one can think

that DirecTV is a subscription based product, so it should be similar to another
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subscription based TV product: CableTV; others might consider the similarity of

the product price. Yet no one knows which product characteristic or which external

variable would be the most influential on the diffusion pattern. Instead of focus-

ing on analogous products and indirect similarities such as product characteristics

to estimate original Bass model parameters, we visually analyze historical diffusion

patterns. We propose percentage-based parameters and other intuitive pieces of in-

formation such as peak time, product life time and first period sales to be judged by

managers. We then use these as inputs to calculate implied diffusion parameters.

In Table 7 we present an extensive list of potential parameters that can be used

to estimate a diffusion curve, which are either scalar, percentage-based, unit-based

or time-based. Table 8 summarizes and compares the current algebraic estimation

procedures in the literature with our models based on their information requirements.

Our main focus is to move away from less intuitive scalar parameters p and q towards

more intuitive percentage-based abc parameters and other inputs that can help us

formally define diffusion curves easily. Most of the definitions in Table 7 can be

applied to any diffusion model. For the Bass model, percentage based parameters a,

b and c can be calculated using the following equations:

a =
ln(q/p)

(p+ q)T
b =

(p+ q)2

4q
c =

q − p
2q

(41)

All of our models share the same assumption that we can estimate market potential

m from marketing research studies together with managerial judgment. Literature

also supports this assumption by focusing mainly on p and q estimations. Bass (1969)

((8)) states that “the parameter for which one has the strongest intuitive feeling

is m”. However, one cannot find the same intuitiveness for parameters p and q.

Hence we focus on estimating these parameters from other (more intuitive) sources of

information. For convenience, model names are constructed from the required input

parameters (i.e., the b − c model requires b and c parameters to estimate p and q).

Some model inputs can be more (or less) intuitive for different businesses or industries.
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Table 7: List of various diffusion parameters by category that are required by dif-
ferent models

Parameter Description
p Parameter of innovation
q Parameter of imitation

p+ q Sum of parameter p and q
q/p Ratio of parameter q to p
a Normalized Peak Time (t∗/T )
b Normalized Peak Height (f∗ = n∗/m)
c Fraction of adopters at peak (F ∗ = N∗/m)
n∗ Noncumulative sales at peak
N∗ Cumulative sales at peak
n(1) First period Sales
m Market potential
t∗ Peak Time
T Product Life Time

To help managers select the best model, in Section 4.5 we employ sensitivity analysis

to compare the forecasting performances of these models under varying levels of input

accuracy.

4.4.1 b-c Model

As an alternative to Mahajan and Sharma (1986) ((55)) (MS1 and MS2) models (see

table 8), the b−c model does not require the time of the peak t∗ as an input. Algebraic

rearrangement of equation (41) gives equation (42), which can be used to calculate p

and q directly from b and c, while m is estimated separately.

p =
b(1− 2c)

(1− c)2
q =

b

(1− c)2
(42)

The advantage of this model over MS models is that the managers can estimate

percentage-based b and c parameters instead of unit-based n∗ and N∗, by comparing

the normalized curves of the historical products on the same scale. Since m is esti-

mated separately, this method does not require the estimation of t∗, which can be

calculated from p & q or directly from b & c as follows:
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Table 8: Comparison of Algebraic Parameter Estimation Procedures by their input
requirements.

Information Required to Estimate a Diffusion Curve
Model Scalar Percent Unit Time
Bass (1969) p q m
Mahajan & Sharma (MS1) (1986) n* m t*
Mahajan & Sharma (MS2) (1986) n* N* t*
Lawrence & Lawton (LL) (1981) p+q n(1) m
Blueprint Method m T
b− c Model b c m
b− t∗ Model b m t*
c− t∗ Model c m t*
n(1)− t∗ Model n(1) m t*
Time Controlled Bass Model m t∗ or T
a− T Model a m T
a− t∗ Model a m t*
T − t∗ Model m t* T

*TCB is an adjustment procedure. It also requires initial estimates of p and q.
**Blueprint Method requires historical diffusion pattern analysis.

t∗ =
ln(q/p)

(p+ q)
=
ln(1− 2c)(c−1)

2b
(43)

Using equation (43) for the peak time, one can derive two more models: b − t∗

and c− t∗. In both of these models, market potential m is estimated separately, while

the other inputs are used to estimate p and q. The b− t∗ Model corresponds to MS2

Model, since MS2 model requires m, n∗ and t∗ as the inputs and b is implied by n∗

and m (i.e., b = n∗/m).

4.4.2 b− t∗ and c− t∗ Models

Peak time can be calculated by inputs b and c. If we know the peak time t∗ and one

of either b or c, we can calculate the other. Then we can convert b & c into p & q

as in the b− c model. Equation (43) gives us the opportunity to estimate any two of

the three unknowns that determine the peak position. Following peak position charts

in Figure 11 help managers see the tradeoff between b, c and t∗. It visualizes the

diffusion curve peak position to aid in judgment process.

Based on the confidence in estimating these three inputs, managers can choose any

87



(a) Peak Position Path (b) Example Curves

Figure 11: Peak position Chart and Visualization of different peak height (b) and
peak time (t∗) combinations (c is fixed at 0.48)

two out of three parameters that they have more confidence. To help assess different

levels of confidence we can construct the feasibility region for the peak position as in

Figure 12, which defines the area for the expected peak position for the new product

based on historical peak positions. Upper and lower bounds of each parameter can be

calculated from the span of historical diffusion pattern analysis with normalization,

while the most likely case is given by the Blueprint average of b and c. Managers can

then visually adjust these bounds with their judgments.

4.4.3 n(1)− t∗ Model

This model can be regarded as the hybrid model of Mahajan and Sharma (1986)

((55)) and Lawrence and Lawton (1981) ((49)). We pick the most intuitive pieces of

information in both of these models (i.e., t∗ from MS and n(1) from LL) to estimate

the original parameters p and q. With m estimated separately, we solve the following

two equations simultaneously:

N(1) = n(1) = m
(1− e−(p+q))

1 + q
p
e−(p+q)

(44)
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Figure 12: Feasible region for peak position. Upper and lower bounds for b, c and
t∗ determined by the diffusion pattern analysis define the area for peak position.

and

t∗ =
ln(q/p)

(p+ q)
(45)

Since no closed-form solution exists for p and q, we first numerically find the set

of (p,q) pairs that give the estimated t∗ value using equation 45. Figure 13 presents

a chart called Iso-peak time PQ chart showing these (p,q) pairs.

Then we use the formula in equation (44) to pick the (p,q) combination that gives

the desired level of first period sales n(1). This method eliminates both p & q and b

& c estimations and focuses on estimating m, n(1) and t∗. As explained by Lawrence

and Lawton (1981) ((49)), both m and n(1) can be obtained from market research

techniques. In order to reduce some uncertainty, one can also wait to observe the first

period sales and fix the value of n(1). Estimation of t∗ can come from various sources

of information such as product roadmaps and seasonality information such as time of

peak selling season (i.e., November-December for high tech products). We believe that

estimating t∗ instead of p+ q is more intuitive for managers, since it is closely related

to business practices. Performance of this model is separately analyzed in Section

4.5.2.1 with Color TV adoption data, and found that it can match the performance

of MS1 model, while requiring easier to guess information (n(1) vs. n(t∗)).
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Figure 13: Iso-peak time (p,q) combinations that give the same peak time t∗

4.4.4 Time Controlled Bass (TCB) Model

In Section 4.3.1 we introduced the time scaling method. Time Controlled Bass Model

employs time scaling method to use the initial estimates of the p and q parameters,

and adjust them with equation (46) to account for any known or estimated timing

information.

p̂ = p0
T0

T̂
q̂ = q0

T0

T̂
(46)

where p0 and q0 are initial parameter estimates (that may be calculated from Naive

PQ method, or with analogous products chosen by diffusion pattern analysis of the

normalized historical products) and T0 is the product life calculated from these initial

parameters.

In this regard, it is the same model suggested in the Blueprint approach. We

include this approach in our algebraic models for comparison purposes, but we also

extend its capability to use any critical timing information such as peak time t∗,

instead of just product life time. Time controlled Bass Model is an adjustment proce-

dure to account for timing information. If the initial parameter estimates create peak

time or product life time that is not parallel to the managerial expectations, above

formulas can be directly used to adjust for the known or estimated time. Other than
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Figure 14: 30% extended vs. 30% shrunk life cycle

market potential m, it is sufficient to estimate t∗ or T to run this model, however,

the model performance will depend on the ratio of the initial parameters q0/p0, which

stays unchanged after the adjustment, while the sum of the parameters decreases

(increases) for longer (shorter) product life or peak time.

Without employing any definitions for product life T , one can still use the Time

Controlled Bass Model by scaling the time axis with a scaling factor θ, where θ < 1

extends the time axis to a longer horizon, and θ > 1 shrinks the time axis to a shorter

horizon by “|1− θ|” percent. Equation (47) presents required formulas, while Figure

14 illustrates an example with θ = 1.3 and θ = 0.7.

p̂ = pθ q̂ = qθ (47)

4.4.5 a− T Model

Although b and c parameters are related to a and T parameters through the calcu-

lation of peak time t∗, there is no closed-form solution that only uses a and T to

estimate diffusion shape parameters of p and q. Therefore, the b− c Model cannot be

algebraically transformed into the a− T Model. However, empirical study of 38 Mi-

crochip product families (under 4 product lines) shows a strong negative correlation

between b and T (between -0.883 and -0.975), and positive correlation between c and
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Table 9: Estimates and fit statistics of linear regression models suggested for pa-
rameters b and c.

Model for b Model for c
Term Estimate (αi) Term Estimate (βi)
Intercept 0.4745 Intercept 1.1686
T 0.0013 a -0.8155
ln(T) -0.1251 ln(a) 0.3814
RSquare 0.951 RSquare 0.998
RSquare Adjusted 0.948 RSquare Adjusted 0.998
RMSE 0.00518 RMSE 0.00129
Mean of Response 0.0667 Mean of Response 0.4729
Observations 38 Observations 371

1One data point is excluded from regression model for c with studentized residual of 5.527

a (between 0.945 and 0.987) within each of the four product lines. Performing lin-

ear regression analysis on this data set of parameters, following simplified regression

models, for b and c respectively, are suggested after employing stepwise elimination

of less important variables.

yb = fb(T ) + ε = α0 + α1T + α2ln(T ) + ε (48)

yc = fc(a) + ε = β0 + β1a+ β2ln(a) + ε (49)

Both models have high levels of R-square values (R2
b = 0.951 and R2

c = 0.998),

suggesting that they can be used to estimate parameters b and c with high confi-

dence. Since the b− c model can directly estimate diffusion shape parameters, using

these regression equations, one can derive the a−T model by substituting regression

functions fb(T ) and fc(a) into the places of b and c. Equation (50) defines the a− T

model formulas, Table 9 presents the coefficient estimates of the regression functions,

and Figure 15 presents the Actual vs. Estimated b and c parameters.

p =
fb(T )(1− 2fc(a))

(1− fc(a))2
q =

fb(T )

(1− fc(a))2
(50)

One should be careful in using the suggested regression equations. Not every

product line or group may lend itself for high confidence and simple regression models.
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(a) Regression fit for b (b) Regression fit for c

Figure 15: Data vs. Regression Fit to the parameters of 38 Microchip product
families

In those cases, information on parameter a and T can be used to calculate t∗ (i.e.,

t∗ = aT ), and consequently Time Controlled Bass Model (equation (46)) can be

employed with initial parameter estimates (i.e., p0 and q0) coming from Naive PQ or

Selective PQ method.

4.4.6 a− t∗ and T − t∗ Models

Since parameters a, t∗ and T are related directly (i.e., t∗ = aT ), the a− t∗ and T − t∗

models can be derived from the a − T Model, such that for the a − t∗ model, T is

replaced with t∗/a, for T − t∗ Model a is replaced with t∗/T in the original model

equation (50), to arrive at corresponding model equations (51) and (52).

p =
fb(t

∗/a)(1− 2fc(a))

(1− fc(a))2
q =

fb(t
∗/a)

(1− fc(a))2
(51)

p =
fb(T )(1− 2fc(t

∗/T ))

(1− fc(t∗/T ))2
q =

fb(T )

(1− fc(t∗/T ))2
(52)

Similar to the relationship between b, c and t∗, we can plot upper and lower bound

expectations for parameters a, t∗ and T to help managers in judgment process. Special

advantage of T−t∗ Model is that by just estimating time related information (the peak

time and product life time), one can estimate a diffusion curve. In many organizations,

product roadmaps and long-range plans provide important guidelines in estimating

these values by considering next product launch times or planned end-of-life times.

In summary, in Section 4.3 we developed managerially intuitive methods such
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as Normalization and Blueprint Approaches to analyze historical product diffusion

patterns. Benefiting from percentage-based parameters and important timing infor-

mation, in Section 4.4, we developed several algebraic procedures to estimate new

product diffusions parameters. We investigated interrelationships of the proposed

parameters to provide alternative formulations of these models so that managers can

have different options based on the their confidence level of the required inputs. Sec-

tion 4.5 provides forecast performance results of these models in the real data setting.

Model sensitivity to the various inputs are also analyzed.

4.5 Numerical Results

All of the nine proposed models require market potentialm to be estimated separately,

which is a common practice in the literature. Market potential estimates can come

from marketing reports, survey of purchasing intensions and managerial judgement.

Our models estimate the diffusion shape parameters p and q from several alternative

formulations of other parameters. Blueprint Method and the Time Controlled Bass

(TCB) Model are adjustment procedures, which adjust the initial diffusion shape

estimate with one time-based parameter (either t∗ or T ) in addition to m. All the re-

maining models (total of seven) are estimation procedures that need two parameters to

estimate the shape of the diffusion curve. Since first period sales n(1) can be expressed

in percentage (i.e., n(1)/m), these seven models require either percentage-based or

time-based parameters or both. Five models out of seven require one percentage-

based and one time-based parameters (a− t∗, b− t∗, c− t∗, a−T, n(1)− t∗), while the

b− c model needs two percentage-based parameters and the T − t∗ model needs two

time-based parameters.

We provide empirical results by testing our models with six multigenerational real

world diffusion data sets. Table 10 summarizes the data set properties. Section 4.5.1

describes parameter estimation procedures. Section 4.5.2 presents the test procedures
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DRAM IBM M1 M2 M3 M4
Data frequency yearly yearly monthly monthly monthly monthly
Number of Generations 8 4 10 8 13 7
Start Date (yr-mo) 1974 1955 2001-01 2001-06 2000-03 2001-05
End Date (yr-mo) 1998 1978 2008-04 2008-04 2008-06 2008-06
Market Global USA Global Global Global Global

Table 10: Multigenerational data sets used for testing.

and empirical results. In Section 4.5.3 we provide managerial insights and discuss

implementation strategies.

4.5.1 Estimating Model Parameters

For all the 50 product generations from six multigenerational data sets, we used

the standard Nonlinear Least Square (NLS) procedure proposed by Srinivasan and

Mason (1986) ((78)) applied to the data series5 to estimate the three parameters of

the Bass Model. In order to provide good starting points for parameters, we followed

initialization suggested by Van den Bulte and Lilien (1997) ((81)), and used a grid

search to find initial values for p, q and m6. Parameters p and q are exactly used as

found in the grid search, and m is inflated by 20% to be consistent with Van den Bulte

and Lilien (1997) ((81)), who used population size M (i.e., m ≤ M) as the initial

value for m. All of the 50 products but one7 converged in the NLS procedure. Using

equation (30) with β = 0.01, we find product life time T and then using equation

(41) we find the resultant a, b and c parameters for all products. Peak time t∗ and

first period sales n(1) are found using the equations (45) and (44), respectively.

5Monthly frequency data sets are not seasonally adjusted because our tests show negligible prac-
tical significance of the seasonal adjustment procedure on diffusion curve parameter estimates.

6We evaluated all p− q combinations in the interval of (0, 0.9] with increments of 0.0025 at every
incremental m value changing in the interval of [80%− 120%]N(T ), where N(T ) is the cumulative
number of adaptors in the last data observation.

7Only 8th DRAM generation with only 5 data points did not converge. Since this generation is
the last generation in the product line, it’s parameters are not used for any pre-launch testing. Grid
search results are reported for this product.
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4.5.2 Impact on Forecast Accuracy

After constructing the database of all the parameters, we proceed with our pre-launch

forecasting tests to assess their forecast accuracy. We conduct these tests within each

product line and report the results as the averages across product lines. We first

rank and order the products within each product line based on their launch times.

We simulate each product launch scenario starting from the second product launch

(making the first product within each product line as the seed product, therefore

simulating 44 product launch scenarios in total) by assuming that all the previously

launched product parameters are known. For the product launch scenario of product

i + 1, all the historical products 1...i in the same product line are used. Market

potential m is assumed to be known. Effect of biased estimates of m is explored in

Appendix B.3. If a model requires one of the percentage-based parameters (a, b or

c), it is calculated from the historical averages. The time-based parameters (t∗ or T )

for these models are first assumed to be known, then systematic bias is introduced

with increments of +/-10% to test the model sensitivity to time-based parameter

estimates.

We propose a simple algorithm to estimate peak time t∗ from product roadmap8

information and algorithm estimated peak time values are also tested. According to

this algorithm, the product being launched will have its peak realized at the time

of the next major product introduction. Since product roadmaps plan for product

launches far ahead of time, this algorithm is very practical and the assumption is

realistic. For Microchip data sets, we were able to estimate 32 out of 38 families peak

time from the product roadmap information. The remaining 6 products are assumed

to have 20% positive bias in estimating t∗, which produced an overall t∗ estimation

8Product roadmaps are long term plans for product development and introduction times. It is
common in the semiconductor industry to have roadmaps that cover the next 5 year of product
development and introduction activity. For this algorithm, we assumed that future major product
introduction times are known at the time of current product introduction.
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error of 16.1% (MAPE).

Forecast performance comparisons for the Microchip datasets are based on: (1)

ratio of model generated forecast’s mean absolute deviation (MAD) to the optimal

(fitted) diffusion curve’s MAD evaluated over four forecast horizons: 3, 6, 9 and

12 months; (2) mean absolute percentage error (MAPE) for the cumulative demand

forecasted by the model for the first 12-month horizon. For yearly data (DRAM

and IBM), we used first 6-year horizon as the forecast period, which constitutes the

majority of the early life cycle sales for most of the products.

The MAD of a particular method is calculated over three period horizon as:

MAD3 =
|e1/X1|+ |e2/X2|+ |e2/X2|

3
(53)

where et = Ft − Xt is the error, Ft is the forecast and Xt is the actual data for

period t.

The MAPE of the cumulative demand for the first 12 months period horizon is

calculated as:

MAPE12 =
|(F1 + ...+ F12)− (X1 + ...+X12)|

(X1 + ...+X12)
(54)

The MAD ratio measures closeness of pre-launch model forecasts to the optimal

diffusion curve tested at each period. This metric is more sensitive to monthly or an-

nually point forecasts, than the cumulative demand MAPE metric, which is designed

to compare our model performances to some of the published results in the literature.

4.5.2.1 Results

The n(1)−t∗ model is illustrated separately using the Color TV diffusion data and test

procedures used in Mahajan and Sharma (1986) ((55)). Main advantage of the hybrid

model n(1) − t∗ observed in Figure 16 is that it almost achieves the same forecast

performance (slightly worse MAD=0.603 vs. 0.602, slightly better MAPE=12.9% vs.

14%) as in Mahajan and Sharma (1986) ((55)) MS1 model, but instead of using peak
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Figure 16: Comparison of the n(1)− t∗ model with (8) and (55) in the Colort TV
Diffusion Case.

height information we used first year sales information. Same peak time (5 years)

and market potential (35 million) is assumed. Based on simple forecasting principles,

1-step ahead forecast n(1) is managerially easier and generally more accurate than

5-step ahead n(t∗ = 5) forecast. This is only one example of how the Bass model

parameters can be estimated with more intuitive parameters without sacrificing the

forecast accuracy. In fact, the superior performance of the n(1) − t∗ model becomes

apparent on the early life cycle forecasts. When we compare only the first 4-year

forecast accuracy of the Bass (1969) ((8)) and Mahajan and Sharma (1986) ((55))

MS1, the n(1) − t∗ model clearly outperforms the others with 5.6% MAPE versus

8.7% in the MS1 and 11.4% in the Bass Model.

Table 11 presents the Microchip data performance results of the models that use

only one time-based information, which is subject to managerial judgment. Varying

levels of accuracy on the time-based parameters are observed to impact forecast ac-

curacy. The other parameter in these models is a percentage-based parameter, which

is obtained by averaging historical observations. The b− c and T − t∗ models are not

tested as they can be directly converted to the a− t∗ or a−T ; and the b− t∗ or c− t∗

models, for which we already provide test results. As it can be seen from Table 11,

none of the proposed models consistently dominates the others. Model b−t∗ performs
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relatively better in both MAD and MAPE metrics, when t∗ is negatively biased, but

it is outperformed when time-based information is positively biased. One important

observation is the comparison of the contribution of t∗ and T from the paired models

a− t∗ and a−T , and the Time Controlled Bass (TCB) Models with t∗ and T . Models

with t∗ outperform the models with T in both cases, implying that the peak time is

more important than the product life time information in estimating early life cycle

demand.

Figure 17(a) shows that naively averaging historical p and q parameters -even

within the same product line- can result in very high forecast errors. In this instance,

company generated forecast numbers are much better than the Naive PQ method

(i.e., cumulative pre-launch forecast error over 12 month horizon is 47% with Naive

PQ method vs. 30% with company forecasts). However, by including the timing in-

formation with the proposed methodologies, one can significantly improve pre-launch

forecast performances. Using the peak time information, the best performances of our

models can estimate first year cumulative demand within 4-10% of actual demand.

Even if not perfectly known, peak time t∗ has some room for error. Within the inter-

val [-10%, 20%] for t∗ bias, total of six models are evaluated at 4 different time levels

creating 24 combinations of forecasts, our models outperform Company X forecasts

in 22 of those 24 scenarios. Another observation from both Figures 17(a) and 17(b)

is that a negative bias in time-based parameters creates more forecast error than the

same amount positive bias. This error gap widens increasingly as the bias increases.

We also test our models on multigenerational data sets from the literature such

as four IBM Mainframe Computer generations and 8 DRAM generations. In both

of these data sets, we obtain very similar results and significant forecast accuracy

improvement opportunities. Since these data series are at annual frequency, we com-

pare their first 6-year cumulative demand forecast accuracy (MAPE). In Appendix

C.1, Figure 26 presents the performances of the t∗-based models that do not require
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Time-based Parameter (t* or T) Estimation Bias
-30% -20% -10% 0% 10% 20% 30% t∗roadmap

1

MAD: Naive PQ / Opt 2.25 2.25 2.25 2.25 2.25 2.25 2.25 -
MAD: a− t∗/ Opt 3.07 2.02 1.40 1.11 1.09 1.17 1.26 1.41
MAD: b− t∗/ Opt 2.66 1.76 1.19 0.96 1.07 1.27 1.47 1.23
MAD: c− t∗/ Opt 3.01 2.07 1.50 1.22 1.19 1.23 1.28 1.47
MAD: a− T / Opt 3.26 2.21 1.60 1.29 1.19 1.24 1.32 -
MAD: TCB (w/t∗) / Opt 2.98 2.02 1.45 1.17 1.14 1.20 1.27 1.43
MAD: TCB (w/T ) / Opt 3.08 2.13 1.58 1.29 1.20 1.24 1.30 -
MAPE: Naive PQ 47% 47% 47% 47% 47% 47% 47% -
MAPE: a− t∗ 92% 53% 28% 10% 14% 28% 38% 24%
MAPE: b− t∗ 69% 45% 22% 8% 23% 40% 54% 30%
MAPE: c− t∗ 83% 48% 22% 5% 13% 24% 34% 23%
MAPE: a− T 87% 56% 35% 25% 20% 25% 31% -
MAPE: TCB (w/t∗) 85% 48% 21% 4% 13% 24% 34% 22%
MAPE: TCB (w/T ) 83% 51% 30% 25% 24% 22% 29% -
MAPE: Company X Forecast2 30% 30% 30% 30% 30% 30% 30%

Table 11: Median values for MAD ratio and MAPE (average of the four Microchip
product lines, containing total of 34 pre-launch forecast scenarios).

1 t∗roadmap is estimated from roadmap data, from next major product introduction time.
2 Company X’s published forecast figures. Most recent forecast figures just before each product launch are evaluated
for the first 12-month forecast horizon.

(a) MAPE for 12 month cumulative de-
mand

(b) MAD Ratio (avg. of 3, 6, 9 and 12
month forecasts)

Figure 17: Comparison of Proposed Models and Company Published Pre-Launch
Forecasts
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regression modeling to calculate parameters (therefore, models with parameter a are

excluded). In DRAM data set, where parameters p and q vary significantly across

generations (coefficient of variations 125% (p) and 31% (q)), the Naive PQ method

produces a median forecast error of 185% MAPE in calculating the first 6-year cumu-

lative demand. Our models can bring this error down to as low as 15%, while leaving

considerable room for error in estimating t∗. For IBM data set, where parameters p

and q are much more stable (37% (p) and 15% (q) coef. of variation), the Naive PQ

method gives a median MAPE value of 25% for the first 6-year cumulative demand.

Our models can decrease this error down to as low as 5% MAPE. For this case, the

Naive PQ method barely outperforms the average performance of our models only

when t∗ is underestimated as much as 10% or overestimated as much as 15%. In

addition to what we learned from Microchip data, we see from DRAM and IBM data

sets that the variance of the original Bass model parameters p and q across genera-

tions affects the performance of the Naive PQ method, and more stable parameters

produce higher accuracy pre-launch forecasts. Moreover, even in the best case sce-

nario of stable p and q parameters, our models present an opportunity to significantly

improve pre-launch forecast accuracy by estimating peak time t∗. In Appendix B.2,

we illustrate this statement by forecasting 4th Generation IBM Mainframe Computer

diffusion, pre-launch. While the Naive PQ method produces a pretty good pre-launch

forecast performance of 25% MAPE for the first 6-year cumulative demand, the b− t∗

model gives 4%, the c− t∗ model gives 5.1% and the TCB(t∗) model gives 5% MAPE

for the same horizon. Peak time for these models are assumed to come from historical

averages of year-to-peak values.

4.5.3 Managerial Insights

“[Diffusion Models] are not meant to replace management judgment; rather they

should be used to aid that judgment, to help run sensitivity analyses, and to compare
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the attractiveness of alternative market scenarios” (53). Regardless of the method

being used to estimate new product diffusions, it is crucial to recognize that it involves

high amounts of managerial judgment and this is best achieved by working with

managers and making these estimation procedures as easy and intuitive as possible

for them to understand. Any effort to easily combine managerial judgments with

analytical models will bring a competitive advantage to companies. In this context,

we learned from our modeling effort and numerical results some important lessons

that can help managers in their forecasting practice:

• It is important to analyze historical product diffusions on the same scale:

We showed that the analogy of a diffusion curve and normalization procedures

improve the ability of managers to see product diffusion pattern similarities.

These analyses can be used to standardize the definitions of product life cycle

phases, and establish a common platform to study new product introduction

scenarios. Based on the diffusion shapes, blueprint curves can be constructed

to help managers put their expectations into visual scenarios.

• Original Diffusion parameters p and q are not managerially intuitive. Diffusion

models can be reformulated with more intuitive parameters to provide improved

judgment and accuracy: Table 11 presents the averages of four Microchip prod-

uct line Naive PQ performances to be 47% MAPE over the first year forecasting

horizon, and 125% more error (i.e., 2.25 MAD ratio) from the optimal curve

when evaluated over 3, 6, 9 and 12 month horizons. Naive PQ uses scalar

p and q parameters, and it is hard for managers to judge and update these

numbers based on their expectations. We propose percentage-based and time-

based parameters to be used in the pre-launch new product diffusion forecasts.

Test results show that our models can significantly improve forecast accuracy,

especially when accurate time-based parameter inputs are used.
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• Peak time t∗ is more valuable in pre-launch forecasting than the product life T ,

and product roadmaps can be used to estimate the peak time with high confidence:

Comparable models that can either use t∗ or T showed that models with t∗ can

be significantly more accurate than the same model with T . And we show that

we can estimate a good baseline for t∗ from the roadmap data using a simple

algorithm. Application of this method to the microchip data set created t∗ es-

timates within 16.1% of the actuals on the average. Last column in Table 11

presents the results of using the output of this procedure in various methods.

In all of the forecast cases, our models that use t∗ estimates from this simple al-

gorithm and use the historical averages of the percentage-based parameters still

outperform Naive PQ method and the company forecasts. This is a very strong

result, because with the use of roadmap data, this forecast method can even be

automated and run by just including a market potential m estimate. With the

inclusion of managerial judgement to fine-tune these parameters, performance

of our models can further increase.

• Over-estimating time-based parameters produces less forecast error than under-

estimating:

All of the models show higher sensitivity to the negative bias of time-based pa-

rameters and they increase in error much steeper on the negative bias direction.

This can be explained by the type of shape change in diffusion curve when a

shorter peak time or product life time is used. Earlier peak times require much

faster ramp up, taking the product demand much higher levels early in the

life cycle. This creates a significant upward bias. Using the same amount of

shrinkage, extended vs. shrunk life cycles visualize this effect (see Figure 14).

Over versus underestimation of peak time or product life time should also con-

sider the inventory holding cost versus stock-out penalties. Higher t∗ estimates

103



may show less absolute forecast error, but higher t∗ generally underestimates

the demand and it can increase the risk of stock-outs. Therefore, t∗ needs to

be analyzed carefully considering stock-out penalties versus inventory holding

costs and other effects.

4.6 Conclusion

In this paper, we present alternative formulations of the Bass diffusion model that

rely on a set of intuitive parameters with natural business interpretations. These

percentage-based and time-based parameters are investigated and their interrelation-

ships are explored to provide alternative models. Using data from various multi-

generational product lines we show that our version of the Bass diffusion models

significantly improves the quality of pre-launch forecasts. Our models emphasize the

importance of time-based parameters such as peak time and product life time. Under

mild assumptions our models outperformed the forecasts of a major semiconductor

company even when time-based parameters were off by -10% to 20%. Using the prod-

uct roadmap information, we provide a simple procedure to estimate peak times from

the next planned major product launch times. Using these peak time estimates and

historical averages of percentage-based parameters, all of our models improved the

current company forecast accuracy. First 12-months cumulative demand MAPE is

improved from 30% down to as low as 22% using this simple procedure. Although

unlikely in actual practice, if used with perfect peak-time estimates, our models can

improve this forecast metric down to 7% MAPE on the average. These results suggest

that by just focusing on estimating peak time or product life time of the product being

launched (and relying on the stable historical averages of percentage-based parame-

ters), significant improvements can be achieved in the pre-launch forecast accuracy.

To provide an easy-to-use tool to managers for analyzing the historical product
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diffusion patterns, we develop Normalization and Blueprint approaches. Normaliz-

ing the diffusion curves help us standardize the way we look at different product

diffusions. Normalized diffusion curves can improve managers’ capability in observ-

ing the similarity of historical diffusion patterns. Grouping similar diffusion patterns

based on expected product life of the upcoming product and creating a representa-

tive blueprint curve, managers can have a baseline estimate for the upcoming new

product’s life cycle, and they can covert this baseline to a pre-launch forecast easily

by just estimating product life time and market potential.

The majority of the data sets analyzed by the diffusion literature are in annual

frequency. Past applications of diffusion models are generally applied at macro level

representing entire industry and product families. Individual level diffusion model-

ing is required increasingly to address the new product introduction and forecasting

problems at a more granular level. Today’s managers need to forecast demand in

monthly, sometimes weekly levels. However, increased data frequency comes with

an important challenge of dealing with seasonality. Appropriate modeling should

address understanding and mitigating the impact of seasonality in diffusion based

forecasts. Next chapter focuses on modeling and reducing the affect of seasonality

on new product diffusion models, and combining them with pre-launch forecasting

models we developed here to further improve early life cycle forecast accuracy.

105



CHAPTER V

SEASONALITY MODELS FOR NEW PRODUCT

DIFFUSIONS: SHRINKING SEASONAL SPLIT AND

PRODUCT MIX APPROACHES

5.1 Introduction

“Virtually every product in every industry in every country is seasonal” (Radas and

Shugan 1998 ((72))). From weather to holidays, from tax returns to major sport

events, there are many reasons behind seasonality for different products. While cer-

tain industries are subject to more intense seasonal demand patterns than others,

being aware of seasonal variations in demand presents significant forecast accuracy

improvement opportunities. One such opportunity is in forecasting the demand of

new products that have short life cycles, where the availability of demand information

before the product launch is often very limited. Pre-launch estimation of demand of a

new product gives valuable insights to the managers in capacity planning, marketing

and pricing policies.

In this chapter, we focus on using diffusion models for forecasting the demand

of new products with short life cycles and seasonal demand patterns. Shortening

product life cycles increase the frequency of new product introductions, therefore

managers face the pre-launch forecasting scenarios more often than ever. Already

difficult task of estimating new product diffusions becomes more complicated with the

addition of strong seasonal variations. The importance of seasonality and its impact

on forecast accuracy is recognized and potential models are compared in several time

series studies. However, to the best of our knowledge, no such comparative study

exists in the diffusion literature, where the majority of the studies focus on macro
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level diffusion models that use annual sales data. Putsis (1996) ((69)) notes that

the traditional statistics and advertising-sales response literature suggests using data

series with higher frequency, since it improves parameter estimates of the models.

Testing extensive data from diffusion literature, Putsis (1996) ((69)) finds that using

deseasonalized monthly or quarterly data results in better fit and higher forecast

accuracy than the same model using annual data. For products with short life cycles,

diffusion models cannot produce stable parameter estimates using few aggregated

annual data points. Heeler and Hustad (1980) ((35)) recommend using at least 10

years of input data, including the data on peak sales, which is much longer than some

of today’s product life cycles. Therefore, higher frequency data is required to estimate

good diffusion parameters.

When higher frequency data is used, certain demand patterns that were disguised

in the annual data become more visible. Especially the seasonal demand variations

within the year can be significant, and it needs to be properly modeled to estimate

the true underlying trend. On the other hand, modeling seasonality can improve the

quality of parameter estimates, therefore lead to higher forecast accuracy. Better

understanding of the seasonal variations in the diffusion context, therefore, can im-

prove both the monthly/quarterly forecast accuracy and the parameter estimates of

the underlying diffusion model trend. Figure 18 shows a real life microchip product,

where actual sales show significant deviations from the fitted diffusion curve due to

seasonal variations.

In this chapter, we address the following research questions:

• Can classical seasonality methods (i.e., ratio-to-moving-averages) estimate sea-

sonality factors accurately under nonlinear trends, which is generally observed

in short life cycle products?

• How to improve the seasonality factor estimates under nonlinear trends and use
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Figure 18: Actual sales of a microchip product versus the fitted diffusion curve.

them to improve monthly forecast accuracy?

• How to model seasonality for short life cycle products when we do not have

enough data to run classical seasonality procedures?

This chapter is organized as follows. In Section 5.2, we give an overview of the

literature on estimating seasonality factors and estimating diffusion parameters where

seasonality can play significant role. In Section 5.3, we extend the findings of Miller

and Williams (2003) ((63)) on seasonality models under linear type trends to diffu-

sion type trends. In Section 5.4, we propose two novel approaches, namely, Shrinking

Seasonal Split (SSS) and Product Mix Forecasting (PMF ), for improving forecast

accuracy through seasonality models for short life cycle products. SSS relates sea-

sonality factors not only to the level of the trend as in the classical seasonality models,

but also to the slope. Exploiting this relationship, we can better estimate seasonality

factors and, therefore, improve forecast accuracy. PMF explores the relationship of

seasonality factors for products that belong to the same product line (for example,

multigenerational products such as microchips). PMF method avoids the calcula-

tion of seasonality factors by estimating the shares (or ratios) of individual product

demands within the product line. In the multigenerational diffusion context, we show
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that PMF can mitigate seasonal variations and improve forecast accuracy. We il-

lustrate forecast improvement potential of both methods with real-world data from a

major semiconductor manufacturer. We discuss the conclusions and future research

in Section 5.5.

5.2 Literature Review

Two streams of literature are related to our research: (i) the time series forecasting

literature that focuses on economic time series data with seasonality, (ii) the diffusion

literature that uses higher frequency data such as monthly or quarterly.

Seasonality has been studied extensively in the time series forecasting literature.

De Gooijer and Hyndman (2006) ((24)) review methods to estimate seasonality fac-

tors including standard decomposition procedures such as X-11, X-12-Arima and their

variants (Findley et al. 1998 ((27)), Quenneville et al. 2003 ((71))), shrinkage esti-

mators (Miller and Williams 2003, 2004 ((63)), ((64))) and group seasonality factors

(Bunn and Vassilopoulos 1993, 1999 ((15)), ((16))). Many of these studies use sim-

ulation experiments, or data from M-Competition (Makridakis et al. 1982 ((56)))

and/or M3-Competition (Makridakis and Hibon 2000 ((57))). Some also report re-

sults on real life data series, however, as noted by De Gooijer and Hyndman (2006)

((24)), “the best performing model varies across the studies, depending on which

models were tried and the nature of the data. There appears to be no consensus yet

as to the conditions under which each model is preferred”. Widely used databases

of monthly data series, namely, M-Competition and M3-Competition, do not include

diffusion type trend and we found no study that considers seasonality in conjunction

with diffusion models. Our aim is to fill this gap by highlighting important studies of

seasonality and diffusion models and combining them where appropriate to develop

insights on seasonality for new product diffusion forecasting.

In the limited diffusion literature that uses higher frequency data (i.e., monthly,
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quarterly), Putsis (1996) ((69)) highlights the theoretical and empirical relationships

of the parameter estimates for diffusion models that use data with different frequen-

cies. This paper shows that the use of seasonally-adjusted monthly or quarterly data

outperforms the same model that uses annual data. The authors suggest the use of

classical X-11 procedure of the U.S. Bureau of the Census (Shishkin 1958 ((76))) for

deseasonalizing the data and show that higher frequency data produce better param-

eter estimates, which in turn produce more accurate “annual” forecasts. However,

this study does not provide insights on how better seasonal factors can be found to

improve predictions of monthly or quarterly sales. In order to address this issue,

our first analysis is to extend the study of Miller and Williams (2003) ((63)), who

present a simulation experiment design to estimate seasonality factors with different

methods by randomly generating monthly data series representative of the data series

in the M-competition database. However, only linear trend cases (1% per month or

no trend at all) is included in this simulation design. Authors report that Empirical

Bayes methods (by James and Stein (1961) ((39)) (JS)) and Lemon and Krutchkoff

(1969) ((51)) (LK)), also known as shrinkage estimators, are superior to the Classical-

Decomposition (CD) method for a variety of seasonality patterns simulated. We first

replicate their results and then extend their analysis to include nonlinear (diffusion-

type) trend. We show that the suggested shrinkage estimators are no longer robust

under diffusion-type trend, and on average they can perform significantly worse than

the classical decomposition method.

Few studies such as Kurawarwala and Matsuo (1996) ((48)) and Radas and Shugan

(1998) ((72)) combine the seasonality terms with the underlying diffusion model (or

any model for the latter case). Both of these studies employ the concept of “rescaled

or transformed time”, where time passes quickly during the high season letting the

model accumulate more sales, and then it slows during the low season relatively

decreasing the sales volume. Both papers suggest using historical information on
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seasonality patterns to adjust the current sales model. Kurawarwala and Matsuo

(1996) ((48)) analyze four personal computer products and the seasonal model they

propose provides a good fit to the data (R2 = 0.867 or higher). Radas and Shugan

(1998) ((72)) investigate the seasonality of the movie industry, and using only few data

points (first five weeks of data) they show that the transformed-time diffusion model

fits better to the data and provides higher forecast accuracy than the observed-time

diffusion model for the two films’ box office performances tested.

Comparative studies in the diffusion literature generally use annual data, there-

fore, seasonality is not part of the performance comparisons ((59), (60)). One major

conclusion of these studies is that the analytically simpler models perform as well

as more complex ones (Armstrong 2006 ((3))). Given similar observations from the

M-Competition literature ((56), (57)) and the diffusion literature ((81)), we use the

simple Bass Diffusion Model (Bass 1969 ((8))) as the underlying nonlinear trend to

represent the demand for certain types of short life cycle products such as high tech

microchips. However, the models we propose in this paper are generally applicable to

other types of linear and nonlinear trends. The Bass model formula for the cumulative

sales at time t is given in equation (55).

N(t) = m
[1− e−(p+q)t]

[1 + (q/p)e−(p+q)t]
(55)

where m is the total market potential, p is the parameter of innovation and q is the

parameter of imitation. The derivative of the cumulative sales is n(t) = dN(t)/dt,

represents the sales at time t. For many real life scenarios such that p < q, n(t) is

unimodal, i.e., it increases until its peak at t∗ = ln(q/p)/(p+ q), then decreases. We

use n(t) as the basis for the nonlinear trends and introduce several versions of these

trends by controlling the signal using the ratio q/p and the speed using p + q (Van

den Bulte and Lilien 1997 ((81))).

In Section 5.3, we present comparative test results of several key seasonality models
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and analyze their performances in estimating seasonality factors under diffusion type

trends.

5.3 Methods for Estimating Seasonality Factors under Dif-
fusion Trend

In this Section, we extend the simulation study of Miller and Williams (2003) ((63))

to the diffusion-trend case. Miller and Williams (2003) ((63)) consider two different

trend types: no trend or 1% per month trend. Table 12 shows the simulation design

setting of (63) that is used to test four seasonality models, namely, Classical Decom-

position (CD), Armstrong (2) (A), James-Stein (39) (JS) and Lemon-Krutchkoff (51)

(LK). The authors observe that the performances of the seasonality models are al-

most indistinguishable. We first replicate their analysis to validate their results, then

include diffusion-type trends with varying levels of signal (q/p) and speed (p + q) as

suggested by (81) to the simulation and provide the same performance metrics for dif-

ferent diffusion-trends. We show that performances of shrinkage estimators suggested

by the authors are not nearly as superior to classical decomposition (CD) method

under diffusion-type trends as they were under no trend or 1% trend.

In simulation design of (63), there are two levels of data length, four levels of

variation for the random component, four levels of variation and four levels of skewness

for the seasonality factors, and two types of trend, i.e., a full factorial design of 2 × 4

× 4 × 4 × 2 = 256 combinations. Since zero variance in seasonality factors can only

correspond to zero skewness, this produces 13 different seasonality types (down from

4 × 4=16), reducing the total number of combinations to 208. We replicate half of

these combinations, only focusing on 3 year long data series to represent shorter life

cycles better. In addition, we include 6 diffusion-type trends (3 levels of signal (q/p)

times 2 levels of speed (normal vs. 20% reduced)), and test them under the same

combinations of seasonality factors and random error levels. Every combination is

tested with 500 independent replications as suggested by (63).
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Table 12: Simulation design factor levels used in Miller and Williams (2003).
No SD SD Skewness Trend
years (E) (S) (S)
3 0.025 0 0 0
6 0.05 0.05 0.6154 1% per month

0.125 0.15 1.4035 Diffusion (q/p = 14)1

0.25 0.35 2.8868 Diffusion (q/p = 27)1

Diffusion (q/p = 50)1
1Diffusion-type trend factors added to the simulation design.

Table 13 shows the relative performance of each model in estimating the seasonal-

ity factors using the ratios of mean squared error (MSE). For example, rMSE: JS/CD

performance represents the ratio of the MSE for the James Stein (JS) method to the

MSE of the Classical Decomposition (CD) method. The first two lines of each com-

parison show the performances reported in (63), and the results we obtained using

the same simulation setting. We found that the difference between the results pub-

lished in (63) and the replicated results are not statistically significant at significance

levels of 1%, 5% and 10%. The next three lines of each model comparison present

the results for different diffusion-trend cases with different signal (q/p) values1.

There are three main observations from Table 13: (1) The Armstrong (A) method

performs significantly better under certain diffusion trends than under the linear

trend, but its average performance is still very poor compared to the (CD) method;

(2) Shrinkage estimators (JS and LK) perform worse than the CD method under

certain diffusion trends and have very poor worst case performances under the diffu-

sion trends than under the linear trends; and (3) The relative performances of A, JS

and LK deteriorate with an increasing q/p value. Table 13 also shows the statistical

significance of each difference in performance.

Although not shown, we also tested the 20% slower diffusion trends (achieved by

1q/p = 27 is the base signal that corresponds to the median values of p = 0.009 and q = 0.24
for a sample of 38 real-life microchip product families we obtained from a major semiconductor
manufacturer. q/p = 14 and q/p = 50 corresponds to the first and third quartile values for q/p
distribution of these 38 products. We change p, while holding q constant to obtain different signal
values.
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Table 13: Comparison of MSE ratios of seasonality models in estimating seasonality
factors.

Trend Mean min Q13 Median Q33 Max
rMSE: A/CD Linear - M&W1 (2003) 17.523 0.202 0.707 2.404 18.526 150.881

Linear 20.953 0.210 0.861 2.609 13.196 168.789
Diffusion q/p = 14 1.774*** 0.118 0.267 0.933 1.922 10.503
Diffusion q/p = 27 5.865*** 0.202 0.469 1.429 5.390 59.425
Diffusion q/p = 50 13.109 0.206 0.775 2.183 10.578 103.068

rMSE: JS/CD Linear - M&W (2003) 0.826 0.219 0.775 0.951 0.992 1.001
Linear 0.819 0.213 0.772 0.952 0.995 1.014
Diffusion q/p = 14 0.952 0.086 0.275 0.799 1.194 3.179
Diffusion q/p = 27 2.868*** 0.109 0.723 1.331 2.235 30.692
Diffusion q/p = 50 5.109*** 0.124 0.921 1.624 5.173 35.943

rMSE: LK/CD Linear - M&W (2003) 0.677 0.407 0.486 0.660 0.784 1.214
Linear 0.677 0.394 0.493 0.676 0.802 1.222
Diffusion q/p = 14 0.483*** 0.066 0.231 0.363 0.622 1.620
Diffusion q/p = 27 1.173** 0.082 0.273 0.792 1.107 8.980
Diffusion q/p = 50 1.961*** 0.162 0.315 0.899 2.228 13.085

rMSE: LK/ JS Linear - M&W (2003) 0.962 0.422 0.669 0.815 1.190 2.395
Linear 0.990 0.451 0.689 0.910 1.202 2.267
Diffusion q/p = 14 0.964 0.033 0.511 0.859 1.256 3.365
Diffusion q/p = 27 0.910 0.018 0.413 0.943 1.111 2.901
Diffusion q/p = 50 0.915 0.009 0.503 0.931 1.097 2.816

1 M&W represents the (63) paper and their results in testing linear trends for the simulation design setting explained
in Section5.3. 2 Only seasonal series are shown. 3 Q1 and Q3 denote first and third quartiles. 4 Asterisks indicate
P values for two-tailed t-tests: *P < 0.10; **P < 0.05; ***P < 0.01 on the hypothesis that the group mean is equal
to the values reported by Miller and Wiliams(2003).

reducing p and q by 20%) and observed that the relative performances of JS and

LK methods are more robust (improved worst case performance) in slower speeds

(q/p = 14 being the exception). For six types of diffusion trends tested, the average

performance of JS was better than CD in only one case, while LK was better in

three out of six cases. The main insight from this study is that shrinkage estimation

methods (JS or LK) are less robust for the diffusion trends than the CD method

and their average performance is not nearly as superior as the performance of the

CD method in nonlinear trend case. Considering that shrinkage estimators perform

significantly better than CD under linear trends, we can conclude that trend plays

an important role in seasonal factor estimates.
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5.4 Two Novel Approaches for Modeling Seasonality under
Diffusion Trend

In Section 5.3, we found that trend plays an important role in seasonality factor

estimation. Moreover, for the methods we tested, we assume that there are enough

data points required by seasonality procedures to calculate seasonality factors, which

may not be the case in today’s competitive landscape with short product life cycles.

In fact, many products have less than 36 months of life cycle, which is the minimum

required data length for classic seasonality models such as classical decomposition

(CD).

We identify two major problems to be addressed in modeling seasonality in the

diffusion context:

• How to develop seasonality models to address both linear and nonlinear trend

types?

• How to find seasonality factors when we do not have enough data points to run

classical seasonality models?

In Section 5.4.1, we propose a novel approach, called “Shrinking Seasonal Split”

(SSS), to understand the seasonality of monthly data series with different trend types.

Observing the interaction of the data series with trend and seasonality, we introduce

the seasonal split (SS) factor that is a function of (1) the seasonality factors and (2)

the slope of the trend relative to its level, and employ this relationship for linear and

nonlinear trend types to find better seasonality factors. We observe that the SS fac-

tors show shrinking behavior over the course of the product life time. Differentiating

the contributions of seasonality factors and underlying trend to this shrinking be-

havior, we can obtain better seasonality factors, which translate into higher forecast

accuracy. SS factors also allow managers to use their judgment for aggregate level

quarterly demand, and easily split the quarterly forecasts into individual months.
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In Section 5.4.2, we propose a model, called “Product Mix Forecasting” (PMF ),

that avoids the calculation of the seasonality factors, which is advantageous in scarce

data situations. PMF forecasts the demand for products in “percent mix” instead

of in units, by estimating the shares of individual product demands within the total

product line demand. Using product mix forecasts, one can divide the aggregate

level demand forecasts that tend to be more accurate, into individual product de-

mands. Seasonality can be considered at the aggregate product line level, where

longer data series are available. This way the demand forecasts for individual prod-

ucts are obtained with a top-down approach without estimating seasonality factors

for each product.

5.4.1 Shrinking Seasonal Split - SSS

In the monthly data series, we observe a specific pattern in the way the quarterly

volume is split into monthly volume due to the interaction of the seasonality and

the trend. We introduce a novel approach that uses this concept, called “Shrinking

Seasonal Split” or “SSS”, that splits the quarterly level demand into monthly level

using appropriate seasonal split (SS) factors. We define the seasonal split factors as

follows.

SS(t+ i− 1) is the seasonal split factor of the ith month (i ∈ {1, 2, 3}) for the quarter

starting with month t, such that SS(t) + SS(t + 1) + SS(t + 2) = 1 for any

quarter.

A classic multiplicative model decomposes the data series into the trend compo-

nent Tt and the seasonality component St such that Xt = Tt × St (we exclude the

random error component for simplicity). Our proposed model replaces the multiplica-

tive seasonal model by Xt = Qt × SSt, where Qt is the quarterly demand and SSt

is the seasonal split component which splits this quarterly demand into individual

months. There are two important advantages in using this model. First, the trend
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component Tt is replaced by a more aggregate level demand component Qt, which

is easier to forecast and judge by managers. Second, the seasonality factors and the

underlying trend’s relative slope can be used to estimate better seasonality factors,

and therefore produce higher forecast accuracy.

5.4.1.1 SSS with Linear Trend

Seasonal split factors depend on both the trend and the seasonality of the data series.

For the simplest case when there is no seasonality and no trend, seasonal splits for a

quarter starting with month t are equal to each other, such that SS(t) = SS(t+ 1) =

SS(t+2) = 1/3. Assuming no seasonality, linear trend and diffusion trend produce the

seasonal split factors over time as shown in Figures 19(a) and 19(c). We observe that

positive sloping trend curves produce the shrinking behavior of seasonal split factors,

such that the percentage split of the first month and the third month sales volume

has the biggest gap at the beginning of the life cycle, and this gap shrinks (approaches

33.3%) over time, while the seasonal split factor for the second month of each quarter

is already close to 33.3% due to symmetry. This is because the slope of the trend

stays constant (for the linear model), while the level (or magnitude) increases over

time, shrinking the percentage gap between monthly shares. The opposite behavior is

observed with downward sloping trends, where the gap between the SS factors widens

over time with the third month SS decreasing and the first month SS increasing (i.e.,

after the peak of a diffusion curve).

When we add within-the-quarter seasonality, the gap between first and third

month SS factors widens. The reason is that the third month seasonality factors

are usually greater than 1, while the first month seasonality factors are smaller than

1. Figures 19(b) and 19(d) show the SS factors, when seasonality factors are applied

to the underlying trend. We notice that while the trend (slope and intercept) cre-

ates the shrinking behavior, seasonality introduces an additional static gap (i.e., not
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(a) Linear Trend - No Seasonality (b) Linear Trend - With Seasonality

(c) Diffusion Trend - No Seasonality (d) Diffusion Trend - With Seasonality

Figure 19: Shrinking Seasonal Split - SS factors under linear and diffusion trend.
1 y = 50 + 20t is selected arbitrarily as the linear trend. 2 A Bass diffusion curve with parameters p = 0.009 and
q = 0.176 is selected arbitrarily to represent the nonlinear trend. 3 Seasonality factors for each month within the

quarter is selected as 0.75, 0.9 and 1.35 for the first, second and the third month respectively.

changing over time), since seasonality factors that are greater (less) than 1 increase

(decrease) SS factors.

In summary, the SS factor is found to be a function of (1) the slope of the trend

relative to the level and (2) seasonality factors. For a monthly linear trend with

intercept a and slope b (i.e., y(t) = a+ bt, where t is the month), equation (56) gives

the formula for SS factors for a given quarter (starting with month t) when there is

no seasonality.

SS(t) =
1

3
− g(t)

3
, SS(t+ 1) =

1

3
, SS(t+ 2) =

1

3
+
g(t)

3
(56)

for t ∈ 1, 4, 7... where g(t) is the slope of the trend relative to level (measured at its

mid-point) for the quarter starting with month t, such that g(t) = b/y(t + 1) for a

linear trend curve y(t) = a+ bt.

When we add seasonality factors (s1, s2, s3), the SS factors for the ith month of a
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quarter starting with month t can be easily updated by equation (57):

SS ′(t+ i− 1) =
siSS(t+ i− 1)∑3
i=1 siSS(t+ i− 1)

, i = 1, 2, 3 (57)

Equation (56) explains the shrinking behavior of the SS factors. When we have

a trend with positive constant slope b, the level of the trend increases over time

decreasing the relative slope g(t). Therefore, the first month SS increases over time,

while the third month SS decreases both approaching 33.3%. Equation (57) changes

SS(t + i − 1) proportional to the seasonality factor si such that SS ′(t + i − 1) =

SS(t+i−1)×si, however, the resultant sum of the new SS factors within the quarter

may not equal to 1. Therefore, we simply scale the new SS factors by the new sum

to adjust for this effect. Proposition 1 gives the exact closed-form relationship of the

SS factors under linear trend.

Proposition 1 For a linear trend y(t) = a+ bt, relative slope for a quarter starting

with month t is defined as g(t) = b/y(t+ 1). Given the within the quarter seasonality

factors s1, s2 and s3, such that (s1 + s2 + s3)/3 = 1, seasonal split (SS) factors for a

given quarter starting with month t are calculated as:

SS(t) =
s1(1− g(t))

3 + g(t)(s3 − s1)
, SS(t+1) =

s2

3 + g(t)(s3 − s1)
, SS(t+2) =

s3(1 + g(t))

3 + g(t)(s3 − s1)

(58)

for t ∈ 1, 4, 7, ....

See Appendix C.1 for the proof of Proposition 1. If there exists no seasonality

(i.e., s1 = s2 = s3 = 1), equation (58) reduces to equation (56), which gives the effect

of trend on the SS factors. On the other hand, Proposition 2 identifies the effect on

the SS factors that is purely attributable to seasonality.

Proposition 2 The contribution of trend to the SS factors diminishes over time

and the SS factors converge to the values only attributable to the effect of seasonality.
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The pure-seasonality effect is found by taking the limit of equation (58) as t goes to

infinity, giving:

limt→∞SS(t) = limt→∞
s1(1− g(t))

3 + g(t)(s3 − s1)
=
s1

3
(59)

limt→∞SS(t+ 1) = limt→∞
s2

3 + g(t)(s3 − s1)
=
s2

3
(60)

limt→∞SS(t+ 2) = limt→∞
s3(1 + g(t))

3 + g(t)(s3 − s1)
=
s3

3
(61)

for t ∈ 1, 4, 7, ....

From Proposition 2, when there is no seasonality (i.e., s1 = s2 = s3 = 1), all SS

factors converge to 33.3%, which is in line with equation (56).

5.4.1.2 SSS with Nonlinear Trend

In this section, we extend our analysis on SS factors to the diffusion trend case,

and point out why the SSS method can be useful in the diffusion context. Under

diffusion trend, the slope of the trend curve changes constantly over time with a

positive slope until the peak, and a negative slope thereafter. Given the closed form

solution of a diffusion curve such as the Bass model, one can easily calculate SS

factors over time. Noting that any general trend curve, i.e., T (t), behaves almost

linearly in short intervals, we estimate the curve with a piece-wise linear function

such as yt(x) = a(t) + b(t)(x − t) for each quarter, where yt represents the linear

approximation of the trend curve for the interval [t, t + 2]. It is assumed that the

approximated piecewise linear trend curve yt passes through the first and the third

month levels of the original trend curve for a given quarter, such that T (t) = yt(t)

and T (t + 2) = yt(t + 2). Therefore, the slope of yt can be approximated by b(t) =

(T (t+ 2)− T (t))/2.

Based on these definitions and linear approximations of trend, we can extend

Proposition 1 for any trend curve by replacing g(t) by approximated values, such that
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(a) Approximated Piecewise Linear Diffu-
sion Curve

(b) Actual vs. Approximated SS factors

Figure 20: Piecewise Linear Approximation of a diffusion curve and Approximated
SS factors.

g(t) = b(t)/(yt(t+1)). Figure 20(a) shows the linear approximation of a Bass diffusion

curve, while Figure 20(b) compares the actual SS factors with the approximated

factors. The mean absolute deviation (MAD) of approximated SS factors are found

to be less than 0.1% across the 36 individual SS factors estimated. This result shows

that our assumption of estimating a nonlinear trend curve with a piecewise linear

trend function is a reasonable assumption, and that the approximation functions for

SS factors produce values that are very close to the actual.

If the underlying trend type is not known, symmetric moving averages (which is

also employed by the classical decomposition method) can be used to estimate trend.

The estimate of the relative slope of the trend at any given quarter can then be

approximated the same way by a piecewise linear function.

5.4.1.3 Estimating Seasonality Factors using SSS

So far we assumed that seasonality factors s1, s2, s3 are constant across quarters and

their average is equal to 1. This assumption ignores intra-year seasonality and only

focuses on intra-quarter seasonality. Proposition 3 generalizes Proposition 1 to allow

seasonality factors to change across quarters within the year by defining 12 distinct

seasonality factors that repeat every year. We then use Proposition 3 to estimate

121



seasonality factors from a given data series. We compare these estimates to the

shrinkage estimators proposed by (63) using a similar simulation design and find that

SSS can significantly improve seasonality factor estimates, especially for the diffusion

trend cases when there are high levels of random error. Under some conditions, SSS

reduces the CD method’s estimation error by as much as 78% and on average by

50% for the highest random variation setting across all trend types (both linear and

nonlinear).

Proposition 3 For a piecewise linear trend function yt(x) = a(t) + b(t)(x− t), and

seasonality factors st, t ∈ 1, ..., 12; seasonal split (SS) factors for a given quarter

starting with month t are calculated as:

SS(t) =
st(1− g(t))

(st + st+1 + st+2) + g(t)(st+2 − st)
(62)

SS(t+ 1) =
st+1

(st + st+1 + st+2) + g(t)(st+2 − st)
(63)

SS(t+ 2) =
st+2(1 + g(t))

(st + st+1 + st+2) + g(t)(st+2 − st)
(64)

for t ∈ 1, 4, ..., T − 2 where g(t) is the relative slope for the quarter starting with

month t such as g(t) = b(t)/yt(t+ 1).

The proof of Proposition 3 follows from the proof of Proposition 1 by keeping

s1 + s2 + s3 instead of 3, since their sum may not be equal to 3 with the relaxed

assumption.

Equations (62), (63) and (64) find the allocation of quarterly demand into monthly

for a given set of seasonality factors and the relative slope of the trend curve within

the quarter. These are general equations that can be used for any linear trend curve

within the quarter, or they can be used as an approximation to nonlinear trend curves

using the piecewise linear procedure described in Section 5.4.1.2. One advantage of

the SS factors over classical seasonality factors is that for a variety of trend curves SS
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factors can be represented via a closed form function, which can be used to select the

best possible seasonality factors. We propose a procedure to employ the SSS concept,

which improves monthly forecast accuracy through better estimation of seasonality

using this property.

A Simulation Study: Performance of the SSS Method:

We conduct a simulation study similar to the one in Section 5.3 with N=50 repli-

cations for a known seasonality pattern under 4 different levels of random error. We

use 3 types of diffusion signal (q/p = 14, 27, 50) and 2 levels of speed (normal vs. 20%

slower). SSS approach employs the following steps to find seasonality factors:

• Fit a Bass diffusion curve to the data series

• Estimate the fitted diffusion curve with piecewise linear functions for each quar-

ter and find relative slope (g(t)) for each quarter.

• Solve the following optimization model to find the best seasonality factors that

fit the data.

Minimize

SSE =
T∑
t=1

(SS(t)− SSX(t))2 t ∈ 1, 2, ..., T (65)

Subject to:

SS(t) =
st(1− g(t))

(st + st+1 + st+2) + g(t)(st+2 − st)
t ∈ 1, 4, ..., (T − 2) (66)

SS(t+ 1) =
st+1

(st + st+1 + st+2) + g(t)(st+2 − st)
t ∈ 1, 4, ..., (T − 2) (67)

SS(t+ 2) =
st+2(1 + g(t))

(st + st+1 + st+2) + g(t)(st+2 − st)
t ∈ 1, 4, ..., (T − 2) (68)

st = st−12 t ∈ 13, ..., T (69)

1

12

12∑
t=1

st = 1, st ≥ 0, t ∈ 1, ..., 12 (70)
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where st are decision variables for seasonality factors, T is the length of the monthly

data series consisting of T/3 full quarters, SS(t) is the seasonal split factor for month t,

and SSX(t) is the actual split value such that SSX(t) = X(t)/(X(t)+X(t+1)+X(t+

2)) for a quarter starting with month t. Equation (69) makes the seasonality factors

periodic, while equation (70) provides the nonnegativity constraints and adjusts the

average of seasonality factors to 1 for a time series data X(1)...X(T ).

We apply the Classical Decomposition (CD), James-Stein (JS) and Lemon-Krutchkoff

(LK) methods to the same data series using the procedures described in Miller and

Williams (2003).

Table 14 compares the ratios of mean square errors (MSE) of the SSS, JS and LK

methods to the CD method for a given set of known seasonality factors demonstrating

an end-of-quarter effect. SSS approach results in significantly better seasonal factor

estimates, especially when the random error has high variance. For this specific

seasonality factor set, LK consistently outperforms JS due to the asymmetry of true

seasonality factors, which is favored by LK by design. For the highest two levels of

random error across all trend types “including” the linear trend and no trend, the SSS

approach outperforms the CD, JS and LK methods in 14 out of 16 cases, reducing

the MSE by 45% on average. For the remaining two cases (the Diffusion q/p = 50

trends), only the LK method outperforms SSS. Under two out of six diffusion trends

(i.e., q/p = 14, q/p = 27), SSS consistently outperforms CD, LK and JS in all of

the four error levels. Over all diffusion type trends and all error level combinations

(i.e., total of 24), SSS outperforms in 15 of them, CD outperforms in 6, and LK

outperforms in 3 of these combinations. With slower diffusion trends and longer life

cycles (i.e., q/p = 27-slow and q/p = 50-slow) which have flatter slope, and for the

linear trend types, results are mixed. SSS outperforms for higher random error cases,

while it performs worse for low random errors. These results can be summarized as

follows:
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(a) Nonlinear Trends (b) Linear Trends

Figure 21: Mean Absolute Percentage Error (MAPE) Performance of Seasonality
Estimators under Nonlinear and Linear Trends.

• SSS performs better under high uncertainty regardless of trend.

• SSS performs better under nonlinear trends than linear trends.

• SSS performance improves under diffusion trends with shorter life cycles (low

q/p) and faster speeds (high p + q), which is generally the hardest case for

seasonality models.

in comparison to the CD, JS and LK methods. These insights are summarized

from a different perspective in Figure 21, which shows the mean absolute percentage

error (MAPE) values calculated against the true values of seasonality factors for each

estimator under the same nonlinear and linear trend types. For this particular metric,

SSS outperforms all the other methods for all the error levels for the nonlinear trends,

while it only performs better than the other methods in the highest error level for the

linear trends.

In the simulation tests, SSS approach assumed that there is no model misspeci-

fication. In other words, data is generated from the Bass diffusion curves, and again

the Bass diffusion curves are used to estimate the trend. This may bring an advantage

to the SSS method over the CD method, which uses symmetric moving averages to

estimate the trend of a given data series. In order to test the hypothesis that the su-

perior performance of SSS is not due to the correct model specification only, we also
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Table 14: Ratios of Mean Square Errors (rMSE) for SSS, JS and LK methods
against CD method across different diffusion trends, 1 linear trend and no trend
cases under 4 different levels of random variance.

Trend rMSE SD=0.025 SD=0.05 SD=0.125 SD=0.25
Diffusion (q/p = 14) SSS/CD 0.22 0.27 0.36 0.50

JS/CD 2.25 2.16 1.63 1.26
LK/CD 0.60 0.60 0.76 0.92

Diffusion (q/p = 27) SSS/CD 0.68 0.64 0.57 0.53
JS/CD 3.31 2.72 1.66 1.11
LK/CD 1.10 0.86 0.63 0.92

Diffusion (q/p = 50) SSS/CD 3.02 1.41 0.70 0.47
JS/CD 6.72 2.73 1.40 1.11
LK/CD 4.52 1.62 0.62 0.91

Diffusion (q/p = 14 slow) SSS/CD 1.16 0.85 0.59 0.56
JS/CD 1.77 1.50 1.18 0.98
LK/CD 1.36 0.92 0.60 0.83

Diffusion (q/p = 27 slow) SSS/CD 3.48 1.46 0.55 0.44
JS/CD 1.88 1.30 1.11 0.95
LK/CD 2.65 1.11 0.61 0.83

Diffusion (q/p = 50 slow) SSS/CD 3.01 1.36 0.62 0.49
JS/CD 1.17 1.19 0.96 0.92
LK/CD 1.44 0.92 0.54 0.80

No Trend SSS/CD 4.89 1.57 0.70 0.47
JS/CD 0.99 0.99 1.02 0.88
LK/CD 0.61 0.72 0.71 0.80

1% Linear Trend SSS/CD 5.35 1.61 0.67 0.50
JS/CD 1.00 1.00 0.97 0.92
LK/CD 0.57 0.68 0.69 0.84
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used the Bass diffusion curves to calculate CD seasonality factors. As expected, the

relative performance of SSS compared to CD is somewhat degraded, however, the

insights we reported earlier remained the same. For the two highest error cases, SSS

still outperforms CD in all of the 16 cases, however the error reduction potential for

SSS over CD fell from 45% to 21%. Given many practical situations with shortening

product life cycles, where the random error component is a significant contributor to

noise, we can claim that SSS has an advantage over classical seasonality methods

in providing improved seasonality factors. Better seasonality factors can, in turn,

improve the potential for higher forecast accuracy.

5.4.1.4 Impact on Forecast Accuracy

In the previous section, we tested how alternative seasonality models perform in

estimating the true seasonality factors, but we have not assessed the impact of better

seasonality factors on forecast accuracy. To test the performance of SSS within

a forecasting framework, we introduce a simulation design. We generate random

data series for a horizon of 54 months both with nonlinear and linear trends. We

use the first 36 months of data to calculate CD and SSS seasonality factors, while

withholding the remaining 18 months for forecasting purposes. We then separately

deseasonalize first 36 months of data using both methods and we fit a Bass diffusion

curve to the deseasonalized series for nonlinear trend, and we fit a straight line to the

linear trend case. Then we reseasonalize the data using the CD and SSS seasonality

factors. We measure forecast accuracy over five different horizons: 1, 3, 6, 12 and

18 months using mean absolute percentage error (MAPE). We use the same random

error variance levels as described in Section 5.4.1.3 with the same known seasonality

factors. To represent the nonlinear trends, we tested the diffusion curve with the

longest life cycle (i.e., q/p = 50 slow). For linear curves, we used a 1% trend.

Table 15 presents the relative average performances of SSS and CD methods for
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Table 15: Forecast performance of the SSS and CD methods [MAPE: CD/SSS
(%)].

Error Level (SD=St.Dev.)
Horizon SD=0.025 SD=0.05 SD=0.125 SD=0.25

Nonlinear Trend: 1 2.3 / 3.0 6.1 / 6.6 11.9 / 11.1 * 28.1 / 24.6 *
3 2.6 / 3.0 5.8 / 6.0 12.9 / 12.1 * 30.0 / 25.0 *
6 2.7 / 4.0 5.9 / 6.4 14.2 / 13.3 * 31.5 / 28.8 *
12 3.1 / 5.0 6.2 / 6.7 15.3 / 15.1 * 33.2 / 33.2 *
18 3.2 / 5.0 6.6 / 7.1 16.3 / 16.2 * 36.3 / 35.5 *

Linear Trend 1 2.5 / 6.2 4.5 / 7.0 11.5 / 12.8 29.0 / 26.3 *
3 2.5 / 6.7 4.8 / 7.2 11.9 / 12.2 28.9 / 24.4 *
6 2.6 / 4.6 4.7 / 5.9 12.0 / 11.9 * 27.6 / 24.8 *
12 2.6 / 3.5 4.6 / 5.1 12.2 / 11.8 * 27.6 / 25.6 *
18 2.7 / 4.1 4.7 / 5.4 12.3 / 11.8 * 28.1 / 25.5 *

* Indicates that SSS outperforms CD.

this simulation for each forecast horizon and each random error level tested. Similar

to our findings in Section 5.4.1.3, SSS performs better than CD at higher error levels

regardless of trend, and overall performance of SSS is better in nonlinear trends than

in linear trends. CD outperforms SSS in the lower error levels.

In summary, we have shown that SSS produces improved seasonality factor es-

timates, especially when the random error variance is high and data series is short

and nonlinear. These improved seasonality factors can in turn improve the forecast

accuracy.

Another forecast accuracy improvement opportunity with the SSS approach is

the use of seasonal split (SS) factors. In practice, managers prefer forecasting de-

mand at more aggregate levels, such as quarterly versus monthly, since it is easier to

achieve higher forecast accuracy. Then the quarterly demand forecasts are split into

monthly volume based on a mixture of factors such as historical seasonality, customer

backlog and business judgment. To illustrate the potential use of SSS method in a

real life setting, we analyze a sample microchip product using data from a major

semiconductor manufacturer. We estimate the seasonal split factors for this product

by averaging the historical seasonal splits of the group of similar products over the
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(a) SSS vs. Actual (b) CD vs. Actual

Figure 22: Estimates of the Seasonal Split values for a sample microchip product.

period of first 12 quarters in their product life cycles. We assume that this average

gives a good estimate for the seasonal split of quarterly volume into monthly volume.

Figure 22(a) compares the actual seasonal split versus the SSS estimates. Another

way of finding seasonal split factors is to use the seasonality factors and the underly-

ing trend curve by Proposition 1. In order to compare the performance of the classical

decomposition method, we employed Proposition 1 together with the CD seasonality

factors. Estimates of the CD method versus the actual seasonal splits are presented

in Figure 22(b). Finally we compared these seasonal split factor estimates to that of

company published numbers (derived from monthly and quarterly forecast figures).

The results are presented in Table 16. Accuracy of seasonal split estimates for SSS

is better than CD, and together they outperform the company seasonal splits. More-

over, the company forecasts are published only one quarter before the actual sales,

while SSS and CD estimates are calculated from similar products before the prod-

uct launch. Considering this performance improvement, we can conclude that SSS

can help managers split the quarterly demand forecasts into monthly volume more

accurately, while managers continue to rely on their judgments at the quarterly level

forecasts.

The next section proposes an alternative approach for modeling seasonality in

the context of multigenerational product diffusion, called Product Mix Forecating

(PMF ).
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Table 16: Mean Absolute Deviation (MAD) of the SSS and CD methods in esti-
mating the seasonal split values.

Seasonal Split Error
Horizon SSS CD Company
1-year 5.0% 7.7% 8.6%
2-year 3.7% 4.9% 5.7%
3-year 4.1% 5.3% 5.3%

Note: Company seasonal split errors are found from monthly and quarterly forecast figures published one quarter
ahead of the actual sales. SSS and CD estimates are prior to product launch.

5.4.2 Product Mix Forecasting - PMF

For calculating the monthly seasonality factors, classical seasonality methods require

a minimum of 36 data points. Although the first and last 6 data points are used

as inputs, no seasonality factor estimates can be generated for these points, due to

the 12-month symmetric moving averages used in trend estimation. This is referred

as the end-point-problem in the time series literature. Asymmetric moving averages

methods such as Musgrave method (Musgrave 1964 (66)) can be used to eliminate

the end-point problem, however minimum required points cannot be reduced to less

than 24, since at least two full cycles are necessary to estimate preliminary seasonality

factors. Assessing the usefulness of the classical seasonality methods in the context of

short life cycle products, minimum data requirement presents an important challenge.

Many products in today’s marketplace may not have long enough life cycles that would

allow for the estimation of seasonality factors. Even if we have 36 months of data for

a given product, the remaining few months of this product’s life cycle would be much

less important from the demand management perspective than the early life cycle. In

this section, we propose a model, called Product Mix Forecasting (PMF ), to address

this problem. PMF assumes that short life cycle products are generally members of

a larger product line that has multiple generations of successive products, which are

introduced into the market one after another. At any given time, the transitions from

older to newer generations are actively managed by companies. PMF attempts to
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estimate the shares of individual products within their product line, while eliminating

the common seasonality effects on the demands of these products.

In the multigenerational context, the product mix idea exploits the observation

that different products within a product line might be subject to similar seasonality.

Multiple products that are in transition are considered together to calculate each

product’s monthly demand with a top-down approach from aggregate level to product

level. Product Demand Mix (or Product Mix) is crucial information for planning of

resources. Ability to understand the product transition from old products to new

products allows managers to accurately allocate production capacity. Furthermore,

right product mix will have an impact on the capital equipment purchases to make

sure the new equipment is being purchased on time to enable the manufacturing of

new products, while minimizing the excess capacity.

One of the basic rules of forecasting is that the aggregate forecasts tend to be

more accurate. Therefore, estimating the aggregate demand for the entire product

line, then using the “product mix” forecast to calculate individual product demands

offers opportunities for higher forecast accuracy. The variance of the demand for

the product line that is composed of multiple generations of products is generally

much less than the variance of the demand for each individual products. Moreover,

managers have the advantage of analyzing the product lines over a longer horizon,

since the life cycle of product lines are much longer than individual products. This

makes it easier for managers to forecast the underlying trend and seasonality of the

product line. If one has good product mix forecasts, then the aggregate level demand

forecasts can be used with a top-down approach to produce product level demand

forecasts.

When forecasting demand for short life cycle products using diffusion models

at monthly granularity, actual demand can differ significantly from the underlying

diffusion trend due to seasonality. We propose the PMF method for calculating
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product mix from the estimated diffusion curves that mitigates this seasonality effect.

Following equation calculates the product mix from estimated diffusion curves:

mixi(t) =
ni(t)∑
j∈I nj(t)

(71)

where ni(t) is the estimated diffusion curve for product i evaluated at time t, I is the

set of active products within the product line and
∑

j∈I mixj(t) = 100%.

This transformation gives a simple ratio of a particular product diffusion curve

to all the active products’ diffusion curves. The basic idea is that two (or more)

products are experiencing similar seasonality at the same time (i.e., the end-of-quarter

effect); and when we find shares of the actual sales of these products and observe

the underlying product transition curve in percentage mix, we mitigate the common

seasonality effect on these products.

We assume a multiplicative model such that Xi(t) = Ai(t)Si(t), where Xi(t) is the

actual demand at time t, Si(t) is the seasonality factor at time t and Ai(t) represents

the deseasonalized data series for product i. For products experiencing a diffusion type

trend, A(t) can be modeled by a diffusion curve n(t). Therefore, when Si(t) ≈ Sj(t)

for any product i, j ∈ I, the actual product mix for product i at time t is given by

Xi(t)/
∑

j∈I Xj(t) = Ai(t)/
∑

j∈I Aj(t), and it can be estimated by ni(t)/
∑

j∈I nj(t).

With this transformation, estimated diffusion curves can forecast product mix

over time, which has an improved model fit. In order to illustrate this claim, we

analyze a sample product line using data from a major semiconductor manufacturer.

Figure 23 presents three products within this product line. Part (a) shows the actual

sales versus fitted diffusion curves. In Part (b), we calculate percent mix graph using

PMF method, which significantly reduces the effect of seasonality and improve the

model fit with R-square values equal to 0.984, 0.979, 0.975 for products P1, P2 and

P3, respectively. Time t represents the current time marked with a vertical dashed

line, until which we use all the data to fit diffusion curves. We compare actual product

132



(a) Unit Graph (b) Percent Mix Graph

Figure 23: Illustration of Percent Mix Model fit versus Regular Diffusion fit. Pre-
ceding product P0 and succeeding product P4 are not shown.

mix vs. fitted product mix until time t and extrapolate the product mix beyond time

t for forecasting purposes.

We illustrate the forecast performance of the proposed model by simulating two

real-life product launch scenarios from the same sample product line, namely P1 and

P2. For each scenario, we use the actual sales data that captures up to the first six

months sales of the product being launched. We then forecast the future product

mix of these products until the next product launch time using diffusion models and

the PMF method. First, in the launch scenario of P1, we use available data to fit

diffusion curves to products P0 and P1. We transform this fit to product mix using

equation (71). We forecast the product mix until the product launch time of P2 and

compare with the actual product mix using mean absolute deviation (MAD). Figure

24(a) illustrates this scenario. Similarly, we execute the product launch scenario of

P2 and forecast the product mix for this product until the launch time of the next

product, i.e., P3. This scenario is shown in Figure 24(b). Monthly and quarterly

forecast performances of both scenarios are presented in Table 17 and compared with

the performance of the actual company published forecasts.

In the first scenario, the PMF method achieves a forecast performance of 3.0%

MAD at the monthly level and 2.9% MAD in the quarterly level. For the same horizon,

company published forecasts achieved a performance of 5.7% and 4.4% MAD, for

monthly and quarterly levels, respectively. For the second product launch scenario,
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(a) P1 Launch Scenario (b) P2 Launch Scenario

Figure 24: Product Mix graphs of two product launch scenarios tested.

Table 17: Product mix forecast performance of the PMF method and the corre-
sponding company published forecasts in mean absolute deviation (MAD).

Monthly Quarterly
Launch of P1 PMF 3.0% 2.9%

Company 5.7% 4.4%
Launch of P2 PMF 2.2% 2.0%

Company 5.2% 5.1%

1 A simple seasonal split method (i.e., 30-30-40%) is used to convert quarterly company forecasts into monthly levels.

PMF achieves 2.2% and 2.0% product mix forecast performance against the company

forecast performance of 5.2% and 5.1%, when measured in MAD at monthly and

quarterly levels.

In both of these analyses, we assume that parameter m (market potential) is

known for the product being launched (therefore, we only fit parameters p and q,

while fixing m). However, sensitivity analysis shows that our model is quite robust

in m, such that relaxing this assumption by ±25% still provides better results than

the company forecasts for both products.

When high volumes of sales are considered, calculating the lost revenues and ex-

cess inventory costs, one can easily understand that even a 1% product mix forecast

deviation can be a significant cost for businesses. In practice, forecasted product mix

can significantly deviate from the true demand mix. In these cases, managers gener-

ally engage in price moves to make sure that old product inventories are consumed

134



(by lowering price) and new product demand is aligned with the available supply.

However, profit margins are often sacrificed to meet the supply determined by the

inaccurate forecast figures, causing significant losses. Accurate product mix forecasts,

therefore, can be very useful for businesses to provide the right mix at the right time

without sacrificing profits to clear the market.

Using the PMF method, in order to obtain the demand forecasts for individual

products in units, managers need to multiply the aggregate level product line demand

with the product mix forecasts. Therefore, the forecast accuracy depends on the ac-

curacy of both the aggregate level demand and the product mix demand. Calculating

the aggregate demand from time series analysis is beyond the scope for our paper.

However, it is expected that the aggregate level product line demand forecasts will be

more accurate than the individual product level forecasts. Moreover, seasonality is

easier to determine at this level of aggregation, since more data is available for longer

period of times.

5.5 Conclusion

Seasonality is part of almost any demand management activity, and it needs to be

treated carefully to understand the real trends and improve the forecast accuracy.

In forecasting time series data with seasonality, the common practice is to first de-

seasonalize the data to obtain a trend curve estimate, then forecast the trend and

reseasonalize it to obtain final forecasts numbers. Therefore, having good season-

ality factor estimates has 2-fold benefits by: (1) improving the trend estimate, (2)

improving the final forecasts. The majority of the time series forecasting literature

investigates the seasonality models under linear trends when there are enough data

points to calculate seasonality factors. In this study, we focused on combining season-

ality models with diffusion models to provide improved forecast accuracy. In order
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to understand the performances of current seasonality models under diffusion model-

ing context, we first extended the simulation analysis of Miller and Williams (2003)

((63)) to the nonlinear trend cases, and found that the performances of seasonality

models depend on the underlying trend. We found that suggested shrinkage estima-

tors (James-Stein and Lemon-Krutchkoff) can perform much worse than the classical

decomposition method under certain diffusion type trends.

We proposed two novel approaches to model seasonality by exploiting the certain

relationships of seasonality factors. The Shrinking Seasonality Split (SSS) approach

identifies the relationship between seasonality factors, the slope of the trend relative

to its level and the seasonal split factors, which we define as the percentage split of

each month within its quarter. Employing this relationship, we showed that we can

improve seasonality factor estimates and therefore forecast accuracy, especially for

short data series under nonlinear trends with high random error. Under high levels

of random error, SSS improves both seasonality estimates and forecast accuracy,

regardless of the underlying trend. The second approach we proposed, called Product

Mix Forecasting (PMF ), addresses the challenge of not having long enough data series

for calculating seasonality factors. PMF mitigates the impact of seasonality by using

simple ratios of the trend estimates in the multigenerational diffusion context. Using

real data from microchip products, we showed that PMF can improve the model

fit and the product mix forecast accuracy. Moreover, both the SSS and the PMF

models allow managers forecast at an aggregate level, which generally leads to higher

forecast accuracy. SSS can be used to split aggregate level (i.e., quarterly) forecasts

into monthly using the appropriate seasonal split factors. PMF lets the managers

forecast the demand at the aggregate level for a group of products, then product mix

forecasts can be used to split these forecasts into individual products. These top-

down forecasting approaches are both easier for managers to employ their judgments

at higher levels and they provide increased potential for higher forecast accuracy.
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Classical decomposition methods only use one type of information in estimating

seasonality factors, i.e., the level of the trend. Seasonality factors are simply the

ratios of actual data to the estimated trend levels. The Shrinking Seasonal Split

method utilizes additional information, which is the slope of the trend, and provides

an insight on how seasonality factors contribute to the the percent split of quarterly

volume into monthly volume. This relationship can be further investigated, and

further benefits can be researched. One such area of future study is to understand

the nature of seasonality factors in different parts of the life cycle phases. External

variables such as price, marketing effort or sales incentives can be analyzed for their

effect on seasonality factors and therefore on seasonal split factors. Providing insights

on how certain managerial decisions affect the split of quarterly volume into each

month can be very valuable for businesses. Especially in the new product launch

scenarios, decisions made prior to launch time are very critical to the success of the

products in the marketplace. Studies analyzing product launch scenarios together

with seasonality models would certainly contribute further to the insights we obtained

with this study.
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CHAPTER VI

CONCLUSION

In this thesis, we focused on demand management activities of global firms. Through

innovative thinking coupled with data intensive analyses, we identified opportunities

for companies to improve their demand management and forecasting activities.

In Chapter 2, we analyzed an extensive pricing data set of the U.S. Less-than-

Truckload (LTL) market, and explored opportunities to quantify expert knowledge

and improve market rate estimates. Beneficial to both shippers and carriers, proposed

regression based methodology can be used as a market visibility tool to improve

understanding of the realized market rates, therefore reduce cost and improve service

through better negotiations of these market rates.

In Chapter 3, we conducted a simulation study on a major semiconductor manu-

facturer’s global supply chain. Identifying demand dependencies of products related

to the ordering mechanisms, we tested a strategic collaboration scenario that provides

advanced demand information on future orders. Quantifying the forecast improve-

ment potential of such a scenario, we measured the inventory impact on the supply

chain on sample products using a supply chain simulation model. This study pro-

vided the insight to the managers that thinking across business units and exploiting

demand dependencies can improve supply chain efficiency.

In Chapter 4, we attempted to provide user-friendly approaches for estimating

new product diffusions prior to product launch. We first introduced a normalization

approach, a tool to visually analyze historical diffusion patterns on the same unit

scale. Using the insights from normalization, managers can select representative
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adoption patterns for their new products, then use them easily to construct pre-

launch forecasts. In the second part of this chapter, we introduced several versions of

the Bass diffusion model that use more intuitive and easier to estimate parameters.

Testing industry and company data, we showed that our models can significantly

improve the pre-launch forecast accuracy.

In Chapter 5, we extended the diffusion modeling research to include seasonality

considerations. We first analyzed the classical seasonality models under diffusion-type

nonlinear trend and found that methods that are shown by other researchers to per-

form well under linear trends may not perform well under nonlinear diffusion trends.

We then proposed two novel approaches to model seasonality designed for diffusion

trends. Our models have important advantages over classical methods, such that

they estimate seasonality factors more accurately especially under diffusion trends

with high levels of random error, require less data points to do so, and improve

forecast accuracy.

Intersection of Chapter 4 and 5 open up new interesting research directions. Fur-

ther analysis of seasonality models within the diffusion modeling literature would be

a fruitful area of research. The proposed Shrinking Seasonal Split (SSS) approach

should be tested and compared against other standard seasonality methodologies

under both real and simulated data to better assess its strengths and weaknesses.

Special attention to the models that require less data points to provide at least the

same amount of accuracy is especially valuable from the short life cycle products

perspective. There is always a need for higher accuracy in pre-launch forecasts. Fu-

ture research can focus on improving the abilities of managers to engage more with

analytical techniques in estimating new product launch scenarios, rather than relying

only on their judgments. Provided models in Chapter 4 are the first steps to involve

hesitant managers in diffusion modeling, however, more extensive analysis of these

methods under specific conditions is necessary.
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APPENDIX A

ADDENDUM FOR CHAPTER 2

A.1 Descriptive Statistics

Table 18: Descriptive Statistics of the dataset.
Average Shipment Price $185.80
Average Mileage 933.6 miles
Average Weight 1713.4 lbs
Minimum (Freight Class) 50
Maximum (Freight Class) 150
Number of shippers 43
Number of carriers 128
Number of State-to-State lanes covered 2126 (excluding Washington DC)
Most number of shipments (Origin State) California
Most number of shipments (Destination State) Texas
Least number of shipments (Origin State) Wyoming (excluding Washington DC)
Least number of shipments (Destination State) Vermont (excluding Washington DC)
Total number of shipments 484,612 (75% of which are scored)

(a) Weight Distribution (lbs) (b) Mileage Distribution

Figure 25: Weight and Mileage Distribution of LTL Shipments
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A.2 Regression Model

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 29 7696500700 265396576 184146.1
Error 356395 513646549 1441.2283 Prob > F

C. Total 356424 8210147249 0
Parameter Estimates

Term Estimate Std Error t Ratio Prob> |t|
Intercept 207.594 0.09903 2096.2 0
w 186.677 0.13764 1356.2 0
m 67.900 0.09428 720.2 0
si 10.014 0.08553 117.1 0
fi 22.272 0.07376 301.9 0
fc 2.391 0.07862 30.4 <.0001
CT (N) 10.532 0.10964 96.1 0
CT (R) -4.392 0.14857 -29.6 <.0001
w2 -7.565 0.04033 -187.6 0
m ∗ w 78.630 0.10449 752.5 0
m ∗ fi 9.401 0.08363 112.4 0
w ∗ si 12.773 0.10134 126.0 0
w ∗ fi 22.731 0.07302 311.3 0
w ∗ CT (N) 12.429 0.10862 114.4 0
w ∗ CT (R) -7.850 0.12759 -61.5 0
m ∗ w ∗ si 6.940 0.10763 64.5 0
m ∗ w ∗ fi 9.175 0.07979 115.0 0
m ∗ w ∗ fc -6.366 0.08388 -75.9 0
O(MW ) -0.088 0.12513 -0.7 0.4825
O(NE) -0.429 0.18042 -2.4 0.0174
O(SC) 5.620 0.15078 37.3 <.0001
O(SE) 0.891 0.13586 6.6 <.0001
O(MW ) ∗m 4.733 0.13899 34.1 <.0001
O(NE) ∗m -1.698 0.17072 -10.0 <.0001
O(SC) ∗m 3.604 0.19897 18.1 <.0001
O(SE) ∗m 5.159 0.14213 36.3 <.0001
O(MW ) ∗m ∗ w 4.893 0.13210 37.0 <.0001
O(NE) ∗m ∗ w -2.275 0.20682 -11.0 <.0001
O(SC) ∗m ∗ w 2.604 0.21337 12.2 <.0001
O(SE) ∗m ∗ w 6.286 0.15361 40.9 0

All numerical predictors are standardized using the mean and standard deviation values

reported in Table 5. (i.e., “w” is the standardized version of “W”, which represents the

weight of the shipment).
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A.3 Pareto Plot of Transformed Estimates

Absolute effect sizes from high to low, and how they add up.
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APPENDIX B

ADDENDUM FOR CHAPTER 4

B.1 Performances of Proposed Models for DRAM and IBM
data sets

(a) DRAM Generations

(b) IBM Mainframe Computer Generations

Figure 26: Median MAPE for 6-year cumulative demand. 7 pre-launch scenarios
tested for DRAM data. 3 pre-launch scenarios tested for IBM data. Median perfor-
mances are plotted with varying levels of t∗ bias.
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B.2 Illustration of the IBM Gen-4 Case

For this case, m is assumed to be known. t∗ for the proposed models are calculated from

the historical averages of peak times. Historical averages of b, c, p and q are used when

required.

Figure 27: Noncumulative Demand vs. Noncumulative Pre-launch Forecasts

Figure 28: Cumulative Demand vs. Cumulative Pre-launch Forecasts
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B.3 How biased estimates of market potential m affect fore-
cast accuracy?

Through out the paper we assumed that market potential m is known. However, in real life

situations this is hardly possible. Potential bias in estimating m can be incorporated into

the forecast accuracy calculations easily, and in the situations where estimating m is really

difficult, forecast accuracy scenarios can be generated with various bias amounts.

Let N(T ) be the forecasted cumulative demand for the first T periods using the optimal

market potential m and A(T ) = X(1)+...+X(T ) is the actual cumulative demand until time

T . The forecast accuracy of first T-period cumulative demand is given by MAPE(T ) =

[N(T ) − A(T )]/A(T ) when there is no bias in m estimate. Let b represent the bias in

estimating market potential m. Then the equation (72) gives the forecast with biased

market potential and equation (73) gives the resultant forecast accuracy in MAPE.

Nb(T ) = (1 + b)m
[1− e−(p+q)T ]

[1− (q/p)e−(p+q)T ]
= (1 + b)N(T ) (72)

MAPEb(T ) =
|Nb(T )−A(T )|

A(T )
= |bN(T )/A(T ) +N(T )/A(T )− 1| (73)

Following cases explain the direction and the magnitude of change in MAPE calcula-

tions:

• Case 1. N(T )/A(T ) > 1 (overestimation case)

if b > 0, then MAPE is increased by bN(T )/A(T ) (positive bias)

if b < 0, then MAPE is decreased by bN(T )/A(T ) (negative bias)

• Case 2. N(T )/A(T ) < 1 (underestimation case)

if b > 0, then MAPE is decreased by bN(T )/A(T ) (positive bias)

if b < 0, then MAPE is increased by bN(T )/A(T ) (negative bias)

Since reported MAPE values are calculated fromN(T ) andA(T ) such thatN(T )/A(T ) =

1±MAPE, MAPE value for a given bias b is calculated by equation (74):
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MAPEb = MAPE ± b(1±MAPE) (74)

Where ±’s are replaced by (+) signs when N(T )/A(T ) > 1, and by (-) signs when

N(T )/A(T ) < 1. For example, with 5% positive bias in m, originally reported 20% MAPE

can increase to 26% MAPE. On the other hand, negative 5% bias in m can reduce 20%

MAPE down to 14%. If this was an underestimation case (i.e., N(T )/A(T ) < 1), then

+5% bias would result in 16% MAPE, while -5% bias would give 24% MAPE. Average

MAPE with +5% bias is (26+16)/2=21%, while with -5% bias, the average MAPE is

(24+14)/2=19%.

Equation (74) therefore shows that overestimating m is more risky than underestimat-

ing. Because, in the situations where positive bias in m increases MAPE, it does more

than the same amount negative bias; and where positive bias decreases MAPE, it does less

than the same amount negative bias. This result is opposite of peak time t∗ bias, where

underestimation is more risky in terms of MAPE calculations. As in the peak time bias

case, one needs to be careful in assessing the impact of under vs. overestimation of any

parameter in the context of inventory holding costs versus stock out penalties.
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APPENDIX C

ADDENDUM FOR CHAPTER 5

C.1 Proof of Propositions

C.1.1 Proof of Proposition 1

For a linear trend curve y(t) = a0 + bt and monthly seasonality factors s1, s2 and s3, we

would like to find seasonal split factors SS(t+ i− 1), for the ith month within the quarter

that that consists of months t, t+ 1 and t+ 2.

When the linear trend curve is subject to multiplicative seasonality, then the value of

the time series for month (t+ i− 1) is given by X(t+ i− 1) = y(t+ i− 1)si. Seasonal split

(SS) factors are defined as SS(t+ i− 1) = X(t+ i− 1)/(
∑3

i=1X(t+ i− 1)). Plugging the

formula for the time series into this equation, we obtain:

SS(t) =
s1(1− b/(a+ b))

3 + b(s3 − s1)/(a+ b)
(75)

SS(t+ 1) =
s2

3 + b(s3 − s1)/(a+ b)
(76)

SS(t+ 2) =
s3(1 + b/(a+ b))

3 + b(s3 − s1)/(a+ b)
(77)

where a = ao + bt.

Mid point (or average) level of the linear trend curve is given by (a + b). We define

g(t) as the slope of the trend curve relative to its average level for a quarter starting with

month t. Therefore, for linear trend cases g(t) = b/(a + b). Therefore, substituting this

definition into equations (75), (76) and (77), we obtain the formal relationship of seasonal

split factors with seasonality factors and relative slope of the trend.
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in the Student Health Insurance Program (SHIP) Committee of the University System of

Georgia representing international students of Georgia.
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