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SUMMARY 

 With the vast array of genetically altered (knockout) mice becoming available 

there is a need for quantitative, repeatable, and efficient methodologies to characterize the 

phenotypic consequences of knocking out specific genes.  Since knockout animals often 

have the ability to compensate for a single missing gene, it is important to examine the 

structural, material and morphological properties to obtain a thorough understanding of 

the changes occurring.  For this project, femurs of knockout mice were first scanned 

using microcomputed tomography (micro-CT) to obtain high-resolution images of the 

trabecular bone in the distal femur, as well as cortical bone in the mid-diaphysis.  After 

scanning, the femurs were tested to destruction in four-point bending at the mid-diaphysis 

about the medial lateral axis of the femur.  These methodologies allowed quantification 

of (1) morphologic properties such as bone volume fraction, trabecular properties and 2nd 

moment of the area (2) structural properties such as stiffness, maximum load at failure, 

and post yield deformation and (3) material properties such as bone mineral density, 

elastic modulus and yield strength.   

As part of two independent studies, two different knockout mice, cyclooxygenase-

2 (COX-2 -/-) and Apolipoprotein E (APOE -/-), were examined for structure-function 

relationships using these methodologies.  COX-2 knockout mice were found to have 

decreased mineral content in their femurs, and increased post yield deformation.  APOE 

knockout mice at 10 weeks of age had decreased bone mass and structural properties.  

However, by 40 weeks of age APOE deficient mice caught up to and exceeded the 

structural properties and bone mass of their wild type counterparts.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

Overview 

 Over the past several years a vast array of genetic knockout mice have been 

developed and widely studied [1-4].  These knockout mice have had one or more genes 

deleted from their genetic code, and when compared with wild type controls that share 

the same genetic background, they can provide valuable information about that gene’s 

function [5, 6].  While knockout mice have been used to study a wide range of systems in 

the body [7-10] , the following work has focused on the skeletal phenotype of knockout 

mice.   

 One difficultly frequently encountered with these knockout studies, when 

observing the skeleton, is the ability of the body to compensate for the missing gene.  For 

example, changes in the material properties of a knockout mouse femur may be masked 

by an adaptation in the morphology of the femur.  When examining the effects of a 

genetic alteration, it is important to look at the structural, geometrical, and material 

properties of mutant bones.  Looking at only one or two of these properties can result in 

potentially incorrect conclusions [11].  For example, MOV13 transgenic mice, which 
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carry a provirus that prevents transcription initiation of type I collagen, have decreased 

material properties such as whole bone ductility and elastic modulus.  However, they 

compensate for this defect by producing increased bone mass, and show no difference in 

the structural property, maximum load to failure [12, 13].   This demonstrates the need to 

characterize changes occurring in knockout mouse bones by quantifying the material, 

structural, and geometrical properties of knockout mice bones, and not examining only 

one or two of these properties.   

Overall Objective 

 The overall objective of this study was to develop a combined methodology 

utilizing microcomputed tomography (micro-CT) and mechanical testing to quantify 

morphology as well as structural and material properties in the cortical and trabecular 

bone of knockout mice femurs.  We then applied these techniques to quantify changes in 

Cyclooxygenase-2 (COX-2) and Apolipoprotein E (ApoE) knockout mice. 

 

Specific Aims 

Specific Aim 1: To quantify the effect of Cyclooxygenase-2 deficiency on bone mineral 

density, morphology, structural, and material properties of murine femurs. 

Previous studies have observed delayed fracture healing in Cyclooxygenase-2 (COX-2) 

deficient mice, partially attributed to a lack of calcification at the fracture site.  However, 

an in-depth examination of the skeleton of uninjured COX-2 deficient mice has not been 

previously reported.  We hypothesize that COX-2 deficient mice will possess bone with 

reduced bone mineral density, and subsequently reduced structural and material 

properties. 
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Specific Aim 2: To quantify the effect of Apolipoprotein E deficiency on murine femur 

morphology, composition, and structural properties at 10, 20, and 40 weeks of age.  

While others have noted an increased risk of fracture in humans with poorly functioning 

isoforms of ApoE, no previous work has examined the skeletal phenotype of ApoE 

deficient mice for a similar effect.  We hypothesize that mice with ApoE deficiency will 

have decreased mechanical properties in their femurs as they age. 

 

Phenotypic Characterization of Murine Femurs 

 The techniques used in these studies are not novel techniques individually.  

Micro-CT has been used to examine bone geometry for several years now [2], and 

mechanical testing is a very traditional technique.  However, the majority of studies that 

went in depth enough to examine morphological, structural, and material properties at the 

same time used contralateral femurs for the geometrical and mechanical analysis either 

through the use of histology and mechanical testing [8, 12, 14, 15], or in fewer cases, 

micro-CT and mechanical testing [16].  One recent study used mechanical testing and 

micro-CT on the same femurs, however they only examined cortical bone, and did not 

examine trabecular bone [17].  Additionally, the majority of these studies have focused 

on the effects of varying genetic background, rather than genetic knockout animals.  The 

techniques used in this thesis therefore extend previous work by combining micro-CT 

and mechanical testing methodologies to rigorously quantify the skeletal phenotype of 

two previously uncharacterized knockout mice.  
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 In these studies, micro-CT was used to non-destructively image all of the femurs 

used, prior to mechanical testing of those same femurs.  Micro-CT produces a binary, 3D 

representation of objects from a series of x-rays taken at different angles through a 

sample.  The advantages of micro-CT over traditional histologic techniques are two-fold.  

First, when determining trabecular properties such as trabecular spacing, volume, and 

thickness, 2D histological methods must rely on assumptions, such as plate- like or rod-

like architecture of the trabeculi [18].  With the 3D image generated by the micro-CT it is 

possible to make a direct measurement of these properties without model assumptions 

[19].  Second, since histology requires the destruction of the sample it is not possible to 

acquire geometric and structural properties from the same sample.  Traditionally, 

contralateral femurs must be used for geometry and this may result in higher variability 

for the tests.  The micro-CT is also able to measure the density of the femurs by 

quantifying the amount each voxel (a 3D pixel) of bone attenuates x-rays. This 

attenuation is linearly related to the amount of mineral present in the bone. 

Three areas of the femur were analyzed with the micro-CT in this study: a cortical 

region in the mid-diaphysis and two regions of trabecular bone in the distal femur.  The 

cortical region was selected to correspond to the same section of the femur that 

underwent mechanical testing to provide information about the geometric and material 

properties.  Trabecular bone was also scanned, because, although no mechanical testing 

was done on the region, trabecular bone is often a better indicator of alterations in the 

function of osteoblasts and osteoclasts because of its increased surface area.   

 Osteoblasts are the cells responsible for new bone formation, while osteoclasts are 

responsible for the resorption of bone.  Healthy bone is constantly being remodeled by 
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the combined work of osteoclasts and osteoblasts.  In a normal state, osteoclast and 

osteoblast activity is coupled, so bone is formed as quickly as it is removed.  However 

many pathologic conditions, including osteoporosis, can occur when osteoblast and 

osteoclast activity is no longer coupled, and resorption exceeds formation [20].  Because 

osteoblast and osteoclast activity is initiated on the surface, and trabecular bone has a 

much higher surface area to volume ratio, imbalances in osteoclast and osteoblast activity 

are more readily apparent in trabecular bone [20]. 

 Two different regions of trabecular bone in the distal femur were examined for 

these experiments, metaphyseal trabecular bone and epiphyseal trabecular bone.  

Metaphyseal trabecular bone exists between the diaphysis and the growth plate, and 

consists of the newly formed bone.  Epiphyseal trabecular bone is distal to the growth 

plate and is older trabecular bone that has had a longer time to be remodeled.  The growth 

plate separates these two regions, and because of the automatic nature of the micro-CT 

analysis, cannot be included in the volume of interest (VOI).  Figure 1-1 shows a sample 

micro-CT image of a distal mouse femur and the two trabecular VOIs, and Figure 1-2 

shows a sample image of a cortical bone segment. 

 There are three commonly used mechanical testing techniques used to determine 

whole bone structural properties of murine femurs, including torsion, three-point bending 

and four-point bending.  Torsion tests provide information about the shear strength and 

stiffness of a specimen [11].  Torsion testing requires the distal and proximal ends of the 

femur to be potted, and precisely aligned.  This can be technically demanding to set up, 

especially with the small dimensions found with mouse femurs.  Bending measures the 

bending strength and stiffness.    There is no  intrinsic benefit of using torsion over 
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bending for detecting changes in the properties of mouse femurs, they are both equally 

adept at detecting changes in structural properties [14].  Because bending requires less 

complex preparation per sample, bending was chosen as the mechanical testing method.   

 Both three-point [15, 21] and four-point bending tests [12-14, 22]  are valid ways 

to measure bending properties of mouse femurs .  Three-point bending is a slightly easier 

test to run, however it has several limitations.  The applied bending moment along the 

bone is greatest at the loading point and decreases along the length of the bone.  In 

addition, the sample will always fail directly at the loading point, so minor variation in 

the placement of the femur on the testing rig can influence the results of the test.  Four-

point bending creates a constant moment between the two load points, and failure occurs 

at the weakest point along the diaphysis.  For the following experiments four-point 

bending was used to determine the mechanical properties of the mouse femurs.      

 To obtain valid results from four-point bending tests it is important to have equal 

loads on all contact points.  Because mouse femurs are not perfectly symmetrical this 

issue must be addressed in order to assume there is even loading during four-point 

bending.  One way to accomplish this is to put the upper load points on a pivot, to allow 

both points to shift until they are in equal contact.  There are two drawbacks to this 

method, the first is that shifting can occur during the test, and the second is that the 

distances between the upper and lower load points change as the upper points pivot.  The 

four-point loading rig used for these experiments had independently adjustable lower 

support points, instead of utilizing a pivot.  By making small vertical adjustments with 

the lower support points it was always possible to obtain an equal load on both upper load 
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points, without changing any of the horizontal distances between upper and lower load 

points.   

 Another common problem that occurs with bending tests is that the sample may 

shift when the load is first applied.  To avoid this problem, the upper two support points 

were free to slide vertically up and down in the loading rig prior to the start of the test.  

This allowed the upper points to rest freely on top of the femur, and this applied a small 

pre-load equal to the weight of the single metal piece that formed the upper load points.  

A setscrew was then tightened, locking everything into place, and resulting in a pre- load 

of 1-3 N on the femur, which was enough to avoid unwanted movement during the test.   

 The femurs used in the following experiments were all frozen prior to scanning 

and mechanical testing.  Freezing is a widely used storage technique for mechanical 

testing.  Studies have shown that after the initial freeze, mechanical properties are 

unaffected by at least 5 freeze-thaw cycles, and 100 days of storage [23]. 

 

Motivation 

COX-2 Study 

Non steroidal anti- inflammatory drugs (NSAIDS) are commonly prescribed for 

pain relief, and work by blocking the activity of Cyclooxygenase enzymes.  Recently 

COX-2 specific NSAIDS have been developed, which target only the COX-2 isoform of 

the enzyme.  These drugs cut down on the unwanted gastrointestinal side effects seen 

with non-specific NSAIDS [24].  COX-2 specific NSAIDS are rapidly gaining in 

popularity, and are frequently prescribed for pain management following orthopaedic 

surgery as well as fractures and other events [25].  While some recent studies have raised 
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the concern that COX-2 is required for normal fracture healing in bones [26, 27], the 

effect of COX-2 deficiency on fracture healing remains disputed [28-30].  COX-2 

deficient mice have been used to help elucidate a possible link between COX-2 and 

fracture healing, but they have focused entirely on the fracture healing process, as COX-2 

is highly upregulated following injury and inflammation [10, 27].  The COX-2 deficient 

mouse does not reportedly have an overt skeletal phenotype.  In fact, it has been 

previously claimed that COX-2 mice develop normal skeletons [26].  However, the 

skeleton of uninjured COX-2 deficient mice has not been examined in depth.  Any 

difference in the homeostasis of COX-2 knockout mice skeleton would be an important 

factor to consider when using COX-2 knockout mice to study the effects of COX-2 

deficiency during fracture healing, as well as provide further insight into the function of 

COX-2.  

ApoE Study 

 Osteoporosis is blamed for over 1.5 million fractures every year, and the costs for 

treating these fractures, and other osteoporosis related care, is estimated to be more than 

$6 billion a year [31].   And while some well-known risk factors for osteoporosis include; 

post-menopausal women [32], smoking [33, 34], and low body weight [35], not all risk 

factors are well documented.  Some studies have suggested the possibility of a link 

between vascular disease and osteoporosis, specifically as a result of hyperlipidemia [36, 

37].   In addition, several clinical retrospective studies have looked at the different, 

naturally occurring, isoforms of the ApoE gene and noted an increase in osteoporotic 

fractures for people possessing the ApoE e4 isoform [38, 39], which is also associated 

with elevated lipid levels in the bloodstream [40].  However, some follow up studies have 
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disputed these findings, showing no difference in osteoporotic fractures for individuals 

with varying isoforms of ApoE [41, 42].   Research in this area has focused on clinical 

retrospective studies, and no currently published studies have examined the skeletal 

phenotype of ApoE deficient mice.  ApoE deficient mice also have elevated lipid levels 

in the bloodstream, and develop severe atherosclerosis [43].  These mice are 

commercially available and have been widely studied for their propensity to develop 

vascular disease. 
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Figure 1-1 Micro-CT image of distal mouse femur, including typical images of the metaphyseal and 
epiphyseal VOIs used in this study.   

 

 
 

 

Figure 1-2 Typical micro-CT image of section of mid-diaphysis cortical bone 

Metaphyseal Trabecular VOI 

Epiphyseal Trabecular VOI 
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CHAPTER 2 

 

CYCLOOXYGENASE-2 STUDY 

 

 

Introduction 

Cyclooxygenase (COX) is an enzyme, which has two isoforms COX-1 and COX-

2.  Both are rate limiting enzymes for the production of prostaglandins [1], however they 

differ slightly in function.  COX-1 is constitutively expressed in many organs throughout 

the body including bone, kidney, gastric mucosa, and small intestine, among others.  

COX-1 is commonly thought to help maintain homeostasis in these organs [2].  COX-2 is 

expressed in bone and the kidneys, but is not expressed in the gastrointestinal (GI) tract.  

In bone, it is transiently upregulated as a result of injury, and mediates the subsequent 

inflammatory response [3].  However it is not produced in high levels outside of this 

injury response and is not currently thought to play a role in bone homeostasis [4].             

Cyclooxygenase is responsible for the conversion of arachidonic acid (AA) to 

prostaglandin H2 (PGH2), which is an intermediate step in the formation of other 

prostaglandins (PGs).  The effect of PGs on the body is complex, and not completely 

understood, although many studies have been done on the subject.  Prostaglandin has 
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been shown to stimulate an increase in both bone resorption, and bone formation [5].  

This duality has also been observed in repeated in vitro experiments which have shown 

increased osteoclast differentiation, as well as increased osteoblast differentiation [4].  

There are 10 classes of PGs, PGA through PGJ [6].  Within a class, a subscript of 1 or 2 

respectively, indicates if the PG has a single double-bond, or if it possesses two double-

bonds.  The production of PGs from AA only results in PGs with two double bonds, and 

these PGs are more prevalent in the body than the single double-bond variety [6].      

Non-steroidal anti- inflammatory drugs (NSAIDs) work by inhibiting COX-1 and 

COX-2 and therefore blocking prostaglandin synthesis.   These drugs are widely 

prescribed for pain following surgery, as well as pain from inflammation, such as 

arthritis.  The original NSAID, Aspirin, was first sold commercially in 1899, and since 

then a huge number of other variations of NSAIDs have been developed [7].  Initially all 

NSAIDs worked by inhibiting both COX-1 and COX-2 approximately equally.  

However, by interfering with the phys iologic production of COX-1 throughout the body, 

one side effect of these drugs is often unwanted gastrointestinal (GI) distress, and even 

ulceration [8].  In 1999, the first COX-2 specific NSAID, celecoxib, received FDA 

approval [9].  These drugs can target COX-2 on the order of 100 times more selectively 

than COX-1 [10].  By differentially targeting COX-2, NSAIDS can cut down on the 

unwanted GI side effects, because COX-2 is not expressed in the GI tract.  This has 

resulted in a huge growth in the use of COX-2 specific NSAIDs prescriptions, with sales 

reaching $6-$10 billion a year [11].  These COX-2 specific NSAIDS are now widely 

prescribed for a variety of situations, including recovery from major orthopaedic surgery 

[12]. 
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Because inflammation is a critical part of fracture repair, there has been concern 

that blocking COX-2 could adversely affect fracture healing.  To this end, several studies 

have found that COX-2 is required for normal fracture healing to occur [1, 13, 14], 

although this link is currently vigorously disputed [15-17].   Additionally, in vitro studies 

using cells derived from COX-2 deficient mice have also shown decreased formation of 

osteoblasts and osteoclasts [3].  Given the widespread use of NSAIDs, especially 

following orthopaedic surgeries, further study is needed to close the gap between the two 

viewpoints on NSAIDs function and their effect on fracture healing and bone 

homeostasis.   

COX-2 deficient mice were first developed in 1995 [18], and are a natural choice 

for studying the effects of COX-2 on the body.  The COX-2 gene required for the 

production of the COX-2 enzyme is missing in these mice.  These mice develop 

normally, however they do not survive as long as wild-type mice, and they typically die 

around 4-5 months of age.  Some limited analysis has suggested that they die because of 

increased incidence of renal failure, and peritonitis [18, 19].  However these mice do not 

have any gross skeletal or anatomical defects [18].  COX-2 knockout mice have also been 

examined in several of the previously cited studies for the ir fracture healing 

characteristics to better understand how COX-2 specific NSAIDS function [1, 14]. These 

studies have also studied fracture healing in mice given both specific and nonspecific 

NSAIDs.  However, no previous study has quantified alterations in the geometric and 

mechanical properties of uninjured COX-2 knockout mice bones.  In fact, it has been 

previously stated that COX-2 knockout mice possess unaltered skeletons [14].   
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Overall Goal 

The purpose of this study was to quantify changes in the material, structural, and 

geometric properties of bone from the femurs of COX-2 deficient mice relative to wild-

type (WT) controls.  We hypothesize that COX-2 deficient mice will possess bone with 

reduced bone mineral density, and subsequently reduced mechanical properties.  This 

information will be valuable when comparing WT and knockout mice for changes in 

fracture healing, as changes in the baseline properties of knockout mice may exaggerate, 

or mask, differences in the fracture healing ability of COX-2 deficient mice.  Changes in 

the skeletal phenotype of COX-2 deficient mice may also provide insight into the 

potential effects of long-term use of COX-2 specific NSAIDs on maintenance of bone 

mass and structural integrity. 

 

Methods 

Experimental Animals 

COX-2+/- heterozygous knockout mice were obtained from the breeding colony 

at the University of North Carolina. They were originally of a hybrid background 

C57BL/6 x 129/ola.   They were further bred to 129/ola genetic background and 

intercrossed for about 30 generations.  Heterozygous mice were bred to produce COX-2 -

/- homozygous knockout (KO) and COX-2 +/+ wild type (WT) littermate controls.  The 

remaining heterozygous mice were used for continuing breeding.  Male and female mice, 

ranging from 3 to 4 months old, were used in these experiments.  Thirty-eight femurs 

were analyzed using the micro-CT, however only 24 of these femurs were both scanned 

and mechanically tested.  Unfortunately 12 of the femurs were initially stored in 
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formalin, and were not suitable for mechanical testing.  All of these femurs were at the 3 

month time point.  Only femurs stored frozen were used in mechanical testing.  Table 2-1 

contains the complete sample numbers at all time points.  Another complexity in this 

study was that the samples were not gender balanced at the 3.5 and 4 month time points.  

This created several difficulties when attempting to compare male and female responses 

to COX-2 deficiency.  Breeding appropriate numbers of knockout mice is not trivial, so 

these limited sample numbers were used for the most comparisons possible.     

Sample preparation was accomplished as follows.  After sacrifice, femurs were 

disarticulated, cleaned of all soft tissue, and stored frozen until scanning with the micro-

CT (µCT 40, Scanco).    All femurs were scanned for 3.5 hours while soaking in room 

temperature ethanol or PBS, depending on if they were stored fixed or frozen 

respectively.  The femurs stored in PBS were refrozen after scanning was completed.  

These femurs were then mechanically tested (858 Mini-Bionix II, MTS) at a later time.  

Prior to mechanical testing the femurs were allowed to thaw a second time for three hours 

while soaking in room temperature PBS.  All animal experiments were conducted in 

accordance with IACUC approved protocols.   

Micro-CT Analysis 

The femurs were scanned in the micro-CT with a voxel size of 16 µm x 16 µm x 

16 µm.    Three regions of the femur were scanned.  The first two regions consisted of 

only trabecular bone, including a 0.32mm section of epiphyseal trabecular bone, and 

0.80mm region of metaphyseal trabecular bone, as shown in Figure 2-1.  The trabecular 

bone in these regions was isolated from the cortical bone by visually drawing the volume 

of interest (VOI).  The third region was a 1mm section of cortical bone located in the 
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mid-diaphysis, in the same region of the femur that would later be broken in mechanical 

testing.  A more complete description of the micro-CT protocol can be found in 

Appendix A. 

Because the micro-CT creates a binary image of the 3D bone structure, a density 

threshold was required to obtain the images.  The threshold was chosen visually, by 

obtaining a binary image that most closely matched the grayscale image from the scan.  

Initially the micro-CT measured density as a function of linear attenuation, which was 

linearly related to the bone mineral density (BMD).  Later in the study, the micro-CT 

system was updated to directly measure the mg of hydroxyapatite (HA) per cubic 

centimeter in each pixel, and this procedure is detailed in Appendix C.  Briefly, the 

micro-CT was calibrated by scanning a series of 4 HA phantoms of known densities, and 

fitting the linear attenuation curves through the known densities found in the phantoms.  

Once the bone was thresholded, the overall BMD could be determined by averaging the 

values of each pixel of bone.  Each of the three VOIs, epiphyseal, metaphyseal, and 

cortical bone, had a different threshold.  The newly formed trabecular bone in the 

metaphyseal VOI was less dense than the older trabecular bone in the epiphyseal VOI, 

and cortical bone was the densest.  Within each region, the threshold was kept constant 

for analysis of bones across different ages and genotypes of the mice.   

Several different trabecular parameters, in the two distal VOIs, were measured 

using the built- in software provided with the micro-CT.  Trabecular number, thickness, 

spacing, and bone volume fraction were all quantified.  Additionally, the total volume of 

the each VOI was recorded.  All trabecular parameters were calculated using a 3D direct 

model [20]. 
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For the mid-diaphysis cortical VOI the total bone volume in the 1mm section, as 

well as the cortical thickness were calculated directly with the micro-CT software.  Also 

a series of 2D cross sectional pictures were obtained to determine the 2nd moment of the 

area; an example image is shown in Figure 2-2.  Three cross sectional images, 0.5mm 

apart, at the beginning, middle, and end of the VOI were used to calculate the medial-

lateral and anterior-posterior 2nd moments of the area, as well as the ML and AP 

diameters, in a separate image-processing program (IMAQ vision builder, Labview).  The 

2nd moment of the area and diameter values from all three slices were averaged together 

to determine a single value for each femur.  The complete IMAQ protocol can be seen in 

Appendix D.      

Mechanical Testing 

The femurs were allowed to thaw in PBS for 3 hours prior to mechanical testing.  

They were tested to failure in four-point bending, at a rate of 0.05mm/s.  The lower and 

upper support points were 6.2mm and 1.2mm apart, respectively.  The support points had 

a radius of 0.5mm.  The femurs were tested in the posterior to anterior direction, with the 

anterior side in tension.  A schematic diagram of the four-point bending setup is shown in 

Figure 2-1 as well, and a detailed description of the mechanical testing protocol is 

contained in Appendix E.  The samples were kept hydrated at all times prior to testing.  A 

pre-load of 1-3 N was used to keep the femurs from rotating at the start of the testing and 

ensure that testing occurred about the medial- lateral axis.  The resulting force-deflection 

curves were used to calculate stiffness, maximum load, yield load and post yield 

deflection for each femur.  Stiffness was calculated as the slope of the line in the first 

0.05mm of deflection, excluding any toe- in region.  For post yield deflection, yield was 
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defined as a 10% reduction in secant stiffness, and failure was defined as a sudden drop 

in force of over 10%.   A typical force displacement graph is shown in Figure 2-3. 

 As mentioned before the 2nd moment of the area about the medial lateral 

was used to calculate the stress and elastic modulus from the force and deflection data.  

The equation used to calculate stress was, 
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where, 

s = stress 

F = applied force 

c = ½ of anterior-posterior axis (see Figure 2-2) 

a = horizontal distance between upper and lower supports (Figure 2-1) 

IML = 2nd moment of area about the medial- lateral axis 

E = Young’s modulus 

S = stiffness 

L = horizontal distance between lower supports (Figure 2-1) 

The stress was calculated both at yield and the maximum load, to determine the yield 

stress and ultimate stress, respectively.   

Analysis of variance (ANOVA) tests were performed to determine statistical 

significance.  Because the samples were not gender balanced at the later time points these 

data were examined several different ways.  Initially, the femurs were analyzed strictly 
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by age, using 3, 3.5, and 4 month femurs, and each time point was examined individually.  

However no comparisons could be made between 3.5 and 4 months, so a second, more 

gender balanced analysis was done.  For this analysis the 3.5 and 4 month time groups 

were lumped together into a single group and compared with the 3 month time group.  

Both gender and age were included as factors in this analysis.  This analysis was useful 

for determining the overall effect of COX-2 deficiency, however gender remained a 

confounding factor.   A third analysis involved only female femurs at 3 and 4 months of 

age.  This one-way ANOVA model had no confounding factors, but lacked information 

on any effects specific to male COX-2 deficient mice.    

 

Results 

The most noticeable phenotype that the COX-2 deficient mice were seen to have 

was a decreased mineral density in their femurs, in all three VOIs that were examined.  

When these data were further broken down by age, as shown in Figure 2-4, it can be seen 

that, while the 3 and 3.5 month time points have significant decreases (p < 0.05) in bone 

mineral density, the knockout mice at 4 months were not statistically different than their 

wild-type counterparts.  Only the cortical region is shown here, however the other two 

regions followed similar trends, as shown in Figure 2-5 and Figure 2-6.  Corresponding 

with the changes in mineral density, mechanical testing results showed a trend (0.05 < p 

< 0.10) towards increased post yield deflection (PYD) at the 3.5 month time point, and no 

significant difference at 4 months, Figure 2-7.  There is no mechanical testing data at the 

3 month time point, because, as mentioned in the methods section, all of the 3 month 

femurs were initially stored in formalin.  However, because the 3.5 month time point 
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consists entirely of males, and the 4 month time point is weighted heavily towards  

females (see Table 2-1), direct comparisons could not be made between these two time 

points, and a different method of analysis was performed.  

To attempt a more gender balanced comparison the 3.5 month and 4 month data 

was lumped into a single group.  The resulting group had an average age of 3.76 months, 

and consisted of 7 male KO/WT pairs, and 5 female KO/WT pairs.  This combined 

comparison showed significant decreases in mineral content in the cortical, epiphyseal, 

and metaphyseal VOIs at both time points, as shown in Figure 2-8, Figure 2-9, Figure 

2-10, respectively.  Figure 2-11 depicts the percent change in mineral density between 

WT and KO animals between the two time points. This indicates that the KO mice 

actually gain more mineral over this period in time, despite the fact that their mineral 

density was decreased at the 3 month time point.  The notable exception in this trend is 

the newly forming bone in the metaphyseal region, which is increasing at approximately 

the same rate as the wild type femurs.  In addition to the changes in mineral density, a 

significant increase in PYD was seen in the femurs from COX-2 knockout animals, as 

noted in Figure 2-12.  This figure also shows that there were not statistically significant 

differences in either maximum load or elastic modulus.  It was somewhat unexpected that 

elastic modulus would stay unchanged with the decreased mineral content.  However, in 

all cases where a significant difference or trend was noted in PYD it was due to a delayed 

failure rather than early yield, which is shown in Table 2-2.  There were also no 

significant differences in the remaining mechanical properties; ultimate stress, yield 

force, yield stress, and stiffness (Table 2-2).   
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The morphology and geometry of the COX-2 femurs were also examined.  In the 

cortical region, no differences were seen in cross sectional area, cortical thickness, and 

medial- lateral (M-L) diameter.  There was a weak (p=.098) trend towards increased 

anterior-posterior (A-P) diameter in the 3 month age group, but this was not seen at the 

later time point.  There were no differences in either the M-L or A-P 2nd moments of the 

area compared to WT.  These values are all shown in Table 2-3.  In the metaphyseal and 

epiphyseal trabecular regions, no differences were seen in any of the morphology 

parameters including, bone volume fraction, trabecular thickness, trabecular spacing, and 

trabecular number.  The total volumes of the metaphyseal and epiphyseal regions were 

not significantly different from WT as well.  These data are shown in Table 2-4.  Besides 

the VOIs examined for changes in bone mass, the overall size of the femurs remained 

unchanged as well.  Figure 2-13 shows the length of the femurs, measured with calipers, 

and no statistical trend or significant difference was seen in this parameter, although the 

mean of COX-2 femurs was less than WT femurs. 

In order to better understand the effect of age without the confounding effect of 

gender, a second comparison was performed, which involved only the female mice.  

Using the females at 3 months (n=4 KO, n=5 WT) and 4 months (n=5 KO, n=5 WT) the 

effects of age could be better understood.  In this subgroup of animals, a significant 

decrease in bone mineral density was observed at 3 months in the cortical (Figure 2-14) 

and epiphyseal region (Figure 2-15).  No significant difference was seen in the 

metaphyseal region only, shown in Figure 2-16.  However a power analysis showed that 

with n=4 and the unusually large variance, the power was 19% (ß=0.19).  At 4 months, 

no significant differences were seen for bone mineral density in any of the three VOIs.  
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Again, there was no mechanical testing ava ilable for the 3 month data, but the 4 month 

mechanical testing results mirrored the mineral content, and no differences were seen in 

the PYD of the femurs, although the mean PYD of the knockouts was greater than the 

WT, shown in Figure 2-17.  This figure also shows maximum load and modulus, and no 

significant differences were seen in these parameters. Additionally, no significant 

differences were seen in any of the remaining mechanical properties (Table 2-5), cortical 

geometry (Table 2-6), or trabecular morphology (Table 2-7) of these femurs.  There was 

a slight trend (p=0.071) towards decreased trabecular spacing in the KO mice at 3 

months, however this was not seen at 4 months.  No differences were seen in the overall 

length in the female subgroup as shown in Figure 2-18.  The female BMD and PYD data 

would suggest that as the COX-2 KO mice age they close the gap with WT mice with 

respect to mineral content and material properties.   

    A similar statistical analysis could not be done with the density data for the 

male mice, because a retrospective power study revealed that higher sample numbers 

would be required at the three month time point to make a valid comparison.  

Additionally, no direct comparisons could be made between male and female data due to 

a lack of sufficient sample size for each gender at the 3 month age group, and the lack of 

balance seen in the later age groups.  

 

Discussion 

 Cyclooxygenase-2 is the rate limiting enzyme in the production of prostaglandins 

in the body.  Prostaglandins have a complex effect on bone, and are not completely 

understood.  They have been shown to both increase bone formation as well as bone 
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resorption.  In the COX-2 deficient mice it appears that that lack of PGs pushes the 

balance towards decreased or delayed mineralization initially, but that this deficit may be 

eliminated with aging.  COX-2 deficient mice had femurs that mineralized at a slower 

rate, but at least in the female mice, were shown to eventually reach the same mineral 

density as WT mice.  The bone mineral density of the WT mice in this study followed a 

trend similar to that seen in the literature which noted that the average mineral content of 

healthy mouse femurs increases rapidly until 5-7 weeks of age, at which point they have a 

modest increase in mineral content until they gradually peak at 30 to 40 weeks of age 

[21].  It appeared that the COX-2 KO mice lagged behind their WT counterparts during 

the rapid increases in mineralization early on, but began to catch up once mineralization 

began to slow down.   

 This study looked at the mineralization in three separate areas of the femur; 

cortical bone in the mid-diaphysis, the newly forming trabecular bone on the metaphyseal 

side of the growth plate in the distal femur, and the older trabecular bone on the 

epiphyseal side of the distal growth plate. Decreases in mineral content were seen in all 

three areas, however the one notable difference between these three areas was the newly 

forming metaphyseal trabecular bone.  While the KO mice seemed to be catching up to 

their WT counterparts in the cortical and epiphyseal bone mineral density between 3 and 

3.76 months, the metaphyseal region continued to lag behind at the same rate, as 

mentioned in Figure 2-11.  This would seem to support the argument that COX-2 KO 

mice are not able to form mineral at the same rate as WT mice initially, but can continue 

to increase their mineral density over time and eventually catch up. 
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 Accompanying the decrease in mineral density was an increase in PYD, with a 

statistically significant increase at both the 3 and 3.76 month time points.  Besides the 

PYD, no differences were seen in the other parameters measured during mechanical 

testing.  Maximum load, elastic modulus and yield stress were unchanged.  As mentioned 

before, the fact that the modulus and stiffness were unchanged between KO and WT was 

somewhat unexpected, given the changes in BMD.  There were no differences in any of 

the remaining parameters to suggest that other changes were occurring in the knockout 

mice.  Cortical geometry including cross sectional area, 2nd moment of the area, and 

cortex thickness were unchanged, indicating that the bones were not attempting to 

compensate for reduced material properties.   This may be due to the fact that bones 

rarely leave the elastic region in physiologic loading, and the decrease in mineral density 

might not have been severe enough to alter the mechanical properties of these femurs 

prior to yield.  

 In the female data, group changes in BMD were significant at 3 months, but this 

had completely disappeared by the 4 month time point.  This further strengthens the idea 

that COX-2 deficient mice begin to catch up with their wild type counterparts as they age.  

The post yield deflection data also agreed with this as well, and no significant difference 

in PYD was seen in the 4 month female group.  Again, no mechanical testing data were 

available for the 3 month data, however in all of the subgroups mechanically tested the 

PYD results followed the inverse of BMD trends very closely. 

Limited conclusions could be made about the male mice in this study, because of 

a combination of limited sample numbers, as well as smaller age difference between the 

two samples.  Further study, with an increased sample size, is needed to determine if 
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there are any gender specific effects of COX-2 deficiency.  The male mice at 3.5 months 

of age still possessed significant differences with decreased mineralization and increased 

PYD.  With the current data, no conclusions can be made about the males at 4 months, so 

whether these male mice also catch up as quickly as the females or if there is a continued 

difference in bone properties remains an open question.  There is some basis for a 

differential effect of COX-2 as a function of gender.  COX-2 is expressed in the ovaries 

[22, 23], and male and female mice have different breeding efficiencies [18], so subtle 

differences in mineralization in male mice may be possible. 

 Another issue currently being discussed in the literature is the long-term effects of 

NSAID use [16], since elderly patients often take COX-2 specific NSAIDS for 

osteoarthritis relief [7].  Limited conclusions about that can be made from this study, as 

the mice examined were still developing skeletally, and the vast majority of people using 

NSAIDS for long periods of time are elderly people.  However, it should be noted that 

the bone of the COX-2 knockout mice did not appear to be moving towards an 

osteoporotic phenotype.  Although the bone mineral density was decreased initially, this 

decrease would not necessarily translate to increased fracture risk.  There was no 

decrease in elastic modulus or maximum load, which would indicate that the mechanical 

integrity of these bones was not unduly compromised, and there would be no associated 

increase in fracture risk for these mice.  Also, the effects of osteoporosis are first seen in 

the trabecular bone, however no geometric differences were seen in the trabecular bone in 

either the metaphyseal or epiphyseal regions.  So while this study did not produce 

conclusive results about long-term use of NSAIDS, it did not raise any concerns either. 
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The lack of an osteoporotic phenotype in younger COX-2 mice is also a good 

example of the advantage of micro-CT over traditional DEXA scanning.  While DEXA 

scanning would only detect a drop in bone density, it could not distinguish between a 

decrease in bone mass or mineral density.  Knowing only that a decrease in bone density 

was occurring in the COX-2 mice would have raised the concern that these mice might 

have an osteoporotic phenotype.   

 In conclusion, COX-2 deficient mice were seen to have decreased BMD, and 

increased PYD.  This was true for both male and female mice at the younger time points, 

although it appeared that female mice at 4 months of age had caught up to their WT 

counterparts.  Although the lack of PGs have been shown to cause alterations in 

osteoclast and osteoblast function, this study suggests that the lack of COX-2 slightly tips 

the balance of bone homeostasis to a net loss of bone minerals.  Given the fact that COX-

2 mice have slowly mineralizing fracture calluses as well, it seems possible that 

decreased osteoblast function is responsible for the changes in bone mineral density.  

This would also suggest that while COX-2 is known to be upregulated during 

inflammation, it also plays a role in bone homeostasis as well.    
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Table 2-1 Sample numbers for COX-2 knockout mice.  All 3 month mice were stored in formalin, 
and no mechanical testing was performed.  The remaining mice were stored frozen in PBS. 

Genotype/Gender 3 month 3.5 month 4 month 
COX-2 Male 3 6 1 

WT Male 2 6 1 
COX-2 Female 4 0 5 

WT Female 5 0 5 
 
 
 

 

Figure 2-1 Schematic view of 4 point bending setup, and typical femur placement.  The three VOIs 
scanned in the micro-CT and used for analysis are highlighted, and the growth plate is shown as a 
black line between the two trabecular regions. R is radius of all load points.  A is the horizontal 
distance between upper and lower supports, and L is distance between lower points.  The distance 
between the two upper points is 2.2mm (not shown). 

 
 
 
 

 
 
Figure 2-2 Typical micro-CT cross sectional image of mid-diaphysis, with the medial-lateral axis 
indicated.  “C” indicates half of the medial-lateral diameter. 

M-L axis 

C 
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Figure 2-3 Typical Force vs. Displacement graph, with lines indicating stiffness (grey), and 10% 
reduction in secant stiffness (dashed line).    
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Figure 2-4 Bone mineral density of COX-2 and wild type femurs in the cortical VOI, grouped 
according to age, both male and female mice included.  * indicates p = 0.05,  Error bars are ± SEM 
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Figure 2-5 Bone mineral density of COX-2 and wild type femurs in the epiphyseal VOI, grouped 
according to age, both male and female mice included.  * indicates p = 0.05 
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Figure 2-6 Bone mineral density of COX-2 and wild type femurs in the metaphyseal VOI, grouped 
according to age, both male and female mice included.  * indicates p = 0.05 + indicates 0.10 = p = 0.05 
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Figure 2-7  Post yield deflection of femurs, grouped according to age, both male and female mice 
included.  + indicates 0.10 = p = 0.05 
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Figure 2-8  BMD in the cortical VOI with 3 month femurs compared to older male and female femurs 
with an average age of 3.76 months.  * indicates p = 0.05 



 

35 

Epiphyseal Trabecular Bone Mineral Density

980

990

1000

1010

1020

1030

1040

1050

1060

1070

3 3.76
Age (months)

(m
g

 H
A

/c
cm

) 

COX-2

WT

*

*

 

Figure 2-9 BMD in the epiphyseal VOI with 3 month femurs compared to older male and female 
femurs with an average age of 3.76 months.  * indicates p = 0.05  
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Figure 2-10 BMD of the newly formed trabecular bone in the metaphyseal region. * indicates p = 0.05 
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Changes in BMD over time
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Figure 2-11 Percent increases in Bone Mineral Density of male and female femurs from 3 months to 
average age of 3.76 months.   
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Figure 2-12  Mechanical properties of all femurs tested, including (A) post yield deflection, (B) elastic 
modulus, and (C) maximum load.  * indicates p = 0.05 
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Table 2-2 Structural and material properties of male and female femurs, including stiffness, yield 
load, ultimate stress, yield stress, and yield deflection.  Standard deviations are indicated in 
parentheses below each value.    

Genotype Gender Age S Yield Load Ult. Stress Yield Stress Yield Defl. 
  (months) (N/mm) (N) (N/mm^2) (N/mm^2) (mm) 

COX-2 Both 3.76 225.1 23.60 141.94 93.80 0.124 
St Dev   (11.67) (1.26) (8.72) (5.80) (0.013) 

WT Both 3.76 244.5 25.07 142.14 99.44 0.111 
St Dev   (11.65) (1.14) (9.07) (4.91) (0.009) 

 
 
 
 
 
 
 
 
 
 

Table 2-3 Cortical geometry of male and female femurs including cortical area, average cortex 
thickness, Medial -Lateral and Anterior -Posterior diameters and 2nd moments of the area.  Bolded 
value indi cates statistical trend vs. WT (p=0.098). 

Genotype Gender Age Cortical Area Cort. Thickness M-L Dia. A-P Dia. Avg I ML Avg I AP 
  (months) (mm^2) (mm) (mm) (mm) (mm^4) (mm^4) 

COX-2 M/F 3 0.9610 0.2190 1.80 1.46 0.1859 0.2839 
St Dev   (0.0725) (0.0105) (0.07) (0.05) (0.0251) (0.0397) 

WT M/F 3 0.8752 0.2071 1.72 1.38 0.1502 0.2363 
St Dev   (0.0627) (0.0110) (0.05) (0.04) (0.0172) (0.0307) 

COX-2 M/F 3.76 1.0300 0.2275 1.84 1.46 0.2020 0.3158 
St Dev   (0.0523) (0.0063) (0.05) (0.05) (0.0208) (0.0324) 

WT M/F 3.76 1.0088 0.2332 1.81 1.43 0.1878 0.2975 
St Dev   (0.0447) (0.0046) (0.05) (0.03) (0.0168) (0.0276) 
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Table 2-4 Morphologic parameters of male and female trabecular bone in the metaphyseal (M) and 
epiphyseal (E) regions.  Also includes total volume (TV) of trabecular regions. 

Genotype Gender Age M.TV M.BVF M.TbN M.TbTh. M.TbSp. 
  (months) (mm^3) [1] (1/mm) (mm) (mm) 

COX-2 M/F 3 1.6969 0.2216 5.1058 0.0679 0.2013 
St Dev   (0.1055) (0.0419) (0.3811) (0.0051) (0.0184) 

WT M/F 3 1.6168 0.1555 4.4063 0.0628 0.2444 
St Dev   (0.0817) (0.0308) (0.3895) (0.0036) (0.0291) 

COX-2 M/F 3.76 1.8085 0.2182 5.3934 0.0676 0.1872 
St Dev   (0.0905) (0.0324) (0.2780) (0.0049) (0.0128) 

WT M/F 3.76 1.7799 0.2290 5.2710 0.0696 0.1886 
St Dev   (0.0575) (0.0280) (0.2301) (0.0033) (0.0093) 

 
Genotype Gender Age E.TV E. BVF E.TbN E.TbTh. E.TbSp. 

  (months) (mm^3) [1] (1/mm) (mm) (mm) 

COX-2 M/F 3 0.5326 0.3549 11.2984 0.0622 0.1080 
St Dev   (0.0195) (0.0521) (0.2207) (0.0041) (0.0025) 

WT M/F 3 0.5570 0.2912 11.3345 0.0618 0.1133 
St Dev   (0.0139) (0.0268) (0.1266) (0.0021) (0.0017) 

COX-2 M/F 3.76 0.5511 0.3758 11.4700 0.0666 0.1066 
St Dev   (0.0152) (0.0256) (0.1557) (0.0019) (0.0022) 

WT M/F 3.76 0.5553 0.3520 11.3941 0.0680 0.1091 
St Dev   (0.0117) (0.0210) (0.1693) (0.0020) (0.0015) 
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Figure 2-13 Overall length of male and female femurs, as measured with calipers. 
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Figure 2-14 Cortical BMD of female mice. * indicates p = 0.05 
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Figure 2-15 Epiphyseal BMD of female mice. * indicates p = 0.05 
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Figure 2-16 Metaphyseal BMD of female mice. 
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Figure 2-17 Mechanical properties of the female subgroup of femurs, including (A) post yield 
deflection, (B) elastic modulus, and (C) maximum load. 
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Table 2-5 Structural and material properties of female femurs, including stiffness, yield load, 
ultimate stress, yield stress, and yield deflection.  Standard deviations are indicated in parentheses 
below each value. 

Genotype Gender Age S Yield Load Ult. Stress Yield Stress Yield Defl. 
  (months) (N/mm) (N) (N/mm^2) (N/mm^2) (mm) 

COX-2 Female 4 215.4 20.86 167.26 108.99 0.114 
St Dev   (11.2) (1.99) (12.12) (9.89) (0.013) 

WT Female 4 249.5 21.66 167.46 114.87 0.089 
St Dev   (14.7) (1.26) (16.27) (6.40) (0.008) 

 
 
 
 
 
 
 
 

Table 2-6 Cortical geometry of female femurs including cortical area, average cortex thickness, 
Medial-Lateral and Anterior-Posterior diameters and 2nd moments of the area. 

Genotype Gender Age Cortical Area Cort Thickness M-L Dia. A-P Dia. Avg I ML Avg I AP 

  (months) (mm^2) (mm) (mm) (mm) (mm^4) (mm^4) 

COX-2 Female 3 0.8150 0.1985 1.67 1.36 0.1342 0.2047 
St Dev   (0.0387) (0.0068) (0.04) (0.01) (0.0085) (0.0222) 

WT Female 3 0.7953  0.1950  1.64 1.33 0.1273  0.1920  

St Dev   (0.0505) (0.0110) (0.03) (0.03) (0.0117) (0.0163) 

COX-2 Female 4 0.8340  0.2116  1.62 1.30 0.1237  0.1894  
St Dev   (0.0176) (0.0023) (0.03) (0.05) (0.0120) (0.0111) 

WT Female 4 0.8267  0.2151  1.60 1.30 0.1235  0.1871  
St Dev   (0.0277) (0.0019) (0.05) (0.04) (0.0121) (0.0195) 
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Table 2-7 Morphologic parameters of female trabecular bone in the metaphyseal (M) and epiphyseal 
(E) regions.  Bolded value indicates statistical trend vs. WT (p=0.098). 

Genotype Gender Age M.TV M.BVF M.TbN M.TbTh. M.TbSp. 
  (months) (mm^3) [1] (1/mm) (mm) (mm) 

COX-2 Female 3 1.5103 0.1617 4.4649 0.0614 0.2310 
St Dev   (0.0929) (0.0570) (0.4229) (0.0075) (0.0221) 

WT Female 3 1.4940 0.1170 4.0292 0.0586 0.2676 
St Dev   (0.0252) (0.0229) (0.3825) (0.0033) (0.0352) 

COX-2 Female 4 1.4566 0.1300 4.4704 0.0589 0.2316 
St Dev   (0.0406) (0.0161) (0.3639) (0.0036) (0.0168) 

WT Female 4 1.5594 0.1288 4.5363 0.0601 0.2204 
St Dev   (0.0611) (0.0037) (0.1591) (0.0017) (0.0094) 

 
Genotype Gender Age E.TV E. BVF E.TbN E.TbTh. E.TbSp. 

  (months) (mm^3) [1] (1/mm) (mm) (mm) 

COX-2 Female 3 0.5415 0.2884 11.3808 0.0567 0.1094 
St Dev   (0.0187) (0.0762) (0.3212) (0.0057) (0.0029) 

WT Female 3 0.5546 0.2705 11.4396 0.0609 0.1155 
St Dev   (0.0185) (0.0256) (0.1548) (0.0024) (0.0012) 

COX-2 Female 4 0.5370 0.3039 11.8160 0.0634 0.1115 
St Dev   (0.0328) (0.0221) (0.2368) (0.0017) (0.0038) 

WT Female 4 0.5243 0.2856 11.7064 0.0635 0.1129 
St Dev   (0.0190) (0.0048) (0.3114) (0.0013) (0.0016) 
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Figure 2-18 Overall length of female femurs, as measured with calipers. 
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CHAPTER 3 

 

APOLIPOPROTEIN E STUDY 

 

 

Introduction 

 There have been several studies recently examining the link between 

cardiovascular disease and reduced bone mineral density [1, 2].  ApoE specifically has 

been studied as a possible risk factor for both atherosclerosis and osteoporosis.  ApoE is a 

glycoprotein that binds with lipids released from the small intestine and plays a role in 

maintaining plasma cho lesterol levels [3].  In humans, ApoE occurs in three isoforms: e2, 

e3, and e4 [4].  The three isoforms differ are associated with varying lipid levels with e4 

associated with the highest lipid levels in the bloodstream, and e2 having the lowest.  

ApoE e3 is considered the “normal” isoform, while e2 and e4 occur with less frequency 

[3].  While elevated lipid levels in the bloodstream have a well-documented connection to 

cardiovascular disease, recent studies have focused on a more complicated link to bone 

disease.  However, since both osteoporosis and cardiovascular disease are associated with 

aging, proving this link has been difficult.   
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Several clinical studies have found that in humans the ApoE e4 gene is a risk 

factor for lower BMD [5-7], and increased osteoporotic fracture risk [8, 9].  However, 

there is debate in the literature, and this conclusion is not universally accepted.  Some 

studies have found no association between ApoE e4 and fracture risk [10, 11] or low 

BMD exists [12].   Additionally, some recent studies have investigated the deleterious 

effects of elevated lipid levels on bone, independent of the ApoE isoforms present, and 

generally found that high lipid levels and poor bone quality may be associated [13, 14].   

Limited studies on the function of different ApoE isoforms in humans have shown 

increased risk of fracture and decreased bone density associated with the poorly 

functioning e4 isoform, however, these studies are limited by several confounding 

factors.  First, extremely large study sizes are required because of the low frequency of 

the e4 allele in humans, as approximately 2% of the population have the e4/e4 

combination [10].  Second, the re are many possible confounding factors in these studies, 

including; smoking, the use of hormone replacement therapy, race, age, gender, weight, 

physical activity, and alcohol use [7].  One frequent source of debate about ApoE 

function in the literature is the way these various confounding factors are taken into 

account. 

ApoE knockout mice have been generated to study the function of ApoE in a 

mammalian system lacking many of these confounding factors. ApoE deficient mice 

display hyperlipidemia, similar to humans that have inherited ApoE e4 but to a much 

greater extent [15, 16].   Given the similarities in lipid levels, it is hypothesized that a 

similar skeletal phenotype may be seen in both ApoE deficient mice and humans 

possessing the ApoE e4 isoform.  ApoE deficient mice were originally developed at the 
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University of North Carolina by Maeda et al in 1992 from a 129-derived E14Tg2A ES 

cell line [17].  Currently, ApoE knockout mice are commercially available and have been 

extensively studied for their cardiovascular phenotype, which includes spontaneous 

development of atherosclerotic lesions [18].   However, no studies have been done on the 

skeletal phenotype of ApoE deficient mice.   

Overall Goal 

The purpose of this study was to examine the material, structural, and 

morphological properties of ApoE deficient mouse femurs, as part of a larger study 

examining the links between vascular calcification and bone disease.  We hypothesize 

that mice with ApoE deficiency will have decreased mechanical properties in their 

femurs as they age.  This information will be valuable in determining if the ApoE e4 

isoform is a risk factor for osteoporosis, in addition to being a known risk factor for 

vascular disease.   

   

Methods 

Experimental Animals 

ApoE deficient (ApoE -/-) mice on a C57BL/6 background were purchased from 

Jackson Labs (Bar Harbor, ME) for use in this study.  They were compared to C57BL/6 

wild type mice also purchased from Jackson Labs.  Mice aged 10, 20, and 40 weeks old 

were used in this study.  Each time point had 6 male ApoE -/- femurs and 6 male 

C57BL/6 wild type animals.  There was one minor exception, in that the ApoE -/- were 

aged to 42 weeks instead of 40 weeks (see Table 3-1).  Because these mice are relatively 

old and skeletally mature, this age difference was not a large concern.  Animals were 
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allowed access to water and food ad libitum, kept on a 12:12 light:dark cycle, and housed 

one animal per cage.  No differences were seen in the gross size of the knockout mice, 

and their body weight was unchanged from WT animals (Figure 3-1).  

Micro-CT Analysis 

The male mice were aged to the desired time point of 10, 20, or 40 weeks and 

sacrificed.  Their femurs were disarticulated, cleaned of all soft tissue, wrapped in PBS-

soaked gauze, and were stored frozen.  After freezing, one femur from each mouse was 

scanned using microcomputed tomography (µCT 40, Scanco Medical), while submerged 

in PBS.  After scanning for 3.5 hours at room temperature, each femur was moved 

directly to the mechanical testing system (MTS 858) and tested to failure in 4 point 

bending. 

The process for scanning these femurs was essentially the same as in the COX-2 

study, with two exceptions.  First, the femurs were mechanically tested immediately 

following scanning, instead of being refrozen and tested at a later time.  Second, the 

density of these femurs was left in units of linear attenuation, instead of converting to 

calibrated units of mg HA/ccm.  The full procedure used for determining bone density in 

the ApoE study is detailed in Appendix B.     

Briefly, the femurs were scanned in the micro-CT with a voxel size of 16 µm.  

Three regions of the femur were scanned.  The first two regions consisted of only 

trabecular bone, a 0.32mm section of epiphyseal trabecular bone, and a 0.80mm region of 

metaphyseal trabecular bone (see Figure 2-1).  The trabecular bone was isolated from the 

cortical bone by visually drawing the volume of interest.  The third region was a 1mm 

section of cortical bone located in the mid-diaphysis, in the same region of the femur that 
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would later be broken in mechanical testing.  As in the COX-2 study each VOI had a 

different threshold depending on the density of the bone in that VOI.   

Mechanical Testing 

The femurs were kept hydrated in PBS while scanning and moved directly to 

mechanical testing following the completion of the scan.  They were then tested to failure 

in four-point bending at a rate of 0.05mm/s.  The study used the same mechanical testing 

apparatus used in the COX-2 study, with the lower and upper support points 6.2mm and 

1.2mm apart, respectively.  The contact points had a radius of 0.5mm.  The femurs were 

tested in the posterior to anterior direction, with the anterior side in tension.  A pre- load 

of approximately 1-3 N was used to keep the femurs from rotating at the start of the 

testing and ensured that testing occurred about the medial- lateral axis.  The resulting 

force-deflection curves were used to calculate; stiffness, maximum load, yield load, and 

post yield deflection.  Yield was defined as a 10% reduction in secant stiffness. 

One-way analysis of variance (ANOVA) tests were performed on all results to 

determine statistical significance.  For the ANOVA models each age group was examined 

individually.  All animal experiments were conducted in accordance with IACUC 

approved protocols.     

 

Results 

 In general the structural properties of the ApoE deficient mice on a congenic 

C57BL/6 background were seen to lag behind at the younger, 10 week, time point.  They 

then caught up by 20 weeks, and finally exceeded the wild type controls by 40 weeks of 

age.  These results are reflected in Figure 3-2, Figure 3-3, and Figure 3-4, which show the 
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stiffness, maximum sustained load, and yield load, respectively.  In general, the structural 

properties of the wild type mice have plateaued by 10 weeks of age and are gradually 

dropping off, while the ApoE deficient mice still have increasing structural properties 

even from 20 to 40 weeks of age.   

 The amount of bone mass seen in these knockout femurs followed a similar trend 

as the structural properties.  Initially, the knockout femurs had decreased bone mass in 

almost every region examined, but they caught up with the wild type by 20 weeks and, in 

most cases, passed the wild type by 40 weeks.  Looking first at the cortical region, Figure 

3-5 shows the knockout has decreased cross sectional area at 10 and 20 weeks and no 

statistical difference at 40 weeks, though the mean cross sectional area was greater than 

wild type.  The average cortex thickness of this same cortical region was measured using 

the 3D direct method available with the micro-CT, the results of which can be seen in 

Figure 3-6.  While decreased thickness was seen early on, a significant increase was seen 

at the 40 week time point.  The 2nd moment of the area about the medial- lateral axis (IML) 

and anterior-posterior axes (IAP) also showed similar trends, as shown in Figure 3-7 and 

Figure 3-8, respectively.  The IML was the value used for calculating the material 

properties of these femurs because bending occurred about the medial- lateral axis. 

However, the IAP was also quantified, because in physiologic conditions bending occurs 

about this axis as well.  Although the bone mass changed quite a bit over time, the overall 

length of the femurs was not as greatly affected.  Initially, the KO femurs were shorter 

than the WT femurs, but from the 20 week time point on, there were no differences in 

overall size, as measured with calipers (Figure 3-9).  
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 Increases in bone mass were seen in the trabecular regions as well, and to an even 

greater amount than seen in the cortical region.  Figure 3-10 shows the changes in the 

older, epiphyseal trabecular bone, and Figure 3-11 shows the newly forming metaphyseal 

trabecular bone.  There was significantly decreased bone mass in the ApoE knockout 

group at 10 weeks in both regions. However, similar to the cortical bone, the situation 

had reversed and the KO mice had significantly greater bone mass by 40 weeks.  The 

trabecular bone in the distal femur was not mechanically tested in any way, however 

because of the increased surface area of trabecular bone, changes in the balance of 

formation and resorption are more easily detected in trabecular bone than in cortical 

bone.   

 Further examination revealed that in the epiphyseal region the changes in 

trabecular bone volume fraction were controlled mostly by changes in trabecular 

thickness.  No significant differences were seen in trabecular number and spacing. 

However, for trabecular thickness the same familiar trend is seen, with decreased 

thickness at the 10 week point and increased thickness at the 40 week time point (Table 

3-2).  In the newly forming bone of the diaphyseal region, trabecular thickness was again 

a significant factor, however trabecular spacing and number also played a role in the 

altered BVF (Table 3-3).    

        Fewer differences were seen in the material properties of the ApoE knockout 

mice.  As seen in Figure 3-12, there were no differences in the elastic modulus of the 

knockout femurs, despite the obvious differences in stiffness.  There is a slight increase in 

ultimate stress at 40 weeks, which is shown in Figure 3-13.  Post yield deflection of the 

knockout mice was identical to PYD in wild types, shown in Figure 3-14.  BMD was also 
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measured with the micro-CT, this time with a unitless attenuation coefficient, which was 

linearly related to BMD.  Minor alterations were seen in bone mineral density, with no 

difference seen at 10 weeks, a slight decrease at 20 weeks, and a very slight increase at 

40 weeks.  At the 40 week time point, these differences were only seen in the trabecular 

bone, with an increase in the epiphyseal trabecular bone and only a trend towards 

increased density in the metaphyseal VOI.  These results are shown in Figure 3-15, 

Figure 3-16, and Figure 3-17.   

  

Discussion 

In general ApoE deficient mice on the congenic C57BL/6 background were seen 

to have decreased structural properties and bone mass at the 10 week time point.  The 

knockout mice then caught up to the wild type mice by 20 weeks, and at 40 weeks they 

increased past the wild type mice.  The increased structural properties were mostly due to 

the increased bone mass seen in the KO mice, as no differences in the modulus and only 

slight differences in the ultimate stress were seen in the femurs.  Backing this conclusion 

up was the fact that the material property PYD, which was obtained directly from 

mechanical testing, was unchanged as well.  This suggests that despite the slight 

alterations in BMD the change in quantity of physiologic bone at early and late time 

points accounts for most of the changes seen in the structural properties.  This is 

especially evident at the 10 week time point, because despite the fact there are no changes 

in BMD yet, the structural properties are significantly decreased.  At the 40 week time 

point, the moderate increases in BMD may cause the slight increase in ultimate stress, 

however the change in bone mass is still quite pronounced. 



 

54 

 The biggest differences between WT and KO mice in this study were the trends of 

the structural properties and bone mass over time.  The wild type animals generally did 

not have statistically significant changes in structural properties occurring between 10 

and 20 weeks, and either no difference or a decline in properties from 20 to 40 weeks. 

Several studies have examined normal C57BL/6 for their skeletal properties and have 

generally noted a plateau in structural properties from approximately 10 to 30 weeks, 

with more significant decreases beyond that point [19, 20], which is in agreement with 

the current data.  The same trend and agreement holds true for the bone mass parameters 

[21].  The KO mice did not follow this trend, and there were significant increases in 

structural properties and bone mass even from 20 to 40 weeks.  It is clear that the ApoE 

knockout mice possess an increased adaptational response and are still able to add bone 

mass at much later time points than their wild type counterparts.  This is a different effect 

than the changes that appear to be occurring during skeletal development, which are 

causing the ApoE mice to lag behind the wild type initially.    

 This increased adaptational response at older time points has been seen in other 

knockout mice.  Osteocalcin knockout mice show no differences in skeletal phenotype 

prior to 6 months of age (26 weeks) but after that time, begin to show increased bone 

mass, in the form of increased cortical area, higher bone volume fraction, and increased 

failure load.  By nine months (39 weeks) these features were even more pronounced [22].  

Initially, no differences were seen in the mineral content of these mice using 

histochemical and plain radiograph techniques, however a more detailed analysis using 

Fourier Transform Infrared Microspectroscopic Analysis (FT-IRM) revealed minor 

differences in HA composition and distribution in different regions of the femur [23].  
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These mice were shown to have normally functioning osteoclasts and equal numbers of 

osteoblasts.  However, each osteoblast was able to form more bone per day than normal 

osteoblasts [22].  Obviously, these mice are very similar phenotypically to the ApoE 

deficient mice at older time points, but that does not necessarily mean the same pathways 

are being stimulated in both knockouts.  Further study will be needed to determine what 

balance exists between osteoclasts and osteoclasts in ApoE -/- mice, and what pathways 

are causing the alterations in osteoclast and/or osteoblast function. 

 Because all of the clinical retrospective studies on ApoE have dealt with elderly 

patients, those results should be compared with the older time points of these knockout 

mice.  So it would appear that the “elderly” mice in this study had increased structural 

properties compared to wild type animals, despite their slow start, probably due to either 

increased osteoblast number or function or decreased osteoclast function.  Regardless, 

this study would suggest that ApoE deficiency does not directly cause osteopenia or 

osteoporosis in older animals. This experiment is in agreement with the studies that have 

concluded that ApoE polymorphism does not affect skeletal fragility.   

 From this data it appears that ApoE deficiency affects the development and 

adaptation of bone differently, possibly through different mechanisms.  Few studies have 

been done on the effects of hyperlipidemia on developing skeletons, for the simple reason 

that this is not a problem seen in a clinical setting.  However, one study examining the 

effect of bone morphogenic protein 2 (BMP-2) on murine mesenchymal progenitor cells 

found, to their surprise, that ApoE was highly upregulated by BMP-2 during embryonic 

differentiation and development [24].  The different isoforms of ApoE were not 

examined, so it is not known how the e4 isoform would affect this process.  However, 
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this raises the possibility that ApoE null mice behave differently than humans with ApoE 

e4 during development, and then begin to more closely approximate the actions of the e4 

isoform later in life.  This may also explain the dual effects seen with the ApoE knockout 

mice at early and later time points.   

 It appeared the majority of the changes seen in the ApoE -/- mice were a result of 

the altered bone mass.  Initially, the 10 week old KO animals were seen to have a 

somewhat stunted development, but they then greatly increased the amount of bone 

present in their femurs, even between 20 and 40 weeks.  This was not the skeletal 

phenotype that was initially hypothesized as a result of clinical studies in humans.  These 

knockout mice were found to have increased structural properties at older time points, as 

a result of the increased bone mass.  The knockout mice used in this study provided a 

unique insight into the effects of ApoE on the skeleton and provide an interesting avenue 

for further research. 
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Table 3-1 Sample numbers of male mice tested in the ApoE study.  † indicates actual age of 42 weeks. 

Genotype - Background 10wks 20wks 40wks 
ApoE - C57BL/6 6 6 6† 
WT - C57BL/6 6 6 6 
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Figure 3-1 Weight of mice at necropsy.   
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Figure 3-2 Measured stiffness of femurs in bending.  * indicates p<0.05 vs. WT   
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Figure 3-3  Maximum load sustained by femurs.  * indicates p<0.05 
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Figure 3-4 Measured force at calculated yield point.  * indicates p<0.05   
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Figure 3-5 Average cross sectional area of femurs in cortical region  * indicates p<0.05   
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Figure 3-6  Average cortex thickness of cortical section, as measured by µCT.  * indicates p<0.05 
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Figure 3-7 2nd moment of the area about the medial-lateral axis as measured by the average of three 
cross sectional µCT images.  * indicates p<0.05 
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Figure 3-8 2nd moment of the area about the anterior-posterior axis as measured by the average of 
three cross sectional µCT images.  * indicates p<0.05  ** indicates trend 0.05<p<0.10 
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Figure 3-9  Overall length of femurs, as measured with calipers.  * indicates p<0.05 
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Figure 3-10 Bone volume fraction of the epiphyseal trabecular bone.  * indicates p<0.05   

 
 

Metaphyseal Trabecular Bone

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50
Age (weeks)

B
on

e 
V

ol
um

e 
Fr

ac
tio

n

ApoE

WT

*

*

*

 
Figure 3-11 Bone volume fraction of the metaphyseal trabecular bone.  * indicates p<0.05   
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Table 3-2 Morphologic parameters of trabecular bone in the epiphyseal (E) region.  Also includes 
total volume (TV) of epiphyseal region.  Bolded values indicate p<0.05 vs. wild type, and standard 
deviation is noted in parentheses below each value.   

Genotype age E. TV E. BVF E. TbN E. TbTh E. TbSp 
 (weeks) (mm^3) [1] (1/mm) (mm) (mm) 

0.5161 0.2753 10.7832 0.0555 0.1110 
10 

(0.0185) (0.0195) (0.1587) (0.0011) (0.0015) 
0.5604 0.3460 11.0872 0.0605 0.1064 

20 
(0.0156) (0.0144) (0.2117) (0.0009) (0.0028) 
0.4925 0.4271 11.0937 0.0709 0.1120 

ApoE 

42 
(0.0118) (0.0155) (0.1612) (0.0011) (0.0021) 
0.5267 0.3435 10.8694 0.0613 0.1085 

10 
(0.0051) (0.0122) (0.1157) (0.0010) (0.0010) 
0.5688 0.3484 11.1362 0.0630 0.1124 

20 
(0.0232) (0.0104) (0.1012) (0.0008) (0.0015) 
0.5455 0.3140 11.2598 0.0607 0.1163 

WT 

40 
(0.0144) (0.0041) (0.2150) (0.0005) (0.0010) 

 
 
 
 
 
 
 
 

Table 3-3 Morphologic parameters of trabecular bone in the metaphyseal (E) region.  Also includes 
total volume (TV) of metaphyseal region.  Bolded values indicate p<0.05 vs. wild type, and standard 
deviation is noted in parentheses below each value. 

Genotype age M. TV M.BVF M. TbN E. TbTh E. TbSp 
 (weeks) (mm^3) [1] (1/mm) (mm) (mm) 

1.6545 0.0956 4.2034 0.0504 0.2449 
10 

(0.0217) (0.0069) (0.1861) (0.0010) (0.0130) 
1.8351 0.1169 4.0677 0.0536 0.2509 

20 
(0.0842) (0.0032) (0.1590) (0.0014) (0.0118) 
1.8836 0.2256 4.6317 0.0678 0.2205 

ApoE 

42 
(0.0460) (0.0249) (0.2861) (0.0026) (0.0232) 
1.8247 0.1802 5.3259 0.0630 0.1887 

10 
(0.0420) (0.0174) (0.2162) (0.0029) (0.0088) 
1.8724 0.0975 3.7047 0.0552 0.2739 

20 
(0.0308) (0.0048) (0.1016) (0.0008) (0.0086) 
1.9591 0.0617 3.1444 0.0509 0.3217 

WT 
 

40 
(0.0464) (0.0057) (0.0788) (0.0011) (0.0099) 
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Figure 3-12 Modulus of elasticity for femurs in four point bending.  * indicates p<0.05   
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Figure 3-13 Maximum measured stress in femurs.  * indicates p<0.05 
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Figure 3-14 Post yield deflection of femurs in 4 point bending apparatus. 
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Figure 3-15 Average density measured in the unitless parameter, bins, of the cortical bone in the 
mid-diaphysis. * indicates  p<0.05 



 

66 

 

Epiphyseal Trabecular Bone 

6200

6300

6400

6500

6600

6700

6800

6900

0 10 20 30 40 50
Age (weeks)

M
ea

n 
V

ox
el

 A
tt

en
ua

tio
n 

(b
in

s)

ApoE
WT

*

*

 
Figure 3-16 Average density measured in the unitless parameter, bins, of the Epiphyseal trabecular 
bone in the mid-diaphysis.  * indicates p<0.05 
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Figure 3-17 Average density measured in the unitless parameter, bins, of the Epiphyseal trabecular 
bone in the mid-diaphysis.  ** indicates 0.05<p<0.10 
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CHAPTER 4 

 

CONCLUSIONS AND FUTURE WORK 

 

 

Conclusions 

 The studies included in this thesis work demonstrate the ability to combine micro-

CT and mechanical testing to quantify phenotypic consequences of targeted gene deletion 

on skeletal structure and function.  This general approach was specifically applied to 

better understand the skeletal function of two specific genes, COX-2 and ApoE.  This 

process, once developed, provides a large amount of data quantifying changes in the 

skeleton as a result of a genetic alteration.  If differences are seen with these experiments, 

they also provide information as to which follow up tests may provide information on the 

changes occurring on cellular level in these knockout mice.  And conversely if no 

differences are seen in a particular knockout, further more time consuming experiments 

can be avoided.   

 In these specific studies both ApoE and COX-2 knockout mice were examined 

using micro-CT and mechanical testing, and both knockout mice were seen to have 

altered skeletons.  The COX-2 knockout mice were seen to have decreased mineral 
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content in their femurs, and ApoE mice were seen to produce increased bone mass later 

in life, despite their small initial size. 

 As a result of these studies the following specific conclusions were reached: 

COX-2 study: 

1.  COX-2 deficient mice less than 4 months old have decreased mineral content in their 

femurs, and increased whole bone post yield deflection. 

2.  The gap in the amount of mineralization between wild type and COX-2 mice of both 

genders decreased from 3 to 4 months of age.  

3.  Female COX-2 mice had significantly decreased mineralization in their femurs at 3 

months of age, but no significant difference at 4 months.  Additionally, female COX-2 

mice at 4 months of age had normal post yield deflection. 

4.  Outside of the changes in mineral density and post yield behavior, no differences were 

seen in the geometry, structural properties, or remaining material properties of the COX-2 

mice.   

ApoE study: 

1.  ApoE mice at 10 weeks were seen to have decreased bone mass present in their 

femurs, and decreased structural properties, while their material properties were largely 

unaltered.  

2. At 20 weeks there were few differences between wild type and knockout mice, but by 

40 weeks ApoE deficient mice had exceeded the wild type mice and had increased bone 

mass and structural properties, with only small changes in material properties.   
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3.  Changes in bone mass, at all time points, were largely responsible for the differences 

seen in structural properties.  When the structural properties were normalized by 

geometry few differences were seen in the calculated material properties.   

 

Future Work 

Several avenues of future work for the ApoE and COX-2 mice have been 

considered.  For the COX-2 knockout mice the first step would be to obtain higher 

sample numbers.  In the current study no direct comparisons were made between the 

male and female mice, and no mechanical testing was done on the 3 month old animals.  

A wider study incorporating equal numbers of male and female knockout mice at 2, 3, 

and 4 months of age would provide a more detailed view of the influence of the COX-2 

enzyme over time.  Because some minor variations exist between male and female COX-

2 knockout mice in other organs, there is a possibility that males might respond to COX-2 

deficiency differently than females.  Specifically, from the limited data available it 

seemed possible that the male knockout mice may still have decreased mineral content at 

4 months of age, but this cannot be confirmed with the samples currently available.  Mice 

aged beyond 4 months would be interesting to examine as well, because many of the 

patients using COX-2 specific NSAIDS are elderly.  However this would be challenging 

because many of the COX-2 deficient mice die before they reach even 4 month of age, 

and procuring enough animals for a statistically significant sample number would not be 

trivial.  Knockout mice are often inherently difficult to produce in sufficient numbers for 

use studies similar to these, even when animal mortality is not a problem.  
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In ApoE mice, different effects were seen during development and subsequent 

adaptation of the mice studied, and future work further defining the role of ApoE in the 

skeleton might have to focus on these two events separately.  At the later time points an 

imbalance between bone formation and resorption was seen.  Since previous work 

examining ApoE function in bone has only occurred in clinical studies, it has not been 

possible to examine osteoblast and osteoclast function.   This is a promising avenue for 

future research, because it is likely that at later time points either osteoclast function is 

inhibited or osteoblast function is increased.  There are several methods for examining 

osteoblast and osteoclast function.  Tartrate-resistant acidic phosphatase (TRAP) staining 

for osteoclasts could determine if the number of osteoclasts present in knockout mice 

femurs is similar to wild type femurs.  Often, if the osteoclast function is thought to be 

impaired, knockout mice can be ovariectomized and if the expected drop in bone volume 

fraction in the trabecular bone is not seen, that is a good indication that osteoclasts are no 

longer functioning normally.   

Determining how ApoE polymorphism affects early skeletal development remains 

a challenging question.  One first step could be to examine the gene expression of 

embryonic ApoE deficient mice.  However since mice do not possess different isoforms 

of ApoE, it would be challenging to elucidate the role of the e4 isoform vs. the “normal” 

e3 isoform during development.  As a note of caution, while the complete lack of ApoE 

seems to play an important role during early development, this does not guarantee that 

ApoE polymorphism plays a similar role. 

Another promising avenue for future work is to utilize the techniques developed 

in this study, and apply them to other knockout mice which may have altered bone 
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structure or function.  Currently Vitamin D receptor (VDR -/-) and Caveolin 1 knockout 

mice are being examined using the methods developed for this study.  As new knockout 

mice of interest continue to become available, these processes remain a good option for 

an in-depth quantitative evaluation of their skeletal phenotype.  By quantifying cortical 

and trabecular bone, and examining structural, material and geometric properties of these 

femurs these methodologies provide a consistent, repeatable measure for determining the 

skeletal changes occurring in any particular knockout mouse.     
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APPENDIX A 
 
 
 

MICRO-CT SCANNING AND EVALUATION PROTOCOL 
 
 
 
Materials: 
MicroCT40 (Scanco) 
Sample tube (16.4mm diameter x 80mm length) 
foam strips 
PCR tubes 
1/8” rubber washers 
3ml syringe and 22 gauge needle 
PBS 
50 mL beaker 
 
Dissection-(if needed): 
1. Disarticulate left and right femurs from pelvic bone and tibia. 
2. Remove skin and muscle from femur 
3. Wrap in gauze and wet with PBS 
4. Freeze at –20 C 
 
Preparation: 
1. Place frozen femur/gauze in 50 mL beaker filled with room-temp PBS to thaw for 

~1 min 
2. Remove gauze, and clean any remaining soft tissue off femur with Kimwipe 
3. Wrap foam strip around femur and place vertically in PCR tube (proximal end 

upright) 
4. Check femoral head is centered 
5. Use 3ml syringe and 22G needle to inject PBS at bottom of tube, eliminating all 

air bubbles 
6. Load three PCR tubes per 16 mm (diameter) x 80 mm sample tube  
7. Use rubber washers to center, and vertically orient each PCR tube 
8. Make sure washer is not in regions being scanned 
9. Make sure top of last tube is below the top of sample tube 
 
Scanning: 
1. Select Control file #129 
 E=55kVp 
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 I=145mA 
 Resolution: Medium 
 Conebeam: False 
 Diameter: 16.4 
 Integration Time: 150 ms 
 Average Data: 1 
 
2. Run Scout view: 0-80mm 
3.   Select trabecular region, 198 slices beginning at distal end of femur 
4. Select cortical region 

-Use scout view reference line to measure overall length of femur   
-Find midpoint of femur with previous measurement 
-79 slice VOI starts at midpoint and extends downward toward distal end  
-Reposition femur/washer if washer extends into VOI 
-Reposition femur/PCR tube if diaphysis is not vertical 

5.  Repeat trabecular and cortical selections for remaining two femurs 
6. Start Batch measurement 
 
Femurs take ~3.5 hours to scan and thaw while scanning   

APOE study: Femurs mechanically tested immediately following scanning 
COX-2 study: Femurs refrozen and tested at later point in time  

 
Evaluation of cortical bone: 
This does not include mg HA/ccm calibration for quantifying bone mineral density, see 
appendix C for this additional information 
1. Alter contents of file DISK1:[MICROCT.MAIN]IPL_FIXED_BATCH_V4.COM 
 as follows: 
 $ sigma_gauss := 1.2 
 $ support_gauss := 2 
 $ threshold_seg := 130 
 $ peel_iter := 0 
 
In Evaluation Window: 
2. Set dimesions of 3D evaluation at 160x160x66 and run evaluation 

-Do not evaluate any slices that also have washer present 
3.  Evaluate density in units of linear attenuation [see appendix B] 
 
2D cross sectional images of cortical bone  
In 3D window: 
4. Rotate elevation to 90 degrees (vertical) 
5. PERSPECTIVE =1.0!!!!!!! 
6. Align major axis of femur vertically (trochanter should be at top of screen) 
7. Record angle of rotation required to orient major axis vertically 
8. Check subdim dimensions are 163x163x61 
9. Take screenshots of 3 cross sectional images: 

Slice 0 = xxxx_top.TIF 
Slice 30= xxxx_middle.TIF 
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Slice 60=xxxx_bottom.TIF 
Check rotation, elevation, and perspective remains constant throughout 

 
10. FTP screenshots of cross sections to IMAQ Vision Builder 
11. Use LabView to calculate cross sectional area, height width and moments of 

inertia [see appendix D] 
 
Evaluation of Trabecular Bone: 
Metaphyseal  region 
1.  Draw first contour 3 slices after 1st sign of mature trabecular bone in center of 

femur (i.e. last sign of growth plate in center of femur) 
2.  Contour and evaluate 50 slices extending proximally towards diaphysis 
3. Change threshold_seg := 115  (leave remaining values in IPL file the 

same as cortical VOI) 
4.  Evaluate density in units of linear attenuation [see appendix B] 
 
Epiphyseal  Region 
1. Draw first contour 1 slice after 1st sign of trabecular bone connecting two 

condyles 
2.  Contour and evaluate 15 slices extending proximally  
3. Change threshold_seg := 115  (leave remaining values in IPL file the 

same as cortical VOI) 
4.  Evaluate density in units of linear attenuation [see appendix B] 
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APPENDIX B 
 
 
 

Density Calculation Protocol (non-calibrated) 
 
 
 

Materials: 
MicroCT IPL software (Scanco) 
_seg.aim files 
.aim files 
 
Procedure: 
For both trabecular VOIs 
1. In DecTerm window on microCT workstation enter 

“@disk1:[microct.ipl_com]atten_histo.com;15 
DK0:[microct.data.0000xxxx.0000yyyy]C_.aim” 

where  xxxx=sample number of specimen 
   yyyy=measurement number of specimen 
   C_.aim=aim file of desired VOI 
2. Record program output of object density and standard deviation of density in units 

of [bins] 
 
For cortical VOI 
Repeat above except for using atten_histo.com;16 
 
Atten_histo.com;15 
$! 
$!         _/_/_/  _/_/_/   _/ 
$!          _/    _/    _/    _/           Image Processing Language 
$!         _/    _/_/_/    _/ 
$!        _/    _/         _/             (c)  Andres Laib, Scanco Medical AG 
$!     _/_/_/  _/      _/_/_/_/ 
$! 
$! 
$! 
$!  IPL Batch Scanco 
$! 
$   if p1 .EQS. "" 
$       THEN 
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$       write sys$output "Give C0001234.aim ! Exit" 
$       exit 
$   endif 
$ 
$   define   org_file     'p1' 
$   seg_file = p1 - F$PARSE(p1,,,"VERSION") - ".AIM" + "_SEG.AIM" 
$   gobj_file = p1 - F$PARSE(p1,,,"VERSION") - ".AIM" + ".GOBJ" 
$   histo_file = p1 - F$PARSE(p1,,,"VERSION") - ".AIM" + "_histo.TAB" 
$ 
$   show log org_file 
$! 
$   ipl_scanco_prog := $um:ipl_scanco_m.exe 
$! 
$   ipl_scanco_prog 
/aim in org_file 
 
!change peel_iter for cortical/trabecular bone 
 
/aim histo org_file 
 
/gobj_mask 
 -input_output          histo 
 -gobj_filename         "seg_file 
 -peel_iter             2 
 
/histo 
 -input                 histo 
 -fileout_or_screentab  "histo_file 
 -from_val              -1 
 -to_val                -1 
 -nr_bins_in_tab        -1 
 
/voxgobj_scanco_param 
  -input                in 
  -gobj_filename        "seg_file 
  -peel_iter            2 
  -region_number        0 
.. 
$ exit 
 
Atten_histo;16 
Atten_histo.com;16 is similar to the code above, except all peel_iter values are equal to 3 
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APPENDIX C 
 
 
 

Density Calculation Protocol (mg HA calibrated) 
 
 
 
Materials: 
MicroCT software (Scanco) 
IMA and RAW backup files 
.AIM files 
.ISQ files 
.RAW files 
 
Procedure: 
This procedure is only used for files that were originally scanned without a density 
calibration to mg HA/ccm 
1. Manually record original location of RAW and ISQ files on tape (i.e IMA064) 

 
In backup window: 

2. Move both RAW and IMA files for desired measure from backup tape to hard 
drive 

 
In DECterm window: 
3. Add calibration data to .RSQ file  

“mcr ut:uct_ext_header_add_calib 
DK0:[microct.data.sample#.measurement#]raw_file.RSQ 8” 
-use calibration file with correct voltage and current, 55kV and 145mA (#8) 

 
In Session Manager window: 
4. Delete orginal .ISQ file 
 
In DECterm window: 
5. Manually reconstruct updated .RSQ file 

“mcr uct_reconstruction DK0:[microct.data.sample#.measurement#]raw_file.RSQ 
a” 

 
In Evaluation window: 
6. Re-run evaluation with updated .ISQ file, using original contours and VOI 

dimensions 
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 Updated thresholds for re-evaluation: 
  -Cortical: 161 
  -Epiphyseal: 154 
  -Metaphyseal: 142 
 
In DECterm window: 
7. Enter “uct_list” and record density for object 2 

-Object 2 gives density in “mg HA/ccm” of thresholded object with a 
peel_iter=2 
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APPENDIX D 
 
 
 

CORTICAL 2nd MOMENT OF THE AREA AND GEOMETRY PROTOCOL 
 
 
 
Materials: 
IMAQ vision builder v6.1 (National Instruments) 
.TIF images exported from microCT 
 
Procedure: 
1. FTP images from microCT to PC with IMAQ vision builder 
2.  Open IMAQ program, and import all images 
3.  Select “APOE Femurs” script 
4. Run “Batch” program and save output as appropriate filename/directory 
5. Open output using excel 
  -Cut out unnecessary text 
-Convert 2nd moment of the area measurements from pixels^4 to mm^4 using pixel 
calibration ratio (see script below) 
-Average three values from each VOI to a single value for each parameter measured  
 
 
 
IMAQ Vision Builder Script “APOE Femurs”: 
-Extract Color Planes 
  
-Threshold: Manual Threshold 
 Threshold values:  Min 0 
         Max 238 
 
-Particle Filter 
 Filter Criteria: Area (unit = pixels) 
 Parameter Range:  Min = 0 
    Max = 200 
    Exclude interval = False 
 Action: Remove objects 
 Connectivity 4/8 = True 
  
-Simple Calibration 
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 Origin and Orientation 
  Origin Coordinates: X= 0.0, Y=0.0 
  Corrected Image Scaling: Scale to Preserve Area 
  Angle Relative to Horizontal: 0.0 
  Axis Reference: Indirect 
 Pixel Calibration 
  Square Pixels  
   Length 1 e 1 pixels ó 4.28559 e-2 mm 
 
-Particle Analysis 
 Choose Measurements: 
  Pixels 
  Area (unit) 
  Image Area (unit) 
  Center of Mass X 
  Center of Mass Y 
  Width (unit) 
  Height (unit) 
  Moment of inertia XX 
  Moment of inertia YY 
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APPENDIX E 
 
 

 
MECHANICAL TESTING PROTOCOL 

 
 
 
Materials: 
858 Mini-Bionix II (MTS) 
100lb load cell (MTS model #661.11A-02) 
Teststar software (MTS) 
4 point bending apparatus 
 
Testing system Hardware and Software Setup: 
1. Attach and configure 100lb load cell 
2. Open “Station Manger” program on PC 
3. Open MTSwStrain configuration file 
4. Open APOE Femur procedure file 
5. Ramp subprocedure 
  Segment shape: Time/40.000 sec 
  Channel: Axial 
  Control Mode: Displacement 
  Relative End Level: -2.000 mm 
 
Prior to first test: 
6. Check that destination is okay in specimen editor 
7. Check scans of cortical regions are all okay before testing 
8. Align upper points on 4 point bending apparatus so they are centered and parallel 

to lower points when set screw is locked 
 
For each test: 
1. Measure dimensions of femur with calipers  
  Clean all flesh from proximal end to measure length 
  Major and minor diameters just distal to trochanter 
2. Create “New Sample” in Station Manager, and name appropriately  
3. Change filename in procedure editor to current specimen name 
4. Check set screw is not tightened 
5. Auto offset force reading 
6. Enable manual control and lower upper load points even with lower support 

points 
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7. Load sample in 4 point bending apparatus 
  Anterior femur is facing down 
  Distal femur is facing towards center of room 
8. Lock set screw, check that:  -.1 > force > -2 N 
  Bone is perpendicular to supports and centered 
  Upper support is centered 
9. Auto offset displacement reading 
10. Disable manual control 
11. Run test 
12. After femur clearly fractures, stop test 
13. Create “New Sample” in Station Manager 
14. Raise upper points 
15. Remove sample 
16. Unlock set screw 
 
Data Analysis: 
1. Open .dat file in Microsoft Excel 
2. Invert force and displacement data to make compression (+) 
3. Plot Force vs. Displacement 
4. Find slope of first 0.05 mm of linear portion of curve, and record this stiffness 
5. Calculate and plot line with 90% of previously calculated stiffness 
6. Record point where force and 90% stiffness line cross (yield force and yield 

deflection) 
7. Record point of failure, vertical drop of more than 10% in force 
8. Record Maximum load 
9. Calculate PYD  
10.   Calcuate Stiffness, yield stress, and ultimate stress from 2nd moment of the area 

data (see Appendix D for 2nd moment of the area procedures) 
 
 
 
 


