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SUMMARY

The high costs and political tensions associated with Ballistic Missile Defense

Systems (BMDS) has driven much of the testing and evaluation of BMDS to be per-

formed through high fidelity Modeling and Simulation (M&S). In response, the M&S

environments have become highly complex, extremely computationally intensive, and

far too slow to be of use to systems engineers and high level decision makers. With-

out access to large quantities of data necessary for systems engineers, recent efforts

have been focused on developing methods for analyzing BMDS through first princi-

ples. These methods, while much faster than the simulations, tend to over simplify

the problem and ignore critical aspects of BMD systems, enough so that the results

are not physically significant. Systems engineers and high level decision makers have

been forced to choose between extrapolating based on the limited simulation results

available or simplifying the problem beyond applicable.

Regression models (such as artificial neural networks) can be used to map the sys-

tem characteristics to the metrics of interest, bringing about large quantities of data

and allowing for real-time interaction with high-fidelity M&S environments, however

the abundance of discontinuities and non-unique solutions makes the application of

neural networks (or any other regression technique) hazardous. Due to these data

ambiguities, the transfer function from the characteristics to the metrics appears to

have multiple solutions for a given set of inputs, which combined with the multi-

ple inputs yielding the same set of outputs, causes troubles in creating a mapping.

Due to the abundance of discontinuities, the existence of a neural network mapping

from the system attributes to the performance metrics is not guaranteed, and if the

mapping does exist, it requires a large amount of data to be for creating a regression

xi



model. The long simulation run times prohibit this data from being available, making

regression techniques less suitable to BMDS analysis.

By employing Nested Neural Networks (NNNs), intermediate data can be associ-

ated with an ambiguous output which can allow for a regression model to be made.

The addition of intermediate data incorporates more knowledge of the design space

into the analysis. Nested neural networks divide the design space to form a piece-wise

continuous function, which allows for the user to incorporate system knowledge into

the surrogate modeling process while reducing the size of a data set required to form

the regression model.

Using surrogate models, the high fidelity modeling and simulation environments

can be captured in a way that facilitates real-time interaction with the decision makers

and analysts. By employing these techniques, it is possible to quantitatively deter-

mine many system level metrics of a BMD system, including optimal asset locations

and architecture effectiveness. This thesis defines nested neural networks along with

methods and techniques for using NNNs to relieve the effects of discontinuities and

non-unique solutions. To show the benefit of the approach, these techniques are ap-

plies them to a BMDS simulation. Case studies are performed to optimize the system

configurations and assess robustness which could not be done without the regression

models.

xii



CHAPTER I

MOTIVATION

“It is the policy of the United States to deploy as soon as is techno-

logically possible an effective National Missile Defense system capable of

defending the territory of the United States against limited ballistic mis-

sile attack (whether accidental, unauthorized, or deliberate) with funding

subject to the annual authorization of appropriations and the annual ap-

propriation of funds for National Missile Defense.”[47]

1.1 Ballistic Missile Defense Development

Though Ballistic Missile Defense (BMD) has been around since the Cold War, the

U.S. still does not have an integrated, well developed Ballistic Missile Defense System

(BMDS). Prior to 2001, the U.S. was a participant in the Anti Ballistic Missile (ABM)

Treaty. Under this treaty, BMD was heavily restricted and only allowed for protection

of a single area. In late 2001, President Bush gave the required six months notice of

withdrawal.[33] In June of 2002, the US withdrew from the ABM Treaty of 1972 and

renamed the theater missile defense oriented Ballistic Missile Defense Office to the

Missile Defense Agency (MDA) who’s mission is to “Develop and field an integrated

BMDS capable of providing a layered defense for the homeland, deployed forces,

friends, and allies against ballistic missiles of all ranges in all phases of flight”.[23]

While the effort to improve the technology enabling BMD is still ongoing, after the

withdrawal from the ABM Treaty, there has been a large interest in linking the current

systems, which were developed individually, in order to form an “integrated system.”

To accomplish this goal, the MDA utilizes a spiral development strategy as shown

in Figure 1, in which an initial capability is developed and fielded that may be less
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than the desired capability. Through incremental deliveries of programs and funding,

this capability is expanded until the fielded capabilities become the desired. This

incremental change to the BMDS is constantly changing its composition along with

its capability. In 2006, this initial capability was fielded, providing defense against

short range through intercontinental ballistic missiles. [23] In 2009 alone, $7 billion

of a proposed $9.3 billion budget is focused on near term-development and fielding

[32] to deliver increased capability to the BMDS.

Figure 1: MDA spiral development strategy [29]

With the composition and capability of the BMDS constantly evolving, the sys-

tems engineers and high level decision makers within the MDA are relied on for

defining the required system-wide behavior, validating system designs, and assessing

and verifying the system wide capabilities. [23] These analysis must account for all

the components of the BMDS along with the interactions and geographic dispersions
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for the current and future compositions of the entire system. Since many of the com-

ponents of the BMDS have been independently developed, the task of integrating

them into a single System-of-Systems (SoS) is very challenging. In order to evaluate

various configurations of BMDS, systems engineers and high level operators need to

have access to and interaction with key performance parameters of the system. [35]

1.2 Current BMDS Analysis

Analysis of BMDS has forked down two very distinct paths. The first of which

stems from the inherent complications arising from development of the BMD systems.

Modern day BMD components are increasingly more technologically sophisticated,

resulting in increasing costs for development and testing. However, before any of these

components can be fielded, they must be tested. With a single test of components

of a BMD system having a price tag reaching over $100 million, there is a significant

financial risk associated with testing. [12] Due to the geographic location of many of

the systems fixed assets, in order to test the entire system as it is intended to operate,

target missiles would need to originate from within foreign nations. Because of this,

there has been no test of the whole BMDS to date. [32]

This has created a large desire to perform the majority of BMD testing and

evaluation with high fidelity computer simulations. [11] Accordingly, several entities

have developed their own BMDS simulations, which, while becoming more and more

accurate, have also become extremely computationally intensive, enough so that they

are difficult to use for the systems engineering tasks that provide insight into the

system required for development. Table 1 lists some of these simulations from these

operators and their associated single case run time order of magnitude.

These tools are primarily employed for running point analysis (analysis where

scenario is evaluated only for a single case out of a range of many), in which specific

cases are chosen that are believed the be the enveloping conditions, such that to either
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side the performance of the system will either improve or decrease with direction. [12]

Moreover, some of these tools are not operated by those who require the data, rather

the are tools contracted out and operated by third parties or operated by separate

divisions of the same entity. Thus, when information is needed, it is requested from

the contractor who then uses their computer simulations and prepares a report on

the output. Due to the large turnaround time, the data needed for making the high

level systems engineering decisions is not available when needed. This turn around

time creates a disconnect between the system operators and the analysts, wherein the

people who rely on this data are not able to interact with it.

Table 1: M&S environment run times
Organization Fidelity Simulation Run Time1

Georgia Tech Research Institute Medium BMD Benchmark Hours
Johns Hopkins APL Medium EADSIM Hours[43]

MDA High BMDS Sim Weeks [11]

Alternative to the computer simulation route, there have been many attempts

to perform systems engineering on BMDS related tasks using a first principles type

analysis. These analyses base their studies on drastically simplified models of the

system, for example, Wilkening uses a constant single shot probability of kill model

across all threats in a salvo regardless of the number of threat missiles. [51] Other

attempts have been made to optimize the battle management algorithms without

modeling interactions with any other systems. [7]

All of these analyses seek to simplify the scenarios enough that entire aspects of

the BMD system may be removed. While these do provide trend data useful for

high level systems engineering, they also sacrifice the accuracy that makes the results

physically significant. These worksheet based methods tend to be more useful for

determining system requirements rather than systems analysis. [24]

1Run times listed are order of magnitude estimates for single point high fidelity simulations
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These two main facets of BMDS analysis have created a gap between the informa-

tion which is required to operate and analyze the system (on the system effectiveness

level) and the information available. The high fidelity modeling and simulation tools

are desirable for producing data which represents all of the components of the sys-

tem, however due to the lengthy computation time, are not feasible to use for such

purposes. Simultaneously, the first principles analysis provide the analyst a means

of interaction with the models which is necessary for systems engineering tasks such

as trade studies, however these tools omit significant portions of the system, which

may cause them to be invalid. In order to meet the high level goals of the MDA, this

information gap needs to be addressed, leading to the first Research Question:

Research Question 1. How can a ballistic missile defense system be analyzed to

facilitate a real-time interaction with high-level system operators and analysts while

still incorporating physics based modeling and simulations?

1.3 Missile Defense

Defending an area from incoming ballistic missiles is a very complicated task drawing

upon many disciplines. Through the course of an incoming ballistic missile threat,

many things must happen in order to successfully defend against it. [4] This process

is depicted graphically in Figure 2.

1. The reconnaissance systems must available. The resources must be in place,

active, and searching the correct area in order to observe the object. The

probability of the resources being available is denoted PA.

2. Each incoming object must be detected and properly classified as (the same)

threat. The systems must be capable of distinguishing threats from other ob-

jects such as launch vehicles or aircraft. Some objects may be observed to be

in two different locations by two different sensors, resulting in two different
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trajectories and potentially, an interceptor assigned to a erroneous object. [36]

(Event D: detect given available resources with probability PD|A)

3. The threat must be tracked and a firing solution must be obtained. (Event L:

interceptable given detected with probability PI|D) The tracking system must

have a suitably good reading on where the threat is and where it is going to be

such that an interceptor launched will be directed to the correct location. [52]

4. Interceptors must be available to engage the threat (Event: resources available

given interceptable with probability PR|I). Interceptors must be at a location

such that the intercept point can be reached at the appropriate time.

5. Interceptor(s) must be launched without failure. (Event: launch given resources

available with probability PL|R)

6. The interceptor must choose to engage the re-entry vehicle. (Event S: discrim-

ination given launch with probability PS|L) After the threat missile separates

there may be many objects from which the kill vehicle must discriminate the

re-entry vehicle. Threat missiles are often equipped with decoys meant to act

like the re-entry vehicle in order to cause the kill vehicle to engage the wrong

object.

7. The kill vehicle must hit the re-entry vehicle.( Event H: hit given discrimination

with probability PH|S)

8. The re-entry vehicle must be destroyed or disabled. (Event K: kill given hit

with probability PK|H)

Each of the above items is necessary for a successful engagement. Thus, the overall

probability of success (probability of event K or PK) is the product of the probability

of events leading up to it.

PK = PAPD|API|DPR|IPL|RPS|LPH|SPK|H (1)
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Figure 2: BMD kill chain (adapted from [4])

There are many possibilities where an incoming threat is not successfully intercepted

due to inability to meet these requirements, however not all of these are based strictly

upon the physical system. Consider the case with multiple incoming threats. Each

threat may well be capable of being observed and tracked by the reconnaissance

systems, however, they may come in an order such that the resources necessary to

intercept m of the n inbound threats are unavailable due to the fact that they are

already engaging another n − m threats. If, on the other hand, if each threat were

launched after a sufficiently long duration, the scenario would no longer be an n

threat salvo, but n single threat salvos, for which the system may well be able to

handle. Thus the analysis of a BMDS is not a linear process and results may not be

superimposed.

Throughout this process, there are many possibilities for failure, each of which

contribute to the overall system success or failure, hence contributing to the high

level system metrics. One of the most common high-level system metrics for a BMDS
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is the “probability of no survivors.” [24] This metric (hereafter referred to as the

probability of zero leakers or P0L) is what the optimal BMDS maximizes, thus the

ideal BMDS has a probability of zero leakers (or probability of zero un-intercepted

threat missiles) equal to 1.

P0L = PKAll
= (1− (1− PK11) . . . (1− PK1m)) . . . (1− (1− PKn1) . . . (1− PKnm))

(2)

P0LIdeal
= 1 (3)

Where in equation 2, PKAll
is the probability of killing every threat and PKjk

is the

probability of killing the jth target with the kth interceptor. [26]

The process described by Figure 2 draws upon three main classes of systems which

together form a BMDS:

• Interceptors: The means through which a BMDS attempts to engage and de-

stroy threat missiles are the interceptors. These are primarily kinetic energy

hit-to-kill weapons (although some directed energy weapons are under devel-

opment, but not utilized within this thesis) which are launched from a ground

based platform and seek to destroy the threat in the upper to exo-atmospheric

range. Interceptors can be divided by their location into fixed ground based

interceptor (GBI) emplacements, mobile platforms (such as the Navy Aegis

program) and forward deployed batteries (such as the Patriot Advanced Capa-

bility program).

• Sensors: The sensor system is the means through which the BMDS observes

its environment. The sensors are responsible for detecting, tracking, and dis-

criminating both threats and interceptors and providing the interceptors with

a sufficiently accurate description of where the threat missile is such that the

interceptor systems are able to engage it. Like the interceptors, sensors can be

divided into fixed location sensors (e.g. Cobra Dane), mobile sensors (such as
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the Aegis SPY-1 sensor or the Sea Based X-Band (SBX) program) and forward

deployed (such as THAAD or AN/TPY-2 programs).

• Battle Management: On the highest level, the end goal of BMD is to protect

some area from incoming threats by engaging with interceptors. This cannot

be accomplished unless actions are taken against the incoming threats. The

sensor and interceptor systems act as two separate entities which must commu-

nicate to each other. The means through which they communicate is the battle

manager. The battle manager is responsible for making decisions about which

interceptor(s) will be launched against which threat(s) based on the information

provided by the sensor systems. It is the battle manager’s job to take action

based upon the information known at any given time, however there are many

firing doctrines, or method of assigning interceptors, that can be employed to

not only defend a certain area, but to do so while also meeting some criteria.
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CHAPTER II

PROBLEM DEFINITION

Currently, ballistic missile defense systems are being operated by people who do

not have access to the information necessary to make well informed decisions. This

creates a knowledge gap between the system operators and analyst. Thus, the systems

currently being employed may be far from optimal, not only in composition, but also

in operation. This disconnect between the system operators and knowledge about

the system must be addressed in order to reach the desired capability of the MDA.

Instead of operating based off limited knowledge, or none at all, decision makers

should have the ability to analyze a desired setting with a high fidelity model in a

real time manner, allowing for real-time analysis, optimization and trade studies.

In order to maximize the performance of the system, the high level decision makers

need tools which represent all components of the system and facilitate a real-time

interaction. [35] Therefore, to aptly study and use a BMD system, a large amount

of data is needed containing information on system performance over a wide range of

operating conditions. Current methods do not provide the means of producing such

data in a timely manner. [10] Operators and decision makers are then forced to rely

on a small discrete set of high fidelity data and simplified trend analyses to determine

the how to operate the systems.

In order to address Research Question 1, several enablers were considered to bring

about the information necessary to create a tool with such capability. These enablers

seek to bring out the benefits of the fidelity of the already developed modeling and

simulation environments that address all of the aspects of the BMD problem, while

doing so in a manner that does not prohibit interaction with the data.
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2.1 Enablers

In order for any proposed method to be advantageous over current analysis meth-

ods, it must address their shortcomings. For the BMDS, this amounts to providing

data on par with that of the high fidelity simulations without the lengthy run and

turnaround times associated with current BMDS simulations and their operators.

Possible methods of addressing this information gap are listed below:

• Filtered Monte-Carlo (FMC): By assigning distributions to the inputs of a

BMDS simulation, the simulation can be repeated many times to cover the

design space. The results can then be filtered by applying constraints on the

outputs to yield the optimum set of inputs to give the desired outputs. FMC

allows the analysis to be performed over a wide range of conditions and is easy

to use, however is not well suited for applications to problems which require a

substantial run time for the model. [21]

• Probabilistic Methods: Simulation environments can be simplified by assigning

probability distributions to various portions of the analysis. These methods

can mix statistical and analytical representations, and can greatly improve the

computational time, however, in order to be applied, many assumptions must

be made about the portions which are being replaced.

• Response Surface Methods (Surrogate Modeling): For a computer simulations,

the results (or average results if utilizing random variables) are fully determined

by the inputs to the scenario. By perturbing the model inputs between the

ranges of interest, the changes in the output may be mapped as a function

of the changes in the input. This mapping is known as a surrogate model.

Surrogates have capability of capturing the effects of computationally intensive

tools with an equation representation which may be evaluated rapidly. This

computational speed is gained by sacrificing the ability to analyze any set of
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inputs. Surrogates are only valid for the range of data used to create them.

• Design of Experiments (DoE): Design of experiments are a set of purposeful

perturbations made to a set of inputs to some function to assess how the output

varies as a function of the inputs. [6] DoEs seek to gain the most information of

the variance of a response from a limited set of inputs. Employed by themselves,

DoEs are used for determining which factors contribute to the variability of

the response and for determining the sensitivity of the response to a given

perturbation in the input. [43]

Any of the above methods used by itself do not provide the benefits needed to

facilitate such studies into a BMDS, but together are well suited to such a problem.

Since the simulations currently available are of such high fidelity that the run times

have become prohibitively long, using methods such as FMC and surrogate modeling

(due to the design of experiments necessary for creating a surrogate) are not feasible,

however if the modeling and simulation environment were made simpler, say through

the use of probability-based methods, then it is possible to decrease computational

expense enough to apply a design of experiments and use the output to create surro-

gate models, which can then be used for FMC. This compromise in the model fidelity

allows for lower run times which allow a combination of the above methods. Through

this approach, an interactive tool for aiding in BMDS decisions could be made that,

while potentially less accurate than high fidelity simulations, is capable of providing

a wealth of data, which is much more accurate than first principles analysis, and

represents all the components of a BMDS.

The remainder of this thesis focuses on the problems which occur once a suitable

modeling and simulation environment has been obtained, rather than the assumptions

that are justifiable to include to allow it to be modeled. Within the aforementioned

enablers, the primary focus of this study is the application of surrogate models, which

diverges from traditional application when applied to complex systems such as a
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BMDS.

2.1.1 Surrogate Models

By defining a set of inputs to be used for running a design of experiments on a

particular function, the design space becomes implicitly defined as the portion of the

range of the function reachable through the set of inputs used. Surrogate models can

then be used to map the inputs to the design space, and due to the increase in speed,

are particularly useful for exploring the design space to find an optimal solution to

a given problem. There are many forms of surrogate models, however many of these

make assumptions about the data being regressed which are not always valid. Several

available surrogate modeling techniques are:

• Response Surface Methodology (RSM): Assumes a linear shape of the design

space using the form: [30]

Y = β0 +

p∑
i=1

βiXi +

p∑
i=1

p∑
j=1

j 6=i

βijXiXj +

p∑
i=1

βiiX
2
i (4)

where β0 represents the overall mean response, βi represents main factor ef-

fects, βij represents cross factor effects, βii represents quadratic main effects,

Y is the output, and Xi is the inputs. The assumption of linearity has been

applied to BMDS before [43], however does not provide the accuracy needed

by high level decision makers for performing studies on operational procedures

and architectures.

• Gaussian Process (GP): Gaussian processes are a generalization of a Gaussian

probability distribution, where in lieu of describing the variables which go into

a function as a Gaussian distribution, the focus turns to describing the process

as stochastic. [39] Gaussian processes utilize a set of random variables which

together have a joint Gaussian distribution. [17] This processes lends itself well

to stochastic problems.
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• Kriging Models: An extension of GPs, which adds a linear model to the GP

model. [17] In Kriging, a target value is predicted given some auxiliary variable

generated by a linear regression model. [19]

• Artificial Neural Networks (ANN): ANNs do not assume any shape of the overall

design space, but rather use a compilation of weighted functions to create a

shape to fit the data. There are many types of ANNs, which differ mostly in

the algorithm used to create it.

Every form of surrogate modeling does make assumptions about the shape of the

design space, which is an unavoidable fact. The key advantage that methods such

as artificial neural networks yields, is that the assumptions made about the shape of

the design space are made at a much smaller scale. From the high level, an ANN is

capable of representing a function of any shape, however this is accomplished through

making assumptions on what is happening from one observation to the next. Because

of this, ANNs are more aptly suited to modeling complex systems.

2.1.1.1 Continuous Model Validation

There are several metrics of a good fit which can be employed for use when working

with regression of continuous variables. One of the most common used is the coeffi-

cient of determination, also known as multiple correlation coefficient R2. R2 is used

to quantify the proportion of the variance of a response accounted for by the inputs,

[31] and is defined as

R2 =

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2

(5)

where ŷi is the ith predicted response (generated from the regression model), yi is the

ith observed response, and ȳ is the mean of the observed responses. [48] R2 is conve-

nient for a measure of fit quality since it is bounded between zero (representing that
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none of the variance in the response is explained by the inputs) and one (indicating

that all of the variance is explained by the inputs) and it is easy to compare between

fits. While R2 is useful for its portability, it does not fully qualify a fit as acceptable.

Typically, if R2 is less than 0.8, it is a sign that the fit may not be valid [18], however

an acceptable value of R2 is dependent on the problem at hand, and is desired to be

as close as possible to 1. Having an acceptable R2 value only means that the fit may

be acceptable, and by itself does not qualify the regression.

To better assess the quality of the fit, actual-by-predicted and residual-by-predicted

plots are used. By plotting the observed and predicted outputs of a regression where

the two sets correspond perfectly, the result is a line of slope 1 and with intercept zero.

[1] Thus, an ideal predictive model will form a 45◦ line when the observed responses

are plotted against the predicted. By using this plot with a regression model, it is

able to show how well the model is fitting throughout the design range. If the points

do not lie on the 45◦ “perfect fit” line, then they have a non-zero residual, and will

show up on the residual-by-predicted plot. Since most models will have some error, it

is desirable to have a majority of the data lie along the perfect fit line with no major

off-diagonal groupings in the actual-by-predicted plot, while the residual-by-predicted

plot should have a random scattering centered about the abscissa (as shown in Figure

3). [18]
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Figure 3: Example (a) actual-by-predicted and (b) residual-by-predicted plots [18]
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The model fit error (MFE) is used to determine how well a fit represents the set

of data used to create it. For each of the observations used to create the models, the

MFE can be expressed as

MFEi =
ŷi − yi

yi

100% (6)

The model representation error (MRE) can also be used to quantify how well the

model represents the entire data set, not just the set used to create it. The MRE is

also obtained using equation 6, however instead of just using the observations used to

create the mapping, a set of additional random observations is used. The distribution

of both of these quantities should resemble a standard normal distribution, with a

mean about zero and a standard deviation of around 1%. [18]

2.2 Artificial Neural Networks

A key enabler for this thesis is the ability to form regression models of nonlinear and

discrete design spaces. Artificial neural networks draw from the fields of mathematics

and neuro-science to create adaptive functions which through a learning process allow

for the development of information processing capabilities without the use of specific

algorithms. [14] ANNs can be used for a variety of computational problems, including

pattern classification, speech synthesis and recognition, adaptive interfaces to com-

plex systems, function approximation, image compression, clustering, forecasting and

prediction, controls, and optimization of non-linear systems. [13].

The fundamental building block of ANNs are neurons. Within this thesis, neu-

rons refers to the mathematical model of a neuron, presented in Figure 4, rather than

the biological counterpart from which the mathematical model was derived. Inde-

pendently, a neuron is a simple mathematical function which outputs the sum of its

inputs weighted by the synaptic weights Wij. An activation function ϕ can be used

to give the desired behavior from the neuron. The output of the neuron i in Figure
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Figure 4: Neuron model

4 is given by:

Y = ϕ

(
N∑

j=1

Wijxj

)
(7)

Individually, a neuron is not of significant use, however when grouped with other

neurons and used with a learning method, the neural network can become significantly

more powerful. These learning algorithms seek to minimize a cost function, typically

dependent upon some set of training data. When using neural networks as a surrogate

model, the goal is to map some set of inputs (x) to target values (y), so the objective

is to find the set of synaptic weights (W ) such as to minimize the error between the

predicted output values (ŷ) and the observed as show by equation 8.

min
W

|f(x, W )− y| = min
W

|ŷ − y| (8)

The method by which the neural network modifies the synaptic weightings W is known

as the learning algorithm. These typically include some minimization algorithm (e.g.

Fletcher-Reeves Conjugate Gradient) along with a paradigm which defines how the

learning algorithm interacts with the data. Through the compilation of the neurons

and the learning algorithm, a linked set of neurons is used along with some initial

weightings W0 to attempt to predict a set of observations based upon the inputs. The

discrepancy between the predicted and observed observations is then fed back into

the learning algorithm which uses this data to adjust the weightings. This process
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is repeated until the network has converged on the minimum error it is capable of

reaching.

When assembled together, a neural network consists of layers of nodes (or neurons)

linked by synaptic weightings and utilizing some activation function. The activation

function can be any arbitrary function for shaping the output, however there are

common activation functions that provide a wide range of utility. For the purposes

of this thesis, two activation functions will be described which will later be employed.

• Logistic Function: This function is one of the most common activation functions

and is typically used for mapping continuous data sets. The logistic function is

given by equation 9 and creates an “S curve” to shape the output between the

desired ranges as seen in Figure 5.

ϕ(t) = a
1 + me−t/τ

1 + ne−t/τ
(9)

where a, m, n, τ are all defined parameters.
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Figure 5: Logistic function for the case where a = m = τ = 1 and m = 0 (Sigmoid
function)

• Step Function: The step function is common place in many fields such as sta-

bility and control and provides the ability to have discrete jumps in the output.

This makes the step function well suited for discrete problems which deal with

classification. The step function is given by equation 10 and shown graphically
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in Figure 6.

ϕ(t) =

 1 if t ≥ 0

0 if t < 0
(10)
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Figure 6: Step function

Assembled, a notional neural network has an architecture as seen in Figure 7 which

takes in vector x of length n and returns a vector of outputs y of length m. This

network has three layers, an n node input layer (leftmost), a hidden layer (middle)

consisting of j nodes, and an output layer (rightmost) consisting of m nodes. The

terminology of “hidden” layer refers to the fact that this layer is not visible from

either the input or output of the network, and, for brevity, the number of nodes

within the hidden layer is used to describe the network. For example, this network

would be referred to as a “j node neural network,” and within this thesis is depicted

graphically as can be seen on the right half of Figure 7. This network is said to

be fully interconnected since each node in a layer is connected to each node in the

following layer. The “size” of the network refers to the number of hidden nodes, and

is constrained by the size of set of training data used to create the network.

2.2.1 Review of Existing Neural Networks

The phrase “neural network” by itself is a vague term, referring to the overall structure

of the model. In general, neural networks refer to a system of simple processing
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Figure 7: Notional ANN architecture (a) and shorthand representation (b)

elements which as a whole result in a complex behavior. Neural networks can be

subdivided by characteristics such as architecture, learning algorithms, data flow,

activation functions and behavior to name a few. Some of the common types or

neural networks are described below.

• Feedforward Neural Networks (FNN): A class of networks in which data flows

from the inputs, through a hidden layer of nodes, to the outputs. Training

algorithms do form a closed loop, however in application, there exist no loops

in the structure of the network. The network depicted in Figure 7 is an example

of a feedforward structure.

– Single Layer Perceptron (SLP): A pattern classification tool for data sets

which are linearly separable [40] which operates by scaling a set of input

signals by adjustable weights which are processed by a hard limiter to yield

a binary classification output. [42]

– Multi-Layer Perceptron (MLP): A representationally powerful [41] archi-

tecture consisting of multiple layers of two state processing nodes. These

typically are composed of an input and output layer along with any num-

ber of intermediate hidden layers. Each node is fully connected to each

node in the neighboring layers, however no connections are made within

the same layer. [34]
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– Radial Basis Function (RBF): Inspired by the locally tuned response of

biological neurons, RBFs consist of a single hidden layer of j hidden nodes

which are fully interconnected to the output layer while the inputs to the

hidden layer are calculated by a relative closeness function in lieu of a

weighted sum function. [13]

– Kohonen Self Organizing Network (SOM): Useful for visualization and

preserving topological properties of input spaces, the SOM is useful for

maintaining data relationship is capable of working with string variables.

[20]

• Recurrent Neural Networks (RNN): A neural network architecture where the

outputs of the nodes are connected to the same processing node as an input.

This feedback creates a dynamic evolution that allows the network to exhibit

a continuous growth. [14] Figure 8 shows a notional RNN architecture with

feedback between the output layer and hidden layer (shown in red). Recurrent

networks are capable or learning tasks over time periods that have a fixed or

indefinite length. [13]
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Figure 8: Notional RNN architecture with feedback links shown in red

– Hopfield Networks: A single layer neural network consisting of continuous

non-linear units with feedback, [13] in which each processing node receives

feedback from each other node. Hopfield networks have an associated

energy function which is decreased each time the system state variable
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change until it converges on a local minima. The convergence is guaranteed

through a Hopfield network [14], although it is not necessary an optimal

solution.

– Boltzmann Machine: A feedback architecture consisting of an arbitrary

(but symmetric) set of interconnections which utilizes stochastic variables.

[13] Essentially, a Boltzmann machine is an extension of Hopfield networks

wherein the activation function is modified to use simulated annealing

optimization. The simulated annealing minimization technique makes the

Boltzman machine well suited to problems where the objective function

has many local minima. [14]

– Elman Networks (Simple Recurrent Network or SRN): A multilayer NN

architecture in which selected outputs of the hidden layer are fed back to

the input layer. [37] Elman networks have found application in processing

time-sequenced data. [9]

– Echo State Networks (ESN): An architecture consisting of a number of hid-

den layers with feedback restricted to only the hidden nodes, and trainable

connections may exist directly between the input and the output nodes,

and between the output nodes themselves. [16] Since ESNs are a form of

RNN and exhibit dynamic behaviors, if the network has been running long

enough, the internal state can be uniquely determined from the history of

the inputs, [38] making ESNs applicable for problems such as autonomous

control, which is itself dynamic.

– Long Short Term Memory Network (LSTM): Through the use of the feed-

back loops, RNNs can store transformed versions of the inputs, creating

a form of short term memory (contrary to long term memory capable

through changing synaptic weightings). By using the short term memory,

training time can be reduced and more complex problems can be modeled,
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however existing methods do not provide practical advantage over FNNs.

[15]

• Modular Neural Networks (MNN): A class of neural networks in which the com-

putation can be divided into two or more modules the operate on distinct inputs

without communicating to each other. MNNs are useful for approximations of

piecewise continuous functions and classification problems. [2]
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Figure 9: Notional MNN architecture (CoM)

– Committee [of] Machines (CoM): Committee Machines utilize multiple

neural network models trained with the same set of observations and tar-

gets to predict the same data. By splitting up a data set containing K

observations into M subsets of size N and training M systems, the compu-

tational cost drops from O(K3) to O(N3) per system or O(MN3) for the

entire set. [46] The predicted data from all contributing networks is com-

bined in order to compare the performance (as compared to each member

individually). [2]

– Associative Neural Networks (ASNN): Similar to CoM, ASNN uses an en-

semble of neural networks to predict a set of data, however it uses local

memory to store the information it is trained on rather than incorporating

it into the synaptic weights. This stored memory allows for the additional

observations to be added after the network has been trained without re-

quiring to start the process over. [44]
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2.2.2 Multi-Layer Perceptrons

A particularly useful form of neural networks is the Multi-Layer Perceptron intro-

duced above in Section 2.2.1. MLPs have found home in many software packages

which allow the user to create regression models with little effort. Motivation for the

commonplace nature of the MLP stems from the Universal Approximation Theorem

(UAT) which states: [8]

Theorem 1. Let ϕ be any continuous sigmoid type function. Given any continuous

real valued function f on the interval [0, 1]n and ε > 0, then there exists a matrix W =

[w1,w2, . . . ,wN ] and vectors α and θ, and a parameterized function G (·, W, α, θ) :

[0, 1] → R such that:

|G (·, W, α, θ)− f(x)| < ε ∀x ∈ [0, 1]n (11)

where

G (·, W, α, θ) =
N∑

i=1

αjϕ
(
wT

jx + θj

)
(12)

This theorem provides powerful insight into the realm of MLPs as regression mod-

els, and guarantees that a single hidden layer MLP is sufficient to produce a regression

model within any specified error ε. While this is a very reassuring statement to those

responsible for producing the regression model, it does not guarantee a regression

model can be made from any data set. All the UAT states is that it can be done

with a single layer of hidden nodes, but the number of nodes necessary for the fit

is not bounded, hence the size of the data set necessary is also unbounded. In a

BMDS application, or any computationally expensive application, such use of ANNs

as a regression model can become hazardous. [3] More importantly, the UAT only

guarantees the regression model for a continuous function f . For a function f to be

continuous it must satisfy the following conditions for every point x in the domain:

[49]
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1. f(x0) is defined in the domain

2. limx→x0 f(x) exists for every x

3. limx→x0 f(x) = f(x0)

Thus, for every point x within the domain, the limit of the function must approach

the same value from the left and the right such that f(x) = f(x0). To verify the

application of the UAT to regression models of a BMDS simulation, consider the

simulation to be a function f(x) such that

f : x → P0L (13)

where x is the position of a single stand alone BMD platform (sensor, interceptors, and

fire controller) and (P0L) is probability of success for destroying a single fixed threat

missile. Thus, by varying x, the platform is being moved around with respect to the

threat missile. At some point, x0, the platform will be at a maximum separation from

the threat missile trajectory such that f(x0) = P0L0 6= 0, and a small incremental

move closer to the threat missile (x0 + ∆) such that f(x0 + ∆) = P0L0 6= 0 while an

incremental move away from the threat missile (x0 − ∆) such that f(x0 − ∆) = 0.

Therefore limx→x+
0

f(x) 6= limx→x−0
f(x), hence the limit does not exist, so a ballistic

missile defense system model is not a continuous function.

Theorem 1 can also be extended to classification problems [8] of the form

f(x) = j iff x ∈ Pj (14)

where x is in some space A which can be divided into k disjoint subsets P1, P2, . . . , Pk.

[13] Thus, for functions of the form in equation 14, a MLP is guaranteed to approx-

imate the function within a specified error ε, however, much like the continuous

variable case, the amount of data necessary is unbounded.
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2.3 Data Ambiguities

Before any method of surrogate modeling can be applied to a BMDS, several critical

issues must be relieved. In it’s current state, a BMDS is not well suited for use with

surrogate modeling. This section addresses two of the main effects which prohibit

application of traditional surrogate modeling techniques to the BMDS problem.

2.3.1 Multiplicity in the Response

To understand the problems associated with regressing a BMDS model, consider

the mapping given by equation 13. Decomposing P0L to the factors that drive this

probability one can see:

P0L = f
(
PKThreat1

,PKThreat2
, . . . ,PKThreatn

)
(15)

Further examining of the probability of kill of each threat, PKThreati

PKThreati=
=f (Threat1 ,...,Threatn ,Sensor1 ,...,Sensorm ,Interceptor1 ,...,Interceptork ,Battle Manager) (16)

which itself is a function of everything else occurring within the scenario, Here,

Threati itself is a function of time and

Sensorj = f (Location,Parameters) (17)

where Location refers to the geographical positioning of the sensor, while Parameters

refers to the physical characteristics that define the sensor. If trying to determine the

optimal asset location for a given scenario, all other parameters except the location

in equation 17 would be held constant. Thus, equation 15 reduces to

P0L = f (Location1 , . . . ,Locationm) (18)

However, this function is not a one-to-one mapping, since for any give P0L, there could

be many asset configurations. Consider the example when there are two identical sen-

sor platforms that are being varied over some defined area. The system performance
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at the two specific points is identical, i.e.

P0L = f (Location1, Location2) = f (Location2, Location1) (19)

so for any given location, there exists at least another location with the same sys-

tem effectiveness. To visualize the impact of such a scenario on a neural network

regression, consider the regression of the function g(x) = sin (fx) where x ∈ [−π, π].

For f = 1
4
, the function is one-to-one, which is to say that for each value of x there

exists one value of g(x). For f > 1
4
, this is no longer the case, and the function is

many-to-one. Figure 10 shows how the multiplicity of the response increases with

frequency.
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Figure 10: Sine waves over varying frequencies

Neural networks are capable of handling many-to-one mappings [25], however the

amount of data necessary to create the mappings increases with the multiplicity of

the response. For the function g(x), 1000 equally spaced points within the range

[−π, π] were evaluated and used as a training set for a fixed size MLP neural net-

work, along with an additional 200 random points for validation. A 3 node neural

network was arbitrarily chosen as a constant to show the effect of multiplicity on a

regression fit, however in reality the quality of the fit can be increased by increasing

the number of hidden nodes. The use of a fixed size network simulates constraints on

the size of the data set available to train the network. This process was performed for
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f = {1, 2, 3, . . . , 10}. Figure 11 shows the coefficient of determination (which was

used only for comparison purposes, not to fully qualify the fit) for both the training

and validation data corresponding to the frequency of the sine function. For f = 1,

the fit is near perfect, however, the higher the multiplicity of the response, the worse

the regression is (for a 3 hidden node network).
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Figure 11: Multiplicity versus R2 for a 3 hidden node MLP

2.3.2 Time Dependency

In BMDS scenario, the order of occurrences is extremely important to the outcome,

primarily due to the finite resources of a BMD system, i.e. radar resources spent

tracking one object cannot be used to scan for new objects, so the time at which one

object is detected directly effects the time at which another object is detected. If

the second object is not detected soon enough, it may not be intercepted. From the

high level system point of view however, the modeling and simulation of BMDS does

not appear time dependent. Measures of Effectiveness (MoE) for system performance

typically include: [36]

• Probability of success

• Cost of operations

• Number of targets intercepted
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Figure 12: Mappings (a) one-to-one (b) many-to-one (c) one-to-many (adapted from
[50])

• Number of targets not intercepted

• Number of targets not engaged

• Inventory expended

• Inventory expended per target

While is time typically not associated with BMDS performance metrics listed

above, it is very important to the overall system performance (for the scenario), thus

it needs to be accounted for in the surrogate modeling of a BMD system. Moreover,

the order of occurrences within a BMDS scenario can cause the mapping from system

characteristics to system performance to be very sensitive. (Deterministic) BMDS

simulations act as a function which maps many inputs to a given output (as shown

in Figure 12), which for two identical sets of inputs, produces two identical sets of
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outputs. Due to discontinuities, small variations from these inputs are capable of pro-

ducing drastically different outputs. This sensitivity further prohibits the application

of surrogate modeling techniques by making the mapping appear as a one-to-many

function, or a function in which one set of inputs is capable of producing multiple sets

of outputs. One-to-many functions (e.g. f(x) =
√

x) are particularly troublesome

to regress since many methods seek to minimize the mean squared error, which for a

one-to-many function, can cause the predicted response to lay between a set of out-

puts, rather than on both. [25] This effect could be remedied by dividing the design

space into partitions (such as f(x) = |
√

x|, g(x) = −|
√

x|), however this strategy is

not necessarily applicable for complex design spaces.

2.3.3 Problem Statement

In general, both of these impediments may be alleviated through the use of a denser

sampling design of experiments. By including more observations, a neural network (or

any regression model) is capable of learning more information about the design space,

allowing for discontinuities to be more accurately mapped. The strategy of increasing

the size of DoE is not well suited to any problem of significant computational intensity,

and may in fact not be able to provide an sufficiently well sampled data set to allow

for regression. Under such constraints, the rather vague problem of providing systems

engineers and operators real time interaction with high fidelity data formulated by

Research Question 1 is reduced to a much more focused problem stated in Research

Question 2:

Research Question 2. How can the ambiguities associated with a non-unique dis-

continuous design space be resolved in order to create a mapping of the system at-

tributes to the desired output of the simulations without the use of an increasingly

larger design of experiments?
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The purpose of this research is to derive a method to remove the ambiguities asso-

ciated with surrogate modeling of BMD systems and to use these techniques to close

the information gap allowing for rapid analysis of a BMDS while still incorporating

the effects of the high fidelity models.
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CHAPTER III

PROPOSED APPROACH

To close the information gap between the analysts and operators, modeling and sim-

ulation data needs to be made readily available to the operators. Due to the large

amount of variables in any one ballistic missile defense scenario, it is not possible to

bring about this information in a timely manner. For a given scenario however, the

problem may be scoped enough to allow for already developed methods to be applied

to bring forth the M&S based data, however problems stemming from the nature of

the BMDS analysis tools prohibit these methods from providing useful results.

In order to bring about the desired interface between operators and modeling and

simulation based data, methods will need to be developed in order to provide the

increase in computational speed required for real time interaction while also being

able to handle the highly nonlinear and multi-modal nature of the analysis tools.

3.1 Hypotheses

Surrogate modeling has been shown to be able to produce a real time interaction

between analysts and analysis tools that was previously prohibited by the computa-

tional complexity of the tool itself. The increase in speed with surrogate models is

well suited to providing systems-level data based on high fidelity analyses, and since

they have a quantifiable loss in fidelity, decisions about the system model can be

made within some confidence interval.

Hypothesis 1. Surrogate models will allow for high level systems engineering stud-

ies to be performed on a ballistic missile defense system which facilitate interaction

between operators and modeling and simulation based data.
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Thus, if a surrogate model of a BMDS were available it would be able to alleviate

the disconnect between systems analysts and operators. These methods, in their

current state, are not directly applicable to a BMDS analysis tool due to the presence

of discontinuities [3] and the abundance of non-unique solutions in the design space.

In order to be able to provide the analysts with a tool capable of facilitating any

real-time interaction, both issues must be addressed.

3.1.1 Surrogate Modeling the Presence of Ambiguous Solutions

The main obstacle impeding the application of already developed techniques to a

BMDS problem is the existence of ambiguities in the response, and if these ambiguities

did not exist, the problem may be handled. The multiplicity in the response is

inherently tied to the definition of the response, i.e., if the response were to change,

the effect of the may no longer exist. However, care must be taken to ensure that the

response is still meaningful use to the study. By taking some non-unique point from

within the output (P0L) and augmenting it with some piece of intermediate data,

the multiplicity of the response can be decreased and the output may become more

clearly defined. Thus for the mapping defined in equation 13, the output becomes P0L

z


where z is some arbitrary intermediate data (which may or may not be significant to

the end user) that contributes to the response.

Hypothesis 2. By augmenting points from a non-unique design space with interme-

diate data, the multiplicity of the response and effects of discontinuities can be relaxed

enough to create a regression model.

However, before such a strategy can be applied, the intermediate data must be

made available. In order to bring about such a situation, several methods listed in
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Chapter 2 can be combined to yield a hybrid method better suited to working with

complex problems which are limited due to ambiguities and discontinuities. The

methods to be employed are:

1. Modular Neural Networks: The use of multiple neural networks lends itself

well to piece-wise continuous functions, [2] however in lieu of a Committee of

Machines approach where the multiple networks predict the same output and

weight the output by confidence, multiple networks will be linked together to

form a hierarchy of networks which resolve data ambiguities by introducing

some intermediate data.

2. Multi-Layer Perceptrons: By combining the classification capability of the MLP

along with the regressive capability from the MLP using a Sigmoid activation

function, the discontinuities which prohibit application of Universal Approxima-

tion Theorem will be removed allowing for an assurance of a fitting capability.

Moreover, the commonality of the MLP has provided a number of well developed

software packages which further aid the analyst by providing a well developed

suite of tools for forming MLP regressions.

The combination of feedforward and modular neural networks is geared to both reduce

the discontinuities and output ambiguities which allows for the creation of regression

models.

Definition 1. Two or more Multi-Layer Perceptrons linked together performing a

variety of regression tasks to yield a single overarching regression model is referred to

as a Nested Neural Network (NNN). Nested neural networks consist of at least one

Upstream network with at least one Downstream network, which share a common set

of inputs. The outputs of the upstream network, along with the system inputs form

the inputs for the downstream network(s).
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Within this thesis, the term nested neural network (or NNN) will only refer to

a set of multiple Multi-Layer Perceptron neural networks as defined in Definition 1,

however, the term can be extended to refer to a set of any type of neural networks

with the aforementioned description. Figure 13 depicts a notional 2 layered nested

neural network.
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x1
x2
.
.

xn
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y1
y2
.
.

yn

Upstream 
Neural Network

Intermediate Data
z1 z2 … zn

Figure 13: Nested neural network architecture

Hypothesis 3. By employing nested neural network surrogate models, a single set

of inputs can be used to predict the intermediate data necessary to remove the data

ambiguities from the output associated with a ballistic missile defense system analysis

tool, therefore allowing a surrogate representation of a ballistic missile defense system

to be created.

The concept of nested neural networks was first introduced by Kumar and Ma-

halingam for use with image compression in which multiple MLPs are used for the

compression of a two dimensional signal, reducing the size of the network, and hence

the training data.[22] Though NNNs were applied to image compression, there has

been no formal definitions or methods established for working with NNNs.

Because nested neural networks draw upon multiple pieces of data from within

a single execution of an analysis tool, the set of observations used to train contains

more information about the design space than when using a single model.

Hypothesis 3.1. Nested models can be built with a smaller data set than by using

one model around the entire system.
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The use of NNNs allows for the emergence of previously infeasible methods for de-

sign space exploration. Filtered Monte-Carlo and non-linear optimization techniques

are enabled to yield metrics of the BMDS which are elsewise unobtainable.

3.1.2 Research Goals

To develop a methodology for the application of nested neural networks, a complex

system was used as a test bed for a spiral development strategy. By incrementally

creating surrogate models of a BMDS and changing the scenario, a study of how to

create such models for a complex system was made possible. Coupled with exploratory

studies (on a BMDS as well as notional complex analyses) several research goals were

addressed:

Research Goal 1. To identify techniques for identifying types of intermediate data

which are well suited to alleviate the effects of ambiguities on the output

Research Goal 2. To identify techniques for handling error associated with multiple

regression models

Research Goal 3. To determine the relationship between the amount of data needed

to regress a data set within some confidence when modeling under traditional ap-

proaches and with nested neural networks

3.2 Procedure

In order to achieve the research goals and to test the hypotheses, nested neural net-

works were applied to a BMDS simulation. The application to a problem presented

many challenges that had to be overcome in order to attain a usable model. These

challenges then lead to the exploration of new problems which needed to be solved in

order to derive a methodology for the use of nested neural networks. Since exploratory

efforts had already begun using a fixed architecture for a BMDS simulation, several
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additional architectural effects were used for testing and developing a NNN method-

ology, and to produce a usable aid to BMDS decision makers. The architectural level

effects included in this study are:

1. Fire Control Information Sharing: Some platforms are composed of sensor, in-

terceptor, and fire control units, which allow them to operate independently

from the remainder of the system. By employing either a centralized or local-

ized fire controller in the simulation, the level of communication between the

platforms were regulated. Within the simulation, both configurations allowed

sharing of sensor tracking data, however in the localized paradigm, fire control

and engagements were not coordinated through a single fire controller.

2. Forward Deployed Units: By including this effect, decision makers have the

ability to trade off on the assets used to defend an area (inherently linked to

cost) with the defense level provided. The scenario (defined in Section 5.1)

utilized two BMD capable warships. System performance was assessed both

with and without a forward deployed unit.

3. Data Management: The manner in which a BMDS handles data can greatly

vary the system performance and the cost. The manners examined are:

(a) Track Selection: The current paradigm in operation, in which each sensor

with a measurement (or track) on an object reports to a centralized battle

manager. The battle manager evaluates each and selects the best. [5] This

information is then used for all launch platforms as the operating picture

for the threat.

(b) Track Fusion: Each sensor reports its track to a centralized battle manager,

where information from each track is “fused” together. By fusing multiple

tracks together it is possible to achieve a better track than any of the
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individual tracks. [5] This technology is still under development, and does

not exist in application as it does in the simulation used for this study.

Table 2 show the matrix of alternatives for the architectures described above.

The end model consisted of all 8 architecture variants. With this full model, a set of

notional trade studies was performed to address issues such as:

1. How should the assets of a BMDS (sensors and interceptors) be positioned to

achieve high probability of success for defending some area while also being

robust to perturbations in the positioning?

2. How can surrogate models be used to assess the effectiveness of the various

architectures?

Table 2: BMDS architecture study matrix of alternatives
Attribute Options

Fire Control Localized Centralized
Forward Deployed Platform? Yes No

Track Method Selection Fusion

3.3 Demonstration of Concept

There are many opportunities in surrogate modeling where the addition of interme-

diate data can be used to remove ambiguities in the output and ease the difficulties

of the modeling process. Recall the sine wave example from Section 2.3.1. Here, the

trouble of fitting the sine wave stems from the increased multiplicity of the response

resulting from the frequency increasing (for a fixed size neural network). In order to

relieve the effect of the multiplicity, the output data g(x) can be augmented with the

intermediate data z where

z = round

(
fx

2π

)
(20)
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The intermediate data d is the integer multiple of the period, and with it, the output

is defined as  g(x)

z


With the intermediate data, the 3 node neural network is able to discern which

multiple of the sine wave the point x belongs to. For the same set of points, the 3

node neural network regression fits were performed again using the intermediate data

as an input to the network. Figure 14 show the R2 value for the regression fits. Note

here that over the entire range of frequencies, the R2 does not fluctuate much, and

stay very close to the ideal value of 1. This is a drastic change from the results shown

in Figure 11.
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Figure 14: Frequency by R2 with intermediate data

While this simple example shows how intermediate data can be used to relieve the

effects of response multiplicity, it does not deal with discontinuities. To expand upon

this concept, consider the following two dimensional example, emulative of a real life

regression task.

Consider a design space defined over some region where the output is fully deter-

mined by the two input variables x1 and x2, however the design space is discretized to

evaluate differently in different sections of the design space. The discretization intro-

duces a higher level of complexity to the output. For the purposes of this illustration,
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Table 3: Functions used for corresponding zones
Zone Time Function

1 15 + 10
√

x2
1 + x2

2

2 40 + 50
√

x2
1 + x2

2

3 15 sin
√

x2
1 + x2

2

4 15
√

x2
1 + x2

2

5 15 log
√

x2
1 + x2

2

6 40

7 15 + 25
√

x2
1 + x2

2

8
√

x2
1 + x2

2

9 25 + 15 cos
√

x2
1 + x2

2

the MATLAB Peaks function [45], given by equation 21, was used to create contours

discretized into 9 separate levels. Each of the 9 levels was assigned a different function

of x1 and x2. The functions used can be found in Table 3.

f = 3(1− x1)
2e−(x2

1)−(x2+1)2 − 10
(x1

5
− x3

1 − x5
2

)
∗ e−x2

1−x2
2 −

(
1

3

)
e−(x1+1)2−x2

2 (21)
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Figure 15: Example town with zones of differing complexity

This example is analogous to fitting a set of data from a pizza delivery restaurant.

Assuming that all pizzas (and for simplicity all pizza orders) take the same time to

prepare, the delivery time will be solely determined by the geographic location of

the customer. Some areas will be more accessible to the delivery boy, while other
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areas might be less accessible due to traffic, roads, geography, delivery boys working

the area for a given delivery, etc. . . . These factors create a highly varying delivery

time over the entire delivery range (the design space for this example), much like the

design space of the BMDS models.

In order to fit a regression model to this design space, a DoE consisting of a

200 point Latin Hypercube Sample along with the 9 point Faced Centered Central

Composite Design and an additional 20% random points for validation was ran on the

notional delivery time model. A regression model was made from the results using

a traditional neural network and a nested neural network as show in Figures 16 and

17 respectively. The architecture in Figure 16 is similar to most surrogate models

where the inputs (for this example the cartesian location of delivery) and the outputs

(time to deliver) are used to train a j hidden node neural network. Conversely, Figure

17 shows that the same inputs are first used along with the zones of the delivery to

train a discrete k node neural network. Those response were then used as inputs

into a different j node neural network which predicts the delivery time. The fits are
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Figure 16: Traditional network architecture
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Figure 17: Nested network architecture

summarized in Table 4. With the 200 point DoE, the traditional neural network was
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Table 4: Fit results
Architecture DoE Size Nodes (k, j) R2 Actual-by-Predicted

Traditional 200 0,10 0.6339
0 50 100 150

0

50

100

150

A
ct

ua
l

Predicted

Nested 200 8,5 0.8456
0 50 100 150

0

50

100

150

A
ct

ua
l

Predicted

Traditional 800 0,30 0.7464
0 50 100 150

0

50

100

150

A
ct

ua
l

Predicted

not able to discern the relationship between the location and the zones. Because of

this, the overall fit was poor. The actual-by-predicted plot shows very little data

which lies along the perfect fit line. With the same set of points, the nested neural

network approach showed significant improvements, by allowing the prediction of the

delivery zone which allowed the time model to correctly group the data points. The

traditional approach was repeated with a DoE of some 800 points. Again the fit for

this data set was poor, as the R2 improved, however the actual-by-predicted plot still

showed large amounts of off diagonal clustering. Using the significantly larger data

set, the traditional approach does not fit nearly as well as the nested approach.
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CHAPTER IV

NESTED NEURAL NETWORK METHODOLOGY

4.1 Purpose

Chapter 4 seeks to define and identify a set of techniques for using nested neural

networks. The focus of the problems is geared toward BMDS simulation modeling,

however the methods are applicable to other data regression problems. The method-

ology was formed from the standpoint of the analyst creating the surrogate modeling,

therefore much of the mathematical background has been omitted in order to provide

a more usable document. While the mathematical background is deserving of its own

study, it is beyond the scope of this thesis.

4.2 Scenario Definition

As with any problem, before any analysis can be performed, the problem must first

be defined. This is especially true when working with surrogate models, which require

the inputs and ranges be carefully chosen from the start. The choice of input variables

is critical to the results of the study, and if at all possible should be chosen by the

subject matter experts (SME). By identifying candidate system inputs and desired

system outputs, a screening design of experiments can be run on the simulation.

The screening design of experiments assess the contributions of each of the potential

candidate inputs to the total variance of the response. [43] Similarly, the outputs

themselves need to be carefully selected to ensure not only are they significant, but

also that there will be a (sufficiently strong) correlation between the outputs and

inputs. Moreover, the selected outputs should contain all the significant metrics

needed to be of use for the study.
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For general use, these above mentioned topics serve as a set of guidelines for sce-

nario definition, however BMD analysis (as is the case for any particularly complex

analysis tool) has several caveats. When building surrogate models of complex sys-

tems (or SoS), it is possible to build surrogate models of each component (or system)

individually and assemble them to form a model of the entire system. This approach,

utilized to some extent throughout the studies in this paper, can be difficult to im-

plement depending on the nature of the system. For example, in BMDS simulations,

there exist an abundance of data feedback links throughout the simulation (such as

the battle manager communicating with the sensor systems), which can cause difficul-

ties when modeling the sensor systems. Depending on the nature of the analysis tools,

surrogates might not be well suited to model the individual components, however are

still capable of modeling an entire system. These difficulties are quickly encountered

when working with BMDS simulations, as can be illustrated with a sensor model.

Possible sensor model inputs can include factors such as the target state vector, ori-

entation, radar cross section, etc. . . , while the output of a typical sensor model is the

predicted state vector and covariance matrix. The covariance, synonymous with er-

ror bounds on the measurement, is necessary for most all battle management related

BMD functions. To make a surrogate of a sensor model, the covariance matrix would

likely be a desired output since it is used in further calculations, however it does not

make a good target for a surrogate model, since the surrogate model would have to

produce a six by six matrix and be capable of maintaining all the data relationships

between the elements of the matrix.

Therefore, in lieu of creating surrogates of the actual model outputs, the surrogates

must instead be created of an overall evaluation criteria (OEC) for the same model.

While for many surrogate scenarios this may be acceptable, when modeling a complex

system-of-systems the downstream surrogates must also have a strong correlation

between the OEC of an upstream model and the OEC of the downstream model,
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which may not be true. If it is true, an additional loss in fidelity might be incurred

from the change in data. With the sensor example, a possible OEC would be the

eigenvalues of the covariance matrix, which reduces the number of outputs from 36 to

6. By choosing the eigenvalues, an implicit assumption is made that a suitably strong

correlation exists between the eigenvalues of the covariance matrix and the outputs

of all functions which rely on the covariance matrix as an input.

For systems (or SoS) high level analysis problems, system performance can typ-

ically be characterized through metrics such as cost, OECs, deviation from ideal,

etc. . . , which are well suited metrics for target by surrogates. Thus, an equivalent

analysis is feasible by representing the entire system through a single surrogate. How-

ever, by employing such a strategy, the modularity of the analysis is lost, and, if new

components are to be included in the analysis, the entire analysis must be repeated.

For developmental projects, this can be an issue, however, if the underlying model

is trusted to be accurate then, the modularity should not matter for system level

analysis.

4.3 Data Sampling

Data sampling is one of the primary motivators for the use of nested neural networks

with BMDS analysis, stemming from a lack of desire to use increasingly larger and

larger DoEs. NNNs, however, imply new relations on the design of experiments which

can drive the size of the data set required.

4.3.1 Sub-domains

Typically, the design of experiments chosen for a given application is based upon

the understood knowledge of how the design space behaves, which is not known

before hand. In order to achieve a desirable fit, the data sampling may be iterated

upon. When using nested surrogates, several new relationships are implicitly created.

These new relationships are shown in Figure 18. In the top model architecture shown,
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indicative of typical surrogates, the domain must be sampled sufficiently by the DoE

in order to map out range of the transfer function. The domain specified here does

not have to be the entire set of points for which the function is valid, merely only

the portion of interest. The lower half of Figure 18 shows the new relationships

established by the nested surrogates. Here, the domain specified by the DoE not only

defines the limits of the range, but also creates a sub-range which must be used as

the domain for the next layer of models.
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Figure 18: Domain and range (above) broken into sub-domain and range (below)

This data relationship causes difficulties in creating nested surrogates (covered

more in Section 4.5). The DoE chosen is used to map the design space to a sufficient

degree of fidelity so that the surrogate models can be made. The DoE however only

varies the inputs to the simulation based upon the ranges specified, and does not

necessarily create an equivalent sampling of the sub-domain. When using nested

surrogates, the “effective DoE” for the downstream model is in fact the output of the

previous layer, hence the output of the previous layer must be spaced well enough

to adequately sample the next layer of design space. Depending on the particular

analysis code, this may be very difficult. For BMDS analysis codes, which (depending

on the inputs) tend to be highly non-linear, a dense sampling of the inside of the
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design space along with a sampling of the exterior points is desired. The density of

the sampling is not an analytical quantity, and usually requires some iteration. A

typical DoE for a BMDS (or an equivalent complex system) includes:

1. Faced Centered Central Composite Design (CCD): Typically used for quadratic

designs, the CCD is used to sample the extrema of the design space. [45]

This usually consists of a (relatively) low number of runs which, by itself, is

insufficient to capture the discontinuous nature of a BMDS simulation.

2. Latin Hypercube Sample (LHS): Denser sampling used for its higher accuracy

within the interior of the design space. [27] For complex systems, this is both

the largest and most important contributor to the regression.

3. Border Points: Since neither the CCD or LHS give much sampling near along the

border, additional points are used. Border points sample between the extrema

and outer boundaries.

Any one of these is not sufficient to capture the attributes of the system, but together

the three are better suited to producing an accurate mapping of the design space.

4.4 Nested Data Identification

Suitable targets for a nested layer of surrogate models may be discernible a priori by

SMEs, however in general, these targets are not explicitly known before the surrogate

modeling process begins. The example formulated in Section 3.3 is an exception to

this rule, in that the model that was designed for demonstration purposes, making

the nested data targets trivial. Most problems that require nested neural networks

will be approached as any other surrogate modeling task, however may encounter

troubles while forming regressions.

The need for the use of intermediate data can be detected directly from the results

of the DoE. Distributions of outputs which show large clustering effects, such as the
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distribution in Figure 19 typically indicate that one or more discrete variables are

driving the response. [18] These discrete variables are well suited for intermediate

data as they allow the design space to be divided into subsets. This division removes

the clustering effect, and allows the user to incorporate system knowledge into the

surrogate models, which is normally not feasible. Discrete intermediate data is ben-

eficial over continuous intermediate data because it is more readily discernible, while

also allowing the use of multiple models to predict the output over select portions of

the design space (more on this is Section 4.5).
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Figure 19: Data grouping

Identifying the root cause of the clustering requires more insight into the inner

workings of the underlying models, however by identifying a larger number of candi-

date intermediate responses, a Pareto analysis can be performed to determine both

the contributions of the candidate intermediate data to the output and to ensure that

the intermediate data is itself a function of the desired inputs. Screening tests, much

like those used to determine scenario inputs, are well suited to intermediate data as

well even when no discernible clustering exists.

4.5 Nested Network Creation

Through the advent of computer technology, creation of statistics based regression

models has been made significantly easier, specifically the creation of neural network

models. There are many off-the-shelf software packages available that provide the
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capability to create neural networks with little upfront work. In this light, the material

within Section 4.5 will address the problem of creating nested neural networks through

the use of such software packages. The mathematical background will be addressed,

however this will be done in a consistent manner with the rest of the thesis.

The desire to use nested neural networks stems from the lack of desire to con-

tinually increase the size of the data set needed to create a sufficient model. While

one manner of addressing this is to use a multi-hidden-layer neural network, there

are very few well developed tools for working with neural networks consisting of more

than one hidden layer. Tools for working with a single hidden layer neural network

are far more commonplace and will be addressed within Section 4.5.

The techniques for identifying suitable targets for a nested neural network dis-

cussed in Section 4.4 provide a set of guidelines for discerning potential target data.

Such target data falls into two categories; continuous and discrete, both of which are

addressed within this section, however, since discrete data is more commonly found

in applications to BMDS analysis, it will be addressed with greater detail.

4.5.1 Training Nested Neural Networks

Since it is not necessarily feasible to model each of the individual components for

each NNN through the use of its own DoE (as described in Section 4.3), the models

must be built with the intermediate data resulting from the execution a single DoE.

There are two methods of training the nested neural networks that, depending on the

situation, can produce drastically different results.

• Flow-Based: Flow-based network training emulates the information flow of the

nested neural network architecture that will eventually result. In this approach,

models are created based only upon the information known at the corresponding

stage of the model, so upstream models, which will encounter the inputs first,

are built first. The output of these upstream models is used as a set of inputs to
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train the downstream model, and this process is repeated until the last model

has been built. This method can be seen in Figure 20 where the process of

creating a notional two layer nested neural network model is outlined using the

flow-based technique.
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Figure 20: Flow-based modeling approach

1. The data from the DoE (inputs) along with the outputted intermediate

data (targets) are used to train the upstream model. This produces the

transfer function g(x) between inputs and intermediate data

g : x → z (22)

2. The predicted intermediate data is obtained by running the data from the

DoE through the surrogate.

3. The data from the DoE along with the predicted intermediate data (inputs)

and the simulation outputs (targets) are used to train the downstream

model.
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4. The entire system model is assembled, producing the transfer function f(x)

between the inputs and outputs

y(x) = f(x, z) = f(x, g(x)) (23)

By training the downstream networks on the predicted data of the upstream

networks, the downstream models can incorporate some of the error resulting

from the upstream models. For example consider an upstream model that

predicts the value of the intermediate data from some region of the design space

with some error. By using the flow-based modeling approach, it may be possible

to capture that error in the downstream model such that for the given region of

design space, the error is minimized in the output, making the components of

the entire model consistent. Figure 21 illustrates how the downstream models

incorporate error in a flow-based design. The leftmost graph illustrates the
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Figure 21: Error minimization in flow-based modeling

intermediate response as reported from the simulation and as predicted by the

surrogates. The overall fit is good except in the area surrounding x1, where the

surrogate failed to capture the magnitude of the peak of the intermediate data,

resulting in a significant difference between the actual and predicted (∆i). Since

the downstream surrogate was trained on the predicted data, it effectively “does

not know” that the upstream surrogate failed to reach the desired magnitude,

and instead associates the predicted peak with the observed final output. Thus,
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the downstream model is able to account for the discrepancy at x1, resulting in

a potentially tolerable error of ∆f in the final response.

The benefits of flow-based modeling are far from guaranteed, and as the design

space becomes more and more complex, or when working with discrete inter-

mediate data, may be negated completely. Recall the pizza delivery example

problem describe in Section 3.3. Here, the intermediate data was the discrete

zone number that a particular location resides in. With an incorrect zone num-

ber, the downstream time model would essentially place the point in question

into an incorrect grouping. In order for the downstream model to be able to

account for such a large error, it needs to be significantly more complex, which

may not be allowable by the size of the data set. Since the flow-based approach

uses the same structure for creation of the constituent networks as it does for

implementation, it is a serial process, which for significantly complex analyses,

might make it undesirable. Also, since the downstream model is only valid for

the upstream model, if the upstream model changes the downstream must also

be recalculated. Thus, with a flow-based model it is not feasible to later return

to the upstream model and attempt to increase its quality of fit.

• Truth-Based: The converse to flow-based modeling is to use the truth data to

train all of the surrogates. By using truth-based modeling, the downstream

models are not capable of accounting for upstream error, however, each surro-

gate becomes more modular and is better suited to work with discrete variables.

Truth-based modeling entails training each surrogate on the truth data result-

ing from the execution of the DoE. Truth-based is a more parallel process, since

no one model needs to be created before another model, which for complex

systems, can be very beneficial. The truth-based approach is shown in Figure

22.
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Figure 22: Truth-based modeling approach

1. The design variables from the DoE (inputs) is used to train the both the

upstream models (using the intermediate data as targets) and the down-

stream models (with the actual intermediate data resulting from the simu-

lation as an input and the desired output from the simulation as targets).

2. The models are assembled and validated (more on validation in Section

4.6)

These two approaches, while similar, can provide drastically differing results. Nei-

ther method is in general better than the other, but with respect to a particular

problem, on method may persevere over the other. The factors which will drive the

choice of modeling technique depends primarily upon the nature of the intermediate

data.

4.5.2 Discrete Data Nested Model Creation

Working with discrete intermediate data is a more computationally intensive proce-

dure, however it can have significant benefits over continuous intermediate data. The
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ability to divide the design space into distinct regions allows for user insight to be in-

corporated into the surrogate modeling process. From the user’s perspective, discrete

intermediate data can be handled in the same manner as continuous. Commercially

available statistics software packages allow for both continuous and discrete models

to be created, and from continuous data, discrete data, or a combination. By using

the discrete intermediate data as an input to a downstream model, it is feasible to

greatly improve the quality of the fit. This was the method used in the example

problem described in Section 3.3.

Alternatively, the discrete data can be used to incorporate system knowledge a

priori to the creation of surrogates by serving as a divider for the design space. If a

discrete variable with n states is used, then the system inputs and outputs can be

grouped by each of the n states. Using each set of inputs and outputs as a separate

design of experiments, n distinct models can then be made, each covering a different

portion of the design space. So for any given point to be evaluated by the surrogate,

it is first classified by the upstream model and then, based on the classification, is

used in the corresponding downstream model.

The major advantage to this strategy is that the previous computational com-

plexity of mapping an input point and its classification to the appropriate portion of

the design space is handled by the user in lieu of the neural network, which reduces

the number of data points necessary for the mapping. Conversely, this is not always

applicable. By dividing the design space into subsets, care must be taken to ensure

that each subset has a sufficient number of data points such that a regression can be

performed on it. In general, the ratio of the number of discretization of the interme-

diate data (n) to the number of sample points in the DoE should be much much less

than 1 while no one subset has a significantly poor sampling.
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4.6 Validation

4.6.1 Individual Model Validation

Each of the fits that will eventually constitute the entire model need to be validated

independently when created, especially when using the flow-based modeling approach,

wherein errors present in upstream models are encountered again in downstream

models. By minimizing the errors fed downstream, the complexity of the downstream

network is reduced as while the overall fit quality is increased.

4.6.1.1 Discrete Model Validation

The methods for quantifying the fit quality described in Section 2.1.1.1 work well for

continuous mappings, but discrete mappings do not abide by similar rules, due to the

method of quantifying error with a discrete regression. In a continuous regression,

the error can be defined as some function of the difference between the observed and

predicted values, however discrete mappings are not necessarily numeric. For exam-

ple, a regression of a binary variable (e.g. TRUE or FALSE) is common in logistic

regression. While the notional values of these variables can be denoted by numbers

( 1 and 0) there is no one true value for each, but several possible variations.[28] For

example, consider regressing a function of the form

f : x ∈ Rn → {Green,Yellow,Red} (24)

where some continuous variable x maps to some color. If for some regression model,

the predicted value is red while the observed value is green, then for that particular x,

the model is wrong, not “off by a factor yellow”. At this level, there is no error asso-

ciated with the prediction. These predictive models work by predicting the likelihood

that a certain event occurs, then reports the event with the largest probability of

occurrence. So from the highest level, the error is transparent. Even at the likelihood

level, there is no set definition for error. [28] In lieu of the well established metrics
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as for continuous models, error of discrete models will be handled not from point to

point, but on the entire set, as a percentage correct predictions.

Actual-by-predicted and residual-by-predicted plots are also not applicable to dis-

crete data modeling, however these plots may be substituted for. By comparing the

distributions of the observed and predicted values, it is possible to discern if a fit

should be rejected. Primarily, the same profile of distributions is desired in both the

observed and the predicted, while also wanting to ensure that all classes of observed

data are present in the predicted data while also ensuring that no classes are present

in the predicted data that are not found in the actual data (This topic is addressed

in Section 5.4). Examples of acceptable and unacceptable distributions are shown in

Figure 23.
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Figure 23: Comparison of distributions of outputs where the fit (a) is acceptable
(b) does not resemble the observed (c) is missing a category and (d) has an extra
category
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4.6.2 Total Model Validation

Just as in any surrogate model, before it can be used it must be validated. Typical

metrics of neural network fits include coefficient of determination (R2) for both train-

ing and test data, actual-by-predicted and residual-by-predicted plot qualities, MFE,

and MRE. These metrics are all applicable to nested neural networks both on the

individual networks and for the overall network architecture, however several caveats

must be taken to ensure the validity of the results.

When using the flow-based modeling technique, each model is built with data from

the upstream models, therefore if the fits on the downstream model are acceptable,

then fits for the entire model are also valid. This is not the case when working with

the truth-based modeling technique. Because each model is created independently, to

assess the error of the total model, all the component models must be assembled. Due

to this fact, the metrics of fit for each of the individual models can be used to ensure

that the individual fits are acceptable, however these are not valid representations of

the quality of fit of the entire model. The quality of the fit of the entire model must

take into account the error of the entire model, which is not an additive quantity.

Thus, the error for the entire model may well be greater than the sum of the errors of

the individual parts. For a set of models with m component models (each with error

εi), the total error will be bounded on the lower side by equation 25.

εTotal ≥
m∑

i=1

εi (25)

To determine the actual error in the model, the entire model must be assembled such

that the data flow of the model is identical to how the model will be used. Specifically,

the actual data that was used for training each of the downstream models must be

replaced by the predicted data resulting from the upstream models.

εTotal =
m∑

i=1

εi +
m∑

j=1

j 6=i

εij

 (26)
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where εi is the error from the ith model and εij is the error from the interaction

between the ith and jth models.

For example, consider the two level nested neural network architecture shown in

Figure 24. Here the upstream network (NN1) is discrete and the downstream network
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Figure 24: Example nested network architecture

(NN2) is continuous, equation 26 becomes:

εTotal = ε1 + ε12 + ε2 (27)

Consider any give input to this network. If the discrete network predicts the correct

output, then the terms ε1 and ε12 are both zero, thus the total error is only due to

the downstream network. If the discrete network fails to predict the correct value,

then the ε1 term will be nonzero (but not necessarily quantifiable depending on the

nature of the discrete data), while the interaction between the two networks will create

an additional non-zero error (ε12) resulting from the downstream network being fed

incorrect data which will lead to a new error in the output.

4.6.3 Error prorogation with Discrete Upstream Networks

Discrete upstream networks are useful when clustering prohibits a good fit by tradi-

tional methods, however the errors associated with the discrete upstream model can

make a significant impact on the overall quality of fit. Since the flow-based modeling

approach does not lend itself well to problems with discrete variables, this section

only pertains to truth-based modeling approach.
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Consider again a two level nested network where the upstream model is used to

predict discrete data to be fed to the downstream network. Inherently, there will be

some error associated with the classification in the upstream network, and accordingly,

not every piece of data fed downstream will be correct. This error will present itself

in the form of off diagonal elements in an actual-by-predicted plot, as shown in Figure

25. Here, the majority of the data lies along the perfect fit line. This data corresponds

to the portion which was predicted correctly by the upstream model.

Figure 25: Example of quasi-symmetric off diagonal clustering (red) in final response

The off diagonal clusters result from the upstream model predicting incorrect

discrete intermediate data. This effect can never be assured not to occur, due to the

errors introduced during any regression task, however for a good fit, these can be

tolerable, specifically if:

1. The off diagonal elements occur in a quasi-symmetric manner about a 45◦ per-

fect fit line: Off diagonal elements occurring in a generally asymmetric manner

indicates the presence of bias in the surrogates. It is desired to have an uniform

distribution on any error, thus the presence of off diagonal elements should be

not exactly symmetric.

2. The off diagonal elements only constitute a small portion of the sample space:
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The definition of “small portion” is debatable, and varies depending on the

problem at hand and the manner in which the surrogate models are to be

utilized.

These do not serve as metrics of a good fit, but rather as criteria that must be met

before a fit may be considered “good”.
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CHAPTER V

BMD APPLICATION AND CASE STUDY

To show the benefits of the previously described methods, a case study was per-

formed with a notional BMDS simulation. The results presented in this section are

a set of notional results which are only valid for the simulation used to create them.

These results should not be considered directly applicable to a real life BMDS. In

collaboration with Georgia Tech Research Institute (GTRI), a preliminary modeling

simulation environment was built to act as a simplified model of their higher fidelity

BMD Benchmark. The modeling and simulation environment consisted of a trajec-

tory generator, sensor, fusion algorithm, battle planner, and fire controller. Figure

26 shows the architecture of the M&S environment. A detailed description of the

assumptions used in this BMDS simulation is beyond the scope of this paper, and

can be found in reference [10].
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Figure 26: M&S architecture
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5.1 Scenario Definition

In order to decrease the information gap, decision makers need access to high fidelity

modeling and simulation results with little to no time delay which is not possible. Any

one BMDS simulation scenario has many variables which change over wide ranges.

However, it is possible to provide such information at a real time manner for certain

scenarios.

For a given enemy and desired defended area, there are a many possible trajectories

that lead from the enemy to the desired defended area, however if there is intelligence

about the enemy and about the desired defended area, these trajectories can be down

selected to a most likely attack. Figure 27 shows how a notional attacking area

can be simplified. Under this assumption it is possible to scope the problem to a

fixed scenario which can be used with surrogate modeling that will be of physical

significance with regard to the actual BMDS. This down-selection allows for a BMDS
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Figure 27: Reduction of scenarios using intelligence

to be evaluated on its capability to thwart a first wave attack, which is the primary

motivation for the development of a BMDS. [12] Under this assumption, a notional

theater BMD scenario was employed involving a hostile country attacking a friendly

nation from across a large sea. Four medium range ballistic missiles are launched

separated by a time difference of 30 seconds from fixed locations in the hostile nation
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to fixed locations in the friendly nation. To defend, a fixed location ground unit was

placed in the defending area while two BMD capable war ships were placed in the

sea between nations and were allowed to vary within the operational area shown in

Figure 28. In order to assess the system effectiveness, the metrics of interest for this

study was chosen to be the probability of zero leakers P0L, as defined in Section 2.3.2.

The goal of the study is to create a regression model such that:

Attacking 
Area Defending 

Area

Operational Area for two 
Guided Missile Ships

Threats

o

o
o

o

Area

Land Based 
Platform

Figure 28: Scenario definition: threats and operating bounds

f : d ∈ R4 → P0L ∈ R (28)

where

d =



Ship 1 Latitude

Ship 1 Longitude

Ship 2 Latitude

Ship 2 Longitude


(29)

however, as mentioned in Section 2.3.2, the P0L metric introduces a new layer of

confounding on the output. Since this metric is quickly obtained through some basic
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probabilistic math from the probability of kill for each threat, the surrogate models

instead targeted the PK of each threat. Therefore, at least 4 surrogate models were

needed to determine the overall system effectiveness P0L. Since the MoE is easily

obtained, without loss of generality, the final model (composed of multiple models)

will be the mapping described in equation 28.

Several differing scenarios were presented in Section 3.2 for use in defining a well

capable BMDS model. For the purposes of demonstration, the track selection local-

ized control scenario with forward deployed units will be presented within Sections

5.2 to 5.5. The models created for every other scenario are attained through an

equivalent process (for which the differences will be identified), however the selected

scenario provides challenges not present in others.

5.2 Data Sampling

In order to create the mapping defined by equation 28, a design of experiments was

ran on the modeling and simulation environment varying the normalized positions

of the two BMD capable warships. The normalized coordinates were obtained via a

shear transformation of a rectangle to parallelogram shown in Figure 28. The design

of experiments consisted of a Face Centered Central Composite Design (for sampling

the extrema) along with a Latin Hypercube Sample (for sampling interior points)

and a set of border points. The border points were necessary due to the large ratio

of the size of the hypercube (8000 runs) to that of the face centered composite (25

runs for a 4 variable scenario). The border points allow for smother interpolations

when fitting cases near the extrema. The size of the DoE was not a predetermined

quantity, however sufficient forethought was taken to ensure that when decomposing

the data set into subsets for fitting, that the size of the subset was sufficient to create

a model with a comparable degree of fidelity.
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5.3 Nested Data Identification

The results from the DoE can be seen in Figure 29 which clearly show at least two

distinct clusters. The histograms show the frequency of the probability of kill of

each individual threat. A large gap can be seen in the distributions between a PK

of approximately 0.6 and 0, the cause of which stems from the fire controller, which

uses a time dependent threshold to perform interceptor threat pairings. Shots with

a PK in the range of [0, 0.6] were below the threshold, thus not chosen as shots.

PK

Threat 1 Threat 2 Threat 3 Threat 4

Figure 29: Probability of kill PK distributions

An initial attempt of using a neural network to create the regression for the

mapping in equation 28 confirmed that the fire controller was causing confounding

within the design space. Figure 30 shows the actual-by-predicted plot for 10, 15,

and 25 node neural network regressions. Again, the large gap between 0.6 and 0

exists. Moreover, the upper cluster of data can be further divided into several clusters

corresponding to the interceptor threat pairings assigned by the fire controller. The

models used were not even able to predict the points used to create the mapping,

indicating a very poor fit. As the number of hidden nodes increases, the variance

in the plots stays relatively constant. The grouping within the upper cluster of data

consisted of a smaller lower cluster of point, a large cluster in the middle spanning 80%

65



of the horizontal, and a smaller cluster with an observed PK ≈ 1. By interactively

these exploring several areas of the plot, it was determined that the grouping was

predominately caused by the fire controller threat pairings, suggesting that they may

be well suited as intermediate data.
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Figure 30: Actual-by-predicted plots for neural networks of (a) 10 (b) 15 and (c)
25 hidden nodes

5.3.1 Subsets of Intermediate Data

Recall that Theorem 1 can be extended to classification problems, such that a solution

is guaranteed, however this is only applicable if the point in question is to be classified

to a disjoint subset, which for the current intermediate data, the fire controller shot

assignments, is not the case. Consider the set of all possible fire controller shot

assignments for the set of given threats. Let the shot assignments for target i be
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denoted by a binary column vector such that

Target i Shot Assignment = ti =


Sensor 1 Binary

Sensor 2 Binary

Sensor 3 Binary

 (30)

So for a scenario when sensor 1 shoots, and sensors 2 and 3 do not, ti = [1, 0, 0]T .

Thus for three sensors, the 8 possible combinations of the space S = {s1, . . . , s8} are

S =




0

0

0

 ,


1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


1

1

0

 ,


1

0

1

 ,


0

1

1

 ,


1

1

1




of which anything that is a single shot is a subset of anything that involves multiple

shots, or,

{s2, s3, s4} ⊂ {s5, s6, s7} ⊂ {s8} (31)

The 8 classes set by the binary vectors do not make a suitable target for a classification

network which will have a guaranteed existence. In actuality, there are only two

disjoint subsets of the space S

S = {Threat is engaged}
⋃

{ Threat is not engaged} (32)

however, the existence of a mapping can be guaranteed by decomposing the con-

stituent subspaces of S into their respective subspaces. For example, the first of the

the two subsets in equation 32 can be decomposed further into the subset of all threats

engaged and its complement. This can be continued down utilizing several layers of

models until the realm of possibilities is not as a single set of 8 possibly joint sets,

but rather three layers of nested models, as depicted in Figure 31.

In order to guarantee existence of a classification mapping, the set of intermediate

data needs to be composed as shown in Figure 31. While existence is not guaranteed

without this decomposition, it may be possible to achieve a sufficient mapping with-

out doing so. Additional techniques for modeling the intermediate data (addressed
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Figure 31: Decomposition of joint sets into disjoint sets through binary modeling

in Section 5.4) proved sufficient to decomposing the intermediate data to allow for

adequate regressions. Also, when not all members of the space S are present in the

observations, it may not be necessary to fully decompose the subspace. The reduction

of the number of subsets eases the computational cost of creating the mapping.

5.4 Nested Network Creation

These subsets were individually modeled via the truth-based approach. Two ap-

proaches were used to classify the fire controller threat pairings:

1. Classifying each DoE point to lay in one of the 8 subspaces of S: In this ap-

proach, each of the 8 subspaces of S was treated as a three digit binary string.

Four binary strings were used, one for each threat. The upstream network was

used to create the mapping

g : d ∈ R4 → ai ∈ A (33)

where A = {a1, . . . , a8} = {000, . . . , 111}.

2. Classifying each DoE point on an platform by platform basis: For each threat,

the binary vector ti was decomposed into three separate binary variables, each

of which was modeled by a separate network.
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Figure 32: Intermediate data prediction methods (1) and (2)

Technique 2 proved to be able to create each individual network with a higher degree

of accuracy than that of technique 1, however, the higher accuracy did not always

mean better results. By decomposing a three digit string into three one digit strings,

the data relationships between each of the possible outputs was lost. Errors in the

models in technique 2 do not necessarily coincide with each other. The result of this is

that technique 2 sometimes predicted events that were out of the realm of possibilities.

For cases where the evaluation of the DoE did result in all 8 possible combinations

of fire controller threat pairings, technique 2 was appropriate (and is what is used

in the examples within this chapter). However, this was not the situation for all the

scenarios listed in Section 3.2. For example, in the track selection centralized control

scenario with forward deployed units, the observations for threat pairings for target

1 reduced the set S down to:

S =




0

0

0

 ,


1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


1

1

0




which only contains 5 possibilities, however through technique 2, all 8 possibilities

were outputted. This is due to the fact that the Platform 1,2, and 3 models do not see

explicit forms of the constraints on the target data, only the implicit constraints set

forth by the observations. If the models contained no error, then it would be feasible

to use this technique for such a scenario, however this is not the case. Therefore, to

have a more coherent model, the threat pairings for the centralized control scenarios
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were modeled via technique 1. The remainder of the process is not affected by the

technique used for the upstream model.

With the upstream model complete, the downstream models could then be made.

Since the intermediate data being used for the upstream neural network is the discrete

fire controller threat pairings, further system knowledge was incorporated into the

surrogate modeling process. Figures 29 and 30 showed two main clusters of data in

the output, a cluster of data with a zero probability of kill and a portion of data

with some nonzero PK . These two subsets correspond to the level 1 models depicted

in Figure 31, however surrogate models are not necessary for both partitions. To

visualize this, consider the subset s1 = [0, 0, 0]T corresponding the threat not being

engaged by any platforms. Then, since the events kill (K) and no engagements (s1)

are disjoint events, the probability of kill can be given by:

PK = P (K|s1) = 0 (34)

By dividing the design space into regions where the system knowledge can be

incorporated, the model accuracy is improved. To visualize this, consider a neural

network model to be of limited computational complexity. When the neural network

is responsible for determining the mapping between discrete event s1 and K, some

amount of the available complexity is consumed, while also introducing the potential

for error. Using the simplification frees computational complexity to be used for

the rest of the mapping while reducing opportunities for error. Figure 33 shows

the effect using the fire controller threat assignments without including the above

simplification. Here, the actual by predicted plot for the downstream model (using

the truth-based approach) shows a significant amount of improvement over the models

shown in Figure 30, however the fit is far from ideal, even though the coefficient of

determination R2 = 0.99. The intermediate data has enabled the neural network to

classify which cluster the data belongs to, however the accuracy within the upper

cluster varies significantly while the lower cluster varies less. The relatively large
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number of observations with a zero probability of kill are predicted to be relative

close to zero, so for a large portion of the design space, the fit has a low error, which

drives up R2, even though the fit is far from perfect. Here the model is using a portion

of its resources to create the mapping given by equation 34.

PK Predicted

P
K

O
bs

er
ve

d

Figure 33: Actual-by-predicted of 15 node downstream network using intermediate
data

Instead of using the intermediate data as shown in Figure 33, the design space was

divided into subspaces based upon the fire controller threat pairings. Each individual

subspace formed a focused design space for its own regression. Thus the downstream

model was itself comprised of several models with an overall form of

PK(d) =



f1(d) if d ∈ s1

f2(d) if d ∈ s2

...
...

f8(d) if d ∈ s8

(35)

The process used to create the downstream models is shown in Figure 34. The

process starts by dividing the set of observations based upon the intermediate data

and modeling each set individually. Because of these divisions, each model was able

to focus on a particular region of the design space, reducing the complexity of the

model needed to fit that portion of the response. This allowed for the use of models

of varying sizes, which reduced the probability of over-fitting a region of the response.
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This process was repeated for each threat such that the entire model architecture

for a given scenario was as seen in Figure 35. Each target required 3 neural networks

for the upstream model, 7 neural networks for the downstream model, requiring 40

neural networks for the entire architecture depicted in Figure 35. This process was

repeated for the various architectures defined in Table 2.

As shown in Figure 35, for each set of asset locations, the fire control models were

used to determine which platforms (if any) were used to engage each threat. The

model then sends the input data (asset locations) to the appropriate probability of

kill model for each threat through the use of logical switches. The four probabilities

of kill are then used to determine the probability of zero leakers as

P0L =
4∏

i=1

PKi
= PK1PK2PK3PK4 (36)

The portions enclosed by dashed boxes show “effective” surrogates, which are com-

prised of multiple surrogate models, however from the perspective of the inputs and

outputs, look and act like a single surrogate model.
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5.5 Validation

Each individual model depicted in Figure 35 was validated independently. Table 5

shows the statistics of the upstream discrete model regression. Note the similarities

between the distributions of the observed and predicted values. A pairwise comparison

(shown in Table 6) shows that for the upstream fit model, approximately 700 out of

10000 points were miss classified. These individual checks do not account for the error

formed by multiple models interacting. To validate, the entire model was assembled

and the metrics of a good fit were evaluated at the system level.

Table 5: Upstream discrete network observed versus predicted quantities
Observed Predicted

Level Count Probability Histogram Count Probability Histogram

000 2424 0.23614 2314 0.22543
001 40 0.00390 21 0.00205
010 1407 0.13707 1468 0.14301
011 784 0.07638 821 0.07998
100 1437 0.13999 1505 0.14661
101 795 0.07745 782 0.07618
110 994 0.09683 962 0.09372
111 2384 0.23225 2392 0.23302

Total 10265 1.0000 10265 1.0000

Table 6: Upstream model fit statistics
Classification Count Probability Histogram

Correct 9524 0.92781
Incorrect 741 0.07219

Total 10265 1

Figure 36 shows the actual-by-predicted plot for the probability of kill of one

threat. This plot is resultant from the top most of the independent tiers in Figure

35. This level was chosen since it is the highest level of significant fit metrics which

still yielded insight into the areas where the model is not fitting well. For example,

if this plot were generated for the highest level (P0L) and contained an abundance

of off diagonal asymmetric elements, it would show that the entire model is flawed,
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while it is possible that only 1
4

may be out of tolerance. Notice on this chart that

Figure 36: Actual-by-predicted plot for PK for 10265 point DoE

there are a number of off diagonal elements, indicating that there is error present

in the model, however the off diagonal elements are symmetric about the perfect fit

line. This indicates that the errors associated with the upstream model are occurring

in a random fashion, which indicates a uniform quality of fit of the upstream model

over the design space. While at first glance Figure 36 does seem to contain many

of diagonal elements, the actual number is close 700, which for the DoE used is less

than 7%. Depending upon the desired use of the surrogates, this may or may not

be acceptable, since the fit results leave substantial room for improvement. For the

purposes of this thesis, the results shown in Figure 36 show substantial improvement

over previous attempts of creating surrogate models of BMDS analysis tools (which

resemble the trends shown in Figure 30). The R2 for the training and test data for

this example were 0.91 and 0.87 respectively, while the MRE and MFE had a mean

about zero and standard deviation of approximately 1. This analysis was repeated
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Figure 37: Graphical user interface for surrogate models

for each of the other three tiers of the full model for this scenario, and for each of the

other seven scenarios.

5.6 Results

Through the use of the surrogate models, the computational time for a single point

was reduced from approximately 90 seconds to less than 1
100

th of a second. Once

assembled as shown in Figure 35, the surrogate models were placed into a graphical

user interface (GUI) to allow for a visual interaction with the models1. Figure 37

shows the GUI which is used for running Monte-Carlo simulations on the surrogate

models, which for any given location of one of the mobile assets (denoted by the white

circle) generates a specified number of random second asset locations which are then

input into the surrogate model. The resulting system-level effectiveness (in terms of

P0L is then plotted at the corresponding location and the marker is color coded to

indicate the system performance. To show some of the potential benefits afforded
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by employing nested neural networks, several studies on the BMDS were performed

which could not be accomplished without the use of surrogate models.

5.6.1 Asset Placement

In order to determine the optimal asset location, a genetic algorithm was used within

MATLAB to optimize the highly non-linear and discontinuous design space to deter-

mine the best location for the placement of the two BMD capable ships strictly based

upon the probability of zero leakers. The point determined by the genetic algorithm

to be optimum gave a performance of P0L = 0.8792. In order to check the validity

of this point, the analysis code used to generate the surrogates was ran at this point.

The actual value of the reported optimum point was found to be P0L = 0.8830, hav-

ing a difference of less than 0.5%. The resulting optimum point was then used to

determine the overall sensitivity to perturbations in the locations of the ships. To

determine this sensitivity, 10,000 random points were generated within a radius of

45 nautical miles around each ship (covering about 6400 square nautical miles). The

system performance was then calculated for the first ship varying in th 45 nautical

mile radius circle, while the second ship remained at its location. This was then re-

peated with the first ship fixed and the second ship varying. These results are shown

in Figures 38 and 39 respectfully. Here it can be seen how the models are able to

capture the distinct groupings in the design space, where there is a large cluster of

data at each end of the spectrum and nothing in between. Figures 40 and 41 show

how this variance effects the total system performance. Here, the system performance

is plotted on the vertical axis while the normalized latitude and longitude are plotted

in the x-y plane. The black x marker denotes the optimum as found by the optimizer,

which for both ships, is fairly close to the peak of the curves as found by Monte-Carlo

executions. Again, the discrete effects can be seen here as there is a significant jump

1This tool was developed through a joint research venture with the Georgia Tech Research Insti-
tute along with the researchers listed on the Acknowledgments page
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Figure 38: Distribution of probability of kill from varying ship 1 with ship 2 constant

corresponding to the cases with lower probabilities of kill. Also plotted here in red

are 100 validation points for each plot. These points are the result of executing the

modeling and simulation environment repeatedly at random locations from within

the 45 n.mi. radius.

These points show how well the surrogate performed (blue) versus what actually

happened (red). Note here that a majority of the 100 red points are not visible because

they are dwarfed by the blue points (there are 100 times as many blue points). Several

points of significant interest can be seen in these plots. Note that in Figure 40 that

red points do have a stepped nature as demonstrated by the surrogates, although the

surrogates failed to capture the gradient of the transition. Furthermore, it can be

seen from Figure 40 that the surrogates do capture the nature of the curved surface

near the optimum. Figure 41 shows similar trends for the performance region of Ship

2. Here, two points lay far outside the performance predicted by the surrogates (near

the outer edge of the 45 n.mi. circle), however a majority of the data is close to the

predicted values.

Lastly, the total robustness of the optimum was assess by varying the location

of both ships for 10000 points over the specified region. The results from this are
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Figure 39: Distribution of probability of kill from varying ship 2 with ship 1 constant
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Figure 40: System performance from varying ship 1 location with ship 2 constant

presented as a histogram in Figure 42. Here, the system performance is above ≈

0.6 while each ships vary within their own 45 n.mi. radius circle, indicating that

the optimum may be desirable, with a mean performance of 0.8264 and a standard

deviation of 0.0654. To generate this performance data, the surrogate models were

evaluated 32,000 times (2000 for the genetic algorithm search and 10,000 for each of

the above distributions), which if the original analysis code were to be used would
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Figure 41: System performance from varying ship 2 location with ship 1 constant
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Figure 42: System performance as both ships vary

require approximately 800 hours of run time on a single PC. The surrogate models

only required 20 seconds, of which 15 were spent on the genetic algorithm. To larger

entities with a higher computational resources budget, 800 hours may be a feasible

run time, the 800 hours of computation will only produce a single point solution

(referring to a single optimum location with sensitivity analysis). If the optimum

returned is not desirable to due to effects which were not modeled (e.g. secondary

mission objectives), then the entire study must be performed again with the hope

that the next best position found is acceptable. With surrogate models, the study
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can be generated again instantaneously if the results of the first attempt prove to be

less than desirable. This allows decision makers to have direct access with the M&S

tools to allow for faster turn around times on knowledge based decisions.

5.6.2 Architecture Study

Of the eight defined architectures in Table 7, only architecture 5 has been used so far.

This was chosen for demonstration since it has the most sets of possible combinations

of fire controller threat pairings, but it is by no means the only architecture worth

considering. In order to assess architecture effectiveness, a 100,000 point Mote-Carlo

simulation was performed on the surrogate. In each run, the position of both ships

varied randomly throughout the operational area and the probability of zeros leakers

was reported.

Table 7: Architectures descriptions
Architecture Forward Deployed Units Tracking Method Fire Controller

1 Yes Selection Centralized
2 No Selection Centralized
3 Yes Fusion Centralized
4 No Fusion Centralized
5 Yes Selection Localized
6 No Selection Localized
7 Yes Fusion Localized
8 No Fusion Localized

The metrics reported in Table 8 summarize the results. The performance varied

greatly over the 8 architectures, however the best performers were architectures 3 and

7. These two architectures had the highest means and greatest number of nonzero

results, and while architecture 7 has a higher mean, architecture 3 has roughly 1
2

the

standard deviation. Also in Table 8 are the statistics for the portion of the design

space which did have P0L = 0. These are significant for a BMDS since it is not

necessary to have a feasible intercept everywhere (since the design space covers ap-

proximately 78,000 square nautical miles). Examining these shows that architectures
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3 and 7 are still top performers as well as architecture 8. Although 7 and 8 outperform

3 in terms of mean response, architecture 3 has a much tighter standard deviation,

which may make it more desirable. Delving deeper into the results, it can be seen

Table 8: Architecture trade statistics on Monte-Carlo evaluation of P0L
Metric Arch 1 Arch 2 Arch 3 Arch 4 Arch 5 Arch 6 Arch 7 Arch 8

Mean 0.1415 0.03973 0.7084 0.2419 0.1476 0.0047 0.7663 0.2521
Std. Dev. 0.1406 0.1426 0.1679 0.3275 0.2395 0.0505 0.2913 0.3701

Max 0.8288 0.9679 0.9474 0.9404 0.9354 0.8472 0.9987 0.9957
Median 0.0000 0.0000 0.7512 0.0000 0.0000 0.0000 0.92432 0.0000

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Num. Nonzero (NZ) 36189 7855 95273 36231 29162 910 91082 33850

NZ Mean 0.3909 0.5058 0.7436 0.6676 0.5062 0.5151 0.8413 0.7448
NZ Std. Dev. 0.0808 0.1530 0.0590 0.1095 0.1232 0.1315 0.1734 0.1940

NZ Min 0.1386 0.1991 0.4041 0.1892 0.1896 0.2099 0.2776 0.0230
Nonzero Median 0.3821 0.4967 0.7537 0.6834 0.4878 0.5121 0.9402 0.8155

that the top performers all utilize track fusion. In the M&S used for this study,

track fusion is modeled ideally, which gives the sensors very accurate track pictures.

The accurate track pictures allow the fire control to have a very good estimation of

where the missile is which results in a higher probability of kill. Within these results,

the localized fire control causes a higher mean and higher standard deviation. This

matches what would be expected, since the lack of communication leads to multiple

shots upon the same target. This increases the probability of kill on the target, how-

ever uses additional resources which are not available for other interceptions, causing

the increase in standard deviation and the decrease in successful runs.

Figure 43 shows the distribution for each of the 8 architectures for the 100,000

Monte-Carlo evaluations. Notice that only architectures 3 and 7 show any discernible

behavior other than clustering at P0L = 0. Figure 44 shows the distributions for

the nonzero portions of each architecture. Architectures 1 and 3 distinctly show a

normal/lognormal behavior while architecture 7 resembles a beta distribution, which

may not be desirable due to the relatively high concentration of points (≈ 20, 000)

with effectiveness around 60%.
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Figure 43: Distribution of P0L for each architecture
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CHAPTER VI

CONCLUDING REMARKS

6.1 Summary of Hypotheses

Throughout the course of this study, problems related to current BMDS analysis

were identified. Hypotheses were proposed to address both this problem while re-

search goals were proposed to deliver a practical methodology. Experiments were

then performed to achieve the research goals which enable the hypotheses that in

turn solve the problems and allow for real world applications. Below is a summary

of these problems, hypothesis and goals.

6.1.1 Hypothesis 1

Research Question 1 stated:

How can a ballistic missile defense system be analyzed to facilitate a

real-time interaction with high-level system operators and analysts while

still incorporating physics based modeling and simulations?

The problem posed by Research Question 1 served as the primary motivator for the

study. The proposed solution to this question was given by Hypothesis 1, which

stated:

Surrogate models will allow for high level systems engineering stud-

ies to be performed on a ballistic missile defense system which facilitate

interaction between operators and modeling and simulation based data.

This was shown in Section 5.6, where a preliminary studies into BMDS was per-

formed. Optimizers were employed on the surrogate models to determine optimal lo-

cations while Monte-Carlo simulations were used to assess robustness of the solution.
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Monte-Carlo simulations were also used to quantitatively evaluate varying BMDS ar-

chitectures in terms of performance and robustness. These metrics were produced

through the use of a single PC in a matter of seconds, whereas an equivalent study

without using surrogate modeling would have taken on the order of weeks. Because of

this speed reduction, similar studies can be conducted by high level decision makers

that will allow them to better understand the system.

6.1.2 Hypotheses 2 and 3

Research Question 2 stated:

How can the ambiguities associated with a non-unique discontinuous

design space be resolved in order to create a mapping of the system at-

tributes to the desired output of the simulations without the use of an

increasingly larger design of experiments?

This was directly addressed by Hypothesis 2 which stated:

By augmenting points from a non-unique design space with intermedi-

ate data, the multiplicity of the response and effects of discontinuities can

be relaxed enough to create a regression model.

The ability of intermediate data to improve the fit on a neural network surrogate

model was shown in a single dimension sine wave surrogate model example, along

with a two-dimensional pizza delivery example in Section 3.3 before being applied

to a notional ballistic missile defense system problem in Sections 5.3 through 5.5.

Furthermore, Research Question 2 was also addressed by Hypothesis 3 which stated:

which stated:

By employing nested neural network surrogate models, a single set of

inputs can be used to predict the intermediate data necessary to remove

the data ambiguities from the output associated with a ballistic missile
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defense system analysis tool, therefore allowing a surrogate representation

of a ballistic missile defense system to be created.

Nested neural networks were able to provide the intermediate data needed to

reduce the multiplicity of the response. By modeling the entire scenario, the time

dependence was removed. These reductions were able to simplify the regression to

a mapping resembling a one-to-one mapping. The manner in which nested neural

networks reduced the complexity of the design space was demonstrated in Section 3.3

and throughout Sections 5.3 to 5.5.

As a corollary, Hypothesis 3.1 stated

Nested models can be built with a smaller data set than by using one

model around the entire system.

The reduction in the size of the data set necessary to create a regression was

demonstrated for a reduced scale problem in Section 3.3. Here, it was seen that a

data set of more four times larger that which was used for a nested neural network was

needed to create an equivalent mapping. This was also applied to a BMDS, wherein

a 40,000 case DoE was used for regression, but was still unsatisfactory to create a

single mapping.

6.1.3 Research Goal 1

Research Goal 1 stated:

To identify techniques for identifying types of intermediate data which

are well suited to alleviate the effects of ambiguities on the output

This topic was handled in Section 4.4 and shown in application in Section 5.3. Al-

though no canned method was derived to guarantee the identification of suitable

intermediate data, a general set of guidelines was establish to aid in the process. In

general, it will always depend on the user’s knowledge of the system, however the

techniques mentioned can ease the process.
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6.1.4 Research Goal 2

Research Goal 2 stated:

To identify techniques for handling error associated with multiple re-

gression models

While a formal mathematical treatment of the error propagation found in nested

neural networks was beyond the scope of the paper, the methods outlined in Sections

4.5 and 4.6 provide the user with a general understanding of the sources of error

within nested neural networks as well as a means quantifying. The application in

Chapter 5 presented an application to guide in the creation nested neural networks

and shows how error was handled.

6.1.5 Research Goal 3

Research Goal 3 stated

To determine the relationship between the amount of data needed to

regress a data set within some confidence when modeling under traditional

approaches and with nested neural networks

As mentioned previously, a closed form solution cannot be made about the size

of a data set necessary to form a given regression. The size of a data set necessary

will always be coupled to the model being regressed and the overall complexity of

the design space. While quantity is not known, it was shown that the use of nested

neural networks is capable of significantly improving the fit of a regression based upon

a limited data set.

6.2 Summary of BMDS Analysis Approaches

Within this thesis, three main methods of analyzing a BMDS are discussed, which

depending on the circumstance, any one might be applicable. Firstly, depending
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on the goal of the study, no surrogate modeling techniques may be required (or

desired). By totally omitting surrogates and performing analyses similar to that in

Section 5.6, it is possible to achieve similar results, however these results will come

with a significant computational cost. Assuming the same modeling and simulation

environment were to be used for this purpose, on a single computer it would take

around 800 hours to complete a similar study. This is not necessarily prohibitive

depending upon the resources available (which may reduce the computational time

significantly), and is the most common method used. The benefits of this strategy

include that the additional possibilities for error are not introduced since no surrogates

are used, and the results are traceable back to a root cause, whereas in surrogates, this

traceability is lost. The disadvantages to this approach is that it fails to provide the

decision makers with a means to interact with the data. So if the results of the study

become less desirable due to factors not modeled in the simulation, then the study

does not aid the decision maker. Similarly, the 800 hour figure was for a simplified

notional BMDS analysis tool. Actual analysis tools tend to have far longer run times

than 90 seconds, so as the computational time increases, the amount of information

provided to the decision makers will decrease.

The second strategy discussed involved using a single surrogate model around

the entire BMDS analysis tool. With a single neural network representation of the

BMDS analysis tool, equivalent studies to those in Section 5.6 could be performed

in a similar time. Without the nested layer of surrogate models, the effects of error

propagation would not be present in the outputs, and since there is only a single

model representing the analysis tool, the time spent creating the surrogate would be

far less than when using nested models. The problem associated with this is that it

may not be possible to do. From the universal approximation theorem, the existence

of the mapping necessary to use a single surrogate is not guaranteed to exist. Because

of this, it is possible to spend an infinite amount of time sampling the design space
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and still never be able to create the surrogate model.

Alternatively, nested neural network surrogate models could be applied to create

the mapping from system attributes to performance. In doing so, an similar end

result can be obtained to that of using a single surrogate (since the difference in speed

between a single surrogate and nested surrogates is negligible) which is capable to the

same analyses. The major difference between the two strategies is that existence of

the mapping is guaranteed under the universal approximation theorem when using

nested neural networks. Moreover, the addition of intermediate data increases the

amount of knowledge known about the design space for a given size data sample,

which allows the nested models to be created with fewer executions of the modeling

and simulation environment. To downside to using nested surrogates is that more

opportunities for errors are introduced. To minimize the frequency of these errors,

more time has to be spend on creating the surrogate models, and coupled with the

fact that multiple models are necessary, further increases the time spent up front.

The intermediate data necessary for nested surrogates is not always discernible, and

often requires insight into the analysis itself (which may not always be available).

Ultimately, the decision for the method of analysis must be based upon the in-

tended purpose and the computational budget. The advantages of not using surro-

gates becomes far less enticing as the computational run time increases and as the

interaction is needed with the data. Under such circumstances, emphasis shifts to

using surrogate models to map the design space. If at all possible, it is desirable to do

this with as few surrogates as possible, but with more complex analysis tools, a single

surrogate may not be able to capture the design space. Nested neural networks can

be employed in such a situation to harness additional information from within the

design space to allow a mapping to be created which acts similar to a single surrogate.
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6.3 Future Work

Although nested neural networks have shown a significant benefit when working with

complex problems and ambiguous design spaces, there is much room left for improve-

ment. This thesis focused on development of nested neural networks when using

discrete intermediate data for application to BMDS studies, however the methodol-

ogy is not limited to this scenario. This methodology is applicable to many other

problems, it would benefit from a more in depth study of the use of NNNs with

continuous intermediate data.

Much of mathematical theory is beyond the scope of this paper, however is suitable

for use as a Ph.D. topic. Currently, the components of a nested neural network are

developed (although sometimes serially) independently. By developing a method to

produce the components of a nested neural network simultaneously, the regression

process may be accomplished with less computational effort.

In order to make the method more effective, a more in depth study of error

propagation and minimization within nested neural networks needs to be examined.

While the off-diagonal clusterings which where shown in Section 5.5 can never be

completely removed, techniques may be established to minimize their occurrence,

which tend to occur in specific regions of the design space.
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