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SUMMARY

Smartphones are not just ordinary phones; they are being used as mobile

platforms for serving the computing needs of a significant segment of the user com-

munity. We believe that storage in smartphones is an Achilles’ heel to achieving the

full performance potential of smartphones for meeting the future computing needs

of the user community that is starting to become more heavily dependent on mobile

platforms. The poor performance of storage in smartphones can be attributed to the

fact that smartphones typically employ flash storage, and the OS storage stack is not

optimized to deal with the performance quirks of such storage.

We have proposed multiple storage software solutions to handle the durability issue

and to improve the performance of Flash storage. There are always design tradeoffs

involved in building software systems. RAM based write buffering can enhance storage

performance, but sacrifices reliability. Redundancy (via replication) can improve data

availability, but it has implications for data consistency. Log-structured design to

combat the “small write” problem solves the random write issue in Flash storage,

but introduces overhead for maintaining mapping information between logical and

physical blocks.

In this thesis, entitled Informed Storage Management (ISM), we aim at providing a

dynamic decision-making framework for system design, specifically targeted to storage

systems on mobile platforms. The goal of ISM is maximizing the performance benefits

while minimizing the side effects of the design choice. As a concrete example of

ISM, we provide mechanisms along three axes, namely, type, temporal, and spatial

for selectively supporting write-back buffering, which can be used judiciously by the

upper layers of the operating system. We implement and evaluate our solution on a

vi



real Android smartphone, and demonstrate significant performance gains for everyday

apps on such platforms.
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CHAPTER I

INTRODUCTION

Smart phones offer the potential for a spectrum of benefits to the society ranging from

commerce and entertainment, to managing disasters. According to recent statis-

tics [29, 80, 107], there are up to 4 billion cell phone users (more than half of the

world’s population), with accelerating penetration in regions such as Africa. The role

played by smart phones in sparking the recent spate of revolutions against author-

itative regimes in the Middle East underscores the increasing importance of mobile

platforms in redefining the computing landscape.

A significant percentage of the population in the developed world relies on mo-

bile devices as their primary source of information access. This trend is even more

significant in the light of predictions about mobile devices dominating most personal

computing landscape in the near future. As we all know, mobile platforms extend

beyond smartphones. The price point for mobile platforms has dropped considerably

due to technological advances. Consequently, we can see a variety of mobile platforms

for dedicated uses popping up all the time including e-books, tablets, and 3D-gaming

consoles. One could see that mobile platforms are starting to penetrate the very

fabric of society at least in the developed countries. Due to its very nature and due

to the demographic diversity of user population using such mobile platforms ranging

from children to grandmothers, low power consumption, low price, and ruggedness

of the operating system have become important considerations in the design of such

platforms. Interestingly, these design considerations make such platforms ideal for

the deeper penetration of computing into developing countries as well. Further, well-

designed mobile platforms may even become attractive server platforms in the future.
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These are exciting times for advances in mobile technology. Smart phones and

Tablets pack a lot of computational power. For example, Samsung Galaxy III uses

Quad-core 1.4 GHz CPU and 2 GB RAM. The tablet-cum-notebook from Asus

(Transformer Prime) uses Nvidia’s Tegra 3 Quad-core CPU (Single core mode 1.4GHz,

multi core mode 1.3GHz) and 1GB RAM.

At the same time, it is also the case that mobile platforms use low-end flash storage

for reasons of power efficiency, size, weight, and ultimately cost. For example, raw

NAND flash memory is the primary store in many devices including Google Nexus

One, HTC desire, One-Laptop-Per-Child (OLPC-XO)-V1 (1GB), Apple iPhone and

iPad series. eMMC is the primary storage technology in devices such as Google Nexus

S, Kindle Fire, and OLPC XO laptop-V1.75 (4GB/8GB). MicroSDHC cards are used

as secondary storage in many smart phones and Internet tablets (e.g., OLPC XO

laptop-V1.5 - 4GB). The capacity of such low-end flash storage is increasing with

technological advances but their performance and reliability continue to be an issue

due to the very nature of the technology (e.g., poor random write performance, wear-

out issue). Data centers and high-end servers routinely use high-end solid state disks

(SSDs) built with flash memories. They are bigger, more expensive, more power

hungry, and are also susceptible to sudden power failure. Such high-end SSDs are not

appropriate for mobile platforms.

One would be tempted to think the primary performance bottleneck in mobile

platforms is the network connectivity. We have proven that storage is a huge perfor-

mance contributor even for mobile workloads [61, 62]. Using typical mobile apps such

as Web browser, Maps, facebook, email, and news clipping, the studies show that the

performance on an Android smart phone is storage-bound and not network-bound

(with two different network connections – wired and wireless).

As we move forward to relying more on mobile devices for everyday computing

activities, storage performance will become more critical with workloads that are
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typically considered today as desktop or server applications. It is inevitable that users

will force such use cases on mobile platforms since technological advances have made

the CPU, memory, and network connectivity in today’s mobile platforms comparable

to desktop/server systems of yesterday.

The focus of this thesis is to advance the state-of-the-art for storage technology

aimed at future mobile platforms. The reality is this research space is very sparsely

represented by the academic community. Device manufacturers (such as Samsung,

Toshiba, Micron, and SanDisk) are focused on enhancing the device itself and are

agnostic to what happens on the host side operating system, since they simply present

a traditional disk-like block-device interface to the host. Enterprise storage systems

(from vendors such as IBM, NetApp, and EMC) use flash memory internally but

focus on high-end SSDs for use in data centers and storage servers (i.e., such research

and development do not impact the client-side mobile platforms). Mobile OS vendors

(such as Google, Apple, Microsoft, and RIM) are interested in this space but their

efforts are usually shrouded in secrecy, and from what is emanating into the open

community it is clear that their focus is in fine-tuning the performance of the current

mobile workloads with existing mature storage technologies.

1.1 Problem Statement

To remove the performance bottleneck in the storage of mobile platforms, operating

system level software support is critically needed, and we target three problems.

First, flash storage exhibits very different performance characteristics relative to

the traditional HDD, but current operating systems (owing to their legacy of assuming

HDD as the primary storage technology) are not engineered to support flash storage

adequately.

Second, mobile platforms are used in much rugged environment than traditional

computer systems. For instance, we carry smartphones in our pockets always, and
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smartphones may easily be “dropped” on the ground. In such situations, the battery

can get separated from the phone, and thus, smartphones have higher chances to

lose system power unexpectedly than regular computer systems do. Therefore, the

storage software stack tends to be configured for high reliability and performance is

sacrificed. Meanwhile, cloud computing and ubiquitous computing are very popular

today, and for some applications, performance is more important than reliability in

local storage because the local storage is used as just a cache store. The current

reliability vs. performance controlling mechanisms are too coarse; the same system-

wide configurations are used both for critical and non-critical files in each storage

layer, and we lose performance unfairly.

Last, flash aware solutions and fine-grained reliability controlling mechanisms are

not enough by themselves. We need to “properly” and “wisely” control them; for the

purpose, system wide information can be collected and used, but right now, we do

not have such methods.

1.2 Thesis Statement

There are always design tradeoffs involved in building software systems. Usually,

system design chooses a “sweet spot” that optimizes the solution for meeting cer-

tain requirements and/or assumptions about the environment (application behavior,

device characteristics, etc.). Unfortunately, since the real world use cases are very dy-

namic and the technology landscape is continually evolving, often such assumptions

may turn out to be incorrect; further, statically fixing the design based on certain

requirements may force the design to be conservative. This argues for the need to

adjust the solution dynamically based on the use case. the technological evolution,

and the workload.

With this background, we state our thesis as “By mining and exploiting system
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wide information, we can improve the performance of storage system on mobile plat-

forms without losing reliability.”

1.3 Organization

To support our thesis statement, we first understand the state-of-the art studies in

Chapter II. Chapter III shows our motivating observation - how much the smartphone

storage can influence application performance. In following two chapters, our two flash

storage solutions (selective logging - Chapter IV and flash aware buffer replacement

scheme - Chapter V) are explained. Then, our integrated storage solution, named

Fjord, will be introduced in Chapter VI. In Chapter VII, we review the our work and

provide some insights for further study. Finally, we conclude in the last Chapter VIII.
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CHAPTER II

BACKGROUND AND RELATED STUDIES

2.1 Flash Storage

Flash storage has become one of the most important players in today’s computer

systems. Despite the fact that magnetic disk is well entrenched in the storage market,

Flash storage is attractive for a number of reasons: it is small, lightweight, shock

resistant, and energy efficient. These characteristics make Flash storage attractive

for enterprise storage systems, which demand extremely high performance, and also

for mobile platforms, which have special requirements.

Flash storage is based on the semiconductor technology, and hence shows very

different performance characteristics as compared to traditional magnetic, rotating

storage devices. Flash memories, including NAND and NOR types, have a common

physical restriction, namely, they must be erased before writing [76]. In flash memory,

the existence of an electric charge in a transistor represents 1 or 0. The charges can

be moved both into a transistor by an erase operation and out by a write operation.

By design, the erase operation, which sets a storage cell to 1, works on a bigger

number of storage cells at a time than the write operation. Thus, flash memory can

be written or read a single page at a time, but it has to be erased at a time in units of

an erasable-block. An erasable-block consists of a certain number of pages. The size

of a page ranges from a word (NOR flash memory) to 4 KB depending on the type

of the device. In NAND flash memory, a page is similar to a hard disk sector and is

usually 2 or 4 KB. Flash memory also suffers from a limitation on the number of erase

operations possible for each block. The insulation layer that prevents electric charges

from dispersing may be damaged after a certain number of erase operations. In single
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Figure 1: SSD, FTL and NAND flash memory: FTL emulates sector read and write
functionalities of a hard disk allowing conventional disk file systems to be implemented
on NAND flash memory

level cell (SLC) NAND flash memory, the expected number of erasures per block is

100,000 and this is reduced to 1,000 in triple bits multilevel cell (TLC) NAND flash

memory. If some blocks that contain critical information are worn out, the whole

memory becomes useless even though many serviceable blocks still exist. Therefore,

many flash memory-based devices use wear-leveling techniques to ensure that blocks

wear out evenly [30].

An SSD (see Figure 1) is simply a set of flash memory chips packaged together

with additional circuitry and a special piece of software called flash translation layer

(FTL) [22, 49]. The additional circuitry may include a RAM buffer for storing meta-

data associated with the internal organization of the SSD, and a write buffer for

optimizing the performance of the SSD. The FTL provides an external logical interface

to the file system. A sector1 is the unit of logical access to the flash memory provided

1Even though the term sector represents a physical block of data on a hard disk, it is commonly
used as an access unit for the FTL because it emulates a hard disk.

7



by this interface. A page inside the flash memory may contain several such logical

sectors. The FTL maps this logical sector to physical locations within individual

pages [22]. This interface allows FTL to emulate a hard disk so far as the file system

is concerned (Figure 1).

By embedding FTL software inside, Flash storage devices can provide the same

functionalities of an HDD, but their performance characteristics are very different

compared to HDDs. A number of studies have been conducted to enumerate the

special characteristics of Flash storage [22, 31, 92], and perhaps, the most important

point of these studies is that Flash storage is different.

2.2 Flash Based Storage Solutions

2.2.1 Key-Value Store

Flash memory has brought about a drastic change in storage technology recently.

Some studies propose totally new storage systems using flash memory. In FAWN (a

Fast Array of Wimpy Nodes) [24], a new distributed storage architecture has been

proposed to provide an efficient, fast, and cost-effective key-value store with low-end

CPUs and wimpy flash devices. FAWN pairs low-power embedded nodes with flash

storage, and it is especially designed to save power consumption.

Another key-value store, named FlashStore [36] has been proposed as a high

throughput persistent key-value store. Both FAWN and FlashStore are based on

the log-structured architecture, but FlashStore uses Flash storage as a cache for hard

disk drives while FAWN applies log-structured architecture for the whole storage.

Small Index Large Table (SILT) [73] is a new flash-based key-value storage sys-

tem that significantly reduces per-key memory consumption with predictable system

performance and lifetime. SILT requires approximately 0.7 bytes of DRAM per key-

value entry and uses on average only 1.01 flash read operations to handle lookup
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tasks. Consequently, SILT can saturate the random read I/O on author’s experimen-

tal system, performing 46,000 lookups per second for 1024-byte key-value entries, and

it can potentially scale to billions of key-value items on a single host.

Key-value store has become very important today in large scale data intensive

applications, and may not have much of a relevance at this point of time for mobile

platforms.

2.2.2 Flash-HDD Hybrid Storage

Griffin [104] system has been proposed as a Flash - Hard disk drive hybrid storage

solution like FlashStore, but the approach is very unique. In general, Flash memory

is used as a cache for a HDD because Flash is faster while HDDs are cheaper and

bigger. However, in Griffin, the roles of HDD and Flash are reversed; an HDD is used

as a write buffer for Flash storage to extend the lifetime of flash storage. Even though

their approach is interesting and evaluation results are promising, this approach will

not be suitable for mobile platforms for multiple reasons; HDDs are big and heavy,

consume much power, and expensive. In Griffin, the authors explicitly mention that

they ruled out the RAM buffering approach due to the reliability concern. However,

we believe that RAM buffering has many attractive merits compared to disk buffering

and proper design of RAM buffering can overcome the reliability issue.

FlashCache [105] is a write back block cache module developed and used by Face-

book. It accelerates reads and writes from slower rotational media by caching data

in SSDs, and is based on the Linux device mapper mechanism [86].

Similarly, Solaris ZFS [79] can use SSDs as a cache store for HDDs. Unlike tra-

ditional volume based file systems, ZFS is designed based on Pool, and users do not

have to manage partitions.

Due to the cost and size benefits of Flash SSDs, many enterprise storage systems

are actively adopting Flash storage in their systems today as a cache [79, 41, 105] or a
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faster tier storage (EMC FAST [40], IBM Easy Tier [48], Compellent Data Progression

systems [35]). Again, the approach is not applicable for mobile platforms considering

the size, cost, and power limitations.

2.3 Storage Software Stack Modification for Flash

2.3.1 Flash Aware File Systems

As is evident, most random writes stem from the well-known “small write” problem in

file systems. Log-structured file system [90] was proposed as a solution to the small

write problem, and it is a promising approach for SSD-based file systems as well

since it can change random writes to sequential writes effectively. JFFS2 [87] and

YAFFS [74] are well-known log-structured file systems working on Memory Technol-

ogy Devices (MTDs), and NILFS [70] is for regular disks including HDDs and SSDs.

However, due to the log-structured nature, such file systems have expensive garbage

collection and scalability issues.

A few years ago, raw NAND flash memories were popularly used in mobile plat-

forms with YAFFS2 file system. Today, eMMC devices are more popular in mobile

platforms, and EXT4 file system is being used instead of YAFFS2.

2.3.2 I/O Scheduler

New I/O scheduling algorithms have been proposed for flash storage. Kim et al.

proposed the Individual Read Bundled Write (IRBW) algorithm which separates

read scheduling from write requests and arranges write requests into bundles [68]. The

algorithm is based on the observation of SSD performance characteristics; read request

service time is almost constant while write request service time is not. Moreover,

appropriate grouping of write requests eliminates any ordering-related restrictions

and also maximizes write performances. The proposed I/O scheduler arranges write

requests into bundles of an appropriate size while read requests are independently

scheduled.
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Dunn and Reddy also proposed a new Block Preferential I/O scheduler for flash

storage [39] based on similar observations. In their study, a new framework has been

proposed to find out the FTL mapping size (i.e. block size) within an SSD, and the

new I/O scheduler gives higher priority to the requests that are in the same block as

the previous request.

A Fair, Efficient Flash I/O Scheduler (FIOS) [84] is another one for Flash storage.

While the previous two I/O schedulers are focusing only on I/O throughput, FIOS

tries to improve Flash I/O fairness and efficiency. When there is a concurrent work-

load with a mixture of readers and synchronous writers running on Flash, readers

may be blocked by writes with substantial slowdown. This means unfair resource uti-

lization between readers and writes, and FIOS employs read preference to minimize

read-blocked-by-write in concurrent workloads.

Even though these I/O scheduling schemes reflect the characteristics of flash de-

vices quite well, the queuing mechanism of I/O schedulers limits the performance

gain. In other words, the number of requests in the queue limits the capability of the

I/O scheduler, and this number is not big in general; the maximum queue size is only

128 by default in most Linux distributions.

2.3.3 Page and Buffer Cache Management

Ever since the appearance of NAND flash memory based solid state storage devices,

multiple flash-aware buffer cache replacement schemes have been proposed. One of

the earliest schemes is CFLRU [83](Figure 2). Due to its very nature, flash memory

incurs less time for servicing a read operation in comparison to a write operation.

In other words, to reduce the total I/O operation time of flash, it is desirable to

reduce the total number of write operations. To this end, CFLRU tries to evict a

clean page rather than a dirty page because a dirty page must be written back to

the storage during the eviction process. However, such a biased policy could fill the
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cache with mostly dirty pages at the expense of not holding frequently accessed clean

pages. This is clearly undesirable as it will bring down the cache hit-ratio overall.

To mitigate this problem, CFLRU divides the LRU cache list into parts (as done in

the 2Q algorithm [57]), and applies the clean-first policy only to the lower part of

LRU list. The authors claim that choosing the partition size intelligently will result

in shorter total operation time for flash storage.
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Figure 2: Example of CFLRU algorithm [83]

LRUWSR [58] shares the same motivation with CFLRU. It also tries to give higher

priority to dirty pages, but it uses a different method. Instead of partitioning the LRU

list into two parts, LRUWSR adds a cold bit to each cache frame, and gives a second

chance to a dirty page frame to remain in the cache. When a page is selected as a

potential victim, its dirty and cold bits are checked first. If the page is dirty and its

cold bit is zero, then the algorithm decides not to choose it as a victim. Instead it sets

the cold bit for this page to indicate that the page has gotten its second chance to

stay in the cache. The authors argue that LRUWSR is better than CFLRU both in

terms of usability (because it does not require any workload dependent parameters)

and performance.

One of the latest flash-aware cache replacement schemes is FOR [75]. It also

focuses on the asymmetric read and write operation time of flash storage. In addition,

it combines inter operation distance (IOD) (the core idea of the Low Inter Reference

Recency [54]) together with the recency attribute of the LRU algorithm. Further,
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FOR calculates the IOD and recency values separately for read and write operations.

By considering all these factors, FOR calculates the weight of each page, and it evicts

the page having the minimal weight value. The results reported by the authors show

20% improvement for database workloads for FOR over other schemes.

2.3.4 New Interface

Even though NAND flash memory has very different characteristics to conventional

magnetic storage, flash based SSDs export the same block-level read and write APIS

as hard disks do for compatibility with current systems. Some studies argue that there

is a lost opportunity for proposing new abstractions that better match the nature of

the new medium. In Transactional Flash (TxFlash) study [85], authors proposed to

extend SSD interface to support atomic writes, which will be useful for building file

systems as well as database systems.

As a similar approach, Nameless Write study [110] has been proposed to allow

flash device to choose the location of a write. This approach can eliminate the need

for indirection in modern SSDs.

These approaches are promising and desirable from a long-term view. However,

changing the interface is not easy, and it requires broad industry consensus and mas-

sive restructuring of the existing infrastructure. Besides, the changed interface should

be general enough to support all kinds of storage.

2.4 Flash Device Level Studies

At the device level, more complicated FTL mapping algorithms have been proposed

to attain better write performance [82, 81]. However, due to the increased resource

usage of these approaches, they are generally used only for high-end SSDs.

Incorporating a write-buffer inside a flash storage device is a slightly higher-level

approach than FTL. For example, we previously proposed Block Padding Least Re-

cently Used (BPLRU) [63] as a buffer management scheme for flash storage and
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showed that even a small amount of RAM-based write buffer could enhance the

random-write performance of flash storage devices significantly.

There is a clear difference between a device-level solution and an OS-level solution

in terms of generality. OS-level approach is useful especially for low-end flash storage

devices, which suffer from limited resources.

2.5 Informed Storage

Semantically smart Disk systems study [102, 25] shows how the high level information

can be used to improve the low level storage performance. File system level informa-

tion can be inferred within a semantically smart storage device, and can be used in

multiple cases: track-aligned extents, structural caching, secure deletion, etc.

The smart disk studies focused on the “information gap” problem between file

system and storage device, and tried to solve the problem within the constraints of

the real world; in other words, without changing the block level interface.

In our Informed Storage Management (ISM) study, we also claim that system wide

information can be useful for the storage sub system. In addition to the information

flow between file system and storage device, we include other types of information

in our framework such as application’s characteristics, user’s preference, and sensor

information.
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CHAPTER III

REVISITING STORAGE FOR SMARTPHONES

In this chapter, we briefly explain our study [62] 1 showing the important role of

storage sub system in mobile platforms. Contrary to conventional wisdom, we find

evidence that storage is a significant contributor to application performance on mobile

devices.

3.1 Introduction

Storage has traditionally not been viewed as a critical component of phones, tablets,

and PDAs – at least in terms of the expected performance. Despite the impetus to

provide faster mobile access to content locally [46] and through cloud services [98],

performance of the underlying storage subsystem on mobile devices is not well under-

stood. Our work started with a simple motivating question: does storage affect the

performance of popular mobile applications? Conventional wisdom suggests the an-

swer to be no, as long as storage performance exceeds that of the network subsystem.

We find evidence to the contrary – even interactive applications like web browsing

slow down with slower storage.

Storage performance on mobile devices is important for end-user experience today,

and its impact is expected to grow due to several reasons. First, emerging wireless

technologies such as 802.11n (600 Mbps peak throughput) [109] and 802.11ad (or “60

GHz”, 7 Gbps peak throughput) offer the potential for significantly higher network

throughput to mobile devices [47].

Figure 3.1 presents the trends for network performance over the last several

1This work was presented at the USENIX FAST’12 conference.
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decades; local-area networks are not necessarily the de-facto bottleneck on modern

mobile devices. Second, while network throughput is increasing phenomenally, la-

tency is not [99]. As a result, access to several cloud services benefits from a split of

functionality between the cloud and the device [33], placing a greater burden on local

resources including storage [71]. Third, mobile devices are increasingly being used as

the primary computing device, running more performance intensive tasks than previ-

ously imagined. Smartphone usage is on the rise; smartphones and tablet computers

are becoming a popular replacement for laptops [20]. In developing economies, a

mobile/enhanced phone is often the only computing device available to a user for a

variety of needs.

In this study, we present a detailed analysis of the I/O behavior of mobile ap-

plications on Android-based smartphones and flash storage drives. We particularly

focus on popular applications used by the majority of mobile users, such as, web

browsing, App install, Google Maps, Facebook, and email. Not only are these activ-

ities available on almost all smartphones, but they are done frequently enough that

performance problems with them negatively impacts user experience. Further, we

provide pilot solutions to overcome existing limitations.
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To perform our analysis, we build a measurement infrastructure for Android con-

sisting of generic firmware changes and a custom Linux kernel modified to provide

resource usage information. We also develop novel techniques to enable detailed,

automated, and repeatable measurements on the internal and external smartphone

flash storage, and with different network configurations that are otherwise not pos-

sible with the stock setup; for automated testing with GUI-based applications, we

develop a benchmark harness using MonkeyRunner tool.

In our initial efforts, we propose and develop a set of pilot solutions that im-

prove the performance of the storage subsystem and consequently mobile applica-

tions. Within the context of our Android environment, we investigate the benefits

of employing a small amount of phase-change memory to store performance critical

data, a RAID driver encompassing the internal flash and external SD card, using a

log-structured file system for storing the SQLite databases, and changes to the SQLite

fsync code-path. We find that changes to the storage subsystem can significantly im-

prove user experience; our pilot solutions demonstrate possible benefits and serve as

references for deployable solutions in the future.

As the popularity of Android-based devices surges, the setup we have examined

reflects an increasingly relevant software and hardware stack used by hundreds of mil-

lions of users worldwide; understanding and improving the experience of mobile users

is thus a relevant research thrust for the storage community. Through our analysis

and design we make several observations:

Storage affects application performance: often in unanticipated ways, storage

affects performance of applications that are traditionally thought of as CPU or net-

work bound. For example, we found web browsing to be severely affected by the
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choice of the underlying storage; just by varying the underlying flash storage, perfor-

mance of web browsing over WiFi varied by 187% and over a faster network (setup

over USB) by 220%. In the case of a particularly poor flash device, the variation

exceeded 2000% for WiFi and 2450% for USB.

Speed class considered irrelevant: our benchmarking reveals that the “speed

class” marking on SD cards is not necessarily indicative of application performance;

although the class rating is meant for sequential performance, we find several cases

in which higher-grade SD cards performed worse than lower-grade ones overall.

Slower storage consumes more CPU: we observe higher total CPU consumption

for the same application when using slower cards; the reason can be attributed to

deficiencies in either the network subsystem, the storage subsystem, or both. Unless

resolved, lower performing storage not only makes the application run slower, it also

increases the energy consumption of the device.

Application knowledge ensues efficient solutions: leveraging a small amount

of domain or application knowledge provides efficiency, such as in the case of our

pilot solutions; hardware and software solutions can both benefit from a better un-

derstanding of how applications are using the underlying storage.

Based on our experimental findings and observations we believe improvements in

the mobile storage stack can be made along multiple dimensions to keep up with the

increasing demands placed on mobile devices. Storage device improvements alone

can account for significant improvements to application performance. Device manu-

facturers are actively looking to bring faster devices to the mobile market; Samsung

announced the launch of a PCM-based multi-chip package for mobile handsets [96].

Mobile I/O and memory bus technology needs to evolve as well to sustain higher
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throughput to the devices. Limitations in the systems software stack can however

prevent applications from realizing the full potential of hardware improvements; we

believe changes are also warranted in the mobile software stack to complement the

hardware.

3.2 Android Measurement

Since setting up smartphones for systems analysis and development is non-trivial, we

describe our process here in detail; we believe this setup can be useful for someone

conducting storage research on Android devices.

Mobile Device Setup

In this study we present results for experiments on the Google Nexus One phone [11].

We also performed the same or a subset of experiments on the HTC Desire [12], LG

G2X [14], and HTC EVO [13]; the results were similar and are omitted to save space.

The Nexus One is a GSM phone with a 1 GHz Qualcomm QSD8250 Snapdragon

processor, 512 MB RAM, and 512 MB internal flash storage; the phone is running

Android Gingerbread 2.3.4, the CyanogenMod 7.1.0 firmware [9] or the Android Open

Source Project (AOSP) [3] distribution (as needed), and a Linux kernel 2.6.35.7 mod-

ified to provide resource usage information. We present a brief description of the

generic OS customizations, which are fairly typical, and then explain the storage-

specific customization later in this section.

In order to prepare the phones for our experiments, we setup the Android Debug

Bridge (ADB) [1] on a Linux machine running Ubuntu 10.10. ADB is a command-line

tool provided as part of Android developer platform tools that lets a host computer

communicate with an Android device; the target device needs to be connected to the

host via USB (in the USB debugging mode) or via TCP/IP. We subsequently root the

device with unrevoked3 [18] to flash a custom recovery image (ClockworkMod [6]).

For our experiments we needed to bypass some of the constraints of the stock
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firmware; in particular, we needed support for reverse tethering the mobile device

via USB, the ability to custom partition the storage, and access to a wider range

of system tools and Linux utilities for development. For example, BusyBox [5] is a

software application that provides many of the standard Linux tools within a single

executable, ideal for an embedded device. CyanogenMod [9] is a custom firmware

that provides these capabilities and is supported on a variety of smartphones. The

Android Open Source Project (AOSP) [3] distribution provides capabilities similar to

CyanogenMod but is supported only on a handful of Google-smartphones, including

the Google Nexus One.

We used the CyanogenMod distribution for all experiments on non-Nexus phones,

and for experiments that require comparison between a non-Nexus and the Nexus One

phone. All Google Nexus One results presented in this paper exclusively use AOSP;

we equipped both CyanogenMod and AOSP distributions with our measurement-

centric customizations.

An important requirement, specific to our storage experiments, is to be able to

compare and contrast application performance on different storage devices. Some of

these applications heavily use the internal non-removable storage. In order to observe

and measure all I/O activity, we change Android’s init process to mount the different

internal partitions on the external storage. Our approach is similar to the one taken

by Data2SD [17]; in addition, we were able to also migrate to the SD card the /system

and /cache partitions.

In order to adhere to Android’s boot-time compatibility tests, we provided a 256

MB FAT32 partition at the beginning of the SD card, mounted as /sdcard. The

/system, /cache, and /data partitions were formatted as Ext3; at the time we con-

ducted our experiments, YAFFS2 and Ext3 were the pre-installed file systems on our

test phones. We performed a preliminary comparison between Ext3 and Ext4 since

Android announced the switch to Ext4 [106], but found the performance differences
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to be minor; a detailed comparison across several file systems can provide more useful

data in the future.

Note that this setup is not normally used by end-users but allows us to run what-

if scenarios with storage devices of different performance characteristics; the internal

flash represents only a single data point in this set.

As part of our experiments, we want to understand the impact of storage on

application performance under current WiFi networks, as well as under faster network

connectivity (likely to be available in the future). For WiFi, we set up a dedicated

wireless access point (IEEE 802.11 b/g) on a Dell laptop having 2GB RAM and

an Intel Core2 processor. Since we do not have a faster wireless network on the

phone, we emulate one by reverse tethering [19] it over the miniUSB cable connection

with the same laptop (allowing the device to access the Internet connection of the

host); Table 1 shows the measured performance of our WiFi and USB RT link using

iperf [51].

Table 1: Network Performance: Transfer rates for WiFi and USB reverse tether
link with iperf (MB/s).

Network Connection Receive Rate Transmit Rate

USB 8.04 7.14
WiFi 1.10 0.53

To minimize variability due to network connections and dynamic content, we setup

a local web server running Apache on the laptop. The web server downloads the web

pages that are to be visited during an experiment and caches them in memory; where

available, we download the mobile friendly version of a web site.

We conducted all experiments on the internal non-removable flash storage and

eight removable microSDHC cards, two each from the different SD speed classes [16].

Table 2 lists the SD cards along with their specifications and a baseline performance
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Table 2: Raw device performance and cost: Measurements on Desktop with
card reader (left) and on actual phone (right). “Sq” is sequential and “Rn” is random
performance.

SD Card Speed Cost Performance on desktop (MB/s) Performance on phone (MB/s)
(16 GB) Class US$ Sq W Sq R Rn W Rn R Sq W Sq R Rn W Rn R
Transcend 2 26 4.16 18.03 1.18 2.57 4.35 13.52 1.38 2.92
RiData 2 27 7.93 16.29 0.02 2.15 5.86 11.51 0.03 2.76
Sandisk 4 23 5.48 12.94 0.68 1.06 4.93 8.44 0.67 0.73
Kingston 4 25 4.92 16.93 0.01 1.68 4.56 9.84 0.01 1.94
Wintec 6 25 15.05 16.34 0.01 3.15 9.91 13.38 0.01 3.82
A-Data 6 30 10.78 17.77 0.01 2.97 8.93 13.49 0.01 3.64
Patriot 10 29 10.54 17.67 0.01 2.96 8.83 13.38 0.01 3.72
PNY 10 29 15.31 17.90 0.01 3.56 10.28 14.02 0.01 3.95

measurement done on a Transcend TS-RDP8K card reader2 using the CrystalD-

iskMark benchmark V3.0.1 [8] (shown on the left side). The total amount of data

written is 100 MB, random I/O size is 4KB, and we report average performance over 3

runs; observed standard deviation is low and we omit it from the table. Prices shown

are as ordered from Amazon.com and its resellers, and Buy.com (to be treated as ap-

proximate). We also performed similar benchmarking experiments for the eight cards

on the Nexus One phone itself, using our own benchmark program. Testing configu-

ration is as before with 4KB random I/O size and 128 MB of sequential I/O; results

in Table 2 (shown on the right side) exhibit a similar trend albeit lower performance

than for desktop.

To summarize, read performance of the different cards is not a crucial differenti-

ating factor and much better overall than the write performance. Sequential reads

clearly show little or no correlation with the speed class; sequential write performance

roughly improves with speed class, but with enough exceptions to not qualify as mono-

tonic. Random read performance is not significantly different across the cards. The

most surprising finding is for random writes: most if not all exhibit abysmal perfor-

mance (0.02 MB/s or less!); even when sequential write performance quadruples (e.g.,

Transcend versus Wintec), random writes perform several orders of magnitude worse.

In terms of overall write performance including random and sequential, Kingston

2Note that internal flash could not be measured this way.
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consistently performs the worst and tends to considerably skew the results (as shown

in Figure 4 and Figure 5); we try not to rely on Kingston results alone when making

a claim about storage performance. In practice, we find that application performance

varies even with the other better cards. Transcend performs the best for random

writes, by as much as a factor of 100 compared to many cards, but performs the

worst for sequential writes; Sandisk shows a similar trend. A-Data, Patriot, Wintec,

and PNY perform poorly for random, but give very good sequential performance.

Kingston and RiData suffer on both counts as they not only have poor random

write performance, but also mediocre sequential write performance (shown in bold in

Table 2); application-level measurements reflect the consequences of the poor micro-

benchmark results.

3.2.1 Measurement Software

We first explain our measurement environment and the changes introduced to col-

lect performance statistics: (1) We made small changes to the microSD card driver

to allow us to check “busyness” of the storage device by polling the status of the

/proc/storage usage file. (2) We wrote a background monitoring tool (Monitor)

to periodically read the proc file system and store summary information to a log

file; the log file is written to the internal /cache partition to avoid influencing the

SD card performance. CPU, memory, storage, and network utilization information

is obtained from /proc/stat, /proc/meminfo, /proc/storage usage (busyness) and

/proc/diskstats, and /proc/net/dev respectively. (3) We use blktrace [4] to collect

block-level traces for device I/O.

In order to ascertain the overheads of our instrumentation, we conducted exper-

iments with and without the measurement environment; we found that our changes

introduce an overhead of less than 2% in total runtime.

Since many popular mobile applications are interactive, we needed a technique
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to execute these applications in a representative and reproducible manner; for this

purpose we used the MonkeyRunner [15] tool to automate the execution of interactive

applications. Our MonkeyRunner setup consists of a number of small programs put

together to facilitate benchmarking with the necessary application; we illustrate the

methodology next.

First, we start the Monitor tool to collect resource utilization information and

note its PID. Second, we start the application under test using MonkeyRunner which

defines “button actions” to emulate pressing of various keys on the device’s touch

screen, for example, browsing forward and backward, zooming in and out with the

touch screen pinch, and clicking on screen to change display options. Third, while

the various button actions are being performed, CPU usage is tracked in order to au-

tomatically determine the end of an interactive action. A class function UntilIdle()

that we wrote is called from the MonkeyRunner script to detect the execution status

of an app; it determines idle status using a specified low CPU threshold and the min-

imum time the app needs to stay below the threshold to qualify as idle. Fourth, once

the sequence of actions is completed, we perform necessary cleanup actions and return

to the default home screen. Fifth, the Monitor tool is stopped and the resource usage

data is dumped to the host computer. Similar scripts are used to reset the phone to

a known state in order to repeat the experiment (to compute mean and deviation).

3.2.2 Application Benchmarks

We now describe the Android apps that we use to assess the impact of storage on

application performance; we automate a variety of popular and frequently used mobile

apps to serve as benchmarks.

WebBench: is a custom benchmark program we wrote to measure web browsing

performance in a non-interactive manner; it is based on the standard WebView Java

Class provided by Android. WebBench visits a pre-configured set of web sites one
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Figure 4: Runtimes for WebBench on Google Nexus One: Runtime for
WebBench for SD cards and internal flash; each bar represents average over three
trials with standard deviation; lighter bar is over WiFi, darker one for USB RT.

after the other and reports the total elapsed time for loading the web pages. In

order to accurately measure the completion time, we made use of the public method

of WebView class named onProgressChanged(); when a web page is fully loaded,

WebBench starts loading the next web page on the list. We ran WebBench to visit

the top 50 web sites according to a recent ranking [7].

AppInstall: installs a set of top 10 Android apps on Google Android Market (listed

in Table 3 on the left), successively, using the

adb install command. App installation is an important and frequently performed

activity on smartphones; each application on the phone once installed is typically

updated several times during subsequent usage. In addition, often times a user needs

to perform the install “on the go” based on location or situational requirements; for

example, installing the IKEA app while shopping for furniture, or the GasBuddy app,

when looking to refuel.

AppLaunch: launches a set of 10 Android apps using MonkeyRunner listed in Ta-

ble 3 on the right; the apps are chosen to cover a variety of usage scenarios: games

(AngryBird and SnowBoard) take relatively longer to load, read traffic to storage
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Table 3: Apps for Install and Launch from Android Market Install: top Apps
in Aug 2011, total size 55.58 MB, average size 5.56 MB; Launch: 10 apps launched
individually.

App Name Size App Name Size
(Install) (MB) (Launch) (MB)

YouTube 1.95 AngryBird 18.65
Google Maps 6.65 SnowBoard 23.54
Facebook 2.96 Weather 2.60
Pandora 1.22 Imdb 1.38
Google Sky Map 2.16 Books 1.05
Angry Birds 18.65 Gallery 0.58
Music Download 0.70 Gmail 2.14
Angry Birds Rio 17.44 GasBuddy 1.88
Words With Friends 3.75 Twitter 1.36
Advanced Task Killer 0.10 YouTube 0.80

dominates. Weather and GasBuddy apps download and show real-time information

from remote servers, i.e., network traffic is high. Gmail and Twitter apps download

and store data to local database, i.e., both network and storage traffic is high. Books

and gallery apps scan the local storage and display the list of contents, i.e., read to

storage dominates. Imdb has no storage or network traffic due to web cache hits,

while YouTube launch is network intensive.

Facebook: uses the Facebook for Android application; each run constitutes the

following steps: (a) sign into the author’s Facebook account (b) load the news feed

displayed initially on the phone screen (c) “drag” the screen five times to load more

feed data (d) sign out.

Google Maps: uses the Google Maps for Android application; each run constitutes

the following steps: (a) open the Maps application (b) enter origin and destination

addresses, and get directions (c) zoom into the map nine times successively (d) switch

from “map” mode to “satellite ” mode (e) close application.

Email: uses the native email app in Android; each run constitutes the following steps:

(a) open the app, (b) input account information, (c) wait until a list of received emails
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Table 4: I/O Activity Breakdown: Aggregate sequential. and random, writes and
reads during benchmark; note moderate to high rand:seq write ratios for WebBench,
Email, Maps, Facebook, and low for AppInstall. Zero value means no activity during
run.

Activity Write (MB) Read (MB)
Sq Rn Sq Rn

WebBench 41.3 32.2 6.8 0.5
AppInstall 123.1 5.6 0.7 0.1
Email 1.0 2.2 1.1 0.1
Maps 0.2 0.3 0 0
Facebook 2.0 3.1 0 0
RLBench 25.6 16.8 0 0
Pulse 2.6 1.0 0 0

appears, and (d) close the application.

RLBench [88]: a synthetic benchmark app that generates a pre-defined number of

various SQL queries to test SQLite performance on Android.

Pulse News [23]: a popular reader app that fetches news articles from a number

of websites and stores them locally. Our benchmark consists of the following steps:

(a) open Pulse app, (b) wait until news fetching process completes, and (c) close the

app.

Background: another popular usage scenario is concurrent execution of two or more

applications (Android and iOS are both multi-threaded); several apps run in the

background to periodically “sync” data with a remote service or to provide proactive

notifications. Our benchmark consists of the following set of apps in auto sync mode:

Twitter, books, contacts, Gmail, Picasa, and calendar, and a set of active widgets:

Pulse, news, weather, YouTube, calendar, Facebook, Market, and Twitter.

For many of the above benchmarks (e.g., Facebook, Email, Pulse, Background),

the actual contents and amount of data can vary across runs; we measure the total

amount of data transferred and normalize the results per Megabyte. We also repeat

the experiment several times to measure variations; for multiple iterations, the local
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application cache is deleted following each run.

3.3 Summary

Contrary to conventional wisdom, we find evidence that storage is a significant con-

tributor to application performance on mobile devices; our experiments provide in-

sight into the Android storage stack and reveal its correlation with application per-

formance. Surprisingly, we find that even for an interactive application such as web

browsing, storage can affect the performance in non-trivial ways; for I/O intensive

applications, the effects can get much more pronounced. With the advent of faster

networks and I/O interconnects on the one hand, and a more diverse, powerful set of

mobile apps on the other, the performance required from storage is going to increase

in the future. We believe the storage system on mobile devices needs a fresh look and

we have taken the first steps in this direction.
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CHAPTER IV

FLASHLITE: SELECTIVE LOGGING

In this chapter, we explain our selective logging solution named FlashLite [64] 1 as

a case study of ISM. The main idea of FlashLite solution is selectively applying the

logging solution only to the chosen applications, and it supports the ISM approach.

4.1 Introduction

Peer-to-peer (P2P) file sharing programs, such as BitTorrent [34] and eMule [56],

have become popular today. A significant portion of the Internet traffic is generated

by P2P programs now [59], and it is easy and efficient to download a huge Linux

distribution with P2P method.

The possible reasons for the success of P2P file sharing are scalability and robust-

ness. It downloads a file from multiple peers simultaneously, and also uploads some

parts already downloaded at the same time. In a traditional downloading method,

more clients implies longer downloading time. In contrast, P2P file downloading pro-

gram works more efficiently when there are a number of clients trying to download

the same file because they help one another. Moreover, P2P protocol usually provides

robust download because it is less dependent on a single server.

This distributed downloading mechanism, called swarming, causes a special file

write pattern in P2P file sharing programs. Because small parts are concurrently

downloaded from many peers and written to a destination file, its write pattern tends

to be random, and the degree of the randomness is highly dependent on the size of

the downloading chunk and the number of peers that are connected to get the file

1This work was presented at ICDCS’09 conference.
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Figure 6: Sequential and 4KB random read/write performance of MTron MSD-
SATA3025 SSD[22]

simultaneously.

Recently released Solid-State Drive (SSD) using NAND flash memory is getting

popular due to its attractive benefits. It is energy efficient, light-weight, and abso-

lutely silent. In addition, delay-free random reads of SSD enable a system to boot

fast.

However, SSD suffers from random writes in general. Figure 6 shows the perfor-

mance of MTron MSD-SATA3025 SSD [22]. The 4KB sized random write speed is

only 520KB/second while the sequential write performance is 80MB/second. Random

write performance is only 0.6 % of sequential performance. While the level of per-

formance difference is specific to each SSD, they show poor performance for random

writes in general [27, 38, 72].

Random writes also shorten the lifetime of SSDs. When a write request takes

a long time to complete in SSD, it means that the request causes many physical

operations on flash memory such as page writes and block erasures. Due to the nature

of the technology, NAND flash memory can incur only a finite number of erasures for

a given physical block. Therefore, increased erase operations due to random writes

shortens the lifetime of an SSD. In other words, random writes make a flash storage

wear out much faster than normal writes.
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While random writes are very slow as well on SSDs, the durability issue is a

more serious problem to solve because the performance bottleneck of P2P file sharing

program is usually the network rather than storage. For example, our experiments

show that P2P download could make SSD wear out over hundred times faster than

normal FTP download. The reality is of course that SSDs are becoming popular and

viable to use in place of hard disk on notebook and tablet PCs. The user community

on such gadgets will necessarily use P2P file sharing. Therefore, solving the random

write problem on SSD is critical to the lifetime of such gadgets.

In this study, we analyze the write patterns of P2P file sharing programs, and

explain the basics of flash storage to show how harmful P2P program could be for

SSD. We also propose, a light weight library called FlashLite for P2P file sharing

programs. FlashLite changes random writes of an application to sequential writes

with logging technique similar to log-structured file systems [90].

For evaluation, we have implemented FlashLite and applied it to a well known

P2P file sharing program, emule 0.49b. We have collected write traces while down-

loading a 3.3Gbyte sized Fedora 9 DVD ISO image using this modified eMule, and we

have verified that the writes are effectively changed to be sequential. We have also

performed trace-driven simulation to find out the number of block erasures inside an

SSD. The results show that FlashLite effectively eliminates about 94% of the physical

erase operations compared to the original for the test of Fedora 9 image downloading.

This study makes three main contributions. First, we show that the workload

of P2P file sharing program is very unique and could be harmful for flash storages.

The second contribution, perhaps the most important, is the new library FlashLite to

deal with the random write problem of P2P swarming. Thirdly, we propose a novel

method for evaluating the lifetime of an SSD, using a combination of trace-driven

simulation and emulation of the SSD hardware.

31



4.2 Write Patterns of P2P Downloading

We collected disk accesses on Windows XP with DiskMon[91] while downloading a

large enough test file with various P2P file sharing programs.

Our test machine2 has 8Gbyte sized SLC SSD for C drive and 30Gbyte sized MLC

SSD for D drive. We use an empty D drive while Windows XP was installed on C drive

to filter out unrelated disk accesses to our test. Before every download, we format the

D drive with FAT32 to get rid of disk aging effect. We use a 3.3Gbyte sized Fedora 9

i386 DVD ISO image as a test file for downloads because the file is large and popular

enough for our test. Popular file can be downloaded fast by P2P file sharing program.

Figure 7 presents the collected write traces for eight downloads: One is from

ftp (Windows XP), four are from BitTorrent clients, and the remaining three are

produced by eDonkey2000 clients. In the graph, Y-axis represents the logical sector

number of the write requests and X-axis represents write sequence (i.e., temporal

order of write requests).

Figure 7 (a) presents perfectly sequential write pattern by ftp. The file content is

downloaded and written from its beginning to the end in a fully sequential manner.

Unfortunately, the results are quite different when we use P2P file downloading

programs. The remaining graphs in Figure 7 show these results. Figure 7 (b) shows

the write traces of BitTorrent. The sequential writes at the beginning are due to the

creation of a destination file. BitTorrent first creates an empty destination file with

final download size, and then overwrites the blocks thus reserved almost randomly.

Vuze (Figure 7 (c)) and µTorrent (Figure 7 (d)) are also BitTorrent network clients,

and the write patterns are almost the same as BitTorrent.

Figure 7 (e) of BitTornado, another BitTorrent client, presents a very unique

write pattern. Instead of creating a destination file with the final download size at

2Asus EeePC 1000 Netbook
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(a) ftp (b) BitTorrent 6.1.1

(c) Vuze 3.1.1.0 (d) µTorrent 1.8.1

(e) BitTornado 0.3.17 (f) NeoMule 4.50

(g) aMule 2.2.2 (h) eMule 0.49b

Figure 7: Write Traces of P2P file sharing programs: Downloading 3.3Gbyte sized
Fedora 9 Image
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the beginning like other BitTorrent clients, it increases the file size gradually. This

means that BitTornado gradually enlarges the size of the downloading window.

Three eDonkey2000 (ED2K) network clients show almost the same write tenden-

cies as seen in Figures 7 (f), (g), and (h). However, the writes of ED2K clients

seem to be less scattered than BitTorrent clients. It is possibly because BitTorrent

clients are more aggressive than ED2K clients, and ED2K network is less popular

than BitTorrent network at the present time.

Even though there are some differences in the write patterns among P2P file

sharing programs, all the tested P2P file sharing programs show extensive random

write patterns, thus establishing the premise of our work.

4.3 FlashLite

Random File Writes

FlashLite

TA
G Data TA
G Data

Sequential Writes

Logical File

Physical File

RAM Resident
Mapping

Information

File System

P2P File Sharing Program

Log Record

Signature

Figure 8: Concept of FlashLite

The basic idea of FlashLite is almost the same as log-structured file system [90].

Log-structured file system was originally proposed to avoid the small write problem in

UNIX development environments. Such small writes translate to creating log records
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that are written sequentially to the same large log file. In a similar manner, Flash-

Lite creates a log file and the incoming (random) writes are written as log records

sequentially to the same physical log file. Each log record in FlashLite consists of a

tag and data; the tag contains the information about the position of the data in the

file that is being downloaded. Figure 8 captures the concept of FlashLite.

There are two important data structures in FlashLite. The first data structure

contains information about the tag which describes the log record, and has three

fields. The first field indicates the type of log record, and the remaining two fields

are interpreted differently based on the type. For a file write operation, these fields

give the logical file offset and size for the data being written. For SetFileLength()

operation, which is called for creating a new file, only one of these two fields is

meaningful and that field gives the size of the new file being created.

The second data structure is used for RAM resident mapping information. Flash-

Lite writes data sequentially regardless of the logical offset. Therefore, we need to

maintain a logical to physical mapping in memory for reading the file that has just

been written. This is a doubly-linked data structure (see Figure 9) that contains

three fields: logical offset, physical offset, and length of data.

1000, 80 2000, 120 3000, 100

TA
G

100

TA
G 80

TA
G

120

Signature

Physical File

Doubly linked list

Figure 9: Linked list after three writes: 100 bytes at offset 3000, 80 bytes at offset
1000, and 120 bytes at offset 2000

File Writing
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For a write request, a tag structure is filled with proper information (logical offset

and size) and written with data to the physical file sequentially. FlashLite maintains

RAM resident mapping information for logical to physical offset translation, and it is

updated for the data that is being written. A new node structure is allocated, filled

with logical offset, data size, and the actual physical file offset, and inserted into the

doubly linked list. Currently, FlashLite uses a doubly linked list for simplicity; it

may be changed to a more sophisticated data structure such as radix tree for better

performance in the future. Figure 9 shows an example of a linked list generated after

three consecutive write requests.

File Reading

To read data, we need to translate logical file offset to physical offset because data

is written sequentially regardless of its logical offset in FlashLite. To minimize CPU

overhead, FlashLite remembers the last accessed node structure in the mapping list,

and searches the list from that point. If a node having the required data is found,

the data is read using the physical offset in the node structure. The search may fail

because a user may attempt to read data that has not been written yet. In that case,

FlashLite fills the read buffer with zero. One read request on FlashLite can cause

multiple discrete reads of the log file since there may be multiple log records on the

log file that contain all the requested data.

File Opening

FlashLite writes a signature at the beginning of a log file to distinguish it from a

normal file. When a log file is re-opened, RAM resident mapping information has to

be reconstructed. All tags in a log file are read sequentially, and the doubly linked list

is rebuilt with the information in tags. This process is time consuming because the

whole file should be read. Fortunately, FlashLite does this process only for the certain
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Figure 10: Write Traces of eMule with FlashLite

downloading files of P2P file sharing program while a log-structured file system has

to do that for the whole storage.

File Closing

When a file is closed, FlashLite destroys the RAM resident mapping information

for the file.

File Rearranging

When we download a file with a P2P file sharing program using FlashLite, the

file is written as a log file as we just described. Further, this file can be read only by

using the file read operation provided by FlashLite. However, FlashLite provides a

simple operation as an API call to convert this log-structured file into a normal file

so that normal file operations can be used by other programs that simply want to use

the downloaded file. The API call, RearrangeTo() reads the log file with FlashLite

and writes the destination file as a normal file from beginning to end.
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4.4 Evaluation

Our evaluation is set out to serve two purposes: 1. To verify that FlashLite does

result in changing the write pattern of an application to sequential writes from random

writes. 2. To verify that FlashLite does reduce the erase count considerably compared

to the original P2P downloading program.

4.4.1 Write Pattern Study with FlashLite

We collected disk accesses while downloading a test file with modified eMule to verify

the write pattern, and Figure 10 shows the write traces. Compared to the write

pattern of the original eMule (Figure 7 (h)), it can be seen that the write pattern is

effectively changed to be sequential.

Figure 10 shows that the modified eMule has almost doubled the number of sector

accesses (Y-axis) compared to the other write traces of P2P file sharing programs

(Figure 7). This is because we have to make a call to RearrangeTo() after the file

download by the P2P program is complete.

Referring to Figure 10, the first half of the writes are generated due to the log

writes of FlashLite during the file download. During this phase, the horizontal lines

in the graph are from the Microsoft FAT file system updates and some other meta

files that the application generates on top of the temporal write sequences of the P2P

file downloading. For example, eMule updates some information about downloading

to a .met file, and also writes a statistics file frequently. The second half of the sector

writes (starting roughly from sector write numbered 8 on the x-axis) is perfectly

sequential (no more horizontal lines) and represents the work of the RearrangeTo()

API call after the download is complete.

Comparing the graphs in Figure 7 with Figure 10, we can see that both the orig-

inal P2P file downloading programs and the modified eMule with FlashLite write
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roughly the same number of sectors (determined by the maximum sector write se-

quence number on the x-axis). Since FlashLite does not create a dummy file with its

final download size, the total number of writes including the final rearranging step

for modified eMule is similar to that of P2P file sharing programs, except for a small

increase for tag writing.

This write pattern study confirms that FlashLite effectively converts the random

writes of eMule to sequential writes.

4.4.2 Erase Count with FlashLite

The lifetime of SSD can be measured indirectly with erase counts of physical blocks

in SSD. However, there is no known way to find out actual erase counts of physical

blocks from real SSD. As a solution, we have used a trace-driven simulation method.

Firstly, we developed an emulator for our target SSD. We had to guess the internal

FTL algorithm of the SSD for its emulation. Even though it was not possible to find

out the accurate FTL algorithm, we could get fair enough model for our emulation

by some heuristic write tests. Secondly, we collected write traces on a real SSD while

downloading the same test file with various P2P file sharing programs including the

original eMule and modified eMule with FlashLite. Finally, we ran the traces on our

SSD emulator and were able to get the erase counts from our emulator.

The simulation results for erase counts are shown in Figure 11. The Y-axis repre-

sents the total number of erase operations done during replaying the collected write

traces, i.e., the sum of all erase counts for all the blocks as reported by the SSD

emulator.

Due to the nondeterministic nature of P2P network, we repeated our test five

times, and the figure shows the average results with maximum and minimum. The

simulated average erase counts of eMule, 217,610, is significantly reduced to 13,254

by FlashLite. It is only 6.1% compared to the original eMule.
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Figure 11: Simulated Erase Counts: (a) ftp, (b) BitTorrent, (c) Vuze, (d) µTorrent,
(e) BitTornado, (f) NeoMule, (g) aMule, (h) eMule, (i) eMule with FlashLite

From Figure 11 note that BitTorrent clients show much smaller erase counts than

ED2K clients, despite the random write patterns shown by the traces earlier (see

Figure 7). This was a surprising result but can be explained due to a couple of reasons.

The first reason is that the downloading chunk size in BitTorrent is 256Kbytes which

is much larger than that used by ED2K.

The second reason is that BitTorrent writes only a single downloading file. On the

other hand, eMule writes several files(both downloading file and meta files) during

the downloading process very frequently.

4.5 Summary

SSD technology is becoming a viable replacement for hard disk at least in the end

user market (laptops, tablet PC, etc.). P2P file downloading is a popular application

for the community of users that use such devices. P2P file downloading employs

swarming to efficiently download different parts of a large file from multiple peers.

This in turn results in generating random writes to the storage device on the target

platform, which is particularly detrimental to the lifetime of SSD due to the inherent

nature of this technology.
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We have focused on this problem and made three research contributions in this

study. First, we have analyzed the downloading patterns of several popular P2P file

sharing programs to show the random write patterns they generate. Second, we have

proposed a simple yet powerful user-level technique called FlashLite, for converting

the random writes to sequential writes. We have implemented this technique as a

user-level library for use in applications such as P2P file sharing. We have modified

a popular P2P file sharing program called eMule to use our library and have shown

that such a modification is fairly trivial and straightforward. To evaluate the power

of FlashLite, through actual file download using the modified eMule, we have shown

how our technique helps in converting the random writes to sequential writes. Third,

we have developed a technique for assessing the lifetime of SSD. For this part, we have

faithfully emulated an SSD to account for the erasure counts. Using this emulated

SSD and the traces collected from using the original and modified eMule, we have

shown that FlashLite results in reducing the erasure count to 8% of the original

unmodified eMule.

41



CHAPTER V

SPATIALCLOCK: FLASH AWARE CACHE

REPLACEMENT

In this chapter, we explain our SpatialClock study [66] 1, which is designed for low-end

flash storage in mobile platforms. From this work, we can see that low-level informa-

tion (device performance characteristics) can be useful for high-level OS software.

5.1 Introduction

Over the past decade, mobile computing devices, particularly smartphones, are find-

ing increasing use in our daily lives. According to a recent Gartner report, within

the next three years, mobile platforms will surpass the PC as the most common web

access device worldwide [44]. By 2013, over 40% of the enhanced phone installed-base

will be equipped with advanced browsers [89].

Although mobile systems have become unbelievably popular today, only few stud-

ies have been conducted for deep understanding of mobile systems. Mobile systems

are not just miniatures of personal computer systems, and thus, the previous research

insights from desktop and server systems should not be simply applied to mobile sys-

tems without careful reexamination. For example, a recent study reveals that the

storage subsystem has a much bigger performance effect on application performance

on smartphones than it does on conventional computer systems [62]. Considering the

rapid growth of mobile systems, it is the time to move our focus to the mobile system

components.

1This work was presented at SIGMETRICS’12 conference.
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CPU power and main memory capacity are increasing very fast; the latest smart-

phone has a dual core 1.2 GHz processor as well as 1 GB of main memory capac-

ity [94]. On the other hand, the technology used for storage on mobile platforms lags

significantly behind that used on regular computers. Flash storage is the norm for

smartphones because of the limitations of size, cost, and power consumption. Flash

storage exhibits very different performance characteristics relative to the traditional

Hard Disk Drive (HDD); plus current operating systems (owing to their legacy of as-

suming HDD as the primary storage technology) are not engineered to support flash

storage adequately. Consequently, flash storage is the Achilles’ heel when it comes to

performance of mobile platforms [62]. While high-end flash based Solid-State Drives

(SSDs) are available and used in regular and enterprise class machines, adoption of

such storage for mobile platforms is infeasible for reasons of cost, size, and energy

consumption. Therefore, we argue that operating system level software support is

critically needed for low-end flash storage to achieve high performance on mobile

platforms, and thus, we focus our attention on inexpensive flash storage in this study.

Specifically, we are concerned with the buffer cache replacement schemes for mobile

platforms using inexpensive flash storage.

OS buffer cache is the focal point for actions regarding how to enhance the per-

formance for OS generated write operations to the storage device. Specifically, we

are interested in revisiting the page replacement algorithm used by the OS buffer

cache. The primary goal of the OS buffer cache is ensuring a good hit-ratio for the

subsystems that sit on top of it. It is well-known that Least Recently Used (LRU)

or some variant thereof that preserves temporal locality is a good choice for a page

replacement algorithm from the point of ensuring a good hit-ratio. However, such

algorithms tend to be agnostic about the performance characteristics of the primary

storage backing the buffer cache.

The first step is to take stock of the state-of-the-art in buffer cache management
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schemes proposed and or used in current operating systems and evaluate their efficacy

for flash storages used in smartphones. LRU , Clock [26], Linux2Q [28] are three well-

known flash-agnostic buffer cache replacement schemes. Clean First Least Recently

Used (CFLRU) [83], Least Recently Used Write Sequence Reordering (LRUWSR)

[58], Flash based Operation aware Replacement (FOR) [75], Flash-Aware Buffer man-

agement (FAB) [55] are previously proposed four flash-aware buffer cache replacement

schemes. Even though most of these proposed schemes are aiming for general flash

storage rather than the inexpensive ones found in mobile platforms, they are a step in

the right direction. We would like to understand the performance potential of these

schemes (both flash-agnostic and flash-aware ones) for mobile flash storage.

What is the best evaluation strategy for answering this question?

Analytical modeling, simulation, and real implementation are the traditional ap-

proaches to performance evaluation of computer systems. Specifically, in the context

of OS buffer cache replacement schemes, two techniques have been extensively used:

real implementation in an operating system, and trace-driven simulation. Clearly,

real implementation inside an operating system would reveal the true performance

potential of any buffer cache replacement scheme. But such an approach is fraught

with a number of difficulties and downsides. A real implementation of even a single

scheme would require a huge amount of effort. This is because changing the core

functionality of an operating system such as the buffer cache replacement scheme is

non-trivial since it affects all the subsystems that live on top of it (e.g., VM, file

systems). Also, to have a side by side comparison, such an approach would require

the implementation of all the competing schemes in the operating system. Besides

these difficulties, there are also downsides to this approach. It may be difficult to as-

sess the true performance benefit of the scheme being evaluated due to performance

noise from other parts of the operating system. Further, it would be difficult to ask a

variety of “what if” questions with a real implementation, without re-engineering the
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implementation to answer such questions. Perhaps, most importantly the barrier to

trying out new ideas will be too high if it has to be implemented first in an operating

system to get an estimate of its performance potential. It would stifle creativity.

Trace-driven simulation has been extensively used for buffer cache related studies

sometimes together with real implementation [52, 53, 83], and many other times

just by itself [32, 45, 54, 55, 57, 69, 75, 77, 103]. Typically, storage access traces

are collected first from real applications on an existing system or synthesized from a

workload model of applications. These traces are then used as inputs to a buffer cache

simulator to gather metrics of interest for performance evaluation. Hit-ratio is the

most popular metric, but some studies also measure the I/O operation completion

time. The virtues of trace-driven simulation include time to getting useful results

compared to real implementation, repeatability of results, isolation of performance

benefits from other noises, and the ability to have useful “what if” knobs (additional

input parameters) in addition to the traces serving as the workload for the evaluation.

However, the main drawback of trace-driven simulation is that the results may not

accurately capture all the metrics of interest pertinent to the real system. This is

especially true with flash storage due to the complicated and often opaque mapping

layer inside such devices. Device manufacturers do not publish such internal details;

thus these devices have to necessarily be treated as black boxes. Therefore, any

simulator can only make a best effort guess as to what is happening inside the device

making the veracity of trace-driven simulation results for flash storage questionable.

In this study, we propose a novel buffer cache evaluation framework, which is

a hybrid between trace-driven simulation and real implementation. Basically, our

method expands the existing trace-driven simulation by adding one more step with a

real storage device. It allows us to see the real performance effect of cache replacement

schemes without actually implementing the algorithm into an operating system.

We collect before-cache storage access traces from a real Android smartphone while
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running popular applications such as Web browser and YouTube player. By using

the traces and our proposed evaluation framework, we evaluate seven state-of-the-

art buffer cache replacement schemes, and report very surprising results. The most

previously proposed flash-aware schemes are not better (sometimes much worse) than

flash-agnostic schemes at least with the smartphone workloads that we have evaluated

them with. A careful analysis of the results using our new framework reveals the

source of this disconnect between previous studies and our surprising new results,

namely, not respecting spatial adjacency for write operations to inexpensive flash

storage. Armed with this new insight, we propose a new buffer cache replacement

scheme called SpatialClock for mobile flash storage. By comparing SpatialClock to

the state-of-the-art buffer cache replacement schemes using our evaluation framework,

we show that SpatialClock delivers superior storage performance on real mobile flash

storage while not degrading the cache hit-ratio.

We make the following three contributions through this work. First, we propose a

new buffer cache evaluation framework. Second, we collect before-cache storage access

traces from an Android platform, and make them available for other researchers2 The

third and final contribution is the SpatialClock buffer cache replacement algorithm.

5.2 A novel cache evaluation framework

Flash memory is different from conventional magnetic storage. To overcome the phys-

ical limitations of flash storage, every flash storage device includes a Flash Translation

Layer (FTL) [49, 60] in addition to the storage elements. FTL is a special software

layer emulating sector read and write functionalities of an HDD to allow conventional

disk file systems to be used with flash memory without any modifications. FTLs

employ a remapping technique to use the storage cells more judiciously. When FTL

receives a request to overwrite a sector, it redirects the new content to an empty page,

2https://wiki.cc.gatech.edu/epl/index.php/S-Clock
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Figure 12: The evaluation framework for buffer cache replacement schemes: Tra-
ditional trace-driven simulations stop with Step 1 or 2. Enhancing the framework
with Step 3 allows us to do an accurate evaluation of the performance implications of
different cache replacement schemes on real flash storage devices.

which is already erased, and modifies the mapping table to indicate the new physical

page address where the logical sector has been written.

The FTL algorithm employed by a flash storage device is usually opaque, making

it difficult to simulate a flash storage device. The performance of a flash storage

device critically depends on the algorithms used internally by the FTL. Thus it is

pretty much impossible to accurately simulate the internal architecture of a flash

device for performance evaluation purposes. While it is always possible to simulate a

given FTL algorithm (assuming the details are known) for a specific flash storage, it

is impossible to generalize and use it for other flash devices that we want to compare

it against, since the performance characteristics of a flash device is so intimately tied

to its specific FTL algorithm. Trace-driven simulation may still be good enough to

understand the performance potential of a buffer cache management scheme with

respect to certain metrics of interest (e.g., hit-ratio). However, we believe, it is not

good enough for evaluating all the metrics of interest (e.g., completion time of I/O

operations) in understanding the performance potential of a buffer cache scheme on

a specific flash storage.
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5.2.1 Evaluation Framework

The new buffer cache evaluation framework (Figure 12) is a hybrid between trace-

driven simulation and real implementation. First, we give the big picture and then

drill down to the details. We collect traces of read/write accesses to the buffer cache

from an Android platform running popular Apps. We call this the before-cache traces.

We use these traces as the workload on a simulator that implements the seven dif-

ferent buffer cache management policies that we alluded to in the previous section.

The output of this simulator is two-fold: hit-ratio for the chosen cache scheme; and

after-cache storage access trace for each cache scheme. The latter is the sequence of

read/write requests that would be issued to the actual storage since the buffer cache

does not have these pages. We have developed a tool called Workload Player that

takes the after-cache trace as its input, sends the read/write requests in the trace to a

real storage device, and reports the total elapsed time for performing the read/write

operations. Since the times gathered by the Workload Player are the actual elapsed

times for the requests, they account for the internal architecture of the flash stor-

age on which the trace is being played. Thus, this hybrid evaluation framework is a

faithful reproduction of the combined performance characteristic of the buffer cache

algorithm and the real flash storage.

To contrast our hybrid approach to the traditional trace-driven simulator, the

latter stops with reporting the observed hit-ratio for a given scheme and generating

the actual storage access traces corresponding to the misses. Some studies may take

the actual storage access traces to compute the expected completion of I/O requests

based on published static read/write/block-erase times of a given flash storage device.

By actually playing the after-cache traces on a storage device we are able to get the

real I/O completion times.

To collect the before-cache traces, we have instrumented the Android OS running

on a smartphone. We have used Google Nexus-One smartphone with Android version
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Table 5: Evaluation results for seven cache replacement schemes: Mixed workload
on Patriot 16GB microSDHC card / Nexus One with 4 / 64MB cache size

LRU Clock Linux2Q CFLRU LRUWSR FOR FAB

4MB

Hit-Ratio 0.7592 0.7583 0.7665 0.7584 0.7580 0.7529 0.7497
Generated Read Operation Count 13,735 13,917 12,709 14,067 14,125 15,418 14,549
Generated Write Operation Count 44,600 44,650 44,096 44,413 44,450 44,261 46,131

Measured Elapsed Time (second) 234.69 234.78 261.69 241.68 229.78 236.62 292.48

64MB

Hit-Ratio 0.8863 0.8860 0.8876 0.8860 0.8857 0.8829 0.8860
Generated Read Operation Count 1,861 2,745 1,605 1,909 1,927 2,523 1,681
Generated Write Operation Count 26,064 25,833 25,998 26,062 26,060 26,120 26,327

Measured Elapsed Time (second) 236.86 183.57 277.44 237.87 231.43 291.22 129.30

2.3.7 Gingerbread. This in itself is a non-trivial piece of engineering. We modified

the init procedure of Android for our purpose, and also patched Linux kernel page

cache related sources. We developed the buffer cache simulator for the seven schemes

discussed to run on a standard desktop Linux platform. The Workload Player runs

both on the smartphone and the desktop, and collects performance statistics of play-

ing the after-cache traces on flash storage. Our experimental setup includes multiple

smartphone storages to run the after-cache traces.

5.2.2 A Surprising Result

We first present a representative result for the seven buffer cache management schemes

using a microSD card on Google Nexus-One phone. The traces are generated from

mobile Apps (such as web browsing and video streaming) running on the Android

phone. The result is summarized in Table 5. This result is a good sample of the

overall trend we observed for the most test cases (different flash storage devices and

different cache sizes), which we elaborate in Section 5.4 (with more details about the

workloads used to generate the traces). At this point our goal is to reveal a surprising

result that emerged from the evaluation of these seven schemes.

All the schemes show remarkably higher hit-ratios with 64 MB cache size than with

4 MB cache size as expected. However, despite the fact that higher hit ratios implies

a reduction in storage activity, the measured elapsed times on a real storage device

tells a different story. Note for example from Table 5 that the measured elapsed times

for LRU, Linux2Q, CFLRU, LRUWSR, and FOR are worse than those for Clock and
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FAB. This is surprising because hit-ratio is the over-arching metric used to evaluate

the effectiveness of buffer cache replacement schemes.

Besides, all four flash-aware schemes fail to reduce the number write operations.

Recall that the main focus of flash-aware schemes (except FAB) is to reduce the

number of write requests to the storage device. Given this focus, it is interesting

that the amount of write operations generated by the flash-aware schemes is not that

different from the flash-agnostic ones.

What is interesting from this representative result is that we cannot differentiate

the relative merits of these cache replacement strategies using a conventional metric

such as hit-ratio. Incidentally, this result also highlights the limitation of a pure

trace-driven simulator since hit-ratio and read/write traffic to the storage device are

the metrics that can be generated by such a simulator.

Our hybrid approach helps understand the performance potential of the schemes

better by letting us measure the elapsed time for playing the after-cache traces on

a real flash storage device. Surprisingly, three of the four flash-aware schemes show

slower performance than the Clock scheme. This is interesting because Clock is not

designed for flash storage, and the observed performance differences cannot be ex-

plained either by hit-ratios or by the number of generated read/write operations. The

surprising result is the fact that the latest flash-aware schemes are not performing as

well as one would have expected on a mobile flash storage (Section 5 shows this is true

for a variety of flash storage devices). More importantly, this result establishes our

first contribution in this study, namely, the power of the hybrid evaluation framework

for performance analysis of buffer cache replacement strategies for flash storage

5.2.3 Explaining the surprising result

A more intriguing question is why the three out of the four flash-aware schemes are not

performing as well as one would expect. A careful investigation reveals the source
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Table 6: Comparison of an HDD (3.5” 7200 RPM HDD) vs. three flash storage
devices (Patriot 16GB microSD, two eMMC devices used in Nokia N900 and Google
Nexus-S smartphones (KB/sec): write ordering is important but read ordering is not
important on flash storage.

Storage
Read(KB/sec) Write(KB/sec)

Sorted Scattered Sorted Scattered

HDD 6,498.4 537.6 4,836.6 1,004.0
microSD 4,852.7 4,836.6 545.2 8.3
eMMC-1 5,100.1 4,444.6 470.9 16.1
eMMC-2 3,124.5 2,551.5 566.4 259.1

of this puzzling anomaly. The short answer to this puzzle is not respecting spatial

adjacency for the write requests that are generated to the flash storage. To fully

appreciate this phenomenon, we need to understand some basics of flash storage.

Flash storage is based on semiconductor technology, and hence shows very differ-

ent performance characteristics when compared to the traditional magnetic disk. A

number of studies have reported on the special performance characteristics of flash

storage [22, 31, 37]. It is well known that flash storage devices show a relatively low

write-throughput for small, scattered (random) requests and a higher throughput for

large, sequential write requests. At the same time, they are insensitive to the order

of read requests, showing almost unchanging performance for sequential and random

read requests. We ourselves have performed simple measurements to identify these

differences in performance.

Table 6 compares the measured read and write throughput of an HDD and three

flash storage devices. We use four synthetic workloads. All four workloads use the

same number of requests (32,768), with request sizes of 4KB (typical page size in most

virtual memory systems) within a 1 GB address space (typical process virtual address

space). Two of these workloads use random read and write requests, respectively. The

remaining two workloads use, respectively, read and write requests that are sorted

by the sector number (thus resulting in accessing sequentially ordered sectors on the
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storage device).

On an HDD, both read and write throughputs are highly influenced by the se-

quence of the requests because it has seek-delays of the mechanically moving magnetic

head. In contrast, the read throughput of flash storage is not much influenced by re-

quest ordering because there is no seek delay. For the write requests, flash devices

show uniformly lower throughput than the HDD, and their scattered write through-

puts are lower than the sorted write throughputs even though there is no moving

parts inside flash storage devices. The reason for the lower throughput for scattered

writes is due to the way data updating happens internally in a NAND flash memory

chip. In other words, not respecting the spatial adjacency for consecutive write re-

quests can result in a huge performance penalty in flash storage. This result suggests

that write request ordering can make a huge performance difference, and the disparity

between sorted and scattered writes demonstrates that the ordering is perhaps more

important than the number of write requests.

Of the flash-aware schemes evaluated, only FAB respects spatial adjacency while

the others (CFLRU, LRUWSR, and FOR) are focused on reducing the total number

of write requests to the flash storage. As Table 6 shows, the penalty for ignoring

spatial adjacency (i.e., sending scattered write requests to the storage) is huge. This

is the reason we see elapsed time differences among the cache replacement schemes

even though they all generate roughly the same amount of read/write requests (see

Table 5). As is evident from Table 5, FAB has the least elapsed time compared to

the other schemes (for 64 MB cache size) since it is the only scheme that explicitly

cares about spatial adjacency. However, FAB, owing to its focus on supporting media

player workload, is biased too much towards write performance optimization for flash

storage to the detriment of overall buffer hit-ratio, which is an important figure of

merit for a general-purpose OS buffer cache. This becomes apparent especially at

smaller cache sizes and other diverse workloads. For example, it can be seen in
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Table 5 that FAB has the worst performance (both elapsed time and hit ratio) with

a 4 MB cache size compared to the other schemes. Further, it has some inherent

complexities for implementation as a general-purpose OS buffer cache scheme.

5.3 SpatialClock

We have seen that even the flash-aware general-purpose OS buffer cache replacement

algorithms proposed thus far do not pay attention to the spatial adjacency (or lack

thereof) of the pages being evicted from the OS buffer cache (FAB is an exception

but as we noted earlier it does this at the expense of cache hit-ratio and so it is not

general-purpose enough for OS buffer cache). Given the discussion in Section 5.2.3,

this is a missed opportunity that hurts the performance of flash storage. Therefore, we

propose a new algorithm SpatialClock that respects the spatial adjacency of the pages

being evicted from the OS buffer cache without losing cache hit-ratio remarkably.

There are two important points we want to address head on before we delve into

describing SpatialClock:

1. Page replacement algorithms are an age-old topic. However, from the point of

view of the storage technology that is currently being used and will be used

for the foreseeable future in mobile platforms, we believe it is time to revisit

this topic. From our discussion in Section 5.2.3, we can distill a couple of

observations regarding flash storage that strengthen our belief: (a) respecting

spatial adjacency for writes is very important, and (b) read and write operations

are independent of each other due to the nature of the flash technology, in

contrast to traditional storage devices such as an HDD (due to the absence of

the mechanical head movement).

2. The OS buffer cache is deeply entrenched in the software stack of the operating

system. Therefore it is not prudent to overburden this layer with device-specific
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optimizations (such as write reordering), which would require a significant ar-

chitectural change of the entire OS software stack. What we are proposing in

this section is a localized change only to the page replacement algorithm of the

OS buffer cache, which does not affect the other functionalities of this layer.

Further, as we will see shortly, the proposed algorithm is not storage specific;

it merely respects the logical spatial adjacency of the pages being evicted from

the buffer in addition to temporal locality

The key question is how to design a new page replacement scheme to achieve the

two different objectives simultaneously: high cache hit-ratio and sequentially ordered

write requests. One commonly used approach is dividing cache memory space into

multiple partitions, and applying different cache management policies to the distinct

cache partitions [53, 77, 83]. However, this partitioning approach introduces another

difficult problem: how to adaptively adjust the partition sizes for various workloads.

Further, such a partitioning approach is too major a change to this critical layer of the

operating system. Therefore in designing SpatialClock, we take a different approach

rather than partitioning the OS buffer.

Before we describe SpatialClock, let us briefly review LRU and Clock algorithms.

In LRU, page references are kept in a sorted temporal order by the OS buffer cache.

When a page frame is accessed, the frame needs to be moved to the Most Recently

Used (MRU) position. The operation may require obtaining a global lock to pro-

tect the data structure from concurrent accesses. Because page references are very

common, such frequent rearrangement of the data structure is expensive. Further,

true LRU is difficult to implement in practice since it requires hardware assistance at

individual memory reference granularity to track page frame accesses from the VM

subsystem. Nevertheless, true LRU is used in memory system studies as a standard

to compare other practical page replacement algorithms.

Clock is an approximation to the true LRU algorithm and is often referred to
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as second-chance replacement algorithm. Clock relies on a simple hardware assist

common to all processor architectures supporting virtual memory, namely, a per-

page reference bit (usually part of the page table entry for that page). The reference

bit can be set by the hardware and cleared by the software. The hardware sets the

associated reference bit when a page frame is accessed unbeknownst to the software

(i.e., the operating system). The Clock algorithm keeps the page frames as a circular

list in FIFO order of their arrival into the OS buffer cache from the storage device.

The victim selection works as follows. The algorithm sweeps the circular list of page

frames skipping over the frames whose reference bits are set (clearing the reference

bits as it sweeps) and stops at the page frame whose reference bit is not set. This

page frame is chosen as the victim for eviction from the OS buffer cache. Clock

does not keep the precise reference order like LRU; hence it is simpler and does not

require global locks for maintaining its data structure. Despite its impreciseness in

maintaining the page reference history, the good news is that the performance of Clock

approximates LRU in most cases. Therefore, Clock has been widely used especially

for virtual memory systems, which require low overhead lookup of the buffer cache.

In SpatialClock, we follow the basic rules of the Clock algorithm with only one

difference. Page frames are arranged by the logical sector number of the storage

system that contains the page frame. Consequently, page frames are chosen as victims

for eviction in the sequential order of the sectors that contain these frames, and

thus, frames are implicitly chosen sequentially with respect to the storage device.

This results in preserving/respecting spatial locality during victim selection when

the chosen frames happen to be dirty as well. Figure 13 shows the victim selection

algorithm of SpatialClock.

Figure 14 shows an example of the victim selection in the SpatialClock algorithm.

Each row represents a page frame, and the left cell in the row represents the containing

sector number for that page frame, the right cell indicates the reference bit value. The
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/∗ Victim s e l e c t i o n ∗/
pageframe∗
s p a t i a l c l o c k c h o o s e v i c t i m ( )
{

/∗ sweeping u n t i l f i n d a v ic t im ∗/
whi le (1 )
{

/∗ c i r c u l a r movement ∗/
i f ( c u r p o i n t e r == NULL)

c u r p o i n t e r =
a v l t r e e m o v e t o f i r s t ( ) ;

v i c t im = c u r r e n t p o i n t e r ;
c u r p o i n t e r =

av l t r e e move to nex t ( c u r p o i n t e r ) ;

i f ( vict im−>r e f e r e n c e d == 0) break ;
vict im−>r e f e r e n c e d = 0 ;

}
r e turn v ic t im ;

}

Figure 13: SpatialClock victim selection algorithm

page frames are pre-arranged in sorted order with respect to the containing sector

numbers for the page frames. To choose a victim page, page frames are scanned from

the current pointer position to find a page frame, which has a ‘0’ for the reference bit

value. In the given example, the sweep stops at page frame whose containing sector

number is 80, while clearing the reference bits of the page frames having 40 and 72

as the containing sector numbers, respectively.

Respecting and checking the reference bits gives SpatialClock the advantage of

an approximate LRU for victim selection. Arranging the page frames in a spatially

adjacent manner gives an opportunity to enforce write ordering for the evicted page

frames. Giving more importance to physical adjacency than the recency of access

could affect the hit-ratio. However, our evaluation results show that this is not the
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Figure 14: Victim Selection in SpatialClock: SpatialClock maintains and scans page
frames in the order of the containing sector numbers to generate ordered write requests.

case at least for the traces we studied. More importantly, we argue that paying atten-

tion to the elapsed time for storage access is crucial for achieving good performance

on flash storage.

Compared to the original Clock scheme, SpatialClock requires maintaining page

frames in a sorted manner, and we use an AVL tree [21] for the purpose. However,

the burden is only for a page frame insertion operation, which is a relatively rare

operation as long as the hit-ratio is high. The more common reference operation

of the OS buffer cache remains exactly the same as in the original Clock algorithm.

Besides, the AVL tree can be used for page look up purpose, which is mandatory for

buffer cache maintenance.

We have implemented SpatialClock using an AVL tree to bound the page frame

insertion time to be log N, where N is the number of page frames. We associate logical

sector numbers with each frame (obtained from the storage map maintained by the

OS buffer cache) to organize the circular list respecting spatial adjacency.
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5.4 Evaluation

We focus our evaluation on the following two key points:

• Hit-Ratio Comparison: SpatialClock is designed to produce sequentially ordered

write requests, and often disobeys the philosophy of Clock and LRU policies. Will

it degrade cache hit-ratio remarkably? We will answer this question by comparing

cache hit-ratios with multiple traces and cache sizes.

• Performance effect on flash storage: We will verify the performance effect of Spa-

tialClock on real flash storage devices.

We compare SpatialClock head to head with the seven schemes we introduced

already: (1) LRU, (2) Clock, (3) Linux2Q, (4) CFLRU, (5) LRUWSR, (6) FOR, and

(7) FAB.

5.4.1 Experimental Setup

We collected before-cache storage access traces from a real Android smartphone. Even

though many disk access traces are available in the public domain, most of them are

after-cache traces, and some traces used in previous studies (for example, LIRS [54])

do not separate read and write accesses. More importantly, we want to use the traces

that came from a real smartphone while running popular mobile Apps.

We used a Google’s Android reference phone, Nexus-One [11] with Android Open

Source Project (AOSP) [3] 2.3.7, Gingerbread version. We modified the init procedure

of Android to use the partitions on an external microSD card with EXT3 file system

instead of the internal NAND flash memory with YAFFS2 file system because it is

not possible to collect general block level traces from YAFFS2 file system. We also

had to modify the page cache related parts of Linux kernel (version 2.6.35.7) to collect

the before-cache accesses.

We choose three typical and also popular workloads for our evaluation.
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Table 7: Trace Information
Read Operation Write Operation

Count Amount (MB) Count Amount (MB)

W1 23,666 92.4 47,350 185.0
W2 67 0.3 387,701 1,514.5
W3 134,910 527.0 105,796 413.3

• W1: Web Browsing. We collected storage access traces while doing web brows-

ing for multiple hours. Web browsing may be the most common activity on today’s

mobile platforms such as smartphones and Internet tablets. When we visit web

pages, web browser downloads web resources like image files into local storage to

reduce network traffic. Therefore, while doing web browsing, small files are con-

tinually read and written, and storage performance influences user’s web browsing

experience. The collected amount of traces is smaller than our expectation because

Android web browser is directed to the mobile web pages, which are optimized to

minimize network and I/O traffic.

• W2: Video Streaming. We collected storage access traces while watching various

YouTube video clips for multiple hours. When we watch Internet streaming video

like YouTube, video data are buffered into local storage to provide stable video

watching quality. This is another very popular activity on mobile platforms, and

generates very different storage access pattern compared to web browsing. This

workload has the highest amount of write traffic among the three workloads studied.

• W3: Mixed App Workload. In this workload, we collected storage access traces

for several hours while running multiple Apps sometimes together and sometimes

separately. Following Apps were used: Facebook, Twitter, Maps, Pandora, Angry

Birds (game), Fruit Ninja (game), OfficeSuite, Camera, Internet Browser, YouTube,

Gallery, Android Market, etc. We believe this workload is the best one to reflect a

realistic usage of the smartphone.
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Table 8: Flash Storage Devices

Smartphone Type Chip Maker Size

Nexus One microSDHC Patriot(Class 10) 16 GB
N900 eMMC Samsung 30 GB

Nexus S eMMC SanDisk 15 GB

Table 7 shows the number of read and write operations in the collected mobile

traces. Note that there are only few read requests in the video streaming trace (W2).

This could very well be due to the limitation of our trace collection method since

it is not possible to collect in-memory accesses for a memory mapped file without

hardware support3. Even though the collected traces may not be a perfectly faithful

reproduction of the I/O activity in these Apps (since they are missing the accesses

to memory mapped files), we note that this situation is unfortunately unavoidable

and will happen even if we profile a real operating system. Thus, we believe that the

traces are valid and proper for our evaluation. Besides, since all the cache replacement

schemes are compared with the same set of traces, the comparison is fair.

Some of the buffer cache replacement schemes require setting some algorithm

specific parameters. For Linux2Q, we set the active vs. inactive queue ratio to be

3:1 (this is similar to the setting in the Linux kernel). For CFLRU, the Clean-First

window size is set to be 25% of total cache size. For FOR, we use an alpha value of

0.5 as recommended by the authors of the paper, and read and write operation cost

as 100us and 800us, respectively. Lastly for FAB, we set the number of pages per

block as 64, which is the same as in the author’s own evaluation of their scheme.

Two different types of flash storage are popularly used in smartphones today:

microSD cards and eMMC devices. Due to space limitation, we choose to present

the result of three devices. Table 9 shows the list of the chosen flash devices: one

microSD card (with Google Nexus-One phone) and two (slower and faster) eMMC

3ARM processor in the Nexus-One phone does not provide this functionality.
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devices (internal to each of a Nokia N900 and Google Nexus-S phones, respectively).

Workload Player simply receives a trace file, performs the I/O operations specified

in the trace file on a real storage device, and reports the elapsed time for performing

the operations. We run Workload Player on real smartphones. Google Nexus-One

is used to evaluate the microSD card, and a Nokia N900 and a Google Nexus-S are

used respectively, to evaluate their internal eMMC devices. The Workload Player is

written as a regular C program running on Linux, and the buffer cache is bypassed

by using O DIRECT option.

5.4.2 Hit-ratio Comparison
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Figure 15: Hit-Ratio Comparison:SpatialClock shows comparable hit-ratios to other
schemes.

Figure 15 shows simulated buffer cache hit-ratios for the eight cache replacement

schemes using the three traces. Except Linux2Q and FAB, other six schemes are not
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much different from one another in terms of hit-ratio. Linux2Q shows lower hit-ratio

than the others for the video streaming workload (middle graph) while showing rela-

tively higher hit-ratios when cache size is small. Meanwhile, FAB shows remarkably

lower hit-ratios when the cache size is small. It will be very interesting to analyze

the reason for the poor performance of Linux2Q and FAB but it is not the focus of

this study. We can clearly verify that SpatialClock and other flash-aware schemes

except FAB show comparable (not remarkably low, at least) hit-ratios to non-flash-

aware schemes even though they sometimes disobey LRU philosophy for the sake of

accommodating the performance quirks of flash storage.

5.4.3 I/O Operation Cost Analysis

Existing flash-aware buffer replacement schemes are mainly focusing on the asymmet-

ric read and write operation costs. Prior cache replacement performance studies have

calculated the total cost of the I/O operation by applying a simple mathematical

equation using the differential read/write times. We have done a similar calcula-

tion. To this end, we count the number of read and write operations for each buffer

management scheme, and calculate the total cost by using a simple cost model for a

flash chip as is done in the FOR paper [75] (100us and 800us for read and write I/O

operations, respectively).

Figure 16 shows the calculated times. Similar to the hit-ratio comparison results,

no obvious differences are seen except for the Linux2Q and FAB cases. Based on this

calculated result, it would appear that none of the flash-aware algorithms (including

SpatialClock) are any better in reducing the total I/O cost compared to the flash-

agnostic ones. We show in the next subsection that such a conclusion would be

erroneous.
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Figure 16: Calculated elapsed time based on the number of read and write operations
in after-cache traces: the results are almost indistinguishable for the different schemes.
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5.4.4 Performance Effect on Real Flash Storages

It is hard to show write ordering effect of buffer cache replacement algorithms without

using real flash storage devices. Therefore, we collect after-cache traces generated by

the cache simulator (Figure 12), and play them on real smartphones.
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Figure 17: Patriot microSD: SpatialClock shows -8.6-31.9%(W1), -6.4-43.4% (W2),
and -5.4-77.7% (W3) elapsed time reduction compared to the other schemes.

Figure 17-19 show the elapsed time on real flash storage devices. The measured

time is represented by the bars in the graph, and shorter bars imply better perfor-

mance. Unlike the mathematically calculated performance result shown in Figure 16,

we can see clear differences among the seven buffer replacement schemes through this

exercise of running the after cache traces on real flash storage devices4.

4Please note that the absolute numbers in Figure 16 are very different from what we observed
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Figure 18: eMMC-1 (N900): SpatialClock shows shows 0-80.5% (W1), -1.5-
34.4% (W2), and 0-42.3% (W3) elapsed time reduction compared to the other
schemes.

65



LRU
Clock

Linux2Q

CFLRU
LRUWSR

FOR

FAB
Sp.Clock

 0

 10

 20

 30

 40

4 8 16 32 64

T
im

e
(s

e
c
.)

W1: Web Browsing

 0

 250

 500

 750

 1000

 1250

4 8 16 32 64

T
im

e
(s

e
c
.)

W2: Video Streaming

 0

 50

 100

 150

 200

 250

 300

4 8 16 32 64

T
im

e
(s

e
c
.)

W3: Mixed Workload, Cache Size (MiB)

Figure 19: eMMC-2 (Nexus-S): SpatialClock shows -7.4-25.4% (W1), -7.4-
30.9% (W2), and -15.4-34.9% (W3) elapsed time reduction compared to the other
schemes.
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In each cluster of the graphs, the right most red bar represents the elapsed time of

SpatialClock. In general across all the mobile flash storage devices used in the eval-

uation, SpatialClock shows remarkable performance gains with the Web Browsing

workload (W1) and Mixed workload (W3). Linux2Q and FOR algorithms show very

poor performances with the Video Stream workload (W2). SpatialClock is signifi-

cantly better than Linux2Q and FOR but does not show any significant performance

advantage over the other cache replacement algorithms for the Video Streaming work-

load (W2).

As already shown in Table 6, eMMC-2 in the Nexus-S smartphone is less sensitive

to write ordering, and thus, SpatialClock shows the smallest performance gains for

this flash storage (Figure 19) while it shows huge performance gains for eMMC-1

(Figure 18). It is because this eMMC chip is specially designed to provide good

random write performance similar to a high-end SSD, and it also implies that the

interface of eMMC devices is not a differential point in the results. It is an interesting

point to note that SpatialClock consistently performs better with the inexpensive

microSD card than on the other the two eMMC chips, which appear to be high-end

ones given their superior performance for dealing with scattered writes. One way of

interpreting this result is that if the flash storage already is well positioned to handle

scattered writes, then the additional performance advantage due to SpatialClock is

small. However, SpatialClock does better than the other cache replacement schemes

even on the eMMC-2 (24% reduction in elapsed time compared to LRU for W3

workload and 64 MB cache).

There is another very surprising and interesting insight stemming from this per-

formance result. With 64 MB cache and W3 workload the elapsed times for LRU are:

from Figure 17-19. It is because the parameters for the calculation may have differences to the
actual timing value.
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microSD: 236.9, eMMC-1: 186.3, eMMC-2: 146.0 seconds. For the same configura-

tion, the SpatialClock elapsed times are: microSD: 64.9, eMMC-1: 111.8, eMMC-2:

110.8 seconds. That is, the best absolute elapsed time (64.9 seconds) for this work-

load is achieved by using SpatialClock on the cheaper microSD card! Compare this

with using the standard cache replacement scheme available in commercial operating

systems running on a souped up flash storage such as eMMC and still being nearly

2.2 times slower than SpatialClock on an inexpensive flash. In other words, with

the right OS support (SpatialClock), we can achieve better performance than using

a hardware solution (eMMC) to circumvent the performance issues of mobile flash

storage. SpatialClock is the third contribution of this study, presenting a compelling

case for revisiting the replacement scheme used for the buffer cache in smartphones.

5.5 Summary

Recent studies have shown that flash storage may be the performance bottleneck for

the performance of common Apps on mobile devices. Due to size, power, and cost

considerations, smartphones will continue to deploy low-end flash memories as the

primary storage. Therefore, it is important to consider what can be done in the OS

to enhance the performance of flash based storage systems. In particular, since the

buffer cache is the point of contact between the upper layers of the OS software stack

and the I/O subsystem, this study re-examines the buffer cache replacement schemes

with respect to their suitability for mobile flash storage. We make three contributions

through this work. First, we develop a novel performance evaluation framework that

is a hybrid between trace-driven simulation and real implementation. Second, we

gather before cache storage traces for popular Apps running on an Android phone

that can be used in the study of cache replacement schemes. We use this and the

evaluation framework to study seven different cache replacement strategies. We made

some surprising findings through this study, and the insight drawn from the study
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paved the way for our new buffer cache replacement scheme, SpatialClock. The key

insight is the need to pay attention to spatial locality for writes to the flash storage

to reduce the overall I/O time, a crucial metric to enhance the storage performance,

and hence the application performance on smartphones.
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CHAPTER VI

FJORD: SMART WRITE BUFFERING FOR

SMARTPHONES

In this chapter, we introduce our integrated storage solution for mobile platforms.

6.1 Introduction

Smartphones have become essential parts of our daily life. In 2011, smartphone ship-

ments overtook PCs [50], and the number of people subscribing to mobile phones

is bigger than the number of people subscribing to electricity and safe drinking wa-

ter [101].

Mobile systems are not just miniatures of personal computer systems, and thus,

the previous research insights from desktop and server systems should not be sim-

ply applied to mobile systems without careful reexamination. For example, a recent

study reveals that the storage subsystem has a much bigger performance effect on

application performance on smartphones than it does on conventional computer sys-

tems [62]. Considering the rapid growth of mobile systems, it is the time to move our

focus to the mobile system components. CPU power and main memory capacity are

increasing very fast; the latest smartphone has a quad cored 1.4 GHz processor as well

as 2 GB of main memory capacity [95]. On the other hand, the technology used for

storage on mobile platforms lags significantly behind that used on regular computers.

Flash storage is the norm for smartphones because of the limitations of size, cost,

and power consumption. While high-end flash based Solid-State Drives (SSDs) are

available and used in regular and enterprise class machines, adoption of such storage

for mobile platforms is infeasible for reasons of cost, size, and energy consumption.
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Therefore, we argue that operating system level software support is critically needed

for low-end flash storage to achieve high performance on mobile platforms.

Architecturally, smartphones are not much different to traditional desktop and

laptop computers. However, they are very different in terms of requirements and

operation environments. First, smartphone is a communication device, and commu-

nication can be critically important in our daily life. We communicate each other

with mobile phones everyday, some people rely on mobile phones for their businesses,

and we use mobile phones in emergency situations. Therefore, users expect highest

availability as well as reliability for smartphones. In addition, smartphones are be-

ing used in unstable environments than conventional computer systems. We carry

smartphones in our pockets always, and smartphones may easily be “dropped” on

the ground. In such situations, the battery can get separated from the phone, and

thus, smartphones have higher chances to lose system power unexpectedly than regu-

lar computer systems do. To complicate matters, smartphone adoption is by a much

larger community of users who are not necessarily computer savvy. Even for computer

savvy users, fixing routine problems in a smartphone is not as straightforward as deal-

ing with similar problems in a desktop or laptop. Thus problems with smartphones

usually require a visit to the manufacturer’s service center.

For these reasons, system reliability is always a top requirement in designing

smartphones, and thus, the safer but slow design choices normally win over faster

but risky ones. As a concrete example, Google Android 4.0.4 uses write barrier en-

abled EXT4 journaling file system instead of the faster EXT2 file system, and reduces

dirty expire centisecs and dirty background ratio values from 3000 to 200 and

10 to 5, respectively. These configuration changes are to minimize the possibility of

losing dirty page content due to unexpected power failures. Of course, the config-

urations limit the capability of Linux page cache, and it can be a limitation to the

performance of smartphone storage.
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Flash storage is the norm for smartphones because of the limitations of size,

cost, and power consumption. Compared to Solid-State Drives (SSDs) and Hard

Disk Drives (HDDs), the performance of smartphone storage is much more limited.

Sequential write throughputs are about 400 MB/sec and 150 MB/sec on a latest

SSD and HDD, respectively [108], but it is only 13 MB/sec on smartphone storage

(SanDisk eMMC [97]). That is, smartphone storage is slower than regular storage,

and furthermore smartphone OS storage software stack is configured mainly for safety

rather than performance. Consequently, the low-end flash storage easily becomes the

Achilles’ heel when it comes to performance of mobile platforms [61, 62].

Meanwhile, there is a very different and common use case of smartphones. Com-

munication is a critically important function of smartphones, but smartphones are

being used for various other purposes, and many of them do not require the same

high standard for reliability. In many cases, smartphones are terminal devices for

cloud contents, and local smartphone storage is used mostly as a cache for data that

already resides safely in the cloud. For such situations, loss of the cached content

is not catastrophic since the original content is safely in the cloud. Facebook, web

browser, Twitter, Google Maps are good examples; local storage is used to hold the

copy of cloud data. By their very nature, cache store does not require high reliability,

and thus, we argue that it is neither necessary nor prudent to sacrifice performance for

reliability. However, there is no systematic method to selectively control the conser-

vative storage configurations of the smartphone OS for such applications that can use

relaxed semantics for reliability to gain higher performance. Therefore, overall stor-

age performance is unfairly degraded on smartphones. In other words, if smartphone

OS provides a fine-grained control mechanism to tradeoff reliability for performance,

then it will be possible to get better performance for some applications without losing

reliability for critical applications (e.g., bank transactions).

In this study, we explore the capabilities and limitations of storage solutions for
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smartphones. We first design and implement two typical approaches for flash storage,

logging and RAM based write buffering, and then we evaluate the storage performance

effects of the two solutions. As a further step, we propose an integrated solution with

logging and write buffering, and explain how the integrated solution can make synergy

effects. Finally, we expand our solution even more to obtain bigger performance gains

based on system wide information. We call our system solution Fjord1, which is aimed

at providing fine-gained control for trading reliability for performance in existing file

systems as well as for the novel features we have proposed as part of an integrated

solution, namely, logging and write-back buffering.

We implement and evaluate our solution on two real Android smartphones, and

demonstrate significant performance gains with SQLite benchmark application as

well as multiple everyday applications. For instance, the elapsed time for running

the Email test case is reduced from 34.6 seconds to 16.1 seconds on Samsung Galaxy

Note phone with Fjord.

We make the following contributions through this work. First, we design and

implement typical logging and write buffering solutions, and show their performance

effects on real smartphones. Second, we propose a novel integrated solution with

logging and write buffering, and third, we uncovered an interesting granularity prob-

lem for cache/buffer management, which we elaborate on in later sections. The final

contribution is Fjord, an integrated storage solution for smartphones. Even though

we are focusing on smartphone storage in this paper, we believe that the idea has

potentials beyond smartphones for other types of storage and systems, and we discuss

this potential in Chapter VII.

1The English word Fjord is derived from a Scandinavian word that signifies a narrow and often
shallow area in a river for crossing from one side to the other on foot...an analogy for our thin system
software layer that allows safely moving data from higher levels of system software to the storage
device.
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6.2 Background and Related Work

File system operations can be categorized as user-data operations or file system meta-

data operations, and in general, we need to be more careful for metadata operations

because inconsistent file system metadata may result in the entire file system becom-

ing unusable. Therefore, safe and efficient update of file system metadata has always

been an important topic in file system research. Soft-update was proposed to provide

stronger reliability guarantees than journaling, and it attacks the meta-data update

problem by guaranteeing that blocks are written to disk in their required order with-

out using synchronous disk I/Os [42, 43], and Seltzer el al. compared the file system

performance of Soft-update and journaling [100].

Ensuring write ordering is an essential part of both Soft-update and journaling file

systems. Most storage devices have volatile on-board write buffer to improve storage

performance, and consequently write ordering is not guaranteed. In other words, the

storage devices internally decide as to when the writes pending in the on-board write

buffer are committed to the physical medium. To enforce write ordering under these

circumstances, storage devices expose a write barrier interface to the OS. Whenever

a storage device receives a write barrier from the upper layers of the OS, it has

to ensure that the content of the on-board buffer is written to the physical storage

media safely. That is, a write barrier limits the capability of on-board write buffer,

and thus frequent use of write barrier can degrade the overall file system performance

significantly. For this reason, EXT3 file system turns off write barrier by default even

though it is a journaling file system. In EXT4 file system, the write barrier option is

turned on by default for the safety of a file system.

In the latest Android version 4.0.4, EXT4 file system is used as the default file sys-

tem. EXT4 provides three different data modes related with file system consistency:

write-back, ordered, and journal modes [10]. With the fastest write-back mode, EXT4

does not journal user-data at all, and provides only file system metadata consistency.
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That is, a crash can cause incorrect data to appear in files, which were written shortly

before the crash. When the ‘ordered’ mode (which is the default) is used in EXT4,

once again only the metadata is written to the journal, but the metadata update

happens only after the associated data blocks have been written to the storage first.

With the safest - but slowest - journal mode, both user-data and file system metadata

are written to the journal first, than written to their final locations. Within the latest

Android version 4.0.4, EXT4 file system is being used with the default data=ordered,

barrier=1 options, and the performance of the option is between write-back and jour-

nal options. In EXT4 file system, it is not possible to use different journaling options

for different files even though each file has different level of reliability requirements.

Flash memory has brought about a drastic change in storage technology recently.

Some studies propose totally new storage systems using flash memory. FAWN [24]

and FlashStore [36] have been proposed as new key-value stores using flash memory,

to save power consumption and achieve better performance. These ground-breaking

approaches are desirable to advance the research in storage systems with a long-term

view, but are far from practical usage for general smartphone users.

Griffin [104] system has been proposed to extend the lifetime of flash storage

by caching data with a HDD. Griffin system is free from the reliability issue. The

authors explicitly mention that they rule out the RAM buffering approach due to the

reliability issue. However, we believe that RAM buffering has many attractive merits

compared to disk buffering and proper design of RAM buffering can overcome the

reliability issue.

New I/O scheduling algorithms have been proposed for flash storage. Kim et al.

proposed the Individual Read Bundled Write (IRBW) algorithm which separates read

scheduling from write requests and arranges write requests into bundles [68]. Dunn

and Reddy also proposed a new Block Preferential I/O scheduler for flash storage [39].

Even though these I/O scheduling schemes reflect the characteristics of flash devices

75



quite well, the queuing mechanism of I/O schedulers limits the performance gain.

Fjord has the same goal as that of I/O schedulers, but uses a different mechanism.

CFLRU[83] and LRU-WSR[58] are new buffer management schemes for flash stor-

age. DULO[53] is another buffer management scheme, which is aware of both tem-

poral and spatial localities. Apart from the fact that these algorithms have been

proposed for the OS buffer cache, there are some important technical differences in

comparison to Fjord. CFLRU and LRU-WSR give high priority to dirty pages be-

ing kept in the cache to reduce the number of writes; but they do not worry about

ordering of write requests. Similarly, the DULO algorithm uses only the size of the

requests and does not take care of reordering as Fjord does.

At the device level, more complicated FTL mapping algorithms have been pro-

posed to attain better write performance [81, 82]. However, due to the increased

resource usage of these approaches, they are generally used only for high-end SSDs.

Incorporating a write-buffer inside a flash storage device is a slightly higher-level

approach than FTL. For example, we previously proposed Block Padding Least Re-

cently Used (BPLRU) [63] as a buffer management scheme for flash storage and

showed that even a small amount of RAM-based write buffer could enhance the

random-write performance of flash storage devices significantly.

Smartphones just a year back used to have a bare NAND flash memory chip with

a flash native file system like YAFFS2 [74], but the latest ones use eMMC devices

rather than bare NAND flash memories. eMMC devices are produced in small Ball

Grid Array (BGA) packages, and present a Multi Media Card (MMC) interface to

the host computer [78, 97]. The upshot is that each eMMC chip has FTL software

internally by using System-On-Chip technology. This approach is desirable both for

chip manufacturers and handset makers. The software layer within an eMMC chip

hides complicated chip level details from eMMC users, and shields the users from

issuing erroneous commands to the underlying NAND flash memory. The standard
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interface is also helpful for handset makers. Eliminating the need for FTL and/or

flash native file system (such as YAFFS2) on the host side helps rapid development,

and the unified interfaces (at the storage system software level) can be used by the

mobile platform both for an internal eMMC chip and for an external flash memory

card like microSDHC. Therefore, it is safe to assume that for the foreseeable future

mobile flash storage devices will be either eMMC and/or small microSDHC cards.

Naturally, small flash memory cards (including eMMC) suffer from many limi-

tations. Only small amount of RAM is available for internal FTL, and these flash

memory cards have severe limitations when it comes to response time and power

consumption. As a result, most inexpensive flash storage devices show very poor

performances especially for small random write requests, and as a consequence, inex-

pensive flash storage devices remain as the main source of performance bottleneck on

mobile platforms. Therefore, we argue that operating system level software support

is critically needed for low-end flash storage to achieve high performance on mobile

platforms.

6.3 Log-structured Non-Volatile Write Buffer

Log-structured design to combat the “small write” problem solves the random write

issue in Flash storage, and has been popularly used in many previous studies [24, 36,

70, 74, 87]. In a log-structured architecture, sectors are written sequentially regardless

of their original addresses, and the mapping information is maintained by the system.

This approach is desirable for flash storage since a page write has to be preceded

by an expensive block erase operation. However, a log structured architecture has

its own limitations. First, maintaining the mapping information is very expensive.

Because the sectors are not written to their original positions, to read sectors, such

mapping information is necessary. For better performance, it is desirable to keep the

information in main memory. The mapping information also has to be safely stored
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in non-volatile storage, and it requires additional flash I/O operations. Second, the

log-structured design is good for write but bad for read performance. Sectors are

not in their original positions, and thus sequential reads are not sequential any more.

Even though Flash storage is less sensitive to the request ordering for read operations,

it is still the case that sequential reads are much faster than random reads.

For multiple reasons, we decide to do logging, only for a non-volatile write buffer at

the block device level. Block device level solution is more general and easier to apply,

and the write buffer approach allows us to use logging selectively. Figure 20 shows

our design for non-volatile write buffering. In this design, foreground small writes can

be changed to big sequential writes, and the storage integrity is not affected. We also

use SpatialClock to reclaim the logging buffer. By using SpatialClock, sequentially

ordered writes are generated, and thus, we can minimize the operation cost for the

garbage collection. Unlike server systems, smartphones have long idle time in general,

and the logging buffer can be reclaimed when a smartphone is idle. As long as there

is enough space in the logging buffer, the foreground write requests will be quickly

handled.

Non-Volatile !
Logging Buffer!

Android /data partition!

Sequentially written!

Sequential de-staging!

Page (4KB) 
Mapping Table!

A new write!
Update!

Figure 20: Non-Volatile Logging Buffer: new pages are written to logging buffer
sequentially, and de-staging also happens sequentially due to SpatialClock
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6.3.1 Mapping Information Maintenance

Linux virtual memory page size is 4Kbytes. Therefore it is convenient to use the

same size as a logical to physical address mapping unit. If we maintain 32bits entry

for each page, 1Gbyte of flash storage will require 1Mbyte of main memory for the

mapping table. Today’s Android smartphones have 8 to 64 Gbytes of flash storage in

total, but only 1-2 Gbytes space is allocated for internal /data partition, which is the

main storage area for Android applications. When we apply logging for the internal

/data partition, only a small amount (a few Mbytes) of main memory will be required

for the mapping table, and this amount is small enough considering the typical main

memory size of today’s smartphones (typically at least 512Mbytes). Thus, memory

requirement is not a problem to implement logging. The tricky part is how to keep

the content of the mapping table safely.

In NAND flash memory each data page has spare array (typically, 16 bytes per

512 bytes), and the space is used to store Error Correction Code (ECC) and some

useful information like FTL mapping information. This addition space is very useful

for logging because the mapping information can be written without any additional

write operations. However, we cannot use the spare array of NAND flash memory

because it is invisible from the outside. We may have to reserve small part of flash

storage for the mapping information like most file systems do for file system metadata

such as inode and bitmap information. However, this approach requires at least one

additional write operation whenever mapping information changes, and for the block

device level logging, every write request results in the update of mapping table, which

means that the amount of writes will remarkably increase. We can delay mapping

information updates for better performance, but it will sacrifice storage reliability. For

these reasons, we use a different approach to store the mapping information safely in

flash storage without additional flash write operation.

Two pieces of mapping information are critical for the logging technique: (a) the
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logical page number (LPN) and (b) the time stamp counter (TSC). LPN is necessary

to re-construct the logical-to-physical page association, and TSC is needed to know

which page is the latest one when multiple physical pages are mapped to one logical

page. The mapping table contains these two pieces of information for each logical

page.

To avoid separate I/O for mapping table update, we embed the mapping informa-

tion in the first two 32-bit words of the data page itself. How is this possible? The

trick is as follows. When a new data page is presented to Fjord, it scans it for two

32-bit words in the page that contain zero values. Most of the time, we will succeed

in finding two zero value words in a 4Kbyte page. In the event we fail to find two

zero words in the page, we simply give up and do not use the logging approach for

this page.

Assuming we find the two zero value words in the page, then we do the following.

We first write the contents of the first two words in the page to the positions where we

found the two zero value words in the page. Then, we use the first two words of the

page to store our mapping information as well as the locations of the first two words

of the page that have been displaced from their original positions to make room for

the mapping information. With 4Kbyte pages, the zero value word locations can be

represented with 10-bits. The remaining 22-bits in each of the first two words of the

page are available for storing the LPN and TSC, respectively. Figure 21 shows an

example of the mapping information encoding trick.

For the encoding process (embedding LPN and TSC into the content of a page),

the data page has to be scanned for identifying the locations of the two zero value

words in the page. This is in the critical path a data write operation. The good news,

however, is that the decoding process (extracting LPN and TSC, and recovering the

original page content for the first two words) is much more efficient and requires at

most two memory reads and four memory writes. This is a reasonable compromise
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since most page read operations are synchronous while most page write operations

are asynchronous.

A! B! 0! 0!

A page data (4096 bytes = 1024 words)!

First zero word !
(index = 300)!

Second zero word !
(index = 600)!

-! -!

1. Content Scan!

A! B!

2. Copy the first two words!
to zero words!

Info1! Info2! A! B!

300! LPN! 600! TSC!

10 bits!

3. Create two INFO words!

22 bits!

4. Write encoded INFO words!

Figure 21: Example of embedding the mapping information into the page itself: in
this example, zero value words are found at page offsets 300 and 600. The contents
of A and B are copied into the zero word locations 300 and 600, respectively.

6.3.2 Sequential Garbage Collection

In a log-structured architecture, one of the most important problem is how to reclaim

the storage space, i.e., Garbage Collection (GC) process. In fact, the foreground

logging is easy and straightforward while background garbage collection is difficult

and complicated. In a typical GC process, a candidate storage segment is chosen

first based on the GC cost. In general, the segment having the least number of valid

data pages is chosen as a target of the GC process. Then, the valid data pages in

the target segment are copied to a new segment to make the target segment perfectly

clean. Our GC technique is quite different. First, we do not manage the logging

space in segment units. Instead, we treat the whole logging buffer as a one big space.

Second, we do not relocate data pages within the logging buffer to make a big free

chunk. When there is no more room to write in the logging buffer, we sequentially
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scan the page-mapping table from the position where the last GC happened. Because

we scan and choose the victim pages based on the logical page ordering, GC generates

sequentially ordered writes. The idea comes from our flash aware buffer placement

scheme, SpatialClock [66]. Unlike RAM based cache space, the logging buffer is a

not faster area then the original data partition for read operations. Therefore, there

is no need to keep hot pages in the logging buffer; we ignore temporal locality and

only respect spatial ordering. As a result, generated writes (foreground writes as well

as GC writes) may not be big and perfectly sequential. If we follow the typical GC

method to make foreground writes be perfectly sequential, we have to clean a target

segment completely. The valid data pages can go either to the final destination or

a new clean segment. Both are detrimental to performance: the former will result

in random writes; the latter will trigger GC more frequently. For the former case,

random writes will happen in background, and for the later case, GC will happen more

frequently. We believe our approach strikes a good balance between the foreground

write performance and the background GC cost.

6.4 Flash Aware RAM Buffering

Android /data partition!

Sequential de-staging !
(SpatialClock)!

RAM Buffer!

Writes!

Writes!
Write Barrier!

Figure 22: RAM based Flash Aware Write Buffer: Write-back buffering is safe as
long as it follows write-barrier semantics

All HDDs internally have RAM buffer for better performance, and written data
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can stay in the write buffer during some amount of time even after the write request

is completed. The upper layers often want to ensure all data are safely written

to non-volatile storage device, and for that purpose, special commands are being

used. Write barrier is used at the file system level, and a special SCSI command

(SYNCHRONIZE CACHE) is used at the device level. As long as we follow the write

barrier semantics, write back buffering is safe.

In our previous work BPLRU [63], we have shown that a small write buffer can

improve random write performance significantly, and as a further step, we have im-

plemented a host-side write-back buffering solution, named FlashFire [65] for regular

desktop and laptop computers. FlashFire has been moderately successful for improv-

ing flash storage performance on Windows OSes, and has a user community of over

100,000. To know the capability of host-side write buffering for mobile platforms, we

re-design write buffering layer for Android smartphones.

Figure 22 shows the core design concept of our buffering layer. We allocate small

sized (i.e., 16Mbytes) main memory for write buffering, and the layer sits between a

file system and block device layers. We use the SpacialClock [66] algorithm for buffer

replacement, and strictly follow the write barrier semantics. We also implement a

mechanism, which drains write buffer during idle time to minimize the reliability

concern for write-back buffering.

We will explain the performance effect later in following evaluation section in

detail. As a preview to the evaluation results, we would like to observe at this point

that write buffering is not very beneficial to performance with the EXT4 file system

due to the frequent generation of write barriers by the file system.

6.5 Integrated Write Buffering

Since write-back buffering in of itself is not as effective as we had hoped, we integrate

the RAM buffer solution with a logging buffer solution. Figure 23 shows how the
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Non-Volatile !
Logging Buffer!

Android /data partition!

Sequential de-staging !
(SpatialClock)!

RAM Buffer!

Big Writes!

Small Writes!

Big Writes! Small Writes!

Figure 23: Integrated Write Buffering: RAM buffer and logging buffer are integrated
together

two solutions are combined together. Our main design goal with this approach is to

save logging buffer area by using the RAM buffer. RAM buffer acts as a staging area

for small write requests; spatially near, but temporally separated write requests are

merged to a big write request, and directly written to the final location. However, as

we will later see in the evaluation section, even this combined solution does not yield

much performance gains if the RAM buffer follows write barrier semantics strictly.

We will discuss the results in a later evaluation section in detail.

6.6 Fjord: Fine-grained Reliability Control

Today’s smartphones are sacrificing performance to protect themselves from unex-

pected power losses. However, not all applications require such high reliability; many

of them use local storage just as a cache store, and thus, it is neither necessary nor

prudent to sacrifice performance for data integrity for such applications. We propose

Fjord, a fine-grained selective write buffering layer to improve chosen application

performance without affecting the reliability of other applications.
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6.6.1 Design Principles

In this study, we focus on page cache and write buffering because smartphone storage

has limited performance for writing. Write-back buffering has multiple benefits. It can

reduce the amount of write requests, and it can also be used to reorder write requests

so that the pattern of write requests become more desirable from the point of view

of the underlying storage. There are three design principles embodied in the design

of Fjord: (1) The first principle is aggressive write-back buffering. Two supporting

mechanisms make this possible, namely, fsync() control and an additional write-back

buffering layer between the page/buffer cache and the block device layer. (2) The

second principle is ensuring the consistency of the file system at all times. To cater

to this principle, Fjord distinguishes between user data and file system metadata,

bypassing the write-back buffering layer for all metadata writes to the storage device.

(3) The third and last principle is selectivity in applying the performance enhancing

write-back buffering mechanisms at the granularity of individual files even for user

data. This ensures that applications are able to choose when to trade reliability (for

user data) for performance at the granularity of individual files.

6.6.2 Architecture

Figure 24 shows the overall architecture of Fjord together with that of Android sys-

tem. Android system is based on Linux kernel, and our storage software stack is

almost the same but for the conservative configuration of the original Android sys-

tem. We add a new write buffering layer between file system and block device layers,

and this layer optimizes write requests considering the general performance character-

istics of flash storage. To distinguish file system metadata from user-data, we slightly

modify Linux page cache system. We also modify file system code to control overly

used fsync() function calls. The implementation details for each component will be

explained in the following sub sections.
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Figure 24: Bird eye view of fine-grained write buffering

6.6.3 File Level White List Control

To provide fine-grained control for write buffering, we modify Linux kernel to maintain

a white list (opposite concept to blacklist). In Android system, each application

writes only to well separated own storage space under /data/data/ directory. In our

prototype, a file path can be easily inserted to or deleted from the white-list by using

/proc file system.

The entries in white-list are compared whenever a file is opened. We modify

do sys open() function within fs/open.c file to check if the opened file is buffer-able

or not. We also add a new variable to the file structure of Linux to denote that the

content of the file does not require high reliability.

In our prototype implementation, we provide two different interfaces to control the

white list. The first interface is an ioctl command, and it lets application developers

to enable write buffering at file level. The other interface is based on Linux proc file

system, and this interface lets users or smartphone manufacturers to control per file

write buffering.
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6.6.4 Bypassing File System Metadata

To protect file system from unexpected power losses, Fjord distinguishes file system

metadata from user-data. It can be done of course by file systems, but we take a

different approach. Instead of modifying file system code, we modify page cache

related, generic perform write() function within mm/filemap.c file. The function

is called when a file is written by file system write APIs, and it eventually copies

the written data to a page frame in Linux page cache. Clearly, the page is holding

user-data of a file, and we annotate that within page data structure. For this purpose,

we add a new page bit flag (include/linux/page-flags.h) and set the bit within

generic perform write() function. At this time, we also check newly added variable

within file structure (generic perform write() function receives file structure as

a argument), and mark the page as buffer-able page only when the associated file is

marked as buffer-able file. We verify the correctness of this method in the following

section.

6.6.5 Controlling fsync

Recent study about Android smartphone storage [62] reported that Android appli-

cations use database interface extensively for various purposes, and SQLite database

engine uses fsync() to support transactional semantics. It turns out that such transac-

tional semantics is an overkill in many situations. For example, when a web browser

visits a web site, it downloads multiple image files to the local web cache (on the

storage device), and uses SQLite to maintain the index for the stored items. It is just

convenient for the application to use SQLite for generating the indexes. However,

the application does not need strong transactional semantics for the objects it stores

and indexes in the web cache since they are available in the cloud (i.e., web servers in

this case). Unfortunately, SQLite has no way of knowing this, and it provides strong

transactional semantics using fsync() liberally every time it stores an index into the
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web cache. This is the motivation behind the fsync() control in Fjord, which allows

an application to inform the file system that sits below the database (see Figure 24)

that it can selectively ignore fsync() calls to specific files.

The implementation is extremely simple. We already explained file level annota-

tion mechanism and related modification for file structure. We modify ext4 sync file()

function within fs/ext4/fsync.c file to return when the file is marked as a buffer-

able file. This mechanism influences only the selected file, and it effectively reduces

the amount of metadata writes. It is helpful because underlying write buffering layer

is designed to bypass file system metadata.

6.6.6 Over Block Device Write Buffering

Our experience with BPLRU [63] and FlashFire [65] show that RAM buffering is a

very powerful mechanism, which can effectively improve random write performance.

However, in the current Android based smartphones, dirty data cannot stay in the

RAM buffer for a sufficiently long time because of the too frequent write barriers

from the EXT4 file system. As we have already observed, this is to make smartphone

storage system robust and resilient to sudden power failures. Even though some writes

are from non-critical applications, we cannot disobey the write barrier semantics, and

have to flush all dirty data in RAM buffer.

In Fjord, we propose fine-grained control of write buffer to improve performance

without hurting the reliability of smartphones. As shown in Figure 25, Fjord distin-

guishes non-critical data from other critical data, and allows the non-critical data to

stay in the RAM buffer in spite of a write barrier. Thus, if a power failure happens,

the data content of non-critical applications could be lost, but it is not a serious

problem because the original copy safely exists in cloud. We want to emphasize that

Fjord will never lose critical data due to write buffering since we strictly obey write

barrier semantics for such data.
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Non-Volatile !
Logging Buffer!

Android /data partition!

Sequential de-staging !
(SpatialClock)!
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Big Writes!

Small Writes!

Big Writes! Non-Critical  
Small Writes!

Critical  
Small Writes!

Figure 25: Fjord, logging, and RAM buffering: Non-critical pages are allowed to stay
in RAM buffer against for a write barrier

Fjord also has the spontaneous buffer draining mechanism to trigger a partial

buffer flush during periods of low I/O activity. By draining write buffer during idle

time, Fjord ensures that it has enough buffer space for handling future write traffic.

6.6.7 Dynamic Write Buffering Control

User Interface

Fjord’s write buffering is visible to all the layers in the software stack from application

down to the buffer cache. Therefore, it can be freely enabled or disabled for different

scenarios. At the application level, a user may explicitly control write buffering for

more performance or for increased reliability. We design the Fjord buffering engine to

be fully controllable by using the /proc file system, and we have also written a small

Android App named ISMCtl (Figure 26 (a)) as a user interface. Users easily can turn

on and off RAM buffer and logging buffer selectively, and also can decide whether to

follow write barrier semantics or not. The buffer usage is always shown through the
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top Android status bar, and users can enter to ICMCtl App by dragging down the

top status bar and clicking clicking the buffer usage information (Figure 26 (b)).

(a) (b)

Figure 26: Fjord Dynamic Control App (ISMCtl): (a) Fjord control interface, (b)
buffer usage in Android notification bar

Automatic Buffer Size Control

By default, we allocate 16Mbytes of main memory for Fjord, and the memory is used

for page-mapping table and write buffer. Because it is hard to decide the proper buffer

size, and we do not want to waste memory, we design the Fjord buffering engine to be

able to adjust RAM buffer size at runtime. ISMCtl periodically monitors the buffer

usage level in background, and increases or decreases the buffer size on predefined

conditions; in our prototype implementation, buffer increases when buffer usage level

is over 80% during any 3 second interval, and decreases when buffer usage level is
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lower than 10% during in any 5 second interval.

Automatic Garbage Collection

In a logging solution, Garbage Collection (GC) timing is very important. Lazy GC

can maximize the logging effect, but eager GC will minimizes response time. By

default, Fjord does lazy GC; GC happens when there is no space to write in the

logging buffer. This approach is easy to implement because there is no need to decide

when the buffering engine triggers GC.

Meanwhile, smartphone users are sensitive to the foreground performance while

smartphones have long idle time. Therefore, it will be desirable to do GC when the

smartphone is idle. Android framework provides a lot of useful information. However,

Fjord buffering engine is implemented as a part of Linux kernel, and therefore it is

not easy to access such information within the Fjord buffering engine. Therefore,

Fjord relies on ISMCtl App to trigger GC based on higher-level information. When

Automatic Garbage Collection option is turned on, ISMCtl App detects when the

LCD screen is off for over 5 seconds, and triggers the GC function to drain the logging

buffer. This is a good example for showcasing how system wide information can be

used for our storage solution, and it is the key idea of Informed Storage Management.

Smart RAM Buffer Disabling

Users may want to use write buffering for better performance even though there is

a risk for losing data. In that case, ISMCtl App can automatically disable RAM

buffering when here is high possibility for a power failure. To show the feasibility, we

implement one mechanism; when the ACTION BATTERY LOW message is given to Fjord

ISMCtl App (Android framework sends the message when the battery level is very

low), ISMCtl disables RAM buffer automatically. The idea can be extended with

other types of information as well. For example, RAM buffering can be turned off

when the user is jogging (based on sensor information) as there is a high probability
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of power failure.

6.7 Evaluation

Fjord has been implemented into real Android smartphones, and evaluated with sev-

eral popular Apps on multiple flash storage devices. In this section, we first start

with our evaluation environment, and explain our evaluation results focusing on the

following two key questions:

• Reliability verification: How effective is Fjord in ensuring the reliability of mission

critical applications?

• Performance impact: How effective is Fjord on enhancing the performance of ev-

eryday applications?

6.7.1 Evaluation Environment

We use two Android smartphones, Samsung Galaxy Note N7000 [93], and Google

Nexus One [11]; Galaxy Note phone has 16Gbytes of internal eMMC flash memory;

Nexus One phone has 512 Mbytes NAND flash memory; both phones have external

memory card slots. We test the internal eMMC device and 8Gbyte sized class 10

microSDHC card from Samsung. Table 9 summarizes the flash devices used in this

study.

Table 9: Read/Write throughputs of flash devices used in this study (Mbytes/sec-
ond).

Device Size Seq. Read Seq. Write Rand. Read Rand. Write

SD Card 8 GB 18.3 12.0 2.5 0.01
GNote eMMC 16GB 40.7 15.1 5.4 0.43

The Galaxy Note phone has a dual-core 1.4GHz Samsung Exynos processor, 1

Gbytes main memory, and a 5.3 inch 1280 x 800 resolution LCD screen. As a test

software platform, we use a custom ROM for the Galaxy Note phone, named AOKP
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build 38 [2], which is based on Google’s Android Open Source Project (AOSP [3])

version 4.0.4 (Icecream sandwich). AOSP only supports Google’s official reference

phones while AOKP is available for more smartphones including Galaxy Note. For

the Linux kernel, we use version 3.0.15 from Samsung.

The Nexus One has a single-core 1 GHz Qualcomm QSD8250 Snapdragon proces-

sor, 512 MB RAM, and 512 MB internal flash storage. For this phone, AOSP version

2.3.7 (Gingerbread) and Linux kernel 2.6.35.7 are used. We use the latest available

software for both devices on current point.

EXT4 file system is used for all tests, and 16 MB of RAM is assigned for write

buffering layer. We apply write buffering only for /data partition, which is used as a

writable application storage within an Android system.

6.7.2 Reliability Verification

The key idea of Fjord is improving the performance of chosen applications without

hurting the reliability of other applications. To this end, we control fsync() at file sys-

tem level, and adopt additional write-back buffering layer over the block device layer.

Related with verification of safety, by design our fsync() control does not compromise

reliability since we apply it only for chosen files. However, it is not very intuitive

how the additional write-back buffering layer does not violate the reliability needs of

critical applications that have chosen NOT to sacrifice reliability for performance.

An important question is whether Fjord is really able to distinguish buffer-able

data from un-buffer-able data or not. To verify the correctness of our implementation,

we use postmark benchmark.

Postmark is a well-known benchmark, which emulates the mail server workload.

It first creates a lot of text files, modifies the contents of randomly chosen files, and

deletes the files. Postmark is known as metadata intensive benchmark. Originally,

it writes randomly generated text content to test files. For verification purpose, we
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modify postmark source code to write special fingerprint instead of random text data,

and we insert a piece of verification code in our write buffering driver. By checking

the content of associated buffers of write requests at the write buffering layer, we can

find out whether a write request is for user-data or not. Then, we can verify whether

Fjord is properly doing buffering only for chosen application user-data or not.

We compile postmark for Android and run this test on a real smartphone. We

configure postmark runtime parameters as follows: Transactions = 1000, number of

files = 1000, file size = 4KB to 400KB. In this configuration, postmark generates

total 87,692 write requests, and among them, 1,247 requests are for metadata and

rest 86,445 requests are for user-data. We have verified from the results that Fjord

successfully distinguished all 1,247 write requests for file system metadata.

With this experiment, we can verify that Fjord bypasses file system metadata and

does not influence file system integrity. However, the buffered file content can be lost

due to sudden power failures, and we want to know the impact on the application

when the content of a file is partially lost. We built a simple program, which fills

zeros to a randomly chosen part of a file currently in use by a cloud-backed Android

application such as a web browser. We have done this “controlled corruption” of data

files used by multiple cloud-backed Android Apps such as facebook, twitter, and web

browser. In most of our tests, the Apps run without any problem whatsoever, despite

such data corruption (since most likely they do an internal consistency check of the

data files and fetch from the cloud if the consistency check fails). In some cases,

we have noticed that an App may crash (most likely because it uses the data file

without an internal consistency check). Even in the event of an App crash, simply

restarting the App allows it to recover where it left off (most likely the App clears

any inconsistent state upon restart). According to our observation, when Android

database engine finds errors within a database file(such an index file used by the web

cache), it deletes the inconsistent database file automatically. Then, the application
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re-creates the database file by downloading information afresh from its cloud source.

Therefore, we are able to verify that Fjord does not cause catastrophic problem. An

interesting question, which is part of our future work (see Chapter VII), is a thorough

study of cloud-backed applications and the effect of data file corruption due to sudden

power loss.

6.7.3 Performance Evaluation

To show the performance effect of Fjord on Android applications, we first measure

application performance without any change. Then, we switch to a new kernel enabled

with Fjord, and turn on write buffering for the application’s working directory path

(which is under /data/data2), and measure the changed application performance.

All tests have been repeated 3 times, and the average numbers are reported in our

results.

We compare performance for six different configurations: (a) the original storage

(Native), (b) only logging buffer is enabled (Logging), (c) only RAM buffer is enabled

(RAMBuf.), (d) Both RAM and logging buffers are enabled (Both), (e) Fjord selective

buffering is used with RAM buffer (FjordRAM), and (f) Fjord selective buffering

is used with both RAM and logging buffers (FjordBoth). Note that the first four

configurations do not sacrifice reliability while the last two configurations (FjordRAM

and FjordBoth) sacrifice reliability for chosen application files.

RL Benchmark: SQLite

This benchmark measures the database performance of Android system by running

synthetic database queries [88]. According to the latest study about Android appli-

cation performance [62], database is a key performance contributor, and thus, this

benchmark is very useful to see the performance effects of our storage solution.

Figure 27 and Figure 28 show the reported runtime for the benchmark program

2For our controlled experiments, we do this write buffering control manually in the ADB shell.
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on the Galaxy Note smartphone with the internal eMMC device and the external

SD card, respectively. Figure 29 shows the result from Nexus One phone with the

same external SD card, and Figure 30 compares only two configurations (Native,

FjordBoth) for all three phone / storage configurations.
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Figure 27: RL Benchmark: SQLite (Galaxy Note, eMMC, Android 4.0.4): Fjord
eliminates about 59% of execution time
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Figure 28: RL Benchmark: SQLite (Galaxy Note, SDCard, Android 4.0.4): Fjord
eliminates about 65% of execution time

From the results, we can see that the RAM buffering with write barrier is not

much helpful. It is expected because the EXT4 file system uses write barrier very

frequently. Writes go to RAM buffer with some amount of overhead (buffer allocation,

memory copy, etc), and almost immediately flushed to the flash storage because of

the ensuing write barrier. Non-volatile logging looks very effective; it eliminates 24%,
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Figure 29: RL Benchmark: SQLite (Nexus One, SDCard, Android 2.3.7): Fjord
removes about 73% of execution time
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Figure 30: RL Benchmark: SQLite: Summary for all three configurations

36%, and 47% of execution time for the benchmark on tested three cases. However,

these numbers are obtained when there is enough free space in the logging buffer, and

the performance gain will be reduced as the logging buffer becomes full.

With Fjord, we can control write buffer more precisely. For cloud backed appli-

cations, the local dirty file content (which is really meta-data of the App for manipu-

lating the real data objects in the cloud) is not that critical because the real content

needed by the App (e.g., widgets displayed by a browser) are safely in the cloud,

and can be easily recovered over the network. By allowing non-critical dirty data to

stay in RAM buffer, it can be seen in Figures ??, ??, ??, that the performance gain

increases up to 59%, 65%, and 73%; it is a huge performance gain.

97



In addition, we see that Fjord removes the dependences of storage; Nexus One

with SD card is about 50% slower than Galaxy Note with eMMC for this benchmark,

and with Fjord, Nexus One becomes even slightly faster than the Galaxy Note phone.

Breakdown of Performance Contribution

Fjord consists of two major mechanisms: fsync() control and write buffering layer.

Figure 30 shows the improved performance with both the mechanisms. Because we are

curious about the performance contribution of each mechanism, we run the benchmark

with only one mechanism separately. Figure 31 shows the measured results on Nexus

One phone with the SD card because the obtained performance gain is the biggest

on the phone.
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Figure 31: Reported runtime RL Benchmark: the breakdown of the performance
contribution

Figure 31 shows the breakdown of the performance contribution. We also mea-

sured the amount of write traffic given to the block device, and Table 10 shows the

measured amount write requests for each configuration. As can be seen from the

table and graph, fsync() control reduces the write traffic more effectively, and thus its

performance gain is more than with write buffering. Write buffering reduces about

25% of the write traffic, but its performance gain is much bigger, about 38%. This

is because our write buffering layer additionally does write request reordering to be
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Table 10: The amount of write requests collected while running RL Benchmark

Configuration Amount of Write Traffic Reduction Percent

Native 108,717 Kbytes 0
fsync control only 43,400 Kbytes -60%
Write buffering only 81,751 Kbytes -25%
FjordBoth 28,885 Kbytes -73%

more favorable for flash storage internal characteristics. An important observation is

that both the mechanisms of Fjord contribute to storage performance, and thus both

are necessary.

Email

Email is one of the most popular applications on smartphones. In this benchmark, we

measure the runtime for downloading emails after we input information of an email

account.
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Figure 32: Email (Galaxy Note, eMMC, Android 4.0.4): Fjord eliminates about 53%
of execution time

Figure 35 shows that Fjord significantly reduces the runtime by 88%, 47%, 58%

on three configurations, respectively. The trend in Email test results is almost the

same as observed for the RL Benchmark. RAM buffering with write barrier shows

limitations, non-volatile logging is promising, and Fjord shows superior performance

gains than other approaches. One very interesting result is observed on Galaxy Note
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Figure 33: Email (Galaxy Note, SDCard, Android 4.0.4): Fjord eliminates about
55% of execution time
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Figure 34: Email (Nexus One, SDCard, Android 2.3.7): Fjord removes about 41% of
execution time

smartphone with the eMMC device. FjordBoth configuration shows about 20% bigger

gain than FjordRAM configuration, which means all three mechanisms (logging, RAM

buffering, fine-grained reliability control) are necessary and meaningful for achieving

high performance.

Web Browsing To evaluate web-browsing performance, we build our custom bench-

mark program, which visits 20 pre-defined web sites continuously and reports elapsed

time. Figure 36 - Figure 39 show the measured results, which are quite interesting;

unlike other benchmark results, Fjord’s performance gain is relatively small on the

Android 4.0.4, Icecream sandwich phone. We measured this decrease performance
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Figure 35: Email: Summary for all three configurations

benefit of Fjord with the newer Android Icecream Sandwich, but not with Android

Gingerbread. We believe this is because the WebKit engine of Android 4.0.4 has

been changed to resolve the performance bottleneck related with web caching that we

reported in our earlier studies [62]. We confirmed our hypothesis by comparing the

new source code of the WebKit engine of Android 4.0.4 with that of AOSP and found

huge differences. However, the important message is that Fjord achieves almost the

same performance gain with minimum effort and without changing one line of appli-

cation source code. In other words, Fjord can enhance the performance of any legacy

cloud-backed application without any change to the application source code.
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Figure 36: WebBench (Galaxy Note, eMMC, Android 4.0.4): Fjord eliminates about
24% of execution time
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Figure 37: WebBench (Galaxy Note, SDCard, Android 4.0.4): Fjord eliminates about
21% of execution time
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Figure 38: WebBench (Nexus One, SDCard, Android 2.3.7): Fjord removes about
38% of execution time

6.8 Summary

Due to size, power, and cost considerations, smartphones will continue to deploy low-

end flash memories as the primary storage. Therefore, it is important to consider what

can be done in the OS to enhance the performance of flash based storage systems.

In this study, we propose Fjord, a fine-grained write buffering solution for mobile

platforms. We show the effectiveness of our solution, and also provide explanations as

to why Fjord is safe for mission critical applications. The solution is very simple, and

thus practical, and we prove this fact by applying it to two real Android smartphones.

Even though we are focusing on smartphone storage in this study, we believe that
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Figure 39: WebBench: Summary for all three configurations

this idea has potentials beyond smartphones for other types of storage and systems

(see Chapter VII).
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CHAPTER VII

DISCUSSION AND FUTURE DIRECTION

In this dissertation, we have presented storage solutions focusing on mobile platforms.

In this chapter, we present several insights learned from our experiences.

7.1 Endurance of Research Results from this Dissertation

The thesis statement and the dissertation work were motivated by mobile platforms,

but the research output from this dissertation has implications beyond mobile plat-

forms. In this section, we distinguish which parts of the work are specific only to

smartphones and which parts will endure beyond mobile platforms.

7.1.1 Smartphone Specific Findings

The performance observation study published as a research paper entitled “Revisiting

Smartphone Storage”, is mainly about smartphones. SpatialClock is also specific

to smartphone storage because its key design features are motivated by the special

performance characteristics of low-end flash storage devices, wherein write ordering

is very important. In other words, such devices deliver much faster performance for

sorted write requests are much fast than randomly scattered writes. Within today’s

regular sized SSDs, sophisticated FTL design is being used, and write performance is

not that much influenced by write ordering; request size is still important, though.

The write buffering solutions of Fjord study is also tightly coupled with smart-

phone storage. RAM buffering and logging solutions have been designed to improve

the random write performance of smartphone storage. Random writes are changed to

sequential writes by using the log-structured non-volatile write buffer, and additional

RAM buffering helps to efficiently utilize limited logging space.
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7.1.2 Studies beyond Smartphones

Cloud computing and ubiquitous computing are popular today, and we propose Fjord

as a fine-grained reliability control mechanism for the cloud-backed applications on a

smartphone. Fjord approach can be useful beyond smartphones. Today, a user has

multiple computing devices; smartphones, tablets, laptop, and desktop computers.

Cloud storage enables users to access their data from any device conveniently. For

instance, Apple’s Photo Stream automatically uploads and distributes photos over

all registered devices via iCloud. With the emerging spread of the cloud storage, the

reliability requirement can be relaxed for some applications even in traditional laptop

and desktop computers, and thus, Fjord can be useful also on regular laptop and

desktop computers.

Besides, Fjord’s fine-grained reliability control can be useful even without cloud

storage. Applications generate many temporary files for some reasons. For example,

database management systems (DBMS) create and use temporary files for join and

sort operations. The contents of such files are not critically important, and losing

the content for sudden power failure or system crash is not an issue; uncompleted

operation will be safely rolled-back and the temporary files will be deleted anyway.

Fjord provides reliability relaxing mechanisms as a tool, and it can be useful as

long as storage performance needs to be improved regardless of the system types.

Lastly, we have demonstrated how the system wide information can be used to

control storage solutions. We design and implement an Android App, which is specifi-

cally based on usage pattern of smartphones. We believe that system wide information

can be useful beyond smartphones. In our Beacon project [67], we have shown that

application knowledge can be used for proactive data migration on a multi-tiered

storage system composed of SSD and HDD. Information barriers are very common in

today’s systems; guest OSes on a virtualized system, application and storage servers,

etc. Sharing information over the barriers holds significant promise for the future
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evolution of computer systems.

7.2 Boundary between Software and Hardware

One very interesting question is deciding who does what between the operating system

software and flash storage device. Flash storage devices are becoming more and more

powerful. A consumer level MLC SSD has 3-cored ARM 9 processor and 256MB

on-board cache. Thus deciding the functional boundary between the host operating

system and the flash storage is an interesting topic.

When storage devices become powerful and complicated, it is hard to predict the

behavior of the device; for example, our prior work shows that cheaper low-end SSDs

are more suitable for building a video server than expensive high-end SSDs are [92].

In addition, there is an information barrier between a storage device and the host

system. The study by Arpaci-Dusseau et al. [25] highlights that information from

the file system has the potential for significantly enhancing the storage performance.

Similarly, our SpatialClock research shows that we can optimize write pattern for

flash storage devices in the OS; with the right OS support (SpatialClock), we can

achieve better performance than using a hardware solution (eMMC) to circumvent

the performance issues of mobile flash storage.

In other words, findings from this dissertation work call to question the wisdom of

increasing the hardware complexity of the flash storage when it is possible to achieve

the same performance with the right OS support on the host side.

7.3 Future Work

In this section, we list the possible further studies, which could come as a natural

outgrowth of this dissertation.
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7.3.1 Fjord Implementation in Other Layers of the Software Stack

We have proposed and demonstrated the fine-grained reliability relaxing idea, that is

the philosophy of Fjord, through this dissertation by implementing it as two mech-

anisms: fsync control and block device level write back buffering. We chose these

approaches because we believed the approaches were easy to implement but effective.

In addition, our Fjord mechanisms are applicable without any changes to the Android

applications themselves. As a further study, we may apply the Fjord idea to the other

layers of the storage software stack to find out which approach is the most desirable

one. We may change SQLite or EXT4 file system APIs to distinguish critical data

accesses from non-critical data accesses.

7.3.2 Energy Saving Considerations

Fjord distinguishes non-critical files from critical files and use RAM buffering ag-

gressively only for non-critical files. By doing this, Fjord significantly reduces the

number of I/O operations; that is, Fjord can save power by reducing I/O operations.

As we all know, power consumption is critically important in mobile platforms like

smartphones and tablets because these devices rely on limited battery power. There-

fore, understanding the energy saving implications of the techniques proposed in this

dissertation is an important direction of future research. Smartphones keep synchro-

nizing local database files with the cloud content in background. We have observed

that background sync process generates about 20 times bigger write traffic than the

network receive traffic when the system is idle. Fjord reduces the amount of I/O

operations, which has implications for the energy consumption for the actual storage

operations as well as the wakeup times for the synchronization process between the

smartphone and the cloud. An interesting avenue of future research is understanding

the extent of energy savings due to Fjord.
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7.3.3 Application Consistency Study

The key idea of Fjord is improving the performance of chosen applications without

hurting the reliability of other applications. To this end, we control fsync() at file

system level, and adopt additional write-back buffering layer at the block device layer.

Fjord guarantees file system consistency by not applying Fjord mechanisms to file

system metadata, but it achieves performance enhancement by sacrificing reliability

guarantee for data files; some local file content may not be up to date or lost in

case there is a sudden power failure. We have conducted preliminary experiments to

understand the effect of such optimization on application behavior, and reported that

there were no critical issues for many cloud-backed applications. More complete and

elaborate study to understand the influence of the proposed mechanisms on cloud-

backed application behavior is an important avenue for future research.

As a further step, a middleware approach can be taken to let application developers

control file level reliability more gracefully. A pertinent research question in this

context can be framed as “What is the desirable programming model for fine-grained

reliability control?”

7.3.4 Emerging Storage

NAND flash memory is the only major player in mobile platforms today. In the near

future, we will certainly have more diverse storage technologies such as Phase Change

Memory (PCM). PCM is more scalable, and its read latencies are almost two orders

of magnitude better than Flash memory. PCM does not have “big sized erase-before-

write” issue, and its write endurance is about three orders of magnitude better than

Flash memory. The performance, reliability, and functionality of a solid state storage

system can be greatly enhanced with emerging storage.

There are three potential approaches for incorporating PCM into the storage hi-

erarchy. The first approach is to replace all the Flash memory with PCM, and the
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second possibility is to use PCM together with Flash memory. We believe the second

approach (adding a small amount of PCM to the Flash storage) is more practical

considering the cost per gigabyte of PCM; it is highly unlikely that PCM will have

comparable price to Flash memory in the near future. Lastly, PCM can be used in a

more radical way, namely, to build a new universal memory, which plays the role of

both the main memory and the storage.

In addition, we need to think about how to use system wide information for new

storage devices as we have done in this dissertation. We first need to understand the

characteristics of the new storage device, and then, study how the current storage

software stack can be changed considering the special characteristics of the emerging

storage. As a further step, the idea of Fjord and Informed Storage Management can

be applied for the emerging storage devices.

7.3.5 ISM for Desktop and Server System

Even though the main focus of this thesis work is given to mobile platforms, the

research outputs have potentials also for regular desktop and server systems. Thus,

such an investigation offers new opportunities for future research. We may apply

Fjord mechanisms to enterprise DBMS system to improve performance, or informa-

tion based control idea to the regular desktop OS to enhance user experiences. If

file systems or storage devices knowledge from the upper layers of the software stack,

they will be able to optimize their functionality in a much better way. Investigating

an information sharing abstraction that allows such cross-layer optimizations without

affecting the modularity of the software stack is part of the proposed future work.
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CHAPTER VIII

CONCLUSION

Storage devices are rapidly changing, and we need to adapt the OS storage software

stack to keep up with the changes. Such a re-evaluation of the storage software stack is

especially required for mobile platforms because they are relying on inexpensive flash

storage devices having very different performance characteristics from the familiar

hard disk.

In this thesis work, we first show the importance of storage in mobile platforms;

contrary to conventional wisdom, we find evidence that storage is a significant con-

tributor to application performance on mobile devices. Then, we explore the solution

space for flash storage; user-level library for selective logging, host-side write buffer-

ing layer, and OS buffer replacement scheme for flash storage have been studied.

Finally, we build an integrated solution for smartphone storage, named Fjord. In the

Fjord study, we re-design logging and RAM buffering solutions for smartphones, and

also propose fine-grained reliability control mechanisms. We prove that non-volatile

logging can improve storage performance remarkably. Understanding the character-

istics of cloud-backed applications and controlling the reliability constraint for chosen

cloud-backed applications can achieve additional significant performance gain.

We have presented several insights learned from our experience in Chapter VII.

The thesis statement and the dissertation work were motivated by mobile platforms,

but some research outputs from this dissertation have implications beyond mobile

platforms; Fjord’s fine-grained reliability control and information based dynamic so-

lution control can be useful beyond smartphones. Another very interesting question

is who does what between the operating system software and flash storage devices.
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Findings from this dissertation work call to question the wisdom of increasing the

hardware complexity of the flash storage when it is possible to achieve the same

performance with the right OS support on the host side.

We have also presented potential future works. Applying the idea of Fjord to

the other layer of the storage software stack will be useful to find the most desirable

approach. Power consumption related evaluation would also be very interesting con-

sidering the importance of battery power in mobile platforms. Storage has always

been expected to be reliable. even though it is not always critically required for some

applications (e.g., cloud-backed applications), and for some storage devices, it is not

practically possible (e.g., Triple-Level Cell (TLC) NAND flash memory). Fjord is one

approach on relaxing the reliability constraint of the storage; an interesting follow on

work is investigation of application behavior under such relaxed reliability constraint.

In addition, it will be very interesting to extend this study to include emerging stor-

age devices like PCM. Finally, it will be possible to apply the ISM ideas to desktop

and server systems as well.

There are always design tradeoffs involved in building software systems. Especially

when it comes to system software, these tradeoffs have to be evaluated very carefully

since the design choices at this level affect application performance and user experi-

ence. Design choices are always fraught with such tradeoffs. Usually, system design

chooses a “sweet spot” that optimizes the solution for meeting certain requirements

and/or assumptions about the environment (application behavior, device character-

istics, etc.). Unfortunately, since the real world use cases are very dynamic and the

technology landscape is continually evolving, often such assumptions may turn out to

be incorrect; further, statically fixing the design based on certain requirements may

force the design to be conservative. This argues for the need to adjust the solution

dynamically based on the use case, the technological evolution, and the workload.

We name the idea as Informed Storage Management (ISM), and we aim at providing
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such a dynamic decision-making framework for system design, specifically targeted

to storage systems.

We would like to conclude this dissertation with two salient observations. The first

concerns developing a deep understanding of the components of the target system such

as storage devices, storage interface protocols, OS storage software layers, and all the

way up to the characteristics of the applications. Such an understanding is crucial

to avoid the pitfalls of making superficial design decisions. The second observation

concerns the importance of information. Due to modularity considerations in building

complex software systems, it is natural to use levels of abstraction leading to barriers

between these levels. Sharing information across such the barriers holds significant

promise for the future evolution of computer systems.
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