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SUMMARY 

 This research investigates effects of tensile stresses in liquids.  Specific areas of 

application include bearing lubrication and polymer processing, in which liquids may be 

subjected to hydrostatic tension, or in which large shear stresses are generated. 

 The primary thrust of this research concerns the development of a criterion for 

liquid failure, or cavitation, based upon the general state of stress in the liquid.  A 

variable pressure, rotating inner cylinder, Couette viscometer has been designed and used 

to test a hypothesized cavitation criterion. The criterion, that cavitation will occur when a 

principal normal stress in a liquid becomes more tensile than some critical stress, is 

supported by the results of experiments with the viscometer for a Newtonian liquid.  

Based upon experimental observation of cavitation, a model for cavitation inception from 

crevice stabilized gas nuclei, and gaseous, as opposed to vaporous, cavitation is 

hypothesized. 

 The cavitation inception model is investigated through numerical simulation, 

primarily using the boundary element method.  Only Newtonian liquids are modeled, 

and, for simulation purposes, the model is reduced to two dimensions and the limit of 

negligible inertia (Stokes flow) is considered.  The model includes contact line dynamics. 

Mass transport of dissolved gas through the liquid and in or out of the gas nucleus is 

considered.  The numerical simulations provide important information about the probable 

nature of cavitation nucleation sites as well as conditions for cavitation inception. 

 There are several implications of shear cavitation on rheological measurements.  

It can cause apparent shear thinning and thixotropy.  Additionally, there is evidence 

suggesting a possible link between shear cavitation and extrusion defects such as 
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sharkskin.  A variable pressure capillary tube viscometer was designed and constructed to 

investigate a hypothesized relationship between shear cavitation and extrusion defects.  

Results indicate that despite the occasional coincidence of occurrence of cavitation and 

sharkskin defects, cavitation can not explain the onset of extrusion defects.  

 If nuclei are removed, then liquids can withstand tension, which, if uniform, is a 

negative hydrostatic pressure.   A falling body viscometer has been constructed which is 

used to investigate the effect of negative pressures on viscosity.  It is found that current 

pressure viscosity models can be accurately extrapolated to experimentally achievable 

negative pressures. 

 



 

 1

CHAPTER 1 

INTRODUCTION 

  This work is concerned with several aspects of the ability of liquids to 

withstand tensile stresses. The primary concern is the investigation of a hypothesis that a 

liquid will fail when one of its principal normal stresses becomes sufficiently tensile.  

This hypothesis leads to a principal normal stress cavitation criterion, PNSCC, which 

predicts cavitation in simple shear flows that are often used to obtain rheological data.  

Such shear cavitation would invalidate the assumption of a viscometric flow and be a 

major source of experimental error.  This investigation into the PNSCC is both 

experimental and theoretical. It shows that while the PNSCC is a good predictor of shear 

cavitation in Newtonian liquids, it implies a degree of simplicity about the cavitation 

phenomenon that is misleading.   

1.1 TENSION IN LIQUIDS 

 The state of stress in a liquid is described by a stress tensor, T.  For an 

incompressible liquid this tensor can be split into two parts, a pressure component, p and 

a deviatoric component, τ, which is the component that leads to deformation and flow of 

the liquid.  In a Cartesian coordinate system this leads to the following stress tensor 

  
xx xy xz

xy yy yz

xz yz zz

p
p

p

τ τ τ
τ τ τ
τ τ τ

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

T . (1.1) 

 A tensile stress exists in the liquid whenever one or more of the principal stresses 

becomes positive.  The principal stresses, σ1, σ2, and σ3, are the eigenvalues of T, and 

satisfy 
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  ( )det 0σ− =T I  (1.2) 

where I is the identity tensor. 

 In simple shear the stress tensor reduces to 

  
0
0

0 0

xx xy

xy yy

zz

p
p

p

τ τ
τ τ

τ

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

T . (1.3) 

In simple shear the deformation of a liquid can be expressed by a scalar, γ , called the 

shear rate, and the deviatoric components of the stress tensor are functions of γ only. The 

simplest case is that of a Newtonian liquid in which the shear stress and shear rate are 

related by the Newtonian viscosity, µ, 

  xyτ µγ= , (1.4) 

and the normal stress components of the deviatoric are zero (Bird et al. 1987).  In simple 

shear of a Newtonian liquid, the subscripts on the shear stress can be dropped.  Thus, in 

the case of simple shear of a Newtonian liquid, the principal stresses are as follows: 

  
1

2

3

,
       and

,

p
p
p

σ τ
σ
σ τ

= − +
= −
= − −

 (1.5) 

where σ1 is the most tensile of the principal stresses.  σ1 is tensile when  

  pµγ > . (1.6) 

.   In the case of a generalized Newtonian shear thinning liquid, the shear stress and 

shear rate are related by the non-Newtonian, or generalized, viscosity, η(γ ),   

  ( )τ η γ γ= , (1.7) 

and the analysis remains the same as for a Newtonian liquid with µ replaced by ( )η γ .   

 The situation becomes more complicated in the case of liquids in which simple 

shear results in normal stress differences,  
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  1

2

and

.
xx yy

yy zz

N

N

τ τ

τ τ

= −

= −
 (1.8) 

In this case the principal normal stresses depend also upon the boundary conditions for 

the flow.  The PNSCC will be considered in the context of Couette flow.  For non-

Newtonian liquids, N2 will be assumed to be negligible, and the pressure at the edge of 

the flow will be taken to be p. In this case, the application of Eq. (1.2) to find the 

principal normal stresses yields 
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 (1.9) 

The most tensile principal stress, σ1, is tensile when 

  ( )2 2
1 1

1 4
2 xyN N pτ+ + > . (1.10) 

An investigation into the possibility of liquid failure, or cavitation, as a result of the most 

tensile principal normal stress approaching some critical value is a main thrust of this 

work. 

 When a liquid is not flowing, the principal stresses must all be the same and have 

magnitudes equal to the hydrostatic pressure; for tension to exist the pressure must be 

negative.  An investigation into the rheological effect of tension due to a negative 

hydrostatic pressure comprises another major thrust of this research. 

1.1.a  Negative Pressure and Tensile Strength 

 It has been recognized for centuries that liquids can withstand tensions, which, if 

uniform, are a negative hydrostatic pressure (Kell 1983).  The tensile strength of a liquid 

is the absolute value of the minimum negative pressure achievable, or, in other words, the 
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minimum pressure a liquid can withstand before failure.  Failure is considered to have 

occurred when the liquid ceases to withstand tension.  The most accepted model for 

predicting the maximum tensile strength of a liquid was developed by Temperley based 

on the Van der Waals equation of state (Trevena 1986) 

  ( )2 v
v u
ap b R T⎛ ⎞+ − =⎜ ⎟

⎝ ⎠
 (1.11) 

where a and b are the Van der Waals parameters related to intermolecular attraction and 

hard shell radius respectively, and  v is the specific volume. The absolute value of the 

minimum of an isotherm of a Van der Waals fluid on a pressure – volume diagram is the 

theoretical tensile strength of the liquid.  To understand how a liquid reaches a state of 

tension, consider the isotherm in Figure 1.  The dotted line is along the saturation 

pressure for the given temperature.  The states represented by the dot/dash portion of the 

curve between the two extrema are mechanically unstable, and the fluid will not exist at 

states described by this portion of the curve.  The states represented by the bold portions 

of the curve are mechanically stable, though thermodynamically unstable.  The minimum 

can be at a pressure less than absolute zero, and could be reached by expanding a 

subcooled liquid at constant temperature. When a liquid is withstanding a negative 

pressure, it is in a metastable state (Trevena 1986). 

1.2  CAVITATION 

 Cavitation is defined by Young as “the formation and activity of bubbles (or 

cavities) in a liquid (Young 1999).”  The cavity may be created by the cavitation event, or 

be preexisting in the liquid in some manner, and caused to grow to macroscopic size by 

the cavitation event.  The contents of the cavity may be vapor, gas, or a mixture of the 
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Figure 1. Van der Waals fluid isotherm.  Isothermal expansion to achieve tension 
would follow the path (1 to 2). 
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result of pressure variations; the typical approach to hydrodynamic cavitation uses a 

cavitation index k that neglects viscous effects entirely (Young 1999): 

   
21

2

vp pk
uρ

−
≡  (1.12) 

When viscous effects are considered important in cavitating flows, the usual explanation 

of cavitation still relies upon a reduction in the hydrodynamic pressure.  This form of 

cavitation is called vortex cavitation, and it requires shear rates high enough to create 

vortices.  If the pressure in the vortex core drops below a critical value, the liquid 

cavitates. 

1.3  PNSCC 

 Bair and Winer first proposed that cavitation would occur in a liquid when the 

most tensile principal stress becomes tensile (Bair and Winer 1987).  They demonstrated 

that variations of ambient pressure too small to affect viscosity had a pronounced effect 

on viscosity measurements in which the magnitude of the shear stress, τxy, was near that 

of the pressure, p.  They later suggested the possibility that a lubricant could withstand a 

slight tension without cavitating (Bair and Winer 1992).  Joseph independently proposed 

a similar criterion, introducing the possibility that the tensile strength, σc, could be 

positive or negative, making his criterion for cavitation 1 cσ σ>  (Joseph 1998).  If 0cσ >  

then the liquid has some ability to withstand a tensile principal stress; if 0cσ =  then the 

criterion is that originally proposed by Winer and Bair; and if 0cσ <  then the liquid 

cavitates at some stress that is still compressive.  The case of 0cσ <  is analogous to the 

idea of a liquid cavitating if the hydrodynamic pressure is reduced to the vapor pressure.   

A principal normal stress cavitation criterion predicts shear cavitation, that is, cavitation 
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in simple shear with no reduction of the hydrodynamic pressure, when the shear stress 

and the pressure are of the same order of magnitude, if c pσ << . 

 Based on the knowledge that a liquid can withstand tension, it might be expected 

that σc would be a very large number.  Much work in cavitation has attempted to explain 

why cavitation occurs at pressures above that suggested by the theoretical tensile strength 

of a liquid.  The most accepted theory was introduced by Harvey et al. (Harvey et al. 

1944) and expanded upon by Apfel and Crum (Apfel 1970; Crum 1982).  They postulate 

that cavitation occurs in most cases through the growth of preexisting voids.  These 

voids, called nucleation sites, are filled with gas.  Surface tension increases the pressure 

inside a gaseous bubble in a liquid, and the smaller the radius of the bubble, the greater 

its internal pressure.  The higher the pressure in the bubble is, the greater the 

concentration difference driving diffusion of the gas out of the bubble will be.  Therefore, 

a small gas bubble in a liquid requires some mechanism of stabilization to prevent its 

spontaneous disappearance.  Several theories have been advanced for the method of 

nucleation site stabilization.  None has been conclusively demonstrated. 

 One widely accepted theory for nuclei stabilization is stabilization in a crevice on 

a solid impurity or bounding surface (Strasberg 1959; Winterton 1972; Plesset and 

Prosperetti 1977).  A crevice stabilized gas nucleus can have an interface that is concave 

towards the liquid.  Due to surface tension, the pressure of the gas in the nucleus can 

therefore be less than the pressure in the liquid, and if gas diffuses from the nucleus, so 

long as the contact line is pinned, the concavity will increase, reducing the pressure of 

gas.  Hence such a nucleus can persist without dissolving completely into the liquid.  The 

origin of such nuclei has been explained by considering the flow of a liquid onto a 
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hydrophobic surface with crevices  (Atchley and Prosperetti 1989).  Another explanation 

of the origin and persistence of nuclei is that ordering of liquid molecules adjacent to 

solid surfaces leads to local hydrophobicity in regions of concavity of an otherwise non-

hydrophobic surface (Mørch 2000).  This explanation suggests that the resulting voids 

have interfaces which are convex toward the liquids, and that their persistence is due to a 

resonant behavior forced by ambient vibrations.  In this work, the terms nucleus, 

preexisting nucleus, and nucleation site, all refer to gas trapped between the liquid and 

solid surface, regardless of origin, rather than  referring to the critical nucleus of classical 

nucleation theory  (Blander, 1979). 

 Although agreement upon a theory of nucleation site stabilization has not been 

reached, it is generally accepted that stabilized gas bubbles are present in liquids and can 

act as nucleation sites.  

1.4  SIGNIFICANCE – PNSCC 

 There are several implications of the principal normal stress criterion for 

cavitation.  Some of the more obvious are in rheological measurements, where the 

assumption of a viscometric flow becomes invalid if cavitation has occurred.  Of greater 

engineering significance are those real world situations about which the rheological data 

are supposed to provide insight.  Cavitation could occur in polymer processing and 

lubrication applications where it has not been previously considered.  A better 

understanding of the cavitation inception criterion will improve efforts at inhibiting 

cavitation when it is not desired, or ensuring cavitation when it is desirable.  Cavitation 

can be desirable when used for mixing or degassing. 
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 Once the possibility of cavitation due to a shear stress of the order of the imposed 

hydrostatic pressure (usually 0.1 MPa) is considered, numerous examples of phenomena 

that may be explained by shear cavitation can be found. Archer et al. found evidence of 

cavity formation at shear stresses in the range of 0.1 to 0.3 MPa for experiments 

performed at atmospheric pressure in low molecular weight polystyrene and α-D-glucose 

(Archer et al. 1997).  Cogswell found that high-density polyethylene flow curves 

generated using a capillary tube viscometer show a decrease in the apparent viscosity of 

an order of magnitude at a shear stress of 0.2 MPa.  He found a similar discontinuity in 

measurements obtained using a Couette viscometer at a shear stress of the order of 0.1 

MPa (Cogswell 1973).  In both cases it seems that shear cavitation may be explanatory.  

Vinogradov found that effects such as those reported by Cogswell are seen in many linear 

polymers; there is a critical stress in the range of 0.1 to 0.3 MPa for capillary tube 

viscometers, above which there is an abrupt drop in apparent viscosity. Additionally, for 

the same liquids in rotational devices, an abrupt drop in torque and separation of the 

sample from the measuring surface occurs at a critical stress about half that seen in the 

capillary tube viscometer (Vinogradov 1975).  The drop in resistance to flow in capillary 

tube measurements is linked, in the literature, to wall slip within the capillary (called melt 

fracture) and to an irregular appearance of the extrudate leaving the capillary (called 

“shark skin” or “elastic turbulence”).  It has been shown for a cis-polyisporene and a cis-

polybutadiene that raising the hydrostatic pressure can inhibit elastic turbulence 

(Vinogradov 1967). 

 Polymer manufacturers use high temperature, low pressure processes combined 

with an application of a shear stress in devolatilization (Albalak 1996).  Favelukis et al. 
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found that, for a low molecular weight polybutene, vacuum was insufficient to cause 

boiling and growth of gaseous bubble. In addition, a critical level of shear was required 

(Favelukis et al. 1997).  Their findings suggest that polymer devolatilization processes 

sometimes rely upon shear cavitation. 
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CHAPTER  2 

SHEAR CAVITATION – COUETTE EXPERIMENT 

 A principal normal stress cavitation criterion has previously been hypothesized 

(Bair and Winer 1987; Joseph 1998), and “circumstantial” evidence abounds (i.e., 

Cogswell 1973; Archer 1997).  However, to date, the only attempt to test the criterion 

experimentally was indirect.  Bair and Winer measured the torque T = FR due to the total 

wall shear force F on a wall at radius R in a Couette type device 

  w
A

F dAτ= ∫  (2.1) 

They calculated the apparent viscosity ( )η γ  as a function of apparent shear rate γ.       =U/L  

  ( ) R
U

L
η γ =

T
 (2.2) 

where the wall velocity U was controlled and the shear gap L was small to allow high 

shear stresses in the liquid without a reduction of viscosity due to viscous heat 

generation.  They obtained curves of ( )η γ  at different ambient pressures p from vacuum 

to 10 atmospheres and saw an effect of pressure on viscosity too great to be explained by 

the usual piezoviscous response.  The effect was a reduction in viscosity with shear 

stress, apparent shear thinning, where the onset of the viscosity reduction occurred when 

τ ~ p (Bair and Winer 1987).  In terms of testing the PNSCC, this could be considered 

using apparent viscosity measurement as an indirect method of detecting cavitation onset. 

 In this work, an experiment similar to that of Bair and Winer is performed, but the 

detection of cavitation onset is visual, and hence, direct. 
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 The primary goal of the experiments was to determine at what level of shear 

stress, if any, cavitation occurs for various ambient pressures.  The onset of cavitation 

was detected through visual observation; the recordings of apparent shear stress and 

video images of the sheared liquid were reviewed for indications of cavitation.  

2.1  APPARATUS 

 A Couette viscometer was constructed which allows visualization of the liquid 

sample undergoing shear and which allows control of the ambient pressure in a range of 

15 kPa to 300 kPa (Figure 2). 

 The viscometer is of the inner rotating cylinder type.  The outer cylinder is a 

commercially produced Pyrex tube with an inner diameter of 1.593 cm.  The inner 

cylinder, or bob, was produced by machining a precipitation hardened steel, lapping the 

bob to the desired final diameter and then polishing.  The bottom of the inner cylinder is 

tapered to allow trapped gas bubbles to more easily escape.  The outer diameter of the 

steel bob was 1.582 cm and upon calibration with a viscosity standard the gap between 

the bob and pyrex cylinder was 50 µm.   

 A DC stepper motor drove the bob, allowing the rate of shaft rotation to be 

specified.  The stepper motor was connected to the drive shaft by a flexible coupling. The 

penetration of the pressure boundary by the shaft was sealed with a spring energized 

Teflon seal.  An adjustable length shaft coupled the drive shaft to the bob.  The adjustable 

shaft connected to both the drive shaft and the bob with universal joints, preventing the 

transmission of lateral thrust while permitting the transmission of torque.  An O-Ring 

sealed pressure fitting also penetrated the pressure boundary, allowing connection of 

either a vacuum pump or pressurized gas source to the viscometer. 
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Figure 2. Variable pressure Couette viscometer and flow cell. 
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 The determination of apparent shear stress in the liquid sample, τapp, was 

accomplished via torque measurement using strain gages attached to a thin walled portion 

of the aluminum body of the viscometer.  If the flow was simple shear, then the apparent 

shear stress was the shear stress at the glass surface.  Due to the small ratios of gap to bob 

radius and gap to bob height, the apparent shear stress and shear stress in the gap were 

nearly identical provided the flow is parallel.  The flow conditions in the experiments 

were such that there should have been no instabilities; therefore, the apparent shear stress 

and the shear stress in the gap were taken as the same unless cavitation occurs. 

 Customized Labview based video and data acquisition software provided by 

Ammons Engineering was configured to allow simultaneous recording of the output from 

a digital camera and a digital signal.  The strain gage excitation was from a 

Measurements Group 2110A power supply, and output from the torque sensor was 

passed through a Measurements Group 2120A signal conditioner and Dataq DI194 A/D 

converter. The software was calibrated to record the signal as apparent shear stress, τapp.  

The camera, a Basler model A 101f, is monochrome with a maximum resolution of 1300 

x 1030 pixels and with programmable exposure controls.  It was fitted with a Navitar 

Zoom 7000 lens with a focal distance of 18 to 108 mm, which could provide 6X 

magnification. 

2.2  EXPERIMENTAL LIQUIDS  

 The Couette viscometer was used to study shear cavitation in a polybutene (PB), 

H-1900, provided by Amcco, and a polydimethylsiloxane (PDMS), DC-200-106, 

provided by Dow Corning.  Both liquids have limiting zero shear viscosities of 1000 Pa s 

at room temperature.  The PB is Newtonian to high shear stresses due to its low 
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molecular weight (2500 g/mol), while the PDMS is expected to show non-Newtonian 

behavior at shear stresses of the order of 1x104 Pa.  The PB is relatively temperature 

sensitive (β = 0.027 K-1) while the PDMS is not (β = 0.007 K-1). 

2.3  RESULTS 

 The effect of shear stresses up to and beyond the magnitude of the ambient 

pressure was investigated for the PB and PDMS in the Couette viscometer.  Experiments 

were performed at absolute ambient pressures from 18 kPa to 300 kPa, for apparent shear 

stresses from 10 kPa to 270 kPa with shear rates up to 745 s-1.  The experiments were 

performed at liquid temperatures from 19 ˚C to 26 ˚C.  Figure 3 shows images for 

different shear stresses in PB.  Cavitation is clearly visible in the bottom two images.  

The widths of the voids in the images are between 0.01 and 0.1 cm.  The data plotted in  

Figure 4 show the lowest shear stress, for a given pressure, for which a cavitation event 

was visually detected.  

 The hypothesis being tested in this experiment was one of zero critical stress, σc = 

0.  For PB this corresponds to cavitation occurring when the measured shear stress 

magnitude reaches the ambient pressure magnitude.  For PDMS, nonzero normal stress 

differences were expected to result in cavitation at shear stresses of magnitudes less than 

the magnitude of ambient pressure, as predicted by Eq. (1.10). 

 PDMS is highly non-Newtonian.  The correct cavitation criterion is Eq. (1.10), 

which takes into account normal stress differences.  To plot this criterion, in the absence 

of measurements of first normal stress differences, a model must be incorporated to 

permit their calculation.   The estimation of first normal stress difference coefficient 
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Figure 3. Polybutene (H-1900) 20 ˚C, p = 19 kPa, sh
is visible when shear stress was greater than the hyd
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Figure 4. Shear stress at which cavitation was first observed for polybutene 
(H1900), and for polydimethylsiloxane (PDMS).  The hypothesized 0cσ =  
criterion predicts cavitation for τ above and to the left of the solid lines. 
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Stastna 1986). Normal stress difference coefficients are the viscometric shear functions 

defined ( ) ( ) 2
i iNγ γ γΨ = , and are considerably more difficult to measure than the 

viscosity  function. 

 De Kee and Stastna considered several relationships between the first normal 

stress difference coefficient Ψ1 and the viscosity function, including those of Wagner 

(Wagner 1977)  

  ( )1
1 d
z d

ηγ
γ

Ψ = −  (2.3) 

and Gleiβle (Gleiβle 1982)  

  ( )1 2 dK
η

η

ηγ
γ

∞

Ψ = − ∫  (2.4) 

They noted that both Eq. (2.3) and (2.4) predict the same kind of behavior at high shear 

rates, namely 

  1   >>N τ γ λ∝  (2.5) 

where λ is the longest characteristic relaxation time, which can be estimated using a result 

from molecular theory (Bird et al. 1987), 

  
u

M
R T

µλ
ρ

= , (2.6) 

M is the molecular weight, and Ru is the universal gas constant.  Although  Eq. (2.5) can 

not be assumed to be generally true (Ait-Kadi et al. 1989),  Gleiβle’s data on PDMS 

show that it is accurate for polydimethylsiloxanes with zero shear viscosities from 200 to 

20,000 Pa s.  Equations (2.3) and (2.4) have several shortcomings. Namely, the parameter 

z and the shift factor K are not reliably predictable; furthermore, Eq. (2.3) predicts that Ψ1 

goes to zero as η becomes constant at low shear rates.    
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 Although it is possible to implement predictions of Ψ1 from Eqs. (2.3) or (2.4) 

working numerically from viscosity data, it is more convenient to have an explicit 

functional relationship between η and γ.   .  A well accepted relationship is the Carreau-

Yasuda equation (Macosko  1994), 

  
( )

1

1
n

a a

µη
γλ

−=
⎡ ⎤+⎣ ⎦

. (2.7) 

which is plotted for a = 1 and n = 0.3 in Figure 5 along with vicosity data from the 

Couette device and a capillary viscometer.  The molecular weight of PDMS, used to 

calculate λ, is found using an equation for polydimethylsiloxanes (Barry 1946) 

  ( ) 2
10log 5

0.0123
M

ν +⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.8) 

where the kinematic viscosity, ν, is in  SI units of m2/s and measured at 25 ˚ C.  This 

gives M = 165000 g/mol and λ = 0.07 s. 

  Upon considering Eq. (2.7) we note that the choice of a = 1, which indicates a 

very broad transition from Newtonian to non-Newtonian behavior, has the result of 

eliminating the biggest flaw with Wagner’s model, Eq. (2.3).  Recall that Wagner’s 

model incorrectly predicts Ψ1o = 0 at low shear rates.   However, for a = 1, although  

  ( )
0

lim
γ

η γ µ
→

=  (2.9) 

is still true, it is  no longer true that 

  ( )
0

lim 0d
dγ

η γ
γ→

=  (2.10) 

Instead, the model correctly predicts, at low shear rate, a constant first normal stress 

difference coefficient Ψ1o 
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Figure 5. Viscosity η (left axis) and first normal stress difference coefficient 
Ψ1 (right axis) for PDMS.  The viscosity data comes from the Couette device (dots) 
and a capillary tube (circles).  The thin line is the Carreau-Yasuda equation, Eq. 
(2.7), for η with µ=1000 Pa s, λ=0.07 s, a=1 and n = 0.3.  The thick line is Wagner’s 
model for Ψ1 with the Carreau-Yasuda equation (a = 1), Eq. (2.11), with Ψ1ο = 
280 Pa s2, λ = 0.07 s and n = 0.3. 
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  ( ) 2
1 1o 1

n
γλ

−
Ψ = Ψ +⎡ ⎤⎣ ⎦  (2.11) 

 In general Ψ1o cannot be easily predicted.  But because Gleiβle has measured Ψ1 

for polydimethylsiloxanes of both higher and lower viscosities than those used here, Ψ1o 

can in this case be easily estimated in the following manner.  From Gleiβle’s plot of 

( )1 γΨ for polydimethylsixanes of various viscosities and hence molecular weights one 

finds that for M = 145000 g/mol, Ψ1o is 170 Pa s2 and for M = 185000 g/mol, Ψ1o is 440 

Pa s2.  Assuming a power law relationship between Ψ1o and M (Tanner 2002), one finds 

Ψ1o is 280 Pa s2.  The curve plotted as the cavitation model for PDMS in Figure 4 is τ vs. 

p from Eq. (1.10) where τ and N1 are found using η and Ψ1 from Eqs. (2.7) and (2.11) 

respectively. 

 For the Newtonian liquid PB the results in Figure 4 demonstrate good agreement 

with the PNSCC hypothesis; however, for PDMS, the predicted shear stress is higher 

than the observed shear stress at cavitation.  The error increases as the shear stress 

exceeds the modulus G=µ/λ = 14 kPa, a strong indicator that the deviation is due to non-

Newtonian behavior. 

 Because it was possible to observe the cavitation event, further information about 

shear cavitation can be inferred.  Multiple voids were frequently observed in the same 

horizontal band.  This may be an indication of cavitation inception from wall crevice 

stabilized nuclei.  Based upon the perseverance of voids after the removal of the shear 

stress, especially following shearing at reduced pressure, it is likely that the cavitation 

process was primarily one of gaseous cavitation; thus the void filled with gas that was in 

solution in the liquid, rather than vapor.   
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 Cavitation can lead to experimental errors in rheological measurements analogous 

to those due to viscous heating that were exposed primarily by Gruntfest (Gruntfest 

1965).  The presence of gaseous voids during the application of high shear rates results in 

a reduction in the apparent viscosity.   Experimentally this manifests as either apparent 

shear thinning or thixotropy.  Figure 6 shows the effect of cavitation manifesting as 

apparent shear thinning.  Apparent shear stress and shear rate data for PB was collected 

using the Couette device by starting at low shear rate and incrementally increasing the 

shear rate, for both low (19 kPa) and atmospheric pressure.  The data is displayed in the 

figure as apparent viscosity η as a function of shear rate.   PB should display Newtonian 

behavior to shear stresses of approximately 500 kPa; however, instead it appears to shear 

thin at τ >  p.  The apparent shear thinning is due to cavitation. 

 After the atmospheric pressure flow curve was generated, the apparent viscosity 

was again measured at a shear rate of 80 s-1  and found to be 75% of its previous value.  

PB is not thixotropic; this apparent loss of viscosity is due to cavitation. 

2.4  CONCLUSIONS 

 In this chapter we have presented the results of an experiment designed to test the 

PNSCC directly through visual detection of cavitation of liquids sheared under controlled 

pressure.  Two polymeric liquids were used, PB and PDMS.  Both have the same low 

shear viscosity at room temperature.  PB is Newtonian to very high shear stresses and has 

a relatively low molecular weight.  For PB the experimental results of shear stress τ at 

cavitation onset agree well (within 16%) with the predictions of the PNSCC with σc = 0.  

PDMS has a much higher molecular weight, and its behavior is consequently non-

Newtonian at lower shear stresses.   Therefore, predicting the onset of cavitation with the 
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Figure 6. Apparent viscosity vs. shear rate at room temperature for PB at p = 19 
kPa (open circles) and p = 101 kPa (dots).  The lines are of constant shear stress 
equal to the applied pressures, ie. the thin line is a line of constant 19 kPa and the 
thick line is a  line  of constant 101 kPa .  Based on constitutive behavior, η should 
be a constant of 103 Pa s for all shear rates shown.  The apparent shear thinning 
at shear stresses greater than the applied pressure is due to cavitation. 
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PNSCC requires knowledge of normal stress differences.  First normal stress differences 

were estimated using predictions incorporating the non-Newtonian shear viscosity.  The 

validity of the estimated values of N1 are supported by results presented in Chapter 4.   

The PNSCC is not as effective at predicting cavitation onset in the PDMS as it is for PB.  

At higher pressures, the predicted stress for cavitation onset is nearly twice the observed 

value.  For the PNSCC to be accurate, the critical stress σc, would have to be considered a 

function of pressure p, or, possibly, also a function of some measure of the importance of 

non-Newtonian effects, such as the Weisenberg number. 
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CHAPTER 3 

SHEAR CAVITATION – MODEL AND SIMULATION 

 The experiments in Chapter 2 show that for a Newtonian liquid (PB) in simple 

shear, cavities grow visible when the shear stress equals the ambient pressure.  This is 

predicted by a principal normal stress cavitation criterion with a critical stress of zero.  

However, one can also show experimentally (Kottke et al. 2003) that liquids can 

withstand tension when the liquid is first pressurized to eliminate preexisting voids.  

Therefore, a critical stress of zero suggests that the cavitation originates from preexisting 

voids.  Stabilization of voids in a liquid can be explained by void formation in a crevice 

on some solid surface (Plesset and Prosperetti 1977).  A reasonable hypothesis is that 

shear cavitation occurs when the shear flow causes the growth of such preexisting voids 

to macroscopic size.  The observation that multiple voids are frequently observed in the 

same horizontal band provides further support to the concept of inception from wall 

crevice stabilized nuclei.  Based upon the perseverance of voids after the removal of the 

shear stress, it is likely that the cavitation process is primarily one of gaseous cavitation.  

Thus the void fills with gas that was in solution in the liquid, rather than vapor.   

 The model for cavitation from a crevice stabilized gas nucleus consists of two 

systems, the liquid with dissolved gas, ΩA (Figure 7), and the void, or gas bubble, ΩB 

(Figure 8).  The two systems interact at the interface surface ∂ΩAB.  The liquid system, 

ΩA, is semi-infinite; it is bounded by parallel solid walls, ∂ΩA, above and below  ( *
2x  

equals L and 0 respectively), and unbounded in the *
1x  and *

3x  directions.  The upper 

portion of  ∂ΩA, at *
2x   =  L, is translating in the *

1x  direction at a constant speed, U.   Note  
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Figure 8.  Gas domain (ΩB) for the model for inception of shear cavitation. 
 

Figure 7.  Liquid domain (ΩA) for the model for inception of shear cavitation. 
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that throughout the remainder of this chapter asterisks ( * ) denote the dimensional form of 

the variable. The gas system, ΩB, is finite.  It is bounded above by the gas liquid 

interface, ∂ΩAB, and below by the solid, unmoving crevice.  The intersection of the gas 

liquid interface, ∂ΩAB, with the lower solid surface, ∂ΩA, is the contact line, ∂2ΩAB. 

 The purpose of the model is the simulation of void deformation and growth from 

a crevice stabilized gas nucleus in Couette flow.  The experimental results, which support 

the principal normal stress cavitation criterion with a critical stress of zero, when 

combined with a hypothesis of gaseous cavitation from a crevice stabilized nucleus, lead 

to several questions.  Namely, does the critical stress depend upon surface tension, the 

diffusion coefficient of the gas in the liquid, the gas initial and boundary conditions, and 

the contact line dynamics?    

3.1  MATHEMATICAL MODEL OF INCEPTION 

3.1.a  Dimensional Governing Equations 

 In ΩA the liquid is assumed to be Newtonian and the flow is incompressible.  The 

model is isothermal and the properties are assumed to be uniform. Body forces are 

neglected. Therefore the flow in ΩA is governed by the Navier-Stokes Equations, 

  

*
* * * * * *2 *

*

* * 0

p
t

ρ µ
⎧ ⎫∂

+ ∇ = −∇ + ∇⎨ ⎬∂⎩ ⎭
∇ =

u u u u

u

i

i

 (3.1) 

 Assuming Fickian diffusion and a constant binary mass diffusivity of gas in the 

liquid, D, the molar concentration of dissolved gas in the liquid, c, is governed by the 

advection – diffusion equation 
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*

* * * *2 *
*

c c D c
t

∂
+ ∇ = ∇

∂
u i  (3.2) 

 The gas in the void, ΩB, is assumed to be isothermal and to obey the ideal gas 

equation of state 

  * *
B B up c R T=  (3.3) 

 Conservation of mass for the void requires 

  
* *

*
* *

AB AB

BdN cD dA
dt n∂Ω ∂Ω

∂
= −

∂∫  (3.4) 

where NB is the total moles of gas in the void, and the spatial derivative is the normal 

gradient of the  concentration at the bubble surface 

3.1.b  Dimensional Boundary Conditions 

 On the solid surfaces, ∂ΩA, the no slip, no penetration condition is applied: 

  
* *
2 2
* * *
1 2

0 at 0

 at 

u x

u U x L

= =

= =
 (3.5) 

Far from the void, the void no longer disturbs the flow,  

  
*

* *2
2 3* *

0  as ,u x x
p p∞

⎫→
→ ∞⎬→ ⎭

. (3.6) 

The air in ΩB is treated as inviscid; therefore, on the gas liquid interface, δΩAB,  

  * 0 on t ABf = ∂Ω  (3.7) 

where *
tf  represents both tangential components of the traction vector, f. 

 The interface is assumed to have an isotropic surface tension, γ, and therefore 

  * * *2  on n m B ABf pκ γ= − ∂Ω  (3.8) 

where *
nf  is the normal component of the traction vector, *

mκ  is the mean curvature of the 

interface, and *
Bp  is the pressure in ΩB. 
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 The appropriate boundary condition for the contact line, ∂2ΩAB, is a matter of 

considerable ongoing research and will be addressed in more detail later.  In general, it 

will provide some relationship between contact line velocity, *
CLu , and apparent contact 

angle, θ.  The contact line velocity will be zero wherever the contact angle is between the 

receding and advancing contact angles, θR < θ < θA. 

 The kinematic condition on the gas liquid interface, ∂ΩAB, requires the position of 

the interface, *
AB∂Ωx , to be advected with the local velocity, *u : 

  
*

*
*  on AB

AB

d
dt

∂Ω = ∂Ω
x

u  (3.9) 

 The boundary conditions for the concentration of dissolved gas in ΩA are that the 

concentration far from the void is unaffected by the mass transfer to or from the void 

  * * * *
1 3 as ,c c x x∞→ → ∞ ; (3.10) 

the normal gradient of dissolved gas concentration is zero on the solid boundaries, 

  
*

* *
2 2*

2

0 at 0 and c x x L
x

∂
= = =

∂
; (3.11) 

and, at the gas liquid interface, the concentration of dissolved gas in the liquid is 

proportional to the pressure of the gas in the void in accordance with Henry’s law 

  * *  on B ABc Hp= ∂Ω . (3.12) 

Equation (3.12) should be a good approximation so long as the gas pressure does not 

exceed O(106
 kPa) and the solubility of the gas in the liquid does not exceed O(1 mol %) 

(Prausnitz et al. 1999). 

3.1.c  Scaling 

 The natural length and velocity scales are L and U.  A reasonable alternative 

would be a length scale based on the initial void size and the associated velocity scale, 
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the product of the length scale and U/L.  There are several other possible velocity scales, 

based on the contact line dynamics model (Smith 1995) or the ratio of the surface tension 

γ to the dynamic viscosity µ (Crowdy 2003). However, for comparison with experiment, 

the scales chosen are best, as they are most easily known.  Given the length and velocity 

scales, the kinematic boundary condition, Eq. (3.9), yields the time scale, L/U.  Based 

upon the cavitation criterion, the pressure scaling is chosen to be a viscous scale: µU/L.  

The scaled Navier-Stokes equation and species conservation equation in terms of now 

dimensionless variables are 

  
2Re

0

L p
t

∂⎧ ⎫+ ∇ = −∇ + ∇⎨ ⎬∂⎩ ⎭
∇ =

u u u u

u

i

i
 (3.13) 

and 

  2PeL
c c c
t

∂⎡ ⎤+ ∇ = ∇⎢ ⎥∂⎣ ⎦
ui  (3.14) 

 ReL is the Reynolds number, ρUL/µ and PeL is  the Peclet number for diffusion, UL/D. 

 In the Couette experiments using polybutene, 

 5 3 3 3 3 -1 10 2 -1~ 10 m, ~10  Pa s, ~ 10  kg m ,  ~ 10  m s , ~ 10  m  sL U Dµ ρ− − −  (3.15) 

These values give a Reynolds’ number, ReL ULρ µ= , of order 10-8, and Peclet number, 

P eL UL D= , of order 102 for PB. 

 In the Couette experiments using polydimethylsiloxane, 

 5 2 3 3 3 2 -1 9 2 -1~ 10 m, ~10 10  Pa s, ~ 10  kg m ,  ~ 10  m s ,  ~ 10 m sL U Dµ ρ− − −−  (3.16) 

(The low shear viscosity for PDMS is 103 Pa s but the experiments show cavitation at a 

shear stress for which shear thinning has reduced the viscosity by about an order of 

magnitude.)  The values in Eq. (3.16) give a Reynolds’ number, 6Re ~ 10L
− , and Peclet 
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number, PeL ~ 102 for PDMS. 

 Based on the very small Reynolds numbers, consideration is limited to the Stokes 

approximation, in which inertial effects are neglected and the equations governing the 

flow in ΩA are quasi-steady.  Therefore Eq. (3.13) is rewritten as 

   
2

0
p∇ = ∇

∇ =
u
ui

 (3.17) 

The moderate Peclet numbers preclude applying such a simplification to Eq. (3.14) at this 

point. 

The scale for the dissolved gas concentration is based on Henry’s law and saturated gas 

conditions,   

  sc Hp∞=  (3.18) 

which results in the scaled equation of state for the gas: 

  B u Bp CiHR Tc=  (3.19) 

Equation (3.4), becomes 

  ( ) 1Pe
AB

B
L

dN c dA
dt n

−

∂Ω

∂
= −

∂∫ . (3.20) 

The scaled boundary conditions are 

  2 2

1 2

0 at 0
1 at 1;

u x
u x

= =
= =

 (3.21) 

  
2

1
1 3

2

0

0  as ,

u
u x x
x

p Ci

⎫→
⎪∂ ⎪→ → ∞⎬∂ ⎪

→ ⎪⎭

 (3.22) 

  0 on t ABf = ∂Ω  (3.23) 

  2  on 
Can m B AB

L

f pκ= + ∂Ω  (3.24) 
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   on AB
AB

d
dt
∂Ω = ∂Ω

x
u  (3.25) 

  1 3 as ,c c x x∞→ → ∞  (3.26) 

  2 2
2

0 at 0 and 1c x x
x

∂
= = =

∂
 (3.27) 

and,  

  on B
AB

pc
Ci

= ∂Ω  (3.28) 

The traction has been scaled with a viscous scale, U Lµ , to be consistent with the 

pressure scale, and the curvature is scaled with the inverse of the length scale, L.  Ci is 

the cavitation index,  

  
1

p pCi Up
L

σ µ
≡ =

+
. (3.29) 

Ci is unity when the shear stress equals the pressure far from the void.  A principal 

normal stress cavitation criterion with zero critical stress predicts cavitation for Ci < 1.  

CaL is the capillary number 

  CaL
Uµ
γ

≡ ; (3.30) 

it is a measure of the strength of the viscous stress relative to surface tension.  The degree 

of gas saturation of the liquid is given by c∞, which is unity if the liquid is saturated with 

gas due to the presence of an interface with gas as pressure p∞. 

 An examination of the above equations and boundary conditions reveals six 

parameters: R APe , Ca , , ,  θ ,  and θL L uCi HR T .  Additional parameters may appear in the 

contact line model, and the shape of the crevice can be considered at least one additional 

parameter, making the minimum number of parameters seven.  Varying initial conditions 

could lead to further complication, some of which can be eliminated by considering only 

those initial conditions for which the system would be in mechanical equilibrium in the 

absence of any flow. 
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 Solution of the three dimensional model to investigate the effect of the seven 

parameters would be extremely time consuming.  Also, the extraction of meaningful 

information, and gaining insight into the important trends, is made difficult with so many 

parameters.  The model could be used in an attempt to match the experimental results, 

but, due to the lack of information about several important components of the parameters, 

especially contact angles and crevice geometry; any such process would be questionable.  

Therefore, further simplification is both necessary and desirable. 

3.1.d  Further Simplifications 

 In the experiments, the distance which corresponds to L in Figure 7 was 50 µm, 

while the voids generally had a width of about 500 µm.  Therefore it seems likely that 

variations in the x3 direction are considerably smaller than those in the x1 and x2 

directions, and a two-dimensional model for bubble growth may be appropriate (Figure 

9).  Indeed, previous investigations of bubble and droplet deformations have found that 

two-dimensional models yield pertinent and valuable information to the three 

dimensional case (Tanveer and Vasconcelos 1995). Therefore a two-dimensional model 

will be used as a simplified the cavitation model.   

 There are two limiting cases for which the solution of Eq. (3.14) becomes 

unnecessary.  One is the case of an impermeable liquid, for which there is no mass 

transport from the liquid to the void and hence the number of moles of gas in the void, 

NB, remains constant.  The other is the case of infinitely fast diffusion, for which the gas 

concentration in the void, cB, remains constant.  Although neither limiting case is a close 

approximation of the experimentally examined cases, they provided two very different 

vantages from which to consider the model for cavitation, and they considerably simplify
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Figure 9.  Two-dimensional model for inception of shear cavitation. 
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the solution.  Also, they are close approximations whenever the time scale for bubble 

growth is much faster (impermeable liquid) or slower (infinite diffusion) than the time 

scale for diffusion of gas through the system and in or out of the bubble.  These two, 

opposite, limiting cases will be considered.  

 In order to obtain some information about the role of diffusion for conditions such 

as those in the experiments, a third diffusion model is incorporated.  This model, accurate  

for mass transfer from a bubble only if the system has a sufficiently high Peclet number, 

is the “penetration model,” in which the mass transfer is calculated based upon the 

assumption that a quasisteady concentration boundary layer surrounds the bubble (Bird et 

al., 2002).  For such a case, in dimensional variables 

  
* * *

*
*
B B

B
c

dN c HpFD S
dt δ

∞ −
=  (3.31) 

with 

  *

1
* 2Pe

B
c B S

Sδ
−

=  (3.32) 

*
BS  is typically the bubble circumference, δc is the scale of the concentration boundary 

layer thickness, *Pe
BS
 is the Peclet number based on *

BS  and the maximum tangential 

velocity on the bubble surface *
maxu , and F is an order one factor that depends on the flow 

geometry. 

  When scaled, Eq. (3.31) becomes 

  ( )
1 1
2 2

max
B B

L B
dN pc Pe u S
dt Ci

−

∞
⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

 (3.33) 

Although F generally changes with the flow geometry, it will remain order one; 

therefore, F is set equal to unity for calculations.  Models such as Eq. (3.33) are typically 
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applied when the flow over the bubble is unidirectional (Bird et al. 2002) or symmetric 

(Favelukis et al. 1999).  The situation in these simulations is more complicated as areas 

of recirculation can form near the trailing edge of the bubble making the boundary layer 

model clearly inappropriate.  Therefore, the length SB is defined as the arclength along 

the bubble surface from the rear contact line to the point where the tangential component 

of the surface velocity is zero. The dimensionless parameter c∞ is a measure of gas 

saturation based on p∞: when the liquid is saturated with gas at pressure p∞ then c∞ is 

unity.  The value of c∞ can be greater or less than one when the pressure p∞ is not 

controlled by gas pressurization, or when there has been insufficient time for changes in 

gas pressure p∞ to affect the amount of dissolved gas in the liquid in the vicinity of the 

void.  The latter possibility would be the case if the time since a change in pressure, tp, is 

much less than the characteristic diffusion time based on the distance from the gas liquid 

interface to the void LD, i.e., 

   
2
D

p
Lt
D

<<  (3.34) 

For the experiments performed in the Couette device, the characteristic time would be 

approximately 105 s.  

 Figure 10 is a plot of velocity vectors in the vicinity of a deforming void from 

simulation, used to illustrate the penetration model. The thick portion of the bubble 

surface is the portion whose arclength is SB.  The dashed line shows the boundary 

layercorresponding to Eq. (3.32).  Mass transfer from the thin line segment of the 

bubble’s surface is neglected; it is to a region of very slowly circulating liquid and would 

be primarily due to diffusion. 
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Figure 10. Velocity vectors in the vicinity of a deforming void from simulation, used 
to illustrate the penetration model. The arclength of the thick line is SB.  The dashed 
line shows the boundary layer corresponding to Eq. (3.32).  Mass transfer from the 
thin line segment of the bubble’s surface is neglected. 
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3.1.e  Contact Line Dynamics 

 A contact line exists at the interface of three different phases: in the case of this 

work a solid, liquid, and gas phase. In the two-dimensional model, reference to the 

contact line is actually a reference to one of two points.  DeGennes has reviewed contact 

line dynamics and provides a common nomenclature  (deGennes 1985).  The contact 

angle is defined as the angle measured in the liquid at the contact line between the solid-

liquid boundary (∂ΩA) and the gas-liquid boundary (∂ΩAB).  The contact line is said to be 

advancing when the motion would cause the area of contact between the liquid and solid 

to increase and receding when the motion would cause the area of contact between the 

liquid and solid to decrease.  In this work, the contact line velocity, *
CLu , will always have 

a positive value when the contact line is advancing and a negative value when the contact 

line is receding.  The contact angle for a stationary contact line, *
CL 0=u , can be 

theoretically predicted using thermodynamic arguments (deGennes 1985).  Each interface 

has associated with it an interfacial energy per unit area, or surface tension, γij, where the 

subscripts indicate the phases separated by the interface: gas G, liquid L, or solid S. At 

equilibrium an infinitesimally small shift (dx) in contact line position should not change 

the overall energy.  Assuming that the contact angle is measured outside of a very small 

region where interfacial energies may not be constant, and that this region translates with 

the shift dx, i.e., its energy is unchanged, then the change in energy due to the contact line 

shift is 

  cos 0LS GS LGdx dx dxγ γ γ θ− + =  (3.35) 

or upon rearrangement, 
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  cos GS LS

LG

γ γ
θ

γ
−

=  (3.36) 

 The contact angle should only deviate from the theoretical value expressed in Eq. 

(3.36) when the system is not in equilibrium, i.e., is in motion. However, chemical 

heterogeneities and surface roughness allow the contact angle to achieve apparent 

equilibrium at a range of values, leading to the phenomenon of contact angle hysteresis or 

contact line pinning.  In such cases, the contact line advances when the contact angle 

exceeds a certain value, the advancing contact angle, θA, and recedes when the contact 

angle falls below the receding contact angle, θR. 

 In the two dimensional model there are two contact lines: the point at the interface 

of the gas, liquid and solid boundary located initially at positive x1 is called the front or 

leading contact line, and the other is called the rear contact line. When the contact line is 

located at a point where the solid surface experiences a discontinuity in slope there are 

two possible contact angles.  Which is relevant depends upon whether the contact angle 

will be compared with the advancing or receding contact angle.  For a contact line located 

at either corner between the wall and crevice, the contact angle that should be compared 

with the advancing contact angle is the angle between the gas-liquid interface and the 

crevice wall at the contact line, while the contact angle that should be compared with the 

receding contact angle is the angle between the gas-liquid interface and the horizontal 

wall surface. 

 The no slip assumption, Eq. (3.21), results in a non-integrable (and non-physical) 

singularity at the contact line due to a discontinuous velocity (Huh and Scriven 1971).  

Proper resolution of the contact line singularity and the development of a contact line 

model for incorporation into a hydrodynamic model is a continuing subject of research.  
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When the bulk flow is of primary interest, and details of the flow very near the contact 

line are not important, a successful, although ad hoc, approach is to assume that some 

relationship exists between the apparent dynamic contact angle and the contact line 

velocity (Smith 1995).  Many such relationships have been proposed, based on 

experimental data or analyses (Blake and Haynes 1969, Hoffman 1975, Cox 1986).  In 

the absence of experimental data specific to the geometry, materials, and flow of interest, 

the choice of model is somewhat arbitrary.  The model developed by Hoffman was later 

recast in an explicit form that has been successfully used by other researchers and forms 

the basis of this thesis’ contact line model (Jiang et al. 1979): 

  ( )0.702
CL

cosθ cosθ tanh 4.96 Ca
cosθ 1

s

s

−
=

+
 (3.37) 

where the contact line capillary number, CaCL, is based on the contact line velocity 

  
*
CL

CLCa
µ

γ
=

u
 (3.38) 

Replacing the static contact angle with the appropriate choice of advancing or receding 

contact angle, and rewriting Eq. (3.37) for CaCL as an explicit function of the contact 

angle yields the model used for this work 

1.425

1

CL
1.425

1

cosθ cosθ0.1018 tanh      θ θ
1 cosθ

Ca    0                                                        θ θ θ

cosθ cosθ0.1018 tanh        θ θ
cosθ 1

R
R

R

R A

A
A

A

−

−

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪− <⎢ ⎥⎜ ⎟−⎪ ⎪⎝ ⎠⎣ ⎦⎪ ⎪= ≤ ≤⎨ ⎬
⎪ ⎡ ⎤⎛ ⎞−⎪ >⎢ ⎥⎜ ⎟⎪ +⎝ ⎠⎣ ⎦⎩ ⎭

( )1 θ;θ ,θA R
−=

⎪
⎪
⎪

H  (3.39) 

3.1.f  Simplified Inception Model 

 The mathematical model that is solved in an attempt to gain insight into cavitation 

inception from crevice stabilized gas nuclei in a simple shear flow is a two-dimensional 
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model in which a liquid system and gas system are coupled.  The liquid system is 

governed by the Stokes equations for fluid flow, Eq. (3.17), and the gas system obeys the 

ideal gas equation of state.  The limits of infinitely fast diffusion and an impermeable 

liquid are considered.  Alternatively, a quasisteady boundary layer model is used to 

approximate mass transfer.  This simplified two-dimensional model is quasistatic: 

   
2

0
p∇ = ∇

∇ =
u
ui

 (3.40) 

  2 2

1 2

0 at 0
1 at 1

u x
u x

= =
= =

 (3.41) 

  2
1

0  as 
n

u xf Ci
→ ⎫ → ±∞⎬→ − ⎭

 (3.42) 

  ( )1 2
LCa θ;θ ,θ  at CL A R ABu −= ∂ ΩH  (3.43) 

  0 on t ABf = ∂Ω  (3.44) 

  
L

 on 
Can B ABf pκ

= + ∂Ω  (3.45) 

  ( )0 0
Ca

o
B

L

p p t Ci κ
= = = +  (3.46) 

  0Bp p=  (3.47) 

or 

  ( )
( ) 0

0B
B

B

A t
p p

A t
=

=  (3.48) 

or 

  
( )

( )
0

0( )
( 0)

BB
B

B B

A tN tp p
A t N t

=
=

=
 (3.49) 

The initial bubble pressure p0 is set in Eq. (3.46) based on the initial curvature κ0 so that 

the system is in mechanical equilibrium in the absence of flow. 

 The equation for pB is Eq. (3.47) in the case of infinitely fast diffusion.  For an 

impermeable liquid, the bubble pressure depends only upon the variation of the bubble 
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area AB, with time, and so Eq. (3.48) applies, while Eq. (3.49) is used along with Eq. 

(3.33) for the penetration model.  The crevice geometry is simplified to that of a triangle 

or trapezoid and specified using a crevice area, AC, which is the area between the crevice 

walls and a horizontal line drawn across the crevice mouth, and crevice angles θCL and 

θCR, which are the angles between the left or right walls of the crevice and vertical. 

3.2  NUMERICAL SOLUTION OF THE INCEPTION MODEL 

 Equations (3.40) to (3.49) are an ideal system of equations for solution via the 

boundary element method (BEM).  The BEM is based upon an integral formulation of the 

governing equations and has been applied to problems involving moving interfaces in 

Stokes flows with considerable success (Pozrikidis 2001a).  The BEM has a number of 

advantages, the greatest being that, for a linear, quasisteady problem such as here (with 

homogeneous governing equations), it reduces the dimensionality of the problem, 

eliminating the need to discretize the interior of domain ΩA.  This implementation of the 

BEM draws heavily on the published experience of researchers who used it for similar 

problems.  Pozrikidis used the BEM to study two-dimensional bubbles in infinite shear 

flows (Pozrikidis 2001b and 2003).  First Dimitrakopoulos and Higdon (Dimitrakopoulos 

and Higdon 1997) and later Schleizer and Bonnecaze (Schleizer and Bonnecaze 1999) 

used the BEM to look at the displacement of two-dimensional incompressible droplets 

from walls in shear flows. 

3.2.a  Theoretical Background for BEM 

 Fan has recently applied the BEM to difficult problems of moving interfaces in 

Stokes flow with advection and diffusion of species of interest  (Fan 2003).  He provides 
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an excellent and clear review of the fundamentals of the derivation of the boundary 

integral equation for solution of Stokes systems.  To obtain this formulation, an integral 

representation is sought by starting with the linear differential equation system, Eq. (3.40) 

written more generally as 

   0=uL  (3.50) 

where L denotes a linear differential operator with associated boundary conditions. An 

inverse operator is sought which is an integral operator 

  ( )( ) ( ) ( )1 ,x G x s u s ds− = ∫uL  (3.51) 

Operating on both sides of Eq. (3.51) with L we find that 

  ( ) ( ) ( ),x G x s u s ds= ∫u L  (3.52) 

which implies 

  ( ) ( ),G x s x sδ= −L  (3.53) 

where δ is the Dirac delta function.  Equation (3.53) is termed the singularly forced 

differential equation.  The kernel function G that satisfies Eq. (3.53) is called the Green’s 

function of the operator L; if the operator is associated with an infinite domain, then the 

Green’s function is called the free space Green’s function, or fundamental solution. 

 To obtain the boundary integral representation for a two-dimensional Stokes 

system (Pozrikidis 1992), a form of Green’s second identity known as the Lorentz 

reciprocal identity is used, 

  ( ) 0j ij i ij
i

u u
x

σ σ∂ ′ ′− =
∂

 (3.54) 
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where ui and σij are the components of the velocity and Newtonian stress tensor for an 

arbitrary Stokes flow, the prime indicates any other arbitrary Stokes flow, and the normal  

index rules apply.  

 Integrating Eq. (3.54) over domain Ω and applying the divergence theorem to 

convert the areal integral into a line integral over ∂Ω  

  ( ) ( ) 0j ij i ij j ij i ij i
i

u u dA u u n dS
x

σ σ σ σ
Ω ∂Ω

∂ ′ ′ ′ ′− = − =
∂∫ ∫  (3.55) 

where ni is an inward pointing normal. 

 Now u´ is specified in terms of the arbitrarily weighted free space Green’s 

function for two-dimensional Stokes flow 

  ( ) ( )0
1 ,

4i ij ju G b
πµ

′ =x x x  (3.56) 

and σ´ in terms of the associated stress tensor T 

  ( )1 ,
4ij ijk o jT bσ
π

′ = x x  (3.57) 

so that Eq. (3.55) becomes 

  ( ) ( ) ( ) ( ) ( )( ) ( )0, , 0ij i i ijk o iG f u T n dSµ
∂Ω

− =∫ x x x x x x x x  (3.58) 

In Eq. (3.58) f is the surface traction vector, σ·n.  The two-dimensional free space Greens 

function and associated stress tensor are given by 
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x x x

r x x

δ= − +

= −

= −

= +

x x

x x  (3.59) 

Considering a domain Ω excluding only the singular point xo,  



 

 45

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, ,
4 4j o i ij o i ijk o ku f G dS u T n dS
π π∂Ω ∂Ω

= − +∫ ∫x x x x x x x x x x  (3.60) 

for xo in the interior of Ω, and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, ,
2 2j o i ij o i ijk o ku f G dS u T n dS
π π∂Ω ∂Ω

= − +∫ ∫x x x x x x x x x x  (3.61) 

for xo on ∂Ω (Pozrikidis 1992).  The second integral in Eq. (3.61) is interpreted in terms 

of the Cauchy principal value due to the presence of a singularity at x = xo. 

 Equation (3.61) serves as the basis for the numerical solution of the two-

dimensional Stokes flow problem via BEM.  One way of conceptualizing Eq. (3.61) is 

that the solution is sought by finding a boundary distribution of fundamental solutions, 

which satisfy the governing partial differential equations.  The fundamental solutions are 

the flows due to a point source and a stresslet.  The distribution density of fundamental 

solutions is found that satisfies the boundary conditions.  Practically speaking, the 

boundary is discretized and the unknown velocities and tractions are approximated as 

constants on each element.  The boundary integral equation thus becomes a linear system 

of equations that is solved for the unknown velocities and tractions.   

 With the boundary conditions for the crevice stabilized gas nuclei problem Eq. 

(3.60) is a Fredholm integral equation of mixed kind, and there is no theory that allows 

the determination of uniqueness or existence of solution (Powers and Wrobel 1995).  

Uniqueness of solution is an important question because the related problem of a free, 

compressible, inviscid bubble in a shear flow, if solved using Eq. (3.60), does not have a 

unique solution (Pozrikidis 2001b).  Practically speaking, non-uniqueness results in an ill 

conditioned matrix when the integral equation is discretized, and the condition number 

will become larger as the number of elements is increased.  This suggests a non-rigorous 
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method to check the uniqueness of solution via monitoring matrix condition number.  For 

the problem of the deformation of an inviscid bubble attached to a wall, the matrices do 

not have the ill conditioned nature indicative of a non-unique solution (Figure 11). 

However, non-uniqueness of solution precludes the use of the BEM simulation program 

to investigate the fate of any bubbles shed from the nucleation site. 

3.2.b  Discretization for BEM 

 The boundary integral equation, Eq. (3.61) is used to construct the boundary 

element formulation.  The boundary is separated into segments based on the boundary 

conditions.  For this model, there are four combinations of boundary conditions: 

a) velocities specified as zero (lower solid boundaries). 

b) velocities specified, u1 = 1, u2 = 0, (upper solid boundary), 

c) tractions specified (interface), and 

d) one velocity  (u2) and one traction (f1) specified (inlet and outlet). 

 The boundary integrals are split into a sum of integrals over the three different 

types of boundaries, so that Eq. (3.61) is rewritten as 
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Figure 11. Plots demonstrating the numerical check on uniqueness of solution of the 
integral equation representation Eq. (3.61) for a 2-D inviscid compressible bubble 
attached to a wall (b).   The condition number of the matrix A resulting from 
discretization of Eq.  (3.61) is compared to the condition number for the case of a 2-
D free  compressible bubble  (a).   The plots (a) and (b) show only the central 
portion of the domains, and demonstrate typical locations of collocation points 
(dots).  For the non-unique free bubble case, the condition number increases as the 
number of elements in the interface Nint is increased. 
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 (3.62) 

where the integrals are over the segments with boundary conditions specified as above, 

which have been inserted where convenient.  The terms on the left hand side of Eq. (3.62) 

are unknown, the first term on the right hand side will be known or unknown depending 

upon the location of the collocation point xo, and the remaining terms on the right hand 

side are known.  Note that Eq. (3.62) is really two equations, one each for j equal to one 

or to two.  Next each segment of the boundaries is discretized and the unknowns are 

approximated as constants over each discrete interval 



 

 49

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,
1 1 2 2

1

, ,
1 1 2 2

1

,
1 1 1 1 1 2 2

1

,
2 2 1 1 2

, ,

, ,

, ,

,

a

n n

b

n n

c

n n

n

N
a n a n

j o j o
n a a

N
b n b n

j o j o
n b b

N
c n

j o j o
n c c

c n
j o j

c

f G dS f G dS

f G dS f G dS

u T n dS T n dS

u T n dS T

=

=

=

⎧ ⎫⎪ ⎪− −⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪− −⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤⎪ ⎪+ +⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

+ +

∑ ∫ ∫

∑ ∫ ∫

∑ ∫ ∫

∫

x x x x x x

x x x x x x

x x x x x x x x

x x x x ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
1

, ,
1 1 2 2

1

1 2 2

, ,
1 1 2 2

1

1

,

, ,

2 ,

, ,

,

c

n

d

n n

c

n n

N

o
n c

N
d n d n

jk o k j o
n d d

j o j o
b

N
c n c n

j o j o
n c c

j o
d

n dS

u T n dS f G dS

u T n dS

f G dS f G dS

Ci G dS

π

=

=

=

⎧ ⎫⎡ ⎤⎪ ⎪
⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎪ ⎪+ −⎨ ⎬
⎪ ⎪⎩ ⎭

= +

⎧ ⎫⎪ ⎪+ +⎨ ⎬
⎪ ⎪⎩ ⎭

−

∑ ∫

∑ ∫ ∫

∫

∑ ∫ ∫

∫

x x x x

x x x x x x x

x x x x x

x x x x x x

x x x
  (3.63) 

The known tractions on the interface, segment c, are split up due to the description of the 

interface as a cubic spline to be described later; the other integrals involving known 

quantities can be evaluated analytically. 

 Equation (3.63) is evaluated twice, once for each direction j, at collocation points 

xo selected as the midpoints of each discrete interval. This yields the same number of 

equations as there are unknowns; the system is linear and can be written simply as 

  A =y d  (3.64) 

where A is a full 2N by 2N matrix, N = Na+Nb+Nc+Nd.  The solution of Eq. (3.64) is 

found by LU decomposition, except when the condition number of A is sought during 

investigations of uniqueness of solution; in those cases, singular value decomposition is 

used. 
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3.2.c  Discrete interval integrations 

 Several issues must be considered for construction of the matrix A in Eq. (3.64) 

from Eq.  (3.63).  They are divided into the areas of mathematical description of the 

interface and integrations near singular points. 

 The interface, ∂ΩAB, or segment c, is described parametrically.  Each discrete 

interval is described using cubic parametric equations, where the variable of 

parameterization is the polygonal arclength p along the interval; for each interval 

coefficients are found for 

  
3 2

1 2 3 4
3 2

1 2 3 4

p p p

p p p

x b b b b

y c c c c

= + + +

= + + +
 (3.65) 

The coefficients are found so that the description of the interface is a cubic spline.   At 

each interval endpoint, the first and second derivatives of x(p) and y(p) with respect to p 

are therefore continuous.  Because the interface is not closed, two more conditions are 

required.  The “not-a-knot” spline gives the most naturally varying curvatures.  

Therefore, at the first interior points from the contact lines the third derivatives are also 

forced to be continuous. 

 The collocation points xo on the interface are the midpoints based on true 

arclength s 

  ( )
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o n

o o
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where pn is the polygonal arclength of the interval and xo= [x(po), y(po)].  

  The “known” tractions on the right hand side of Eq. (3.63) are calculated using 

Eq. (3.45) with the curvature calculated at xo, where the curvature κ is calculated using 
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Also needed are the components of the unit normal vector n at arbitrary p 
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 (3.68) 

 The integrals in Eq. (3.63) along section c are evaluated numerically.  The 

integrals are in terms of the variable of parameterization p 
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where g(x,xo) can be either Gij or Tijk nk.   When the interval being integrated over does 

not contain, nor is it near, point xo, this integral is evaluated using Gauss-Legendre 

quadrature with 12 points.   This straightforward numerical integration can also be used 

for calculating the Cauchy principal value when xo lies on the interval of integration for 

g(x,xo) = Tijk nk (Pozrikidis 2002).  This is due to fact that as the integration point x 

approaches the collocation point xo, the orthogonality of x-xo and n prevents the 

appearance of a singularity. 

 When  g(x,xo) = Gjj and xo lies on the interval of integration then a logarithmic 

singularity exists that must be dealt with correctly (Pozrikidis 2002).  The second term in 

the integral does not have a singularity and can be handled normally.  For the straight 

intervals a, b and d the singular integral can be analytically evaluated.  For the interface, 

the integration of the singular term is performed as follows: 
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The first integral in the last line is non-singular and can be integrated with Gauss-

Legendre quadrature.  The second integral is computed as follows: 
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Each integral now has the singularity at one end and they are handled similarly: 
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Again, the first integral is non-singular and is integrated with Gauss-Legendre 

quadrature.  The second integral is now of the form 

  ( ) ( )
1

0

ln ξ ϕ ξ∫  (3.73) 

for which an accurate Gauss quadrature has been developed (Stroud 1966). 

 When the interface has deformed considerably, it is possible for portions of the 

interval over which integration is being performed to come close to point xo even though 

xo does not lie on the interval; in such cases, the integral is non-singular but more points 

are needed for accurate quadrature (Schleizer and Bonnecaze 1999).  The number of 

points needed depends upon the nearness of the interval to the singular point.  The 
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inaccuracy is avoided by using an adaptive trapezoidal integration for any non-singular 

element which contains a point x:  

  ( )po ns− <x x  (3.74) 

 The velocities on the interface are used to advance the interface position in time, 

using an adaptive second order Runge-Kutta time integration method (Stoer and Bulirsch 

1991).  For the impermeable liquid and penetration model, the pressure in the bubble is 

updated as the interface position changes.  The velocities at the contact lines during the 

time stepping are determined from the contact angles and Eq. (3.43), and therefore do not 

appear explicitly in the integral formulation.  

 For the impermeable liquid model and penetration model for mass transfer, the 

pressure in the bubble must be computed at each time step based on the new bubble cross 

sectional area, and, for the penetration model, based on the number of moles of gas in the 

bubble.  The area is found by explicit integration, using the parametric description of the 

interface. 

3.2.d  Further interface discretization,  advection  and stability issues 

 The interface location evolves in time according to Eq. (3.25).  Tangential motion 

of a point in the interface does not alter the interface shape. But using Eq. (3.25) to advect 

the Lagrangan marker points that define the interface will lead to clustering of the points.  

Because the interface is assumed to be massless and have uniform properties  (i.e., 

surfactant free), Eq. (3.25) can be replaced by  

  ( )  on AB
AB

d
dt
∂Ω = ⋅ ∂Ω

x
u n n  (3.75) 

In other words, the interface can be advected using only the normal component of 

velocity.  Using Eq.  (3.75) in place of Eq. (3.25) reduces the tendency of points to cluster 
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but does not eliminate it.  Eventually there will be regions of interface dense with short  

segments and others sparsely populated with long segments.  This tendency of the 

interface marker points to cluster is eliminated by redistribution after each time step. 

 A choice must be made when redistributing interface points.  There are two 

logical criteria: the points can be redistributed so that the arclength of each segment is the 

same, or the points can be redistributed so that the angle α subtended by each segment is 

the same.   Each has its advantages.  Initially the second choice seems preferable.  It leads 

to clustering in areas of high curvature, which is desirable due to the need for accurate 

calculations of curvature in these areas.  However, experience with boundary element 

methods has shown that for interfaces discretized with unequal segment lengths, a 

sawtooth instability appears (Kropinski 2001). The sawtooth instability is typically 

countered through the application of a smoothing algorithm (Longuet-Higgins and 

Cokelet 1976).  It would be preferable to avoid smoothing because it essentially adds a 

small amount of artificial surface tension; in this regard, it is analogous to the use of 

artificial dissipation (viscosity) in computational fluid dynamics to combat odd-even 

decoupling. 

 For these simulations a compromise approach was used.  Initially, as the interface 

deforms, points are added and then the endpoints are redistributed so that equal 

arclengths are maintained without allowing the largest subtended angle to exceed some 

threshold value, typically 0.3 radians: 

  ( ) maxpn n o nsα κ α= ≤  (3.76) 

For many simulations this approach could be used throughout; however, for simulations 

with large deformations or formation of cusp-like (extremely high curvature) regions, this 
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approach eventually requires an inordinate number of points in the interface, resulting in 

inordinately slow simulations.  So another threshold value was chosen, this time for the 

maximum number of elements allowed in the interface.   Good resolution of high 

curvature regions and acceptable simulation speed were obtained by making the 

maximum number of elements 150.  Once this threshold is reached, the redistribution 

strategy switches.  The arclength of the element with the highest curvature is set so that 

the subtended angle of that element is αmax.  Then redistribution is performed so that the 

arclength of each element is χ times the arclength of the element before it, moving away 

from the highest curvature element.  The numbers of elements to either side of the highest 

curvature element are selected so that the arclengths of the longest element on each side 

are nearly equal and the total number of elements used for the interface is the threshold 

value. 

 Once the redistribution strategy switches, the element arclengths in the interface 

are no longer uniform and smoothing must be incorporated to avoid sawtooth instability.  

The smoothing algorithm is based on one used in BEM simulations of breaking waves  

(Longuet-Higgins and Cokelet 1976).  Figure 12 demonstrates the stretched (non-

uniform) discretization for a representative simulation as well as the effect of neglecting 

to use a smoothing algorithm when the stretched discretization is used. 

3.3  INCEPTION SIMULATION RESULTS 

 The results of simulations allowed to progress to steady state conditions are 

compared to those of Feng and Basaran, who used a finite element method to find steady 

solutions for bubbles with a specified final cross sectional area (Feng and Basaran 1994).   
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Figure 12. Demonstration of non-uniform discretization once the maximum number of 
interface elements has been reached.  The figure shows the tip of the bubble during a 
representative simulation, as well as a portion of the boundary.  The dots are segment 
endpoints from a simulation for which smoothing was used once non-uniform length 
elements were allowed.   The line shows the effect of the sawtooth instability; it is the 
interface position if no smoothing were incorporated. 
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The interface shapes are shown in Figure 13 for comparison with their Figure 5, and the 

close agreement is used to validate the BEM computer code. 

 To determine whether a two dimensional model of inception from wall stabilized 

nuclei agrees with the experimental results, simulations are performed in the range of CaL 

corresponding to experimental conditions (CaL ~ 30–300 for PB), for Ci near unity.  

Because no gas nuclei could be observed in the experiments prior to shearing, the 

dimensionless crevice width, W, is limited to a maximum of 0.2  (10 µm crevices).  For 

the magnification and resolution of the lens and camera used in the experiments, 10 µm 

corresponds to 5 pixels, which was assumed to be the maximum sized void that would 

not be detected. 

3.3.a  Representative simulations 

 For the case of infinitely fast diffusion, if the liquid is saturated then the initial 

curvature κo of the interface will be zero.  Simulations with zero initial curvature for an 

interface with contact lines on the crevice corners show that the interface is stable to 

shear for any CaL, Ci and W; the normal component of the velocity is zero everywhere on 

the interface.  The mass transfer model does not matter in this case provided the liquid is 

saturated; the interface does not deform if κo = 0. 

  If the liquid is undersaturated, simulations incorporating mass transfer have an 

initially negative curvature.  If the liquid is supersaturated, simulations incorporating 

mass transfer have an initially positive curvature.  Impermeable liquid case can have 

anyinitial curvature.  Figure 14 shows interface positions for various times for two 

simulations, one of infinitely fasr diffusion with κo<0 (undersaturated), and one for a case 

of no diffusion with κo<0.  The main result in Figure 14 is general for all permutations of 



 

 58

 

 

 

 

 

 

 
 

 
Figure 13. Steady state shapes for initially semicircular bubbles.  With Ci = 1000 the 
bubble area stays nearly constant; hence the shapes can be compared with the 
results of Feng and Basarn  (Feng and Basaran 1994).  Car  = Ca (W/2) is the 
capillary number based on the initial bubble radius. 
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 the other parameters investigated with κo<0; a bubble with an initially negatively curved 

interface will not escape the crevice.  This is a very important result.  The crevice model 

for nuclei stabilization typically uses the fact that a crevice can cause a bubble to achieve 

a negative curvature to explain nuclei persistence.  If all crevice stabilized gas nuclei 

interfaces have negative curvatures, then the most obvious conclusion must be that either 

the cavitation observed in the experiments does not originate from wall-crevice stabilized 

nuclei, or the two dimensional model can not capture the relevant physics. There is, 

however, another reasonable conclusion, which is that the experimentally observed 

cavitation together with the results in Figure 14 suggests that gas nuclei in wall-crevices 

can persist for long periods of time with a positive interface curvature.  This agrees with 

the nucleation site stabilization model proposed by Mørch (Mørch 2000).  We present an 

alternate explanation in a following section (3.4) for the persistence of nuclei with 

positive curvature. The remainder of this work assumes that such nuclei are present. 

 Figure 15 shows interface positions for various times for the case of infinitely fast 

diffusion with κo>0 (supersaturated), Figure 16 shows interface positions for an 

impermeable liquid with κo>0, and Figure 17 shows interface positions for a penetration 

model with supersaturated liquid conditions, κo>0.  All three simulation results exhibit 

common characteristics.  Initially, the bubbles are compressed and the bubble area 

decreases. This is similar to the behavior exhibited by a free two-dimensional bubble in 

an infinite shear flow (Pozrikidis 2001b).  For the case of infinitely fast diffusion, the 

pressure does not increase during this period of compression; therefore, there is less 

resistance to compression and the reduction in area is greater.  Furthermore, for the case 

of infinitely fast diffusion, the bubble exhibits a cusp or near cusp at later times (t > 1). 
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Figure 14. Simulations of interface deformation from initially negative curvature for 
infinitely fast diffusion (a) and impermeable liquid (b).  For both (a) and (b) κo = -5, 
CaL = 150, Ci = 1, W = 0.1, θCL = π/12, θCR = π/12, AC = 1.87 x 10-3, θA = 2π/3, and θR = 
π/2.  No combination of these parameters was found for which an initially negatively 
curved interface escaped the crevice. 
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Figure 15. Interface positions at intervals of t = 1/6 for a simulation with CaL = 
100, Ci = 1, W = 0.1 and κo = 16.  The mass transfer model is infinitely fast 
diffusion and the contact lines are pinned. 
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Such cusps may have a role in production of tip streaming bubbles (Rallison 1984; de 

Bruijn 1993).  Tip streaming is not a well-understood phenomenon.  As will be seen 

shortly, the impermeable liquid case, for the same conditions, will lead to a prediction of 

bubble shedding due to pinch-off.  Diffusion can therefore play one of two roles in the 

shedding of bubbles from nucleation sites in shear: either it inhibits it, or it shifts the 

mechanism from pinch-off to tip streaming, leading to smaller shed bubbles. 

 Examination of the interface shapes for the impermeable liquid case, Figure 16, 

shows that by t = 4.3 the bubble has deformed considerably and two opposing sides have 

come into contact at a “pinch-off” point.  It can be assumed that by this time a portion of 

the bubble downstream of the pinch-off point will have detached, becoming a free 

bubble.  Absent any diffusion, the portion of the bubble that remains will achieve a 

steady state shape.   Only one bubble will be shed.  Even when the impermeable liquid 

model is appropriate for simulating the shedding of a bubble, diffusion may still be 

important in later bubble growth, as the time scale for the subsequent bubble growth 

could be considerably longer than the time scale for the shedding process.  The BEM 

simulation in this thesis cannot be used to investigate the fate of shed bubbles due to 

previously mentioned problems with non-uniqueness of solution for free bubbles.  The 

fate of shed bubbles is discussed in the section on bubble migration and growth (3.5).   

 Several of the parameters for the simulation in Figure 16 are set to their baseline 

or standard values so that the effect of varying these parameters on inception can be 

investigated.  The standard value for the cavitation index, Ci, is one, for the crevice 

width, W, is 0.1, and for the crevice cross sectional area, AC, is zero.  The baseline model 

for mass transfer is the impermeable liquid model, and the baseline contact line 
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Figure 16. Interface positions at successive times t for a simulation with CaL = 100, 
Ci = 1, W = 0.1 and κo = 16 for the case of an impermeable liquid (no diffusion).  
The contact lines are pinned and the crevice cross sectional area Ac is zero.  At t = 
4.3 the interface touches itself and the bubble is assumed to “pinch off” at the point 
of contact. The shed portion of the bubble is not included in later times for the 
inception simulations using the BEM.  The elliptical shed bubble in the last frame 
is included for illustration for the section on bubble migration and growth. 
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 parameters are pinned contact lines (θA = π, θR = 0).  

 Figure 17 shows interface shapes for a case in which mass transport is simulated 

using the penetration model.  For this simulation, the initial conditions and parameters 

not related to mass transport are the same as those for the simulations depicted in the 

previous two simulations (infinitely fast diffusion and impermeable liquid models, 

respectively). The parameter that describes the level of saturation of dissolved gas in the 

liquid c∞ is chosen for this simulation so that the initial curvature is stable 

  1
Ca

o

L

c
Ci

κ
∞ = +  (3.77) 

The Peclet number PeL is related to the capillary number CaL 

  Pe CaL L
L

D
γ

µ
=  (3.78) 

For the simulation in Figure 17 the PeL is 1000, which is at the high end of its range for 

the experiments with the Couette viscometer. 

 For the times shown in Figure 17 the deformation of the interface is very similar 

to that in Figure 16.  Pinch-off occurs slightly later and the shed bubble is a little smaller, 

in keeping with the inhibiting effect of diffusion on pinch-off.  The same simulation is 

depicted in Figure 18 over a longer range of times.  Whereas for the impermeable liquid 

model case depicted in Figure 16, only a single shedding event occurs, and for the 

infinitely fast diffusion case in Figure 15 no bubble is shed, Figure 18 shows that for 

boundary layer type mass transfer in a supersaturated gas-liquid solution, multiple 

bubbles may be shed.  Mass transfer generally increases the level of shear necessary for 

shedding to occur; however, it is necessary for continual repeated shedding to occur. 
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Figure 17. Interface positions at successive times t for a simulation with CaL = 100, 
Ci = 1, W = 0.1 and κo = 16 using the penetration model for mass transfer, c∞ = 
1.16 and PeL = 1000.  The contact lines are pinned and the crevice cross sectional 
area AC is zero.  At t = 4.6 the interface touches itself and the bubble is assumed to 
“pinch off” at the point of contact. The shed portion of the bubble is not included 
in later times for the inception simulations using the BEM.  The elliptical shed 
bubble in the last frame is included for illustration for the section on bubble 
migration and growth. 
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Figure 18. Interface positions at successive times t for the case depicted in Figure 
17, demonstrating how a nucleation site could shed multiple bubbles when the 
liquid is gas supersaturated. 
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3.3.b  Effects of varying parameters on inception 

 Figure 19 shows the variation of the bubble pressure with time for the baseline 

case to study inception (Ci = 1, W = 0.1, AC = 0, impermeable liquid model, and pinned 

contact lines) for several cases with the same initial shape, κo = 10, but different capillary 

numbers CaL = 40, 45, 47.5, 50, and 55.  InFigure 19 these correspond to values of CaLh 

= 0.54, 0.6, 0.64, 0.67, and 0.74, where h is the distance from the plane in which the 

crevice mouth liesto the furthest point on the bubble.  The behavior depicted in Figure 16 

is not universal for all cases; pinch-off does not always occur.  For the simulations used 

to produce Figure 19, pinch-off occurred only in the two cases of highest capillary 

number.  A steady state shape was quickly reached for the lowest capillary number case.  

For the two other cases, the bubble growth continues to slow; although a steady shape 

was not reached for the time span simulated, the growth is not vigorous enough to be 

considered cavitation inception.  The transition between the quick achievement of steady 

state to low growth occurs with increasing Ca when the steady state contact angle at the 

leading edge goes to zero, as can be seen in the insert in Figure 19.  For an impermeable 

liquid, whether a nucleation site bubble will deform to the point that it will pinch-off 

depends upon crevice cross sectional area AC, as well as Ci, CaL and h, and also upon the 

advancing and receding contact angles, crevice shape, and the relative nearness of the far 

wall W.  For the baseline case, pinch-off will occur when CaLh exceeds 0.64.  In this 

section the trends of how variation from the baseline conditions affects the critical CaLh 

above which pinch-off occurs are reported.  Results are primarily presented as plots of 

pB–Ci versus t.  For the impermeable liquid model this plot is closely related to a plot of 

bubble area vs. t, so rapid expansion is easily recognized as a quick reduction in Bp Ci− . 
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Figure 19. Variation of excess pressure in the bubble vs
different capillary number.   For all cases, the baseline co
κo=10 (giving h = 0.0134).  Results are plotted for CaL of 4
lines), 47.5 (thick line) and 50 and 55 (bottom two thin 
(CaLh > 0.64) pinch-off occurs.   The insert shows the va
state) contact angle θss at the leading contact line as a fun
CaL = 42.  For CaL > 42 steady conditions were not achieve
rate decreased monotonically with t following the pressur
47.5. 
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 Further, this method of presentation has the advantage of providing a quick method of 

assessing, for a given level of gas saturation, the direction (in or out of the void) of mass 

transport if it were incorporated into the model.   

 All of the simulations in Figure 19 are for bubbles with the same initial shape. 

Although it is clear that for a given set of condition there will be a critical capillary 

number  

  Ca s
U L
L

µ
γ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.79) 

above which  pinch-off occurs, it is not immediately obvious that the best choice for  Ls is 

the distance that the bubble extends above boundary wall.  The first hint that this is the 

case is the previously reported observation that interfaces with negative curvature and 

their endpoints at the crevice corners are stable to all shear.  These are interfaces with 

CaLh less than or equal to zero; however, this observation does not rule out the use of 

CaLκo or perhaps CaLκzW for predicting pinch-off. Neither do physical considerations 

reveal clearly which of these is the more appropriate choice. By comparing the results of 

two simulations, the superiority of the grouping CaLh becomes evident.  Both simulations 

are for Ci = 1, CaL = 50, AC = 0 and pinned contact lines.  In one simulation (a) W = 0.1 

and κo = 10, and for the other (b) W = 0.2 and κo = 2.63:   

(a) CaLh = 0.64; CaLκo = 500; and, CaLκzW = 50 

(b) CaLh = 0.64; CaLκo = 131.5; and, CaLκzW = 26.3. 

Note that (a) is the same as the lower Ca curve in Figure 19 for which pinch-off occurs. 

The results are displayed in Figure 20 and it is clear that the two are similar.  For either 

CaLκo or CaLκzW to be a good choice for correlating pinch-off data, then it would be 

 



 

 

 

 

Figure 20. Plot used to demonstrate tha
correlating pinch-off data.  Both curves
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CaLh = 0.67: CaL = 50 for both, but for 
(bottom) thick line data κo = 2.63 (b). 
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necessary for pinch-off to be inhibited in (b) as compared to (a), which is clearly not the 

case.  

 Based on the PNSCC it might be expected that Ci should have a large effect on 

the critical CaLh above which pinch-off occurs.  This is not the case, and, in fact, the 

effect of Ci on critical CaLh is opposite what the PNSCC would apparently suggest.  

Recall that the PNSCC with σc = 0 predicts cavitation when Ci is reduced to unity or 

below.  This might suggest that the critical CaLh increases with increasing Ci, while, 

actually, for Ci from 0.1 to 10 the critical CaLh decreases with increasing Ci, as can be 

seen in Figure 21.  The effect is more dramatic for Ci < 1.  For Ci of 0.1 pinch-off does 

not occur for CaLh less than 0.8, while for Ci of 10 the critical value of CaLh has not 

changed to two significant figures. That the trend of decreasing critical CaLh with 

increasing Ci does not irrevocably bring the inception model and the PNSCC into 

complete contradiction is due to the fact that for a given nucleation site, if Ci varies but 

CaL is kept constant, then h must change.  The importance of this effect is expanded upon 

in section 3.6. 

 In general increasing crevice cross sectional area, AC, should have an effect 

somewhat similar to that of increasing mass transfer, as a large volume below the bubble 

will weaken the effect of interface deformation on bubble pressure.  This conjecture is 

borne out by simulations, which indicate that a lower crevice volume promotes pinch-off  

(Figure 22). 

  The presence of an opposing wall has a confining effect on the flow that will alter 

the deformation of the bubble.  It is not obvious whether this effect will be to promote or 

hinder bubble pinch off.  Either argument could be made: the confined flow will resist 
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Figure 21. Variation of bubble pressure above Ci showing effec
for baseline conditions (except for Ci) and CaL = 50, κo = 10 (
thick line is the result of a simulation with Ci  = 10, the thin lin
dotted line for Ci = 0.1.  As Ci decreases, pinch-off is inhibited. 
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Figure 22. Effect of crevice cross sectional area on response of identically shaped 
preexisting nuclei to the same shearing simulation conditions.  For both cases, Ci = 
1, CaL = 55, κo = 10, W = 0.1 (CaLh = 0.74), the liquid is impermeable to gas and 
the contact lines are pinned.  For the case for which pinch-off occurs, AC = 0, while 
for the case in which a steady pressure is achieved, AC = 0.0043. 

AC = 0 

AC = 0.0043 
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bubble growth or it will increase the early compression and drive the bubble deformation 

to a higher curvature, therefore allowing the conditions for bubble pinch-off to occur at a 

lower capillary number.  The effect of the relative nearness can be investigated by 

reducing or increasing W while doing the opposite to CaL so that CaLh does not change.  

Simulations were performed for W above and below the baseline value of 0.1, with all 

other conditions at baseline, and CaLh = 0.67.  The results are shown in Figure 23.  For 

W=0.05 and W = 0.1, (CaL = 100 and 50 respectively) the behavior was nearly identical, 

except that after the initial compression, the timescale for the expansion seems to vary 

inversely with W.  This role of W in the expansion time scale also is evident in Figure 20.  

The results for W = 0.2 (CaL = 25) indicate that as the opposing wall is brought closer, 

pinch-off is made less likely.  Note that for W = 0.2 and the initial curvature that was 

used, κo = 1/W, h = 0.027.  The distance to the opposing wall is nearly forty times the 

distance the bubble extends out of the crevice, and yet the far wall has a dramatic effect.  

This is typical in two-dimensional Stokes flows, where disturbances extend distances 

usually two orders of magnitude greater than the disturbance size.  

    To this point, little has been said about the role of contact line dynamics in 

inception.  For examining the effects of other parameters on pinch-off, the contact lines 

have been kept pinned.  Contact line motion was needed to successfully simulate voids 

with initially negative curvature such as those in Figure 14, but recall that these never 

lead to pinch-off.  Based on an examination of the baseline case, for which contact lines 

are pinned, it seems that a wetting liquid will be more likely to pinch-off, as the rear 

contact line will move into the crevice, making it more likely that the interface will close 

off.  This conjecture is tested, and the role of contact line dynamics investigated by 
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Figure 23.  Plots of pB  - Ci vs. t to demonstrate the effect of the relative distance  
to the far wall.  The simulations used the impermeable liquid model with pinned 
contact lines.   Three simulations were run, with W of 0.1 (thin line), 0.05 (dashed 
line) and 0.2 (thick line).  The initial curvatures κo and the capillary numbers CaL 
were specified so that the simulations would be for identical conditions with the 
exception of the distance to the far wall: κo = 1/W, and CaL=5/W; therefore, for all 
simulations CaLh = 0.67.  For W ≤ 0.1 the only effect of distance to the far wall is 
to change the time scale of the expansion, while for W > 0.1, bringing the far wall 
closer inhibits expansion and subsequent pinch-off. 

W = 0.1 

W = 0.05 

W = 0.2 
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considering a series of four simulations that differ only in their contact line behavior.  For 

all four simulations, the baseline conditions of W = 0.1 and the impermeable liquid model 

are used.  The crevice is a trapezoid with θCL = θCR = π/6 and AC = 4.33x10-4.  The initial 

curvature is κo = 10, and the capillary number is CaL = 80, giving CaLh = 1.07.  This 

choice of capillary number is sufficiently high to result in pinch-off for the pinned contact 

line case despite the nonzero crevice area.  One simulation has pinned contact lines (a), 

one has no hysteresis, θA = θR = π/3 (b), one will have leading contact line motion, θA = π, 

θR = π/3 (c), and the last will have the rear contact line move into the crevice, θA = π/3, θR 

= 0 (d).  Based on the conjecture about the effect of contact line dynamics, it is expected 

that in the wetting case (d) pinch-off will occur earlier than for the pinned case (a), while 

in the more hydrophobic case (c), pinch-off should be inhibited.  The result in the no-

hysteresis case (b) cannot be readily predicted.  The simulation results are presented, 

again as pB – Ci vs. t, in Figure 24.  Based on the choice of advancing/ receding contact 

angles of π/3 and the initial curvature, the rear contact line begins moving almost 

immediately in cases (b) and (d), while, in  (b) and (c) the leading contact line does not 

start moving until t = 0.5.  The increase in the compression due to rear contact line 

motion is greater than might have been supposed, and the subsequent expansion prior to 

pinch-off is more rapid.  Alone, rear contact line motion into the crevice promotes pinch-

off.  Similarly, leading contact line motion away from the crevice, with no rear contact 

line motion, inhibits pinch-off.  The surprising result is that combined motion of both 

(which can be viewed as translation of the bubble in the flow direction) has a greater 

effect on reducing the stress needed for pinch-off than rear contact line motion alone.  
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 effect of contact line motion on pinch-off.  For  
0, κo = 10, W = 0.1,   θCL  = θCR =  π/6 and AC = 
 selection of advancing and receding contact 
contact lines, θA = π, θR = 0; (b) thin lines, no  

 thick lines, non-wetting, θA = π, θR = π/3; (d) 
= 0.  The plots of interface position are for each 
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 Changing the applied pressure, as was done in the experiments, has several 

possible effects.  If the pressure change is extreme then the properties of the liquid can 

change.  If the pressurization is done with gas, then the concentration of dissolved gas in 

the liquid changes.  The cavitation index, Ci, changes with the pressure for the same 

applied shear stress; this has effects already discussed.  Finally, nuclei will respond 

mechanically to pressure changes; this mechanical response can include motion of the 

contact line into or out of the crevice (Atchley and Prosperetti 1989), and is the subject of 

section 3.6. 

3.4  THEORY AND SIMULATION – PERSISTENCE OF NUCLEI 

 One of the more important conclusions drawn from the simulations of cavitation 

inception from wall-attached gas nuclei is that the cavitation nuclei have positive 

curvature (are convex toward the liquid).  This is counter to the typically held view of 

such nuclei, which would permit a positive curvature only if the liquid were 

supersaturated with dissolved gas.  Otherwise, the reasoning goes, the positive curvature 

would result in a Laplace pressure that would keep the bubble pressure above the liquid 

pressure.  Thus diffusion would drive gas from the bubble until it had zero curvature, if 

the bulk liquid were saturated, or negative curvature if the bulk liquid were 

undersaturated.  There are other theories that predict persistent nuclei with positive 

curvature.  Mørch proposed that ambient vibrations lead to resonance in voids in local 

wall concavities, resulting in rectified diffusion and stable nuclei with positive curvature 

(Mørch 2000).  Crum presented hypotheses of stabilization due to an ionic or surface-

active skin on bubbles in water (Crum 1982).  This section presents an analysis that 

relaxes the need for such explanations by greatly extending the time a nucleus would be 
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expected to persist with positive curvature.  The analyses starts with a model for 

dissolution of a spherical bubble of initial radius R* = Ro in a viscous liquid. 

3.4.a  Dissolution of a spherical bubble in a viscous infinite medium 

 The problem of an expanding or contracting spherical gas bubble in a liquid has 

been addressed numerous times, starting apparently with Lord Rayleigh, and a thorough 

review of the literature was performed by Plesset and Prosperetti (Plesset and Prosperetti 

1977).  Assuming that the bubble is not translating, the resulting flow is irrotational and 

can be described in a spherical coordinate system with the origin at the bubble center, 

using a potential function φ such that the radial component of the velocity is 
*

*
*ru

r
φ∂

=
∂

.  

The solution corresponds to that for a point source or sink with time varying strength 

m(t*), and is one dimensional, ( )* *,0,0ru=u .  For unsteady irrotational flow, Bernoulli’s 

equation is  

  ( )
* *2* * *
*

1
2

p c t
t
φ

ρ
∂

+ + − =
∂

u g xi  (3.80) 

Substituting the velocity and corresponding potential for a point source into Eq. (3.80) on 

the bubble surface (x* = R*) and as x* → ∞, and neglecting body forces, yields 

  
( )* * *

*2 * *3
2

p R p
R R R

ρ
∞−

= +  (3.81) 

The dynamic boundary condition on the bubble surface relates the pressure in the liquid 

to the pressure of the gas in the bubble 

  ( )
*

* * *
* *4 2B

Rp p R
R R

γµ= − +  (3.82) 

Combining Eqs . (3.81) and (3.82) produces a form of the Rayleigh equation 
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* *

* **2 * *
*

23 4
2

Bp pR RR R R
R

γ

ν
ρ

∞− −
+ + =  (3.83) 

 The bubble pressure varies due to an equation of state, which we take to be the 

ideal gas equation of state 

  * *
B B up c R T=  (3.84) 

where generally the molar gas concentration in the bubble, *
Bc , and temperature, T, are 

found by solving species and energy conservation equations.  It is assumed that the 

system will remain isothermal due to the slow rates of dissolution seen for bubbles in our 

experimental systems.  Binary Fickian diffusion of a single dissolved gas species in the 

liquid is assumed, and, because velocities are expected to be small, advection is 

neglected: 

  
* *

*2
* *2 * *

c D cr
t r r r

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3.85) 

The boundary conditions, assuming that far from the bubble the liquid is saturated with 

gas, are, from Henry’s law, 

  
( )
( )

* * *

* * *

Bc R Hp

c r Hp∞

=

→ ∞ =
 (3.86) 

 The solution to the mass conservation problem, Eqs. (3.85) and (3.86), is used to 

find the concentration gradient at the bubble surface, which is incorporated into a 

statement of species conservation for the bubble 

  ( )
* *

*
*3 * *2

* *

4 4
3 B

r R

d cR c DR
dt r

π π
=

∂
=

∂
 (3.87) 

 The system requires initial conditions for completeness.  The initial species 

concentration is taken to be everywhere saturated 
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  ( )* * *0c t Hp∞= =  (3.88) 

 The initial bubble size depends upon the situation of interest.  The resulting 

system can be solved numerically, using, for instance, a finite difference method (Duda 

and Vrentas, 1969, and Kontopoulou and Vlachopoulos, 1999).  Instead,  a simplification 

is used that was first reported by Epstein and Plesset (Epstein and Plesset 1950).  The 

simplification concerns the gas diffusion problem. By neglecting the motion of the 

bubble surface, the concentration gradient at the surface is found to be approximately 

  
*

*
* *

* * *

1 1( )B
R

c H p p
r R Dtπ

∞

⎛ ⎞∂
≈ − − +⎜ ⎟∂ ⎝ ⎠

 (3.89) 

so that Eq (3.87) becomes 

  * * * * * *
* *

1 13 3 ( )B B BR c R c DH p p
R Dtπ

∞

⎛ ⎞
+ ≈ − − +⎜ ⎟

⎝ ⎠
 (3.90) 

The equation of state, Eq. (3.84), and its derivative with respect to time are used to 

replace cB and its time derivative in Eq. (3.90)  

  
* * *

* *
* * **

( ) 1 13 3B
B u B

p p Rp R THD p
R R RDtπ

∞
⎛ ⎞−

≈ − + −⎜ ⎟
⎝ ⎠

 (3.91) 

 The model is made nondimensional with the following scales: 

  ,  ,  o
s o s s

o

RL R p t
R

µγ
γ

= = =  (3.92) 

so that Eq. (3.83) becomes 

  
2

23 4 2 0
2 B

o

RR RR p p
R R R

µ
ργ ∞

⎛ ⎞
+ + − + + =⎜ ⎟

⎝ ⎠
 (3.93) 

where the nondimensional group in front of the parenthesis is the ratio of the capillary 

number to the Reynolds number and is much larger than one for bubble dissolution in a 

highly viscous liquid.  Neglecting therefore the first two (inertial) terms in Eq. (3.93) and 

scaling also Eq. (3.91) one obtains the simplified dimensionless model of Eq. (3.94).  It is 
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a dimensionless model for dissolution of a spherical bubble in a viscous liquid, neglecting 

inertial effects, and approximating the concentration gradient at the bubble surface:  

  

1
2

2
1

1 2

1
4 2

( ) 13 3

, 

B

B
B B

u o

o

p pR R

p p t Rp p
R R R

R THD R
R D

π

µ γ
γ µ

∞

−

∞

−
≈ −

⎛ ⎞
− Π⎜ ⎟≈ − Π + −⎜ ⎟⎜ ⎟

⎝ ⎠

Π = Π =

 (3.94) 

The initial conditions 

  
( )
( )
0 1

0 2B

R

p p∞

=

= +
 (3.95) 

are chosen so that the bubble is initially in mechanical equilibrium.  The model depends 

upon three parameters: p∞, Π1 and Π2.   

 The system consists of a pair of coupled nonlinear ODEs that can easily be 

numerically integrated provided that the singularity at t = 0 is avoided by starting at some 

slightly positive time.  In essence, this is assigning some large but finite concentration 

gradient initially, instead of the artificial infinite gradient required by the initial 

conditions of the model.  The model is verified by plotting its results against the results of 

a simple experiment in which bubble dissolution in PDMS was videotaped.  The images 

were used to obtain a plot of bubble radius versus time, shown in Figure 25 (a).  After an 

initial period in which the variation of bubble radius is affected by concentration 

gradients resulting from the diffusion from surrounding bubbles, the model and data 

show very good agreement.  Data on diffusivity and solubility of air in polybutene could 

not be found.  To obtain estimates of these properties, the same bubble radius experiment 

was performed on PB and then an optimization routine was used to find the values of H 
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and D that give the best fit to the data.  These are the property values given in Table I for 

PB.  The surface tension and dynamic viscosities were provided by the manufacturer, 

with viscosities verified in this lab.  The diffusivity and Henry’s constant for PDMS were 

found using published data and an Arhenius type correlation for temperature correction 

(Hirose et al. 1989).  Figure 25 shows plots of the data against the model for PDMS (a) 

and PB (b).  The model can also be used to determine whether viscous effects are 

important for a given bubble size. For PDMS, viscous effects are important, though not 

dominant, for bubbles where Ro < 10 µm, while for PB viscous effects are not noticeable 

unless Ro < 1 µm.  When viscous effects are important, they always extend the bubble 

dissolution time. 

3.4.b  Dissolution of crevice stabilized sphere-cap bubbles 

 The effect of locating the bubble on a solid wall on the rate of dissolution is 

considered next.  First it is noted that if the bubble were a hemisphere on a flat wall with 

fixed contact angles of π/2 then the solution to the species conservation problem would 

be the same as above due to symmetry.  The flow would no longer be spherically 

symmetric due to the no slip boundary condition at the wall.  If instead the contact line is 

pinned on a crevice then the problem loses its spherical symmetry completely, even if the 

  

Table I. PB and PDMS Transport Properties 

 γ [N m-1] µ [Pa s] D [m2s-1] H [mol m-3 Pa-1] 

PDMS 0.020 1000 1.57 x 10-9 7.34 x 10-5 

PB 0.034 1000 0.48 x 10-9 0.55 x 10-5 
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Figure 25. Bubbles in PDMS (a) and PB (b) were videotaped during dissolution.  
Plots of bubble radii vs. time for PDMS are plotted to validate the model of bubble 
dissolution, Eq. (3.94), while for PB the data are used to obtain estimates of the 
transport properties H and D. 
 



 

 85

crevice mouth is circular and the bubble surface is assumed to maintain the shape of a 

spherical cap.  Such a case of a crevice with a circular mouth whose radius is equal to the 

initial bubble radius will be considered.  The crevice is defined by its volume, *
CV , and 

the initial bubble radius, Ro.  The dissolution problem here is clearly quite different than 

in the case of a free bubble.  The main difference is due to the fact that, as gas leaves the 

bubble and the bubble volume decreases, the curvature of the bubble surface decreases 

instead of increasing.  Thus the pressure in the bubble decreases with time, reducing the 

driving force for diffusion.  The bubble will asymptotically approach a steady solution of 

zero curvature.  Note that this assumes the contact line does not move into the crevice as 

the contact angle increases. 

 In order to retain the simplicity of the solution developed for a free bubble, that 

problem is revisited with terms in that solution replaced with terms from the crevice 

stabilized problem.  The resulting solution will provide order of magnitude estimates.  

First consider Eq.  (3.89).  The second term in parenthesis is essentially the inverse of the 

penetration depth for one-dimensional diffusion into an infinite medium, and is retained 

unaltered for the crevice stabilized bubble solution. The first term in parenthesis therefore 

accounts for the multidimensionality of the diffusion.  In the case of spherical spreading 

this term becomes *1 R .  This effect is included in the non-spherically symmetric 

problem by approximating the bubble as a shrinking hemisphere.  *R  is replaced with an 

equivalent radius 

  
*

*
*
B

eq
B

AR
C

=  (3.96) 
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where *
BA  is the area of the bubble surface and *

BC  is the arclength of the contact line.  

Note that for a hemisphere * *
eqR R= .  A generalized version of Eq. (3.89) is used to 

calculate an average molar flux from the bubble 

  * * *
* *

1 1( )B
eq

n HD p p
R Dtπ

∞

⎛ ⎞
′′ ≈ − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.97) 

Species conservation for the bubble is  

  ( )
*

* * * * *
* * *

1 1( )B
B C B B

u eq

pd V V HD p p A
dt R T R Dtπ

∞

⎛ ⎞⎡ ⎤
+ = − − +⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

 (3.98) 

where *
BV  is the volume of the bubble outside of the crevice and *

CV  is the volume of the 

crevice. Upon rearrangement and nondimensionaliztion, 
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 For a spherical cap the following formulae are from geometry (made dimensionless) 
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2
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C

h

π
κ

π
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π

κ
κ

⎛ ⎞
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 (3.100) 

which makes 

  
2 2

4 2

2 1 2

1
m mB

m

m m

dV
dt

κ κ
π κ

κ κ

+ − −
= −

−
 (3.101) 

Substituting into Eq. (3.99), yields, for the case of a pinned contact line, a circular crevice 

mouth, and a spherical cap bubble, a first order differential equation in time with 

dependent variables pB and κm that one can write in the form 
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  ( )1 1 2, , , ; , ,B B m mp f p t pκ κ ∞= Π Π  (3.102) 

 For the fluid mechanics portion of the model one starts with Eq. (3.93) and again 

neglects the inertial terms.  Twice the mean curvature, 2κm, replaces 2/R in the last term 

in parenthesis, and the normal viscous stress term is treated in the same manner in which 

we the diffusion problem was manipulated, using the equivalent radius to capture effects 

due to changing geometry.  This introduces the largest error of all of the approximations, 

as even in the case of a shrinking hemisphere this will not correctly model the effects of 

the wall.  Nevertheless, it will provide a reasonable approximation of the contribution of 

normal viscous stresses.  For the case of a pinned contact line, a circular crevice mouth, 

and spherical cap bubble the resulting equation is 

  1
4 2
B

m m

p pd h h
dt κ κ

∞⎛ ⎞ ⎛ ⎞−
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3.103) 

Upon substitution of the definition of h from Eq. (3.100), Eq. (3.103) can be rearranged  

  ( )2 , ;m m Bf p pκ κ ∞=  (3.104) 

Therefore the problem requires the solution of two, coupled, nonlinear first order 

ordinary differential equations.  Once again, consideration is limited to initial conditions 

of a hemispherical bubble in mechanical equilibrium: 

  
( )
( )
0 1

0 2
m

Bp p

κ

∞

=

= +
 (3.105) 

3.4.c  Dissolution of two dimensional bubbles 

 The limiting case of a bubble that is distorted so that it is long in one direction is 

an infinite cylindrical bubble, which can be used to approximate the case of a bubble 

where variations in the long direction are small.  Thus a polar coordinate system can be 
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used to model a bubble stabilized on a long, narrow, scratch-like crevice.  A free 

cylindrical bubble is not physically realistic but is the starting point for the analysis. 

 For the case of a two-dimensional (cylindrical) bubble the potential flow solution 

method cannot be applied in a straightforward manner, because the potential does not 

vanish at infinity; however, the spherical bubble analysis suggests that the effect of the 

viscous stress will not be important for the experimental liquids, and, therefore it is 

neglected.  The dynamic boundary condition for a cylindrical bubble becomes  

  ( )* *
*Bp p

R
γ

∞− =  (3.106) 

 Because small velocities are expected, advection is neglected again, so, for the 

one dimensional cylindrical system, 

  
* *

*
* * * *

c D cr
t r r r

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3.107) 

In cylindrical coordinates, neglecting the motion of the bubble surface, and applying the 

same boundary and initial conditions as before, Eqs. (3.86) and (3.88), yields the 

concentration gradient at the surface 

  
( )

( ) ( )*

* 2
* ** *2

* 2 * 2 2
0 0 0

exp( )4 B

R

Dt
H p pc R d

r R J Y

τ
τ

π τ τ τ

∞
∞

−−∂
≈ −

∂ ⎡ ⎤+⎣ ⎦
∫  (3.108) 

where Eq. (3.108) is found by Laplace transform, J0 and Y0 are Bessels functions, and Eq. 

(3.108) must be numerically evaluated (Carslaw and Jaeger 1959). 

 Species conservation for the bubble requires at the bubble surface 

  ( )
*

*
*2 * *

* *2B
R

d cR c R D
dt r

∂
=

∂
 (3.109) 

so that Eqs. (3.108) and (3.109) are combined to get 
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( )
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J Y

τ
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π τ τ τ

∞

∞

−
+ = − −

⎡ ⎤+⎣ ⎦
∫  (3.110) 

Combining Eq. (3.110) with the equation of state and its time derivative to eliminate 

bubble gas concentration terms, and with the dynamic boundary condition and its time 

derivative to eliminate bubble pressure terms, rearranging, and nondimensionalizing as 

before,  

  
( ) ( ) ( )

2
2 2
21

2 2 2
0 0 0

exp
8

2 1

t
R

R d
R p R J Y

τ
τ

π τ τ τ

∞

∞

⎛ ⎞
−⎜ ⎟ΠΠ ⎝ ⎠= −

+ ⎡ ⎤+⎣ ⎦
∫  (3.111) 

with initial condition 

  ( )0 1R =  (3.112) 

Note that the problem depends on the same three parameters as the previous cases. 

 Following the method used to extend the free spherical bubble to the sphere cap/ 

crevice bubble, Eq. (3.106) is rewritten as 

  ( )Bp p κ∞− = , (3.113) 

and Eq. (3.108) as 

  
( ) ( )

2
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2 2 2
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( )

4 eqB
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n d
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τ
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π τ τ τ

∞
∞

⎛ ⎞
−⎜ ⎟− ⎝ ⎠′′ ≈

⎡ ⎤+⎣ ⎦
∫  (3.114) 

where now Req is defined as the average distance from the center of the crevice mouth to 

the bubble surface, which is expressed nondimensionally  as   

  
( )

( )

( )
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1

1

sin 2 2

sin

1

2 2cos 1

2 sineq

d
R

κ

κ
κ θ κ θ

κ κ

−

−−

−

− − −
=

∫
 (3.115) 

Note that Req goes from unity when κ = 1, to ½ as κ approaches zero, just as the sphere 

cap equivalent radius does. 
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 For the crevice topped with a circular section bubble, 

  ( )* * * * *
* B C B B

d A A c n S
dt

⎡ ⎤ ′′+ = −⎣ ⎦  (3.116) 

*
BA  is the cross sectional area of the bubble outside the crevice, *

CA  is the cross sectional 

area of the crevice, and *
BS  is the arclength of the surface of the bubble cross section. 

Nondimensionalized with Ro one has 

  

( )1

2

2sin
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2B

B

A

S

θ κ
θ θ

κ
θ
κ

−=

−
=

=

 (3.117) 

Equation (3.116) becomes Eq. (3.118), which is a model for dissolution of a bubble in a 

long surface scratch: 

  ( )
( ) ( ) ( )

2
2 21
2

12 2 2
0 0 0

exp
sin8 eq

eq B C

t
R

d
R A A J Y

τ
κ

κ τ
π ψ τ τ τ

− ∞

⎛ ⎞
−⎜ ⎟⎜ ⎟Π⎝ ⎠= − Π

+ + ⎡ ⎤+⎣ ⎦
∫  (3.118) 

where 

( ) ( )( ) ( ) ( )( )1 1 1 2

3 2

2 1 cos 2sin 2 sin 2sin 2sin 1

2 1

p pκ κ κ κ κ κ κ
ψ

κ κ

− − −
∞ ∞+ − + + − −

=
−

 (3.119) 

3.4.d  Far wall effects on dissolution 

 The presence of walls increases nuclei persistence in ways other than just 

providing a crevice.  Walls will hinder diffusion, which will allow even free bubbles near 

the wall to persist for longer times.  To get an idea of how much of an effect this will 

have on bubble life the following rough approximation is used.  Consider a crevice 

stabilized cylindrical bubble on one of two parallel walls separated by a distance d*.  
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When the diffusion penetration depth, δ = (πDt*)½, has not reached the other wall, the 

solution is still the solution to the bubble diffusing into a semi-infinite domain, so Eq. 

(3.118) applies for times less than tδ, where  

  ( )22
2 d h

tδ π
Π −

=  (3.120) 

and h, the distance from the plane of the wall to the furthest point on the bubble, is 

  
21 1h κ

κ
− −

=  (3.121) 

For times sufficiently greater than tδ, the components of the concentration gradients at the 

bubble surface in the direction perpendicular to the walls will essentially vanish.  A 

conservative approach to including this effect is to say that for t >> tδ, the effective 

arclength for diffusion from the bubble is reduced from SB to the projection of SB 

perpendicular to the walls.  This results in replacing SB in Eq. (3.116) with 2h 

   
( ) ( ) ( )

2
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∞

⎛ ⎞
−⎜ ⎟⎜ ⎟Π− − ⎝ ⎠= − Π

+ + ⎡ ⎤+⎣ ⎦
∫  (3.122) 

This approach is conservative because it neglects the effective reduction in cylindrical 

“spreading” due to the presence of the wall.  The incorporation of this effect in modeling 

the dissolution of a cylindrical crevice stabilized bubble into a bounded domain was 

accomplished by replacing Eq. (3.118) with Eq. (3.122) for t > 10 tδ. 

3.4.e  Results of bubble dissolution analysis 

 Figure 26 and Figure 27 compare nondimensional R or κ for free or crevice bound 

bubbles respectively as functions of dimensional time for the four categories of bubbles 

in PDMS and PB, with dimensional Ro = 10 µm and p∞ = 101 kPa.  The crevice volume 
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and area are calculated assuming a cone or triangle with base angle of π/2.  For the case 

of a bounded domain, d = 5.  The liquid properties used in the figures are in Table I. 

 The conclusion drawn from the analyses is that wall-crevice stabilized gas nuclei 

with positive curvature can persist for long periods of time provided they form in scratch-

like crevices.  Confinement of the liquid to a gap whose thickness is not too much greater 

than the crevice width greatly retards the rate of curvature decrease. 

3.5  THEORY AND SIMULATION  - MIGRATION AND GROWTH  

 Once a bubble has detached from a nucleation site, its fate can be considered the 

result of the linked processes of migration, deformation, and advection/diffusion 

controlled growth or dissolution.  Bubble shedding is necessary but not sufficient for 

cavitation inception; it must be followed by subsequent growth. 

 The lateral motion of a droplet or bubble in the presence of a shear flow near a 

wall has been studied analytically (Leal 1980), numerically (Uijttewaal et al. 1993), and 

experimentally (Smart and Leighton 1991), with the general result being that deformable 

droplets move laterally away from a wall in shear flow.  A recent work looks at higher 

order solutions and finds a range of viscosity ratios for which the direction of migration 

can change (Magnaudet et al. 2003); however, the inviscid bubble is well outside this 

range.  As droplet deformation increases (i.e., at higher Ca) the rate of lateral migration 

increases.  Also, most of the studies report that the rate of migration decreases as the 

square of separation distance between the wall and droplet increases.  Therefore, it is to 

be expected that shed bubbles will move away from the wall towards the center of the 

shear flow. 
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 An approximate model for bubble growth accurate for bubbles that have migrated 

far from the wall and whose cross-stream dimensions are small as compared to L is a 

bubble in an infinite shear flow.  Crowdy developed a model for the transient 

deformation of a compressible bubble in infinite shear with an arbitrary time dependent 

bubble pressure (Crowdy 2003).  The model is an extension of the work of Richardson, 

who transformed the steady state problem into a boundary value problem in analytic 

function theory (Richardson 1968), and the work of Tanveer and Vasconcelos, who 

developed a class of exact solutions applicable to bubble pressures of zero  (Tanveer and 

Vasconcelos 1995).  Although the variation of bubble pressure in Crowdy’s model is 

ostensibly for investigation of effects of the gas equation of state, it is an ideal 

formulation for linking the fluid mechanics model to a mass transfer model, by varying 

the bubble pressure due to changes in both area and mass.  Crowdy’s model yields a time 

dependent conformal mapping from the unit circle in the complex plane to the free 

bubble surface 

  ( ) ( )( ) ( ) ( ), ,
a t

z a t b t b tζ ζ
ζ

= +  (3.123) 

The mapping is found by numerically solving a pair of coupled ordinary differential 

equations, Eqs. (3.9) and (3.10) in Crowdy’s paper, repeated here for convenience 

  ( )0, ,
2

C C
bp pa aI a b a∞⎛ ⎞−

= − − ⎜ ⎟
⎝ ⎠

 (3.124) 

  ( ) ( )0, ,
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C C
bp pb bI a b b ik a b∞⎛ ⎞−
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 (3.125) 

with 
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 Mass transfer is incorporated by including a third equation for the bubble 

pressure, obtained by differentiating the equation of state with respect to time.  Scaled, 

this gives 

  2

CC
C C C bB
B u B C C

B B

NAp HR Tp N
A A∞

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (3.127) 

The superscript C emphasizes that the scaling is done in accordance with Crowdy’s 

scales: the length scale is the original bubble radius; the pressure scale is the associated 

Laplace pressure; the time scale is the dynamic viscosity divided by the pressure scale; 

and the velocity scale is the length scale divided by the time scale.  In Eq. (3.127) NB
C , the 

number of moles of gas per unit depth, is scaled consistently (Ns = Hp∞Ro
2L2), Ro is the 

initial  (equivalent) bubble radius scaled by L, CaLRo is the same as Crowdy’s k, and Ci 

and Crowdy’s p∞C   are related by p∞C   = CiCaLRo.  If the initial bubble is not a circle with 

1C C
Bp p∞= +  then we define the scaled initial equivalent radius Ro to be 

  ( )
( )

0
1

C
B

o C

p t
R

pπ ∞

=
=

+
 (3.128) 

or equivalently 

  2 2

1 14
Ca Ca

B
o

L L

pR
Ci Ci Ciπ

= + +  (3.129) 

RoL is the radius of a circular bubble with the same number of moles of gas per unit depth 

as the bubble being simulated, but at mechanical equilibrium in a quiescent liquid. 

 The determination of the rate of change of the number of moles of gas (per unit 

depth) in the bubble depends upon the mass transfer model.  If the system has a 

sufficiently high Peclet number then once again a good model is the “penetration model” 

in which the mass transfer is calculated based upon the assumption that a quasisteady 
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concentration boundary layer surrounds the bubble (Bird et al., 2002).  For such a case, in 

terms of Crowy’s scaling, Eq. (3.31) becomes 

  ( )
1

12
2

max2 1
Pe

C
C CB

BC
L

pkN F u S
p∞

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3.130) 

Again F is set to unity for calculations.  The factor of two accounts for the presence of 

two boundary layers for a free bubble, and SB is now half the bubble circumference.  A 

scaling analysis of bubble growth and dissolution in shear performed by Favelukis et al. 

looked at the same model, in essence, in the asymptotic limits of Ca → 0 and Ca → ∞ for 

three-dimensional bubbles (Favelukis et al. 1995).  Note that the requirement of a high 

Peclet number is not met for all shed bubbles in the simulations, the relevant definition of 

Peclet number being max /Bu S D .  Using Crowdy’s model without any mass transfer, 

Peclet numbers fall into the range of 1 – 1000, with higher Peclet numbers occurring later 

in time and for higher Ca.  Nevertheless, consideration is limited to either the penetration 

model for mass transfer, or to the impermeable liquid limit. 

 It is helpful to first consider the response of a bubble to shear in the absence of 

mass transfer (Pozrikidis 2001b; Crowdy 2003). Two-dimensional bubbles that are 

initially circular deform through a series of elliptical shapes.  If a bubble is initially in 

mechanical equilibrium, ( )0 1C C
Bp p∞= + , it will first be compressed, and then it will 

expand; the final pressure is always less than the initial pressure.  The reduction in 

pressure is greater for bubbles with higher k (=CaLRo) and lower p∞C   (=CiCaLRo).  

 One can use Crowdy’s model without mass transfer (isothermal ideal gas equation 

of state) to consider the fate of shed bubbles in the impermeable liquid case.  The 

simulation of bubble shedding in an impermeable liquid depicted in Figure 16 is used as a 
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basis for the initial conditions for the demonstrative example depicted in Figure 28.  The 

shed bubble increases in apparent length, max (x1)-min(x1), by almost an order of 

magnitude; therefore the full event from bubble shedding through shed bubble 

deformation can be considered a cavitation inception event.  The final bubble shape is 

sheet like, which agrees with experimental observations. 

 It can be deduced that a bubble must eventually dissolve if at steady state 

  C C C
Bp p c∞ ∞>  (3.131) 

where the concentration  far from the bubble, c∞, has been scaled by Hp∞: c∞ is one for a 

gas saturated system, less than one for an under saturated system, and greater than one for 

a supersaturated system.  It is found through solution of Crowdy’s model that for two-

dimensional bubbles, for all combinations of k, p∞C , and ( )0C
Bp , C C

Bp p∞>  ( Bp Ci> ) at  

steady state.  For instance, in the case depicted in Figure 28, 1.125Bp Ci→  

( )1.125C C
Bp p∞→ .  It seems that dissolution must eventually occur for shed bubbles 

unless the liquid is supersaturated with gas.   

 In order to implement the penetration model for mass transfer, it is necessary to 

calculate the tangential velocity on the bubble surface to determine umax.  The means by 

which this is done, within the framework of Crowdy’s method to determine the bubble 

deformation, is not immediately apparent. 

 In deriving Eqs. (3.123)-(3.126), Crowdy begins by expressing the velocities in 

terms of analytic Goursat functions f and g 

  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
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2

1 2

Re , , ,

Im , , ,

u z f z t zf z t g z t

u z f z t zf z t g z t

z x ix

′ ′= − + +

′ ′= − + +

= +

 (3.132) 
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Figure 28. Bubble deformation in an impermeable liquid, CaL = 100, Ci = 1.  The 
initial conditions are based on the simulation depicted in Figure 16.  The initial 
pressure is the pressure in the void at pinch-off in that simulation (t = 4.3) and the 
initial shape is an ellipse with the same area as the area that was detached from 
the crevice stabilized void (shown in the last frame of Figure 16).   The top frame 
shows the bubble shape at three times t: the initial shape  (dashed line), the shape 
at the time of maximum compression t = 1.5  (thick line), and the steady state 
shape (thin line). The middle frame shows the variation of bubble pressure with 
time: pB – Ci approaches 0.125.  The bottom frame shows the evolution of 
apparent bubble length to an observer looking down from the x2 direction.  The 
apparent bubble length increases by almost an order of magnitude due to 
deformation. 
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These expressions can be simplified using the expression of the stress boundary condition 

in terms of the Goursat functions 

  ( ) ( ) ( ) ( ), , ,
2 2

Bs p tzf z t zf z t g z t i′ ′+ + = − +  (3.133) 

where subscript s indicates on the bubble surface.  The simplified expression for the 

velocity on the bubble surface, written in a more succinct manner, is 

  ( ) ( ) ( ) ( )
1 2 2 ,

2 2
Bs

s s s

p tzu z iu z f z t i+ = − − +  (3.134) 

During the solution process, the bubble pressure will be known at each time; therefore, to 

find the velocity on the bubble surface, two values must be determined: zs and f(zs,t). The 

first is simple, as Crowdy has already derived an expression 

  on 1s

i z
z

z
ζ

ζ

ζ
ζ= =  (3.135) 

Recall that the mapped bubble surface in the complex plane is the curve of |ζ| = 1.  The 

derivative of the conformal mapping, Eq.(3.123), is used to obtain 

  ( ) ( )( ) ( ) ( )2, ,
a t

z a t b t b tζ ζ
ζ

= − +  (3.136) 

So it is only necessary to find f based on the values found during the solution process: a, 

b, and pB and their time derivatives.  By working backwards through Crowdy’s 

derivation, the sought after relationship can be shown to be 

  ( ) ( ) ( )1, ,
2 2 2

Bp t z a a kf z t b b I t iζ ζ ζ
ζ ζ

⎛ ⎞⎛ ⎞ ⎡ ⎤= − − + − −⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠
 (3.137) 

where I is the complex contour integral 

  ( )
( )1

1 1,
4 ,

dI t
i z tζ ζ

ζ ζ ζζ
π ζ ζ ζ ζ=

′ ′⎡ ⎤+
= ⎢ ⎥′ −⎣ ⎦

∫  (3.138) 

To find the maximum tangential component of the velocity on the bubble surface at a 

given time t, the parametric description of the conformally mapped bubble surface in the 
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complex plane is used, ,0 2ie φζ φ π= ≤ ≤ .  The parametric interval is discretized into 

1024 intervals and the velocity is found on half (due to symmetry) of them using Eq. 

(3.134)-(3.138).  The tangential components of the velocities are compared to determine 

umax.  The difficulty arises because the integral in Eq. (3.138) is singular for points on the 

bubble surface, and therefore must be handled carefully, as follows (Crowdy  2004). 

 The Plemelj formula for Cauchy type integrals of the form, 

  ( ) ( ),1
2 C

h
J d

i
ζ ζ

ζ ζ
π ζ ζ

′
′=

′ −∫  (3.139) 

is 

  ( ) ( ) ( ); ;1
2 2

PV

C

h h
J d

i
ζ ζ ζ ζ

ζ ζ
π ζ ζ

′
′= +

′ −∫  (3.140) 

where now the integral is interpreted in the principal value sense.  The corresponding 

form of Eq. (3.138) is 

  ( )
( ) ( )
1 1 1,

42 , ,

PV

C

dI t
iz t z tζ ζ

ζ ζ ζζ
π ζ ζ ζζ ζ

′ ′⎡ ⎤+
= + ⎢ ⎥′ −⎣ ⎦

∫  (3.141) 

To numerically determine the principal value of the singular contour integral the alternate 

trapezoidal method is used due to its spectral accuracy (Shelly 1992). 

 Typical rates of dissolution are found using the same initial conditions used for 

the simulation shown in Figure 28, but incorporating the penetration model.  For these 

examples, shown in Figure 29, the liquid is assumed to be gas saturated, c∞ = 1, and the 

transport properties of PB and PDMS (Table I) with the experimental value L = 50 µm 

are the basis for choosing HRuT = 0.015 and PeL = 400 (PB) and HRuT = 0.2 and PeL = 

60 (PDMS).  Note that the simulations using the PDMS values for H and D are not 

simulations of PDMS as the fluid mechanics model assumed Newtonian constitutive 
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behavior.  The results using the transport properties of PB show that for t < 50 there is 

little difference between the impermeable model and penetration model results; a 

reduction of the mass in the bubble by 20% has occurred by t = 90.  The greater 

diffusivity and higher Henry’s constant of PDMS result in enhanced mass transfer.  When 

using those transport properties, the bubble shrinks more rapidly.  By t = 9 the bubble 

modeled using PDMS properties has reached a maximum apparent length, and by t = 17 

it has lost sufficient mass that its pressure begins increasing.  The pressure increase 

occurs as the capillary number based on equivalent radius Ro decreases and the shear flow 

loses its ability to deform the bubble.  The bubble returns to a more circular shape and as 

it loses mass, and its curvature increases, resulting in higher bubble pressures and greater 

driving gradient for mass transfer.  The mass transfer is higher than it would be in a 

quiescent liquid due to advection effects, and once the pressure begins to increase, the 

bubble quickly disappears. 

 If the liquid is supersaturated, c∞ > 1, then the bubble may grow.  Recall that the 

bubble shedding example using the penetration model, Figure 17, used a supersaturated 

liquid, c∞ = 1.16 and PeL = 1000.  The ellipse shown in the final frame of Figure 17, and 

the pressure at the pinch-off time for the simulation used to generate Figure 17 were used 

as the initial conditions for a simulation of bubble deformation and growth in a 

supersaturated solution, c∞ = 1.16.   The results of the simulation, shown in Figure 30, are 

an example of bubble deformation leading to unstable growth.  At t  = 16, the bubble 

pressure is equal to the far field pressure times the degree of saturation c∞, and the 

number of moles of gas per unit depth is at a global minimum.  For all times t > 16 the 

mass flux will be into the bubble, increasing its capillary number based on equivalent 



 

 102

 

 

Figure 29. Bubble deformation using the penetration model, C
c∞=1.  The initial conditions are based on the simulation depi
The initial pressure is the pressure in the void at pinch-off in t
4.3) and the initial shape is an ellipse with the same area as 
detached from the crevice stabilized void (shown in the last fr
Two cases are shown, one using PB transport properties (thick l
using PDMS properties (thin lines).  The top frame shows the v
pressure with time; the middle frame the evolution of apparen
an observer looking down from the x2 direction, and the 
variation of the number of moles of gas per unit depth in the
The simulation using PB properties is very close to the imperm
(Figure 28) for the time range shown, although it will eventu
bubble simulated using PDMS properties dissolves rapidly. 
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Figure 30. Deformation and growth of a shed bubble in a gas supersaturated 
liquid.  Initial conditions are based on the inception simulation using the 
penetration model and leading to a shed bubble (Figure 17).  The parameters for 
the simulation of bubble growth and deformation using the penetration model are 
PeL=1000, HRuT = 0.025, Ci = 1, and CaL = 100. After  t = 16 the mass transfer is 
into the bubble, resulting in ever increasing apparent bubble length. 
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radius, and hence lowering the pressure that the bubble would reach at steady state in the 

absence of mass transfer.  This results in a positive feedback loop, where mass flux into 

the bubble increases the driving gradient for mass transfer.  The apparent bubble length 

increases enormously.  Physically, this cycle would be ended by depletion of the 

dissolved gas in solution in the liquid.   

3.6  MECHANICAL RESPONSE - THE LINK TO THE PNSCC 

 The mechanical response of wall stabilized nuclei to pressure changes, neglecting 

contact line motion, sheds considerable light on the linkage between the simulations and 

experimental results.  Increases in pressure result in a reduction of the height of the 

bubble above the wall, h, and if h for a given site is driven below zero then the site will 

be deactivated, i.e., it will not shed a bubble regardless of the shear stress is applied.  

Similarly, sites that would not have shed bubbles can be activated through pressure 

reduction.  The mechanical response of a nucleation site depends upon the initial bubble 

volume, the crevice geometry, and the contact line dynamics, θA and θR. 

 Consider a bubble with positive curvature and pinned contact lines.  The length 

scale is still the channel cross section, L.  The bubble initially has a dimensionless height 

ho and is above a crevice of dimensionless width W and cross sectional area AC.  The 

dimensionless curvature of the bubble κ is given by 

  2 2

8
4

h
W h

κ =
+

 (3.142) 

The pressure in the bubble, scaled by γ/L, is 

  p p κ∞= +  (3.143) 

The total cross sectional area of the bubble AB is given by 

  B C BA A A′= +  (3.144) 
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if h < 1/κ , and by 

  2B C BA A Aπ
κ

′= + −  (3.145) 

if h > 1/κ, where 

  2

sin
2BA ω ω
κ

−′ =  (3.146) 

and 

   ( )2arcsinω κ=  (3.147) 

The isothermal mechanical response of the bubble to a pressure change from po to pf is 

governed by the ideal gas equation of state expressed as 

  , ,f B f o B op A p A=  (3.148) 

and by the requirement  that Eqs. (3.142) to (3.147) hold for the bubble in  its initial  and 

final  state. 

  Recalling that smaller crevice volumes promote pinch-off it seems likely that the 

cavitation events observed experimentally originated from shallow crevices.   In general, 

the smaller the bubble volume, the less it will respond to pressure increases.  The 

experimental results with PB are replotted as h vs p by assuming that the observed 

inception of cavitation occurred at CaLh = 0.64 (Figure 31).  Using the data points at p = 

100 kPa to set a reference h(p=100 kPa) = ho, curves can be generated for a given AC and 

W showing the mechanical response of a bubble to pressure changes.  The curves in 

Figure 31 are for W = 0.1 and W = 0.025.in the limit of crevice cross sectional area AC = 

0, and for W = 0.1 with AC = 10-4.  The PB data, which supported a PNSCC with critical 

stress σc of zero, lies close to the curve for W = 0.1, AC = 0.   
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3.7  DISCUSSION AND CONCLUSIONS 

 In this chapter a theoretically consistent picture has been presented, backed by 

simulation results, of cavitation inception from wall stabilized nuclei.  Inception is 

subdivided into three separate events: nucleation site stabilization; bubble shedding; and 

shed bubble migration, deformation and growth.  It is useful to tie these events and 

simulations into a coherent picture by summarizing and reconsidering the previous 

sections, and to ensure the limitations of the analysis are apparent. 

 The simulations of shear deformation of wall stabilized gas nuclei bring out 

several important concepts tempered by a number of significant assumptions.  The most 

important assumption is that the two-dimensional model can capture the relevant physics.  

The two most important results are that nuclei must have positive curvature, i.e., be 

convex toward the  liquid, for the deformation to lead to inception, and that within the 

realistic  range of other parameters, deformation will lead to pinch-off when 

  Ca ~ 1Lh  (3.149) 

 Another result of the simulations is that, all other things being equal, the cavity 

with the smallest cross sectional area is most likely to deform to pinch-off.  Considering, 

therefore, the mechanical response of sites with small AC to pressure changes, one finds 

that in the range of pressures and crevice sizes considered, the height the bubble extends 

above the wall, h, is roughly inversely proportional to the applied pressure.  

Consequently, the criteria for pinch-off based on CaLh  leads to a prediction that the 

shear stress needed for pinch-off is proportional to the pressure.  If the proportionality 

constant is nearly unity then the PNSCC with σc = 0 is a good predictor of cavitation. 
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Figure 31. Mechanical response of critical void to pressure changes (lines) plotted 
against the (dimensionless) height that a given void would need to have based on 
experimental inception of cavitation, assuming inception occurs when CaLh = 0.64. 
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 A final result of the bubble shedding simulations that is important to the overall 

picture is the role of mass transport.  Three models were used, an impermeable liquid 

model, the quasisteady boundary layer, or penetration, model, and the infinitely fast 

diffusion model. The last is an extreme never closely approached physically, and 

therefore useful only in its elucidation of the role of diffusion.  The first is quite 

frequently accurate as the bubble shedding process is relatively fast. The penetration 

model is appealing, but must be treated with caution, as its validity can only be tested 

with a more complete analysis.  The effect of mass transport is to raise the required level 

of shear for pinch-off to occur, because mass transport will always mitigate the pressure 

rise during the initial compression of the bubble.  If the liquid is supersaturated then mass 

transport can replenish a nucleation site after a bubble is shed.  If the liquid is saturated 

then the simulations suggest that only a single shedding event will occur. 

 Next the persistence of nuclei with positive curvatures is considered, and, through 

an approximate analysis, it is found that it is likely for nuclei that approach the two-

dimensional limit, especially when an opposing wall hinders diffusion.  This provides an 

explanation for the type of voids typically seen in the experiments, and provides some 

support for the use of a two-dimensional model for inception. 

 The fate of shed bubbles is also considered.  In this analysis a two-dimensional 

approximation is used yet again, which probably eliminates recognition of conditions for 

which the bubble would break up.  The analysis uses the migration of deformable bubbles 

in shear away from walls, and the eventual slenderness of the deformed bubbles, as a 

justification for modeling the shed bubbles as deforming in an infinite shear flow.  The 

analysis also considers diffusion only using the penetration model, which suffers once 
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again from the lack of a truly rigorous justification.  Nevertheless, the results clearly 

demonstrate that shed bubbles deform considerably, becoming long and slender (sheet-

like).  The results also suggest that absent gas supersaturation, all shed bubbles will 

eventually disappear. 

 Despite the experimental investigation of both a Newtonian and a non-Newtonian 

liquid, the simulation results consider Newtonian behavior only. Further, the use of 

continuum theory for nucleation would not necessarily be valid for high molecular weight 

polymers even if the flow conditions would make a Newtonian assumption appropriate. 

 The modeling does not consider the initial creation of voids; however, this is not 

overly troubling as experimentally it is observed that voids are so prevalent as to be a 

major nuisance.   

 As a final caveat, although the demonstration of feasibility and consistency of our 

model that treats all major stages of bubble nucleation and agrees with experimental 

results is a convincing argument that this is a good theory, it is far from proof that this is 

the mechanism by which shear cavitation occurs, and other hypotheses could be argued 

as convincingly.  There are further experiments that could be performed to test the 

validity of this model.  In particular, it would be useful to see if degassing and pre-

pressurizing the liquid prevents shear cavitation.  Unfortunately, the experimental device 

described in the previous chapter was not designed with these operations in mind, and, in 

an attempt to implement such a series of experiments, the device was severely damaged. 
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CHAPTER 4 

SHEAR CAVITATION – EXTRUSION DEFECT EXPERIMENT 

 During the extrusion of polymer melts, if the wall shear stress is high enough, the 

flow exhibits instabilities (Denn 2001).  In general, the first sign of the onset of instability 

is a distortion of the extrudate surface.  At higher shear stresses, the distortion becomes 

more pronounced, flow oscillation may occur, and the distortions may encompass the 

entire extrudate.  Extrusion instabilities are described by various names, including shark-

skin, loss-of-gloss, melt fracture, gross melt fracture, wall slip, stick slip, spurt flow, and 

elastic turbulence.  The terminology is not used in an entirely consistent manner in the 

literature; however, melt fracture usually refers to a gross distortion of the extrudate 

while loss-of-gloss and shark-skin are surface defects.  Stick slip refers to variations in 

flow rate for constant applied pressure, or in pressure drop for constant extrusion rate, 

while wall slip refers to an apparent breakdown of the no-slip condition. 

 The onset of stick slip places an upper limit on the shear stress for which 

rheological data can be measured using a capillary tube or similar type viscometer.  The 

appearance of surface defects limits the rate of many polymer extrusion processes.   

Hence, there has been considerable research into the causes of extrusion instabilities with 

the goal of delaying or preventing their onset.  

 Although the causes of extrusion defects are still the subject of ongoing research, 

there are some areas of general agreement  (Larson 1992).  First, extrusion defects can be 

roughly categorized as either surface defects or gross defects.  Gross defects, such as melt 

fracture, affect the entire flow, involve the entrance region, and appear to be due entirely 

to the constitutive behavior of the fluid.  They occur at a critical level of molecular 
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orientation, i.e., a critical Weisenberg number, ( )uWi M R Tλγ τ ρ= = .  Changes in the 

nature of the die surface do not seem to affect the onset of gross extrudate defects. 

 The onset of surface defects, on the other hand, does seem to depend upon the 

treatment of the die surface. A critical shear stress, usually reported to be about 0.1 MPa, 

is required, and the instability appears to initiate near the die exit  (Hatzikiriakos 1994).  

The critical stress seems to be fairly constant over a wide range of temperatures and for 

many different liquids (Vinogradov et al. 1984).  A loss of adhesion between the liquid 

and die wall is generally thought to be necessary for extrusion defect formation.  If the 

loss of adhesion is accompanied, as seems likely, by the creation of a void between the 

liquid and the wall, then it is a form of cavitation.   

 Linking extrusion defects with cavitation is not an original concept.   Simulations 

of the extrusion of PDMS using a finite element program have suggested that large 

negative pressures are generated near the die exit, which could lead to cavitation 

(Tremblay 1991).  Vinogradov sought, with partial success, to halt extrusion defects by 

raising the hydrostatic pressure, an approach that would be suggested by an involvement 

of cavitation (Vinogradov 1967).   Increased pressure stopped extrusion defects in cis-

polyisoprene and cis-polybutadienes, but not in butyl rubber or sodium-butadiene rubber.  

Son and Migler obtained micrographs of apparent cavitation near the exit of transparent 

dies (Son and Migler 2002).  They observed that for two linear low density polyethylenes 

(LLDPE) the onset of cavitation inside the capillary occurred at shear stresses nearly 

coincident with those for the onset of gross melt fracture, and higher than those for the 

onset of shark-skin defect.  They consider, but reject, a role for shear stress in the 
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formation of the cavitation voids, concentrating instead on stresses imposed at the die 

entrance.  

 The role of cavitation in extrusion defects is not clear based upon current 

research.  One possible hypothesis that would involve the PNSCC is that the loss of 

adhesion that is implicated in surface defects occurs near the exit and at a critical shear 

stress of about 0.1 MPa because that is where a principal normal stress would become 

tensile.  The subsequent formation of a void at the wall would cause the adhesive failure 

thought to be necessary for surface defect formation.  Because extrusion defects are only 

seen in non Newtonian liquids, normal stress differences would be expected to be 

involved; the pressure might be above atmospheric, based on the pressure gradient 

driving the flow.  In this chapter, a strategy similar to that used to experimentally test the 

PNSCC is described.  It is used to determine whether shear cavitation plays a role in 

extrusion surface defects.  Instead of a variable pressure Couette viscometer and flow 

cell, a variable pressure capillary tube viscometer with video of the extrudate is used.  

The results suggest that cavitation is not necessary for surface defect formation during 

extrusion processes.  Additionally, the capillary tube viscometer is used to obtain 

estimates of the first normal stress difference as a function of shear rate to ensure that the 

previously used model, Eq. (2.11), is reasonable. 

4.1  APPARATUS AND METHODOLOGY 

  The experimental method is similar to that employed by Vinogradov; a capillary 

tube viscometer is used and observations of the extrudate are made for the same 

differential pressure across the capillary tube but different pressures in the exit chamber. 
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Figure 32. Extrusion defect experiment.   An air driven piston raises test liquid pressure 
to a maximum of 20 MPa, forcing flow through a capillary.  The flow rate is measured 
using an  LVDT to determine the piston displacement.   The pressure at the capillary 
outlet is varied between 8 and 275 kPa, and the pressures in the reservoir and outlet 
chamber are measured with transducers.  Output is recorded with video images of the 
extrudate. 
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The capillary tube viscometer is of the controlled pressure type (Figure 32).  Pressurized 

air is supplied to the large area side of a pressure-intensifying piston, which can produce 

pressures to 20 MPa in the liquid, measured by a high pressure transducer.   The piston is 

linked mechanically to a magnetic slug whose position is detected by an LVDT, 

producing a signal that is differentiated with respect to time to obtain liquid flow rate.  

The pressure in the exit chamber is controlled using shop air or a vacuum pump and 

measured with a low pressure transducer; the absolute pressure range is 8 to 275 kPa.  

Sapphire windows allow lighting and imaging of the capillary exit.  The fixtures 

containing the capillaries are exchangeable. 

 There were five stainless steel capillaries used with three test liquids.  The 

polybutene (PB), H-1900, and polydimethylsiloxane (PDMS), DC-200-106, used in the 

Couette experiment were used, as was a solution of high molecular weight 

polyisobutylene supplied by BASF in decalin supplied by Fisher (PIB + dec).  PB was 

used as a calibration fluid to determine capillary diameters (Novak 1968) whose 

characteristics are given in Table II. 

 The small diameters are necessary to avoid viscous heating, which affects the 

flow in a tube when the Nahme number,  

  
2

16
DNa
k

βτγ
=  (4.1) 

is greater than one (Macosko 1994)   For the PB and PDMS for all experiments this 

Table II. Capillary Dimensions [mm] 

 1 2 3 4 5 

Length L 4.78 0.178 0.889 0.381 5.029 

Diameter  D 0.498 0.059 0.159 0.159 0.176 

L/D 9.6 3.0 5.6 2.4 28.6 
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criterion is not exceeded.  The thermal conductivity k and temperature coefficient of z 

viscosity β were unknown for PIB+dec; to ensure that viscous heating did not affect the 

flow, a flow curve was generated, using a method described shortly.   Despite the short 

capillary lengths, the flow entrance length, LE = 0.05 D ReD, where ReD is the Reynolds 

number based on capillary diameter and mean velocity  (Bejan 1993), is negligible for all 

flow rates.  In the experiments, the maximum LE/L was 0.0005.  The maximum ReD was 

0.025; therefore, the kinetic energy of the flow is negligible when calculating wall shear 

stress, and the flow is clearly laminar. 

 Ideally the pressure difference, ∆pt, between the two transducers is the pressure 

drop across the capillary, ∆pact, and given the ratio L/D for a given capillary, the wall 

shear stress, τw, can be calculated from a simple force balance, yielding 

  
( )4 /

act
w

p
L D

τ ∆
=  (4.2) 

However, the pressure drop across the capillary could vary from the measured pressure 

differences,  

  act t cp p p∆ = ∆ −  (4.3) 

where the differential pressure must be corrected for pressure drop between the high 

pressure transducer and the capillary entrance, pressure losses due to the convergent flow  

from the reservoir to the capillary, and pressure at the  exit of the capillary due  to normal 

stress differences (stored elastic energy) (Macosko 1994).  An effective method to correct 

for all of these is to obtain the required pressure drops to obtain a given flow rate Q for 

two capillaries of different L/D  (Novak 1968).  Because the flow rates are the 

 same, the shear rates and therefore shear stresses are the same.  Therefore, assuming that 

the pressure correction is the same for the two capillaries,  
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  4t w c
Lp p
D

τ ⎛ ⎞∆ = +⎜ ⎟
⎝ ⎠

 (4.4) 

The shear stress is the slope of a line through the two equal flow rate points plotted as ∆pt 

vs 4L/D 

  1 2

1 2

4

t t
w

p p
L L
D D

τ ∆ − ∆
=

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.5) 

 For a Newtonian liquid, the wall shear rate γ.   N w and the volumetric flow rate for 

laminar fully developed pressure driven flow through a tube, Poissuelle flow, are related 

by 

  3

32
Nw

Q
D

γ
π

=  (4.6) 

 For a non-Newtonian liquid, the Weissenberg-Rabinowitsch analysis is used to 

obtain the wall shear rate from the volumetric flow rate (Macosko 1994).  Starting from 

the equation for the flow rate in fully developed pipe flow 

  ( )
/ 2

0

2
D

Q u r rdrπ= ∫  (4.7) 

Integrating by parts, applying the no slip boundary condition and using the definition of 

the shear rate, u
r

γ ∂
= −

∂
, yields 

  
/ 2

2

0

D

Q r drπ γ= ∫  (4.8) 

In fully developed Poisseulle flow the shear stress varies linearly with radial position 

  2 wd
dr D

ττ
=  (4.9) 

and this allows a change of variables in Eq. (4.8) to  
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Figure 33. Flow curve for PIB+dec. The shear stress τ was obtained using Eq. (4.5), 

and the shear rate γ.       from Eq. (4.11). The apparent viscosity ηis the ratio τ/γ.      .  The 
data follows power law behavior, a good indicator that viscous heating is not 
affecting the results. 
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Differentiation of Eq. (4.10) with respect to τw and rearrangement yields the 

Weissenberg-Rabinowitsch equation 

  ln3
4 ln
Nw

w
w

d Q
d

γγ
τ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (4.11) 

The differential term in Eq. (4.11) is found by numerical differentiation of data. 

 Using capillaries 4 and 5 to obtain values of ∆pt for the same flow rate and 

different L/D to obtain τw using Eq. (4.5), and obtaining shear rates with Eq. (4.11), a 

flow curve was generated for PIB+dec (Figure 33).  As can be seen, for all shear rates in 

the range available to this viscometer, the liquid is a power law liquid with n = 0.37 and 

shows no indications of viscosity reduction due to viscous heating. 

 The device was also used to generate viscosity data for PDMS, which is included 

on Figure 5.  The close agreement with the Couette data is a good indicator that the 

calibration and analysis are correct. 

4.2  RESULTS 

 In order to investigate the role of cavitation in extrusion defects, the test liquids 

were sheared while video of the extrudate is recorded.  For shearing with the exit pressure 

at one atmosphere, a number of observations were made.  For polybutene, no surface or 

gross defects were observed for any level of shear.  For all liquids, bubbles were 

occasionally observed in the extrudate; however, they became less prevalent as the 

differential pressure increased, suggesting their origin is not cavitation (Figure 34). 
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(a) τ = 15 kPa (b) τ = 100 kPa 

 

Figure 34. Bubbles observed in PB extrudate.  The occurrence of bubbles is lower 
at higher differential pressure, suggesting that their origin is not cavitation. 
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 For both PDMS and PIB+dec both surface defects and gross defects were 

observed (Figure 35 and Figure 36).  For PDMS, the surface defect is a loss-of-gloss in 

which the extrudate surface becomes hazy and opaque.  For PIB+dec the surface defect is 

a loss-of-gloss where the surface becomes dimpled in appearance.  The onset of surface 

defects is gradual, and no critical stress can be given for its occurrence; however, it 

clearly occurs at a shear stress lower than the typically reported value of 0.1 MPa (see 

Figure 37 and Figure 38).  Piau et al. reported similar results for lower viscosity silicone 

oils (Piau et al. 1990). 

 For both PDMS and PIB+dec, the gross defect is perhaps best described simply as 

a flow instability; it does not have the more chaotic appearance generally associated with 

melt fracture.  The gross defects have a recognizable critical shear stress at which onset 

occurs or stops for increasing or decreasing shear stress respectively.  The onset seems 

also to depend on capillary L/D.  The instability did not appear for capillary 5, but was 

seen for capillary 4.  For capillary 4 for PDMS the critical shear stress is 25 ± 3 kPa while 

for PIB+dec it is 15 ± 3 kPa.  Based on the dependence of the flow instability on capillary 

length and the general consensus in the literature that gross instabilities are often due to 

stresses arising at the capillary inlet, it makes sense to compare liquid’s residence time, 

tR=πLD2/4Q, to the liquid’s characteristic relaxation time, λ, from Eq. (2.6).  For PDMS λ 

is 0.07 s at 300 K while at the onset of the flow instability tR is 0.025 s.  At the same flow 

rate, for the longer capillary, tR is 0.4 s. For PIB+dec, the predicted λ would need to be 

modified from Eq. (2.6) because the liquid is a solution, not a melt; however, the low 

shear viscosity, µ, needed for this calculation was not obtainable.  All that can be said, 

using the highest viscosity observed, is that λ > 4.8 s.  The residence time in the 
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(a) No defects 
τ = 5 kPa 

(b) Loss-of-gloss 
τ = 65 kPa 

(c) Gross defect 
τ  = 25 kPa 

Figure 35. Extrudate defects observed for PDMS.  The gross defect  (c) was 
observed only from the shorter capillary, capillary 4, and not from capillary 5. 

   

(a) No defects 
τ = 15 kPa 

(b) Dimpling 
τ = 36 kPa 

(c) Gross defect 
τ  = 45 kPa 

Figure 36. Extrudate defects observed for PIB+dec.  The gross defect (c) was 
observed only from the shorter capillary, capillary 4, and not from capillary 5. 
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short capillary at the onset of the instability is 0.6 s while the residence time in the long 

capillary at the same flow rate is 9.6 s. These values are all collected in Table III to allow 

quick comparison.  For PDMS the flow instability occurs only when tR < λ.  The same is 

likely true for PIB+dec. 

  To investigate the possible role of cavitation in the onset of the flow defects, the 

liquids were sheared with the pressure in the exit chamber held at 15 kPa (vacuum) and 

295 kPa (pressurized).   No change in the onset of the gross defect, the flow instability, 

was seen as a result of the pressure change. 

 Close comparison of the extrudate from capillary 5, which exhibits the loss-of-

gloss defect, suggests that pressure may affect the onset of this defect (Figure 37 and 

Figure 38).  But the effect, which is subtle, is opposite that which would support our 

hypothesis.  An increase in pressure appears to have had either no effect or to have 

reduced the shear stress necessary for the surface defect to occur.  It is concluded that 

although extrusion defects occur at stress conditions similar to those for which the 

PNSCC predicts cavitation, cavitation is not necessary for these defects to occur. 

 

Table III. Comparison of Characteristic Times For Flow Instability Onset 

 PDMS PIB+dec 

τw at onset [kPa] 25 ± 3 15 ± 3 

tR (Capillary 4: Instability) [s] 0.025 0.6 

tR (Capillary 5: No Instability) [s] 0.4 9.6 

λ [s] 0.07 > 4.8 
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τ = 24 kPa 

γ.       = 230 s-1 

τ =34 kPa 

γ.       = 540 s-1 

τ = 37 kPa 

γ.       =680 s-1 

τ = 41 kPa 

γ.       = 880 s-1 

τ = 46 kPa 

γ.       = 1160 s-1 

Figure 37. PDMS: top row p = 15 kPa (vacuum), bottom row p = 295 kPa (pressurized).  The haziness
seems to be slightly greater for a given shear stress in the pressurized extrudate than in the extrudate with
vacuum. This is opposite the effect expected if cavitation plays a role in surface defect formation. 
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τ = 15 kPa 

γ.       = 1.5 s-1 

τ = 21 kPa 

γ.       = 4.1 s-1 

τ = 25 kPa 

γ.       = 6.1 s-1 

τ = 28 kPa 

γ.       = 8.5 s-1 

τ = 31 kPa 

γ.       = 11.4 s-1 

Figure 38. PIB + Decalene: top row p = 15 kPa (vacuum), bottom row p = 295 kPa (pressurized).   The dimpling seems 
to be slightly greater for a given shear stress in the pressurized extrudate than in the extrudate with vacuum. This is 
opposite the effect expected if cavitation plays a role in surface defect formation. 
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4.3  ESTIMATING NORMAL STRESS DIFFERENCES 

 To compare the predictions of the PNSCC to experimental results for PDMS, 

normal stress differences have to be estimated, because the cavitation criterion is Eq. 

(1.10).  Second normal stress differences, N2, were assumed to be negligible, and first 

normal stress differences, N1, were estimated.  The capillary experiment designed to 

investigate the role of cavitation in extrusion defects provides a means to check the model 

used to estimate N1 as a function of τ, Eqs. (1.7), (2.6), (2.7) and (2.11). 

 Measurements of die swell provide an index of first normal stress differences 

(Tanner 2002).  Tanner assumed a KBKZ constitutive equation and calculated the 

equilibrium elastic swell of a circular jet neglecting inertia, surface tension, and thermal 

effects 

  

1
2 6

111
8

e
e ex

w

D NB
D τ

⎛ ⎞⎛ ⎞= = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (4.12) 

The subscript w indicates values at the wall; the superscript e indicates that these values 

consider only the elastic effect.  Dex is the equilibrium extrudate diameter and D is still 

the capillary diameter.  Stokes flow of a circular jet of Newtonian fluid swells such that 

  1.13
N

N exDB
D

= =  (4.13) 

Assuming that the total swell is a combination of the Newtonian and elastic swell, the 

first normal stress difference at the wall can be calculated as a function of extrudate 

diameter, Dex 
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 (4.14) 

 



 

126 

Although useful, this result has been found to produce large errors, yielding N1 estimates 

two to three times measured values  (Macosko 1994).  Hence it must be used with 

caution. 

 The swell of PDMS extrudates from capillaries 4 and 5 was determined from 

video images.  The resulting estimated values of N1 are plotted against the previously 

used model in Figure 39.  The values obtained from extrudate.swell are nearly always 

higher than the model, but never by more than a factor of two; based on the typical errors 

associated with extrudate swell estimates of normal stress differences, referred to in  the 

previous paragraph, this constitutes good agreement. 

4.4  CONCLUSIONS 

 The capillary tube viscometer results provide no link between the PNSCC and 

extrusion defects, gross or surface.  Indeed, both the inability to observe extrusion defects 

in PB and the lack of any inhibiting effect of pressurization on defect onset are strong 

indications that cavitation is neither necessary nor sufficient for any of the typically 

observed defects.  This does not mean that cavitation does not occur; it likely does, but it 

would be a third type of defect, an “internal defect.”  It appears to be purely coincidental 

that the stresses for the onset of surface defects, gross defects, and internal defects are 

typically all of the same order of magnitude. 
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Figure 39. Plot of N1 as a function of shear stress τ for PDMS using extrudate 
swell, Eq. (4.14), from capillaries 4 and 5 (dots) for validation of the previously 
used model, Eq. (2.11), plotted as the line.  
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CHAPTER 5 

VISCOSITY AT NEGATIVE PRESSURE 

5.1  BACKGROUND 

 The effect of pressure on lubricant viscosity is important in bearing analysis. The 

Barus equation is often used to describe variations of viscosity with pressure: 

  ( )0 exp o pµ µ α=  (5.1) 

The magnitude of the initial pressure viscosity coefficient αo is usually 10 to 70 GPa-1 for 

lubricants.  As a result, in general only the very high pressures generated in bearings are 

considered to have an important effect (Tanner 2000).  However, it is clear from 

examination of experimental data that the viscosity often does not obey Eq.(5.1), and the 

use of more accurate models or experimental data is necessary at high pressures (Bair et 

al. 2001).  Just as the Barus equation fails to adequately describe the variation of 

viscosity with pressure over wide pressure ranges, its accuracy at negative pressures is 

unknown.  That bearings operate with lubricants experiencing tension has been shown 

experimentally for a journal bearing lubricated with mineral oil (Nakai and Okina 1976) 

and for a main engine bearing lubricated with engine oil (Mihara and Someya 2002).  

Without knowledge of the viscosity behavior at negative pressures, the accuracy of 

existing models and the importance of negative pressure viscosity behavior on bearing 

analysis cannot be assessed. 

 Although viscosity does not usually obey Eq. (5.1), the initial pressure viscosity 

coefficient αο has been used in elastohydrodynamic (EHD) calculations (Bair 1993).  

Klaus and Bala argue that αo is a key parameter in the calculation of elastohydrodynamic 

film thicknesses (Klaus and Bala 1993).  Methods of determining αo often apply a finite 
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difference approximation to µ(p) in the vicinity of zero pressure to find the slope of ln(µ) 

versus p, and hence, the pressure viscosity coefficient at two pressures 

  ( ) 1 ln

pp

p
p p
µ µα

µ
⎛ ⎞∂ ∂

= =⎜ ⎟∂ ∂⎝ ⎠
 (5.2) 

For example, a linear variation of α(p) approximation would require that measurements 

of viscosity be made at atmospheric pressure and two different pressures, p1 and p2.  For 

p1<p2, the finite difference approximation is used to determine α(p) at the midpoint 

pressures between atmospheric pressure and p1, and between p1 and p2. Then linear 

extrapolation is used to infer αo. Two factors compete in determining the accuracy of this 

method.  Larger pressure changes reduce inaccuracy due to experimental error, while 

smaller changes reduce inaccuracy due to the finite difference approximation and linear 

model. For a given pressure step size, if either p1 or p2 were negative, the estimation of αo 

would be inherently more accurate (Bair and Qureshi 2002).  Similarly, if the methods of 

measuring pressure and viscosity are accurate enough, then a small pressure change could 

be used, and the viscosity at atmospheric pressure and a slightly negative pressure could 

be measured.  As long as α(p) is continuous across absolute zero pressure, it could be 

treated as constant in the vicinity of zero pressure and only two viscosity measurements 

would be needed to determine αo. 

 The realization that bearings may operate with lubricants withstanding tension 

and the possibility of extending the pressure range over which α(p) can be measured 

make the development of a method of measuring viscosity of lubricants under tension of 

interest. 
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 Two viscometers were constructed which use different methods to create tension.  

The first was based on the Berthelot method (Figure 40).  The second uses an isothermal 

expansion method and is referred to as the bellows method (Figure 41).  Both 

viscometers use the same valve/manifold assembly and sinker. 

5.2 VISCOMETRY 

 Both viscometers are identical with respect to viscosity measurement methods.  

They are of the falling cylinder type, similar in construction and operation to those used 

by Bair to measure high pressure effects on limiting zero shear viscosity (Bair 1993).  In 

this type of viscometer, the viscosity is proportional to the difference in densities of the 

sinker, ρsinker, and fluid, ρfluid, and inversely proportional to the rate of fall of the sinker.  

The viscometer is made of non-magnetic materials, while the sinker is made of a 

magnetic material.  The viscometer is surrounded by a linear variable differential 

transformer, (LVDT), and the sinker movement produces a change in LVDT output 

voltage, ∆V, proportional to displacement, so that the viscosity can be measured as: 

  
( )sin ker fluidC t

V

ρ ρ
µ

−
=

∆
 (5.3) 

where C is a calibration constant.  For small magnitude pressure changes, the fluid can be 

considered incompressible. 

 Two different LVDTs were used.  The Berthelot method apparatus uses a 

Schaevitz XS A-253, which has a nominal linear range of ± 12.7 mm, and a sensitivity of 

30 mV/V RMS/ mm. The bellows method apparatus uses a Schaevitz HR 050, which has 

a nominal linear range of ± 1.27 mm, and a sensitivity of 230 mV/V RMS/ mm.  This  
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Figure 40. Falling cylinder viscometer using the Berthelot method to obtain hydrostatic tension in the test liquid. 
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Figure 41. Falling cylinder viscometer using the bellows method to obtain 
hydrostatic tension in the test liquid. The valve and manifold assembly for this 
apparatus are identical to those used for the Berthelot method apparatus and are 
not shown. 
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smaller, more sensitive LVDT could be used with the bellows method apparatus because 

of the lack temperature monitoring or control, which reduced the viscometer diameter.  

LVDT output was recorded on an oscilloscope.  Calibration was performed with a 

commercial viscosity standard.  The sinker was repositioned by inverting the viscometer.  

5.2.a  Berthelot method 

 The viscometer cavity was filled with the liquid sample and the viscometer sinker 

is dropped into the cavity. Then the valve body and manifold are attached.  The manifold 

allows undissolved gases to be removed and replaced by more liquid sample. It also 

allows a liquid seal to be maintained when the valve is opened, and permits connection of 

a vacuum pump or pressurized gas source. A thermocouple measures pressure vessel 

temperature.  A diaphragm strain gage is calibrated to indicate pressure.  The calibration 

was performed at positive pressure against a high accuracy Heise gage and assumed to be 

accurate for negative pressures.  The position of the viscometer can be varied with 

respect to the LVDT by changing the location of an adjustable positioner that holds the 

viscometer within the LVDT.  This allows locating the viscometer so that the sinker falls 

in the linear portion of LVDT output.  The temperature of the viscometer is controlled by 

two miniature electrical resistance heaters connected to a variable power supply. 

 To achieve hydrostatic tension, the viscometer is filled and sealed.  Then it is 

heated.  The presence of gaseous bubbles is obvious during heating because the response 

of pressure to temperature rise is slow.  Once all bubbles present have been collapsed, the 

pressure rises rapidly for small temperature increases.  The rate of increase can be fairly 

well predicted by the ratio of thermal expansion coefficient and coefficient of 

compressibility for the liquid.  When the heating is stopped the liquid cools.  If all 
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bubbles have been eliminated, then the liquid pressure drops below zero, becoming 

increasingly negative until the liquid audibly fractures and the pressure instantaneously 

jumps to a value slightly above zero. Temperature control is not fine enough to allow the 

pressure drop to b stopped and a steady value of tension to be maintained. 

 In order to obtain repeatable and meaningful results, it is necessary to coordinate 

the fall of the sinker and the pressure decrease so that the sinker is falling through the 

linear range of the LVDT while the liquid is under tension. 

5.2.b  Bellows method 

 The valve and manifold for the bellows method apparatus are identical to those 

for the Berthelot method.  The viscometer body has a thinner wall and fits snuggly inside 

a smaller LVDT than that used for the Berthelot viscometer.  Spacers allow adjustment of 

the relative positions of the viscometer body and the LVDT to ensure the linear portion of 

LVDT response is used.  The end of the viscometer body is bored through and silver-

soldered to a phosphor bronze bellows, the free end of which is plugged.  The 

compression of the bellows is effected and measured by a micrometer head accurate to 25 

µm.  The elasticity of the bellows produces the tension in these experiments.  The bellows 

spring constant in compression was measured with a dial indicator and force gage and 

was found to be 11.7 N/mm.  The bellows effective area is 14.2 mm2.  Therefore, if the 

liquid is restraining the bellows in a compressed position, the pressure in the liquid is 

  atmp p K L= − ∆  (5.4) 

where K has a value of 824 kPa/mm. The accuracy of this method of determining 

pressure was verified against a Heise gage by applying low positive pressures from a 

pressurized gas source and measuring bellows deflection. 
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 Once the viscometer is filled and sealed, the liquid volume is compressed using 

the micrometer head.  The possibility of bubbles present at atmospheric pressure makes 

calculation of the resulting positive pressure due to compression impossible, but high 

pressure can be verified both by the resistance to compression and the resulting higher 

viscosity of the test liquid.  Another qualitative indication of pressure is bellows squirm.  

Squirm is a phenomenon similar to buckling, which occurs when a bellows with 

restrained ends is pressurized above a critical value.  In this case the manufacturer 

reported that the critical squirm pressure is 3.1 MPa.  Therefore, this was the maximum 

pressure obtainable in compression. 

 After compressing the liquid to eliminate bubbles, the valve is opened to restore 

pressure to atmospheric. Before cycling the valve, the manifold is filled with test liquid to 

maintain a liquid seal. The bellows compression is adjusted while the valve is open so 

that the magnitude of tension is unambiguously known when the bellows is released.  The 

valve is shut, and atmospheric pressure fall time is recorded.  Because there is no 

provision for measuring liquid temperature, all measurements must be performed in a 

short time span and without handling the viscometer body.  This prevents temperature 

effects on viscosity from obscuring pressure effects, and ensures that the pressure is 

atmospheric prior to bellows release.  The sinker is positioned for a negative pressure 

measurement, and allowed to begin falling.  During the fall the micrometer head is 

released from holding the bellows in compression, resulting in hydrostatic tension in the 

liquid.  The presence of hydrostatic tension is verified by lack of bellows movement.  

When the liquid fails, the bellows expands.  One drawback of this method of achieving 
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tension is the requirement to open the valve and replace a small amount of test liquid 

between measurements. 

5.2.c  Experimental liquids  

 Tension effects on viscosity were measured for a branched perfluorinated 

polyether (143AZ) and for a cyclic phosphazene lubricant (X1P).  The temperature and 

positive pressure viscosity behavior of 143AZ was characterized to relatively high 

pressures in this lab using previously described methods and fitted to the Yasutomi model 

(Yasutomi et al. 1984). 

 Tension was also achieved in several silicone oils (two grades of PDMS supplied 

by Dow Corning, and octamethyl trisiloxane ), squalane supplied by Sigma Aldrich, a 

mineral oil (Canon viscosity standard HT150), tap water, and acetone supplied by Fisher 

Scientific.  Manufacturer supplied properties of the143AZ, X1P, silicone oils, and 

squalane are given in Table IV. 

Table IV. Liquid Properties for Tension Viscometry 
Experiments 

 ρ [kg/m3] ν [mm2/s] 

143AZ (20 °C) 1860 137 

X1P (20 °C) 1480 1826 

PDMS1 (25 °C) 957 100 

PDMS2 (25 °C) 957 1000 

Squalane  (20 °C) 810 Not Provided 

Mineral Oil (100 °C) 795 4.65 
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5.3  RESULTS AND DISCUSSION 

 The effect of hydrostatic tension (negative pressure) on the viscosity of 143AZ 

and X1P was measured in the bellows apparatus.  All measurements are performed at 

room temperature, 20°C.  For each measurement, four fall times were recorded at 

atmospheric pressure producing an average value, and then the negative pressure fall time 

was recorded.  The calculation of αo was performed by taking the natural logarithm of 

Eq. (5.2) differentiating with respect to pressure and applying a two point finite 

difference approximation. 

 Results from negative pressure measurement were compared to positive pressure 

results using Bair’s previously described viscometer (Bair et al. 2001).  For 143AZ these 

results were fitted to the Yasutomi free volume model, which describes the pressure and 

temperature viscosity behavior of liquids (Yasutomi et al. 1984): 

  
( )

( )
1

2

2.3
exp g

g
g

C T T F

C T T F
µ µ

⎡ ⎤− −
= ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
 (5.5) 

  ( )1 2ln 1
Og gT T A A p= + +  (5.6) 

  ( )1 21 ln 1F B B p= − +  (5.7) 

The Yasutomi parameters for 143AZ, obtained by nonliear regression of viscosity data, 

are provided in Table V. 

      

Table V. Yasutomi Parameters for 143AZ 

µg[Pa s] Tgo[°C] A1[°C] A2[Pa-1] 

1012 -145.4 220.0 1.987 

B1 B2[Pa-1] C1 C2[°C] 

0.1591 21.014 16.829 46.272 
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 For 143AZ, seven measurements were taken at a hydrostatic tension of 620 kPa.  

The resulting measured change in viscosity due to a change in pressure from atmospheric 

pressure to an absolute pressure of –620 kPa was –1.7%±1.2%.  The resulting value for 

αo is 24±15 GPa-1.  The Yasutomi model predicts a change in viscosity of –2.8%.  The 

measurements used to fit the Yasutomi model were used to obtain αo by applying the 

model of linear variation of α(p) and extrapolating.  The pressures used were 

atmospheric, 5 MPa and 10 MPa.  The resulting value was 36±12 GPa-1. 

 For X1P a total of seven measurements were taken at tensions of 550, 620, and 

770 kPa. The resulting value of αo is 64±30 GPa-1.  A calculation using measurements 

made with the high pressure viscometer at atmospheric pressure and 5 MPa yields a value 

for αo of 46±14 GPa-1.   

 The uncertainties in the changes in viscosity and values of αo are significant and a 

result of several factors described in the next section.   

 The high pressure measurements are taken at a minimum pressure interval of 5 

MPa based on the accuracy of the pressure transducer.  Because this interval is almost 10 

times that between atmospheric and negative pressure measurements, there is no 

advantage gained by using a model of linear variation of α(p) and data obtained above 

and below zero pressure. 

 The key element to obtaining a relatively large tension appeared to be removal of 

all gas bubbles.  Several methods were devised for this, and the combination of all of 

them produced the best results.  After filling the vessel, the liquid was degassed by 

applying a vacuum and heat simultaneously.  The liquid was then held at an elevated 
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pressure to force remaining bubbles into solution.  In the Berthelot method apparatus the 

elevated pressure was achieved by heating with the vessel sealed.  The pressure was 

allowed to peak between 5.5 and 6.9 MPa.  In the bellows apparatus the elevated pressure 

was achieved through compression of the bellows, limiting it to 3.1 MPa.  However, this 

pressure was held for longer periods of time (12-48 hours).  Tension was consistently 

obtained for samples of kinematic viscosity at room temperature of the order of 10 mm2/s 

or less by following one or more degassing periods of 30 minutes at 50°C and 15 kPa 

absolute pressure with pressurization. 

 In the bellows viscometer, X1P and 143AZ were able to withstand tensions of 

greater than 500 kPa for periods of time exceeding one minute.  For this range of 

tensions, the failure of the liquid usually did not occur until there was some mechanical 

agitation such as the sinker reaching the bottom of the viscometric tube.  However, no 

matter how stable the tensile state appeared at values up to 770 kPa, tensions greater than 

this were never maintained in the bellows viscometer for more than a fraction of a 

second. 

 Tension was achieved in the Berthelot viscometer for eight different liquids.  The 

maximum value achieved for each liquid is given in Table VI.  These tensions were 

Table VI. Maximum tension observed before liquid failure, Bethelot method [kPa] 

 

 Octamethyl PDMS1 PDMS2 
143 AZ Trisiloxane (ν = 100 mm 2 /s) (ν = 1000 mm2/s) 

1720 2065 1585 290 

    

Squalane Mineral Oil Acetone Tap Water 
2165 2340 1685 1030 
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achieved during temperature transients, and therefore not held for any length of time. 

 The variation of the apparent tensile strength with experimental method is 

emphasized in Table VII by comparing values obtained for mineral oil via the Berthelot 

method, bellows expansion (Nakai and Okino 1976; Nakai 1987), and piston expansion 

(Washio et al. 2001), as well as in a journal bearing (Nakai and Okino 1976).  In general 

it appears that the failure of the liquid to withstand tension does not occur when the 

tension reaches the theoretical tensile strength but at some lower value that depends also 

upon the method in which the tension is applied. 

 Greater values of tension were obtainable via the Berthelot method than the 

bellows method.  Thus greater effects on viscosity would be expected to be apparent. 

However, viscosity measurements from the Berthelot viscometer were not repeatable.  

The lack of repeatability is believed to be due to the reliance on temperature to affect 

pressure. The location and precision of the thermocouple result in inaccuracies in 

temperature measurements that have a greater effect on viscosity than the pressure 

 Table VII. Comparison of tensions achieved by various methods in mineral oil [kPa] 

Method Maximum reported tension [kPa]

Berthelot Method (present work) 2340 

Expansion with Bellows (Nakai and Okino 1976) 

Expansion with Bellows (Nakai 1987) 

431 

578 

Expansion with Piston (Washio et al. 2001) 210 

Journal Bearing (Nakai and Okino 1976) 70 
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variations.  The inability to maintain a steady temperature while the liquid was under 

tension exacerbated this problem. 

 It was found that tension is more easily obtained in lower viscosity samples for 

lubricants. This is consistent with the findings of Nakai and Okino (Nakai and Okino 

1976; Nakai 1987). 

 In the bellows viscometer, larger tensions were generated in X1P than 143AZ, 

despite X1P’s higher viscosity.  X1P has a high sensitivity of viscosity to temperature, 

and was heated prior to deaeration, so the deaeration was performed at low viscosity.  It 

was tentatively concluded that the limiting factor in achieving tension was often the 

presence of gas bubbles in crevices, which could provide a nucleation site for fracture. 

5.4  UNCERTAINTY OF RESULTS 

 The uncertainties of viscosity changes and αo reported in the results and 

discussion appear rather large.  In fact, an honest appraisal of many values of αo available 

in the literature would reveal that this parameter is not generally accurately known. In 

this section the methods used in this work to arrive at the reported uncertainties are 

detailed.  In addition, an example of the misleading nature of many apparently less 

uncertain initial pressure viscosity coefficients is provided. 

 In the case of the change of viscosity and the initial pressure viscosity coefficient 

measured using the bellows method apparatus, the uncertainty is statistical.  For each 

measurement, values of fall time and LVDT output voltage change at positive and 

negative pressure are recorded.  It is assumed that during the short time of the 

measurement (about 30 seconds) the temperature of the liquid did not change and 

therefore the difference in rates of voltage change, and thus viscosity, is entirely due to 
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the difference in pressure. The percent change in the viscosity is the percent change of the 

rate of voltage change.  The magnitude of viscosity change due to pressure is of the same 

order as the change due to variations in ambient temperature over longer periods of time. 

Therefore this percent change is reported, rather than the viscosity values determined 

from the fall times.  The rates of voltage change and the known imposed pressure change 

also allow calculation of αo from each measurement.  The uncertainty, δ , reported for the 

percent viscosity changes and values of αo is   

  SSD
N

δ =  (5.8) 

where SSD is the sample standard deviation and N is the number of samples (seven in 

both cases). 

 In the case of the uncertainty reported for αo determined from positive pressure 

measurements, the uncertainty is a result of estimation of uncertainties in measurement of 

viscosity and pressure.  There is an additional uncertainty involved in the extrapolation of 

this data to zero pressure, but because of the already conservative nature of the estimation 

of uncertainty, the extrapolation uncertainty is not also included.  The viscometer used 

for the positive pressure measurements has an estimated maximum inaccuracy of 2%.  

The pressure transducer used for the positive pressure measurement is used for 

measurements of pressures up to 900 MPa, and has an accuracy of ± 1 MPa.  The small 

pressure step size used, 5 MPa, combined with the inaccuracy of the pressure transducer, 

leads to the large uncertainty reported for αo calculated from positive pressure 

measurements of viscosity.   In general, more accurate determination of αo using a high-

pressure viscometer would not justify the expense of a pressure transducer with greater 

accuracy at relatively low pressures. 
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 In the literature there a large number of models used to describe the variation of 

viscosity with pressure.  In general, tribologists investigating pressure effects on viscosity 

have chosen one of these models and used regression to fit the model to viscosity data at 

different pressures, obtaining a function, µm(p), that is meant to describe the variation of 

viscosity with pressure.  Values of αo thus obtained are  

  
( )0

0

1
0

m

m pp p
µα

µ =

∂
=

= ∂
 (5.9) 

and are given to apparently high accuracy.   For instance, Sharma et al performed 

measurements of viscosity of one of the liquids investigated in this report, Krytox 

143AZ, and fitted Roelands equation, 
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 (5.10) 

to the data (Sharma et al. 1995).  Their results, obtained at five different temperatures, 

and at pressures up to 850 MPa, are reproduced as the insert in Figure 42.  Applying Eq. 

(5.9) to Eq. (5.10) yields the expression for the initial pressure viscosity coefficient these 

results would suggest, 

  0 ln o

p

Z
c

µα
µ∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (5.11) 

which is called the “pressure viscosity coefficient” in their work, and reported to five 

significant digits with no uncertainty reported.  Figure 42 shows the lower pressure data 

with fitted curves for the three highest temperatures so that the inaccuracy in determining 

αo in this manner is obvious.  The data were obtained by picking them off a reproduction 

of the same data on a larger scale (Gupta 1995). Values of αo obtained using the first 
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Figure 42. Pressure viscosity data for 143AZ fitted to Eq. (5.10) from (Sharma et 
al. 1995).  The lower pressure data with fitted curves are reproduced for the three 
highest temperatures to demonstrate the unsuitability of using such curve fits to 
obtain αo. 
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three data points for each of these temperatures and the finite difference and linear 

extrapolation method described in section 5.1 are compared with the values of αo 

suggested by Sharma et al. in Table VIII.  Although the values obtained through the 

method recommended here match the viscosity data better than those obtained using the 

curve fit of Sharma et al., they are still subject to uncertainty due to instrument accuracy 

and extrapolation uncertainty. 

5.5 CONCLUSIONS 

 The agreement between αo as calculated using viscosity obtained at pressures 

greater than and less than absolute zero demonstrates continuity in the magnitude of α(p) 

for these lubricants from a state of hydrostatic compression to hydrostatic tension.  

Therefore, for liquids that behave similarly to the lubricants studied, effects of tension on 

viscosity are not dramatic.  These liquids were picked for their high sensitivity of 

viscosity to pressure.  It would not be expected that other liquids would display more 

extreme behavior. 

 The agreement also demonstrates the validity of the use of viscosity data from 

pressures at and above atmospheric to determine α0. For the magnitudes of tension 

Table VIII. Comparison of αo 

 

T [˚C] 

αo [GPa-1] 

Finite Difference and Linear Extrapolation 

αo [GPa-1] 

Curve fit, Eq. (5.11) (Gupta 1995) 

98.9 27 18.941 

121.1 33 17.225 

148.9 39 16.139 
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attainable in these experiments, the use of αo determined by positive pressure 

measurements will describe the viscosity behavior as well as results determined 

experimentally at negative pressures.  This is due to the experimental inaccuracies that 

dominate the effect for pressure changes of the magnitude achievable in the realm of 

hydrostatic tension.  To successfully use negative pressures to more accurately determine 

αo, a method of attaining much greater tension during the viscosity measurement would 

be needed. 

 The magnitudes of hydrostatic tension attainable tend to be relatively small, and 

are transient.  Therefore in most applications, tensile effects can be ignored.   If they are 

to be taken into account, models such as the Barus equation and the Yasutomi model 

describe negative pressure viscosity behavior adequately using data from positive 

pressure measurements. Because the magnitude of tension achieved depends considerably 

upon the method of generation, it cannot be said with certainty that situations with greater 

tension than seen in this study do not occur, but it seems unlikely. 

 The measures necessary to achieve tension for viscosity measurement have 

implications for the portions of this work pertaining to cavitation.  Pressurization was 

essential prior to successfully sustaining a negative pressure in the liquid.  This supports 

the idea that the failure to sustain tension in these polymer melts occurs due to the growth 

of preexisting nuclei.  
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CHAPTER 6 

CONCLUDING REMARKS 

 In this work aspects of the role of tension in simple shear flows that are frequently 

used to measure rheological properties have been considered.  The interest is in the 

possibility that such flows could lead to cavitation when the shear stress is sufficiently 

large (of the order of the pressure).  There is very little prior research into this idea.  The 

problem is considered from two different viewpoints.   

 The first method of investigation is an experimental test of a principal normal 

stress cavitation criterion.  The PNSCC is attractive because of its simplicity, its appeal to 

physical intuition, and the large number of cases in the literature of some sort of apparent 

strong rheological change at shear stresses near atmospheric pressure in magnitude.   The 

experiments constitute the first direct test of the PNSCC, and the PNSCC accurately 

predicts cavitation in a Newtonian liquid (PB).  However, its performance is a little less 

satisfactory for the non-Newtonian test liquid (PDMS).  Finally, it is difficult to reconcile 

the idea of failure of a liquid in shear with no apparent tensile strength to the fact that 

liquids exhibit an ability to withstand large tensions in the absence of cavitation 

nucleation sites.  And if the presence of such nucleation sites is assumed, then the 

PNSCC seems overly simplistic.  

 Consequently, the second method of investigation is an analysis, for the case of a 

Newtonian liquid, of cavitation inception in shear from wall stabilized gas nuclei.   The 

goal is to determine if the proposed continuum model of gaseous cavitation from 

preexisting, crevice-stabilized, wall nuclei is consistent with the experimental 

observations.  Three stages of inception were considered, with original contributions in 
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each.  These include an analysis of wall stabilized nucleus dissolution, boundary element 

method simulations of crevice stabilized, inviscid, compressible bubble deformation in a 

bounded shear flow with mass transfer, and an analysis of the deformation and 

dissolution or growth of an inviscid compressible bubble deformation in infinite shear 

with mass transfer.  The simulations of bubble deformations in shear flow use a two 

dimensional model.  This was suggested by experimental observations.  The dissolution 

analysis confirms that long scratch like crevices are most likely to persist as nuclei 

capable of serving as cavitation inception sites.  In fact, the analysis of the behavior of 

such nucleation sites proved to be very consistent with the results observed in the 

experiments with the Newtonian liquid, PB. 

 Much research has been done in the area of extrusion defects.  The onset of such 

defects at shear stresses near atmospheric lead us to hypothesize a role of for cavitation in 

formation of extrusion defects, especially those classified as surface defects. An 

experiment to investigate this idea, however, argues strongly against any role for 

cavitation in defect formation.  Firstly, although cavitation was observed experimentally 

for the Newtonian liquid, PB, extrusion defects were not.  Cavitation therefore does not 

seem to be sufficient for extrusion defect formation.   Secondly, in non-Newtonian 

liquids for which extrusion defects were observed, raising the ambient pressure did not 

inhibit their formation at all.  The conclusion is that cavitation does not seem to be 

necessary for extrusion defect formation. 

 The final original contribution of this work is the first reported measurement of 

viscosity at absolute pressures below zero.  
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 The work on cavitation inception in shear leaves open many further areas of 

inquiry.   These include, but are not limited to, the following.  Having gained insight into 

expected behavior of the critical shear stress for cavitation inception based on 

simulations, a return to experimental work to see if the model predictions are correct is 

needed before alternate theories of cavitation in shear are abandoned.  Similarly, more 

involved simulations could be used to validate some of the assumptions used in this 

work, in particular the two dimensional model and the penetration model.  Such 

simulations would, however, be computationally expensive. 

 Frequently when shear stresses are of the magnitudes considered here, they are 

due to rates of deformation that lead to non-Newtonian constitutive behavior for many 

liquids.  Modeling shear cavitation inception for non-Newtonian liquids is a topic that 

would prove very interesting, though challenging. 

 Finally, satisfied that a clear picture of cavitation in shear is emerging, the 

understanding of this phenomenon should be applied to enhance or inhibit cavitation as 

desired.  Liquid treatment (degassing or pre-pressurizing), surface coating, the use of 

surfactants, and surface etching and polishing could all be used to alter the cavitation 

behavior. 
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