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SUMMARY

This research focuses on the application of guided waves techniques to non-

destructively characterize the structural integrity of bonded engineering components.

Computational methods are used to examine the properties of multi-layered, adhe-

sive bonded plates. This study quantifies the effect of the adhesive bond parameters

(Young’s modulus, Poisson’s ration and bond thickness) on the dispersion curves.

A commercial finite element (FE) code (ABAQUS/Explicit) is used for the nu-

merical model while the global matrix method and the waveguide FE method are

used to benchmark the resulting dispersion relationships in the form of a frequency-

wavenumber or slowness-frequency relation. The postprocessing of FE data includes

the two-dimensional Fourier transform (2D-FFT) and the short-time Fourier trans-

form (STFT). Note that the 2D-FFT and STFT operate on multiple or just one tran-

sient output signals of the FE results respectively, while the waveguide FE method

uses mass-, damping- and stiffness-matrices to generate the dispersion relations. In

the dispersion relations, a set of bond parameter sensitive and FE-visible points is

selected. The frequency locations of these points represent the solution criteria for the

inversion procedure based on the global matrix method. The capabilities of the inver-

sion process depend on the number of transient output signals from an FE simulation

for the forward problem.

1



CHAPTER I

INTRODUCTION

Improved structural integrities combined with low element weight widen the range

of possible applications for adhesive bonded components. This and advantages like

low cost and ease of assembly compared to conventional bonding techniques have

heightened the demand for adhesive bonded engineering structures. Adhesive bonded

components are being increasingly used in many lightweight engineering fields such

as the airplane industry. Aging, thermal and mechanical influences are only a few

mechanisms that could lead to failure or damage. Failure of any component in this

field could induce critical situations for humans which is definitely the most unwanted

consequence of any possible incident. As a result, maintenance and reliability are cru-

cial subjects. Usually the adhesive bond itself is not accessible or visible. This makes

nondestructive testing methods that are able to quantify the properties of hidden

layers attractive.

The objective of this work is to monitor the quality of an hidden adhesive layer. This

will be done by quantifying its properties using the dispersion relationships. The

properties of the bond (in this case the Young’s modulus, the Poisson’s ratio and

the bond thickness) will be centered around the values for a commercially available,

double coated, adhesive transfer tape. This tape has a very high strength and is

intended to replace rivets, screws and other mechanical fastenings. All three param-

eters influence the dispersion relation of guided waves. The whole structure itself

would therefore be a waveguide consisting of layered media. Further on, properties of

the outer adherent are assumed to be known, which also means that the dispersion

relation of the top layer by itself is also known.
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In this work computational methods are focused on a double layered plate first, and

then possibilities for more than two layers and eventual experiments are identified.

Different methods to solve the forward problem, in other words methods to produce

the dispersion relation, are compared to each other, while a finite element simulation

is used to model the idealized reality. Between the forward and the inverse problem,

different sets of parameter sensitive points as an input for the inverse procedure are

examined and discussed. A set of sensitive points is selected by observing tendencies

and used to solve the inverse problem via the global matrix method, while possi-

bilities (including periodic non plate structures) for the waveguide FE method are

investigated.

Previous research focused on the application of the finite element simulation of wave

propagation in a waveguide [14, 20, 21]. Signal processing methods including the two

dimensional Fourier transformation and short-time Fourier transformation are inves-

tigated in [3] and [15] respectively. [6, 20] used numerical methods like the global

matrix method to interpret experimental results of [6] as well as understand wave

propagation in multi-layered plates. The waveguide FE method as one of the newer

approaches is investigated in [10, 11].

3



CHAPTER II

THEORETICAL BACKGROUND OF WAVE

PROPAGATION

This chapter provides a brief introduction to wave propagation in elastic media. It

is not intended to give a complete coverage of the subject, but only to provide a

background to understand the topics covered in this work. For further reference and

a more detailed description of the material, the reader is encouraged to see [2, 5, 18].

Depending on material properties, geometry and method of excitation, different

kinds of wave phenomena can be observed. First a short derivation of wave propaga-

tion theory is presented and then different wave types in infinite media and waveguides

are covered.

2.1 Governing equations in linear elasticity

The media employed in this research are considered to be continuous, homogeneous,

isotropic and linear elastic. The constitutive stress-strain relationship (Hooke’s law)

for the stress tensor τij under these conditions is

τij = λεkkδij + 2µεij , (2.1)

where ǫij is the strain tensor, related to the displacement ui by

εij =
1

2
(ui,j + uj,i) , (2.2)
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and µ and λ are the Lamé constants. A relationship to Young’s modulus E and

Poisson’s ratio ν is given by

λ =
Eν

(1 + ν)(1 − 2ν)
, (2.3)

µ =
E

2(1 + ν)
. (2.4)

The stress equation of motion is

τij,j + ρfi = ρüi . (2.5)

In this case body forces are neglected

ρfi = 0 ,

which leads to

τij,j = ρüi . (2.6)

If the strain-displacement relation (2.2) is substituted into Hooke’s law (2.1) and the

expression for the stress in terms of the displacements is subsequently substituted in

the stress equation of motion (2.6), the displacement equation of motion

µui,jj + (λ+ µ)uj,ji = ρüi (2.7a)

is obtained, which reads in vector representation as

µ∇2u + (λ+ µ)∇∇ · u = ρü . (2.7b)

Navier’s equations of motion (2.7) is a partial differential equation which cannot

be solved for the displacements explicitly. Thus a solution for the displacements is

assumed. If the solution is a sum of potentials the Helmholtz decomposition may be

applied which provides a simpler set of equations for u. The expression for u is

u = ∇ϕ+ ∇×ψ , (2.8)
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Equation (2.8) represents the three components of the displacement u with the four

functions ϕ, ψ1, ψ2 and ψ3. To guarantee the uniqueness of the solution, an additional

constraint

∇ ·ψ = 0 (2.9)

is introduced. Substitution of (2.8) into the displacement equation of motion (2.7)

leads to two uncoupled wave equations expressed in terms of the displacement poten-

tials ϕ and ψ:

c2L∇2ϕ =
∂2

∂t2
ϕ , c2T∇2ψ =

∂2

∂t2
ψ , (2.10)

where cL represents the wave speed of longitudinal waves and cT the wave speed of

transverse shear waves,

c2L =
λ+ 2µ

ρ
, c2T =

µ

ρ
. (2.11)

Two basic types of waves are associated with each of the potentials in equation

(2.10). Longitudinal waves correspond to the potential ϕ and shear waves are associ-

ated with the potential ψ. These waves are called body waves. Figure 2.1 shows the

particle motion of these two basic types of waves.

λ

Direction ofDirection of

particle motion wave propagation

(a) Longitudinal wave

λ

Direction of Direction of

particle motion wave propagation

(b) Shear wave

Figure 2.1: Particle motion of body waves

2.2 Wave phenomena

Plane waves are assumed to have constant properties (ǫ, τ , u) on a plane perpendicular

to its direction of propagation p

u = df(x · p − ct) , (2.12)
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where d is the unit vector defining the direction of particle motion, and c is either the

longitudinal wave speed cL or the transverse wave speed cT. By substituting (2.12)

into (2.7b), one obtains

(µ− ρc2)d + (λ+ µ)(p · d)p = 0 . (2.13)

Since p and d are two different unit vectors, it can be seen that the two possible

solutions that form the basis of wave propagation are either d = ±p or p · d = 0:

1) d = ±p leads to p · d = ±1. Inspection of (2.13) yields c = cL as defined

in (2.11). Since d and p are linearly dependent, this represents a particle

movement in the direction of propagation – a longitudinal or P-wave.

2) p · d = 0 yields with (2.13), c = cT (see (2.11)). Hence, the direction of motion

is normal to the direction of propagation, and the wave is called a transverse

wave. If a two-dimensional plane of propagation is considered (for example, the

(x1, x2)-plane), a wave with an in-plane displacement (in the (x1, x2)-plane) is

called an SV-wave (vertically polarized), while a wave with out-of-plane dis-

placement (in the x3-direction) is called an SH-wave (horizontally polarized).

In a homogeneous, isotropic material, transverse and longitudinal wave speeds are

independent of frequency – therefore they are nondispersive.

2.3 Reflection of body waves

Here the most important types of reflections of body waves are presented. To under-

stand the reflection phenomena, a halfspace with a stress free surface (τ22 = 0 and

τ21 = 0) is considered. For a wave propagating in an infinite media, plane-strain case,

the displacement field of an harmonic wave in the x1, x2 plane is

u(w) = And
(w)eıkw(x1p

(w)
1 +x2p

(w)
2 −cwt) , (2.14)

7



where (w) denotes the wave (longitudinal or transverse), kn = ω
cn

is the wavenumber

of the wave n and the respective wave speeds are cn. First the case of an incident

P-wave (longitudinal wave) is explained.

PP

SV

x1

x2

θ0
θ1

θ2

(a) incident P-wave

P

SV SV

x1

x2

θ0

θ1

θ2

(b) incident SV-wave

Figure 2.2: Reflection of body waves.

Figure 2.2(a) shows that an incident P-wave produces two reflected waves, a P-

wave and a SV-wave (shear wave). The boundary condition of a stress free surface

requires that an incident P-wave under an arbitrary angle is reflected as both, a P

and SV-wave. The effect of a single incident wave-type producing two different waves

after reflection from a boundary is called mode conversion. If the incident angle

θ0 approaches zero, only a P-wave is reflected. It may also be recognized that θ2

(the reflected angle of the SV-wave) is always smaller than θ1. Hence for the range

0 < θ0 <
π
2

always two reflected waves exist with θ0 = θ1. To obtain non-trivial

amplitudes An, the angles of incident and reflected waves θ0, θ1 and θ2 as defined in

Figure 2.2, must satisfy Snell’s law:

k0 sin θ0 = k1 sin θ1 = k2 sin θ2 . (2.15)

Now the reflection of vertically polarized shear waves is considered. Figure 2.2(b)

shows that again two waves are reflected.

However in this case the reflecting angle of the P-wave (i.e. θ1) is larger than θ2.

8



PP

P

SV

SVSV

x2

x1

Figure 2.3: Reflections in a waveguide.

That means above a certain value of θ0 (this angle is called the critical angle)

θcritical = arcsin
cT
cL

(2.16)

the reflected P-wave vanishes and a so called evanescent surface wave is established.

This wave travels along the surface and decays in x2-direction. Below θcritical the

relation θ0 = θ2 is valid. At an incident angle of θ0 = 0◦ there is only a reflected

SV-wave. In [13] several other cases of reflections are discussed.

Other wave types like Rayleigh waves, Stoneley waves and Love waves are not

discussed here since they are not relevant for this work. A detailed description of

these waves can be found in [2, 5].

2.4 Guided waves

Guided waves occur in bodies with finite dimensions in two directions, like plates,

shells, etc. These types of bodies are called waveguides. The waves travel in the

direction of the infinite extensions of the body. Because of the boundaries of the

body, the waves are reflected multiple times, as shown in Figure 2.3. These multiple

reflections form a constructive/destructive interference pattern in the waveguide. This

pattern can be interpreted as standing waves in the x2-direction, while travelling in

the x1-direction.

9



To investigate wave motion in an elastic wave guide, the potentials

ϕ = Φ(x2) exp ı(kx1 − ωt) , ψ3 = Ψ(x2) exp ı(kx1 − ωt) (2.17)

are used. The direction of propagation is in the x1-direction. Assuming a plate

thickness of 2h, plane strain and stress-free boundaries at x2 = ±h finally lead to the

Rayleigh-Lamb frequency equations [2]

tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(2.18a)

tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
, (2.18b)

where

p2 =
ω2

c2L
− k2 , q2 =

ω2

c2T
− k2 . (2.19)

Equation (2.18a) represents the symmetric Lamb modes, while (2.18b) characterizes

the antisymmetric Lamb modes. A symmetric mode is defined to have a displacement

symmetric to the x1-axis, and an antisymmetric mode is accordingly determined by

an antisymmetric displacement with respect to the x1-axis.

The waves in a plate are called Lamb waves. The waves propagating in a waveguide

are determined by the wavenumber k and the frequency f . For a given wavenumber

waves with different frequencies can propagate in a waveguide. Possible frequency-

wavenumber combinations form modes. The solutions of the Rayleigh-Lamb fre-

quency equation (2.18) form several branches in a frequency-wavenumber diagram.

Each of these branches is one propagating mode.

The dispersion curves are obtained by finding first a numerical solution in the

(ω, k)-domain or (f, k)-domain and differentiating f numerically (partially with re-

spect to k) for each of the different modes to attain the group velocity in the absence

of attenuation as

cgr(f) = 2π
∂f

∂k
. (2.20)
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Group velocity as defined in Equation (2.20) describes the velocity of propagating

energy. In contrast, points of constant phase propagate with the phase velocity cph =

ω
k
. Note that Lamb waves are dispersive, therefore the propagation velocity of a

Lamb mode is dependent on its oscillation frequency. However, for nondispersive

media, group and phase velocity are equal.

sl(f) =
1

cgr(f)
(2.21)

(2.21) is used to express the dispersion relationship of Lamb modes in terms of the

energy slowness sl, which is the reciprocal of the group velocity. Figures 2.4 and 2.5

show the dispersion curves of the Rayleigh-Lamb spectrum for a 1mm thick aluminum

plate.
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Figure 2.4: Dispersion relation in the frequency-wavenumber domain.
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CHAPTER III

METHODS FOR LAYERED MEDIA

In this research different methods to examine the dispersion curves of multi-layered

plates are used. This section explains the theoretical background of those methods

as well as the procedures themselves.

3.1 Global matrix method (GMM)

The global matrix method is a well known method to calculate the dispersion curves of

multilayered media. The Rayleigh-Lamb wave equation is only valid for a waveguide

consisting out of one (linearly elastic) material. In order to solve for the dispersion

relation of multiple layers in this section the global matrix method is used. The

method has already proven to perform well, because it is used in a software for dis-

persion curves called Disperse [17]. This work does not present any new information

considering the GMM, therefore only the basics of this method are described.

Figure 3.1 shows the geometrical shape and the material properties of the double

layer model examined in this research. The top and bottom layer are assumed to be

stress-free on their surfaces. The interface conditions between layers are continuity

of the displacement and traction vector. This means that the two layers are rigidly

joined to each other at the interface. A detailed description of the model for layered

1x

2x

111 ,,E

222 ,,E

1h

2h

Figure 3.1: Double layer model for the GMM.
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plates is done by [18].

3.1.1 Equation of motion – Displacement

Assuming elastic and isotropic materials for both layers it is obvious that the dis-

placement field u(s) = [u
(s)
1 , u

(s)
2 , u

(s)
3 ]T in each layer must satisfy Navier’s displacement

equations of motion

µ(s)∇2u(s) + (λ(s) + µ(s))∇(∇ · u(s)) = ρ(s)ü(s). (3.1)

The different layers are denoted by the index s ǫ (1,2). For displacement fields that

vary harmonically with u(s) = u(s)eıωt this leads to

µ(s)∇2u(s) + (λ(s) + µ(s))∇(∇ · u(s)) = ρ(s)ω2u(s). (3.2)

The Helmholz decomposition is used to determine the displacement field in each layer

u(s) = ∇φ(s) + ∇×ψ(s) . (3.3)

Again a plane-strain case is assumed, which means that the displacement is only a

function of x1 and x2 and that u
(s)
3 ≡ 0. By using the Helmholtz decomposition this

can be achieved when ψ
(s)
1 = ψ

(s)
2 ≡ 0, ψ

(s)
3 = ψ

(s)
3 (x1, x2, t) and φ(s) = φ(s)(x1, x2, t).

With these restrictions on φ(s) and ψ(s), equation (3.3) yields the displacement com-

ponents

u
(s)
1 =

∂

∂x1
φ(s)(x1, x2, t) −

∂

∂x2
ψ

(s)
3 (x1, x2, t), (3.4)

u
(s)
2 =

∂

∂x2
φ(s)(x1, x2, t) +

∂

∂x1
ψ

(s)
3 (x1, x2, t), (3.5)

u
(s)
3 ≡ 0. (3.6)

If (3.3) is substituted into (3.1), the result is two uncoupled wave equations

∂2

∂x2
2

φ(s)(x1, x2, t) +
∂2

∂x2
1

φ(s)(x1, x2, t) −
φ̈(s)(x1, x2, t)

(c
(s)
L )2

= 0 , (3.7)

∂2

∂x2
2

ψ
(s)
3 (x1, x2, t) +

∂2

∂x2
1

ψ
(s)
3 (x1, x2, t) −

ψ̈
(s)
3 (x1, x2, t)

(c
(s)
T )2

= 0 , (3.8)
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where c
(s)
L and c

(s)
T represent the longitudinal and transversal wave speeds in layer n.

Harmonic solutions to (3.8) in each layer can be written as

φ(s) = C
(s)
1 eı(kL(x1 sin θ

(s)
L

+x2 cos θ
(s)
L

)−ωt) + C
(s)
2 eı(kL(x1 sin θ

(s)
L

−x2 cos θ
(s)
L

)−ωt) , (3.9)

ψ
(s)
3 = C

(s)
3 eı(kT (x1 sin θ

(s)
T

+x2 cos θ
(s)
T

)−ωt) + C
(s)
4 eı(kT (x1 sin θ

(s)
T

−x2 cos θ
(s)
T

)−ωt) , (3.10)

where

k
(s)
L =

ω

c
(s)
L

, k
(s)
T =

ω

c
(s)
T

, (3.11)

and C
(s)
1 , C

(s)
2 , C

(s)
3 , C

(s)
4 are arbitrary constants. The relation between the wavenum-

ber k, the longitudinal wavenumber k
(s)
L and the transverse wavenumber k

(s)
T in each

layer as well as the orthogonal wavenumbers K
(s)
L and K

(s)
T can be expressed as

K
(s)
L =

√

k2
L − k2 , (3.12)

K
(s)
T =

√

k2
T − k2 . (3.13)

In order to replace the angles θ
(s)
L and θ

(s)
T in (3.9) and (3.10) the trigonometric

relations

k = k
(s)
L sin θ

(s)
L , (3.14)

k = k
(s)
T sin θ

(s)
T , (3.15)

K
(s)
L = k

(s)
L cos θ

(s)
L , (3.16)

K
(s)
T = k

(s)
T cos θ

(s)
T , (3.17)

are used, this leads to

φ(s)(x1, x2, t) = C
(s)
1 eı(x1k+x2K

(s)
L

−ωt) + C
(s)
2 eı(x1k−x2K

(s)
L

−ωt) , (3.18)

ψ
(s)
3 (x1, x2, t) = C

(s)
3 eı(x1k+x2K

(s)
T

−ωt) + C
(s)
4 eı(x1k−x2K

(s)
T

−ωt) . (3.19)
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Further on plugging the last equation into (3.4) and (3.5) results in

u
(s)
1 = ı[k(C

(s)
1 eı(x1k+x2K

(s)
L

−ωt) + C
(s)
2 eı(x1k−x2K

(s)
L

−ωt))

−K
(s)
T (C

(s)
3 eı(x1k+x2K

(s)
T

−ωt) − C
(s)
4 eı(x1k−x2K

(s)
T

−ωt))] ,

(3.20)

u
(s)
2 = ı[K

(s)
L (C

(s)
1 eı(x1k+x2K

(s)
L

−ωt) − C
(s)
2 eı(x1k−x2K

(s)
L

−ωt))

+ k(C
(s)
3 eı(x1k+x2K

(s)
T

−ωt) + C
(s)
4 eı(x1k−x2K

(s)
T

−ωt))] .

(3.21)

3.1.2 Strain and Stress

The strain field in each layer is found from the displacement field by using the relation

of (2.2). In the plane strain case the non zero components of the strain field in each

layer are

ε
(s)
11 =

∂u
(s)
1

∂x1

, (3.22)

ε
(s)
22 =

∂u
(s)
2

∂x2
, (3.23)

ε
(s)
12 =

1

2
(
∂u

(s)
1

∂x2
+
∂u

(s)
2

∂x1
) . (3.24)

With the Equation (3.20) and (3.21) for the displacement field the strain components

in x1- and x2-direction are

ε
(s)
11 = − k2(C

(s)
1 eı(kx1+x2K

(s)
L

−ωt) + C
(s)
2 eı(kx1−x2K

(s)
L

−ωt))

+ kK
(s)
T (C

(s)
3 eı(kx1+x2K

(s)
T

−ωt) − C
(s)
4 eı(x1k−x2K

(s)
T

−ωt)) ,

(3.25)

ε
(s)
22 = +K

(s)2
L (C

(s)
1 eı(x1k+x2K

(s)
L

−ωt) + C
(s)
2 eı(x1k−x2K

(s)
L

−ωt))

+ kK
(s)
T (C

(s)
3 eı(x1k+x2K

(s)
T

−ωt) − C
(s)
4 eı(x1k−x2K

(s)
T

−ωt)) ,

(3.26)

and the shear deformation is

ε
(s)
12 = + kK

(s)
L (C

(s)
1 eı(x1k+x2K

(s)
L

−ωt) − C
(s)
2 eı(x1k−x2K

(s)
L

−ωt))

+ (k2 −K
(s)2
T )(C

(s)
3 eı(x1k+x2K

(s)
T

−ωt) + C
(s)
4 eı(x1k−x2K

(s)
T

−ωt)) .

(3.27)

The stress field is calculated from the strain with Hooke’s law. Using (2.1) and

the fact that only τ
(s)
22 and τ

(s)
12 are relevant for the boundary conditions of each layer
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yields

τ
(s)
22 =(λ(s)k

(s)2
L + 2µ(s)K

(s)2
L )(C

(s)
1 eı(kx1+K

(s)
L

x2−ωt) + C
(s)
2 eı(kx1−K

(s)
L

x2−ωt))

+ 2µ(s)kK
(s)
T (C

(s)
3 eı(kx1+K

(s)
T

x2−ωt) − C
(s)
4 eı(kx1−K

(s)
T

x2−ωt))

(3.28)

and

τ
(s)
12 =2µ(s)kK

(s)
L (C

(s)
1 eı(kx1+K

(s)
L

x2−ωt) − C
(s)
2 eı(kx1−K

(s)
L

x2−ωt))

+ µ(s)(K
(s)2
T − k2)(C

(s)
3 eı(kx1+K

(s)
T

x2−ωt) + C
(s)
4 eı(kx1−K

(s)
T

x2−ωt)) .

(3.29)

3.1.3 Boundary conditions

At each of the upper and lower stress free surfaces the stresses τ22 and τ12 are zero.

This leads to two equations for each free surface. At an interface between two layers

the stresses τ22 and τ12 and the displacement u1 and u3 must be equal in both layers.

This yields four equations for each interface. A stress free upper surface at x2 = 0 for

layer 1 leads to

τ
(1)
22 = 0 , τ

(1)
12 = 0 . (3.30)

The continuity of displacement and stresses at the interface x2 = h1 between layer 1

and layer 2 is expressed by

τ
(1)
22 = τ

(2)
22 , τ

(1)
12 = τ

(2)
12 , (3.31)

u
(1)
1 = u

(2)
1 , u

(1)
2 = u

(2)
2 . (3.32)

The stress free lower surface at x2 = h2 for layer 2 is described by

τ
(2)
22 = 0 , τ

(2)
12 = 0 . (3.33)

Using (3.20) and (3.21) for the displacements and (3.28) and (3.29) for the stresses

in Equations (3.30) to (3.33) leads to 8 equations which can be represented in a
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8 x 8 matrix











A1,1 A1,2 . . . A1,8

A2,1 A2,2 . . . A2,8

...
...

. . .
...

A8,1 A8,2 . . . A8,8












︸ ︷︷ ︸












C
(1)
1

C
(1)
2

...

C
(2)
4












︸ ︷︷ ︸

=












0

0

...

0












. (3.34)

A C

All elements of the matrix A are functions of the known material propertiesE(s), ν(s), ρ(s),

the unknown angular frequency ω and wavenumber k. In order to get the dispersion

curves, the eigenvalue problem

det(A) = 0, (3.35)

has to be solved. The eigenvalues of Equation (3.35) are the frequency-wavenumber

relationship of the different modes. This special kind of eigenvalue problem has to be

solved numerically.

Plates with more than two layers have more interface conditions which leads to

the general expression that a s-layer model needs 4 · s equations from the boundary

conditions. Note also that h2 in this case denotes the overall thickness. Below ha

always refers to the thickness of the aluminum, while ht refers to the thickness of the

adhesive bond (tape). In all double layer cases the aluminum is on top of the bond

which leads to h1 = ha and h2 = ha + ht.
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3.2 Finite element method (FEM)

The finite element method has a variety of applications and is still evolving. This work

uses the commercial software Abaqus/Explicit. Here the theoretical background of

the FEM is presented briefly, whereas the details of the used FE models are described.

For further reference the author recommends [1] and [23].

3.2.1 FE theory

The general equation of motion in matrix form for the dynamic finite element simu-

lation in terms of nodal displacements ue is given as

Müe + Cu̇e + Kue − f = 0 , (3.36)

where f is the vector of applied forces and

M =

∫

V

ρNTN dV , (3.37)

C =

∫

V

cNTN dV , (3.38)

K =

∫

V

(DN)T
E DN dV , (3.39)

are mass matrix, damping matrix and the stiffness matrix respectively. Those rela-

tions are based on

u = Nue , (3.40)

τ = E ε , (3.41)

where the mass density is denoted by ρ, the mechanical stiffness matrix is given by E,

whereas N are interpolation functions and D denotes differential operators to realize

strains from the nodal displacements ε = (DN)ue.
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3.2.2 FE program

Both packages of Abaqus can be used to solve dynamic problems in the form of

Equation (3.36) for the displacement vector ue. Abaqus/Standard solves the problem

via an implicit algorithm, which means that the solution for dynamic quantities at

the time t + △t is not only based on the values at t, but also on the same quanti-

ties at t + △t. The result are nonlinear equations which make the whole procedure

numerically stable but slow. The Abaqus/Explicit algorithm is computationally ef-

ficient for the analysis of large models with relatively short dynamic response times,

which makes it optimal for high frequency simulations. Explicit schemes, as used in

ABAQUS/Explicit, obtain values for dynamic quantities at t+ △t based entirely on

available values at time t.

3.2.3 FE criteria

In this section two fundamental finite element criteria are described, which influence

the accuracy and costs of a simulation.

3.2.3.1 Integration time step

The explicit procedure integrates through time by using many small time increments.

The central difference operator is only conditionally stable, the stability limit being

approximately equal to the time for an elastic wave to cross the smallest element

dimension in the model. The default setting of Abaqus/Explicit is to calculate this

time step on its own

△t ≈ le min

cL
, (3.42)

where le min is the smallest element dimension in the mesh and cL is the wave speed

of longitudinal waves defined by equation (2.11). The estimate for △t is only approx-

imate, therefore the conservative (safe) time estimate for 2D models is

△t =
le min√
2 · cL

. (3.43)
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The automatic time step calculation of Abaqus/Explicit produces good results. How-

ever the software also allows the user to choose the time step. But two facts have to

been taken into consideration. If the time step is too long, high frequency vibrations

are not resolved accurately and the solution process might become unstable while if

the time step is too short a lot of calculation time is wasted. A usually good rule [14]

for the relation of the time increment △t and the maximal frequency of interest fmax

is given by

△t =
1

20 fmax

. (3.44)

3.2.3.2 Element size

The size of the elements must be chosen so that the propagating waves are accurately

captured. In [3] it is recommended that more than 10 nodes per wavelength are used,

while [14] and [20] use a higher number. This can be expressed by

le =
1

20 kmax

(3.45)

with

kmax =
1

λmin

(3.46)

where le is the element length, λmin is the shortest wavelength and kmax is the maxi-

mum wavenumber of interest. The shortest wavelength can be approximated by the

transverse wave speed cT and the maximum frequency that should be simulated. This

leads to the overall relation

le =
λmin

20
≈ cT

20 fmax

. (3.47)

3.2.4 Nyquist criteria

In addition to the FE criteria concerning the integration time step and the element

length, the Nyquist criteria is important. For the 2D-FFT that is performed on the
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data to be accurate, the sampling frequency in time and space have to be adjusted,

because the 2D FFT entails sampling a continuous signal with a given sampling rate.

If the continuous signal contains frequencies above half the sampling frequency the

frequency content for the sampled data is falsified. This effect is called aliasing and

further reference can be found in [16]. The Nyquist frequency is the upper frequency

limit for the continuous signal in order to avoid aliasing. This means for practical

purposes that the continuous signal has to be sampled at least twice within the period

of the highest frequency

△T =
1

2 fmax

. (3.48)

Hence the necessary output time step △T is 5 ·10−8 seconds in order to avoid aliasing

up to a maximum frequency of 10 Mhz. A similar relationship

△X =
1

2 κmax

(3.49)

is valid for the sampling in space with △X as the length between two output points.

3.2.5 FE model

Just like the previous sections stated, different parameters of the FE model are crucial

for the success of a simulation. Two FE models are set up in Abaqus/Explicit to model

multimodal wave propagation in a double layer plate.

The FE models use 2D solid structural elements (CPE4R) consisting of four nodes

with two degrees of freedom (DOFs) at each node. The DOFs of the plane strain

elements are the translation in x1 and x2 direction. As an absorbing boundary a set

of elements called infinite elements (CINPE4) is used. These elements represent one

layer at each end of the plate and are supposed to simulate an infinite plate without

any reflections from boundaries in x1 direction. The infinite elements don’t absorb

100% of the energy. Therefore minor reflections are the result. But those reflections

don’t influence the main results.
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Figure 3.2 shows a high resolution model that satisfies all requirements concerning

the Nyquist and FE criteria and offers a high enough resolution of the results for the

inversion procedure. Figure 3.3 shows the low resolution model that still satisfies

all criteria but is restricted to the relative small frequency-wavenumber window of

interest. This model offers a short computation time (1 hour compared to 24 hours

for the high resolution model) and is used in chapter 4.3 for the parametric studies.

The calculation end time tend = 0.26 ms as well as the sampling frequency of 20 MHz

and the excitation are the same for both models.

Besides the computation time, Table 3.1 shows the other differences between the

FE models. The mesh size is the total number of used elements, the DOFs are the

total number of degrees of freedom while the memory in Megabyte quantifies the

memory usage (RAM) during the computation. The preprocessing of such a model

usually uses temporally more memory. The computer used for these calculations was

a regular Pentium PC with a 3.2 GHz Dual-Core CPU and 2 GB of RAM. Although

the presented models don’t completely use the resources of this computer, models

with slightly smaller element sizes, more than two layers or viscoelastic behavior will

reach the limit.

The element length le is the most critical parameter concerning computational

costs. Both models try to keep the element shape as close as possible to a square in

the aluminium layer, while le in the out-of-plane direction in the bond layer is only

half as long as in the aluminium layer. This is done to account for the slower wave

speeds in the adhesive bond layer. For wave propagation purposes a uniform mesh is

generally the best choice. Too big changes of element sizes or shapes result in multiple

micro reflections that disturb the constructive/destructive interference pattern that

is responsible for the properties of guided waves. Without presenting details here the

presented models in Figures 3.2 and 3.3 show the best results of a variety of different

simulations.

23



In order to neglect near field effects in the results, the distance between the exci-

tation and the first output signal has to be 10 · ha=10 mm. Although all simulations

record the in and out-of-plane velocity of the output nodes, for simplicity Figures 3.2

and 3.3 show the output signals as green arrows in out-of-plane direction only. The

excitation in the same figures is pictured as a red downward arrow, which means,

that only one node experiences an out-of-plane force. The force follows a triangular

amplitude variation with an end time of 0.1 µs to get a broad band excitation at a

frequency range of up to 10 MHz.

1 mm
aluminum 50 Elements

0.25 mm
adhesive bond 25 Elements

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

120 mm / 300 output signals10 mm

absorbing boundary

ABAQUS/Explicit – Mesh

133 mm (6650 Elements)

Figure 3.2: High resolution FE model.

1 mm
aluminum 17 Elements

0.25 mm
adhesive bond 9 Elements

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

120 mm / 200 output signals10 mm

absorbing boundary

ABAQUS/Explicit – Mesh

133.32 mm (2222 Elements)

Figure 3.3: Low resolution FE model.
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Table 3.1: Low and high resolution FE model settings (rounded values).

Model Mesh size DOF’s Memory le [mm] △X [mm]

Low resolution 60,000 120,000 50 MB 0.06 0.6

High resolution 500,000 1,000,000 400 MB 0.02 0.4

3.2.6 Signal processing

The results of the Finite Element simulation are represented as transient output

signals of the in-plane and out-of-plane velocities.

Most experimentalists use only one transient output signal for simplicity. The

short-time Fourier transform transforms one output signal into its time-frequency

representation. The use of the corresponding propagation distance leads to a group

velocity-frequency or a slowness-frequency representation.

Another possibility is to use multiple output signals to generate the two dimen-

sional Fourier transform, or a frequency - wavenumber representation. The following

section explains those signal processing tools.

3.2.6.1 Short-time Fourier transform (STFT)

The short-time Fourier transform is based on a regular Fourier transform. In this

method the signal is split up into a series of overlapping parts instead of transforming

the entire transient signal at once. Each part is then windowed and Fourier trans-

formed. The STFT is given by

Sstft(ω0, t0) =
1

2π

+∞∫

−∞

s(t)h(t− t0) e
−ıω0t dt (3.50)

where h(t) is a window function. The spectrogram of an STFT is defined as

Ed(ω0, t0) = |Sstft(ω0, t0)|2 . (3.51)
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This corresponds to the energy density spectrum. The STFT needs only a single

signal s(t). So only one measurement at a single location is sufficient to determine

the entire time-frequency representation. As a result a relation for the time t and

the circular frequency ω can be obtained which is converted to a slowness-frequency

representation.

3.2.6.2 Two dimensional Fourier transform (2D-FFT)

In this section, a mathematical procedure is introduced in order to process and in-

terpret numerically obtained data. The 2D-Fourier transform was originally used to

analyze experimental results in the form of multimode time signals [3].

The 2D Fourier transform is essentially a Fourier transform of a Fourier transform.

In the continuous space it can be calculated by

S(k, ω) =

+∞∫

−∞

+∞∫

−∞

s(x, t) e−ı(ωt+kx) dxdt, (3.52)

where s(x, t) can be any function of two variables. Usually x and t will correspond

to two spatial directions or one spatial direction and time respectively. The two

dimensional energy density spectrum is

Ed(ω, k) = |S(ω, k)|2 . (3.53)

in the continuous case. In order to apply the 2D transformation to numerically or

experimentally obtained data, the discrete equivalent to (3.52) is used. The discrete

form is called 2D-FFT (Fast Fourier Transformation). The data must be sampled

spatially and temporally.

From a wave propagation point of view, the 2D Fourier transform maps the original

time signal s(x, t) to the signal S(k, ω) in the angular frequency-wavenumber domain.

The advantage of this transformation is that different modes are easily distinguished,

because every mode obeys its own distinct (k, ω)-relation.
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3.3 Waveguide FE method (WFE)

This method serves as a basis to create dispersion relations in a different way com-

pared to the earlier explained global matrix method. In order to apply this method

ABAQUS/Standard is used to create one segment of a periodic structure. For our

case this would mean one element layer in the in-plane direction. For further reference

on this subject see [10, 11].

3.3.1 Dynamic Stiffness Matrix

The stiffness, damping and mass matrices respectively K, C and M of the FE model

are used to create the dynamic stiffness matrix D which accounts for time-harmonic

system behavior in a waveguide

D(ω) = K + iωC − ω2M , (3.54)

where

Du = f . (3.55)

In a general case the nodes in (3.54) are partitioned into sets of internal nodes (i),

nodes on the left side (l) and nodes on the right side (r), see Figure 3.4. If there are

no forces on the internal nodes, this leads to
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Eliminating the interior degrees of freedom results in
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Figure 3.4: FE mesh of three sections in the waveguide.

with

D̃ll = Dll − DliD
−1
ii Dil , (3.58)

D̃lr = Dlr − DliD
−1
ii Dir , (3.59)

D̃rl = Drl − DriD
−1
ii Dil , (3.60)

D̃rr = Drr − DriD
−1
ii Dir . (3.61)

3.3.2 Transfer matrix

Since the entire periodic structure is made of single segments, the displacements and

forces on the right side of one segment (n) have to be the same as those on the left

side of the next segment (n+1), what can be expressed by

u(n)
r = u

(n+1)
l , (3.62)

f (n)
r = f

(n+1)
l . (3.63)

Rearrangements lead to the frequency-dependent transfer matrix system representing

a relation between the node variables of the bordering segments (n) and (n + 1)





u
(n+1)
l

f
(n+1)
l




 = T(ω)






u
(n)
l

f
(n)
l




 , (3.64)
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with

T(ω) =






−D̃−1
lr D̃ll D̃−1

lr

−D̃rl + D̃rrD̃lr−1D̃ll −D̃rrD̃
−1
lr




 . (3.65)

The assumption of harmonic wave propagation in x1-direction along the segment

length △l with the complex wavenumber κ

ur = eκ△lul , (3.66)

fr = eκ△lfl , (3.67)

leads to the eigenvalue problem

T(ω)






û
(n)
l (ω)

f̂
(n)
l (ω)




 = λ






û
(n)
l (ω)

f̂
(n)
l (ω)




 = eκ△l






û
(n)
l (ω)

f̂
(n)
l (ω)




 , (3.68)

which has 2m solutions, where m is the number of nodal DOFs on one side. The

physical complex wavenumber is now calculated from the eigenvalues

κ =
ln(λ)

△l . (3.69)

3.3.3 Dispersion relation

For each frequency the number of numerically calculated solutions for λ is equal to

the dimension of T. But only a few eigenvalues represent a physically meaningful

solution. Therefore only waves with | λ |≤ 1 are taken into account, while waves with

| λ |≪ 1 and Re{λ} ≤ 1 are not considered [10].

So far a frequency-wavenumber relation is generated. With this function it is

relatively easy to calculate the phase velocity

cph =
ω

κ
. (3.70)

Furthermore group velocities are also very important. (2.20) represents one way to

calculate the group velocities. This approach however leads to relatively big mis-

matches, due to the scanning approach of the waveguide-FE method. Another way
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to calculate the group velocity is to use the relation between the time average power

P and the time average overall energy density Ē

cgr =
P

Ē
. (3.71)

In the frequency domain the power flow becomes

P = −1

2
Re{fHu̇} =

ω

2
Im{fHu} (3.72)

where the superscript H denotes the Hermitian, or complex conjugate transpose. The

total energy density Ē is the sum of the kinetic and potential energy densities Ēk and

Ēp respectively

Ē = Ēk + Ēp (3.73)

where

Ēk =
1

4△l Re{u̇HMu̇} = − ω2

4△l Re{uHMu} , (3.74)

Ēp =
1

4△l Re{uHKu} . (3.75)

3.3.4 Example

In order to verify the operability and the accuracy window, the waveguide FE-method

is applied to a single aluminum plate. Two models are set up. One has eight elements,

while the other one consists of twenty elements. Both use only one element layer in

the plate direction (x1), which means that no internal nodes exist in this case and

that △l = le. Damping is neglected by setting C = 0. Figure 3.5 shows the eight and

the 20 element models. In order to calculate the dispersion curves in an effective way

a square is chosen as element shape. The thickness t is 1mm in both cases resulting

in an element length le of 0.125 mm for the eight element model and 0.05 mm for

the twenty element model. Figure 3.6 shows the results of the eight element and the

twenty element model compared to each other. Due to the fact, that this method is

based on matrices from an FE code the element size plays an important role in regard
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of the accuracy. The windows of maximum accuracy according to equations (3.45)

to (3.47) are also pictured in the same figure. The good accuracy for the 8 element

model as well as for the 20 element model inside those windows confirms equations

(3.45) and (3.47) for the single plate. Further on this means that the GMM and the

WFE produce the same results inside the suggested accuracy window.

ah

el

ah

el

Figure 3.5: 8 element and 20 element models.
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Figure 3.6: Waveguide FE results for a 8 element and a 20 element model of a 1
mm aluminum plate.
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CHAPTER IV

FORWARD PROBLEM

In order to investigate the influence of the tape parameters on the dispersion relation

we want to use first the global matrix method to create the dispersion curves. In this

process the program Disperse (Imperial College) [17] is used. These results are then

compared to the results of the FEM simulation after some signal processing. Two

representations are used, the frequency-wavenumber representation via the 2D-FFT

for multiple transient output signals and the slowness-frequency representation via

the STFT for one transient output signal.

In order to stay comparable to former experiments and results in this field this

research is centered around the adhesive bond properties that have been used in

[6, 20]. Table 4.1 shows the properties of the aluminium, tape 1 and tape 2. In this

chapter the focus is on the relative high stiffness tape 2. The lower stiffness tape 1

will be considered at a later time.

Table 4.1: Material properties.

Material Young’s Modulus Poisson’s ration Density

Aluminium Ea = 70.758 GPa νa = 0.3375 ρa = 2700kg/m3

Tape 1 Et = 0.005 GPa νt = 0.49 ρt = 1106kg/m3

Tape 2 Et = 1 GPa νt = 0.35 ρt = 1106kg/m3
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4.1 Dispersion relations for single and double lay-

ered plates (GMM)

Figure 4.1 shows the first three modes for a 0.25 mm single layer of adhesive bond

(tape 2) called “Tape2”, a 1 mm single layer of aluminum called “Alu” and a double

layer of 1 mm aluminum and 0.25 mm adhesive bond (tape 2) called “Alu-Tape2”.

In both representations it becomes clear that the aluminum modes of a single plate

have a strong influence on the modes of the double layer plate. The first Alu-Tape2

mode starts with the A0 Alu mode while the second Alu-Tape2 mode starts with

the S0 Alu mode and crosses A0 Alu mode after that. The third Alu-Tape2 mode

(cut-off frequency of 0.6 MHz) does not start with any Alu mode, but gets under

the influence of the A0 Alu mode first and then crosses the S0 Alu mode. In the

frequency-wavenumber representation it becomes clear that only one at a time of the

combined modes follows an A0 Alu mode.

4.2 Typical FE results

Figure 4.2 shows the frequency-wavenumber domain of in-plane and out-of-plane FE

results via the 2D-FFT. Figure 4.3 pictures the slowness-frequency domain of in-plane

and out-of-plane FE results via the STFT.

In both representations the Alu-Tape2 modes are not visible everywhere. This is

because it is assumed that only the top surface of the aluminum is accessible and the

displacement profiles of the Alu-Tape2 modes change with frequency and wavenum-

ber. Although the displacement profiles will not play a major role in this work we

still want to make some statements here. In [20] those displacement profiles are ex-

amined in detail. A single combined Alu-Tape2 mode in the frequency-wavenumber

representation can be divided into parts where it has a very low slope, parts where it

has a higher slope and into parts where the slope changes (transition zones). During

the low slope parts most of the modes have only significant in-plane displacements in
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Figure 4.1: GMM for Alu, Tape2 and Alu-Tape2.
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the adhesive layer and almost no displacements in the aluminum layer [20]. During

a high slope part, especially where the Alu-Tape2 mode crosses the Alu mode, the

modes have significant in-plane and out-of-plane displacement in the tape and in the

aluminum layer. There the displacement in the aluminum dominates the displace-

ment in the tape layer. In other words the displacement field in the aluminum layer of

an Alu-Tape mode and the displacement field of an Alu mode close to the Alu-Tape

mode are similar. This explains why only the aluminum modes are measured for

Alu-Tape [6]. The Alu-Tape2 modes show up only when they are close to the single

plate aluminum modes and are therefore influenced by the single aluminum plate.

Otherwise the visible dispersion relations of the FE results show the same behavior

as predicted by the Global Matrix Method.

The difference of the in-plane and out-of-plane results are the same for both repre-

sentations. The out-of-plane results show in general less information than the in-plane

results. The second to fourth Alu-Tape2 modes under the influence of the S0 Alu

mode are not or hardly visible. Further on the fifth and sixth Alu-Tape2 mode close

to the A1 Alu mode bleach out at low frequencies.

Due to the fact that the infinite elements, mentioned in section 3.2.5, don’t absorb

100% of the energy, a small reflection of the first Alu-Tape2 mode can be seen in the

upper left corner of Figures 4.3(a) and 4.3(b). But those reflections do not influence

any of the procedures in this work.
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Figure 4.2: Frequency-wavenumber domain after the 2D-FFT of FE results for
Alu-Tape2 with Alu modes (GMM) as yellow dashed lines.
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4.3 Parametric studies (GMM)

As a next step the GMM and the FEM are used to observe the effect of a change of

one bond parameter at a time on the dispersion relations.

4.3.1 Variation of the adhesive bond thickness

Starting from the material properties of tape 2 (see Table 4.1) with the tape thickness

ht=0.25 mm the first three Tape and Alu-Tape modes are investigated. Figures 4.4

and 4.5 show the first three modes for a tape thickness ht variation from 0.25mm to

0.5mm and 0.75mm. Although a variation of the adhesive bond thickness ht doesn’t

change the wave speeds cL and cT for the tape layer by itself, the influence on the

Alu-Tape modes is significant. With decreasing ht the first mode stays longer under

the influence of the A0 Alu mode. The same relation is valid for the second mode

and the S0 Alu mode. For the second Alu-Tape mode and the A0 Alu mode as

well as for the third and A0, S0 the influence zones shifts to higher frequencies with

decreasing ht. The influence zones in the frequency-wavenumber domain are the high

slope parts where Alu and Alu-Tape modes are very close or even cross each other.

In the slowness-frequency representation the influence zones are represented as local

slowness minima close to the A0 and S0 Alu modes. In the latter representation, the

shift is clearly visible for the second and third Alu-Tape mode in Figure 4.5. In other

words an increase of ht in the double layered plate raises the influence of the single

tape layer. Therefore the Alu-Tape modes follow the Alu modes less. Further on an

increase of the tape thickness also means an increase of the number of modes in the

same frequency-wavenumber window. The corresponding FE results show the same

behavior like described in section 4.2 and can be found in Figures A.1 and A.2 of

Appendix A.
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Figure 4.5: ht variation for Alu-Tape printed for the first three modes.
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4.3.2 Variation of the Young’s modulus

Figure 4.6 pictures the first three modes of a single adhesive bond layer with the

Young’s modulus changing from 1.0 GPa to 0.5 GPa and finally to 0.25 GPa, while

Figure 4.7 shows a change of Et in the same manner for the first three modes of

a double layered plate. In contradiction to a tape thickness change, a variation of

Et changes cL and cT in the Tape. Yet the effects on the dispersion relations look

similar in the first moment. With increasing Et the influence zones shift to higher

frequencies: the stiffer the Tape (the closer the Tape and the Alu are in terms of

stiffness) the longer the combined modes follow the Alu-modes. The wave speeds for

the Tape are higher for higher values of Et. So it is possible to detect this change

for example in the frequency-wavenumber domain (Figure 4.7) between the S0 and

A0 Alu modes. In this region the slope of the second Alu-Tape mode increases with

increasing Et. This relationship is different for a change of ht where the slope stays

the same. The according Figures A.3 and A.4 to this section for the FE results can

be found in Appendix A.

4.3.3 Variation of the Poisson’s ratio

In the last step the influence of the Poisson’s ratio of the adhesive tape νt on the

dispersion relations is examined. Figure 4.8 shows the first six Tape modes for a νt

variation from 0.25 to 0.30 and 0.35. According to those results, Figure 4.9 shows the

first few Alu-Tape modes for three different νt variations. Due to the fact that the

modes themselves don’t change much, it becomes clear that the first two Alu-Tape

modes don’t change at all at low frequencies. One exception is beginning with the

fourth Alu-Tape mode which changes to the third and second Alu-Tape mode after

crossing the S0 and A0 Alu modes. The same behavior is visible in the slowness-

frequency representation. So far the νt variation is only influencing the second gap

41



0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

Wavenumber [1/m]

F
re

q
u
en

cy
[M

H
z]

Et=1.0 GPa
Et=0.5 GPa
Et=0.25 GPa

0 0.5 1 1.5 2 2.5

1

2

3

4

5

6

S
lo

w
n
es

s
[m

s/
m

]

Frequency [MHz]

Et=1.0 GPa
Et=0.5 GPa
Et=0.25 GPa

Figure 4.6: Et variation for Tape printed for the A0, S0 and A1 modes.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
re

q
u
en

cy
[M

H
z]

Wavenumber [1/m]

first three Alu-Tape modes

Et=1.0 GPa
Et=0.5 GPa
Et=0.25 GPa

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

S
lo

w
n
es

s
[m

s/
m

]

Frequency [MHz]

first Alu-Tape mode

Et=1.0 GPa
Et=0.5 GPa
Et=0.25 GPa

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

S
lo

w
n
es

s
[m

s/
m

]

Frequency [MHz]

second Alu-Tape mode

Et=1.0 GPa
Et=0.5 GPa
Et=0.25 GPa

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

S
lo

w
n
es

s
[m

s/
m

]

Frequency [MHz]

third Alu-Tape mode

Et=1.0 GPa
Et=0.5 GPa
Et=0.25 GPa

Figure 4.7: Et variation for Alu-Tape printed for the first three modes.
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along the A0 Alu mode and the third gap along the S0 Alu mode. In the slowness-

frequency representation the slowness minima of the second Alu-Tape with A0 Alu

mode as well as the third Alu-Tape with A0 and S0 Alu mode show an effect of

the νt variation. The same statements are possible for the according FEM results

represented by Figures A.5 and A.6 in Appendix A.
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4.4 Typical waveguide FE (WFE) results

As a last step the waveguide FE method is used for an Alu-Tape plate, where le is

0.02 mm for the aluminum and 0.01 mm in the tape layer. Figure 4.10(a) shows the

frequency-wavenumber relation for this 75 element model while Figure 4.10(b) shows

the slowness-frequency relation. Due to the lower transversal wave speed of the tape

the accuracy window decreases compared to the single aluminum plate case from

Section 3.3.4 (if the same le would be assumed). Otherwise the equations responsible

for the accuracy window ((3.45) to (3.47)) are also valid for the double layered plate.

A clear advantage of this method compared to the global matrix method is the

ability to create the dispersion curves of any periodic structure and not only of layered

plates. For example in [7] a rippled plate and a fluid filled corrugated pipe are

investigated. However, the accuracy is influenced by the element size and the material

properties, and the computational costs are influenced by the mesh size. The use of

materials with very low transversal wave speeds causes a very small accuracy window.

To correct this problem a smaller element size could be used, which would lead to a

much longer calculation time. This is especially critical in this case, where adhesive

bonds with a very low stiffness are used. The global matrix method on the other side

also shows numerical difficulties for materials with very low wave speeds and more

than two layers. Finally, from an inversion point of view, the interface between the

FE-software and the optimization software presents an obstacle and is the reason why

this method is not used in the inversion process of this work.
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Figure 4.10: Waveguide FE results for a 75 element double layered Alu-Tape plate.
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CHAPTER V

CONNECTING FORWARD TO INVERSE

PROBLEM

So far three possibilities to solve the forward problem are presented: the global ma-

trix method, the FE simulation and the waveguide FE method. Depending on the

experiment to be simulated, a frequency-wavenumber representation or a slowness-

frequency representation is obtained. Considering the experimental costs, producing

one transient output signal is the “easy” way. In order to solve the inverse problem

a few parameter sensitive and FE-simulation-visible points have to be chosen as an

input for the inversion procedure. Although the preceding chapter already shows ten-

dencies as to choose these points, this process is iterative and offers lots of different

possibilities. Due to the FE results and the fact that the dispersion relation of the

single layer of aluminum is known the following sets of sensitive points are chosen.

5.1 Frequency-wavenumber representation

As seen in Section 4.3 the crossing points and the gaps of the Alu-Tape modes with

the Alu modes represent a sensitive and visible set of important points. In this case

the wavenumber or the frequency of those points could be chosen to define them. In

other words a projection of the FE results along any Alu mode on the frequency or

wavenumber axis could be represented as a function where the maxima represent the

crossing points and the minima represent the gaps. Figure 5.1 shows this relation.

After comparing the results of this procedure along the first three Alu modes it

becomes clear that the A0 Alu mode for in-plane FE data delivers the best results.

Therefore all further investigations are based on a projection of the 2D-FFT results

46



(in-plane FE data) along the A0 single layer aluminum mode.

Due to the 3D nature of the 2D FFT results of an FE simulation or experiment

the minima for this procedure cannot be achieved with other methods like the GMM

or WFE. These methods represent the frequency as function of wavenumber for every

single mode, which would only produce the maxima for the so far used procedure.

Therefore the procedure to find the minima has to be same for the forward problem

and for the inverse problem. A closer look at this issue is presented in the chapter

for the actual inversion.

5.2 Slowness-frequency representation

In this representation the points that are sensitive to a tape parameter change and

visible have to be found, too. According to the parametric studies and the fact that

the A0 Alu mode is considered, the choice fell on the slowness minima of the Alu-

Tape modes that are closest but above the A0 Alu mode, see Figure 5.1. According

to equations (2.20) and (2.21) for the absence of attenuation those slowness minima

in the slowness-frequency representation are the points of maximum slope for each

Alu-Tape mode crossing the Alu mode in the frequency-wavenumber representation.
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5.3 Adhesive bond parameter influence

Any change in the tape parameters causes a “shift” of the combined Alu-Tape modes

with respect to the single aluminum plate modes. Therefore the tape parameters also

influence the frequency location of the minima, maxima and points of maximum slope.

In order to determine if the selected points are suitable for an inversion procedure, the

influence of the bond parameters on the frequency location of those points is observed.

Therefore one parameter at a time is changed and the changes are examined.

Figure 5.2 shows first a variation of the tape thickness ht from 0.25 mm to 0.5

mm, 0.75 mm and 1.0 mm. This figure represents the expected behavior from Section

4.3. With increasing ht all points shift to lower frequencies. Although the observed

movement with changing ht is similar for all points, it is not linear. Remarkable is

the fact that the sequence of the points stays the same except for the crossing point

and the point of maximum slope for the third Alu-Tape mode, which swap positions.

The second figure shows a variation of the Young’s modulus of the tape Et from

1.0 GPa to 0.75 GPa, 0.5 GPa and 0.25 GPa. With increasing Et all points shift to

higher frequencies and stay in the same sequence.

The third and last figure shows a variation of the Poisson’s ratio of the tape νt from

0.25 to 0.3, 0.35, 0.4 and 0.45. The effect of this change on the points is quite different.

The first point of maximum slope, the minimum between the first and second Alu-

Tape mode and the crossing points of the second and third Alu-Tape mode stay

almost at the same frequencies while the other points move to higher frequencies

with increasing Poisson’s ratio. The crossing point and the point of maximum slope

for the third Alu-Tape mode swap positions. This will be crucial for the inversion

process and presents the reason why an inversion based on multiple transient output

signals is capable to perform a three parameter optimization.
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CHAPTER VI

INVERSE PROBLEM

So far the forward problem is solved with the FEM Simulation in order to model a

real experiment. Further on trends have been observed and based on that a set of

critical points have been selected, whose frequency locations serve as the input for

the inversion procedure. Figure 6.1 summarizes the complete procedure of the inverse

problem. Important parts herein are the algorithm that uses the global matrix method

to back out the necessary sensitive points, the error-function and the optimization

algorithm.

The inversion procedure is applied on two cases. Just like stated in the previous

chapter it would be preferable from an experimental point of view to work with

only one transient output signal. Therefore first the points of maximum slope are
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Figure 6.1: Structure of the forward and inverse problem.
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considered as an input for the inversion procedure. After that the inversion procedure

is applied on the results of a simulation with multiple output points, which allows all

so far identified sensitive points as an inversion input. Afterwards a weaker adhesive

bond and a triple layered plate are discussed.

6.1 Parts of the inversion process

In this section important parts of the inversion procedure will be explained. First

the algorithm that uses the global matrix method to back out the necessary sensitive

points is described. After that the role of the error-function is presented and finally

some facts about the used optimization algorithm are identified.

6.1.1 Computing the sensitive points with the GMM

During one optimization depending on the optimization algorithm up to 300 function

evaluations are performed. Therefore the speed of the algorithm that uses the global

matrix method to back out the necessary sensitive points is crucial. The biggest

influence on the computation time of the global matrix method are the step sizes
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Figure 6.2: Result of the global matrix method for Alu-Tape and Alu.

52



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Frequency [MHz]
S
lo

w
n
es

s
[m

s/
m

]

Alu-Tape
Slowness–minima
A0 Alu

Figure 6.3: Slowness–minima for the first three Alu-Tape modes closest to the A0
Alu mode.

of the frequency and the wavenumber in the scanning approach. Therefore an ap-

proximation based on a previously stored set of 125 values (5 steps for each material

parameter) in between the upper and lower bounds restrict the calculation range in

terms of frequency and wavenumber. For the tape parameters of Tape2 for example

100 frequency steps and 2400 wave number steps are made. After the calculation via

the global matrix method is finished in the approximated frequency and wavenum-

ber ranges, for each frequency the closest point in terms of wavenumber distance to

the actual A0 Alu mode is selected, see Figure 6.2(a). The wavenumber of all these

closest points is then a function of frequency. This function is continuous for every

single Alu-Tape mode and shows a discontinuity in between two modes. In the next

step the absolute value of the difference of this function and the A0 Alu mode (of

the same frequency) in terms of wavenumber is computed and approximated by a

smoothing spline. Figure 6.2(b) shows the new created function which has a mini-

mum at each frequency location where a crossing point exists and a maximum at each

frequency location where a gap would be centered. In other words a gap is located at

that frequency which has a maximal wavenumber difference to the closest solution.

The procedure to find the minima of the 2D-FFT results from a simulation or an

experiment has to be same.
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In the next step the first three continuous functions (representing the first three

Alu-Tape modes) are separated using the frequency location of the gaps. Each func-

tion is fitted with a smoothing spline and equations (2.20) and (2.21) lead to the

slowness-frequency representation. In this representation (Figure 6.3) the slowness

minima of each function represent the point of maximum slope in the frequency-

wavenumber representation, as explained in Section 5.2.

6.1.2 Error-function e

The optimization algorithm tries to minimize the error-function. The error-function

is set up to quantitatively describe how well the result of the global matrix method

matches the frequency location of the prior selected sensitive points from the FE

simulation. Therefore an error-function e which would use all so far identified points

for example is

e =

3∑

i=1

|(fsli)GMM − (fsli)FE| (6.1)

+

2∑

j=1

|(fcrj)GMM − (fcrj)FE| (6.2)

+
3∑

k=1

|(fgak)GMM − (fgak)FE| , (6.3)

where“sl” denotes the points of maximum slope, “cr” the crossing points and “ga”

the gaps. The maximum set of sensitive points along the A0 Alu mode consists of

three points of maximum slope, two crossing points and three gaps. Sections 6.2.1

and 6.2.2 explain the choice of critical points in detail.

6.1.3 Optimization algorithm

Optimization problems can take many iterations to converge and can be sensitive to

numerical problems. Moreover, there is no guarantee that the optimization algorithm

finds the global minimum. Different algorithms have been used to verify the results

and to find the solution to the inverse problem in an efficient way.
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The present problem is in the category of constrained optimizations. The used

algorithm is for medium scale problems, which means that it is based on a line search

as opposed to large scale algorithms which use trust regions. Further on the algorithm

is based on the quasi-Newton method and uses a sequential quadratic programming

(SQP) routine. SQP methods represent the state of the art in nonlinear programming

methods. The method offers the possibility to closely mimic Newton’s method for

constrained optimization just as is done for unconstrained optimization. At each

major iteration, an approximation is made of the Hessian of the Lagrangian function

using a quasi-Newton updating method. This is then used to generate a quadratic

programming (QP) subproblem whose solution is used to form a search direction for

a line search procedure. For further reference the interested reader should consult

[4, 12].

6.1.4 Initial guess, lower and upper bounds

Starting the optimization from a number of different starting points helps to locate

the global minimum. In this case four different starting points (initial guesses) are

used to find a solution and validate the result. A set of results consisting of the three

result parameters Et, νt and ht is only a valid result if the value of the error-function

e reaches a minimum relative to the other three results. In order to validate the

capabilities of the procedure and the chosen set of sensitive points the deviation sum

also has to be a minimum compared to the other three deviation sums. The deviation

sum is the sum of the deviation of each parameter. The deviation σEt
for the Young’s

modulus of the adhesive bond Et for example is the relation of the result value Etout

of the inversion to the input value Etin of the forward problem

σEt
=

|Etout − Etin |
Etin

. (6.4)

The input values for the forward problem are those of Table 4.1. The upper and lower

bounds in Table 6.1 are chosen for different reasons. One reason is the investigated
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Table 6.1: Starting points, lower and upper bounds for the inversion.

Tape Et [GPa] νt ht [mm]

Lower bound 0.25 0.27 0.1

Initial guess 1 0.5 0.3 0.5

Initial guess 2 0.5 0.4 0.5

Initial guess 3 1.2 0.3 0.5

Initial guess 4 1.2 0.4 0.5

Upper bound 1.25 0.44 0.95

range of parameter values in Section 5.3, so that concrete statements are possible. On

the other side the GMM algorithm has to be time efficient, because many inversions,

each with four initial guesses on the values of Et, νt, ht and up to 300 function

evaluations, have to be calculated. Another reason for the values of the bounds is

the fact that the algorithm has to be 100% stable inside those bounds. Stability and

time efficiency create a compromise that is represented in the choice of the upper

and lower bound. The four initial guesses can also be found in Table 6.1. A small

change of ht has usually a relative big influence (see Figure 5.2) on the value of the

error-function, that’s why a variation of ht for the initial guesses is unnecessary.

6.2 Results

Computing the frequency location of the critical points with the FEM and using

the GMM to find the tape parameters based on those values makes the deviation

between both a very critical subject. Table 6.2 shows all so far identified sensitive

points and their frequency location obtained with the FEM and with the GMM.

Further on the frequency difference and deviation for each point is presented. The

deviation for every single point stays below 1 %, although both methods are influenced
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Table 6.2: Frequency locations of the critical points.

Point GMM [kHz] FEM [kHz] △f [kHz] Deviation [%]

fsl1 422.5 420 2.5 0.59

fga1 648.0 651 3.0 0.46

fcr1 749.8 756 6.2 0.82

fsl2 852.0 850 2.0 0.23

fga2 1137.4 1140 2.6 0.23

fsl3 1555.5 1560 4.5 0.29

fcr2 1577.2 1570 7.2 0.46

fga3 1942.4 1950 7.6 0.39

by numerical noise. A too high frequency difference increases the probability that

an other parameter combination is at the global minimum. Therefore all inversion

processes are also tested with GMM results in which case the global minimum is

guaranteed to be at the right parameter combination.

6.2.1 Case of only one transient output signal

Using only one transient output signal provides only the points of maximum slope

as an input for the optimization (inversion) process. Due to this and the fact that

a change in Youngs modulus Et or tape thickness ht have a similar influence on the

frequency location of the points of maximum slope, a full three variable optimization

is not possible. This becomes clear in the optimization results where the set of result

parameters with the smallest deviation sum does not have the smallest value for the

error-function. This behavior can be observed if the set of sensitive points consists of

all three slowness minima or just of the last two slowness minima. Even if the forward
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Figure 6.4: Two parameter optimization path for fsl2 and fsl3 of FEM results.

problem is solved with the GMM instead of the FEM the inversion procedure is not

capable of performing a three parameter optimization.

This limits the case of only one transient output signal to a two parameter op-

timization. Therefore ht is assumed to be known. The best results are obtained

if only the second and third slowness minima of the FEM results are used. For

Etout = 10.0496 GPa and νtout = 0.3535 the deviation sum is only 1.5 %. Figure 6.4

shows the path of this result. Although the figure shows only 18 iteration steps the

process has more than 200 function evaluations.

6.2.2 Case of multiple transient output signals

Using multiple transient output signals provides all three determined sets of sensitive

points as an input for the optimization process. Therefore a full three variable opti-

mization is possible. This is so because the behavior for a change in Et or ht can be

differentiated if more than only the points of maximum slope are used. Considering

this statement and Figure 5.2 especially the use of the second maximum should lead

to good results. Using the second and third point of minimum slope and the sec-

ond crossing point leads to a deviation sum of 7.2 % for the FEM forward problem.

Figure 6.5 pictures the according inversion path with the final values Etout = 9.586
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Figure 6.5: Three parameter optimization path for fsl2, fsl3 and fcr2 of FEM results.

GPa, νtout = 0.3477 and htout = 0.2441 mm. A three parameter optimization is much

harder than the inversion for only two parameters. All presented results are heavily

dependent on the environmental settings (step sizes, lower and upper bounds, fitting

tools, resolution of FE data) for the algorithms. Hence a sensitivity for numerical

noise in the GMM algorithm has the ability to disturb the optimization algorithm.

This also means that the presented results could be improved with an upgraded setup,

fine tuning or more computation power. Further on the surface impedance matrices

of [8] might offer a possibility to create the dispersion relation in a more time efficient

way. Another possibility to reduce calculation time would be to track for example

only the second Alu-Tape mode with an eigenpath analysis [11]. This would lead to

one influence zone on the S0 Alu mode and one influence zone on the A0 Alu mode.

Higher modes would show more influence zones but are also more likely to be damped

out [20].
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6.3 Limits and outlook

The inversion procedure for a double layered plate using an adhesive bond with a

relative high stiffness has been investigated so far. Now a second adhesive bond

with a relatively low stiffness as well as an adhesive bonded triple layer plate are

investigated.

6.3.1 Lower stiffness adhesive bond

Figures 6.6 and 6.7 show the results of an FE simulation for a double layered plate

using tape 1 called ”Alu-Tape1”. Tape 1 has a significantly lower stiffness than tape 2

while the Poisson’s ration is very high, see Table 4.1. The number of modes in the

same frequency-wavenumber window increases. Alu-Tape2 shows three and a half

modes along the A0 Alu mode up to 2.5 MHz while Alu-Tape1 shows five in the same

frequency range. The parts of low slope don’t even show up. Hence it’s possible

to say that the Tape1 influence on the Alu-Tape1 modes is very small. The stiffness

difference becomes also clear if the transition zones are compared. A transition zone is

the area on both sides of an Alu mode where the influence of the Alu on the Alu-Tape

modes vanishes, in other words where the Alu-Tape mode changes from a generally

low slope to a higher slope that is comparable with the slope of the Alu mode. The

transition zones are much more distinct for Alu-Tape2, they almost vanish at higher

frequencies for Alu-Tape1.

All those differences between Alu-Tape1 and Alu-Tape2 influence the possibility

of an inversion procedure. The inversion will be much harder for a Alu-Tape plate

with Tape1 as an adhesive bond. One reason is that the crossing points are hard

to identify because the Alu-Tape modes and the Alu modes almost have the same

slope in the higher slope parts. The gaps are clearly visible in the A0 Alu mode

for the in-plane velocity component. The slowness minima are also present although

numerical noise could cause variations in the inversion results.
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Even though the inversion of Alu-Tape1 seems to be feasible for FE results it is

also an example of the limits of the inversion procedure. If properties of the adhesive

bond and the adherent are too different an inversion as suggested in this work becomes

more and more difficult.

6.3.2 Triple layered plate

The investigation of double layered structures was successful so far. Triple layered

structures though have more application possibilities. Figures 6.8 and 6.9 depict the

FE results for a triple layered plate using Tape2 to connect two aluminum plates.

Both representations look different from the double layer Alu-Tape2 figures (4.2 and

4.3). The main difference is the fact that always two modes follow one Alu mode,

while there is only one mode following an Alu mode for the Alu-Tape. The number

of modes for example along the A0 Alu mode almost stays the same, but the Alu-

Tape modes follow the Alu mode generally longer than for the two layered plate. For

example the frequency for the first mode to leave the A0 Alu mode is around 1.1 MHz

for the triple layer plate while it is 0.6 MHz for the double layer plate.

Considering the inversion procedure the set of sensitive points used for the double

layer plate could not be transferred to the triple layer plate. First of all there are

no real gaps along the Alu modes. The crossing points and the slowness minima are

affected by the fact that two modes follow one Alu mode. Therefore the detection

of the slowness minima gets more difficult. For the case of the triple layer plate

more advanced sensitive points, like asymptotic expressions, have to be found and

examined.
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Figure 6.6: Frequency-wavenumber domain after the 2D-FFT of FE results for
Alu-Tape1 with Alu modes (GMM) as yellow dashed lines.
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Figure 6.7: Slowness-frequency domain after the STFT of FE results for Alu-Tape1
with Alu modes (GMM) as yellow dashed lines.
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Figure 6.8: Frequency-wavenumber domain after the 2D-FFT of FE results for a
triple layered plate (Tape2 in the middle) with Alu modes (GMM) as yellow dashed
lines.
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Figure 6.9: Slowness-frequency domain after the STFT of FE results for a triple
layered plate (Tape2 in the middle) with Alu modes (GMM) as yellow dashed lines.
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CHAPTER VII

CONCLUSION

The goal of this work is to use numerical methods to quantify the material properties

of a hidden layer of adhesive bond (tape). The Young’s modulus Et of the tape, the

Poisson’s ratio νt of the tape and the tape thickness ht are examined. First, three

methods are presented that are able to solve the forward problem. The methods

include the global matrix method, the finite element simulation and the waveguide

FE method. The result of the forward problem is always a dispersion relation in the

form of a frequency-wavenumber or slowness-frequency domain.

In the next step the effects of a parameter change on the dispersion relations

are investigated. Based on this and in order to connect the forward and the inverse

problems a set of tape parameter sensitive points is identified as input for the inversion

procedure. The finite element method and signal processing tools are used to simulate

an experiment and create the results on which the input for the inversion procedure

is based.

The inversion itself uses the global matrix method to find a set of parameters

for which the frequency location of the critical points is equal to the input values.

With respect to experimental practices, the capabilities of the inversion process are

presented. Depending on the number of transient output signals, it is possible to

solve the inverse problem for two or even three parameters. In detail this means that

the two parameter optimization based on only one transient FE signal shows reliable

results with a deviation sum of only 1.5 % for Et and νt. The three parameter

inversion procedure including ht and based on multiple transient output signals is

more complicated, but also shows a deviation sum of only 7.2 % in the best case.
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Further on, an experimental verification of these results as well as the application

of this procedure for layered media with more than two layers appears to be feasible.

The global matrix method and therefore the inversion process so far is limited to

canonical geometries. A larger range of applications could be investigated with a

similar time efficiency by using the waveguide FE method in the inversion.

Recommendations for future research would include using a viscoelastic material

for the tapes. Further on the suggested procedure could be transferred to plates

with more than two layers, which would involve finding new critical points. Another

approach would be the implementation of the waveguide FE method in order to

solve the inverse problem for more complicated structures. This would also include

connecting the FE software with the optimization software. Finally an experimental

verification especially for the higher stiffness tape would be able to show the hands-on

capabilities of the procedure.
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APPENDIX A

PARAMETRIC STUDIES (FEM)
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Figure A.1: ht variation for in-plane FEM results of Alu-Tape with Alu modes
(GMM) as yellow dashed lines.
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Figure A.2: ht variation for out-of-plane FEM results of Alu-Tape with Alu modes
(GMM) as yellow dashed lines.
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Figure A.3: Et variation for in-plane FEM results of Alu-Tape with Alu modes
(GMM) as yellow dashed lines.
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Figure A.4: Et variation for out-of-plane FEM results of Alu-Tape with Alu modes
(GMM) as yellow dashed lines.
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Figure A.5: νt variation for in-plane FEM results of Alu-Tape with Alu modes
(GMM) as yellow dashed lines.
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Figure A.6: νt variation for out-of-plane FEM results of Alu-Tape with Alu modes
(GMM) as yellow dashed lines.

73



REFERENCES

[1] ABAQUS, Inc., ABAQUS Documentation, Version 6.5, 2006.

[2] Achenbach, J. D., Wave Propagation in Elastic Solids. Amsterdam: Elsevier
North–Holland, 1984.

[3] Alleyne, D. and Cawley, P., “A two-dimensional Fourier transform method
for measurement of propagating multimode signals,” J. Acoust. Soc. Am., vol. 89,
no. 3, pp. 1159–1168, 1991.

[4] Fletcher, R., Practical methods of optimization. New York: John Wiley and
Sons, 2 ed., 1987.

[5] Graff, K. F., Wave Motion in Elastic Solids. Dover Press, Inc., 1975.

[6] Heller, K., Jacobs, L. J., and Qu, J., “Characterization of adhesive bond
properties using lamb waves,” NDT & E International, vol. 33, pp. 555–563,
2000.

[7] Herrmann, J., “Numerische Analyse von Dispersionseigenschaften in fluidbefu-
ellten Wellenrohren,” in German, Diploma thesis, University of Stuttgart, 2006.

[8] Hosten, B. and Castaings, M., “Surface impedance matrices to model the
propagation in multilayered media,” Ultrasonics, vol. 41, pp. 501–507, 2003.

[9] Hosten, B. and Castaings, M., “FE modeling of lamb mode diffraction by de-
fects in anisotropic viscoelastic plates,” NDT & E International, vol. 39, pp. 195–
204, 2006.

[10] Mace, B. R., Duhamel, D., Brennan, M. J., and Hinke, L., “Finite
element prediction of wave motion in structural waveguides,” J. Acoust. Soc.
Am., vol. 117, pp. 2835–2843, 2005.

[11] Maess, M., Wagner, N., and Gaul, L., “Dispersion curves of fluid filled
elastic pipes by standard FE models and eigenpath analysis,” Journal of Sound
and Vibration, vol. 296, pp. 264–276, 2006.

[12] MathWorks, Inc., Matlab 7.0.4.354(R14) - Optimization Toolbox 3.0.2, 2005.

[13] Mindlin, R., “Waves and vibrations in isotropic, elastic plates,” in Structural
Mechanics, Proceedings of the first symposium on naval structural mechanics,
pp. 199–232, 1958.

74



[14] Moser, F., Jacobs, L. J., and Qu, J., “Modeling elastic wave propagation
in waveguides with the finite element method,” NDT & E International, vol. 32,
no. 4, pp. 225–234, 1999.

[15] Niethammer, M., Jacobs, L., Qu, J., and Jarzynski, J., “Application
of time-frequency representations to characterize ultrasonic signals,” master’s
thesis, Georgia Institute of Technology, August 1999.

[16] Oppenheim, A. V. and Schafer, R. W., Discrete-Time Signal Processing.
Upper Saddle River, N.J.: Prentice–Hall, 1999.

[17] Pavlakovic, B. and Lowe, M. J. S., Disperse, A system for Generating
Dispersion Curves, Version 2.0, 2000.

[18] Rose, J. L., Ultrasonic Waves in Solid Media. Cambridge University Press,
1999.

[19] Rose, J. L., Zhu, W., and Zaidi, M., “Ultrasonic NDT of titanium diffusion
bonding with guided waves,” Materials Evaluation, vol. 56, no. 4, pp. 535–539,
1998.

[20] Seifried, R., Jacobs, L. J., and Qu, J., “Propagation of guided waves in
adhesive bonded components,” NDT & E International, vol. 35, pp. 317–328,
2002.

[21] Valle, C., Guided circumferential waves in annular structures. PhD thesis,
Georgia Institute of Technology, Atlanta, Georgia, 1999.

[22] Valle, C., Niethammer, M., Qu, J., and Jacobs, L. J., “Chrack charac-
terization using guided circumferential waves,” J. Acoust. Soc. Am., vol. 110,
pp. 1282–1290, 2001.

[23] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method. Oxford:
Butterworth–Heinemann, 2000.

75


