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ABSTRACT
Objects within human environments are usually found on
flat surfaces that are orthogonal to gravity, such as floors,
tables, and shelves. We first present a new assistive robot
that is explicitly designed to take advantage of this common
structure in order to retrieve unmodeled, everyday objects
for people with motor impairments. This compact, stati-
cally stable mobile manipulator has a novel kinematic and
sensory configuration that facilitates autonomy and human-
robot interaction within indoor human environments. Sec-
ond, we present a behavior system that enables this robot to
fetch objects selected with a laser pointer from the floor and
tables. The robot can approach an object selected with the
laser pointer interface, detect if the object is on an elevated
surface, raise or lower its arm and sensors to this surface,
and visually and tacitly grasp the object. Once the object
is acquired, the robot can place the object on a laser des-
ignated surface above the floor, follow the laser pointer on
the floor, or deliver the object to a seated person selected
with the laser pointer. Within this paper we present initial
results for object acquisition and delivery to a seated, able-
bodied individual. For this test, the robot succeeded in 6
out of 7 trials (86%).

1. INTRODUCTION
In this paper we present our platform El-E (Elevated - En-
gagement), a robot designed around two key innovations.
First, El-E is equipped with a laser pointer interface that
detects when a user illuminates a location with a green laser
pointer and estimates the 3D location selected by this“point-
and-click”. This enables a user to unambiguously commu-
nicate a 3D location to the robot with modest effort, which
provides a direct way to tell the robot which object to manip-
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ulate or where to go. Second, El-E is able translate its ma-
nipulator and associated sensors to different heights, which
enables it to grasp objects on a variety of surfaces, such
as the floor and tables, using the same perception and ma-
nipulation strategies. This effectively takes advantage of a
common symmetry found within human environments that
has likely evolved due to people’s desire to place objects in
stable configurations. Smooth flat surfaces that are orthog-
onal to gravity are rarely found outdoors, but are nearly
ubiquitous in built-for-human environments.

To use our robot helper, the human points at an item of
interest and illuminates it with an unaltered, off-the-shelf,
green laser pointer. The robot then moves near the perceived
3D location using the laser range finder. If the location is on
the floor, the robot will attempt to grasp the object. If the
location is not on the floor, the robot uses the laser range
finder to scan for an elevated surface. Once the elevated sur-
face is found the robot docks with the surface and attempts
to grasp the object. In both cases grasping is accomplished
through a combination of visual segmentation and tactile
sensing. After successfully grasping and lifting an object,
the robot will await a command from the user. If the user
illuminates him or herself with the laser pointer, the robot
will deliver the object. If the user illuminates a table, the
robot will place the object on the table. If the user illumi-
nates the floor near the robot, the robot will follow the laser
pointer.

2. MOTIVATION
Autonomous mobile robots with manipulation capabilities
offer the potential to dramatically improve the quality of
life for people with motor impairments. With over 250,000
people with spinal cord injuries and 3,000,000 stroke sur-
vivors in the US alone, the impact of affordable, robust as-
sistive manipulation could be profound [3, 4]. Moreover, as
is often noted, the elderly population worldwide is increas-
ing substantially as a percentage of overall population, and
there are over 16,000,000 people currently over the age of
75 in the US [16] . This aging population creates a real
need for affordable, robust robotic assistance, since 20% of
people in the US between 75 and 79 years of age have been
shown to require assistance in activities of everyday living,



and this percentage increases precipitously with age, with
50% of people over 85 years of age requiring assistance [1].

Currently, this assistance is most often provided by a human
caregiver, such as a spouse or nurse, which reduces privacy
and independence, and often places a heavy burden on a
loved one or entails high costs. Highly trained animals, such
as service dogs or helper monkeys, can also provide physical
assistance, but they come with a host of other complications,
including high costs ($17000-$35000), difficult training, reli-
ability issues, and their own need for care [2, 10].

As members of the Healthcare Robotics Lab at Georgia
Tech, we are working to develop assistive, autonomous mo-
bile manipulators that can meet the needs of people with
motor impairments in a manner similar to helper animals
and human assistants. We consider object fetching to be
an especially important area for research, since people with
motor impairments have consistently placed a high priority
on the ability to retrieve objects from the floor and shelves
[19], and since object fetching is a fundamental capability for
autonomous robot manipulation upon which future assistive
applications could be built.

Trained helper monkeys for quadriplegics serves as an inspi-
ration for our research. People direct these monkeys using
a laser pointer and simple words. This style of interaction
helped inspire our design, and helps validate the feasibility
of our robot’s interface from a usability stand point. With
helper monkeys, a quadriplegic can operate the laser pointer
with his or her mouth, but other interfaces would also be
possible, such as a joystick or sip-and-puff interface to a ser-
voed laser pointer. When discussing his life before he had
a helper monkey, Chris Watts, a quadriplegic, stated in an
interview with CBS, ”If I dropped the phone on the floor,
if I dropped my water on the floor, or I dropped my pills
or any of those kinds of things, they stayed on the floor un-
til someone came home,” [22]. For many people with ALS
or spinal cord injuries, the retrieval of dropped objects is a
significant concern and a frequent need.

3. ROBOT DESIGN
The robot, El-E, is primarily constructed from off-the-shelf
components as seen in Figure 1. Its mobile base is an ER-
RATIC platform from Videre Design, which includes an on-
board computer with a Core Duo processor and 1 GB of
memory with which the robot performs all its computation.
The computer runs Ubuntu GNU/Linux and we have writ-
ten most of our software with Python and occasionally C++.
We also make use of a variety of open source packages in-
cluding SciPy, Player/Stage and OpenCV.

The ERRATIC base has differential drive steering with two
wheels and a caster in the back. Attached to the center of
the ERRATIC base is a 1-DoF linear actuator built from a
Festo DGE-25-900-SP-KF-GV, which uses a ball screw, and
an Animatics SM2315DT servo. This linear actuator, which
we refer to as the zenither, raises and lowers an aluminum
carriage containing sensors and actuators in order for the
robot to interact with objects at various heights. The servo
drives the carriage platform using either torque or position
commands. Mounted on this carriage is a 5-DoF Neuronics
Katana 6M manipulator with a two finger gripper containing

Figure 1: An image of the entire mobile manipulator
with the integrated interface system (i.e. the robot’s
head)

Figure 2: The laser pointer interface is integrated
into the robot’s head. It consists of an omnidirec-
tional camera (bottom half) and a pan/tilt stereo
camera (top half).

force and IR sensors.

On a downward extension of the carriage, we mounted a
Hokuyo URG laser scanner. The URG scans at a height
of 2cm above any flat surface on which the carriage is op-
erating. We mounted a color, eye-in-hand camera, 150◦

diagonal FoV, at the arm’s wrist just behind the gripper.
We use the URG and the eye-in-hand camera together for
grasping as described in section 4.4. As shown in Figure 2,
a monochrome camera, 52◦ diagonal FoV, a narrow band
green filter (532nm, 3 nm bandwidth), and a catadioptric
mirror are mounted on top of the zenither. This arrange-
ment is used to detect targets designated by a green laser
pointer. Above the catadioptric mirror on a 2-DoF pan/tilt
unit we mounted a stereo rig composed of two synchronized
color cameras, 52◦ diagonal field of view (FoV). We used
FireFly MV cameras from Point Grey Research for both the
monochrome and color cameras.

In total, the robot weighs approximately 38.6 kg and the top
of its stereo pair reaches to a height of 1.70 meters above the



ground. During construction, the majority of the robot’s
weight was intentionally concentrated in its base to assure
stability even in the case where the arm is stretched out and
its carriage has been raised to the highest possible point.
In this configuration the robot can be tilted approximately
10 degrees from upright without tipping over. With the
platform raised 3mm from rest–the prefer ed configuration
for locomotion–this threshold is increased to 13 degrees. The
robot has a total of 11 degrees of freedom and moves at
roughly 0.5 meters per second although the maximum speed
is 2.0 m/s. The zenither moves at a rate of 0.2 m/s in ascent
and 0.46 m/s in decent. Movement of the zenither allow
laser scans as low as 2.0 cm and as high as 92.5 cm from the
ground to be made.

Currently there are two sources of on-board power: a 12V
battery bank and a 24V battery bank. The ERRATIC is
capable of supplying 5V for the URG and pan/tilt unit and
19V for the computer. The 24V bank powers the Katana
controller and the zenither. The robot is fully untethered
and self-powered, and only uses on-board computation.

4. IMPLEMENTATION
This section describes several key components we have im-
plemented to give the robot the ability to fetch objects au-
tonomously. We describe how a user can specify a 3D lo-
cation to the robot with a laser pointer. Then we describe
how the robot navigates using the specified 3D location. We
show a method for finding flat surfaces such as table tops
which allows the robot to reuse a single grasping controller.
We describe the grasping controller, and finally explain how
the robot delivers a grasped object to the user.

4.1 3D Estimation for the Laser Pointer Inter-
face

As seen in Figure 4, having the robot retrieve an object be-
gins with the 3D estimation of a laser point. Our estimation
process consists of three stages:

1. Detect the laser spot using the omnidirectional camera.

2. Look at the laser spot using the stereo pair.

3. Estimate the spot’s 3D location by detecting corre-
sponding points in the stereo pair.

As shown in Figure 2, the omnidirectional camera consists
of a monochrome camera with a 40◦ medium angle lens that
looks at a mirror. As seen in figure 3, the resulting catadiop-
tric camera has a view of approximately 115◦ in elevation
and 240◦ degrees in azimuth with a blind spot in the rear.
The camera views the floor in front of the robot, almost
to the tops of the walls around the robot. After a laser
spot is detected by the omnidirectional camera, the pan/tilt
stereo camera with narrow-angle lenses (40◦, 30◦ vertical)
is pointed at the spot. Once the stereo camera looks at
the laser spot, it performs a detection in each camera and
estimates the 3D location that corresponds to the pair of
stereo detections. The details of this interface’s operation
are described in detail in [11].

We mounted this interface at approximately the height of an
average person (1.6m), see Figure 1. This is well-matched to

Figure 3: Left, the manipulator workspace shown in
green along with the catadioptric camera’s field of
view. Right, vertical field of view of the stereo and
catadioptric camera.

Figure 4: Object Retrieval Process

human environments, where objects tend to be placed such
that people can see them.

4.2 Moving to the Object
For navigation, we use a two step reactive control technique
used traditionally for controlling mobile robot bases as in
[5]. We use a combination of repulsive potential fields in-
duced by obstacles perceived by the laser range finder and
an attractive potential field centered at the laser point to
get close to the location indicated by the user. From the
3D laser point estimation process, the robot now possesses
a point indicated by the user in the ERRATIC’s base frame
or pbase

l . After a point is detected, the robot enters the two
step process indicated by the bold diamond in Figure 4. The
robot drives toward pbase

l until it is within 1.0m. Then the
user makes a second selection of the object. This is done to
ensure odometric errors do not corrupt the perceived loca-



tion of pbase
l . The robot selects a behavior to retrieve objects

on the floor if the point is less than 0.3 meters in height,
as shown in Figure 5. Otherwise the robot switches to its
“grasping on elevated surface” behavior, shown in Figure 6
— the process of detecting the height of the flat surface and
docking is described in section 4.3.

In both the case of elevated surface and floor manipulation,
our system continues onto the second step of driving using
its laser range finder and pbase

l to enhance estimation of the
object’s true location. Each laser scan is first processed to
find connected components. From this set of connected com-
ponents we remove components that are either too small or
too large, then weight the elements using N(pbase

l , σ). In the
last step, the group’s centroid with the highest weight is then
selected as the true object location. This selection process
is then carried out at every time step to guide an attrac-
tive potential field whose influence stops at 15cm away from
the object. At this point, our robot executes its grasping
controller.

With the above two step driving procedure our system uses
information from the laser scanner and natural user interac-
tion to overcome errors from odometry as well errors inher-
ent in the stereo estimation process for laser points that are
far away. By basing decisions such as whether to manipu-
late on the floor or table, and which object to manipulate
only on accurate stereo points estimated at relatively close
ranges (around 1.0 m) our robot is able to mitigate most
sources of errors that would otherwise cause it to fail.

There is significant interest in extracting planar surfaces
from 3D data for improved 3D reconstructions of human
environments [6, 9, 23, 21, 12, 20]. Unlike datasets used
in previous works, 3D scans provided through the combina-
tion of our robot’s zenither and its laser range finder does
not provide readings of surfaces themselves but only of their
boundaries. Since existing techniques depend on flat sur-
faces having many supporting points, we have developed a
method for detecting surfaces whose edges are the only ob-
servable components. Moreover, we use this approach to de-
tect the task-relevant feature of the edge of the table, which
subsequently is directly used as part of a behavior that ser-
vos to the table. This is very different from a traditional
reconstruction approach to perception.

4.2.1 Surface Detection
The system starts out by using the zenither to move the
URG laser scanner from a height of 2cm to 92cm. A 3D
scan is obtained by registering the 2D URG scans with the
corresponding zenither height. After obtaining a 3D scan,
we calculate a function whose maximum should give us the
height of the planar surface. As the laser scanner updates
only at 10 hz, we perform this procedure twice. In the first
pass we move the zenither up quickly over its full range
of motion. Using this scan the robot calculates an initial
estimate of the surface’s height, h∗

1. In the second scan, the
zenither is moved slowly over the interval [h∗

1 − 5 cm, h∗

1 +
5 cm] to calculate a more accurate estimate h∗

2.

The 3D laser scan is represented by the function l(θ, z) which
yields a range reading for each angle θ and elevation z. To
process these full 3D scans, first, for each horizontal scan

made by the laser we extract a set of connected compo-
nents, defined as a set of consecutive points in a scan within
3cm of the neighboring point. Each connected component is
treated as a possible planar surface hypothesis h composed
of (θstart, θend, z) where θstart is the angle in the scan at
which the connected component starts, θend is the angle at
which it ends, and z the height at which the scan was made.
Collectively, these hypotheses form the set of hypotheses H.
The best hypothesis, h∗

∈ H, is then given by:

h
∗ = argmax

h∈H

r
2
µ(h)Fz(h)Fθ(h)fp(h) (1)

The above expression is a product of the three features
Fz(h), Fθ(h), and fp(h) with the term rµ(h) being the av-
erage range reading returned by the function l(θ, z) for all
θk ∈ [θstart, θend] of a given hypothesis h. This term corrects
the score so that far away hypotheses having fewer laser scan
hits than hypotheses closer to the robot are not penalized
unfairly. We now give motivations and precise definitions
for the remaining terms used in equation (1).

We observed that while scanning upward, most planar sur-
faces induces a step function in the laser’s range readings.
Using this, we can define our first feature as:

fz(θ, z) = min(max(
∂l

∂z
l(θ, z), 0), 0.5 m) (2)

The term ∂l
∂z

l(θ, z), gives derivatives with respect to the
height variable z, which consists of 655 values in all when
using the URG laser scanner. The lower bound of 0.0 makes
sure that we are only measuring an increase in the amount of
free space observed. The upper bound, with an empirically
determined value of 0.5 meters, is also important as other-
wise the feature would overly prefer surfaces that are either
far from a wall or close to the robot. Integrating fz(θ, z)
over θ, we obtain an expression that measures the degree of
increase in freespace over a range of angles:

Fz(h = (θstart, θend, z)) =

Z θstart

θend

fz(θ, z)dθ (3)

We define for the second feature a measure of the degree of
how smoothly the range readings of a hypothesis varies as a
function of θ:

fθ(θ, z) = 1 −
1

K

∂2l

∂θ2
l(θ, z) (4)

With normalization constant K defined as:

K = max
θ,z

∂2l

∂θ2
l(θ, z) (5)

Similar to the first case, after integration, (4) results in
Fθ(h = (θstart, θend, z)). The third feature, fp(h), measures
the minimum distance between the hypothesis and the user
designated laser point. Assuming that the function L(θ, r, z)
takes a range reading r made by the laser scanner into Eu-
clidean space, the third feature we define as:

fp(h) = max
θk∈[θstart,θend]

N(L(θk, rk, z); pbase
l , Σ) (6)

With the function N(µ, Σ) the probability density function
of a 3D Gaussian having mean µ and variance Σ. In our
system, Σ is set to be 20I cm with I being a 3x3 identity
matrix.



Figure 5: Sequence to pick an object off the floor.

Figure 6: Sequence to pick an object off a table.

Figure 7: Using the zenither the robot is able to
scan for a table. Once the table with the object is
found, the robot servos to the table by aligning itself
with the edge.

Using the above features the algorithm then finds the best
hypothesis h∗ with (1). To fix this, values of (3) are normal-
ized by dividing values of Fz(h) by its maximum value over
H fixing its range to lie in [0, 1].

4.3 Finding Flat Surfaces
4.3.1 Servoing to Surface’s Edge
After having detected the top edge of the surface supporting
the object indicated by the user. Our robot drives forward,
with its laser range finder set at exactly h∗

2, stopping when
the surface is within, an empirically determined, 12 cm of
the laser scanner. At this point the laser scanner is moved
up to clear the surface. Together the 3D scan acquisition
and the servoing to the surface’s edge compose the docking
behavior as seen in Figure 7. After this step, our system

then continues on by driving towards the closest connected
component to the user designated 3D laser point; however,
the robot’s behavior is slightly modified compared to the
case of manipulation on the floor to prevent it from moving
farther forward if the zenither is within a small threshold
distance of the laser scan at the height where the second
planar hypothesis h2∗ was found. Finally, after reaching the
object using centroids of connected components sensed by
its laser scanner, the robot lowers its sensor carriage so that
contact can be made with the surface. At this point the
same grasping behavior as was used on the floor is started.

4.4 Manipulating on Flat Surfaces
The robot grasps objects by aligning the gripper above the
object with the fingers in a suitable orientation and then low-
ering the gripper onto the object. We describe this method
in section 4.4.1. The position and orientation of the object
is determined by visual segmentation using the eye-in-hand
camera as explained in section 4.4.2

4.4.1 Overhead Grasping Behavior
Similar to recent works by [17, 13, 15] our system is able to
grasp a variety of unmodeled objects. In contrast to [17],
which uses a machine learning algorithm trained on syn-
thetic data generated from object models to locate grasp
points on objects in uncluttered environments, our system
does not require any training prior to use. Our method also
provides an orientation in addition to a grasp position, and
makes use of tactile sensing. Work by [13], demonstrates



that haptic feedback on manipulators coupled with simple
behavioral controllers can enable successful robot grasping
for some objects without the need for elaborate geometric
models. Unlike our system, this work uses a stationary plat-
form, but more sophisticated tactile sensors.

Our overhead grasping behavior starts with orienting the
robot arm such that the eye-in-hand camera is 30cm above
the plane surface at the location of the object to be grasped,
as estimated by the laser range finder. The eye-in-hand cam-
era is rigidly mounted to the last link of the robot arm. At
this stage, the last link is oriented vertically and the pixels
at the center of the image from the eye-in hand camera cor-
respond to rays that are approximately orthogonal to the
planar surface over which the robot arm is operating.

Centering the expected object in the camera ensures that
the center of the field of view of the camera is overlapping or
very near the object to be grasped. This also minimizes 3D
projection effects, allowing the system to approximate the
problem by treating it as a 2D image processing problem.

After the eye-in-hand camera is positioned vertically above
the object to be grasped, we perform visual segmentation
on the image captured from the eye-in-hand camera. This is
done to refine the estimated position of the object and de-
termine the orientation of the gripper. After visual segmen-
tation, the gripper moves to the appropriate position and
orientation and then descends vertically down for an over-
head grasp. During the descent, the last link of the robot
arm is not constrained to be in a vertical orientation. This
increases the workspace of the robot arm and permits vari-
ation in relative position of the mobile base and the object
(section 4.2). The descent stops when either an IR sensor
on the wrist of the gripper (between the two fingers) detects
an object, or IR sensors on the finger tips detect a possible
collision with the surface or the object. The gripper closes
until pressure sensors give high enough readings or the fin-
gers are close to each other. The robot arm then lifts the
object by 4cm to test whether the grasp was successful or
not. If the pressure sensors in the fingers indicate that no
object is present, the system perceives a grasp failure.

4.4.2 Visually Segmenting Objects
The visual segmentation results in a 2D ellipse that repre-
sents the object. The center of this ellipse and the angle of
its major axis are used to position the gripper above the ob-
ject with the gripper oriented to span the object’s minimum
cross-section.

Our method of visual segmentation closely resembles the ap-
proach used by Carson et al’s for their work on Blobworld
[7]. Flat indoor surfaces tend to have uniform color and tex-
ture over large areas. By observing an object from above,
the appearance of a surface is more likely to surround and
delineate the object. Moreover, the texture will not suffer
from perspective effects from this camera angle, so we do
not need to use remove perspective effects through the use
of a homography. Finally, due to the initial segmentation of
the object along the plane by the laser rangefinder, we can
expect part of the object to be in the center of the image.
We take advantage of this structure by using EM to fit a
mixture of Gaussians model with two modes to a set of fea-

Figure 8: Different steps of the visual segmentation:
image captured by the eye-in-hand camera, classifi-
cation of each pixel with respect to object and back-
ground gaussians, morphological processing to clean
up the image and modeling the segmented region
with a 2D gaussian (red ellipse).

Figure 9: Collection of sample images and segmen-
tation results.

ture vectors. Each feature vector has six dimensions which
consist of a pixel’s location in the image, hue, saturation,
and three texture features describing a small region around
the pixel.

We initialize both of the Gaussians to have the same mean
such that they are spatially located at the center of the im-
age. We also set one of these Gaussians to have a small mix-
ture weight and low variance, and the other to have a high
mixture weight and high variance. This biases these two
modes to represent the object and the background, respec-
tively. After using EM, we go back and categorize the entire
image with respect to the object and background Gaussians,
perform morphological processing to clean up the resulting
binary image, and select a connected component that is close
to the center of the image and above a threshold size. Fi-
nally, we model the spatial distribution of this segmented
region with a 2D gaussian, which provides the input to the
grasping behavior, as described previously.

4.5 Delivery
After a successful grasp has been confirmed, the system will
back away from the table 40cm and turn 180◦. As in Fig-
ure 10, the robot begins waiting for a laser pointer detec-
tion. The user’s laser command shows the robot where to
look and the robot confirms the user’s presence. To do this,
the robot orients its stereo camera in the direction of the
laser detection and uses a Viola-Jones frontal face detector
as implemented in OpenCV in a manner similar to [8] to
determine whether or not a person is near the laser desig-
nated location [14]. As mentioned earlier in Section 4.2, a
two step process is used to combat compounding odometric



Figure 10: Object Delivery Process

error and the absence of a map. If the laser point is farther
than 1.0m away, the robot drives toward that location as in
section 4.2, detects a second laser indication, and checks for
a face; this two step process is indicated the bold diamond
in Figure 10. If in the first or second step the robot deter-
mines the distance between the face and the laser detection
is below 1.0m, the robot uses the same technique as in 4.2
to navigate to 35cm from the user to deliver the object.

If the detected face is not close to the given laser point, the
robot will make a decision based on the perceived height
of the laser detection. If it is higher than 30cm the robot
will initiate the sequence to dock and deliver the object on
the table. If it is lower, then the robot assumes that it
is to follow the laser pointer. After delivering the object,
the robot execute a scripted path that places it next to the
person and looking in the same direction, the process then
repeats. The advantage of such a system is in the ability for
the user to dynamically specify what operations the robot
should perform.

By detecting the person’s face during delivery, our robot is
able to maintain a specified distance from the user. Even
though these actions are not planned in advance but arise
from the behavioral navigation system, the spirit of main-
taining this constraint is similar to work by [18] where robots
plan paths that optimize the comfort, safety, and visibility
of the action. However, in contrast to this work, our sys-
tem is implemented on a real robot, and does not require
estimation of the full 3D configuration of the human’s body.

5. RESULTS
To test the effectiveness of our robot in manipulating ob-
jects on different surfaces we performed an object retrieval
experiment. We chose some common objects to include in
the experiment: two vitamin bottles, a football, a medicine
box, and a bottle of soy milk. Figure 12 shows the objects
that we used for the experiment, and Figure 13 shows the
overall setup. We placed two objects each on the floor, a
low table, and a higher table. A lab member was seated on
the chair and selected an object using a laser pointer. The
robot would grasp the selected object and deliver it to the
lab member in the chair.

Figure 11: Plot of 3D scan where the user selected
the lower table. The surface detected is outlined in
blue; the circular green point is the detected loca-
tion of the user’s laser pointer.

Figure 12: Six objects used in the experiment.

Table 1 shows the results of the experiment. It shows the
performance of the robot for the three main components of
the object retrieval task: approach, grasping, and delivery.
Approach refers to correctly navigating to the selected ob-
ject, including correct detection of the laser point, deciding
whether the selected object is on the floor or on a higher flat
surface, estimating the height of the surface, and approach-
ing the object such that it is in the manipulable workspace
of the robot arm. The second component, grasping, includes
visual segmentation to determine the orientation of the ob-
ject and then actually picking up the object. Delivery refers
to returning the grasped object back to the person sitting
in the chair.

The robot was able to successfully navigate itself so that the
correct selected object is in its grasp controller’s workspace
in six out of seven trials (86%). The only failure occurred
due to incorrect estimation of the table’s height; the rest of
the trial was aborted. A successful example of 3D scanning
and surface detection can be seen in Figure 11. Grasping
was successful in six out of six trials (100%), and delivery
of the object to the person in the chair was also successfully
completed in six out of six trials.

6. CONCLUSION
In this paper we have presented an assistive robot designed
to increase quality of life for motor impaired users by helping
to retrieve a wide variety of unmodeled objects from the floor
or a table and return them to the user. We designed the
system to exploit the prevalence of flat planar surfaces such
as floors, tables, counter tops, and shelves typically found in
human environments. We demonstrated that this ubiquitous
structure, to which humans are so accustom, affords a robot
useful opportunities for control and perception.

As our results indicate, the current robot system can suc-
cessfully retrieve objects from the floor and tables. How-
ever, further work will be required to robustly extend these
capabilities to cluttered environments, novice users, diverse
environments, and large sets of everyday objects.



Figure 13: The experimental setup.

Table 1: Retrieving objects from 3 different surfaces

Surface Object Approach Grasp Delivery

Floor
Light Bulb Success Success Success
Football Success Success Success

Table 1

Medicine
Failure N/A N/A

box
Medicine

Success Success Success
box
Vitamin

Success Success Success
bottle

Table 2

Soy milk
Success Success Success

bottle
Vitamin

Success Success Success
bottle
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