
Implementing and Programming
Weakly Consistent Memories

GIT-CC-95-12

A Thesis
Presented to

The Academic Faculty

by

Ranjit John

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Georgia Institute of Technology
March 1995

Implementing and Programming
Weakly Consistent Memories

GIT-CC-95-12

Approved:

Mustaque Ahamad, Chairman

Gil Neiger

Umakishore Ramachandran

Karsten Schwan

Divyakant Agrawal

Date Approved by Chairman

To My Parents

Acknowledgments

I would like to begin by expressing my gratitude to my advisor, Mustaque
Ahamad. It was his guidance and encouragement which has made this thesis
possible. I would also like to thank the members of my dissertation commit-
tee, Gil Neiger, Umakishore Ramachandran, Karsten Schwan and Divyakant
Agrawal, for their time and helpful suggestions which have vastly improved
this thesis.

Several people associated with the Clouds project have contributed with
their assistance, ideas and coding: In particular, Sathis Menon who helped me
find my bearings in the Clouds project and was always around when I needed
help; R. Ananthanarayanan and Ajay Mohindra for the discussions on DSM
related issues which to a great extent simplified my implementations.

I would like to thank my cubicle-mates Vibby Gottemukkala, M. Chelliah
and Srinivas Doddapaneni for their companionship during the last five years.
Also, Rida Bazzi for the late night tea sessions, while we were both writing our
theses, where we argued about everything from the format of the thesis to life
after school.

The work leading to this thesis was done in part with funding from the
National Science Foundation and financial support from the College of Com-
puting. Their assistance is gratefully acknowledged.

Finally, I would like to thank my parents who deserve the credit for en-
couraging me to continue studying through all these years. This thesis is
dedicated to them.

iv

Contents

Acknowledgments iv

Summary xi

1 Introduction 1
1.1 Programming Distributed Systems ����������������������������������� 1
1.2 Problem Statement ��� 3
1.3 Organization of the Thesis ��� 5

2 Related Work 7
2.1 Traditional Implementations ��� 7
2.2 Newer Approaches to building DSM ��������������������������������� 10

2.2.1 Data-Annotation-Based Systems ����������������������������� 11
2.2.2 Weakly Consistent Systems ����������������������������������� 12
2.2.3 Weakly Ordered Systems ������������������������������������� 14
2.2.4 Non-Page-Based Systems ������������������������������������� 16

2.3 Why Causal Memory ? ��� 17

3 Causal Memory 20
3.1 The Model ��� 20
3.2 Synchronization Operations ��� 23
3.3 Defining Causal Memory ��� 25
3.4 Concluding Remarks ��� 27

v

4 Programming on Causal Memory 28
4.1 Data-Race-Free Programs ��� 28

4.1.1 Linear Equation Solver ��������������������������������������� 29
4.2 Non Data-Race-Free Programs ��������������������������������������� 33

4.2.1 Asynchronous Linear Equation Solver ����������������������� 33
4.2.2 Distributed Calendar ��� 34

4.3 Programs with Incorrect Executions ��������������������������������� 37
4.4 Concluding Remarks ��� 38

5 Implementing Causal Memory 40
5.1 A Simple Owner Based Protocol ������������������������������������� 40

5.1.1 Vector Timestamps ��� 42
5.1.2 The Basic Algorithm ��� 42
5.1.3 Correctness ��� 46
5.1.4 Limitations of the Owner Protocol ��������������������������� 47

5.2 A Page Based Protocol ��� 48
5.2.1 Issues in Scaling the Unit of Sharing ����������������������� 48
5.2.2 Implementation Approach ������������������������������������� 49

5.2.2.1 Data Structures ������������������������������������� 50
5.2.2.2 Handling Page Faults ������������������������������� 51
5.2.2.3 Vector Clocks and Timestamps ��������������������� 53
5.2.2.4 Maintaining Data Consistency ��������������������� 54
5.2.2.5 Synchronization Operations ����������������������� 55
5.2.2.6 Reducing the Unnecessary Invalidations ��������� 57

5.2.3 Performance Analysis ��� 59
5.3 Concluding Remarks ��� 61

vi

6 Optimizing for Data-Race-Free Programs 63
6.1 Causal Memory and DRF Programs ��������������������������������� 63
6.2 Causal Memory Implementation Based on Vector Timestamps � 64

6.2.1 Unnecessary Invalidations ����������������������������������� 71
6.3 Causal Memory Implementation Based on Versioned Pages ����� 72

6.3.1 Page Fault Handling and Version Management ����������� 72
6.3.2 Maintaining Data Consistency ������������������������������� 75

6.4 Comparing the Two Implementations ������������������������������� 76
6.5 Additional Optimizations ��� 77

6.5.1 Avoiding Page Copying ��� 77
6.5.2 Avoiding Page Transfers on Double Faults ����������������� 78

6.6 Concluding Remarks ��� 78

7 Performance Evaluation of Causal Memory 80
7.1 System Descriptions ��� 80
7.2 Applications ��� 81
7.3 Performance Metrics ��� 85
7.4 Results ��� 87

7.4.1 CGM ��� 89
7.4.2 TSP ��� 92
7.4.3 SOR ��� 97

7.5 Discussion ��� 101
7.5.1 False Sharing ��� 101
7.5.2 Causal Memory Implementations ��������������������������� 103
7.5.3 Scalability ��� 104
7.5.4 Impact of Faster Processors and Network ������������������� 105

7.6 Comparison with Related Work ��������������������������������������� 106

vii

7.6.1 Experimental Evaluation ������������������������������������� 107
7.7 Concluding Remarks ��� 110

8 Conclusions and Future Work 112
8.1 Conclusions ��� 112
8.2 Future Work ��� 113

8.2.1 Synchronization ��� 114
8.2.2 Fine Granular Sharing ��� 114
8.2.3 Hardware Support ��� 115
8.2.4 Size of Timestamps ��� 115

Vita 124

viii

List of Figures

1 A PRAM execution ��� 18
2 An execution which is causal but not sequentially consistent ����� 26
3 Causal but not processor consistent execution ��������������������� 27
4 Synchronous iterative linear equation solver ����������������������� 31
5 Asynchronous iterative linear solver on causal memory ����������� 34
6 Shared memory distributed calendar ��������������������������������� 35
7 Peterson’s 2-process mutual exclusion ������������������������������� 37
8 An execution history and processor views for Peterson’s algorithm 38
9 Example to show causal over-writing of data ����������������������� 41
10 A simple owner protocol ��� 44
11 A weakly consistent execution ��� 45
12 An example to illustrate unnecessary invalidation ����������������� 47
13 Causal memory implementation using vector timestamps ������� 52
14 The invalidate operator ��� 55
15 Synchronization and Invocations ������������������������������������� 58
16 Applications with annotations ��� 59
17 Message counts for different memory models ����������������������� 61
18 Example to show why clock update is necessary on write faults � 66
19 Causal memory implementation for data race free programs ����� 67
20 Synchronization and Invocations ������������������������������������� 68
21 Unnecessary invalidation of page containing data item x ��������� 71
22 Causal memory implementation using versioned pages ����������� 73

ix

23 The invalidate operator for versioned pages ������������������������� 75
24 Execution times ��� 88
25 CGM analysis ��� 90
26 Nodes visited in TSP ��� 94
27 TSP analysis ��� 95
28 SOR analysis ��� 98
29 Data sharing for SOR ��� 100
30 Effect of false sharing ��� 103
31 Comparing the two implementations ��������������������������������� 104
32 Execution profiles (scaled to 100 for �

0) ����������������������������� 108

x

Summary

A distributed operating system should provide abstractions that make it easy
to program applications, provide good performance and allow applications to
scale. Operating systems structured around message passing kernels typically
ensure good performance and are scalable. On the other hand, Distributed
Shared Memory (DSM) systems are much easier to program since the pro-
grammer need not be directly concerned with the data placement and data
movement between processors.

The ease of programming applications using DSM comes at a cost. DSM
systems usually replicate data for efficient implementations. Replication al-
lows shared data to be accessed faster but introduces the problem of maintain-
ing consistency among these copies. Early DSM implementations used vari-
ants of multiprocessor cache consistency algorithms that provided sequential
consistency. These, however, do not perform very well in distributed systems
where the message latencies are much higher.

Maintaining sequential consistency, which requires that all replicas are
kept consistent, has been shown to limit performance. Weakly consistent
memory models do not require that caches be kept consistent but control the
inconsistencies so that most applications still run correctly.

This thesis explores a memory consistency model called causal consistency
which provides weaker consistency guarantees than sequential consistency.
Causal memory is a weakly consistent memory which requires that a read of
a location return a value which is consistent with all causally preceding reads

xi

and writes to that location. Many applications which execute correctly on a
sequentially consistent DSM can run correctly without any change in code on
a causal DSM.

By programming applications that have a variety of data sharing patterns,
it is shown that performance comparable to the message passing implemen-
tations of the applications can be achieved on the causal DSM system. The
improved performance is due to a significant reduction (70 – 90%) in communi-
cation costs compared to the implementation of a sequentially consistent DSM
system. These results show that causal memory can meet the consistency and
performance requirements of many distributed and parallel applications.

xii

Chapter 1

Introduction

Computers are becoming faster, cheaper and commonplace. It is not unusual
today to find workstations on every desk in an organization. When networked
together, their cumulative computing power can provide performance at a cost
much less than any equivalent centralized system. It is not surprising that
much research is being targeted towards utilizing the computing power on
the network to solve problems which were previously the exclusive domain of
main-frames and super-computers.

A distributed operating system attempts to facilitate the sharing of com-
puting and storage resources provided by these multiple autonomous comput-
ing elements. Such systems not only allow resource sharing but can also be
used to provide fault tolerance and parallelism. To take advantage of these
added benefits, distributed systems should allow programmers to write dis-
tributed applications without increasing the complexity of programming.

1.1 Programming Distributed Systems

A distributed system consists of a set of processors connected by a communi-
cation network. A process is the computational entity at a processor. There
could be multiple processes at a processor. A distributed application, in gen-
eral, consists of a number of co-operating processes which execute on different

1

processors. Processors in a distributed system do not share memory and the
interactions between them is through messages.

Programming a distributed application requires the specification of the
computation at different processors and the interactions between them. Dis-
tributed operating systems provide the necessary abstractions to specify the
computation and the interactions. Message passing, Remote Procedure Call
(RPC) and Distributed Shared Memory (DSM) are a few of the programming
abstractions commonly supported by distributed operating systems.

The early distributed systems were built with message passing as the un-
derlying model for distributed computation. Amoeba [47] and the V system [18]
are examples of message-based distributed systems. Message-based operating
systems support processes that communicate via explicit message send and
receive calls. Message-based systems require the programmer to pack data
into a buffer which is given to the send call. The receive call receives this
buffer and it is the programmer’s responsibility to unpack and interpret the
data. Such systems typically give good performance since the programmer con-
trols the data placement and data movement between processors. However,
programming is more complex since the programmer has to do the packing
and unpacking of data and control explicitly the communication between the
processors.

Remote Procedure Calls were proposed for remote communication, as it
was felt that message passing as an abstraction was too primitive to provide
to programmers of distributed applications. Cedar [48], Sun RPC [1] and Ar-
gus [42] are among several notable RPC-based systems which have been built.
RPC-based systems support a procedural interface for executing remote oper-
ations where the actual packing of parameters and communication is hidden

2

away in library procedures. Similar to RPC’s, object oriented systems use Re-
mote Object Invocations (ROI) where communication between processors takes
place by invoking a method on a remote object. In addition, ROI’s allow the
benefits of object orientation, namely encapsulation and inheritance to be ex-
ploited by application programmers. Spring [28] and Chorus [51] are examples
of systems which provide ROI.

The procedural paradigm supported by RPC-based systems, however, is
inadequate for programs which pass complex data structures, use global vari-
ables or have dynamic communication patterns. Another way of supporting
distributed applications is based on providing a “virtual” shared memory across
processors. Systems which support Distributed Shared Memory (DSM) pro-
vide a programmer with the illusion of a global shared memory across multiple
processors. Kai Li’s Ivy [39] system was the first instance of an implementation
of DSM. Such systems simplify the programming of distributed applications
since the programmer can make use of a uniform mechanism to access both
local and remote data. They also allow programs written for shared memory
multiprocessors to be ported fairly easily onto a network of workstations.

1.2 Problem Statement

The abstractions provided by a distributed operating system should be efficient
to implement, allow the system to scale and make it easy to program applica-
tions. Distributed operating systems structured around message passing ker-
nels typically ensure good performance and are scalable since programmers
can control the data placement and data movement. On the other hand, DSM
systems are much easier to program since the programmer need not be directly
concerned with data placement and data movement between processors.

3

The ease of programming applications using DSM comes at a cost. DSM
systems usually cache or replicate data for efficient access. Replication allows
shared data to be accessed faster but introduces the problem of maintaining
consistency among these copies. Memory has to be kept consistent across
processors since multiple processors could simultaneously read or write the
same data item. Early DSM implementations used variants of multiprocessor
cache consistency algorithms which provided sequential consistency [38].

Maintaining sequential consistency has been shown to limit performance.
Several researchers have proposed memory consistency conditions which offer
weaker guarantees than sequential consistency. Weakening the consistency
guarantees provided by a memory system allows simpler and more efficient
implementations of the memory system but on the other hand may also in-
crease the complexity of programming applications. This thesis explores one
such weakly consistent memory model called causal memory [5] and shows
that it can be efficiently implemented and easily programmed. The goal of this
thesis is to demonstrate that:

� Causal memory can be efficiently implemented and is a viable architec-
ture for programming distributed applications.

� The execution of the applications on causal memory provides performance
comparable to message passing systems for most applications.

� Scalable shared memory systems can be built using the causal memory
model, since no form of global synchronization (e.g., messages which need
to be sent atomically to all processors in a system) is required.

4

1.3 Organization of the Thesis

The rest of the thesis is divided into eight chapters. Chapter 2 discusses
the related work. It starts by describing the Ivy system and then goes on to
describe the newer approaches which have been proposed for building a high
performance DSM system.

Chapter 3 motivates the need for weakening the memory consistency re-
quirement and introduces causal memory. Causal memory is formally defined
using a history based method by putting constraints on the allowable mem-
ory executions. Several examples are shown to illustrate how causal memory
differs from other related memory models. Chapter 4 shows how to write pro-
grams for causal memory. It introduces a class of programs which would run
on causal memory without any change in code. To illustrate, a linear equation
solver and a distributed calendar service are programmed on causal memory.
Also, examples are shown of programs which fail to execute correctly on causal
memory.

Chapter 5 describes a simple protocol for implementing causal memory,
which defines the consistency actions that need to be executed on access to each
memory location, and argues its correctness. This protocol is used to develop
a page based DSM system. Several optimizations are possible when programs
are free of data races. For such programs, the consistency operations can be
limited to certain synchronization points in a program. We show how the
general implementation can be optimized if programs are known to be data-
race-free in Chapter 6. We then give an alternative implementation which
has the same structure as the previous protocols but optimizes on the earlier
implementations.

Chapter 7 is a detailed experimental evaluation of the causal DSM. The

5

chapter describes the benchmark applications that were used and the perfor-
mance metrics that were collected. The performance of the applications on
three systems is reported; the first supports message passing, the second is
a DSM protocol which is sequentially consistent and the third is the causal
DSM protocol. Further, a performance comparison with other related work is
reported. Chapter 8 concludes the thesis and also suggests possible directions
for future work.

6

Chapter 2

Related Work

Over the last decade, several researchers have described implementations of
Distributed Shared Memories across a network of workstations. This chapter
surveys the work which has been done in the area of DSM. The first instance
of such an implementation was Kai Li’s Ivy system [39]. Since then there have
been several other implementations which extend the work done by Kai Li.
The Ivy implementation is discussed first and then more recent work, which
address some of the problems the early systems had, is described.

2.1 Traditional Implementations

The Ivy system supported DSM across a local area network of Apollo work-
stations. DSM was supported by integrating the virtual memory mechanisms
(page-faults and access rights to pages) with the consistency maintenance al-
gorithms. The consistency maintenance algorithms manifested as page-fault
handlers and server processes which handled the requests for a page.

Ivy supported sequential consistency, where the value returned by a read
operation was the value written by the most recent write operation to the
same address. Sequential consistency was maintained by restricting a page to
a single writer or multiple readers at any time. This was done using a writer-
invalidate-readers protocol where all the copies of a page are invalidated before

7

letting a processor write to a page.
To implement the protocol, the Ivy system introduced the notion of an

owner and a manager. The owner of a page was the most recent processor
which had write access to the page. The owner also maintained information
about the processors that had a copy of the page. A manager processor knew
the identity of the owner. The manager could be centralized or distributed. A
centralized manager maintained a table which tracked the owners of all the
shared pages. In the fixed distributed manager scheme, every processor is
given a pre-determined subset of shared pages to manage. In the dynamic dis-
tributed manager scheme, each processor tries to keep track of the ownership
of the page. This is achieved by using a field prob owner with every page. If a
processor faults on a page, a request is sent to the prob owner. If that processor
is the true owner, it sends the page, otherwise it forwards the request to the
processor indicated by its prob owner field. By following the forwarding chain
of pointers, the message would eventually get to the current owner.

On a read-fault, the fault handler sends a message to the owner of the
page. The owner would respond by sending a copy of the page. If the owner
had write access to the page, it would downgrade its access to the page to a
read. On a write-fault, a similar message was sent to the owner which would
then supply the page and the list of processors with read access to that page.
The faulting processor would now invalidate all other copies of the page. This
ensured that while a processor was writing to a page, no other processor could
read from the page simultaneously.

The Mirage system [23] is an extension of the Ivy system where a processor
could retain access to a page for a certain amount of time irrespective of pending
requests for the page. This controlled page thrashing, where a page is moved
between processors continuously preventing the processors from doing any

8

useful work.
The approach these early systems took was to adapt a cache consistency

protocol developed for shared memory multiprocessors and implement it in
software on a network of workstations. However distributed systems differ
from multiprocessor systems in several respects and using a multiprocessor
cache consistency protocol is inappropriate because of the following differences:

� Message Latency — Accessing a page of memory which is not locally
cached at a processor requires communication with some other processor.
Message latencies on a multiprocessor are of the order of microseconds.
In contrast, the message latencies in a distributed system are typically in
the range of milliseconds. This leads to much lower processor utilization,
since the process has to block while its page request is being serviced.

� Page as the unit of sharing — The virtual memory page does not
correspond to any logical entity in a program. This lead to the problem
of false sharing where unrelated data may reside on the same page.
Processors accessing data residing on different parts of a page would
still cause contention for the page. Also, sending data in units of pages
sometimes results in excessive communication when the size of the actual
shared data is small compared to the page size.

� Use of multicasts/broadcasts — These systems rely on multicasts or
broadcasts to invalidate copies of pages. In multiprocessors, broadcasts
are done in hardware. In distributed systems, multicasts and broadcasts
are costly operations and do not scale well when there are a large number
of processors.

9

� Network Processor — Multiprocessors have a separate network proces-
sor which handles requests from other processors without interrupting
the CPU. In a workstation environment, the CPU has to be interrupted
to service the network messages. In such an environment, messages do
not just have the latency cost but in addition have the cost of traversing
several software layers and context switching overheads.

The key to building a high performance DSM is to reduce the number of
messages which need to be sent to maintain consistency of data. The next
section discusses more recent work which addresses this problem.

2.2 Newer Approaches to building DSM

More recently, many researchers have looked at the problem of providing a
high performance and scalable DSM. Their work can be categorized into the
following approaches which are discussed in detail:

� Data-annotation-based systems — This approach is based on the fact
that data movement protocols can be optimized if the data access pat-
terns of the programs are known. These systems require the application
programmer to annotate the data in the program based on their data
sharing patterns.

� Weakly consistent systems — This approach is motivated by the rea-
soning that sequential consistency is the bottleneck and weakening it
would allow improved performance.

10

� Weakly ordered systems — This approach unifies data transfer with
synchronization. These systems require that the synchronization oper-
ations are made explicit to the memory system and consistency is only
guaranteed at synchronization points.

� Non-Page-Based systems — These systems provide consistency at the
level of language level objects and require applications to be structured
into objects or shared data structures which are made explicit to the
underlying system.

2.2.1 Data-Annotation-Based Systems

Accesses to shared data in parallel programs follow some common patterns.
Bennett et. al. [13] analyzed the data sharing behavior of common parallel pro-
grams and found that the data accesses can be divided into the following cate-
gories: write once, private, write many, result, migratory, producer/consumer,
read mostly and general read write.

The cost of maintaining consistency can be reduced if the knowledge of
the data sharing behavior in an application is made available to the system.
Instead of supporting one protocol, the data-annotation-based systems sup-
port multiple protocols each optimized for a particular kind of data sharing
behavior. The Munin system [14] is a data-annotation-based system where
the application programmer annotates the data in the program based on its
access pattern. Accessing a particular data item causes the appropriate pro-
tocol for that data to be employed. The Munin system also handled the false
sharing problem by allowing multiple writers to access a page and merging
the changes at a later time. Allowing multiple writers on a page prevented
contention for the page but required some mechanism for merging the changes

11

made by the multiple writers. Systems that require annotations provide good
performance, but the application writer has the onus of providing the protocol
specification for the data in the program.

2.2.2 Weakly Consistent Systems

Several researchers [9, 41] have shown that a sequentially consistent mem-
ory cannot scale. This is because any implementation of sequentially consis-
tent memory cannot avoid either a read or write operation from incurring the
network latency cost of communicating with some other processor. Weakly
consistent systems improve the performance of shared memory systems by
weakening the consistency guarantees provided by the system. The weaker
consistency does not guarantee that the execution of memory operations of
all processes is equivalent to some sequential execution of these operations as
in a sequentially consistent system. Examples of weakly consistent memory
systems include Pipelined RAM (PRAM) [41], processor consistency [4, 24, 26],
and causal memory [5].

PRAM - Lipton and Sandberg proposed a memory system, Pipelined
RAM [41], which offered weaker consistency guarantees than sequential con-
sistency. In a PRAM memory system, a read operation on a processor would
just return the value in the local memory of the processor. A write operation
on a processor would write the value to its local memory and then send a mes-
sage about the write to all other processors. When another processor receives
the write message, the write is applied to its local copy of memory. A PRAM
memory guarantees that write operations by a processor are seen in the order
they were executed by all processors. Writes from different processors can be
seen in a different order by different processors.

12

Processor Consistency - Processor Consistency was proposed by Good-
man [26] and a slightly different version was implemented by the DASH mul-
tiprocessor [4, 24]. Processor Consistency as defined by Goodman requires
that the memory be PRAM consistent and coherent. Memory coherence is the
property that all read and write operations to a single location in memory are
observed in the same order by all processors.

Causal Memory - Causal memory was proposed by Hutto and Ahamad [30]
and requires that all read operations return values which are consistent with
all causally related reads and writes of that same location. The causal rela-
tion is similar to Lamport’s happens-before relation [37] used to order events
in a distributed system but applied to a shared memory environment. Two
operations are causally related if they occur in program order or if one of the
operations is a read and the other is a write and the read operation returns the
value written by the write operation. The causal relation applies transitively.
Write operations which are causally related are seen in the same order by all
processors. Concurrent write operations can be seen in different orders by
different processors.

To execute applications in such weakly consistent memory systems, either
the applications must have data sharing patterns that are not effected by
the weaker consistency or the program must explicitly deal with the lack of
strong consistency. Programming on these memory systems is different from
programming on a system supporting sequential consistency. All represent
weakenings where it is no longer required that all processors agree on a global
view in which all the memory operations occur in some serial order. Many
programs written assuming sequential consistency, however, do run correctly
on the weaker memory systems.

Several systems have been proposed which support multiple consistency

13

models. This is useful where applications or the data within the applications
demand different levels of consistency. The Maya [3] and GARF [27] systems
provide a DSM abstraction but do not enforce any particular consistency crite-
rion. The Maya system offers a programming model called mixed consistency
which supports both causal memory and pipelined RAM and provides explicit
synchronization operations. The memory and synchronization operations can
be tailored for efficient implementations of applications. The GARF system
provides a library of consistency criteria and applications can bind to the ap-
propriate library.

2.2.3 Weakly Ordered Systems

One way to reduce communication between processors in shared memory sys-
tem is to guarantee consistency only at certain points in the execution of a
process. This approach was first outlined by Dubois et al. [21]. They observed
that parallel programs define their own consistency requirements through the
means of synchronization operations. They define a weakly ordered system,
where synchronization operations are made explicit to the memory system,
and consistency maintenance is done only at synchronization points. One of
the earliest implementations where the data transfer is linked with the syn-
chronization operations is reported in [50]. The DASH multiprocessor [24] is a
weakly ordered system which implements a memory model called release con-
sistency. Release consistency refined the weakly ordered approach by dividing
synchronization operations into two types: acquire and release. Release con-
sistency allows remote memory accesses to be propagated asynchronously, as
long as they complete before a release operation (e.g., an unlock operation on
a synchronization variable).

14

Weakly ordered systems require a certain behavior from application pro-
grams to ensure their correct execution. Such systems guarantee correct exe-
cution only for programs which are data-race-free [2] or properly labeled [24].
In other words, when these programs are executed on a sequentially consistent
memory system, conflicting accesses to the same shared location (two writes
or a read and write to the same location conflict) will always be separated
by accesses to synchronization variables in the equivalent serial order. Since
consistency is guaranteed at synchronization points, data-race-free programs
can be written on weakly ordered memory systems assuming a sequentially
consistent system.

Hardware implementations of weakly ordered systems use optimizations
such as instruction reordering, pipelining and write buffering but still main-
tain a coherent cache. In contrast, software implementations sacrifice coher-
ence by delaying consistency related operations to certain specific points in the
program execution. The Munin system [14] implements release consistency
in software, by delaying the propagation of the changes made inside a critical
section till the lock is released. More recently lazy release consistency [33] and
entry consistency [15] memory models have been proposed which use synchro-
nization information to further reduce communication.

Lazy Release Consistency (LRC) - Release consistency requires that
all processors are made consistent at the release of a synchronization variable.
This is done in Munin by propagating all modified data to all the processors
with a cached copy of the data. LRC is an optimization where the propagation
of modifications is postponed until the time of the acquire. At this time, the
acquiring processor determines which modifications it needs to see according
to the definition of release consistency. LRC is implemented in the Tread-
Marks [34] system at Rice University. No consistency actions are done at a

15

release. At an acquire, the processor doing the acquire has to make sure that
its cache is updated correctly. LRC based systems send far fewer messages as
compared to release consistent systems since modified data is propagated only
to the next processor that acquires the synchronization variable.

Entry Consistency (EC) - Entry consistent systems require the explicit
association of data with synchronization variables. This allows further opti-
mizations since only the data associated with a synchronization variable needs
to be made consistent. The Midway system [15] supports entry consistency.
A special compiler keeps track of the data which has been modified inside of
a critical section. The time of modification is kept track by attaching a Lam-
port’s clock [37] with each shared data item. On an acquire, the acquiring
processor sends the Lamport time of the data associated with the synchroniza-
tion variable to the last releaser. The releaser sends all the modifications to
data associated with the variable that were made since the acquirer’s Lamport
time. Entry consistent systems typically give performance very close to mes-
sage passing implementations. However, programming applications is more
involved as programmers have to explicitly associate data with synchroniza-
tion variables and in some cases may have to include more synchronization
operations into their programs.

2.2.4 Non-Page-Based Systems

The Midway implementation is a non-page-based approach where the program-
mer is responsible for providing the information about the units of sharing.
Applications on Midway are C or ML programs, extended with the data asso-
ciations. Many programming languages allow related data to be encapsulated
into objects, modules or other similar structures. In non-page-based systems

16

data is communicated in units of language objects instead of pages. If a proces-
sor accesses some part of an object, the whole object is moved to that processor
as it is likely that the rest of the object would be accessed too. Orca [11] is
another example of a shared memory system that maintains consistency at the
level of language level objects.

2.3 Why Causal Memory ?

A large number of parallel applications exist which have been developed
for shared-memory multiprocessors. Shared-memory multiprocessor vendors
have typically relied on proprietary hardware which has not kept pace with
the commodity processor technologies. The recent demise of multiprocessor
manufacturers like Thinking Machines and Kendall Square Research further
endorse this argument. With current processor speeds and increasing network
bandwidths, networks of workstations provide a competitive price/performance
alternative to shared-memory multiprocessors. DSM systems allow the paral-
lel programs developed for shared-memory multiprocessors to be ported to a
network of workstations without too much effort.

Using data-annotation-based systems, however, requires determining the
data sharing behavior of these applications which would require a detailed
understanding of the programs. Weakly ordered systems require a certain
contract by the applications. Running applications which do not confirm to
the contract can result in unexplained results. Non-page-based systems would
require that the applications be rewritten as language level objects which
would be a non-trivial task. Causal memory is interesting since, as we show
later, it allows most applications to port without change in the code. This is
not true for consistency conditions which are weaker than causal consistency.

17

�
0: lock(� 1) 	�
���
 1 unlock(� 1)

�
1: lock(� 1) 	�
���
 1 unlock(� 1)

�
2: lock(� 1) ��
���
 1 ��
���
 ? unlock(� 1)

Figure 1: A PRAM execution

For example, consider a PRAM execution shown in Figure 1. When processor�
2 reads the location � , it would read the value written by �

1 as the write
happened before �

1 did the unlock. However, when �
2 reads the location � ,

it is not guaranteed that it would see the write by �
0, leading to possible

incorrect executions. This implies that either programs have to be rewritten to
avoid such anomalies, or the synchronization operations have to be extended
to enforce stronger semantics.

Another area where the causal semantics seem appropriate are cooper-
ative distributed applications where users asynchronously interact to share
data. Such applications include conferencing systems, distributed calendars
etc. The sharing requirements of these applications usually do not require
that modifications to shared data are seen at once or in the same order by all
users. Causal consistency also seems appropriate for applications like mail
agents and news readers. Consider the scenario where a user A sends a mail
message to users B and C. B now responds to this message to A with a copy
to C. We would ideally like C to receive A’s mail before she gets the response
from B. The response by B would not make any sense to C unless she has
received the original mail. Current systems rarely support this level of consis-
tency because of the overhead involved in guaranteeing this message delivery
order for large systems. The ISIS [16] system provides a group communication

18

primitive called CBCAST which guarantees such causal delivery of messages
within the group. The GARF system uses the CBCAST protocol to ensure
causal consistency for shared objects. However, for page-based DSM systems,
update-based protocols which rely on multicasts or broadcasts, do not scale
well.

The next chapter defines causal memory more precisely. Later chapters
show that programming is not complicated by the weaker consistency of causal
memory and that it can be efficiently implemented.

19

Chapter 3

Causal Memory

There is at present no consensus on the best way of defining formally mem-
ory consistency models. Different researchers have used different approaches
and notations which makes it difficult to compare the various memory models
which have been defined in literature. Goodman [26] and Gharachorloo et.
al. [24] used an operational characterization which lead to many misinterpre-
tations [4]. Gibbons et. al. [25] used an automata based characterization for
describing release consistency. Cekelov et. al. [55] used an axiomatic approach
to formally describe Total Store Order (TSO) and the Partial Store Order (PSO).
Both the automata based and axiomatic approaches have the formal rigidity
but fail to provide an easy way of comparing different memory models. Ini-
tially, causal memory was defined [6] by characterizing the possible values that
could be returned when a read operation is executed by a processor. A more
general framework described by Ahamad et. al. [5] is used here, as it allows
us to define and easily relate causal memory to a range of memory models that
have been proposed.

3.1 The Model

The model is motivated by the ones used by Misra [45] and by Herlihy and
Wing [29]. A system is defined to be a finite set of processors that interact via a

20

shared memory consisting of a finite set of locations. Processors execute read
and write operations. Each such operation acts on a named location and has
an associated value. For example, a write operation executed by processor p,
denoted by 	���
���
�� , stores the value v in location x; a similarly denoted read
operation, ����
���
�� , reports that v is stored in location x. The execution of a
processor is defined by a processor execution history, which is a sequence of
read and write operations. The execution history of processor p, denoted by
H� , is the sequence ����� 1 , � ��� 2, ..., � ��� ! , ... where � ��� ! is the "$#&% operation issued by
processor p. A system execution history is a collection of processor execution
histories, one for each processor in the system. Thus, a system execution
history ')(+*�',�.- �0/2143 where 1 is the set of processors in the system.

It is possible to establish orderings on the operations that appear in a
system execution history H. The following orders are used in defining causal
memory.

� Program order: For operations �5��� ! and � ��� 6 , we say � ��� ! �879 �:��� 6 when �:��� !
precedes � ��� 6 in the program, i.e., "<;>= . In this case, we say ���:� ! is ordered
before �:�:� 6 by the program order. This defines program order to be total;
it orders all operations of a given processor1.

� Writes-before order: If ��! (we drop the first subscript where it is unim-
portant) is a write to some location, and �56 is a read by a processor (which
may be different from the writer), and �56 returns the value written by
� ! , then � !@?�A9 � 6 . We call this the writes-before order and it captures the
natural requirement that if a read operation returns the value written
by a certain write operation, then the write operation must be ordered

1As defined here, program order totally orders the operations of each processor. In other
memory models, the ordering between the local operations of a processor could be partial [24].

21

before the read.

� Causal order: The happens-before relation defined by Lamport [37] can
be adapted to a shared memory system; this captures the causal relation-
ship between the read and write operations. For any two operations � 1

and � 2 in H, � 1 B 79 � 2 if

– � 1
�879 � 2 or

– � 1 ?�A9 � 2 or

– for some operation ��C , � 1 B 79 ��C and �5C B 79 � 2.

Ideally, a processor should be able to assume that a shared memory system
executes a set of read and write operations one at a time, in a sequential order,
and that the value returned by a read of location x was stored by the most
recent write to x preceding the read in the sequential order. We call such an
ordered sequence of memory operations the view of the processor. A memory
model can be characterized by the types of views that result when processors
execute with that type of memory system. For example, if the memory is
sequentially consistent, all processors have a single view. Furthermore, the
order in which the operations appear in the view is consistent with program
order. Weakly consistent memories can be defined by allowing each processor
to develop a different view. Views can be different because they may differ
in the set of operations included in them, or in the order in which common
operations appear in the views. By choosing the set of operations to be included
in a processor view and the orders that must be maintained between them,
implementation independent definitions of several memory systems can be
developed [4, 36].

22

3.2 Synchronization Operations

In parallel applications, communication between processors is not restricted
to the messages generated by sharing of data. Processors also communicate
to achieve synchronization and also when one process forks another process
on some other processor. Synchronization is used to ensure that a sequence
of memory operations (e.g., a critical section) are executed atomically. When
a processor � acquires a lock released by another processor D , memory oper-
ations of D that precede the unlock operation on the lock, are ordered before
memory operations of � that follow the operation in which the lock is acquired.
In addition, parallel and distributed programs achieve parallelism by forking
computation onto different processors. Domain decomposition is a commonly
used method for developing parallel programs, where a “parent” process ini-
tializes the domains and then creates “child” processes on different processors,
each working on a different partition. The semantics of fork assumes that the
initializations done by the parent will be visible to the children. Similarly, at
fork-joins, the programmer assumes that the changes made by the children will
be visible to the parent. The synchronization and fork operations are typically
implemented outside the memory system on distributed systems. However,
these operations would create additional orderings between the memory oper-
ations.

The model can be extended to include the orderings induced by the syn-
chronization and forking operations. Causal orderings would now arise be-
tween memory operations due to synchronization acquires and releases and
also between the forking parent process and the forked child processes. We
can now define the following orders induced between memory operations �E! and
�:6 by lock, barrier and fork-join operations (similar orders can be defined for

23

other synchronization constructs which are implemented outside the memory
system).

� Lock order: We say � !GF 79 � 6 , when � ! and � 6 are two memory operations
such that � ! immediately precedes an unlock operation and � 6 immediately
follows the corresponding lock acquire. This order captures the orderings
induced by read-write locks and semaphores.

� Barrier order: We say ��! A 79 ��HI� 6 JLKM(1 �N�PO , when ��! immediately precedes
a n-process barrier operation and �QHI� 6 immediately follows the matching
barrier operation in process � H .

� Fork order: We say � !GR 79 � 6 , when � ! immediately precedes a fork (or
join) operation and � 6 is the first memory operation executed by the forked
child process (or after the join).

Let � 1 S 79 � 2 be the order induced by the synchronization operations. Two
memory operations � 1 and � 2 are related by S 79 if

– � 1
�879 � 2 or

– � 1 F 79 � 2 or

– � 1 A 79 � 2 or

– � 1 R 79 � 2 or

– there exists an ��C such that � 1 S 79 ��C and �5C S 79 � 2.

The causal order definition can now be extended to include these orderings.
Two operations � 1 and � 2 in ' are ordered by the extended causal order, � 1 TUB 79 � 2,

24

if � 1 B 79 � 2 or � 1 S 79 � 2 or for some operation ��C , � 1 TUB 79 ��C and �5C T$B 79 � 2. Causal
memory can now be defined using this extended causal ordering 2.

3.3 Defining Causal Memory

Causal memory requires that values returned by read operations respect the
extended causal order between memory operations. Since the effects of concur-
rent operations (operations not related by the causal order) can be observed in
different order at different processors, causal memory allows each processor to
develop a different view of shared memory.

Causal orderings between the operations of processor p and the opera-
tions of other processors are established when p reads values written by other
processors. Since write operations update the state of shared memory and
p’s reads can return values written by other processors, a processor’s view
in causal memory needs to include all write operations. The causal ordering
established by a read operation of processor p can propagate to another pro-
cessor q but that happens only as a result of p writing a value that q reads (or
through the synchronization and fork operations). Thus, the values that can
be read by q are affected by only the write operations of other processors. As
a result, p does not become aware of the read operations of other processors
directly. This observation, coupled with the fact that orderings of operations in
views must respect causality, leads to the following definition of causal mem-
ory. For system execution history ' , '��8V ? refers to the history resulting after
read operations of all processors other than p are deleted from their processor
execution histories.

2Recently, the Maya system has also proposed a causal memory system that includes or-
derings induced by synchronization operations [3].

25

Causal Memory A history ' is causal if, for each processor � , there is a
view W�� , such that, for all operations � 1 and � 2 in ',�8V ? ,
if � 1 TUB 79 � 2 then � 1 precedes � 2 in W�� .

A memory system implements causal memory if all histories allowed by
it are causal. The example execution in Figure 2(a) is possible with causal
memory because the corresponding views (shown in Figure 2(b)) exist for each
processor, as required by the definition of causal memory. We assume that
all variables have an initial value of zero. This history is not sequentially
consistent since both processors would not “agree” on a common sequence of
operations (there is no single view that includes all operations and respects
the program order established by each processor).

�
0 : 	�
���
 1 	�
��X
 2 ��
�YZ
 0�
1 : 	�
�YZ
 1 ��
���
 0 ��
��X
 2 ��
���
 1

(a) Two Processor Execution

W � 0 : 	 0
���
 1 	 0
���
 2 � 0
�YZ
 0 	 1
�YZ
 1W � 1 : 	 1
�YZ
 1 � 1
���
 0 	 0
���
 1 	 0
���
 2 � 1
��X
 2 � 1
���
 1
(b) Causal Views

Figure 2: An execution which is causal but not sequentially consistent

Causal memory differs from other weakly consistent memories. Figure 3
shows an execution that is permitted by causal memory which is not allowed
by processor consistent memory as implemented by the DASH multiproces-
sor [24]. Causal memory allows concurrent writes to a memory location to
be read in any order by different processors. The DASH implementation of
processor consistency requires memory to be coherent, that is, writes to a
single memory location are serialized and observed in the same order by all
processors. For this reason, the execution would not be permitted by processor
consistent memory. Pipelined RAM [41] is strictly weaker than causal memory

26

because it only requires that processors order two write operations in the same
order in their views only if the writes are executed by the same processor.

�
0 : 	�
���
 1�
1 : 	�
���
 2�
2 : ��
���
 1 ��
���
 2�
3 : ��
���
 2 ��
���
 1

Figure 3: Causal but not processor consistent execution

3.4 Concluding Remarks

This chapter developed a history based approach for formally defining causal
memory. Causal ordering was defined as the transitive closure of the program
order and the writes-before order. Synchronization and fork operations, which
are normally implemented outside the memory system, cause additional or-
derings on the memory operations. The causal order was extended to include
the effects of these non-memory operations. A memory was defined to be
causally consistent if the values returned by read operations were consistent
with the extended causal order. Causal memory is weaker than sequential
consistency as it allows multiple processors to have different views of the
memory operations. The following chapters show that causal memory can be
easily programmed and that efficient implementations of causal memory are
possible.

27

Chapter 4

Programming on Causal Memory

The weaker consistency of causal memory can provide more efficient imple-
mentations but it should not have an adverse impact on the ease of program-
ming with DSM’s. This chapter shows that programming with causal memory
is not more complex than programming with sequentially consistent memory
for a wide range of applications. These include data-race-free programs that
employ synchronization operations to ensure atomicity of critical section code
as well as applications which have data races but where causality introduces
enough orderings between memory operations such that there are no concur-
rent writes. Towards the end, programs with data access patterns which do
not execute correctly on causal memory are discussed.

4.1 Data-Race-Free Programs

In parallel and distributed programs where processes share data, access to data
is controlled by synchronization operations. When programs use “sufficient”
synchronization to control access to shared data, consistency maintenance can
be limited to the synchronization points [52]. Adve and Hill [2] formalized
this and introduced the notion of data-race-free programs. In these programs,
conflicting accesses to a shared location by different processors (two accesses to
a memory location conflict when they are not both reads) are always separated

28

by one or more synchronization operations. More precisely, all conflicting
memory operations must be ordered by a happens-before relation, % A9 , that is
derived from program order and the order in which synchronization operations
are executed. Data-race-free programs can be developed on causal memory the
same way as on sequentially consistent memory. Thus, programming of this
class of applications is not made more complex when we use causal instead of
sequentially consistent memory. This is formally proved in [7]. Intuitively, it
follows from the fact that writes to a location must all be ordered by the happens
before relation, % A9 , as there can be no conflicting writes. The extended causal
order, TUB 79 , includes all orderings induced by % A9 , and hence it follows that writes
to a single location must appear in the same order in all processor views.
Since this holds for each location and causality is respected across memory
operations, it can be shown that an execution of a program on causal memory
is also possible on sequentially consistent memory. Thus, if a data-race-free
program executes correctly on sequentially consistent memory, its execution
on causal memory is also correct. We illustrate this next by showing that a
linear equation solver, programmed assuming sequentially consistent memory,
executes correctly even on causally consistent memory.

4.1.1 Linear Equation Solver

Very large systems of linear equations often arise in many scientific and en-
gineering applications. Iterative methods such as the Gauss-Seidel algorithm
are particularly amenable to parallelization. Iterative methods work in a
sequence of phases. Each phase uses the results of the previous phase to gen-
erate a new, more accurate solution. Computation terminates when the result
of the last phase passes a convergence test or has been computed to sufficient

29

accuracy.
Consider a parallel iterative algorithm that solves [\�](_^ , where [is a

Oa`�O matrix and � and ^ are vectors of size O . bc!&� 6 refers to the element of [in row
" and column = and ^�! (similarly �X!) refers to the " th element of vector ^ (�). � HdV 1!
represents the value of the " th component of � in phase Kae 1. � HdV 1! is computed
using the following equation: � HdV 1! (fg^L!ihkj !Nl 16�m 1 b�!N� 6X� H6 hkjon6�mZ!pV 1 b�!N� 6X� H6�qsr b�!N� ! . [
and ^ are inputs and remain constant but computing � HtV 1! requires access to
all � H6
�"@u(k=�
 from the previous iteration.

A parallel implementation of the iterative method partitions the tasks of
computing the new �X! ’s among available processes. At the beginning of each
iteration, a process reads the results of the previous iteration from the shared
global vector � and computes and stores the new �v! in a private local variable wd! .
Since processes may proceed at different rates, a synchronous implementation
requires processes to synchronize twice per iteration1. Before beginning phase
Kxe 1, each process waits until all results from the previous phase have been
copied to the global vector � . Then, before copying the newly computed value
w ! to global � ! , each process waits until all other processes have completed
computation of their new w ! (allowing the old � ! to be overwritten). Barriers
are used to achieve this synchronization. Figure 4 shows the code for the linear
equation solver.

There are N worker processes. The vector x is partitioned among the
processes, such that, each process computes approximately an equal number
of elements. As described previously, each worker process begins by assuming
access to the previous (or initial) values in the global vector x and proceeds
to compute and store the new value in the local variable wL! . The processes

1It is possible to synchronize just once per iteration by having the processes read alternately
from y{z and |$z , but we do not consider that here.

30

object linear solver *
float A[n][n];
float b[n];
float x[n];

main()*
initialize A & b;
create N worker processes;3
worker(int from, int to, int n)*
int i;
while (} converged())

for (i (from; i ; to; i++)wg! : (~ft^I!ihkj !Nl 16gm 1 b�!&� 6i�Z6�hkj0n6gms!pV 1 b�!N� 6i�Z6 q�r b�!N� ! ;
barrier();
for (i (from; i ; to; i++)��! : (�w�! ;
barrier();33

Figure 4: Synchronous iterative linear equation solver

31

then synchronize at a barrier to ensure that all the processes would have
computed the w�! ’s. After synchronizing, the processes copy the new value wL!
to the global �X! and goes through a similar barrier before resuming the next
phase of computation or terminating.

The code in Figure 4 correctly solves the system [,�](�^ on both sequen-
tially consistent memory and causal memory. Consider a read of some ��6 by � !
in phase K , where ��6 is in the partition of � 6 . We need to show that the only
value that may be correctly returned is the write to ��6 by � 6 in phase KMh 1.
In other words, values from all earlier iterations are overwritten and causal
memory behaves like sequentially consistent memory in this instance. Follow-
ing our notation for � H! , we use superscripts on read and write operations to
denote the phase in which the operation was performed. For example, 	 H!
���!U
g�
denotes a write of �X! by � ! in phase K . Consider the causal relations established
between � 6 ’s write of �c6 in phase Koh 2 and � ! ’s read of �c6 in phase K by the
interactions between the two processes (" and =).

 1
�	 HLl 26
��Z6�
g� �87��9 	 HIl 16
��Z6�
g�s�

 2
�	 HLl 16
��Z6�
g� A 79 ��!

 3
��5! �87 �9 � H!
��Z6:
��Z� �

Above, (1) holds because the two writes happen in consecutive iterations on � 6 .
(2) relates the write to ��6 in the (K<h 1)’th iteration to the first memory operation
after the barrier on � ! . (3) holds because after � ! has checked for convergence, it
reads the value of ��6 in the next iteration (assuming that the convergence test
fails). Taken together (1)–(3) imply that 	 HIl 26
��Z6�
g� B 79 	 HIl 16
��Z6�
g�s� B 79 � H!
��Z6L
��Z� � .
This ordering must be respected by the individual views of the processors and
therefore the read operation on �X6 in the K ’th iteration must return the value
written in the (K.h 1)’th iteration (i.e, ����(��s� �). Since we assumed an arbitrary

32

" and = , this argument shows that all reads of � in the computation return the
value computed in the previous iteration, the same value returned when the
computation is executed on sequentially consistent memory.

4.2 Non Data-Race-Free Programs

Several programs execute correctly on causal memory even when they have
data races. These programs include applications where causality introduces
enough orderings between memory operations such that there are no concur-
rent writes to a single location. The effect of such a data race is that a process
could continue reading an old value of a data item residing in its cache. Some
applications converge to a solution even with older values and some interactive
applications can tolerate old values.

4.2.1 Asynchronous Linear Equation Solver

It is possible to eliminate the synchronization entirely by using an asyn-
chronous algorithm. The asynchronous algorithm is based on the observation
that the iterative procedure may be used to improve close but inexact results.
If we eliminate synchronization, processes may read, in a single phase, ��! ’s
computed in several previous phases. Fortunately, due to the error-correcting
properties of the iterative method, the algorithm will still converge on the cor-
rect solution even when the ��! used to compute w H! are not all from the same
iteration. All that is necessary is that processes never observe an ��! older than
the values already read. This is precisely the property preserved by causal
memory. Reads respect the order of causally related writes. An asynchronous
iterative algorithm given in [12] is shown in Figure 5. The code works cor-

33

while (} converged())��! : (�ft^I!ih�j !Nl 16�m 1 b�!&� 6i�Z6�hkjMn6�mZ!pV 1 b�!N� 6X�Z6 qsr b�!N� !
Figure 5: Asynchronous iterative linear solver on causal memory

rectly on both sequentially consistent and causal memory. However, unlike in
sequentially consistent memory, each worker may execute different number of
iterations as the new values propagate at different times and as a result the
convergence test would not return true at the same time for all the processes.

4.2.2 Distributed Calendar

Consider the problem of implementing a distributed calendar service. Every
user in the system maintains an appointment calendar. The calendar is used
to record appointments and daily schedules. In addition, we allow a user
to browse through other people’s calendars. We will not consider privacy of
information issues; if it is a problem then data could be marked as private
or public. Looking into someone else’s calendar would only show the public
information. Occasionally there could be a need to schedule a common meeting
time for some group of people. We would also like a feature where a user
is alerted if his/her calendar has been updated when someone schedules a
meeting. The code for such a service is shown in Figure 6.

Access to a user’s calendar is protected by a read-write lock. This is
required since we allow users to update and browse any other person’s calendar.
browse calendar allows a user to look at anyone’s appointment calendar by
specifying the appropriate user-id. To bring up one’s own calendar the user
has to specify his/her user-id. The function update calendar permits one to add

34

object calendar �
calendar type calendar[MAX USERS];
lock mutex[MAX USERS];
boolean changed[MAX USERS];

browse calendar(user id i)�
acquire read lock(mutex[i]);
display calendar;
release lock(mutex[i]);�

update calendar()�
acquire write lock(mutex[my id]);
update entry in calendar;
release lock(mutex[my id]);�

set up meeting(group id group)�M�����d���g�d�L�<�s�N���5�L�L�:�
acquire write lock(mutex[i]);
insert entry into calendar of each member of group;�\�

changed[i] = TRUE;�\�
release lock(mutex[i]);�

listener daemon()�
while(1) �

if (changed[my id] == TRUE) �
beep();
changed[my id] = FALSE;�

sleep(NUM SECS);��
�

// end of calendar object.

Figure 6: Shared memory distributed calendar

35

and delete appointments from one’s own calendar. The function set up meeting
is invoked when a user needs to schedule a group meeting. The locks are
acquired in some pre-defined order to prevent deadlocks. The listener daemon
is responsible for notifying a user that his calendar has been modified. It
periodically reads a flag to determine if any change has been done to the
calendar.

The data race happens since we allow the flag changed to be read without
locking it first. While a process is reading the flag, another process could be
concurrently updating the value of the flag, leading to the data race.

A user will see his/her updates to the calendar immediately. If someone
else schedules a meeting, we need to show that the daemon would alert us
of a change and if we bring up our calendar, it would have a record of the
scheduled meeting. Since the daemon, keeps reading the flag changed, it
would eventually see the value true and alert the user. The user would then
use browse calendar to read the calendar. Before displaying the calendar, a
read lock has to be obtained. Since all accesses to the calendar are guarded
by a read-write lock, there can be no concurrent updates to the calendar and
hence all processes must see the order of updates in the same order. The lock
order would guarantee that the user sees the last update of his/her calendar.

Programming on causal memory is remarkably similar to programming
on sequentially consistent memory, identical in fact, for the synchronous and
asynchronous linear equation solver and the distributed calendar service.

36

var flag: array [0..1] of boolean;
turn: 0..1;

repeat
flag[i] (true;
turn (j;
while (flag[j] and turn (�(j);

critical section

flag[i] = false;

remainder section

until false;

Figure 7: Peterson’s 2-process mutual exclusion

4.3 Programs with Incorrect Executions

There exist several programs which rely on a memory system being sequen-
tially consistent for correct execution. Such programs include software solu-
tions to the mutual exclusion problem. For example, the Peterson’s two-process
mutual exclusion algorithm [54] and Lamport’s bakery algorithm [54] will not
execute correctly on causal memory. We show here how Peterson’s algorithm
fails to provide mutual exclusion on causal memory.

Figure 7 shows the algorithm for achieving two-process mutual exclusion.
To show that the above solution is incorrect on causal memory, consider the
following execution history shown in Figure 8(a). This history is possible
on a causally consistent memory as the two processes could have observed
views as shown in the Figure 8(b). Since each process could see the value

37

�
0 : 	�
����UbQ��� 0 �$
�wd���� �	�
$wt�i� O
 1 ��
����UbE��� 1 �$
g�vbZ�U¡Q �
1 : 	�
����UbQ��� 1 �$
�wd���� �	�
$wt�i� O
 0 ��
����UbE��� 0 �$
g�vbZ�U¡Q

(a) Execution History

W�� 0 : 	 0
����UbE��� 0 �$
�wd���� �	 0
$wt�i� O
 1 � 0
��v�$bQ��� 1 �U
g�vbZ�U¡Q �	 1
��v�$bQ��� 1 �U
�wt���� �	 1
$wt�i� O
 0W�� 1 : 	 1
����UbQ��� 1 �$
�wt�{�� ¢	 1
$wt�i� O
 0 � 1
����UbE��� 0 �$
g�vbZ�U¡Q �	 0
����UbE��� 0 �$
�wt���� �	 0
$wt�i� O
 1
(b) Processor Views

Figure 8: An execution history and processor views for Peterson’s algorithm

of the flag variable as false, both would enter the critical section and mutual
exclusion would not be preserved. A similar argument can be made for the
Bakery algorithm that implements a solution to the n-process mutual exclusion
problem.

4.4 Concluding Remarks

In this chapter, we investigated how to program applications on a memory
system supporting causal consistency. Programming on a causally consistent
memory system seems remarkably similar to programming assuming a se-
quentially consistent memory system. In fact, if a program is free of data
races, it would run without any change in code on causal memory.

The synchronous linear equation solver is a data-race-free program. The
asynchronous linear equation and the distributed calendar are both examples
of programs with data races. They execute correctly as the former converges to
a solution even with older values and the latter due to the interactive nature
of the application can tolerate old values of the boolean variable changed.

38

There are, however, programs which do not execute correctly. The Peterson’s
algorithm and the Bakery algorithm require sequentially consistent memory
for correct execution.

The next chapter discusses how to actually build a system supporting
causal consistency. We will also analyze and compare the performance of the
applications discussed here, in terms of the number of messages required for
maintaining consistency of data, on a system supporting sequentially consis-
tent memory and a causally consistent memory system.

39

Chapter 5

Implementing Causal Memory

This chapter investigates the problem of implementing a causal DSM. We first
present a simple protocol to support a causally consistent shared memory.
We initially restrict the implementation to programs in which processes only
communicate via read and write operations to shared locations in memory.
This allows us to study the issues involved in building a weakly consistent
DSM. We extend this implementation to a page based DSM and introduce
the actions which need to be performed at non-memory operations, namely
the synchronization and forking operations. We then analyze the performance
advantage, in terms of number of messages, of causal memory over sequentially
consistent memory for some of the applications described in the last chapter.

5.1 A Simple Owner Based Protocol

We assume a system where the shared causal memory is partitioned among the
processors. The locations assigned to a processor are owned by that processor.
Each processor � ! has a local memory � ! indexed by location names (addresses).
The locations owned by a processor are always stored in the local memory of
that processor so that, if ",(owner
���
 then � ! �£��� always contains a value of
� . The remaining locations in a processor’s local memory are used to cache
copies of locations owned by other processors. The distinguished value ¤ is

40

�
0: w(x)1 w(y)1�
1: r(y)1 w(x)2 w(y)2�
2: r(x)1 r(y)2

Figure 9: Example to show causal over-writing of data

used to indicate that a processor does not possess a cached copy of a location.
If � !��¥����(¦¤ then � is invalid (not cached) at � ! . Also, assigning ¤ to a location
(� !��¥��� : (+¤) invalidates that location at � ! . The locations owned by a processor
can never be invalidated by that processor. §¨! is the set of locations currently
cached by processor � ! , that is, locations that are not owned by � ! and that are
not invalid in � ! .

Causal orderings between memory operations at different processors are
established when a processor reads a value written by another. Thus, each
time a processor caches a data value written at another processor, it must
ensure that the newly cached value is causally consistent with the data values
already existing in its memory. In particular, any new causal orderings that
get established by the reading of the newly cached data value must not cause
the existing data to be over-written in the causal sense. In the example shown
in Figure 9, when �

2 caches the value of � written by �
1 and reads it, the cached

value of � at �
2 has become over-written (the write to � by �

0 causally precedes
the write to � by �

1), and the value 1 must not be returned by a future read
to � by �

2. The implementation maintains correctness by invalidating cached
copies that might violate causal memory correctness if read. This is done by
detecting cached data which could be causally over-written each time a new
value is introduced into the cache. Causally over-written data is detected using
a mechanism called vector timestamps which is explained below.

41

5.1.1 Vector Timestamps

Causal memory correctness is intimately related to causality. A simple vector
clock protocol [44] may be used to capture precisely the evolving partial order-
ing of events in a distributed system, and thereby, causality. A vector clock
represents logical time as a integer vector of size n, where n is the number of
processors. Each processor in the system maintains a separate vector clock©�ª ! that may be incremented, updated, and compared. The three operations
are described below.

� increment: inc(VT), when executed by processor � ! , adds one to the i th
component of VT and returns the incremented vector time.

� maximum: max(VT � , VT � �) returns the component-wise maximum of the
vector timestamps ©�ª � and ©�ª � � . We will also refer to this operation as
the clock update operation.

� comparison: ©«ª �,; ©«ª � � returns true if, for all " , ©�ª �U�¥"$�\¬ ©�ª � �­�£"$� , and
there is at least one component of ©«ª � that is less than the corresponding
component of ©�ª � � .

Vector clocks have been used extensively in distributed system to do dis-
tributed debugging [22], achieving causal ordering of messages [53], building
highly available distributed services [43], and checkpointing for optimistic re-
covery [32] among other applications.

5.1.2 The Basic Algorithm

Attempts to read a location not locally owned nor cached (a read miss) generate
a message to the owner requesting a current copy. The requesting processor

42

blocks until a reply is received, caches the copy received, and then completes
the read. Similarly, writes to a location not owned by the writer require a write-
through to the owner. The writing processor blocks until the owner’s value is
updated and a reply is received from the owner. Essentially, all such writes are
completed co-operatively between the writing processor and the owner. The
algorithm is shown in Figure 10.

On every write attempt, the writing processor increments its vector clock
and associates the resulting vector time, called a writestamp, with the value
written. Thus each location � in a processor’s local memory � ! contains a value-
writestamp pair � !t�¥����(®
���J ©�ª
 . All writes by a processor are totally ordered
by these writestamps and all writestamps ever generated in the system are
unique. Two writes not ordered by their associated timestamps are concurrent.
When a processor introduces a value into its cache, it updates its vector clock
with the writestamp associated with the value being introduced.

Identifying precisely the values that may violate correctness when a new
value is brought into the cache requires more overhead than we are willing
to pay in our simple owner protocol. Instead, each time a “new” value is
introduced into local memory by a read or write, we invalidate all cached values
that could potentially lead to a violation of causality; that is, all cached values
that are “older” (via the causality relation) than the value being introduced.
This approach may invalidate more cached values than strictly necessary but
it requires little book-keeping overhead and ensures correctness.

Five procedures are shown in the Figure. The first two are executed
whenever � ! performs a read or write. The next two are executed by � ! on
receipt of READ and WRITE requests for locations owned by � ! . The final
operation, ¯�"�¡�°�bZ��¯ , may be performed by � ! under a variety of circumstances
described later. Notice the handling of writestamps of locations not locally

43

�:!�
���
�� ::
if � !��¥����(¦¤

send � READ JL��� to owner
���

receive � R REPLY J8�±J8�sC&J VT C � from owner
���

VT ! : (update
 VT !gJ VT C
� !g�¥��� : (²
���C&J VT C
³ � / §�! : � !��¥��� � VT ; VT C� !t�£��� : (´¤� : (� !��¥��� � value

	 !
���
�� ::©�ª ! : (increment
 VT !

if owner
���
�u(�"

send � WRITE J8�±J8��J VT ! � to owner
���

receive � W REPLY JL��JL�iJ VT C � from owner
���

VT ! : (update
 VT !gJ VT C
� !t�£��� : (¦
��iJ VT !$

� READ JL��� ::

receive � READ JL��� from =
send � R REPLY J8�±J � !g�¥��� � value J � !g�¥��� � VT � to =

� WRITE JL��JL�iJ VT � ::
receive � WRITE J8�±J8��J VT � from =

VT ! : (update
 VT !�J VT
� !t�£��� : (¦
��iJ VT !$
³ � / §�! : � !t�£��� � VT ; VT !� !g�¥��� : (+¤
send � W REPLY JL��JL��J VT !­� to =

discard ::� !t�£��� : (¦¤ : µc� / §�!
Figure 10: A simple owner protocol

44

�
0: r(y)0 w(x)1 r(y)0�
1: r(x)0 w(y)1 r(x)0

Figure 11: A weakly consistent execution

owned. The writer increments the local timestamp and sends this to the
owner, along with the value being written. The owner’s local vector timestamp
is then updated based on the incoming vector timestamp. The owner’s updated
timestamp is finally sent back to the initiating writer who performs a second
update operation. Thus each write to a non-local memory location involves an
increment and two updates of the associated writestamp.

Although our implementation may generate more invalidations than nec-
essary, it still admits weakly consistent executions, not allowed by strongly
consistent memories. The weakly consistent execution in Figure 11 is allowed
both by causal memory correctness and by our implementation if �

0 is the
owner of � and �

1 is the owner of � .
Finally, notice that our implementation includes a simple discard action.

discard may be used as part of a replacement policy to make room for new
values to be cached. Occasional execution of discard can also be used to ensure
eventual communication and to provide liveness. Without discard two proces-
sors that initially cache all locations and only write locations owned by them
need never communicate.

45

5.1.3 Correctness

Informally, our implementation maintains correctness by invalidating any lo-
cally cached values that could cause a violation of correctness if read. Viola-
tions are possible anytime a new value is introduced into the cache. Thus, our
algorithm performs invalidations whenever a value is received as the result
of a read or write request. Since a cached value can be read anytime, our
algorithm invalidates values that, if read, can potentially violate correctness.
Owners also perform invalidations when servicing write requests since this
could lead to a potential causal interaction between the writing process and
the owner if the owner reads that location in the future.

Two observations lead to the correctness of our implementation. First,
violations of causal memory correctness are always related to violations of
causality. A read of � by � ! returning � can only violate correctness if � !
“knows” of some other value �ZC whose read or write causally follows the write
of � . Second, a read of � by � ! resulting in a request to the owner (a remote read)
can never violate correctness since the owner is guaranteed to return a value
that causally follows any value of � that � ! could previously have seen. Thus,
a simple strategy to maintain correctness is to force a request to the owner
on every read. This strategy results in a memory that satisfies sequential
consistency, not just causal correctness, but we lose all the benefits of caching.
A better strategy, the one used by our implementation, is to allow a process� ! to read cached values that are concurrent with or that causally follow the
value most recently introduced into the cache. Reads of any other value (not
locally owned nor cached) must generate a read request to the owner. Note
that subsequent remote reads might introduce values that causally precede all
other cached values so this strategy allows the cache to contain values with a

46

�
0: w(x)0 w(y)1�
1: r(x)0 r(y)1

Figure 12: An example to illustrate unnecessary invalidation

wide range of writestamps.

5.1.4 Limitations of the Owner Protocol

The protocol embodies a sufficient but not necessary condition for correctness.
This condition may be overly pessimistic in some cases but it provides a simple,
easily implemented rule which guarantees that no read may return an over-
written (causally prior) value. As an example of such a case, consider the
process histories shown in Figure 12. Assume that �

0 owns both � and � . If
neither location is initially cached at �

1 then our algorithm will invalidate � in�
1’s cache when � is introduced even though � ’s value has not been over-written.

Also, the protocol is structured in terms of accesses to individual locations
and as such is not very practical in distributed systems where it is costly to
transmit small amounts of data over a network. The protocol also requires
that a write operation to a location block the processor until the owner of
the location has been informed of the write. Implementing write-through
for memory locations is expensive in distributed systems where the message
latencies are high. The static owner protocol is impractical in a distributed
setting.

Another protocol for implementing causal memory was described by Ahamad
et. al. [5]. Their protocol is update-based and requires each write operation to
send a message to all processors informing them of the write. This generates a

47

large number of messages but does not suffer from the unnecessary invalida-
tions. However, update-based protocols are not a feasible choice for page-based
DSM’s, since trapping each write operation is expensive.

The basic protocol described here can be improved in several ways. These
include scaling the unit of sharing to a page, eliminating the unnecessary
invalidations, and reducing the blocking of processors. We discuss this in the
next section.

5.2 A Page Based Protocol

In this section, we develop a protocol where the unit of sharing is a page.
This allows us to integrate consistency maintenance operations with virtual
memory operations such as page faults. First, we discuss the issues that
arise when we scale the unit of sharing from a single location to a page. We
also consider the effects of synchronization and forking operations later in the
section.

5.2.1 Issues in Scaling the Unit of Sharing

We can associate timestamps with pages instead of individual memory loca-
tions. The page now becomes the unit of consistency maintenance. Although
causal memory permits multiple writers and readers to access a page concur-
rently, concurrent writers introduce the problem of merging the modifications
to a page done at multiple processors. There could be concurrent writes to
the page because of false sharing even when synchronization controls access
to data stored in the page. The diff mechanism employed in [14, 33] can be
used to handle the merging problem but it does have copying and processing

48

overheads, which sometimes can be quite high [31]. We deal with false sharing
by making the restriction that a page can only be accessed by a single writer
and multiple readers at a given time. Thus, a page cannot be cached at mul-
tiple processors with write access at any time. This does, however, serialize
concurrent writes to a page. We pin a page to a processor [23] for a certain
amount of time to control the situation where concurrent writers move a page
between processors continuously (page thrashing). It must be noted that false
sharing, where a single writer is concurrent with multiple readers, does not
result in any communication in our implementation of causal memory.

The static owner scheme used in Section 5.1 is not appropriate in a dis-
tributed system since any write to a page would result in communication with
the owner of the page. Instead we will use a dynamic-owner-fixed-manager
protocol as described by Li and Hudak [39]. A manager is a processor that
either caches a data item x assigned to it or knows the identity of the processor
that caches a current copy of x. One of the processors that caches a current
copy of x is also called its owner. The identity of the owner processor for a data
item is known to the manager of the data item.

We develop an implementation where access to causally consistent shared
data is provided by caching data pages in the memories of the processors. Pro-
cesses at a processor can freely read data that is cached locally. Communica-
tion with other processors may be required when the data to be accessed is not
locally cached or when it is written.

5.2.2 Implementation Approach

The key features of our implementation of causal memory include (1) use of
page fault mechanisms for providing access to shared data to processes on

49

different processors, (2) use of vector timestamps for maintenance of causality
information, (3) allowing a single writer and multiple readers to access a page
concurrently.

Our implementation maintains consistency of shared data at the level of
a page. Thus, each processor’s memory caches a subset of the shared pages.
When a page not present in the local memory is accessed, it generates an access
fault. A write on a page that is cached with read access causes a protection
fault.

Each processor maintains a vector clock and timestamps derived from this
clock are stored with each copy of a page. More specifically, the timestamp on
a page copy reflects the vector time at the processor that last wrote this copy
of the page.

5.2.2.1 Data Structures

Each processor maintains several data structures to provide access to shared
pages. In particular, processor � ! maintains a vector clock ©�ª ! , which is used
to timestamp pages written at � ! . A table that has an entry for each shared
page is also kept at each processor. An entry for page x in this table indicates
if the page is currently cached, the page’s vector timestamp, the manager and
owner processors of the page, and its access information. Since we allow only a
single writer to a page, the owner field in the entry stores the identifier of the
processor that has the most recent copy of the page. The access field specifies
the access privileges to the page at the local processor. It can be null, readonly
or readwrite.

Initially, each component of the vector clock is set to 0 at all processors.
Only the manager processor of a page has the owner and manager fields set to

50

itself for that page. Processors other than the manager have the access field
set to null for the page and the manager field appropriately initialized (other
fields for a page do not need to be defined at these processors). We now discuss
the handling of access and protection violations and the manipulation of the
data structures stored at each processor.

5.2.2.2 Handling Page Faults

The actions executed when page faults occur at processor � ! are shown in
Figure 13. We also show the actions executed by the owner and manager
processors for servicing page faults.

On a read access fault, a processor sends a READ message to the manager
of the page. If the fault is due to a write access, a WRITE message is sent. On
a protection fault, the faulting processor checks first whether it is the owner
of the page. If it is, it upgrades the access to the page to readwrite. Otherwise,
a WRITE message is sent to the manager. The manager on getting a request,
supplies the page if it is the owner or else forwards the request to the current
owner. If a WRITE message was sent, the current owner downgrades its access
to the page to readonly (we do not need to make its access null since we allow
readers to concurrently exist with a writer), and sends a copy of the page to the
faulting processor, which assumes ownership. If the fault was due to a read,
the owner supplies a copy of the page and downgrades its access to readonly
but retains ownership of the page. This is done so that the processor’s vector
time can be incremented the next time it writes to that page. The faulting
processor, on receiving the page in a DATA message, installs the page with the
appropriate access rights.

51

Read Access Fault::
send [READ, x] to x.manager
recv [DATA, x, VT C]
x.access := readonly
x.VT := VT C
VT ! := max(VT ! , VT C)
invalidate(VT C)

Write Access Fault::
send [WRITE, x] to x.manager
recv [DATA, x, VT C]
x.access := readwrite
x.owner := self
VT ! := max(inc(VT !), VT C)
x.VT := VT !
invalidate(VT C)

Protection Fault::
if (x.owner != self)

Handle similar to
Write Access Fault

else
x.access := readwrite
VT ! := inc(VT !)
x.VT := VT !

(a) Actions Executed at
� z

[READ, x]::
recv [READ, x] from � !
if (x.owner = self)

x.access := readonly
send [DATA, x, x.VT] to � !

else
send [FWD, x, i, read] to x.owner

[WRITE, x]::
recv [WRITE, x] from � !
x.owner := i
if (x.owner = self)

x.access := readonly
send [DATA, x, x.VT] to � !

else
send [FWD, x, i, write] to x.owner

[FWD, x, i, mode]::
recv [FWD, x, i, mode] from x.manager
if (mode = write) x.owner := i
x.access := readonly
send [DATA, x, x.VT] to � !

(b) Manager & Owner Actions

Figure 13: Causal memory implementation using vector timestamps

52

5.2.2.3 Vector Clocks and Timestamps

In general, vector timestamps are incremented between local events and are
also included in all messages. A processor’s clock is also updated when a
message is received by performing a max operation using the current value of
the clock and the timestamp received with the message. The result is assigned
to the vector clock of the receiving processor.

In our implementation, the value of clock, ©�ª ! , is not sent when � ! sends
request messages to other processors. This is because causal dependencies
between processors in a shared memory system are only created when data
written by one processor is read by another. Thus, a request message does
not create a causal dependency. The causal order created by a read orders
the associated write operation before the read. Once a page is mapped with
read-write access, there is no mechanism to track when the last write was
made to the page. The page could potentially have been written as late as the
current vector time at the processor. The timestamp sent in a DATA message
is, therefore, the current value of the sender’s clock. Thus, in Figure 13, only
DATA messages carry the timestamp associated with the page being sent.
When a page is received in a DATA message due to a write fault, the clock is
incremented and updated because a timestamp read from the clock is assigned
to the new version of the page data that will be created by the processor.

The actions that handle the various types of faults in Figure 13 show
how page timestamps are determined. When � ! requests and caches a page
in readonly mode, the timestamp associated with it is received in a DATA
message with the copy of the page. Page timestamps are used to decide when
the page copy may be overwritten according to causality. If a processor is
caching a page in readwrite mode, its timestamp stores the time at which the

53

processor last write faulted on the page. Multiple writes at a processor that
fall within a single page will result in a single increment operation to the
writer’s vector clock because only the first write generates a fault. However,
there are situations when the clock needs to be incremented several times.
This happens when other processors get copies of the page while a processor is
writing it (we allow concurrent readers with a writer). The clock is incremented
to ensure that different versions of a page data have different timestamps
associated with them. We achieve this by downgrading the owner processor’s
access to a page to readonly when it sends a copy of the page in response to a
READ message (or FWD when the owner is different from the manager). By
making the page readonly, we ensure that a future write by the owner would
generate a protection fault which will result in incrementing the clock and a
new timestamp being assigned to the page. Thus, the new version of the page
data will have a higher timestamp than the preceding version that has been
supplied to another processor.

5.2.2.4 Maintaining Data Consistency

Our implementation must ensure that when a processor reads data from a
page, the locally cached copy of a page has not been overwritten. In other
words, if the page contains a value for location x which was written by operation
� 1, then it is not the case that there is another write operation � 2, such that
� 1 TUB 79 � 2 and � 2 causally precedes the read that returns the value written by
� 1. We ensure that only causally consistent data is read by locally invalidating
cached pages when it is suspected that they contain causally overwritten data.
The vector timestamps maintained for cached pages are used to determine
when they may contain potentially overwritten data.

54

Causal orderings between operations are established when a processor
reads data written by another processor. In our system, this would happen
because a processor faults on a page and receives it from another processor.
Since reading the data in a newly cached page could result in new causal
orderings, consistency operations need to be executed when a page is added to
the cache of a processor.

The basic consistency maintenance operation, invalidate(timestamp TS),
is shown in Figure 14. It is performed for a set of pages with respect to the
timestamp TS. When it is executed at processor � ! , pages in §¶! , which is the
set of shared pages cached at � ! , are checked. If a page in §·! is cached with
readonly access, � ! is not the owner of the page, and the page timestamp is less
than TS, the page is locally invalidated by setting its access to null. Since the
invalidation is local, no messages are sent to other processors that cache the
page.

invalidate(timestamp TS)* ³
y / C !
if ((y.access (readonly) ¸ (y.owner u(self) ¸ (y.VT ; TS))

y.access : (null3
Figure 14: The invalidate operator

5.2.2.5 Synchronization Operations

In parallel programs, communication between processors also takes place
through synchronization operations and forking operations. Synchronization
operations are used for access control (e.g., semaphores and locks ensure that a

55

sequence of memory operations are executed atomically) or to provide sequence
control (e.g., barriers). Forking operations are the mechanism by which com-
putation is assigned to a particular processor.

Thus, we need to consider the effects of synchronization operations and
forking operations on the implementation of causal memory. In distributed
systems, synchronization operations are implemented by a server (many dis-
tributed synchronization algorithms exist but they have high message costs
or latency). Since synchronization operations order memory operations, their
implementation must be modified to carry the ordering information. We do
this by associating a vector timestamp with each synchronization variable.

The acquire and release actions on a lock variable are shown in Fig-
ure 15(a). Each lock l has an associated vector timestamp l.ts. On a release
operation by processor � ! on lock l, � ! assigns the current value of ©�ª ! to l.ts.
When l is acquired by another process � 6 , ©�ª 6 is updated by assigning to it the
component-wise maximum of the current value of ©«ª 6 and l.ts. By updating
its clock, processor � 6 ensures that its clock orders all memory operations at � !
that were executed before the corresponding release operation on lock l. The
invalidate operation shown in Figure 15 is the same as described before.

Barriers are implemented by having a barrier server do an update of its
clock based on the timestamps received from every processor in the request
messages that are sent when a process reaches a barrier. A timestamp read
from the updated clock is transmitted with the barrier release and every pro-
cessor updates its vector clock to reflect the timestamp received. Thus, each
processor participating in the barrier call orders memory operations at all
processors that are executed before the barrier call.

Object invocations (or forks) also induce orderings between memory oper-
ations. Their handling is shown in Figure 15(b). When processor � ! invokes an

56

object on � 6 , the value of the vector clock at � ! , ©«ª ! , is sent with the invocation
request. Before executing the invocation, processor � 6 updates its clock to re-
flect the timestamp received with the invocation request. On return from the
invocation, ©�ª ! is updated to reflect the timestamp that comes from � 6 in the
return message.

5.2.2.6 Reducing the Unnecessary Invalidations

The implementation that we sketched handles two of the problems mentioned
earlier, namely scaling the unit of sharing and the blocking of processors. But
we still have the problem where we could be invalidating more pages than are
absolutely necessary. This occurs for two reasons. Pages which are not writ-
ten frequently enough would not have their timestamps increasing and thus
would end up getting invalidated. Also, the discard operation could invalidate
pages which still have current values. To reduce the occurrence of unnecessary
invalidations, we provide language support to annotate data. Data which is
read-only or write-once are tagged Static. These pages are not considered for
invalidation when the local invalidations are done, since their values never
change during the course of the execution. Data which needs to be discarded
periodically to preserve liveness is tagged as Transient. Only transient data is
periodically discarded. Figure 16 shows the data structures and their annota-
tions for the linear equation solver and the distributed calendar applications
that were discussed in Chapter 4. In the linear equation solver, the array [
and the vector ^ are inputs and remain constant during the execution of the
application and thus are tagged as Static. In the distributed calendar, the
boolean changed has to be discarded periodically to ensure that new values
would be seen. So it is tagged as Transient.

57

� !
unlock(l)

� 6

lock(l)¹@º 6¢» max ¼­½�¾ º�¿�Àd¹�º 6LÁ
invalidate(l.TS)
Begin CS

l.TS

(a) Handling Synchronization� !
invoke

� 6

¹@º 6¢» max ¼ ¹@º ! Àd¹@º 68Á
invalidate(¹,º !)
return

©�ª !

©�ª 6¹@º !i» max ¼ ¹·º 6 Àt¹�º !­Á
invalidate(¹,º 6)

(b) Handling Invocations

Figure 15: Synchronization and Invocations

58

float [Static] A[n][n];
float [Static] b[n];
float x[n];
(a) Linear equation solver data with annotations

calendar type calendar[MAX USERS];
lock mutex[MAX USERS];
boolean [Transient] changed[MAX USERS];

(b) Distributed calendar data with annotations

Figure 16: Applications with annotations

5.2.3 Performance Analysis

The implementation of causal memory should provide improved performance
for applications compared to a sequentially consistent memory. We demon-
strate improved performance by showing that causal memory requires much
fewer number of messages to maintain consistency of data compared to a se-
quentially consistent memory.

We compare a causal and a sequentially consistent DSM, both running
the linear equation solver and the distributed calendar. We assume a compa-
rable static-manager-dynamic-owner protocol [39] for sequentially consistent
memory. A write requires that all cached copies in the system be invalidated.
(In Ivy [39], a representative sequentially consistent DSM, a read set is main-
tained by the owner and invalidation messages are sent to all processors in the
read set.) In comparison, a causal write requires at most three messages.

A simple message counting argument shows the advantage of causal mem-
ory when running the synchronous linear solver. For simplicity, assume that
each processor in the system runs a single worker process and that the data

59

is partitioned such that it fits exactly into one page. Assume also that each
processor also manages the data assigned to it. We also do not consider the
number of synchronization messages, as they would be the same in either
implementation.

First consider the causal memory implementation. In every iteration,� ! must issue read requests to all other processors when reading values not
in its data partition. This results in 2
 O h 1
 messages (O h 1 requests to the
manager, and O h 1 replies). When processor � ! writes to ��! , it does not generate
any messages. Now consider the same execution on sequentially consistent
memory. The same number of messages are generated for reading the pages not
in one’s partition. However, when processor � ! writes �X! at the end of a phase,
sequentially consistent memory requires that all cached copies be invalidated.
Since every process other than � ! has a copy of �i! , this results in 2
 O h 1

messages (O h 1 invalidation messages and corresponding acknowledgements)
per processor, a cost not incurred by causal memory. Thus each phase of
the synchronous linear solver requires 4 O h 4 messages per processor when
executed on sequentially consistent memory compared to 2 O h 2 when executed
on causal memory. This represents a substantial savings of 2 O
 O h 1
 messages
per iteration and causal memory will lead to performance gains because its
consistency actions are local and do not require any communication.

In Figure 17 we compare the number of messages when the calendar
application is executed on causal memory and sequentially consistent DSM.
We have assumed that each user’s calendar data would not require storage
more than a page. This assumption just simplifies the message count analysis.

We consider the maximum number of messages which could be exchanged.
This would happen when the manager processor is not the current owner of
a requested page. Causal memory requires at a maximum three messages

60

Operations browse update set up meeting daemon
Max Messages(SC) 3 2r+3 k(2r+3) (3,6+2r)
Max Messages(Causal) 3 3 3k (3,6)

r: number of readers
k: number of members in meeting group

Figure 17: Message counts for different memory models

to service a page fault. On the other hand, the number of messages on se-
quentially consistent memory depends on the number of concurrent readers.
The two values for the listener daemon case correspond to the cases where
the if statement evaluates to true or false. Since the number of messages for
each operation is bounded, scalable implementations are possible for causal
memory.

5.3 Concluding Remarks

This chapter showed how to implement a causally consistent DSM. We started
with a simple protocol and extended that to a practical page-based implemen-
tation.

One of the problems that the implementation had was that of unneces-
sary invalidations. We provided a mechanism whereby the programmer could
annotate data in the program. This reduces the number of unnecessary invali-
dations but does not eliminate it. In the next chapter, we propose an alternative
implementation which eliminates the problem of unnecessary invalidations.

We also presented message count arguments to show that causal memory

61

has much lower communication overhead compared to a sequentially consis-
tent memory implementation. In a later chapter, we provide a detailed exper-
imental evaluation to quantify exactly the performance improvements made
possible by the weaker consistency of causal memory.

62

Chapter 6

Optimizing for Data-Race-Free Programs

A large number of shared memory parallel programs tend to be data-race-free
(DRF) programs. Several optimizations are possible in the implementation of
causal memory if we restrict ourselves to this class of programs. These pro-
grams are interesting since they execute correctly on causal memory without
any change in the code. In the protocol presented in the previous chapter,
we invalidated cached data items that could be potentially overwritten when
a new data item was added to the cache. In the implementations developed
in this paper, we assume that the data is shared by DRF programs, and this
allows us to develop more efficient schemes for maintaining causal consistency.
In this chapter, we first modify the vector timestamp protocol to reduce the con-
sistency maintenance overhead for such programs. We then introduce a new
implementation of causal memory based on versioned pages which eliminates
the problem of unnecessary invalidations.

6.1 Causal Memory and DRF Programs

If programs are known to be free of data races, we can get more efficient imple-
mentations of causal memory. Causal orderings between memory operations
at different processors are established when a processor reads a value written
by another. Thus, each time a processor caches a data value written at another

63

processor, it must ensure that the newly cached value is causally consistent
with the data values already existing in its memory. In particular, any new
causal orderings that get established by the reading of the newly cached data
value must not cause the existing data to be overwritten in the causal sense.

When programs are known to be DRF, the check to determine that existing
data remains causally consistent with information received from another pro-
cessor only needs to be performed when acquire synchronization operations
complete. This optimization is possible because the order induced between
memory operations by synchronization operations, S 79 (see Section 3.2), is iden-
tical to the extended causal order T$B 79 . This follows from the fact that conflicting
operations, for example two operations � 1 (�	�
���
�� and � 2 (���
���
g� , must be
ordered by the order defined by synchronization operations when � 1 and � 2 are
executed by different processors. Thus, the synchronization operations will or-
der � 1 and � 2, and the writes-before order, ?�A9 , between � 1 and � 2 cannot create
any new orderings between memory operations. As a result, we do not need to
check for causal consistency of data at a processor when a new data value is
added to its memory. The protocol that we develop in the next section makes
use of this fact to avoid extra processing overhead for programs known to be
free of data races.

6.2 Causal Memory Implementation Based on Vec-

tor Timestamps

When programs are free of data races, the local invalidations need not be per-
formed when pages are brought into the cache. Also, the updating of clocks
when acquire operations complete make it unnecessary to advance clocks when

64

DATA messages containing a page are received due to read faults. In a shared
memory environment, causal relationships arise between processors either
when one processor reads what is written by another processor, or due to syn-
chronization operations. Since timestamps are transferred with synchroniza-
tion variables, and the vector clock of the processor acquiring a synchronization
variable is updated, we consider the case when a processor reads a value writ-
ten by another processor. In particular, when � ! reads a value of location x
which is written by � 6 , ©�ª ! should be updated to include the value of ©�ª 6 at
the time � 6 wrote x. In our implementation, for � ! to read the value of x, it
must have generated a page fault to fetch the page that contains x after the
page was written by � 6 . Although ©�ª ! is not updated when the DATA message
is received at � ! , ©�ª ! still orders all operations of � 6 including the write that
produced the value being read. This is because we assume DRF programs and
hence � 6 must have done a release on a synchronization variable after its write
to � . Furthermore, � ! must have acquired the synchronization variable which
would advance ©«ª ! to include all operations up to the release by � 6 . Thus, the
value of ©�ª ! will be greater than the time at which x was written and it is not
necessary to update the clock when DATA messages are received for servicing
read faults.

However, the write fault action does need to update the vector clock ©«ª !
before generating a timestamp for the page being written. This is necessary,
even when programs are DRF and a lock is acquired before the write is done,
due to false sharing problems. Consider the execution shown in Figure 18.
Assume that both data items, x and y, are stored in a single page. �

0 first
acquires a lock, � 1, that controls access to x, writes x and then releases � 1. It
then acquires � 2 that controls access to y and writes it. Assume that �

1 now
acquires � 1 and reads x after �

0 has written y. Clearly, the timestamp received

65

�
0: lock(� 1) 	�
���
 1 unlock(� 1) lock(� 2) 	�
���
 0

�
1: lock(� 1) ��
���
 1 unlock(� 1) lock(� 1)

�
2: lock(� 1) 	�
���
 2 unlock(� 1)

Figure 18: Example to show why clock update is necessary on write faults

with � 1 will be less than the timestamp on the page when �
1 read faults and

receives it after acquiring � 1. If � 2 now acquires the lock and writes to location
x without having first updated its clock, the page cached at �

1 will not have a
timestamp that is smaller than the timestamp assigned to the new version of
the page at �

2. Our consistency maintenance operations require that writes to
a page be totally ordered, and this be reflected in the timestamps associated
with the copies of the page. An increment followed by a clock update in the
write fault action in Figure 19 guarantees that this property holds.

False sharing could lead to a similar situation when �
2 only reads the page.

In this case, � 2’s clock need not be advanced because only the data written by�
0 before it released � 1 is read. In our example, � 2 advances the clock because it

writes the page. Thus, when �
1 acquires � 1 again, its copy of the page will have

a lower timestamp than the timestamp received with the lock. The modified
protocol is shown in Figure 19.

The consistency action, now executed only at synchronization and fork
points, remain the same as in the previous chapter, and is shown again in
Figure 20.

The local invalidations guarantee that if a page is locally cached, the data
stored in the page is not causally overwritten according to the view of the

66

Read Access Fault::
send [READ, x] to x.manager
recv [DATA, x, VT C]
x.access := readonly
x.VT := VT C

Write Access Fault::
send [WRITE, x] to x.manager
recv [DATA, x, VT C]
x.access := readwrite
x.owner := self
VT ! := max(inc(VT !), VT C)
x.VT := VT !

Protection Fault::
if (x.owner != self)

Handle similar to
Write Access Fault

else
x.access := readwrite
VT ! := inc(VT !)
x.VT := VT !

(a) Actions Executed at
� z

[READ, x]::
recv [READ, x] from � !
if (x.owner = self)

x.access := readonly
send [DATA, x, x.VT] to � !

else
send [FWD, x, i, read] to x.owner

[WRITE, x]::
recv [WRITE, x] from � !
x.owner := i
if (x.owner = self)

x.access := readonly
send [DATA, x, x.VT] to � !

else
send [FWD, x, i, write] to x.owner

[FWD, x, i, mode]::
recv [FWD, x, i, mode] from x.manager
if (mode = write) x.owner := i
x.access := readonly
send [DATA, x, x.VT] to � !

(b) Manager & Owner Actions

Figure 19: Causal memory implementation for data race free programs

67

� !
unlock(l)

� 6

lock(l)¹@º 6¢» max ¼­½�¾ º�¿�Àd¹�º 6LÁ
invalidate(l.TS)
Begin CS

l.TS

(a) Handling Synchronization� !
invoke

� 6

¹@º 6¢» max ¼ ¹@º ! Àd¹@º 68Á
invalidate(¹,º !)
return

©�ª !

©�ª 6¹@º !i» max ¼ ¹·º 6 Àt¹�º !­Á
invalidate(¹,º 6)

(b) Handling Invocations

Figure 20: Synchronization and Invocations

68

processor. Consider data item � and the time at which the page containing �
was brought to the memory of processor � ! for reading. For simplicity, assume
that the page only contains the data item � . The vector timestamp stored at � !
for this page is assigned from the clock of the processor � 6 that last wrote � . In
particular, the timestamp was the value of ©«ª 6 when � 6 wrote � . Since � 6 was
the owner of the page at the time the request due to � ! ’s read fault was serviced,
the value of x received by � ! in the page was up-to-date. Assume that � is now
written again by another processor � H . This processor must have acquired
a synchronization variable such as a lock before it writes � . Furthermore,
the lock must have been released by � ! which had acquired it to read � . A
lock carries a timestamp that is the value of the vector clock at the processor
that last executed the release operation. Also, a processor updates its clock
when it acquires a lock. Therefore, before � H ’s write, the value of ©�ª H will be
greater than or equal to the timestamp that was assigned to the page by � 6
(this timestamp was assigned before � 6 released the lock to � ! and is also stored
with the page at � !). Furthermore, ©�ª H is incremented when � H performs its
write to � . To read a page that has been written since the time the page was
cached, � ! must acquire the lock again. It is easy to see that the timestamp
received with the lock will be greater than the timestamp of the cached page.
As a result, the consistency actions executed at the time the acquire operation
completes will invalidate the old copy of the page at � ! . Thus, when the page
is read again, it will be requested from the current owner and the causally
overwritten data will not be read.

A page can store multiple data items and hence several locks may be used
to control access to the data stored in it. Causal consistency is maintained
for shared data even when we have such false sharing. For example, the page
containing data item � in the discussion in the previous paragraph, could have

69

been written by another processor after � 6 wrote � (such a processor could have
written data item � which is also stored in the same page). In this case, the
timestamp � ! receives from � 6 with the lock that controls access to � will be
lower than the timestamp � ! receives with the page when it reads � . However,
because a processor updates its clock when it receives a page for writing, � H ’s
clock will be advanced beyond the timestamp that � ! stores for the page that
contains � . Thus, when � ! acquires the lock again to read � the second time,
it will receive a timestamp that is higher than the timestamp it stores for � ’s
page. As a result, the page will be locally invalidated and hence the overwritten
value of � cannot be read.

Since we allow a single writer for a page, reading a page that is cached
with readwrite access rights can never result in overwritten data being read.
Thus, a cached page at an owner processor always contains data that is causally
consistent.

We can consider more complex situations but because of the the fact that
programs are DRF, a processor will first acquire a synchronization variable
before it accesses the data in a page. Since timestamps are transmitted with
synchronization variables, a page that has been written by a causally later
write and the release operation that follows it, will ensure that the synchro-
nization variable carries a timestamp higher than the timestamp associated
with the page copy that stores the value of the old write. This will always
guarantee that causally overwritten data is invalidated before a processor can
access it.

70

�
0: lock(� 1) 	�
���
 1 unlock(� 1) lock(� 2) 	�
���
 1 unlock(� 2)

�
1: lock(� 1) ��
���
 1 unlock(� 1) lock(� 2)

Figure 21: Unnecessary invalidation of page containing data item x

6.2.1 Unnecessary Invalidations

As in the implementations in the last chapter, the local invalidations are suffi-
cient to ensure correctness but they are not always necessary. This is because
not all pages that are older with respect to a timestamp are causally overwrit-
ten. For instance, consider the execution shown in Figure 21. Assume that
x and y are on different pages and that the read by �

1 of x returns the value
written by �

0. When �
1 completes lock(� 2), the page containing x would get in-

validated even though it still holds the current value of x. This is because the
clock at �

0, ©�ª
0, gets incremented when y is written so the timestamp received

with � 2 is greater than the timestamp associated with page x. The problem is
that vector timestamps, with a component for each process, do not accurately
track the exact set of pages that have been modified. Because a write by �

0

to either x or y would have resulted in the same timestamp being received at�
1 when lock(� 2) completes, �

1 must assume that x could be overwritten and
invalidate the page.

We modify the protocol given here in the next section to ensure that
only those pages that have been causally overwritten are invalidated when
an invalidate operation is executed. This requires that we expand the vector
timestamp to include a component for each shared data page.

71

6.3 Causal Memory Implementation Based on Ver-

sioned Pages

In our implementation of causal memory, we allow only a single writer to access
a page concurrently with multiple readers. As a consequence, a sequence
of writes to a page can be tracked with a version number. In the second
implementation of causal memory shown in Figure 22, which eliminates the
unnecessary invalidations, version numbers associated with pages are used to
determine when the data in a page are causally overwritten1. Each processor
maintains a version number (instead of a vector timestamp) with each of its
cached pages. Also, the vector clock at processor � ! is replaced by a version
vector, VV ! , which stores the latest version number known to � ! of each of the
shared pages. VV ! [x.num] is the latest version of page x (the field x.num stores
the index of page x) as known to � ! . The basic idea is to transfer the value of
VV ! with synchronization variables and to use these versions in consistency
maintenance operations. In particular, when an acquire operation completes
on a synchronization variable, a cached page x is locally invalidated if the
version number stored with it is less than the version number received for x
with the synchronization variable. We now explain the operation of the second
implementation and discuss how it differs from the first one.

6.3.1 Page Fault Handling and Version Management

On a page fault, the same actions are executed as before. A read fault
results in a request message for the page which is sent to the manager which

1Version numbers were used in the Locus file system for detecting concurrent updates to
a single file [49]. Our version vectors are used to ensure causal consistency for a set of data
pages.

72

Read Access Fault::
send [READ, x] to x.manager
recv [DATA, x, version C]
x.access := readonly
x.version := version C

Write Access Fault::
send [WRITE, x] to x.manager
recv [DATA, x, version C]
x.access := readwrite
x.owner := self
x.version := version C + 1
VA ! [x.num] := x.version

Protection Fault::
if (x.owner != self)

Handle similar to
Write Access Fault

else
x.access := readwrite
x.version := x.version + 1
VA ! [x.num] := x.version

(a) Actions Executed at
� z

[READ, x]::
recv [READ, x] from � !
if (x.owner = self)

x.access = readonly
send [DATA, x, x.version] to � !

else
send [FWD, x, i, read] to x.owner

[WRITE, x]::
recv [WRITE, x] from � !
x.owner := i
if (x.owner = self)

x.access = readonly
send [DATA, x, x.version] to � !

else
send [FWD, x, i, write] to x.owner

[FWD, x, i, mode]::
recv [FWD, x, i, mode] from x.manager
if (mode = write) x.owner := i
x.access := readonly
send [DATA, x, x.version] to � !

(b) Manager & Owner Actions

Figure 22: Causal memory implementation using versioned pages

73

either sends the page or forwards the request to its current owner. The DATA
message that contains the requested page also includes the version number of
the page. On a write fault, since a new version of the page data will be created
by the processor, the received version number of the page is incremented and
the corresponding entry in VV ! is updated. If a processor owns a page, a
protection fault on that page does not require any communication but the
version number and the version vector are similarly updated. In the case
where the processor is not the owner of a page, a protection fault is handled
similar to a write access fault.

To ensure that different page versions have different numbers, an owner
downgrades its access to a page to readonly when it sends a copy of the page
to another processor even when the request for the page was due to a read
fault. This guarantees that the version number is incremented if the owner
writes the page again. This is a local operation and does not require any
messages. The same page, cached at different processors, may have different
version numbers. The current owner of the page has the latest copy of the page
and will always have the highest version number.

Although DATA messages contain only the version number of the page
being transferred, synchronization operations need to transfer the version
vector information between processors. For example, when a lock is released
by processor � ! , the lock is assigned a timestamp which is the current value of
VV ! . When processor � 6 next acquires this lock, the lock’s timestamp is used
to update VV 6 . Similar to Figure 15 for vector clocks, a maximum operation is
performed on each component of VV 6 and the timestamp received with the lock,
and the result is assigned to VV 6 . Other synchronization constructs such as
barriers similarly update the version vectors at the participating processors.

74

invalidate(version vector VV)* ³
y / C !
if (y.version ; VV[y.num])

y.access (null3
Figure 23: The invalidate operator for versioned pages

6.3.2 Maintaining Data Consistency

Causal consistency of shared data is maintained by locally invalidating pages
at synchronization acquires and at fork-join points as shown in Figure 20. The
invalidate operation is shown in Figure 23. As before, §@! is the set of all pages
in the cache of processor � ! . The timestamp received with the synchronization
variable is passed as a parameter to the invalidate operation. It locally invali-
dates a page if the version number associated with the page is smaller than its
version in the timestamp (y.version is the version number of page � and y.num
is the page number).

We do not need to check if a processor owns a particular page or if it caches
it only in readonly mode before invalidating the page. This was done in the
previous implementation because a vector clock could have been advanced due
to writes to other pages. Thus, a timestamp received with a synchronization
variable could have been greater than the page’s timestamp at the owner even
when it had the most recent copy of the page. Since the owner of the page has
the highest version number for the page, a page at the owner will never be
invalidated.

75

6.4 Comparing the Two Implementations

The two implementations differ in the state maintained and exchanged by
processors. In the first implementation, vector clocks are maintained which
have a component for each processor in the system. The second implementa-
tion based on version numbers, has a component for each shared data page of
the application. The storage and communication costs of the implementations
depend on the sizes of these data structures. It may appear that a version
vector may have a much larger number of components compared to a vector
clock (when the number of processors is smaller than the number of shared
pages). This could result in higher storage and communication overheads for
the second implementation. This is not the case for many of the applications
that we studied. One reason is the relatively large page size (typical page
sizes for most workstations are 4K and 8K bytes). Also, only a single ver-
sion number is sent in DATA messages in the second implementation whereas
these messages include vector timestamps in the first implementation. Thus,
only the messages that transfer synchronization variables incur the overhead
of transmitting the version vector. Version numbers also reduce the process-
ing overhead in consistency maintenance operations because version numbers
instead of vector timestamps are compared.

A version based implementation could have excessive storage and commu-
nication overhead when the shared data space is very large. The annotations
discussed in the previous section can also be used to reduce the size of version
vectors. Pages that are Static are not considered for invalidation and do not
need to have version numbers associated with them.

76

6.5 Additional Optimizations

The implementations of causal memory also allow several other optimizations.
They are described next.

6.5.1 Avoiding Page Copying

Our implementation allows a writer to be concurrent with readers. While a
page is being transferred by the owner of a page in response to a READ request,
it is quite possible that the owner processor continues to write into that page.
This is because a page has to be broken down into several messages, each the
size of a protocol data unit, and the application could run while the protocol
code is blocked waiting for an acknowledgement for a previous message. In
general, the protocol code copies the data to be transmitted in a separate buffer
to avoid the problem of the data being modified while it is sent. In our system,
such copying is not necessary because programs are assumed to be DRF.

Consider the case in which an owner processor �
0 receives a request for

a page due to a read fault at processor �
1. At �

0, the execution of the commu-
nication protocol code can be interleaved with the execution of the application
code. Since we downgrade the access to the page at � 1 on processing a READ or
FWD message to readonly before sending the page, the application code at �

0

would raise a protection fault on a write, which would be handled locally as �
0

is still the owner. Also, because programs are free of data races, the data in the
page being written by �

0 will not be read by �
1, the processor to which the page

is being sent. In fact, the concurrent access to the page must be due to false
sharing and �

0 writes to parts of the page for which �
0 holds an exclusive lock.

Thus writes by �
0 while the page is being transmitted to �

1 will not change
any data that is accessed by �

1 and hence the page need not be copied by the

77

communication protocol. If � 1 acquires a lock in the future for data in the page
which got modified while the page was being transferred previously, its copy
of the page would be invalidated because �

0 generated a newer version since
the last acquire operation of �

1. Thus, consistency is guaranteed even when
copying is not done. Recently techniques have been proposed that can be used
to reduce copying overhead in message passing systems [20, 40]. However,
they require additional flexibility from the underlying operating system.

6.5.2 Avoiding Page Transfers on Double Faults

A double fault occurs when a page that is not cached locally is first read and
then written [35]. This would cause a page to be transferred once due to the
read and again due to the write. The second page transfer will occur because
the processor is not the owner of the page when the protection fault is handled.
In cases where the page has not been modified since it was fetched as a result
of the read fault, transferring the page the second time is wasteful since the
faulting processor already has the current version of the page. Although not
shown in Figures 19 and 22, a processor includes the version number (or the
vector timestamp) of the locally cached page in the request message sent to
the manager on a protection fault. The current owner compares this version
number (timestamp) with its version (timestamp) for the page. If they are the
same, the owner does not transmit the page in the DATA message.

6.6 Concluding Remarks

In this chapter, we presented two protocols for guaranteeing causal consistency
for DRF programs. The absence of conflicting operations in a DRF program

78

allows us to optimize on the general protocol described in the last chapter by
restricting the consistency maintenance operations to certain synchronization
points.

The vector timestamp protocol has the problem of unnecessary invalida-
tions, where data not causally overwritten could still get invalidated. The
version vector protocol eliminates the unnecessary invalidations but typically
at the cost of an increase in the size of the vector which needs to be trans-
mitted at synchronization points. The data annotation can be used to reduce
the number of unnecessary invalidations in the vector timestamp protocol and
reduce the size of the version vector in the second protocol.

Both protocols allow a single writer to coexist with multiple readers. DRF
programs allow the protocols to avoid the overhead of copying a page before
transmitting the page, resulting in the possibility of the page being modified
while it is concurrently being transmitted. This leads to the situation where
processors would not just have different versions of a page in their caches but
also inconsistent versions. These inconsistencies get resolved at synchroniza-
tion acquire points when the local invalidations are performed.

79

Chapter 7

Performance Evaluation of Causal
Memory

This chapter presents a detailed experimental evaluation of the implemen-
tations of causal DSM described previously. Causal DSM is compared with
an implementation of a sequentially consistent DSM and a message passing
implementation. We start by describing the two other systems that were imple-
mented for comparison. To compare the performance of these systems we used
a set of applications commonly used to benchmark DSM system performance.
These applications and their implementations are described next. We then
characterize the performance metrics and analyze in detail the performance
with respect to these metrics.

7.1 System Descriptions

To compare causal memory with a strongly consistent memory, we imple-
mented a DSM system that provides sequential consistency1. In addition,
our system provides support for message passing on the same platform. The
sequentially consistent DSM protocol implements a fixed manager writer-
invalidate-readers protocol similar to the one described by Li and Hudak [39].

1In Section 7.6, we address how the performance of causal memory compares with other
memory systems such as release consistency, entry consistency and others.

80

The protocol was optimized in several ways. For example, we use pinning to
control thrashing and also use a technique similar to the one described by
Kessler and Livny [35] to avoid re-sending a page due to a double page fault.
All of the DSM protocols were implemented in the Clouds operating system [19]
using low level communication mechanisms. Thus, consistency related activ-
ities, which are performed on page or protection faults (and also on certain
synchronization events), are implemented in the kernel. The synchronization
constructs used by the memory system are implemented by central servers.
For a given synchronization variable, a single server maintains its state and
the queue of processes blocked on it.

For the message passing system, we provide two system calls, msgsend
and msgreceive to the application. A msgsend call results in copying of the data
being sent to a buffer in kernel space. At the receiving processor, the received
data buffer is enqueued until a msgreceive is executed by the process. The
msgreceive call is synchronous – it blocks the process until the data is received.
Since message passing only sends the data that needs to be shared and only
to those processes that will use it, it provides a lower bound for execution
time for most applications and also allows us to quantify the extra overhead
in providing a shared memory abstraction.

7.2 Applications

A number of applications were implemented to evaluate causal memory. The
applications include Embarrassingly Parallel (EP), Integer Sort (IS), and Con-
jugate Gradient Method (CGM) from the NASA Ames NAS kernels [10], and
traveling salesperson (TSP), matrix multiplication (MM), and successive over-
relaxation (SOR). These applications have been used in the study of several

81

distributed shared memory systems. We chose them to ensure that we evaluate
causal memory for a variety of data access patterns, synchronization patterns,
communication patterns, computation granularity (which is the amount of
work done between synchronization points), and data granularity (which is
the amount of data manipulated between synchronization points). The last
two together define the task granularity of a parallel application. If the appli-
cation is implemented using the message passing style, then the data access
pattern becomes unimportant (except for any cache effects) since all data ac-
cesses are to private memory. Further, the synchronization pattern is usually
merged with the communication pattern in such an implementation. On the
other hand, if a shared memory style programming is used, the communication
pattern is not explicit and gets merged with the data access pattern.

� Embarrassingly Parallel (EP) kernel evaluates integrals by means of
pseudo-random trials and is used in many Monte Carlo simulations. As
the name suggests, the kernel requires very little synchronization and
communication among the parallel threads executing on different pro-
cessors. Each thread computes an equally large number of floating point
random numbers and performs certain floating point operations on them.
The only communication that happens is toward the very end when all
the processes participate in a reduction operation to generate a global
sum. The kernel also has a very high task granularity.

� Integer Sort (IS) kernel uses bucket sort to rank a large set of integers.
The input data is partitioned among participating processors. A reason-
able parallel kernel for this problem would replicate the buckets at each
processor, with each processor sorting the partition assigned to it using
the local buckets (phase I). These buckets are then merged at a single

82

processor, which then generates the ranks for the keys in the input data
(phase II). The algorithm uses barrier synchronization between phases
to synchronize the processors. We chose an input size of 4M integers.
There is very little communication (non-local data access) in phase I,
while phase II involves considerable amount of data communication for
merging the replicated buckets.

� Conjugate Gradient Method (CGM) kernel computes the smallest eigen
value of a sparse symmetric positive definite matrix. There are alternat-
ing phases of parallel and sequential parts in each iteration of this kernel.
The computation intensive part of this kernel is the multiplication of this
sparse matrix by a vector. The sparse matrix is represented using a
row-start, column index format to reduce the amount of data transfer
during the vector-matrix multiplication. Each processor is pre-assigned
a set of rows of the sparse matrix on which to work. Thus, each proces-
sor computes the elements of the result vector assigned to it with very
little communication or synchronization with the other processors. The
parallel part is followed by a sequential part that uses the result vector
in a dot product operation. While there is considerable task granularity
during the parallel part, the data movement for the serial part increases
with the number of processors used in the algorithm. The matrix size
was 14000 ` 14000.

� Matrix multiplication (MM) multiplies two square matrices. The job is
partitioned such that each processor computes a set of contiguous rows of
the output matrix. The task granularity is large and there could be some
amount of false sharing but, since the writes to shared data at a processor
display a high spatial locality, it does not interfere with activities at other

83

processors. The matrices were of size 256 ` 256.

� SOR is an iterative method for solving discretized Laplace equations on
a grid. The program is based on the parallel red/black SOR algorithm
as described by Chase et. al. [17]. The grid is partitioned among the
processors and all the communication occurs between neighboring pro-
cessors. Only the boundary elements of the grid need to be communicated
between iterations. We ran the program for a 512 ` 512 size grid.

� TSP is unique because of the high degree of dynamic behavior of data
sharing exhibited by it. The implementation is similar to the one re-
ported by Bal et al. [11] and uses a branch-and-bound method. A set of
partial tours are generated and processors evaluate these partial tours
in parallel. They all share a work queue that stores the partial tours.
The value of the best tour that has been found so far is also shared. If
the value of a certain tour being explored exceeds the current best value,
the tour is abandoned and the process starts on another pending tour.
The application completes when all tours have been explored. To prevent
excessive synchronization, processes read the best-tour value without
locking the variable, leading to a program that is not data-race-free. The
application was run for a 13 city tour.

The six applications have differing types of data sharing characteristics.
For instance, EP is characterized by no or very little sharing; MM and IS both
have large shared state but spatially dispersed accesses. CGM is an iterative
program that exhibits producer-consumer type sharing and also write-write
false sharing. SOR is also an iterative algorithm but a processor shares data
only with its neighbors. It also exhibits write-read false sharing. Finally, we
chose TSP because it has data dependent sharing patterns.

84

All of these applications, except TSP, are data-race-free. Thus, the same
code for these applications was used for both causal and the sequentially con-
sistent memory systems. The same is also true for TSP. This is because the
only data race is for reading the best-tour value, and the program still executes
correctly if a process reads older values of the best tour variable. Some simple
annotations were done to the program data for causal memory. For example,
readonly data was tagged to reduce the size of the version array in the second
implementation of causal memory.

The programming of the message passing implementations of the appli-
cations was significantly different. If the process that needed the new data
values is known, new values were sent to such a process directly. For exam-
ple, data produced by the processes in the parallel phase in SOR is sent to
the process that executes the sequential part. When the process that needs a
new data value is not known because the data item is shared between several
processes, it was maintained by a server process. A new value of such an item
was sent to the server. Other processes get the new value by communicating
with the server.

7.3 Performance Metrics

To quantify the performance of the applications on the memory systems and
with message passing, we use several measures. Completion time is the to-
tal execution time of an application in a given system. Completion times are
measured when the application is the only computation in the system and
there is no extraneous communication on the network. To gain a better un-
derstanding, we also measured the following four component times that define
completion time. These represent the costs of the corresponding activities of

85

the application and are accumulated over the execution of the application.

� Computation time: The time spent by the processor actually executing
application code. Thus, during this time the processor is not blocked
waiting for synchronization, communication or coherence activities to
complete. For an application that does not have time or data dependent
behavior, this component must be the same on all the systems.

� Synchronization time: The time the processor spends blocked on a
synchronization call. This time will be zero in the message passing system
since processes do not execute any synchronization operations.

� Communication time: For the memory systems, this is the time spent
in handling page faults and installing pages. The clock is started at a
page fault trap and read just before returning from the fault handler. For
the message passing system, this is the time spent in the msgsend and
msgreceive system calls.

� Network Handling time: This time is spent in responding to network
messages (invalidation and forward requests for the memory systems).
A processor may get a message while the user process is blocked on a
synchronization call or if it has requested a page. In these cases, the time
spent in handling the message is not included, since it is accounted for in
the other costs. For the message passing case, this is the time spent in
handling a message that arrives before the process does a corresponding
receive.

Apart from completion time and its four component times described above,
we also recorded page fault counts (for the memory systems), the number of
messages exchanged, and the size of data communicated in these messages.

86

A general overview of the results and then a detailed analysis for three of the
applications is presented next.

7.4 Results

The applications were run on SUN 3/60’s connected over a 10Mbits/s ethernet2.
The page size, which is the unit of sharing in the memory systems, was 8K
bytes. All applications were run using 1 to 8 processors. The same program was
run without any synchronization calls to get the time for the single processor
case. For causal memory, the results are for the implementation based on
versioned pages. Thus, the timestamp had a component for each shared page.
The completion times for the two implementations of causal memory were not
significantly different and is discussed later.

Figure 24 shows the completion times of the six applications with causal
and sequentially consistent memories and also with message passing. The
different systems do not have a significant impact on completion times if one
or more of the following attributes hold for an application:

1. There is very little sharing or most sharing is by concurrent readers and
hence the execution of the application does not result in much communi-
cation between processors.

2. The computation granularity is sufficiently large. In this case, the com-
putation time between communication points dominates the time spent
in communication.

3. The writes to shared data at different processors are to disjoint parts
2The impact of faster processors and networks is discussed in Section 7.5.4

87

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

SC
Causal

Message Passing

(a) EP

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

SC
Causal

Message Passing

(b) MM

30

35

40

45

50

55

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

SC
Causal

Message Passing

(c) IS

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

SC
Causal

Message Passing

(d) CGM

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

SC
Causal

Message Passing

(e) TSP

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

SC
Causal

Message Passing

(f) SOR

Figure 24: Execution times

88

of the data and thus do not interfere with the data accesses at other
processors.

EP and IS exhibit the first two attributes while MM exhibits all three. All
three applications, EP, IS and MM, give almost identical speedups for the three
systems. Both EP and MM show good speedups. IS, because of its large serial
fraction, shows poor speedups but its execution time with the memory systems
is within 1-2 % of the message passing system. In all the applications, the
performance with causal memory is between sequentially consistent memory
and message passing. Since the differences between the three systems are
appreciable only for CGM, TSP and SOR, these three applications are discussed
in more detail in the following subsections.

7.4.1 CGM

Data Sharing Characteristics: CGM uses two temporary arrays of floats
that are actively shared. The first array exhibits a producer-consumer sharing,
where processor �

0 (processors are numbered from �
0 to �

7) writes all elements
in the array in the sequential phase, which is followed by a parallel phase
in which all processors read the array. The second array is write-shared; all
processors write to different parts of the array in the parallel phase and only
processor �

0 reads it in the serial phase. The program was run with matrices
of size 14000 ` 14000. The temporary arrays are of size 14000.

1. Completion time: Figure 24(d) compares the performance of CGM on
the three systems. While this application on sequentially consistent
memory has around 28% higher completion time compared to message
passing when the application is executed on 8 processors, the completion

89

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8

Pa
ge

 F
au

lts

Number of Processors

SC
Causal

(a) Page Faults

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8

M
es

sa
ge

s

Number of Processors

SC
Causal

Message Passing

(b) Messages

Â
Ã�Ä
Ä�Â
Å Ä
Æ Â�Â
Æ Ã�Ä

Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç ÇÈÇ Ç Ç ÇÈÇ Ç ÇÇ Ç ÇÈÇ Ç Ç ÇÈÇ Ç ÇÇ Ç ÇÈÇ Ç Ç ÇÈÇ Ç ÇÇ Ç ÇÈÇ Ç Ç ÇÈÇ Ç ÇÇ Ç ÇÈÇ Ç Ç ÇÈÇ Ç ÇÇ Ç ÇÈÇ Ç Ç ÇÈÇ ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇ Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç ÇÇÈÇ Ç ÇÈÇ Ç ÇÈÇ Ç ÇÇÈÇ Ç ÇÈÇ Ç ÇÈÇ Ç ÇÇÈÇ Ç ÇÈÇ Ç ÇÈÇ Ç Ç

É0Ê Ë·Ì5ÍZÎdÌ5Ï ÐZË

Network HandlingÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ
SynchronizationÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ
Communication
Computation

(c) Execution Profile

Figure 25: CGM analysis

90

time on causal memory is within 12% of message passing. Thus, causal
memory does improve the completion time of CGM over sequentially con-
sistent memory. The execution profile shown in Figure 25(c) breaks down
the extra overhead for the memory systems, explaining this difference in
completion time. For the 8 processor case, causal memory reduces com-
munication time by 78% compared to sequentially consistent memory.
However, with causal memory, the application spends more than twice
the time in synchronization calls. This is to be expected since causal
memory does all the consistency related actions at synchronization time.
The communication time is reduced because causal memory uses local
invalidations whereas invalidation messages are sent on writes in the
sequentially consistent memory system. This also explains the fact that
causal memory has lower network-handling time.

2. Page Faults: Figure 25(a) compares the number of page faults on the two
memory systems. For 8 processors, the page fault count is around 15%
more on the sequentially consistent memory system. In this system, when
processors read the array having the producer-consumer data sharing
pattern, access to the page at the producer (� 0) is downgraded to readonly.
In the next iteration the producer has to fault again before it can write
the page. In contrast, with causal memory, a producer can write the
page without communicating with other processors, as a writer can co-
exist with readers. This leads to fewer page faults in the causal memory
system. Note that, in the causal memory implementation, a producer
processor does downgrade access to readonly when another processor
gets a copy of the page for reading. However, such protection faults are
handled locally and do not result in messages to other processors.

91

3. Messages: Figure 25(b) shows the number of messages sent when the
CGM application is executed on the three systems. The message passing
system provides a lower bound on the number of messages that need to be
sent. The causal memory system sends 41% fewer messages compared
to the sequentially consistent system when the application is executed
on 8 processors. The message passing system sends significantly fewer
messages because the shared array of size 14000 floats (56000 bytes)
can be sent as a single message3 whereas a separate message is sent for
each page in the memory systems. As a result, these systems send 7
messages to transfer the array. Although the message counts are signif-
icantly different, the amount of data transferred, which is 13.1 Mbytes
and 12.9 Mbytes, for sequentially consistent and causal memory systems,
is close. Furthermore, in the message passing system, 10.5 Mbytes are
sent, which is only about 20% less than causal memory. Both memory
systems send more data because they transmit in units of 8 Kbytes, while
only the actual data is sent in the message passing system.

7.4.2 TSP

Data Sharing Characteristics: In TSP, two data structures are shared be-
tween processors. The first is a global shared queue. The actual queue is
shared in readonly mode and only a next-job pointer, which points to the job in
the queue that has to be searched next, is written to when processors choose
jobs to work on. The other shared data item is a best-tour variable which is
both read and written. The best-tour value is typically cached at all processors,
which read it to compare it with the current tour value and is updated by a

3The underlying protocol could fragment this message but we are counting only the number
of times the protocol is invoked to send a message.

92

processor only if it has found a better tour.
The behavior of TSP on the three systems is very different. With sequen-

tially consistent memory, the best-tour value gets propagated immediately to
all processors whenever it gets updated, since any cached value would be inval-
idated before the write. Causal memory allows out-of-date values of best-tour
because a writer can co-exist with readers. A processor gets a new value of
best-tour only when the page containing its old value gets locally invalidated
as a result of a synchronization operation. This is done when a processor
chooses the next job to be searched (since the queue is shared, a lock has to
be acquired before the processor chooses the next job). The message passing
implementation of TSP has a server that maintains the work queue and the
best-tour value. Whenever a processor needs new work or if it has found a
better tour, it communicates with the central server. As the best-tour value
does not get propagated to all processors immediately in the message passing
version of TSP, it may search more nodes in the search tree than sequentially
consistent memory. This extra computation overhead could become significant
if we allow processors to continue with very old values of best-tour4. This was
observed in the experiments that we ran. The number of nodes searched in
the three cases are shown in Figure 26. The number of nodes searched by the
message passing code is 7% higher than sequentially consistent memory. The
various component times for TSP below are discussed below.

1. Completion time: Figure 24(e) shows the performance of TSP with the
three systems. Its execution on the sequentially consistent system, with
8 processors, takes 102% more time than the message passing system.

4We can make the sender transmit new best-tour values as soon as they arrive but this
does not solve the problem. The other processors must receive these values and due to the
asynchronous nature of when these values arrive, one cannot code points in the program where
a msgreceive should be executed.

93

Protocol SC DSM Causal DSM Message Passing
Nodes Searched 2,226,682 2,383,553 2,386,386

Figure 26: Nodes visited in TSP

In contrast, its completion time with causal memory is within 28% of
the message passing time. Although more nodes are searched when TSP
is executed on causal memory (see computation time in Figure 15(c)), it
has significantly lower communication and synchronization times than
the sequentially consistent system. Causal memory has lower synchro-
nization costs, since it reduces the contention for the synchronization
variables. The contention is reduced, since the lower communication cost
for maintaining causal consisteny actually reduces the length of the crit-
ical section (servicing a page fault which happens inside a critical section
is cheaper for causal memory. The sequentially consistent memory has
to send invalidation messages to all the processors, since all processors
would have a copy of the data). Message passing provides better com-
pletion time as it does not have the synchronization overhead. Also, the
memory systems suffer because of the mismatch between the amount of
shared data and the page size, which is the unit of coherence.

2. Page faults: The causal memory system has significantly fewer page
faults compared to the sequentially consistent memory system. For ex-
ample, for 8 processors, causal memory has almost two thirds less number
of page faults. This is easily explained. In sequentially consistent mem-
ory, whenever a new best-tour is found, its update results in invalidation
messages being sent to all processors since this variable is used and

94

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8

Pa
ge

 F
au

lts

Number of Processors

SC
Causal

(a) Page Faults

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8

M
es

sa
ge

s

Number of Processors

SC
Causal

Message Passing

(b) Messages

Ò
Ó�Ò

Ô Ò�Ò
Ô Ó�Ò
Õ�Ò�Ò

Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö ÖÖ Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö ÖÖ ÖÖ Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö ÖÖ Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö ÖÖ Ö Ö×Ö Ö Ö Ö×Ö Ö Ö
Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö ÖÖ×Ö Ö Ö×Ö Ö Ö×Ö Ö Ö

ØoÙ Ú·Û�ÜZÝ8Û�Þ ßZÚ

Network Handlingà à à à à à à à à àà à à à à à à à à àà à à à à à à à à àà à à à à à à à à àà à à à à à à à à à
Synchronizationà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à àà à à à à à à à à à à à à à à à à à à à
Communication
Computation

(c) Execution Profile

Figure 27: TSP analysis

95

cached at all processors. A subsequent access to best-tour will generate
a page fault at all processors. With causal memory, other processors can
continue to read old values and the new value is requested by them only
when an acquire operation on a lock variable is executed to find the next
job.

3. Messages: Figure 27(b) compares the number of messages sent in the
three systems when the TSP application is executed. The sequentially
consistent system requires significantly more messages because invalida-
tion messages are sent whenever the next-job and the best-tour variables
are updated. For 8 processors, the number of messages sent is 33723,
7913, and 1403 for sequentially consistent, causal and message passing
system. Another interesting observation is that the number of messages
exchanged does not increase after 3 processors for causal memory and
after 2 processors for message passing because the same number of jobs
are searched by the processors. In contrast, the message count increases
almost linearly in the sequentially consistent system. This, again, is due
to the invalidation messages that are sent to all processors. Causal mem-
ory never requires more than 3 messages to complete a memory request,
which explains why the number of messages does not increase as more
processors execute the application.

As mentioned earlier, in both memory systems, the unit of coherence is a
page and hence 8K bytes are transferred even when two integers (current-
job and best-tour) are shared. This explains why the message passing
system sends around 18 Kbytes of data, whereas the sequentially consis-
tent and causal memory systems send 48.8 Mbytes and 20.2 Mbytes of

96

data respectively. As seen in Figure 27, avoiding unnecessary data trans-
fer does result in better completion time for message passing because it
reduces the communication time significantly.

7.4.3 SOR

Data Sharing Characteristics: The data sharing pattern in SOR is quite
different from the applications discussed so far. The computation consists of
a sequence of iterations. Each iteration consists of two phases, an odd phase
and an even phase, which are separated by barriers. Each processor computes
grid elements that are assigned to it (the grid is partitioned horizontally and
each processor is assigned equal number of elements). The computation of a
grid element requires the reading of its four neighbor elements. Thus, there
is a producer-consumer data sharing pattern because one processor reads the
values of grid elements written by another processor (this is true only for
boundary elements). Also, only the processor that is assigned a partition
writes to the elements in its partition; neighbors only read the elements in this
partition. The two phases in an iteration help avoid the synchronization that
will be necessary before reading the elements of neighbor processors.

1. Completion time: Figure 24(f) shows the completion times for SOR on
the three systems for a 512 ` 512 grid. The completion times are not sig-
nificantly different on the three systems. For example, with 8 processors,
the completion time with sequentially consistent memory is within 10%
of the message passing time. The completion time for causal memory is
almost the same as message passing (2% difference for 8 processors). As
can be seen from Figure 28(c), the computation time dominates the com-
pletion time and, since it is the same in all three systems, the completion

97

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8

Pa
ge

 F
au

lts

Number of Processors

SC
Causal

(a) Page Faults

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3 4 5 6 7 8

M
es

sa
ge

s

Number of Processors

SC
Causal

Message Passing

(b) Messages

á
â�ã
ã�á
ä ã

å á�á
å â�ã

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æÈæ æ æ æÈæ æ ææ æ æÈæ æ æ æÈæ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ ææÈæ æ æÈæ æ æÈæ æ ææÈæ æ æÈæ æ æÈæ æ æ

ç0è é·ê5ëZìdê5í îZé

Network Handlingï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï
Synchronizationï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ïï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï
Communication
Computation

(c) Execution Profile

Figure 28: SOR analysis

98

times are not significantly different. The sequentially consistent mem-
ory system does have higher communication time because it generates
additional page faults. The small difference between message passing
and causal memory is due to the synchronization overhead on causal
memory.

2. Page faults: Figure 28(a) shows the number of page faults on the two
memory systems. SOR on causal memory takes 62% fewer page faults
compared to the sequentially consistent memory when the application
is run on 8 processors. This is for two reasons. First, because of the
producer-consumer nature of data sharing, a processor will always be
able to write pages in its partition without requiring communication with
other processors in the causal memory system. Although page access will
be downgraded to readonly when the neighbor processor gets a copy of
the page for reading, this will result only in a protection fault which
is handled locally. In contrast, in the sequentially consistent memory
system, such a fault requires communication with the neighbor processor
whose copy of the page has to invalidated.

The second reason why the sequentially consistent memory system has
higher communication time is because it transmits more pages due to
faults. In fact, it generates four faults in each iteration (twice during
each phase) to get the boundary elements whereas, with causal memory,
only three faults are generated. Figure 29 explains this difference. In
the first phase of the iteration, because of the order in which processor� ! computes the grid elements assigned to it, � ! first read faults and
receives page � !&l 1 from its left neighbor, processor � !Nl 1. At the very end
of the phase, � ! read faults again and receives page � !pV 1 from its right

99

 . . .

1 2

pi-1 pi pi+1

xi-1 x i+1

Figure 29: Data sharing for SOR

neighbor, processor � !pV 1. By this time, processor � !ðV 1 has already finished
computing the new values of the elements on page �v!pV 1 that will be read
in the next phase by � ! . Notice that the writing by � !pV 1 and reading by� ! do not result in data races because different elements on the page are
accessed by the two processors. In causal memory, when the processor
arrives at a barrier after these data accesses in the first phase, the version
of ��!pV 1 that � ! caches has the same version number as � !pV 1 and is thus
not invalidated. Page � !Nl 1, however, does get invalidated as it should,
since it was received from processor � !Nl 1 before � !Nl 1 wrote it. In the next
phase, � ! read faults on page � !Nl 1 but reads the cached copy of � !pV 1. Thus,
only three faults are generated in the two phases. At the barrier after the
second phase completes, both pages will be invalidated because they have
been written again by the neighbor processors is the second phase. In
the sequentially consistent system, the computation of the second phase
will generate two faults. This is because, �v!pV 1 will be written by � !pV 1 as
soon as the second phase starts, which will result in an invalidation at� ! . This invalidation is a result of false sharing because, in the second
phase, � ! does not read the values written by � !pV 1 in this phase. Thus,
when � ! reads �X!ðV 1 towards the end of the second phase, an extra page

100

fault will be generated and hence a total of four faults per iteration are
experienced. Causal memory has one less fault per iteration because it
allows a writer to co-exist with readers.

3. Messages: Figure 28(b) compares the number of messages sent by the
three systems while executing SOR. Causal memory sends 68% fewer
messages than sequentially consistent memory because of fewer page
faults and the fact that invalidations are local. The amounts of data
transferred in the messages in sequentially consistent, causal and mes-
sage passing systems are 20.6 Mbytes, 15.4 Mbytes and 5.1 Mbytes re-
spectively. The memory systems send more data due to the mismatch
between the data granularity (512 elements of floats — 2048 bytes) and
the large page size (8192 bytes).

7.5 Discussion

In the results, it can be seen that causal memory performs better than se-
quentially consistent memory system. This is due to two primary reasons:
it tolerates false sharing between readers and a writer, and it sends fewer
messages. We discuss both of these issues and also comment on performance
of causal memory when vector timestamps instead of version numbers are
used in the implementation. Causal memory is compared with other memory
systems in Section 7.6.

7.5.1 False Sharing

To study the effects of false sharing, we ran CGM and SOR with several prob-
lem sizes. While CGM illustrates the effects of write-write false sharing on the

101

performance of the memory systems, SOR shows how the systems handle read-
write false sharing. Figure 30(a) shows the completion times for CGM when
the problem size is 1400 (the result discussed earlier were for size 14000). This
size was chosen so that the array which is write-shared would fit in one page.
Consequently, when the processors concurrently write to different parts of the
array, the same page would experience write-write false sharing. Both memory
systems suffer and have much higher completion times than message passing
because the writes to the single page get serialized. Message passing allows
these writes to be done in parallel which leads to much better performance. For
example, with 8 processors, the percentage difference between causal memory
and message passing is 37%. This difference was only 12% when the problem
size was 14000 because writes to different pages could be done in parallel.

SOR was run with a grid size 128 ` 128, which results in only 8 pages of
shared data (the earlier results were for a 512 ` 512 grid). For the 8 processor
case, each processor would compute and write elements on exactly one page.
Thus, there is no write-write false sharing. However, there is read-write false
sharing because some of the elements read by a processor are written by its
neighbor. As shown in Figure 30(b), causal memory has much better com-
pletion time than sequentially consistent memory because it does not require
any communication between processors when there is read-write false sharing.
For the 8 processor case, causal memory has 53% lower completion time. The
completion time with causal memory does not decrease monotonically as the
number of processors is increased. This is because for some number of pro-
cessors, the data partitioning leads to load imbalances (due to the fact that a
processor’s partition could lie across different number of pages) and write-write
false sharing.

102

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

Conjugate Gradient Method (1400x1400)
SC

Causal
Message Passing

(a) CGM

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

Co
m

pl
et

io
n

Ti
m

e
(in

 se
co

nd
s)

Number of Processors

Successive Over Relaxation (128x128)
SC

Causal
Message Passing

(b) SOR

Figure 30: Effect of false sharing

7.5.2 Causal Memory Implementations

All the applications were run with both the implementations of causal memory
that have been described in Chapter 6. The implementation based on vector
timestamps that have a component for each processor does suffer from the
problem of unnecessary invalidations. As a result, its performance is not as
good as the implementation based on page versions (the results discussed so
far are for this implementation of causal memory). Since the state sharing
method has minimal impact on the performance of EP, IS and MM, we only
show the completion times for CGM (size 1400x1400), TSP (13 cities) and SOR
(size 512x512) for the two implementations of causal memory in Figure 31.

As seen in the table, the applications take between 1% to about 12 % more
time to execute with the vector timestamp based implementation compared
to the version based implementation. For these application sizes, the size of
the shared data space which was actively shared for CGM, TSP and SOR was
2, 1 and 128 pages respectively. These small sizes favor the version based

103

Vector Timestamp Version Pages
of Processors # of Processors

2 4 8 2 4 8
CGM 455.96 316.56 291.08 445.46 295.85 271.64
TSP 507.79 292.02 188.84 493.13 275.64 169.29
SOR 1370.51 706.45 378.03 1366.88 701.60 373.77

Figure 31: Comparing the two implementations

implementation. The vector timestamp based implementation also suffers
from unnecessary invalidations in TSP and SOR.

7.5.3 Scalability

The size of the experimental test-bed limited us to only 8 processors. We
can extrapolate the behavior of causal memory for a larger size system. We
believe that causal memory provides a more scalable implementation of DSM
because any memory access can be completed by exchanging at most three
messages. Thus, a constant number of messages are exchanged even when
a page cached by many processors is written. We see this behavior of causal
memory in Figures 25, 27, and 28 where we show the number of messages
for CGM, TSP and SOR. In a sequentially consistent memory system (and
also in a release consistency system – see Section 7.6), the number of messages
required to complete a memory operation can increase with system size because
all processors may have a page copy that has to be invalidated.

Although the communication required for completing a memory access
does not increase with system size in causal memory, the size of the vector time-
stamps or version vectors could limit the scalability of the implementations.
Since version vectors only need to be sent with synchronization variables, we

104

believe that this is not a problem for data-race-free programs. Furthermore,
there exist techniques that can be used to limit the information carried in
timestamps [57] by maintaining at each processor how far the clocks at other
processors have advanced.

The performance benefits due to better scalability of causal memory or
message passing are not easily seen for the applications and their sizes that
we used in the study. This is because in all of them, the completion time
curves become flat because of reduced computation granularity as the number
of processors are increased. Thus, a large number of processors will only be
useful when the application has very large computation granularity.

7.5.4 Impact of Faster Processors and Network

The experimental test-bed consisted of Sun 3/60 machines connected by a
10Mbits/s ethernet. An obvious question is if the differences in the three
systems would persist with faster processors or when the processors are con-
nected by a high speed network such as an ATM. It can be easily argued that
the results will still be valid with increased CPU speed because that will re-
duce computation time which will shift all the completion time curves down.
Furthermore, causal memory will experience further improvements because
synchronization time will also be reduced. This is because on certain synchro-
nization operations, causal memory incurs considerable processing overheads.
A faster network will make the difference among the different systems less sig-
nificant. This is because the memory systems that send large messages (pages)
will benefit more from the increased network speed [56]. The memory systems
will also become more competitive with message passing in architectures that
have smaller page sizes or support multiple page sizes.

105

7.6 Comparison with Related Work

In this section, we compare our implementation with other related work that
have been proposed for implementing DSM systems. Our focus is on quan-
tifying the performance gains made possible by the different schemes. The
first implementation is the sequentially consistent DSM, described earlier in
Section 7.1, which we will refer to as �

0. The causal version vector imple-
mentation will be referred to as �

1. We chose to compare ourselves with an
implementation similar to release consistency [46] (� 2) and an implementa-
tion similar to entry consistency [8] (� 3), as these protocols were available on
the system.�

2 is a weakly ordered system which defers consistency actions to certain
synchronization points. All modifications to a page are done to a shadow
copy transparently to the program. Prior to exiting a synchronization region,
an XOR of the shadow copy is done with the original page to generate the
modifications done during the synchronization region (similar to diffs in [13]).
These modifications are then sent to all processors caching a copy of the page.�

2 allows multiple processors to actively write-share a page, thereby avoiding
the penalties due to false sharing. The implementation of �

2 is described in
detail in [46].

In �
3, consistency actions make use of explicit associations between

shared data and the synchronization variables that control access to such data.
When a processor acquires a synchronization variable, it also gets with it the
data associated with the synchronization variable. �

3 is a non-page-based
system and does not suffer from false sharing. �

3 is described in detail in [8].

106

7.6.1 Experimental Evaluation

In order to understand the differences among the DSM implementations, we
profiled the execution times for the three applications, CGM, TSP, and SOR,
which have a substantial state sharing overhead. We chose smaller sizes for
CGM and SOR so that the differences between the systems would be more
pronounced (the computation component does not dominate).

The execution profiles for a representative processor is shown in Figure 32.
The profile is for the case where the applications were executing on 8 proces-
sors. The completion time for the applications on the memory systems have
been scaled such that the time on �

0 is 100.
The goal of the different protocols is to reduce the amount of communica-

tion time. In the case of � 3, the modified data is transferred with the associated
synchronization variable. Thus communication and synchronization are inter-
twined and lumped into one component, namely, the synchronization one in�

3. The causal implementation, �
1, has significantly lower communication

time compared to �
0 and �

2. This is because �
1 uses local invalidations

and hence consistency actions do not result in communication. In general one
would expect higher communication time for �

0, owing to the increased num-
ber of page faults incurred due to invalidations on write operations. In �

2,
modified data is sent by each processor only prior to exiting a synchronization
region. In spite of this, �

2 displays the highest communication time of all the
memory systems for CGM due to two reasons: first there is a large number
of messages (ñ�
 O 2
) as each processor has to send its modified data to all the
other processors, and second there is increased contention at the data manager
(which has to propagate the diffs) due to the simultaneity of these messages.
For TSP, communication time is the highest for �

0 as expected. �
1 has very

107

Computationò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò
Communication

ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò
Synchronization
Network Handling

ó
ô�õ
õ�ó
ö õ
÷dó�ó

ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø
ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø

ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø

ø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø øø ø ø ø ø ø ø ø ø ø

ù�ú ùüû ù�ý ù�þ
(a) CGM

ÿ
���

�Qÿ
� �

��ÿQÿ

� � � � � � � � � � � � � � � � � � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �� � ��� � ��� � � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � ��� � � � � � �� � ��� � � � � � �� � ��� � � � � � �� � ��� � � � � � �� � ��� � � � � � �� � ��� � � � � � �� � ��� � � � � � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � ��� � � � � �� � � ��� � � � � �� � � ��� � � � � �� � � ��� � � � � �� � � ��� � � � � �� � � ��� � � � � �� � � ��� � � � � �� � � ��� � � � � �� � � ��� � � � � �

��� � ��� � � � � �

�	� ��
 �	� �	

(b) TSP

�

���

���

� �

�����

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �

��� ��� ��� ���

(c) SOR

Figure 32: Execution profiles (scaled to 100 for �
0)

108

low communication time because it works with old tour values and hence up-
dating the tour value does not result in communication. The communication
time for �

2 is higher than �
1 but significantly lower than �

0 even though the
best tour value has to be sent to all the other processors. This is because the
size of shared data is very small (e.g., 4 bytes for best tour) and �

2 sends only
the diffs thus resulting in very small messages. Unlike CGM, SOR requires
only near neighbor communication. Thus we would have expected that �

2

would incur significantly less communication compared to �
0 for SOR. How-

ever, we observe that the communication times for both systems are very close
for SOR. This is because every alternate location in a page gets modified in
each iteration thus negating any advantage of using diffs for reducing the size
of the messages. �

1 has much lower communication time since it allows a sin-
gle writer to be concurrent with multiple readers thus handling the write-read
false sharing which is inherent in the SOR application.

The synchronization time component accounts for the time a process
spends while waiting for a synchronization operation to complete. This time
not only depends on the cost of communicating with a remote synchronization
server but also on contention for a synchronization variable (e.g., a lock). Con-
tention for the lock depends on server load and the time a process is inside
the critical section (which could be quite different for the protocols due to the
process page faulting inside the critical section). �

3, has the lowest synchro-
nization time due to lower contention since processes never page fault while
holding locks. �

1 has the extra overhead of doing the local invalidations on
acquiring a synchronization variable. The large synchronization component
for �

2 in SOR is because of contention at the manager processor which prop-
agates the diffs. Thus a process arriving at the barrier has to wait until all
other processors have propagated their changes.

109

The execution of CGM and SOR are not data dependent and, as a result,
all four DSM systems have the same computation time for these applications.
TSP execution is data dependent since the best tour value is used to prune bad
tours. In �

0, a new value of best tour propagates to other processors as soon
as the new value is written. In �

1 h �
3, processors could continue to cache

an old value of the best tour variable even though some processor has found a
better tour. As a result, the computation time for these systems is more than�

0 as they evaluate certain redundant tours.�
0 has the highest network handling time for the applications. This is

expected since it sends out invalidation messages. In �
2, the update messages

are mostly received when the receiver is also waiting for its modifications to
be propagated (as in the case of CGM and SOR where all the processes arrive
at the barriers around the same time). Thus, the time spent in processing the
message is not accounted in the network handling time.�

3 provides performance very close to that possible through message
passing. But �

3 complicates the programmers task by requiring that the
programmer explicitly associate data with synchronization variables. Also,
associating data with synchronization constructs like barriers, which are used
for sequence control, seems non-intuitive. In contrast, �

1 requires very little
additional help from the programmer and performs fairly close to �

3 consid-
ering the small sizes of the applications.

7.7 Concluding Remarks

In this chapter, we did a detailed experimental evaluation of the causal memory
implementations and compared it with a sequentially consistent DSM system
and a message passing system. To compare their performance, we ran six

110

different applications on the systems. The causal implementation reduced the
communication overhead for three of the applications by as much as 70% – 90%
compared to the sequentially consistent DSM. The performance of five of the
applications running on causal memory came within 12% of the execution time
on a message passing system.

Further, we compared the causal implementation to two other weakly
ordered DSM implementations which were available on the Clouds operat-
ing system. The results from these experiments show that the causal imple-
mentation allows good performance with very little additional help from the
programmer.

111

Chapter 8

Conclusions and Future Work

It is generally believed that DSM’s provide a simple abstraction to program
applications on distributed systems. However, performance of DSM systems
has not matched the performance of message passing systems, where the pro-
grammer has explicit control over data placement and data movement. Tradi-
tional DSM implementations adapted a cache consistency protocol developed
for shared-memory multiprocessors and implemented it in software on a net-
work of workstations. The basis of this dissertation is that a distributed system
differs too significantly from a shared-memory multiprocessor for such an ap-
proach to work well. This dissertation explored a weakly consistent memory
model called causal memory. This chapter concludes the dissertation and offers
suggestions for future research.

8.1 Conclusions

This dissertation shows that weakening the consistency allows scalable and
high performance DSM systems to be built without adversely affecting pro-
gramming. Causal DSM can be easily programmed because most applications
can be developed assuming a sequentially consistent memory model. We show
that if a program is data-race-free, its execution would be correct on causal
memory. Further, if a program has data races, it would execute correctly

112

if there are no concurrent write operations. The only programs which we
found that do not execute correctly are software solutions to the mutual exclu-
sion problem which require the stronger guarantees of sequential consistency.
Typical applications rarely exhibit the data sharing patterns of these mutual
exclusion algorithms.

The key to building a scalable software DSM system is to reduce the
number of messages required to maintain consistency of data. We showed that
in the causal implementations, the number of messages generated to maintain
consistency of data is independent of the number of processors in the system.
The number of messages is reduced at the cost of some longer length messages
and more processing to determine causally over-written pages. This tradeoff
is appropriate considering the rate at which processor speeds and network
bandwidths are increasing.

Two implementations of a causally consistent memory were outlined.
These were actually implemented in the kernel of the Clouds distributed oper-
ating system. To compare the performance of causal memory, we implemented
two other systems - a sequentially consistent DSM and a message passing
system. Experimental evaluations confirm our earlier objectives that causal
consistency provides a viable base for efficient implementations of DSM. The
causal protocol reduced the communication cost by as much as 70 – 90% com-
pared to the sequentially consistent DSM for applications which had a signifi-
cant state-sharing overhead.

8.2 Future Work

In this section, we discuss enhancements to the implementations that have
been described in the earlier chapters and future directions for research.

113

8.2.1 Synchronization

In this thesis, we concentrated on reducing the time spent by an application
on communication. Synchronization was achieved in our experiments using a
simple central synchronization server. In all the applications that we tested,
the performance difference on the causal DSM compared to the message pass-
ing implementation was primarily because of the synchronization overhead.
We plan to implement a distributed synchronization server which would re-
duce the contention compared to the central server solution. Also, if more
knowledge is available about the applications, the synchronization modes can
be weakened. For instance, assume that we have a program which has no
false sharing. In this case, we can grant a write lock request even when there
are other processes with pending read locks. This is possible since we allow
a single writer to co-exist with readers. The writing process would be writing
to a copy of the data in its cache while the reading processes are reading the
older version of the data.

8.2.2 Fine Granular Sharing

The system that we did our experiments on, supported a page size of 8192
bytes. The mismatch between this large page size and the actual shared data
size lead to much extraneous communication for some of the applications.
Support for multiple page sizes is one way of reducing the amount of data
transmitted. Several CPU’s today provide support for multiple page sizes but
operating systems have not made this feature available to the users as it would
complicate several operating system components. Another approach is to have
the smarts in the compiler to support multiple page sizes in software. We
propose to investigate these issues further.

114

8.2.3 Hardware Support

Another area where this work can be extended is to look at the hardware
support which could reduce the cost of consistency maintenance. Specifically
the directory maintenance which was done by a static manager could be done by
a global physically addressed memory. A network processor could handle the
network messages and providing it with direct memory access to the physical
memory at the processor would eliminate the network handling overhead.
Experience with more applications is required to see if the network handling
costs justify the cost of the extra hardware.

8.2.4 Size of Timestamps

The size of the timestamp could limit the scalability of the causal protocols.
In the vector timestamp protocol, the timestamp is the size of the number of
processors in the system. Much research has already been done to control the
size of the timestamps [57]. It needs to be seen whether these techniques can
be used in our implementation. The size of the version vector is proportional
to the size of the shared address space. The maximum size of the version
vector that we encountered for the applications, after annotating program
data, was 512 bytes. We need to get experience with more applications to get
an understanding of the typical sizes of the version vector.

115

Bibliography

[1] SUN RPC reference manual. Sun Microsystems Ltd., Mountain View.,
1985.

[2] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In
Proceedings of the 17th Annual International Symposium on Computer
Architecture, May 1990.

[3] Divyakant Agrawal, Manhoi Choy, Hong V. Leong, and Ambuj K. Singh.
Mixed consistency: A model for parallel programming. In Proceedings of
the 13th ACM Symposium on Principles of Distributed Computing, 1994.

[4] Mustaque Ahamad, Rida Bazzi, Ranjit John, Prince Kohli, and Gil Neiger.
The power of processor consistency. In Proceedings of the 5th ACM Sym-
posium on Parallel Algorithms and Architectures, 1993.

[5] Mustaque Ahamad, James E. Burns, Phillip W. Hutto, and Gil Neiger.
Causal memory. In Proceedings of the 5th International Workshop on
Distributed Algorithms, October 1991.

[6] Mustaque Ahamad, Phillip W. Hutto, and Ranjit John. Implementing and
programming causal distributed shared memory. In Proceedings of the
11th International Conference on Distributed Computing Systems, May
1991.

116

[7] Mustaque Ahamad, Gil Neiger, Prince Kohli, James E. Burns, and
Phillip W. Hutto. Causal memory: Definitions, implementation and pro-
gramming. Technical Report GIT-CC-93-55, College of Computing, Geor-
gia Institute of Technology, 1993.

[8] R. Ananthanarayanan. High Performance Distributed Shared Memory.
PhD thesis, Georgia Institute of Technology, In Preparation.

[9] H. Attiya and J. L. Welch. Sequential consistency versus linearizability.
ACM Transactions on Computer Systems, 12(4), August 1994.

[10] David Bailey, John Barton, Thomas Lasinski, and Horst Simon. The NAS
parallel benchmarks. Technical Report Report RNR-91-002, NAS Sys-
tems Division, Applied Research Branch, NASA Ames Research Center,
January 1991.

[11] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Experience with dis-
tributed programming in Orca. In International Conference on Computer
Languages, 1990.

[12] Gérard M. Baudet. The Design and Analysis of Algorithms for Asyn-
chronous Multiprocessors. PhD thesis, Carnegie-Mellon University, April
1978.

[13] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache
management for distributed shared memory architectures. In Proceedings
of the 17th Annual Symposium on Computer Architecture, May 1990.

[14] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Dis-
tributed shared memory based on type-specific memory coherence. In

117

Proceedings of the 2nd ACM Symposium on Principles and Practice of
Parallel Programming, March 1990.

[15] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared mem-
ory parallel programming with entry consistency for distributed mem-
ory multiprocessors. Technical Report CMU-CS-91-170, Carnegie Mellon
University, September 1991.

[16] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic
group multicast. ACM Transactions on Computer Systems, August 1991.

[17] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Little-
field. The amber system: Parallel programming on a network of multi-
processors. In Proceedings of the 12th Symposium on Operating System
Principles, 1989.

[18] D. Cheriton. The V distributed sytem. Communication of the ACM, March
1988.

[19] Partha Dasgupta, Richard J. LeBlanc, Mustaque Ahamad, and Umak-
ishore Ramachandran. The CLOUDS distributed operating system. IEEE
Computer, June 1991.

[20] Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth cross-
domain transfer facility. In Proceedings of the 14th ACM Symposium on
Operating System Principles, 1993.

[21] M. Dubois, C. Scheurich, and F. A. Briggs. Memory access buffering in
multiprocessors. In Proceedings of the 13th Annual International Sympo-
sium on Computer Architecture, June 1986.

118

[22] L. J. Fidge. Timestamp in message passing systems that preserves partial
ordering. In 11th Australian Computer Conference, February 1988.

[23] B. D. Fleisch and G. J. Popek. Mirage: A coherent distributed shared
memory design. In Proceedings of the ACM Symposium on Operating
System Principles, 1989.

[24] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event order-
ing in scalable shared memory multiprocessors. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, May 1990.

[25] P. Gibbons, M. Merritt, and K. Gharachorloo. Proving sequential consis-
tency of high-performance shared memories. In 3rd ACM Symposium on
Parallel Algorithms and Architectures, 1991.

[26] James R. Goodman. Cache consistency and sequential consistency. Tech-
nical Report 1006, University of Wisconsin, Madison, February 1991.

[27] R. Guerraoui, B. Garbinato, and K. R. Mazouni. The GARF library of DSM
consistency models. In 6th SIGOPS European Workshop on "Matching
Operating Systems to Application Needs", September 1994.

[28] G. Hamilton and P. Kougiouris. The Spring nucleus: A microkernel for
objects. In 1993 Summer Usenix conference, June 1993.

[29] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming
Languages, 12(3), July 1990.

119

[30] Phil W. Hutto and Mustaque Ahamad. Slow memory: Weakening consis-
tency to enhance concurrency in distributed shared memories. In Proceed-
ings of the International Conference on Distributed Computing Systems,
1990.

[31] Ranjit John, Mustaque Ahamad, Umakishore Ramachandran, R. Anan-
thanarayan, and Ajay Mohindra. An evaluation of state sharing tech-
niques in distributed operating systems. Technical Report GIT-CC-93-73,
College of Computing, Georgia Institute of Technology, Atlanta, 1993.

[32] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing. In 7th ACM Symposium
on Principles of Distributed Computing, 1988.

[33] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consis-
tency for software distributed shared memory. In Proceedings of the 19th
International Symposium on Computer Architecture, 1992.

[34] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel.
TreadMarks: Distributed shared memory on standard workstations and
operating systems. In Proceedings of the 1994 Winter Usenix Conference,
January 1994.

[35] R. E. Kessler and M. Livny. An analysis of distributed shared memory
algorithms. In Proceedings of the 9th International Conference on Dis-
tributed Computing Systems, 1989.

[36] Prince Kohli, Gil Neiger, and Mustaque Ahamad. A characterization
of scalable shared memories. In Proceedings of the 22nd International
Conference of Parallel Processing, August 1993.

120

[37] Leslie Lamport. Time, clocks and the ordering of events. Communications
of the ACM, 21(7), July 1978.

[38] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, c-
28(9), September 1979.

[39] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems. ACM TOCS, 7(4), November 1989.

[40] Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the
14th ACM Symposium on Operating System Principles, 1993.

[41] Richard J. Lipton and Jonathan S. Sandberg. PRAM: A scalable shared
memory. Technical Report CS-TR-180-88, Princeton University, Depart-
ment of Computer Science, September 1988.

[42] B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Ar-
gus. In 11th ACM Symposium on Operating System Principles, November
1987.

[43] B. Liskov and R. Ladin. Highly available distributed services and fault-
tolerant distributed garbage collection. In 5th ACM Symposium on Prin-
ciples of Distributed Computing, 1986.

[44] F. Mattern. Time and global states of distributed systems. In Proceedings
of the International Workshop on Parallel and Distributed Algorithms,
1989.

[45] J. Misra. Axioms for memory access in asynchronous hardware systems.
ACM Transactions on Programming Languages and Systems, 8(1), Jan-
uary 1986.

121

[46] Ajay Mohindra. Issues in the Design of Distributed Shared Memory Sys-
tems. PhD thesis, Georgia Institute of Technology, 1993.

[47] S. J. Mullender and A. S. Tanenbaum. The design of a capability based
distributed operating system. The Computer Journal, 29(4), March 1986.

[48] B. J. Nelson. Remote procedure call. Technical Report CSL-81-9, Xerox
Palo Alto Research Center, 1981.

[49] D. S. Parker. Detection of mutual consistency in distributed systems.
IEEE Transactions on Software Engineering, May 1983.

[50] U. Ramachandran, Mustaque Ahamad, and Y. Khalidi. Coherence of
distributed shared memory: Unifying synchronization and data transfer.
In Proceedings of the International Conference on Parallel Processing,
August 1989.

[51] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,
F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. CHO-
RUS distributed operating system. Computing Systems, 1(4), 1988.

[52] C. Scheurich and M. Dubois. Correct memory operation of cache-based
multiprocessors. In Proceedings of the 14th Annual Symposium on Com-
puter Architecture, June 1987.

[53] A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to implement causal
ordering. In 3rd International Workshop on Distributed Algorithms, 1988.

[54] Abraham Silberschatz and James L. Peterson. Operating System Con-
cepts. Addison-Wesley, 1988.

122

[55] SUN. The SPARC Architecture Manual. Sun Microsystems Inc., No.
800-199-12, Version 8, January 1991.

[56] Chandramohan A. Thekkath and Henry M. Levy. Limits to low-latency
communication on high-speed networks. ACM Transactions on Computer
Systems, 11(2), May 1993.

[57] Gene T. J. Wuu and Arthur J. Bernstein. Efficient solutions to the repli-
cated log and dictionary problems. In Proceedings of the 3rd ACM Sym-
posium on Principles of Distributed Computing, 1984.

123

Vita

Ranjit John was born in Allepey, Kerala, India on September 12, 1966. He
graduated from St. Xaviers High School in Bokaro, India in 1984 where he
won the National Talent Search scholarship to pursue undergraduate studies.
With the scholarship, he attended the Birla Institute of Technology and Science
at Pilani where he was admitted for a degree in Physics. After a year, he added
Computer Science as a second major. In 1985, he wrote his first computer
program which was on punch cards for an IBM 1130. By the time the 1130
was sold as scrap, his first program still had not compiled.

In 1989, he joined the PhD program in Computer Science at the Georgia
Institute of Technology in Atlanta. During this time he worked on improving
his squash game which paid off when he reached the semi-finals of the Georgia
Tech squash tournament in 1994.

The author received an MS in Computer Science from Georgia Institute
of Technology in 1991.

124

