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PREFACE 
The motivation for this research distills from the countless days and nights that I 

have spent in writing, debugging, and modifying computer code for creating and adapting 

finite element analysis models for design variations. In particular, I have spent a 

significant time over the last few years developing a production-ready software 

application for formulating FEA models for computing thermo-mechanical behavior of 

electronics artifacts, such as printed wiring boards and assemblies. The underlying design 

model-to-behavior model transformations in this application were realized using Java-

based methods. As soon as I started testing this application with production-level design 

models gathered from several electronic design and manufacturing organizations, the 

hardships were apparent. It became extremely difficult to adapt the transformations to 

variations in design models and to maintain consistency of idealizations embodied in the 

application. Attempts to incorporate different fidelities of idealizations made matters 

worse. For production-ready deployment of this application, it was necessary that 

analysts have complete (and yet simple) control of the underlying idealizations and 

transformations. Without direct control of the source code, this was impossible. From 

discussions with several colleagues, conference presentations and publications, and 

interactions with designers and analysts across several organizations (NASA, Rockwell 

Collins, Lockheed Martin and Boeing, to name a few), it was apparent that this was in 

principle their story as well.  

In this dissertation, I have made an initial attempt at researching and developing 

an approach that could alleviate some of the more painful conceptual problems 

experienced in “our combined hardships”. In particular, I find the application of graph 

transformations to model formulation for variable topology problems as a new 

application area emergent from this research. It is my hope that this dissertation provides 

a meaningful step towards a seamless interface between design and analysis activities, 

and a significant (though small) cornerstone for variable topology problems in general. 
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SUMMARY 
In simulation-based design, a key challenge is to formulate and solve analysis 

problems efficiently to evaluate a large variety of design alternatives. The solution of 

analysis problems has benefited from advancements in commercial off-the-shelf math 

solvers and computational capabilities. However, the formulation of analysis problems is 

often a costly and laborious process. Traditional simulation templates used for 

representing analysis problems are typically brittle with respect to variations in artifact 

topology and the idealization decisions taken by analysts.  These templates often require 

manual updates and “re-wiring” of the analysis knowledge embodied in them. This 

makes the use of traditional simulation templates ineffective for multi-disciplinary design 

and optimization problems.  

Based on these issues, this dissertation defines a special class of problems known 

as variable topology multi-body (VTMB) problems that characterizes the types of 

variations seen in design-analysis interoperability.  This research thus primarily answers 

the following question:  

How can we improve the effectiveness of the analysis problem formulation process for 

VTMB problems? 

The knowledge composition methodology (KCM) presented in this dissertation 

answers this question by addressing the following research gaps: (1) the lack of 

formalization of the knowledge used by analysts in formulating simulation templates, and 

(2) the inability to leverage this knowledge to define model composition methods for 

formulating simulation templates. KCM overcomes these gaps by providing: (1) formal 

representation of analysis knowledge as modular, reusable, analyst-intelligible building 

blocks, (2) graph transformation-based methods to automatically compose simulation 

templates from these building blocks based on analyst idealization decisions, and (3) 

meta-models for representing advanced simulation templates—VTMB design models, 

analysis models, and the idealization relationships between them.  

Applications of the KCM to thermo-mechanical analysis of multi-stratum printed 

wiring boards and multi-component chip packages demonstrate its effectiveness—



 xxiv

handling VTMB and idealization variations with significantly enhanced formulation 

efficiency (from several hours in existing methods to few minutes). 

In addition to enhancing the effectiveness of analysis problem formulation, the 

KCM is envisioned to provide a foundational approach to model formulation for 

generalized variable topology problems.  
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CChhaapptteerr  11  ::  IINNTTRROODDUUCCTTIIOONN  

In today’s dynamic product realization environments driven by functionality, 

time-to-market and cost-to-develop, it is often economically advantageous for engineers 

to create virtual prototypes of a system (Pratt 1995) and verify design alternatives by 

means of simulations. Here, simulation refers to the use of computational models to 

analyze and evaluate the behavior of an engineering system. Simulations enable designers 

and analysts to predict and optimize system performance during the design process, 

thereby reducing the number of design cycles, cycle time, costly reworks, and improving 

system quality. This approach of using simulations as the primary means of analysis and 

evaluation of system alternatives is commonly known as simulation-based design (SBD)a 

(Fenves, Choi et al. 2003; Shephard, Beall et al. 2004; NSF 2006). Simulation-based 

design bridges the knowledge and methodologies of engineering domains, such as 

mechanical, aerospace, electrical, and civil, with those of mathematical and 

computational sciences, thus providing integrated techniques for predicting system 

behavior and optimizing system designs (NSF 2006). Figure 1.1 depicts the scope of 

simulation-based design in a model of the design process (Gero 1990). 

                                                 
a Simulation-driven design, Simulation-based engineering science, Analysis-based design, and Analysis-driven design 

are also widely used similar phrases. 
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Figure 1.1: Scope of simulation-based design in a model of the design process (Gero 1990) 
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Simulation-based design involves three key stages of a design process—synthesis, 

analysis, and evaluation. Typically during a design process, a set of desired functions (F) 

is transformed to a design description (D) to be used for downstream product lifecycle 

processes, such as manufacturing. Except during catalog lookup, the direct 

transformation F D is not available. Hence, designers generate an artifact’s structure (S) 

which is then transformed to its design description (D). The transformation F S—an 

alternate statement of the design problem—is achieved in the following manner in the 

design process: (a) During formulation, the desired functions of an artifact are 

transformed to expected behaviors (Be); (b) Then during synthesis, different alternatives 

of an artifact’s structure (S) are generated based on its expected behaviors (Be); (c) 

During analysis, the behaviors of each alternative of an artifact’s structure are determined 

(Bs); (d) Then during evaluation, the expected behaviors (Be) are compared with 

behaviors derived from an artifact’s structure (Bs) for each alterative of the structure. 

Evaluation is used to narrow down on a set of alternatives. Sometimes when a structure is 

analyzed, its behavior can be a useful superset of expected behaviors. In such a case, the 

set of desired functions is accordingly extended and this is known as reformulation. 

Simulation-based design is an iterative and collaborative process involving 

designers and analysts, and spanning all design phases. Figure 1.2 illustrates an integrated 

 
Figure 1.2: Integrated functional and spatial design through design phases (Fenves, Choi et al. 2003) 
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functional and spatial design scenario (Fenves, Choi et al. 2003) representing the iterative 

and collaborative nature of simulation-based design. In a given design phase, designers 

synthesize alternative forms of an artifact that are represented as design models. For a 

particular type of analysis, (i) design alternatives are idealized in the context of the 

analysis, (ii) a particular set of behaviors are computed using simulation, and (iii) the 

simulation results are evaluated against requirements. The evaluation results from a 

family of analyses are then used for selecting the best-in-class alternatives for the next 

design phase or mapped to generate new design alternatives for the current phase. This 

collaborative process is realized by means of models. Alternative forms of an artifact are 

represented as design models that are then idealized and enriched with analysis oriented 

information for creating analysis models—also known as behavior models in the context 

of this dissertation. 

To reuse the knowledge associated with analyzing design alternatives, and to 

automate the analysis and evaluation process, designers and analysts create simulation 

templates—models that relate an artifact’s design parameters to its behavior parameters. 

Design parameters are abstracted from design models and behavior parameters are 

abstracted from behavior models. In essence, a simulation template provides a structure 

for relating design models and behavior models, and provides a template for model-based 

communication between designers and analysts. In an automated analysis and evaluation 

process, for each design alternative: (a) the values of design parameters are input to the 

simulation templates, (b) the values of behavior parameters are computed as outputs of 

the simulation templates, and (c) the values of behavior parameters are evaluated against 

requirements. At each design stage, this process is typically repeated for a set of design 

alternatives using several simulation templates, and the best-in-class alternatives are 

selected for the next design phase. If simulation templates are defined with stepping stone 

models between design models and behavior models, and the idealization relationships 

between these models are inherently non-causal, then simulation templates may also be 

used to compute the “preferred” values of design parameters from given values of 

behavior parameters (Peak and Fulton 1994; Peak, Burkhart et al. 2007). 

 In design optimization problems that aim to select the best-in-class 

alternative(s), simulation templates are used for computing behavior parameters that 
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directly or indirectly participate in the objective function. For a particular alternative in 

the design space exploration path, simulation templates are used for computing behavior 

parameters that are then used to evaluate the objective function. In general, simulation 

templates provide an efficient approach for routine analysis (including complex and 

coupled simulations) and optimization problems today, such as multi-scale, multi-body, 

and multi-disciplinary analysis and optimization problems. 

Considering the time and effort required to create simulation templates, it is 

economically preferable that a given set of simulation templates be reused for computing 

behavior parameters for all feasible design alternatives. However, simulation templates 

are generally brittle to changes in the assembly system topology of design alternatives. 

As an example, with variations in the configuration of components in an assembly or 

variations in the number of components (including features and interactions), simulation 

templates have to be manually updated. With variations in the types of components, 

features, and interactions among components, analysts not only have to provide the 

idealization intent for these new types of design objects but also manually update 

simulation templates.  

Assembly system topology—defined more precisely later in this dissertation—is a 

collective measure of the number and types of components, their interactions, and 

component features participating in these interactions in an artifact assembly. In general, 

simulation templates are not reusable for computing behavior parameters for design 

alternatives with non-equivalent assembly system topologies. 

Figure 1.3 below illustrates simple examples of design alternatives with non-

equivalent assembly system topologies. The first column in the figure shows the spatial 

arrangement of parts in alternative assembly systems, and the second column shows the 

equivalent graph representations. For a given part A, the top, bottom, left, and right 

features are referred as AT, AB, AL, and AR respectively. Assembly ABC is a reference 

design alternative with three components A1, B1, and C1 of part types A, B, and C 

respectively, arranged in a certain configuration. In assemblies ABC2 and ABC3, the 

number and types of components are the same but their configurations are different. With 

respect to ABC1, C1 interacts with the top feature of B1 in ABC2; and with respect to 

ABC2, A1 interacts with the bottom feature of B1 in assembly ABC3. In assembly ArBC, the 
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number, types, and configuration of components is the same as in ABC1, ABC2, and ABC3 

but the interaction between A1 and B1 is changed—A1 can roll along the top surface of 

B1. In assembly ABCD, a new component D1 (of new type D) is added with respect to 

ABC. 

Parts and Features Graph representation 

 

 

Assembly System Configurations 

 
 

 
 

ABC3

A1: A

B1: B

C1: C

Baseline: ABC2
Change: A1 moved to bottom of B1  
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Figure 1.3: Examples of design alternatives with non-equivalent assembly system topologies 

Any such changes in the number or types of components, interactions, or features 

participating in the interactions alter the assembly system topology of artifact 

alternatives. These changes are also reflected in changes in the topologies of equivalent 

graph representations. A more precise and formal graphical representation of assembly 

system topology is presented later in this dissertation. 

The idealization relationships between design parameters and behavior parameters 

in a simulation template are typically based on assumptions about the number, type, or 

the configuration of components and their interactions in an artifact assembly. With 

changes in the assembly system topology, idealization relationships embodied in 

simulation templates may need to be modified or extended. Idealization relationships 

“implicitly” represented as parameterized scripts can typically handle only a subset of 

topology changes. For example, changes in the number of components can be handled 

with assumptions on the nature and type of interactions and configuration of components. 

Such scripts are commonly used today to create behavior models from design models, 

such as the case when automatically generating FEA models in commercial tools such as 

ABAQUS and ANSYS. 
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Based on the concept of assembly system topology, a special class of analysis 

problems known as Variable Topology Multi-Body (VTMB) Problems is defined in 

this dissertation. VTMB Problems are a class of problems where the assembly system 

topology of design alternatives changes. In the context of simulation-based design 

VTMB problems affect simulation templates, generally requiring manual updates and 

“re-wiring” of relationships between design parameters and behavior parameters in 

simulation templates. The brittleness of simulation templates to VTMB problems makes 

their reuse even more difficult for multi-disciplinary design optimization problems where 

the number of idealization relationships and behavior parameters per simulation template 

and the number of simulation templates are generally larger as compared to optimization 

problems concerning a single discipline. In general, the lack of robustness of simulation 

templates to VTMB problems jeopardizes their efficacy for multi-scale, multi-body, and 

multi-disciplinary analysis and optimization problems. 

In addition to assembly system topology variations among design alternatives, 

changes in idealization decisions taken by analysts also cause changes in simulation 

templates. Generally, these changes involve manual “re-wiring” of the idealization 

relationships embodied in simulation templates. This is economically infeasible, 

especially in cases when analysts perform trade studies on idealizations, especially for 

new types of analysis problems and to measure the relative advantages of high-fidelity, 

time-intensive analyses versus quick, low-fidelity analyses. Even without variations in 

assembly system topology, changes in the idealizations—such as using shells versus 

solids, or isotropic versus orthotropic material behavior—involves manually restructuring 

the relationships between design parameters and behavior parameters in simulation 

templates. 

Broadly, there are two steps in leveraging simulation templates for behavior 

analysis and design optimization problems as described above. These are: (a) formulation 

of simulation templates, and (b) execution of simulation templates. The execution of 

simulation templates has benefited from advancements in computational capabilities and 

commercial off-the-shelf solvers, such as differential algebraic equation solvers and FEA 

solvers. However, the formulation of simulation templates is often costly and laborious, 

especially for VTMB problems and idealization changes.  
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The lack of effectiveness of simulation templates for performance evaluation and 

design optimization is primarily due to the: (a) inability to automatically adapt simulation 

templates to VTMB problems, (b) inability to automatically adapt simulation templates to 

changes in idealization decisions taken by analysts, and (c) inefficient representation and 

creation of simulation templates in general. In light of these challenges, the primary 

research question that this dissertation answers is as follows:   

How can we improve the effectiveness of the analysis problem formulation process for  

VTMB problems? 

Though simulation templates are brittle to VTMB problems, it is also not 

pragmatic to create a simulation template that is robust to all types of changes in the 

assembly system topology of design alternatives. Additionally, changes in idealizations 

will require manual and costly “re-wiring” of simulation templates. Hence, a holistic and 

pragmatic solution to this challenge problem is to have the capability to automatically 

compose simulation templates from idealization decisions taken by analysts. By the 

virtue of information-rich representation of idealization intent, analysts can create 

simulation templates that are robust to certain types of assembly system topology 

changes. With the capability to compose simulation templates from building blocks 

automatically, analysts can create simulation templates for other types of assembly 

system topology changes as well as for changes in idealization decisions in an efficient 

manner.  

However, research gaps exist in the current state-of-the-art for achieving this 

solution. Specifically, these gaps are: (a) the lack of formalization of the knowledge used 

by analysts in formulating simulation templates, and (b) the inability to leverage this 

knowledge to define model composition methods for formulating simulation templates. 

The lack of formalized knowledge is particularly apparent in the direct representation of 

idealization decisions as mathematical equations and procedural functions in scripts or 

programs used for creating behavior models, without necessarily representing the 

idealization intent. This results in simulations templates that are brittle to VTMB 

problems and idealization changes. If one can formalize the types of idealization 

decisions taken by analysts, and the conditions for these decisions, one may explicitly 

represent these decisions at a higher level of abstraction from which mathematical 
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relations or computable scripts may be automatically derived. For efficient formulation of 

simulation templates, it is also necessary to define model composition methods that can 

automatically compose simulation templates from reusable building blocks and the 

idealization decisions taken by analysts. The representation of building blocks requires 

both static knowledge—What concepts are represented by building blocks?—as well as 

dynamic knowledge—How are building blocks composed to create simulation templates? 

The Knowledge Composition Methodology (KCM) presented in this dissertation 

addresses these research gaps by providing (a) a method to formalize and reuse the 

knowledge required for creating simulation templates, and (b) model composition 

methods to automatically compose simulation templates from this formalized knowledge 

and the idealization decisions taken by analysts. Figure 1.4 illustrates a high-level 

functional view of the KCM. Figure 1.4a illustrates the formulation of simulation 

templates using KCM’s Behavior Model Formulation Method (BMFM). The BMFM is a 

model transformation method used for automatically composing simulation templates 

from fixed topology design model structures based on the idealization decisions taken by 

analysts. This model transformation method is founded on graph transformations, where 

fixed topology design model structures and simulation templates are abstracted as source 

and target graphs respectively, and reusable graph transformation patterns and rules are 

explicitly scheduled to compose the target graph from the source graph and the 

idealization decisions. The Behavior Model Formulation Method and its model 

transformation approach are presented in Chapter 8. An overview of each component in 

the functional view is described below: 

 VTMB Design Meta-Model defines the constructs and relationships to represent design 

alternatives with non-equivalent assembly system topologies for a specific type of 

artifact, such as printed circuit boards. KCM provides an extended Core Product Model 

(CPM2_xKCM) based on the Core Product Model originally proposed by Fenves et al. 

(Fenves 2004) to represent designs and idealized designs of artifacts. CPM2_xKCM is 

specialized to define a VTMB Design Meta-Model for representing variable topology 

alternatives for a specific artifact type. CPM2_xKCM is presented in Chapter 6 of this 

dissertation. 
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 Fixed Topology Design Model Structure represents a set of design alternatives with 

equivalent assembly system topologies. Several fixed topology design model structures 

may be defined conforming to a VTMB design meta-model. Examples of fixed 

topology design model structures are presented in Chapter 6 of this dissertation. 

 VTMB Behavior Meta-Model defines the constructs and relationships for representing 

behavior models for design alternatives with non-equivalent assembly system 

topologies. Together a VTMB design meta-model, a VTMB behavior meta-model, and 

their relationships provide a meta-model for simulation templates. KCM provides the 

Core Behavior Model (CBM) as a meta-model for representing behavior models 

(including relationships with design models). Together CPM2_xKCM and CBM define 

a. Formulation of simulation templates 

 

b. Execution of simulation templates 

Figure 1.4: Knowledge Composition Methodology – A functional overview 
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a comprehensive meta-model for representing simulation templates for design 

alternatives with non-equivalent assembly system topologies. The Core Behavior 

Model is presented in Chapter 7 of this dissertation. KCM builds on the MRA 

simulation template pattern  (Peak and Fulton 1994; Peak, Burkhart et al. 2007) to 

represent simulation templates that are founded on physics-based concepts and 

independent of a particular solution method or solvers. 

 Fixed Topology Behavior Model Structure represents a set of behavior models created 

for a design model structure based on the idealization decisions taken by analysts. 

Several fixed topology behavior model structures may be formulated for variations in 

design model structures and idealization decisions. Examples of fixed topology 

behavior model structures are presented in Chapter 7 of this dissertation. 

 Behavior Model Formulation Specification (BMFS) embodies the idealization 

decisions taken by analysts. BMFS provides specifications for the composition of 

simulation templates. 

 Simulation Template Building Block Library provides a library of reusable building 

blocks that are used for automatically composing simulation templates. KCM provides 

the Analysis Building Block (ABB) Meta-Model that represents the constructs and 

relationships for key types of building blocks. For different analysis disciplines, 

building blocks are defined as specializations of the generic building block concepts in 

the ABB Meta-Model. The library also contains reusable model transformation rules 

and patterns used by the Behavior Model Formulation Method. The ABB Meta-Model 

and ABB library are presented in Chapter 7. The dynamic aspects of ABBs that govern 

how ABBs are composed in an ABB system are represented by graph transformation 

rules and patterns, and described in Chapter 8. 

 Transformation Engine is a graph transformation engine that executes the Behavior 

Model Formulation Specifications to automatically compose simulation templates. 

KCM addresses VTMB problems because for different desing model structures—

each of which represents a set of design alternatives with equivalent assembly system 

topologies—behavior model structures and simulation templates can automatically be 

created for the same Behavior Model Formulation Specifications. Additionally, behavior 



 12

model structures and simulation templates can also be automatically created for different 

Behavior Model Formulation Specifications and for a given design model structure. 

Figure 1.4b illustrates the execution of simulation templates composed using 

KCM’s Behavior Model Formulation Method. With the availability of a simulation 

template, object solvers (or solver managers) such as ParaMagicb, OpenModelicac, and 

Mathematicad may be used for solving the idealization relationships embodied in 

simulation templates for design instances that conform to the fixed topology design 

model structure embodied in simulation templates. As shown in Figure 1.4b, for each 

design instance the idealization relationships are solved to create a behavior model 

instance that confirms to the fixed topology behavior model structure embodied in the 

simulation template. Each behavior model instance can then be solved using different 

solution methods and solver tools, such as using FEA method and solvers such as 

ABAQUS or ANSYS. If the idealization relationships embodied in simulation templates 

are inherently non-causal, such as mathematical equations, then analysts may specify 

target values of behavior parameters and compute design parameters values (unique or a 

range) using the same simulation template. Multi-disciplinary design optimization 

tools—at their backend—can deploy the ability to automatically formulate simulation 

templates for VTMB problems, and the ability to execute a given simulation template 

(possibly in multiple directions) for different values of design model (or behavior model) 

instances. This will provide an effective mechanism to search for the feasible design 

space that has alternatives that have non-equivalent assembly system topologies. 

The primary contribution of the research presented in this dissertation is the 

Behavior Model Formulation Method that prescribes a graph transformation-based 

approach for automatically composing simulation templates for (i) variations in assembly 

system topology of design alternatives, and (ii) variations in idealization decisions taken 

by analysts. The secondary contributions of this research are the (i) characterization of 

VTMB problems, (ii) meta-models for representing simulation templates and their 

building blocks, (iii) graph pattern and transformation rules to manage models that 

                                                 
b www.intercax.com/sysml 
c www.ida.liu.se/labs/pelab/modelica/OpenModelica.html 
d www.wolfram.com/mathematica 
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conform to these meta-models, and (iv) an extensible, proof-of-concept library of 

simulation template building blocks. 

The most promising extension of this research lies in the application of KCM’s 

model transformation approach to other types of VTMB problems. Examples of 

simulation templates that are brittle to topology variations of system alternatives are 

abound. The concept of assembly system topology, as presented in this research, is 

defined for systems in general, including systems that may have human and software 

components. Suggested applications include manufacturing systems, real time embedded 

systems, and energy generation and distribution networks. 

This dissertation consists of three parts: 

 Part 1: Problem Definition 

 Part 2: Knowledge Composition Methodology 

 Part 3: Verification and Validation, Future Work, and Closure 

Part 1 lays a platform for framing the research problem, identifying research gaps, 

and posing research questions. It consists of Chapters 2-4. Chapter 2 presents basic 

concepts necessary for problem description, followed by a presentation of three 

foundational perspectives in aspects of simulation-based design relevant to this research, 

and definition of VTMB problems that form the thrust of this research. It ends by 

identification of research gaps and their exemplification using an example VTMB 

problem. Chapter 3 describes related technical work in the context of these research gaps, 

and Chapter 4 builds on the research gaps and relevant technical background to pose the 

research questions and present research hypotheses. 

Part 2 presents the Knowledge Composition Methodology (KCM), specifically 

emphasizing aspects of the methodology that address the research gaps identified in Part 

1. Part 2 consists of Chapters 5-8. Chapter 5 presents an overview of the KCM and 

describes its key functional requirements, stakeholders, use cases, and the overall 

approach. Chapters 6-7 describe the meta-models used for representing simulation 

templates, and Chapter 8 presents the model transformation methods in KCM.  

Part 3 comprises Chapters 9-11. Chapter 9 presents the VTMB test cases 

including descriptions of simulations templates automatically composed using a proof-of-

concept software implementation of KCM’s model transformation method. In Chapter 
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10, a summary of research contributions is presented followed by recommended future 

work to extend and apply the Knowledge Composition Methodology. In Chapter 11, a 

summary of the Knowledge Composition Methodology is presented. 

This dissertation also includes three appendices. Appendix 1 provides a brief 

description of basic information modeling concepts used in this dissertation. Appendix 2 

provides a summary of OMG Systems Modeling Language (SysML) constructs used in 

this dissertation; and Appendix 3 provides a brief description of KCM’s Generic 

Properties Meta-Model. 
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PART 1: PROBLEM DEFINITION
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CChhaapptteerr  22  ::  PPRROOBBLLEEMM  DDEESSCCRRIIPPTTIIOONN  

This chapter describes the research challenges in formulating simulation 

templates for VTMB analysis problems. The intent of this description is to characterize 

simulation template formulation capabilities of existing methods that do not scale to 

address VTMB challenges, thereby making simulation templates ineffective for multi-

disciplinary analysis and optimization problems in particular. First, a set of basic 

concepts necessary to describe the problem are presented in section 2.1. Then, two key 

aspects of simulation-based design that are foundational to this research are presented in 

section 2.2. These aspects establish the need for simulation templates for integrated 

functional and spatial design. The time and effort required to create simulation templates 

and the types of changes that result in manually updating simulation templates are 

discussed in sections 2.2.2.1 and 2.2.2.2. In particular, simulation templates are brittle to 

a specific type of change—variation in the assembly system topology of design 

alternatives. Assembly system topology is the main concept used in describing Variable 

Topology Multi-Body problems in section 2.3. In section 2.4, the primary research 

question is presented followed by a description of two key research gaps in existing 

methods for formulating analysis problems.  

 

2.1 Description of basic concepts 
In this section, a set of basic concepts necessary to describe simulation templates 

and VTMB analysis problems are presented.  

 

Idealization is a transformation that relates aspects of a real world system or phenomena 

to models representing the system or phenomena for the purpose of facilitating 

mathematical analyses. For example, a linear elastic material behavior is an idealization 

of the material behavior of an artifact. Similarly, a static force is an idealization of real 

forces acting on a system. In general, a model (or its aspects) is an idealization of the 

system or phenomena represented by the model (or its aspects). 
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An Artifact is a distinct subset of a physical product or system (Fenves 2004). An Artifact 

could be a system itself, such as a specific printed circuit assembly, or any of its sub-

systems, such as a printed circuit board used in a printed circuit assembly. 

 

Form5 represents the physical characteristics of an artifact, such as its shape and material 

(Fenves 2004). The goal of a design process is to create a form that performs the desired 

functions.  

 

Function is what an artifact is intended to do (Fenves 2004).  An artifact may have 

several functions, and a function may be performed by several artifacts. A function may 

be broken down into several sub-functions. Examples of common types of functions are 

transfer of materials, energy, or information. 

 

Behavior is the response of an artifact to external stimuli (environment). A behavior may 

be intended—implements an artifact’s function, or it may be unintended—doesn’t 

contribute or has adverse effects on an artifact’s function. For example, heat generation is 

an unintended behavior of a microprocessor chip in operation. 

 

A Behavior Model represents an idealized subset of behaviors of an artifact in a given 

environment. The purpose of a behavior model is to answer questions concerning the 

subset of artifact behaviors that it represents.  In the context of this research, a behavior 

model is formalized as a computable model—one that it can be solved to compute 

behavior parameters or other measures-of-effectiveness of the artifact. In general, 

analysts formulate a Behavior Model Structure that represents a set of behavior models. 

Each member of the set is a Behavior Model Instance that conforms to a Behavior Model 

Structure. Structure and instance correspond to the concepts of schema and schema 

instance (Schenck and Wilson 1994) in information modeling. Like a schema, a behavior 

model structure represents the parameters and relationships embodied in a behavior 

                                                 
5 also referred as structure 
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model. In a behavior model instance, values of some parameters are given while others 

are computed using the relationships embodied in the structure. 

 

Behavior Model Formulation is a process of designing a behavior model (structure and 

instances) to compute a set of behavior parameters for a family of artifacts. For example, 

an analyst would formulate a behavior model to calculate the maximum deformation of a 

printed circuit board when it is subjected to a thermal load during the assembly process. 

The formulation of a behavior model consists of the following key steps: 

1) Identifying behavior parameters to characterize the subset of behaviors that are of 

interest. For example, the behavior parameters of interest in the PCB deformation 

problem are the out-of-plane deformation parameter (uz) and in-plane deformation 

parameters (ux and uy). 

2) Identifying domain theories that may be used for computing these behavior 

parameters. Examples of domain theories are Euler’s beam theory (Gere and 

Timoshenko 1997) and Kirchhoff’s plate theory (Krauthammer and Ventsel 2001). 

3) Idealizing the artifact and environment under which behavior parameters are to be 

computed. For example, in the PCB deformation problem, each stratum of a PCB 

may be idealized to have homogenous material distribution, the thermal load may be 

idealized as a uniform temperature increase, and one edge of the PCB may be held 

fixed as a boundary condition. 

4) Creating a model that represents the idealized artifact, environment, behavior 

parameters, and their relationships based on domain theories.  

 This view of model formulation is in principal also corroborated by (Gruber 

1992).  This research focuses on solution method- and solver-independent formulation of 

behavior model structures. A behavior model may be reformulated for specific solution 

method and solvers. For example, the parameters and relationships in a behavior model 

may be used to create a solution method-specific system of equations (such as the global 

stiffness matrix in finite element analysis) that may be solved using a specific solver 

(such as ABAQUS (Dassault Systemes 2006) for finite element analysis). 
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Behavior Model Solution is the process of solving the mathematical relationships in a 

formulated behavior model. During solution, behavior parameters are computed using an 

appropriate solution method and a solver. Behavior model solution may require 

reformulations of a behavior model for specific solution methods and solvers. 

 

Simulation is a process of formulating models, solving models, and analyzing results to 

gain an understanding of a given system (Fishwick 1995). Usually, the term simulation is 

used when the mathematical relationships in a model do not have an exact or analytical 

form or they are so complex that it is computationally inefficient to solve them and hence 

they need to be solved numerically (Law and Kelton 2000). Some examples of systems 

that are subjects of simulation studies are: products, processes, combination of products 

and processes, or theoretical systems. In the context of this research, the term simulation 

is used in a broader sense—includes models that have a closed form solution and those 

that have to be solved numerically. This research focuses on computer-based simulations 

(and hence computer-based models) to compute behaviors of artifacts. In the context of 

this research, the term simulation model refers to behavior model.  

In the context of this research, behavior simulation is a process of formulating 

behavior models, solving them, and evaluating results to gain an understanding of an 

artifact’s behavior under external stimuli. In this dissertation, the terms “simulation” and 

“behavior simulation” are used interchangeably. 

 

A Behavior Parameter is a computable parameter that is used to characterize the 

behavior of an artifact. The value of a behavior parameter measures the (idealized) 

behavior of an artifact. Deformation, Stress, and Strain are examples of behavior 

parameters to measure the structural behavior of an artifact, and Temperature is an 

example of a behavior parameter to measure the thermal behavior of an artifact.  

 

Analysis is a process of computing the behavior of an artifact from its form. Specifically, 

the term analysis used here implies behavior analysis—computing the behavior of an 

artifact under external stimuli. Other types of analyses include but are not limited to 

requirements analysis—computing requirements that must be met by an artifact to satisfy 
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the needs of customers, cost analysis—computing the cost of producing an artifact given 

its form. 

 

Evaluation is a process of comparing the behavior(s) of an artifact with the artifact’s 

function (intended behavior). Specifically, the term evaluation here implies behavior 

evaluation. Other types of evaluation include but are not limited to requirements 

evaluation—checking if an artifact satisfies the requirements, cost evaluation—checking 

if the cost of producing an artifact satisfies budget requirements. 

 

An Inverse Problem is a problem where the natural outputs of a behavior model are 

known but not all the natural inputs to the behavior model are known. The natural outputs 

of a behavior model are the behavior parameters, and the natural inputs are the artifact’s 

form, load, and behavior conditions. As an example for static structural analysis of an 

artifact, the form of the artifact (including geometry and material specifications), 

boundary conditions, and loads are natural inputs and the deformation, stress, and strain 

fields are natural outputs (solution). One of the inverse problems for this case would be 

such that the deformation, stress, and strain fields, loads, boundary conditions, and 

artifact’s material specifications are inputs to the problem and the form of the artifact is 

to be determined. Inverse problems are prominent in science and engineering as can be 

corroborated by a dedicated journal in this topic area (Taylor and Francis (Inverse 

Problems in Science and Engineering) 2008). The objective of this research is to 

formulate behavior models such that the relationships between parameters are represented 

in a non-causal manner (if the relationships are inherently non-causal, such as equations). 

Non-causal representation of relationships is necessary for solving inverse problems 

efficiently.  
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2.2 Aspects of simulation-based design foundational to this 

research 

In this section, two keys aspects of simulation-based design that are foundational 

to this research are presented. Collectively, these aspects establish a platform for (a) 

clearly describing the primary question that this research shall answer, and (b) describing 

the specific research gaps that motivate this research. The context of each aspect is as 

stated below: 

 Integrated Functional and Spatial Design aspect establishes that analysis is an activity 

performed through the design process and requires model-based communication 

between designers and analysts. 

 Simulation Templates aspect establishes that simulation templates, patterns, and 

instances are mechanisms for enabling model-based communication between designers 

and analysts.  

2.2.1 Integrated Functional and Spatial Design 
Designers and analysts are key stakeholders in simulation-based design. Figure 

2.1 (Fenves 2004) illustrates the integrated functional and spatial design process scenario 

involving designers and analysts. Designers generate alternative forms of an artifact that 

are idealized to create analyzable forms for the purpose of analysis and evaluation. The 

 
Figure 2.1: Integrated functional and spatial design (Fenves 2004) through design phases 
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outcome of an analysis and evaluation process is either (i) satisfactory—selecting a set of 

alternatives that are candidates for the next design phase, or (ii) unsatisfactory—mapping 

proposed design changes to generate new alternatives. Here, spatial design refers to 

generating the form of the artifact, and functional design refers to generating an artifact 

that performs the required functions. The term “integrated” implies that developing the 

form and function of an artifact are inherently coupled aspects of the design process, and 

should be performed collaboratively by designers and analysts. It is necessary to view 

analysis as a process of continuously evaluating an artifact across all design phases. It is 

necessary that simulation-based design methods enable analyses during conceptual 

design phases that largely govern the overall product cost and form. 

Figure 2.2 illustrates the communication process between designers and analysts 

for a given design phase by elaborating on the subjects of the idealization and mapping 

operations illustrated in Figure 2.1.  The design of a complex product may require several 

types of designers and analysts who work collaboratively on their specific aspects. For 

example, the simulation-based design of an electromechanical product (such as a printed 

circuit assembly) typically requires the following types of designers and analysts.  

 Designers 

o electronics designers propose a form to satisfy electronic function,  

o mechanical designers propose a form to satisfy mechanical function,  

o system designers integrate electrical and mechanical perspectives of a form;  

 Analysts 

o electronic analysts analyze the electronic behavior of proposed forms,  

o electromagnetic analysts analyze the electromagnetic behavior of proposed forms, 

o thermal analysts analyze the thermal behavior of the proposed forms, and 

o structural analysts analyze the structural behavior of the proposed forms. 

In engineering workflows, a single individual may play roles of a designer and an analyst 

both.  

In a given design phase, designers collectively generate several alternatives of an 

artifact. The nature of analyses to be performed on these alternatives is collectively 

determined by the following three broad metrics: 

 Type indicates analysis domain, such as thermal, electromagnetics, and structural. 
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 Resolution indicates the subject of analysis. This could be the artifact system (such as 

printed circuit assembly), or subsystem (such as a printed circuit board or chip 

package), or features (such as solder balls and joints). 

 Fidelity indicates the level of detail incorporated in the behavior model  

Based on the nature of a given analysis, the design alternatives are idealized to create 

analyzable forms. An analyzable form may be used for creating behavior models of 

different types and fidelities. For example, a structural analyst may use an analyzable 

form of a PCB to create a 2D (or 3D) thermal (or structural) behavior model.  

 As indicated in Figure 2.1 and Figure 2.2, the communication process between 

designers and analysts is bi-directional. While the designers provide the artifact 

alternatives to be analyzed, the results of analysis and evaluation performed by analysts 

are used to propose design changes in the alternatives and to solve inverse problems.  

 Figure 2.1 and Figure 2.2 also help illustrate the complexity of the communication 

process between designers and analysts. For a tighter integration between functional and 

spatial design, it is necessary that such a communication process be founded on model-

based templates that provide a mechanism to (a) represent and organize the different 

types of models exchanged between designers and analysts, (b) represent the fine-grained 

connections between these models (Peak 2003), and (c) realize the bi-directional flow of 

information.  Such model-based templates can then enable “what-if” trade studies, 

 
Figure 2.2: Integrated functional and spatial design in a given design phase 
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sensitivity and opportunistic analyses. Simulation templates—described in the next 

section—contribute towards this objective.  

2.2.2 Simulation Templates 
In this section, simulation templates, patterns, and instances are described as 

enablers for model-based communication between designers and analysts. The effort 

required for creating simulation templates and the types of changes in design alternatives 

and analysis specifications that require costly and manual updates to simulation templates 

are also presented. The brittleness of simulation templates to these types of changes is the 

challenge problem being addressed by this research. First, the general idea of simulation 

templates is presented. Then, a specific simulation template pattern relevant to this 

research is presented. Types of variations in analyses that require manually updating 

simulation templates are presented in sub-sections 2.2.2.1 and 2.2.2.2. A specific type of 

variation in design alternatives that affects simulation templates is presented in section 

2.3.  

A Simulation Template is a model structure for formulating and solving a class of 

simulation models. In the context of this research, simulation templates associate design 

model structure to behavior model structure, thereby allowing one to compute behavior 

parameters for different values of design parameters. Thus, simulation templates may be 

used for formulating and solving all simulation models that conform to the idealization 

relationships embodied in a simulation template. A simulation template may be 

categorized as: 

 White-box or Black-box: A white-box simulation template exposes the entities, 

attributes, and relationships that collectively define a simulation template. For a given 

causality, some attributes are input parameters, some are output parameters, and others 

may be ancillary or do not contribute to the computation. A black-box simulation 

template exposes only those attributes that may be inputs or output parameters for the 

computation process.  

 Causal or Non-causal: A causal simulation template has a fixed causality. It consists of 

a fixed set of input parameters and output parameters. A non-causal simulation 

template doesn’t have a fixed causality. The causality of the parameters can be 

changed such that an input parameter for some computations may be an output 
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parameter for other computations. In such a case, a simulation template can be used for 

formulating and solving simulation models and also for solving inverse problems. It is 

to be noted that some relationships between parameters are inherently causal (such as 

if-else relationships) and hence it is not possible to use simulation templates for all 

computation directions. An explicit inverse relationship must be defined for a causal 

relationship to use it for solving inverse problems. 

In the context of this research, the key ingredient of a simulation template is the 

behavior model structure that is associated with the design model structure via 

idealization relationships. Figure 2.3 illustrates a simulation template that is used for 

computing the plane-stress behavior of a Flap Link—a mechanical part used in an air 

frame (Peak, Burkhart et al. 2007). Specifically, it shows a SysML parametric diagram 

view of the plane-stress deformation model structure whose attributes are connected to 

the design attributes of the Flap Link part. For example, deformationModel.t is connected 

to soi.effectiveLength (soi means “system of interest” which is the Flap Link in this case).  

Figure 2.3: Simulation template for computing plane stress behavior of Flap Link part  



 

 26

In this example, the simulation template is used for formulating a behavior model which 

is then used for auto-generating and solving a finite element analysis model. This 

template is non-causal in the sense that relationships between the attributes are (a) 

inherently non-causal, and (b) represented in a non-causal way using SysML binding 

connectors. Such a template can be used both for formulating and solving a behavior 

model, and also to compute required design parameters to achieve desired behavior. 

Figure 2.4 illustrates both design verification and synthesis scenarios for a 

simulation template that associates design parameters of the Flap Link part to a linear 

extensional behavior model. When this simulation template is used in the design 

verification scenario, the form-related attributes of the Flap Link part and the end forces 

(condition.reaction) on the part are inputs while the elongation of the part and axial 

stresses and strains are outputs. When the same simulation template is used in the design 

synthesis scenario, some form-related attributes of the Flap Link part are outputs and the 

elongation and end forces are inputs. For example, deformationModel.area is computed in 

the design synthesis scenario and not an input from 

soi.Shaft.criticalCrossSection.basic.area. Hence, a simulation template is instantiated for a 

specific computation. In this case, the simulation template that embodies an extensional 

behavior model of the Flap Link part is instantiated twice—once for design verification 

scenario and once for design-synthesis scenario. 
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Figure 2.4: Instances of a simulation template that embodies a linear extensional behavior model 

of Flap Link part 
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A Simulation Template Pattern is a meta-model of a simulation template. It 

represents the types of models, their attributes, and their inter-relationships in a family of 

simulation templates. The Multi-Representation Architecture (Peak and Fulton 1994; 

Peak, Fulton et al. 1998; Peak, Paredis et al. 2005) is a simulation template pattern for 

creating simulation templates that can provide a foundation for model-based 

communication between designers and analysts through the design process. The rationale 

behind the MRA pattern—illustrated in Figure 2.5—is to have modular components that 

can be reused in different templates. The MRA pattern consists of four stepping stone 

models:  

 Analyzable Product Model (APM) represents an idealized design model with additional 

analysis intents, and is created for a family of analyses. 

 Context–based Analysis Model (CBAM) represents product-specific simulation 

templates that capture the relations (APMΦABB) between the APM and ABB system 

model. 

 Analytical Building Block (ABB) System Model represents a system composed of 

reusable analysis concepts that encapsulate domain knowledge. These reusable 

analysis concepts are known as analysis building blocks (ABBs)—for example linear 

elastic material behavior ABB and point-load ABB. A behavior model of an artifact is 

Figure 2.5: Multi-Representation Architecture (Peak, Fulton et al. 1998) — A simulation template 

pattern showing the behavior model formulation and solution sub-patterns 
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formalized as a CBAM that includes the ABB system model and its relationships to the 

APM. 

 Solution Method Model (SMM): Represents a solution method-specific behavior 

model, such as a finite element model. 

 All the four models above have an explicit structure and may have several 

instances that conform to this structure. Figure 2.3 and Figure 2.4 illustrate simulation 

templates that are based on the MRA pattern. In Figure 2.3, the Flap Link plane stress 

CBAM is shown—relates the Flap Link APM and the plane stress ABB model. The FEA 

SMM model is auto-generated from this CBAM. In Figure 2.4, the Flap Link linear 

extension CBAM is shown—relates the Flap Link APM to the linear extension ABB 

(deformationModel). The SMM—not shown in the figure—is a Mathematica (Wolfram 

Mathematica 2008) model auto-generated from this CBAM. An APM is created for a 

family of analyses, and different APMs may be created for analyses of different 

fidelities—one APM for 2D analyses and one for 3D analysis. The Flap Link APM used 

in the plane stress CBAM includes the two sleeves and the shaft features of the Flap Link 

part. But, the Flap Link APM used in the linear extension CBAM includes only the shaft 

feature. Though not explicitly shown here, the MRA pattern has been extended to include 

the as-designed (DM) or as-manufacturable product model (MPM)6 structure (Zwemer, 

Bajaj et al. 2004) and their relationships to the APM structure.  

 Figure 2.5 also shows two sub-patterns that are related to behavior model 

formulation and solution respectively. In the context of this research, the formulation of 

behavior model (structure or instance) implies the formulation of the CBAM (structure or 

instance), i.e. the ABB system model (structure or instance) and its relationships to the 

APM (structure or instance). In effect this is the formulation of a simulation template 

itself. The solution of a behavior model may require the re-formulation of behavior 

models as SMMs for specific solution methods and solvers. In this dissertation, the term 

simulation template is used to refer to design-analysis simulation templates based on the 

MRA pattern. Note that the MRA is a broad and generic pattern and specific simulation 

templates may instantiate the MRA in entirety or in part. 

                                                 
6 These DM and MPM are shown explicitly in the formalized MRA pattern included in KCM (Part 2 of this 

dissertation). 
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2.2.2.1 Effort in creating simulation templates  

 The cost-benefit ratio of simulation templates depends on the type of analysis—

original, adaptive, or ubiquitous (routine) (Peak 1993; Peak, Scholand et al. 1999; Bajaj 

2006). For ubiquitous analysis, simulation templates are created once and reused for 

different causalities, and different input values for a given causality. In this case, the cost 

of creating simulation templates is amortized with usage. However for the case of 

adaptive and original analyses, new simulation templates need to be created or existing 

simulation templates need to be modified for analysts to perform trade studies on 

idealizations. This involves manually creating CBAMs by (a) instantiating ABBs from a 

library, and (b) establishing connections among the ABBs, and from ABB attributes to 

APM attributes. As an example, the Flap Link plane stress simulation template shown in 

Figure 2.3 consists of 17 relationships between APM attributes and ABB system 

attributes. In order to create such a simulation template, usages of APM and ABBs needs 

to be created in the simulation template (assuming that relevant APM and ABBs already 

exist), and 17 relationships have to be manually created among APM and ABB system 

model attributes. This involves significant time and effort on an analyst’s part to create 

and maintain the relationships (a.k.a. associativities) between the models (Peak 2003). 

The Flap Link is a single part. For complex multi-level assemblies where each 

component is idealized differently, the number of entities and the number of relationships 

that need to be created between these entities in a simulation template increases 

significantly. 

 This research focuses on automated creation of simulation templates based on 

specifications provided by analysts. This reduces the cost-benefit ratio of simulation 

templates esp. for adaptive and original analyses (conditional to the availability of 

ABBs).  

2.2.2.2  Robustness of simulation templates 

The structure of a simulation template holds for the specific (a) type of analysis 

for which it is created, (b) family of artifacts for which it is created, and (c) idealizations 

that are represented in it — MPM-APM type idealizations and APM-ABB type 

idealizations (CBAM). As an example, the linear extension simulation template shown in 

Figure 2.4 is created for static linear extension analysis of Flap Link part where the part is 
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idealized as a linear extensional rod. Analysts may use this simulation template with 

different parameter values and do trade studies with different causalities. If however, 

there are design alternatives of the Flap Link part that have other analyzable features in 

addition to the sleeves and the shaft, then these simulation templates have to be manually 

modified to include entities related to those features and establish relationships between 

the additional analyzable features and their corresponding ABBs. Also, if the applied 

forces were not idealized as axial loads but as eccentric loads, then the bending behavior 

would need to be computed in addition to the extension. This would imply including the 

ABB for bending behavior in the simulation template and establishing connections to the 

APM entities. Additionally, if the type of analysis were dynamic and non-linear in the 

sense that deformations of the Flap Link part were not small but were large enough to 

change the point of application of applied loads and deform the part substantially such 

that new features like a surface recess or a crack develop on the part, then the above 

simulation templates would need substantial modification—finding the right ABBs, 

include them in the templates, and establishing relationships to the APM. In a nutshell, 

the structure of a simulation template changes with the following three types of changes 

in the analysis specifications: 

 

 ST_Change_Type_1: Changes in a simulation template due to changes in assembly 

system topology of design alternatives 

This category includes changes in simulation templates due to a change in 

assembly system topology (defined in section 2.3) of design alternatives and 

corresponding APMs. These changes are such that they may affect a change in the 

number of analysis bodies in the ABB system model. Figure 2.6 illustrates a 

LinearSpring ABB—single spring with linear behavior, and TwoSpringSystem (ABB 

system)—two springs with linear behavior connected in series. An analyst may use the 

LinearSpring simulation template for computing the linear behavior of a single spring. If 

the assembly system changes such that two linear springs are connected in series, then 

another usage of the LinearSpring ABB must be created in the simulation template and 

both usages of LinearSpring ABB must be connected to reflect the series connection 

(such as the end point of one spring is associated with the start point of the other spring). 
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If a third spring needs to be added in series or parallel to both or either of the springs, 

then it would imply creating an additional usage of LinearSpring ABB and establishing 

relationships between this usage and previous two usages to reflect the modified system. 

In general, this type of change in assembly system topology helps define a special 

class of analysis problems known as Variable Topology Multi-Body Analysis problems 

(defined later in section 2.3). This research specifically focuses on this class of analysis 

problems. 

 
Figure 2.6: LinearSpring (ABB) and TwoSpringSystem (ABB system) examples—SysML 

parametric diagram view 
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 ST_Change_Type_2: Changes in a simulation template due to changes in the 

idealization decisions taken by analysts 

This category includes changes in simulation template due to the changes in the 

idealization decisions taken by analysts. This includes idealization decisions concerning 

(a) MPM-APM relationship—how an analyzable product model is idealized from a 

design model or manufacturable product model for a class of analyses, and (b) APM-

ABB system—how is the behavior of the analyzable product model idealized.  

If MPM-APM idealization decisions are such that they result in a change in the 

assembly system topology of the assembly system in the APM, then these changes are 

included in ST_Change_Type_1 category above. However, if the idealization decisions 

are such that the nature of the relationship(s) between MPM attribute(s) and APM 

attribute(s) change, then they are included in this category. For example, if the effective 

length attribute in the Flap Link APM in the plane stress CBAM in Figure 2.3 were to be 

computed differently the Flap Link design model, then such an idealization change would 

be included in this category. Changes in the type and (or) fidelity of analyses that the 

APM is required to support will affect changes in the MPM-APM idealizations.  

The APM-ABB system idealization changes result in changes in a simulation 

template by using different type of ABB for idealizing the behavior of the artifact. These 

type of idealization changes occur due to changes in the type of analysis and (or) the 

fidelity of analysis. For example, an analyst may perform a 2D plane stress analysis or a 

relatively lower fidelity 1D linear extension analysis to compute the axial deformation of 

the Flap Link part.  

This research focuses on automatically generating simulation templates based on 

the specifications provided by analysts. Changes in the idealization decisions are 

reflected as changes in the specifications. The updated specifications may then be used to 

regenerate the simulation templates using methods developed in this research. 

 

 ST_Change_Type_3: Changes in simulation template due to simulated behavior 

This includes changes in simulation template due to non-linear analysis. These 

changes typically occur when (a) idealized behavior(s) of an artifact affect a change in 

the assembly system topology of the artifact itself, and/or (b) different set of idealizations 
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need to be applied for different analysis regimes. For example, if the deformation of an 

assembly is large such that the connection between any two components breaks when 

simulating the behavior of the assembly, then this should be reflected in the simulation 

template by deactivating the interaction behavior between the corresponding components 

(analysis bodies) during the course of simulation. Further, an analyst may select a 

conditional idealization such that if the deformation is within a specified range, a 

different set of idealizations are in-effect (a separate set of ABBs in the ABB system) 

versus if the deformation is outside the specified range. These use cases are distinguished 

by using the terms static simulation template versus dynamic simulation template. 

This research proposes a conceptual approach for handling these types of changes 

in simulation templates. Note that the brittleness of simulation templates also depends on 

the manner in which relationships are created between models in a simulation template. 

For example, if the geometric idealization relationships in a simulation template are 

represented using a generic scheme such as Affine transformations (Mortenson 1997), 

then they are more robust to changes in the type of shapes at the input end of the 

idealization relationship—the structure of the idealization relationship can handle wider 

varieties of input shapes. However, if a geometric idealization relationship is represented 

by a set of relationships between the attributes of specific shapes and their features, then 

they are brittle to changes in the type of shapes that are being idealized. Further, the use 

of logical relationships (such as IF-THEN relationship) can enhance the robustness of 

simulation templates to types of changes in ST_Change_Type_3 category. This research 

is also aimed at developing guidelines for creating robust simulation templates. 
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2.3 Variable Topology Multi-Body (VTMB) Problems 
As described in the previous section, changes in the assembly system topology 

(AST) of design alternatives result in changes7 in the structure of simulation templates 

using these models. In this section, the concept of Assembly System Topology (AST) is 

defined and illustrated. This dissertation defines a special type of graph construct and 

corresponding visualization diagram—an Assembly System Topology diagram—to help 

characterize VTMB problems and visualize and communicate changes in AST. 

Following the definition of AST and AST diagram, the specific subsets of a simulation 

template that AST changes impact and the conditions for these changes are presented. 

Founded upon the concept of AST and AST diagram, a special class of analysis 

problems, namely Variable Topology Multi-Body (VTMB) Problems, is defined in this 

dissertation. This research is aimed at addressing VTMB problems. 

 

What is Assembly System Topology and how can it be characterized? 

Assembly System Topology (AST) is a property of an assembly system that is used to 

collectively characterize (a) the number and type of components in an assembly, (b) the 

number and type of interactions between these components, and (c) the number and type 

of component features that participate in these interactions. Since AST is a collective 

characteristic, it is easier and pragmatic to compare if two assembly systems have 

equivalent AST rather than computing an absolute value of AST for an assembly system.  

The AST of two assembly systems is equivalent if and only if 

a) They have the same number of components of each type 

b) Each component has the same number and type of features 

c) The type and number of interactions between any two features is the same 

Let us denote the AST of an assembly system ASi as AST(ASi), then we can define 

the AST Equivalence Relation as follows. 

 

AST Equivalence Relation, AST_EQ (denoted as ~), is a binary relation between the 

AST of two assembly systems ASi and ASj that implies that the AST of ASi and AST of 

                                                 
7 except when the idealizations ignore the components and interactions involved in the change 
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ASj are equivalent. This relation is denoted as: AST(ASi) ~ AST(ASj). The AST 

Equivalence relation is: 

 Reflexive: AST(ASi)~AST(ASi) — implies that the AST of an assembly system ASi is 

equivalent to itself. 

 Symmetric: If AST(ASi)~AST(ASj), then AST(ASj)~AST(ASi) — implies that is the AST 

of assembly system ASi is equivalent to the AST of assembly system ASj, then by 

definition of AST, the AST of assembly system ASj is equivalent to the AST of assembly 

system ASi. 

 Transitive: If AST(ASi)~AST(ASj) and AST(ASj)~AST(Ask), then AST(ASi)~AST(ASk) — 

implies that if the ASTs of assembly systems ASi and ASj are equivalent, and the ASTs 

of assembly systems ASj and ASk are equivalent, then by definition of AST, the ASTs of 

assembly systems ASi and ASk are equivalent. 

 

An AST Equivalence Set, AST_EQ_Set, is a set of all assembly systems such that the 

ASTs of any two members of the set, ASi and ASj, are equivalent. Thus, an 

AST_EQ_Set is defined as: ∀ ASi , ASj ∈ AST_EQ_Set, AST(ASi)~AST(ASj) 

 

An Assembly System Topology Diagram (AST diagram) is a type of SysML Internal 

Block Diagram that depicts an assembly system and its components, features of 

components, and the interactions between components. Hence, the AST diagrams of two 

assembly systems can be compared to unambiguously decide if have equivalent AST.  

Figure 2.7, Figure 2.9, Figure 2.10, and Figure 2.11 help illustrate the concepts of 

AST and AST diagram. Figure 2.7 shows a set of parts (or bodies)8,9—A, B, C and D—

using which several assembly configurations are composed. Figure 2.9 illustrates a set of 

assembly systems with equivalent AST while Figure 2.10 and Figure 2.11 each illustrate 

a set of assembly systems with non-equivalent AST.  

                                                 
8 AST can be used to characterize the topology of assemblies at the MPM (and APM) level where the part-component 

terminology is used, or the ABB system level where analysis body and analysis body system terminology is used.  
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Figure 2.7: Parts9 and their features 

 

 The constructs of an AST diagram are illustrated in Figure 2.8 and described 

below. 

 Assembly system block is used to represent assembly systems. It is denoted as a 

SysML block 

 Component block is used to represent components of an assembly system. Each 

component block is identified by the name of the component and its type (part name). 

For example, as shown in Figure 2.8, component_A1 is of type Part_A. A component 

block is labeled as component_A1: A. It is denoted as a SysML part property and is 

shown inside its parent assembly system block. 

 Feature block is used to represent features of assembly components that participate in 

defining the interaction between components. Each feature block is identified by the 

name of the feature and its type, and is shown inside the component block 

corresponding to its parent component. A feature is a part of the component’s form 

that participates in the interactions between the components. For example, Figure 2.8 

shows that component_A1 has two features, Feature_A_Top and Feature_A_Bot of 

type Feature_Type. Features may be typed according to their shape (such as point 

feature, line feature, or surface feature), their constituent material(s) (such as copper 

features, solder features), their function (such as electrically conductive feature or 

electrically non-conductive feature), or other characteristics relevant to tracking them 

                                                 
9 Name of components and corresponding parts used in this section have the prefixes component_ and part_. For 

brevity, the prefixes are not shown in the assembly configurations. 
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in the product realization process. It is denoted as a SysML part property and is 

shown inside its parent component block. 

 Interaction block is used to represent interactions between features (and hence 

components) in an assembly. Each interaction block is identified by its name and 

type. Interactions are typically typed by their function (such as structural, thermal, or 

electrical function). For example, in Figure 2.8, component_A1 and component_B1 

are glued together and this is represented by the interaction block, A1_B1_Interaction 

of type Glued_Interaction between Feature_A_Bot (of component_A1) and 

Feature_B_Top (of component_B1). It is denoted as a SysML part property. 

Assembly System 
Block

Component Block

Interaction Block

Connector

 
Figure 2.8: AST diagram constructs  

Figure 2.9 shows three assembly systems Assembly_ABC_111a1, 

Assembly_ABC_111a2, and Assembly_ABC_111a3 that have equivalent ASTs, as 

illustrated by the AST diagram in the figure. Hence, these assembly systems belong to the 

same AST Equivalence Set. One may draw a single AST diagram for an AST 

Equivalence Set since the AST diagrams for all members in the set are isomorphic. 



 

 39

Figure 2.9 also illustrates that changes in the size and shape of components and even the 

geometric topology of components doesn’t necessarily affect the AST of the assembly 

system. For example, the size of component A1 in Assembly_ABC_111a1 is different 

than in Assembly_ABC_111a2, and the geometric topology of component A1 in 

Assembly_ABC_111a3 is different than in other two assembly systems. These changes 

do not affect the AST diagram, and hence by definition do not affect the AST and 

simulation templates10.  

A1: A

B1: B

C1: C

Assembly_ABC_111a1

Assembly_ABC_111a2

Assembly_ABC_111a3

A1: A

B1: B

C1: C

A1: A

B1: B

C1: C

hole

 
 

Figure 2.9: Assemblies with equivalent system topologies; ST diagram as SysML IBD  

Figure 2.10 illustrates changes in AST due to reconfiguration of existing 

components. In assembly system Assembly_ABC_111b, component C1 is moved to the 

                                                 
10 As stated in the previous section, this assumes that an analyst has defined geometric idealization relationships at the 

object level and not at the attribute level. For example, using Affine transformations for idealizing shapes versus 

relating attributes of shape by algebraic relationships. 
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top of component B1 with respect to assembly system Assembly_ABC_111a1. This 

change in reflected in AST diagram for Assembly_ABC_111b—Feature_B_Top and 

Feature_C_Bot are associated with B1_C1_Interaction instead of Feature_B_Bot and 

Feature_C_Top in the AST diagram for Assembly_ABC_111a1 in Figure 2.9. Similarly 

in assembly system Assembly_ABC_111c, component A1 is moved to the bottom of 

component B1 with respect to assembly system Assembly_ABC_111a1. The 

corresponding changes are reflected in the AST diagram of Assembly_ABC_111c. In 

assembly ABC_111c_roller, the interaction type between components A1 and B1 has 

changed from glued interaction to roller interaction—A1 and B1 can mutually slide along 

the interacting surface as opposed to being glued in Assembly_ABC_111a. The changes 

in the AST diagrams for these three assembly systems with respect to the AST diagram 

for assembly system Assembly_ABC_111a reflects that the AST of these three assembly 

systems is (a) not equivalent to the AST of Assembly_ABC_111a, and (b) not equivalent 

to the AST of each other. 

Figure 2.11 illustrates changes in AST due to addition of new components. These 

changes are reflected in the AST diagram as addition of new component blocks and 

feature blocks—representing new components and their features, and interaction blocks 

and connectors—representing new interactions among new and existing components. In 

Assembly_ABC_211, a new component A2 (usage of part A) is added to the assembly, 

and in Assembly_ABCD_1111, a new component D1 (usage of part D) is added to the 

assembly. The AST of these two assembly systems is not equivalent to the AST of 

Assembly_ABC_111a1, and to the AST of each other. 
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Assembly_ABC_111c

A1: A

B1: B

C1: C

Baseline: Assembly_ABC_111a1
Change: A1 moved to bottom of B1  

   

Figure 2.10: Change in AST due to reconfiguration (changes in interactions and participating features) 
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Figure 2.11: Change in AST due to addition of new components (and hence also addition of new interactions) 
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The AST of a family of design alternatives may be different from AST of another 

family of design alternatives. Changes in the AST of design alternatives require changes 

in simulation templates. For example, addition of new components and interactions 

require analysts to manually create new entities, parameters, and relationships in 

simulation templates, or the changes in the type of interaction between components 

require analysts to re-wire existing relationships between parameters in a simulation 

template. Specifically, in the MRA simulation template pattern, each stepping stone 

model consists of a representation of an assembly system. Table 2.1 shows the types of 

assembly system and components represented in design-analysis models used in MRA 

simulation template pattern.  

The AST of idealized assembly system in an APM depends on the AST of the design 

model (or MPM) and the idealization relationships between them. Similarly, the AST of 

the analysis body system in ABB system model depends on the AST of the idealized 

assembly in the APM and the idealization relationships between then (APMΦABB). Hence, 

changes in assembly system topology of design alternatives require updates to simulation 

templates that are generally done manually. 

In this context, Variable Topology Multi-Body (VTMB) Problems are a class of 

problems where the assembly system topology of design alternatives varies. In the 

context of simulation-based design VTMB problems affect simulation templates, 

generally requiring manual updates and “re-wiring” of parameters and relationships in a 

Table 2.1: Assembly system and components in design-analysis models used in  

MRA simulation template pattern  

Model in MRA pattern Assembly System Components 

Design model (DM) / 

Manufacturable product 

model (MPM) 

Design assembly / 

Manufacturable product 

assembly 

Sub-assemblies and parts  

Analyzable Product Model Idealized DM / MPM assembly  Analyzable sub-assemblies 

and components  

ABB System Model Analysis Body System Analysis bodies  

(e.g., plates and shells) 

Solution Method Model  Assembly of solvable elements 

(e.g., meshed assembly in FEA) 

Solvable elements (e.g., 

mesh elements in FEA) 
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template. The acronym VTMB is used instead of the complete phrase variable topology 

multi-body in this dissertation. 

Note that variable topology multi-body problems are defined here based on the 

concept of assembly system topology and not geometric topology. The definition of 

variable topology presented here is different from highly-coupled variable topology 

problems defined by Zeng (Zeng, Peak et al. 2008) where changes in the geometric 

topology of interconnected bodies pose FEA meshing challenges. 

 

2.4 Primary Research Question and Gaps 

2.4.1 Primary Research Question 
The primary question that this research answers is as follows: 

How can we improve the effectiveness of the analysis problem formulation process 

for VTMB problems? 

In this sub-section, three measures of effectiveness of analysis problem 

formulation are described. These measures provide means to characterize why existing 

methods are ineffective for formulating analysis problems, and to characterize how 

methods developed in this research are more effective.  

The term “analysis problem formulation” in the primary research question refers 

to the formulation of simulation templates. A simulation template provides a structure to 

create a class of behavior models for a class of design models. The value of simulation 

templates in performing what-if trade studies on design alternatives has been established 

in the previous sections. The term “process” in the primary research question refers to the 

way in which simulation templates are created in existing methods.  

The term “effectiveness” in the primary research question sums up the core of the 

research problem. Figure 2.12 below illustrates three measures of effectiveness of 

analysis problem formulation in the context of this research. 
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These measures of effectivess are described below. 

 VTMB variations: This measure-of-effectiveness concerns the ability of analysis 

problem formulation methods to address VTMB problems. As discussed in previous 

sections, simulation templates (formulated analysis problems) are generally brittle to 

variations in assembly system topology of design alternatives. This makes simulation 

templates ineffective for design optimization problems where they are used for 

computing parameters that directly or indirectly participate in the objective function. 

 Idealization variations: This measure-of-effectiveness concerns the ability of analysis 

problem formulation methods to handle variations in idealization decisions taken by 

analysts. The idealization decisions taken by analysts are embodied in simulation 

templates as design and behavior parameters and relationships between these 

parameters. As discussed in the previous section, for new types of analyses, analysts 

perform what-if trade studies on idealizations and compare results from different 

behavior models, such as low-fidelity, easy-to-solve models and high-fidelity, 

complex-to-solve models. 

 Formulation Efficiency: This measure-of-effectiveness concerns the ability of analysis 

problem formulation methods to create simulation templates in an efficient manner. In 

this dissertation, formulation efficiency is characterized in terms of percentage 

reduction in time take to formulate simulation templates using new methods 

(developed in this research) versus current methods. Section 9.5.3.3 describes how the 

percentage reduction in time is measured. 

In the context of this research, the following functional aspects contribute towards 

increasing formulation efficiency. 

VTMB 
variations

Idealization 
variations

Formulation 
Efficiency  

Figure 2.12: Measures of effectiveness of analysis problem formulation 
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1. Automated methods for formulating simulation templates that are based on easy-to-

modify analysis specifications and simulation template meta-model. 

2. Existence of meta-models for formally representing simulation templates for VTMB 

problems.  

3. Analysis specifications that abstract the idealization decisions taken by analysts from 

the details of the formulation process. This will allow analysts to change idealization 

decisions without manually reconfiguring the formulation process.  

4. Abstraction of building blocks of simulation templates that can be used for formulating 

a large class of simulation templates. Each simulation template is used for a class of 

analysis problems. 

5. Methods for formulating simulation templates are modular and extensible to allow 

usage of different building blocks, such as shape and material behavior, for different 

types of analysis problems.   

In the context of this dissertation, an analysis problem formulation method is 

highly effective if it scores high on all the three measures of effectiveness. This implies 

that the analysis problem formulation method is effective if: 

 it can be used for creating simulation templates for greater types of design variations, 

specially VTMB-type variations 

 it can be used for creating simulation templates for greater types of idealization 

variations 

 it has a higher formulation efficiency 

2.4.2 Research Gaps 
The effective formulation of analysis problems using existing methods is hindered 

by two key research gaps as stated below. 

 Lack of formalization of the knowledge used by analysts in formulating simulation 

templates  

 Inability to leverage this knowledge to define model composition methods for 

formulating simulation templates  

In the context of this research, this knowledge refers to the intent of the 

idealization decisions taken by analysts. Existing methods, such as those based on 

parameterized scripts for creating behavior models, do not represent the intent of the 
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idealization decisions. At best, these methods are based on an interpretation of this intent 

in the form of mathematical relations between design parameters and behavior 

parameters for a particular class of analysis problems. VTMB-type variations or 

variations in idealization decisions taken by analysts require manual and costly updates to 

a large set of these parametric relations. If one can formalize the types of idealization 

decisions taken by analysts and the conditions for these decisions, one may explicitly 

represent these decisions at a higher level of abstraction from which mathematical 

relations or computable scripts may be automatically derived.  

Efficient formulation of simulation templates also requires model composition 

methods that can automatically compose simulation templates from reusable building 

blocks and the idealization decisions taken by analysts. The representation of building 

blocks requires both static knowledge—what concepts are represented by building 

blocks—as well as dynamic knowledge—how are building blocks composed to create 

simulation templates.  

 

2.5 Summary 
In this chapter the presentation of integrated functional and spatial design scenario 

and simulation templates as means to achieve this, provide a platform for this research. 

The brittleness of simulation templates to VTMB problems and changes in idealization 

decisions taken by analysts is presented in details. The concept of assembly system 

topology which is central to the definition and characterization of VTMB problems is 

defined and illustrated in this chapter. The central theme of the primary research question 

is the improvement of effectiveness of analysis problem formulation. Variation in design 

alternatives, idealizations decisions, and efficiency in formulating simulation templates 

are presented as three key factors contributing to the effectiveness of analysis problem 

formulation. The lack of effectiveness in formulating analysis problems using existing 

methods is contributed to two key research gaps: (1) lack of formalization of the 

knowledge used by analysts in formulating simulation templates, and (2) inability to 

leverage this knowledge to define model composition methods for formulating simulation 

templates. In the following chapter, a thorough review of published research, methods, 

and tools relevant to these gaps is presented. This review provides a refined 
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understanding of these research gaps, and establishes requirements for model formulation 

methods developed in this research. 
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CChhaapptteerr  33  ::  RREELLAATTEEDD  RREESSEEAARRCCHH  

In this chapter, a research survey is presented towards answering the primary 

research question (section 2.4.1). Past and existing research efforts are described and 

evaluated in this survey. The purpose of this survey is twofold: (a) categorize models, 

methods, and ontologies used in diverse applications in these research efforts, (b) 

elaborate on the lack of existing methods to address the gaps identified in this research, 

and (c) leverage existing models and methods to address these research gaps. The survey 

also points to research efforts that have been directed towards similar end goals as this 

research but for a different class of problems. 

Table 3.1: Metrics for categorizing and evaluating related technical work 

1
Design information and knowledge modeling 
(design meta-model)

a Represent conceptual and detailed design models
b Domain-specific detailed design ontologies
c Open-standard and non-proprietary ontologies
d Extensibility
e Represent associated behavior models
f Export model structure from design tools (such as ECAD, MCAD tools)
g Export model instances from design tools

2 Behavior modeling
a Formulating behavior models (solution method and solver-independent)
b Relationship between design models and behavior models
c Solution method-, and solver-specific behavior models
d Behavior model building blocks (and library) & reuse
e Auto-generate behavior models from building blocks

3 Simulation templates
a Template patterns and templates for trade studies
b Auto-generate simulation templates and their components
d Multi-directional solution of simulation templates (and inverse problems)
e Adapting simulation templates to changes in idealization decisions
f Ability to address VTMB problems

4 Model definition and transformation
a Declarative representation of models (and their associativities)
b Declarative representation of model transformations  

Table 3.1 above enlists a set of qualitative metrics to categorize and evaluate existing 

body of research. These metrics account for the research gaps and requirements for 

efficient analysis problem formulation presented in section 2.4. The research survey is 
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presented roughly in the order in which the metrics are listed. At the end of this chapter, 

the results of the survey are summarized.  

3.1 Design Information and Knowledge Modeling 
With geographically and temporally distributed product realization teams, it is 

required that next generation product development systems create and exchange 

information and knowledge across different product lifecycle activities in an information-

rich electronic form. Of particular interest to this research is the interoperability and 

knowledge exchange between design and analysis systems. As a foundation, Fenves et al. 

(Fenves 2004) have proposed the Core Product Model (CPM2) as a formal representation 

of an artifact. It is a conceptual meta-model representing a broad range of design 

concepts including requirements, form, function, behavior, material, physical and 

functional decompositions, and their inter-relationships. The CPM is targeted to be (a) 

software vendor solution-independent, (b) open and non-proprietary, (c) simple and 

generic, (d) extendable, (e) independent of any particular product development process, 

and (f) applicable through different lifecycle phases. In the context of this research, 

CPM2 can serve as meta-model to represent an artifact during different design phases 

(Pahl and Beitz 1996)—from conceptual design models to detailed design models to 

manufacturable design models.  

CPM2 is influenced by the Entity-Relationship data model (Chen 1976), and 

consists of two key classes, called CommonCoreObject and CommonCoreRelationship 

(equivalent to Class and AssociationClass in the Unified Modeling Language (UML)) 

(Rumbaugh, Jacobson et al. 2004; UML 2 2004). A UML class diagram for CPM2 is 

show in Figure 3.1. The principal entity in CPM2 is the Artifact—a distinct entity in a 

product (component, sub-assembly, or assembly). An artifact has properties such as 

form—physical description of the artifact, function—what an artifact is intended to do, 

and flow—medium for realizing transfer functions. Form consists of geometry—spatial 

description of an artifact, and material—physical constituent of an artifact. A feature is a 

part of an artifact’s form that has function(s) associated with it. An artifact satisfies a 

specification—a collection of customer requirements. The specializations of 

CommonCoreObject in CPM2 can be related to each other using specializations of 
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CommonCoreRelationship. For instance, the Usage entity relates the definition of a 

CommonCoreObject to its usage in a particular context. 

Figure 3.1: Core Product Model version 2 (CPM2) - UML class diagram view 

CPM2 allows one to associate behaviors to an artifact, and associate behavior models to a 

behavior. However, it doesn’t specify the structure of this behavior model and the nature 

of fine-grained associativities between a behavior model and other properties of an 

artifact, partially so because CPM2 is intended to be open and extensible. One of the 

target contributions of this research is to augment CPM2 with these representation 

capabilities. CPM2 also support the use case of representing computed behavior 

parameters and results of their evaluation against requirements. 

As an example of CPM2’s intent to represent product information through 

different lifecycle phases, the cardinality of the Aritfact-Form association reflects that an 
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artifact may have 0 or more forms associated with it. This represents the use case that 

during conceptual design stages, the form of an artifact may not be available.  

It is to be noted that CPM2 represents a conceptual meta-model that can be 

specialized and extended for different product domains such as aerospace, electronics, 

and automotive. New domain-specific entities may be added as specializations of existing 

core entities. Extensions to the Core Product Model, such as the Open Assembly Model 

(Rachuri, Han et al. 2006), have been developed for specializing different aspects of an 

artifact. 

The ISO 10303 family of standards (STEP) is an extensive set of open standards-

based product domain ontologies, such as for mechanical design, electronics, and 

automotive and cross-domain constructs such as geometry and product configuration 

control. Though the intent of STEP was to enable exchange of product information across 

different CAD/CAE/CAM systems, it has matured into a set of modularized ontologies 

for representing different aspects of product information typically during detailed design 

and manufacturing phases of the product lifecycle11. These modularized ontologies 

(formally known as STEP modules) are extended and specialized into ontologies for 

product application domains, such as AP210 (ISO 10303-210 2001) for electronics 

products, AP203 (ISO 10303-203 2000) for mechanical products, AP214 (ISO 10303-

214 2003) for automotive products, and AP215, 216, and 218 for ships(ISO 10303-216 

2000; ISO 10303-218 2000; ISO 10303-215 2001). In addition, integrated resources 

provide concepts that are reusable across several application domains. For example, Part 

42 (ISO 10303-42 2000) is a modular ontology for representing geometry- and topology-

related aspects of a product and is used across different product domain-specific 

ontologies (such as AP210 and AP203).  

In the context of this research, CPM2 and STEP ontologies are complimentary in 

the sense that the former provides an organizing principle for product information that is 

recurrent in different product domains through the lifecycle phases while the latter 

provides rich formal information models for specific aspects of product information and 

for different product application domains typically during detailed design and 

                                                 
11 Part 41 (ISO 10303-41 2000) and AP239 (ISO 10303-239 2000) provide representations for generic product structure 

and basic product lifecycle information respectively. 
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manufacturing phases. As an example, the Geometry entity in CPM2 can refer to the 

constructs in STEP Part 42. For formulating behavior model structures to simulate 

different types of behaviors of an artifact at different fidelities in different disciplines, it 

is necessary to have meta-models that (a) represent different aspects of product design, 

such as form, function, and requirements, and (b) are rich and formal ontologies that may 

be used to create design information models, which may then be used to create behavior 

models. Together CPM2 and STEP satisfy these requirements. An example of complex 

analyses supported by STEP ontologies is provided by (Zwemer, Bajaj et al. 2004; Bajaj, 

Peak et al. 2006) wherein detailed PCB design information available as STEP AP210 

instance model is used to perform high fidelity thermo-mechanical warpage analysis. 

In actual industry practice, product design information is typically available via a 

collection of models, such as CAD models, enterprise databases, and auxiliary models. 

Each model populates a subset of the design information shown in Figure 3.1, and 

collectively all models may not populate the all aspects of design information—leading to 

gap filling tools such as PCB layer stackup editors (Peak, Wilson et al. 2002; PCB Layer 

Stack Editor (LKSoft) 2008). In general, CAD tools provide a good authoring 

environment for form- and function-related design information—typically MCAD tools 

provide detailed 3D form and ECAD tools provide 2D form and electrical function 

information. There are two broad approaches for using the available design information 

for analyses: 

 

 Integrated simulation capabilities with CAD tools: Most CAD tools provide 

integrated capabilities for simulating certain types of behaviors of artifacts, based on the 

form and function-related information authored in these tools. For example, some MCAD 

tools provide utilities to create finite element models (NX CAE (Siemens PLM)), and 

ECAD tools provide utilities to create electrical simulation models (Zuken CR-5000 

PSpice & HSpice). These utilities can be used to simulate only certain types of behaviors 

at certain fidelities, and work well as long as all the design information required for 

simulating behaviors-of-interest is available in these tools, and the behavior models can 

be solved using specific solvers integrated with these tools. Additionally, cross-version 

interoperability and long-term retention of design and simulation models has always been 
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a challenge with such an approach. This approach is not extendable to other types of 

analyses beyond those supported by the integrated simulation capabilities. One may argue 

that CAD tools provide application programming interfaces (APIs) to extract design 

information and use it for creating customized behavior models. This approach may 

alleviate some potential limitations outlined above but it does not increase the set of 

available design information beyond the models created in CAD tools, and there is 

limited subset of this information that is accessible via the APIs. Typically, even the 

extraction of form-related parameterization scheme from CAD tools via their APIs is an 

open question. 

 

 Design Integrators: To enable a wider variety of analyses, and to use customized 

methods for formulating behavior models, and to allow a combination of CAE solvers to 

solve them, it is necessary to integrate subsets of design information in a unified non-

proprietary standard form. For the purposes of detailed design, STEP ontologies typically 

satisfy this requirement. Design integrators are tools that may be customized for an 

enterprise and are used for automatically integrating design information from multiple 

CAD tools, enterprise databases, and other auxiliary models. As an example, LKSoft 

design integrator / importer (IDA-STEP (LKSoft) 2008) has been customized for 

electronics design enterprises to create a unified STEP AP210 model from design 

information sub-sets, which is then used for enabling multiple fidelities of thermo-

mechanical warpage analyses (Zwemer, Bajaj et al. 2004; Bajaj, Peak et al. 2006) and 

design-for-manufacturability analyses (DFXpert (SFM Technology Inc.)) of PCBs. This 

approach makes a greater sub-set of design information available for complex multi-

fidelity analyses. Also, the existence of rich open standard and non-proprietary STEP 

models enables long term design information retention and reuse. 

In general, the industry practice is to use both approaches depending on the types 

of analyses being performed and the design information required to support them. 

However, for the purpose of this research, the latter approach is preferred as it provides 

for a greater subset of design information that is required to support a wider variety of 

analyses. 
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3.2 Behavior Modeling 
In this section, research related to formulating behavior model structure, analysis 

knowledge representation and reuse is presented. Prior to investigating existing methods 

for formulating behavior models, a taxonomy of behavior models is presented. 

3.2.1 Types of behavior models 
Figure 3.2 illustrates a taxonomy of behavior models as a SysML block definition 

diagram (SysML 2007). Behavior models may be classified in many different ways 

depending upon the perspective. In Figure 3.2, each perspective is represented as a 

SysML Viewpoint, and the classification of behavior models in that perspective is 

contained in a SysML View. In essence, a viewpoint provides the context for 

specialization and a view—confirming to this viewpoint—contains the specialization 

tree. Each view has an abstract block (italicized name) which is the parent (class) for all 

specializations in that view.  

This approach for categorizing behavior model is extensible in the sense that other 

viewpoints and views may be added and further specializations of behavior models in 

each view may be created. A brief explanation of each viewpoint and confirming views is 

provided below: 
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Figure 3.2: Types of behavior models from different viewpoints 
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 Viewpoint: Nature of domain knowledge 

This viewpoint is concerned with all specializations of behavior models from a 

standpoint of nature of domain knowledge used for formulating and solving behavior 

models (structures and instances). A confirming view (Qual Quant View) consists of 

specializations of behavior model based on qualitative or quantitative nature of domain 

knowledge. In this view, there are two broad classes of behavior models—Qualitative 

Behavior Model and Quantitative Behavior Model. As the names suggest, a quantitative 

behavior model is used to compute the behavior of a system quantitatively in contrast to a 

qualitative behavior model which is used to predict the behavior of a system in qualitative 

terms. (de Kleer and Brown 1984; de Kleer 1992) have presented extensive work on 

qualitative physics and its use to create qualitative behavior models. An analytical 

behavior model or a numerical behavior model (such as a FEA model) is an example of a 

Quantitative Behavior Model. 

Another view confirming to this viewpoint is the Physics Empirical View. This 

view consists of specializations of a behavior model based on whether the behavior 

model is founded on physics-based concepts and theories, or empirical information. A 

finite element model to predict the warpage behavior of PCBs is an example of a 

quantitative Physics-based Behavior Model (Bajaj, Peak et al. 2006), while an analytical 

model to predict warpage behavior based on the expertise of a PCB fabricator is an 

example of an Empirical Behavior Model. 

The focus of this research is to develop methods for efficient formulation of 

quantitative physics-based behavior model structures. However, the intent is to not to 

underestimate the valuable insights that may be obtained from formulating and solving 

qualitative behavior models. Beyond verifying design alternatives, qualitative results may 

guide analysts formulate higher fidelity quantitative behavior models. Though this 

research focuses on physics-based behavior models, the formulation methods may be 

extended to use quantitative empirical building blocks. 

 

 Viewpoint: Variation of behavior versus stimulus 

This viewpoint is concerned with all specializations of a behavior model from a 

standpoint of the variation of the behavior represented by a behavior model and the 
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stimulus for that behavior. A confirming view (Linear Non-Linear View) consists of 

specializations of behavior model based on the whether the behavior represented by a 

behavior varies linearly or non-linearly with respect to the stimulus. In the context of 

structural behavior analysis, this would imply the behavior of the deformation of the 

structure with respect to the applied loads. There may be several causes of non-linear 

behavior, such as non-linear material behavior, and large deformations. 

 

 Viewpoint: Nature of behavior parameter space 

This viewpoint is concerned with all specializations of behavior models from a 

standpoint of the nature of behavior parameter space. A confirming view (Lumped 

Distributed View) consists of specializations of behavior model based on the lumped 

behavior parameters or distributed behavior parameters. A Lumped Parameter Behavior 

Model is one in which the spatial distribution of behavior parameters is idealized as a 

single value, in contrast to a Distributed Parameter Behavior Model in which the behavior 

parameters are spatially distributed. For example, if the temperature distribution along a 

heated bar is idealized as an average temperature value in a thermal behavior model for 

the bar, the thermal model would be a Lumped Parameter Behavior Model. However, if 

the spatial distribution of temperature in the bar is accounted in the thermal behavior 

model for the bar, the thermal model would be a Distributed Parameter Behavior Model.  

 

 Viewpoint: Behavior model use 

This viewpoint is concerned with all specializations of behavior models from a 

usage standpoint. A confirming view (Behavior Model Use View) consists of 

specializations of behavior model based on if a behavior model is formulated for the first 

time (Original Behavior Model), is adapted from an existing behavior model (Adapted 

Behavior Model), or is being reused as-is (Ubiquitous Behavior Model). These behavior 

models correspond to the idea of original, adaptive, or ubiquitous analysis presented in 

section 2.2.2.1.  
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 Viewpoint: Closed form solution 

This viewpoint is concerned with all specializations of behavior models from a 

standpoint of solvability of mathematical relationships in a behavior model. A confirming 

view (Nature of Mathematical Relationships View) consists of specializations of behavior 

model based on whether they have a closed form solution or need to be solved 

numerically. If all such relationships have a closed form solution, then such a behavior 

model is a Closed Form Behavior Model. If these relationships do not have a closed form 

solution, such a behavior model needs to be solved numerically and is known as a 

Numerical Behavior Model. It is possible that some relationships in a behavior model 

have a closed-form solution while others do not. All such cases in different views are 

specializations of a Hybrid Behavior Model (described at the end of this section). 

 

 Viewpoint: Solution method 

This viewpoint is concerned with all specializations of behavior models from a 

standpoint of solution methods for solving the mathematical relationships in a behavior 

model. The solution methods depend on the nature of mathematical relations (e.g. closed 

form). Hence, this viewpoint depends on the Closed form solution viewpoint as indicated 

in Figure 3.2. A confirming view, Solution Method View, consists of specializations of 

behavior model based on solution methods. It consists of two main classes of solution 

method-based behavior models—Spatial Domain Discretization Behavior Model and 

Functional Transform-based Behavior Model. The former represents those behavior 

models in which the spatial domain is discretized to solve the mathematical relationships 

in each discretization, such as finite element method-, finite difference method-, finite 

volume method, and boundary element method-based behavior models. These are 

denoted as Meshless, FEA, FDM, FVM, and BEM Behavior Model blocks in the figure. 

The block Functional Transform-based Behavior Model represents those behavior models 

in which analytical relationships are derived from behavior experimental data, or an 

analytical relationship is decomposed into a series of analytical relationships or 

transformed from one analytical form to another to aid mathematical operations (such as 

integrals). This class of behavior models is represented by the Function Transform-based 

Behavior Model block that has specialization such as Fourier Transform-based Behavior 
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Model, Laplacian Transform-based Behavior Model, and Wavelet Transform-based 

Behavior Model. 

 

 Viewpoint: Variation of behavior model parameters with respect to time 

This viewpoint is concerned with all specializations of behavior models from a 

standpoint of variation of behavior parameters with respect to time. Static (or steady 

state) behavior models are those wherein behavior model parameters are idealized to be 

constant with respect to time, and dynamic (or transient) behavior models are those 

wherein behavior model parameters vary with time. In Figure 3.2, the Static Behavior 

Model block represents the former class of behavior models, and the Dynamic Behavior 

Model block represents the latter class of behavior models. Dynamic behavior models 

can be further specialized into continuous time behavior models and discrete event 

behavior models depending on whether behavior model parameters are provided or 

computed as continuous functions of time, or at discrete points in time. These are 

represented by Continuous Behavior Model and Discrete-Event Behavior Model blocks 

respectively in the figure. 

 

 Viewpoint: Determinism of behavior model parameters  

This viewpoint is concerned with all specializations of behavior models from a 

standpoint of determinism of behavior model parameters. Deterministic behavior models 

are those wherein all behavior model parameters are deterministic in nature, while 

Stochastic behavior models are those wherein one or more behavior model parameters are 

stochastic in nature. In Figure 3.2, the Deterministic Behavior Model block represents the 

former class of behavior models, and the Stochastic Behavior Model block represents the 

latter class of behavior models. 

 

 Viewpoint: Behavior Context  

This viewpoint is concerned with all specializations of a behavior model from a 

standpoint of the context of the behavior model. Here, “context” implies the specific 

“thing” whose behavior is being represented by a behavior model. A confirming view, 

Behavior Context View, consists of specializations of a behavior model from this 
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viewpoint. These specializations include: (a) Phenomenological model—represent the 

behavior of a phenomena, such as an Euler Beam bending model, (b) Component 

behavior model—represents the behavior of a component (physical artifact), and (c) 

Process behavior model—represents the behavior of a process. 

In general, a behavior model may be hybrid of the specializations in a given view. 

All such hybrid behavior models are represented by the Hybrid Behavior Model block in 

the figure. A Hybrid Behavior Model specializes one or more behavior model blocks in a 

view since all specializations within a view may not be mutually disjoint. 

3.2.2 Formulating behavior models 
In this section, research related to the formulation of behavior models is presented 

with special focus on the following aspects: (a) Formulating structure vs. instance of 

behavior models, and (b) Formulating solution method-, and solver-independent behavior 

models. 

3.2.2.1 CAD-FEA integration 

A major research thrust in formulating distributed parameter behavior models has 

been in the area of CAD-FEA integration. Methods developed in this area are aimed at 

efficient and intelligible idealization of CAD geometry to make it more amenable to 

FEA. Gordon (Gordon 2001) has identified three primary geometry idealization 

categories: (1) design and analysis geometry are same and no idealizations are required 

(seamless case); (2) design geometry is too complex and has wrong intent, so it has to be 

extensively modified to create a geometric model amenable to analyses; and (3) 

engineering analysis is performed first on an idealized form to create specifications for 

the actual design form.  These three use cases affirm the necessity of non-causal 

associativity between design and behavior models to enable the creation of one from the 

other.  

Armstrong et al. (Armstrong 1995; Donaghy 1996) have proposed geometric 

operations for dimensional reduction and addition / suppression of features based on 

medial-axis transforms and Saint Venant’s principle for creating idealized geometry for 

simpler FEA meshes and faster analyses. Arabshahi et al. (Arabshahi, Barton et al. 1991; 

Arabshahi, Barton et al. 1993) have proposed CAD-FEA transformation methods for 

analysis to respond to changes in design, and Belaziz et al. (Belaziz, Bouras et al. 2000) 
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have developed a feature-based tool based on morphological analysis of solid models for 

integrating the design model and its idealized form. This analysis views the detailed solid 

model available from CAD tools as one created from a “gross model” with 

addition/modification of features. Given a solid model, this analysis creates a form 

feature model (detecting the gross model and the process of feature addition / removal), 

followed by simplification of features to create an idealized model, and iterative FEA 

based on the idealized model. The updated idealized model is then mapped back to 

update the native CAD model. 

The contribution of these and other research efforts in this area that have 

developed intelligent methods for creating idealized geometric models from details 

design geometry is valuable but not sufficient for formulating behavior models. 

Turkiyyah and Fenves (Turkiyyah and Fenves 1996) aptly state that the functional 

description of the system is a key for creating behavior models.  Spatial information by 

itself provides little information about desired behavior and hence, insufficient for 

behavioral evaluation. In addition to the idealized form, the formulation process requires 

idealization of the material behavior of the artifact, and associated behavior conditions 

and stimulus (such as loads)—stated in details in the definition of behavior model 

formulation in section 2.1. 

The workflow for formulating behavior models in most current-day CAE tools 

(such as finite element tools) typically starts at creating the idealized form, or importing it 

from a COTS CAD tool via their native interfaces or standard STEP- or IGES-based 

interfaces. More often than not, CAE tools have limited support for importing design 

form from multiple CAD tools and minimal12 support for open standards-based 

interfaces. In effect, an analyst has to re-create the idealized form or refine the imported 

design form. Even in the case of seamless import, there is no explicit associativity 

between the design form and idealized form that will be used for analysis (such as FEA). 

An additional limiting factor is the inability of most CAE tools to recognize the imported 

shapes as parts, and their usages as components in an assembly, and to interpret that the 

interactions between geometric shapes is the interaction between assembly components, 

                                                 
12 Here, minimal implies confirming to (or importing/exporting) limited aspects of standards-based description of 

design form.  
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thus compelling users to work with basic geometry entities such as vertices, edges, areas, 

and volumes. However, once an idealized form is available in their analysis modeling 

environment, most CAE tools provide a broad set of capabilities to formulate solution 

method- and solver-specific behavior models. Newer capabilities in some FEA tools 

provide for a one-way associativity between a CAD model and corresponding FEA 

model (Simulia ABAQUS 2008). It enables an automated update of the FEA model when 

the design form is changed. However, this associativity is static and one-way. For 

changes in assembly system topology of design models, the idealization process leading 

to creation of the FEA model has to be repeated. 

The limitations in formulating behavior models directly in CAE tools (and hence 

specific to a solver for a given solution method) can be summarized as follows: 

 Inability to capture analysis intent, such as attribution of material behavior and loads to 

specific parts in the design form as opposed to volumes in the idealized form 

 Lack of explicit associativity between design form and idealized form 

 Lack of support for VTMB analysis problems 

 Need to reformulate behavior models from scratch for using capabilities of other CAE 

solvers, and other analysis methods (such as FEA (Reddy 1993) and meshless analysis 

(Chen, Lee et al. 2006)) 

Hence, this research focuses on formulating behavior models independent of 

solution method and solver, and to establish explicit associativity relationships between 

the design form and idealized form so as to preserve the analysis intent. In the context of 

the MRA-based simulation pattern presented in section 2.2.2, this implies formulating the 

CBAM. Behavior models formulated in this manner may then be solved in whole or parts 

using different methods and solvers.  

(Shephard, Beall et al. 2004) corroborate the approach for having an abstract 

design-component model to capture analysis intent and to interface between CAD and 

FEA tools. The Simulation Application Suite (Simmetrix Inc. 2006)) is one such FEA 

mesh generation tool that is founded on this abstract component model. In the MRA-

based simulation pattern, the ABB system consists of an assembly of analysis bodies and 

their associativities to individual parts and components in the design form. This satisfies 
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the requirement for having an abstract design-component model for supporting multi-

fidelity analyses and can additionally be used for other solution methods apart from FEA. 

 

3.2.2.2 Heuristic frameworks 

In the past heuristic methods have been proposed to formulate problem-specific 

equations from general domain equations, such as the framework developed by Yip et al. 

(Yip 1993) for simplifying the Navier Stokes equations and by Ling et al. (Ling, 

Steinberg et al. 1993) for generating governing equations for analysis of thermal systems. 

A challenge with these approaches is to develop and assemble equations for different 

fidelities for a multi-body design alternative. Most modern CAE tools possess the 

capability of assembling and solving a set of relevant equations for a multi-body problem, 

given a consistent set of analysis specifications (idealizations). Even then, the issue lies in 

the lack of explicit associativity between the behavior model and the design model (both 

at the structure and instance level) thus making the behavior model formulation process 

inefficient for handling VTMB problems for adaptive and original analyses. 

The heuristics-based approaches may not be sufficient but are can play an 

important role on the overall solution towards model-based communication between 

designers and analysts. Heuristics may help guide analysts in selecting appropriate 

idealizations based on the given artifact, behavior conditions, and desired analysis 

accuracy. Additionally, it may used for refining behavior models such as in adaptive 

control tools for FEA pre-processors (Shephard, Beall et al. 2004).  

 

3.2.2.3 Simulation templates 

In this sub-section, behavior model formulation approaches that laid special 

emphasis on integration with design models and modularity of the formulation method 

are presented. 

The Composable Simulation research (Diaz-Calderon, Paredis et al. 2000; Sinha, 

Paredis et al. 2000; Paredis, Diaz-Calderon et al. 2001) is aimed at performing system 

level behavior simulations by composing behavior models of the system components. 

Each physical component is represented by means of port-based models that formally 

describe its form and behavior with explicit mapping between the form and behavior 
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ports. These port-based models can be composed to create the system level behavior 

model. The ports and the internal behavioral implementations are separate, thus providing 

the capability to easily reconfigure the system for different fidelities of behavioral 

simulations. Although specific to mechatronics systems that are typically modeled using 

lumped parameters, the composability ideas may be leveraged for creating behavior 

models of a system from behavior models of components. However, much of this 

research depends on the availability of behavior models of the components and this 

research does not prescribe efficient ways to formulate them.  Also, the methods in this 

research are specifically developed for behavior models that are described using 

differential algebraic equations.  

The Multi-Representation Architecture (Peak 1993; Peak, Fulton et al. 1998; 

Wilson, Peak et al. 2001; Peak, Paredis et al. 2005) research prescribes a modular and 

reusable approach for creating behavior models from design models by stepping through 

four intermediate models, as described in details in section 2.2.2. As described in that 

section, the MRA can be viewed as a simulation template pattern—analogous to design 

patterns (Gamma, Johnson et al. 1995) in software engineering. The reusability of this 

approach is due to (a) use of analysis building blocks (such as linear elastic material) and 

systems of ABBs (such as Euler beam system), and (b) non-causal description of ABBs, 

ABB systems, and their associativity to design models, thus providing a model structure 

for solving analysis problems and inverse problems. The process of composing the ABB 

system structure from ABBs and establishing associativities to the design model structure 

is manual, thus making the process inefficient for adaptive and original analyses wherein 

designers and analysts perform trade studies on idealizations. Additionally, the model 

structure needs to be “rewired” for assembly system topology changes inherent to VTMB 

analysis problems. However, once the structure is available, it can be used to formulate 

behavior model instances automatically for a family of design model instances (XaiTools 

(Georgia Tech) 1999) 

In the MOSAIC project-related research (Sellgren 2003), a product is divided into 

sub-systems, and their mating features (what is connected) and interface features (how it 

is connected) are identified. It proposes a three-layered architecture for organizing the 

information in design and analysis models – the design layer for design-specific 
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information such as geometry and material; the generic behavior layer for information 

specific to behaviors of the design model, mating and interface features; and the 

application layer for representing this information in a software tool (such as FEA tools). 

The modularization rationale is similar to the composable simulation work—separating 

the interface definition and its behavior implementations. However, this research does not 

deal with organization of analysis knowledge or formulation of behavior models.  

 The open standards-based information exchange methods are focused on use of 

open standards to represent analysis models and their relationships to the design model. 

STEP AP209 (ISO 10303-209 2001) is an ontology for representing analysis models and 

the associativity between the shape representations of the design form and the idealized 

form for analyses, and the idealized form for analysis to a solution method-specific form 

(such as FE meshed model). Here, a relationship (“basis”) is used to link the idealized 

and the nominal design shape (Hunten 2001). With the modularized STEP architecture, 

the generic design model concepts in AP209 are shared with other application domain 

APs, such other AP210 (ISO 10303-210 2001) for electromechanical products and 

AP203 (ISO 10303-203 2000) for generic mechanical products. Further, Part 104 (ISO 

10303-104 2000) provides an ontology for representing finite-element based models. 

Overall, these open standards are useful for representing some types of idealization 

relations (esp. geometry-related) between the design model and the analysis model, but 

they do not prescribe a standards-based ontology for representing ABBs (such as material 

behavior models, load models, and behavior condition models) that may be used for 

creating analysis models. In the research presented in this dissertation, relevant aspects of 

STEP-based ontologies are leveraged in principle and a behavior meta-model is 

developed. Additionally, algorithms for automated composition of ABBs—typically 

outside the scope of the subject open standards-based ontologies—are also developed. 

Several methods have been proposed in the past for organizing behavior models. 

Some notable methods are described here. Hoffman et al. (Hoffman and Joan-Arinyo 

1998) propose a product master model mechanism so that the different behavior models 

of the artifact may be linked and synchronized with a master model that contains all the 

information about the artifact. Addanki et al. (Addanki, Cremonini et al. 1991) have 

proposed the graph of models approach for automated selection of analysis models 
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organized in a graph, on the basis of assumption-checking. This method is implemented 

for systems characterized by ODEs and is founded on model-based reasoning techniques. 

Falkenhainer and Forbus (Falkenhainer and Forbus 1991) have proposed a compositional 

modeling approach using which appropriate analysis models may be searched from a 

repository of analysis knowledge, based on the specific query and the structure of the 

subject system. This repository is founded on the relevant domain theories (such as 

thermodynamic analysis of steam plants). Since the approach is targeted for searching 

models and not formulating behavior models, all possible combinations of idealizations 

are explicitly modeled in this approach, which is typical known only when analysis 

knowledge is mature. For adaptive and original analyses, analysts need to dynamically 

compose, verify and reconfigure behavior model structures using different combinations 

of idealizations and perform trade studies to select the appropriate set of idealizations. 

However, the use case of efficiently organizing behavior models is a valuable one. If 

behavior model structures can be characterized along some key dimensions, then 

algorithms can be created to compute the “differential” between any two behavior model 

structures and thus determine their degree and dimension of separation in a repository of 

behavior model structures. For a given behavior model structure, one may also create a 

repository of behavior model instances. 

Tools such as Model Center (Engineous Software 2007) and iSight (Phoenix 

Integration 2007) provide a modeling and computation framework for linking design 

parameters in native CAD models and behavior parameters computed in different solver 

tools (such as FEA tools). These linkages are specific to the assembly system topology of 

artifacts and have to be manually updated for families of VTMB design alternatives. In 

addition, mathematical relationships embodied in these linkages need to be manually 

updated both for topology variations in design alternatives and idealization decisions 

taken by analysts. 

 

3.2.3 Analysis knowledge and reuse 
The term “analysis knowledge” has been used in different flavors in related 

research efforts. Different research efforts model different aspects of analysis knowledge 

that are essential to realize their specific use cases. In essence, analysis knowledge is the 
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union of all such aspects. Some well-known aspects of analysis knowledge are listed 

below.  

 Domain theoretic knowledge—including first principles such as conservation of 

energy and equilibrium principles and derived behavior theories like Euler-Beam and 

Timoshenko beam theories (Timoshenko and Goodier 1970)—used for computing 

behaviors of artifacts 

 Consistent combinations (and limitations) of different aspects of domain theoretic 

knowledge, such as assumptions under which the Newton’s laws of inertia are valid 

 An answer to the following question: “What domain theoretic knowledge concepts 

have to be used for a specific behavior computation problem?”, i.e. when and how to 

apply existing knowledge to compute behavior. Heuristic-based approaches presented in 

section 3.2.2.2 specifically address this question. Other research efforts in this direction 

involve automated selection of assumptions given the analysis objectives (Finn 1993; 

Turkiyyah and Fenves 1996). 

 Analysis intent—description of idealization decisions that help formulate a behavior 

model structure and its relationships to a design model structure 

 Analysis rationale—justification of why certain pieces of knowledge (and hence 

certain idealizations) are used for computing behavior. The justification typically relates 

to experiential knowledge of the analysts. 

 Objectives of the analysis problem and limitations of analysis models 

In this research, analysis knowledge specifically implies domain theoretic 

knowledge, modeled as computer-interpretable analysis building blocks (ABBs), and the 

consistent combinations of these ABBs that reflect valid combinations of domain 

theoretic concepts. In particular, this research does not focus—without limiting such 

extensions—on developing a knowledge base relating domain theoretic concepts to 

family of analysis problems for which they may be used or are most useful. The 

methodology developed in this research is targeted to be used by analysts in formulating 

behavior model structures. Designers use a simulation template pattern that embodies the 

behavior model structure to perform trade studies on instances. This assumes that 

analysts are aware of the analysis rationale and hence the reasons behind the 

assumptions—embodied as ABBs. However, this research does aim at representing 
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analysis intent by (a) explicitly relating a design model structure to behavior model 

structures (as shown in the definition of simulation templates in section 2.2.2), and (b) 

representing idealization decisions taken by analysts as computer-interpretable 

specifications for automated formulation of a behavior model structure.  

 For efficient formulation of behavior model structures—the primary objective of 

this research—it is necessary that ABBs be reused for formulating different behavior 

model structures, and behavior model structures of components be reused for formulating 

behavior model structures of systems. In the context of the simulation template for plane 

stress analysis of Flap Link part example illustrated in Figure 2.3, this would imply using 

the plane stress ABB model for plane stress analysis of different mechanical parts, and 

reusing the entire Flap Link plane stress CBAM for developing a plane stress CBAM of a 

system with multiple Flap Link parts. 

 Peak et al. (Peak 1993; Peak, Fulton et al. 1998; Peak, Fulton et al. 1999; Zeng 

2004; Bajaj, Peak et al. 2006) have demonstrated the advantages of abstracting domain 

theories as ABBs and using ABBs to create behavior models. Here ABBs embody 

specific assumptions that are used for creating a behavior model. They have shown 

special types of primitive ABBs for mechanical and thermo-mechanical analyses, such as 

material behavior ABBs, load ABBs, geometry ABBs, and boundary condition ABBs. 

These ABBs can then be used to create phenomenological models, such as Linear 

Extensional Rod model, Euler Beam model, Linear Torsion model, and Plane Stress 

behavior model. A phenomenological model is a type of a complex ABB. 

Phenomenological models can then be used to create component behavior models, such 

as the Plane Stress ABB is used to create plane stress behavior model for the Flap Link 

part (Figure 2.3). Turkiyyah and Fenves (Turkiyyah and Fenves 1996) propose that 

analysis assumptions should be modeled explicitly using declarative aspects that define 

the scope, content, and the validity of assumptions, and procedural aspects that define the 

transformations to the behavior model when the subject assumption is applied. It is to be 

noted that ABBs are representative of types of assumption choices available to analysts. 

The above effort only models the declarative aspects of ABBs. In the research presented 

in this dissertation, this will be augmented with the procedural aspects, thus aiding 

automated composition of behavior models (structures) from ABBs. In addition, this 
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research shall also investigate the characteristic dimension of ABBs and develop a meta-

model for building a library of ABBs. 

 Robinson et al. (Robinson, Nance et al. 2004) aptly state that the validity of 

simulation models when being used in a context different from the original use is factor 

that limits reuse. In this light, ABBs themselves embody domain theoretic knowledge, 

and the creation of each ABB should be followed by a formal verification method to 

check if it repreents the domain knowledge correctly. On the other hand, the use of ABBs 

for creating component and assembly-level behavior model structures deserves rigorous 

validation for the following reasons: (a) not all ABBs (assumption choices) are mutually 

consistent, and (b) ABBs used (assumptions) for creating behavior model structures may 

not be valid when analysis specifications are changed—the linear extensional model of 

the Flap Link part will not be a valid behavior model if the end loads on the part were 

torsional in nature. 

 The research presented in this dissertation leverages the work of (Finn 1993) that 

states the different types of approximations to physical system and phenomena for 

developing a behavior model. These include approximation of: (a) geometry of physical 

system, (b) physical phenomena being modeled, (c) boundary conditions, (d) material 

properties, and (d) approximation of control volume (esp. for thermal convection 

problems).  

 Grosse et al. (Grosse, Milton-Benoit et al. 2005) have proposed an ontology for 

supporting reuse, adaptation, and interoperability of engineering analysis models. This 

ontology provides an extensive listing of generic properties of analysis models that can 

be used to archive, identify and reuse them. In comparison, this is akin to the secondary 

use case of this research. The primary use case is to create behavior models. In the work 

presented by Grosse et al., an analyst (or a knowledge engineer per their terminology) has 

to explicitly categorize and document the decisions taken while creating an analysis 

model in terms of these generic properties. Further, most of the key properties, such as 

model idealization and model limitation, are represented as text strings. This limits the 

ability to search analysis models based on these properties since typically there are no 

commonly well-accepted standard string values for these properties. Also, the 

idealizations and limitations identified by an analyst may be coupled (or even contradict) 
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each other. It is difficult for algorithms to identify these couplings and contradictions if 

the instances are text strings with no bounds on values. The ontology proposed by Grosse 

et al. agrees well with our perspective on model formulation versus solution methods – it 

identifies continuum, lumped parameter, and empirical-based idealizations for physics-

based models, and several numerical solution techniques for solving these problems. In 

their ontology, the related physical system (or the design model) is a property of an 

analysis model. This is a coarse-grained associativity between an analysis model and a 

design model as opposed to fine-grained associativity that the automated methods 

developed in this research aim to establish. The research presented in this dissertation 

develops an extensible behavior meta-model based on an ABB meta-model for 

representing behavior model structures, which are then used to represent behavior model 

instances. It is strongly believed that behavior model structures confirming to this meta-

model will provide an inherent description of the idealizations (performed to create them) 

by the virtue of the ABBs that compose them. 

3.3 Model Definition and Transformation 
In this section, declarative model definition and transformations approaches are 

described in the context of the modeling requirements for this research. 

3.3.1 Model Definition 
This section focuses on modeling paradigms and languages necessary for 

representing the types of models relevant to this research—artifact design models, 

behavior models, and analysis building block models (all three at both the structure and 

instance levels). 

Some well-known representations for modeling knowledge are: productions 

(rules), semantics nets, schemata, frames, scripts and logic (Giarratano and Riley 1998). 

Productions formalize the knowledge by identifying preconditions, which when satisfied 

will result in actions. Semantic nets are used to model propositional information and 

formalize knowledge by identifying relationships (such as is-a, has-a) between nodes. 

Though they provide ease-of-expression, semantic nets have a non-definite (lack of 

representation for cardinality of relationships, aggregates of nodes) and shallow 

knowledge structure (attributes of a concept are represented as nodes, like the concept 

itself). A Schemata or a Schema is a deep knowledge structure, unlike semantic nets. 
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Using this, we can represent knowledge related to the properties of artifacts. Frames and 

Scripts (time-ordered sequence of frames) are different types of schema. Frames are used 

to describe knowledge typical to a given situation (snapshot in time). They may be: (a) 

situational frames – knowledge as to what to expect in a given situation, (b) action frames 

- knowledge about what to do in a given situation and (c) causal knowledge frames - 

combining situational and action frames to represent causal knowledge. The attributes of 

a frame are known as slots and their values are known as fillers. For example, a frame 

“car A” has an attribute “color” with value “black”. Frames can be grouped together into 

new frames (such as “car”). This is similar to the class and object terminology in object-

oriented programming and schema and instance terminology in databases.  

Most declarative formalisms for information and knowledge modeling in 

engineering are frame-based, such as EXPRESS (ISO 10303-11 2001) which is used by 

the STEP family of standards and SysML (SysML 2006) which specializes the UML 

formalism for systems engineering. Essentially, they provide entities to represent 

concepts in a given universe-of-discourse, attributes to represent the properties of this 

concept, constraints to bound the values of the attributes (such as where-rules in 

EXPRESS, constraint blocks in SysML, constraints in COBs (Wilson 2000), OCL (UML 

2 OCL 2004)), and relations to represent the relationships between the attributes and 

entities (such as association, aggregation in (UML 2 2004)). In the recent past, the term 

ontology is used to define a set of representational primitives to model a universe of 

discourse. These representational primitives are classes (or sets), attributes (or 

properties), and relationships (relations between classes) (Gruber 1995; Gruber 2007). An 

ontology provides semantics to communicate about a domain. As an example, STEP 

AP210 (ISO 10303-210 2001) is an ontology for describing the design of electro-

mechanical products. It provides concepts, their inter-relationships, and validity for 

describing design-related information for electromechanical artifacts. 

Logic is the study of the rules of exact reasoning. Formal logic focuses on the 

structure or the form of logic and not the semantics. Just as algebra can be used for 

uniquely formulating problems with different semantics, formal logic can be used for 

reasoning about objects without concerning itself with semantics of the objects. Predicate 

Logic was developed to analyze the internal structure of statements, and propositional 
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logic (subset of predicate logic) deals with IF- THEN structure only. The simplest form 

of predicate logic is first order predicate logic that consists of universal and existential 

quantifiers. 

Description Logics (a.k.a. DL) (Calvanese, Lenzerini et al. 1998) is a family of 

knowledge representation languages that provides the capabilities of “description”—

describing a domain, and “logic”—rules to reason about the domain. The purpose of DL 

languages is to model domains in a manner that formal reasoning can be performed on 

these domains. With reference to object-oriented modeling, in DL a class is modeled as 

an atomic or complex concept representing a set of objects, and a relationship is modeled 

as atomic (or complex) role representing sets of pairs of objects. Complex concepts and 

relationships are modeled as expressions consisting of atomic concepts, roles, and logical 

operations. Examples of these operations are: ¬ negation (complement), ∪ disjunction 

(or union), and ∩ conjunction (or intersection). In addition restrictions can be placed on 

sets by using the value restriction quantifier ∀ and the existential quantifier ∃. 

Representing a set of concepts using DL constructs allows one to use DL reasoners such 

as (RacerPro 1997) to verify the non-redundancy of concepts, non-empty concepts, and 

check subsumption relationships (subset) between concepts. DL languages and reasoning 

engines can be helpful in developing a knowledge base of concepts. In the context of this 

research, this technology can be helpful in extending and validating a library of ABBs 

provided ABB models can be formalized as DL expressions. The primary objective of 

this dissertation is to identify key characteristics of ABBs and to develop model 

transformation methods to formulate behavior model structures. Developing formal 

methods to validate a library of ABBs will be a valuable future extension. It is also to be 

noted that several object-oriented languages (such as EXPRESS) themselves are founded 

on set theory-based concepts. A reasoning engine could possible be built to validate the 

semantic consistency and non-redundancy of models expressed in these languages. It is 

also worth noting that object-oriented languages ((ISO 10303-11 2001; UML 2 2004; 

SysML 2007)) provide enhanced ease of expressiveness for modeling real world 

concepts. DL languages provide constructs to enable formal reasoning based on these 

concepts. It is best to combine the easy of expressiveness with formal reasoning 

capabilities in developing model repositories and ontologies. In this dissertation, SysML 
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is used extensively to represent design and behavior meta-models and models for the 

following three reasons in particular: (a) ease of expressiveness in defining the models, 

(b) representation of fine-grained relationships in a non-causal manner, as modeled using 

SysML parametric diagrams, and (c) applicability to systems design and analysis 

problems in general—representation of different types of systems and behaviors.  

3.3.2 Model Transformations 
Existing foundations of model transformations hold key to the research presented 

in this dissertation. The formulation of behavior model structures from an artifact design 

model structure given a set of analysis specifications is a type of model transformation. 

The intent of this aspect of the technical survey is to understand existing approaches to 

model transformation and to select one that is more suitable for the primary use case of 

this research. 

Analogous to traditional data computing wherein the operands are numbers and 

operators transform numbers (such as add, subtract, divide, and multiply numbers), 

model transformation can be viewed as a form of computing where the operand is a 

model and the operators are transformation rules. Over time, the term model 

transformation has tended to imply transformations of object-oriented models as opposed 

to program transformation that deals with transformations of computation statements 

(such as those in imperative programming and functional programming) and is a 

relatively mature field in computer science. In contrast to program transformation 

systems that are based on mathematically-oriented concepts such as term rewriting, 

functional programming, and attribute grammars, model transformation systems tend to 

be based on object-oriented principles (Czarnecki and Helsen 2006). 

Figure 3.3 illustrates the basic idea of model transformation. A model 

transformation process transforms a source model that confirms to a source meta-model 

(or schema) to a target model that confirms to a target meta-model (or schema). The two 

enablers for this transformation are: (a) transformation definition—describes how the 

transformation is to be achieved, and (b) a transformation engine—executes the 

transformations described in the definition. It is to be noted that the definition of a 

transformation is based on the source and target meta-models while the transformation 

engine executes this definition on source models (instances of source meta-model). 
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(Czarnecki and Helsen 2006) present a classification scheme to characterize 

different model transformation approaches. Figure 3.4 illustrates this classification 

scheme. Here, different aspects of this classification scheme are summarized and their 

relevance to this research is described.  

 

 Specification implies the definition of the transformation itself. There are two main 

methods to specify a transformation. In one method, the source model (operand) and the 

transformation function (operator) are given and the target model (result) is computed. 

In the second method, the source model (operand) and the target model (result) are 

given and the transformation engine automatically figures a way to achieve the target 

model from the source model. In method 1, the operator may be encoded as a procedural 

code. In contrast, method 2 is more declarative in the sense that one describes the source 

and target models and not the specific computation process. In the context of this 

research, method 2 is adopted versus method 1.  

Figure 3.4: Classification scheme for model transformation approaches (Czarnecki and Helsen 2006) 

 

 Transformation rule is the atomic unit of the model transformation process. Typically, 

transformation rules are declaratively represented with a LHS pattern and a RHS 

Figure 3.3: Basic concepts of model transformation (Czarnecki and Helsen 2006) 
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pattern. However, they may also be imperatively represented as a procedure or a 

function. Transformation rules consist of three main building blocks: (a) Variables that 

bind to model elements such as entities and relationships, (b) Patterns that consist of 

variables and bind to model fragments, and (c) Logic that defines the computation 

process. Variables, patterns, and logic could be syntactically typed or semantically 

typed. For declarative transformation rules, the transformation engine binds the LHS 

pattern to all matching fragments of the source model and replaces them with the RHS 

pattern to create the target model. For an imperative transformation rule, the 

transformation engine executes the procedure or function in the transformation rule. In 

the context of this research, the transformation rules are described declaratively as this 

will allow analysts to express the intent of behavior model structure formulation 

process without having to describe a procedure to formulate it. For example, for the 

plane stress CBAM for the Flap Link part in Figure 2.3, the analysis intent is to 

idealize the Flap Link part as a plane stress body. Declaratively, this is achieved by 

specifying the source Flap Link model and the target model—CBAM fragment that 

shows the Flap Link part wired with a Plane Stress body. Imperatively, this would have 

to be realized by writing a procedure to create the target model from the source model. 

Some other notable aspects of transformation rules are: 

o Multi-directionality describes if a transformation rule can be executed in multiple 

directions and causalities. In this research, transformation rules are being used to 

create the structure of a behavior model and are uni-directional. However, the 

structure itself may have relationships that may be solved in multiple directions 

(for inherently non-causal relations) to compute instance values.  

o Application conditions describe necessary conditions that must be satisfied before a 

rule can be executed. 

o Parameterization allows for passing parameter value (flags), data types, or even 

other rules to influence the behavior of a given rule. 

 

 Rule application control primarily deals with the scope (local determination) of the 

model fragment to which a given rule is applied, and scheduling strategy to determine 

which rules are executed before others. There may be multiple matches of the LHS 
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pattern of a rule in the source model. Transformation engines implement different 

application strategies—deterministic, non-deterministic, and interactive. In the context 

of this research, the deterministic strategy is required as it is desired that the 

transformations be applied to all possible matches in the source model. This is one of 

the key requirements for selecting a transformation engine that can be used for VTMB 

problems. Another notable aspect of rule application control is scheduling. In the 

context of this research, a transformation engine that allows for explicit scheduling is 

preferred since there is a sequence to the process of formulating a behavior model 

structure. In contrast, transformation engines with implicit scheduling do not allow 

users to control the execution order of rules. 

 

 Rule organization deals with how rules may be packaged in a repository for reuse. 

 

 Source-Target Relationship deals with the following transformation options: (a) 

creating a new target model that is different from the source, or (b) updating the source 

model to be the target model. In the context of this research, the latter approach is 

preferred as it allows for not duplicating the source model (artifact design model) and 

establishing associativities from the design model structure to the behavior model 

structure. 

 

 Incrementality deals with the capability to efficiently synchronize the source and the 

target models when either one is changed. 

 

 Directionality deals with the ability to execute transformations in one versus multiple 

directions. For model synchronization, it is desired that transformations be executable 

in multiple directions. This distinction holds importance when the source and the target 

models are not related. However, in the context of this research, the target model 

includes the source model and associativities to the source model itself. This is similar 

to the triple graph grammar approach (Konigs 2005) wherein the transformation rule 

not only creates the target model but also the associativities between the source and the 

target model. 
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 Tracing deals with recording the runtime process of transformation execution. 

 

(Czarnecki and Helsen 2006) discusses several model to model transformation 

approaches. Of particular interest to this research is the graph transformation-based 

approach to model transformations. This particular approach is founded on the strong 

mathematical theory behind graphs and graph transformation—summarized by (Andries, 

Engels et al. 1999; Engels and Heckel 2000). This approach typically applies to models 

that may be abstracted as typed, attribute, labeled graphs which as (Czarnecki and Helsen 

2006) point out is a formal representation of simplified class models. Two of the 

outstanding features of this approach are: (a) the ability to specify transformation rules in 

a declarative manner, leading to ease of modeling and model maintenance, and (b) the 

ability to apply transformations simultaneously to all fragments of the source model that 

match with the LHS pattern of a transformation rule—in contrast to sequential 

application for imperative transformations. A pitfall with this approach—in its native 

form—is the lack of explicit rule scheduling, thus leading to issues such as non-

termination of transformations. However, newer graph transformation tools such as 

VIATRA (VIATRA 2007) fill this gap by providing a state machine-based controller to 

schedule the order of application of rules. It is worth pointing out that the definition of 

the transformation rule itself is declarative but the application of transformation rules is 

specified as a procedure. This approach is also intuitive to the realm of object oriented 

modeling as such models can be viewed as graphs in an abstract sense. Another potential 

weakness of the graph transformation-based approach is the treatment of ordered graphs, 

such as when representing methods as graphs where the ordering of statements is 

important (Czarnecki and Helsen 2006).  

The objective of this research is to select a graph transformation system that 

satisfies the specific requirements for the primary use case. The research contribution 

lies in demonstrating the impact of such a graph transformation approach and system on 

the problem that this research addresses versus making improvements in the fundamental 

paradigms and algorithms that graph transformation approaches and systems are 

founded on. 
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A graph transformation rule r = (L, R, K, glue, emb, appl) consists of a left hand 

side graph L and a right hand side graph R, an interface graph K which is a subgraph of 

L, an occurrence glue of K in R, an embedding relation emb that relates the nodes in L to 

the nodes in R, and a set of application conditions appl that need to be satisfied for a 

subject graph for this rule to execute on it (Andries, Engels et al. 1999). The application 

of the rule r to a given graph G yields a graph H, denoted as G =>r H, in the following 

five steps (also illustrated in Figure 3.4).  

Step 1: CHOOSE an occurrence of the left hand side graph L in graph G. 

Step 2: CHECK if the application conditions, appl are satisfied 

Step 3: REMOVE the occurrence of L upto the occurrence of K in G. Also remove any 

dangling edges—edges incident on deleted nodes. 

Step 4: GLUE the resulting graph D in Step 3 with the right hand side graph R of rule r. 

This results in a disjoint union of graph D and R. 

Step 5: EMDED graph R in D, i.e. establish all relationships between R and D per the 

embedding relations in emb. 

 

Figure 3.5: Illustrative definition of a graph transformation rule (Andries, Engels et al. 1999) 

Different graph transformation approaches realize these basics steps in different 

ways. In general, the CHOOSE step requires the Injectivity condition—the occurrence of 
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L in G be isomorphic to L. Less restrictive conditions are the Contact condition—no 

dangling edges will arise in the REMOVE step, and Identification condition—occurrence 

of L in G should only compare nodes and edges in the interface graph K. A single 

pushout rule has empty application conditions and empty embedding relations. A double 

pushout rule has a contact and identification condition but empty application condition. A 

rule with a single node in the left hand side graph L and empty interface graph is a node 

replacement rule.  

It is worth noting that there is a fundamental difference in the use case of graph 

grammars versus model transformation using graph transformations. Graph grammars 

consist of a set of formal production rules to generate a language (or expressions) based 

on a set of terminal symbols. The terminal symbols have semantics in their own right, 

and the syntactic arrangement of terminal symbols in an expression obeys the grammar. 

The semantics of an expression is determined by the semantics of the terminal symbols 

and the relative arrangement of terminal symbols in the expression. This is similar to the 

English language wherein the semantics of a sentence is determined by the semantics of 

the individual words and the relative arrangement of words. The primary use case for 

graph grammars is to generate a language of graphs based on terminal graphs and 

productions specified in the grammar. This would be useful when one intends to generate 

all possible models that could be created using a given set of transformation rules, as in 

generating a family of all possible design alternatives (Mullins and Rinderle 1991). 

However, the primary use case for this research is to create a specific behavior model 

structure that embodies the idealizations specified by an analyst. Graph transformations 

with explicit scheduling serve the needs of this specific use case. 

3.4 Summary 
A summary of the technical survey presented in this chapter is shown in Table 

3.2. The table shows only the most relevant research efforts in the columns. The rows 

correspond to qualitative metrics for evaluating and comparing these research efforts. The 

coloring grades these research efforts based on the qualitative metrics. 
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Table 3.2: Summary of technical survey (shows most relevant references only) 
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CChhaapptteerr  44  ::  RREESSEEAARRCCHH  GGAAPPSS,,  QQUUEESSTTIIOONNSS  &&  HHYYPPOOTTHHEESSEESS  

The objective of this chapter is to transition from the statement and descriptions 

of the problem and gaps that this research addresses to developing hypotheses for a 

possible solution approach. The primary question that motivated this research is as 

follows: How can we improve the effectiveness of the analysis problem formulation 

process for VTMB problems? In this light, two key research gaps identified in Chapter 

2 were: 

 lack of formalization of the knowledge used by analysts in formulating simulation 

templates  

 inability to leverage this knowledge to define model composition methods for 

formulating simulation templates  

Based on the related research presented in Chapter 3, it can be concluded that 

existing methods and approaches are ineffective in formulating and adapting simulation 

templates for VTMB problems and changes in idealization decisions taken by analysts. 

Based on the factors contributing to the effectiveness of analysis problem formulation 

presented in Chapter 2 and survey of existing methods in Chapter 3, the primary research 

hypothesis is presented in this chapter. Based on the primary hypothesis, two secondary 

research questions are posed for this research. Hypotheses for the secondary research 

questions are also stated.  

4.1 Primary Research Question (PRQ) and Hypothesis (PRH) 

PRQ: How can we improve the effectiveness of the analysis problem formulation 

process for VTMB problems? 

PRH: We can improve the effectiveness of the analysis problem formulation process for 

VTMB problems by: 

 abstracting the analysis building blocks (ABBs) that may be reused for composing 

simulation templates 

 abstracting the intent of the idealization decisions taken by analysts, and using it to 

drive the process of formulating simulation templates 
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 systematically and automatically composing simulation templates using ABBs and the 

idealization decisions taken by analysts 

4.2 Secondary Research Questions and Hypotheses (SRQ/Hs) 
SRQ1: How can we formalize an ABB such that it can be reused for composing 

simulation templates? 

SRH1: We can formalize an ABB such that it can be reused for composing simulation 

templates by: 

 using a non-causal, declarative formalism to describe the concept and the knowledge 

represented by an ABB 

 using a model transformation-based formalism to describe the method for using an 

ABB when composing simulation templates 

 

SRQ2: How can we systematically and automatically compose simulation templates from 

ABBs?  

SRH2: We can systematically and automatically compose simulation templates from 

ABBs by: 

 representing idealization decisions in terms of specific ABBs to be used in composing 

simulation templates and the conditions for using these ABBs 

 formalizing the process of composing simulation templates as a model transformation 

process that automatically creates simulation templates for VTMB design alternatives 

and idealization decisions 
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PART 2: KNOWLEDGE COMPOSITION METHODOLOGY (KCM) 
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CChhaapptteerr  55  ::  KKCCMM  OOVVEERRVVIIEEWW  

The Knowledge Composition Methodology (KCM) is the contribution of the 

research presented in this dissertation. KCM is a collection of models and methods that 

enable effective formulation of analysis problems. KCM models and methods are based 

on the research hypotheses stated in the previous chapter. The KCM Framework is a 

computational embodiment of the KCM. The purpose of the KCM Framework is to (a) 

provide a testbed for KCM implementations, and (b) test research hypotheses. The 

chapters presented in Part 2 of this dissertation describe different aspects of the KCM 

Framework. Figure 5.1 illustrates the components of the KCM Framework as a SysML 

package diagram. 

Figure 5.1: KCM Framework components 

The components of the KCM Framework are as follows: 

 Requirements – functional and design requirements of KCM based on research 

hypotheses and research gaps presented in the previous chapter. KCM requirements 

are presented in this chapter. 

 Use Cases – use cases of KCM based on research hypotheses presented in the 

previous chapter. KCM use cases are presented in this chapter. 

 Simulation Template Patterns – patterns that define the structure of simulation 

templates for analysis problems. In this dissertation, the MRA pattern is used for 

formulating simulation templates for computing physics-based behavior. Similarly, 
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other simulation template patterns may be included in this package. See section 2.2.2 

for the definition of simulation templates and the MRA pattern in the context of this 

research. 

 Behavior Model Formulation Method – method to formulate behavior model structures 

and hence simulation templates (presented in Chapter 8). 

 Meta-Model Library – library of meta-models relevant to KCM. This consists 

primarily of the KCM_Meta-Model which is a collective meta-model for representing 

design and analysis models for VTMB problems, and consists of: 

 CPM2_xKCM – extension of the Core Product Model (Fenves 2004) meta-model for 

representing abstractions of an artifact, such as designed artifact, manufacturable 

artifact, and analyzable artifact (presented in Chapter 6) 

 CBM – a meta-model for representing artifact behavior models—both structures and 

instances—for VTMB problems (presented in Chapter 7) 

 ABB Meta-Model – a meta-model for representing ABBs for composing behavior 

models for VTMB problems (presented in Chapter 7) 

 Generic_Properties – a meta-model for representing generic properties such as 

geometry and material that are used for all meta-models in the KCM_Meta-Model 

(referred in Part 2 and defined in Appendix 3). 

Other meta-models in this library may include for example STEP (ISO 10303)-based 

modules that provide concepts for representing detailed design aspects of domain-

specific VTMB alternatives. For instance,  

 Model Structure Library – a library of model structures for test cases in the KCM 

Framework 

 Model Instance Library – a library of model instances for test cases in the KCM 

Framework 

The components of the KCM Framework are designed to be extensible for different 

design domains and different types of analyses. 
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5.1 Requirements 
The Requirements component of the KCM Framework consists of requirements 

for KCM distilled from the research gaps and hypotheses. These requirements are 

formalized in two sets: 

 KCM Framework Functional Specification consists of KCM requirements distilled 

from research hypotheses and research gaps. 

 KCM Framework Design Specification consists of KCM requirements from the 

standpoint of a methodology developer and which when satisfied will also satisfy the 

functional specification above. 

Figure 5.2 illustrates the functional and design specifications of KCM using a SysML 

requirements diagram. The KCM Framework Functional Specification consists of the 

following three requirements: 

 Effectiveness – requirement related to the effectiveness of formulating analysis 

problems. This consists of three sub-requirements, namely VTMB Variations, 

Idealization Variations, and Efficiency. Collectively, these requirements state that the 

KCM will enable effective formulation of analysis problems by providing effective 

methods to handle VTMB variations and variations in idealization decisions taken by 

analysts. The Effectiveness is based on the definition of effectiveness in the context of 

this research (section 2.4). 

 Knowledge Representation – requirement related to representing ABBs that embody 

the knowledge used by analysts in formulating behavior model structures. 

 Automated creation of simulation templates – requirement related to providing 

methods to automatically compose simulation templates for VTMB problems from 

ABBs. 

The formal statements of these requirements are presented in Figure 5.2 as 

requirements text property. Note that these three functional requirements are not mutually 

independent. The Effectivenss requirement and its sub-requirements are refined by the 

other two requirements, as shown by the <<refine>> relationship between these 

requirements. The Knowledge Representation requirement and Automated creation of 

simulation templates requirement are based on a specific approach to enhance the 
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effectiveness of formulating analysis problems for VTMB design alternatives. This 

approach is founded on the research hypotheses presented in the previous chapter. 

Figure 5.2: KCM Framework requirements – functional and design specifications 

The KCM Framework Design Specification consists of the following three 

requirements: 

 Meta-Models – requirement related to providing meta-models for representing all 

VTMB design models, behavior models, and ABB models. 

 ABB Models – requirement related to providing an extensible library of ABBs that are 

building blocks of behavior model structures. 

 Behavior Model Formulation – requirement related to providing methods to compose 

behavior model structures (and hence simulation templates) from design model 
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structures, ABBs, and behavior model formulation specifications (embody the 

idealization decisions taken by analysts). 

The KCM Framework design requirements are derived from the functional requirements. 

Hence, each design requirement is related to the corresponding functional requirement 

with a <<deriveReqt>> relationship. 

 Figure 5.3 illustrates the KCM Framework components that satisfy the KCM 

design requirements (KCM Framework Design Specification). The Behavior Model 

Formulation Method component of the KCM Framework shall satisfy the Behavior Model 

Formulation requirement; the KCM_Meta-Model components (CPM2_xKCM, CBM, 

ABB_Meta_Model) shall satisfy the Meta-Models requirement; and ABB_Model_Library 

component of the KCM Framework shall satisfy the ABB_Models requirement. 

Figure 5.3: KCM Framework design requirements satisfied by other components 

5.2 Use Cases 
A Use Case is the specification of actions performed by the system which yields 

an observable result that is of value for one or more actors or other stakeholders of the 

system  (UML 2 2007). KCM use cases—represented by the Use Cases component of the 

KCM Framework—are a collection of use cases relevant to the KCM Framework. A use 

case diagram identifies a system, the use cases for that system, and the actors who are 

related to these use cases. In the context of the KCM Framework, the subject system is 

the framework itself as illustrated as a SysML Use Case diagram in Figure 5.4. The 
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figure also shows the use cases and the actors who are the key stakeholders in the 

framework. A line connecting an actor to use case(s) represents the communication that 

occurs between the actor and the framework in realizing the actions specified by the use 

case(s). The primary use case of the KCM Framework is to automatically create 

simulation templates. This is represented by the Generate Simulation Template use case 

in Figure 5.4. The primary end-users of the KCM Framework are designers and analysts. 

However, the use cases are presented from the context of the KCM Framework as a 

whole, including actors such as framework developers and modelers who define and 

extend the KCM Framework. Hence, it shows use cases that are relevant to the 

methodology developer (author of this dissertation).  

Figure 5.4: KCM Use Cases  
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In these use cases, the term “Generate” implies automated creation by a computer-based 

method in these use cases. The use cases of the KCM Framework are summarized as 

below: 

 Create Meta-Model use case concerns creation of meta-models for KCM Framework. 

The KCM Developer actor (author of this dissertation) shall realize these use cases in 

the form of KCM_Meta-Model component (see Figure 5.1) of the KCM Framework.  

 Extend Meta-Model use cases concerns extending meta-models of the KCM 

Framework by KCM Developer actors and Modeler actors—users who are well-versed 

in the object-oriented concepts of the KCM. Designers and senior analysts provide 

specific scenarios (modeling needs) that aid in extending design and behavior meta-

models respectively. 

 Create Model Structure use case concerns the creation of model structures by 

designers (represented by the Designer actor), junior analysts (represented by the 

Junior Analyst actor), and senior analysts (represented by the Senior Analyst actor). It 

consists of the following three specialized use cases: 

 Create Design Model Structure use case concerns creating VTMB design model 

and analyzable design model structures by designers. 

 Create ABB Model use case concerns creating the structure of the ABB models by 

senior analysts. 

 Formulate Behavior Model Structure / Simulation Template use case concerns 

automated generation of the behavior model structure and simulation templates. It 

consists of following two sub-use cases (as also illustrated by the <<include>> 

relationship in Figure 5.4): 

 Create Behavior Model Specifications use case concerns formulating analyst 

idealization decisions as specifications for formulating behavior model 

structure. 

 Generate Simulation Template use cases concerns automatically creating the 

behavior model structure (and hence simulation template). 

 Execute Simulation Template (Design Verification Scenario) use case concerns 

execution of simulation templates for design instances, thereby automatically 

generating behavior model instances. 
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 Execute Simulation Template (Design Synthesis Scenario) use case concerns 

execution of simulation templates for behavior model instances, thereby 

automatically generating design model instances. 

5.3 Organization of KCM Components 

 Figure 5.5 illustrates the organization of KCM components in this dissertation. In 

this chapter (Chapter 5), an overview of the KCM Framework components was presented 

followed by requirements and use cases of the KCM Framework. In Chapter 6, different 

abstractions of VTMB design models are presented. This includes definition and detailed 

description of the CPM2_xKCM meta-model and its abstractions. In Chapter 7, the 

different abstractions of behavior models are presented. This includes definition and 

detailed description of the Core Behavior Model (CBM) and the ABB Meta-Model. In 

Chapter 8, the Behavior Model Formulation Method (BMFM) and the underlying model 

transformation approach is presented. The BMFM is used for formulating simulation 

templates—composing behavior model structures given VTMB design model structures, 

ABB models, and analyst idealization decisions. In Chapter 9, two test applications of the 

Behavior Model Formulation Method are presented in details. These test applications 

concern the formulation of simulation templates for thermo-mechanical analyses of 

multi-stratum printed wiring boards (PWB) and multi-component chip package designs 

respectively.  

 
Figure 5.5: Organization of KCM Components 
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CChhaapptteerr  66  ::  CCPPMM22__XXKKCCMM  --  AANN  AARRTTIIFFAACCTT  MMEETTAA--MMOODDEELL  

The focus of this chapter is to present the different abstractions of design models 

for representing variable topology multi-body alternatives. Representation of design 

models is a central component in formulating simulation templates using the Behavior 

Model Formulation Method. The different abstractions of design models for VTMB 

design alternatives are founded on CPM2_xKCM—a meta-model for representing 

VTMB design alternatives for all families of artifacts. In this chapter, the CPM2_xKCM 

meta-model is presented first, followed by the other abstraction levels and examples in 

section 6.2. 

CPM2_xKCM is an extension of the Core Product Model, CPM2 (Fenves 2004), 

for the Knowledge Composition Methodology (KCM), and it is used to represent 

abstractions of an artifact for design, analysis, and manufacturing lifecycle phases, and 

the relationships between these abstractions. In the context of simulation templates these 

abstractions are necessary to define an artifact for the purposes of formulating behavior 

models of that artifact. In some scenarios behaviors of an artifact may be computed from 

its design description, while in other scenarios they may be computed from an artifact’s 

manufacturing description. Depending upon the product realization process, additional 

 
Figure 6.1: VTMB Design Model Abstractions based on CPM2_xKCM – focus of this chapter 
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artifacts and features may be added to an artifact assembly when transforming design 

descriptions to manufacturing descriptions. Hence, it becomes necessary to evaluate the 

behavior of artifacts from both design and manufacturing descriptions. In both of these 

scenarios, analysts perform idealizations or add additional details to an artifact’s 

description for analysis purposes. In doing so they create a description of an artifact that 

is ready for a family of analyses. In the KCM, this description is known as the 

Analyzable Artifact Model (or Analyzable Product Model) as shown in Figure 6.2. While 

the Core Product Model provides a basic foundation for representing artifacts across their 

lifecycle, CPM2_xKCM extends it by adding these abstractions. 

In essence, CPM2_xKCM is a meta-model for defining an artifact as originating 

from CAD/CAM tools and its idealizations (AAM / APM) for analysis purposes. 

CPM2_xKCM is a component of the KCM_Meta-Model as shown in Figure 5.1, and can 

be specialized for different product domains. Detailed analyses in each product domain 

shall require a detailed domain-specific meta-model. The Knowledge Composition 

Methodology presented in this dissertation relies on the STEP (ISO 10303) application 

protocols (APs) and modules for detailed product definition. The STEP APs provide 

domain-specific meta-models that can be viewed as specializations of CPM2 and 

CPM2_xKCM.  

Scope of 
KCM_Meta-Model

Scope of 
CPM2_xKCM  

Figure 6.2: Scope of CPM2_xKCM in MRA simulate template pattern 
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Hence, behavior model formulation methods developed using CPM2_xKCM are 

applicable both for low fidelity analyses performed during conceptual design phases and 

high fidelity analyses performed during detailed design phases. In this chapter, 

CPM2_xKCM is described in section 6.1, and is illustrated with examples in section 6.2.  

6.1 Description of CPM2_xKCM 
In this section, CPM2_xKCM is described. There are two types of extensions to 

CPM2 that were done to formalize CPM2_xKCM. These are: (a) minor modifications to 

the existing concepts (esp. relationships) in CPM2, and (b) addition of new concepts—

entities and relationships—to CPM2. The basic concepts in CPM2 with minor 

modifications are described in section 6.1.1 and new concepts are described in section 

6.1.2. 

6.1.1 CPM2_xKCM View 1: CPM2 with minor modifications for the 
Knowledge Composition Methodology 
Figure 6.3 illustrates all the key classes in CPM2. While the Core Product Model 

was originally presented using UML, it is presented using SysML in this dissertation. 

Refer to Appendix 2 for a summary of SysML constructs used in this dissertation. All 

models and meta-models in KCM are described using SysML as it provides a common 

formalism to define and relate models at different levels of abstractions and to establish 

fine-grained associativities between them. In the SysML-based version of CPM2, a UML 

class maps to a SysML block, and a UML association class maps to a block with 

reference properties (names prefixed with “related” and “relating”) to the blocks being 

associated. 

The Core Product Model schema consists of two main abstract blocks: 

 CommonCoreObject is the base abstract block for all objects. 

 CommonCoreRelationship is the base abstract block for all relationships between 

objects. 
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Figure 6.3: CPM2_xKCM View 1 – shows minor modifications to CPM2 

The CommonCoreObject block is specialized into the following blocks. 

 CoreEntity is the base abstract block for representing artifacts and their features. 

 CoreProperty is the base abstract block for representing properties of artifacts such as 

form, function, material, shape (geometry), and flow. 

 Behavior is the base block for representing behaviors of artifacts. Behavior is the 

response of an artifact to external stimuli such as applied forces and temperature. While 

function describes what an artifact is supposed to do, behavior describes what an artifact 

does. During analysis, specific behaviors of an artifact are computed and compared 

against the functional requirements. An instance of Behavior has no existence on its own, 
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and must be associated with the artifact whose behavior is being computed. This is 

reflected by the Behavior block property Behavior.behaviorOfArtifact. In CPM2, the 

Behavior block has the following four properties:  

o behaviorOfArtifact for referencing the artifact whose behavior is to be computed and 

evaluated 

o behaviorModels for referencing behavior models that are used to compute the subject 

behavior of the artifact 

o observedBehavior for describing the results of computing the behavior 

o evaluatedBehavior for evaluating the computed behavior against requirements 

One of the key contributions of this dissertation is the Core Behavior Model (CBM)—a 

meta-model for describing behavior models—which is described in Chapter 7.  

 Requirement is the base block for representing requirements for artifacts. A 

requirement applies to one or more properties of an artifact—form, function, flow, 

material, or geometry. Requirements are contained in a specification. 

 Specification is the base block for representing a collection of requirements based on 

end user needs or engineering specification derived from it. A specification may or may 

not be satisfied by existing artifacts. Typically during early design stages, an artifact that 

satisfies a specification does not exist. 

The CoreEntity is block is further specialized into the following blocks. 

 Artifact is the base block for representing artifacts. An artifact is a distinct entity of a 

product, such as component, sub-assembly, or an assembly. An artifact may have 

multiple features as represented by the block property Artifact.hasFeatures, and a feature 

must be owned by an artifact, as represented by the block property 

Feature.featureOfArtifact. An artifact may have sub-artifacts as represented by the 

recursive composition relationship with roles Artifact.subArtifactOf and 

Artifact.subArtifacts. This is used to represent the part-assembly structure of artifacts.  

 Feature is the base block for representing features of artifacts. A feature is a specific 

part of an artifact’s form that implements one or more functions. A design or analysis or 

manufacturing feature implements one or more functions for the purposes of design or 

analysis or manufacturing process respectively. A feature may have sub-features as 
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represented by the recursive composition relationship with roles Feature.subFeatureOf 

and Feature.subFeatures. 

The CoreProperty block is further specialized into the following blocks. 

 Form is the base block for representing forms of artifacts and features. The form of an 

artifact is described using its geometric shape and constituent material. Further 

specializations of form depend on specializations of the artifact to which it is associated. 

Form may represent a proposed design form, a specific idealization of a proposed design 

form for analyses, or the final design form that may be used to create a bill of materials 

for manufacturing. Artifact.hasForm associates a form to an artifact. An artifact may have 

multiple forms associated with it, each representing a specific view of the artifact’s form 

for a specific purpose (such as generating a bill of materials) or as a version of the form 

in-development. Form.formOfArtifacts associates artifacts to a given form. A given form 

may be used by multiple artifacts. A form may have sub-forms as represented by the 

recursive composition relationship with roles Form.subFormOf and Form.subForms. 

 Function is the base block for representing functions of artifacts. Functions of an 

artifact describes what an artifact is supposed to do, and is derived from end user and 

engineering specifications. A transfer function—represented by the block 

TransferFunction—is a specific type of function that involves the transfer (or conversion) 

of an input flow to an output flow. For example, a generator is an artifact that implements 

a transfer function that converts mechanical energy to electrical energy. 

Artifact.hasFunctions associates functions to an artifact and Function.functionOfArtifacts 

associates artifacts to a given function. A function may be realized by multiple artifacts. 

A function may have sub-functions, as represented by the recursive composition 

relationship with roles Function.subFunctionOf and Function.subFunctions. 

 Material is the base block for representing the constituent material(s) of artifacts. A 

material may be associated with one or more forms. Form.hasMaterials associates a 

material to a given form, and Material.ofForms associates a form to a given material. A 

given form may be associated with multiple materials, each representing a version of the 

material in-development for the subject form, or a view of the material used in the subject 

form. A material may have sub-materials as represented by the recursive composition 
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relationship with roles Material.subMaterials and Material.subMaterialOf. This may be 

used to represent alloys that are materials composed of other alloys or basic materials. 

 Shape is the base block for representing shapes of artifacts and features. A given shape 

may be associated with one or more forms. Form.hasShapes associates shapes to a given 

form and Shape.ofForms associates forms to a given shape. A given form may be 

associated with multiple shapes, each representing a version of the shape in-development 

for the subject form, or a view of the shape used in the subject form. A given shape may 

have sub-shapes as represented by a recursive composition relationship with roles 

Shape.subShapeOf and Shape.hasShapes. The Knowledge Composition Methodology 

relies on shape representation concepts in STEP Part 42 (ISO 10303-42 2000). Those 

concepts are specializations of the Shape block in CPM2_xKCM. 

 Flow is the base block for representing flows. A flow is the medium, such as fluid, 

energy, or messages that is used to realize transfer function(s). A flow can be realized by 

one or more artifacts, and an artifact may have multiple flow inputs and outputs. 

The CommonCoreRelationship is an abstract block that associates a “relating” 

CommonCoreObject block to one or more “related” CommonCoreObject blocks. The 

CommonCoreRelationship block is specialized into the four main blocks. 

 EntityAssociation block is used for representing set membership relation between 

CoreEntity blocks. 

 Constraint is the base block for defining constraints (and more generically relations) 

between the properties of artifacts and features. 

 Usage block is used to specify the relationship between the definition of a 

CommonCoreObject and its usages (possibly in different contexts). For example, if a 

part defined in a database occurs as a component in an assembly, the occurrence of the 

part and the definition are related by the Usage block. 

 Trace block is similar to the Usage block. It is used to specify relationships between 

one CommonCoreObject and another when one depends on the other in the following 

manner: (a) alternative of, (b) version of, (c) derived from, (d) based on, (e) same as. 

So, typically relationships defined using a Trace block have a directionality. For 

example, if a part is an alternate / derived from / version of another source part, then 

the Trace block is used to associate the subject part to its source part. 
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The list of minor modification done to CPM2 to create CPM2_xKCM is as 

follows. 

 Use of SysML language constructs instead of UML. The use of a SysML block with 

reference properties to represent relationships between concepts instead of a UML 

association class resulted in minor modifications to name and cardinality of reference 

properties. For example, CommonCoreRelationship block has reference properties 

relatingCCO and relatedCCOs instead of associatedCCO and ccRelationship attributes in 

the UML association class. The cardinality change reflects that a relationship instance 

must have the relating and related properties populated, i.e. an instance of a 

relationship is not valid unless it is associated with object instances that are being 

related. 

 Use of SysML Composition Relationship between two blocks—denoted by a line 

connecting the blocks with a filled black diamond on the end of the composed block—

to represent that the composed block has a part property of type of the composing 

block. When the composed block instance is deleted, the composing block instances 

shall also be deleted. This is used to represent the composition relationships between 

blocks representing the following pairs of concepts: Artifact-Artifact, Feature-Feature, 

Form-Form, Function-Function, Shape-Shape, Material-Material, Artifact-Feature, and 

Specification-Requirement. 

 Use of SysML Association Relationship between two blocks—denoted by a line 

connecting the blocks—to represent that each block has a reference property of type of 

the referenced block. This implies that when an instance of one of the blocks is 

deleted, the reference relationship will be deleted but the referring block instance will 

not be deleted. This is used to represent the association relationships between blocks 

representing the following pairs of concepts: Artifact-Form, Feature-Form, Artifact-

Function, Feature-Function, Form-Material, and Form-Shape. 

 When a composition or an association relationship has roles with cardinality 0 or more 

(0..*), the name of the roles is pluralized. For example, featureHasFunction is changed 

to featureHasFunctions. Similar changes were done for the association relationships 

between blocks representing the following pairs of concepts: Artifact-Form, Feature-

Form, Artifact-Form, and Artifact-Function. 
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 Changed the name of class (block) Geometry to Shape to better align with the term 

“shape” as used in STEP-based product models to represent both geometry and 

topology of products. Changes were made to all relationship and role names that used 

the term Geometry.  

 Changed the cardinality of association relationship Form–Shape. An instance of a 

Form may exist without an instance of a Shape. This represents the use case during 

conceptual design or work-in-progress designs when a shape has not been defined for a 

form. Also, a shape may be used in multiple forms. 

 Changed the cardinality of association relationship Form–Material with the same 

rationale as above. 

 Changed the cardinality of some association relationships to allow for reuse of 

instances. For example, the cardinality of reference property Form.formOfArtifacts 

changed from 0 or 1 (0..1) to 0 or more (0..*) to allow reusing the same instance of a 

form for multiple instances of an artifact. Similar changes were done for the following 

association relationships: 

o Function.functionOfArtifacts 

o Function.functionOfFeatures 

o Form.formOfFeatures 

o Flow.isSourceOf 

o Flow.isDestinationOf 

o Shape.shapeOfForms 

o Material.materialOfForms 

 Changed the name of the root object to CoreProductModelObject instead of 

CoreProductModel. The package containing the entities and relationships is named as 

CPM2_xKCM. 

In this dissertation only those aspects of the Core Product Model are described 

that are relevant to the technical contributions of this research. It is suggested that readers 

refer to (Fenves 2004) for a more complete description. 

6.1.2 CPM2_xKCM View 2: New concepts added to CPM2 for the 
Knowledge Composition Methodology 
In this section, the new concepts—entities and relationships—that are added to 

CPM2 to create CPM2_xKCM are described. The new entities are formalized as blocks 
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in the SysML-based representation of CPM2_xKCM, and highlighted in blue color in 

Figure 6.4. The figure is a SysML Block Definition Diagram (BDD) of CPM2_xKCM 

and only shows concepts that are added with respect to CPM2. These new concepts are 

described a below. 

The Artifact block is specialized into Designed_Artifact, Manufactured_Artifact, 

and Analyzable_Artifact blocks that are described below. 

 The block Designed_Artifact represents a designed artifact—the definition of an 

artifact in the design process. It is the central entity used for representing design-

oriented information of an artifact. The design-oriented information of an artifact 

includes the designed artifact and sub-artifacts, designed features and sub-features. 

 The block Manufacturable_Artifact represents a manufacturable artifact—the definition 

of an artifact for the purposes of manufacturing. It is the central entity used for 

representing manufacturing-oriented information of an artifact. This includes a 

manufacturable artifact and sub-artifacts, manufacturable features and sub-features. 

The manufacturing-oriented definition of an artifact is typically derived from the 

design-oriented definition for a particular manufacturing technology. 

 The block Analyzable_Artifact is used for representing an analyzable artifact—the 

definition of an artifact for analyses purposes. It is the central entity used in 

representing analysis-oriented information of an artifact. This typically includes an 

analyzable artifact and sub-artifacts, analyzable features and sub-features. The 

analysis-oriented information of an artifact is derived from its design-, or 

manufacturing-, or existing analysis-oriented information of the artifact for a family of 

analyses.  
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 The Artifact_Artifact_Relationship (AAR) block is a specialization of the Trace 

block and represents relationships between two artifacts (or their specializations), such as 

those between two designed artifacts, or a designed artifact and a manufacturable (or 

analyzable) artifact, or between two analyzable artifacts. A designed artifact may be 

derived from another designed artifact. This relationship is useful for relating these 

abstractions of an artifact when one is derived from others in a particular context. A 

manufacturable artifact may be derived from another manufacturable artifact or a 

Figure 6.4: CPM2_xKCM View 2 – shows addition of new concepts to CPM2 for KCM 
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designed artifact, and an analyzable artifact may be derived from a designed artifact, or a 

manufacturable artifact, or another analyzable artifact. The AAR block has two reference 

properties relatingArtifact and relatedArtifacts that refer to the subject artifact (or its 

specialization) and all other related artifacts respectively.  For example, if an analyzable 

artifact instance is derived from a designed artifact instance, then the analyzable artifact 

instance will be referred as the relatingArtifact and the designed artifact instances will be 

referred as the relatedArtifact in the Artifact_Artifact_Relationship instance. The AAR 

block also has a recursive composition relationship with roles subAARs and ofAAR. When 

two artifact assemblies are related using an AAR block instance, then their parts also 

related using AAR block instances. The composition relationship is used to contain all 

part AAR instances in the assembly AAR instance.  

  The Form_Form_Relationship (FFR) block is a specialization of the Trace block 

and represents relationships between two forms (or their specializations). The intent of 

the FFR block is similar to the Artifact_Artifact_Relationship block. It may be used for 

example to relate forms of two designed artifacts, or a form of a designed artifact and a 

form of an analyzable artifact. An Artifact_Artifact_Relationship block instance may be 

associated with zero or more (0..*) FFR block instances, and a FFR block instance may 

be associated with zero or more (0..*) Artifact_Artifact_Relationship block instances as 

represented by the association end roles associatedFFRs and ofAARs respectively. The 

cardinality of these roles is derived from the cardinality of the associated between the 

Artifact and Form blocks. The FFR block also has a recursive composition relationship 

with roles subFFRs and ofFFR. This is similar in intent to the recursive composition 

relationship of the AAR block. The FFR composition relationship is used for collecting 

FFR block instances relating child forms into a FFR block instance that relates the parent 

forms. 

  The form of an artifact refers to definitions of the constituent material and shape 

of that artifact. Hence, the relationship between two forms will also results in a 

relationship between the referred shapes, and a relationship between the referred 

materials. Instead of relating two materials, a relationship between two forms relates two 

material behaviors that characterize these materials. The FFR block has two reference 

properties associatedSSRs and associatedMBMBRs of type Shape_Shape_Relationship and 



 

 105

Material_Behavior_Material_Behavior_Relationship respectively. The block 

Shape_Shape_Relationship (SSR) is used to describe relationships between two or more 

shapes. For example, an instance of SSR block may be used to relate two shapes such that 

one is the result of an affine transformation on the other. A relationship between a master 

relating shape and set of related shapes is described using mathematical relations, and is 

represented by the property shape_shape_relations of type Mathematical_Relation 

(defined using SysML Constraint Block and explained in Chapter 7). The block 

Material_Behavior_Material_Behavior_Relationship (MBMBR) is used to describe 

relationships between two or material behaviors. For example, an instance of MBMBR 

may be used to relate source materials behaviors and a target material behavior such that 

the target is the effective material behavior computed from the source material behaviors 

(say by Rule of Mixtures). A relationship between source and target material behaviors is 

described using mathematical relations, and is represented by the property 

mb_mb_relations of type Mathematical_Relation (defined using SysML Constraint Block 

and explained in Chapter 7). MBMBR relates two or more material behaviors, each 

represented by the block Material_Behavior_Property. The block Material (originally in 

CPM2) has a reference property hasBehavior of type Material_Behavior_Property in 

CPM2_xKCM. This represents the relationship between the definition of a material and 

the definition of its behaviors.  

Note that in some cases, material behavior idealization relationships are also 

dependent on the shape idealization relationship, such as when relating a homogenous 

material distribution to a heterogeneous material distribution. In such case, a new block 

shape_and_material_behavior_relationship may be defined as a specialization of 

MBMBR and SSR blocks. 

The block Analyzable_Feature represents an analyzable feature. An analyzable 

feature is a feature defined for the purposes of analyses. Analyzable features are typically 

defined to specify (a) geometric features where behavior parameters are to be computed, 

and (b) geometric features that participate in component interactions in an analyzable 

artifact assembly. An analyzable feature could be same as (or derived from) a design 

feature or defined new for specifying analysis conditions. For the purposes of analyses, 

some design features may be neglected. For example, if an analyst wants to compute the 
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shear stress at the interface between two components of an assembly, then the interface 

will be defined as an analyzable feature. The block Analyzable_Feature is a specialization 

of the block Feature. An analyzable artifact may have multiple analyzable features, and 

analyzable feature must be owned by an analyzable artifact. These relationships are 

represented by Analyzable_Artifact.hasAFs and Analyzable_Feature.afOfAA properties. 

 The block Artifact_Artifact_Interaction (AAI) was added to CPM2_xKCM to 

represent interactions between components and the features participating in these 

interactions when defining an assembly. The composition relationship 

Artifact.subArtifacts represents the component artifacts in an assembly artifact, and the 

composition relationship Artifact.hasFeatures represents the features of an artifact. The 

composition relationship Artifact.subArtifactInteractions was added in CPM2_xKCM to 

more explicitly represent the interactions between components in the context of defining 

an assembly of these components. An interaction must be defined in the context of an 

artifact and cannot exist on its own. This is realized by the cardinality (1) of the property 

Artifact_Artifact_Interaction.parentArtifact. An interaction between any two components 

of an assembly is realized by the features of the components participating in the 

interaction. An interaction is realized between a relating feature and one or more related 

features. The relating and related features are represented by the reference properties 

relatingFeature and relatedFeatures of the block Artifact_Artifact_Interaction. The block 

AA_AA_Interaction is a specialization of Artifact_Artifact_Interaction and is used to 

represent interactions between components of an analyzable artifact assembly. An 

interaction between two components represented by the Analyzable_Artifact block is 

realized by analyzable features of these two components. An interaction between any two 

analyzable artifacts must exist in the context of their analyzable artifact assembly. This is 

realized by the cardinality of the property AA_AA_Interaction.parentArtifact.  
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6.2 VTMB Artifact Design Models – Abstractions and Examples 
In this section, the different abstractions of artifact models in the Knowledge 

Composition Methodology are presented. Examples of each abstraction are also 

presented. Figure 6.5 is a SysML block definition diagram that conceptually illustrates 

these five levels of abstractions (Levels 1-5, a.k.a D1-D5) of artifact models.  

Figure 6.5: Abstractions of artifact design models in KCM – Design Model Stack 

The rationale for developing these abstractions of artifact models are: (a) defining design 

meta-models that represent variable topology design alternatives of a particular product, 

and (b) identifying desing models that are associated with behavior models in simulation 

templates. For efficient formulation of analysis problems (and hence behavior models), it 

is necessary that behavior model formulation methods be applied to artifact models that 

represent a set of artifacts and not necessarily a specific artifact. In this manner, the 
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resulting behavior models can be used to compute the behavior parameters for a set of 

artifacts. The five levels of abstractions of artifact models in KCM are described below.  

 

 Level 1 (D1): Artifact Meta-Model - An Artifact Meta-Model is a meta-model that 

defines constructs and relationships to represent artifacts in all application areas, such as 

Automotive, Electronics, and Aerospace. The Core Product Model extended by the 

Knowledge Composition Methodology (CPM2_xKCM) is an example of such a meta- 

model.   

 

 Level 2 (D2): Application-specific Artifact Meta-Model - An Application-specific 

Artifact Meta-Model defines the constructs and relationships for representing artifact in a 

specific application area, such as electronics or automotive. An Application-specific 

Artifact Meta-Model specializes an Artifact Meta-Model to represent application area-

specific concepts. STEP AP210 is an example of an Application-specific Artifact Meta-

Model for electromechanical artifacts, such as printed circuit boards, assemblies, and chip 

packages. Similarly, STEP AP214 is an example of an application-specific artifact meta-

model for representing automotive artifacts. 

 

 Level 3 (D3): VTMB Artifact-specific Meta-Model – A VTMB Artifact-specific 

Meta-Model defines the constructs and relationships for representing a specific family of 

artifacts, such as printed circuit boards. A VTMB Artifact-specific Meta-Model is created 

as a specialization of or abstracted from an Application-specific Artifact Meta-Model. In 

the context of KCM, a VTMB Artifact-specific Meta-Model is used for representing 

design and analyzable design-related information for multi-body artifacts with different 

assembly system topologies. Typically, D3 models are represented by artifact design 

templates created and maintained by designers, using system design tools such as CAD 

tools. 

 

 Level 4 (D4): FTMB Artifact Model Structure – A FTMB Artifact Model Structure 

is an instance of a VTMB Artifact-specific Meta-Model, and it represents a family of 

multi-body artifacts with equivalent assembly system topologies, such as family of 5-
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layered printed circuit boards. Here, FTMB stands for Fixed Topology Multi-Body. 

Typically, D4 models are represented as design models—conforming to a specific design 

template—where topology-specific decisions have been taken.  

 

 Level 5 (D5):  FTMB Artifact Model Instance – A FTMB Artifact Model Instance is 

an instance of an FTMB Artifact Model Structure and it represents a specific artifact in 

the family of FTMB artifacts, such a specific 5-layer printed circuit board. Typically, D5 

models are represented in system design tools as a specific instance of a D4 model. 

 Note that the design model stack shown in Figure 6.5 is a conceptual model 

shown in SysML. In implementation, SysML does not allow instantiation of instance 

models—D5 is an instance of D4, and D4 is an instance of D3. In implementation, D4 is 

modeled as a partially-specified instance of D3, and D5 is modeled as a fully-specified 

instance of D3. Multiple levels of meta-modeling (not supported by UML and SysML) is 

a much desired feature of modeling languages (Atkinson and Kuhne 2001), especially 

when model transformations may be applied at different levels of model abstractions, and 

models at a given abstraction may serve as meta-models for transformations of models at 

lower (instance) levels of abstraction. 

An FTMB Artifact Model Structure can be viewed as partially-specified instance 

of a VTMB Artifact Meta-Model where only topology-specific decisions have been 

taken. In contrast, a FTMB Artifact Model Instance can be viewed as a fully-specified 

instance of a VTMB Artifact Meta-Model.  

Having defined the five different levels of abstractions of artifact models in KCM, 

specific examples of these abstractions are now presented. CPM2_xKCM as described in 

the previous section is an example of Level 1 abstraction—an Artifact Meta-Model for 

representing artifacts in all application domains. In this section, a Printed Circuit Board 

(PCB) artifact is used for illustrating the other four abstractions of artifact models. Figure 

6.6 illustrates the 2D layout and through-thickness stackup of a typical PCB. A PCB 

consists of a stackup of materials as shown in the through-thickness view. Each layer of 

material is known as a stratum. A stackup is made of alternatively electrically conductive 

and non-conductive stratums. Conductive stratums have conductive features such as 

lands and traces as shown in the planar layout view. Vias and through-holes are openings 
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in the stackup from one conductive layer to another—primarily meant to provide 

electrical connections across stratums. 

Figure 6.6: A typical Printed Circuit Board design (shown here with 5 stratums) 

STEP AP210 is an example of a Level 2 abstraction for electromechanical 

products. Figure 6.7 and Figure 6.8 together illustrate a VTMB Artifact-specific Meta-

Model for representing design and analyzable design aspects of multi-stratum printed 

circuit boards. Figure 6.7 illustrates PDMM—a meta-model for representing mechanical 

design aspects of printed circuit boards, and Figure 6.8 illustrates PAMM—a meta-model 

for representing analyzable design aspects of printed circuit boards (for thermo-

mechanical analyses in particular). Together PDMM and PAMM constitute a Level 3 

artifact model for representing printed circuit boards with different assembly system 

topologies. PDMM and PAMM are represented as specializations of CPM2_xKCM and 

contain PCB product concepts abstracted from the STEP AP210 meta-model.  

Figure 6.7 illustrates the PDMM. The blocks highlighted in yellow and blue 

belong to CPM2_xKCM meta-model and the blocks highlighted in pink belong to 

PDMM.  The entities and relationships represented in the PDMM are abstracted from 

STEP AP210. The block Electronics_Designed_Artifact is the central entity for 

representing design-oriented information of an artifact in the electronics domain, and is a 

specialization of the block Designed_Artifact. Similarly, the block 

Electronics_Design_Feature is the central entity used for representing design-oriented 

information of a feature (of an artifact) in the electronics domain, and is a specialization 

of the block Feature. The block PCB represents design-oriented information for printed 

circuit boards, and the block Stratum is used to represent design-oriented information for 

stratums that are stacked together to define a PCB. A PCB is composed of multiple 

stratums. Each stratum has a form (represented by the block Stratum_Form) that refers to 
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the shape and material of a stratum (represented by blocks Stratum_Shape and Material). 

The block Adjacent_Stratum_Surface_Interaction is a specialization of 

Artifact_Artifact_Interaction and is used for representing the interactions between any two 

adjacent stratums in a stackup. Each interaction is realized by the mating of the secondary 

surface of the preceding stratum and the primary surface of the succeeding stratum. 

This is represented by the two reference properties precedingStratumSurface and 

succeedingStratumSurface of the block Adjacent_Stratum_Surface_Interaction. Each 

stratum also has design-oriented features (represented by the block Stratum_Feature). A 

stratum feature may lie within a stratum (intra-stratum feature) such as in the case of 

lands and traces, or extend across stratums (inter-stratum feature) such as in the case of 

vias and plated through holes. A plated through hole is a stratum feature that extends 

across the entire depth of the stackup of a PCB. Intra-stratum features are represented by 

the block Intra_Stratum_Feature, and inter-stratum features are represented by the block 

Inter_Stratum_Feature. A PCB is composed of stratums, their interactions, and inter-

stratum features. A stratum is composed of intra-stratum features. The PDMM can be 

used to represent 2-, 3-, or n-stratum PCBs and hence is a VTMB meta-model. 
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Figure 6.7: PDMM (D3) for representing mechanical design aspects of (VTMB) multi-stratum PCBs  

Figure 6.8 illustrates PAMM—a meta-model for representing analyzable design 

aspects of printed circuit boards (for thermo-mechanical analyses in particular). This 

meta-model represents a specific idealization of the multi-stratum PCB designed artifact 

meta-model (PDMM). In this idealization—as illustrated by Figure 6.9 for a 5-stratum 

PCB—the intra- and inter-stratum features have been ignored for analyses purposes. Each 

stratum is idealized as a homogenous layer of material. In the PAMM shown in Figure 

6.8, the blocks highlighted in yellow and blue belong to CPM2_xKCM meta-model and 

the blocks highlighted in pink belong to PAMM.   
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Figure 6.8: PAMM (D3): An analyzable artifact meta-model for (VTMB) multi-stratum PCBs  

The blocks Analyzable_Electronics_Artifact and Analyzable_Electronics_Feature 

are used for representing artifacts and their features for analyses purposes. These blocks 

are specializations of Analyzable_Artifact and Analyzable_Feature blocks respectively. 

The block Analyzable_PCB and AStratum are used to represent analyzable PCBs and 

analyzable stratums respectively. An analyzable PCB is composed of analyzable stratums 

and the interactions between them (represented by the block 

Adjacent_AStratum_Surface_Interaction). 

In the idealization represented by the PAMM here, an analyzable stratum is a 

homogenous layer of material and hence does not contain inter-stratum features. 

Similarly, an analyzable PCB does not contain intra-stratum features. The PAMM can be 

used to represent 2-, 3-, or n-stratum analyzable PCBs and hence is a VTMB meta-model. 

In a similar manner, other PAMMs can be idealized for the PDMM shown in Figure 6.7. 

For example, one may define an analyzable PCB that contains all the intra- and inter-
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stratum features (or only specific types of features)—as in the designed PCB—if such 

details are relevant for the specific types of analyses. 

 Figure 6.10 illustrates PDM_5Sx—a FTMB artifact model structure for 

representing mechanical design-related information for 5-stratum PCBs. This model 

structure is at Level 4 abstraction, and is an instance of PDMM (Level 3 abstraction). 

PDM_5Sx represents design-oriented information for a family of PCBs with 5 stratums. 

The number of stratums, interactions, and their types are fixed. Hence, the members of 

the family of 5-stratum PCBs have equivalent assembly system topologies.  

PAM_5Sx

PDM_5Sx

 
Figure 6.9: Pictoral view of PDM_5Sx and PAM_5Sx (D4 models) 

The instance block PCB_5Sx represents a family of 5-stratum PCBs, and is an instance of 

the block PCB. PCB_5Sx has 5 stratums as represented by instances (Stratum_1 to 

Stratum_5) of the Stratum block, and also consists of 4 stratum interactions instances 

(stratum_12_interaction and so on) of the Adjacent_Stratum_Surface_Interaction block.  

 The preceding and the succeeding stratum surfaces in each interaction are also 

instantiated. The stratum interaction instances for other stratums are not shown in the 

figure. In the figure, not all instance information is show for each stratum but the type of 

instance information that exists for stratums is illustrated. For example, inter-stratum 

feature instances are shown only for Stratum_1 instance while the form (shape and 

material) instance is shown only for Stratum_5 instance. Stratum_1, Stratum_3, and 

Stratum_5 are conductive stratums, while Stratum_2 and Stratum_4 are non-conductive 

stratums—represented by the relationship between these stratum instance blocks and 

Conductive and Non-conductive instance blocks (of type Function block). The conductive 
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stratums also have intra-stratum features such as lands and traces. The intra-stratum 

features are shown only for stratum 1. Stratum_1 instance block has 1000 lands—

represented by instances Land_1_1 to Land_1_1000 of the Land block, and 400 traces—

represented by instances Trace_1_1 to Trace_1_400 of the Trace block. Via_13_1 to 

Via_13_40 instance blocks are instances of the Via block and represent vias between 

conductive stratums Stratum_1 and Stratum_3. PTH_15_1 instance block is an instance 

of the Plated_Through_Hole block and represents a plated through hole between stratums 

Stratum_1 to Stratum_5. Vias and plated through-holes are examples of intra-stratum 

features. 
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Figure 6.10: PDM_5Sx (D4):  A designed artifact model structure for (FTMB) 5-Stratum PCBs  

PDM_5Sx (Level 4) is a partially-specified instance of the PDMM (Level 3) because 

although the decisions related to the assembly system topology of the designed artifact 

have been taken, decisions related to specific numeric instance values (such as the exact 

size and shape of the PCB and stratums) have not been taken. Hence, PDM_5Sx 

represents a family of 5-stratum PCBs and not a specific 5-stratum PCB.  
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 Figure 6.11 illustrates PAM_5Sx—an analyzable artifact meta-model structure 

for representing (FTMB) 5-stratum analyzable PCBs. PAM_5Sx is a Level 4 model and 

is an instance of PAMM. The instance block APCB_5Sx represents a family of analyzable 

PCBs with 5-stratums, and is an instance of Analyzable_PCB block. APCB_5Sx has 5 

analyzable stratum instances (AStratum_1 to AStratum_5) of type AStratum block. Each 

analyzable stratum instance is composed of two stratum surfaces (in roles of primary and 

secondary surface). The interactions between adjacent stratums are realized by instances 

of Adjancent_AStratum_Surface_Interaction block. Each analyzable stratum also has a 

function—represented by instance blocks Conductive and Non-Conductive for conductive 

and non-conductive functions respectively.  

PAM_5Sx is an idealized artifact model for the purposes of analyses, and is 

derived from PDM_5Sx. However, these model structures are not stand-alone. They are 

related. The relationships between these model structures represent the idealizations. 

Figure 6.12 illustrates PM_5Sx—an artifact model structure that represents the designed 

and analyzable model structures, and their inter-relationships for 5-stratum PCBs. 

PM_5Sx is at Level 4 abstraction and consists of PDM_5Sx (Level 4), PAM_5Sx (Level 

4), and their inter-relationships. The figure does not illustrate all instances in these model 

structures and their inter-relationships. Only instances relating to designed stratum 

Stratum_5 and corresponding analyzable stratum AStratum_5 are shown. The designed 

and the analyzable artifact instances are related by instances of 

Artifact_Artifact_Relationship (AAR) block, and the designed and analyzable forms are 

related by instances of Form_Form_Relationship (FFR) block.  
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Figure 6.11: PAM_5Sx (D4): An analyzable artifact model structure for (FTMB) 5-Stratum PCBs 
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Figure 6.12: PM_5Sx (D4): An artifact model structure for representing designed and analyzable  

(FTMB) 5-Stratum PCBs  

The AAR instance between the designed and analyzable PCB is composed of the 

AAR instances between the designed stratums and the corresponding analyzable 

stratums. For example, the AAR instance block PCB_APCB_5Sx consists of the AAR 

instance block Stratum_AStratum_5. Each instance of AAR refers to an instance of FFR 

that relates the forms of the artifact instances. For example, Stratum_AStratum_5 

instance block refers to Stratum_AStratum_5_Forms instance block of type FFR. Each 

instance of FFR refers to an instance of the 

Material_Behavior_Material_Behavior_Relationship block (MBMBR) and 

Shape_Shape_Relationship block (SSR) that relates the material behaviors and the shapes 

of the forms being related by the subject FFR instance. For example, 

Stratum_AStratum_5_Forms instance block refers to MBMBR1 and SSR1 instance blocks.   
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 Figure 6.13 illustrates PAMI_5S1—an analyzable artifact model instance that 

represents a specific 5-stratum analyzable PCB. PAMI_5S1 is a fully-specified instance 

of PAMM, and also an instance of PAM_5Sx. It is at Level 5 abstraction. PDMI_5S1 

which is at Level 5 and represents design-related information of a specific PCB is not 

shown here. The specific analyzable PCB represented by PAMI_5S1 model is 

APCB_5S1. Note that PAMI_5S1 is a fully specified instance of PAMM as opposed to 

PAM_5Sx—a partially specified instance of PAMM—because not only is the assembly 

system topology decision has been taken (as in PAM_5Sx) but also specific shapes, sizes, 

and materials of the artifact and features have been decided. For example, analyzable 

stratum 5 (represented by the instance block AStratum_5) has a rectangular outline of 

width 5 inches and length 10 inches, and is 0.1 inches thick. 

 
Figure 6.13: Example D5 model - A analyzable artifact model instance for a 5-stratum analyzable PCB 

The focus of this dissertation is to define transformations for formulating behavior 

model structures from analyzable design model structures (for VTMB problems in 

particular) and to provide a method for executing these transformations. Idealizations 
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used for transforming design models to analyzable design models such as geometry-

specific idealizations (Finn 1993) are well-developed. In particular (Tamburini 1999) 

presents the Analyzable Product Model (APM)  representation—in the context of MRA 

simulation template pattern—for formally representing analyzable design-related 

information. The graph transformation-based approach for formulating behavior models 

for variable topology problems, as presented in this dissertation, also provides a 

fundamental approach for formulating analyzable models from design (or manufacturing 

models). 

6.3 Summary 
In this chapter, CPM2_xKCM has been presented as a meta-model for 

representing design, manufacturing, and analysis-oriented information of artifacts. Five 

different abstractions of artifact models are presented in the context of KCM, and 

illustrated for (VTMB) multi-stratum printed circuit boards. These abstractions of the 

designed and analyzable artifact models are central to the Behavior Model Formulation 

Method in the KCM. For effective formulation of behavior models, it is required that the 

formulation methods may be applied to analyzable artifact models that represent a set of 

analyzable artifacts, and not necessarily represent a single analyzable artifact. As a result 

of this approach, the formulated behavior model structure will represent a family of 

behavior models—one for each member in the family of analyzable artifacts to which the 

formulation methods were applied. Applying the formulation method to design 

alternatives with different assembly system topologies will result in corresponding 

behavior model structures (and simulation templates) for VTMB analysis problems.  
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CChhaapptteerr  77  ::  CCOORREE  BBEEHHAAVVIIOORR  MMOODDEELL  ((CCBBMM))  ––    

AANN  AARRTTIIFFAACCTT  BBEEHHAAVVIIOORR  MMEETTAA--MMOODDEELL  

The focus of this chapter is to present the different abstractions of behavior 

models of variable topology multi-body design alternatives. All abstractions of behavior 

models are founded on the Core Behavior Model (CBM)—a meta-model that defines the 

constructs and relationships for representing behavior models. In this chapter, the CBM is 

presented first. This is followed by a presentation of Analysis Building Block (ABB) 

meta-models and ABB models in sections 7.2 and 7.3 respectively. ABBs define the units 

of knowledge that are composed for creating behavior models; and the ABB Meta-Model 

defines the constructs and relationships for representing different types of ABBs. In 

section 7.4, different abstractions of behavior models based on the CBM are presented. 

The analysis knowledge embodied in ABBs, and the structure of the Core Behavior 

Model is founded on the Analysis Knowledge Dimensions presented in section 7.5. The 

analysis knowledge dimensions define the types of decisions taken by analysts in 

formulating behavior models (and hence simulation templates) and the choices available 

for each type of decision. In the KCM, behavior models also include relationships to 

VTMB design models. Hence, the formulation of behavior models implies the 

formulation of simulation templates. 

 
Figure 7.1: Behavior Model Abstractions based on Core Behavior Model (CBM) 
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7.1 Core Behavior Model 
The Core Behavior Model (CBM) is a behavior meta-model. It defines the 

constructs and relationships for representing behavior models of artifacts. A behavior 

model represents a set of idealized behaviors of an artifact in a behavior environment. 

The behavior environment is the set of external conditions under which the behavior is 

being computed. For example, a linear deformation model of a mechanical spring is a 

behavior model of the mechanical spring that can be used to compute the axial 

deformation behavior of a spring when axial forces are applied to the ends of the spring. 

The linear deformation model idealizes the behavior of the spring to be linear—

deformation is directly proportional to the end forces.  

7.1.1 Overview 
In the KCM, an artifact behavior model is represented as an instance of the Core 

Behavior Model. The Core Behavior Model embodies the concept of context-based 

analysis models defined in the MRA simulation template pattern. In this pattern, a 

context-based analysis model consists of (a) an ABB system model, and (b) behavior 

idealization relationships (APMΦABB) between an analyzable artifact (product) model 

and the ABB system model. An analyzable artifact model represents an idealized artifact 

for a class of behavior analyses (Chapter 6). An ABB system model is a system of 

analysis building block models (ABB models) such as those representing analysis bodies, 

loads, and boundary conditions, and it represents the behavior of a system of analysis 

bodies. The behavior idealization relationships between an analyzable artifact and an 

ABB system model idealize the analyzable artifact as a system of analysis bodies. Hence, 

a set of behaviors of the idealized artifact are approximated as behaviors of the system of 

analysis bodies. For example, the deformation of a printed circuit board during the 

manufacturing process can be idealized as the deformation of a laminated shell subjected 

to thermal loading during the manufacturing process. Here, the printed circuit board is the 

artifact whose behavior is to be computed. The laminated shell, the thermal loading and 

the boundary conditions are defined in an ABB system model. Thus, an artifact behavior 

model that is represented as an instance of the Core Behavior Model is composed of (a) 

an ABB system model, and (b) idealization relationships that approximate the idealized 

artifact as a system of analysis bodies represented by the ABB system model. In addition, 
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the ABB system model also represents the behavior environment in which the behaviors 

are computed.  

The central idea in KCM—and the MRA pattern that it embodies—is that an 

ABB system model is the core ingredient of an artifact behavior model, and an ABB 

system model can be composed from reusable ABB models. Thus, the efficiency of 

formulating behavior models can be significantly improved if there were methods to 

automatically compose a behavior model from reusable ABB models. The behavior 

model formulate methods in KCM address this need, and are described in Chapter 8. 

Another meta-model presented in this chapter and closely related to the Core 

Behavior Model is the ABB Meta-Model. The ABB Meta-Model is a meta-model for 

representing ABB models and ABB system models. Figure 7.2 illustrates the scope of the 

Core Behavior Model and the ABB Meta-Model in the context of the MRA simulation 

template pattern. While the Core Behavior Model is used to represent artifact behavior 

models, the ABB Meta-Model is used for representing ABB models and ABB system 

models. The ABB Meta-Model is defined separately from the Core Behavior Model since 

ABB models may exist in a library of ABBs independent of their usage in an ABB 

system model. Additionally, an ABB system model may exist independently of its usage 

in an artifact behavior model. 

Scope of 
KCM_Meta-Model Scope of CBM

Scope of 
ABB Meta-Model

 
Figure 7.2: Scope of CBM and ABB Meta-Model in MRA simulate template pattern 
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The constructs and relationships in both the meta-models—Core Behavior Model 

and ABB Meta-Model—are founded on analysis knowledge dimensions described in 

section 7.5. Analysis knowledge dimensions represent the types of decisions taken by 

analysts when creating a behavior model, and provide the rationale for defining ABB 

models. Each ABB model is a choice for specific type(s) of decision(s) taken by analysts. 

In this chapter, the Core Behavior Model is described in section 7.1. The ABB 

Meta-Model is described in section 7.2. An initial library of ABB models (each 

represented as an instance of the ABB Meta-Model) is presented in section 7.3, and in 

section 7.4 different abstractions of a behavior model relevant in the context of Variable 

Topology Multi-Body problems are presented. The analysis knowledge dimensions are 

described in section 7.5. Note that in this chapter, the CBM and ABB Meta-Model are 

described using examples. The transformations that compose ABB models to create a 

behavior model are presented as part of the behavior model formulation methods in 

Chapter 8.  

7.1.2 Description 
The Core Behavior Model is presented in this section. Figure 7.3 illustrates a 

SysML block definition diagram of the Core Behavior Model.  

The Behavior_Model block is main construct for representing artifact behavior 

models. The Behavior block (section 6.1.1) is used for representing behaviors of an 

artifact. A given behavior of an artifact may be computed using several behavior 

models—each of a different fidelity. For example, the planar deformation of a printed 

circuit board is a specific behavior that may be computed using any of the following 

behavior models that idealize the printed circuit board as a: (a) homogenous solid, (b) 

homogenous shell, (c) laminated solid, or (d) laminated shell. The reference property 

Behavior.behaviorModels is used for representing this use case. The lower bound on 

cardinality of this property (0..*) represents the use case that a behavior may be 

instantiated without a behavior model to compute it. A given behavior model must be 

associated with atleast one behavior. A behavior may be used as the computation model 

for several behaviors. For example, a behavior model in which a printed circuit board is 

idealized as a laminated shell can be used for computing planar deformation behavior 
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and out-of-plane deformation behavior. The reference property 

Behavior_Model.ofBehavior is used for representing this use case.  

Per the MRA simulation template pattern illustrated in Figure 7.2, a behavior 

model is composed of (a) an ABB system model, and (b) behavior idealization 

relationships (APMΦABB) between ABB system model and an analyzable artifact 

model. The blocks Behavior_Model_ABBSys and Behavior_Model_XContext are used for 

representing ABB system model and behavior idealization relationships that constitute 

the behavior model. The part properties Behavior_Model.context and 

Behavior_Model.associated_bm_abbsys realize the composition relationships. The 

cardinality of these part properties indicate that a behavior model instance may exist 

without an instance of an ABB system or an instance of Behavior_Model_XContext block 

that encapsulates the behavior idealization relationships, such as during the behavior 

model development process.  

For brevity, an ABB system used in a behavior model is referred as a behavior 

model ABB system and it is represented by the Behavior_Model_ABBSys block. A 

behavior model ABB system in itself is the behavior model of a system of analysis bodies. 

Behavior_Model_ABBSys block is a specialization of the ABBSys block and has the 

Figure 7.3: SysML block definition diagram of the Core Behavior Model (CBM) 
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following part properties that represent the types of ABB models that are composed to 

define an ABB system model: 

 abs_sys part property is used for composing an analysis body assembly in an ABB 

system model. An analysis body represents the physical continuum whose behavior is 

to be computed. Note that the behavior of an analysis body assembly is an 

idealization of the behavior of the analyzable artifact assembly. The property type 

ABS_ABB is a generalization of blocks representing an analysis body or an analysis 

body assembly, and is described in section 7.2. Analysis body and analysis body 

assembly are special types of ABBs. 

 load_applications part property is used for composing loads—applied to the analysis 

body assembly—in an ABB system model. A load is an external stimulus to which 

the behavior of an analysis body assembly is to be computed. The property type 

Load_ABB represents loads (a special type of ABB) and is described in section 7.2.  

 behavior_condition_applications part property is used for composing behavior 

conditions—applied to an analysis body assembly—in an ABB system model. A 

behavior condition represents a constraint imposed on the analysis body assembly. 

The property type Behavior_Condition_ABB represents behavior conditions (a special 

type of ABB) and is described in section 7.2. 

 behaviors reference property is used for representing the set of behavior parameters 

that may be computed for the subject ABB system model. The property type 

Behavior_ABB represents behaviors (characterized by behavior parameters) and is a 

special type of ABB described in section 7.2. 

The lower bound on the cardinality of these part properties denote that during model 

development, an ABB system model instance may exist without the ABB model 

instances that compose it. The upper bound on the cardinality indicates the maximum 

number of ABB instances of each type that may compose an ABB system model. Note 

that the ABB system—as defined here—is targeted specially towards physics-based 

behavior models. However, specializations of the ABB system can be defined for 

representing different types of behaviors, such as physics-based behaviors (as in this 

case) and state-based behaviors. 
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The Behavior_Model_ABBSys block is a specialization of the ABBSys block to 

distinguish an ABB system model used in a behavior model from any other ABB system 

model. An ABB system model may be composed of two or more ABBs and may not 

necessarily represent the behavior of a physical continuum (analysis body system). In 

contrast, a Behavior_Model_ABBSys is designed to represent an ABB system model that 

may be solved using a solution method to compute behavior parameters of a physical 

continuum. Hence, a Behavior_Model_ABBSys instance must be composed of: (a) one 

instance of ABS_ABB that represents a physical continuum, (b) atleast one instance of 

Load_ABB that represents the external stimulus under which the behavior is to be 

computed, (c) atleast one instance of Behavior_Condition_ABB that represents the 

conditions under which the behavior is being computed, and (d) atleast one instance of 

Behavior_ABB that represents the behavior parameters that may be computed for the 

subject analysis body system. The first two requirements are necessary for computing 

behavior parameters in a solver. In addition, the third requirement may be necessary for 

certain class of problems. The fourth requirement is necessary a more complete definition 

of the model. Note that the cardinality of the part properties may have been constrained to 

represent these requirements but they are relaxed to represent in-development 

Behavior_Model_ABBSys instances.  

Behavior_Model_XContext block represents the context of the behavior model—

the specific analyzable artifact model whose behavior shall be computed using the 

behavior model. It is the main construct for representing behavior idealization 

relationships between an analyzable artifact model and an ABB system model. These 

idealization relationships associate an analyzable artifact assembly to an analysis body 

assembly. Specifically, idealization relationships between the following pairs of entities 

realize this association: (a) between components of analyzable artifact assembly and 

components of analysis body assembly, (b) between analyzable features and analysis 

features, and (c) between interactions among analyzable artifact components and 

interactions among analysis body components. Analyzable features are features defined 

in an analyzable artifact assembly (section 6.1.2) while analysis features are features 

defined in an analysis body assembly. Like an analysis body, analysis feature is a special 

type of ABB and described in section 7.2. The three types of idealization relationships 



 

 129

above are represented by Analyzable_Artifact_ABS_Relationship, 

Analyzable_Feature_Analysis_Feature_Relationship, and 

Analyzable_Feature_Analysis_Feature_Interface_Relationship blocks respectively. The 

part property aa_abs_rel is of type Analyzable_Artifact_ABS_Relationship and is used for 

composing the behavior idealization relationship between the analyzable artifact 

assembly and analysis body assembly in the behavior model. The cardinality of the part 

property indicates that a Behavior_Model_XContext instance may exist independent of the 

idealization relationship but the reverse is not permitted. An idealization relationship 

must always be defined in the context of a behavior model. 

Analyzable_Artifact_ABS_Relationship block is used for representing behavior 

idealization relationships between an analyzable artifact assembly and an analysis body 

assembly. In essence, these relationships idealize the behavior of an analyzable artifact 

assembly as the behavior of an analysis body assembly continuum. The 

Analyzable_Artifact_ABS_Relationship block has following four reference properties: 

 associated_aa reference property is used for referring to the analyzable artifact 

assembly that is participating in the idealization relationship 

 associated_abs reference property is used for referring to the analysis body (or 

analysis body assembly) participating in the idealization relationship 

 shape_idealization reference property is used for representing the relationship 

between the geometric shapes of the analyzable artifact assembly and analysis body 

(or analysis body assembly). 

 material_behavior_idealization is used for representing the relationship between 

material behaviors of the analyzable artifact assembly and analysis body (or analysis 

body assembly). 

The Analyzable_Artifact_ABS_Relationship block has the following three part properties in 

addition to the reference properties above: 

 constituent_aa_abs_rels part property is a recursive relationship used for composing 

idealization relationships between analyzable artifact and analysis body sub-

assemblies (children) in the idealization relationship between parent assemblies. 
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 af_anf_rels part property is of type 

Analyzable_Feature_Analysis_Feature_Relationship block which is used for 

representing relationships between analyzable features and analysis features.  

  af_anf_interface_rels part property is of type 

Analyzable_Feature_Analysis_Feature_Relationship which is used for representing 

relationships between component interfaces in the analyzable artifact assembly and 

component interfaces in the analysis body assembly. Specifically, it maps component 

interfaces in the analyzable artifact assembly to analysis body interfaces and 

behaviors in an analysis body assembly. 

Table 7.1: Guidelines for modeling idealization relationships between  

analyzable artifacts and analysis bodies 

Idealization case Modeled as 

Single analyzable artifact 

corresponds to a single analysis 

body  

 One AA_ABS_Rel instance that relates the 

analyzable artifact to the analysis body 

Single analyzable artifact  

decomposed to create an analysis 

body assembly 

 One AA_ABS_Rel instance that relates the 

analyzable artifact to the analysis body assembly; 

the instance is composed of multiple AA_ABS_Rel 

instances of the following type. 

 For each analysis body, an AA_ABS_Rel instance 

that relates the analyzable artifact to the analysis 

body. 

Assembly of analyzable artifacts 

composed (or lumped) to create a 

single analysis body 

 One AA_ABS_Rel instance that relates the 

analyzable artifact assembly to the analysis body; 

this instance is composed of multiple AA_ABS_Rel 

instances of the following type. 

 For each analyzable artifact, an AA_ABS_Rel 

instance that relates each analyzable artifact to the 

analysis body. 

Combination of decomposition 

and composition  

 Combination of above 
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Table 7.1 above shows guidelines to model different idealization cases using 

Analyzable_Artifact_ABS_Relationship (AA_ABS_Rel) block instances. 

Analyzable_Feature_Analysis_Feature_Relationship block is used for representing 

idealization relationships between analyzable features and analysis features. Analyzable 

features are geometric features of an analyzable artifact assembly that are defined for 

analysis purposes (section 6.1.2). Analysis features are geometric features of an analysis 

body assembly that are also defined for analysis purposes. They are a special type of 

ABB and are described in section 7.2.  

The Analyzable_Feature_Analysis_Feature_Relationship block has the following 

reference properties: 

 associated_af is used for referring to the analyzable feature participating in the 

idealization relationship 

 associated_anf is used for referring to the analysis feature participating in the 

idealization relationship 

 shape_idealization is used for representing the geometric relationship between the 

analyzable feature and the analysis feature.  

Table 7.2 below shows guidelines to model different idealization cases using 

Analyzable_Feature_Analysis_Feature_Relationship (AF_ANF_Rel) block instances. 

Table 7.2: Guidelines for modeling idealization relationships between  

analyzable features and analysis features 

Idealization case Modeled as 

Single analyzable feature 

corresponds to a single analysis 

feature 

 One AF_ANF_Rel instances relates the analyzable 

feature to the analysis feature 

Single analyzable feature is 

decomposed to create several 

analysis features 

 For each analysis feature, an AF_ANF_Rel 

instance that relates the analyzable features to the 

analysis feature 

 One may also create an AF_ANF_Rel instance that 

relates the analyzable feature to the parent 

analysis feature—composed of the individual 

analysis features. 
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Several analyzable features 

composed (or lumped) to create a 

single analysis feature 

 For each analyzable feature, an AF_ANF_Rel 

instance that relates the analyzable feature to the 

analysis features. 

 One may also create an AF_ANF_Rel instance that 

relates the analysis feature to the parent 

analyzable feature—composed of the individual 

analyzable features. 

Combination of decomposition 

and composition  

 Combination of above 

Analyzable_Feature_Analysis_Feature_Interface_Relationship is used for 

representing relationships between component interfaces in the analyzable artifact 

assembly and component interfaces in the analysis body assembly. It has the following 

three reference properties: 

 associated_aa_interaction reference property is of type AA_AA_Interaction block 

which is used for representing component interfaces in the analyzable artifact 

assembly (section 6.1.2). 

 associated_ab_interaction reference property is of type AB_AB_Interaction_ABB block 

which is used for representing analysis body interactions in an analysis body 

assembly. Analysis body interaction is a special type of ABB and described in section 

7.2. The interaction is described by specifying analysis features participating in the 

interaction and the interaction behavior in terms of mathematical relations between 

behavior parameters of the participating analysis bodies.  

 The Core Behavior Model accounts for multi-physics analyses in two possible 

ways: (a) defining behavior models that have specialized analysis bodies representing 

coupled behavior, such as analysis bodies that represent both structural and thermal 

behaviors, and (b) defining separate behavior models—one corresponding to each 

analysis discipline—and relating the behavior parameters in one model to the load (or 

behavior condition) parameters in another behavior model, such as when thermal loads 

result in temperature changes in an analysis body system, causing structural deformation.  

 The Core Behavior Model is illustrated using examples in section 7.4. 
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7.2 ABB Meta-Model 
In this section, the ABB Meta-Model is presented. The ABB Meta-Model is a 

meta-model for representing analysis building blocks models (ABB models) and analysis 

building block system models. The ABB Meta-Model is described here by specifically 

focusing on the following key questions. 

1. What is an ABB model?  

2. What are the different types of ABB models? 

3. What is the type of knowledge embodied in ABB models? 

4. What is an ABB system model? 

5. What is the type of knowledge embodied in an ABB system model? 

Aspects of the ABB Meta-Model that address questions 1, 2, and 3 are presented 

in section 7.2.1 and those that address questions 4 and 5 are presented in section 7.2.2. 

7.2.1 Analysis building block (ABB) model 
The ABB Meta-Model defines the constructs and relationships for representing 

analysis building block models. In the Knowledge Composition Methodology, an ABB 

model is defined as follows. 

An Analysis building block (ABB) model represents a specific aspect of domain 

theoretic knowledge (section 3.2.3) that is necessary for defining behavior models of 

artifacts. An ABB model is the atomic unit for representing this knowledge.  

ABB models (referred as ABBs for brevity) represent choices available to 

analysts when taking decisions for creating behavior models. There are several types of 

ABBs. All ABBs of a given type correspond to choices available to analysts for taking a 

specific type of decision. Examples of types of ABBs (and choices for each type) are as 

follows: Analysis Body ABB (plane stress analysis body, shell analysis body); Load 

ABB (point force load, temperature load); and Analysis Body Interaction ABB (shell-

shell interaction, solid-shell interaction). In the KCM, ABBs are derived and organized 

based on analysis knowledge dimensions (section 0). The dimensions are a conceptual 

organization of types of decisions (and available choices) and consistency and 

completeness of a set of decisions for creating behavior models. The SysML block 

definition diagram shown in Figure 7.4 below illustrates the types of ABBs that are 

represented using the ABB Meta-Model.   
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Figure 7.4: Types of ABBs represented using the ABB Meta-Model 

All ABBs are modeled as specializations of the ABB block. The type of decision 

represented by each specialization of the ABB block is as follows: 

 

 Analysis_Body_ABB block is used for representing analysis bodies. It represents the 

form and idealized behavior of a family of analysis bodies. 

An analysis body is an idealization of an artifact such that it exhibits an idealized 

sub-set of behaviors of the artifact. These behaviors are formalized as mathematical 

expressions relating the behavior parameters, the form parameters of the analysis body, 

and the behavior environment in which the behaviors are computed (such as load and 

behavior conditions). Some examples of analysis bodies are plates, shells, membranes, 

linear springs, and linear resistor. For instance, when an artifact is idealized as a linear 

spring, its axial extension/compression behavior is abstracted from other behaviors that 

an artifact may exhibit and this extension/compression behavior is idealized to be linear 

and elastic like a spring (i.e. linear deformation is directly proportional to the applied 

extensional forces). The intent of defining an analysis body is to idealize the behavior of 

an analyzable artifact as the behavior of an analysis body (or an analysis body assembly). 

The behavior models of an analysis body are well-established from existing knowledge—

analytical models derived from domain theories to response surface models derived from 

physical experiments. 
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 Analysis_Body_System_ABB block is used for representing analysis body assemblies 

(or systems). An analysis body assembly is represented using a set of analysis bodies 

that are components of the assembly and the interactions among these analysis bodies. 

The analysis body components in an analysis body assembly are usages of pre-defined 

analysis bodies (represented as analysis body models), and the interactions among 

these components are usages of pre-defined interactions (represented as analysis body 

interaction behavior models). Example of analysis body assemblies are solid-shell 

assembly, or beam-shell assembly. 

 

 ABS_ABB block is generalization of Analysis_Body_ABB block and 

Analysis_Body_System_ABB block. 

 

 Analysis_Feature_ABB block is used for representing analysis features defined on 

analysis bodies or an analysis body assemblies. 

An analysis feature is a specific aspect of the shape of analysis body or analysis 

body assembly that is defined for analysis purposes such as to define geometric regions 

where behavior parameters are to be computed, or regions where loads and behavior 

conditions are to be applied.  

 

 AB_AB_Interaction_ABB block is used for representing interaction behaviors between 

analysis bodies. The interaction behavior among analysis bodies in an assembly can be 

defined using math models relating behavior parameters of the analysis bodies at their 

interaction regions (represented as analysis features).  

 

 Shape block is used for representing geometric shapes. Since this construct is 

used for other meta-models in the KCM, its name does not have the ABB suffix 

as the case with other types of ABB models described here. 

 

 Material_Behavior_ABB block is used for representing constitutive material behavior of 

analysis bodies. Examples of material behavior models are: linear elastic isotropic 
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temperature-independent material behavior and linear viscoelastic isotropic 

temperature-independent mater behavior. 

 

 Load_ABB block is used for representing loads applied to an analysis body or an 

analysis body assembly.   

A load is the stimulus to which the response of an analysis body (or analysis body 

system) is to be computed. Loads are applied to analysis features defined on analysis 

bodies or analysis body assemblies. Some examples of loads are: force, moment, 

temperature, and heat generation rate. 

 

 Behavior_Condition_ABB block is used for representing behavior conditions. Behavior 

conditions are additional conditions applied to analysis body or analysis body 

assemblies under which their response to loads is to be computed. Examples of 

behavior conditions include initial value conditions or boundary conditions. Behavior 

conditions are typically described using math constraints involving behavior 

parameters. 

 

 Behavior_ABB block is used for representing the set of behavior parameters that may be 

computed for a given analysis body or an analysis body assembly. 

 

The ABB Meta-Model also defines the specific aspects of domain theoretic 

knowledge represented for each ABB type. It defines four foundational aspects of this 

knowledge. These are: 

 Context—to identify the domain theoretic concept being represented by an ABB. The 

context for each ABB type is defined in section 7.2.1.1. The context attribute of an 

ABB is static—not instantiated with an ABB instance. This is because the context 

attribute of an ABB defines the characteristics of the specific ABB class and not its 

instances.  

 Property—to model the domain theoretic concept as parameters and relations. The 

properties for each ABB type are defined in section 7.2.1.2. 
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 Application Conditions—to describe the conditions that must be satisfied for using an 

ABB when composing ABB systems or sub-systems. The application conditions for 

each ABB type are defined in section 7.2.1.3. The application conditions attribute of 

an ABB is also static since it defines the characteristics of the specific ABB class and 

not its instances. 

 Application Transforms—to define the behavior model composition transformations 

when an ABB is used to compose ABB systems (and hence behavior models). The 

application transforms for each ABB type are defined in section 7.2.1.4. The 

application transforms attribute of an ABB is also static since it defines the 

characteristics of the specific ABB class and not its instances. 

Figure 7.5: Aspects of domain theoretic knowledge represented in each ABB type 

Figure 7.5 above illustrates how these four foundational aspects are represented for each 

ABB in the ABB Meta-Model. Note that the static attributes of each ABB are underlined. 

 

Details of the four foundational aspects of ABBs are as described below.  

7.2.1.1 ABB Context - what concept is being represented? 

 This aspect of an ABB is used to represent contextual knowledge about the 

domain theoretic concept represented by the ABB. This contextual knowledge can be 
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used by analysts to query ABBs in a library and to test the mutual compatibility of 

candidate ABBs selected for composing ABB system models. The contextual knowledge 

is modeled by populating the contextual attributes of each ABB with pre-defined 

keywords. The type of the each contextual attribute is a list of allowable keywords for 

that attribute. The allowable keywords for each attribute are governed by the blocks 

(classes) in the Analysis Body Dimension model defined in section 7.5.2 and KCM’s 

Generic Properties Meta-Model defined in section Appendix 3. In effect, the keywords 

tag an ABB thus making it easier to search it in a large library of ABBs. The set of 

keyword tags for each ABB is unique and unambiguous. For example, the contextual 

attributes for material behavior ABB are the following: (i) material behavior 

parameters—set of parameters used for characterizing material behavior, such as 

Young’s Modulus and Poisson’s Ratio, (ii) material behavior discipline, such as 

structural behavior and thermal behavior, (iii) material behavior distribution, such as 

isotropic and orthotropic, (iv) material behavior variation, such as linear, bi-linear, non-

linear. Material behavior variation is further characterized as (a) variation of stress with 

strain, (b) variation of material behavior parameters with temperature, and (c) variation of 

stress and material behavior parameters with strain rate. In this manner, the context 

attribute of each ABB, when populated, allows analysts to query ABBs from a library of 

ABBs. 

Figure 7.6 illustrates the ABB Context Meta-Model (subset of the ABB Meta-

Model) for representing the contextual knowledge in ABBs. The ABB Context Model 

defines the contextual attributes for each ABB type. The ABB Context Meta-Model is 

founded on the analysis knowledge dimensions (section 7.5) and is extensible to defining 

the contextual attributes of other types of ABBs.. 
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Figure 7.6: ABB Context Meta-Model for representing contextual knowledge in ABBs 
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The central construct in the ABB Context Meta-Model is the ABB_Context block. All 

other blocks are specializations of the ABB_Context block and are used for representing 

the context of the corresponding ABBs. For example, the Analysis_Body_Context block is 

used for representing the context of analysis body ABB and so on. Note that context of an 

ABB is a static attribute. Thus, the attributes of context blocks (used for populating the 

context of each ABB) are also static and shown as underlined in Figure 7.6. The 

constructs in the ABB Context Meta-Model and their properties are described below 

 

 Analysis_Body_Context block is used for representing contextual knowledge for 

analysis body ABB. The following five reference properties are used for characterizing 

this contextual knowledge: 

o ab_discipline refers to the analysis discipline (such as structural or thermal) 

associated which the idealized behaviors represented by an analysis body. 

o ab_space refers to geometric space used for defining the shape of an analysis body. 

o ab_active_DOFs refers to the number and type of degrees-of-freedom used for 

defining the behavior of an analysis body 

o associated_mb_context refers to the context of the material behavior associated with 

an analysis body 

o ab_behavior_parameters refers to the behavior parameters that can be computed for 

an analysis body 

 Analysis_Feature_Context block is used for representing contextual knowledge for 

analysis feature ABB. The following two reference properties are used for 

characterizing this contextual knowledge: 

o associated_ab refers to the context of the analysis body that owns the analysis 

feature. 

o feature_space refers to the geometric space of an analysis feature (e.g. 1D feature—

point; 2D features—line and plane; and 3D features—surface and volume). 

 Material_Behavior_Context block is used for representing contextual knowledge for 

material behavior ABB. The following four reference properties are used for 

characterizing this contextual knowledge: 
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o mb_parameters refers to parameters used for describing the material behavior (such 

as Young’s Modulus, Poisson’s Ratio, etc.) 

o mb_discipline refers to the analysis disciplines for which the material behavior is 

being described (such as structural discipline and thermal discipline). The type and 

number of material behavior parameters depend on the discipline.  

o mb_distribution refers to the idealized distribution of material in the analysis body 

such as isotropic, transversely isotropic, and orthotropic. The material distribution 

governs the number of material behavior parameters.  

o mb_variation refers to the variation of material behavior parameters, such as linear, 

bi-linear, and non-linear. Material_Behavior_Variation_Context block is used for 

characterizing the variation. 

 Material_Behavior_Variation_Context block is used for characterizing the types of 

variation of material behavior. The following three reference properties are used for 

characterizing this contextual knowledge: 

o stress_strain_based_variation represents variation characterized as the variation of 

stress-strain response of a material. 

o temperature_based_variation represents variation characterized as the variation of 

material behavior parameter values with respect to temperature. 

o strain_rate_based_variation represents variation characterized as the variation of 

stress with respect to strain rate (or deformation rate). 

 AB_AB_Interaction_Context block is used for representing contextual knowledge for 

analysis body interaction ABB. The following three reference properties are used for 

characterizing this contextual knowledge: 

o relating_ab_feature_context and related_ab_feature_context refer to the context 

two analysis features participating in an analysis body interaction. 

o relating_behavior_parameters and related_behavior_parameters refer to behavior 

parameters (at each analysis feature) used for defining the interaction. For example, 

if two solid bodies are glued together, then the displacement parameters (translation 

and rotation) at the glued surfaces are used for populating the 

relating_behavior_parameters and related_behavior_parameters contextual 

properties. 
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 Analysis_Body_System_Context block is used for representing contextual knowledge 

for analysis body system ABB. The following two reference properties are used for 

characterizing this contextual knowledge: 

o associated_ab_context refers to the context of each analysis body used for creating 

an analysis body assembly. 

o associated_ab_interaction_context refers to the context of each interaction (between 

analysis bodies) in an analysis body assembly. 

o constituent_absys_context refers to the context of sub-assemblies in the top level 

analysis body assembly. An analysis body assembly may be composed of analysis 

bodies, or analysis body sub-assemblies, or combinations of both. 

o associated_behavior_parameters refers to the behavior parameters used for 

representing the behavior of the analysis body system. 

 Behavior_Condition_Context block is used for representing contextual knowledge for 

behavior condition ABB. The following four reference properties are used for 

characterizing this contextual knowledge: 

o bc_discipline refers to the analysis discipline for which the behavior condition is 

described. For example, structural boundary conditions and thermal boundary 

conditions are described for structural and thermal analysis disciplines respectively. 

The value of this property is governed by the discipline associated with the behavior 

parameters that are used for describing the behavior condition. 

o bc_model refers to the type of behavior condition. Boundary conditions (for 

boundary value problems) and initial conditions (for initial value problems) are 

examples of different types of behavior conditions. 

o bc_application_space refers to the geometric space (such as point, line or surface) 

over which a behavior condition is applied. 

o bc_parameters refers to the behavior parameters used for describing behavior 

conditions. For example, displacement parameters (ux, uy, uz, θx, θy, θz) are used for 

describing a displacement boundary condition. 

 Load_Context block is used for representing contextual knowledge for load ABB. The 

following five reference properties are used for characterizing this contextual 

knowledge: 
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o load_application_domain refers to the geometric space over which the load is 

applied. For example, a concentrated point load is applied at a point, and a 

distributed load may be applied along a line/curve, or over a surface. 

o load_space_variation refers to the variation of load over the geometric space over 

which it is applied. For example, a load may be distributed uniformly or non-

uniformly over the application domain.  

o load_time_variation refers to the variation of load over the time domain. For 

example, a point force may be constant or vary with time. 

o load_discipline_specific_type refers to the analysis discipline for which the load is 

described. The types of loads are different for each analysis discipline. For example, 

force, moment, and temperature are loads in the structural analysis discipline, and 

heat flux and heat generation rate are loads in the thermal analysis discipline. 

o load_parameter_type refers to the parameters used for representing loads, such as 

force parameter, moment parameter, and temperature parameter. 

 Behavior_Context block is used for representing contextual knowledge for behavior 

ABB. The following six reference properties are used for characterizing this contextual 

knowledge: 

o behavior_modes refers to the different modes of behavior of the analysis body 

system. For example, in the structural analysis discipline, small deformation and 

large deformation are examples of different behavior modes. The governing 

concepts and the analytical formulations for these modes are different. Stress 

stiffening, fatigue, and fracture modes are specific types of large deformation mode. 

o behavior_parameters refers to the behavior parameters used for quantifying the 

behavior of an analysis body system. Displacement, stresses, and strains are 

examples of behavior parameters in the structural discipline while temperature is an 

example of a behavior parameter in the thermal discipline. 

o behavior_discipline refers to the analysis disciplines such as structural, thermal, 

electromagnetics  

o behavior_space refers to the behavior space of the analysis body system. Behavior 

space is characterized by: (a) geometric space defined to describe the form of an 

analysis body system, such as 1D or 2D, and (b) number of independent behavior 
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parameters used for characterizing the behavior of an analysis body system. For 

example, the geometric space used for defining a beam-rod—an analysis body that 

exhibits axial deformation and bending behavior—with constant cross-section is 1-

dimensional, while it has 2 independent behavior parameters (axial deformation and 

transverse deflection). The purpose of this reference property is to better 

characterize the meaning of the commonly used terms such as “1D analysis 

problem” and “2D analysis problem”. 

o behavior_load_variation refers to the variation of behavior parameters with respect 

to the applied loads. For example in the case of an idealized linear spring, the 

deformation varies linearly with the applied forces. This is an example of linear 

behavior. 

o behavior_time_variation refers to the variation of behavior parameters with respect 

to time. For transient behavior, behavior parameters vary with temperature while for 

steady-state or static behavior, behavior parameters are idealized to be constant with 

respect to time. 

 

7.2.1.2 ABB Property - how is this concept represented? 

The knowledge represented by the context attribute of an ABB can enable 

analysts to search ABBs in a library, and identify semantic conflicts between the different 

ABBs used for composing behavior models. In contrast, the property attribute of an ABB 

is used for representing parameters and relations that mathematically define the domain-

theoretic concept represented by the ABB. When ABBs are composed to create an ABB 

system, the property attributes of different ABBs are associated with each other via 

mathematical relations. As an example, the contextual attribute of the Hook’s Law 

Material Behavior ABB has keywords that collectively state that the stress-strain co-

variation is linear but the property attribute of this ABB represents the behavior 

parameters (Stress σ, Strain ε, and Young’s Modulus Y), and the linear mathematical 

equation between them (σ/ε = Y).  
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Figure 7.7: ABB Property Meta-Model for representing properties of ABBs 
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Figure 7.7 illustrates the ABB Property Meta-Model (subset of the ABB Meta-

Model) for representing the property attribute of ABBs. The ABB Property Meta-Model 

defines the constructs for representing the property attribute of different types of ABBs. It 

is founded on the analysis knowledge dimensions (section 7.5) and is extensible to 

defining the properties of other types of ABBs.  

The central construct in the ABB Property Meta-Model is the ABB_Property 

block. All other blocks are specializations of the ABB_Property block and are used for 

representing the properties of corresponding ABBs. For example, the 

Analysis_Body_Property block is used for representing the property of analysis body ABB 

and so on. Note that the values populating the property attribute of an ABB do not 

explicitly convey the semantics of the physical concept being represented by the ABB. 

For example, the property attribute of Hooke’s Law Material Behavior ABB represents 

the stress, strain, and Young’s Modulus parameters and the linear equation relating the 

three (stress = strain * Young’s Modulus) but it does not explicitly describe the nature of 

the equation (linear) or the material distribution assumed (isotropic versus orthotropic).  

The constructs in the ABB Property Meta-Model are described below.  

 Analysis_Body_Property block is used for representing the property attributes of 

analysis body ABB. It has the following four reference properties: 

o shape refers to the geometric shape of the analysis body. The reference property type 

is the Shape block that is reused across all meta-models in the KCM—CPM2_xKCM, 

CBM, and ABB Meta-Model. KCM leverages STEP Part 42 (ISO 10303-42 2000) 

standard for representing geometric shapes. Thus, the Shape block is an abstraction 

for geometry representation entities in Part 42. 

o associated_behavior_property refers to the behavior parameters that may be 

computed for the analysis body, and the relations among these behavior parameters in 

the context of the analysis body. The reference property type is the Behavior_Property 

block. For example, for a linear mechanical spring (an analysis body ABB), the only 

behavior parameter that may be computed is the deformation of the spring along its 

axis (Ux).  
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o associated_mb_property refers to the material behavior ABB that represents the 

constitutive material behavior of the analysis body. The reference property type is the 

Material_Behavior_Property block. 

o constituent_analysis_features_property refers to the analysis features defined on the 

analysis body. The reference property type is the Analysis_Featuare_Property block. 

Analysis features are defined to identify geometric regions defined on an analysis 

body (or assembly) where behavior parameters are to be computed, interactions need 

to be defined among analysis bodies, and/or load and behavior conditions need to be 

applied. 

 Analysis_Feature_Property block is used for representing property attributes of analysis 

feature ABB. It has the following two reference properties: 

o associated_ab_or_absys refers to the analysis body or analysis body assembly on 

which the analysis feature is defined. The reference property type is the 

Analysis_Body_Property block. 

o associated_feature_shape refers to the shape of the analysis feature defined on the 

analysis body or analysis body assembly. The reference property type is the Shape 

block. 

o analysis_sub_features refers to analysis features that are sub-features of the given 

analysis feature. This reference property represents the composition of analysis 

features from analysis features. For example, if a surface is identified as an analysis 

feature and a point on the surface is identified as another analysis feature, then the 

two analysis features are related by this reference property. 

 AB_AB_Interaction_Property block is used for representing property attributes of 

analysis body interaction ABB (AB_AB_Interaction_ABB block). The analysis body 

interaction ABB represents the interaction behavior among two analysis bodies in an 

analysis body assembly. The interaction behavior is defined between analysis features of 

the analysis bodies participating in the interaction. The AB_AB_Interaction_Property 

block has the following two reference properties: 

o relating_analysis_feature and related_analysis_feature refer to the two analysis 

features (each defined on an analysis body) participating in the interaction. 
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o relating_behavior_parameters and related_behavior_parameters refer to two sets of 

behavior parameters that are used for defining the interaction behavior.  

o interaction_relations refer to mathematical relations defined using the relating and 

related behavior parameters. 

For example, the No-slip interaction ABB (type of analysis body interaction ABB) can 

be used to create a tie constraint between two analysis features—at which the 

corresponding analysis bodies contact each other—such that there is no relative 

displacement between the analysis features. In the No-slip interaction ABB, the relating 

and related analysis features would refer to the two analysis features participating in the 

contact respectively; the relating and related behavior parameters refer to the 

displacement parameters (ux, uy, uz, θx, θy, θz) defined at each analysis feature; and the 

interaction relations would refer to the mathematical equations that bind the 

displacement parameters at the analysis features (ux
1=ux

2, uy
1=uy

2, …:where ux
1 and ux

2 

are the displacement parameters at analysis features 1 and 2 respectively, and so on). 

 Analysis_Body_System_Property block is used for representing property attributes of 

analysis body system ABB. It has the following four reference properties. 

o constituent_ab_ab_interactions_property refer to the interactions defined between 

analysis bodies in the context of the analysis body system. The reference property 

type is AB_AB_Interaction_Property block. 

o constituent_af_property refer to the analysis features defined on the analysis body 

system. The reference property type is Analysis_Feature_Property block. 

o constituent_abs_property refer to the analysis body components of the analysis body 

system. The reference property type is Analysis_Body_Property block. 

o constituent_absys and of_absys refer to the children sub-systems and parent sub-

system of an analysis body system respectively. The reference property type is 

Analysis_Body_System_Property block. 

o asociated_behavior_property is used representing the behavior parameters computed 

for the analysis body system and the analysis features at which they are computed. 

 ABS_Property block is used for representing property attributes of an analysis body 

ABB or analysis body system ABB. It is the generalization of Analysis_Body_Property 

block and Analysis_Body_System property block.  
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 Material_Behavior_Property block is used for representing property attributes of material 

behavior ABB. It has the following two reference properties. 

o mb_parameters refers to the material behavior parameters used for defining the 

material behavior. 

o mb_parameter_relations refer to the mathematical relations established among 

material behavior parameters to define the material behavior. These mathematical 

relations may have an analytical form (such as equations) or a tabulated form (such as 

material property-value tables generated in physical experiments). In general, KCM 

has pre-defined specializations of the Mathematical_Relation block for representing 

analytical, logical, tabulated relations, and is extensible to developing other 

specializations. 

 Load_Property block is used for representing property attributes of the load ABB. It has 

the following three reference properties. 

o load_type refers to the type of load and the load parameter used for defining the load. 

For example, force is a structural load defined using the force parameter (denoted as 

F) and heat generation rate is a thermal load defined using the heat generation rate 

parameter (denoted as qgen). 

o load_application_domain refers to the analysis features of an analysis body or analysis 

body system to which the load is applied. Depending on the load type, loads may be 

applied to a point, surface, or volume features.  

o load_distribution_function refers to the mathematical relations that describe the 

variation of the load over the application domain. For example, a constant force load 

would have a distribution function as F=constant while a force load that varies 

linearly over a straight edge analysis feature would have the following distribution 

function: Fx=(x/L)*FL where: Fx is the force magnitude at a distance x from the origin 

of the edge feature, L is the length of the edge feature, and FL is the force magnitude at 

the end of the edge feature. 

 Behavior_Condition_Property block is used for representing property attributes of the 

behavior condition ABB. It has the following three reference properties. 

o bc_parameters refers to parameters used for defining behavior conditions. 
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o bc_application_domain refers to the analysis features of an analysis body or analysis 

body system on which the behavior conditions are defined. 

o bc_relations refers to mathematical relations—established among behavior condition 

parameters—that are used for defining behavior conditions. 

For example, if a boundary condition that constrains all degrees of freedom at a point on 

an analysis body is to be defined, the behavior condition parameters are the 

displacement parameters (ux, uy, uz, θx, θy, θz); the application domain is the point 

analysis feature; and the behavior condition relations are the mathematical equations 

that bind displacement parameters at the point analysis feature to 0, such as ux=0, uy=0 

and so on.  

 Behavior_Property block is used for representing property attributes of the behavior 

ABB. Note that the behavior ABB is defined as an ABB to characterize and reuse the 

definition of different types of idealized behaviors. It has the following two reference 

properties. 

o behavior_parameters refers to the set of behavior parameters (such as displacement, 

temperature, stress, and strain) that are used for characterizing the behavior. 

o behavior_computation_domain refers to the analysis features where the subject 

behavior parameters are being computed. 

o behavior_parameter_relations refers to a set of mathematical relations defined using 

behavior parameters. Together, the behavior parameters and the mathematical 

relations are used for characterizing a behavior. 

While the context and property attributes of an ABB define the concept 

represented by the ABB, the application condition and the transformation rules attributes 

define how an ABB may be used in composing an ABB system and hence a behavior 

model.  

 

7.2.1.3 ABB Application Conditions – what are the conditions for using this concept? 

  The application condition attribute of an ABB defines the pre-conditions for 

using / applying the concept embodied in an ABB when composing ABB system model. 

ABB application conditions are represented using mathematical relation such as 

analytical, logical, or tabular that must be satisfied for an ABB to be used. For example, 
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when an analyzable artifact is idealized as a shell, it is assumed that the in-plane 

deformation (stretching) and bending effects dominate the deformation of the shell and 

the out-of-plane tensile or compressive deformations are negligible. As the thickness of 

the shell decreases, the stretching behavior dominates and all other deformations 

behaviors are neglected. Thus, when an analyzable artifact is idealized as a shell, it is 

assumed that the ratio of the thickness of the shell to the radius of curvature is 

significantly less than unity. The application condition attribute of the shell analysis body 

ABB is used to represent the mathematical relation (h/R <<1, where h is the thickness of 

the shell and R is the radius of curvature). Hence, the application condition attribute of an 

ABB represents an aspect of the domain theoretic concept represented by the ABB. 

 

7.2.1.4 ABB Transformation Rules – how does one use this concept? 

 ABB transformation rules attribute of an ABB represents the model 

transformations that are executed when the ABB is composed in an ABB system model 

and when the ABB system model is composed in a behavior model. The following two 

types of transformation rules are defined for an ABB: (i) transformation rules that 

establish composition relationship between an ABB and the ABB system where is it to be 

used, and (ii) transformation rules that establish idealization relationships between an 

ABB and the corresponding analyzable artifact. While the former is defined for all ABBs, 

the latter is defined only for those ABBs that are idealizations of some specific aspect of 

the analyzable artifact model. These are analysis body ABB, analysis body system ABB, 

 In the KCM, the graph transformations and patterns are used for mathematically 

defined these transformation rules. The transformation rules for each ABB type are 

defined as part of the behavior model formulation method presented in Chapter 8.  

7.2.2 Analysis building block (ABB) system model 
An analysis body system model (referred to as ABB system for brevity) is a 

model composed of ABB models. If ABBs are choices available to analysts for a certain 

type of decision, then an ABB system is a grouping of selected choices for a certain set of 

decisions. Similar to an ABB, an ABB system can be reused to create other ABB 

systems. Figure 7.8 illustrates the ABB System Meta-Model (a sub-set of the ABB Meta-
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Model). An ABB system is represented by the ABBSys block and has the following four 

part properties: 

 abs_sys refers to an analysis body or analysis body system ABBs in the ABB system.  

 load_applications refers to load ABBs in the ABB system. 

 behavior_condition_applications refers to the behavior condition ABBs in the ABB 

system 

 behaviors refers to behavior ABBs in the ABB system 

While there are a significantly large number of ABB systems that may be 

composed from nine different types of ABBs defined in the previous section, two key 

types of ABB systems defined using the ABBSys block in the KCM are as follows: 

 Behavior Model ABB Systems - These types of ABB systems are represented by 

the Behavior_Model_ABBSys block—described in details in section 7.1.  

 ABB systems that are logical groupings of ABBs and are used relatively 

frequently when creating behavior models. For example, an ABB system 

composed of a solid analysis body ABB with linear elastic isotropic material 

behavior ABB.  

The ABB System Meta-Model illustrated in Figure 7.8 is also designed to allow 

composition of multiple ABB systems to create a higher-level ABB system. This allows 

for greater reuse of ABB systems across different behavior models. For example, if an 

electronics designer/analyst was interested to compute the warpage behavior of printed 

circuit assemblies and printed circuit boards, they could create a warpage behavior model 

for printed circuit boards and reuse that behavior model to create a warpage behavior 

model for printed circuit assemblies. Note that the ABBSys block does not have an explicit 

 
Figure 7.8: ABB System Meta-Model 
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composition relationship to itself for realizing this use case. Instead, this composition is 

realized by defining a new analysis body system that is composed of the analysis body 

systems from the ABB systems that were to be composed. Similarly, the load application, 

behavior conditions applications, and behavior attributes from the ABB systems are 

‘merged’ to define the higher-level ABB system. 

The composition of an ABB system from ABBs along with the composition rules 

defined in each type of ABB (as transformation rule attribute) are described in details in 

Chapter 8 as part of the Behavior Model Formulation Method of the Knowledge 

Composition Methodology.   

7.3 ABB Model Library 
In this section, ABB models of each type are presented. Figure 7.9 illustrates the 

three levels of ABB model abstractions. The ABB Meta-Model presented in section 7.2 

defines the constructs for defining eight different types of ABBs. For each ABB type, 

multiple ABB models may be defined as specializations of the corresponding type in the 

ABB Meta-Model. For example, the analysis body ABB defined in the ABB Meta-Model 

may be specialized to define Rod analysis body ABB (or Rod ABB for brevity), Beam 

ABB, Shell ABB, and so on. ABB models are used for composing behavior meta-models 

and behavior model structures—specifically the VTMB Artifact Behavior Meta-Model 

(Level 3) and FTMB Artifact Behavior Model Structure (Level 4) as described later in 

section 7.4. ABB models are instantiated to define behavior model instances—

specifically, the FTMB Artifact Behavior Model instance as described in section 7.4.  
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Figure 7.9: ABB model abstractions in KCM 

As an example, the block Analysis_Body_ABB defined in the ABB Meta-Model 

represents analysis body ABBs. This block is specialized to define different types of 

analysis body ABBs (such as Rod ABB, Beam ABB, and Shell ABB). Each of these 

ABBs may be then instantiated such that its property attributes are populated—the Rod 

ABB may be instantiated with specific values of the rod’s length, cross-sectional shape, 

and its material behavior properties.  

Examples of each of the eight ABB types are described below. For each ABB 

type, one example is presented in details to describe how the ABB meta-model may be 

specialized. Note that only the context and property attributes of ABBs are presented 

here. The application conditions and transformation attributes are described in Chapter 8 

as part of the behavior model formulation methods. 

7.3.1 Analysis Body ABBs 
An analysis body is an idealization of an artifact such that it exhibits an idealized 

sub-set of behaviors of the artifact. An analysis body ABB represents the form and 

idealized behavior of a family of analysis bodies. In the ABB Meta-Model (section 7.2), 

the Analysis_Body_ABB block is used for representing analysis body ABBs. This block 

may be specialized to represent several types of analysis body ABB models as shown in 

Figure 7.10. The blocks representing different analysis bodies are stated below: 

 Structural_Body – represents analysis bodies with idealized structural behavior 
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 Thermal_Body – represents analysis bodies with idealized thermal behavior 

 Electric_Body – represents analysis bodies with idealized electric behavior 

 Magnetic_Body - represents analysis bodies with idealized magnetic behavior 

 Fluid_Body - represents analysis bodies with idealized fluid flow behavior 

The structural body ABB (represented by Structural_Body block) may be further 

specialized into different types of structural analysis bodies such as Rod, Shaft, Beam, 

Column, Plate, Shell, and Membrane as shown in Figure 7.10 

Figure 7.10: Analysis body ABBs 

In addition, analysis bodies may be defined such that inherit the characteristics of one 

more analysis bodies within the same discipline or across disciplines. For example, beam-

rod is a special type of analysis body that exhibits both transverse and axial deformation 

behavior.  

Note that ABBs are characterized using their context attribute, and the context of 

each type of ABB is defined in the ABB Meta-Model. For example, the block 

Analysis_Body_Context represents the context of analysis body ABBs in general. The 

properties of this block characterize the context of analysis body ABBs. Specifically, the 

context of analysis body ABBs can be represented in terms of the analysis discipline, 

geometric space, active degrees-of-freedom, and material behavior. Any of these 

characteristics may be used for organizing different types of analysis body ABBs in a 
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hierarchy. In Figure 7.10, analysis body ABBs are organized based on the analysis 

discipline.  

For each of the analysis body ABBs described above, the context and the property 

attribute types may be defined. For example, for the shell analysis body ABB, 

Shell_Context and Shell_Property blocks represent the context and property type 

respectively, defined as specializations of Analysis_Body_Context and 

Analysis_Body_Property block respectively. The shell analysis body ABB defined here is 

based on Kirchhoff-Love assumptions for thin elastic shells (Ventsel and Krauthammer 

2001). Thus, the attribute values of the Shell_Context and Shell_Property block properties 

indicate the shell analysis body ABB has an elastic material behavior and the stress and 

strain behavior parameters normal to the mid-surface are neglected. 

 
Figure 7.11: Shell analysis body ABB  

Each of the analysis body ABBs described above may be further specialized. For example, 

the shell analysis body ABB is specialized to represent planar shell analysis body ABB. A 

planar shell is a shell whose mid-surface has a planar shape as shown in Figure 7.11. Only 

the context and property attributes of the ABBs are shown here.  

Note that the attributes of Analysis_Body_Context and its specializations are 

static—values do not change when an analysis body ABB is instantiated. However, the 

attributes of Analysis_Body_Property block are populated with specific values when an 

analysis body ABB is instantiated. The context attribute of the planar shell analysis body 
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ABB is of type Planar_Shell_Context block. The attribute values of this block characterize 

a planar shell. In a similar manner, the Analysis_Body_Property block is specialized to 

represent shell property and planar shell property in particular. The shape attribute of the 

Planar_Shell_Property block is of type Planar_Shell_Shape. Also note that during 

specialization the parent attributes are re-defined to better characterize the specializations.  

7.3.2 Material Behavior ABBs 
Material behavior ABBs are used for representing the constitutive material 

behavior of analysis body ABBs. The Material_Behavior_ABB block is the parent block 

for represent material behavior ABBs. The context attribute of material behavior ABBs 

defines the key dimensions for characterizing material behavior ABBs, namely analysis 

discipline, behavior parameters, distribution, and variation (described in details in section 

7.2.1. Any of these dimensions may be used for creating a hierarchy of material behavior 

ABBs. Figure 7.12 below illustrates blocks corresponding to different types of material 

behavior ABBs organized based on analysis discipline, and defined as specializations of 

the Material_Behavior_ABB block.  

 
Figure 7.12: Material behavior ABBs 
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Figure 7.13: Linear elastic isotropic and orthotropic material behavior ABBs 

Two specializations of the elastic material behavior ABB —linear elastic isotropic 

temperature-independent material behavior ABB and linear elastic orthotropic 

temperature independent material behavior ABB—are illustrated in details in Figure 7.13. 

The context and property attribute types of these ABBs are also shown in the figure—

Linear_Elastic_Isotropic_TempInd_MB_Context and 

Linear_Elastic_Isotropic_TempInd_MB_Property blocks for the linear elastic isotropic 

temperature-independent material behavior ABB, and 

Linear_Elastic_Orthotropic_TempInd_MB_Context and 

Linear_Elastic_Orthtropic_TempInd_MB_Property blocks for the linear elastic orthotropic 

temperature-independent material behavior ABB. The attribute values of the context 

blocks are populated with keywords that indicate the isotropic versus orthotropic material 

distribution as the only difference between the two material behavior ABBs. The property 

blocks for the two ABBs are defined as specializations of the Material_Behavior_Property 

block, and the Material_Behavior_Property .mb_parameters and 
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Material_Behavior_Property.mb_relations attributes are specialized to 3 parameters and 1 

constraint relation for the linear elastic isotropic temperature-independent material 

behavior ABB, and 9 parameters and 3 constraint relations for the linear elastic 

orthotropic temperature-independent material behavior ABB. For the linear elastic 

isotropic temperature-independent material behavior ABB, the three parameters are the 

Young’s Modulus, Poisson’s Ratio, and Shear Modulus; and the constraint relation 

relates the three parameters as shown in the parametric diagram in Figure 7.14. For the 

linear elastic orthotropic temperature-independent material behavior ABB, the nine 

parameters are the Young’s Modulus, Poisson’s Ratio, and Shear Modulus in three 

principal directions; and the constraint relation relates the three parameters in each 

principal direction as shown in the parametric diagram in Figure 7.15. 

Figure 7.14: Constraint relations between E, G, and Nu parameters for  

linear elastic isotropic temperature-independent material behavior ABB 
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Figure 7.15: Constraint relations between E, G, and Nu parameters in each principal 

direction for linear elastic orthotropic temperature-independent material behavior ABB 

In a similar manner, the property types of other material behavior ABBs may be 

defined with their corresponding parameters and relations. The constraint relations 

between material behavior parameters may be available as a tabulated data between the 

parameters. 

7.3.3 Behavior ABBs 
A Behavior ABB represents a set of idealized behaviors. When an analysis body 

ABB is associated with a behavior ABB, it implies that the subject analysis body exhibits 

the specific set of behaviors. In the KCM, behavior is characterized by the context and 

property attribute of the behavior ABB, represented by the Behavior_Context and 

Behavior_Property blocks respectively. The Behavior_Context block properties provide 

several dimensions for characterizing behavior, as described in section 7.2. Figure 7.16 

shows a set of behavior ABBs organized in a hierarchy based on the behavior discipline 

dimension. The structural behavior ABBs represent different types of primitive structural 
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behaviors, such as tension, compression, bending, torsion. A composite behavior may be 

defined by multiply inheriting two or more types of behavior ABBs. 

 
Figure 7.16: Behavior ABBs 

 Figure 7.17 shows Structural_Behavior ABB block—representing structural 

behavior ABB—defined as a specialization of the Behavior_ABB block. The property 

values of Structural_Behavior_Context block characterize the structural behavior ABB, 

and the Structural_Behavior_Property.behavior_parameters is specialized to represent 

structural behavior parameters only.  

Figure 7.17: Structural behavior ABB  
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7.3.4 Analysis Feature ABBs 
Analysis features ABBs are associated with analysis body (or analysis body 

system) ABBs since an analysis feature is specific aspect of the shape of analysis body or 

analysis body systems. Figure 7.18 illustrates different types of analysis features defined 

for a shell. The blocks representing these analysis features are defined as specializations 

of the Analysis_Feature_ABB block.  

The shell analysis features represented by these blocks are as follows: 

 Shell_Vertex_Analysis_Feature block represents a point or vertex analysis feature 

defined on a shell analysis body. 

 Shell_Surface_Analysis_Feature block represents a surface analysis feature defined on 

a shell analysis body. 

 Shell_Volume_Analysis_Feature block represents a volume analysis feature defined on 

a shell analysis body. The volume feature could be the entire volume of the analysis 

body or a sub-volume. 

Figure 7.18: Analysis feature ABBs  
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 Laminated_Shell_Volume_Analysis_Feature block represents a volume analysis 

feature defined on a laminated shell analysis body system. A laminated shell analysis 

body system is a stackup of planar shell analysis bodies. 

7.3.5 Analysis Body Interaction ABBs 
Analysis body interaction ABB represents the behavior of the interaction between 

analysis bodies in an analysis body system. Since it is the behavior of the interaction that 

is core to representing the interaction, analysis body interaction ABBs may be organized 

based on the analysis disciplines. Figure 7.19 illustrates different types of analysis body 

interaction ABBs organized based on analysis discipline, and each represented by a block 

that is a specialization of the AB_AB_Interaction_ABB block. For analysis body interaction 

ABBs corresponding to a specific analysis discipline, the interaction is defined in terms 

of the corresponding behavior parameters. For example, for structural interaction ABBs, 

the interaction is defined in terms of structural behavior parameters.  Note that the 

context attribute of analysis body interaction ABB is of type AB_AB_Interaction_Context 

block, and the properties of this block define characteristics on the basis of which 

analysis body interaction ABBs may be organized. Figure 7.19 shows one such hierarchy 

based on a analysis disciplines.  

 
Figure 7.19: Analysis Body Interaction ABBs 
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Figure 7.20: Shell-shell tie interaction ABB 

Figure 7.20 illustrates shell-shell tie interaction ABB that represents perfectly 

bonded (or glued) interaction between two shell analysis bodies, and is represented by 

Shell_Shell_Tie_Interaction block. As the context and property attribute types of this 

interaction ABB illustrate, the shell-shell tie interaction ABB associates the displacement 

parameters defined at the surfaces of two shell analysis bodies. The mathematical 

relations between the displacement parameters are illustrated by the parametric diagram 

in Figure 7.21. As shown in the diagram, the displacement parameters (both translation 

and rotation) at the surfaces of two shell analysis bodies participating in the interaction 

are equated13 to each other.  

                                                 
13 The lines connecting the displacement parameters are called binding connectors—used for binding values of 

connected objects. 
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Figure 7.21: Interaction relations for shell-shell tie interaction ABB 

7.3.6 Analysis Body System ABBs 
An analysis body system is an idealization of an artifact14 such that it exhibits an 

idealized sub-set of behaviors of the artifact. An analysis body system ABB represents an 

analysis body system. Figure 7.22 illustrates a laminated shell analysis body system 

ABB. A laminated shell analysis body system ABB is a stackup of shells such that 

surfaces of adjacent shells are glued together. As illustrated in the figure, this 

composition is reflected in the context and property attributes of this ABB, represented 

by LamShell_ABSys_Context and LamShell_ABSys_Property blocks respectively. In 

addition, a volume analysis feature that represents the volume of the laminated shell 

analysis body system is also defined.  

                                                 
14 Typically a multi-body artifact unless a single artifact is chopped to define multiple analysis bodies 
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Figure 7.22: Analysis Body System ABBs 

7.3.7 Load ABBs 
A load is the stimulus to which the response of an analysis body (or analysis body 

system) is to be computed. The context and property attributes of load ABB are 

represented by Load_Context and Load_Property blocks respectively. The attributes of the 

Load_Context block define several dimensions on which load ABBs may be organized. 

Figure 7.23 illustrates a set of load ABBs organized based on the analysis discipline, and 

Figure 7.24 illustrates uniform temperature load ABB defined as a special types of load 

ABB. The uniform temperature load ABB represents a temperature load (increase or 

decrease in ambient temperature) to which an analysis body (or analysis body system) 

may be subjected to. Since temperature change affects the entire volume of the analysis 

body or analysis body system, this load is applied to the volume analysis feature. The 

load distribution function in the Uniform_Temperature_Load_Property block shows that 
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the final temperature is a constant (as also illustrated in the parametric diagram in Figure 

7.24. The change from reference temperature to final temperature is a straight ramp. 

Figure 7.23: Load ABBs 
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Figure 7.24: Uniform temperature load ABBs 
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7.3.8 Behavior Condition ABBs 
Behavior_Condition_ABB block is used for representing behavior conditions. 

Behavior conditions are additional conditions applied to analysis body or analysis body 

system under which their response to loads is to be computed. Figure 7.25 illustrates 

behavior condition ABBs organized based on analysis disciplines. The 

PointDisplacementFixed_Condition block represents a behavior condition in which a point 

analysis feature is held static, i.e. the displacement parameters are set to zero. 

 
Figure 7.25: Behavior condition ABBs 

Figure 7.26 illustrates the context and property attributes of this behavior condition ABB 

and Figure 7.27 illustrates the behavior condition relations for this ABB.  
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Figure 7.26: Point displacement fixed behavior condition ABB 

Figure 7.27: Behavior condition relations for point displacement fixed behavior condition ABB 
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7.4 Behavior Models  

7.4.1 Abstractions 
In this section, the five levels of abstractions of behavior models relevant in the 

KCM are described. Figure 7.28 shows a conceptual hierarchy of models in the KCM as 

a SysML block definition diagram. The five levels of abstractions of behavior models are 

grouped as the behavior model stack in the diagram and are described in this section. The 

behavior model abstraction at each level in the stack represents a set of behavior models. 

As one moves down the stack (increase in levels), the models become more specialized 

and represent a sub-set of behavior models represented by the preceding abstraction level.  

The five different abstractions of behavior models in the KCM are useful for the 

following reasons: 

 Since the primary use case of KCM is the automated composition of behavior models, 

it is necessary to distinguish the abstraction levels where the model composition 

transformations are specified versus the levels at which they are executed versus the 

level at which behavior models are solved to compute behavior parameters. This 

approach allows one to define transformations to create a set of behavior models and 

not just a specific behavior model. 

 Since KCM is targeted to address VTMB problems, the abstractions allow one to 

distinguish between behavior models that represent the behavior of artifacts with 

different assembly system topologies versus those that represent the behavior of 

artifacts with a fixed topology. The former type of behavior models are those for which 

assembly system topology-specific decisions have not been taken by analysts while the 

latter type of behavior models at those where these decisions have been taken.  

 The abstractions also allow one to study variations of behavior models. Each level in 

the abstraction corresponds to a specific type of variation of behavior models and 

hence represents a set of behavior models. For example, at Level 3 in the behavior 

model stack the assembly system topology of artifact may vary; at Level 4 the 

topology is fixed but size and properties of artifacts may vary. 

 . 
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Focus of this section

Figure 7.28: Behavior Model Abstractions in KCM 
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The five different levels of abstractions in the behavior model stack are described 

below with examples 

 Level 1 (B1): Artifact Behavior Meta-Model (Core Behavior Model) 

The Level 1 abstraction in the behavior model stack is known as Artifact 

Behavior Meta-Model. This meta-model defines the constructs and relationships for 

representing behavior models of artifacts in different application areas (such as 

electronics, automotive, and aerospace) for different types of analyses (such as structural 

analyses, thermal analyses, and electromagnetic analyses). The Core Behavior Model 

presented in this chapter is a specific example of an Artifact Behavior Meta-Model (with 

special focus on VTMB artifacts). The Artifact Behavior Meta-Model is related to the 

Artifact Meta-Model (Level 1 in design model stack) and this relation represents the 

relation between an artifact (specifically its analyzable abstraction) and its behavior 

models. In KCM, CPM2_xKCM (specific example of Artifact Meta-Model) is related to 

CBM through the Behavior block as described in section 7.1 and illustrated in Figure 7.3.  

 

 Level 2 (B2): Analysis-specific Behavior Meta-Model 

The Level 2 abstraction in the behavior model stack is known as Analysis-specific 

Behavior Meta-Model. This meta-model is a specialization of the Artifact Behavior 

Meta-Model (B1) and it defines the constructs and relationships for representing behavior 

models of artifacts in a specific application area for a specific analysis domain. For 

example, the CBM may be specialized to create a behavior meta-model for thermo-

mechanical analyses of electronics artifacts.  

 

 Level 3 (B3) : VTMB Artifact Behavior Meta-Model 

  The Level 3 abstraction in the behavior model stack is known as VTMB Artifact 

Behavior Meta-Model, where VTMB stands for Variable Topology Multi-Body. This 

meta-model may be defined as a specialization of Analysis-specific Behavior Meta-

Model (B2) or directly as a specialization of Artifact Behavior Meta-Model (B1). This is 

so because it may not be practical to develop a behavior meta-model for each analysis 

domain for some artifact application areas. The VTMB Artifact Behavior Meta-Model 

defines the constructs and relationships for representing behavior models of a family of 
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artifacts with different assembly system topologies and for a specific type of analysis. All 

members of this family are a specific type of artifact in a given application area and with 

different (non-equivalent) assembly system topologies. An example of the VTMB 

Artifact Behavior Model is a behavior meta-model defined for thermo-mechanical 

analyses of multi-layered printed circuit boards. Here, the behavior meta-mode is for a 

family of artifacts of a specific type (printed circuit boards) but with different assembly 

system topologies (such as 5-layered, 10-layered, or 13-layered PCBs).  

  The PCB_nSx_ThermoMech_Behavior_Meta-Model illustrated in section 7.4.2 is 

an example of the VTMB Artifact Behavior Meta-Model. It is a meta-model for 

representing thermo-mechanical behavior models of n-stratum printed circuit boards. 

 

 Level 4 (B4): FTMB Artifact Behavior Model Structure 

  The Level 4 abstraction in the behavior model stack is known as FTMB Artifact 

Behavior Model Structure, where FTMB stands for Fixed Topology Multi-Body. This 

model is defined as an instance of the VTMB Artifact Behavior Model Structure (B3). In 

instantiating the B3 model, only decisions pertaining to the assembly system topology are 

populated. While the B3 abstraction is a meta-model for representing behavior models of 

a family of artifacts with varying assembly system topology, the B4 abstraction 

represents behavior models of artifacts with a fixed topology. For example, one may 

create a B4 model for representing 5-layered PCBs, or 10-layered PCBs, or 15-layered 

PCBs. Since only topology-specific decisions have been populated in an FTMB Artifact 

Behavior Model Structure, it is a partially-specified instance model and it provides a 

structure for creating several fully-specified instances. Hence, B4 abstraction is a 

behavior model structure and not a specific behavior model. It represents a set of 

behavior models for artifacts with the equivalent assembly system topologies. 

  The PCB_5Sx_ThermoMech_Behavior_Model_Structure illustrated in section 7.4.2 

is an example of the FTMB Artifact Behavior Model Structure. It represents thermo-

mechanical behavior models of a set of 5-layered printed circuit boards. 
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 Level 5 (B5): FTMB Artifact Behavior Model Instance 

  The B5 abstraction in the behavior model stack is known as FTMB Artifact 

Behavior Model Instance. This model is a fully-specified instance of B3 model (VTMB 

Artifact Behavior Meta-Model). In contrast to a B4 model, a B5 model is a specific 

behavior model and is intended to be solvable. It incorporates all decisions that have been 

taken to completely define a behavior model (i.e. a solvable behavior model). For a given 

B4 behavior model (structure), several B5 models (instances) may be created. A B5 

model is a behavior model of a specific artifact for a specific analysis. 

  The PCB_5S1_ThermoMech_Behavior_Model_Instance model illustrated in 

section 7.4.2 is an example of the FTMB Artifact Behavior Model Instance. It represents 

a thermo-mechanical behavior model of a specific 5-layered printed circuit board. 

7.4.2 Examples 
In this section, specific examples of the model abstractions in the behavior model 

stack are presented. The Level 1 abstraction is the Core Behavior Model which was 

presented in section 7.1. In this section, B3, B4, and B5 models are presented to illustrate 

how the CBM is used for representing specialized meta-models and models. The 

examples presented here show different levels of abstractions of thermo-mechanical 

behavior models for multi-layered printed circuit boards. The relation of these models to 

the corresponding models in the design model stack is also illustrated. 

 

 Level 3 (B3) example: PCB_nSx_ThermoMech_Behavior_Meta-Model 

Figure 7.29 below illustrates PCB_nSx_ThermoMech_Behavior_Meta-Model —a 

thermo-mechanical behavior meta-model for n-layered printed circuit boards. This meta-

model is created as a specialization of the Core Behavior Model, and it defines the 

constructs and relationships for representing thermo-mechanical behavior models of 

multi-layered PCBs. The central entity in this meta-model is PCB-

LamShell_ThermoMech_BM block (specialization of Behavior_Model block) and it 

represents a thermo-mechanical behavior meta-model where an n-layered PCB is 

idealized as an n-layered laminated shell system. 
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Figure 7.29: PCB_nSx_ThermoMech_Behavior_Meta-Model (B3): A thermo-mechanical behavior 

meta-model for multi-layered PCBs (View 1) 

This behavior meta-model is composed of an ABB system meta-model, and a context 

meta-model that relates the ABB system meta-model to the analyzable artifact meta-

model (D3 abstraction in the design model stack). LamShell_ThermoMech_ABBSys block 

represents the specialized ABB system meta-model and PCB_LamShell_Context 

represents the specialized context meta-model. Note that the specializations also redefine 

the block properties. For example, Behavior_Model.context is of type 

Behavior_Model_XContext but PCB-LamShell_ThermoMech_BM.context is of type 

APCB_LamShell_Context. The ABB system meta-model (LamShell_ThermoMech_ABBSys 

block) is composed of:  

(i) n-layered laminated shell system (represented by LamShell_ABSys_Property block 

illustrated in Figure 7.30), (ii) uniform temperature load applied to the laminated shell 

system (represented by Uniform_Temperature_Load_Property block), (iii) point 

displacement boundary condition (represented by PointDisplacementFixed_BC_Property 

block), and (iv) set of structural behavior parameters (Structural_Behavior_Property 

block). These four types of ABBs are described are described in section 7.3. Note that in 

PCB_nSx_ThermoMech_Behavior_Meta-Model, specific types of loads and boundary 

conditions have also been specified as part of the meta-model. However, it is not 
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necessary to specify these and keep the meta-model more generic. The context meta-

model (represented by the APCB_LamShell_Context block) is composed of idealization 

relationships between n-stratum analyzable PCB (Level 3 model in the design model 

stack) and n-layered laminated shell system (special type of analysis body system). These 

relationships are represented by the APCB_LamShell_Relationship block in Figure 7.30. 

 Figure 7.30 illustrates a more detailed view of the meta-model. In particular, it 

shows the n-layered laminated shell system and its relationship to the n-layered 

analyzable PCB model. The n-layered laminated shell system is composed of n individual 

planar shells (represented by Planar_Shell_Property block), the tie interactions between 

these planar shells that are stacked together (represented by 

Shell_Shell_Tie_Interaction_Property block), and the planar shell surfaces that participate 

in defining the tie interactions—the secondary surface of a preceding shell is tied to the 

primary surface of the succeeding shell—that are represented by 

Shell_Surface_AF_Property block. Planar shell, Shell-Shell tie interaction, and shell 

surface analysis features are special types of ABBs and blocks representing these ABBs 

are described in section 7.3. Corresponding to the n-layered laminated shell system in the 

behavior model stack is the n-layered analyzable PCB in the design model stack. An n-

layered analyzable PCB is composed of individual stratums, the interactions between the 

stratums, and the stratum surface features that participate in the interactions—explained 

in details in section 6.2. The behavior idealization relationships that are defined as part of 

the context meta-model relate the stratums, interactions, and surface features to the planar 

shells, tie interactions, and shell surface analysis features respectively. The 

APCB_LamShell_Relationship block is the central entity in this context meta-model (part 

of the behavior meta-model) and represents the behavior idealization relationships 

between an n-layered analyzable PCB to an n-layered laminated shell system. The 

behavior idealization relationships are composed of: (i) idealization relationships between 

each analyzable stratum to the corresponding planar shell, (ii) idealization relationships 

between an analyzable stratum surface to the corresponding shell surface, and (iii) 

idealization relationships between the interactions between adjacent analyzable stratums 

and the tie interactions between adjacent planar shells. These three types of idealization 

relationships are represented by AStratum_PShell_Relationship, 
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AStratSurf_PShellSurf_Relationship, and AdjStrat_PShellTie_Interaction_Relationship 

blocks respectively. 

Figure 7.30: Example D3-B3 model showing relationships between n-stratum analyzable PCBs (D3) and 

corresponding n-layered laminated shell systems (B3) 

 

 Level 4 (B4) example: PCB_5Sx_ThermoMech_Behavior_Model_Structure 

Figure 7.31 below illustrates 

PCB_5Sx_ThermoMech_Behavior_Model_Structure—a thermo-mechanical behavior 

model structure for 5-stratum15 PCBs. This behavior model structure is an instance of the 

PCB_nSx_ThermoMech_Behavior_Meta-Model and represents thermo-mechanical 

behavior models of printed circuit boards with 5 stratums. As shown in Figure 7.31, 

central entity in this B4 model is PCB-LamShell_5Sx_ThermoMech_BM (an instance of 

PCB-LamShell_ThermoMech_BM). Just like its parent meta-model and CBM, 

PCB_5Sx_ThermoMech_Behavior_Model_Structure is composed of an ABB system, 

and a context model that relates the ABB system to analyzable design model structure 

(D4 model in the design model stack). LamShell_5Sx_Thermo-Mech_ABB_System block 

                                                 
15 The term ‘layer’ in printed circuit boards typically refers to design layers (electrically conductive). Hence the term 

‘stratum’ is used to refer to all layers in general. 
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represents the ABB system, and APCB_LamShell_5Sx_Context block represents the 

context model for this behavior model structure.  

The ABB system is composed of a 5-layered laminated shell system as illustrated in 

Figure 7.32. The figure shows 5 planar shells, their primary and secondary surfaces, and 

the tie interactions between planar shells in the laminate shell system. The planar shells, 

their surfaces, and shell-shell tie interactions are ABB instances. The properties of each 

ABB instance are also shown in the figure.  

Figure 7.31: PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4): A thermo-mechanical 

behavior model structure for 5-layered PCBs (View 1) 
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Since B4 is a partially-specified instance model, the assembly system topology of the 

laminate shell system is fixed but the actually sizes and shapes of each shell, and their 

material behavior property values are not defined. 

Figure 7.32: Analysis body system of  PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4) 
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Figure 7.33 above shows the 5-layered laminate shell system and the context 

model that associates this laminate shell system to the 5-stratum analyzable PCB model 

structure. Behavior idealization relationship for shown only for stratum 1 as the structure 

repeats itself for other stratums. The central entity in the context model is the 

APCB_LamShell_5Sx_Context block (Figure 7.31). The context model refers to the 

Behavior Model StackDesign Model Stack

Figure 7.33:  Example D4-B4 model showing relationships between 5-stratum analyzable PCBs (D4) and 

corresponding 5-layered laminated shell systems (B4) 
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behavior idealization relationship between the 5-stratum analyzable PCB and the 5-

layered laminate shell system (APCB_LamShell_5Sx_Context.aa_abs_rel). As shown in 

Figure 7.33, this idealization represented is represented by the APCB_LamShell_5Sx_Rel 

block that relates the APCB_5Sx block (5-stratum analyzable PCB) and 

LamShell_5Sx_ABSys block (5-layered laminate shell system). The idealization 

relationship between the 5-stratum analyzable PCB and 5-layered laminate shell system 

is composed of: (i) idealization relationship between each stratum and shell (represented 

by blocks AStrat_PShell1_Rel, AStrat_PShell2_Rel,…), and (ii) the idealization 

relationships between the stratum interfaces and the shell interactions (represented by 

blocks AStrat_ShellTie_12_Interaction_Rel, AStrat_ShellTie_23_Interaction_Rel, …).  

The idealization relationship between an analyzable PCB stratum and a planar 

shell in the laminate shell system refers to shape idealization relationships and material 

behavior idealization relationships. These relationships represent how the shapes and 

material behaviors respectively of the stratum and the shell are related—including the 

mathematical relationships between the shape parameters and the material behavior 

parameters. For the first stratum in the analyzable PCB and first planar shell in the 

laminate shell system, SSR1 and MBR1 are the shape idealization and material behavior 

idealization relationships respectively. Note that the mathematical relations associated 

with these idealization relationships indicate that the shape properties and material 

behavior properties of the stratum and shell are equal. The idealization relationship 

between an analyzable PCB stratum and a planar shell is also composed of the 

idealization relationships between their features. The primary and the secondary surfaces 

of the stratum are related to the primary and secondary surfaces of the corresponding 

shell by the blocks AStrat_PShell1_Prim_Rel and AStrat_PShell1_Sec_Rel.  

 

 Level 5 (B5): PCB_5S1_ThermoMech_Behavior_Model_Instance 

Figure 7.34 below illustrates PCB_5S1_ThermoMech_Behavior_Model_Instance—

a thermo-mechanical behavior model for a specific 5-stratum PCB.. This behavior model 

is a fully-specified instance of PCB_nSx_ThermoMech_Behavior_Meta-Model (B3 model). 

In contrast to the B4 models all property values are fully-populated in B5 models, 

including the material behavior properties and the shapes of the analyzable PCB stratums.  
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The shape and material behavior idealization relationships between the stratums and the 

shells can then be solved using math solvers. Figure 7.34 shows the shape and material 

behavior properties for stratum 1 of the analyzable PCB_5S1 (in a D5 model). The values 

of the corresponding shape and material behavior properties for shell as shown in the 

figure are not computed. 

 

7.5 Analysis Knowledge Dimensions  
Analysis knowledge dimensions provide the basic foundation for defining the 

Core Behavior Model and the ABB Meta-Model. These constructs and the relationships 

defined in these meta-models were based on representing the types of decisions that 

analysts take in defining reusable building blocks of domain-theoretic concepts and 

Design Model Stack Behavior Model Stack

Figure 7.34:  Example D5-B5 model showing relationships between a specific 5-stratum analyzable PCB (D5) 

and corresponding 5-layered laminated shell system (B5 model in unsolved state) 
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composing behavior model structure based on these concepts. Analysis knowledge 

dimensions provide a conceptual organization of the types of these decisions and the 

choices available. The Analysis Knowledge Dimension Model presented in this 

dissertation is a conceptual model that is not instantiated itself but was used to define the 

Core Behavior Model and the ABB Meta-Model that may be specialized and instantiated.  

In this section, the Analysis Knowledge Dimension model is presented using a set 

of SysML block definition diagrams. There are two types of constructs in this conceptual 

model: (a) constructs representing types of decision taken by analysts in creating 

behavior models, and (b) constructs representing choices available for these decisions. 

The former type of constructs is denoted as a ‘dimension’ or ‘sub-dimension’ (for sub-

decisions). Both the constructs are presented as SysML blocks. There are two types of 

relationships defined among constructs: 

 The composition relationship (line ending in a black diamond) denotes the composition 

of higher-level decisions into sub-decisions, and it is drawn between constructs 

representing dimensions.  

 The generalization relationship (line ending in an arrow) denotes the choices available 

for a particular type of decision, and it is drawn between constructs representing choices 

to the construct representing the corresponding decision. 

 The central entity in Analysis Knowledge Dimension model is the 

Analysis_Knowledge_Dimensions block and it represents the collective decisions that 

need to be taken by analysts to create a behavior model structure. As shown in Figure 

7.35, such a collective decision is decomposed into four dimensions (set of decisions), 

namely:  

 Behavior dimension (represented by Behavior_Dimension block) 

 Analysis body dimension (represented by Analysis_Body_Dimension block) 

 Load dimension (represented by Load_Dimension block) 

 Behavior condition dimension (represented by Behavior_Condition_Dimension block) 

 

Note that the layout of the SysML diagrams presented in this section is circular and not 

hierarchical. The top-level concept is positioned in the middle of the diagram and related 

concepts are arranged around the top-level concept. 
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Blocks representing the four major dimensions have names ending in ‘Dimension’, and 

the blocks representing the sub-dimensions under each of the four major dimensions have 

names ending in ‘Dim’. The basis for abstracting these four dimensions lies in the 

assumption that the behavior of an artifact in a given environment is a function of the 

artifact’s form, and the loads and behavior conditions to which an artifact is subjected in 

that environment. Note that when formulating behavior models, the artifact is represented 

in its idealized form as an analysis body or analysis body system. Before describing the 

complete structure of each of these four dimensions, it is necessary to describe the 

semantic properties of the Analysis Knowledge Dimension Model. These are: 

1. Decisions need to be taken on all dimensions and their sub-dimensions, either directly 

or indirectly, to create a complete behavior model structure. A complete behavior 

model structure is one which when instantiated is solvable. 

2. Analysis knowledge dimensions and their sub-dimensions may not be mutually 

exclusive, and a decision taken on a particular sub-dimension may influence or 

constrain a decision on other sub-dimension(s).  

3. There may not be a sequence in which decisions are taken along particular 

dimensions. 

4. Decisions may be mutually consistent (or inconsistent), and/or redundant 

5. The choices presented here for the dimensions are primarily primitive level choices. 

More choices may be defined by creating choices that are composed of one or more 

choices.  

 
Figure 7.35: Analysis Knowledge Dimension Model – top-level view 



 

 186

6. Choices available for a decision may be mutually exclusive. In the SysML block 

definition diagrams presented here, these choices are represented by blocks with 

italicized names.  

These properties reflect the inherent nature of analysis problem formulation process in 

that there are several ways of creating a behavior model structure, and a valid and 

complete behavior model is one for which the set of idealization decisions were mutually 

complete, consistent and preferably non-redundant.  

Note that the analysis knowledge dimensions presented here are extensible. The 

types of decisions and the choices for each decision type presented help to illustrate the 

conceptual model and in no way represent a fully exhaustive set of choices for all types 

of behavior models.  

7.5.1 Behavior Dimension 
The Behavior dimension is meant for categorizing decisions pertaining to the 

overall behavior of an artifact. It is represented by the Behavior_Dimension block and 

includes six sub-dimensions, as shown by the composition relationships in Figure 7.36. 

These sub-dimensions are as follows: 

 

 Behavior_Type_Dim: This sub-dimension is used to categorize different types of 

idealized behaviors of an artifact As shown in Figure 7.36, the choices for this decision 

are categorized based on analysis disciplines, such as tension, torsion, vibration, and 

buckling for structural behavior; and conduction, convection, and radiation for thermal 

behavior. Choices that represent composite behaviors (such as bending and torsion) may 

be defined by creating blocks that specialize one or more blocks.  
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Figure 7.36: Behavior Dimension 
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 Behavior_Mode_Dim: This sub-dimension is used to categorize different idealized 

behavior modes of an artifact for a given type of behavior. For example, depending on 

the magnitude of the load, an artifact’s torsional behavior may be idealized as one 

resulting in small deformation or large deformation. Here, small deformation and large 

deformation are different modes of torsional behavior. Note that large deformation and 

small deformation are mutually exclusive choices (denoted with italicized block names) 

 

 Behavior_Variation_Dim: This sub-dimension is used to categorize how the variation 

in the behavior of the artifact may be idealized, such as static or dynamic, linear or non-

linear. In Figure 7.36, two main specializations of this sub-dimension are shown, namely 

(a) Linear_or_Non-Linear to specify if the response of an artifact to loads is idealized 

linear or non-linear, and (b) Static_or_Dynamic to specify if the response of an artifact to 

loads with respect to time is idealized as static or dynamic. Here, the response of an 

artifact is measured in terms of a behavior parameter, such as deformation or 

temperature. Other sub-dimensions may be added for relating the behavior of an artifact 

to other parameters apart from load and time. 

 

 Behavior_Space_Dim: This sub-dimension is used to categorize the geometric space 

of an idealized artifact. There are 2 ways of measuring this: (a) the geometric space 

occupied by the idealized artifact, and (b) number of independent spatial variables in the 

analysis problem. As an example for a beam bending under transverse loads, the number 

of independent spatial parameters is one (distance measured along the axis of the beam). 

The transverse deflection is dependent on this distance. However, the geometric space 

occupied by a deformed beam is 2D. One needs the both the distance along the axis of the 

beam and the transverse deflection to describe the deformed shape of a beam. 

Traditionally, it is the former criterion that is used for characterizing behavior analysis 

problems as 1D, 2D, or 3D. 

 

 Behavior_Parameter_Dim: This sub-dimension is used to categorize parameters used 

for measuring the idealized behaviors of an artifact, such as temperature, deformation, 

stress, and strain. The choices available for this dimension are organized based on 



 

 189

analysis disciplines. So, there are choices available for structural behavior parameters, 

and thermal behavior parameters, and so on. 

 

7.5.2 Analysis Body Dimension 
The analysis body dimension is used for categorizing decisions pertaining to 

analysis bodies and analysis body systems. When creating behavior models, analyzable 

artifacts are idealized as analysis bodies (or analysis body systems) as described in 

section Figure 7.2. The analysis body dimension has 4 sub-dimensions, as illustrated in 

Figure 7.37 and described below.  

 

 Analysis_Body_System_Composition_Dim: This sub-dimension is used to categorize 

decisions pertaining to the composition (part-assembly structure) of an analysis body 

system. The choices available for this sub-dimension are correspond to different types of 

single body and multi-body systems.  

 Material_Behavior_Dim: This sub-dimension is used to categorize decisions pertaining 

to the constitutive material behavior of an analysis body. This sub-dimension is 

composed of three sub-sub-dimensions: 

o Material_Behavior_Type_Dim: This sub-dimension is used to categorize decisions 

pertaining to the response of the material to applied loads. The choices are categorized 

based on the type of load, such as such as elastic, plastic, and for structural loads. 

o Material_Behavior_Distribution_Dim: This sub-dimension is used for categorizing 

decisions pertaining to homogeneity or types of non-homogeneities of the material, 

such as isotropic, transversely isotropic, orthotropic, general anisotropic, etc. 

o Material_Behavior_Variation_Dim: This is used for categorizing decisions related to 

quantifying the idealized variation of material response to a load or deformation, 

loading rate or deformation rate, and temperature. These three criteria are represented 

by the following sub-dimensions as also shown in Figure 7.37: (a) Stress_Strain_Co-

Variation_Dim for effects of loading / deformation, (b) 

Strain_Rate_Based_Variation_Dim for effects of strain rate, and (c) 

Temperature_Based_Variation_Dim for effects of temperature change. Other categories 

of material behavior variation may be added to this decision classification. 
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o Material_Behavior_Parameters_Dim is used to categorize parameters used for 

quantifying material behavior. The choices are described based on the analysis 

disciplines implying that different parameters are used for quantifying material 

behavior for different analysis discipline. 

 Analysis_Body_Type_Dim: This sub-dimension is used for categorizing decisions 

pertaining to the type of an analysis body. The type is characterized based on the (a) the 

idealized behaviors that an analysis body exhibits, (b) geometric space used for 

representing the shape of an analysis body, and (c) the number and type of degrees-of-

freedom associated with an analysis body. These criteria are represented by the following 

three sub-dimensions: (a) Analysis_Body_Discipline_Type, (b) 

Analysis_Body_Space_Type, and (c) Analysis_Body_DOF.  

 Analysis_Body_Interaction_Behavior_Dim: This sub-dimension is used for categorizing 

decisions pertaining to the behavior of the interaction between analysis bodies in an 

analysis body system. Since the decision pertains to behavior, it is similar in nature to the 

types of decisions presented under the behavior dimension. 

 



 

 191

 

Figure 7.37: Analysis Body Dimension 
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7.5.3 Load Dimension 
The load dimension is used for categorizing decisions pertaining to the applied 

load(s). The load dimension consists of four sub-dimensions, as illustrated in Figure 7.38 

and described below: 

 Load_Type_Dim: This sub-dimension is used to categorize decisions based on the 

type of loads. The choices are organized in terms of analysis disciplines. For example, 

pressure is a structural load while heat generation rate is a thermal load.  

 Load_Application_Dim: This sub-dimension is used to categorize decisions concerning 

the application of load to an analysis body (or analysis body system). This decision is 

composed of the following two sub-decisions: (a) the application space of the load, such 

as whether the load is applied to an analysis feature (geometric space) or to an inertial 

mass, and (b) the direction of the load. These decisions are represented by the 

Load_Application_Domain_Dim and Load_Application_Direction_Dim respectively. 

 Load_Variation_Dim: This sub-dimension is used to categorize decisions pertaining to 

the variation of loads over space and time, represented by the two sub-dimensions 

Load_Space_Variation and Load_Time_Variation respectively. 

 Load_Parameter_Dim: This sub-dimension is used to categorize parameters for 

quantifying loads. The choices are organized on the basis of analysis disciplines.
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Figure 7.38: Load Dimension 
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7.5.4 Behavior Condition Dimension 
This behavior condition dimension is used for categorizing decisions pertaining to 

behavior conditions in which the behavior of an analysis body system (idealized artifact) is 

to be computed. This dimension consists of the following five sub-dimensions: 

 Behavior_Condition_Discipline_Dim: This sub-dimension is used for categorizing the 

analysis discipline associated with the behavior condition. Behavior conditions are 

described in terms of behavior parameters and thus the analysis discipline is decided based 

on the discipline associated with the behavior parameters. For example, behavior a behavior 

condition described in terms of displacement (a type of structural behavior parameter) is a 

structural behavior condition. 

 Behavior_Condition_Type_Dim: This sub-dimension is used for categorizing the types of 

behavior conditions. Two prominent choices are boundary value conditions for boundary 

value problems, and initial value conditions for initial value problems. 

 Behavior_Condition_Application_Space_Dim: This sub-dimension is used for categorizing 

the geometric application space for behavior conditions, i.e. if the behavior condition is 

applied to a point analysis feature or a surface analysis feature. 

 Behavior_Condition_Variation_Dim: This sub-dimension is used for categorizing the 

variation of behavior conditions with respect to space and time, represented by the 

following two sub-dimensions: Behavior_Condition_Space_Variation_Dim and 

Behavior_Condition_Time_Variation_Dim respectively. 

 Behavior_Condition_Parameter_Dim: This sub-dimension is used for categorizing the 

different types of parameters for quantifying behavior conditions. The categorization is 

similar to that described in Behavior_Parameter_Dim. 
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7.6 Summary 
In this chapter, the Core Behavior Model (CBM) is presented as a meta-model for 

representing behavior models of VTMB design alternatives. Five levels of abstractions of 

behavior models, based on the CBM, are also presented with examples. The ABB Meta-

Model that defines the constructs for representing different types of ABBs is also presented 

in this chapter. The ABB Meta-Model prescribes four foundational aspects of knowledge 

that must be represented in an ABB. Two of these aspects are described in details with 

examples in this chapter. The other two aspects concern the transformations applied for 

composing ABBs, and are presented in the following chapter (Chapter 8). The Core 

Behavior Model and the ABB Meta-Model are founded on Analysis Knowledge 

Dimensions that are also presented in this chapter. The Analysis Knowledge Dimensions 

define the types of decisions taken by analysts in formulating behaviors models and the 

choices available for each type of decision. 

Figure 7.39: Behavior Condition Dimension 
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CChhaapptteerr  88  ::  BBEEHHAAVVIIOORR  MMOODDEELL  FFOORRMMUULLAATTIIOONN  MMEETTHHOODD  

The focus of this chapter is to present the Behavior Model Formulation Method 

(BMFM). KCM’s Behavior Model Formulation Method prescribes an approach for 

formulating behavior model structures given idealized design alternatives with varying 

assembly system topologies and behavior idealization specifications defined by analysts. In 

this chapter, the Behavior Model Formulation Method is described and its fundamental 

underpinnings in model transformations and analysis domain theories are presented. In 

section 8.1, an overview of the Behavior Model Formulation Method is presented, and in 

section 8.2 the model transformation process used for composing behavior model structures 

and simulation templates is described in details. The idealization decisions taken by analysts 

are formally represented as Behavior Model Formulation Specifications, and presented in 

section 8.3. In section 8.4, the Artifact Model Transformation Library—a library of reusable 

model transformation rules and patterns—is presented. 

Chapter 6
VTMB Design Model Abstractions

(CPM2_xKCM)

Chapter 7
Behavior Model Abstractions

(CBM, ABB Meta-Model)

Chapter 8
Behavior Model Formulation Method

Chapter 9
Multi-stratum PWB Designs

Multi-component Chip Package Designs

Test Applications & Validation

Chapter 5
KCM Framework Overview
Requirements & Use Cases

This Chapter

 
Figure 8.1: Behavior Model Formulation Method – focus of this chapter 

8.1 Overview 
The Behavior Model Formulation Method (BMFM) prescribes a model 

transformation process for creating behavior model structures. By definition, a model 

transformation process transforms a source model that confirms to a source meta-model (or 

schema) to a target model that confirms to a target meta-model (or schema). As shown in 
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the schematic of a model transformation in Figure 8.2 (Czarnecki and Helsen 2006), there 

are six key elements of a model transformation process: 

 Source meta-model defines constructs and relationships for defining source models. 

 Target meta-model defines constructs and relationships for defining target models. 

 Source model is the input to the model transformation process, and conforms to the 

source meta-model. 

 Target model is the output of the model transformation process, and conforms to the 

target meta-model. 

 Transformation definition formally states the model transformation process. A 

transformation definition mainly states: (a) types of entities and relationships in the 

source model that are of concern or to be transformed to create a target model, (b) 

transformations that will be executed on these types of source model entities and 

relationships, and (c) order of execution of transformations. Since a transformation 

definition is stated in terms of the types of entities and relationships, it refers to the source 

and target meta-models that define these types. 

 Transformation engine is the software that executes the transformation definition on the 

source model to create a target model. 

Figure 8.2: Schematic of a model transformation (Czarnecki and Helsen 2006) 

Figure 8.3 illustrates the schematics of the model transformation process realized by 

the BMFM resulting in the automated creation of behavior model structures and simulation 

templates. Typically model transformations are achieved by creating a target model 

different from the source model, or by changing the source model itself (in-place 

transformation). The model transformation process prescribed by the BMFM is an in-place 

transformation where the source model is not modified but instead additional models are 

composed and related to the source model. Thus the target model is composed of the source 

model and new models. This is so because the target model of the BMFM’s model 

transformation process is a simulation template that relates an artifact’s design model 
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structure and its behavior model structure; the source model of the BMFM’s model 

transformation process is an artifact’s design model structure. In essence, the model 

transformation process prescribed by BMFM is a model building process. During the model 

transformation process, an artifact’s behavior model structure is created and related to the 

design model structure, thereby creating a simulation template. While Figure 8.3  illustrates 

the source and target meta-models and models in the context of BMFM’s model 

transformation process, Figure 8.5 illustrates the source and target meta-models and models 

in the design and behavior model stack (sections 6.2 and 7.4). 

The six key elements of BMFM’s model transformation process are as follows: 

 Source meta-model: The source meta-model of BMFM’s model transformation process is 

a VTMB Artifact-specific Meta-Model—D3 model in the design model stack. As shown 

in Figure 8.5, this meta-model defines the constructs and relationships for representing 

design and analyzable design model structures of a family of artifacts with different 

assembly system topologies, such as a family of multi-stratum printed circuit boards.  

 

 Target meta-model: The target meta-model of BMFM’s model transformation process is 

the combined VTMB Artifact-specific Meta-Model (D3) and VTMB Artifact Behavior 

Meta-Model (B3). As shown in Figure 8.5, this meta-model is used for representing 

simulation templates for a specific type of analysis for a family of VTMB artifacts. 

 

 Source model: The source model of BMFM’s model transformation process is an FTMB 

Artifact Model Structure (D4) defined as an instance of the VTMB Artifact Meta-Model 
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Figure 8.3: Schematic of KCM’s Behavior Model Formulation Method (BMFM) 
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(source meta-model). A D4 model represents a family of fixed topology design 

alternatives, and it consists of the design and analyzable design model structures (Figure 

8.4) for these FTMB design alternatives, such as 5-stratum printed circuit boards.  

 
Figure 8.4: Detailed view of the source and target models in BMFM  

 Target model: The target model of BMFM’s model transformation process is a simulation 

template that relates a FTMB artifact model structure to a FTMB behavior model 

structure. As shown in the detailed view in Figure 8.4, the simulation template uses the 

behavior model context to relate an ABB system and the analyzable design model 

structure. As presented in Chapter 7, a behavior model context and an ABB system 

together define an artifact behavior model structure.  
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Figure 8.5: Source and target meta-models and models in BMFM - design and behavior model stack view 
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A FTMB design and analyzable design model structures (source model) are defined as 

instances of the VTMB Artifact-specific Meta-Model (CPM2_xKCM), and the FTMB 

behavior model structure is created as an instance of the VTMB Artifact Behavior Meta-

Model (CBM). Note that D3 and B3 models are specializations of D1 and B1 models 

respectively. Thus, the concepts in D1 and B1 may be used as-is or specialized for 

specific types of artifacts and specific analysis in D3 and B3 respectively. The target 

meta-model (B3) consists of entities defined in the Core Behavior Model (B1)—

especially the definition of behavior model, ABB system, and behavior model context—

and the ABB models selected for the specific types of analysis.  

 

 Transformation definition and Transformation process: In the BMFM, the transformation 

definition and process are separate. This allows one to define reusable transformations 

that can be used by one or more transformation processes. The transformation definitions 

are building blocks of transformations while the transformation process defines the order 

in which these transformations are to be executed on the source model. All 

transformation definitions are stored in a library of model transformations, named 

Artifact Model Transformation Library. The transformation process is known as the 

Behavior Model Formulation Specifications, and it constitutes the behavior idealization 

decisions taken by analysts. The BMFS is defined in terms of the source and target meta-

models, and prescribes the specific transformations from the Artifact Model 

Transformation Library that will be executed and the order of execution. The BMFS 

consists of conceptual specifications—idealization decisions—that may be compiled into 

computable specifications—a set of transformation engine-interpretable instructions that 

are defined in terms of the pre-existing transformations in the Artifact Model 

Transformation Library, and are executed by the transformation engine to create the 

target model. 

 

 Transformation Engine: The model transformation process in the BMFM is realized 

using graph transformations where the source and target meta-models and models are 

abstracted as graphs and the transformations are abstracted as graph transformations. 

Hence, BMFM uses a graph transformation engine for model transformations. The 
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VIATRA graph transformation engine (VIATRA 2007) is used for test cases 

demonstrated in this dissertation. 

As shown in Figure 8.3, BMFM’s model transformation process is realized in the following 

manner: 

 The source and target meta-models are defined once for a family of VTMB artifacts (such 

as printed circuit boards) and for a family of analyses (such as thermo-mechanical 

analyses). 

 For a particular analysis, such as warpage analysis, analysts provide Behavior Model 

Formulation Specifications (say BMFSa). 

 The source models are defined by designers and are typically derived from parameterized 

CAD models. A designer may provided a set of FTMB artifact model structures (say 

FTMB artifact model structure i, FTMB artifact model structure j, and so on) 

 During the model transformation process—as illustrated in Figure 8.3 and Figure 8.4—

the transformation engine reads a FTMB Artifact Model Structure (say FTMB artifact 

model structurei) and executes a Behavior Model Formulation Specification (say BMFSa) 

to automatically create a simulation template (say Simulation Templateia that is composed 

of FTMB Artifact Model Structurei and Behavior Model Structureia). For the same BMFS 

(say BMFSa), the transformation engine can read several FTMB Artifact Model 

Structures (say FTMB Artifact Model Structurei,, FTMB Artifact Model Structurej, and 

so on) and create corresponding simulation templates (say Simulation Templateia, 

Simulation Templateja, and so on). Also, for the same FTMB Artifact Model Structure 

(say FTMB Artifact Model Structurei), analysts may provide alternate idealizations (say 

BMFSb) and automatically create a simulation template (say Simulation Templateib). As 

shown in Figure 8.4, that model transformation process results in creating a behavior 

model structure and relating it to an analyzable design model structure via behavior 

model context entity.  

The core advantage of BMFM’s model transformation process is to use the same 

BMFS to transform variable topology analyzable design model structures to create 

corresponding simulation templates. As an example, Figure 8.6 illustrates how the model 

transformation process will be realized for creating simulation templates for thermo-

mechanical analysis of multi-layered printed circuit boards. A BMFS created by analysts for 
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thermo-mechanical analyses (say Thermo-mechanical BMFS layer-shell) will be executed by 

the transformation engine on 5-, 6-, 7-layered analyzable PCB model structures (variable 

topology design alternatives) to create thermo-mechanical simulation templates for 5-, 6-, 

and 7-layered PCBs. Each simulation template for thermo-mechanical analysis of n-layered 

PCB will be composed of n-layered analyzable PCB model structure and n-layered 

laminated shell behavior model structure16. In this case, Thermo-mechanical BMFS layer-shell 

represents the behavior idealizations—to idealize each layer in the PCB as a shell and to 

idealize an n-layered PCB as an n-layered laminated shell. 

Figure 8.6: Example schematic of KCM’s Behavior Model Formulation Method applied to VTMB problems 

The Behavior Model Formulation Method addresses VTMB problems because for 

different desing model structures—each of which represents a set of design alternatives with 

equivalent assembly system topologies—behavior model structures and simulation 

templates can automatically be created for the same Behavior Model Formulation 

Specifications. Additionally, behavior model structures and simulation templates can also 

be automatically created for different Behavior Model Formulation Specifications and for a 

given design model structure. The Behavior Model Formulation Method address all types of 

variations in assembly system topology—number and types of components, features, and 

interactions—of design alternatives as described in section 2.3. Automated adaptation of 

simulation templates based on simulation results, as described in ST_Change_Type_3 

(section 2.2.2.2), is not demonstrated in the version of the Knowledge Composition 

Methodology presented in this research, and is recommended for future research. However, 

the meta-models and formalisms used in the KCM are positioned to address this use case. In 

the version of KCM presented in this dissertation, analysts may automatically re-formulate 

                                                 
16 assuming that  layers are preserved and not ignored in the idealization specified in BMFS 
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simulation templates by varying the Behavior Model Formulation Specifications to reflect 

the new knowledge gained from simulation results.  

... ...  
Figure 8.7: Schematic for the execution of simulation templates 

Figure 8.7 illustrates the schematic for the execution of simulation templates. 

Simulation templates formulated at D4-B4 level using BMFM’s model transformation 

approach can be executed in two scenarios—design verification scenario and design 

synthesis scenario. In the design verification scenario, design alternatives (D5) with 

equivalent assembly system topologies are input to a simulation template and corresponding 

behavior model instances (B5) are formulated. These behavior model instances can then be 

solved using a specific solution methods and solvers. Note that the primary focus of the 

KCM is to formulate behavior models independent of a solution method and solver. 

However, the model transformation approach can be easily extended to include solution 

method- and solver-specific behavior model structures in simulation templates. For 

example, a FEA behavior model structure could be included in simulation templates—

associated with the FTMB Artifact Behavior Model Structureia—that specifies the element 

types and mesh specifications for analysis bodies and their interactions. The design 

synthesis scenario represents the use case where analysts may perform optimization of the 

analysis body system (represented in a behavior model structure), and intend to update the 

design model accordingly. In such a scenario, the optimized behavior model instance is 

input to a simulation template and the corresponding design model instance is formulated. 

Note that the execution of simulation templates in the design synthesis scenario depends on 

the nature of mathematical relationships embodied in simulation templates—causal versus 

non-causal relationships. While the fomer can be executed for different causalities, the latter 
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may require the use of specialized numerical techniques and in some cases may not be 

pragmatic to solve. 

8.2 Composing Behavior Model Structures and Simulation 

Templates  
Given that simulation templates are automatically created from analyzable artifact 

design model structures and behavior model formulation specifications provided by 

analysts, it is necessary to understand the different stages of model transformations during 

this process. This process of model transformation is realized by composing a behavior 

model structure from analysis building blocks provided by the KCM (Chapter 7), and 

composing a simulation template from the behavior model structure and design model 

structure. This composition process is realized in four stages that are described in section 

8.2.1. In each stage a specific type of composition is achieved, both for creating behavior 

model structure and simulation template. In section 8.2.2, the semantics of composing 

behavior model structures and simulation templates is described. Semantically, the process 

of composing a behavior model structure and simulation template is a process of deriving 

equations relating the behavior parameters to the design parameters, and the building blocks 

of the composition process represent pre-defined equations representing domain theoretic 

concepts that are used during this derivation. In section 8.2.3, the mechanics of the 

composition process is presented in terms of graph transformations that are the theoretical 

foundation of the composition process. 

8.2.1 Stages of composition 
The model transformation process prescribed by the Behavior Model Formulation 

Method is a four-stage composition process. Figure 8.8 illustrates these four stages of 

compositions that occur when a FTMB behavior model structure and simulation template 

(target model) are created from an FTMB analyzable artifact model structure (source 

model). The figure shows the source and target models in these four stages of composition. 

The source model is a FTMB analyzable artifact model that represents an idealized design 

for analysis purposes. The target model is a FTMB simulate template that includes the 

source model and a FTMB behavior model structure. Thus, the model transformation 

process is “in-effect” a model building process that is realized in four stages. During these 
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four stages, the source model is not changed but target model entities are created that relate 

to the source model. The four stages are as described below: 

 

 Stage 1 composition: Composing analysis bodies and their relationships to analyzable 

artifacts 

In this composition stage, analysis bodies and their relationships to analyzable 

artifacts are composed from their respective building blocks based on the Behavior Model 

Formulation Specifications provided by analysts. As shown in Figure 8.8 and described in 

the ABB Meta-Model and Core Behavior Model, the building blocks of an analysis body 

are its features, shape, material behavior, and behavior; and the building blocks of the 

relationship between an analysis body and an analyzable artifact are relationships between 

their shapes, material behaviors, and features. The end products of Stage 1 composition are 

(a) analysis bodies represented as instances of Analysis_Body_ABB17), and (b) relationship 

between analysis bodies and analyzable artifacts, represented as instances of 

Analyzable_Artifact_ABS_Relationship (see Core Behavior Model for details). 

Figure 8.9 illustrates a planar shell analysis body and its relationship to the 

corresponding analyzable PCB stratum, created at the end of a Stage 1 composition process. 

The figure is abstracted from the example described in section 7.4.2 where a FTMB (5-

shell) thermo-mechanical behavior model structure is created for FTMB (5-stratum) printed 

circuit boards. The figure shows a composed analysis body and its relationship with an 

analyzable artifact for a single stratum in the analyzable PCB model. 

                                                 
17 Note that only the property attribute of an ABB is instantiated; the other three attributes (context, application conditions, 

and transformations) are static. 
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Stage 4

Stage 3

Stage 2

Stage 1

Source Model

Target Model

 
Figure 8.8: Stages of composing simulation templates using BMFM 

The same structure is repeated for other stratums in the analyzable PCB. In this example, 

instances of material behavior ABB (LEOTI_1), shape ABB (PS1_Shape), and analysis 

feature ABB (PS1_PrimSurf and PS1_SecSurf) are created and associated with an instance of 

analysis body ABB (PS1). In addition, an instance of Shape_Shape_Relationship (SS1), an 

instance of Material_Behavior_Material_Behavior_Relationship (MBR1), and two instances of 

Analyzable_Feature_Analysis_Feature_Relationship (AStrat_PShell_1_Prim_Rel and 

AStrat_PShell_2_Sec_Rel) are created, associated with corresponding entities of the 
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analyzable stratum and planar shell analysis body, and associated with an instance of 

Analyzable_Artifact_ABS_Relationship (AStrat_PShell1_Rel). Note that instances of 

specialized ABBs are created during this composition process but for brevity only the 

parent ABBs are mentioned here. For example, PS1 is an instance of planar shell analysis 

body ABB which is a special type of analysis body ABB. 

Analysis bodyRelationship between analysis body 
and analyzable artifact

Analyzable Artifact

...similar structure created for other planar shell analysis bodies 
and analyzable stratums  

Figure 8.9: Stage 1 Composition: Composing an analysis body and its relationship with 

 analyzable artifacts 

Also note that the specialized pre-defined analysis body ABB instantiated here has 

attributes whose types restricts the shape, feature, and material behavior ABB instances that 

can be associated with it. For example, the Planar Shell Analysis Body ABB has a shape 

attribute of type Planar Shell Shape. This allows only instances of Planar Shell Shape to be 

associated with instances of Planar Shell Analysis Body ABB.  
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 Stage 2 composition: Composing analysis body systems and their relationships to 

analyzable artifacts 

In this composition stage, analysis body systems and their relationships to 

analyzable artifacts are composed from their respective building blocks based on the 

Behavior Model Formulation Specifications provided by analysts. As shown in Figure 8.8 

and described in the ABB Meta-Model and Core Behavior Model, the building blocks of an 

analysis body system are its features, constituent analysis bodies and analysis body systems, 

and interactions between constituent analysis bodies; and the building blocks of the 

relationship between an analysis body system and an analyzable artifact are relationships 

between their shapes, material behaviors, features, and their interactions. The end products 

of Stage 2 composition are (a) analysis body systems represented as instances of 

Analysis_Body_System_ABB), and (b) relationship between analysis body systems and 

analyzable artifacts, represented as instances of Analyzable_Artifact_ABS_Relationship (see 

Core Behavior Model for details). 

Figure 8.10 illustrates a laminated shell analysis body system and its relationship to 

the corresponding analyzable PCB, created at the end of a Stage 2 composition process. The 

figure is abstracted from the example described in section 7.4.2 where a FTMB (5-shell) 

thermo-mechanical behavior model structure is created for FTMB (5-stratum) printed 

circuit boards. The figure shows a composed analysis body system and its relationship with 

an analyzable artifact. For brevity, only one out of five constituent analysis bodies and one 

out of four analysis body interactions are shown for the subject analysis body system. In this 

example, instances of analysis body ABBs (PS1,PS2,…,PS5) created in Stage 1 and analysis 

body interaction ABBs (PS1_PS2_Tie,…,PS4_PS5_Tie) created in Stage 2 are associated 

with an instance of analysis body system ABB (LamShell_5Sx_ABSys) created in Stage 

2. In addition, 5 instances of Analyzable_Artifact_Analysis_Body_Relationship 

(AStrat_PShell1_Rel,…,AStrat_PShell5_Rel) created in Stage 1, and four instances of   

Analyzable_Feature_Analysis_Feature_Interface_Relationship 

(AStrat_ShellTie_12_Interaction_Rel,…,AStrat_ShellTie_45_Interaction_Rel) created in 

Stage 2 are associated with an instance of Analyzable_Artifact_ABS_Relationship 

(APCB_LamShell_5Sx_Rel) created during Stage 2. In this example, the analysis body 

system does not constitute other analysis body systems (sub-systems). Semantically, in this 
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composition, a laminated shell analysis body system is being composed from the individual 

shell bodies and the tie interactions among the adjacent shell bodies in the stackup. In 

addition, a relationship between the laminated shell system and the PCB is being composed 

from (a) relationships between shell bodies and corresponding idealized stratums on a PCB, 

and (b) relationships between shell tie interactions and corresponding interfaces between 

PCB stratums. 

Figure 8.10: Stage 2 Composition: Composing an analysis body system and its relationship with analyzable 

artifact 

Note that Stage 2 composition is more intuitive that other stages as it is similar to 

composition of physical systems where assemblies are composed from parts and the 

interactions among parts. Composition in KCM is the composition of models that may or 

may not represent systems that are similar to physical systems. For example, composing an 

analysis body from its attributes such as shape, features, and material behavior is not 

intuitively similar to composing a physical system. 
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 Stage 3 composition: Composing a behavior model ABB system and behavior model 

context 

In this composition stage, a behavior model ABB system and a behavior model 

context—relates ABB system to analyzable artifact—are composed from their respective 

building blocks. As described in the Core Behavior Model, a behavior model ABB system 

represents the behavior model structure of an analysis body system and a behavior model 

context is relates the analysis body system to the analyzable artifact. As shown in Figure 8.8 

and described in the ABB Meta-Model and Core Behavior Model, the building blocks of a 

behavior model ABB system are its analysis body system, applied loads, applied behavior 

conditions, and the set of idealized behaviors that it represents; and the building block of 

behavior model context is the relationship between the analysis body system in the behavior 

model ABB and the corresponding analyzable artifact. The end products of Stage 3 

composition are (a) behavior model ABB system represented as an instance of 

Behavior_Model_ABBSys, and (b) behavior mode context represented as an instance of 

Behavior_Model_XContext. 

 Figure 8.11 (a and b) illustrate a behavior model ABB system and a behavior model 

context model respectively, created at the end of Stage 3 composition process. The figure is 

abstracted from the example described in section 7.4.2 where a FTMB (5-shell) thermo-

mechanical behavior model structure is created for a FTMB (5-stratum) printed circuit 

boards. In this example, an instance of analysis body system created in Stage 2, instance of 

temperature load ABB (UniformTempLoad_T1T2) created in Stage 3, instance of point 

a. Composing behavior model ABB system b. Composing behavior model context 

Figure 8.11: Stage 3 Composition: Composing behavior model ABB system and behavior model context 
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displacement fixed boundary condition ABB (LamShellCornerVertexFixed) created in Stage 

3, and instance of structural behavior ABB (LamShell_5Sx_Behavior) created in Stage 3 are 

associated with an instance of behavior model ABB system (LamShell_5Sx_Thermo-

Mech_ABB_System) created in Stage 3. Semantically, in this composition, a behavior model 

ABB system is being composed from the laminated shell analysis body system, uniform 

temperature load, point displacement fixed boundary condition, and structural behavior 

parameters and relations. The behavior model context relates the laminated shell analysis 

body system and the analyzable PCB (idealized PCB design for analysis purposes). 

 

 Stage 4 composition: Composing behavior model structure and simulation template 

In this composition stage, a behavior model structure is composed from a behavior 

model ABB system and a behavior model context as shown in Figure 8.8. The end product 

of Stage 4 composition is a FTMB behavior model structure represented as an instance of 

Behavior_Model. Figure 8.12 illustrates a FTMB thermo-mechanical behavior model 

structure (PCB-LamShell_5Sx_ThermoMech_BM) that is composed in this stage from a 

FTMB behavior model ABB (APCB_LamShell_5Sx_Context) and a behavior model context 

(LamShell_5Sx_Thermo-Mech_ABB_System) composed in Stage 3.  

Figure 8.12: Stage 4 Composition: Behavior model structure view 

Note that a behavior model is also the root entity (or the central entity) of a simulation 

template. This is so because a behavior model is composed of behavior model context—

represented by Behavior_Model_XContext block—that relates the analysis body system in 
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the ABB system to an analyzable artifact. Note that in composing a FTMB behavior model 

structure, the simulation template is also composed. Figure 8.13 illustrates the thermo-

mechanical behavior simulation template that shows the analyzable artifact (APCB_5Sx) 

associated with the behavior model context (APCB_LamShell_5Sx_Rel) entity.  

Figure 8.13: Stage 4 Composition: Simulation template view 

The four composition stages defined here represent the following two specific 

characteristics of BMFM’s model transformation process: (a) types of composition, and (b) 

the dependency relation between the types of composition. For example, the Stage 2 

composition depends on Stage 1 composition. However, the dependency does not imply that 

the Stage 1 composition must be completed for all analysis bodies before Stage 2 

composition may be initialized, or Stage 2 composition must be completed before Stage 3 

composition. Thus, the composition process in different stages may be initialized and run in 

parallel, although the Stagei+1 process cannot finish until Stagei process has finished.  

8.2.2 Semantics of composition 
The process of composing simulation templates is similar to the process of deriving 

behavior relations for a given analysis problem, where behavior relations are analytical 

formulations of simulation templates—relating design parameters to behavior parameters. 

In this section, BMFM’s model composition process and the traditional process of deriving 

behavior relations are compared to each other. The intent of this comparison is to establish 

that the model-based composition of simulation templates is a more formal and structured 

approach to formulating behavior models, and is fundamentally similar to deriving behavior 

relations by “assembling” domain theoretic concepts to solve analysis problems.  
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Figure 8.14 illustrates the comparison between the traditional process of deriving 

behavior relations and the process of composing behavior model structure. The example 

illustrated in the figure concerns formulating a behavior model structure to compute the 

axial deformation of a system of two prismatic bars tied together, with one end of a bar held 

fixed and a static force is applied at one end of the other bar. The figure shows both the 

process of deriving behavior relations on the left side, and the behavior model structure (as 

would be composed using the Behavior Model Formulation Method). The steps in the 

derivation process and composition process are marked from 1-8. In this comparison, the 

idealized design model and its relationships to the analysis bodies/system are not shown—

only the ABB system is shown for the behavior model structure.  

Figure 8.14: Semantics of composition  
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All ABBs used for composing the behavior model structure are shown in the ABB library in 

the figure. Only the property attribute of ABBs is shown (e.g. Prismatic_Bar_Property block 

that is the type of Prismatic_Bar_ABB.property block). 

Steps 1-5 concern the decisions take by analysts and steps 6-8 involve the 

formulation and assembly of equations for this analysis problem. In step 1, a decision is 

taken to idealize the behavior of a 2-bar idealized design (or idealized design) as the 

behavior of a system of two prismatic bars with circular cross-sections and tied end to end. 

Here, the axial deformation behavior is being studied in particular. This decision 

corresponds to the instantiation of two prismatic bar analysis body ABBs (Bar1 and Bar2) 

along with the instantiation of two prismatic shape ABBs (Bar1_Shape and Bar2_Shape) 

that represent the shape of the two prismatic bars, bar end analysis feature ABBs (Bar1-

EndA, Bar1-EndB, Bar2-EndA, Bar2-EndB) that represent the end points of prismatic bars, 

and axial deformation behavior ABBs (behavior_bar_1 and behavior_bar_2) that represent 

the behavior parameters to be computed for bar 1 and 2. The tag marked “1” attached to 

behavior model structure entities (such as Bar1 and Bar2) indicates that these entities are 

created in step 1. In step 2, a decision is taken to idealize the interaction between the two 

analysis bars as tied interaction—deformation behavior parameters at Bar1-EndB and Bar2-

EndA are equated. In step 3, the constitutive material behavior of both the prismatic bars is 

idealized as homogenous linear elastic and isotropic. This corresponds to the instantiation of 

linear elastic isotropic temperature18 independent material behavior ABB 

(Bar1_Material_Behavior and Bar2_Material_Behavior). In step 4, a decision is taken to 

idealize load as static force acting at end B of Bar 2, at the center of the cross section of end 

B, and in step 5, a decision is taken to assume that end A of Bar 1 is fixed. These decisions 

correspond to the instantiation of a static force ABB (Bar2_endB_Force) and point 

displacement fixed boundary condition ABB (Bar1_endA_Fixed).  

Steps 6-8 correspond to the formulation and assembly of behavior relations. 

Behavior relations are formulated based on: (a) Equilibrium equation shown in step 6, (b) 

Strain definition relation (or displacement relation) as shown in step 7, and (c) Hooke’s law 

material behavior equation shown in step 3. Then, these equations are assembled to define 

                                                 
18 The temperature independence aspect does not concern the subject analysis problem (since it is not a thermal or thermo-

mechanical problem). 
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deformation behavior of bar 1 and bar 2 as shown in step 8. The formulated equations can 

be represented as mathematical relations in behavior_bar_1 and behavior_bar_2 entities (for 

the deformation of each bar) and in 2-bar-system (for the overall deformation of the two bar 

system).  

The assumption decisions made during the derivation process are representative of 

the selection of ABBs from the ABB library. Each ABB (property) represents the 

parameters and relations for that ABB, such as the relation between Young’s Modulus, 

Shear Modulus, and Poisson’s ratio for the case of linear elastic isotropic temperature 

independent material behavior ABB shown in the figure. Similarly, the point displacement 

fixed behavior condition ABB represents the displacement parameters and the constraint 

equations, such as ux=0, uy=0 and so on.  

As in the derivation process, the decisions taken during a step in the model 

composition process may or may not constrain the choices available for the decisions taken 

at the next step. For example, the material behavior idealization decision is independent of 

the analysis body type and shapes (prismatic bar and prismatic shape) and it is also 

independent of the interaction behavior at the interface of the two bars. Similarly, the 

interaction behavior is independent of the material behavior of the two bars and the analysis 

body type and shape. However, just as in the case of the derivation process, some decisions 

may constraint the subsequent decisions. For example, the decision to idealize the behavior 

of the designed artifact as a prismatic bar constrains the analysis features and type of shape 

that can be associated with the bar. In the model composition process, it implies that 

instances of only specific type of analysis feature ABBs and shape ABBs may be associated 

with the instances of the analysis feature ABB. A prismatic bar by definition has two end 

points that are modeled as point features and a prismatic shape associated with it. These 

constraints are reflected in the definition of the prismatic bar ABB and hence automatically 

handled during the behavior model composition process. Note that 

Prismatic_Bar_Property.shape is of type Prismatic_Shape; and 

Prismatic_Bar_Property.endA_feature and Prismatic_Bar_Property.endB_feature represent 

the two end features of a prismatic bar and are of type 

Bar_EndPoint_Analysis_Feature_Property that represents end point feature of a bar. 
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Note that the domain theoretic principles such as Equilibrium equations, Stress and 

Strain definitions are not explicitly shown in the behavior model structure in the figure 

above. They can be represented as behavior relations associated with the 2-bar analysis 

body system. However, for most multi-body problems, analytical formulations of the 

system-level behavior relations are not available. Numerical solution techniques need to be 

employed to solve the problems, such as FEA methods. Most numerical solvers, such as 

FEA solvers like ABAQUS and ANSYS are “computationally-aware” of the domain 

theoretic principles such as Equilibrium equations and Hook’s Law. Thus, behavior model 

structures formulated from physics-based principles need to “refer” to the specific 

principles when transforming ABB systems to solution method models (as prescribed by the 

MRA simulation template pattern) and not necessarily “represent” the mathematical 

relationships embodied in these principles. For example, the details of analytical plate 

theory formulations (Timoshenko and Goodier 1970) may not be necessarily represented in 

the plate analysis body ABB though the latter may refer to such formulations for the sake of 

completeness. Albeit, the ABB Meta-Model provides mechanisms to represent such 

formulations as required, such as Behavior_Property.behavior_parameter_relations for 

behavior ABBs, and Material_Behavior_Property.mb_parameters_relations for material 

behavior ABBs, and load_distribution_function for load ABBs, and so on. 

 

8.2.3 Mechanics of composition 
As described in the previous sections, the model transformation process prescribed 

by the Behavior Model Formulation Method is one where behavior model structures and 

simulation templates are composed19 in four stages. In this section, the mechanics of this 

composition process is described. The key computation elements necessary for achieving 

the composition are described. Figure 8.15 illustrates these computation elements in the 

backdrop of the schematic of Behavior Model Formulation Method, as described in section 

8.1. The model transformation process is computationally realized as graph transformations. 

The source and target models are represented as graphs and a graph transformation engine 

creates a target graph for a given source graph. The transformation definitions in the 

                                                 
19 Here, model composition is regarded as a special type of model transformation. 
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Artifact Model Transformation Library are represented as graph transformation patterns and 

rules, and the transformation process defined by the Behavior Model Formulation 

Specifications is represented as a graph transformation process. 

Source graphs Target graphs

GT patterns and rules library
GT specifications

GT engine

Graph schemataGraph schemata

GT = Graph Transformation

 
Figure 8.15: BMFM’s model transformation process realized as graph transformations (GT) 

 

Source and Target graphs 

A graph G = (V, E) consists of two sets V and E where: 

 elements of V are known as vertices (or nodes)  

 elements of E are known as edges  

 an edge has 1-2 vertices20 associated with it (called its end points)  

(Gross and Yellen 2003) 

The source and target graphs in the Behavior Model Formulation Method are directed, 

labeled, attributed, and typed graphs (Gross and Yellen 2003), and represented using 

SysML. In general, labeled, attribute, typed graphs can be thought as formal representations 

of class models (Andries, Engels et al. 1999; Czarnecki and Helsen 2006). SysML structure 

models are extensions of UML 2 class models. The nodes in the source and target graphs 

are represented using SysML instance specifications, and the edges are represented by 

instance slots. Specifically, the source and target graph are: 

 directed graphs because slots owned by an instance have values that refer to other 

instances. Instances owning slots or populating slots are abstracted as graph nodes, and 

                                                 
20 The source and target graphs in this dissertation are not hypergraphs 
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slots are abstracted as graph edges directed from nodes corresponding to instances 

owning slots to nodes corresponding to instances populating slots.  

 labeled graphs because all instances and slots have names. In addition, the names are 

unique with a given namespace. 

 typed graphs because instance and slots have types (also known as classifiers). Instances 

used for populating slots must be of the same type (or subtype) as the slot type. 

 attributed graphs because slots are attributes of instances. Slots may be of complex type 

(objects) or primitive type (such as integer and boolean). 

The source and target meta-models in the Behavior Model Formulation Method are 

formalized as SysML-based structure models with different views, such as block definition 

diagrams, internal block diagrams, and parametric diagrams. In essence, the source and 

target meta-models are like graph schemata (Ehrig, Engels et al. 1999) for the source and 

target models (graphs). The nodes in the source and target meta-models (graph schemata) 

are represented as SysML blocks, and the edges are represented as block properties—part 

properties, reference properties, and constraint properties. Constraint blocks (classifier for 

constraint properties) are a special type of block. Other types of edges in the source and 

target meta-model include generalization relationships between blocks.  

Figure 8.16 illustrates the source and target meta-model, and a source model for an 

Artifact transformation example in both traditional graph notation and in SysML notation—

nodes shown as SysML blocks/instances and edges shown as associations/slot references. 

Figure 8.16a shows the source and target meta-model (same in this case) that represent three 

blocks—Artifact, Form, and Function, and the relationships between them. From a graph-

schemata perspective, the blocks correspond to node types and the association relationships 

correspond to edge types. Thus, Figure 8.16a shows that source and target graphs 

instantiated from this graph schemata can have three types of labeled nodes (Artifact, Form, 

and Function) and two types of edges (hasForm, hasFunction) that originate from Artifact 

node and end in Form node and Function node respectively. These edges are also attributes 

of Artifact node, as Artifact.hasForm and Artifact.hasFunction respectively. Figure 8.16b 

shows a source graph that is an instance of the schemata shown in Figure 8.16a. The figure 

shows that the source graph has four nodes of type Artifact, two nodes of type Form, and 

three nodes of type Function. In addition, the edges between these nodes are also shown 
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(though not labeled). The edges are also represented as attributes of each node. For 

example, the edge from A1 to F1 is represented as value of the attribute A1.hasForm.  

Note that although the edges in the source graph are not shown21 as un-directed, they are 

directed. This is evident from the fact that the attributes hasForm and hasFunction are 

owned by Artifact. Thus the edges originate from Artifact instance nodes and end in Form 

and Function instance nodes respectively. 

 

Graph patterns 

Graph patterns represent conditions or constraints in a declarative manner, defined on 

graphs. Patterns are matched against a graph to check if they satisfy the conditions 

represented by patterns (Varro and Balogh 2007; VIATRA 2007). Fundamentally, pattern 

matching is a process of finding the occurrence of the graph pattern in a given graph, G. If a 

                                                 
21 SysML instance specification does not represent the directed edges between instance entities (instance specifications). 

  

a. Source and target graph schemata (traditional graph notation and SysML model notation) 
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b. Source graph (traditional graph notation and SysML model notation) 

Figure 8.16: Source and target graph schemata and a source graph – Artifact transformation example 
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graph L is a subgraph of G, it is denoted as L ⊆ G and it implies that the (a) nodes and 

edges of L are subsets of the nodes and edges of G, (b) source and target mapping for each 

edge in L coincide with the source and target mappings for each edge in G, and (c) labels of 

nodes and edges in L coincide with labels of nodes and edges in G (Andries, Engels et al. 

1999).  

The occurrence of a graph pattern L in a graph G is denoted as occ: L  G and implies that 

(a) there is a mapping which maps the nodes, edges, and labels of L to the nodes, edges and 

labels in G, (b) for each edge e in L the source of the image of e in G coincides with the 

image of the source of e in G and the target of the image of e in G coincides with the image 

of the target of e in G, and (c) for all nodes and edges in L, the label of their images in G 

coincide with the label of x (Andries, Engels et al. 1999). A bijective mapping is one where 

(a) each node and edge in L maps to a distinct node and edge in G—injective condition, and 

(b) all nodes and edges in G have atleast one corresponding node and edge in L—onto 

condition. If the mapping is bijective, then L and G are isomorphic. In Figure 8.17 above, 

graph L is a sub-graph of G and has an occurrence in H.  

It is known that for the graph pattern matching problem, also known as the sub-

graph isomorphism problem, the number of tests that need to be performed to check if a 

pattern with n nodes matches to a sub-graph in a graph with m nodes requires O(mn) tests in 

the worst case (Valiente and Martinez 1997). Research efforts in the past have improved the 

performance of graph pattern matching algorithms for specific types of graphs. All patterns 

defined in the Behavior Model Formulation Method (section 8.4) are defined for each type 

of relationship in the meta-models (CPM2_xKCM and CBM). Hence, all patterns have two 

nodes. Even for a source graph with large number of nodes, this approach restricts the 

 

Figure 8.17: Graph L is a subgraph of G and has an occurrence in H (Andries, Engels et al. 1999) 
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number of tests that need to be performed in the worst case. In addition, all graph 

transformation rules defined in the Behavior Model Formulation reuse patterns.  

The Behavior Model Formulation Method leverages the VIATRA Textual 

Command Language (VTCL) to define graph patterns. Figure 8.18 shows a graph pattern 

(artifact_and_form) for the Artifact transformation example described using VTCL. The 

pattern checks if there exists a relationship between an artifact and a form. As it can be 

seen, the pattern has three arguments A, F, and Model_Space that will be bound to nodes in 

the source graph. The Model_Space argument is used to define the scope of the source 

model—specifically the package where the source model exists. 

It is not stated if the arguments are inputs or outputs of the pattern thus making the pattern 

definition declarative. Thus, the pattern can be used to check for the following conditions or 

provide the following matches of interest: 

 If variable A is bound to an artifact instance (node), the pattern can be used to find the 

form instance (node) associated with that artifact in the model space. 

 If the variable F is bound to a form instance (node), the same pattern can be used to find 

all artifact instances (nodes) that have the subject form. 

 If arguments A and F are bound to an artifact instance and a form instance respectively, 

the pattern can check if they are associated. 

 If none of the arguments are bound to any instances, the pattern can be used to find all 

Artifact and Form instance pairs that are associated with each other. 

Thus, a single graph pattern can be used to realize multiple queries and check for 

conditions. Typically, it would have taken four conditional statements (IF-ELSE) to realize 

the four use cases above in a procedural language (such as C, C++, or Java).  

 In the example above, the artifact_and_form pattern checks for structural conditions 

only—if two nodes and the relationship between them exist. Patterns can also be used to 

 
Figure 8.18: An example graph pattern represented in VTCL 
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represent conditions that require checking specific attribute values of matched nodes. For 

example, patterns may be defined to check if the name, id, or other attribute values match a 

given value. In addition, patterns can call other functions that may be required to derive 

certain properties before checking them against a given value. For example, given a 

rectangle with length and breadth attribute values, a pattern can call a function to compute 

the area of a rectangle and check against a given value (equal, greater, or less).  

To summarize the characteristics and the use cases of graph patterns: 

 Graph patterns can be defined to check for structural conditions, such as if a node or an 

edge in the model graph is of a specific type. Examples of these types of conditions are 

illustrated in the example above. 

 Graph pattern can also be used to check for conditions defined in terms of the attributes 

values of nodes in a model graph. For example, the check keyword in VIATRA allows 

for defining conditions that return a boolean value (true/false). 

 Graph patterns can call each other using the find keyword. The condition in the caller 

pattern is satisfied only if the condition in the called pattern is satisfied and the local 

constructs in the caller patter are satisfied. Patterns can call themselves if certain 

conditions are satisfied, thus allowing for defining recursive patterns. 

 Alternate graph patterns can be defined as sub-patterns within a parent pattern, such as by 

grouping them with the or keyword in VTCL. In this case, the condition in any of the 

sub-patterns must be satisfied for the condition in the parent pattern to be satisfied. 

 Graph patterns can be called in a negative mode, such as by using the neg keyword in 

VTCL, to return true if the conditions embodied in them are not satisfied. 

 If a variable passed to a graph pattern is unbound, graph patterns bind all possible model 

elements (to that variable) that satisfy the logical condition embodied in the pattern. If all 

variable passed to a graph pattern are bound to model elements, then the pattern returns 

true if the model elements bound to the variables satisfy the pattern condition, or false 

otherwise. 

 One can also define the search scope for pattern conditions, such as specifying the 

namespaces where model elements should be searched. 
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Graph transformation rule 

A graph transformation rule r = (L, R, App) contains a left-hand side (LHS) graph L, a 

right-hand side (RHS) graph R, and application conditions App. The application of r to a 

source (host) graph G replaces occurrence(s) of L in G by R. In general, this is performed by: 

 finding occurrence(s) of L in G (also denoted as graph pattern matching) 

 checking the application conditions App (such as negative application conditions which 

prohibit the application of the rule in the presence of certain nodes and edges) 

 removing a part of the graph G determined by the occurrence(s) of L yielding the context 

graph D 

 gluing R and the context graph D and obtaining the target (derived) graph H 

(Varro, Varro et al. 2002; Varro and Balogh 2007; VIATRA 2007) 

Although the fundamental idea behind graph transformation rules is the same, graph 

transformation systems implement them differently and also provide different mechanisms 

to specify and control transformation rules. Typically, the occurrence of L in G is required to 

be isomorphic to L. The VIATRA graph transformation system checks for sub-graph 

isomorphism and provides a mechanism for parallel application of transformation rules 

(replacement of L with R) to all matches of L in G. This capability is especially relevant for 

variable topology problems where target model elements can be formulated in parallel for 

all sub-systems (sub-graphs) in the system model (source graph) that match with the pre-

conditions of the idealization decisions.  

 A graph transformation rule is the atomic unit of model transformation in the 

Behavior Model Formulation Method. While graph patterns define the logical conditions on 

model graphs, graph transformation rules define the manipulation of model graphs. In this 

section, the representation of graph transformations in the context of Behavior Model 

Formulation Method is presented.  

 The Behavior Model Formulation Method leverages VIATRA Textual Command 

Language (VTCL) for representing graph transformation rules. Graph transformation rules 

represented in VTCL have two parts that are represented as patterns—the pre-condition 

pattern and a post-condition pattern. The LHS and RHS of a graph transformation rule are 

embodied in the pre- and post-condition patterns respectively. The application conditions of 

a graph transformation rule are embodied in patterns that may be called before invoking a 



 

 224

transformation rule or included in the pre-condition pattern. The application of a graph 

transformation rule to a model (say source mode graph) replaces all matches of the pre-

condition pattern in the source model graph with the post-condition pattern. The source 

model graph after the replacement operation is known as the target model graph.  

 Figure 8.19 illustrates a graph transformation rule with pre-condition and post-

condition pattern represented in traditional graph notation and VTCL. The graph 

transformation rule is used in Artifact transformation example to initialize the form for all 

artifacts that do not have a form associated with them. The pre-condition pattern represents 

all artifact instances that do not have a form instance associated with them. Thus, the pre-

condition pattern matches all artifact nodes such that for each artifact node there are no 

edges from the subject artifact node to a form node. For each artifact node matched by the 

pre-condition pattern, application of the post-condition pattern creates a form node and 

associates it with the artifact node.  

 

Figure 8.19: An example graph transformation rule represented in traditional graph notation and VTCL 

(used for initializing the form of an artifact in the Artifact transformation example) 
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In VTCL representation, the rule body begins with the gtrule keyword. The keywords 

precondition pattern and postcondition pattern along with the curly braces mark the pre-

condition and post-condition patterns respectively. Note that pre-condition and post-

condition patterns are graph patterns, and hence they may call other pre-defined patterns. In 

this example, the pre-condition pattern calls the artifact_and_form pattern in a negative 

mode using neg find keywords.  

Graph transformation rules and their pre- and post-condition patterns may also have 

arguments. The rule arguments are identified as either inputs, outputs, or both. Input 

arguments are those that can be bound to model elements when the transformation rule is 

called while the output arguments are those that are bound to model elements as a result of 

applying the transformation rule and are available to be used in constructs calling the 

transformation rule, such as ASM rules that call graph transformation rules during the 

transformation process (described later). Arguments that are identified as both input and 

output can be pre-bound or bound when the rule is applied. VTCL keywords in, out, and 

inout are used to identify input, output, and input/output arguments respectively. The 

Behavior Model Formulation Method uses the following mechanism to create, delete, or 

preserve model elements when defining graph transformation rules using VTCL: 

 For the creation of a new model element, a variable—to which the model element will be 

bound—should be in the argument and body of the post-condition pattern but not the pre-

condition pattern argument or body. The variable may be identified as the output of the 

graph transformation rule. 

 For deleting a model element, a variable—to which the model element will be bound—

should be in the pre- and post-condition pattern arguments and pre-condition pattern body 

but not in the post-condition pattern body. 

 For preserving a model element, a variable—to which the model element will be bound—

should be in the pre- and post-condition pattern arguments and body. 

If a parameter exists in both the pre-condition and post-condition arguments, then the model 

elements bound to that parameter during pre-condition pattern matching are passed to the 

post-condition. In the example transformation rule in Figure 8.19, the variables A and 

Model_Space exist in both the pre-condition and post-condition arguments and body, and 

hence model elements bound to them are not changed. However, variables F and AF exist 
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only in the post-condition pattern arguments and body, and hence the model elements bound 

to them are created. There are no variables such that (a) they exist in the pre-condition 

pattern argument, body, and post-condition pattern argument, and (b) do not exist in the 

post-condition body, and hence no model elements are deleted when the transformation rule 

is applied.  

 As described in section 8.1, the model transformation (composition) process 

prescribed by the Behavior Model Formulation Method is one where the source model is 

not altered during the transformation, but instead the target model contains the source model 

and the additional models. Hence, source model elements are not deleted during this model 

transformation process. This is so because the Behavior Model Formulation Method uses 

the graph transformation-based approach to model transformation to synthesize simulation 

templates. 

 

Graph transformation process 

 The Behavior Model Formulation Method uses VTCL constructs to define a graph 

transformation process. The transformation process describes the conditions and order in 

which the graph transformation rules are applied to the source model graph. In addition to 

providing constructs to define graph patterns and graph transformation rules, VTCL also 

provides constructs to define a control structure very similar to conventional programming 

languages such as C, C++, and Java. The VTCL constructs used for defining this control 

structure are known as ASM rules, named after Abstract State Machine constructs used in 

VTCL and similar to conventional programming languages. The ASM rules are similar to 

methods in object-oriented programming. In essence, the ASM rules in VTCL provide a 

mechanism to provide explicit scheduling to the model transformations—a pitfall of the 

graph transformation-based approach in its original form. The purpose of the Behavior 

Model Formulation Method is to create a specific behavior model structure and simulation 

template based on the Behavior Model Formulation Specifications—decisions taken by 

analysts. Hence, there is a specific need for controlling and scheduling the transformation 

rules. VTCL addresses this need by the virtue of ASM rules. In addition to constructs for 

calling and scheduling graph transformation rules, VTCL also defines other control 
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structures constructs similar to conventional programming languages, such as an if-else 

construct.  

 Graph transformation rules can be called using two specific ASM rule constructs—

forall and choose.  While the former allows tracking and using all model elements bound to 

an output argument of a transformation rule, the latter allows tracking and using only one 

model element (selected non-deterministically). The Behavior Model Formulation Method 

uses the forall construct only. Figure 8.20 illustrates the forall ASM construct that is used for 

applying the init_form graph transformation rule (Figure 8.19) to the source model graph 

(Figure 8.16b).  

Figure 8.20: VTCL ASM constructs used for defining model transformation process - shows the 

forall construct used for calling the init_form transformation rule in the Artifact transformation 

example 

Figure 8.21 shows the transformed graph in the Artifact transformation example after the 

transformation process is executed by the VIATRA graph transformation engine. 

Specifically, this transformation is achieved by executing the forall ASM rule shown in 

Figure 8.20. Artifact node A4 in the source graph was the only artifact node that did not 

have an associated form node—no edges existed from A4 to any form node. After the 

transformation process execution, a form node F3 and an edge from A4 to F3 has been 

created. The edge creation is accompanied by the population of attribute A4.hasForm with 

value F3 (corresponding to the newly created form node object). 
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Figure 8.22: Summary of graph transformation approach to model transformations embodied in the 

Behavior Model Formulation method 

Figure 8.21: Target graph after the graph transformation process executed on the source graph for 

the  Artifact transformation example (traditional graph notation and SysML notation) 
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To summarize, the key advantages of the graph transformation-based approach to 

model transformations as embodied in the Behavior Model Formulation Method are as 

follows: 

 Graph patterns provide a mechanism to define conditions and constraints on source 

graphs in a declarative manner. The same pattern can be used to check if a source graph 

satisfies a set of conditions as well as to search for model elements that satisfy the 

conditions. The advantage of using this approach versus using a procedural approach is 

evident in the multiple use cases that may be addressed by the same pattern—depending 

upon which pattern arguments are bound to model elements and which are free. 

 Graph transformation rules use graph patterns to define the atomic units of model 

transformations. The rules enable one to model transformations in a declarative rather 

than a procedural manner—as would be done using conventional procedural 

programming languages (such as C, C++, or Java). This is achieved by using graph 

patterns to model the state of sub-graphs before the transformation (pre-condition pattern) 

and the state of those sub-graphs after the transformation (post-condition pattern). The 

graph transformation engine can automatically interpret the transformation steps to 

achieve the final state of the graph. 

 ASM rules use procedural programming language-like constructs to explicitly schedule 

graph transformation rules thereby enabling one to define a model transformation process 

with assured termination. The existence of a control structures makes it easier to define 

transformation processes (based on rule-based paradigm) that are testable, maintainable, 

and reliable (Li 1991).  

Figure 8.22 summarizes the graph transformation approach to model transformations as 

embodied in the Behavior Model Formulation Method. Successful application and 

scalability of the graph transformation-based approach for complex design models will also 

depend on the availability of production-strength transformation tools.  

 The graph transformation approach is core to formulating simulation templates in an 

effective manner—addressing VTMB variations and idealization variations and efficiently 

formulating simulation templates. The formulation process is defined in terms of a graph 

transformation process that can be derived from the idealization specifications provided by 

analysts—see Behavior Model Formulation Specifications in the next section. Changes in 
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idealization specifications result in changes in the graph transformation process used for 

formulating simulation templates. The ability to apply transformation rules in parallel to all 

artifacts (and their features and interactions) that satisfy specific conditions—modeled as 

graph patterns—enable formulation of simulation templates for VTMB problems. For the 

same idealization specifications, simulation templates can be automatically re-formulated 

for families of artifacts with non-equivalent assembly system topologies.  

8.3 Behavior Model Formulation Specifications 
The Behavior Model Formulation Specifications (BMFS) embody the idealization 

decisions taken by analysts. BMFS are defined using the Artifact Model Transformation 

Library and executed by the Transformation Engine to realize the model transformations 

leading to the creation of behavior model structures and simulation templates. Figure 8.23 

shows a detailed view of the BMFS and its relationship with the Artifact Model 

Transformation Library. 

Figure 8.23: Detailed view of Behavior Model Formulation Specifications 

 

The BMFS can be divided into the following two levels: 

 Conceptual Specifications represent the idealization decisions independent of the 

transformation rules or process used to realize these decisions. Ideally, the same 

conceptual specifications may be realized by different transformation engines, 

transformation processes, and sets of transformation rules.  
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 Computable Specifications represent a transformation process in a syntax that is 

interpretable and executable by a specific transformation engine. The computable 

specifications are derived from the conceptual specifications and use transformation 

patterns and rules defined in the Artifact Model Transformation Library.  

8.3.1 Conceptual Specifications 
The conceptual specifications represent idealization decisions taken by analysts for 

all four stages of the composition process (section 8.2.1). In this section, the specific 

decisions that analysts need to take for each of four composition stages are presented.  

 

Composition Stage 1: In this composition stage, analysis bodies and their relationships to 

analyzable artifacts are composed from their respective building blocks. The idealization 

decisions in this composition stage must specifically answer the following questions. 

 What analysis body ABBs should be used to idealize the behavior of each type of 

analyzable artifacts? 

 What analysis feature ABBs should be used for each of these analysis body ABBs, and 

how are these analysis features ABBs related to the analyzable features of the 

corresponding analyzable artifact(s)? 

 What shape ABBs should be used for representing the shape of each of these analysis 

body ABBs, and how are these shape ABBs related to the shape of the corresponding 

analyzable artifact(s)? 

 What material behavior ABBs are used for representing the material behavior of each of 

these analysis body ABBs, and how are these material behavior objects related to the 

material behavior of the corresponding analyzable artifact(s)? 

 What behavior ABBs are used for representing the idealized set of behaviors of these 

analysis body? The behavior ABBs govern the set of behavior parameters that will be 

computed for these analysis bodies. 

Note that the first question corresponds to the analysis body being composed in Stage 1, and 

the other four questions correspond to the attributes of analysis body that must be populated 

during the composition.  

Note that material behavior and shape are two types of ABBs that are associated 

with both an analyzable artifact and an analysis body. An analyzable artifact may have is 
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typically formulated for a large class of analysis problems, and may have multiple material 

behavior models (and shape models) of different fidelities associated with it. Thus, in 

answering two of the questions above regarding material behavior ABBs and shape ABBs 

should be used for analysis bodies, analysts will typically make decisions in three ways as 

shown in Table 8.1 below. For an analysis body, analysts can select one of the multiple 

material behavior ABBs (and shape ABBs) associated with the corresponding analyzable 

artifact(s). This is a special case of idealization where the idealization relationships 

represent equality. Alternatively, analysts can select a material behavior ABB (or shape 

ABB) for an analysis body and explicitly specify the idealization relationships between the 

material behavior ABB (or shape ABB) associated with analyzable artifact(s) and those 

associated with the analysis body. The third mechanism is when analysts specify conditions 

for selection or idealization, such as a If-Else condition. 

Table 8.1: Modes of taking decisions on material behaviors and shapes of analysis bodies 

Select Selecting a material behavior ABB (or shape ABB) for an 

analysis body from the list of available material behavior model 

ABBs (or shape ABBs) associated with an analyzable artifact. 

Idealization relationships represent equality. 

Idealize as … 

relations … 

Selecting a material behavior ABB (or shape ABB) for an 

analysis body and establishing math relations between material 

behavior ABBs (or shape ABBs) associated with an analysis 

body and those associated with analyzable artifact(s). 

Idealization relationships represent these math relations. 

If (condition) 

 Select or Idealize… 

Else 

 Select or Idealize… 

Providing a condition for selecting or idealizing one type of 

material behavior ABB (or shape ABB) versus another type. 

In general, conditions may be specified for all decisions taken by analysts in 

selecting ABBs for composition Stages 1-3. Figure 8.24 below illustrates how conceptual 

specifications may be represented formally using SysML Parametrics constructs. The figure 

shows analysts can define the pattern of the idealization relationship between an analyzable 

artifact and analysis body. When this “pattern” is applied for all analyzable artifacts, then 
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these relationships will be created between all analyzable artifacts and analysis bodies, such 

as shown in Figure 7.34 in section 7.4.2 for relationships created between all stratums of an 

analyzable printed circuit board and corresponding planar shell analysis bodies. As an 

example, Figure 8.24 below illustrates such a pattern. The pattern shows shape idealization 

relationship (shape_idealization) and material behavior idealization relationship 

(mb_idealization) created between shape and material behaviors associated with an 

analyzable artifact and an analysis body. Per CPM2_xKCM Meta-Model (Chapter 6), an 

analyzable artifact may several forms associated with it; each form may have several shapes 

and materials associated with it; and each material may have several material behavior 

models associated with it. The Shape_Shape_Relationship and 

Material_Behavior_Material_Behavior_Relationship are constraint blocks that embody the 

mathematical relationships between associated shape and material behavior parameters 

respectively. Hence, such a pattern can be used to define all three cases in Table 8.1 above. 

The SysML constraint specifications shape_shape_relations and mb_mb_relations can 

represent math relations (including conditions). 

Figure 8.24: Representation of specifications using SysML Parametrics constructs 

Figure 8.25 illustrates a view of the conceptual specifications defined by analysts. 

The model shown in the figure is a Level 3 VTMB Behavior Model (section 7.4.2). The 

figure illustrates how an analyzable multi-stratum PCB is idealized. In the context of the 
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idealization questions stated above for Stage 1, the figure shows that an analyzable stratum 

of the analyzable PCB is idealized as a planar shell analysis body, the primary and 

secondary surfaces of the analyzable stratum are idealized as primary and secondary 

surfaces of the planar shells. The figure does not show the shape and material behavior of 

the analyzable stratums are idealized as the shape and material behavior of the planar shells. 
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Figure 8.25: View of the Conceptual Specifications for Stage 1 and 2 compositions -  

B3 model (PCB_nSx_ThermoMech_Behavior_Meta-Model from section 7.4.2) 

 

Composition Stage 2: In this composition stage, analysis body systems and their 

relationships with analyzable artifact (assembly) are composed from their respective 

building blocks. The idealization decisions in this composition stage must specifically 

answer the following questions: 

 What analysis body system ABBs are used for representing the idealized behavior of 

analyzable artifact assemblies, and how are these analysis body systems related to the 

corresponding analyzable artifact assemblies? 

 What analysis body ABBs and analysis body system ABBs constitute the analysis body 

system being composed during this stage, and how are they related to the corresponding 

analyzable artifacts? 
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 What analysis body interaction ABBs are used for representing the behavior of the 

interaction between the analysis bodies used in composing analysis body systems, and 

how are these interactions related to the interactions between the corresponding 

analyzable artifacts? 

 What analysis feature ABBs should be used to define the analysis features associated with 

the composed analysis body system? 

 What behavior ABBs should be used for representing the idealized set of behaviors of the 

composed analysis body system?  

Note that the first question corresponds to the analysis body system being composed in 

Stage 2, and the other four questions correspond to the attributes of analysis body system 

that must be populated during the composition.  

In the context of the idealization questions stated above for Stage 2 composition, 

Figure 8.25 illustrates that the analyzable PCB is idealized as a laminated shell analysis 

body system, and the interaction between the any adjacent stratums of the analyzable PCB 

are idealized as tie interactions between the planar shell analysis bodies corresponding to 

the stratums. Note that SysML Parametrics constructs, as shown in Figure 8.24 can be used 

for formally representing conceptual specifications for Stage 2. 

 

Composition Stage 3: In this composition, a behavior model ABB system is composed 

from its building blocks, and a behavior model context is created to wrap the relationship 

between the top level analysis body system and analyzable artifact (assembly). The 

idealization decisions in this composition stage must specifically answer the following 

questions: 

 What load ABBs are used for representing the loads for which the behavior parameters 

are to be computed? 

 What behavior condition ABBs are used for representing the behavior conditions for 

which the behavior parameters are to be computed? 

 What behavior ABBs are used for representing the behavior parameters to be computed?  
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Note that SysML Parametrics constructs, as shown in Figure 8.24 can be used for formally 

representing conceptual specifications for Stage 3, such as selecting load and behavior 

condition ABBs based on certain conditions defined on analyzable artifact. 

 

Composition Stage 4: In this composition, behavior model structure and simulation 

template are composed from the behavior model ABB system and behavior model context 

composed in Stage 3. Except for deciding the behavior model namespace and identifiers, 

there are no decisions that analysts need to take in this stage. The inputs and outputs of this 

composition stage are common to all VTMB analysis problems. 

 

8.3.2 Computable Specifications 
Computable specifications are model composition instructions that are derived from 

the conceptual specifications, and interpreted by the model transformation engine. While 

the conceptual specifications represent the idealization decisions taken by analysts, they do 

not prescribe a process for model composition. This is so because the idealization decisions 

are independent of the order in which the model is composed. The computable 

specifications are executable scripts that define a set of activities that can be executed in 

series or parallel. Each activity in the script comprises of the following two basic steps. 

 Invoke pre-defined graph patterns from the Artifact Model Transformation Library to 

search for model elements in the source model. Graph pattern matches return sub-graphs 

of the source model graph that satisfy the conditions embodied in the patterns. As an 

example, for conceptual specifications that state that all stratums in a printed circuit board 

are to be idealized a shells, the computable specifications include calls to pre-defined 

graph patterns to search the printed circuit board model space and retrieve all stratums. 

The conditions specified in invoked patterns may include additional constraints that need 

to be satisfied by the model elements in the source graph. 

 Create new model elements in the target model space by invoking graph transformation 

rules defined in the Artifact Model Transformation Library. The transformation rules may 

call pre-defined patterns to check for conditions before creating new model elements. The 

model elements created by graph transformation rules include both entities (nodes) and 

edges (relationships between entities).  
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Besides the basic restrictions posed by the stages of composing simulation templates—

composition stagei+1 cannot complete until stagei is completed—the process of formulating 

simulation templates is not necessarily relevant to an analyst, especially since the computer 

time taken to generate these templates is of the order of seconds (section 9.5.3.3). 

Algorithms to derive computable specifications from conceptual specifications would 

typically be managed by modelers proficient in the language in which the graph 

transformation process is described (such as VTCL in this case) and conceptual 

specifications. 

 In the proof-of-concept software implementation of the Behavior Model 

Formulation Method, the computable specifications are represented as a graph 

transformation processing using VTCL, as described in section 8.2.3.  

 

8.4 Artifact Model Transformation Library (AMTL) 
The Artifact Model Transformation Library of KCM’s Behavior Model Formulation 

Method provides a repository of graph transformation rules that can be reused for writing 

Behavior Model Formulation Specifications in the computable form for analysis problems 

in general. The intent of the transformation library is to provide unit-level transformation 

rules that are generic for all behavior models, and ABB-specific transformation rules that 

are used when specific ABBs are used for composing a Behavior Model ABB System. The 

core of the model transformation method prescribed by the Behavior Model Formulation 

Method is the creation of simulation templates, and hence the two key types of graph 

transformation rules in the Artifact Model Transformation Library concern creation of 

entities, and creation of relationships between entities. Application results for these two 

types of transformation rules are illustrated using a simple model shown in Figure 8.26. 

Figure 8.26a shows an example meta-model. The meta-model shows two SysML blocks, A 

and B, and a relationship between the blocks A.hasB. 
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a. Meta-model example for illustrating Type 1 and Type 2 graph transformation rules 

  
b. Application result of Type 1 

transformation rules – creation of new entity 

instances in the model space 

c. Application result of Type 2 transformation 

rules – creation of new relationship instances 

between entity instances in the model space 

Figure 8.26: Example model to illustrate Type 1 and 2 graph transformation rules in the  

Artifact Model Transformation Library 

 

Type 1 transformation rule: In this type of graph transformation rule, a new entity of type 

A with a given identifier ID is created in a given model space M. As an example, Figure 

8.26b illustrates that new instances of entities—A1 as an instance of A and B1 as an instance 

of B—would be created in this type of transformation though there may be two different 

transformation rules—one for creating instance an instance of A and one for creating an 

instance of B. This type of rule corresponds to the creation of a node in the artifact model 

graph. The schematic of a Type 1 graph transformation rule is as described below. The 

input parameters ID and M are already bound to entities ID and M while the output 

parameter is unbound when the rule is called. After the execution of the rule, the output 

parameter A1 will be bound to entity A1. 

 

Type 1 transformation rule (input: ID, M; output: A1) 

Pre-condition 

o there exists a model space M 

o there does not exist an entity in M with id=ID 

Post-condition 

o there exists a model space M 

o there exists an entity A1 of type A in M with id=ID  
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The Behavior Model Formulation Method maintains a unique id for the model entities and 

relationships, and hence the id of an entity is used to check for its existence in a given 

model space. 

 

Type 2 transformation rule: In this type of graph transformation rule, a new relationship 

of type A.hasB is created between two given entities of type A and type B respectively in a 

given model space M. As an example, Figure 8.26c illustrates that Type 2 transformation is 

used for creating a new relationship between instances, A1.hasB=B1. This type of node 

corresponds to the creation of an edge in the artifact model graph. The schematic of a Type 

2 transformation rule is as described below. The input parameters A1 and B1 are already 

bound to entities A1 and B1 while the output parameter is unbound when the rule is called. 

After the execution of the rule, the output parameter A1B1 will be bound to relationship 

A1B1. 

 

Type 2 transformation rule (input: A1, B1, M; output: A1B1) 

Pre-condition 

o there exists a model space M 

o there exists an entity A1 of type A in M 

o there exists an entity B1 of type B in M 

o there does not exist a relationship of type A.hasB from A1 to B1 

(or implemented as pattern A_and_B (A1, B1, M) returns false) 

Post-condition 

o there exists a model space M 

o there exists an entity A1 of type A in M 

o there exists an entity B1 of type B in M 

o there exists a relationship A1B1 of type A.hasB from A1 to B1 

 

In addition to transformation rules Type 1 and Type 2, the Artifact Model Transformation 

Library also has reusable patterns to check for the existence of entities and relationships, or 

to search for them in the model space. These patterns are used for Type 2 transformation 

rules in particular. For example, the last clause in the pre-condition of Type 2 rule could be 
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implemented by calling pattern_A_and_B for entities A1 and B1 and checking that the 

pattern returns false. The pattern pattern_A_and_B is as shown below: 

 

Pattern Type 1 

pattern A_and_B (An, Bn, M) 

o there exists a model space M 

o there exists an entity An, of type A, in M 

o there exists an entity Bn, of type B, in M 

o there exists a relationship AnBn, of type A.hasB, in M 

 

Though several types of patterns may be defined using the concept of graph patterns, 

Pattern Type 1 is commonly used in the Behavior Model Formulation Method. In this type 

of pattern, a condition is defined to check for the existence of a relationship between two 

given model elements—as shown in the example above. To make the pattern matching 

process computationally less expensive, all patterns defined in the Artifact Model 

Transformation Library are based on the following strategy: 

 All patterns defined in Behavior Model Formulation Method are of Type 1—checking for 

a single relationship in the meta-models (CPM2_xKCM and CBM). Since all pre-defined 

patterns have 2 nodes, this restricts the number of tests that need to be performed when 

matching these patterns to sub-graphs in the source graph (Valiente and Martinez 1997). 

 More complex patterns are realized by calls to simpler patterns.  

 Wherever possible, patterns are invoked on specific sub-sets of the model space. This 

limits the number of nodes and/or edges in the model space for which pattern matching 

tests need to be performed. 

Sections 8.4.1 to 8.4.4 describe the transformation rules and patterns for 

composition stages 1 to 4. Composition stages 1-3 consist of rules that are specific to the 

ABBs being composed and rules that are common to all behavior model structures and 

simulation templates composed using the Behavior Model Formulation Method. Rules and 

patterns specific to an ABB are attributes of the ABB itself. The ABB Meta-Model 

described in section 7.2.1 prescribes four key attributes of an ABB—context, property, 

application conditions, and transformation rules. When ABBs are instantiated, only their 
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property attribute is populated. The other attributes are static—describe the ABB itself. The 

first two properties were defined in section 7.2.1 and described for each ABB type in 

section 7.3. The application conditions and transformation rules for each ABB are modeled 

as graph patterns and graph transformation rules. The ABB-specific rules and patterns 

described below are represented as application conditions and transformation rules for that 

ABB. The representation of both dynamic and static aspects of an ABB is a key 

distinguishing feature of the ABB Meta-Model with regards to existing approaches. While 

the static aspects—context and property attributes of an ABB—represent the characteristics 

of an ABB, the dynamic aspects—application conditions and transformation rules—

describe how an ABB is to be used in the context of creating a behavior model.  

The entities and relationships created in these transformation rules described below 

are created in a given model space. For brevity, this is not stated for each rule. The types 

(classifiers) of instances created in these transformations are entities defined in the Core 

Behavior Model (section 7.1) and the Core Product Model extended by KCM (Chapter 6). 
 

8.4.1 Stage 1 composition - transformation rules and patterns 
The set graph transformation rules for Stage 1 composition consists of rules that are 

common to the creation of all behavior model structures and simulation templates, and rules 

that are specific to the ABBs used in a given behavior model structure.  

 In this composition stage, an analysis body is composed from shape ABB, system 

ABB, analysis feature ABB, material behavior ABB, and behavior ABBs. In addition, a 

relationship between the composed analysis body and the corresponding analyzable artifact 

is created. This relationship is composed from the relationship between the shapes of 

analyzable artifact and analysis body, relationship between the material behavior of 

analyzable artifact and analysis body, and relationships between analyzable features and 

analysis features. The Type 1 and Type 2 transformation rules in the Artifact Model 

Transformation Library for Stage 3 composition are described below. The name of the rule 

is followed by a short description of its specific purpose.  
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Type 1 transformation rules 

 Rules for initializing analysis body ABB instances - These transformation rules are 

specific to the analysis body ABBs used in composing a given behavior model structure. 

Example of analysis body ABBs are illustrated in Figure 7.10. For example, Beam, Rod, 

Shell, and Column are different types of structural analysis body ABBs. An initialization 

rule (Type 1) would exist for each of the analysis body ABBs in the Artifact Model 

Transformation Library (AMTL). For example, initalize_planar_shell_analysis_body is a 

rule to initialize an instance of Planar_Shell_Property (type of 

Planar_Shell_ABB.property), as shown in Figure 7.11. The initialization transformation 

rule and associated patterns are attributes of the specific analysis body ABBs. 

 Rules for initializing shape ABB instances – Similar to transformation rules for 

initializing analysis body instances, the Artifact Model Transformation Library would 

contain rules for initializing different types of shape ABBs. For example, 

initialize_planar_shape is a rule in the AMTL to initialize an instance of Planar_Shape. 

 Rules for initializing analysis feature ABB instance - The Artifact Model Transformation 

Library would contain rules for initializing different types of analysis feature ABBs 

shown in Figure 7.18. For example, initialize_shell_surface_af is a rule in the AMTL to 

initialize an instance of Shell_Surface_AF_Property entity shown in the figure. 

 Rules for initializing material behavior ABB instance - The Artifact Model 

Transformation Library would contain rules for initializing different types of material 

behavior ABBs as shown in Figure 7.12. For example, 

initialize_linear_elastic_tempind_mb is a rule in the AMTL to initialize an instance of 

Linear_Elastic_Isotropic_TempInd_MB_Property as shown in Figure 7.13. 

 Rules for initializing behavior ABB instance - The Artifact Model Transformation 

Library would contain rules for initializing different types of behavior ABBs. For 

example, initialize_structural_behavior is a rule in the AMTL to initialize an instance of 

Structural_Behavior_Property as shown in Figure 7.17. 

 initialize_aa_abs_relationship - used for creating an instance of 

Analyzable_Artifact_ABS_Relationship for associating an analysis body system with an 

analyzable artifact. Note that this rule is sued for both Stage 1 and Stage 2 composition. 
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In Stage 1 composition, relationships are created between analyzable artifact and analysis 

body.  

 initialize_af_anf_relationship - used for creating an instance of 

Anlyzable_Feature_Analysis_Feature_Relationship for associating an analyzable feature 

with an analysis feature. Note that this rule is used in both Stage 1 and Stage 2 

compositions. In Stage 1 composition, relationships are created between analyzable 

features and analysis features corresponding to an analyzable artifact and analysis body.  

 initialize_shape_shape_relationship - used for creating an instance of  

Shape_Shape_Relationship that associates two shape instances 

 initialize_material_behavior_material_behavior_relationship - used for creating an 

instance of Material_Behavior_Material_Behavior_Relationship that associates two 

instances of material behavior ABBs. 
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Type 2 transformation rules 

 Rules for populating attributes of analysis body ABBs – These rules are used for 

populating attributes of analysis body ABB instances. The Artifact Model 

Transformation Library would have rules for associating an analysis body ABB instance 

with (a) shape ABB instance, (b) material behavior ABB instance, (c) analysis feature 

ABB instance, and (d) behavior ABB instance. Depending upon their specialization, 

analysis body ABBs may have their own specialized association rules. For example, a 

planar shell analysis body ABB will have rules to associate its instances with (a) planar 

shape ABB instances (and not any shape instance), and (b) two planar shell surface 

analysis feature ABB instances corresponds to its primary and secondary surface 

respectively. However, a material behavior is not inherent in the definition of a planar 

shell analysis body ABB, and hence it may use the generic rule that associates an analysis 

body ABB with a material behavior ABB. 

 Rules for populating attributes of Analyzable_Artifact_ABS_Relationship that relates an 

analyzable artifact with an analysis body system (or analysis body), are described below.  

o associate_aa_abs_rel_with_aa_and_abs – used for creating an instance of the 

relationships Analyzable_Artifact_ABS_Relationship.associated_aa and 

Analyzable_Artifact_ABS_Relationship.associated_abs that relate an instance of 

Analyzable_Artifact_ABS_Relationship to an instance of Analyzable_Artifact and 

Analysis_Body_System_Property (or Analysis_Body_Property) respectively. This 

transformation rule associates an analysis body system composed during Stage 2 

composition with the corresponding analyzable artifact (assembly). 

o associate_aa_abs_rel_with_af_anf_rel – used for creating an instance of the 

relationship Analyzable_Artifact_ABS_Relationship.af_anf_rels that relates an instance 

of Analyzable_Artifact_ABS_Relationship with an instance of 

Analyzable_Feature_Analysis_Feature_Relationship. Here, the analyzable feature-

analysis feature relationship instances are defined between analyzable features of 

analyzable artifact assembly and analysis body system. 

o associate_aa_abs_rel_to_geom_idealization – used for creating an instance of the 

relationship Analyzable_Artifact_ABS_Relationship.shape_idealization that relates an 
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instance of Analyzable_Artifact_ABS_Relationship with an instance of 

Shape_Shape_Idealization 

o associate_aa_abs_rel_to_mb_idealization - used for creating an instance of the 

relationship Analyzable_Artifact_ABS_Relationship.material_behavior_idealization that 

relates an instance of Analyzable_Artifact_ABS_Relationship with an instance of 

Material_Behavior_Material_Behavior_Idealization 

 Rules for populating attributes of Analyzable_Feature_Analysis_Feature_Relationship 

instance are described below. 

o associate_af_anf_rel_with_af_and_anf – used for creating an instance of each of the 

following two relationships: 

Analyzable_Feature_Analysis_Feature_Relationship.associated_af and 

Analyzable_Feature_Analysis_Feature_Relationship.associated_anf. These 

relationships relate an instance of Analyzable_Feature_Analysis_Feature_Relationship 

to an instance of Analzable_Feature and Analysis_Feature_Property respectively. 

o Associate_af_anf_rel_with_shape_idealization - used for creating an instance of the 

relationship Analyzable_Feature_Analysis_Feature_Relationship.shape_idealization that 

relates an instance of Analyzable_Feature_Analysis_Feature_Relationship to an 

instance of Shape_Shape_Relationship 

 Rules for populating attributes of Shape_Shape_Relationship instance are described 

below. 

o associate_ssr_with_relating_shape_and_related_shape – used for creating an instance 

of each of the following two relationships: Shape_Shape_Relationship.relatedShapes 

and Shape_Shape_Relationship.relatingShapes. These relationships relate an instance 

of Shape_Shape_Relationship to an instance of Shape and Shape respectively. 

o associate_ssr_with_idealization_relation – used for creating an instance of the 

relationships Shape_Shape_Relationship.shape_shape_relations. This relationship 

associates an instance of Shape_Shape_Relationship to an instance of 

Mathematical_Relation. 

 Rules for populating attributes of Material_Behavior_Material_Behavior_Relationship 

instance are defined similar to those defined for populating attributes of 

Shape_Shape_Relationship instances. 
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Type 1 patterns 

 aa_abs_rel_and_aa - used for relationship 

Analyzable_Artifact_ABS_Relationship.associated_aa 

 aa_abs_rel_and_abs – used for relationship 

Analyzable_Artifact_ABS_Relationship.associated_abs 

 aa_abs_rel_and_shape_shape_idealization –  used for relationship 

Analyzable_Artifact_ABS_Relationship.shape_idealization 

 aa_absys_rel_and_mb_idealization –  used for relationship 

Analyzable_Artifact_ABS_Relationship.material_behavior_idealization 

 aa_abs_rel_and_af_anf_rel –  used for relationship 

Analyzable_Artifact_ABS_Relationship.af_anf_rels 

 af_anf_rel_and_af –  used for relationship 

Analyzable_Feature_Analysis_Feature_Relationship.associated_af 

 af_anf_rel_and_anf –  used for relationship 

Analyzable_Feature_Analysis_Feature_Relationship.associated_anf 

 

8.4.2 Stage 2 composition – transformation rules and patterns 
The set graph transformation rules for Stage 2 composition consists of rules that are 

common to the creation of all behavior model structures and simulation templates, and rules 

that are specific to the ABBs used in a given behavior model structure.  

 In this composition stage, an analysis body system is composed from analysis body 

ABBs or other analysis body sub-systems, analysis body interaction ABBs, and analysis 

feature ABBs. Additionally, idealization relationships are created between (i) analyzable 

artifact (assembly) and the composed analysis body system, (ii) analyzable features and 

analysis features, and (iii) the interaction between analyzable artifacts and interactions 

between analysis bodies in the analysis body system. 

The Type 1 and Type 2 transformation rules in the Artifact Model Transformation 

Library for Stage 3 composition are described below. The name of the rule is followed by a 

short description of its specific purpose.  
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Type 1 transformation rules 

 initalize_AB_System - used for creating an instance of Analysis_Body_System_ABB or any 

of its specializations 

 initialize_aa_abs_relationship – used for creating an instance of 

Analyzable_Artifact_ABS_Relationship for associating an analysis body system with an 

analyzable artifact. In contrast to its usage in Stage 1 composition, this rule is used in 

Stage 2 composition to create relationships between analyzable artifact (assembly) and 

analysis body system respectively. 

 initialize_af_anf_relationship - used for creating an instance of 

Anlyzable_Feature_Analysis_Feature_Relationship for associating an analyzable feature 

with an analysis feature. In contrast to its usage in Stage 1 composition, this rule is used 

in Stage 2 composition to create relationships between analyzable features and analysis 

features corresponding to analyzable artifact (assembly) and analysis body system 

respectively.  

 initialize_aa_ab_interaction_relationship - used for creating an instance of 

Anlyzable_Feature_Analysis_Feature_Interface_Relationship for associating an interface 

between two analyzable artifacts with the corresponding interface between two analysis 

bodies—either directly or as part of interacting analysis body assemblies 

 

Type 2 transformation rules 

 Rules for populating attributes of Analysis_Body_System_ABB or its specializations are 

described below. Specialized rules may be defined for populating attributes of 

specializations.  

o associate_absys_with_abs - used for creating an instance of the relationship 

Analysis_Body_System_Property.constituent_abs_property that relates an instance of 

Analysis_Body_System_Property22 and an instance of Analysis_Body_System_Property 

or Analysis_Body_Property 

                                                 
22 Note that when ABBs are instantiated, only their property attribute (non-static) is populated. The property attribute of 

each ABB is of a specific type. For example, Analysis_Body_ABB.property is of type 

Analysis_Body_Property.  
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o associate_absys_with_abi - used for creating an instance of the relationship 

Analysis_Body_System_Property.constituent_ab_ab_interactions_property that relates 

an instance of Analysis_Body_System_Property and an instance of 

AB_AB_Interaction_Property 

o associate_abs_with_anf - used for creating an instance of the relationship 

Analysis_Body_System_Property.constituent_afs_property that relates an instance of 

Analysis_Body_System_Property or an instance of Analysis_Body_Property with an 

instance of Analysis_Feature_Property 

 Rules for populating attributes of Analyzable_Artifact_ABS_Relationship that relates an 

analyzable artifact with an analysis body system (or analysis body), are described below.  

o associate_aa_abs_rel_with_aa_and_abs – same as described in Stage 1 composition 

but in Stage 2 composition, this rule associates an analysis body system with the 

corresponding analyzable artifact (assembly). 

o associate_aa_abs_rel_to_constituent_aa_abs_rel - used for creating an instance of the 

relationship Analyzable_Artifact_ABS_Relationship.constituent_aa_abs_rels that relates 

an instance of Analyzable_Artifact_ABS_Relationship with an instance of 

Analyzable_Artifact_ABS_Relationship.  

o associate_aa_abs_rel_with_af_anf_rel – same as used in Stage 1 composition but in 

Stage 2 composition, the rule is used to relate an analyzable feature-analysis feature 

relationship instance with analyzable features of analyzable artifact (assembly) and 

analysis body system. 

o associate_ aa_abs_rel_with_aa_ab_interaction_rel - used for creating an instance of 

the relationship Analyzable_Artifact_ABS_Relationship.af_anf_interface_rels that 

relates an instance of Analyzable_Artifact_ABS_Relationship with an instance of 

Analyzable_Feature_Analysis_Feature_Relationship.  

 Rules for populating attributes of Analyzable_Feature_Analysis_Feature_Relationship 

instance are same as described in Stage 1 composition except that in Stage 2 composition, 

they are invoked for associating analyzable features of analyzable artifact (assemblies) 

and analysis features of analysis body systems. 

 Rules for populating attributes of 

Analyzable_Feature_Analysis_Feature_Interface_Relationship are described below. 
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o associate_aa_ab_interaction_relationship_to_aaaai_and_ababi – used for relating an 

instance of the relationship 

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_aa_interactio

n and 

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_ab_interactio

n that relate an instance of 

Analyzable_Feature_Analysis_Feature_Interface_Relationship to an instance of 

AA_AA_Interaction and AB_AB_Interaction_Property respectively 

 

Type 1 patterns 

 aa_abs_rel_and_constituent_aa_abs_rel - used for relationship 

Analyzable_Artifact_ABS_Relationship.constituent_aa_abs_rels 

 aa_abs_rel_and_aa_ab_irel - used for relationship 

Analyzable_Artifact_ABS_Relationship.af_anf_interface_rels 

 absys_and_abs - used for relationship 

Analysis_Body_System_Property.constituent_abs_property 

 absys_and_abi - used for relationship 

Analysis_Body_System_Property.constituent_ab_ab_interactions_property 

 absys_and_anf - used for relationship 

Analysis_Body_System_Property.constituent_anf_property 

 aa_ab_irel_and_aaaai - used for relationship 

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_aa_interaction 

 aa_ab_irel_and_ababi - used for relationship 

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_ab_interaction 

 

8.4.3 Stage 3 composition – transformation rules and patterns 
The set graph transformation rules for Stage 3 composition consists of rules that are 

common to the creation of all behavior model structures and simulation templates, and rules 

that are specific to the ABBs used in a given behavior model structure.  

 In this composition stage, (a) a behavior model ABB system is composed from 

analysis body system ABB, load ABBs, behavior condition ABBs, and behavior ABBs, and 

(b) a behavior model context is composed from the relationship between the analysis body 
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system ABB and an analyzable artifact. A behavior model ABB system represents the 

idealized behavior of the analyzable artifact. The analyzable artifact is idealized as an 

analysis body system. The Type 1 and Type 2 transformation rules in the Artifact Model 

Transformation Library for Stage 3 composition are described below. The name of the rule 

is followed by a short description of its specific purpose.  

 

Type 1 transformation rules 

 initialize_behavior_model_abbsys - used for creating an instance of 

Behavior_Model_ABBSys 

 initialize_behavior_model_xcontext - used for creating an instance of 

Behavior_Model_XContext 

 Rules to initialize load ABB instances –These transformation rules are specific to the load 

ABBs used in composing a given behavior model structure. Example of load ABBs are 

illustrated in Figure 7.23. For example, Force, Pressure, Moment, and Temperature are 

different types of structural load ABBs. An initialization rule (Type 1) would exist for 

each of the load ABBs in the Artifact Model Transformation Library. For example, 

initalize_uniform_temp_load is a rule to initialize an instance of 

Uniform_Temperature_Load_ABB (shown in Figure 7.24). 

 Rules to initialize behavior condition ABB instances – Similar to load ABBs, these 

transformation rules are specific to behavior condition ABBs used in composing a given 

behavior model structure. Example of behavior condition ABBs are illustrated in 

Figure 7.25. For example, PointDisplacementFixed_Condition ABB and 

TemperatureConstant_Condition ABB are two types of behavior condition ABBs. In the 

former, the displacement is locked at a given point, and in the latter the temperature is 

held constant. An initialization rule (Type 1) would exist for each of the behavior 

condition ABBs in the Artifact Model Transformation Library. For example, 

initalize_point_displacement_fixed_BC is a rule to initialize an instance of 

PointDisplacementFixed_Condition ABB. 
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Type 2 transformation rules 

 Rules for populating attributes of Behavior_Model_ABBSys instance – These rules are 

used for populating the attributes of Behavior_Model_ABBSys instance. There are four 

such rules, one for each attribute of Behavior_Model_ABBSys, as described below:  

o associate_behavior_model_abbsys_with_absys - used for creating an instance of the 

relationship Behavior_Model_ABBSys.abs_sys that relates an instance of 

Behavior_Model_ABBSys and an instance of Analysis_Body_System_ABB 

o associate_behavior_model_abbsys_with_load - used for creating an instance of the 

relationship Behavior_Model_ABBSys.load_applications that relates an instance of 

Behavior_Model_ABBSys and an instance of Load_ABB 

o associate_behavior_model_abbsys_with_bc - used for creating an instance of the 

relationship Behavior_Model_ABBSys.behavior_condition_applications that relates an 

instance of Behavior_Model_ABBSys and an instance of Behavior_Condition_ABB 

o associate_behavior_model_abbsys_with_behavior - used for creating an instance of the 

relationship Behavior.behaviors that relates an instance of Behavior_Model_ABBSys and 

an instance of Behavior_ABB 

 Rules for populating attribute of Behavior_Model_XContext instance – There is one rule 

for populating the single attribute of Behavior_Model_XContext, as described below. 

o associate_bmx_context_with_aa_absys_rel - used for creating an instance of the 

relationship Behavior_Model_XContext.aa_abs_rel that relates an instance of 

Behavior_Model_ABBSys and an instance of Analyzable_Artifact_ABS_Relationship 

 Rules for populating attributes of load ABBs – These rules are used for populating 

attributes of load ABBs instances in the behavior model structure. There are three 

attributes of all load ABB properties—load parameters, load application domain, and 

load distribution function. A rule to populate the application domain attribute of each 

type of Load_ABB would be defined in the Artifact Model Transformation Library. For 

example the rule associate_utl_with_vf is used for associating an instance of 

Uniform_Temperature_Load_ABB with an instance of Volume_Feature_ABB, since 

temperature is a volume load. Note that load parameters and the distribution function are 

typically defined for each type of load ABB. However, the specific values in the 

distribution function may be populated when creating behavior model instance (Level 5 
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model). For example, for Uniform_Temperature_Load_ABB, the load parameter 

(temperature) and distribution function (temperature=constant) are inherently decided in 

the definition of the ABB but the value of the constant may be populated only when 

creating behavior model instances. 

 Rules for populating attributes of behavior condition ABBs – Similar to load ABBs, there 

are three attributes of all behavior condition ABB properties—behavior condition 

parameters, application domain, and distribution function. A rule to populate the 

application domain attribute of behavior condition ABB would be defined in the Artifact 

Model Transformation Library. For example, the rule associate_pdc_with_pf is used for 

associating an instance of PointDisplacementFixed_Condition and an instance of 

Point_Feature_ABB. The behavior condition parameters and distribution function are 

inherently pre-decided for specific type of behavior condition ABB. For example, the 

behavior parameters for PointDisplacementFixed_Condition ABB are displacement 

parameters, and the distribution function is displacement=constant, though the value of 

the constant may be populated only when creating behavior model instances. 

 

Type 1 patterns 

The following Type 1 patterns are defined in the Artifact Model Transformation Library 

that are typically used for Stage 3 composition 

 behavior_model_abbsys_and_absys - used for relationship 

Behavior_Model_ABBSys.abs_sys 

 behavior_model_abbsys_and_load - used for relationship 

Behavior_Model_ABBSys.load_applications 

 behavior_model_abbsys_and_bc - used for relationship 

Behavior_Model_ABBSys.behavior_condition_applications 

 behavior_model_xcontext_and_aa_absys_rel - used for relationship 

Behavior_Model_XContext.aa_abs_rel 

 

8.4.4 Stage 4 composition – transformation rules and patterns 
The graph transformation rules for Stage 4 composition are common to the creation 

of all behavior model structures and simulation templates formulated using the Behavior 
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Model Formulation Method. In this composition stage, a behavior model structure and 

simulation template are composed from a behavior model ABB system—a system of 

analysis building blocks that represents the idealized behavior of an analyzable artifact, and 

a behavior model context—relates the analysis body system in the ABB system to the 

analyzable artifact. 

The types (classifiers) of instances created in these transformations are entities 

defined in the Core Behavior Model (section 7.1). One of the entities, Behavior, is defined 

in the Core Product Model extended for KCM—CPM2_xKCM (Chapter 6).  The Type 1 

and Type 2 transformation rules in the Artifact Model Transformation Library for Stage 4 

composition are described below. The name of the rule is followed by a short description of 

its specific purpose. 

 

Type 1 graph transformation rules 

 initialize_behavior_model - used for creating an instance of Behavior_Model 

 

Type 2 graph transformation rules 

 associate_behavior_model_with_behavior - used for creating an instance of the 

relationship Behavior.behaviorModels that relates an instance of Behavior and an instance 

of Behavor_Model 

 Rules for populating attributes of Behavior_Model – These rules are used for populating 

the two attributes of Behavior_Model, and are described below. 

o associate_behavior_model_with_bmabbsys - used for creating an instance of the 

relationship Behavior_Model.associated_bm_abbsys that relates an instance of 

Behavior_Model and an instance of Behavor_Model_ABBSys. 

o associate_behavior_model_with_bmxcontext - used for creating an instance of the 

relationship Behavior.context that relates an instance of Behavior_Model and an instance 

of Behavor_Model_XContext 

 

Type 1 patterns 

The following Type 1 patterns are defined in the Artifact Model Transformation Library 

that are typically used for Stage 4 composition 
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 behavior_model_and_behavior_model_abbsys - used for relationship 

Behavior_Model.associated_bm_abbsys 

 behavior_model_and_behavior_model_xcontext - used for relationship 

Behavior_Model.context 

 

8.4.5 Analyzable artifact model patterns 
When composing behavior model structures and simulation templates, entities in the 

analyzable artifact model need to be unambiguously identified. The Behavior Model 

Formulation Specifications in both conceptual and computable forms need to explicitly state 

the analyzable artifacts (or their specific aspects) and the conditions that need to be satisfied 

before associating behavior model entities. In the Behavior Model Formulation Method, the 

identification criteria and conditions are formally represented as graph patterns. For 

example, if stratums of a PCB is idealized as shell, this requires that all stratums of the PCB 

be unambiguously identified and then transformation rules be executed to initialize shell 

analysis body ABB and the relationships to the stratums. In addition to identifying 

analyzable artifacts or their specific aspects, there may be conditions that need to be 

checked. For example, stratums made of conductive material are idealized to have linear 

isotropic material behavior, and stratums made of non-conductive material are idealized to 

have linear orthotropic material behavior. 

The Artifact Model Transformation Library would also have patterns for 

relationships in the analyzable artifact model. Depending upon the variable bindings when 

the pattern is called, a pattern could be used to search and identify analyzable artifact 

entities or check for specific conditions. The entities and relationships are specialized for 

each application domain and hence patterns are created for meta-model defined at Level 2 

in the design model stack (section 6.2). Figure 6.7 and Figure 6.8 show the design and 

analyzable design models for printed circuit boards. As an example, for the relationships in 

the analyzable PCB model illustrated in Figure 6.8, the following Type 1 patterns are 

defined in the Artifact Model Transformation Library. 

 astratums_and_apwb - used for the relationship Analyzable_PCB.hasStratums 

 astratum_interfaces_and_apwb - used for the relationship 

Analyzable_PCB.astratumInteractions 
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 astratum_and_surfaces - used for the relationships AStratum.primary_surface and 

AStratum.secondary_surface  

 assi_and_preceding_stratum_surface - used for the relationship 

Adjacent_AStratum_Surface_Interaction.precedingAstratumSurface 

 assi_and_succeding_stratum_surface - used for the relationship 

Adjacent_AStratum_Surface_Interaction.succeedingAstratumSurface 

 astratum_and_form - used for the relationship AStratum.hasForms 

 astratum_and_shape - used for the relationship AStratum_Form.hasShapes (where 

AStratum.hasForms: AStratum_Form) 

 astratum_and_material - used for the relationship AStratum_Form.hasMaterial (where 

AStratum.hasForms: AStratum_Form) 

 astratum_and_elec_function - used for the relationship AStratum.hasFunctions 

 

8.5 Summary 
To summarize, the Behavior Model Formulation Method (BMFM) of the 

Knowledge Composition Methodology is presented in this chapter. Specifically, the 

following aspects of the model transformation process prescribed by BMFM are presented 

here. 

 Schematics of the transformation process focuses on the functional components of the 

transformation framework—source and target meta-models and models, transformation 

specifications, model transformation library, and the model transformation engine. 

 Stages of the transformation process focuses on the major steps in which simulation 

templates are composed from design model structures and idealization decisions. 

 Semantics of the transformation process relates the process of composing simulation 

templates to deriving relations between behavior parameters and design parameters. The 

intent of presenting this aspect is to illustrate that the BMFM is a formal and structured 

approach to creating simulation templates that embody existing fundamental domain 

theories. The BMFM provides a computationally effective mechanism to apply existing 

domain theories and concepts to variable topology multi-body problems. 

 Mechanics of the transformation process focuses on how the model transformation 

process is realized as a process of graph transformations. 
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In addition, pre-defined graph patterns and transformation rules in the Artifact Model 

Transformation Library are presented. 
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PART 3: VERIFICATION & VALIDATION,  
FUTURE WORK, AND CLOSURE 
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CChhaapptteerr  99  ::  TTEESSTT  CCAASSEESS  

The focus of this chapter is to present test applications of KCM meta-models and 

methods, and to validate the research hypotheses. In this chapter, test cases are presented to 

demonstrate different aspects of the Knowledge Composition Methodology. The test cases 

validate the model composition process prescribed by KCM’s Behavior Model Formulation 

Method. Two families of test cases are presented here. In the first test case family (TCF1) 

presented in section 9.2, the objective is to generate fixed topology simulation templates for 

thermo-mechanical analyses of multi-layered printed wiring boards. For the second test case 

family (TCF2) presented in section 9.3, the objective is to generate fixed topology 

simulation templates for thermo-mechanical analyses of ball grid array (BGA) chip 

packages. The test cases demonstrate automated generation of simulation templates for two 

types of variations: (a) analyzable design model structures with different assembly system 

topologies (VTMB problems), and (b) idealization decisions taken by analysts.  

 
Figure 9.1: Applications and Validation of KCM meta-models and methods  

9.1 Models in VIATRA Model Transformation Framework 
The test cases presented in this chapter are implemented using VIATRA model 

transformation framework. For all test cases, the model space in this framework is pre-

loaded with KCM meta-models and libraries. Figure 9.2 illustrates the KCM model space in 
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the VIATRA model transformation framework. The following meta-models, models 

libraries, and model transformation libraries are pre-loaded for execution the model 

transformations prescribed by KCM’s Behavior Model Formulation Method. The meta-

models and model libraries presented here are implementations of the KCM meta-models 

and models in VIATRA Textual Metamodeling Language, and the model transformations 

presented here are implementations of KCM’s Artifact Model Transformation Library in 

VIATRA Textual Command Language (VTCL). 

 Meta-Models 

o CPM2_xKCM is the implementation of the CPM2_xKCM meta-model (section 6.1)  in 

VTML. 

o CBM is the implementation of the Core Behavior Model (CBM – section 7.1) in 

VTML. 

o ABB_Meta_Model is the implementation of the ABB Meta-Model (section 7.2) in 

VTML. 

o Generics_Meta_Model is the implementation of KCM’s Generic Meta-Model for 

representing geometry, math relations, and other constructs that are used by all meta-

models and models. 

o Analyzable_Electronics_Design_Meta-Model is a VTMB electronics artifact-specific 

meta-model. It is a Level 3 model in the design model stack and contains design and 

analyzable design meta-models for representing electronics artifacts of varying 

Artifact Model Transformation Library  
Figure 9.2: KCM meta-models, models, and model transformation libraries shown in the KCM 

model space of the VIATRA model transformation framework 
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assembly system topologies. The Analyzable_Electronics_Design_Meta-Model is the 

meta-model for representing both types of electronics artifacts—printed wiring boards 

and ball grid array chip packages—used in the test cases described in this chapter. In 

section 6.2, a sub-set of this meta-model for representing design and analyzable design 

aspects of printed wiring boards was presented. 

 Models 

o ABB_Library is the implementation of KCM’s Analysis Building Block Library (section 

7.3) in VTML. 

o Analyzable_Electronics_Design_FTMB_Model_Space is a model space for fixed 

topology multi-body analyzable design model structures—Level 4 models in the 

design model stack. 

 Model transformations  

o mxform_rp is the implementations of KCM’s Artifact Model Transformation Library 

(section 8.4) in VTCL. 

 

9.2 Test Case Family 1 (TCF1):  Thermo-mechanical Analysis of 

Multi-Layered Printed Wiring Boards 
A printed wiring board23 is an electronic artifact that transmits signals between 

components mounted on it via conductive pathways (traces) originating from / terminating 

in other conductive features (lands). A bare printed wiring board has no packaged 

components on it. A PCB with mounted components (such as chip packages) is also known 

as a printed wiring assembly (PWA/PCA). The mechanical function of a PWB is to support 

the electronic circuitry laid out in multiple stratums of the PWB. Figure 9.3 illustrates the 

2D layout and through-thickness stackup of a typical PWB. A PWB consists of a stackup of 

materials as shown in the through-thickness view. Each layer of material is known as a 

stratum. A stackup is made of alternatively electrically conductive and non-conductive 

stratums. Conductive stratums have conductive features such as lands and traces as shown 

in the planar layout view. Vias and through-holes are openings in the stackup from one 

conductive layer to another—primarily meant to provide electrical connections across 

                                                 
23 Also known as printed circuit board (PCB) 
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stratums. The through-thickness view shows the structure of the stackup—same for 

different thicknesses of the stratums. 

Figure 9.3: A typical Printed Wiring Board design (shown here with 5 stratums) 

In this section, simulation templates shall be automatically generated using the 

Behavior Model Formulation Method for PWBs with different number of stratums, and for 

different behavior idealization decisions. These simulation templates are to be used for 

thermo-mechanical analyses of printed wiring boards. Specifically, the objective of creating 

these simulation templates is to compute both out-of-plane and in-plane deformation of 

printed wiring boards for different temperature loads. This type of analysis is required to 

simulate the deformation of printed wiring boards when components are assembled on their 

surface, or when a printed wiring board is being manufactured in a sequential lamination 

process in which heating and cooling result in different materials on a PWB to expand and 

contract differently owing to mismatches in their coefficient of thermal expansions. The 

deformation of printed wiring boards leads to mis-registration between component terminals 

and the conductive footprints on the PCB where they are supposed to mount, leading to 

acute reliability problems (Zwemer, Bajaj et al. 2004; Bajaj, Peak et al. 2006).  

In the Behavior Model Formulation Method, the source models are fixed topology 

analyzable design model structures—Level 4 models in the design model stack. If a design 

is to be analyzed as-is (including all features), then the analyzable design model structure is 

same as the design model structure. For the specific case of simulation templates generated 

for thermo-mechanical analyses of printed wiring boards in the test cased presented here, 

the design and analyzable design are different. In the analyzable design model, the stratums 

are idealized as homogenous. This is a fairly common idealization in different types of 

analyses of printed wiring boards, especially when global behaviors are of interest to 

analysts. Figure 9.4 illustrates both design and analyzable design for a 5-stratum PWB. In 
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the analyzable design, the design layers (conductive stratums) are idealized as uniform and 

homogenous as opposed to having specific conductive features such as lands and traces in 

the design model. 

The analyzable design model structure is the starting point of the test cases 

demonstrated here. Sections 9.2.1 and 9.2.2 illustrate two different behavior idealizations—

BMFS1 and BMFS2 respectively. For each BMFS, simulation templates are created for two 

analyzable PWB design alternatives—one with 5 stratums and one with 9 stratums. The 

analyzable PWB design alternatives with 5-stratums and 9-stratums have non-equivalent 

assembly system topologies due to differences in number of assembly components (5 versus 

9), and differences in number of interactions between components (4 versus 8). 

 
Figure 9.4: 5-stratum PCB – design and analyzable design views 

Table 9.1 shows the four fixed topology simulation templates that would be auto-

generated for combinations of 2 different Behavior Model Formulation Specifications and 2 

analyzable design model structures with different assembly system topologies. 

Table 9.1: Simulation templates created for thermo-mechanical analysis of PWBs  

 Analyzable Design Model Structures 

 5-stratum analyzable PCB 9-stratum analyzable PCB 

BMFS1 Simulation Template 51 Simulation Template 91 

BMFS2 Simulation Template 52 Simulation Template 92 
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9.2.1 Behavior Model Formulation Specifications 1 (BMFS1) 
In this section, simulation templates auto-generated for idealization decisions 

embodied in BMFS1 are presented. First, the conceptual specifications in BMFS1 are 

presented. Then, fixed topology simulation templates auto-generated for two analyzable 

PWB design model structures with different assembly system topologies are presented in 

sections 9.2.1.1 and 9.2.1.2 respectively. The conceptual specifications in BMFS1 are 

summarized in Table 9.2 below. Note that the conceptual specifications are presented here 

using the select and idealize constructs described in section 8.3.1. 

Table 9.2: Conceptual specifications (BMFS1) for thermo-mechanical analyses of multi-stratum PCBs  

Conceptual specifications for Stage 1 composition 

Entities in analyzable PCB design model Entities in Multi-shell analysis body system 
(as instances of ABBs stated below) 

Analyzable stratum Idealize as Planar shell analysis body ABB  
Planar shape Select Planar shape ABB 
Linear elastic isotropic temperature-
independent material behavior 
Linear elastic orthotropic temperature-
independent material behavior 
… 

Select Linear elastic isotropic temperature 
independent material behavior ABB  
 

Analyzable features Analysis features 
Primary surface (planar surface feature) Idealize as Planar surface feature ABB 
Secondary surface (planar surface 
features) 

Idealize as Planar surface feature ABB 

 
Conceptual specifications for Stage 2 composition 
Analyzable PCB Idealize as Multi-shell analysis body system 

Analyzable stratum Idealize as Planar shell analysis body ABB 
Adjacent stratum surface interaction Idealize as Shell-shell tie interaction ABB (perfectly 

bonded shell-shell interaction) 
Analyzable features Analysis features 

Volume of analyzable PCB  Idealize as Volume feature ABB 
Mid-pt of bottom soldermask stratum Idealize as Point feature ABB 

 
Conceptual specifications for Stage 3 composition 
Heating a PCB Idealize as Uniform temperature load ABB 

associated with Volume feature ABB instance 
corresponding the volume of the analyzable PCB 

PCB held fixed at mid-pt of the bottom 
soldermask stratum 

Idealize as Point displacement constant behavior 
condition ABB associated with Point feature ABB 
instance corresponding to mid-pt of bottom 
soldermask 

The conceptual specifications are summarized for Stages 1-3 of the composition process. 

Stage 4 is creation of high-level behavior model entities that are common to all behavior 
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model structures formulated using KCM. Figure 9.5 illustrates specifications for 

idealization relationships between an analyzable stratum in the analyzable PWB design 

model structure and the corresponding planar shell analysis body in the behavior model 

structure (to be created). Only assembly system topology-related aspects of the 

specifications are shown. 

Analyzable Stratum i

Analyzable Stratum i+1 Planar shell analysis body i+1

Planar shell analysis body i
Primary surface

Secondary surface

Primary surface

Secondary surface

Adjacent stratum surface interface i, i+1 Tie interaction i, i+1

Planar surface analysis feature

Planar surface analysis feature

Planar surface analysis feature

Planar surface analysis feature

Specifications for relationships  
Figure 9.5: Specifications for relationships between analyzable stratum and  

planar shell analysis bodies (only assembly system topology-related aspects are shown) 

Stage 1 composition concerns the idealizations at the level of a single analysis 

body. In BMFS1, a stratum of an analyzable PCB is idealized as a planar shell analysis body 

as shown in Figure 9.5. Thus, the mechanical behavior of a stratum is idealized as the 

mechanical behavior of a shell, and the shape of the stratum is idealized as a planar shell 

shape—a thin prismatic shape where the outline and thickness of the shape is same as the 

outline and thickness of the analyzable stratum. The material behavior of all analyzable 

stratums is idealized to be linear, elastic, isotropic, and temperature independent. The 

primary and secondary surfaces of the analyzable stratums are idealized as planar surface 

analysis features.   

Stage 2 composition concerns idealizations at the level of multiple analysis bodies 

in the context of an analysis body system. In BMFS1, an analyzable PWB is idealized as a 

multi-shell system composed of a stack of planar shell analysis bodies—each body 

corresponding to an analyzable stratum. Since the thickness of each planar shell analysis 

body is small, the multi-shell system itself behavior as a laminated shell. The interactions 

between the analyzable stratums, also known as adjacent stratum surface interfaces, are 

relationships between the secondary surface of the preceding stratum and the primary 
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surface of the succeeding stratum. In BMFS1, an adjacent stratum surface interface is 

idealized as a tie interaction between the corresponding planar shell analysis bodies. The 

planar surface analysis features of two adjacent planar shell analysis bodies participate in a 

tie interaction. The behavior of a tie interaction is same as if adjacent planar shell analysis 

bodies were perfectly bonded. Hence, the displacement (translational and rotational 

components) is continuous across the interface of adjacent planar shell analysis bodies. In 

addition, two new analysis features are defined at the multi-shell analysis body system 

level. These are (i) volume feature ABB instance corresponding to the volume of an 

analyzable PCB, and (ii) point feature ABB instance corresponding to the mid-point of the 

bottom analyzable stratum (corresponding to the soldermask stratum in the PWB design 

model). 

Stage 3 composition concerns the idealizations of loads and behavior conditions in 

which the behavior of the analysis body system is to be computed. The process of heating a 

PCB, say for mounting components, is idealized as a uniform temperature load—uniform 

increase in temperature from a reference value to a target value. In addition, the load is 

idealized to be uniform through the volume of the entire multi-shell analysis body system. 

The behavior condition for this analysis is to hold the mid-point of the bottom analyzable 

stratum as fixed. This corresponds to locking all degrees of freedom at that point in the 

analysis body system. This behavior condition is realized by the use of point-displacement-

fixed ABB instance that embodies the displacement constraint, and associating it with the 

point feature ABB instance corresponding to the mid-point of the bottom planar shell 

analysis body. Per the idealization specifications in Figure 9.5, the bottom planar shell 

analysis body corresponds to the bottom analyzable stratum.  

 

9.2.1.1 Simulation Template 51: Simulation template for 5-stratum analyzable PWB 

design model structure and BMFS1 

In this section a fixed topology simulation template auto-generated for 5-stratum 

analyzable PWB design model structure and BMFS1 is presented. The source model in the 

model transformation shown here is PWB_5S2L—a 5-stratum, 2-layer24 analyzable PWB 

                                                 
24 Conductive stratums are known as layers. In this example, the analyzable PWB has 5 stratums and 2 layers. 
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design model structure, shown in Figure 9.6 in the VIATRA model space. PWB_5S2L is an 

instance of the Analyzable_Electronics_Design_Meta-Model (section 6.2) that is pre-loaded 

in the VIATRA model space. The source model shown here is a Level 4 model in the design 

model stack, and same as the PCB_5Sx model illustrated in Figure 6.10.  

Attributes values (References to objects) 

Objects

Key

Interfaces between 
stratums5-stratum PWB

5 stratums

 
Figure 9.6: PWB_5S2L has 5 analyzable stratums and 4 stratum interfaces 

In the figure above, the objects in the model space denoted with an icon with letter E are 

entities, and objects denoted with an icon with letter R and an arrow ( ) are attributes of 

the containing entity. In VTML, attributes are modeled as relationships and hence the letter 

R is used o denote them in the VIATRA model space. As shown in Figure 9.6, PWB_5S2L 
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has 5 analyzable stratums and 4 stratum interfaces. In the figure, the entities highlighted 

using dashed lines are the show the attribute values of the PWB_5S2L entity. These values 

refer to the 5 analyzable stratum objects and 4 stratum interfaces entities as shown in the 

model space. Figure 9.7 illustrates an analyzable stratum object and its attribute values, and 

Figure 9.8 illustrates a stratum interface object and its attribute values—preceding and 

succeeding stratum surfaces.  

 
Figure 9.7: Stratum entity example 

 

Figure 9.8: Stratum interface entity example 

Once the FTMB analyzable design model (PWB_5S2L) is available in the model 

space, BMFS1 can be loaded and executed to auto-generate fixed topology simulation 

template. Figure 9.9 illustrates the ABB Library, Artifact Model Transformation Library, 

and BMFS1 (computable specification) in the VIATRA model space. The ABB Library and 

Artifact Model Transformation Library are common to all behavior model structures and 

simulation templates formulated using the Behavior Model Formulation Method, but the 

Behavior Model Formulation Specifications that embody the idealization decisions typically 

differ from one analysis to another. Figure 9.10 illustrates the execution of BMFS1 in the 

VIATRA model space—right click on model space entry and select Run from the menu. 
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Figure 9.9: VIATRA model space showing ABB Library, AMTL, and BMFS1 

 

Figure 9.10: Executing BMFS1 in VIATRA model space. 

The Behavior Model space shown in Figure 9.11 shows the simulation template 

entities auto-created by executing BMFS1 (computable specifications). Figure 9.11 

illustrates the relationship between an analyzable artifact, its behaviors, and behavior 

models used for computing those behaviors. This is one of the core concepts in 

CPM2_xKCM. Note that two attributes of the entity ThermoMech_Behavior relate 

PWB_5S2L (analyzable artifact) and Multi_Shell_UniTemp_PtDx_ThermoMech_BM 

(behavior model). Similarly, other thermo-mechanical behavior models of different 

fidelities can be associated with the entity ThermoMech_Behavior.  
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Figure 9.11: Simulation template automatically created using  

Behavior Model Formulation Method 

Figure 9.12: Results of Stage 4 composition 
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Figure 9.12 illustrates the entities and relationships created in the simulation 

template at the end of Stage 4 of the composition process. The figure shows a behavior 

model, behavior model ABB system, and context entities during the process. The attribute 

values of the behavior model entity refer to the ABB system and context entities. Figure 

9.13 illustrates the behavior model ABB system entity and its attribute values creating at the 

end of Stage 3 of the composition process. The figure shows the ABB system consists of the 

multi-shell analysis body system, point displacement behavior condition, and a constant 

temperature load. 

 
Figure 9.13: Behavior Model ABB System created at the end of Stage 3 composition 

Figure 9.14: Analysis body system created at the end of Stage 2 composition 
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Figure 9.14 above illustrates the multi-shell analysis body system created at the end of 

Stage 2 composition process.  

Note that the VIATRA framework orders attributes in an alphabetical order, and 

hence attributes corresponding to planar shell analysis bodies do not show the stackup order 

of these bodies in the multi-shell analysis body system. Figure 9.14 illustrates the attributes 

of the multi-shell analysis body system that refer to the 5 planar shell analysis bodies and 4 

shell-shell tie interactions automatically created during the Stage 2 composition. In addition 

to the analysis bodies and their interactions, the relationships between the 5-stratum 

analyzable PWB and 5-shell analysis body system is also automatically created at the end of 

Stage 2 composition. Figure 9.15 below illustrates the five relationships created between 

analyzable stratums and planar shell analysis bodies—1 relationships for each pair, and the 

four relationships created between the analyzable stratum interfaces and the tie interactions 

between planar shell analysis bodies—1 relationship for each pair. These relationships 

realize the specifications illustrated in Figure 9.5.  

Figure 9.15: Relationship between analyzable PWB and multi-shell analysis body system 

A relationship between an analyzable artifact and an analysis body consists of 

relationships between their shapes, material behaviors, and analysis features. Hence, for 

every relationship between an analyzable stratum and a planar shell analysis body, several 

sub-relationships are also automatically created at the end of Stage 1 composition. Figure 

9.16 illustrates these sub-relationships for an analyzable stratum and an analysis body. The 
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entity Planar_Shell_AB – Design_Cu_Stratum_1_ASSOC represents the relationship between 

an analyzable stratum (specifically Design_Cu_Stratum_1) and the corresponding planar 

shell analysis body. The attribute values of this relationship refer to the relationships 

between (i) their primary and secondary features represented by entities of type 

AF_ANF_Relationship, (ii) their shapes represented by entity of type 

Geom_Geom_Relationship, and (iii) their material behaviors represented by entity of type 

Material_Behavior_Material_Behavior_Relationship. 

 
Figure 9.16: Relationship between an analyzable stratum and analysis body created in Stage 1 composition 

 Figure 9.17 illustrates the planar shell analysis bodies created at end of Stage 1 

composition. Each planar shell analysis body is an instance of Planar Shell Analysis Body 

ABB. The attributes of each planar shell analysis body is populated with other ABB 

instances. The shape attribute is populated by Planar Shape ABB instance, the material 

behavior attribute is populated by Linear Elastic Isotropic Temperature Independent 

Material Behavior ABB instance (highlighted in the figure), and the primary and secondary 
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analysis feature attributes are populated by Planar Surface Analysis Feature ABB instances 

(Planar Shell Primary Surface is a special type of Planar Surface Analysis Feature ABB). 

Note that the figure shows the planar shell analysis body entities and not their occurrence 

in the multi-shell system.  

Figure 9.17:Planar shell analysis bodies created in Stage 1 composition 
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9.2.1.2 Simulation Template 91: Simulation template for 9-stratum PWB design model 

structure and BMFS1 

In this section, the simulation template automatically created for the same Behavior 

Model Formulation Specifications (BMFS1) as in the previous section but for a 9-stratum 

analyzable PWB design is presented. 

 
Figure 9.18: PWB_9S4L has 9 analyzable stratums and 8 stratum interfaces 



 

 275

Figure 9.18 illustrates PWB_9S4L—a 9-stratum, 4-layer analyzable PWB design model 

structure—in the VIATRA model space. Like PWB_5S2L presented in the previous 

section, PWB_9S4L is also a Level 4 model in the design model stack, and is an instance of 

the Analyzable_Electronics_Design_Meta-Model (section 6.2).  

Only those aspects of the simulation template are presented here that are different 

for the 9-stratum analyzable PWB design. Simulation template entities and relationships 

created in composition Stages 1, 3 and 4 are the same for Simulation Template 5
1 and 

Simulation Template 9
1. However, results of composition Stage 2 are different. This is so 

because the changes in assembly system topology due to changes in the number of 

analyzable artifacts and their interactions (as in this case) affects the number of analysis 

bodies and their interactions in the analysis body system—composed in Stage 2 

composition.  

Figure 9.19: Multi-shell analysis body system created in composition Stage 2 for Simulation Template9
1 
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Figure 9.18 illustrates the analysis body system automatically created in Stage 2 of 

the composition process for Simulation Template 9
1. The figure shows 9 planar shell 

analysis bodies and 8 shell-shell perfectly bonded (tie) interactions created as components 

of multi-shell analysis body system at the end of composition Stage 2. The 9 analysis bodies 

correspond to the 9 analyzable stratums, and the 8 tie interactions correspond to the 8 

stratum interfaces in PWB_9S4L.  

Figure 9.20 illustrates the relationship between PWB_9S4L and the multi-shell 

analysis body system created at the end of Stage 2 composition process. Note that in this 

case nine analyzable stratum–planar shell analysis body relationships have been created 

(one for each pair), and eight relationships have been created between analyzable stratum 

interfaces and analysis body tie interactions (one for each pair). Hence for the same BMFS, 

Figure 9.20: Relationship between analyzable PWB design and multi-shell analysis body system created in 

composition Stage 2 
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the Behavior Model Formulation Method can be used to automatically compose simulation 

templates for design alternatives with non-equivalent assembly system topologies. 

9.2.2 Behavior Model Formulation Specifications 2 (BMFS2) 
In this section, simulation templates automatically generated for the second set of 

Behavior Model Formulation Specifications (BMFS2) are presented. In BMFS2, the material 

behavior idealization decisions are changed as compared to BMFS1. Instead of idealizing 

the material behavior of all analyzable stratums as linear, elastic, isotropic, and temperature 

independent (as in BMFS1), the following conditions is used to select the material behavior 

ABB to be associated with a planar shell analysis body associated with an analyzable 

stratum: 

If (electrical function of an analyzable stratum is CONDUCTIVE or SOLDERMASK) 

Select linear elastic isotropic temperature-independent material behavior ABB 

Else if (electrical function is DIELECTRIC) 

Select linear elastic orthotropic temperature independent material behavior ABB 

These idealization decisions are reflected in both the conceptual and computable Behavior 

Model Formulation Specifications. Note that these idealization decisions are at the level of 

individual analysis bodies since material behavior is an attribute of an analysis body. Thus, 

the new idealizations in BMFS2 affect results of the Stage 1 composition only. Hence, only 

results of the Stage 1 composition are presented below. Figure 9.21 and Figure 9.22 below 

illustrate the planar shell analysis bodies created for PWB_5S4L and PWB_9S4L with the 

new idealization decisions embodied in BMFS2. The figures show that the planar shell 

analysis bodies corresponding to conductive and soldermask stratums are associated with 

instances of Linear Elastic Isotropic Temperature-independent Material Behavior ABB, and 

those associated with dielectric stratums are associated with instances of Linear Elastic 

Orthotropic Temperature-independent Material Behavior ABB during composition Stage 1. 

The figures clearly illustrate that with changes in idealization decisions, simulation 

templates can be easily and automatically generated for design alternatives with different 

assembly system topologies. 
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9.2.2.1 Simulation Template 52: Simulation template for 5-stratum PWB design model 

structure and BMFS2 

Figure 9.21: Planar shell analysis bodies created for BMFS2 and PWB_5S4L in composition Stage 1 
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9.2.2.2 Simulation Template 92: Simulation template for 9-stratum PWB design model 

structure and BMFS2 
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Figure 9.22: Planar shell analysis bodies created for BMFS2 and PWB_9S4L in composition Stage 1 

 

9.3 Test Case Family 2 (TCF2): Thermo-mechanical Analysis of 

Ball Grid Array (BGA) Chip Packages 
A ball grid array (BGA) chip package is a surface mount electronic package that 

interconnects with a printed wiring board via balls of solder arranged in a grid on the 

bottom surface of the package. In general, an electronic chip package embodies integrated 

circuits (ICs). The solder balls on the bottom surface of a BGA25 are meant to conduct 

electrical signals between the IC and the PWB on which the BGA is mounted. BGAs are 

commonly used today in most electronics devices, such has handhelds and computers. 

Figure 9.23 (left) shows snapshots of BGAs used for consumer electronics and 

microprocessors, and Figure 9.23 (right) shows a three-dimensional CAD model of an 

idealized BGA assembly—mold around the silicon chip is not shown. Figure 9.24 shows 

assembled and exploded views of an idealized BGA assembly mounted on a PWB. Figure 

9.25 shows a cross-sectional view of a BGA assembly. 

                                                 
25 Ball grid array chip packages are referred as BGAs for brevity 
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Photo: www.shinko.co.jp  
Figure 9.23: Ball grid array (BGA) chip packages (left) and 3D CAD models of idealized BGAs (right) 

 
 

Figure 9.24: Assembled and exploded views of an idealized BGA mounted on a PWB 

 
Figure 9.25: Cross-sectional view showing components of an idealized BGA chip package assembly 

Figure 9.25 also shows the key components of a BGA assembly in the context of 

VTMB analysis problems presented in this section. The idealized BGA assembly shown in 

the figure consists of the following components: 

 Substrate is a multi-layered structure similar to a PWB that embodies other electronic 

functions supporting the IC 

 Solder balls are ball-shaped solder material structures that connect the chip package to a 

PWB, both electrically and mechanically. Solder balls are arranged in a grid on the 



 

 282

bottom surface of a BGA, and interface with the conductive pads on the surface of a 

PWB when the BGA is mounted. 

 Si Chip is a silicon die that houses the integrated circuit. 

 Die Attach is a mechanical adhesive that binds the chip to the substrate. 

 Mold is an enclosing to protect the chip. 

Note that the design of a BGA is more complicated and variant than described in the 

idealized view above. The idealized design presented above is the basis for analyzable 

design models used in this section for demonstrating the Behavior Model Formulation 

Method. 

In this section, the Behavior Model Formulation Method is used to automatically 

generate simulation templates for thermo-mechanical analysis of BGAs. Thermo-

mechanical issues lead to reliability problems for BGAs. The heat from the surrounding 

regions or that generated from the chip causes different materials in a BGA assembly to 

expand and contract differently due to mismatches in their coefficient of thermal expansions 

leading to deformation of the BGA assembly and reliability issues resulting thereof. In this 

section two analyzable BGA design models are considered—one with 16 solder bodies and 

one with 3626 solder bodies. Two different Behavior Model Formulation Specifications are 

used for generating simulation templates for the two BGA assemblies that have non-

equivalent assembly system topology. Table 9.3 below shows the four simulation templates 

that will be automatically created by the combination of two variable topology BGA 

alternatives and two Behavior Model Formulation Specifications. These simulation 

templates are presented in sections 9.3.1 and 9.3.2. 

Table 9.3: Simulation templates created for thermo-mechanical analysis of BGAs  

 Analyzable Design Model Structures 

 16-solder ball analyzable BGA 36-solder ball analyzable BGA 

BMFS1 Simulation Template 16
1 Simulation Template 36

1 

BMFS2 Simulation Template 16
2 Simulation Template 36

2 

                                                 
26 Note that the number of solder balls may well be over 100 for a complex BGA. The low number of solder balls shown 

here are purely for demonstration of VTMB aspects of the Behavior Model Formulation Method. 
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The objective of the simulation templates generated here is to compute the 

deformation of a BGA assembly when it is uniformly heated, either due to the heat 

generated from the chip or the heat from the surroundings—as in an assembly process. 

9.3.1 Behavior Model Formulation Specifications 1 (BMFS1) 
The conceptual specifications for BMFS1 for all composition stages are stated in 

Table 9.4. In addition, Figure 9.26 illustrates the idealization decisions to create a Multi-

Shell-Solid analysis body system corresponding to an analyzable BGA design model 

structure. The chip substrate is idealized in the same manner as the PWB in BMFS2 in 

section 9.2.2. The chip, mold, and solder balls are idealized as generic solid analysis bodies 

with no shape idealizations—analysis body has the same shape as the analyzable artifact, 

and with linear elastic isotropic temperature-independent material behavior. The bottom 

surface of the chip mates with the die attach and the outer surface of the chip mates with the 

bottom (inner) surface of the mold. All these features are idealized as generic analysis 

features (instances of analysis feature ABB). The die attach is modeled as a planar shell 

analysis body ABB and its top (primary) and bottom (secondary) features are idealized as 

instances of planar surface analysis feature ABB—same as in the case for primary and 

secondary surfaces of all stratums in the chip substrate. The solder ball is also idealized as a 

generic solid with linear elastic isotropic temperature-independent material behavior. The 

solder ball is shaped as a truncated sphere with two truncation features—top and bottom—

that connect it with the chip substrate and PWB respectively.  

For Stage 2 composition, all interfaces are idealized as tie interactions. The idealized 

BGA corresponds to a Multi-Shell-Solid analysis body system as shown in Figure 9.26 and 

stated in Table 9.4.  
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Figure 9.26: BMFS1 relationship specifications between idealized BGA and  

Multi-Shell-Solid analysis body system 

 

Table 9.4: Conceptual specifications (BMFS1) for thermomechanical analysis of multi-component BGAs 

Conceptual specifications for Stage 1 composition 
Entities in analyzable BGA design model Entities in Multi-shell-solid analysis body system  

(as instances of ABBs stated below) 
Analyzable stratum (of chip substrate) Idealize as Planar shell analysis body ABB  

Shapes 
Planar shape 
… 

Select Planar shape ABB 

Material Behaviors 
Linear elastic isotropic temperature-
independent material behavior 
Linear elastic orthotropic temperature-
independent material behavior 

If(stratum function is conductive or soldermask) 
Select Linear elastic isotropic temperature 
independent material behavior ABB  

Else If(stratum function is dielectric) 
Select Linear elastic orthotropic temperature 
independent material behavior ABB  

Analyzable features Analysis features 
Primary surface Idealize as Planar surface feature ABB 
Secondary surface Idealize as Planar surface feature ABB 

Si Chip Idealize as Generic solid ABB 
Shape 

Cuboid 
… 

Idealize as Cuboid shape ABB 

Material behaviors 
Linear elastic isotropic temperature 
independent material behavior ABB 

Select Linear elastic isotropic temperature 
independent material behavior ABB 

Analyzable features Analysis features 
Bottom surface Idealize as Analysis feature ABB 
Outer surface Idealize as Analysis feature ABB 

Mold Idealize as Generic solid ABB 
Shape 

3D shape representation 
Select 3D shape representation ABB 

Material behaviors Select Linear elastic isotropic temperature 



 

 285

Linear elastic isotropic temperature 
independent material behavior ABB 
… 

independent material behavior ABB 

Analyzable features Analysis features 
Bottom surface Idealize as Analysis feature ABB 

Die Attach Idealize as Planar shell analysis body ABB 
Shapes 

Planar shape 
Select Planar shape ABB 

Material behaviors 
Linear elastic isotropic temperature 
independent material behavior ABB 
… 

Select Linear elastic isotropic temperature 
independent material behavior ABB 

Analyzable features Analysis features 
Primary surface Idealize as Planar surface feature ABB 
Secondary surface Idealize as Planar surface feature ABB 

Solder Ball Idealize as Generic solid ABB 
Shape  

Truncated sphere 
… 

Select Truncated sphere shape ABB 

Material behaviors 
Linear elastic isotropic temperature 
independent material behavior ABB 

Select Linear elastic isotropic temperature 
independent material behavior ABB 

Analyzable features Analysis features 
Top truncation feature Idealize as Analysis feature ABB 
Bottom truncation feature Idealize as Analysis feature ABB 

 
Conceptual specifications for Stage 2 composition 
Analyzable BGA Idealize as Multi-Shell-Solid Analysis Body System 

Chip Substrate Idealize as Multi-shell analysis body system 
Analyzable stratum Idealize as Planar shell analysis body ABB 
Stratum interfaces Idealize as Shell-shell tie interaction ABB 

Mold-Chip interface Idealize as Solid-solid tie interaction ABB 
Mold-Substrate interface Idealize as Solid-shell tie interaction ABB 
Chip-Die Attach interface Idealize as Solid-shell tie interaction ABB 
Die Attach-Substrate interface Idealize as Shell-shell tie interaction ABB 
Substrate-Solder Ball interface Idealize as Shell-Solid tie interaction ABB 
Analyzable features Analysis features 

Volume of analyzable PCB Idealize as Volume feature ABB 
Mid-pt of bottom soldermask stratum of 
BGA substrate 

Idealize as Point feature ABB 

 
Conceptual specifications for Stage 3 composition 
Heating a BGA Idealize as Uniform temperature load ABB 

associated with Volume feature ABB instance 
corresponding the volume of the analyzable BGA 

BGA held fixed at mid-pt of the bottom 
soldermask stratum of the substrate 

Idealize as Point displacement constant behavior 
condition ABB associated with Point feature ABB 
instance corresponding to mid-pt of bottom 
soldermask of the BGA substrate 
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Stage 3 composition concerns the idealizations of loads and behavior conditions in 

which the behavior of the Multi-Shell-Solid analysis body system corresponding to an 

idealized BGA. A uniform temperature load is used for idealizing the thermal load on a 

BGA when it is heated (due to the heat generated from the chip or during the assembly 

process). The behavior condition for this analysis is to hold the mid-point of the bottom 

analyzable stratum as fixed. This corresponds to locking all degrees of freedom at that point 

in the analysis body system. This behavior condition is realized by the use of point-

displacement-fixed ABB instance that embodies the displacement constraint, and 

associating it with the point feature ABB instance corresponding to the mid-point of the 

bottom planar shell analysis body.  

Note that the conceptual specifications have been presented here in a tabulated 

form. The intent here is to describe the types of idealization decisions taken by analysts 

when developing conceptual specifications. Conceptual specifications are represented more 

formally using SysML Parametrics constructs as shown in Figure 8.24 of section 8.3.1. 

 

9.3.1.1 Simulation Template 16
1: Simulation template for 16-solder ball analyzable BGA 

model structure and BMFS1 

Figure 9.27 illustrates CP_BGA_5S2L_16SB—analyzable design model structure 

for a 16-solder ball BGA.  
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Figure 9.27: 16-solder body analyzable BGA design model structure  (CP_BGA_5S2L_16SB) 
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Figure 9.28: 5-stratum, 2-layer analyzable chip substrate design model structure (Substrate_5S2L) 

Figure 9.27 shows 16 solder ball components and their interactions with the substrate (one 

interaction for each solder ball component). The figure also shows the chip, mold, die 

attach, and substrate components, and their interactions. Figure 9.28 shows 

Substrate_5S2L—analyzable design model structure for the chip substrate. The 5 stratum 

components (2 layers) and the 4 interfaces between them are shown in the figure. 

After the execution of BMFS1
, a thermo-mechanical behavior model for the 16-

solder ball analyzable BGA is created. Figure 9.29 illustrates this behavior model 

(BGA_ThermoMech_UniTempp_PtFx_BM) and its associated ABB system and context 

created at the end of Stage 4 composition. Figure 9.30 illustrates the ABB system created at 

the end of Stage 3 composition. The ABB system consists of an analysis body system 

(Multi_Shell_Solid_Analysis_Body_System), a constant-temperature load applied to the entire 

volume of the analysis body system, and a point-displacement-fixed behavior condition 

applied to the mid-point of the bottom surface of the last planar shell analysis body 

(corresponding to the last soldermask layer) in the analysis body system corresponding to 

the substrate. 
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Figure 9.29: Behavior Model structure created for CP_BGA_5S2L_16SB and BMFS1 in  

composition Stage 4 

 
Figure 9.30: ABB system created for CP_BGA_5S2L_16SB and BMFS1 in composition Stage 3 

Figure 9.31 illustrates the Multi-Shell-Solid analysis body system—corresponding 

to the analyzable BGA—created in Stage 2 of the composition process. The figure shows 

the 16 generic solid analysis body components corresponding to the solder balls in the 

analyzable BGA design assembly, and the 16 solid-shell tie interactions between these 

analysis bodies and the last planar shell analysis body—corresponding to the bottom 

soldermask layer—of the substrate analysis body system. The figure also shows the multi-

shell analysis body system—corresponding to the chip substrate created in Stage 2 

composition.  
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Figure 9.32 illustrates 16 association relationships created between generic solid 

analysis bodies (corresponding to solder balls) in the multi-shell-solid analysis body system 

and the solder balls in the analyzable BGA design assembly in composition Stage 2. The 

figure also shows the 16 analyzable artifact-analysis body interaction relationships between 

(a) interface between these generic solid bodies and the bottom surface of the last planar 

shell analysis body in the multi-shell analysis body system (corresponding to the chip 

substrate) and (b) interface between the solder balls and the bottom surface of the last 

stratum (soldermask) of the analyzable chip substrate. 

 
Figure 9.31: Analysis body system created for CP_BGA_5S2L_16SB and BMFS1 in composition Stage 2 
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Figure 9.32: Relationship between analyzable BGA design model structure (CP_BGA_5S2L_16SB) 

and Multi-Shell-Solid analysis body system for BMFS1 in composition Stage 2 

Figure 9.33 illustrates the material behavior of five planar shell analysis bodies in 

the multi-shell analysis body system corresponding to the chip substrate. Per the 

idealization decisions in BMFS1, the planar shell analysis bodies corresponding to 

conductive and soldermask stratums have an isotropic material behavior as opposed to 

orthotropic material behavior for the body corresponding to the dielectric stratum. 
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Figure 9.33: Material behavior of analysis bodies corresponding to substrate stratums 
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Figure 9.34: Types of analysis bodies created for CP_BGA_5S2L_16SB and BMFS1 in 

composition Stage 1 
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Figure 9.34 illustrates the different types of analysis bodies, corresponding to 

components in the analyzable BGA assembly, created in composition Stage 1. The number 

of each type of analysis body is shown in Figure 9.31. For example, 16 generic solid 

analysis bodies (corresponding to 16 solder balls) were created in Stage 1 of the 

composition process. The intent of Figure 9.34 is to illustrate the different types of entities 

created for each analysis body. The figure shows shape, material behavior, and analysis 

features created for analysis bodies corresponding to mold, chip, die attach, substrate 

stratum, and solder balls. In addition, associations between shape, material behavior, and 

analysis features of each analysis body and the corresponding component in the analyzable 

BGA assembly are also created during Stage 1 composition.  

 

9.3.1.2 Simulation Template 36
1: Simulation template for 36-solder ball analyzable BGA 

model structure and BMFS1 

In this section, the simulation template automatically created for an analyzable BGA 

design model structure with 36 solder balls and for idealization decisions embodied in 

BMFS1 is presented. The analyzable BGA assembly with 36 solder balls has a non-

equivalent assembly system topology as compared to the analyzable BGA assembly with 16 

solder balls. For the same BMFS, change in assembly system topology of the design 

alternative affects results of composition Stages 1 and 2 only. If the topology variation is 

only due to changes in the number of artifacts in the design alternative assembly, the 

number of analysis bodies created during Stage 1 composition changes. In addition, the 

analysis body system composed in Stage 2 has a different number of analysis body 

components and their interactions. 

Figure 9.35 illustrates CP_BGA_5S2L_36SB—an analyzable BGA design model 

structure with 36 solder balls. The figure shows the 36 solder ball components and the 36 

interactions between the solder balls and the bottom stratum of the chip substrate—one 

interaction per solder ball. Note that in this example BGA assembly, the number of solder 

balls (and associated interactions) is the only change compared to the 16 solder ball BGA 

example illustrated in the previous section. 
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Figure 9.35: 36-solder body analyzable BGA design model structure  (CP_BGA_5S2L_36SB) 

Figure 9.36 illustrates the 36 analysis bodies created as a result of executing BMFS1 

on analyzable BGA design model structure with 36 solder balls. The figure also shows the 

36 tie interactions created between these 36 analysis bodies and the planar shell analysis 

body corresponding to the last (bottom) stratum of the chip substrate. 
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Figure 9.36: Analysis bodies and tie interactions corresponding to 36 solder balls in CP_BGA_5S2L_36 SB 

9.3.2 Behavior Model Formulation Specifications 2 (BMFS2) 
In BMFS2, an alternate idealization is prescribed for the solder balls. In contrast with 

BMFS1, the shape of a solder ball is to be idealized as a cuboid in BMFS2. This type of 

idealization is common for thermo-mechanical analyses of a BGA when the global behavior 

of the package is to be computed (Zeng 2004). The shape transformation relations may vary 

from (a) creating a cuboid whose height is same as the height of the truncated sphere (solder 

ball shape), and whose length and width are same as the diameters of the sphere, to (b) 

creating a cuboid those height is same as the height of the truncated sphere (solder ball 

shape), and whose length and width are equal and computed such that volume of the cuboid 

is same as the volume of the truncated sphere. The affect of this idealization change in 
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BMFS2 is seen at composition Stage 1 where analysis bodies corresponding to solder balls 

are created.  

Figure 9.37 illustrates the shape of the analysis body corresponding to solder ball 

SB1, created in Stage 1 composition after executing BMFS2. The figure shows the entity 

representing the cuboid shape of this analysis body. 

 
Figure 9.37: Analysis body corresponding to solder ball SB1 has a cuboid shape 

Figure 9.38 shows the analyzable artifact-analysis body relationship between solder ball 

SB1 and the corresponding analysis body. As shown, the shape idealization relationship is 

an attribute of the analyzable artifact-analysis body relationship, and it represents the math 

relations embodying the shape idealization transformations.  

 
Figure 9.38: Shape idealization relationship between truncated sphere shape of SB1 and cuboid shape of the 

corresponding analysis body 

In this case, no specific math relations are specified but the entity Relation (type of math 

relation shown in the figure below) can represent the parameters and the math relations 

among these parameters—similar to a constraint blocks in SysML. 
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9.3.2.1 Simulation Template 16
2: Simulation template for 16-solder ball analyzable BGA 

model structure and BMFS2 

The simulation template generated using BMFS2 for CPM_BGA_5S2L_16SB—

analyzable BGA design with 16 solder balls—is same as shown for BMFS1 (section 9.3.1.1) 

except for the shape attribute of all analysis bodies corresponding to solder balls.  

 

9.3.2.2 Simulation Template 36
2: Simulation template for 36-solder ball analyzable BGA 

model structure and BMFS2 

The simulation template generated using BMFS2 for CPM_BGA_5S2L_36SB—analyzable 

BGA design with 36 solder balls—is same as shown for BMFS1 (section 9.3.1.2) except for 

the shape attribute of all analysis bodies corresponding to solder balls. 

 

9.4 Execution of Simulation Templates 
In this section, the value of a single simulation template in performing trade studies 

on design alternatives is demonstrated. The simulation template shown here corresponds to 

the simulation template ST5
1 for thermo-mechanical analysis of 5-stratum PWBs per the 

idealization decisions in BMFS1 (section 9.2.1.1). The execution of this simulation template 

in two different causalities—design verification and synthesis scenarios—is shown here. In 

the design verification scenario, the values of design parameters are given and the values of 

the analysis body parameters are computed. In the design synthesis scenario, the values of 

analysis body parameters are given and the values of design parameters are computed. The 

design synthesis scenario represents the case where analysts have optimized the 

performance of the analysis body system and intend to update the design based on these 

values. In each scenario, the simulation template can be used to solve for different values of 

the “given” parameters to compute corresponding values of the “target” parameters. 

Figure 9.39 below illustrates a high-level tree view of the simulation template that 

would be automatically created using the Behavior Model Formulation Method. In this 

figure, the simulation template has been loaded in ParaMagicTM—an object solver that can 

execute math relationships for multiple causalities. The figure shows that the simulation 

template is composed of the analyzable artifact structure (5-stratum PWBs) and a behavior 

model structure (for thermo-mechanical analysis of PWBs). The 5 stratums of the PWB and 
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the 5 planar shell analysis bodies (psab1-5) are shown in the figure. In addition, the 

idealization relationships embodied in the simulation template can be seen in lower part of 

ParaMagic browser.  

 
Figure 9.39: Analyzable Artifact (PCB) and Behavior Model Context 

Figure 9.40 and Figure 9.41 illustrate shape and material behavior idealization relationships 

for a single stratum and analysis body in this simulation template (SysML block definition 

diagram view). Note that the same structure is repeated for all stratums and analysis bodies 

in the simulation template. 
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…similarly for 4 other stratums…
 

Figure 9.40: Analyzable artifact and behavior model context relationships for a single stratum - SysML block definition diagram view 
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…similarly for 4 other analysis bodies…
 

Figure 9.41: Behavior model context and analysis body relationships for a single analysis body (corresponding to a single PWB stratum) 
SysML block definition diagram view 
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Figure 9.42: Design verification scenario - Analysis body parameters computed from design parameters 
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Figure 9.40 illustrates the connections between a stratum in the PWB design 

model structure to the analyzable artifact—analysis body relationship in the Behavior 

Model Context; and Figure 9.41 illustrates the connections between analyzable artifact—

analysis body relationship to the analysis body in the analysis body system. 

Figure 9.42 above shows an expanded tree view of the simulation template in 

ParaMagic browser for a single PWB design model instance. For a given PWB design 

model structure in the simulation template, multiple instances may be defined 

(corresponding to different values of parameters). The figure shows the given values of 

shape and material behavior parameters for all 5 stratums in the PWB. The figure also 

shows that the shape and material behavior parameter values for the 5-stratum analysis 

body system are targets. When the simulation template is executed (using ParaMagic) to 

solve for values of the analysis body system parameters, they are computed as shown in 

the figure as target values in the solved state. ParaMagic uses Mathematica to solve for 

the idealization relationships embodied in the simulation template. Note that the 

computed values of the target parameters are the same as given parameters because the 

idealization relationships in this simulation template equated the material behavior and 

shape parameters of stratums to those of planar shell analysis bodies. More complex 

idealization relationships can be embodied in the SysML constraint blocks shown in 

Figure 9.40 and Figure 9.41. 

For the design verification scenario, shape and material behavior parameters of 

planar shell analysis bodies are computed for different values of shape and material 

behavior parameters of PWB design stratums. This corresponds to formulating behavior 

model instances (B5 models) for design model instances (D5 models). Figure 9.43 

illustrates executions of the simulation template ST5
1 (illustrated in Figure 9.40, Figure 

9.41, and Figure 9.42) for two design model instances. In the first design model 

instance—left hand side of the Figure 9.43—the effective co-efficient of thermal 

expansion (CTE) of the bottom design layer (stratum_4_design) is higher than that of the 

top design layer (stratum_2_design), other aspects of the stackup remaining balanced. 

Hence, when the PWB is heated from 25oC - 250oC, the bottom design layer expands 

more than the top design layer, resulting in a bowl-shaped deformation of the PWB 

(concave when viewed from the top). In the second design instance—right hand side of 
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the Figure 9.43—the effective co-efficient of thermal expansion of the top design layer 

(stratum_2_design) is higher than that of the bottom design layer (stratum_4_design), 

other aspects of the stackup remaining balanced. Hence, when the PWB is heated from 

25oC - 250oC, the top design layer expands more than the bottom design layer, resulting 

in a dome-shaped deformation of the PWB (convex when viewed from the top). 

Figure 9.44 illustrates the execution of the same simulation template (ST5
1) in the 

design synthesis scenario. Here, a design model instance (D5 model) is automatically 

created from a given behavior model instance (B5 model) using the simulation template. 

This scenario represents the use case where an analyst optimizes the shape and/or 

material behavior properties of a multi-shell system to minimize the out-of-plane 

deformation. The optimal multi-shell system (represented as a behavior model instance) 

is then used to derive a PWB design instance. 
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Figure 9.43: Design verification scenario – Behavior model instances (B5) formulated from design model instances (D5), and solved using FEA 
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Figure 9.44: Design synthesis scenario – Design parameters computed from analysis body parameters 
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The automated creation of behavior model instances corresponding to different 

design model instances using a simulation template demonstrates the value of simulation 

templates in performing trade studies over fixed topology design alternatives. The 

capability of the Behavior Model Formulation Method to automatically create simulation 

templates for variable topology design alternatives greatly enhances the effectiveness of 

analysis problem formulation process. The FEA results also validate the completeness of 

information represented by the KCM meta-models. If the information were incomplete, 

solution method-specific models (such as FEA models) could not have been solved. The 

behavior model instances formulated by executing simulation templates are independent 

of the solution method (FEA in this case), and can be solved using different solution 

methods and solvers. 

 

9.5 Validation of Research Hypotheses 
In this section, the primary and secondary research hypotheses are validated using 

results obtained for two classes of analysis problems using KCM’s Behavior Model 

Formulation Method. First, both the secondary research hypotheses are discussed. The 

validation of the primary research hypothesis depends upon the validation of the 

secondary research hypotheses. Capabilities of specific aspects of the test results and 

KCM components in the context of each hypothesis are highlighted. Then, a description 

of the effectiveness of the Knowledge Composition Methodology for analysis problem 

formulation is presented. The focus of this description is to present how KCM answers 

the primary research question in general, including addressing the two research gaps 

identified in section 2.4.2. 
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9.5.1 Validation of Secondary Research Hypothesis 1 
The secondary research question SRQ1 and the corresponding hypothesis 

presented in Chapter 4 are stated below. 

Secondary Research Question 1 (SRQ1): How can we formalize an ABB such that it can 

be reused for composing simulation templates? 

Hypothesis (SRH1): We can formalize an ABB such that it can be reused for composing 

simulation templates by: 

 using a non-causal, declarative formalism to describe the concept and the knowledge 

represented by an ABB 

 using a model transformation-based formalism to describe the method for using an 

ABB when composing simulation templates 

 

The validation approach for SRH1 is founded on selecting formalism for 

representing ABBs, and demonstrating that ABBs represented in this formalism can be 

reused for composing simulation templates.  

The ABB Meta-Model (section 7.2) of the Knowledge Composition Methodology 

provides the formalism for representing analysis building blocks (ABBs). It defines the 

nature of knowledge represented in ABBs. It defines four aspects of this knowledge—

context, property, application conditions, and application transforms. The first two 

aspects represent the concept and the knowledge embodied in an ABB, and the second 

two aspects represent the conditions and model transformations associated with using an 

ABB for composing simulation templates. The ABB Meta-Model presented in section 7.2 

specifically describes the context and property attributes of 9 different types of ABBs, 

such as analysis body ABBs and load ABBs. The ABB library presented in section 7.3 

shows examples of each of different types of ABBs. SysML blocks (extensions of UML 

classes) provide a non-causal and declarative formalism to describe the concept 

embodied in an ABB.  

The other two aspects of the knowledge embodied in an ABB (application 

conditions and application transforms) are represented using graph patterns and graph 

transformation rules respectively. The Artifact Model Transformation Library presented 

in section 8.4 defines Type 1 graph transformation rules for creating ABB instances, and 
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Type 2 graph transformation rule for associating an ABB instance with other parts of a 

simulation template. The composition of a simulation template is presented in four stages 

and the types of ABBs participating in each composition stage are presented in section 

8.2.1.  

Simulation templates automatically created for test case families 1 and 2 (sections 

9.2 and 9.3 respectively) demonstrate that ABBs defined using the ABB Meta-Model can 

be used for composing simulation templates. For each test case family, four simulation 

templates are automatically created for variation of VTMB design alternatives and 

idealization decisions. Depending upon the idealization decisions, the simulation 

templates reuse the same ABB definitions (including the patterns and transformation 

rules for each ABB). For example, analysis body ABBs (representing planar shell 

analysis body), material behavior ABBs (representing isotropic and orthotropic material 

behaviors), temperature load ABB, and behavior conditions ABBs defined in the ABB 

Library and the Artifact Model Transformation Library are used for all 8 simulation 

templates created in the test case families 1 and 2. As shown in Figure 9.2, the ABB 

Library and Artifact Model Transformation Library are pre-loaded in the KCM model 

space in the VIATRA model transformation framework before the simulation templates 

are automatically created.  

9.5.2 Validation of Secondary Research Hypothesis 2 
The secondary research question SRQ2 and the corresponding hypothesis 

presented in Chapter 4 are stated below. 

Secondary Research Question 2 (SRQ2): How can we systematically and automatically 

compose simulation templates from ABBs? 

Hypothesis (SRH2): We can systematically and automatically compose simulation 

templates from ABBs by: 

 representing idealization decisions in terms of specific ABBs to be used in composing 

simulation templates and the conditions for using these ABBs 

 formalizing the process of composing simulation templates as a model transformation 

process that automatically creates simulation templates for VTMB design alternatives 

and idealization decisions 
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The Behavior Model Formulation Method defines Behavior Model Formulation 

Specifications (BMFS) for representing the idealization decisions taken by analysts in 

Figure 8.4. The conceptual specifications in BMFS are used by analysts in terms of the 

ABBs used for each composition stage, including conditions that need to be satisfied for 

using specific ABBs. The computable specifications are in the form of a script for 

explicitly scheduling the graph transformation rules for composing simulation templates. 

The computable specifications are derived from the conceptual specifications.  

In both test case families (TCF1 and TCF2), two different conceptual 

specifications (BMFS1 and BMFS2) are defined for composing simulation templates. 

These conceptual specifications are defined in terms of the ABBs used for composing 

simulation templates and conditions for using each ABB. For example, in BMFS1 of test 

case family 1, all stratums of a PCB are to be idealized as planar shell analysis bodies. 

This is realized by creating an instance of planar shell analysis body ABB for each PCB 

stratum. The conditions for using ABBs may be existential (all stratums are idealized as 

planar shell analysis bodies), or based on values of certain properties of design objects—

the material behavior of stratums with conductive function is idealized as linear, elastic, 

isotropic, and temperature independent. 

The Behavior Model Formulation Method presented in Chapter 8 prescribes a 

model transformation process based on graph transformations for automatically 

composing simulation templates for VTMB design alternatives and idealization 

decisions. Simulation templates automatically created for both test case families (TCF1 

and TCF2) validate the capability of the Behavior Model Formulation Method in creating 

simulation templates. In TCF1, design model structures PWB_5S2L and PWB_9S4L 

represent two families of PWB design alternatives. Design alternatives in one family are 

topologically non-equivalent to the design alternatives in the other family. For two sets of 

idealization decisions (BMFS1 and BMFS2) and two design model structures, the 

Behavior Model Formulation Method automatically generates four different simulation 

templates—one for each combination of BMFS and design model structure. Similarly in 

TCF2, design model structures CP_BGA_5S2L_16SB and CP_BGA_5S2L_36SB 

represent two families of BGA chip package design alternatives such that design 

alternatives in one family are topologically non-equivalent to design alternatives in the 
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other family. For two sets of idealization decisions (BMFS1 and BMFS2) and two design 

model structures, the Behavior Model Formulation Method automatically generates four 

different simulation templates—one for each combination of BMFS and design model 

structure.  

9.5.3 Validation of Primary Research Hypotheses 
Validation results for the secondary research hypotheses above also validate the 

primary research hypothesis indirectly. In this section, a summary of results from test 

case families (TCFs) 1 and 2 is presented in support of the primary research hypothesis. 

The intent of this section is to describe the effectiveness of KCM’s Behavior Model 

Formulation Method in formulating analysis problems. 

VTMB 
variations

Idealization 
variations

Formulation 
Efficiency  

Figure 9.45: Measures of effectiveness of analysis problem formulation 

In section 2.4, three measures of effectiveness of analysis problem formulation 

methods were presented. As shown in Figure 9.45, these measures are: (1) VTMB 

variations, (2) Idealization variations, and (3) Formulation Efficiency. As described in 

section 2.4, the effectiveness of a method for anlysis problem formulation depends on its 

ability to address VTMB problems and variations in idealization decisions, and formulate 

simulation templates efficiently. Quantitative results for the first two measures of 

effectiveness (VTMB variations and Idealization variations) of the Behavior Model 

Formulation Method as applied to test case families 1 and 2 are presented in sections 

9.5.3.1 and 9.5.3.2 respectively. Results for the third measure-of-effectiveness 

(Formulation efficiency) are presented in section 9.5.3.3.  

Table 9.5 below summarizes the effectiveness of the Behavior Model Formulation 

Method—as applied to test case families TCF1 (section 9.2) and TCF2 (section 9.3)—in 

terms of its ability to address VTMB variations and idealization variations. For each test 
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case family, the table shows results for the four simulation templates automatically 

generated for combinations of two Behavior Model Formulation Specifications (BMFS1 

and BMFS2) and two VTMB design alternatives. Eight columns corresponding to eight 

simulation templates created for the two test case families are shown in the table. The 

rows in the table show results for two measures of effectiveness of Behavior Model 

Formulation Method. The first set of rows corresponds to VTMB design variations, and 

the second set of rows corresponds to idealization variations.  

Results presented in this table are described below. 

9.5.3.1 VTMB Design Variations 

The first set of rows in Table 9.5 measure VTMB variations of the design 

alternatives in each of the test case families. The variations are measured in terms of the 

Table 9.5: VTMB design variations and Idealization variations results for TCF1 and TCF2 
(Measures of effectiveness of the Behavior Model Formulation Method) 
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key factors that are used for defining the assembly system topology of artifacts. As 

described in section 2.3, assembly system topology is characterized using number and 

types of components in an assembly, interactions among components in an assembly, and 

the features participating in these interactions. These six aspects are used for 

characterizing the VTMB variations for the design alternatives in the two test case 

families (TCF1 and TCF2). For TCF1 in which simulation templates are created for 

thermo-mechanical analysis of printed wiring boards (PWBs), there are two families of 

PWB design alternatives—one family of design alternatives for PWBs with 5 stratums 

and one family of design alternatives for PWBs with 9 stratums. For TCF2 in which 

simulation templates are created for thermo-mechanical analysis of BGA chip packages, 

there are two families of BGA design alternatives—one family of design alternatives for 

BGAs with 16 solder balls and one family of design alternatives for BGAs with 36 solder 

balls. The six aspects used for measuring VTMB variations in these design alternatives 

and the quantitative values for each design alternative are as described below. 

 

 Number of components, as the name implies, corresponds to the number of components 

(analyzable artifacts) in the artifact assembly. For TCF1, the PWB stratums are the 

components. Thus, PWB design alternatives with 5 stratums have 5 components, and 

PWB design alternatives with 9 stratums have 9 components. For TCF2, the 

components in the BGA assembly consists of (1) chip mold, (2) chip, (3) die attach, (4) 

substrate, (5) stratums in the substrate, (6) solder balls. Thus, BGA design alternatives 

with 16 solder balls have 25 components—1 of each of the first four component types, 

5 stratums in the substrate, and 16 solder balls. Similarly, BGA design alternatives 

with 36 solder balls have 45 components. 

 

 Types of components correspond to the number of components with distinct functions. 

PWB design alternatives in TCF1 have three types of stratums—conductive, dielectric, 

and soldermask. Similarly BGA design alternatives in TCF2 have 8 types of 

components—chip mold, chip, die attach, substrate, 3 types of stratums in the 

substrate, and solder ball. 
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 Levels of components imply if the components are leaf-level components in the 

assembly or composed of multiple levels of sub-assemblies. PWB design alternatives 

in TCF1 have only one assembly level—PWB is an assembly composed of stratums. 

BGA design alternatives in TCF2 have two assembly levels—BGA assembly consists 

of a substrate that is composed of stratums. 

 

 Number of interactions corresponds to the number of interactions among components 

in the assembly. For PWB design alternatives in TCF1, there are 4 interactions among 

stratums for 5-stratum PWBs and 8 interactions among stratums for 9-stratum PWBs. 

For BGA design alternatives in TCF2, the number of interactions are counted in terms 

of interactions between (1) mold and chip, (2) mold and substrate, (3) chip and die 

attach, (4) die attach and substrate, (5) stratums in the substrate, and (6) solder balls 

and substrate. Both 16-solder ball and 36-solder ball BGA design alternatives have one 

interaction of each of the first four types, 4 interactions between the stratum substrates, 

and one interaction between each of the solder balls and the substrate. Thus, the two 

sets of design alternatives have 24 and 44 interactions respectively.  

 

 Types of interactions are counted based on the types of components participating in the 

interactions. For PWB design alternatives in TCF1, there 2 types of interactions—one 

between soldermask stratums and conductive stratums, and one between conductive 

stratums and dielectric stratums. For BGA design alternatives in TCF2, there are 7 

types of interactions—2 types for the substrate and 5 other types as described above in 

Number of interactions. 

 

 Number of features corresponds to the number of analyzable features defined on 

components. For PWB design alternatives in TCF1, (1) two features are defined for 

each stratum corresponding to its surfaces, (2) a feature is defined corresponding to the 

volume of the PWB, and (3) a feature is defined corresponding to the mid-point of the 

bottom surface of the last stratum in the stackup. Thus, PWB design alternatives with 5 

and 9 stratums have 12 and 20 features respectively. For BGA design alternatives in 

TCF2, (1) one feature is defined for the mold, (2) two features are defined for the die 
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attach, chip, each solder ball, and each stratum in the substrate, (3) one feature is 

defined corresponding to the volume of the BGA assembly, and (4) one feature is 

defined corresponding to the mid-point of the bottom surface of the last stratum in the 

substrate stackup. Thus, BGA design alternatives with 16 and 36 solder balls have 49 

and 89 features respectively. 

 

 Types of features are characterized based on the shape of the feature, function of the 

feature, type of artifact for which the feature is defined, or a combination of these. In 

the table, the types of features are characterized based on their shape and the type of 

artifact for which the feature is defined. For PWB design alternatives in TCF1, there 

are 5 types of features—3 types corresponding to the surfaces of 3 types of stratums, 1 

type corresponding to the PWB volume, and 1 type corresponding to the mid-point of 

the bottom stratum. For BGA design alternatives in TCF2, there are 9 types of 

features—7 types corresponding to each of the seven types of leaf-level27 components, 

and 2 types corresponding BGA volume and mid-point of the bottom surface of the last 

stratum in the substrate stackup. 

 

In summary, the results from TCF1 and TCF2 demonstrate the Behavior Model 

Formulation Method can be used for formulating simulation templates for large set of 

design variations, especially VTMB-type variations.  

 

9.5.3.2 Idealization Variations 

The second set of rows in Table 9.5 measure types of idealizations used for 

formulating simulation templates in both test case families TCF1 and TCF2. The 

idealization variations are measured in terms of the number of specializations of each 

type of ABB used in formulating simulation templates. The table shows eight28 types of 

ABBs used for measuring the variations in the idealizations. Two additional criteria are 

                                                 
27 No features are defined for the substrate (as a whole) for BGA alternatives in TCF2 
28 All structural behavior parameters are to be computed for the test case families. Hence, behavior ABB does not 

contribute to the variations. 
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used to denote if idealization decisions were specified in terms of types of design objects 

(components, features, and interaction), or also using the properties of these objects.  

Note that the rationale for defining analysis building blocks is that a relatively 

small set of ABBs can be used for formulating a large class of analysis problems. Hence, 

an entire class of analysis problems, such as thermo-mechanical analyses of PWBs, can 

be formulated using a few specializations of each type of ABB. The type of ABB 

corresponds to the type of decision taken by analysts.   

 

 Types of analysis body ABBs: One specialization of analysis body ABB (planar shell 

analysis body ABB) is used for simulation templates created in TCF1, and two 

specializations of analysis body ABB—planar shell analysis body ABB and generic 

solid analysis body ABB—are used for simulation templates created in TCF2.  

 

 Types of shape ABBs: One specialization of shape—planar shell shape—is used for 

simulation templates created in TCF1 and four specializations of shape—

corresponding to the shape of mold, chip, die attach or substrate stratums, and solder 

ball—are used for simulation templates created in TCF2. 

 

 Types of material behavior ABBs: Except for simulation templates created using 

BMFS1 in TCF1, all simulation templates created in TCF1 and TCF2 use two 

specializations of material behavior ABB, corresponding to linear elastic isotropic 

temperature-independent and linear elastic orthotropic temperature-independent 

material behaviors. 

 

 Types of analysis feature ABBs: In the simulation templates created in TCF1, 3 

specializations of analysis feature ABBs are used—point feature, planar surface 

feature, and volume feature ABBs. In addition to these three analysis features, 

simulation templates created in TCF2 also used a generic surface analysis feature for 

representing the non-planar surfaces, such as the bottom surface of the mold. 
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 Types of analysis body systems: For simulation templates created in TCF1, one type of 

analysis body system (multi-shell analysis body system) is used, and for simulation 

templates created in TCF2, two types of analysis body systems are used—multi-shell 

system for the BGA substrate used in a solid-shell system. 

 

 Types of analysis body interaction ABBs: For simulation templates created in TCF1, 1 

type of analysis body interaction ABB is used (shell-shell tie interaction ABB), and for 

simulation templates created in TCF2, 3 types of analysis body interaction ABBs are 

corresponding to tie interactions between two solids, solid and shell, and two shells. 

 

 Types of load ABBs and behavior condition ABBs: For simulation templates created in 

TCF1 and TCF2 one type of load ABB (temperature load) and one type of behavior 

condition ABB (point displacement fixed condition ABB) 

 

Though the number of specializations of each ABB type demonstrated for 

simulation templates in TCF1 and TCF2 is low, the process is similar for using other 

specializations defined in the ABB Library or those that can be created based on the ABB 

Meta-Model. Graph patterns and transformation rules defined in the Artifact Model 

Transformation Library for composition Stages 1-4 are defined in terms of the different 

ABB types. Thus, all specializations of each ABB type can use the same set of patterns 

and rules for composition. If relationships particular to a specialized ABB need to be 

created in these composition stages, existing patterns and rules for that ABB type can be 

extended or new patterns and transformations rules may be created. 

In addition to the types of ABB used for representing the idealization decisions, 

the Behavior Model Formulation Method also allows analysts to specify conditions for 

idealization decisions. Conditions can be specified based on the types of design objects, 

such as those that check for the existence of a specific type of component, or feature, or 

interaction in the design assembly. Conditions can also be specified based on the 

properties of design objects or other properties derived from these properties, such as 

those that check for attribute values of specific types of components, features, or 

interactions. As an example, in TCF1, simulation templates created for BMFS2 check the 
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value of the function attribute of stratums to use isotropic versus orthotropic material 

behavior.  

In summary, the results from TCF1 and TCF2 demonstrate the Behavior Model 

Formulation Method can be used for formulating simulation templates for variations in 

idealization decisions taken by analysts.  

 

9.5.3.3 Formulation Efficiency 

In this section, quantitative results for Formulation Efficiency (third measure-of-

effectiveness) of the Behavior Model Formulation Method (BMFM) in creating 

simulation templates for test case families TCF1 and TCF2 are presented. Table 9.6 

below consists of two sets of rows. The first set of rows present results for the 

formulation efficiency of KCM’s BMFM (referred in the table as KCM for brevity). The 

second set of rows show the number of entities in the source model (given) and the 

number of entities automatically generated by the BMFM in formulating simulation 

templates.  

The formulation efficiency of the BMFM is characterized in terms of the 

percentage reduction in the time taken to formulate simulation templates using the 

BMFM versus current methods. The table shows how the cost of formulating simulation 

templates using the BMFM is computed. Here, cost is measured in terms of time 

(assuming a constant cost/time factor). The cost of formulating simulation templates 

using the BMFM consists of two parts: (1) Fixed cost, and (2) Marginal cost.  

The fixed cost is an upfront cost to create VTMB design meta-model (D3 model), 

create ABBs, and specialize pre-defined patterns and transformation rules (if needed). 

KCM provides the CPM2_xKCM model that can be directly used as a VTMB design 

meta-model for a particular artifact. For TCF1, it took 5 hours to define a D3 model 

(PDMM and PAMM in section 6.2); and for TCF2, it took 7 hours to define a D3 model 

Note that a VTMB design meta-model is used for representing design alternatives with 

different assembly system topologies, and not specific to a particular type of analysis. 

The time for creating D3 models (as shown in the table) is based on the assumption that 

the D3 models did not exist previously (worst case scenario).  
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Table 9.6:  Formulation Efficiency results for TCF1 and TCF2 
(Measure-of-effectiveness of the Behavior Model Formulation Method) 
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Idealization Decisions >>

VTMB Variations >>

5-
st

ra
tu

m

9-
st

ra
tu

m

5-
st

ra
tu

m

9-
st

ra
tu

m

16
-s

ol
de

r 
ba

ll

36
-s

ol
de

r 
ba

ll

16
-s

ol
de

r 
ba

ll

36
-s

ol
de

r 
ba

ll

Simulation Template IDs >> ST5
1 ST9

1 ST5
2 ST9

2 ST16
1 ST36

1 ST16
2 ST36

2

Formulation Efficiency
cost stated below in terms of time taken
Total Cost (in terms of time taken) using KCM

Fixed Cost
Create VTMB design meta-model (D3)
Create library primitives (ABBs)
Specialize/Extend patterns and transformation rules

Marginal Cost
Define conceptual specifications (minutes)
Automatically generate simulation template < 5s < 5s < 5s < 5s < 5s < 15s < 5s < 15s

Total Cost per template (for 20 templates) 0.93h 0.93h 0.95h 0.95h 1.6h 1.6h 1.64h 1.64h
Total Cost per template (for 40 templates) 0.51h 0.51h 0.53h 0.53h 0.93h 0.93h 0.97h 0.97h
Total Cost per template (for 80 templates) 0.30h 0.30h 0.31h 0.31h 0.59h 0.59h 0.63h 0.63h

Total Cost (in terms of time taken) using Current Methods 5hb 3h*** 2h*** 5h*** 15hb 5h*** 5h*** 10h***

Reduction in time ( KCM  versus Current Methods)
% Reduction in time for 20 templates 81% 88% 86% 91% 89% 92% 92% 93%
% Reduction in time for 40 templates 90% 94% 92% 95% 94% 95% 95% 96%
% Reduction in time for 80 templates 94% 96% 96% 97% 96% 97% 97% 97%
**[1 hr / ABB x 10-18 ABBs]=10-18 hrs; ***additional time with respect to the base time; xb: base time for TCF

Number of given and generated entities
Given entities 
(FTMB Analyzable Artifact Model Structure)

Number of analyzable artifacts (AAs) 5 9 5 9 25 45 25 45
Aux entities (shapes, material behaviors,...) 10 18 10 18 50 90 50 90

Number of interactions (AAI) 4 8 4 8 24 44 24 44
Number of analyzable features (AFs) 12 20 12 20 49 89 49 89

Aux entities (shapes,...) 12 20 12 20 49 89 49 89
Number of given entities* 43 75 43 75 197 357 197 357
Automatically generated entities
(FTMB Artifact Behavior Model Structure)

Number of analysis bodies (ABs) 5 9 5 9 25 45 25 45
Aux entities (shape, material behavior) 10 18 10 18 50 90 50 90

Number of AB - AA relations 5 9 5 9 25 45 25 45
Aux entities (shape idz, material behavior idz) 10 18 10 18 50 90 50 90

Number of analysis body interactions (ABI) 4 8 4 8 24 44 24 44
Number of AAI - ABI relations 4 8 4 8 24 44 24 44
Number of analysis features (ANFs) 12 20 12 20 49 89 49 89
Number of AF - ANF relations 12 20 12 20 49 89 49 89

Aux entities (shape idz) 12 20 12 20 49 89 49 89
Number of generated entities* 74 130 74 130 345 625 345 625
Number of entities in a simulation template* 117 205 117 205 542 982 542 982
* excluding attribute relations and auxiliary entities

5m***

TCF1 TCF2
BMFS1 BMFS2 BMFS1 BMFS2

2h 2h

Total Cost per template using KCM  = Fixed Cost / Number of templates + Marginal cost

5h 7h
10h** 18h**

10mb 2m*** 30mb
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Similarly, 10 ABBs were used for TCF1 and 18 ABBs were used for TCF2. Assuming 

that these ABBs did not exist in the library, it would typically take 1 hour to create an 

ABB model as an instance of KCM’s ABB Meta-Model. Also assuming that pre-defined 

transformation rules and patterns may need to be extended for new D3 models defined as 

specializations of CPM2_xKCM, the table shows an additional 2 hours for such 

extensions. Note that these three component costs of the total fixed cost are expended 

once upfront. The required time (as shown in the table) is also based on the assumption 

that ABBs and meta-models required for the two test case families were completely 

different (which was certainly not the case). This is also a worst-case scenario. 

 The marginal cost is the additional cost to formulate each simulation template 

beyond the fixed cost. The marginal cost for formulating simulation templates using the 

BMFM consists of two components: (1) cost to specify idealization decisions (conceptual 

specifications), and (2) cost to automatically generate simulation templates. As with the 

fixed cost, the marginal cost is also stated in the table in terms of the time. For TCF1, the 

time required for defining conceptual specifications BMFS1 was around 10 minutes, and 

the time required to modify BMFS1 to create BMFS2 was around 2 minutes. Similarly, for 

TCF2, the time required for defining conceptual specifications (BMFS1) was around 30 

minutes, and the time required to modify BMFS1 to create BMFS2 was around 5 minutes. 

The time taken to automatically generate simulation templates was of the order of 

seconds (15 seconds for the the 36-solder ball BGA design in TCF2).  

 The table shows the total cost of formulating each simulation template as a sum of 

the fixed cost per template and the marginal cost. The fixed cost per template is computed 

by dividing the total fixed cost with the number of simulation templates (as an estimate) 

for which the meta-models and ABBs can be reused. The total cost of formulating each 

simulation template is computed based on the fixed cost distributed over 20, 40, or 80 

simulation templates. Note that the estimated numbers of simulation templates over 

which the fixed cost is distributed are realistic. As an example, 8 simulation templates are 

created for two test case families TCF1 and TCF2 for only two VTMB variations and two 

idealization variations.  

 In the BMFM, the conceptual specifications are defined once for all VTMB 

variations. However, this is not the case for existing methods where variations in the 
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number or configuration of components and interactions require significant increases in 

the amount of time spent in formulating simulation templates. As an example, the time 

required for formulating the simulation template shown in Figure 9.40 and Figure 9.41 

(for 5-stratum PWBs based on BMFS1) is around 5 hours—based on personal 

experiences by the author. Table 9.6 also shows the time required for formulating 

simulation templates manually and modifying them for VTMB variations and idealization 

variations. As an example, it would take ~5 hours to formulate ST5
1 (simulation 

templates for 5-stratum PWB based on BMFS1) and an additional 3 hours to add more 

relationships for 9-stratum PWB (based on the same BMFS). With changes in the BMFS, 

the time required to manually re-wire simulation templates can be significant too. For 

example, it took 2 additional hours to modify ST5
1 for BMFS2, thereby resulting in ST5

2. 

In addition to time, manual “re-wiring” of simulation templates is more error-prone and 

may require significant debugging effort. 

 Based on the time required to formulate simulation templates using the KCM and 

using current methods, the percentage reduction in time (using the KCM versus current 

methods) is presented in Table 9.6 for each simulation template. The percentage 

reduction is presented for all the three scenarios—fixed cost in formulating simulation 

templates using the KCM is distributed over 20, 40, and 80 simulation templates. 

Overall, the results show 90% or greater (on average) reduction in the time required for 

formulating simulation templates using the KCM versus current methods. The results 

clearly support the higher formulation efficiency of the KCM when compared to current 

methods.  

 Note that the fixed costs depend on the meta-models, ABBs, and extensions to 

pre-defined transformation rules and patterns for formulating simulation templates. With 

a lower fixed cost, the breakeven point for formulating simulation templates using the 

KCM may seem to be achievable with less usage. However, this is countered by the lost 

opportunity to formulate a larger variety of simulation templates. Meta-models and ABBs 

that may be used for representing only few types of artifact design variations and for 

formulating simulation templates for specific analyses may lower the fixed cost but add 

to the lost opportunity to formulate a large set of simulation templates.  
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 The contribution of different aspects of the KCM in increasing the set of 

simulation templates that may be formulated using the Behavior Model Formulation 

Method, thereby lowering the cost and effort to do so is described below: 

 

 Meta-Models: KCM provides meta-models for representing different aspects of 

simulation templates. CPM2_xKCM—extension of CPM2 (Fenves 2004)—is a 

generic meta-model for abstract representation of design alternatives in different 

application areas. Chapter 6 illustrates how artifact-specific design meta-models can be 

defined as specializations of CPM2_xKCM. These artifact-specific meta-models can 

be used for representing VTMB design alternatives of the artifact. The Core Behavior 

Model (Chapter 7) provides an abstract meta-model for representing physics-based 

behavior models for VTMB problems, including idealization relationships between 

design models and behavior models. The CBM is abstract and extensible. It depends 

on the analysis building blocks (ABBs) to represent domain-theoretic analysis 

knowledge.  

 

 ABB Library: KCM provides an initial library of ABBs that can be used as-is. Nine 

different types (categories) of ABBs are defined in the ABB Meta-Model. The library 

contains specializations of each ABB type. Additional specializations of ABBs can be 

easily defined. Creation of simulation templates for a new class of problems requires 

creation of new specializations of existing types of ABBs. Creation of new ABBs is 

one of the few aspects of the KCM that is requires effort. However, this effort is 

minimal and can enable formulation of simulation templates for a large class of 

analysis problems as below. 

o A large class of analysis problems can be addressed by each new specialization of an 

ABB type. 

o The number of specializations of each ABB type for a given physics-based domain 

(such as structural analysis or thermal analysis) is limited. 

o If a new ABB can be associated with concepts in the solver tools, such as an element 

type in an FEA solver, then analysts do not need to represent all domain theoretic 

mathematical relationships when defining ABBs, thus saving time and effort. For 
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example, the definition of a shell analysis body ABB does not require the 

representation of domain theoretic equations for shell behavior since FEA tools (for 

example) have elements to represent shells. 

 

 Artifact Model Transformation Library: KCM provides a library of reusable graph 

patterns and transformation rules based on the meta-models. For the design model 

stack, these rules and patterns are defined at both Level 1 and Level 3. For the behavior 

model stack, these rules and patterns are defined at Level 1, for each ABB type, and in 

some cases for specializations of ABB types. Since Level 1 meta-models do not 

change from one class of problems to another, the graph patterns and transformation 

rules defined for them can be reused for all types of simulation templates formulated 

using the Behavior Model Formulation Method. The Level 3 meta-model in the design 

model stack is for representing VTMB design alternatives for an entire family of 

artifacts, such as printed wiring boards. This governs the applicability of graph patterns 

defined for Level 3 meta-models in the design model stack.  

 

 Conceptual specifications to control computable specifications: One of the key factors 

that contribute to the efficiency of formulating simulation templates using KCM’s 

Behavior Model Formulation Method is the ability to change idealizations with relative 

ease. As demonstrated for test case families TCF1 and TCF2, the conceptual 

specifications are defined in terms of the ABBs, including the conditions for using 

specific ABBs. This provides a higher level of semantic handle on defining 

idealizations as opposed to writing procedural code (such as the computable 

specifications).  

 

 Use of graph transformation-based approach to compose simulation templates: The use 

of the graph transformation-based approach to model composition provides a modular 

and extensible to automatically formulate simulation templates. Graph patterns, 

transformation rules, and transformation process together provide a three-tier 

framework (Figure 8.22, section 8.2.3) for formulating simulation templates. Graph 

patterns provide a declarative and highly efficient representation for describing 
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conditions and constraints, as well as searching model elements. Due to their non-

causal representation, a single pattern can be used for achieving multiple use causes 

depending upon variables that are bound or unbound during pattern calls (section 

8.2.3). In addition, graph transformation rules enable the representation atomic units of 

model transformations that can reused across for formulating simulation templates. 

Graph transformation rules provide a declarative representation of a transformation 

step in terms of the source and target model graphs and not in terms of the process of 

creating a target model graph. This approach is more intuitive to modelers and analysts 

who want to define new specializations of ABBs or extend the KCM meta-models.  

 Table 9.6 also presents a summary of the number of entities in the source model 

and the number of entities automatically generated by the BMFM when formulating 

simulation templates (target models) for TCF1 and TCF2. The numbers provide an 

estimate of the number of entities automatically created in formulating information-rich 

simulation templates. As an example, for simulation template ST36
2 in TCF2, 625 entities 

were created and the total number of entities in the simulation template is ~1000. Manual 

creation and modification of simulation templates with large number of entities is 

certainly not feasible. In this light, KCM’s Behavior Model Formulation Method 

provides a much superior approach to formulating simulation templates. 

 

9.6 Summary 
Two families of test cases are presented in this chapter to demonstrate the 

capability of the Behavior Model Formulation Method in handling VTMB-type design 

variations and idealization variations when automatically composing simulation 

templates. Automated composition of eight simulation templates using the Behavior 

Model Formulation Method—as realized in the VIATRA graph transformation 

framework—is demonstrated for both test case families combined. The illustrations 

demonstrate the extent and the depth of model elements automatically created for each 

simulation template. In addition, the execution of simulation templates for generating 

behavior model instances that can be solved in FEA tools is also demonstrated. The 

execution of simulation templates both in design verification and synthesis scenarios 
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demonstrates the value of a single simulation template in addressing routine analysis 

problems.  

In section 9.5, a detailed validation of the secondary and primary research 

hypotheses is presented based on the simulation templates automatically created in both 

test case families. The effectiveness of the Behavior Model Formulation Method in 

formulating simulation templates is established using the results summarized in Table 

9.5. In addition, a discussion on other components of the KCM that strongly contribute to 

increasing both the efficiency and effectiveness of formulating simulation templates 

using this approach is presented. 
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CChhaapptteerr  1100  ::  RREESSEEAARRCCHH  CCOONNTTRRIIBBUUTTIIOONNSS  AANNDD  FFUUTTUURREE  WWOORRKK  

 In this chapter, a summary of research contributions and recommended future 

work are presented in sections 10.1 and 10.2 respectively. 

10.1 Research Contributions 
 Figure 10.1 below shows the state-of-the-art in formulating and executing 

simulation templates before the development of the Knowledge Composition 

Methodology. Simulation templates were formulated manually / semi-automatically and 

modified manually for VTMB problems and for changes in idealization decisions taken 

by analysts. This made the usage of simulation templates ineffective and costly for multi-

disciplinary design optimization problems and for evaluation of system performance in 

general. However, the execution of simulation templates has benefited from 

advancements in commercial off-the-shelf object solvers, math solvers, and solution 

method-specific solvers (such as FEA tools). These solvers have been used successfully 

to execute simulation templates—solve for the unknown (target) variables from the 

known (input) variables. 

 
Figure 10.1: Lack of effective methods to formulate VTMB-related simulation templates  

before KCM 

The Knowledge Composition Methodology (KCM) addresses two critical 

research gaps in effectively formulating simulation templates—formalizing the 

knowledge necessary for formulating simulation templates, and providing the Behavior 

Model Formulation Method to automatically formulate simulation templates for VTMB 

problems and idealization variations. Figure 10.2 below illustrates the “enhanced” state-
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of-the-art in formulating and executing advanced simulation templates with the 

Knowledge Composition Methodology.  

Figure 10.2: KCM enables effective  formulation of advanced simulation templates  

The specific research contributions (RCs) are summarized below. 

 

Research Contribution 1 (RC1) 

The Knowledge Composition Methodology developed in this research provides a 

mechanism to formulate advanced simulation templates in an effective manner. 

Simulation templates formulated by the KCM are executable. With the capability to (i) 

automatically formulate simulation templates for VTMB problems and variations in 

idealizations and (ii) execute simulation templates, KCM makes the use of simulation 

template more effective for multi-disciplinary design optimization problems and for 

evaluating system performance in general. In addition to handling VTMB problems and 

idealization variations, test results show significant increase in formulation efficiency 

using KCM versus current methods—90% or greater (on average) reduction in the time 

required for formulating simulation templates using the KCM versus current methods. 
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KCM’s Behavior Model Formulation Method plays the central role in formulating 

simulation templates. Founded on graph transformations, the BMFM enables automated 

composition of simulation templates from reusable building blocks.   

This dissertation also defines the concept of Assembly System Topology (AST) 

and a special type of graph construct and corresponding visualization diagram—an 

Assembly System Topology diagram—to help characterize VTMB problems and 

visualize and communicate changes in AST. In addition to formulating simulation 

templates, KCM provides a fundamental graph transformation-based approach to model 

formulation for variable topology problems in general, such as from logical/functional 

system design models to physical system design models (Friedenthal 2006). 

 

Research Contribution 2 (RC2) 

KCM provides meta-models and an approach for representing simulation 

templates. The Core Behavior Model developed in this research is a meta-model for 

representing artifact behavior models, and fine-grained relationships between behavior 

models and design models. KCM provides five different abstractions for representing 

behavior models and simulation templates, depending upon the scope of the artifacts and 

type of analysis. The ABB Meta-Model developed in this research is a meta-model for 

representing the building blocks of behavior model structure. Though focused on physics-

based behavior of artifacts, the ABB Meta-Model provides generic constructs—four 

types of knowledge represented in building blocks—that would be used for defining 

building blocks for other types of behaviors, such as state-based behavior.  

 

Research Contribution 3 (RC3) 

KCM’s Behavior Model Formulation Specifications (BMFS) provides a 

mechanism for capturing and representing idealization decisions taken by analysts. These 

decisions serve as specifications for simulation templates automatically formulated by the 

BMFM. The specifications, aka Behavior Model Formulation Specifications, are defined 

at two levels of abstractions—conceptual specifications and computable specifications. 

The conceptual specifications represent the intent of the idealization decisions and are 

defined by analysts. The computable specifications, derived from the conceptual 
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specifications, represent the graph transformation process for composing simulation 

templates. Differentiating conceptual specifications from computable specifications 

enables analysts to focus on the idealization intent (conceptual specifications) and not on 

the actual computer code for the transformation process (computable specifications). 

Apart from representing idealization knowledge as conceptual specifications, this 

approach makes it easier for analysts to change idealization decisions and automatically 

re-formulate simulation templates without worrying about updating computer scripts for 

formulating simulation templates. 

 

Research Contribution 4 (RC4) 

KCM also provides graph transformation-based algorithms formalized as reusable 

graph patterns and graph transformation rules for automatically composing simulation 

templates from building blocks. These patterns and rules are defined in terms of the KCM 

meta-models (CPM2_xKCM, CBM, and ABB Meta-Model) and hence are applicable for 

all specializations of these meta-models. In essence, patterns and rules together provide 

something similar to an application programming interface (API) for the KCM. Scripts to 

formulate simulation templates—formalized as graph transformation process—use these 

pre-defined patterns and rules. In addition, KCM also provides a library of ABBs—

building blocks of behavior models and hence simulation templates. KCM’s Artifact 

Model Transformation Library includes all graph patterns and transformation rules, 

including transformation rules defined specifically for each type of ABB. 

 

Research Contribution 5 (RC5) 

KCM extends the Core Product Model (CPM2) to define CPM2_xKCM—a meta-

model for representing VTMB artifact design alternatives. KCM provides five abstraction 

levels of design models to characterize the set of design alternatives represented by each 

model, and to distinguish models used for defining the formulation of simulation 

templates versus models used in simulation templates. Abstractions D3, D4, and D5 of 

design models are of specific importance. Instead of formulating design models for an 

artifact at two levels (a meta-model and instances), the KCM provides three different 

abstraction levels (D3, D4, and D5) that serve the following purposes: (1) D3 model used 
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represents all variable topology alternatives of an artifact, and is used for defining 

specifications for composing simulation templates; (2) D4 model is the source model for 

formulating simulation templates, and represents a set of design alternatives with 

equivalent assembly system topologies; and (3) D5 model represents a specific artifact as 

an instance of D4 model, and is used for creating behavior model instances using a 

simulation template. 

 

10.2 Recommended Future Work 
The following applications and extensions of this research are recommended for 

the future. These recommendations are divided in two categories: (a) Conceptual 

extensions—theory-related extensions of the KCM, and (b) Implementation extensions—

software development-oriented extensions of the KCM (or KCM Framework). 

 

Conceptual extensions 

1. Application of KCM’s model transformation approach to variable topology problems 

in system engineering design and analysis, such as designing the following types of 

systems: manufacturing systems, real time embedded systems, energy distribution 

systems, and software systems.  

2. Application of the concept of assembly system topology (defined in this research) and 

graph transformation-based techniques for composing simulation templates to 

systems with hardware, software, and human components.  

3. Addition of new types of ABBs to represent concepts of state-based behavior, such as 

time and events, activities, and decision nodes. While state machine representation in 

UML (and SysML) and UML profiles such as MARTE provide a standards-based 

representation of these concepts, the composition of simulation templates for state-

based behavior requires that these concepts be wrapped as ABBs. In addition, hybrid 

simulation templates composed of physics-based ABBs and state-based ABBs can be 

used for co-simulation. 

4. Representation of dynamic simulation templates to model problems where the 

assembly system topology of design alternatives change during the solution process. 

This can be achieved by defining conditions for existence of relationships in a 
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simulation template. Depending upon the computed values, the relationships may be 

“disabled” temporarily. As an example, when the shear stresses between two layers in 

a PCB increases beyond the peel strength, it leads to delamination of layers. 

Delamination changes the assembly system topology of a PCB and hence interaction 

relationships between analysis bodies representing delaminated layers would need to 

be “disabled”.  

5. Application of KCM’s model transformation approach (based on graph 

transformation) variable topology problems where transformations are performed to 

generate one aspect of a design model from another aspect, such as from logical 

design view to physical design view. Implementation of OMG’s Model Driven 

Architecture to systems engineering involves transformations from Platform 

Independent Models (PIMs) to Platform Specific Models (PSMs) (Friedenthal 2006). 

Graph transformation-based approach to VTMB problems can provide a foundation 

for intra-disciplinary transformations. 

6. Development of solver managers for open standards-based simulation templates. 

Such solver managers can solve simulation templates by delegating relationships to a 

“cloud of solvers” without worrying about the transformations between solver-

independent and solver-specific models. This allows the automated execution of 

different types of relationships—procedural code to math-based constraints—in 

simulation templates. In addition, depending upon the nature of the relationships, 

simulation templates (or parts of it) can be executed in multiple directions. 

7. Investigation and development of better metrics to characterize model formulation 

efficiency. 

 

Implementation extensions 

1. Application of the KCM’s Behavior Model Formulation Method to automatically 

compose simulation templates for analysis problems in different disciplines, such as 

thermal analysis, dynamics and vibration analysis, and fluid dynamics. 

2. Extension of Behavior Model Formulation Method’s graph transformation-based 

approach to compose simulation templates from simulation templates. As an example 

for test case family TCF2, simulation templates for thermo-mechanical behavior of 
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BGA could be composed from existing simulation templates for thermo-mechanical 

behavior of substrates.  

3. Representation and use of decision nodes in simulation templates. Decisions nodes 

can be represented by extending SysML constraint blocks. When used in simulation 

templates, decision nodes can be used for verifying if computed values of behavior 

parameters satisfy requirements. 

4. Simulation templates, as composed by the KCM in this dissertation, consist of 

solution method- and solver-independent formulations of behavior models. The 

rationale for this was to enable analysts to use multiple solution methods and solvers 

for the same analysis problems. KCM’s model composition approach can be used to 

formulate solution method-specific and solver-specific behavior models (such as FEA 

models in ABAQUS) that are associated with the solution- and solver-independent 

behavior models. Examples of FEA scripts automatically formulated from solution 

method- and solver-independent behavior models are shown in (Peak, Burkhart et al. 

2007). Solution method and solver specifications (such as FEA mesh specifications) 

would be provided by analysts and will be included in the Behavior Model 

Formulation Specifications (BMFS). Conceptual specifications in BMFS may include 

conditions that are checked post-solution, such as mesh refinements based on the 

results. This use case corresponds to the research in adaptive idealizations by 

Shephard et al. (Shephard, Beall et al. 2004). Changes in the topology of simulation 

templates based on solution results would be handled in a similar manner as for 

dynamic simulation templates described in item 4 (Conceptual extensions) above. 
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CChhaapptteerr  1111  ::  CCLLOOSSUURREE  

The Knowledge Composition Methodology (KCM) for effective formulation of 

analysis problems is presented in this dissertation. The representation of analysis 

problems as simulation templates enhances the reuse of analysis knowledge in 

formulating behavior models for a large set of design alternatives. However, simulation 

templates are typically brittle to variations in assembly system topology and idealization 

decisions taken by analysts. This makes them ineffective for analyzing the performance 

of design alternatives and for using them in design optimization problems. To 

characterize the types of changes that require manual updates and “re-wiring” of 

simulation templates, the concept of assembly system topology has been defined in 

Chapter 2 of this dissertation. Based on the concept of assembly system topology, this 

dissertation defines a special class of problems, namely Variable Topology Multi-Body 

(VTMB) problems where the assembly system topology of design alternatives varies. 

VTMB problems are defined and illustrated in Chapter 2. In this context, the Knowledge 

Composition Methodology answers the following primary research question: How can we 

improve the effectiveness of the analysis problem formulation process for VTMB 

problems? Specifically, KCM addresses the following two key research gaps in existing 

methods for formulating analysis problems: (a) lack of formalization of the knowledge 

used by analysts in formulating simulation templates, (b) inability to leverage this 

knowledge to define model composition methods for formulating simulation templates.  

The Knowledge Composition Methodology is presented in details in Part 2 of this 

dissertation (Chapters 5-9). Based on the research questions and hypotheses presented in 

Chapter 4, the functional and design specifications of KCM are presented in Chapter 5. 

The KCM Framework is a computational embodiment of the KCM. It provides a testbed 

for KCM models and methods. The use cases and components of the KCM Framework 

are also presented in Chapter 5.  
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The key functional components of the KCM for formulating simulation templates 

were presented as follows: 

 CPM2_xKCM is an extension of the Core Product Model (Fenves 2004) for the 

Knowledge Composition Methodology. CPM2_xKCM provides a meta-model for 

representing VTMB design alternatives. Based on CPM2_xKCM, five levels of 

abstractions of design models are described with examples in Chapter 6. 

 CBM (Core Behavior Model) provides a meta-model for representing behavior models 

of VTMB artifacts. Based on the CBM, five different levels of abstractions of behavior 

models are presented in this Chapter 7. Behavior models in the KCM consist of two 

core components: (a) ABB System—artifact-independent model composed of ABB 

models, and (b) Context—model that associates an ABB System to artifact design 

models.  

 ABB Meta-Model provides a meta-model for representing analysis building blocks 

(ABBs). ABBs are units of analysis knowledge that can be reused for formulating a 

large class of behavior models. Nine different classes of ABBs are defined based on 

the ABB Meta-Model. Examples of ABBs in each class are also presented. The ABB 

Meta-Model and ABBs are presented in Chapter 7. Some classes of ABBs defined in 

this version of the KCM are primarily targeted for physics-based behavior models. For 

other types of behavior models, such as state-based behavior models, new classes of 

ABBs can be defined based on the ABB Meta-Model in a similar manner. In contrast 

to representations of domain theoretic knowledge in existing methods, ABBs in the 

KCM also embody the model transformations associated with using them in a behavior 

model. 

 Behavior Model Formulation Method (BMFM) is a model transformation approach for 

automatically composing behavior model structures from ABBs, based on the 

idealization decisions taken by analysts. The BMFM is presented in details in Chapter 

8 of this dissertation. The idealization decisions are represented as selections of ABBs 

for idealizing VTMB design alternatives and representing the environmental 

conditions (such as loads and behavior conditions) in which the behavior of design 

alternatives is to be computed. In addition to specifying ABBs, the conditions for using 

one ABB versus the other based on properties of design alternatives can also be 
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represented. The model transformation approach in the Behavior Model Formulation 

Method is founded on graph transformations. Graph transformations provide a formal 

approach for model transformations since entity-relationship type of models can be 

structurally abstracted as graphs. The model transformation approach is four-tiered—

graph patterns, graph transformation rules, computable specifications to explicitly 

schedule the execution of transformation rules, and conceptual specifications to 

embody the idealization decisions taken by analysts.  

The test applications of KCM meta-models and methods, and validation of 

research hypotheses are presented in Chapter 9. The Behavior Model Formulation 

Method (implemented in the VIATRA graph transformation framework) is used for 

automatically generating simulation templates for thermo-mechanical analyses of two 

families of VTMB design alternatives—multi-stratum printed wiring boards, and multi-

component ball grid array chip packages. The simulation templates generated for each 

test case family are illustrated in details in Chapter 9. Table 9.5 and Table 9.6 summarize 

results of the three measures of effectives of Behavior Model Formulation Method for the 

test case families. In addition to handling VTMB variations and idealization variations, 

the results clearly show a 90% or more (on average) reduction in the time taken to 

formulate simulation templates using the KCM versus current methods. With the increase 

in the number of components and interactions, the improvements in formulation 

efficiency are significant when using KCM’s BMFM versus current methods. In contrast 

to existing methods where variations in idealization decisions may require several hours 

to update and “re-wire” simulation templates, the time required using BMFM is of the 

order of minutes (less than a minute for minor variations). 

There are two key directions for deploying and extending the current capabilities 

of the KCM. The first direction concerns the ability to formulate a larger variety of 

simulation templates for a larger variety of design families; and the second direction 

concerns the ability to use KCM approach for formulating models for variable topology 

problems in general.  

The application of KCM for analyzing artifact behavior depends on the existence 

of ABB models to represent domain theoretic concepts used in these analyses. These 

ABB models can be created as specializations of existing ABB types. Some of the ABB 
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types defined in this dissertation are especially relevant for physics-based behavior. For 

analyzing other types of artifact behaviors, such as state-based behavior, additional types 

of ABBs and their specialization need to be defined based on the ABB Meta-Model. 

For applying KCM methods for artifact families in different application areas, 

such as automobile, electronics, and aircrafts, the CPM2_xKCM meta-model can be 

leveraged to define application-specific meta-models. STEP (ISO 10303) application 

protocols provide an extensive set of design concepts for some of these application areas. 

The VTMB artifact models for representing multi-stratum PWBs in this dissertation 

leverages concepts defined in the STEP AP210 standard for electronics artifacts. In 

addition, standards such as OMG MARTE (MARTE 2008) provide constructs for 

representing design and analysis information for real-time embedded systems—

composed of both software and hardware components—whose functions are primarily 

defined in terms of state-based behavior.  

Overall, KCM’s design meta-model (CPM2_xKCM) can be specialized to define 

VTMB artifact meta-models for artifact families in different application areas by 

leveraging concepts defined in standards adopted in that application area. KCM’s 

behavior meta-model (CBM) and ABB Meta-Model can be specialized to define ABBs 

(and behavior models) for other different types of behaviors. 

The second direction to deploy and extend the capabilities of KCM concerns a 

unique contribution of the KCM—a formal model transformation approach for 

formulating models for variable topology problems. The graph transformation-based 

approach can be used for formulating different types of artifact (or system) models where 

variable topology poses a significant challenge in automatically formulating and adapting 

models to changes in specifications provided by model authors. Examples of this are 

plenty in today’s system engineering processes, such as creating physical system design 

models from logical system design models (and vice versa) based on the specifications 

provided by designers. For instance in this case, a designer specifies the type of physical 

component to be used for realizing each type of logical component (unit). With variations 

in number, type, or configuration of logical components, or the specifications provided 

by designers, KCM’s model transformation approach can be used for automatically 

formulating physical design models. 
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The Knowledge Composition Methodology achieves its primary objective to 

make analysis problem formulation a more effective process as compared to the methods 

and tools representative of the current state-of-the-art. It successfully achieves this 

objective and in doing so opens a new application area for its model transformation 

approach as applied to variable topology problems. As opposed to spending costly 

resources on interoperability of design and analysis models, it is envisioned that the 

Knowledge Composition Methodology shall provide the foundation to bridge the 

significant gap between system definition and analysis tools. As a result, the Knowledge 

Composition Methodology will provide system designers, analysts, and other 

stakeholders a greater opportunity to focus on the function and the quality of systems. 

 

 

 

 



 

 340

AAPPPPEENNDDIICCEESS  

Appendix 1 : Description of Basic Concepts 
Brief descriptions of the commonly used terms and concepts are presented in this 

appendix. The intent of this appendix is to describe these terms and concepts in the sense 

that they are used in this dissertation. 

 

Data are symbols which represent information for processing purposes, based on implicit 

or explicit interpretation rules. In general, data lacks semantics. Even if the interpretation 

rules are explicit, they are informally documented (Schenck and Wilson 1994; Giarratano 

and Riley 1998). 

 

Information is data with formal and explicit semantics. Information can be communicated 

between two or more partners. Semantics is a key aspect of information because the 

partners need to have a unique and unambiguous understanding of every piece of 

information.  

 

Knowledge extends beyond the notion of information by also including relationships 

between pieces of information. Knowledge is also known as value-added information for 

the purpose of decision making. Knowledge may be represented in different ways, such 

as rules, semantic nets, schema, and logic symbols. The collective knowledge pertaining 

to a given universe-of-discourse may be formalized in different ways, such as 

taxonomies, thesauri, and ontologies. 

 

A Model is a computable approximation of a “thing” for an intended purpose.  A model is 

a surrogate for the actual thing itself and enables us to answer questions about it. The 

fidelity to which a model approximates a “thing” limits the types of questions that may be 

answered about that thing. A model that is computable may be interpreted or solved using 

computer-based methods. In a more generic sense, a model may imply both - a physical 

model or a computable model, but this research specifically focuses on the latter. The 

specific thing approximated by a model may be a physical object such as a car or a ship; a 
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process, such as manufacturing or quality control; collection of physical objects or 

processes; specific characteristic(s) of them; or even a model itself. 

There are two key aspects of a model, namely semantics and syntax. Semantics is 

concerned with the meaning of the thing that a model represents. Syntax is the computer-

interpretable form in which the model is formalized.  

Per the definition above, in this dissertation the term Model also implies 

Information Model (Schenck and Wilson 1994) or Knowledge Model. 

 

A Meta-Model consists of constructs and rules that are needed to build models in a 

universe of discourse. A meta-model is also a model and it can have any number of 

instance models (or instances for brevity). In essence, a meta-model is a “model” of the 

universe of discourse. Figure A1 illustrates the conceptual relationship between a model, 

a meta-model, and model instance using SysML (SysML 2007) notation. The core entity 

is a Model. The terms meta-model and instance denote the relationship between two 

models such that one describes the constructs and rules necessary to create the other. A 

model always has a meta-model and a meta-model may have any number of model 

instances. A model cannot be a meta-model (or instance) of self. For example, a web 

page is internally represented as an information model written in HTML which confirms 

to a meta-model defined by World Wide Web Consortium (W3C), specifically W3C 

HTML DTD (W3C 1999).  

<<block>>
Model

+meta-model
1

+instances*

 
Figure A1: Conceptual relationship between meta-model and instance (using SysML notation) 

In the context of this dissertation, the terms meta-model, model schema, and 

model structure imply the same and are used interchangeably. Unless otherwise stated, 

the term model implies model instance.  

 

An Ontology defines a set of representational primitives to model a universe of 

discourse. These representational primitives are classes (or sets), attributes (or 
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properties), and relationships (relations between classes) (Gruber 1995; Gruber 2007). As 

an example, STEP AP210 (ISO 10303-210 2001) is an ontology for describing the design 

of electro-mechanical products. An ontology is concerned with defining the “semantics” 

to communicate about a universe of discourse, and not necessarily concerned with 

organizing and implementing information models of the universe of discourse across one 

or more databases. In the context of this dissertation, the term Ontology is used 

interchangeably with meta-model or model structure to denote the semantics of the 

universe of discourse being represented. An ontology (or meta-model or model structure) 

is described using a representation language, also known as a modeling language. 
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Appendix 2 : Systems Modeling Language (SysML) Notation 
In this appendix, visual notations of OMG’s System Modeling Language 

(SysML) used in this dissertation are presented. The text and pictures shown in the table 

below are abstracted from standard definitions of elements in the SysML standard 

specifications (SysML 2007). 

Block 
A Block is a modular unit that describes the structure of a 
system or element. It may include both structural and 
behavioral features, such as properties and operations, that 
represent the state of the system and behavior that the system 
may exhibit.  

 Block properties typed by blocks using part associations 
are known as part properties. 

 Block properties typed by blocks using reference 
associations are known as reference properties. 

 Block properties typed by primitive values (such as integer 
and string types) are known as value properties. 

 Block properties typed by constraint blocks are known as 
constraint properties. 

The difference between part properties and reference 
properties is that block instances associated with a parent 
block instance as part properties are owned by the parent 
block.  
 

 

Block Definition Diagram (BDD) 
A Block Definition Diagram is a view of the system model, 
and it shows the properties of blocks and the relationships 
between blocks using part associations, reference 
associations, and generalizations.  

Internal Block Diagram (IDB) 
An Internal Block Diagram shows the internal structure of a 
block. It shows the properties of a block and the connections 
between these properties. 

Part Association 
Part Associations are used for relating a parent block and a 
child block. The black diamond connects to the parent block. 
The other end connects to the child block. A part association 
means that the parent block has a property of type of the child 
block. When a model instantiated, a parent block instance 
owns the child block instance(s).  
 

 

Reference Association 
In contrast to part associations, when blocks related by a 
reference association are instantiated, the referring block 
instance does not own the referred block instance. 
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Generalization 
Generalization is used for representing generalization 
relationship between concepts represented by blocks. The 
head of the arrow connects to the parent block and the tail of 
the arrow connects to a child block. A generalization 
relationship implies that the child block represents a concept 
that is a specialization of the concept represented by the 
parent block. 
 

 

Constraint Block 
Constraint blocks are used for representing reusable 
mathematical relationships, including domain concepts such 
as the definition of Newton’s Second Law (F=m*a, or  
F=m*dv/dt). Constraint blocks primarily consist of constraint 
parameters and constraint specifications that define the 
mathematical relationships between constraint parameters. A 
constraint block may also contain other constraint blocks. 
  

Parametric Diagram 
A Parametric Diagram includes usages of constraint blocks to 
constraint the properties of a block. Constraint blocks used in 
the context of a block (as constraint properties) are denoted as 
rectangles with rounded corners.  

 
Use Case 
Use case of a system represents the functionality of the 
system that is achieved when actors interact with the system. 

 
Actor 
Actors are users of a system 
 

 
Include 
Include relationship is defined between a base use case and 
the included use case. This relationship denotes that the 
included use case is performed as part of realizing the base 
use case. 
 

 

Association (Communication Path) 
Actors are associated with use cases via a communication 
path (association). The communication path represents the 
interaction between an actor and a system when the specific 
use cases are being realized. 
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Package 
A Package defines a namespace for model elements, and may 
contain other packages. 

 
Table A2: Summary of SysML modeling elements used in this dissertation 
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Appendix 3 : KCM’s Generic Properties Meta-Model 
Figure A3 illustrates KCM’s Generic Properties Meta-Model. The constructs 

defined in this meta-model are used in other KCM meta-models and models. Specifically, 

this meta-model defines specializations of the CoreProperty entity defined in CPM2 (and 

included in CPM2_xKCM Meta-Model). In CPM2_xKCM, CoreProperty is the basic 

abstract block used for representing properties of an artifact, such as shape and material. 

In the Generic Properties Meta-Model, the CoreProperty is specialized to define 

CoreBehaviorProperty as the base block for representing a basic set of concepts used for 

defining the behavior of artifacts. The concepts shown in this version of the Generic 

Properties Meta-Model are targeted for the test applications and models described in this 

dissertation—mostly physics-based behavior models with emphasis on thermal and 

mechanical analysis. The Generic Properties Meta-Model is intended to be extensible as 

new types of ABBs and analysis concepts are added to the KCM. 

Two primary types of specializations to the CoreProperty concept are developed 

in the Generic Properties Meta-Model. The first type specialization concerns the 

specializations to the concept of Shape (renamed from Geometry in CPM2 to Shape in 

CPM2_xKCM). Shape is the parent entity for defining the geometric shape of all 

abstractions of artifacts and features. It is also used as the Shape ABB in the definition of 

analysis bodies and analysis body systems. In general, KCM shall leverage STEP Part 42 

to extend the representation of geometric shapes. However, for demonstrating the test 

applications of KCM, some basic specializations of Shape are developed here. As shown 

in Figure A3, one dimensional (point), two dimensional (such as lines and arcs), and 

three dimensional shapes (Sphere and Cuboid) are defined as specializations of the Shape 

block. The Shape_Representation_2D and Shape_Representation_3D blocks are parent 

blocks for the representation of two dimensional and three dimensional shapes 

respectively. 
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Figure A3: Generic Properties Meta-Model 
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The second type of specialization to the CoreProperty block is the 

CoreBehaviorProperty block as the parent block for representing parameters used in 

defining ABBs. The parameters represented in the Generic Properties Meta-Model 

represent the following aspects of the concepts represented by ABBs: 

- definition of the dimensionality and units for representing the concept 

- definition of the type of quantity used for representing the concept, such as scalars, 

vectors, or tensors 

- definition of symbols used for denoting the concepts, such as F for force 

In general, the representation of parameters is equivalent to the representation of 

specialized data types with symbolic notation.  

The CoreBehaviorProperty block is specialized into five blocks—each 

representing a type of parameter—as defined below. Note that these types and the 

specializations within each type are based on the parameters required for demonstrating 

the KCM using specific test cases. Additional types of parameters and their 

specializations must be defined to make this meta-model useful for representing ABBs in 

general. 

 Interial_Parameter_Type block is used for representing the inertial parameters of an 

artifact, such as mass and moment of inertia. These parameters are shown as 

specializations of the Inertial_Parameter_Type block. 

 Temporal_Parameter_Type block is used for representing time and related temporal 

parameters that are useful in representing the dynamic behavior of artifacts. KCM shall 

leverage other standards such as OMG MARTE (MARTE 2008) that extensively 

define these temporal concepts. 

 DOF_Parameter_Type block is used for representing degrees-of-freedom (DOFs) 

parameters associated with different types of behaviors of an artifact. The 

DOF_Parameter_Type block can be specialized for representing DOFs for a specific 

type of behavior. For example, Structural_DOF_Parameter_Type block and 

Thermal_DOF_Parameter_Type block represent the DOF parameters for structural and 

thermal behavior respectively.  

 Behavior_Parameter block is used for representing behavior parameters for different 

analysis disciplines. The Behavior_Parameter block is specialized for each type of 
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analysis discipline. For example, the Behavior_Parameter block is specialized as 

Structural_Behavior_Parameter and Thermal_Behavior_Parameter block for 

representing behavior parameters for structural and thermal behavior of artifacts 

respectively. Additionally, the Material_Behavior_Parameter block represents the 

parameters used for defining the behavior of materials (constituting artifacts). 

 Load_Parameter_Type block is the base block for representing parameters used for 

characterizing loads. It is specialized into Structural_Load_Parameter_Type and 

Thermal_Load_Parameter_Type block for representing structural and thermal load 

parameters respectively. Parameters used for representing force, moment, and pressure 

are examples of structural load parameters; and parameters used for representing heat 

generation rate and heat flux are examples of thermal load parameters.  

Note that parameters defined in the Generic Properties Meta-Model are not the 

representation of the concepts themselves but only the definition of parameters used for 

denoting those concepts. For example, the force parameter is not the definition of force. 

The Force ABB (type of Load ABB) is used for representing the concept of force.  
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