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PREFACE

The motivation for this research distills from the countless days and nights that |
have spent in writing, debugging, and modifying computer code for creating and adapting
finite element analysis models for design variations. In particular, 1 have spent a
significant time over the last few years developing a production-ready software
application for formulating FEA models for computing thermo-mechanical behavior of
electronics artifacts, such as printed wiring boards and assemblies. The underlying design
model-to-behavior model transformations in this application were realized using Java-
based methods. As soon as | started testing this application with production-level design
models gathered from several electronic design and manufacturing organizations, the
hardships were apparent. It became extremely difficult to adapt the transformations to
variations in design models and to maintain consistency of idealizations embodied in the
application. Attempts to incorporate different fidelities of idealizations made matters
worse. For production-ready deployment of this application, it was necessary that
analysts have complete (and yet simple) control of the underlying idealizations and
transformations. Without direct control of the source code, this was impossible. From
discussions with several colleagues, conference presentations and publications, and
interactions with designers and analysts across several organizations (NASA, Rockwell
Collins, Lockheed Martin and Boeing, to name a few), it was apparent that this was in
principle their story as well.

In this dissertation, I have made an initial attempt at researching and developing
an approach that could alleviate some of the more painful conceptual problems
experienced in “our combined hardships”. In particular, | find the application of graph
transformations to model formulation for variable topology problems as a new
application area emergent from this research. It is my hope that this dissertation provides
a meaningful step towards a seamless interface between design and analysis activities,

and a significant (though small) cornerstone for variable topology problems in general.
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SUMMARY

In simulation-based design, a key challenge is to formulate and solve analysis
problems efficiently to evaluate a large variety of design alternatives. The solution of
analysis problems has benefited from advancements in commercial off-the-shelf math
solvers and computational capabilities. However, the formulation of analysis problems is
often a costly and laborious process. Traditional simulation templates used for
representing analysis problems are typically brittle with respect to variations in artifact
topology and the idealization decisions taken by analysts. These templates often require
manual updates and “re-wiring” of the analysis knowledge embodied in them. This
makes the use of traditional simulation templates ineffective for multi-disciplinary design
and optimization problems.

Based on these issues, this dissertation defines a special class of problems known
as variable topology multi-body (VTMB) problems that characterizes the types of
variations seen in design-analysis interoperability. This research thus primarily answers
the following question:

How can we improve the effectiveness of the analysis problem formulation process for
VTMB problems?

The knowledge composition methodology (KCM) presented in this dissertation
answers this question by addressing the following research gaps: (1) the lack of
formalization of the knowledge used by analysts in formulating simulation templates, and
(2) the inability to leverage this knowledge to define model composition methods for
formulating simulation templates. KCM overcomes these gaps by providing: (1) formal
representation of analysis knowledge as modular, reusable, analyst-intelligible building
blocks, (2) graph transformation-based methods to automatically compose simulation
templates from these building blocks based on analyst idealization decisions, and (3)
meta-models for representing advanced simulation templates—VTMB design models,
analysis models, and the idealization relationships between them.

Applications of the KCM to thermo-mechanical analysis of multi-stratum printed

wiring boards and multi-component chip packages demonstrate its effectiveness—

xXiii



handling VTMB and idealization variations with significantly enhanced formulation
efficiency (from several hours in existing methods to few minutes).

In addition to enhancing the effectiveness of analysis problem formulation, the
KCM is envisioned to provide a foundational approach to model formulation for

generalized variable topology problems.
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Chapter 1 : INTRODUCTION

In today’s dynamic product realization environments driven by functionality,
time-to-market and cost-to-develop, it is often economically advantageous for engineers
to create virtual prototypes of a system (Pratt 1995) and verify design alternatives by
means of simulations. Here, simulation refers to the use of computational models to
analyze and evaluate the behavior of an engineering system. Simulations enable designers
and analysts to predict and optimize system performance during the design process,
thereby reducing the number of design cycles, cycle time, costly reworks, and improving
system quality. This approach of using simulations as the primary means of analysis and
evaluation of system alternatives is commonly known as simulation-based design (SBD)?
(Fenves, Choi et al. 2003; Shephard, Beall et al. 2004; NSF 2006). Simulation-based
design bridges the knowledge and methodologies of engineering domains, such as
mechanical, aerospace, electrical, and civil, with those of mathematical and
computational sciences, thus providing integrated techniques for predicting system
behavior and optimizing system designs (NSF 2006). Figure 1.1 depicts the scope of

simulation-based design in a model of the design process (Gero 1990).
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Figure 1.1: Scope of simulation-based design in a model of the design process (Gero 1990)

# Simulation-driven design, Simulation-based engineering science, Analysis-based design, and Analysis-driven design

are also widely used similar phrases.



Simulation-based design involves three key stages of a design process—synthesis,
analysis, and evaluation. Typically during a design process, a set of desired functions (F)
is transformed to a design description (D) to be used for downstream product lifecycle
processes, such as manufacturing. Except during catalog lookup, the direct
transformation F>D is not available. Hence, designers generate an artifact’s structure (S)
which is then transformed to its design description (D). The transformation F>S—an
alternate statement of the design problem—is achieved in the following manner in the
design process: (a) During formulation, the desired functions of an artifact are
transformed to expected behaviors (Be); (b) Then during synthesis, different alternatives
of an artifact’s structure (S) are generated based on its expected behaviors (Bg); (C)
During analysis, the behaviors of each alternative of an artifact’s structure are determined
(Bs); (d) Then during evaluation, the expected behaviors (Be) are compared with
behaviors derived from an artifact’s structure (Bs) for each alterative of the structure.
Evaluation is used to narrow down on a set of alternatives. Sometimes when a structure is
analyzed, its behavior can be a useful superset of expected behaviors. In such a case, the

set of desired functions is accordingly extended and this is known as reformulation.
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Figure 1.2: Integrated functional and spatial design through design phases (Fenves, Choi et al. 2003)

Simulation-based design is an iterative and collaborative process involving

designers and analysts, and spanning all design phases. Figure 1.2 illustrates an integrated



functional and spatial design scenario (Fenves, Choi et al. 2003) representing the iterative
and collaborative nature of simulation-based design. In a given design phase, designers
synthesize alternative forms of an artifact that are represented as design models. For a
particular type of analysis, (i) design alternatives are idealized in the context of the
analysis, (ii) a particular set of behaviors are computed using simulation, and (iii) the
simulation results are evaluated against requirements. The evaluation results from a
family of analyses are then used for selecting the best-in-class alternatives for the next
design phase or mapped to generate new design alternatives for the current phase. This
collaborative process is realized by means of models. Alternative forms of an artifact are
represented as design models that are then idealized and enriched with analysis oriented
information for creating analysis models—also known as behavior models in the context
of this dissertation.

To reuse the knowledge associated with analyzing design alternatives, and to
automate the analysis and evaluation process, designers and analysts create simulation
templates—models that relate an artifact’s design parameters to its behavior parameters.
Design parameters are abstracted from design models and behavior parameters are
abstracted from behavior models. In essence, a simulation template provides a structure
for relating design models and behavior models, and provides a template for model-based
communication between designers and analysts. In an automated analysis and evaluation
process, for each design alternative: (a) the values of design parameters are input to the
simulation templates, (b) the values of behavior parameters are computed as outputs of
the simulation templates, and (c) the values of behavior parameters are evaluated against
requirements. At each design stage, this process is typically repeated for a set of design
alternatives using several simulation templates, and the best-in-class alternatives are
selected for the next design phase. If simulation templates are defined with stepping stone
models between design models and behavior models, and the idealization relationships
between these models are inherently non-causal, then simulation templates may also be
used to compute the “preferred” values of design parameters from given values of
behavior parameters (Peak and Fulton 1994; Peak, Burkhart et al. 2007).

In design optimization problems that aim to select the best-in-class

alternative(s), simulation templates are used for computing behavior parameters that



directly or indirectly participate in the objective function. For a particular alternative in
the design space exploration path, simulation templates are used for computing behavior
parameters that are then used to evaluate the objective function. In general, simulation
templates provide an efficient approach for routine analysis (including complex and
coupled simulations) and optimization problems today, such as multi-scale, multi-body,
and multi-disciplinary analysis and optimization problems.

Considering the time and effort required to create simulation templates, it is
economically preferable that a given set of simulation templates be reused for computing
behavior parameters for all feasible design alternatives. However, simulation templates
are generally brittle to changes in the assembly system topology of design alternatives.
As an example, with variations in the configuration of components in an assembly or
variations in the number of components (including features and interactions), simulation
templates have to be manually updated. With variations in the types of components,
features, and interactions among components, analysts not only have to provide the
idealization intent for these new types of design objects but also manually update
simulation templates.

Assembly system topology—defined more precisely later in this dissertation—is a
collective measure of the number and types of components, their interactions, and
component features participating in these interactions in an artifact assembly. In general,
simulation templates are not reusable for computing behavior parameters for design
alternatives with non-equivalent assembly system topologies.

Figure 1.3 below illustrates simple examples of design alternatives with non-
equivalent assembly system topologies. The first column in the figure shows the spatial
arrangement of parts in alternative assembly systems, and the second column shows the
equivalent graph representations. For a given part A, the top, bottom, left, and right
features are referred as AT, AB, AL, and AR respectively. Assembly ABC is a reference
design alternative with three components A1, B1, and C1 of part types A, B, and C
respectively, arranged in a certain configuration. In assemblies ABC2 and ABC3, the
number and types of components are the same but their configurations are different. With
respect to ABC1, C1 interacts with the top feature of B1 in ABC2; and with respect to
ABC2, Al interacts with the bottom feature of B1 in assembly ABC3. In assembly ArBC, the



number, types, and configuration of components is the same as in ABC1, ABC2, and ABC3
but the interaction between A1 and B1 is changed—A1 can roll along the top surface of

B1. In assembly ABCD, a new component D1 (of new type D) is added with respect to

ABC.
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Figure 1.3: Examples of design alternatives with non-equivalent assembly system topologies

Any such changes in the number or types of components, interactions, or features
participating in the interactions alter the assembly system topology of artifact
alternatives. These changes are also reflected in changes in the topologies of equivalent
graph representations. A more precise and formal graphical representation of assembly
system topology is presented later in this dissertation.

The idealization relationships between design parameters and behavior parameters
in a simulation template are typically based on assumptions about the number, type, or
the configuration of components and their interactions in an artifact assembly. With
changes in the assembly system topology, idealization relationships embodied in
simulation templates may need to be modified or extended. ldealization relationships
“implicitly” represented as parameterized scripts can typically handle only a subset of
topology changes. For example, changes in the number of components can be handled
with assumptions on the nature and type of interactions and configuration of components.
Such scripts are commonly used today to create behavior models from design models,
such as the case when automatically generating FEA models in commercial tools such as
ABAQUS and ANSYS.




Based on the concept of assembly system topology, a special class of analysis
problems known as Variable Topology Multi-Body (VTMB) Problems is defined in
this dissertation. VTMB Problems are a class of problems where the assembly system
topology of design alternatives changes. In the context of simulation-based design
VTMB problems affect simulation templates, generally requiring manual updates and
“re-wiring” of relationships between design parameters and behavior parameters in
simulation templates. The brittleness of simulation templates to VTMB problems makes
their reuse even more difficult for multi-disciplinary design optimization problems where
the number of idealization relationships and behavior parameters per simulation template
and the number of simulation templates are generally larger as compared to optimization
problems concerning a single discipline. In general, the lack of robustness of simulation
templates to VTMB problems jeopardizes their efficacy for multi-scale, multi-body, and
multi-disciplinary analysis and optimization problems.

In addition to assembly system topology variations among design alternatives,
changes in idealization decisions taken by analysts also cause changes in simulation
templates. Generally, these changes involve manual “re-wiring” of the idealization
relationships embodied in simulation templates. This is economically infeasible,
especially in cases when analysts perform trade studies on idealizations, especially for
new types of analysis problems and to measure the relative advantages of high-fidelity,
time-intensive analyses versus quick, low-fidelity analyses. Even without variations in
assembly system topology, changes in the idealizations—such as using shells versus
solids, or isotropic versus orthotropic material behavior—involves manually restructuring
the relationships between design parameters and behavior parameters in simulation
templates.

Broadly, there are two steps in leveraging simulation templates for behavior
analysis and design optimization problems as described above. These are: (a) formulation
of simulation templates, and (b) execution of simulation templates. The execution of
simulation templates has benefited from advancements in computational capabilities and
commercial off-the-shelf solvers, such as differential algebraic equation solvers and FEA
solvers. However, the formulation of simulation templates is often costly and laborious,

especially for VTMB problems and idealization changes.



The lack of effectiveness of simulation templates for performance evaluation and
design optimization is primarily due to the: (a) inability to automatically adapt simulation
templates to VTMB problems, (b) inability to automatically adapt simulation templates to
changes in idealization decisions taken by analysts, and (c) inefficient representation and
creation of simulation templates in general. In light of these challenges, the primary
research question that this dissertation answers is as follows:

How can we improve the effectiveness of the analysis problem formulation process for
VTMB problems?

Though simulation templates are brittle to VTMB problems, it is also not
pragmatic to create a simulation template that is robust to all types of changes in the
assembly system topology of design alternatives. Additionally, changes in idealizations
will require manual and costly “re-wiring” of simulation templates. Hence, a holistic and
pragmatic solution to this challenge problem is to have the capability to automatically
compose simulation templates from idealization decisions taken by analysts. By the
virtue of information-rich representation of idealization intent, analysts can create
simulation templates that are robust to certain types of assembly system topology
changes. With the capability to compose simulation templates from building blocks
automatically, analysts can create simulation templates for other types of assembly
system topology changes as well as for changes in idealization decisions in an efficient
manner.

However, research gaps exist in the current state-of-the-art for achieving this
solution. Specifically, these gaps are: (a) the lack of formalization of the knowledge used
by analysts in formulating simulation templates, and (b) the inability to leverage this
knowledge to define model composition methods for formulating simulation templates.
The lack of formalized knowledge is particularly apparent in the direct representation of
idealization decisions as mathematical equations and procedural functions in scripts or
programs used for creating behavior models, without necessarily representing the
idealization intent. This results in simulations templates that are brittle to VTMB
problems and idealization changes. If one can formalize the types of idealization
decisions taken by analysts, and the conditions for these decisions, one may explicitly
represent these decisions at a higher level of abstraction from which mathematical



relations or computable scripts may be automatically derived. For efficient formulation of
simulation templates, it is also necessary to define model composition methods that can
automatically compose simulation templates from reusable building blocks and the
idealization decisions taken by analysts. The representation of building blocks requires
both static knowledge—What concepts are represented by building blocks?—as well as
dynamic knowledge—How are building blocks composed to create simulation templates?
The Knowledge Composition Methodology (KCM) presented in this dissertation
addresses these research gaps by providing (a) a method to formalize and reuse the
knowledge required for creating simulation templates, and (b) model composition
methods to automatically compose simulation templates from this formalized knowledge
and the idealization decisions taken by analysts. Figure 1.4 illustrates a high-level
functional view of the KCM. Figure 1.4a illustrates the formulation of simulation
templates using KCM’s Behavior Model Formulation Method (BMFM). The BMFM is a
model transformation method used for automatically composing simulation templates
from fixed topology design model structures based on the idealization decisions taken by
analysts. This model transformation method is founded on graph transformations, where
fixed topology design model structures and simulation templates are abstracted as source
and target graphs respectively, and reusable graph transformation patterns and rules are
explicitly scheduled to compose the target graph from the source graph and the
idealization decisions. The Behavior Model Formulation Method and its model
transformation approach are presented in Chapter 8. An overview of each component in
the functional view is described below:
= VTMB Design Meta-Model defines the constructs and relationships to represent design
alternatives with non-equivalent assembly system topologies for a specific type of
artifact, such as printed circuit boards. KCM provides an extended Core Product Model
(CPM2_xKCM) based on the Core Product Model originally proposed by Fenves et al.
(Fenves 2004) to represent designs and idealized designs of artifacts. CPM2_XxKCM is
specialized to define a VTMB Design Meta-Model for representing variable topology
alternatives for a specific artifact type. CPM2_xKCM is presented in Chapter 6 of this

dissertation.



= Fixed Topology Design Model Structure represents a set of design alternatives with
equivalent assembly system topologies. Several fixed topology design model structures
may be defined conforming to a VTMB design meta-model. Examples of fixed

topology design model structures are presented in Chapter 6 of this dissertation.
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b. Execution of simulation templates

Figure 1.4: Knowledge Composition Methodology — A functional overview

= VTMB Behavior Meta-Model defines the constructs and relationships for representing
behavior models for design alternatives with non-equivalent assembly system
topologies. Together a VTMB design meta-model, a VTMB behavior meta-model, and
their relationships provide a meta-model for simulation templates. KCM provides the
Core Behavior Model (CBM) as a meta-model for representing behavior models
(including relationships with design models). Together CPM2_xKCM and CBM define
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a comprehensive meta-model for representing simulation templates for design
alternatives with non-equivalent assembly system topologies. The Core Behavior
Model is presented in Chapter 7 of this dissertation. KCM builds on the MRA
simulation template pattern (Peak and Fulton 1994; Peak, Burkhart et al. 2007) to
represent simulation templates that are founded on physics-based concepts and
independent of a particular solution method or solvers.

= Fixed Topology Behavior Model Structure represents a set of behavior models created
for a design model structure based on the idealization decisions taken by analysts.
Several fixed topology behavior model structures may be formulated for variations in
design model structures and idealization decisions. Examples of fixed topology
behavior model structures are presented in Chapter 7 of this dissertation.

= Behavior Model Formulation Specification (BMFS) embodies the idealization
decisions taken by analysts. BMFS provides specifications for the composition of
simulation templates.

= Simulation Template Building Block Library provides a library of reusable building
blocks that are used for automatically composing simulation templates. KCM provides
the Analysis Building Block (ABB) Meta-Model that represents the constructs and
relationships for key types of building blocks. For different analysis disciplines,
building blocks are defined as specializations of the generic building block concepts in
the ABB Meta-Model. The library also contains reusable model transformation rules
and patterns used by the Behavior Model Formulation Method. The ABB Meta-Model
and ABB library are presented in Chapter 7. The dynamic aspects of ABBs that govern
how ABBs are composed in an ABB system are represented by graph transformation
rules and patterns, and described in Chapter 8.

= Transformation Engine is a graph transformation engine that executes the Behavior
Model Formulation Specifications to automatically compose simulation templates.

KCM addresses VTMB problems because for different desing model structures—
each of which represents a set of design alternatives with equivalent assembly system
topologies—behavior model structures and simulation templates can automatically be

created for the same Behavior Model Formulation Specifications. Additionally, behavior
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model structures and simulation templates can also be automatically created for different
Behavior Model Formulation Specifications and for a given design model structure.

Figure 1.4b illustrates the execution of simulation templates composed using
KCM’s Behavior Model Formulation Method. With the availability of a simulation
template, object solvers (or solver managers) such as ParaMagic®, OpenModelica®, and
Mathematica® may be used for solving the idealization relationships embodied in
simulation templates for design instances that conform to the fixed topology design
model structure embodied in simulation templates. As shown in Figure 1.4b, for each
design instance the idealization relationships are solved to create a behavior model
instance that confirms to the fixed topology behavior model structure embodied in the
simulation template. Each behavior model instance can then be solved using different
solution methods and solver tools, such as using FEA method and solvers such as
ABAQUS or ANSYS. If the idealization relationships embodied in simulation templates
are inherently non-causal, such as mathematical equations, then analysts may specify
target values of behavior parameters and compute design parameters values (unique or a
range) using the same simulation template. Multi-disciplinary design optimization
tools—at their backend—can deploy the ability to automatically formulate simulation
templates for VTMB problems, and the ability to execute a given simulation template
(possibly in multiple directions) for different values of design model (or behavior model)
instances. This will provide an effective mechanism to search for the feasible design
space that has alternatives that have non-equivalent assembly system topologies.

The primary contribution of the research presented in this dissertation is the
Behavior Model Formulation Method that prescribes a graph transformation-based
approach for automatically composing simulation templates for (i) variations in assembly
system topology of design alternatives, and (ii) variations in idealization decisions taken
by analysts. The secondary contributions of this research are the (i) characterization of
VTMB problems, (ii) meta-models for representing simulation templates and their

building blocks, (iii) graph pattern and transformation rules to manage models that

® www.intercax.com/sysml
¢ www.ida.liu.se/labs/pelab/modelica/OpenModelica.html

4 \www.wolfram.com/mathematica
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conform to these meta-models, and (iv) an extensible, proof-of-concept library of
simulation template building blocks.

The most promising extension of this research lies in the application of KCM’s
model transformation approach to other types of VTMB problems. Examples of
simulation templates that are brittle to topology variations of system alternatives are
abound. The concept of assembly system topology, as presented in this research, is
defined for systems in general, including systems that may have human and software
components. Suggested applications include manufacturing systems, real time embedded
systems, and energy generation and distribution networks.

This dissertation consists of three parts:
= Part 1: Problem Definition
= Part 2: Knowledge Composition Methodology
= Part 3: Verification and Validation, Future Work, and Closure

Part 1 lays a platform for framing the research problem, identifying research gaps,
and posing research questions. It consists of Chapters 2-4. Chapter 2 presents basic
concepts necessary for problem description, followed by a presentation of three
foundational perspectives in aspects of simulation-based design relevant to this research,
and definition of VTMB problems that form the thrust of this research. It ends by
identification of research gaps and their exemplification using an example VTMB
problem. Chapter 3 describes related technical work in the context of these research gaps,
and Chapter 4 builds on the research gaps and relevant technical background to pose the
research questions and present research hypotheses.

Part 2 presents the Knowledge Composition Methodology (KCM), specifically
emphasizing aspects of the methodology that address the research gaps identified in Part
1. Part 2 consists of Chapters 5-8. Chapter 5 presents an overview of the KCM and
describes its key functional requirements, stakeholders, use cases, and the overall
approach. Chapters 6-7 describe the meta-models used for representing simulation
templates, and Chapter 8 presents the model transformation methods in KCM.

Part 3 comprises Chapters 9-11. Chapter 9 presents the VTMB test cases
including descriptions of simulations templates automatically composed using a proof-of-
concept software implementation of KCM’s model transformation method. In Chapter
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10, a summary of research contributions is presented followed by recommended future
work to extend and apply the Knowledge Composition Methodology. In Chapter 11, a
summary of the Knowledge Composition Methodology is presented.

This dissertation also includes three appendices. Appendix 1 provides a brief
description of basic information modeling concepts used in this dissertation. Appendix 2
provides a summary of OMG Systems Modeling Language (SysML) constructs used in
this dissertation; and Appendix 3 provides a brief description of KCM’s Generic

Properties Meta-Model.
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PART 1. PROBLEM DEFINITION
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Chapter 2 : PROBLEM DESCRIPTION

This chapter describes the research challenges in formulating simulation
templates for VTMB analysis problems. The intent of this description is to characterize
simulation template formulation capabilities of existing methods that do not scale to
address VTMB challenges, thereby making simulation templates ineffective for multi-
disciplinary analysis and optimization problems in particular. First, a set of basic
concepts necessary to describe the problem are presented in section 2.1. Then, two key
aspects of simulation-based design that are foundational to this research are presented in
section 2.2. These aspects establish the need for simulation templates for integrated
functional and spatial design. The time and effort required to create simulation templates
and the types of changes that result in manually updating simulation templates are
discussed in sections 2.2.2.1 and 2.2.2.2. In particular, simulation templates are brittle to
a specific type of change—variation in the assembly system topology of design
alternatives. Assembly system topology is the main concept used in describing Variable
Topology Multi-Body problems in section 2.3. In section 2.4, the primary research
question is presented followed by a description of two key research gaps in existing

methods for formulating analysis problems.

2.1 Description of basic concepts
In this section, a set of basic concepts necessary to describe simulation templates

and VTMB analysis problems are presented.

Idealization is a transformation that relates aspects of a real world system or phenomena
to models representing the system or phenomena for the purpose of facilitating
mathematical analyses. For example, a linear elastic material behavior is an idealization
of the material behavior of an artifact. Similarly, a static force is an idealization of real
forces acting on a system. In general, a model (or its aspects) is an idealization of the

system or phenomena represented by the model (or its aspects).
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An Artifact is a distinct subset of a physical product or system (Fenves 2004). An Artifact
could be a system itself, such as a specific printed circuit assembly, or any of its sub-

systems, such as a printed circuit board used in a printed circuit assembly.

Form® represents the physical characteristics of an artifact, such as its shape and material
(Fenves 2004). The goal of a design process is to create a form that performs the desired

functions.

Function is what an artifact is intended to do (Fenves 2004). An artifact may have
several functions, and a function may be performed by several artifacts. A function may
be broken down into several sub-functions. Examples of common types of functions are

transfer of materials, energy, or information.

Behavior is the response of an artifact to external stimuli (environment). A behavior may
be intended—implements an artifact’s function, or it may be unintended—doesn’t
contribute or has adverse effects on an artifact’s function. For example, heat generation is

an unintended behavior of a microprocessor chip in operation.

A Behavior Model represents an idealized subset of behaviors of an artifact in a given
environment. The purpose of a behavior model is to answer questions concerning the
subset of artifact behaviors that it represents. In the context of this research, a behavior
model is formalized as a computable model—one that it can be solved to compute
behavior parameters or other measures-of-effectiveness of the artifact. In general,
analysts formulate a Behavior Model Structure that represents a set of behavior models.
Each member of the set is a Behavior Model Instance that conforms to a Behavior Model
Structure. Structure and instance correspond to the concepts of schema and schema
instance (Schenck and Wilson 1994) in information modeling. Like a schema, a behavior

model structure represents the parameters and relationships embodied in a behavior

5 also referred as structure
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model. In a behavior model instance, values of some parameters are given while others

are computed using the relationships embodied in the structure.

Behavior Model Formulation is a process of designing a behavior model (structure and

instances) to compute a set of behavior parameters for a family of artifacts. For example,

an analyst would formulate a behavior model to calculate the maximum deformation of a

printed circuit board when it is subjected to a thermal load during the assembly process.

The formulation of a behavior model consists of the following key steps:

1) Identifying behavior parameters to characterize the subset of behaviors that are of
interest. For example, the behavior parameters of interest in the PCB deformation
problem are the out-of-plane deformation parameter (u,) and in-plane deformation
parameters (Uy and uy).

2) Identifying domain theories that may be used for computing these behavior
parameters. Examples of domain theories are Euler’s beam theory (Gere and
Timoshenko 1997) and Kirchhoff’s plate theory (Krauthammer and Ventsel 2001).

3) Idealizing the artifact and environment under which behavior parameters are to be
computed. For example, in the PCB deformation problem, each stratum of a PCB
may be idealized to have homogenous material distribution, the thermal load may be
idealized as a uniform temperature increase, and one edge of the PCB may be held
fixed as a boundary condition.

4) Creating a model that represents the idealized artifact, environment, behavior
parameters, and their relationships based on domain theories.

This view of model formulation is in principal also corroborated by (Gruber
1992). This research focuses on solution method- and solver-independent formulation of
behavior model structures. A behavior model may be reformulated for specific solution
method and solvers. For example, the parameters and relationships in a behavior model
may be used to create a solution method-specific system of equations (such as the global
stiffness matrix in finite element analysis) that may be solved using a specific solver
(such as ABAQUS (Dassault Systemes 2006) for finite element analysis).
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Behavior Model Solution is the process of solving the mathematical relationships in a
formulated behavior model. During solution, behavior parameters are computed using an
appropriate solution method and a solver. Behavior model solution may require

reformulations of a behavior model for specific solution methods and solvers.

Simulation is a process of formulating models, solving models, and analyzing results to
gain an understanding of a given system (Fishwick 1995). Usually, the term simulation is
used when the mathematical relationships in a model do not have an exact or analytical
form or they are so complex that it is computationally inefficient to solve them and hence
they need to be solved numerically (Law and Kelton 2000). Some examples of systems
that are subjects of simulation studies are: products, processes, combination of products
and processes, or theoretical systems. In the context of this research, the term simulation
is used in a broader sense—includes models that have a closed form solution and those
that have to be solved numerically. This research focuses on computer-based simulations
(and hence computer-based models) to compute behaviors of artifacts. In the context of
this research, the term simulation model refers to behavior model.

In the context of this research, behavior simulation is a process of formulating
behavior models, solving them, and evaluating results to gain an understanding of an
artifact’s behavior under external stimuli. In this dissertation, the terms *“simulation” and

“behavior simulation” are used interchangeably.

A Behavior Parameter is a computable parameter that is used to characterize the
behavior of an artifact. The value of a behavior parameter measures the (idealized)
behavior of an artifact. Deformation, Stress, and Strain are examples of behavior
parameters to measure the structural behavior of an artifact, and Temperature is an

example of a behavior parameter to measure the thermal behavior of an artifact.

Analysis is a process of computing the behavior of an artifact from its form. Specifically,
the term analysis used here implies behavior analysis—computing the behavior of an
artifact under external stimuli. Other types of analyses include but are not limited to
requirements analysis—computing requirements that must be met by an artifact to satisfy

19



the needs of customers, cost analysis—computing the cost of producing an artifact given

its form.

Evaluation is a process of comparing the behavior(s) of an artifact with the artifact’s
function (intended behavior). Specifically, the term evaluation here implies behavior
evaluation. Other types of evaluation include but are not limited to requirements
evaluation—checking if an artifact satisfies the requirements, cost evaluation—checking

if the cost of producing an artifact satisfies budget requirements.

An Inverse Problem is a problem where the natural outputs of a behavior model are
known but not all the natural inputs to the behavior model are known. The natural outputs
of a behavior model are the behavior parameters, and the natural inputs are the artifact’s
form, load, and behavior conditions. As an example for static structural analysis of an
artifact, the form of the artifact (including geometry and material specifications),
boundary conditions, and loads are natural inputs and the deformation, stress, and strain
fields are natural outputs (solution). One of the inverse problems for this case would be
such that the deformation, stress, and strain fields, loads, boundary conditions, and
artifact’s material specifications are inputs to the problem and the form of the artifact is
to be determined. Inverse problems are prominent in science and engineering as can be
corroborated by a dedicated journal in this topic area (Taylor and Francis (Inverse
Problems in Science and Engineering) 2008). The objective of this research is to
formulate behavior models such that the relationships between parameters are represented
in a non-causal manner (if the relationships are inherently non-causal, such as equations).
Non-causal representation of relationships is necessary for solving inverse problems

efficiently.
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2.2 Aspects of simulation-based design foundational to this

research

In this section, two keys aspects of simulation-based design that are foundational
to this research are presented. Collectively, these aspects establish a platform for (a)
clearly describing the primary question that this research shall answer, and (b) describing
the specific research gaps that motivate this research. The context of each aspect is as
stated below:
= Integrated Functional and Spatial Design aspect establishes that analysis is an activity
performed through the design process and requires model-based communication
between designers and analysts.
= Simulation Templates aspect establishes that simulation templates, patterns, and
instances are mechanisms for enabling model-based communication between designers
and analysts.
2.2.1 Integrated Functional and Spatial Design
Designers and analysts are key stakeholders in simulation-based design. Figure
2.1 (Fenves 2004) illustrates the integrated functional and spatial design process scenario
involving designers and analysts. Designers generate alternative forms of an artifact that

are idealized to create analyzable forms for the purpose of analysis and evaluation. The
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Figure 2.1: Integrated functional and spatia_laesign (Fenves 2004) through design phases



outcome of an analysis and evaluation process is either (i) satisfactory—selecting a set of
alternatives that are candidates for the next design phase, or (ii) unsatisfactory—mapping
proposed design changes to generate new alternatives. Here, spatial design refers to
generating the form of the artifact, and functional design refers to generating an artifact
that performs the required functions. The term “integrated” implies that developing the
form and function of an artifact are inherently coupled aspects of the design process, and
should be performed collaboratively by designers and analysts. It is necessary to view
analysis as a process of continuously evaluating an artifact across all design phases. It is
necessary that simulation-based design methods enable analyses during conceptual
design phases that largely govern the overall product cost and form.

Figure 2.2 illustrates the communication process between designers and analysts
for a given design phase by elaborating on the subjects of the idealization and mapping
operations illustrated in Figure 2.1. The design of a complex product may require several
types of designers and analysts who work collaboratively on their specific aspects. For
example, the simulation-based design of an electromechanical product (such as a printed
circuit assembly) typically requires the following types of designers and analysts.
= Designers

o electronics designers propose a form to satisfy electronic function,
o mechanical designers propose a form to satisfy mechanical function,
o0 system designers integrate electrical and mechanical perspectives of a form;
= Analysts
o electronic analysts analyze the electronic behavior of proposed forms,
o electromagnetic analysts analyze the electromagnetic behavior of proposed forms,
o thermal analysts analyze the thermal behavior of the proposed forms, and
o structural analysts analyze the structural behavior of the proposed forms.
In engineering workflows, a single individual may play roles of a designer and an analyst
both.

In a given design phase, designers collectively generate several alternatives of an
artifact. The nature of analyses to be performed on these alternatives is collectively
determined by the following three broad metrics:
= Type indicates analysis domain, such as thermal, electromagnetics, and structural.
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= Resolution indicates the subject of analysis. This could be the artifact system (such as

printed circuit assembly), or subsystem (such as a printed circuit board or chip

package), or features (such as solder balls and joints).

= Fidelity indicates the level of detail incorporated in the behavior model

Based on the nature of a given analysis, the design alternatives are idealized to create
analyzable forms. An analyzable form may be used for creating behavior models of

different types and fidelities. For example, a structural analyst may use an analyzable

form of a PCB to create a 2D (or 3D) thermal (or structural) behavior model.
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Figure 2.2: Integrated functional and spatial design in a given design phase

As indicated in Figure 2.1 and Figure 2.2, the communication process between
designers and analysts is bi-directional. While the designers provide the artifact
alternatives to be analyzed, the results of analysis and evaluation performed by analysts
are used to propose design changes in the alternatives and to solve inverse problems.

Figure 2.1 and Figure 2.2 also help illustrate the complexity of the communication
process between designers and analysts. For a tighter integration between functional and
spatial design, it is necessary that such a communication process be founded on model-
based templates that provide a mechanism to (a) represent and organize the different
types of models exchanged between designers and analysts, (b) represent the fine-grained
connections between these models (Peak 2003), and (c) realize the bi-directional flow of

information. Such model-based templates can then enable “what-if” trade studies,
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sensitivity and opportunistic analyses. Simulation templates—described in the next
section—contribute towards this objective.

2.2.2 Simulation Templates
In this section, simulation templates, patterns, and instances are described as

enablers for model-based communication between designers and analysts. The effort
required for creating simulation templates and the types of changes in design alternatives
and analysis specifications that require costly and manual updates to simulation templates
are also presented. The brittleness of simulation templates to these types of changes is the
challenge problem being addressed by this research. First, the general idea of simulation
templates is presented. Then, a specific simulation template pattern relevant to this
research is presented. Types of variations in analyses that require manually updating
simulation templates are presented in sub-sections 2.2.2.1 and 2.2.2.2. A specific type of
variation in design alternatives that affects simulation templates is presented in section
2.3.
A Simulation Template is a model structure for formulating and solving a class of
simulation models. In the context of this research, simulation templates associate design
model structure to behavior model structure, thereby allowing one to compute behavior
parameters for different values of design parameters. Thus, simulation templates may be
used for formulating and solving all simulation models that conform to the idealization
relationships embodied in a simulation template. A simulation template may be
categorized as:
= White-box or Black-box: A white-box simulation template exposes the entities,
attributes, and relationships that collectively define a simulation template. For a given
causality, some attributes are input parameters, some are output parameters, and others
may be ancillary or do not contribute to the computation. A black-box simulation
template exposes only those attributes that may be inputs or output parameters for the
computation process.

= Causal or Non-causal: A causal simulation template has a fixed causality. It consists of
a fixed set of input parameters and output parameters. A non-causal simulation
template doesn’t have a fixed causality. The causality of the parameters can be

changed such that an input parameter for some computations may be an output
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parameter for other computations. In such a case, a simulation template can be used for

formulating and solving simulation models and also for solving inverse problems. It is

to be noted that some relationships between parameters are inherently causal (such as

if-else relationships) and hence it is not possible to use simulation templates for all

computation directions. An explicit inverse relationship must be defined for a causal

relationship to use it for solving inverse problems.

In the context of this research, the key ingredient of a simulation template is the

behavior model structure that is associated with the design model structure via

idealization relationships. Figure 2.3 illustrates a simulation template that is used for

computing the plane-stress behavior of a Flap Link—a mechanical part used in an air

frame (Peak, Burkhart et al. 2007). Specifically, it shows a SysML parametric diagram

view of the plane-stress deformation model structure whose attributes are connected to

the design attributes of the Flap Link part. For example, deformationModel.t is connected

to soi.effectiveLength (soi means “system of interest” which is the Flap Link in this case).
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Figure 2.3: Simulation template for computing plane stress behavior of Flap Link part
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In this example, the simulation template is used for formulating a behavior model which
is then used for auto-generating and solving a finite element analysis model. This
template is non-causal in the sense that relationships between the attributes are (a)
inherently non-causal, and (b) represented in a non-causal way using SysML binding
connectors. Such a template can be used both for formulating and solving a behavior
model, and also to compute required design parameters to achieve desired behavior.
Figure 2.4 illustrates both design verification and synthesis scenarios for a
simulation template that associates design parameters of the Flap Link part to a linear
extensional behavior model. When this simulation template is used in the design
verification scenario, the form-related attributes of the Flap Link part and the end forces
(condition.reaction) on the part are inputs while the elongation of the part and axial
stresses and strains are outputs. When the same simulation template is used in the design
synthesis scenario, some form-related attributes of the Flap Link part are outputs and the
elongation and end forces are inputs. For example, deformationModel.area is computed in
the design synthesis scenario and not an input from
soi.Shaft.criticalCrossSection.basic.area. Hence, a simulation template is instantiated for a
specific computation. In this case, the simulation template that embodies an extensional
behavior model of the Flap Link part is instantiated twice—once for design verification

scenario and once for design-synthesis scenario.
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A Simulation Template Pattern is a meta-model of a simulation template. It
represents the types of models, their attributes, and their inter-relationships in a family of
simulation templates. The Multi-Representation Architecture (Peak and Fulton 1994;
Peak, Fulton et al. 1998; Peak, Paredis et al. 2005) is a simulation template pattern for
creating simulation templates that can provide a foundation for model-based
communication between designers and analysts through the design process. The rationale
behind the MRA pattern—illustrated in Figure 2.5—is to have modular components that

can be reused in different templates. The MRA pattern consists of four stepping stone

models:
U™ Analyzable ] T
| Product Model Context-Based Analysis Model |
' APM < Buildina | [
: Printed Wirng Assembly (PAA) | Analysis Building Block System Model |
| | Solution Method Model | | !
I
I CBAM | ABB System SMM |
' Dy |
| S . Apv g | v — I
| Solde 7 - :miy,% JssEsmm EHEEE I
| PWB I | bodyy & B I
| Printed Wiring Board (PWB) | |
I 3
s et R —— !
————— g ————fF ———— =
7 - q X
CAD / CAM Tools o Solution Tools
System-specific
(MCAD, ECAD, ...) | ystenm-sp L N [ (ANSYS, ABAQUS, ...)
. | System-independent ]
Behavior Model Behavior Model
Formulation Solution

Figure 2.5: Multi-Representation Architecture (Peak, Fulton et al. 1998) — A simulation template
pattern showing the behavior model formulation and solution sub-patterns
= Analyzable Product Model (APM) represents an idealized design model with additional
analysis intents, and is created for a family of analyses.
= Context-based Analysis Model (CBAM) represents product-specific simulation
templates that capture the relations (apm@ags) between the APM and ABB system
model.
= Analytical Building Block (ABB) System Model represents a system composed of
reusable analysis concepts that encapsulate domain knowledge. These reusable
analysis concepts are known as analysis building blocks (ABBs)—for example linear

elastic material behavior ABB and point-load ABB. A behavior model of an artifact is
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formalized as a CBAM that includes the ABB system model and its relationships to the
APM.

Solution Method Model (SMM): Represents a solution method-specific behavior
model, such as a finite element model.

All the four models above have an explicit structure and may have several
instances that conform to this structure. Figure 2.3 and Figure 2.4 illustrate simulation
templates that are based on the MRA pattern. In Figure 2.3, the Flap Link plane stress
CBAM is shown—relates the Flap Link APM and the plane stress ABB model. The FEA
SMM model is auto-generated from this CBAM. In Figure 2.4, the Flap Link linear
extension CBAM is shown—relates the Flap Link APM to the linear extension ABB
(deformationModel). The SMM—not shown in the figure—is a Mathematica (Wolfram
Mathematica 2008) model auto-generated from this CBAM. An APM is created for a
family of analyses, and different APMs may be created for analyses of different
fidelities—one APM for 2D analyses and one for 3D analysis. The Flap Link APM used
in the plane stress CBAM includes the two sleeves and the shaft features of the Flap Link
part. But, the Flap Link APM used in the linear extension CBAM includes only the shaft
feature. Though not explicitly shown here, the MRA pattern has been extended to include
the as-designed (DM) or as-manufacturable product model (MPM)°® structure (Zwemer,
Bajaj et al. 2004) and their relationships to the APM structure.

Figure 2.5 also shows two sub-patterns that are related to behavior model
formulation and solution respectively. In the context of this research, the formulation of
behavior model (structure or instance) implies the formulation of the CBAM (structure or
instance), i.e. the ABB system model (structure or instance) and its relationships to the
APM (structure or instance). In effect this is the formulation of a simulation template
itself. The solution of a behavior model may require the re-formulation of behavior
models as SMMs for specific solution methods and solvers. In this dissertation, the term
simulation template is used to refer to design-analysis simulation templates based on the
MRA pattern. Note that the MRA is a broad and generic pattern and specific simulation

templates may instantiate the MRA in entirety or in part.

® These DM and MPM are shown explicitly in the formalized MRA pattern included in KCM (Part 2 of this

dissertation).
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2.2.2.1 Effort in creating simulation templates

The cost-benefit ratio of simulation templates depends on the type of analysis—
original, adaptive, or ubiquitous (routine) (Peak 1993; Peak, Scholand et al. 1999; Bajaj
2006). For ubiquitous analysis, simulation templates are created once and reused for
different causalities, and different input values for a given causality. In this case, the cost
of creating simulation templates is amortized with usage. However for the case of
adaptive and original analyses, new simulation templates need to be created or existing
simulation templates need to be modified for analysts to perform trade studies on
idealizations. This involves manually creating CBAMSs by (a) instantiating ABBs from a
library, and (b) establishing connections among the ABBs, and from ABB attributes to
APM attributes. As an example, the Flap Link plane stress simulation template shown in
Figure 2.3 consists of 17 relationships between APM attributes and ABB system
attributes. In order to create such a simulation template, usages of APM and ABBs needs
to be created in the simulation template (assuming that relevant APM and ABBs already
exist), and 17 relationships have to be manually created among APM and ABB system
model attributes. This involves significant time and effort on an analyst’s part to create
and maintain the relationships (a.k.a. associativities) between the models (Peak 2003).
The Flap Link is a single part. For complex multi-level assemblies where each
component is idealized differently, the number of entities and the number of relationships
that need to be created between these entities in a simulation template increases
significantly.

This research focuses on automated creation of simulation templates based on
specifications provided by analysts. This reduces the cost-benefit ratio of simulation
templates esp. for adaptive and original analyses (conditional to the availability of
ABBsS).

2.2.2.2 Robustness of simulation templates

The structure of a simulation template holds for the specific (a) type of analysis
for which it is created, (b) family of artifacts for which it is created, and (c) idealizations
that are represented in it — MPM-APM type idealizations and APM-ABB type
idealizations (CBAM). As an example, the linear extension simulation template shown in

Figure 2.4 is created for static linear extension analysis of Flap Link part where the part is
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idealized as a linear extensional rod. Analysts may use this simulation template with
different parameter values and do trade studies with different causalities. If however,
there are design alternatives of the Flap Link part that have other analyzable features in
addition to the sleeves and the shaft, then these simulation templates have to be manually
modified to include entities related to those features and establish relationships between
the additional analyzable features and their corresponding ABBs. Also, if the applied
forces were not idealized as axial loads but as eccentric loads, then the bending behavior
would need to be computed in addition to the extension. This would imply including the
ABB for bending behavior in the simulation template and establishing connections to the
APM entities. Additionally, if the type of analysis were dynamic and non-linear in the
sense that deformations of the Flap Link part were not small but were large enough to
change the point of application of applied loads and deform the part substantially such
that new features like a surface recess or a crack develop on the part, then the above
simulation templates would need substantial modification—finding the right ABBs,
include them in the templates, and establishing relationships to the APM. In a nutshell,
the structure of a simulation template changes with the following three types of changes

in the analysis specifications:

= ST _Change_Type_1: Changes in a simulation template due to changes in assembly
system topology of design alternatives

This category includes changes in simulation templates due to a change in
assembly system topology (defined in section 2.3) of design alternatives and
corresponding APMs. These changes are such that they may affect a change in the
number of analysis bodies in the ABB system model. Figure 2.6 illustrates a
LinearSpring ABB—single spring with linear behavior, and TwoSpringSystem (ABB
system)—two springs with linear behavior connected in series. An analyst may use the
LinearSpring simulation template for computing the linear behavior of a single spring. If
the assembly system changes such that two linear springs are connected in series, then
another usage of the LinearSpring ABB must be created in the simulation template and
both usages of LinearSpring ABB must be connected to reflect the series connection
(such as the end point of one spring is associated with the start point of the other spring).
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If a third spring needs to be added in series or parallel to both or either of the springs,
then it would imply creating an additional usage of LinearSpring ABB and establishing
relationships between this usage and previous two usages to reflect the modified system.
In general, this type of change in assembly system topology helps define a special
class of analysis problems known as Variable Topology Multi-Body Analysis problems
(defined later in section 2.3). This research specifically focuses on this class of analysis

problems.
bdd [package] springSystems [Analytical spring tutorial] ) par [block] LinearSpring [Definition view] )
T r3: ForceEqgn
TwoSpringSystem [T {F=k*di} [}
springConstant: : . force:
values
deformation1: DistanceMeasure
deformation2: DistanceMeasure
load: ForceMeasure :
totalElongation:
spring1 spring2 ]
length:
«abb»
LinearSpring
values
undeformedLength: LengthMeasure undeformedLength:
springConstant: ForcePerLengthMeasure .
start: DistanceMeasure ri: LengthEqn
end: DistanceMeasure [——T17 {t=x2-x1} [}
length: DistanceMeasure start; x1: L:
totalElongation: DistanceMeasure x2:
force: ForceMeasure
]
end:
(a) Analytical springs tutorial block definition diagram. (b) LinearSpring parametric diagram.
par [block] TwoSpringSystem [Definition view] )
bc3:
spring1: LinearSpring spring2: LinearSpring
:‘ springConstant: :‘ springConstant:
force: [ | force: [ | - ]
) ) be4: load:
| JundeformedLength: || undeformedLength:
totalElongation: || totalElongation: ||
| Istart=0 ———|— ] start: beb: u2Eqn 5
. . {u2 =dL2 - u1}
length: length:
ength: | ength: [_| dL2: u2: deformation2:
Tj end: | ] end: ut:
bc2: bc5: deformation1:

(c) TwoSpringSystem parametric diagram.

Figure 2.6: LinearSpring (ABB) and TwoSpringSystem (ABB system) examples—SysML

par.

ametric diagram view
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= ST _Change_Type 2: Changes in a simulation template due to changes in the
idealization decisions taken by analysts

This category includes changes in simulation template due to the changes in the
idealization decisions taken by analysts. This includes idealization decisions concerning
(@) MPM-APM relationship—how an analyzable product model is idealized from a
design model or manufacturable product model for a class of analyses, and (b) APM-
ABB system—how is the behavior of the analyzable product model idealized.

If MPM-APM idealization decisions are such that they result in a change in the
assembly system topology of the assembly system in the APM, then these changes are
included in ST_Change_Type_1 category above. However, if the idealization decisions
are such that the nature of the relationship(s) between MPM attribute(s) and APM
attribute(s) change, then they are included in this category. For example, if the effective
length attribute in the Flap Link APM in the plane stress CBAM in Figure 2.3 were to be
computed differently the Flap Link design model, then such an idealization change would
be included in this category. Changes in the type and (or) fidelity of analyses that the
APM is required to support will affect changes in the MPM-APM idealizations.

The APM-ABB system idealization changes result in changes in a simulation
template by using different type of ABB for idealizing the behavior of the artifact. These
type of idealization changes occur due to changes in the type of analysis and (or) the
fidelity of analysis. For example, an analyst may perform a 2D plane stress analysis or a
relatively lower fidelity 1D linear extension analysis to compute the axial deformation of
the Flap Link part.

This research focuses on automatically generating simulation templates based on
the specifications provided by analysts. Changes in the idealization decisions are
reflected as changes in the specifications. The updated specifications may then be used to

regenerate the simulation templates using methods developed in this research.

= ST _Change_Type_3: Changes in simulation template due to simulated behavior
This includes changes in simulation template due to non-linear analysis. These

changes typically occur when (a) idealized behavior(s) of an artifact affect a change in

the assembly system topology of the artifact itself, and/or (b) different set of idealizations
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need to be applied for different analysis regimes. For example, if the deformation of an
assembly is large such that the connection between any two components breaks when
simulating the behavior of the assembly, then this should be reflected in the simulation
template by deactivating the interaction behavior between the corresponding components
(analysis bodies) during the course of simulation. Further, an analyst may select a
conditional idealization such that if the deformation is within a specified range, a
different set of idealizations are in-effect (a separate set of ABBs in the ABB system)
versus if the deformation is outside the specified range. These use cases are distinguished
by using the terms static simulation template versus dynamic simulation template.

This research proposes a conceptual approach for handling these types of changes
in simulation templates. Note that the brittleness of simulation templates also depends on
the manner in which relationships are created between models in a simulation template.
For example, if the geometric idealization relationships in a simulation template are
represented using a generic scheme such as Affine transformations (Mortenson 1997),
then they are more robust to changes in the type of shapes at the input end of the
idealization relationship—the structure of the idealization relationship can handle wider
varieties of input shapes. However, if a geometric idealization relationship is represented
by a set of relationships between the attributes of specific shapes and their features, then
they are brittle to changes in the type of shapes that are being idealized. Further, the use
of logical relationships (such as IF-THEN relationship) can enhance the robustness of
simulation templates to types of changes in ST_Change_Type_3 category. This research

is also aimed at developing guidelines for creating robust simulation templates.
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2.3 Variable Topology Multi-Body (VTMB) Problems

As described in the previous section, changes in the assembly system topology
(AST) of design alternatives result in changes’ in the structure of simulation templates
using these models. In this section, the concept of Assembly System Topology (AST) is
defined and illustrated. This dissertation defines a special type of graph construct and
corresponding visualization diagram—an Assembly System Topology diagram—to help
characterize VTMB problems and visualize and communicate changes in AST.
Following the definition of AST and AST diagram, the specific subsets of a simulation
template that AST changes impact and the conditions for these changes are presented.
Founded upon the concept of AST and AST diagram, a special class of analysis
problems, namely Variable Topology Multi-Body (VTMB) Problems, is defined in this
dissertation. This research is aimed at addressing VTMB problems.

What is Assembly System Topology and how can it be characterized?
Assembly System Topology (AST) is a property of an assembly system that is used to
collectively characterize (a) the number and type of components in an assembly, (b) the
number and type of interactions between these components, and (c) the number and type
of component features that participate in these interactions. Since AST is a collective
characteristic, it is easier and pragmatic to compare if two assembly systems have
equivalent AST rather than computing an absolute value of AST for an assembly system.
The AST of two assembly systems is equivalent if and only if
a) They have the same number of components of each type
b) Each component has the same number and type of features
c) The type and number of interactions between any two features is the same

Let us denote the AST of an assembly system AS; as AST(AS)), then we can define

the AST Equivalence Relation as follows.

AST Equivalence Relation, AST_EQ (denoted as ~), is a binary relation between the
AST of two assembly systems AS; and AS; that implies that the AST of AS; and AST of

" except when the idealizations ignore the components and interactions involved in the change
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AS; are equivalent. This relation is denoted as: AST(AS) ~ AST(AS)). The AST
Equivalence relation is:

» Reflexive: AST(AS)~AST(AS;) — implies that the AST of an assembly system AS; is
equivalent to itself.

= Symmetric: If AST(AS)~AST(AS;), then AST(AS;)~AST(AS;) — implies that is the AST
of assembly system AS; is equivalent to the AST of assembly system AS;, then by
definition of AST, the AST of assembly system AS; is equivalent to the AST of assembly
system AS;.

= Transitive: If AST(AS)~AST(AS;) and AST(AS;)~AST(Asy), then AST(AS)~AST(AS,) —
implies that if the ASTs of assembly systems AS; and AS; are equivalent, and the ASTs
of assembly systems AS; and ASy are equivalent, then by definition of AST, the ASTs of

assembly systems AS; and ASy are equivalent.

An AST Equivalence Set, AST_EQ_Set, is a set of all assembly systems such that the
ASTs of any two members of the set, ASi and ASj, are equivalent. Thus, an

AST_EQ_Set is defined as: v AS;, AS; € AST_EQ_Set, AST(AS))~AST(AS))

An Assembly System Topology Diagram (AST diagram) is a type of SysML Internal
Block Diagram that depicts an assembly system and its components, features of
components, and the interactions between components. Hence, the AST diagrams of two
assembly systems can be compared to unambiguously decide if have equivalent AST.
Figure 2.7, Figure 2.9, Figure 2.10, and Figure 2.11 help illustrate the concepts of
AST and AST diagram. Figure 2.7 shows a set of parts (or bodies)®*°—A, B, C and D—
using which several assembly configurations are composed. Figure 2.9 illustrates a set of
assembly systems with equivalent AST while Figure 2.10 and Figure 2.11 each illustrate

a set of assembly systems with non-equivalent AST.

8 AST can be used to characterize the topology of assemblies at the MPM (and APM) level where the part-component

terminology is used, or the ABB system level where analysis body and analysis body system terminology is used.
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Feature A Top Feature B Top

Feature_A_Bot Feature_E_Bot

Feature C Top X

Feature C_Bot

Feature_D_Top

Feature D Bot

Figure 2.7: Parts® and their features

The constructs of an AST diagram are illustrated in Figure 2.8 and described

below.

= Assembly system block is used to represent assembly systems. It is denoted as a
SysML block

= Component block is used to represent components of an assembly system. Each
component block is identified by the name of the component and its type (part name).
For example, as shown in Figure 2.8, component_ALl is of type Part_A. A component
block is labeled as component_Al: A. It is denoted as a SysML part property and is
shown inside its parent assembly system block.

= Feature block is used to represent features of assembly components that participate in
defining the interaction between components. Each feature block is identified by the
name of the feature and its type, and is shown inside the component block
corresponding to its parent component. A feature is a part of the component’s form
that participates in the interactions between the components. For example, Figure 2.8
shows that component_A1 has two features, Feature_A Top and Feature A Bot of
type Feature_Type. Features may be typed according to their shape (such as point
feature, line feature, or surface feature), their constituent material(s) (such as copper
features, solder features), their function (such as electrically conductive feature or

electrically non-conductive feature), or other characteristics relevant to tracking them

® Name of components and corresponding parts used in this section have the prefixes component_ and part_. For

brevity, the prefixes are not shown in the assembly configurations.
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in the product realization process. It is denoted as a SysML part property and is
shown inside its parent component block.

= Interaction block is used to represent interactions between features (and hence
components) in an assembly. Each interaction block is identified by its name and
type. Interactions are typically typed by their function (such as structural, thermal, or
electrical function). For example, in Figure 2.8, component_Al and component_B1
are glued together and this is represented by the interaction block, A1_B1_Interaction
of type Glued_Interaction between Feature_ A Bot (of component Al) and

Feature_B_Top (of component_B1). It is denoted as a SysML part property.

==hlock== i |
Assembly System—» Assembly_ABC_111a

Block

component_A1: Part_A

Feature_A_Top : Feature_Type
Component Block——p
Feature_A_Bot : Feature_Type

Interaction Block——» #1_B1_Interaction : Glued_Interaction

component_BA1 : Part_B

Feature_B_Top : Feature_Type

Feature_B_Bot : Feature_Type

Connector < B1_C1_Interaction : Glued_Interaction

S

component_C1: Part_C

Feature_C_Top : Feature_Type

Feature_C_Bot : Feature_Type

Figure 2.8: AST diagram constructs

Figure 2.9 shows three assembly systems Assembly ABC 111al,
Assembly ABC 111a2, and Assembly ABC 111a3 that have equivalent ASTSs, as
illustrated by the AST diagram in the figure. Hence, these assembly systems belong to the
same AST Equivalence Set. One may draw a single AST diagram for an AST
Equivalence Set since the AST diagrams for all members in the set are isomorphic.
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Figure 2.9 also illustrates that changes in the size and shape of components and even the
geometric topology of components doesn’t necessarily affect the AST of the assembly
system. For example, the size of component Al in Assembly ABC_111al is different
than in Assembly ABC 111a2, and the geometric topology of component Al in
Assembly ABC_111a3 is different than in other two assembly systems. These changes
do not affect the AST diagram, and hence by definition do not affect the AST and

simulation templates™®.

==hlock== E
Assem ny_ABC_lllal Assembly_ABC 111a
Al: A component_A1: Part_A
Feature_A_Top : Feature_Type
Bl1:B
Feature_A_Bot : Feature_Type
Cl:C

Assembly_ABC_lllaZ A1_B1_Interaction : Glued_Interaction

Al: A component_B1 : Part_B
Feature_B_Top : Feature_Type
B1l: B
Feature_B_Bot : Feature_Type
Cil:C

B1_C1_Interaction : Glued_Interaction
Assembly ABC 111a3

Al: A hole component_C1: Part_C
- 4|
Feature_C_Top : Feature_Type
Bl1:B
Feature_C_Bot : Feature_Type
Cil:C

Figure 2.9: Assemblies with equivalent system topologies; ST diagram as SysML IBD

Figure 2.10 illustrates changes in AST due to reconfiguration of existing

components. In assembly system Assembly ABC 111b, component C1 is moved to the

10 As stated in the previous section, this assumes that an analyst has defined geometric idealization relationships at the
object level and not at the attribute level. For example, using Affine transformations for idealizing shapes versus

relating attributes of shape by algebraic relationships.
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top of component B1 with respect to assembly system Assembly ABC_111al. This
change in reflected in AST diagram for Assembly ABC 111b—~Feature_B Top and
Feature_C_Bot are associated with B1_C1_Interaction instead of Feature B Bot and
Feature_C_Top in the AST diagram for Assembly ABC_111al in Figure 2.9. Similarly
in assembly system Assembly ABC_111c, component Al is moved to the bottom of
component Bl with respect to assembly system Assembly ABC 11lal. The
corresponding changes are reflected in the AST diagram of Assembly ABC_111c. In
assembly ABC_111c roller, the interaction type between components Al and B1 has
changed from glued interaction to roller interaction—A1 and B1 can mutually slide along
the interacting surface as opposed to being glued in Assembly ABC_111a. The changes
in the AST diagrams for these three assembly systems with respect to the AST diagram
for assembly system Assembly ABC_111a reflects that the AST of these three assembly
systems is (a) not equivalent to the AST of Assembly ABC_111a, and (b) not equivalent
to the AST of each other.

Figure 2.11 illustrates changes in AST due to addition of new components. These
changes are reflected in the AST diagram as addition of new component blocks and
feature blocks—representing new components and their features, and interaction blocks
and connectors—representing new interactions among new and existing components. In
Assembly ABC_ 211, a new component A2 (usage of part A) is added to the assembly,
and in Assembly ABCD_1111, a new component D1 (usage of part D) is added to the
assembly. The AST of these two assembly systems is not equivalent to the AST of
Assembly ABC 111al, and to the AST of each other.
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Figure 2.10: Change in AST due to reconfiguration (changes in interactions and participating features)
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Assembly_ABC_211

Baseline: Assembly_ABC_111a1
Change: A2 (type A) added

Assembly ABCD_1111
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==hlock==
Assembly_ABC_211

==hlock== =
Assembly_ABCD_1111

17

Qs trene d|
_________ 14_________

Figure 2.11: Change in AST due to addition of new components (and hence also addition of new interactions)
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The AST of a family of design alternatives may be different from AST of another
family of design alternatives. Changes in the AST of design alternatives require changes
in simulation templates. For example, addition of new components and interactions
require analysts to manually create new entities, parameters, and relationships in
simulation templates, or the changes in the type of interaction between components
require analysts to re-wire existing relationships between parameters in a simulation
template. Specifically, in the MRA simulation template pattern, each stepping stone
model consists of a representation of an assembly system. Table 2.1 shows the types of
assembly system and components represented in design-analysis models used in MRA
simulation template pattern.

Table 2.1: Assembly system and components in design-analysis models used in

MRA simulation template pattern

Model in MRA pattern

Assembly System

Components

Design model (DM) /
Manufacturable product
model (MPM)

Design assembly /
Manufacturable product

assembly

Sub-assemblies and parts

Analyzable Product Model

Idealized DM / MPM assembly

Analyzable sub-assemblies

and components

ABB System Model

Analysis Body System

Analysis bodies

(e.g., plates and shells)

Solution Method Model Assembly of solvable elements | Solvable elements (e.g.,

(e.g., meshed assembly in FEA) | mesh elements in FEA)

The AST of idealized assembly system in an APM depends on the AST of the design
model (or MPM) and the idealization relationships between them. Similarly, the AST of
the analysis body system in ABB system model depends on the AST of the idealized
assembly in the APM and the idealization relationships between then (apm®ags). Hence,
changes in assembly system topology of design alternatives require updates to simulation
templates that are generally done manually.

In this context, Variable Topology Multi-Body (VTMB) Problems are a class of
problems where the assembly system topology of design alternatives varies. In the
context of simulation-based design VTMB problems affect simulation templates,

generally requiring manual updates and “re-wiring” of parameters and relationships in a
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template. The acronym VTMB is used instead of the complete phrase variable topology
multi-body in this dissertation.

Note that variable topology multi-body problems are defined here based on the
concept of assembly system topology and not geometric topology. The definition of
variable topology presented here is different from highly-coupled variable topology
problems defined by Zeng (Zeng, Peak et al. 2008) where changes in the geometric

topology of interconnected bodies pose FEA meshing challenges.

2.4 Primary Research Question and Gaps

2.4.1 Primary Research Question
The primary question that this research answers is as follows:

How can we improve the effectiveness of the analysis problem formulation process
for VTMB problems?

In this sub-section, three measures of effectiveness of analysis problem
formulation are described. These measures provide means to characterize why existing
methods are ineffective for formulating analysis problems, and to characterize how
methods developed in this research are more effective.

The term *“analysis problem formulation” in the primary research question refers
to the formulation of simulation templates. A simulation template provides a structure to
create a class of behavior models for a class of design models. The value of simulation
templates in performing what-if trade studies on design alternatives has been established
in the previous sections. The term “process” in the primary research question refers to the
way in which simulation templates are created in existing methods.

The term “effectiveness” in the primary research question sums up the core of the
research problem. Figure 2.12 below illustrates three measures of effectiveness of

analysis problem formulation in the context of this research.
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VTMB
variations

Idealization Formulation
variations Efficiency

Figure 2.12: Measures of effectiveness of analysis problem formulation

These measures of effectivess are described below.

= VTMB variations: This measure-of-effectiveness concerns the ability of analysis
problem formulation methods to address VTMB problems. As discussed in previous
sections, simulation templates (formulated analysis problems) are generally brittle to
variations in assembly system topology of design alternatives. This makes simulation
templates ineffective for design optimization problems where they are used for
computing parameters that directly or indirectly participate in the objective function.

= |dealization variations: This measure-of-effectiveness concerns the ability of analysis
problem formulation methods to handle variations in idealization decisions taken by
analysts. The idealization decisions taken by analysts are embodied in simulation
templates as design and behavior parameters and relationships between these
parameters. As discussed in the previous section, for new types of analyses, analysts
perform what-if trade studies on idealizations and compare results from different
behavior models, such as low-fidelity, easy-to-solve models and high-fidelity,
complex-to-solve models.

= Formulation Efficiency: This measure-of-effectiveness concerns the ability of analysis
problem formulation methods to create simulation templates in an efficient manner. In
this dissertation, formulation efficiency is characterized in terms of percentage
reduction in time take to formulate simulation templates using new methods
(developed in this research) versus current methods. Section 9.5.3.3 describes how the
percentage reduction in time is measured.

In the context of this research, the following functional aspects contribute towards

increasing formulation efficiency.
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1. Automated methods for formulating simulation templates that are based on easy-to-
modify analysis specifications and simulation template meta-model.

2. Existence of meta-models for formally representing simulation templates for VTMB
problems.

3. Analysis specifications that abstract the idealization decisions taken by analysts from
the details of the formulation process. This will allow analysts to change idealization
decisions without manually reconfiguring the formulation process.

4. Abstraction of building blocks of simulation templates that can be used for formulating
a large class of simulation templates. Each simulation template is used for a class of
analysis problems.

5. Methods for formulating simulation templates are modular and extensible to allow
usage of different building blocks, such as shape and material behavior, for different
types of analysis problems.

In the context of this dissertation, an analysis problem formulation method is
highly effective if it scores high on all the three measures of effectiveness. This implies
that the analysis problem formulation method is effective if:
= it can be used for creating simulation templates for greater types of design variations,

specially VTMB-type variations

= it can be used for creating simulation templates for greater types of idealization
variations

= it has a higher formulation efficiency

2.4.2 Research Gaps
The effective formulation of analysis problems using existing methods is hindered

by two key research gaps as stated below.
= Lack of formalization of the knowledge used by analysts in formulating simulation
templates
= Inability to leverage this knowledge to define model composition methods for
formulating simulation templates
In the context of this research, this knowledge refers to the intent of the
idealization decisions taken by analysts. Existing methods, such as those based on

parameterized scripts for creating behavior models, do not represent the intent of the
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idealization decisions. At best, these methods are based on an interpretation of this intent
in the form of mathematical relations between design parameters and behavior
parameters for a particular class of analysis problems. VTMB-type variations or
variations in idealization decisions taken by analysts require manual and costly updates to
a large set of these parametric relations. If one can formalize the types of idealization
decisions taken by analysts and the conditions for these decisions, one may explicitly
represent these decisions at a higher level of abstraction from which mathematical
relations or computable scripts may be automatically derived.

Efficient formulation of simulation templates also requires model composition
methods that can automatically compose simulation templates from reusable building
blocks and the idealization decisions taken by analysts. The representation of building
blocks requires both static knowledge—what concepts are represented by building
blocks—as well as dynamic knowledge—how are building blocks composed to create

simulation templates.

2.5 Summary

In this chapter the presentation of integrated functional and spatial design scenario
and simulation templates as means to achieve this, provide a platform for this research.
The brittleness of simulation templates to VTMB problems and changes in idealization
decisions taken by analysts is presented in details. The concept of assembly system
topology which is central to the definition and characterization of VTMB problems is
defined and illustrated in this chapter. The central theme of the primary research question
is the improvement of effectiveness of analysis problem formulation. Variation in design
alternatives, idealizations decisions, and efficiency in formulating simulation templates
are presented as three key factors contributing to the effectiveness of analysis problem
formulation. The lack of effectiveness in formulating analysis problems using existing
methods is contributed to two key research gaps: (1) lack of formalization of the
knowledge used by analysts in formulating simulation templates, and (2) inability to
leverage this knowledge to define model composition methods for formulating simulation
templates. In the following chapter, a thorough review of published research, methods,

and tools relevant to these gaps is presented. This review provides a refined
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understanding of these research gaps, and establishes requirements for model formulation
methods developed in this research.
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Chapter 3 : RELATED RESEARCH

In this chapter, a research survey is presented towards answering the primary
research question (section 2.4.1). Past and existing research efforts are described and
evaluated in this survey. The purpose of this survey is twofold: (a) categorize models,
methods, and ontologies used in diverse applications in these research efforts, (b)
elaborate on the lack of existing methods to address the gaps identified in this research,
and (c) leverage existing models and methods to address these research gaps. The survey
also points to research efforts that have been directed towards similar end goals as this
research but for a different class of problems.

Table 3.1: Metrics for categorizing and evaluating related technical work

Design information and knowledge modeling
(design meta-model)

Represent conceptual and detailed design models

Domain-specific detailed design ontologies

Open-standard and non-proprietary ontologies

Extensibility

Represent associated behavior models

Export model structure from design tools (such as ECAD, MCAD tools)
Export model instances from design tools

Q -0 QO T -

Behavior modeling

Formulating behavior models (solution method and solver-independent)
Relationship between design models and behavior models

Solution method-, and solver-specific behavior models

Behavior model building blocks (and library) & reuse

Auto-generate behavior models from building blocks

O Q0O T ON

Simulation templates

Template patterns and templates for trade studies

Auto-generate simulation templates and their components
Multi-directional solution of simulation templates (and inverse problems)
Adapting simulation templates to changes in idealization decisions
Ability to address VTMB problems

-~ DO QO T O W

4  Model definition and transformation
a Declarative representation of models (and their associativities)
b Declarative representation of model transformations

Table 3.1 above enlists a set of qualitative metrics to categorize and evaluate existing
body of research. These metrics account for the research gaps and requirements for

efficient analysis problem formulation presented in section 2.4. The research survey is
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presented roughly in the order in which the metrics are listed. At the end of this chapter,

the results of the survey are summarized.

3.1 Design Information and Knowledge Modeling

With geographically and temporally distributed product realization teams, it is
required that next generation product development systems create and exchange
information and knowledge across different product lifecycle activities in an information-
rich electronic form. Of particular interest to this research is the interoperability and
knowledge exchange between design and analysis systems. As a foundation, Fenves et al.
(Fenves 2004) have proposed the Core Product Model (CPM2) as a formal representation
of an artifact. It is a conceptual meta-model representing a broad range of design
concepts including requirements, form, function, behavior, material, physical and
functional decompositions, and their inter-relationships. The CPM is targeted to be (a)
software vendor solution-independent, (b) open and non-proprietary, (c) simple and
generic, (d) extendable, (e) independent of any particular product development process,
and (f) applicable through different lifecycle phases. In the context of this research,
CPM2 can serve as meta-model to represent an artifact during different design phases
(Pahl and Beitz 1996)—from conceptual design models to detailed design models to
manufacturable design models.

CPM2 is influenced by the Entity-Relationship data model (Chen 1976), and
consists of two key classes, called CommonCoreObject and CommonCoreRelationship
(equivalent to Class and AssociationClass in the Unified Modeling Language (UML))
(Rumbaugh, Jacobson et al. 2004; UML 2 2004). A UML class diagram for CPM2 is
show in Figure 3.1. The principal entity in CPM2 is the Artifact—a distinct entity in a
product (component, sub-assembly, or assembly). An artifact has properties such as
form—physical description of the artifact, function—what an artifact is intended to do,
and flow—medium for realizing transfer functions. Form consists of geometry—spatial
description of an artifact, and material—physical constituent of an artifact. A feature is a
part of an artifact’s form that has function(s) associated with it. An artifact satisfies a
specification—a collection of customer requirements. The specializations of

CommonCoreObject in CPM2 can be related to each other using specializations of
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CommonCoreRelationship. For instance, the Usage entity relates the definition of a

CommonCoreObiject to its usage in a particular context.
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Figure 3.1: Core Product Model version 2 (CPM2) - UML class diagram view

CPM2 allows one to associate behaviors to an artifact, and associate behavior models to a
behavior. However, it doesn’t specify the structure of this behavior model and the nature
of fine-grained associativities between a behavior model and other properties of an
artifact, partially so because CPM2 is intended to be open and extensible. One of the
target contributions of this research is to augment CPM2 with these representation
capabilities. CPM2 also support the use case of representing computed behavior
parameters and results of their evaluation against requirements.

As an example of CPMZ2’s intent to represent product information through

different lifecycle phases, the cardinality of the Aritfact-Form association reflects that an

o1



artifact may have 0 or more forms associated with it. This represents the use case that
during conceptual design stages, the form of an artifact may not be available.

It is to be noted that CPM2 represents a conceptual meta-model that can be
specialized and extended for different product domains such as aerospace, electronics,
and automotive. New domain-specific entities may be added as specializations of existing
core entities. Extensions to the Core Product Model, such as the Open Assembly Model
(Rachuri, Han et al. 2006), have been developed for specializing different aspects of an
artifact.

The I1SO 10303 family of standards (STEP) is an extensive set of open standards-
based product domain ontologies, such as for mechanical design, electronics, and
automotive and cross-domain constructs such as geometry and product configuration
control. Though the intent of STEP was to enable exchange of product information across
different CAD/CAE/CAM systems, it has matured into a set of modularized ontologies
for representing different aspects of product information typically during detailed design
and manufacturing phases of the product lifecycle'. These modularized ontologies
(formally known as STEP modules) are extended and specialized into ontologies for
product application domains, such as AP210 (ISO 10303-210 2001) for electronics
products, AP203 (1ISO 10303-203 2000) for mechanical products, AP214 (1SO 10303-
214 2003) for automotive products, and AP215, 216, and 218 for ships(ISO 10303-216
2000; ISO 10303-218 2000; 1SO 10303-215 2001). In addition, integrated resources
provide concepts that are reusable across several application domains. For example, Part
42 (I1SO 10303-42 2000) is a modular ontology for representing geometry- and topology-
related aspects of a product and is used across different product domain-specific
ontologies (such as AP210 and AP203).

In the context of this research, CPM2 and STEP ontologies are complimentary in
the sense that the former provides an organizing principle for product information that is
recurrent in different product domains through the lifecycle phases while the latter
provides rich formal information models for specific aspects of product information and

for different product application domains typically during detailed design and

1 part 41 (1SO 10303-41 2000) and AP239 (1SO 10303-239 2000) provide representations for generic product structure

and basic product lifecycle information respectively.
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manufacturing phases. As an example, the Geometry entity in CPM2 can refer to the
constructs in STEP Part 42. For formulating behavior model structures to simulate
different types of behaviors of an artifact at different fidelities in different disciplines, it
IS necessary to have meta-models that (a) represent different aspects of product design,
such as form, function, and requirements, and (b) are rich and formal ontologies that may
be used to create design information models, which may then be used to create behavior
models. Together CPM2 and STEP satisfy these requirements. An example of complex
analyses supported by STEP ontologies is provided by (Zwemer, Bajaj et al. 2004; Bajaj,
Peak et al. 2006) wherein detailed PCB design information available as STEP AP210
instance model is used to perform high fidelity thermo-mechanical warpage analysis.

In actual industry practice, product design information is typically available via a
collection of models, such as CAD models, enterprise databases, and auxiliary models.
Each model populates a subset of the design information shown in Figure 3.1, and
collectively all models may not populate the all aspects of design information—Ileading to
gap filling tools such as PCB layer stackup editors (Peak, Wilson et al. 2002; PCB Layer
Stack Editor (LKSoft) 2008). In general, CAD tools provide a good authoring
environment for form- and function-related design information—typically MCAD tools
provide detailed 3D form and ECAD tools provide 2D form and electrical function
information. There are two broad approaches for using the available design information

for analyses:

= |Integrated simulation capabilities with CAD tools: Most CAD tools provide
integrated capabilities for simulating certain types of behaviors of artifacts, based on the
form and function-related information authored in these tools. For example, some MCAD
tools provide utilities to create finite element models (NX CAE (Siemens PLM)), and
ECAD tools provide utilities to create electrical simulation models (Zuken CR-5000
PSpice & HSpice). These utilities can be used to simulate only certain types of behaviors
at certain fidelities, and work well as long as all the design information required for
simulating behaviors-of-interest is available in these tools, and the behavior models can
be solved using specific solvers integrated with these tools. Additionally, cross-version

interoperability and long-term retention of design and simulation models has always been
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a challenge with such an approach. This approach is not extendable to other types of
analyses beyond those supported by the integrated simulation capabilities. One may argue
that CAD tools provide application programming interfaces (APIs) to extract design
information and use it for creating customized behavior models. This approach may
alleviate some potential limitations outlined above but it does not increase the set of
available design information beyond the models created in CAD tools, and there is
limited subset of this information that is accessible via the APIs. Typically, even the
extraction of form-related parameterization scheme from CAD tools via their APIs is an

open question,

= Design Integrators: To enable a wider variety of analyses, and to use customized
methods for formulating behavior models, and to allow a combination of CAE solvers to
solve them, it is necessary to integrate subsets of design information in a unified non-
proprietary standard form. For the purposes of detailed design, STEP ontologies typically
satisfy this requirement. Design integrators are tools that may be customized for an
enterprise and are used for automatically integrating design information from multiple
CAD tools, enterprise databases, and other auxiliary models. As an example, LKSoft
design integrator / importer (IDA-STEP (LKSoft) 2008) has been customized for
electronics design enterprises to create a unified STEP AP210 model from design
information sub-sets, which is then used for enabling multiple fidelities of thermo-
mechanical warpage analyses (Zwemer, Bajaj et al. 2004; Bajaj, Peak et al. 2006) and
design-for-manufacturability analyses (DFXpert (SFM Technology Inc.)) of PCBs. This
approach makes a greater sub-set of design information available for complex multi-
fidelity analyses. Also, the existence of rich open standard and non-proprietary STEP
models enables long term design information retention and reuse.

In general, the industry practice is to use both approaches depending on the types
of analyses being performed and the design information required to support them.
However, for the purpose of this research, the latter approach is preferred as it provides
for a greater subset of design information that is required to support a wider variety of

analyses.
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3.2 Behavior Modeling
In this section, research related to formulating behavior model structure, analysis
knowledge representation and reuse is presented. Prior to investigating existing methods

for formulating behavior models, a taxonomy of behavior models is presented.

3.2.1 Types of behavior models
Figure 3.2 illustrates a taxonomy of behavior models as a SysML block definition

diagram (SysML 2007). Behavior models may be classified in many different ways
depending upon the perspective. In Figure 3.2, each perspective is represented as a
SysML Viewpoint, and the classification of behavior models in that perspective is
contained in a SysML View. In essence, a viewpoint provides the context for
specialization and a view—confirming to this viewpoint—contains the specialization
tree. Each view has an abstract block (italicized name) which is the parent (class) for all
specializations in that view.

This approach for categorizing behavior model is extensible in the sense that other
viewpoints and views may be added and further specializations of behavior models in
each view may be created. A brief explanation of each viewpoint and confirming views is

provided below:
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Figure 3.2: Types of behavior models from different viewpoints
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= Viewpoint: Nature of domain knowledge

This viewpoint is concerned with all specializations of behavior models from a
standpoint of nature of domain knowledge used for formulating and solving behavior
models (structures and instances). A confirming view (Qual Quant View) consists of
specializations of behavior model based on qualitative or quantitative nature of domain
knowledge. In this view, there are two broad classes of behavior models—Qualitative
Behavior Model and Quantitative Behavior Model. As the names suggest, a quantitative
behavior model is used to compute the behavior of a system quantitatively in contrast to a
qualitative behavior model which is used to predict the behavior of a system in qualitative
terms. (de Kleer and Brown 1984; de Kleer 1992) have presented extensive work on
qualitative physics and its use to create qualitative behavior models. An analytical
behavior model or a numerical behavior model (such as a FEA model) is an example of a
Quantitative Behavior Model.

Another view confirming to this viewpoint is the Physics Empirical View. This
view consists of specializations of a behavior model based on whether the behavior
model is founded on physics-based concepts and theories, or empirical information. A
finite element model to predict the warpage behavior of PCBs is an example of a
quantitative Physics-based Behavior Model (Bajaj, Peak et al. 2006), while an analytical
model to predict warpage behavior based on the expertise of a PCB fabricator is an
example of an Empirical Behavior Model.

The focus of this research is to develop methods for efficient formulation of
guantitative physics-based behavior model structures. However, the intent is to not to
underestimate the valuable insights that may be obtained from formulating and solving
qualitative behavior models. Beyond verifying design alternatives, qualitative results may
guide analysts formulate higher fidelity quantitative behavior models. Though this
research focuses on physics-based behavior models, the formulation methods may be
extended to use quantitative empirical building blocks.

= Viewpoint: Variation of behavior versus stimulus
This viewpoint is concerned with all specializations of a behavior model from a
standpoint of the variation of the behavior represented by a behavior model and the
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stimulus for that behavior. A confirming view (Linear Non-Linear View) consists of
specializations of behavior model based on the whether the behavior represented by a
behavior varies linearly or non-linearly with respect to the stimulus. In the context of
structural behavior analysis, this would imply the behavior of the deformation of the
structure with respect to the applied loads. There may be several causes of non-linear

behavior, such as non-linear material behavior, and large deformations.

= Viewpoint: Nature of behavior parameter space

This viewpoint is concerned with all specializations of behavior models from a
standpoint of the nature of behavior parameter space. A confirming view (Lumped
Distributed View) consists of specializations of behavior model based on the lumped
behavior parameters or distributed behavior parameters. A Lumped Parameter Behavior
Model is one in which the spatial distribution of behavior parameters is idealized as a
single value, in contrast to a Distributed Parameter Behavior Model in which the behavior
parameters are spatially distributed. For example, if the temperature distribution along a
heated bar is idealized as an average temperature value in a thermal behavior model for
the bar, the thermal model would be a Lumped Parameter Behavior Model. However, if
the spatial distribution of temperature in the bar is accounted in the thermal behavior
model for the bar, the thermal model would be a Distributed Parameter Behavior Model.

= Viewpoint: Behavior model use

This viewpoint is concerned with all specializations of behavior models from a
usage standpoint. A confirming view (Behavior Model Use View) consists of
specializations of behavior model based on if a behavior model is formulated for the first
time (Original Behavior Model), is adapted from an existing behavior model (Adapted
Behavior Model), or is being reused as-is (Ubiquitous Behavior Model). These behavior
models correspond to the idea of original, adaptive, or ubiquitous analysis presented in
section 2.2.2.1.
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= Viewpoint: Closed form solution

This viewpoint is concerned with all specializations of behavior models from a
standpoint of solvability of mathematical relationships in a behavior model. A confirming
view (Nature of Mathematical Relationships View) consists of specializations of behavior
model based on whether they have a closed form solution or need to be solved
numerically. If all such relationships have a closed form solution, then such a behavior
model is a Closed Form Behavior Model. If these relationships do not have a closed form
solution, such a behavior model needs to be solved numerically and is known as a
Numerical Behavior Model. It is possible that some relationships in a behavior model
have a closed-form solution while others do not. All such cases in different views are

specializations of a Hybrid Behavior Model (described at the end of this section).

= Viewpoint: Solution method

This viewpoint is concerned with all specializations of behavior models from a
standpoint of solution methods for solving the mathematical relationships in a behavior
model. The solution methods depend on the nature of mathematical relations (e.g. closed
form). Hence, this viewpoint depends on the Closed form solution viewpoint as indicated
in Figure 3.2. A confirming view, Solution Method View, consists of specializations of
behavior model based on solution methods. It consists of two main classes of solution
method-based behavior models—Spatial Domain Discretization Behavior Model and
Functional Transform-based Behavior Model. The former represents those behavior
models in which the spatial domain is discretized to solve the mathematical relationships
in each discretization, such as finite element method-, finite difference method-, finite
volume method, and boundary element method-based behavior models. These are
denoted as Meshless, FEA, FDM, FVM, and BEM Behavior Model blocks in the figure.
The block Functional Transform-based Behavior Model represents those behavior models
in which analytical relationships are derived from behavior experimental data, or an
analytical relationship is decomposed into a series of analytical relationships or
transformed from one analytical form to another to aid mathematical operations (such as
integrals). This class of behavior models is represented by the Function Transform-based
Behavior Model block that has specialization such as Fourier Transform-based Behavior
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Model, Laplacian Transform-based Behavior Model, and Wavelet Transform-based

Behavior Model.

= Viewpoint: Variation of behavior model parameters with respect to time

This viewpoint is concerned with all specializations of behavior models from a
standpoint of variation of behavior parameters with respect to time. Static (or steady
state) behavior models are those wherein behavior model parameters are idealized to be
constant with respect to time, and dynamic (or transient) behavior models are those
wherein behavior model parameters vary with time. In Figure 3.2, the Static Behavior
Model block represents the former class of behavior models, and the Dynamic Behavior
Model block represents the latter class of behavior models. Dynamic behavior models
can be further specialized into continuous time behavior models and discrete event
behavior models depending on whether behavior model parameters are provided or
computed as continuous functions of time, or at discrete points in time. These are
represented by Continuous Behavior Model and Discrete-Event Behavior Model blocks

respectively in the figure.

= Viewpoint: Determinism of behavior model parameters

This viewpoint is concerned with all specializations of behavior models from a
standpoint of determinism of behavior model parameters. Deterministic behavior models
are those wherein all behavior model parameters are deterministic in nature, while
Stochastic behavior models are those wherein one or more behavior model parameters are
stochastic in nature. In Figure 3.2, the Deterministic Behavior Model block represents the
former class of behavior models, and the Stochastic Behavior Model block represents the

latter class of behavior models.

= Viewpoint: Behavior Context

This viewpoint is concerned with all specializations of a behavior model from a
standpoint of the context of the behavior model. Here, “context” implies the specific
“thing” whose behavior is being represented by a behavior model. A confirming view,
Behavior Context View, consists of specializations of a behavior model from this
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viewpoint. These specializations include: (a) Phenomenological model—represent the
behavior of a phenomena, such as an Euler Beam bending model, (b) Component
behavior model—represents the behavior of a component (physical artifact), and (c)
Process behavior model—represents the behavior of a process.

In general, a behavior model may be hybrid of the specializations in a given view.
All such hybrid behavior models are represented by the Hybrid Behavior Model block in
the figure. A Hybrid Behavior Model specializes one or more behavior model blocks in a

view since all specializations within a view may not be mutually disjoint.

3.2.2 Formulating behavior models
In this section, research related to the formulation of behavior models is presented

with special focus on the following aspects: (a) Formulating structure vs. instance of
behavior models, and (b) Formulating solution method-, and solver-independent behavior

models.

3.2.2.1 CAD-FEA integration

A major research thrust in formulating distributed parameter behavior models has
been in the area of CAD-FEA integration. Methods developed in this area are aimed at
efficient and intelligible idealization of CAD geometry to make it more amenable to
FEA. Gordon (Gordon 2001) has identified three primary geometry idealization
categories: (1) design and analysis geometry are same and no idealizations are required
(seamless case); (2) design geometry is too complex and has wrong intent, so it has to be
extensively modified to create a geometric model amenable to analyses; and (3)
engineering analysis is performed first on an idealized form to create specifications for
the actual design form. These three use cases affirm the necessity of non-causal
associativity between design and behavior models to enable the creation of one from the
other.

Armstrong et al. (Armstrong 1995; Donaghy 1996) have proposed geometric
operations for dimensional reduction and addition / suppression of features based on
medial-axis transforms and Saint Venant’s principle for creating idealized geometry for
simpler FEA meshes and faster analyses. Arabshahi et al. (Arabshahi, Barton et al. 1991,
Arabshahi, Barton et al. 1993) have proposed CAD-FEA transformation methods for

analysis to respond to changes in design, and Belaziz et al. (Belaziz, Bouras et al. 2000)
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have developed a feature-based tool based on morphological analysis of solid models for
integrating the design model and its idealized form. This analysis views the detailed solid
model available from CAD tools as one created from a “gross model” with
addition/modification of features. Given a solid model, this analysis creates a form
feature model (detecting the gross model and the process of feature addition / removal),
followed by simplification of features to create an idealized model, and iterative FEA
based on the idealized model. The updated idealized model is then mapped back to
update the native CAD model.

The contribution of these and other research efforts in this area that have
developed intelligent methods for creating idealized geometric models from details
design geometry is valuable but not sufficient for formulating behavior models.
Turkiyyah and Fenves (Turkiyyah and Fenves 1996) aptly state that the functional
description of the system is a key for creating behavior models. Spatial information by
itself provides little information about desired behavior and hence, insufficient for
behavioral evaluation. In addition to the idealized form, the formulation process requires
idealization of the material behavior of the artifact, and associated behavior conditions
and stimulus (such as loads)—stated in details in the definition of behavior model
formulation in section 2.1.

The workflow for formulating behavior models in most current-day CAE tools
(such as finite element tools) typically starts at creating the idealized form, or importing it
from a COTS CAD tool via their native interfaces or standard STEP- or IGES-based
interfaces. More often than not, CAE tools have limited support for importing design
form from multiple CAD tools and minimal'®> support for open standards-based
interfaces. In effect, an analyst has to re-create the idealized form or refine the imported
design form. Even in the case of seamless import, there is no explicit associativity
between the design form and idealized form that will be used for analysis (such as FEA).
An additional limiting factor is the inability of most CAE tools to recognize the imported
shapes as parts, and their usages as components in an assembly, and to interpret that the

interactions between geometric shapes is the interaction between assembly components,

12 Here, minimal implies confirming to (or importing/exporting) limited aspects of standards-based description of

design form.
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thus compelling users to work with basic geometry entities such as vertices, edges, areas,
and volumes. However, once an idealized form is available in their analysis modeling
environment, most CAE tools provide a broad set of capabilities to formulate solution
method- and solver-specific behavior models. Newer capabilities in some FEA tools
provide for a one-way associativity between a CAD model and corresponding FEA
model (Simulia ABAQUS 2008). It enables an automated update of the FEA model when
the design form is changed. However, this associativity is static and one-way. For
changes in assembly system topology of design models, the idealization process leading
to creation of the FEA model has to be repeated.
The limitations in formulating behavior models directly in CAE tools (and hence
specific to a solver for a given solution method) can be summarized as follows:
= Inability to capture analysis intent, such as attribution of material behavior and loads to
specific parts in the design form as opposed to volumes in the idealized form

= Lack of explicit associativity between design form and idealized form

= Lack of support for VTMB analysis problems

= Need to reformulate behavior models from scratch for using capabilities of other CAE
solvers, and other analysis methods (such as FEA (Reddy 1993) and meshless analysis
(Chen, Lee et al. 2006))

Hence, this research focuses on formulating behavior models independent of
solution method and solver, and to establish explicit associativity relationships between
the design form and idealized form so as to preserve the analysis intent. In the context of
the MRA-based simulation pattern presented in section 2.2.2, this implies formulating the
CBAM. Behavior models formulated in this manner may then be solved in whole or parts
using different methods and solvers.

(Shephard, Beall et al. 2004) corroborate the approach for having an abstract
design-component model to capture analysis intent and to interface between CAD and
FEA tools. The Simulation Application Suite (Simmetrix Inc. 2006)) is one such FEA
mesh generation tool that is founded on this abstract component model. In the MRA-
based simulation pattern, the ABB system consists of an assembly of analysis bodies and

their associativities to individual parts and components in the design form. This satisfies
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the requirement for having an abstract design-component model for supporting multi-
fidelity analyses and can additionally be used for other solution methods apart from FEA.

3.2.2.2 Heuristic frameworks

In the past heuristic methods have been proposed to formulate problem-specific
equations from general domain equations, such as the framework developed by Yip et al.
(Yip 1993) for simplifying the Navier Stokes equations and by Ling et al. (Ling,
Steinberg et al. 1993) for generating governing equations for analysis of thermal systems.
A challenge with these approaches is to develop and assemble equations for different
fidelities for a multi-body design alternative. Most modern CAE tools possess the
capability of assembling and solving a set of relevant equations for a multi-body problem,
given a consistent set of analysis specifications (idealizations). Even then, the issue lies in
the lack of explicit associativity between the behavior model and the design model (both
at the structure and instance level) thus making the behavior model formulation process
inefficient for handling VTMB problems for adaptive and original analyses.

The heuristics-based approaches may not be sufficient but are can play an
important role on the overall solution towards model-based communication between
designers and analysts. Heuristics may help guide analysts in selecting appropriate
idealizations based on the given artifact, behavior conditions, and desired analysis
accuracy. Additionally, it may used for refining behavior models such as in adaptive
control tools for FEA pre-processors (Shephard, Beall et al. 2004).

3.2.2.3 Simulation templates

In this sub-section, behavior model formulation approaches that laid special
emphasis on integration with design models and modularity of the formulation method
are presented.

The Composable Simulation research (Diaz-Calderon, Paredis et al. 2000; Sinha,
Paredis et al. 2000; Paredis, Diaz-Calderon et al. 2001) is aimed at performing system
level behavior simulations by composing behavior models of the system components.
Each physical component is represented by means of port-based models that formally
describe its form and behavior with explicit mapping between the form and behavior
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ports. These port-based models can be composed to create the system level behavior
model. The ports and the internal behavioral implementations are separate, thus providing
the capability to easily reconfigure the system for different fidelities of behavioral
simulations. Although specific to mechatronics systems that are typically modeled using
lumped parameters, the composability ideas may be leveraged for creating behavior
models of a system from behavior models of components. However, much of this
research depends on the availability of behavior models of the components and this
research does not prescribe efficient ways to formulate them. Also, the methods in this
research are specifically developed for behavior models that are described using
differential algebraic equations.

The Multi-Representation Architecture (Peak 1993; Peak, Fulton et al. 1998;
Wilson, Peak et al. 2001; Peak, Paredis et al. 2005) research prescribes a modular and
reusable approach for creating behavior models from design models by stepping through
four intermediate models, as described in details in section 2.2.2. As described in that
section, the MRA can be viewed as a simulation template pattern—analogous to design
patterns (Gamma, Johnson et al. 1995) in software engineering. The reusability of this
approach is due to (a) use of analysis building blocks (such as linear elastic material) and
systems of ABBs (such as Euler beam system), and (b) non-causal description of ABBs,
ABB systems, and their associativity to design models, thus providing a model structure
for solving analysis problems and inverse problems. The process of composing the ABB
system structure from ABBs and establishing associativities to the design model structure
is manual, thus making the process inefficient for adaptive and original analyses wherein
designers and analysts perform trade studies on idealizations. Additionally, the model
structure needs to be “rewired” for assembly system topology changes inherent to VTMB
analysis problems. However, once the structure is available, it can be used to formulate
behavior model instances automatically for a family of design model instances (XaiTools
(Georgia Tech) 1999)

In the MOSAIC project-related research (Sellgren 2003), a product is divided into
sub-systems, and their mating features (what is connected) and interface features (how it
is connected) are identified. It proposes a three-layered architecture for organizing the
information in design and analysis models — the design layer for design-specific
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information such as geometry and material; the generic behavior layer for information
specific to behaviors of the design model, mating and interface features; and the
application layer for representing this information in a software tool (such as FEA tools).
The modularization rationale is similar to the composable simulation work—separating
the interface definition and its behavior implementations. However, this research does not
deal with organization of analysis knowledge or formulation of behavior models.

The open standards-based information exchange methods are focused on use of
open standards to represent analysis models and their relationships to the design model.
STEP AP209 (ISO 10303-209 2001) is an ontology for representing analysis models and
the associativity between the shape representations of the design form and the idealized
form for analyses, and the idealized form for analysis to a solution method-specific form
(such as FE meshed model). Here, a relationship (“basis”) is used to link the idealized
and the nominal design shape (Hunten 2001). With the modularized STEP architecture,
the generic design model concepts in AP209 are shared with other application domain
APs, such other AP210 (ISO 10303-210 2001) for electromechanical products and
AP203 (ISO 10303-203 2000) for generic mechanical products. Further, Part 104 (1SO
10303-104 2000) provides an ontology for representing finite-element based models.
Overall, these open standards are useful for representing some types of idealization
relations (esp. geometry-related) between the design model and the analysis model, but
they do not prescribe a standards-based ontology for representing ABBs (such as material
behavior models, load models, and behavior condition models) that may be used for
creating analysis models. In the research presented in this dissertation, relevant aspects of
STEP-based ontologies are leveraged in principle and a behavior meta-model is
developed. Additionally, algorithms for automated composition of ABBs—typically
outside the scope of the subject open standards-based ontologies—are also developed.

Several methods have been proposed in the past for organizing behavior models.
Some notable methods are described here. Hoffman et al. (Hoffman and Joan-Arinyo
1998) propose a product master model mechanism so that the different behavior models
of the artifact may be linked and synchronized with a master model that contains all the
information about the artifact. Addanki et al. (Addanki, Cremonini et al. 1991) have

proposed the graph of models approach for automated selection of analysis models
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organized in a graph, on the basis of assumption-checking. This method is implemented
for systems characterized by ODEs and is founded on model-based reasoning techniques.
Falkenhainer and Forbus (Falkenhainer and Forbus 1991) have proposed a compositional
modeling approach using which appropriate analysis models may be searched from a
repository of analysis knowledge, based on the specific query and the structure of the
subject system. This repository is founded on the relevant domain theories (such as
thermodynamic analysis of steam plants). Since the approach is targeted for searching
models and not formulating behavior models, all possible combinations of idealizations
are explicitly modeled in this approach, which is typical known only when analysis
knowledge is mature. For adaptive and original analyses, analysts need to dynamically
compose, verify and reconfigure behavior model structures using different combinations
of idealizations and perform trade studies to select the appropriate set of idealizations.
However, the use case of efficiently organizing behavior models is a valuable one. If
behavior model structures can be characterized along some key dimensions, then
algorithms can be created to compute the “differential” between any two behavior model
structures and thus determine their degree and dimension of separation in a repository of
behavior model structures. For a given behavior model structure, one may also create a
repository of behavior model instances.

Tools such as Model Center (Engineous Software 2007) and iSight (Phoenix
Integration 2007) provide a modeling and computation framework for linking design
parameters in native CAD models and behavior parameters computed in different solver
tools (such as FEA tools). These linkages are specific to the assembly system topology of
artifacts and have to be manually updated for families of VTMB design alternatives. In
addition, mathematical relationships embodied in these linkages need to be manually
updated both for topology variations in design alternatives and idealization decisions

taken by analysts.

3.2.3 Analysis knowledge and reuse
The term *“analysis knowledge” has been used in different flavors in related

research efforts. Different research efforts model different aspects of analysis knowledge

that are essential to realize their specific use cases. In essence, analysis knowledge is the
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union of all such aspects. Some well-known aspects of analysis knowledge are listed
below.
= Domain theoretic knowledge—including first principles such as conservation of
energy and equilibrium principles and derived behavior theories like Euler-Beam and
Timoshenko beam theories (Timoshenko and Goodier 1970)—used for computing
behaviors of artifacts
= Consistent combinations (and limitations) of different aspects of domain theoretic
knowledge, such as assumptions under which the Newton’s laws of inertia are valid
= An answer to the following question: “What domain theoretic knowledge concepts
have to be used for a specific behavior computation problem?”, i.e. when and how to
apply existing knowledge to compute behavior. Heuristic-based approaches presented in
section 3.2.2.2 specifically address this question. Other research efforts in this direction
involve automated selection of assumptions given the analysis objectives (Finn 1993;
Turkiyyah and Fenves 1996).
= Analysis intent—description of idealization decisions that help formulate a behavior
model structure and its relationships to a design model structure
= Analysis rationale—justification of why certain pieces of knowledge (and hence
certain idealizations) are used for computing behavior. The justification typically relates
to experiential knowledge of the analysts.
= Objectives of the analysis problem and limitations of analysis models

In this research, analysis knowledge specifically implies domain theoretic
knowledge, modeled as computer-interpretable analysis building blocks (ABBSs), and the
consistent combinations of these ABBs that reflect valid combinations of domain
theoretic concepts. In particular, this research does not focus—without limiting such
extensions—on developing a knowledge base relating domain theoretic concepts to
family of analysis problems for which they may be used or are most useful. The
methodology developed in this research is targeted to be used by analysts in formulating
behavior model structures. Designers use a simulation template pattern that embodies the
behavior model structure to perform trade studies on instances. This assumes that
analysts are aware of the analysis rationale and hence the reasons behind the
assumptions—embodied as ABBs. However, this research does aim at representing
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analysis intent by (a) explicitly relating a design model structure to behavior model
structures (as shown in the definition of simulation templates in section 2.2.2), and (b)
representing idealization decisions taken by analysts as computer-interpretable
specifications for automated formulation of a behavior model structure.

For efficient formulation of behavior model structures—the primary objective of
this research—it is necessary that ABBs be reused for formulating different behavior
model structures, and behavior model structures of components be reused for formulating
behavior model structures of systems. In the context of the simulation template for plane
stress analysis of Flap Link part example illustrated in Figure 2.3, this would imply using
the plane stress ABB model for plane stress analysis of different mechanical parts, and
reusing the entire Flap Link plane stress CBAM for developing a plane stress CBAM of a
system with multiple Flap Link parts.

Peak et al. (Peak 1993; Peak, Fulton et al. 1998; Peak, Fulton et al. 1999; Zeng
2004; Bajaj, Peak et al. 2006) have demonstrated the advantages of abstracting domain
theories as ABBs and using ABBs to create behavior models. Here ABBs embody
specific assumptions that are used for creating a behavior model. They have shown
special types of primitive ABBs for mechanical and thermo-mechanical analyses, such as
material behavior ABBs, load ABBs, geometry ABBs, and boundary condition ABBs.
These ABBs can then be used to create phenomenological models, such as Linear
Extensional Rod model, Euler Beam model, Linear Torsion model, and Plane Stress
behavior model. A phenomenological model is a type of a complex ABB.
Phenomenological models can then be used to create component behavior models, such
as the Plane Stress ABB is used to create plane stress behavior model for the Flap Link
part (Figure 2.3). Turkiyyah and Fenves (Turkiyyah and Fenves 1996) propose that
analysis assumptions should be modeled explicitly using declarative aspects that define
the scope, content, and the validity of assumptions, and procedural aspects that define the
transformations to the behavior model when the subject assumption is applied. It is to be
noted that ABBs are representative of types of assumption choices available to analysts.
The above effort only models the declarative aspects of ABBs. In the research presented
in this dissertation, this will be augmented with the procedural aspects, thus aiding
automated composition of behavior models (structures) from ABBs. In addition, this
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research shall also investigate the characteristic dimension of ABBs and develop a meta-
model for building a library of ABBs.

Robinson et al. (Robinson, Nance et al. 2004) aptly state that the validity of
simulation models when being used in a context different from the original use is factor
that limits reuse. In this light, ABBs themselves embody domain theoretic knowledge,
and the creation of each ABB should be followed by a formal verification method to
check if it repreents the domain knowledge correctly. On the other hand, the use of ABBs
for creating component and assembly-level behavior model structures deserves rigorous
validation for the following reasons: (a) not all ABBs (assumption choices) are mutually
consistent, and (b) ABBs used (assumptions) for creating behavior model structures may
not be valid when analysis specifications are changed—the linear extensional model of
the Flap Link part will not be a valid behavior model if the end loads on the part were
torsional in nature.

The research presented in this dissertation leverages the work of (Finn 1993) that
states the different types of approximations to physical system and phenomena for
developing a behavior model. These include approximation of: (a) geometry of physical
system, (b) physical phenomena being modeled, (c) boundary conditions, (d) material
properties, and (d) approximation of control volume (esp. for thermal convection
problems).

Grosse et al. (Grosse, Milton-Benoit et al. 2005) have proposed an ontology for
supporting reuse, adaptation, and interoperability of engineering analysis models. This
ontology provides an extensive listing of generic properties of analysis models that can
be used to archive, identify and reuse them. In comparison, this is akin to the secondary
use case of this research. The primary use case is to create behavior models. In the work
presented by Grosse et al., an analyst (or a knowledge engineer per their terminology) has
to explicitly categorize and document the decisions taken while creating an analysis
model in terms of these generic properties. Further, most of the key properties, such as
model idealization and model limitation, are represented as text strings. This limits the
ability to search analysis models based on these properties since typically there are no
commonly well-accepted standard string values for these properties. Also, the
idealizations and limitations identified by an analyst may be coupled (or even contradict)
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each other. It is difficult for algorithms to identify these couplings and contradictions if
the instances are text strings with no bounds on values. The ontology proposed by Grosse
et al. agrees well with our perspective on model formulation versus solution methods — it
identifies continuum, lumped parameter, and empirical-based idealizations for physics-
based models, and several numerical solution techniques for solving these problems. In
their ontology, the related physical system (or the design model) is a property of an
analysis model. This is a coarse-grained associativity between an analysis model and a
design model as opposed to fine-grained associativity that the automated methods
developed in this research aim to establish. The research presented in this dissertation
develops an extensible behavior meta-model based on an ABB meta-model for
representing behavior model structures, which are then used to represent behavior model
instances. It is strongly believed that behavior model structures confirming to this meta-
model will provide an inherent description of the idealizations (performed to create them)
by the virtue of the ABBs that compose them.

3.3 Model Definition and Transformation

In this section, declarative model definition and transformations approaches are
described in the context of the modeling requirements for this research.

3.3.1 Model Definition
This section focuses on modeling paradigms and languages necessary for

representing the types of models relevant to this research—artifact design models,
behavior models, and analysis building block models (all three at both the structure and
instance levels).

Some well-known representations for modeling knowledge are: productions
(rules), semantics nets, schemata, frames, scripts and logic (Giarratano and Riley 1998).
Productions formalize the knowledge by identifying preconditions, which when satisfied
will result in actions. Semantic nets are used to model propositional information and
formalize knowledge by identifying relationships (such as is-a, has-a) between nodes.
Though they provide ease-of-expression, semantic nets have a non-definite (lack of
representation for cardinality of relationships, aggregates of nodes) and shallow
knowledge structure (attributes of a concept are represented as nodes, like the concept

itself). A Schemata or a Schema is a deep knowledge structure, unlike semantic nets.
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Using this, we can represent knowledge related to the properties of artifacts. Frames and
Scripts (time-ordered sequence of frames) are different types of schema. Frames are used
to describe knowledge typical to a given situation (snapshot in time). They may be: (a)
situational frames — knowledge as to what to expect in a given situation, (b) action frames
- knowledge about what to do in a given situation and (c) causal knowledge frames -
combining situational and action frames to represent causal knowledge. The attributes of
a frame are known as slots and their values are known as fillers. For example, a frame
“car A” has an attribute “color” with value “black”. Frames can be grouped together into
new frames (such as “car”). This is similar to the class and object terminology in object-
oriented programming and schema and instance terminology in databases.

Most declarative formalisms for information and knowledge modeling in
engineering are frame-based, such as EXPRESS (ISO 10303-11 2001) which is used by
the STEP family of standards and SysML (SysML 2006) which specializes the UML
formalism for systems engineering. Essentially, they provide entities to represent
concepts in a given universe-of-discourse, attributes to represent the properties of this
concept, constraints to bound the values of the attributes (such as where-rules in
EXPRESS, constraint blocks in SysML, constraints in COBs (Wilson 2000), OCL (UML
2 OCL 2004)), and relations to represent the relationships between the attributes and
entities (such as association, aggregation in (UML 2 2004)). In the recent past, the term
ontology is used to define a set of representational primitives to model a universe of
discourse. These representational primitives are classes (or sets), attributes (or
properties), and relationships (relations between classes) (Gruber 1995; Gruber 2007). An
ontology provides semantics to communicate about a domain. As an example, STEP
AP210 (ISO 10303-210 2001) is an ontology for describing the design of electro-
mechanical products. It provides concepts, their inter-relationships, and validity for
describing design-related information for electromechanical artifacts.

Logic is the study of the rules of exact reasoning. Formal logic focuses on the
structure or the form of logic and not the semantics. Just as algebra can be used for
uniquely formulating problems with different semantics, formal logic can be used for
reasoning about objects without concerning itself with semantics of the objects. Predicate
Logic was developed to analyze the internal structure of statements, and propositional
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logic (subset of predicate logic) deals with IF- THEN structure only. The simplest form
of predicate logic is first order predicate logic that consists of universal and existential
quantifiers.

Description Logics (a.k.a. DL) (Calvanese, Lenzerini et al. 1998) is a family of
knowledge representation languages that provides the capabilities of “description”—
describing a domain, and “logic”—rules to reason about the domain. The purpose of DL
languages is to model domains in a manner that formal reasoning can be performed on
these domains. With reference to object-oriented modeling, in DL a class is modeled as
an atomic or complex concept representing a set of objects, and a relationship is modeled
as atomic (or complex) role representing sets of pairs of objects. Complex concepts and
relationships are modeled as expressions consisting of atomic concepts, roles, and logical
operations. Examples of these operations are: — negation (complement), U disjunction
(or union), and N conjunction (or intersection). In addition restrictions can be placed on
sets by using the value restriction quantifier vV and the existential quantifier 3.
Representing a set of concepts using DL constructs allows one to use DL reasoners such
as (RacerPro 1997) to verify the non-redundancy of concepts, non-empty concepts, and
check subsumption relationships (subset) between concepts. DL languages and reasoning
engines can be helpful in developing a knowledge base of concepts. In the context of this
research, this technology can be helpful in extending and validating a library of ABBs
provided ABB models can be formalized as DL expressions. The primary objective of
this dissertation is to identify key characteristics of ABBs and to develop model
transformation methods to formulate behavior model structures. Developing formal
methods to validate a library of ABBs will be a valuable future extension. It is also to be
noted that several object-oriented languages (such as EXPRESS) themselves are founded
on set theory-based concepts. A reasoning engine could possible be built to validate the
semantic consistency and non-redundancy of models expressed in these languages. It is
also worth noting that object-oriented languages ((ISO 10303-11 2001; UML 2 2004;
SysML 2007)) provide enhanced ease of expressiveness for modeling real world
concepts. DL languages provide constructs to enable formal reasoning based on these
concepts. It is best to combine the easy of expressiveness with formal reasoning
capabilities in developing model repositories and ontologies. In this dissertation, SysML
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is used extensively to represent design and behavior meta-models and models for the
following three reasons in particular: (a) ease of expressiveness in defining the models,
(b) representation of fine-grained relationships in a non-causal manner, as modeled using
SysML parametric diagrams, and (c) applicability to systems design and analysis

problems in general—representation of different types of systems and behaviors.

3.3.2 Model Transformations
Existing foundations of model transformations hold key to the research presented

in this dissertation. The formulation of behavior model structures from an artifact design
model structure given a set of analysis specifications is a type of model transformation.
The intent of this aspect of the technical survey is to understand existing approaches to
model transformation and to select one that is more suitable for the primary use case of
this research.

Analogous to traditional data computing wherein the operands are numbers and
operators transform numbers (such as add, subtract, divide, and multiply numbers),
model transformation can be viewed as a form of computing where the operand is a
model and the operators are transformation rules. Over time, the term model
transformation has tended to imply transformations of object-oriented models as opposed
to program transformation that deals with transformations of computation statements
(such as those in imperative programming and functional programming) and is a
relatively mature field in computer science. In contrast to program transformation
systems that are based on mathematically-oriented concepts such as term rewriting,
functional programming, and attribute grammars, model transformation systems tend to
be based on object-oriented principles (Czarnecki and Helsen 2006).

Figure 3.3 illustrates the basic idea of model transformation. A model
transformation process transforms a source model that confirms to a source meta-model
(or schema) to a target model that confirms to a target meta-model (or schema). The two
enablers for this transformation are: (a) transformation definition—describes how the
transformation is to be achieved, and (b) a transformation engine—executes the
transformations described in the definition. It is to be noted that the definition of a
transformation is based on the source and target meta-models while the transformation

engine executes this definition on source models (instances of source meta-model).
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Figure 3.3: Basic concepts of model transformation (Czarnecki and Helsen 2006)

(Czarnecki and Helsen 2006) present a classification scheme to characterize
different model transformation approaches. Figure 3.4 illustrates this classification
scheme. Here, different aspects of this classification scheme are summarized and their
relevance to this research is described.

= Specification implies the definition of the transformation itself. There are two main
methods to specify a transformation. In one method, the source model (operand) and the
transformation function (operator) are given and the target model (result) is computed.
In the second method, the source model (operand) and the target model (result) are
given and the transformation engine automatically figures a way to achieve the target
model from the source model. In method 1, the operator may be encoded as a procedural
code. In contrast, method 2 is more declarative in the sense that one describes the source
and target models and not the specific computation process. In the context of this

research, method 2 is adopted versus method 1.
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Figure 3.4: Classification scheme for model transformation approaches (Czarnecki and Helsen 2006)

= Transformation rule is the atomic unit of the model transformation process. Typically,

transformation rules are declaratively represented with a LHS pattern and a RHS
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pattern. However, they may also be imperatively represented as a procedure or a
function. Transformation rules consist of three main building blocks: (a) Variables that
bind to model elements such as entities and relationships, (b) Patterns that consist of
variables and bind to model fragments, and (c) Logic that defines the computation
process. Variables, patterns, and logic could be syntactically typed or semantically
typed. For declarative transformation rules, the transformation engine binds the LHS
pattern to all matching fragments of the source model and replaces them with the RHS
pattern to create the target model. For an imperative transformation rule, the
transformation engine executes the procedure or function in the transformation rule. In
the context of this research, the transformation rules are described declaratively as this
will allow analysts to express the intent of behavior model structure formulation
process without having to describe a procedure to formulate it. For example, for the
plane stress CBAM for the Flap Link part in Figure 2.3, the analysis intent is to
idealize the Flap Link part as a plane stress body. Declaratively, this is achieved by
specifying the source Flap Link model and the target model—CBAM fragment that
shows the Flap Link part wired with a Plane Stress body. Imperatively, this would have
to be realized by writing a procedure to create the target model from the source model.

Some other notable aspects of transformation rules are:

o Multi-directionality describes if a transformation rule can be executed in multiple
directions and causalities. In this research, transformation rules are being used to
create the structure of a behavior model and are uni-directional. However, the
structure itself may have relationships that may be solved in multiple directions
(for inherently non-causal relations) to compute instance values.

0 Application conditions describe necessary conditions that must be satisfied before a
rule can be executed.

o Parameterization allows for passing parameter value (flags), data types, or even
other rules to influence the behavior of a given rule.

Rule application control primarily deals with the scope (local determination) of the
model fragment to which a given rule is applied, and scheduling strategy to determine
which rules are executed before others. There may be multiple matches of the LHS
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pattern of a rule in the source model. Transformation engines implement different
application strategies—deterministic, non-deterministic, and interactive. In the context
of this research, the deterministic strategy is required as it is desired that the
transformations be applied to all possible matches in the source model. This is one of
the key requirements for selecting a transformation engine that can be used for VTMB
problems. Another notable aspect of rule application control is scheduling. In the
context of this research, a transformation engine that allows for explicit scheduling is
preferred since there is a sequence to the process of formulating a behavior model
structure. In contrast, transformation engines with implicit scheduling do not allow

users to control the execution order of rules.

Rule organization deals with how rules may be packaged in a repository for reuse.

Source-Target Relationship deals with the following transformation options: (a)
creating a new target model that is different from the source, or (b) updating the source
model to be the target model. In the context of this research, the latter approach is
preferred as it allows for not duplicating the source model (artifact design model) and
establishing associativities from the design model structure to the behavior model

structure.

Incrementality deals with the capability to efficiently synchronize the source and the

target models when either one is changed.

Directionality deals with the ability to execute transformations in one versus multiple
directions. For model synchronization, it is desired that transformations be executable
in multiple directions. This distinction holds importance when the source and the target
models are not related. However, in the context of this research, the target model
includes the source model and associativities to the source model itself. This is similar
to the triple graph grammar approach (Konigs 2005) wherein the transformation rule
not only creates the target model but also the associativities between the source and the
target model.
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= Tracing deals with recording the runtime process of transformation execution.

(Czarnecki and Helsen 2006) discusses several model to model transformation
approaches. Of particular interest to this research is the graph transformation-based
approach to model transformations. This particular approach is founded on the strong
mathematical theory behind graphs and graph transformation—summarized by (Andries,
Engels et al. 1999; Engels and Heckel 2000). This approach typically applies to models
that may be abstracted as typed, attribute, labeled graphs which as (Czarnecki and Helsen
2006) point out is a formal representation of simplified class models. Two of the
outstanding features of this approach are: (a) the ability to specify transformation rules in
a declarative manner, leading to ease of modeling and model maintenance, and (b) the
ability to apply transformations simultaneously to all fragments of the source model that
match with the LHS pattern of a transformation rule—in contrast to sequential
application for imperative transformations. A pitfall with this approach—in its native
form—is the lack of explicit rule scheduling, thus leading to issues such as non-
termination of transformations. However, newer graph transformation tools such as
VIATRA (VIATRA 2007) fill this gap by providing a state machine-based controller to
schedule the order of application of rules. It is worth pointing out that the definition of
the transformation rule itself is declarative but the application of transformation rules is
specified as a procedure. This approach is also intuitive to the realm of object oriented
modeling as such models can be viewed as graphs in an abstract sense. Another potential
weakness of the graph transformation-based approach is the treatment of ordered graphs,
such as when representing methods as graphs where the ordering of statements is
important (Czarnecki and Helsen 2006).

The objective of this research is to select a graph transformation system that
satisfies the specific requirements for the primary use case. The research contribution
lies in demonstrating the impact of such a graph transformation approach and system on
the problem that this research addresses versus making improvements in the fundamental
paradigms and algorithms that graph transformation approaches and systems are

founded on.
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A graph transformation rule r = (L, R, K, glue, emb, appl) consists of a left hand
side graph L and a right hand side graph R, an interface graph K which is a subgraph of
L, an occurrence glue of K in R, an embedding relation emb that relates the nodes in L to
the nodes in R, and a set of application conditions appl that need to be satisfied for a
subject graph for this rule to execute on it (Andries, Engels et al. 1999). The application
of the rule r to a given graph G yields a graph H, denoted as G =>; H, in the following
five steps (also illustrated in Figure 3.4).

Step 1: CHOOSE an occurrence of the left hand side graph L in graph G.

Step 2: CHECK if the application conditions, appl are satisfied

Step 3: REMOVE the occurrence of L upto the occurrence of K in G. Also remove any
dangling edges—edges incident on deleted nodes.

Step 4: GLUE the resulting graph D in Step 3 with the right hand side graph R of rule r.
This results in a disjoint union of graph D and R.

Step 5: EMDED graph R in D, i.e. establish all relationships between R and D per the

embedding relations in emb.

/..:T\
L R
K| * i —— = glue 0/ \.
CHOOSE L CHECK l
(1) G
s /_ o . \ s ‘/ =/ \= Y\ H
e T )
I A
REMOVE EMBED
LA
D /_ ® ® \ — ] — / e/ \= \ E

e

Figure 3.5: Illustrative definition of a graph transformation rule (Andries, Engels et al. 1999)

Different graph transformation approaches realize these basics steps in different

ways. In general, the CHOOSE step requires the Injectivity condition—the occurrence of
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L in G be isomorphic to L. Less restrictive conditions are the Contact condition—no
dangling edges will arise in the REMOVE step, and Identification condition—occurrence
of L in G should only compare nodes and edges in the interface graph K. A single
pushout rule has empty application conditions and empty embedding relations. A double
pushout rule has a contact and identification condition but empty application condition. A
rule with a single node in the left hand side graph L and empty interface graph is a node
replacement rule.

It is worth noting that there is a fundamental difference in the use case of graph
grammars versus model transformation using graph transformations. Graph grammars
consist of a set of formal production rules to generate a language (or expressions) based
on a set of terminal symbols. The terminal symbols have semantics in their own right,
and the syntactic arrangement of terminal symbols in an expression obeys the grammar.
The semantics of an expression is determined by the semantics of the terminal symbols
and the relative arrangement of terminal symbols in the expression. This is similar to the
English language wherein the semantics of a sentence is determined by the semantics of
the individual words and the relative arrangement of words. The primary use case for
graph grammars is to generate a language of graphs based on terminal graphs and
productions specified in the grammar. This would be useful when one intends to generate
all possible models that could be created using a given set of transformation rules, as in
generating a family of all possible design alternatives (Mullins and Rinderle 1991).
However, the primary use case for this research is to create a specific behavior model
structure that embodies the idealizations specified by an analyst. Graph transformations

with explicit scheduling serve the needs of this specific use case.

3.4 Summary

A summary of the technical survey presented in this chapter is shown in Table
3.2. The table shows only the most relevant research efforts in the columns. The rows
correspond to qualitative metrics for evaluating and comparing these research efforts. The

coloring grades these research efforts based on the qualitative metrics.
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Table 3.2: Summary of technical survey (shows most relevant references only)

Related Research (right)
Evaluation Metrics (below)

CPM2 (Fenves 2004)

STEP

ECAD / MCAD / PLM Tools

Armstrong 1995; Donaghy 1996

Belaziz, Bouras et al. 2000

Simulia ABAQUS 2008

Shephard, Beall et al. 2004

Yip 1993

Ling, Steinberg et al. 1993

Paredis, Diaz-Calderon et al. 2001

Peak 1993; Peak, Fulton et al.

1998

Sellgren 2003

STEP AP209, Part 104

Turkiyyah and Fenves 1996

Finn 1993

Grosse, Milton-Benoit et al. 2005

EXPRESS

SyshL

KL

Description Logics

STEP

CPMm2

Model Xform by Graph Xform

(w/Explicit Scheduling)

Design information and knowledge modeling

1 |(design meta-model)
a_|Represent conceptual and detailed design models
b |Domain-specific detailed design ontologies
c_|Open-standard and non-proprietary ontologies
d  |Extensibility
e |Associated behavior models
f |Export model structure from design tools (such as ECAD, MCAD tools)
g |Export model instances from design tools
2 |Behavior modeling
a |Formulating behavior models (solution method and solver-independent)
Qualitative
Quantitative
b |Relationship between design models and behavior models
¢ |Solution method-, and solver-specific behavior models
d |Behavior model building blocks (and library) & reuse
e |Auto-generate behavior model structure from building blocks
3 |Simulation templates
a_|Template patterns and templates for trade studies
b |Auto-generate simulation templates and their components
d |Multi-directional solution of simulation templates (and inverse problems)
Automatically adapting simulation templates to changes in idealization
e |decisions
f |Ability to address VTMB problems
4 |[Model definition and transformation
a_|Declarative representation of models (and their associativities)
00 Modeling languages
Formal languages for model v&v
Domain-specific ontologies
b |Declarative representation of model transformations

Strong support
Partial support
Mo support from existing research - Research Gap
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Chapter 4 : RESEARCH GAPS, QUESTIONS & HYPOTHESES

The objective of this chapter is to transition from the statement and descriptions
of the problem and gaps that this research addresses to developing hypotheses for a
possible solution approach. The primary question that motivated this research is as
follows: How can we improve the effectiveness of the analysis problem formulation
process for VTMB problems? In this light, two key research gaps identified in Chapter
2 were:
= lack of formalization of the knowledge used by analysts in formulating simulation
templates
= inability to leverage this knowledge to define model composition methods for
formulating simulation templates
Based on the related research presented in Chapter 3, it can be concluded that
existing methods and approaches are ineffective in formulating and adapting simulation
templates for VTMB problems and changes in idealization decisions taken by analysts.
Based on the factors contributing to the effectiveness of analysis problem formulation
presented in Chapter 2 and survey of existing methods in Chapter 3, the primary research
hypothesis is presented in this chapter. Based on the primary hypothesis, two secondary
research questions are posed for this research. Hypotheses for the secondary research

questions are also stated.

4.1 Primary Research Question (PRQ) and Hypothesis (PRH)

PRQ: How can we improve the effectiveness of the analysis problem formulation
process for VTMB problems?

PRH: We can improve the effectiveness of the analysis problem formulation process for

VTMB problems by:

= abstracting the analysis building blocks (ABBs) that may be reused for composing
simulation templates

= abstracting the intent of the idealization decisions taken by analysts, and using it to

drive the process of formulating simulation templates
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= systematically and automatically composing simulation templates using ABBs and the
idealization decisions taken by analysts

4.2 Secondary Research Questions and Hypotheses (SRQ/HS)

SRQ1: How can we formalize an ABB such that it can be reused for composing

simulation templates?

SRH1: We can formalize an ABB such that it can be reused for composing simulation

templates by:

= using a non-causal, declarative formalism to describe the concept and the knowledge
represented by an ABB

= using a model transformation-based formalism to describe the method for using an

ABB when composing simulation templates

SRQ2: How can we systematically and automatically compose simulation templates from

ABBs?

SRH2: We can systematically and automatically compose simulation templates from

ABB:s by:

= representing idealization decisions in terms of specific ABBs to be used in composing
simulation templates and the conditions for using these ABBs

= formalizing the process of composing simulation templates as a model transformation
process that automatically creates simulation templates for VTMB design alternatives

and idealization decisions

83



PART 2: KNOWLEDGE COMPOSITION METHODOLOGY (KCM)
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Chapter 5 : KCM OVERVIEW

The Knowledge Composition Methodology (KCM) is the contribution of the
research presented in this dissertation. KCM is a collection of models and methods that
enable effective formulation of analysis problems. KCM models and methods are based
on the research hypotheses stated in the previous chapter. The KCM Framework is a
computational embodiment of the KCM. The purpose of the KCM Framework is to (a)
provide a testbed for KCM implementations, and (b) test research hypotheses. The
chapters presented in Part 2 of this dissertation describe different aspects of the KCM
Framework. Figure 5.1 illustrates the components of the KCM Framework as a SysML

package diagram.

pkg [Package] KCM [ [E KCM Framework ])

KCM Framework

] 1 1 )
Requirements Use Cases Meta-Model_Library Model Structure Lib
odel Structure Library
(——
KCM_Meta-Model
| o S ABB_Model_Library | | Design_Model_Structure_Library
= "
Simulation Template Patterns CPM2_xKCM A CBM S
]
MRAZ A Behavior_Model_Structure_Library
[
ABB_Meta_Model A

Behavior Model Formulation Method Model Instance Library

I

EEERlCiEanCEpTs| A Design_Model_Instance_Library

Behavior_Model_Instance_Library

Figure 5.1: KCM Framework components

The components of the KCM Framework are as follows:

= Requirements — functional and design requirements of KCM based on research
hypotheses and research gaps presented in the previous chapter. KCM requirements
are presented in this chapter.

= Use Cases — use cases of KCM based on research hypotheses presented in the
previous chapter. KCM use cases are presented in this chapter.

= Simulation Template Patterns — patterns that define the structure of simulation
templates for analysis problems. In this dissertation, the MRA pattern is used for

formulating simulation templates for computing physics-based behavior. Similarly,
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other simulation template patterns may be included in this package. See section 2.2.2
for the definition of simulation templates and the MRA pattern in the context of this
research.
= Behavior Model Formulation Method — method to formulate behavior model structures
and hence simulation templates (presented in Chapter 8).
= Meta-Model Library — library of meta-models relevant to KCM. This consists
primarily of the KCM_Meta-Model which is a collective meta-model for representing
design and analysis models for VTMB problems, and consists of:
= CPM2_xKCM - extension of the Core Product Model (Fenves 2004) meta-model for
representing abstractions of an artifact, such as designed artifact, manufacturable
artifact, and analyzable artifact (presented in Chapter 6)
= CBM - a meta-model for representing artifact behavior models—both structures and
instances—for VTMB problems (presented in Chapter 7)
= ABB Meta-Model — a meta-model for representing ABBs for composing behavior
models for VTMB problems (presented in Chapter 7)
= Generic_Properties — a meta-model for representing generic properties such as
geometry and material that are used for all meta-models in the KCM_Meta-Model
(referred in Part 2 and defined in Appendix 3).
Other meta-models in this library may include for example STEP (ISO 10303)-based
modules that provide concepts for representing detailed design aspects of domain-
specific VTMB alternatives. For instance,
= Model Structure Library — a library of model structures for test cases in the KCM
Framework
= Model Instance Library — a library of model instances for test cases in the KCM
Framework
The components of the KCM Framework are designed to be extensible for different
design domains and different types of analyses.
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5.1 Requirements
The Requirements component of the KCM Framework consists of requirements
for KCM distilled from the research gaps and hypotheses. These requirements are
formalized in two sets:
= KCM Framework Functional Specification consists of KCM requirements distilled
from research hypotheses and research gaps.

= KCM Framework Design Specification consists of KCM requirements from the
standpoint of a methodology developer and which when satisfied will also satisfy the
functional specification above.

Figure 5.2 illustrates the functional and design specifications of KCM using a SysML

requirements diagram. The KCM Framework Functional Specification consists of the

following three requirements:

= Effectiveness — requirement related to the effectiveness of formulating analysis
problems. This consists of three sub-requirements, namely VTMB Variations,
Idealization Variations, and Efficiency. Collectively, these requirements state that the
KCM will enable effective formulation of analysis problems by providing effective
methods to handle VTMB variations and variations in idealization decisions taken by
analysts. The Effectiveness is based on the definition of effectiveness in the context of
this research (section 2.4).

= Knowledge Representation — requirement related to representing ABBs that embody
the knowledge used by analysts in formulating behavior model structures.

= Automated creation of simulation templates — requirement related to providing
methods to automatically compose simulation templates for VTMB problems from
ABB:s.

The formal statements of these requirements are presented in Figure 5.2 as
requirements text property. Note that these three functional requirements are not mutually
independent. The Effectivenss requirement and its sub-requirements are refined by the
other two requirements, as shown by the <<refine>> relationship between these
requirements. The Knowledge Representation requirement and Automated creation of

simulation templates requirement are based on a specific approach to enhance the
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effectiveness of formulating analysis problems for VTMB design alternatives. This

approach is founded on the research hypotheses presented in the previous chapter.

req [Package] Reqguirements [ KCM_Func_Design_Reg ]J

| .

KCM Framework Functional Specification

tF
[ | |
<<reguirements=: A <<reguirements=:= w3 <<reguirements== ]
Effectiveness Knowledge Automated creation of simulation templates
Reresentation
Id = "KCM.Eff' = = ld="KCM.ST"
Text="KCM Frameworkwill | [1d="KCM.KR Text="KCM Framework shall provide methods to automatically
enable effective formulation | |Text="KCM Framework compose simulation templates for VIME design alternatives
of analysis problems" shall provide for from ABBs"
mechanisms to (a) I
‘ T F/L—
describe, and () i \
automatically compose | |
==requirement== ] ABBs" b [ | | \
VTMB Variations T 3 ~ ) 1 AN
| | <=deriveReqt= <<d§|‘|\teReq1>>
Id ="KCM.EfVTMB" | ! W N |
Text ="KCM Framework . \ LS | \
1 shall enahle automated | \ I =zderiveRegt=> !
creation of simulation S |zerefine=> * 11 ~ | \
templates for VTMB | \ | | - -
design alternatives” Ir == — = - — =<<requirement> | =<requirement=> i)
| Meta-Models Behavior Model
I | A Formulation
o [ \ LI Lol Id = "KCM.BMFM"
<<requirement=> . | ==deriveRegt=> Text="KCM Framework = e
Explicitness m 'i<|'efiAe>>| | \ shall have extensible Text="KCM Framework
| \ meta-models to define shall provide methods for
——ld = "KCM.Eff Idealizations” ":I_e%e» K \ VTMB design models, hehavior model composition
Teut= "KCM Framework_shall L \ pehavior models, and ABB that compose behavior
enable automated creation of | models” model structures (and
simulation templates for I | Y simulation templates) from
changes in idealization | - behavior model farmulation
decisions taken by analysts" L S 0 specifications, design model
ABB_Models
(1 structures, and ABB models.
=<requirements= m Id ="KCMABE_Models" "
|| Text="KCcM Framework shall provide an extensible

Efficiency

| | {library of ABE models based on the ABB

L {ld="KCM.Eff Efficiency” meta-model that are ready to be used for creating

Text="KCM Framework z=refing=> | ' behaviar model structures”

shall provide an efficient -

mechanism to <<refine=> | |

automatically create —| EL

simulation templates. "

KCM Framework Design Specification

Figure 5.2: KCM Framework requirements — functional and design specifications

The KCM Framework Design Specification consists of the following three
requirements:
= Meta-Models — requirement related to providing meta-models for representing all
VTMB design models, behavior models, and ABB models.
= ABB Models — requirement related to providing an extensible library of ABBs that are
building blocks of behavior model structures.
= Behavior Model Formulation — requirement related to providing methods to compose

behavior model structures (and hence simulation templates) from design model

88



structures, ABBs, and behavior model formulation specifications (embody the
idealization decisions taken by analysts).
The KCM Framework design requirements are derived from the functional requirements.
Hence, each design requirement is related to the corresponding functional requirement
with a <<deriveReqt>> relationship.

Figure 5.3 illustrates the KCM Framework components that satisfy the KCM
design requirements (KCM Framework Design Specification). The Behavior Model
Formulation Method component of the KCM Framework shall satisfy the Behavior Model
Formulation requirement; the KCM_Meta-Model components (CPM2_xKCM, CBM,
ABB_Meta_Model) shall satisfy the Meta-Models requirement; and ABB_Model_Library

component of the KCM Framework shall satisfy the ABB_Models requirement.

req [Package] Requiremerts [ KCM_Design_Req_Realization ]J

<<reguirement== Imil <<reguirement== w3 <;r;;ui:n:rrlt» [
Behavior Model Formulation Meta-Models —rodels
o D — o ld ="KCMABE_Models”
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for hehavior model composition that compose have extensible meta-models to EEIEI ol S theriElEl
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Figure 5.3: KCM Framework design requirements satisfied by other components

5.2 Use Cases

A Use Case is the specification of actions performed by the system which yields
an observable result that is of value for one or more actors or other stakeholders of the
system (UML 2 2007). KCM use cases—represented by the Use Cases component of the
KCM Framework—are a collection of use cases relevant to the KCM Framework. A use
case diagram identifies a system, the use cases for that system, and the actors who are
related to these use cases. In the context of the KCM Framework, the subject system is

the framework itself as illustrated as a SysML Use Case diagram in Figure 5.4. The
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figure also shows the use cases and the actors who are the key stakeholders in the
framework. A line connecting an actor to use case(s) represents the communication that
occurs between the actor and the framework in realizing the actions specified by the use
case(s). The primary use case of the KCM Framework is to automatically create
simulation templates. This is represented by the Generate Simulation Template use case
in Figure 5.4. The primary end-users of the KCM Framework are designers and analysts.
However, the use cases are presented from the context of the KCM Framework as a
whole, including actors such as framework developers and modelers who define and
extend the KCM Framework. Hence, it shows use cases that are relevant to the
methodology developer (author of this dissertation).

uc [Package] Use Cases| @ KCM Use Cases ]J

KCM Framework

~— Create Design Meta-Model

__ Create Behavior Meta-MidPeL/")

[ Create Meta-Model

_ Create ABB Meta-Model &
~Extend Design Meta-M;ael_:)_'—'—-— - %
=TT S R— i

pe - —— o —_— Designer

( Extend Meta-Model __Extend Behavior Metai\!|_<1<:e/|"')—_—
R

‘Modeler

¢ Create Model Structure

Senior Analyst

< Formulate Behavior Model Structure / SimulationTre?n;ﬁa_te_""'

£
-~

<€nclude>> <<|nclude>> Y

Generate Simulation Template create Behavior Model Speclflcatlons 2

Junior Analyst

«,ndude,{\\*__ “Create De5|gn Model Instance

e e Template
A \_ (Design Verification Scenario) B -
. \\ <<|nc|ude>:e -
Designer \ Generate Behavior Model Instance >
»t.______j______ﬁ___

/" Execute Simulation Template s - il N
N (Design Synthesis Scenario) - ;r Generate Design Model Instance
<<include? from Behavior Model Instance

Figure 5.4: KCM Use Cases
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In these use cases, the term ““Generate’” implies automated creation by a computer-based

method in these use cases. The use cases of the KCM Framework are summarized as

below:

Create Meta-Model use case concerns creation of meta-models for KCM Framework.
The KCM Developer actor (author of this dissertation) shall realize these use cases in
the form of KCM_Meta-Model component (see Figure 5.1) of the KCM Framework.
Extend Meta-Model use cases concerns extending meta-models of the KCM
Framework by KCM Developer actors and Modeler actors—users who are well-versed
in the object-oriented concepts of the KCM. Designers and senior analysts provide
specific scenarios (modeling needs) that aid in extending design and behavior meta-
models respectively.
Create Model Structure use case concerns the creation of model structures by
designers (represented by the Designer actor), junior analysts (represented by the
Junior Analyst actor), and senior analysts (represented by the Senior Analyst actor). It
consists of the following three specialized use cases:
= Create Design Model Structure use case concerns creating VTMB design model
and analyzable design model structures by designers.
= Create ABB Model use case concerns creating the structure of the ABB models by
senior analysts.
= Formulate Behavior Model Structure / Simulation Template use case concerns
automated generation of the behavior model structure and simulation templates. It
consists of following two sub-use cases (as also illustrated by the <<include>>
relationship in Figure 5.4):
= Create Behavior Model Specifications use case concerns formulating analyst
idealization decisions as specifications for formulating behavior model
structure.
= Generate Simulation Template use cases concerns automatically creating the
behavior model structure (and hence simulation template).
Execute Simulation Template (Design Verification Scenario) use case concerns
execution of simulation templates for design instances, thereby automatically

generating behavior model instances.
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= Execute Simulation Template (Design Synthesis Scenario) use case concerns
execution of simulation templates for behavior model instances, thereby

automatically generating design model instances.

5.3 Organization of KCM Components

Chapter 8
Behavior Model Formulation Method

Chapter 6 Chapter 7
VTMB Design Model Abstractions Behavior Model Abstractions
(CPM2_xKCM) (CBM, ABB Meta-Model)

¢ Test Applications & Validation

Chapter 9
Multi-stratum PWB Designs
Multi-component Chip Package Designs

Figure 5.5: Organization of KCM Components

Figure 5.5 illustrates the organization of KCM components in this dissertation. In
this chapter (Chapter 5), an overview of the KCM Framework components was presented
followed by requirements and use cases of the KCM Framework. In Chapter 6, different
abstractions of VTMB design models are presented. This includes definition and detailed
description of the CPM2_xKCM meta-model and its abstractions. In Chapter 7, the
different abstractions of behavior models are presented. This includes definition and
detailed description of the Core Behavior Model (CBM) and the ABB Meta-Model. In
Chapter 8, the Behavior Model Formulation Method (BMFM) and the underlying model
transformation approach is presented. The BMFM is used for formulating simulation
templates—composing behavior model structures given VTMB design model structures,
ABB models, and analyst idealization decisions. In Chapter 9, two test applications of the
Behavior Model Formulation Method are presented in details. These test applications
concern the formulation of simulation templates for thermo-mechanical analyses of
multi-stratum printed wiring boards (PWB) and multi-component chip package designs

respectively.
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Chapter 6 : CPM2_XKCM - AN ARTIFACT META-MODEL

The focus of this chapter is to present the different abstractions of design models
for representing variable topology multi-body alternatives. Representation of design
models is a central component in formulating simulation templates using the Behavior
Model Formulation Method. The different abstractions of design models for VTMB
design alternatives are founded on CPM2_xKCM—a meta-model for representing
VTMB design alternatives for all families of artifacts. In this chapter, the CPM2_xKCM
meta-model is presented first, followed by the other abstraction levels and examples in

section 6.2.

This Chapter Chapter 8
Behavior Model Formulation Method
Y  Chapter 6 Chapter 7

VTMB Design Model Abstractions Behavior Model Abstractions
(CPM2_xKCM) (CBM, ABB Meta-Model)

¢ Test Applications & Validation

Chapter 9
Multi-stratum PWB Designs
Multi-component Chip Package Designs

Figure 6.1: VTMB Design Model Abstractions based on CPM2_xKCM - focus of this chapter

CPM2_xKCM is an extension of the Core Product Model, CPM2 (Fenves 2004),
for the Knowledge Composition Methodology (KCM), and it is used to represent
abstractions of an artifact for design, analysis, and manufacturing lifecycle phases, and
the relationships between these abstractions. In the context of simulation templates these
abstractions are necessary to define an artifact for the purposes of formulating behavior
models of that artifact. In some scenarios behaviors of an artifact may be computed from
its design description, while in other scenarios they may be computed from an artifact’s

manufacturing description. Depending upon the product realization process, additional
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artifacts and features may be added to an artifact assembly when transforming design
descriptions to manufacturing descriptions. Hence, it becomes necessary to evaluate the
behavior of artifacts from both design and manufacturing descriptions. In both of these
scenarios, analysts perform idealizations or add additional details to an artifact’s
description for analysis purposes. In doing so they create a description of an artifact that
is ready for a family of analyses. In the KCM, this description is known as the
Analyzable Artifact Model (or Analyzable Product Model) as shown in Figure 6.2. While
the Core Product Model provides a basic foundation for representing artifacts across their

lifecycle, CPM2_xKCM extends it by adding these abstractions.

rr—————Hm--—"----"-"TF"FT7T """k s s e e e e |
I Analyzable | I
| | Product Model I Context-Based Analysis Model |
¥ APM I o
I Printed Wiing Assembly (Wi | | Analysis Building|Block System Model
|
| : : : | Solution Method Model
) | CBAM : ABB System | SMM
h | arn@usp | |
I Soer! | . war | Lo HHE
I ol [Tsodervart=1 | | Lt bo -
o I o FHHHHES
| | Printed Wiring Board (PWB) | | !
h | ! :
I | | |
y CAD/ CAM Tools | ! System-:p;ciif;ciiﬂ| | Solution Tools
I'I'| (mcap,EcAD,..) | I~ et L N : (ANSYS, ABAQUS, ...)
H "

-
Mgy A S |
Scope of /L_ Scope of /

CPM2_xKCM KCM_Meta-Model

Figure 6.2: Scope of CPM2_xKCM in MRA simulate template pattern

In essence, CPM2_xKCM is a meta-model for defining an artifact as originating
from CAD/CAM tools and its idealizations (AAM / APM) for analysis purposes.
CPM2_xKCM is a component of the KCM_Meta-Model as shown in Figure 5.1, and can
be specialized for different product domains. Detailed analyses in each product domain
shall require a detailed domain-specific meta-model. The Knowledge Composition
Methodology presented in this dissertation relies on the STEP (ISO 10303) application
protocols (APs) and modules for detailed product definition. The STEP APs provide
domain-specific meta-models that can be viewed as specializations of CPM2 and
CPM2_xKCM.
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Hence, behavior model formulation methods developed using CPM2_xKCM are
applicable both for low fidelity analyses performed during conceptual design phases and
high fidelity analyses performed during detailed design phases. In this chapter,

CPM2_xKCM is described in section 6.1, and is illustrated with examples in section 6.2.

6.1 Description of CPM2_xKCM

In this section, CPM2_XxKCM is described. There are two types of extensions to
CPM2 that were done to formalize CPM2_xKCM. These are: (a) minor modifications to
the existing concepts (esp. relationships) in CPM2, and (b) addition of new concepts—
entities and relationships—to CPM2. The basic concepts in CPM2 with minor
modifications are described in section 6.1.1 and new concepts are described in section
6.1.2.

6.1.1 CPM2_xKCM View 1: CPM2 with minor modifications for the
Knowledge Composition Methodology

Figure 6.3 illustrates all the key classes in CPM2. While the Core Product Model
was originally presented using UML, it is presented using SysML in this dissertation.
Refer to Appendix 2 for a summary of SysML constructs used in this dissertation. All
models and meta-models in KCM are described using SysML as it provides a common
formalism to define and relate models at different levels of abstractions and to establish
fine-grained associativities between them. In the SysML-based version of CPM2, a UML
class maps to a SysML block, and a UML association class maps to a block with
reference properties (names prefixed with “related” and “relating”) to the blocks being
associated.

The Core Product Model schema consists of two main abstract blocks:
= CommonCoreObject is the base abstract block for all objects.
= CommonCoreRelationship is the base abstract block for all relationships between

objects.
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Figure 6.3: CPM2_xKCM View 1 — shows minor modifications to CPM2

The CommonCoreObject block is specialized into the following blocks.

= CoreEntity is the base abstract block for representing artifacts and their features.

= CoreProperty is the base abstract block for representing properties of artifacts such as

form, function, material, shape (geometry), and flow.

= Behavior is the base block for representing behaviors of artifacts. Behavior is the

response of an artifact to external stimuli such as applied forces and temperature. While

function describes what an artifact is supposed to do, behavior describes what an artifact

does. During analysis, specific behaviors of an artifact are computed and compared

against the functional requirements. An instance of Behavior has no existence on its own,
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and must be associated with the artifact whose behavior is being computed. This is
reflected by the Behavior block property Behavior.behaviorOfArtifact. In CPM2, the
Behavior block has the following four properties:

0 behaviorOfArtifact for referencing the artifact whose behavior is to be computed and

evaluated
0 behaviorModels for referencing behavior models that are used to compute the subject
behavior of the artifact

0 observedBehavior for describing the results of computing the behavior

0 evaluatedBehavior for evaluating the computed behavior against requirements
One of the key contributions of this dissertation is the Core Behavior Model (CBM)—a
meta-model for describing behavior models—which is described in Chapter 7.
= Requirement is the base block for representing requirements for artifacts. A
requirement applies to one or more properties of an artifact—form, function, flow,
material, or geometry. Requirements are contained in a specification.
= Specification is the base block for representing a collection of requirements based on
end user needs or engineering specification derived from it. A specification may or may
not be satisfied by existing artifacts. Typically during early design stages, an artifact that
satisfies a specification does not exist.

The CoreEntity is block is further specialized into the following blocks.

= Artifact is the base block for representing artifacts. An artifact is a distinct entity of a
product, such as component, sub-assembly, or an assembly. An artifact may have
multiple features as represented by the block property Artifact.hasFeatures, and a feature
must be owned by an artifact, as represented by the block property
Feature.featureOfArtifact. An artifact may have sub-artifacts as represented by the
recursive  composition  relationship ~ with  roles  Artifact.subArtifactOf  and
Artifact.subArtifacts. This is used to represent the part-assembly structure of artifacts.
= Feature is the base block for representing features of artifacts. A feature is a specific
part of an artifact’s form that implements one or more functions. A design or analysis or
manufacturing feature implements one or more functions for the purposes of design or

analysis or manufacturing process respectively. A feature may have sub-features as
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represented by the recursive composition relationship with roles Feature.subFeatureOf
and Feature.subFeatures.

The CoreProperty block is further specialized into the following blocks.
= Form is the base block for representing forms of artifacts and features. The form of an
artifact is described using its geometric shape and constituent material. Further
specializations of form depend on specializations of the artifact to which it is associated.
Form may represent a proposed design form, a specific idealization of a proposed design
form for analyses, or the final design form that may be used to create a bill of materials
for manufacturing. Artifact.hasForm associates a form to an artifact. An artifact may have
multiple forms associated with it, each representing a specific view of the artifact’s form
for a specific purpose (such as generating a bill of materials) or as a version of the form
in-development. Form.formOfArtifacts associates artifacts to a given form. A given form
may be used by multiple artifacts. A form may have sub-forms as represented by the
recursive composition relationship with roles Form.subFormOf and Form.subForms.
= Function is the base block for representing functions of artifacts. Functions of an
artifact describes what an artifact is supposed to do, and is derived from end user and
engineering specifications. A transfer function—represented by the block
TransferFunction—is a specific type of function that involves the transfer (or conversion)
of an input flow to an output flow. For example, a generator is an artifact that implements
a transfer function that converts mechanical energy to electrical energy.
Artifact.hasFunctions associates functions to an artifact and Function.functionOfArtifacts
associates artifacts to a given function. A function may be realized by multiple artifacts.
A function may have sub-functions, as represented by the recursive composition
relationship with roles Function.subFunctionOf and Function.subFunctions.
= Material is the base block for representing the constituent material(s) of artifacts. A
material may be associated with one or more forms. Form.hasMaterials associates a
material to a given form, and Material.ofForms associates a form to a given material. A
given form may be associated with multiple materials, each representing a version of the
material in-development for the subject form, or a view of the material used in the subject

form. A material may have sub-materials as represented by the recursive composition

98



relationship with roles Material.subMaterials and Material.subMaterialOf. This may be
used to represent alloys that are materials composed of other alloys or basic materials.
= Shape is the base block for representing shapes of artifacts and features. A given shape
may be associated with one or more forms. Form.hasShapes associates shapes to a given
form and Shape.ofForms associates forms to a given shape. A given form may be
associated with multiple shapes, each representing a version of the shape in-development
for the subject form, or a view of the shape used in the subject form. A given shape may
have sub-shapes as represented by a recursive composition relationship with roles
Shape.subShapeOf and Shape.hasShapes. The Knowledge Composition Methodology
relies on shape representation concepts in STEP Part 42 (ISO 10303-42 2000). Those
concepts are specializations of the Shape block in CPM2_XKCM.
» Flow is the base block for representing flows. A flow is the medium, such as fluid,
energy, or messages that is used to realize transfer function(s). A flow can be realized by
one or more artifacts, and an artifact may have multiple flow inputs and outputs.
The CommonCoreRelationship is an abstract block that associates a “relating”
CommonCoreObject block to one or more “related” CommonCoreObject blocks. The
CommonCoreRelationship block is specialized into the four main blocks.
= EntityAssociation block is used for representing set membership relation between
CoreEntity blocks.

= Constraint is the base block for defining constraints (and more generically relations)
between the properties of artifacts and features.

= Usage block is used to specify the relationship between the definition of a
CommonCoreObject and its usages (possibly in different contexts). For example, if a
part defined in a database occurs as a component in an assembly, the occurrence of the
part and the definition are related by the Usage block.

= Trace block is similar to the Usage block. It is used to specify relationships between
one CommonCoreObject and another when one depends on the other in the following
manner: (a) alternative of, (b) version of, (c) derived from, (d) based on, (e) same as.
So, typically relationships defined using a Trace block have a directionality. For
example, if a part is an alternate / derived from / version of another source part, then
the Trace block is used to associate the subject part to its source part.
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The list of minor modification done to CPM2 to create CPM2_xKCM is as

follows.

= Use of SysML language constructs instead of UML. The use of a SysML block with
reference properties to represent relationships between concepts instead of a UML
association class resulted in minor modifications to name and cardinality of reference
properties. For example, CommonCoreRelationship block has reference properties
relatingCCO and relatedCCOs instead of associatedCCO and ccRelationship attributes in
the UML association class. The cardinality change reflects that a relationship instance
must have the relating and related properties populated, i.e. an instance of a
relationship is not valid unless it is associated with object instances that are being
related.

= Use of SysML Composition Relationship between two blocks—denoted by a line
connecting the blocks with a filled black diamond on the end of the composed block—
to represent that the composed block has a part property of type of the composing
block. When the composed block instance is deleted, the composing block instances
shall also be deleted. This is used to represent the composition relationships between
blocks representing the following pairs of concepts: Artifact-Artifact, Feature-Feature,
Form-Form, Function-Function, Shape-Shape, Material-Material, Artifact-Feature, and
Specification-Requirement.

= Use of SysML Association Relationship between two blocks—denoted by a line
connecting the blocks—to represent that each block has a reference property of type of
the referenced block. This implies that when an instance of one of the blocks is
deleted, the reference relationship will be deleted but the referring block instance will
not be deleted. This is used to represent the association relationships between blocks
representing the following pairs of concepts: Artifact-Form, Feature-Form, Artifact-
Function, Feature-Function, Form-Material, and Form-Shape.

= When a composition or an association relationship has roles with cardinality 0 or more
(0..*), the name of the roles is pluralized. For example, featureHasFunction is changed
to featureHasFunctions. Similar changes were done for the association relationships
between blocks representing the following pairs of concepts: Artifact-Form, Feature-
Form, Artifact-Form, and Artifact-Function.
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Changed the name of class (block) Geometry to Shape to better align with the term
“shape” as used in STEP-based product models to represent both geometry and
topology of products. Changes were made to all relationship and role names that used
the term Geometry.
Changed the cardinality of association relationship Form—Shape. An instance of a
Form may exist without an instance of a Shape. This represents the use case during
conceptual design or work-in-progress designs when a shape has not been defined for a
form. Also, a shape may be used in multiple forms.
Changed the cardinality of association relationship Form—Material with the same
rationale as above.
Changed the cardinality of some association relationships to allow for reuse of
instances. For example, the cardinality of reference property Form.formOfArtifacts
changed from 0 or 1 (0..1) to 0 or more (0..*) to allow reusing the same instance of a
form for multiple instances of an artifact. Similar changes were done for the following
association relationships:

Function.functionOfArtifacts

Function.functionOfFeatures

Form.formOfFeatures

o]

o]

o]

0 Flow.isSourceOf
O Flow.isDestinationOf

O Shape.shapeOfForms

O Material.materialOfForms

Changed the name of the root object to CoreProductModelObject instead of
CoreProductModel. The package containing the entities and relationships is named as
CPM2_xKCM.

In this dissertation only those aspects of the Core Product Model are described

that are relevant to the technical contributions of this research. It is suggested that readers

refer to (Fenves 2004) for a more complete description.

6.1.2 CPM2_xKCM View 2: New concepts added to CPM2 for the
Knowledge Composition Methodology

In this section, the new concepts—entities and relationships—that are added to

CPM2 to create CPM2_XKCM are described. The new entities are formalized as blocks
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in the SysML-based representation of CPM2_xKCM, and highlighted in blue color in

Figure 6.4. The figure is a SysML Block Definition Diagram (BDD) of CPM2_xKCM

and only shows concepts that are added with respect to CPM2. These new concepts are

described a below.

The Artifact block is specialized into Designed_Artifact, Manufactured_Artifact,

and Analyzable_Artifact blocks that are described below.

= The block Designed_Artifact represents a designed artifact—the definition of an
artifact in the design process. It is the central entity used for representing design-
oriented information of an artifact. The design-oriented information of an artifact
includes the designed artifact and sub-artifacts, designed features and sub-features.

= The block Manufacturable_Artifact represents a manufacturable artifact—the definition
of an artifact for the purposes of manufacturing. It is the central entity used for
representing manufacturing-oriented information of an artifact. This includes a
manufacturable artifact and sub-artifacts, manufacturable features and sub-features.
The manufacturing-oriented definition of an artifact is typically derived from the
design-oriented definition for a particular manufacturing technology.

= The block Analyzable_Artifact is used for representing an analyzable artifact—the
definition of an artifact for analyses purposes. It is the central entity used in
representing analysis-oriented information of an artifact. This typically includes an
analyzable artifact and sub-artifacts, analyzable features and sub-features. The
analysis-oriented information of an artifact is derived from its design-, or
manufacturing-, or existing analysis-oriented information of the artifact for a family of

analyses.
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Figure 6.4: CPM2_xKCM View 2 — shows addition of new concepts to CPM2 for KCM

The Artifact_Artifact_Relationship (AAR) block is a specialization of the Trace

block and represents relationships between two artifacts (or their specializations), such as

those between two designed artifacts, or a designed artifact and a manufacturable (or

analyzable) artifact, or between two analyzable artifacts. A designed artifact may be

derived from another designed artifact. This relationship is useful for relating these

abstractions of an artifact when one is derived from others in a particular context. A

manufacturable artifact may be derived from another manufacturable artifact or a
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designed artifact, and an analyzable artifact may be derived from a designed artifact, or a
manufacturable artifact, or another analyzable artifact. The AAR block has two reference
properties relatingArtifact and relatedArtifacts that refer to the subject artifact (or its
specialization) and all other related artifacts respectively. For example, if an analyzable
artifact instance is derived from a designed artifact instance, then the analyzable artifact
instance will be referred as the relatingArtifact and the designed artifact instances will be
referred as the relatedArtifact in the Artifact Artifact Relationship instance. The AAR
block also has a recursive composition relationship with roles subAARs and ofAAR. When
two artifact assemblies are related using an AAR block instance, then their parts also
related using AAR block instances. The composition relationship is used to contain all
part AAR instances in the assembly AAR instance.

The Form_Form_Relationship (FFR) block is a specialization of the Trace block
and represents relationships between two forms (or their specializations). The intent of
the FFR Dblock is similar to the Artifact_Artifact_Relationship block. It may be used for
example to relate forms of two designed artifacts, or a form of a designed artifact and a
form of an analyzable artifact. An Artifact_Artifact_Relationship block instance may be
associated with zero or more (0..*) FFR block instances, and a FFR block instance may
be associated with zero or more (0..*) Artifact_Artifact_Relationship block instances as
represented by the association end roles associatedFFRs and ofAARs respectively. The
cardinality of these roles is derived from the cardinality of the associated between the
Artifact and Form blocks. The FFR block also has a recursive composition relationship
with roles subFFRs and ofFFR. This is similar in intent to the recursive composition
relationship of the AAR block. The FFR composition relationship is used for collecting
FFR block instances relating child forms into a FFR block instance that relates the parent
forms.

The form of an artifact refers to definitions of the constituent material and shape
of that artifact. Hence, the relationship between two forms will also results in a
relationship between the referred shapes, and a relationship between the referred
materials. Instead of relating two materials, a relationship between two forms relates two
material behaviors that characterize these materials. The FFR block has two reference
properties associatedSSRs and associatedMBMBRs of type Shape_Shape_Relationship and
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Material_Behavior_Material_Behavior_Relationship respectively. The block
Shape_Shape_Relationship (SSR) is used to describe relationships between two or more
shapes. For example, an instance of SSR block may be used to relate two shapes such that
one is the result of an affine transformation on the other. A relationship between a master
relating shape and set of related shapes is described using mathematical relations, and is
represented by the property shape_shape_relations of type Mathematical_Relation
(defined using SysML Constraint Block and explained in Chapter 7). The block
Material_Behavior_Material_Behavior_Relationship (MBMBR) is used to describe
relationships between two or material behaviors. For example, an instance of MBMBR
may be used to relate source materials behaviors and a target material behavior such that
the target is the effective material behavior computed from the source material behaviors
(say by Rule of Mixtures). A relationship between source and target material behaviors is
described using mathematical relations, and is represented by the property
mb_mb_relations of type Mathematical_Relation (defined using SysML Constraint Block
and explained in Chapter 7). MBMBR relates two or more material behaviors, each
represented by the block Material _Behavior_Property. The block Material (originally in
CPM2) has a reference property hasBehavior of type Material_Behavior_Property in
CPM2_xKCM. This represents the relationship between the definition of a material and
the definition of its behaviors.

Note that in some cases, material behavior idealization relationships are also
dependent on the shape idealization relationship, such as when relating a homogenous
material distribution to a heterogeneous material distribution. In such case, a new block
shape_and_material_behavior_relationship may be defined as a specialization of
MBMBR and SSR blocks.

The block Analyzable Feature represents an analyzable feature. An analyzable
feature is a feature defined for the purposes of analyses. Analyzable features are typically
defined to specify (a) geometric features where behavior parameters are to be computed,
and (b) geometric features that participate in component interactions in an analyzable
artifact assembly. An analyzable feature could be same as (or derived from) a design
feature or defined new for specifying analysis conditions. For the purposes of analyses,
some design features may be neglected. For example, if an analyst wants to compute the
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shear stress at the interface between two components of an assembly, then the interface
will be defined as an analyzable feature. The block Analyzable_Feature is a specialization
of the block Feature. An analyzable artifact may have multiple analyzable features, and
analyzable feature must be owned by an analyzable artifact. These relationships are
represented by Analyzable_Artifact.hasAFs and Analyzable_Feature.afOfAA properties.
The block Artifact_Artifact_Interaction (AAI) was added to CPM2_xKCM to
represent interactions between components and the features participating in these
interactions when defining an assembly. The composition relationship
Artifact.subArtifacts represents the component artifacts in an assembly artifact, and the
composition relationship Artifact.hasFeatures represents the features of an artifact. The
composition relationship Artifact.subArtifactinteractions was added in CPM2_XxKCM to
more explicitly represent the interactions between components in the context of defining
an assembly of these components. An interaction must be defined in the context of an
artifact and cannot exist on its own. This is realized by the cardinality (1) of the property
Artifact_Artifact_Interaction.parentArtifact. An interaction between any two components
of an assembly is realized by the features of the components participating in the
interaction. An interaction is realized between a relating feature and one or more related
features. The relating and related features are represented by the reference properties
relatingFeature and relatedFeatures of the block Artifact Artifact_Interaction. The block
AA_AA_Interaction is a specialization of Artifact_Artifact_Interaction and is used to
represent interactions between components of an analyzable artifact assembly. An
interaction between two components represented by the Analyzable Artifact block is
realized by analyzable features of these two components. An interaction between any two
analyzable artifacts must exist in the context of their analyzable artifact assembly. This is

realized by the cardinality of the property AA_AA Interaction.parentArtifact.
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6.2 VTMB Artifact Design Models — Abstractions and Examples

In this section, the different abstractions of artifact models in the Knowledge
Composition Methodology are presented. Examples of each abstraction are also
presented. Figure 6.5 is a SysML block definition diagram that conceptually illustrates
these five levels of abstractions (Levels 1-5, a.k.a D1-D5) of artifact models.
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Figure 6.5: Abstractions of artifact design models in KCM — Design Model Stack

The rationale for developing these abstractions of artifact models are: (a) defining design
meta-models that represent variable topology design alternatives of a particular product,
and (b) identifying desing models that are associated with behavior models in simulation
templates. For efficient formulation of analysis problems (and hence behavior models), it
is necessary that behavior model formulation methods be applied to artifact models that

represent a set of artifacts and not necessarily a specific artifact. In this manner, the
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resulting behavior models can be used to compute the behavior parameters for a set of
artifacts. The five levels of abstractions of artifact models in KCM are described below.

= Level 1 (D1): Artifact Meta-Model - An Artifact Meta-Model is a meta-model that
defines constructs and relationships to represent artifacts in all application areas, such as
Automotive, Electronics, and Aerospace. The Core Product Model extended by the
Knowledge Composition Methodology (CPM2_xKCM) is an example of such a meta-

model.

= Level 2 (D2): Application-specific Artifact Meta-Model - An Application-specific
Artifact Meta-Model defines the constructs and relationships for representing artifact in a
specific application area, such as electronics or automotive. An Application-specific
Artifact Meta-Model specializes an Artifact Meta-Model to represent application area-
specific concepts. STEP AP210 is an example of an Application-specific Artifact Meta-
Model for electromechanical artifacts, such as printed circuit boards, assemblies, and chip
packages. Similarly, STEP AP214 is an example of an application-specific artifact meta-

model for representing automotive artifacts.

= Level 3 (D3): VTMB Artifact-specific Meta-Model — A VTMB Atrtifact-specific
Meta-Model defines the constructs and relationships for representing a specific family of
artifacts, such as printed circuit boards. A VTMB Artifact-specific Meta-Model is created
as a specialization of or abstracted from an Application-specific Artifact Meta-Model. In
the context of KCM, a VTMB Artifact-specific Meta-Model is used for representing
design and analyzable design-related information for multi-body artifacts with different
assembly system topologies. Typically, D3 models are represented by artifact design
templates created and maintained by designers, using system design tools such as CAD
tools.

= Level 4 (D4): FTMB Artifact Model Structure — A FTMB Artifact Model Structure
is an instance of a VTMB Artifact-specific Meta-Model, and it represents a family of

multi-body artifacts with equivalent assembly system topologies, such as family of 5-
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layered printed circuit boards. Here, FTMB stands for Fixed Topology Multi-Body.
Typically, D4 models are represented as design models—conforming to a specific design

template—where topology-specific decisions have been taken.

= Level 5 (D5): FTMB Artifact Model Instance — A FTMB Artifact Model Instance is
an instance of an FTMB Artifact Model Structure and it represents a specific artifact in
the family of FTMB artifacts, such a specific 5-layer printed circuit board. Typically, D5
models are represented in system design tools as a specific instance of a D4 model.

Note that the design model stack shown in Figure 6.5 is a conceptual model
shown in SysML. In implementation, SysML does not allow instantiation of instance
models—D?5 is an instance of D4, and D4 is an instance of D3. In implementation, D4 is
modeled as a partially-specified instance of D3, and D5 is modeled as a fully-specified
instance of D3. Multiple levels of meta-modeling (not supported by UML and SysML) is
a much desired feature of modeling languages (Atkinson and Kuhne 2001), especially
when model transformations may be applied at different levels of model abstractions, and
models at a given abstraction may serve as meta-models for transformations of models at
lower (instance) levels of abstraction.

An FTMB Artifact Model Structure can be viewed as partially-specified instance
of a VTMB Atrtifact Meta-Model where only topology-specific decisions have been
taken. In contrast, a FTMB Artifact Model Instance can be viewed as a fully-specified
instance of a VTMB Artifact Meta-Model.

Having defined the five different levels of abstractions of artifact models in KCM,
specific examples of these abstractions are now presented. CPM2_xKCM as described in
the previous section is an example of Level 1 abstraction—an Artifact Meta-Model for
representing artifacts in all application domains. In this section, a Printed Circuit Board
(PCB) artifact is used for illustrating the other four abstractions of artifact models. Figure
6.6 illustrates the 2D layout and through-thickness stackup of a typical PCB. A PCB
consists of a stackup of materials as shown in the through-thickness view. Each layer of
material is known as a stratum. A stackup is made of alternatively electrically conductive
and non-conductive stratums. Conductive stratums have conductive features such as

lands and traces as shown in the planar layout view. Vias and through-holes are openings

109



in the stackup from one conductive layer to another—primarily meant to provide

electrical connections across stratums.
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Figure 6.6: A typical Printed Circuit Board design (shown here with 5 stratums)
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STEP AP210 is an example of a Level 2 abstraction for electromechanical
products. Figure 6.7 and Figure 6.8 together illustrate a VTMB Atrtifact-specific Meta-
Model for representing design and analyzable design aspects of multi-stratum printed
circuit boards. Figure 6.7 illustrates PDMM—a meta-model for representing mechanical
design aspects of printed circuit boards, and Figure 6.8 illustrates PAMM—a meta-model
for representing analyzable design aspects of printed circuit boards (for thermo-
mechanical analyses in particular). Together PDMM and PAMM constitute a Level 3
artifact model for representing printed circuit boards with different assembly system
topologies. PDMM and PAMM are represented as specializations of CPM2_xKCM and
contain PCB product concepts abstracted from the STEP AP210 meta-model.

Figure 6.7 illustrates the PDMM. The blocks highlighted in yellow and blue
belong to CPM2_xKCM meta-model and the blocks highlighted in pink belong to
PDMM. The entities and relationships represented in the PDMM are abstracted from
STEP AP210. The block Electronics_Designed_Artifact is the central entity for
representing design-oriented information of an artifact in the electronics domain, and is a
specialization ~ of the Dblock  Designed_Artifact. ~ Similarly, the  block
Electronics_Design_Feature is the central entity used for representing design-oriented
information of a feature (of an artifact) in the electronics domain, and is a specialization
of the block Feature. The block PCB represents design-oriented information for printed
circuit boards, and the block Stratum is used to represent design-oriented information for
stratums that are stacked together to define a PCB. A PCB is composed of multiple

stratums. Each stratum has a form (represented by the block Stratum_Form) that refers to
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the shape and material of a stratum (represented by blocks Stratum_Shape and Material).
The block  Adjacent_Stratum_Surface_Interaction is a  specialization  of
Artifact_Artifact_Interaction and is used for representing the interactions between any two
adjacent stratums in a stackup. Each interaction is realized by the mating of the secondary
surface of the preceding stratum and the primary surface of the succeeding stratum.

This is represented by the two reference properties precedingStratumSurface and
succeedingStratumSurface of the block Adjacent Stratum_Surface_Interaction. Each
stratum also has design-oriented features (represented by the block Stratum_Feature). A
stratum feature may lie within a stratum (intra-stratum feature) such as in the case of
lands and traces, or extend across stratums (inter-stratum feature) such as in the case of
vias and plated through holes. A plated through hole is a stratum feature that extends
across the entire depth of the stackup of a PCB. Intra-stratum features are represented by
the block Intra_Stratum_Feature, and inter-stratum features are represented by the block
Inter_Stratum_Feature. A PCB is composed of stratums, their interactions, and inter-
stratum features. A stratum is composed of intra-stratum features. The PDMM can be

used to represent 2-, 3-, or n-stratum PCBs and hence is a VTMB meta-model.
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bdd [Model] PO Multi-stratum_Designed_PCE_Meta-Model [ @PDMM_BDD ]J
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Figure 6.7: PDMM (D3) for representing mechanical design aspects of (VTMB) multi-stratum PCBs

Figure 6.8 illustrates PAMM—a meta-model for representing analyzable design
aspects of printed circuit boards (for thermo-mechanical analyses in particular). This
meta-model represents a specific idealization of the multi-stratum PCB designed artifact
meta-model (PDMM). In this idealization—as illustrated by Figure 6.9 for a 5-stratum
PCB—the intra- and inter-stratum features have been ignored for analyses purposes. Each
stratum is idealized as a homogenous layer of material. In the PAMM shown in Figure
6.8, the blocks highlighted in yellow and blue belong to CPM2_xKCM meta-model and
the blocks highlighted in pink belong to PAMM.
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bdd [Moadel] PAMM: Multi-strstum_Analyzable PCE_Meta-hWodel [ @PAMM_EIDD ]J
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Figure 6.8: PAMM (D3): An analyzable artifact meta-model for (VTMB) multi-stratum PCBs

The blocks Analyzable Electronics_Artifact and Analyzable_ Electronics_Feature
are used for representing artifacts and their features for analyses purposes. These blocks
are specializations of Analyzable Artifact and Analyzable Feature blocks respectively.
The block Analyzable PCB and AStratum are used to represent analyzable PCBs and
analyzable stratums respectively. An analyzable PCB is composed of analyzable stratums
and the interactions  between  them  (represented by the  block
Adjacent_AStratum_Surface_Interaction).

In the idealization represented by the PAMM here, an analyzable stratum is a
homogenous layer of material and hence does not contain inter-stratum features.
Similarly, an analyzable PCB does not contain intra-stratum features. The PAMM can be
used to represent 2-, 3-, or n-stratum analyzable PCBs and hence is a VTMB meta-model.
In a similar manner, other PAMMSs can be idealized for the PDMM shown in Figure 6.7.

For example, one may define an analyzable PCB that contains all the intra- and inter-

113



stratum features (or only specific types of features)—as in the designed PCB—if such
details are relevant for the specific types of analyses.

Figure 6.10 illustrates PDM_5Sx—a FTMB artifact model structure for
representing mechanical design-related information for 5-stratum PCBs. This model
structure is at Level 4 abstraction, and is an instance of PDMM (Level 3 abstraction).
PDM_5Sx represents design-oriented information for a family of PCBs with 5 stratums.
The number of stratums, interactions, and their types are fixed. Hence, the members of

the family of 5-stratum PCBs have equivalent assembly system topologies.

Stratum_1, thickness N/ PDM_5Sx
Stratum_2, thickness N_-'-l--.-%q__
Stratum_3, thickness N/ — - ﬁ

Stratum_4, thickness N/
Stratum_5, thickness N/

Astratum_1, thickness N/
AStratum_2, thickness N/
AStratum_3, thickness N
AStratum_4, thickness NfA
AStratum_5, thickness N/

PAM_5Sx

Figure 6.9: Pictoral view of PDM_5Sx and PAM_5Sx (D4 models)

The instance block PCB_5Sx represents a family of 5-stratum PCBs, and is an instance of
the block PCB. PCB_5Sx has 5 stratums as represented by instances (Stratum_1 to
Stratum_5) of the Stratum block, and also consists of 4 stratum interactions instances
(stratum_12_interaction and so on) of the Adjacent_Stratum_Surface_Interaction block.
The preceding and the succeeding stratum surfaces in each interaction are also
instantiated. The stratum interaction instances for other stratums are not shown in the
figure. In the figure, not all instance information is show for each stratum but the type of
instance information that exists for stratums is illustrated. For example, inter-stratum
feature instances are shown only for Stratum_1 instance while the form (shape and
material) instance is shown only for Stratum_5 instance. Stratum_1, Stratum_3, and
Stratum_5 are conductive stratums, while Stratum_2 and Stratum_4 are non-conductive
stratums—represented by the relationship between these stratum instance blocks and

Conductive and Non-conductive instance blocks (of type Function block). The conductive
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stratums also have intra-stratum features such as lands and traces. The intra-stratum
features are shown only for stratum 1. Stratum_1 instance block has 1000 lands—
represented by instances Land_1 1 to Land_1_1000 of the Land block, and 400 traces—
represented by instances Trace 1 1 to Trace 1 400 of the Trace block. Via_13 1 to
Via_13_40 instance blocks are instances of the Via block and represent vias between
conductive stratums Stratum_1 and Stratum_3. PTH_15 1 instance block is an instance
of the Plated_Through_Hole block and represents a plated through hole between stratums
Stratum_1 to Stratum_5. Vias and plated through-holes are examples of intra-stratum

features.
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bdd [Model] PDM_55:x S-stratum_Designed_PCE_Model_Structure [ @PDM_SSX_BDD ])
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==hlock=> = |
Stratum 5 material : Material
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Figure 6.10: PDM_5Sx (D4): A designed artifact model structure for (FTMB) 5-Stratum PCBs
PDM_5Sx (Level 4) is a partially-specified instance of the PDMM (Level 3) because
although the decisions related to the assembly system topology of the designed artifact
have been taken, decisions related to specific numeric instance values (such as the exact
size and shape of the PCB and stratums) have not been taken. Hence, PDM_5Sx

represents a family of 5-stratum PCBs and not a specific 5-stratum PCB.
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Figure 6.11 illustrates PAM_5Sx—an analyzable artifact meta-model structure
for representing (FTMB) 5-stratum analyzable PCBs. PAM_5Sx is a Level 4 model and
is an instance of PAMM. The instance block APCB_5Sx represents a family of analyzable
PCBs with 5-stratums, and is an instance of Analyzable PCB block. APCB_5Sx has 5
analyzable stratum instances (AStratum_1 to AStratum_5) of type AStratum block. Each
analyzable stratum instance is composed of two stratum surfaces (in roles of primary and
secondary surface). The interactions between adjacent stratums are realized by instances
of Adjancent_AStratum_Surface_Interaction block. Each analyzable stratum also has a
function—represented by instance blocks Conductive and Non-Conductive for conductive
and non-conductive functions respectively.

PAM _5Sx is an idealized artifact model for the purposes of analyses, and is
derived from PDM_5Sx. However, these model structures are not stand-alone. They are
related. The relationships between these model structures represent the idealizations.
Figure 6.12 illustrates PM_5Sx—an artifact model structure that represents the designed
and analyzable model structures, and their inter-relationships for 5-stratum PCBs.
PM_5Sx is at Level 4 abstraction and consists of PDM_5Sx (Level 4), PAM_5Sx (Level
4), and their inter-relationships. The figure does not illustrate all instances in these model
structures and their inter-relationships. Only instances relating to designed stratum
Stratum_5 and corresponding analyzable stratum AStratum_5 are shown. The designed
and the analyzable artifact instances are related by instances of
Artifact_Artifact_Relationship (AAR) block, and the designed and analyzable forms are
related by instances of Form_Form_Relationship (FFR) block.
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bdd [Model] PAM_5Sx: S-stratum_Analyzable_PCE_Model_Structure [ @ PaM_55x_BDD ]J
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Figure 6.11: PAM_5Sx (D4): An analyzable artifact model structure for (FTMB) 5-Stratum PCBs

118



bdd [Model] PM_55:x: 5-stratum_Designed_and_Analyzable_PCE_Model_Structures [ @PM_SSX_BDD ]J
==hlock== =
PCB APCB 55y : =zhlock==
==hlock== = o = = .
Artifact Artifact Relationship A
PCB 55x: PCB : . APCB 55x : Analyzable PCB
relatingArifact= PCB_55x
relatedArifact= APCB_55x
ofAAR s = Stratum_AStratum_5
==hlock== = ==hlock== = ==hlock==
Stratum 5 : Stratum Stratum AStratum 5: AStratum 5 : AStratum
Artifact Artifact Relationship
relatingArtifact = Stratum_5
relatedArifact = AStratum_5
subAARs = PCB_APCBE_5Sx
associatedFFRs = Stratum_AStratum_5_Forms
==hlock== ==hlock==
Stratum 5 form : Form AStratum 5 form:
==hlock== = Form
Stratum AStratum 5 Forms:
Form Form Relationship
relatingForm = Stratum_5_form
relatedForm = AStratum_5_form
ofAAR s = Stratum_AStratum_5
==hlock== associatedMBMERs = MBMER1 ==hlock==
Stratum 5 material : associatedSSRs = SSR1 AStratum 5 material : —
Material | Material
==hlock== =
MBMEBR1 :
Material Behavior Material Behavior Relation
==hlock== ship ==hlock==
Stratum 5 material behavior " X _ AStratum § material behavior :
: Material Behavior Property || relatingMBs = Stratum_5_raterial_behavior L | |~ Material Behavior Property
relatedMBs = AStratum_5_material_behavior
s = ==hlock== — ==hlock==
Stratum 5 shape : — - . =] =]
55R1 : Shape Shape Relationship AStratum $ shape :
Stratum Shape Stratum Shape
siratum shape
relatedShapes = Stratum_5_shape
relatingShapes = AStratum_5_shape
= (I SHFEiiE .. Other analyzable stratums
Relatiunships between other designed
and analyzahle stratums...

Figure 6.12: PM_5Sx (D4): An artifact model structure for representing designed and analyzable
(FTMB) 5-Stratum PCBs

The AAR instance between the designed and analyzable PCB is composed of the
AAR instances between the designed stratums and the corresponding analyzable
stratums. For example, the AAR instance block PCB_APCB_5Sx consists of the AAR
instance block Stratum_AStratum_5. Each instance of AAR refers to an instance of FFR
that relates the forms of the artifact instances. For example, Stratum_AStratum_5
instance block refers to Stratum_AStratum_5 Forms instance block of type FFR. Each
instance of FFR refers to an instance of the
Material_Behavior_Material_Behavior_Relationship block (MBMBR) and
Shape_Shape_Relationship block (SSR) that relates the material behaviors and the shapes
of the forms being related by the subject FFR instance. For example,

Stratum_AStratum_5_Forms instance block refers to MBMBR1 and SSR1 instance blocks.
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Figure 6.13 illustrates PAMI_5S1—an analyzable artifact model instance that
represents a specific 5-stratum analyzable PCB. PAMI_5S1 is a fully-specified instance
of PAMM, and also an instance of PAM _5Sx. It is at Level 5 abstraction. PDMI_5S1
which is at Level 5 and represents design-related information of a specific PCB is not
shown here. The specific analyzable PCB represented by PAMI _5S1 model is
APCB_5S1. Note that PAMI_5S1 is a fully specified instance of PAMM as opposed to
PAM_5Sx—a partially specified instance of PAMM—because not only is the assembly
system topology decision has been taken (as in PAM_5Sx) but also specific shapes, sizes,
and materials of the artifact and features have been decided. For example, analyzable
stratum 5 (represented by the instance block AStratum_5) has a rectangular outline of

width 5 inches and length 10 inches, and is 0.1 inches thick.

bdd [Maciel] PAMI_551 [ [ PAMI_551_BOD ]J
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Figure 6.13: Example D5 model - A analyzable artifact model instance for a 5-stratum analyzable PCB

The focus of this dissertation is to define transformations for formulating behavior
model structures from analyzable design model structures (for VTMB problems in

particular) and to provide a method for executing these transformations. ldealizations
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used for transforming design models to analyzable design models such as geometry-
specific idealizations (Finn 1993) are well-developed. In particular (Tamburini 1999)
presents the Analyzable Product Model (APM) representation—in the context of MRA
simulation template pattern—for formally representing analyzable design-related
information. The graph transformation-based approach for formulating behavior models
for variable topology problems, as presented in this dissertation, also provides a
fundamental approach for formulating analyzable models from design (or manufacturing

models).

6.3 Summary

In this chapter, CPM2_xKCM has been presented as a meta-model for
representing design, manufacturing, and analysis-oriented information of artifacts. Five
different abstractions of artifact models are presented in the context of KCM, and
illustrated for (VTMB) multi-stratum printed circuit boards. These abstractions of the
designed and analyzable artifact models are central to the Behavior Model Formulation
Method in the KCM. For effective formulation of behavior models, it is required that the
formulation methods may be applied to analyzable artifact models that represent a set of
analyzable artifacts, and not necessarily represent a single analyzable artifact. As a result
of this approach, the formulated behavior model structure will represent a family of
behavior models—one for each member in the family of analyzable artifacts to which the
formulation methods were applied. Applying the formulation method to design
alternatives with different assembly system topologies will result in corresponding

behavior model structures (and simulation templates) for VTMB analysis problems.
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Chapter 7 : CORE BEHAVIOR MODEL (CBM) —

AN ARTIFACT BEHAVIOR META-MODEL

The focus of this chapter is to present the different abstractions of behavior
models of variable topology multi-body design alternatives. All abstractions of behavior
models are founded on the Core Behavior Model (CBM)—a meta-model that defines the
constructs and relationships for representing behavior models. In this chapter, the CBM is
presented first. This is followed by a presentation of Analysis Building Block (ABB)
meta-models and ABB models in sections 7.2 and 7.3 respectively. ABBs define the units
of knowledge that are composed for creating behavior models; and the ABB Meta-Model
defines the constructs and relationships for representing different types of ABBs. In
section 7.4, different abstractions of behavior models based on the CBM are presented.
The analysis knowledge embodied in ABBs, and the structure of the Core Behavior
Model is founded on the Analysis Knowledge Dimensions presented in section 7.5. The

analysis knowledge dimensions define the types of decisions taken by analysts in

This Chapter
Chapter 8
Behavior Model Formulation Method

Chapter 6 Chapter 7 v
VTMB Design Model Abstractions Behavior Model Abstractions
(CPM2_xKCM) (CBM, ABB Meta-Model)

¢ Test Applications & Validation

Chapter 9
Multi-stratum PWB Designs
Multi-component Chip Package Designs

Figure 7.1: Behavior Model Abstractions based on Core Behavior Model (CBM)

formulating behavior models (and hence simulation templates) and the choices available
for each type of decision. In the KCM, behavior models also include relationships to
VTMB design models. Hence, the formulation of behavior models implies the

formulation of simulation templates.
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7.1 Core Behavior Model

The Core Behavior Model (CBM) is a behavior meta-model. It defines the
constructs and relationships for representing behavior models of artifacts. A behavior
model represents a set of idealized behaviors of an artifact in a behavior environment.
The behavior environment is the set of external conditions under which the behavior is
being computed. For example, a linear deformation model of a mechanical spring is a
behavior model of the mechanical spring that can be used to compute the axial
deformation behavior of a spring when axial forces are applied to the ends of the spring.
The linear deformation model idealizes the behavior of the spring to be linear—

deformation is directly proportional to the end forces.

7.1.1 Overview
In the KCM, an artifact behavior model is represented as an instance of the Core

Behavior Model. The Core Behavior Model embodies the concept of context-based
analysis models defined in the MRA simulation template pattern. In this pattern, a
context-based analysis model consists of (a) an ABB system model, and (b) behavior
idealization relationships (APM®ABB) between an analyzable artifact (product) model
and the ABB system model. An analyzable artifact model represents an idealized artifact
for a class of behavior analyses (Chapter 6). An ABB system model is a system of
analysis building block models (ABB models) such as those representing analysis bodies,
loads, and boundary conditions, and it represents the behavior of a system of analysis
bodies. The behavior idealization relationships between an analyzable artifact and an
ABB system model idealize the analyzable artifact as a system of analysis bodies. Hence,
a set of behaviors of the idealized artifact are approximated as behaviors of the system of
analysis bodies. For example, the deformation of a printed circuit board during the
manufacturing process can be idealized as the deformation of a laminated shell subjected
to thermal loading during the manufacturing process. Here, the printed circuit board is the
artifact whose behavior is to be computed. The laminated shell, the thermal loading and
the boundary conditions are defined in an ABB system model. Thus, an artifact behavior
model that is represented as an instance of the Core Behavior Model is composed of (a)
an ABB system model, and (b) idealization relationships that approximate the idealized

artifact as a system of analysis bodies represented by the ABB system model. In addition,

123



the ABB system model also represents the behavior environment in which the behaviors
are computed.

The central idea in KCM—and the MRA pattern that it embodies—is that an
ABB system model is the core ingredient of an artifact behavior model, and an ABB
system model can be composed from reusable ABB models. Thus, the efficiency of
formulating behavior models can be significantly improved if there were methods to
automatically compose a behavior model from reusable ABB models. The behavior

model formulate methods in KCM address this need, and are described in Chapter 8.
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Figure 7.2: Scope of CBM and ABB Meta-Model in MRA simulate template pattern

Another meta-model presented in this chapter and closely related to the Core
Behavior Model is the ABB Meta-Model. The ABB Meta-Model is a meta-model for
representing ABB models and ABB system models. Figure 7.2 illustrates the scope of the
Core Behavior Model and the ABB Meta-Model in the context of the MRA simulation
template pattern. While the Core Behavior Model is used to represent artifact behavior
models, the ABB Meta-Model is used for representing ABB models and ABB system
models. The ABB Meta-Model is defined separately from the Core Behavior Model since
ABB models may exist in a library of ABBs independent of their usage in an ABB
system model. Additionally, an ABB system model may exist independently of its usage
in an artifact behavior model.
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The constructs and relationships in both the meta-models—Core Behavior Model
and ABB Meta-Model—are founded on analysis knowledge dimensions described in
section 7.5. Analysis knowledge dimensions represent the types of decisions taken by
analysts when creating a behavior model, and provide the rationale for defining ABB
models. Each ABB model is a choice for specific type(s) of decision(s) taken by analysts.

In this chapter, the Core Behavior Model is described in section 7.1. The ABB
Meta-Model is described in section 7.2. An initial library of ABB models (each
represented as an instance of the ABB Meta-Model) is presented in section 7.3, and in
section 7.4 different abstractions of a behavior model relevant in the context of Variable
Topology Multi-Body problems are presented. The analysis knowledge dimensions are
described in section 7.5. Note that in this chapter, the CBM and ABB Meta-Model are
described using examples. The transformations that compose ABB models to create a
behavior model are presented as part of the behavior model formulation methods in
Chapter 8.

7.1.2 Description
The Core Behavior Model is presented in this section. Figure 7.3 illustrates a

SysML block definition diagram of the Core Behavior Model.

The Behavior_Model block is main construct for representing artifact behavior
models. The Behavior block (section 6.1.1) is used for representing behaviors of an
artifact. A given behavior of an artifact may be computed using several behavior
models—each of a different fidelity. For example, the planar deformation of a printed
circuit board is a specific behavior that may be computed using any of the following
behavior models that idealize the printed circuit board as a: (a) homogenous solid, (b)
homogenous shell, (c) laminated solid, or (d) laminated shell. The reference property
Behavior.behaviorModels is used for representing this use case. The lower bound on
cardinality of this property (0..*) represents the use case that a behavior may be
instantiated without a behavior model to compute it. A given behavior model must be
associated with atleast one behavior. A behavior may be used as the computation model
for several behaviors. For example, a behavior model in which a printed circuit board is

idealized as a laminated shell can be used for computing planar deformation behavior
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Figure 7.3: SysML block definition diagram of the Core Behavior Model (CBM)

and out-of-plane deformation behavior. The reference property
Behavior_Model.ofBehavior is used for representing this use case.

Per the MRA simulation template pattern illustrated in Figure 7.2, a behavior
model is composed of (a) an ABB system model, and (b) behavior idealization
relationships (APM®ABB) between ABB system model and an analyzable artifact
model. The blocks Behavior_Model _ABBSys and Behavior_Model_XContext are used for
representing ABB system model and behavior idealization relationships that constitute
the behavior model. The part properties Behavior_Model.context and
Behavior_Model.associated_bm_abbsys realize the composition relationships. The
cardinality of these part properties indicate that a behavior model instance may exist
without an instance of an ABB system or an instance of Behavior_Model_XContext block
that encapsulates the behavior idealization relationships, such as during the behavior
model development process.

For brevity, an ABB system used in a behavior model is referred as a behavior
model ABB system and it is represented by the Behavior_Model_ABBSys block. A
behavior model ABB system in itself is the behavior model of a system of analysis bodies.
Behavior_Model_ABBSys block is a specialization of the ABBSys block and has the

126




following part properties that represent the types of ABB models that are composed to

define an ABB system model:

abs_sys part property is used for composing an analysis body assembly in an ABB
system model. An analysis body represents the physical continuum whose behavior is
to be computed. Note that the behavior of an analysis body assembly is an
idealization of the behavior of the analyzable artifact assembly. The property type
ABS_ABB is a generalization of blocks representing an analysis body or an analysis
body assembly, and is described in section 7.2. Analysis body and analysis body
assembly are special types of ABBs.

load_applications part property is used for composing loads—applied to the analysis
body assembly—in an ABB system model. A load is an external stimulus to which
the behavior of an analysis body assembly is to be computed. The property type
Load_ABB represents loads (a special type of ABB) and is described in section 7.2.
behavior_condition_applications part property is used for composing behavior
conditions—applied to an analysis body assembly—in an ABB system model. A
behavior condition represents a constraint imposed on the analysis body assembly.
The property type Behavior_Condition_ABB represents behavior conditions (a special
type of ABB) and is described in section 7.2.

behaviors reference property is used for representing the set of behavior parameters
that may be computed for the subject ABB system model. The property type
Behavior_ABB represents behaviors (characterized by behavior parameters) and is a

special type of ABB described in section 7.2.

The lower bound on the cardinality of these part properties denote that during model

development, an ABB system model instance may exist without the ABB model

instances that compose it. The upper bound on the cardinality indicates the maximum

number of ABB instances of each type that may compose an ABB system model. Note

that the ABB system—as defined here—is targeted specially towards physics-based

behavior models. However, specializations of the ABB system can be defined for

representing different types of behaviors, such as physics-based behaviors (as in this

case) and state-based behaviors.
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The Behavior_Model_ABBSys block is a specialization of the ABBSys block to
distinguish an ABB system model used in a behavior model from any other ABB system
model. An ABB system model may be composed of two or more ABBs and may not
necessarily represent the behavior of a physical continuum (analysis body system). In
contrast, a Behavior_Model_ABBSys is designed to represent an ABB system model that
may be solved using a solution method to compute behavior parameters of a physical
continuum. Hence, a Behavior_Model_ABBSys instance must be composed of: (a) one
instance of ABS_ABB that represents a physical continuum, (b) atleast one instance of
Load_ABB that represents the external stimulus under which the behavior is to be
computed, (c) atleast one instance of Behavior_Condition_ABB that represents the
conditions under which the behavior is being computed, and (d) atleast one instance of
Behavior_ABB that represents the behavior parameters that may be computed for the
subject analysis body system. The first two requirements are necessary for computing
behavior parameters in a solver. In addition, the third requirement may be necessary for
certain class of problems. The fourth requirement is necessary a more complete definition
of the model. Note that the cardinality of the part properties may have been constrained to
represent these requirements but they are relaxed to represent in-development
Behavior_Model_ABBSys instances.

Behavior_Model_XContext block represents the context of the behavior model—
the specific analyzable artifact model whose behavior shall be computed using the
behavior model. It is the main construct for representing behavior idealization
relationships between an analyzable artifact model and an ABB system model. These
idealization relationships associate an analyzable artifact assembly to an analysis body
assembly. Specifically, idealization relationships between the following pairs of entities
realize this association: (a) between components of analyzable artifact assembly and
components of analysis body assembly, (b) between analyzable features and analysis
features, and (c) between interactions among analyzable artifact components and
interactions among analysis body components. Analyzable features are features defined
in an analyzable artifact assembly (section 6.1.2) while analysis features are features
defined in an analysis body assembly. Like an analysis body, analysis feature is a special
type of ABB and described in section 7.2. The three types of idealization relationships
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above are represented by Analyzable_Artifact_ ABS_Relationship,
Analyzable_Feature_Analysis_Feature_Relationship, and
Analyzable_Feature_Analysis_Feature_Interface_Relationship blocks respectively. The
part property aa_abs_rel is of type Analyzable Artifact ABS_Relationship and is used for
composing the behavior idealization relationship between the analyzable artifact
assembly and analysis body assembly in the behavior model. The cardinality of the part
property indicates that a Behavior_Model_XContext instance may exist independent of the
idealization relationship but the reverse is not permitted. An idealization relationship
must always be defined in the context of a behavior model.
Analyzable_Artifact_ ABS_Relationship block is used for representing behavior
idealization relationships between an analyzable artifact assembly and an analysis body
assembly. In essence, these relationships idealize the behavior of an analyzable artifact
assembly as the behavior of an analysis body assembly continuum. The
Analyzable_Artifact ABS_Relationship block has following four reference properties:
= associated_aa reference property is used for referring to the analyzable artifact
assembly that is participating in the idealization relationship

= associated_abs reference property is used for referring to the analysis body (or
analysis body assembly) participating in the idealization relationship

» shape_idealization reference property is used for representing the relationship
between the geometric shapes of the analyzable artifact assembly and analysis body
(or analysis body assembly).

= material_behavior_idealization is used for representing the relationship between
material behaviors of the analyzable artifact assembly and analysis body (or analysis
body assembly).

The Analyzable_Artifact_ ABS_Relationship block has the following three part properties in

addition to the reference properties above:

= constituent_aa_abs_rels part property is a recursive relationship used for composing
idealization relationships between analyzable artifact and analysis body sub-

assemblies (children) in the idealization relationship between parent assemblies.
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af_anf_rels part property IS of type
Analyzable_Feature_Analysis_Feature_Relationship block which is used for
representing relationships between analyzable features and analysis features.

af_anf_interface_rels part property is of type

Analyzable_Feature_Analysis_Feature_Relationship which is used for representing
relationships between component interfaces in the analyzable artifact assembly and
component interfaces in the analysis body assembly. Specifically, it maps component

interfaces in the analyzable artifact assembly to analysis body interfaces and

behaviors in an analysis body assembly.

Table 7.1: Guidelines for modeling idealization relationships between

analyzable artifacts and analysis bodies

Idealization case

Modeled as

Single analyzable artifact
corresponds to a single analysis

body

One AA_ABS Rel instance that relates the

analyzable artifact to the analysis body

Single analyzable artifact
decomposed to create an analysis

body assembly

One AA_ABS Rel instance that relates the
analyzable artifact to the analysis body assembly;
the instance is composed of multiple AA_ABS_Rel
instances of the following type.

For each analysis body, an AA_ABS_Rel instance
that relates the analyzable artifact to the analysis

body.

Assembly of analyzable artifacts
composed (or lumped) to create a

single analysis body

One AA _ABS Rel instance that relates the
analyzable artifact assembly to the analysis body;
this instance is composed of multiple AA_ABS_Rel
instances of the following type.

For each analyzable artifact, an AA_ABS_Rel
instance that relates each analyzable artifact to the

analysis body.

Combination of decomposition

and composition

Combination of above

130




Table 7.1 above shows guidelines to model different idealization cases using
Analyzable_Artifact_ ABS_Relationship (AA_ABS_Rel) block instances.
Analyzable_Feature_Analysis_Feature_Relationship block is used for representing
idealization relationships between analyzable features and analysis features. Analyzable
features are geometric features of an analyzable artifact assembly that are defined for
analysis purposes (section 6.1.2). Analysis features are geometric features of an analysis
body assembly that are also defined for analysis purposes. They are a special type of
ABB and are described in section 7.2.
The Analyzable_Feature_Analysis_Feature_Relationship block has the following
reference properties:
= associated_af is used for referring to the analyzable feature participating in the
idealization relationship
= associated_anf is used for referring to the analysis feature participating in the
idealization relationship
= shape_idealization is used for representing the geometric relationship between the
analyzable feature and the analysis feature.
Table 7.2 below shows guidelines to model different idealization cases using
Analyzable Feature_Analysis_Feature_Relationship (AF_ANF_Rel) block instances.

Table 7.2: Guidelines for modeling idealization relationships between

analyzable features and analysis features

Idealization case Modeled as

Single analyzable feature | = One AF_ANF_Rel instances relates the analyzable
corresponds to a single analysis feature to the analysis feature
feature

Single analyzable feature is|= For each analysis feature, an AF_ANF_Rel

decomposed to create several instance that relates the analyzable features to the

analysis features analysis feature

= One may also create an AF_ANF_Rel instance that
relates the analyzable feature to the parent
analysis feature—composed of the individual

analysis features.
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Several analyzable  features | = For each analyzable feature, an AF_ANF_Rel

composed (or lumped) to create a instance that relates the analyzable feature to the

single analysis feature analysis features.

= One may also create an AF_ANF_Rel instance that
relates the analysis feature to the parent
analyzable feature—composed of the individual

analyzable features.

Combination of decomposition | = Combination of above

and composition

Analyzable_Feature_Analysis_Feature_Interface_Relationship is used  for
representing relationships between component interfaces in the analyzable artifact
assembly and component interfaces in the analysis body assembly. It has the following
three reference properties:
= associated_aa_interaction reference property is of type AA_AA Interaction block
which is used for representing component interfaces in the analyzable artifact
assembly (section 6.1.2).

= associated_ab_interaction reference property is of type AB_AB_Interaction_ABB block
which is used for representing analysis body interactions in an analysis body
assembly. Analysis body interaction is a special type of ABB and described in section
7.2. The interaction is described by specifying analysis features participating in the
interaction and the interaction behavior in terms of mathematical relations between
behavior parameters of the participating analysis bodies.

The Core Behavior Model accounts for multi-physics analyses in two possible
ways: (a) defining behavior models that have specialized analysis bodies representing
coupled behavior, such as analysis bodies that represent both structural and thermal
behaviors, and (b) defining separate behavior models—one corresponding to each
analysis discipline—and relating the behavior parameters in one model to the load (or
behavior condition) parameters in another behavior model, such as when thermal loads
result in temperature changes in an analysis body system, causing structural deformation.

The Core Behavior Model is illustrated using examples in section 7.4.
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7.2 ABB Meta-Model

In this section, the ABB Meta-Model is presented. The ABB Meta-Model is a
meta-model for representing analysis building blocks models (ABB models) and analysis
building block system models. The ABB Meta-Model is described here by specifically
focusing on the following key questions.
1. What is an ABB model?
2. What are the different types of ABB models?
3. What is the type of knowledge embodied in ABB models?
4. What is an ABB system model?
5. What is the type of knowledge embodied in an ABB system model?

Aspects of the ABB Meta-Model that address questions 1, 2, and 3 are presented

in section 7.2.1 and those that address questions 4 and 5 are presented in section 7.2.2.

7.2.1 Analysis building block (ABB) model
The ABB Meta-Model defines the constructs and relationships for representing

analysis building block models. In the Knowledge Composition Methodology, an ABB
model is defined as follows.

An Analysis building block (ABB) model represents a specific aspect of domain
theoretic knowledge (section 3.2.3) that is necessary for defining behavior models of
artifacts. An ABB model is the atomic unit for representing this knowledge.

ABB models (referred as ABBs for brevity) represent choices available to
analysts when taking decisions for creating behavior models. There are several types of
ABBs. All ABBs of a given type correspond to choices available to analysts for taking a
specific type of decision. Examples of types of ABBs (and choices for each type) are as
follows: Analysis Body ABB (plane stress analysis body, shell analysis body); Load
ABB (point force load, temperature load); and Analysis Body Interaction ABB (shell-
shell interaction, solid-shell interaction). In the KCM, ABBs are derived and organized
based on analysis knowledge dimensions (section 0). The dimensions are a conceptual
organization of types of decisions (and available choices) and consistency and
completeness of a set of decisions for creating behavior models. The SysML block
definition diagram shown in Figure 7.4 below illustrates the types of ABBs that are

represented using the ABB Meta-Model.
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bdd [Model] ABE_Meta_Model [ @Types_of_AEiBs ]J
==hlock=>
AEB
==hlock=> ==hlock== = | ==hlock=> 3 ==hlock==

Behavior_ABE Analysis_Feature_AEB Shape Analysis_Body_System_ABB
==hlock== = ==hlock== = ==block== = -l
. e H —|ABS_ABB

Load_ABB Behavior_Condition_ABB Analysis_Body_ABB

==hblock== = ==blocks=
Material_Behavior_ABB AB_AB_Interaction_ABB

Figure 7.4: Types of ABBs represented using the ABB Meta-Model

All ABBs are modeled as specializations of the ABB block. The type of decision
represented by each specialization of the ABB block is as follows:

= Analysis_Body ABB block is used for representing analysis bodies. It represents the
form and idealized behavior of a family of analysis bodies.

An analysis body is an idealization of an artifact such that it exhibits an idealized
sub-set of behaviors of the artifact. These behaviors are formalized as mathematical
expressions relating the behavior parameters, the form parameters of the analysis body,
and the behavior environment in which the behaviors are computed (such as load and
behavior conditions). Some examples of analysis bodies are plates, shells, membranes,
linear springs, and linear resistor. For instance, when an artifact is idealized as a linear
spring, its axial extension/compression behavior is abstracted from other behaviors that
an artifact may exhibit and this extension/compression behavior is idealized to be linear
and elastic like a spring (i.e. linear deformation is directly proportional to the applied
extensional forces). The intent of defining an analysis body is to idealize the behavior of
an analyzable artifact as the behavior of an analysis body (or an analysis body assembly).
The behavior models of an analysis body are well-established from existing knowledge—
analytical models derived from domain theories to response surface models derived from

physical experiments.
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= Analysis_Body_ System_ABB block is used for representing analysis body assemblies
(or systems). An analysis body assembly is represented using a set of analysis bodies
that are components of the assembly and the interactions among these analysis bodies.
The analysis body components in an analysis body assembly are usages of pre-defined
analysis bodies (represented as analysis body models), and the interactions among
these components are usages of pre-defined interactions (represented as analysis body
interaction behavior models). Example of analysis body assemblies are solid-shell

assembly, or beam-shell assembly.

= ABS ABB block is generalization of Analysis_ Body ABB  block and
Analysis_Body System_ABB block.

= Analysis_Feature_ABB block is used for representing analysis features defined on
analysis bodies or an analysis body assemblies.

An analysis feature is a specific aspect of the shape of analysis body or analysis
body assembly that is defined for analysis purposes such as to define geometric regions
where behavior parameters are to be computed, or regions where loads and behavior
conditions are to be applied.

= AB_AB_lInteraction_ABB block is used for representing interaction behaviors between
analysis bodies. The interaction behavior among analysis bodies in an assembly can be
defined using math models relating behavior parameters of the analysis bodies at their

interaction regions (represented as analysis features).

= Shape block is used for representing geometric shapes. Since this construct is
used for other meta-models in the KCM, its name does not have the ABB suffix

as the case with other types of ABB models described here.

= Material_Behavior_ABB block is used for representing constitutive material behavior of
analysis bodies. Examples of material behavior models are: linear elastic isotropic
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temperature-independent material behavior and linear viscoelastic isotropic

temperature-independent mater behavior.

Load_ABB block is used for representing loads applied to an analysis body or an
analysis body assembly.
A load is the stimulus to which the response of an analysis body (or analysis body

system) is to be computed. Loads are applied to analysis features defined on analysis

bodies or analysis body assemblies. Some examples of loads are: force, moment,

temperature, and heat generation rate.

Behavior_Condition_ABB block is used for representing behavior conditions. Behavior
conditions are additional conditions applied to analysis body or analysis body
assemblies under which their response to loads is to be computed. Examples of
behavior conditions include initial value conditions or boundary conditions. Behavior
conditions are typically described using math constraints involving behavior

parameters.

Behavior_ABB block is used for representing the set of behavior parameters that may be
computed for a given analysis body or an analysis body assembly.

The ABB Meta-Model also defines the specific aspects of domain theoretic

knowledge represented for each ABB type. It defines four foundational aspects of this

knowledge. These are:

Context—to identify the domain theoretic concept being represented by an ABB. The
context for each ABB type is defined in section 7.2.1.1. The context attribute of an
ABB is static—not instantiated with an ABB instance. This is because the context
attribute of an ABB defines the characteristics of the specific ABB class and not its
instances.

Property—to model the domain theoretic concept as parameters and relations. The

properties for each ABB type are defined in section 7.2.1.2.
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= Application Conditions—to describe the conditions that must be satisfied for using an
ABB when composing ABB systems or sub-systems. The application conditions for
each ABB type are defined in section 7.2.1.3. The application conditions attribute of
an ABB is also static since it defines the characteristics of the specific ABB class and
not its instances.

= Application Transforms—to define the behavior model composition transformations
when an ABB is used to compose ABB systems (and hence behavior models). The
application transforms for each ABB type are defined in section 7.2.1.4. The
application transforms attribute of an ABB is also static since it defines the
characteristics of the specific ABB class and not its instances.

bdd [Model] ABE_Meta_Mode! [ @ Types_of_ABBs ]J

==hlock=> =
AEB

context : ABE Context

property . ABB_Property
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—— |
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<<plock>= = <<block>>
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context : Material Behavior Cortest context : AB AB Interaction Cortext
property : Material_Behavior_Property property : AB_AE_Interaction_Property

Figure 7.5: Aspects of domain theoretic knowledge represented in each ABB type

Figure 7.5 above illustrates how these four foundational aspects are represented for each
ABB in the ABB Meta-Model. Note that the static attributes of each ABB are underlined.

Details of the four foundational aspects of ABBs are as described below.

7.2.1.1 ABB Context - what concept is being represented?
This aspect of an ABB is used to represent contextual knowledge about the

domain theoretic concept represented by the ABB. This contextual knowledge can be
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used by analysts to query ABBs in a library and to test the mutual compatibility of
candidate ABBs selected for composing ABB system models. The contextual knowledge
is modeled by populating the contextual attributes of each ABB with pre-defined
keywords. The type of the each contextual attribute is a list of allowable keywords for
that attribute. The allowable keywords for each attribute are governed by the blocks
(classes) in the Analysis Body Dimension model defined in section 7.5.2 and KCM’s
Generic Properties Meta-Model defined in section Appendix 3. In effect, the keywords
tag an ABB thus making it easier to search it in a large library of ABBs. The set of
keyword tags for each ABB is unique and unambiguous. For example, the contextual
attributes for material behavior ABB are the following: (i) material behavior
parameters—set of parameters used for characterizing material behavior, such as
Young’s Modulus and Poisson’s Ratio, (ii) material behavior discipline, such as
structural behavior and thermal behavior, (iii) material behavior distribution, such as
isotropic and orthotropic, (iv) material behavior variation, such as linear, bi-linear, non-
linear. Material behavior variation is further characterized as (a) variation of stress with
strain, (b) variation of material behavior parameters with temperature, and (c) variation of
stress and material behavior parameters with strain rate. In this manner, the context
attribute of each ABB, when populated, allows analysts to query ABBs from a library of
ABB:s.

Figure 7.6 illustrates the ABB Context Meta-Model (subset of the ABB Meta-
Model) for representing the contextual knowledge in ABBs. The ABB Context Model
defines the contextual attributes for each ABB type. The ABB Context Meta-Model is
founded on the analysis knowledge dimensions (section 7.5) and is extensible to defining

the contextual attributes of other types of ABBs..
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Figure 7.6: ABB Context Meta-Model for representing contextual knowledge in ABBs
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The central construct in the ABB Context Meta-Model is the ABB_Context block. All
other blocks are specializations of the ABB_Context block and are used for representing
the context of the corresponding ABBs. For example, the Analysis_Body_Context block is
used for representing the context of analysis body ABB and so on. Note that context of an
ABB is a static attribute. Thus, the attributes of context blocks (used for populating the
context of each ABB) are also static and shown as underlined in Figure 7.6. The

constructs in the ABB Context Meta-Model and their properties are described below

= Analysis_Body Context block is used for representing contextual knowledge for
analysis body ABB. The following five reference properties are used for characterizing
this contextual knowledge:
0 ab_discipline refers to the analysis discipline (such as structural or thermal)
associated which the idealized behaviors represented by an analysis body.
0 ab_space refers to geometric space used for defining the shape of an analysis body.
0 ab_active_DOFs refers to the number and type of degrees-of-freedom used for
defining the behavior of an analysis body
0 associated_mb_context refers to the context of the material behavior associated with
an analysis body
0 ab_behavior_parameters refers to the behavior parameters that can be computed for
an analysis body
= Analysis_Feature_Context block is used for representing contextual knowledge for
analysis feature ABB. The following two reference properties are used for
characterizing this contextual knowledge:
0 associated_ab refers to the context of the analysis body that owns the analysis
feature.
o feature_space refers to the geometric space of an analysis feature (e.g. 1D feature—
point; 2D features—Iline and plane; and 3D features—surface and volume).
= Material_Behavior_Context block is used for representing contextual knowledge for
material behavior ABB. The following four reference properties are used for

characterizing this contextual knowledge:
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0 mb_parameters refers to parameters used for describing the material behavior (such
as Young’s Modulus, Poisson’s Ratio, etc.)

0 mb_discipline refers to the analysis disciplines for which the material behavior is
being described (such as structural discipline and thermal discipline). The type and
number of material behavior parameters depend on the discipline.

0 mb_distribution refers to the idealized distribution of material in the analysis body
such as isotropic, transversely isotropic, and orthotropic. The material distribution
governs the number of material behavior parameters.

0 mb_variation refers to the variation of material behavior parameters, such as linear,
bi-linear, and non-linear. Material_Behavior_Variation_Context block is used for
characterizing the variation.

Material_Behavior_Variation_Context block is used for characterizing the types of

variation of material behavior. The following three reference properties are used for

characterizing this contextual knowledge:

O stress_strain_based_variation represents variation characterized as the variation of
stress-strain response of a material.

O temperature_based_variation represents variation characterized as the variation of
material behavior parameter values with respect to temperature.

O strain_rate_based_variation represents variation characterized as the variation of
stress with respect to strain rate (or deformation rate).

AB_AB_Interaction_Context block is used for representing contextual knowledge for

analysis body interaction ABB. The following three reference properties are used for

characterizing this contextual knowledge:

o relating_ab_feature_context and related_ab_feature _context refer to the context
two analysis features participating in an analysis body interaction.

o relating_behavior_parameters and related_behavior_parameters refer to behavior
parameters (at each analysis feature) used for defining the interaction. For example,
if two solid bodies are glued together, then the displacement parameters (translation
and rotation) at the glued surfaces are wused for populating the
relating_behavior_parameters and related_behavior_parameters  contextual

properties.
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= Analysis_Body_System_Context block is used for representing contextual knowledge

for analysis body system ABB. The following two reference properties are used for

characterizing this contextual knowledge:

(0]

associated_ab_context refers to the context of each analysis body used for creating
an analysis body assembly.

associated_ab_interaction_context refers to the context of each interaction (between
analysis bodies) in an analysis body assembly.

constituent_absys_context refers to the context of sub-assemblies in the top level
analysis body assembly. An analysis body assembly may be composed of analysis
bodies, or analysis body sub-assemblies, or combinations of both.
associated_behavior_parameters refers to the behavior parameters used for

representing the behavior of the analysis body system.

= Behavior_Condition_Context block is used for representing contextual knowledge for

behavior condition ABB. The following four reference properties are used for

characterizing this contextual knowledge:

(0]

bc_discipline refers to the analysis discipline for which the behavior condition is
described. For example, structural boundary conditions and thermal boundary
conditions are described for structural and thermal analysis disciplines respectively.
The value of this property is governed by the discipline associated with the behavior
parameters that are used for describing the behavior condition.

bc_model refers to the type of behavior condition. Boundary conditions (for
boundary value problems) and initial conditions (for initial value problems) are
examples of different types of behavior conditions.

bc_application_space refers to the geometric space (such as point, line or surface)
over which a behavior condition is applied.

bc_parameters refers to the behavior parameters used for describing behavior
conditions. For example, displacement parameters (ux, Uy, Uz, Oy, 6y, 6,) are used for

describing a displacement boundary condition.

= Load_Context block is used for representing contextual knowledge for load ABB. The

following five reference properties are used for characterizing this contextual

knowledge:
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o load_application_domain refers to the geometric space over which the load is
applied. For example, a concentrated point load is applied at a point, and a
distributed load may be applied along a line/curve, or over a surface.

o load_space_variation refers to the variation of load over the geometric space over
which it is applied. For example, a load may be distributed uniformly or non-
uniformly over the application domain.

o load_time_variation refers to the variation of load over the time domain. For
example, a point force may be constant or vary with time.

0 load_discipline_specific_type refers to the analysis discipline for which the load is
described. The types of loads are different for each analysis discipline. For example,
force, moment, and temperature are loads in the structural analysis discipline, and
heat flux and heat generation rate are loads in the thermal analysis discipline.

O load_parameter_type refers to the parameters used for representing loads, such as
force parameter, moment parameter, and temperature parameter.

Behavior_Context block is used for representing contextual knowledge for behavior

ABB. The following six reference properties are used for characterizing this contextual

knowledge:

o behavior_modes refers to the different modes of behavior of the analysis body
system. For example, in the structural analysis discipline, small deformation and
large deformation are examples of different behavior modes. The governing
concepts and the analytical formulations for these modes are different. Stress
stiffening, fatigue, and fracture modes are specific types of large deformation mode.

o behavior_parameters refers to the behavior parameters used for quantifying the
behavior of an analysis body system. Displacement, stresses, and strains are
examples of behavior parameters in the structural discipline while temperature is an
example of a behavior parameter in the thermal discipline.

o behavior_discipline refers to the analysis disciplines such as structural, thermal,
electromagnetics

o behavior_space refers to the behavior space of the analysis body system. Behavior
space is characterized by: (a) geometric space defined to describe the form of an
analysis body system, such as 1D or 2D, and (b) number of independent behavior
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parameters used for characterizing the behavior of an analysis body system. For
example, the geometric space used for defining a beam-rod—an analysis body that
exhibits axial deformation and bending behavior—with constant cross-section is 1-
dimensional, while it has 2 independent behavior parameters (axial deformation and
transverse deflection). The purpose of this reference property is to better
characterize the meaning of the commonly used terms such as “1D analysis
problem” and “2D analysis problem”.

o behavior_load_variation refers to the variation of behavior parameters with respect
to the applied loads. For example in the case of an idealized linear spring, the
deformation varies linearly with the applied forces. This is an example of linear
behavior.

0 behavior_time_variation refers to the variation of behavior parameters with respect
to time. For transient behavior, behavior parameters vary with temperature while for
steady-state or static behavior, behavior parameters are idealized to be constant with

respect to time.

7.2.1.2 ABB Property - how is this concept represented?

The knowledge represented by the context attribute of an ABB can enable
analysts to search ABBs in a library, and identify semantic conflicts between the different
ABBs used for composing behavior models. In contrast, the property attribute of an ABB
is used for representing parameters and relations that mathematically define the domain-
theoretic concept represented by the ABB. When ABBs are composed to create an ABB
system, the property attributes of different ABBs are associated with each other via
mathematical relations. As an example, the contextual attribute of the Hook’s Law
Material Behavior ABB has keywords that collectively state that the stress-strain co-
variation is linear but the property attribute of this ABB represents the behavior
parameters (Stress o, Strain g, and Young’s Modulus Y), and the linear mathematical

equation between them (c/e = Y).
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bdd [Fackage] ABE_Property| @AEIEI_Pererly_EIDD ]J

==<hlock=>
Analysis_Body Property

=<<hlock=>
Material Behavior Property

=

shape : Shape

associated_behavior_property : Behavior_Property [1..%]
associated_mb_property : Material_Behavior_Property
constituent_analysis_features : Analysis_Feature_Property [

mb_parameters : Material_Behavior_Parameter_Type [1..*]
mhb_parameter_relations : Mathematical_Relation [1.%]

==plock== =
Load Property

=<plock==
Analysis Body System_ Property

F——= ABS Property

==plock== = |

=

constituent_afs_propery : Analysis_Feature_Property [0.%]
constituent_abs_property : ABS_Property [1.%]
associated_behavior_property : Behavior_Property [1..%]

constituent_ab_ahb_interactions_propery : AB_AB_Interaction_Property [1..%]

+constituent_absys +of_ahsys
[ 0.1
=<hlock==

AB_AB_Interaction_Property

— | ABB_Property

==plocks== = |

iy

load_type : Load_Parameter_Type

|load_application_domain : Analysis_Feature_Froperty

load_distribution_function : Mathematical_Relation [1..*]

=<hlock==> =
Behavior_Property

= |

relating_analysis_feature : Analysis_Feature_Property
related_analysis_feature : Analysis_Feature_Property
relating_behavior_parameters : Behavior_FParameter [1..%]
related_behavior_parameters : Behavior_Parameter [1.%]
interaction_relations : Mathematical_Relation [1..%]

=<plock==
Analysis_Feature_Property

associated_ab_or_ahsys : ABS_Property
associated_feature_shape : Shape

6a*nalysif_sub_featuresuT1 +of_analysis_featura

hehavior_parameters : Behavior_Parameter [1..%]
hehavior_parameter_relations : Mathematical_Relation [0..*]
hehavior_computation_domain : Analysis_Feature_Property

=<plock== = |
Behavior_Condition_Property

— |bc_parameters : Behavior_Condition_Parameter_Dim [1.%]

he_application_domain : Analysis_Feature_Property
bc_relations : Mathematical_Relation [1..*]

Figure 7.7: ABB Property Meta-Model for representing properties of ABBs
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Figure 7.7 illustrates the ABB Property Meta-Model (subset of the ABB Meta-
Model) for representing the property attribute of ABBs. The ABB Property Meta-Model
defines the constructs for representing the property attribute of different types of ABBs. It
is founded on the analysis knowledge dimensions (section 7.5) and is extensible to
defining the properties of other types of ABBs.

The central construct in the ABB Property Meta-Model is the ABB_Property
block. All other blocks are specializations of the ABB_Property block and are used for
representing the properties of corresponding ABBs. For example, the
Analysis_Body_Property block is used for representing the property of analysis body ABB
and so on. Note that the values populating the property attribute of an ABB do not
explicitly convey the semantics of the physical concept being represented by the ABB.
For example, the property attribute of Hooke’s Law Material Behavior ABB represents
the stress, strain, and Young’s Modulus parameters and the linear equation relating the
three (stress = strain * Young’s Modulus) but it does not explicitly describe the nature of
the equation (linear) or the material distribution assumed (isotropic versus orthotropic).

The constructs in the ABB Property Meta-Model are described below.
= Analysis_Body Property block is used for representing the property attributes of

analysis body ABB. It has the following four reference properties:

0 shape refers to the geometric shape of the analysis body. The reference property type
is the Shape block that is reused across all meta-models in the KCM—CPM2_xKCM,
CBM, and ABB Meta-Model. KCM leverages STEP Part 42 (ISO 10303-42 2000)
standard for representing geometric shapes. Thus, the Shape block is an abstraction
for geometry representation entities in Part 42.

0 associated_behavior_property refers to the behavior parameters that may be
computed for the analysis body, and the relations among these behavior parameters in
the context of the analysis body. The reference property type is the Behavior_Property
block. For example, for a linear mechanical spring (an analysis body ABB), the only
behavior parameter that may be computed is the deformation of the spring along its

axis (Ux).
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0 associated_mb_property refers to the material behavior ABB that represents the
constitutive material behavior of the analysis body. The reference property type is the
Material_Behavior_Property block.

O constituent_analysis_features_property refers to the analysis features defined on the
analysis body. The reference property type is the Analysis_Featuare_Property block.
Analysis features are defined to identify geometric regions defined on an analysis
body (or assembly) where behavior parameters are to be computed, interactions need
to be defined among analysis bodies, and/or load and behavior conditions need to be
applied.

= Analysis_Feature_Property block is used for representing property attributes of analysis
feature ABB. It has the following two reference properties:

0 associated_ab_or_absys refers to the analysis body or analysis body assembly on
which the analysis feature is defined. The reference property type is the
Analysis_Body Property block.

0 associated_feature_shape refers to the shape of the analysis feature defined on the
analysis body or analysis body assembly. The reference property type is the Shape
block.

0 analysis_sub_features refers to analysis features that are sub-features of the given
analysis feature. This reference property represents the composition of analysis
features from analysis features. For example, if a surface is identified as an analysis
feature and a point on the surface is identified as another analysis feature, then the
two analysis features are related by this reference property.

= AB_AB_Interaction_Property block is used for representing property attributes of
analysis body interaction ABB (AB_AB_Interaction_ABB block). The analysis body
interaction ABB represents the interaction behavior among two analysis bodies in an
analysis body assembly. The interaction behavior is defined between analysis features of
the analysis bodies participating in the interaction. The AB_AB_Interaction_Property
block has the following two reference properties:

o relating_analysis_feature and related_analysis_feature refer to the two analysis

features (each defined on an analysis body) participating in the interaction.

147



O relating_behavior_parameters and related_behavior_parameters refer to two sets of
behavior parameters that are used for defining the interaction behavior.

O interaction_relations refer to mathematical relations defined using the relating and
related behavior parameters.

For example, the No-slip interaction ABB (type of analysis body interaction ABB) can

be used to create a tie constraint between two analysis features—at which the

corresponding analysis bodies contact each other—such that there is no relative
displacement between the analysis features. In the No-slip interaction ABB, the relating
and related analysis features would refer to the two analysis features participating in the
contact respectively; the relating and related behavior parameters refer to the
displacement parameters (ux, Uy, Uz, Bx 0y, ;) defined at each analysis feature; and the
interaction relations would refer to the mathematical equations that bind the

displacement parameters at the analysis features (U =uy?, uylzuyz, ...:where u,* and u,?

are the displacement parameters at analysis features 1 and 2 respectively, and so on).

Analysis_Body System_Property block is used for representing property attributes of

analysis body system ABB. It has the following four reference properties.

O constituent_ab_ab_interactions_property refer to the interactions defined between
analysis bodies in the context of the analysis body system. The reference property
type is AB_AB_ Interaction_Property block.

O constituent_af_property refer to the analysis features defined on the analysis body
system. The reference property type is Analysis_Feature_Property block.

O constituent_abs_property refer to the analysis body components of the analysis body
system. The reference property type is Analysis_Body_Property block.

O constituent_absys and of _absys refer to the children sub-systems and parent sub-
system of an analysis body system respectively. The reference property type is
Analysis_Body System_Property block.

O asociated_behavior_property is used representing the behavior parameters computed
for the analysis body system and the analysis features at which they are computed.

ABS_Property block is used for representing property attributes of an analysis body

ABB or analysis body system ABB. It is the generalization of Analysis_Body_Property

block and Analysis_Body_System property block.
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= Material_Behavior_Property block is used for representing property attributes of material
behavior ABB. It has the following two reference properties.

0 mb_parameters refers to the material behavior parameters used for defining the
material behavior.

0 mb_parameter_relations refer to the mathematical relations established among
material behavior parameters to define the material behavior. These mathematical
relations may have an analytical form (such as equations) or a tabulated form (such as
material property-value tables generated in physical experiments). In general, KCM
has pre-defined specializations of the Mathematical_Relation block for representing
analytical, logical, tabulated relations, and is extensible to developing other
specializations.

= Load_Property block is used for representing property attributes of the load ABB. It has
the following three reference properties.

0 load_type refers to the type of load and the load parameter used for defining the load.
For example, force is a structural load defined using the force parameter (denoted as
F) and heat generation rate is a thermal load defined using the heat generation rate
parameter (denoted as Qgen).

0 load_application_domain refers to the analysis features of an analysis body or analysis
body system to which the load is applied. Depending on the load type, loads may be
applied to a point, surface, or volume features.

0 load_distribution_function refers to the mathematical relations that describe the
variation of the load over the application domain. For example, a constant force load
would have a distribution function as F=constant while a force load that varies
linearly over a straight edge analysis feature would have the following distribution
function: F,=(x/L)*F_ where: F, is the force magnitude at a distance x from the origin
of the edge feature, L is the length of the edge feature, and F is the force magnitude at
the end of the edge feature.

= Behavior_Condition_Property block is used for representing property attributes of the
behavior condition ABB. It has the following three reference properties.

0 bc_parameters refers to parameters used for defining behavior conditions.
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0 bc_application_domain refers to the analysis features of an analysis body or analysis
body system on which the behavior conditions are defined.

0 bc_relations refers to mathematical relations—established among behavior condition
parameters—that are used for defining behavior conditions.

For example, if a boundary condition that constrains all degrees of freedom at a point on
an analysis body is to be defined, the behavior condition parameters are the
displacement parameters (ux, Uy, Uz Ox 6Oy 0,); the application domain is the point
analysis feature; and the behavior condition relations are the mathematical equations
that bind displacement parameters at the point analysis feature to 0, such as u=0, u,=0
and so on.

Behavior_Property block is used for representing property attributes of the behavior

ABB. Note that the behavior ABB is defined as an ABB to characterize and reuse the

definition of different types of idealized behaviors. It has the following two reference

properties.

0 behavior_parameters refers to the set of behavior parameters (such as displacement,
temperature, stress, and strain) that are used for characterizing the behavior.

0 behavior_computation_domain refers to the analysis features where the subject
behavior parameters are being computed.

0 behavior_parameter_relations refers to a set of mathematical relations defined using
behavior parameters. Together, the behavior parameters and the mathematical
relations are used for characterizing a behavior.

While the context and property attributes of an ABB define the concept
represented by the ABB, the application condition and the transformation rules attributes
define how an ABB may be used in composing an ABB system and hence a behavior

model.

7.2.1.3 ABB Application Conditions — what are the conditions for using this concept?
The application condition attribute of an ABB defines the pre-conditions for

using / applying the concept embodied in an ABB when composing ABB system model.

ABB application conditions are represented using mathematical relation such as

analytical, logical, or tabular that must be satisfied for an ABB to be used. For example,
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when an analyzable artifact is idealized as a shell, it is assumed that the in-plane
deformation (stretching) and bending effects dominate the deformation of the shell and
the out-of-plane tensile or compressive deformations are negligible. As the thickness of
the shell decreases, the stretching behavior dominates and all other deformations
behaviors are neglected. Thus, when an analyzable artifact is idealized as a shell, it is
assumed that the ratio of the thickness of the shell to the radius of curvature is
significantly less than unity. The application condition attribute of the shell analysis body
ABB is used to represent the mathematical relation (h/R <<1, where h is the thickness of
the shell and R is the radius of curvature). Hence, the application condition attribute of an
ABB represents an aspect of the domain theoretic concept represented by the ABB.

7.2.1.4 ABB Transformation Rules — how does one use this concept?

ABB transformation rules attribute of an ABB represents the model
transformations that are executed when the ABB is composed in an ABB system model
and when the ABB system model is composed in a behavior model. The following two
types of transformation rules are defined for an ABB: (i) transformation rules that
establish composition relationship between an ABB and the ABB system where is it to be
used, and (ii) transformation rules that establish idealization relationships between an
ABB and the corresponding analyzable artifact. While the former is defined for all ABBS,
the latter is defined only for those ABBs that are idealizations of some specific aspect of
the analyzable artifact model. These are analysis body ABB, analysis body system ABB,

In the KCM, the graph transformations and patterns are used for mathematically
defined these transformation rules. The transformation rules for each ABB type are

defined as part of the behavior model formulation method presented in Chapter 8.

7.2.2 Analysis building block (ABB) system model
An analysis body system model (referred to as ABB system for brevity) is a

model composed of ABB models. If ABBs are choices available to analysts for a certain
type of decision, then an ABB system is a grouping of selected choices for a certain set of
decisions. Similar to an ABB, an ABB system can be reused to create other ABB
systems. Figure 7.8 illustrates the ABB System Meta-Model (a sub-set of the ABB Meta-
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Model). An ABB system is represented by the ABBSys block and has the following four
part properties:
= abs_sys refers to an analysis body or analysis body system ABBs in the ABB system.

load_applications refers to load ABBs in the ABB system.
= behavior_condition_applications refers to the behavior condition ABBs in the ABB

system

behaviors refers to behavior ABBs in the ABB system
While there are a significantly large number of ABB systems that may be

composed from nine different types of ABBs defined in the previous section, two key

types of ABB systems defined using the ABBSys block in the KCM are as follows:

= Behavior Model ABB Systems - These types of ABB systems are represented by
the Behavior_Model ABBSys block—described in details in section 7.1.

= ABB systems that are logical groupings of ABBs and are used relatively
frequently when creating behavior models. For example, an ABB system
composed of a solid analysis body ABB with linear elastic isotropic material
behavior ABB.

==hlocks= = |
ABBSYys

abs_sys . ABS_ABB [0..1]

loads_applications : Load_ABE [0.%]

hehavior_condition_applications : Behavior_Condition_ABE [0..%]
hehaviors : Behavior_ABEB [0.%]

|

=<hlock==
Behavior_Model_ABBSys

Figure 7.8: ABB System Meta-Model

The ABB System Meta-Model illustrated in Figure 7.8 is also designed to allow
composition of multiple ABB systems to create a higher-level ABB system. This allows
for greater reuse of ABB systems across different behavior models. For example, if an
electronics designer/analyst was interested to compute the warpage behavior of printed
circuit assemblies and printed circuit boards, they could create a warpage behavior model
for printed circuit boards and reuse that behavior model to create a warpage behavior
model for printed circuit assemblies. Note that the ABBSys block does not have an explicit
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composition relationship to itself for realizing this use case. Instead, this composition is
realized by defining a new analysis body system that is composed of the analysis body
systems from the ABB systems that were to be composed. Similarly, the load application,
behavior conditions applications, and behavior attributes from the ABB systems are
‘merged’ to define the higher-level ABB system.

The composition of an ABB system from ABBs along with the composition rules
defined in each type of ABB (as transformation rule attribute) are described in details in
Chapter 8 as part of the Behavior Model Formulation Method of the Knowledge
Composition Methodology.

7.3 ABB Model Library

In this section, ABB models of each type are presented. Figure 7.9 illustrates the
three levels of ABB model abstractions. The ABB Meta-Model presented in section 7.2
defines the constructs for defining eight different types of ABBs. For each ABB type,
multiple ABB models may be defined as specializations of the corresponding type in the
ABB Meta-Model. For example, the analysis body ABB defined in the ABB Meta-Model
may be specialized to define Rod analysis body ABB (or Rod ABB for brevity), Beam
ABB, Shell ABB, and so on. ABB models are used for composing behavior meta-models
and behavior model structures—specifically the VTMB Artifact Behavior Meta-Model
(Level 3) and FTMB Artifact Behavior Model Structure (Level 4) as described later in
section 7.4. ABB models are instantiated to define behavior model instances—
specifically, the FTMB Artifact Behavior Model instance as described in section 7.4.
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bdd [Package] ABE_Model_Abstractions [ @ABB_ModeI_Absdradions ]J

==hlock== =
ABE Meta-Model

==plock==
ABB Model

1 |+isinstanceQf

1.* [ +hasInstances
=<plock==
ABB Model Instance

Figure 7.9: ABB model abstractions in KCM

As an example, the block Analysis_Body ABB defined in the ABB Meta-Model
represents analysis body ABBs. This block is specialized to define different types of
analysis body ABBs (such as Rod ABB, Beam ABB, and Shell ABB). Each of these
ABBs may be then instantiated such that its property attributes are populated—the Rod
ABB may be instantiated with specific values of the rod’s length, cross-sectional shape,
and its material behavior properties.

Examples of each of the eight ABB types are described below. For each ABB
type, one example is presented in details to describe how the ABB meta-model may be
specialized. Note that only the context and property attributes of ABBs are presented
here. The application conditions and transformation attributes are described in Chapter 8

as part of the behavior model formulation methods.

7.3.1 Analysis Body ABBs
An analysis body is an idealization of an artifact such that it exhibits an idealized

sub-set of behaviors of the artifact. An analysis body ABB represents the form and
idealized behavior of a family of analysis bodies. In the ABB Meta-Model (section 7.2),
the Analysis_Body ABB block is used for representing analysis body ABBs. This block
may be specialized to represent several types of analysis body ABB models as shown in
Figure 7.10. The blocks representing different analysis bodies are stated below:

= Structural_Body — represents analysis bodies with idealized structural behavior
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Thermal_Body — represents analysis bodies with idealized thermal behavior

Electric_Body — represents analysis bodies with idealized electric behavior

Magnetic_Body - represents analysis bodies with idealized magnetic behavior

Fluid_Body - represents analysis bodies with idealized fluid flow behavior
The structural body ABB (represented by Structural Body block) may be further
specialized into different types of structural analysis bodies such as Rod, Shaft, Beam,

Column, Plate, Shell, and Membrane as shown in Figure 7.10

bdd [Package] Analysis_Body_ABE_Library [ @Analysis_Bcdy_ABBs ]J

==phlock==
Analysis_Body ABB

==hlock== = ==plock== = =<hlock== =
Structural_Body Electric_Body Fluid_Body
T ==hlock== = ==hlock== =

‘ ‘ Magnetic_Body Thermal_Body
=<block=> [ =<hblock=> [ =<block=> [ 7
Rod Shaft Beam [ 1

==hlock== = ==hlock== =
Conduction_Body Radiation_Body

=<hlock=> [ =<hlock=> [ =<block=> 3 =<hblock=>
Column Plate Shell Membrane

<<block=>
Convection_Body

Figure 7.10: Analysis body ABBs

In addition, analysis bodies may be defined such that inherit the characteristics of one
more analysis bodies within the same discipline or across disciplines. For example, beam-
rod is a special type of analysis body that exhibits both transverse and axial deformation
behavior.

Note that ABBs are characterized using their context attribute, and the context of
each type of ABB is defined in the ABB Meta-Model. For example, the block
Analysis_Body_Context represents the context of analysis body ABBs in general. The
properties of this block characterize the context of analysis body ABBs. Specifically, the
context of analysis body ABBs can be represented in terms of the analysis discipline,
geometric space, active degrees-of-freedom, and material behavior. Any of these
characteristics may be used for organizing different types of analysis body ABBs in a
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hierarchy. In Figure 7.10, analysis body ABBs are organized based on the analysis
discipline.

For each of the analysis body ABBs described above, the context and the property
attribute types may be defined. For example, for the shell analysis body ABB,
Shell_Context and Shell_Property blocks represent the context and property type
respectively,  defined as  specializations of  Analysis_ Body Context  and
Analysis_Body_Property block respectively. The shell analysis body ABB defined here is
based on Kirchhoff-Love assumptions for thin elastic shells (Ventsel and Krauthammer
2001). Thus, the attribute values of the Shell_Context and Shell_Property block properties
indicate the shell analysis body ABB has an elastic material behavior and the stress and

strain behavior parameters normal to the mid-surface are neglected.

bdd [Package] Shell_Analysis_Body [ @Shell_ABEls U

==hlock== = |
Shell_Context

ab space : String = Analysis Body Space 3D

ab discipline : String = Analysis Body Structural Discipline

ab active DOFs : String [1.*]=Ux DOF, Ly DOF, Uz DOF Theta x DOF, Theta v DOF, Theta z DOF
ab behavior parameters : String= STRESS x STRESS y, STRESS xy, STRAIM x STRAIM y, STRAIN xy
associated mb context: Linear Elastic [sotropic Tempind MB Context

==hlock== =
Shell

context : Shell_Context
property - Shell_Property

==hlock== =
T Shell_Property
==hlock== = associated_behavior_property : Shell_Behavior_Property
Planar Shell associated_mb_property : Linear_Elastic_|sotropic_Tempind_MB_Property

context : Shell_Context
property : Planar_Shell_Property T

==hblock==
Planar_Shell_Property

shape : Planar_Shell_Shape

Figure 7.11: Shell analysis body ABB

Each of the analysis body ABBs described above may be further specialized. For example,
the shell analysis body ABB is specialized to represent planar shell analysis body ABB. A
planar shell is a shell whose mid-surface has a planar shape as shown in Figure 7.11. Only
the context and property attributes of the ABBs are shown here.

Note that the attributes of Analysis Body Context and its specializations are
static—values do not change when an analysis body ABB is instantiated. However, the
attributes of Analysis_Body_Property block are populated with specific values when an

analysis body ABB is instantiated. The context attribute of the planar shell analysis body
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ABB is of type Planar_Shell_Context block. The attribute values of this block characterize
a planar shell. In a similar manner, the Analysis_Body Property block is specialized to
represent shell property and planar shell property in particular. The shape attribute of the
Planar_Shell_Property block is of type Planar_Shell Shape. Also note that during
specialization the parent attributes are re-defined to better characterize the specializations.

7.3.2 Material Behavior ABBs
Material behavior ABBs are used for representing the constitutive material

behavior of analysis body ABBs. The Material_Behavior_ABB block is the parent block
for represent material behavior ABBs. The context attribute of material behavior ABBs
defines the key dimensions for characterizing material behavior ABBs, namely analysis
discipline, behavior parameters, distribution, and variation (described in details in section
7.2.1. Any of these dimensions may be used for creating a hierarchy of material behavior
ABBs. Figure 7.12 below illustrates blocks corresponding to different types of material
behavior ABBs organized based on analysis discipline, and defined as specializations of
the Material_Behavior_ABB block.

bdd [Package] Material_Behavior_ABB_Library [ @Ma{el ial_Behavior_ABBs ]J
==hlock==
Material_Behavior_ABB
==plock== =] ==plock== =] ==hlock==
Structural_Material_Behavior Electrical_Material_Behavior Magnetic_Material_Behavior
bt <<hlock>> = <<hlock>>
] Plastic Thermal Material Behavior Fluid_Material Behavior
==hlock==
1 Viscoelastic
==plock== =
Linear Elastic_Isotropic_Tempind_MB
==block== =
- Elastic
==hlock==
—=block=> = Linear_Elastic_Orthotropic_Tempind_MB
— Hyperelastic
==hlock== E
| Creep

Figure 7.12: Material behavior ABBs
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bdd [Package] Material_Behavior_ABB_Library [ @Liner_EIastic_TempInd_MB_AEBs ]J
<<hlock=> =]
Material_Behavior ABB T
L = — r .
context : Material Behavior Context L EEavior AR
property : Material_Behavior_Property T
==hlock=> = =<hlock=>
Linear_Elastic_lsotropic_Templnd_MB Linear_Elastic_Orthotropic_Tempind_MB
property : Linear_Elastic_lsotropic_Templnd_MB_Property property : Linear_Elastic_Qrhotropic_Tempind_MB_Property
context: Linear_Elastic_lsotropic_Templnd_MB_Property context : Linear_Elastic_Orthotropic_Templnd_MB_Context
<<plock=> = =<hlock== =
Material_Behavior_Context Material_Behavior Property
mb_parameters : String [1.* = Material Behavior Parameter Type mb_parameters : Material_Behavior_Parameter [1.]
mb_discipline : String = Material Behavior Parameters Dim mb_parameter_relations : Mathematical_Relation [1..%]
mb_distribution . String = Material Behavior Distribution Dim
mb _variation : Material Behavior Variation Context
EAY ==hlock==>
Linear_Elastic_|sotropic_Tempind_MB_Property
<=<block=> = |_|E:Youngs_Maodulus
f : i G : Shear_Modulus
Linear_Elastic_Orthotropic_Tempind_ME_Context U FR R
mb_parameters : String [1..*] = Youngs Modulus, Shear Modulus, Poissons Ratio, CTE E_G_MNU_rel:E=G™"2*(1+Nu)
[ {mb_discipline : String = Elastic
mb_distribution - String = Orthotropic
mb_variation: Linear Tempind Ratelnd Variation <<hlocks>
Linear_Elastic_Orthotropic_Tempind_MB_Property
P v Ex: Youngs_Modulus
hlock: = Ey: Youngs_Modulus
Linear_Elastic_|sotropic_Tempind_MB_Context Ez:Youngs_Modulus
Gx: Shear_Modulus
mb_parameters : String [1.*] = Y¥oungs Modulus, Shear Modulus, Poissons Ratio, CTE |Gy : Shear_Modulus
L_{mb discipline . String = Elastic Gz Shear Modulus
mb_distribution : String = |sotropic MUy : Poissons Ratio
mb_variation: Linear Tempind Rateind Variation MUy : Poissons_Ratio
NUz : Poissons_Ratio
E_G_MU_x_relation :E=G* 2* (1+Nu)
E_G_MU_y_relation . E=G* 2 * (1+Mu)
E_G_NU_z_relation : E= G * 2 * {1+Nu)

Figure 7.13: Linear elastic isotropic and orthotropic material behavior ABBs

Two specializations of the elastic material behavior ABB —linear elastic isotropic
temperature-independent material behavior ABB and linear elastic orthotropic
temperature independent material behavior ABB—are illustrated in details in Figure 7.13.
The context and property attribute types of these ABBs are also shown in the figure—
Linear_Elastic_lsotropic_Templnd_MB_Context and
Linear_Elastic_Isotropic_Tempind_MB_Property blocks for the linear elastic isotropic
temperature-independent material behavior ABB, and
Linear_Elastic_Orthotropic_Templind_MB_Context and
Linear_Elastic_Orthtropic_Tempind_MB_Property blocks for the linear elastic orthotropic
temperature-independent material behavior ABB. The attribute values of the context
blocks are populated with keywords that indicate the isotropic versus orthotropic material
distribution as the only difference between the two material behavior ABBs. The property
blocks for the two ABBs are defined as specializations of the Material_Behavior_Property

block, and the Material_Behavior_Property .mb_parameters and
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Material_Behavior_Property.mb_relations attributes are specialized to 3 parameters and 1
constraint relation for the linear elastic isotropic temperature-independent material
behavior ABB, and 9 parameters and 3 constraint relations for the linear elastic
orthotropic temperature-independent material behavior ABB. For the linear elastic
isotropic temperature-independent material behavior ABB, the three parameters are the
Young’s Modulus, Poisson’s Ratio, and Shear Modulus; and the constraint relation
relates the three parameters as shown in the parametric diagram in Figure 7.14. For the
linear elastic orthotropic temperature-independent material behavior ABB, the nine
parameters are the Young’s Modulus, Poisson’s Ratio, and Shear Modulus in three
principal directions; and the constraint relation relates the three parameters in each

principal direction as shown in the parametric diagram in Figure 7.15.

par [Block] Linear_Elastic_|sctropic_Templnd_MB_Property [ Linea|'_EIastic_IS01ropic_Taannd_MEi_Propeny ]J

==zhblock==
E: Youngs_Modulus

=<hlocks=:= 1 | |_F|_
G : Shear_Modulus :|G <<constraint==
E_G NU_ rel:E=G™*2*(1+Nu)
<<block== = j\]u {E=G™ 2" [1+Nu)}

NU : Poissons_Ratio

Figure 7.14: Constraint relations between E, G, and Nu parameters for

linear elastic isotropic temperature-independent material behavior ABB
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par [Block] Linear_Elastic_Orthotropic_Tempind_MB_Property [ Linea|'_EIastic_O|1hatropic_Tmnplnd_MEl_Propem; ]J

==hlock==
Ex : Youngs_Modulus

[ e

=<hlocks= = [T
Gx : Shear_Modulus =<constraint=>
E G _NU_x_relation:E=G*2 " (1+Nu)
=<=hlock== = MU {E =E*o* (1 +NLI:I}

NUx : Poissons_Ratio

=<hlock==

Ey : Youngs_Modulus

[E

==hlock== O = |_|
Gy : Shear_Modulus =<<constraint==
E G NU y relation: E=G*2* (1+Nu)
==hlock== = MU {E —E*o* (1 +NU:I}

NUy : Poissons_Ratio

=<hlock==
Ez : Youngs_Modulus

==zhlock== 0 | E
Gz : Shear_Modulus G LI

<=constraint==
=<block=> = E_G_NU_z_relation:E=G*2* (1+Nu)
NUz : Poissons_Ratio MU {E=G"27 (1+Nu)}

Figure 7.15: Constraint relations between E, G, and Nu parameters in each principal
direction for linear elastic orthotropic temperature-independent material behavior ABB

In a similar manner, the property types of other material behavior ABBs may be
defined with their corresponding parameters and relations. The constraint relations
between material behavior parameters may be available as a tabulated data between the
parameters.
7.3.3 Behavior ABBs

A Behavior ABB represents a set of idealized behaviors. When an analysis body
ABB is associated with a behavior ABB, it implies that the subject analysis body exhibits
the specific set of behaviors. In the KCM, behavior is characterized by the context and
property attribute of the behavior ABB, represented by the Behavior_Context and
Behavior_Property blocks respectively. The Behavior_Context block properties provide
several dimensions for characterizing behavior, as described in section 7.2. Figure 7.16
shows a set of behavior ABBs organized in a hierarchy based on the behavior discipline

dimension. The structural behavior ABBs represent different types of primitive structural
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behaviors, such as tension, compression, bending, torsion. A composite behavior may be
defined by multiply inheriting two or more types of behavior ABBs.

bdd [Package] Behavior_ABB_Library [ @ Behavior_ABBs ]J

s<hlock== = |
Behavior_ABB

|

==hlock== = ==plock== =
Thermal_Behavior_ABB Electrical_Behavior
==hlock== E “_mm:kbb y Q
==hlock=> = | Structural Behavior Magnetlc_Beha\rlor
Conduction [— =
<<block=> 3 | | |
Convection [— ==hblock=> =<block=> =<hlock=> 3
Tension Bending Vibration
=<block=>
Radiation =<block>> [ ==block>> ==block>> ==hblock>>
Harmonics Compression Torsion Buckling

Figure 7.16: Behavior ABBs

Figure 7.17 shows Structural_Behavior ABB block—representing structural
behavior ABB—defined as a specialization of the Behavior_ABB block. The property
values of Structural_Behavior_Context block characterize the structural behavior ABB,
and the Structural_Behavior_Property.behavior_parameters is specialized to represent

structural behavior parameters only.

bdd [Package] Behavior _ABB_Likrary [ @ Structural_Behavior _ABBs ]J

==hlock== = |

. ==hlock== = |
=<hlock==> Behavior_Context

Behavior_Property

Behavior_ABB

context : Behavior_Context

avior modes : String [1..*] = Behavior Mode Dim
avior parameters : String [1..*] = Behavior Parameter Dim

hehavior_parameters : Behavior_Parameter [1..%]
behavior_parameter_relations : Mathematical_Relation [0.%]

avior discipline : String [11= Behavior Type Dim

property : Behavior_Property avior_space : String [1]= Behavior Space Dim

avior load variation : String [1]1= Behavior Load Variation Dim
avior time variation : String [1]= Behavior Time Wariation Dim

T

==hlock== =

SE

<<hlocks= = Structural_Behavior_Context <hlocks=
Structural_Behavior avior_modes : String [1..*] = Structural Behavior Mode Structural_Behavior_Property

&
- : ehavior parameters : String = Structural Behavior Parameter
context : Structural_Behavior_Context or_discipline ; String = Structural Behavior Type

behavior_parameters : Structrual_Behavior_Parameter [1.%]

o
o
=

property : Structural_Behavior_Context behavior space : String = Structural Behavior Space

Figure 7.17: Structural behavior ABB
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7.3.4 Analysis Feature ABBs
Analysis features ABBs are associated with analysis body (or analysis body

system) ABBs since an analysis feature is specific aspect of the shape of analysis body or
analysis body systems. Figure 7.18 illustrates different types of analysis features defined
for a shell. The blocks representing these analysis features are defined as specializations
of the Analysis_Feature_ABB block.

bdd [Package] Shell_analysis_Features [ @Analysis_Feature_ABEs ]J

<<block=> = =<hlock>>
~AaEe = Analysis_Feature_Context Analysis_Feature_Property
Analysis_Feature_ABB
e =l associated ab or absys:ABS Context associated_ab_or_absys : ABS_Property
context : Analysis_Feature_Context feature space : String = Shape associated_feature_shape : Shape
property : Analysis_F eature_Property
Fi iy
Fi)
=<hlock== —<block==
=HilEEs = Shell_Vertex_AF_Context
Shell Vertex Analysis Feature assw;‘ed = ;helrpm = B e AR Rroperty
: perty —] - ”
context : Shell_Vertex_AF_Context feature space : String = Point :::gz::}gg—%%ﬂ;e—agﬁ;;ésgili‘ﬁp'Dpe'w
property : Shell_\ertex_AF_Property = = }

==hlocks> =<hlock==
<<blocke> 3 Shell_Volume AF_Property
shell Volume Analysis Feature R U ERAERContext = ==
associated ab  Shell Context associated_ab_or_absys : Shell_Property
—context : Shell_Volume_AF_Context ma associated_feature_shape : Volume
; pace: o=
property : Shell_Volume_AF_Property
=<hlock>>
<=block== = =<block==
Shell_Surface_Analysis_Feature Shell_Surface_AF_Context BURI BRI SEEVArARraperty
= [ A - associated_ab_or_ahsys : Shell_Property
context: Shell_Surface_AF_Context associated ab: Shell Context ;
property : Shell_Surface_AF_Property feature space : String = Surface BRSNS SR ERsE Rk SurTace
<=block== = =<block== =] ==<block==
Laminated_Shell_Volume_Analysis Feature LamShell_Volume_AF_Context L_| LamShell_Volume_AF_Property
context: LamShell_Valume_AF_Context associated absys :LamShell ABSys Context associated_absys : LamShell_ABSys_Property
property : LamShell_AESys_Property feature space : String = Volume associated_feature_shape :Volume

Figure 7.18: Analysis feature ABBs

The shell analysis features represented by these blocks are as follows:

= Shell_Vertex_Analysis_Feature block represents a point or vertex analysis feature
defined on a shell analysis body.

= Shell_Surface_Analysis_Feature block represents a surface analysis feature defined on
a shell analysis body.

= Shell_Volume_Analysis_Feature block represents a volume analysis feature defined on
a shell analysis body. The volume feature could be the entire volume of the analysis

body or a sub-volume.
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= Laminated_Shell_Volume_Analysis_Feature block represents a volume analysis
feature defined on a laminated shell analysis body system. A laminated shell analysis

body system is a stackup of planar shell analysis bodies.

7.3.5 Analysis Body Interaction ABBs
Analysis body interaction ABB represents the behavior of the interaction between

analysis bodies in an analysis body system. Since it is the behavior of the interaction that
IS core to representing the interaction, analysis body interaction ABBs may be organized
based on the analysis disciplines. Figure 7.19 illustrates different types of analysis body
interaction ABBs organized based on analysis discipline, and each represented by a block
that is a specialization of the AB_AB_Interaction_ABB block. For analysis body interaction
ABBs corresponding to a specific analysis discipline, the interaction is defined in terms
of the corresponding behavior parameters. For example, for structural interaction ABBs,
the interaction is defined in terms of structural behavior parameters. Note that the
context attribute of analysis body interaction ABB is of type AB_AB_Interaction_Context
block, and the properties of this block define characteristics on the basis of which
analysis body interaction ABBs may be organized. Figure 7.19 shows one such hierarchy

based on a analysis disciplines.

bhdd [Package] AB_AB_Irteraction_ABB_Library [ @Irﬂeradion_AElEls ]J

==plock=>
AB_AB_Interaction_ABB

T

<<hlock=> =]

=<plock=> = | PR =

Structural_Interaction

Thermal_Interaction

Electrical_Interaction

=

[ | | <<block=>
<<block=> 3} |<<block=> 3} | <<block>> Magnetic_Interaction
Contact Tie sliding =

=<hlock==
sliding With_Friction

<<hlock==
sliding Without_Friction

Figure 7.19: Analysis Body Interaction ABBs
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bdd [Package] AE_AB_Interaction_ABB_Library [ @Shell_Shell_Tie_Interaciion_ABB ]J

==hlock== =
AB_AB_Interaction_Property
==hlock== = i =
AB AB Interaction ABB relating_analysis_feature : Analysis_Feature_Property
ity — o related_analysis_feature : Analysis_Feature_Property
context : AB_AB_Interaction_Context relating_behavior_parameters : BEehavior_Parameter [1..%]
property : AB_AB_Interaction_Property related_behavior_parameters : Behavior_Parameter [1..%]
interaction_relations : Mathematical_Relation [1..%]
==hlock== = T
Shell_Shell_Tie_Interaction <=zplocks==
context : Shell_Shell_Tie_Interaction_Context Shell_Shell_Tie_Interaction_Property
RSl E e e R e nteraction Property relating_analysis_feature : Shell_Surface_AF_Property
related_analysis_feature : Shell_Surface_AF_Property

relating_displacement_parameters : Displacement
related_displacement_parameters : Displacement

==hlock== =
AB_AB_Interaction_Context

relating ab feature context: Analysis Feature Context
related ab feature context:Analysis Feature Context
relating DOF parameters : String [1.*]= DOF Parameter Type
related DOF parameters : String [1.*]= DOF Parameter Type

i

==<hlock== =
Shell_Shell_Tie_Interaction_Context

relating ab feature context: Shell Surface AF Context

related ab feature context: Shell Surface AF Context

relating DOF parameters : String [1.*]=Ux DOF, Uy DOF Uz DOF THETAx DOF, THETAy DOF, THETAz DOF
related DOF parameters : String=Ux DOF, Uy DOF, Uz DOF, THETAx DOF, THETAy DOF, THETAz DOF

Figure 7.20: Shell-shell tie interaction ABB

Figure 7.20 illustrates shell-shell tie interaction ABB that represents perfectly
bonded (or glued) interaction between two shell analysis bodies, and is represented by
Shell_Shell_Tie_Interaction block. As the context and property attribute types of this
interaction ABB illustrate, the shell-shell tie interaction ABB associates the displacement
parameters defined at the surfaces of two shell analysis bodies. The mathematical
relations between the displacement parameters are illustrated by the parametric diagram
in Figure 7.21. As shown in the diagram, the displacement parameters (both translation
and rotation) at the surfaces of two shell analysis bodies participating in the interaction

are equated™ to each other.

¥ The lines connecting the displacement parameters are called binding connectors—used for binding values of

connected objects.
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par [Block] Shell_Shell_Tie_lrteraction_Property [ SheII_SheII_Tie_IritE|'ac1ion_P|'opE|1y ]J

<<hlock== E
relating_displacement_parameters : Displacement

|

|

- e i I - N e 1 T o i
|

|

I «block»g | «block»g | <<hlocks== =<hlock== =<hlocks= =<<hlock==
ux: Ux | | uy: Uy | uz:Uz | ' theta_x: THETAx | | theta_y: THETAy | ' theta_z : THETAz |

—— e RS

| «Jock_»é | I_«k;ock_»é I I_«k;ock_»é | | <<hlock== I <=hlocks== I =<hlock=x=
ux : Ux | uy : Uy | uz: Uz | ' theta_x: THETAx | | theta_y: THETAy | ' theta_z : THETAz |
(B [ e _— — . L ] ——
T _____________'<<%C}> ____________ ___él
related_displacement_pargmeters : Displacement |
|
|
|

i ——L—|————|————|———|—“

. I EEEEEEEmm——S

Figure 7.21: Interaction relations for shell-shell tie interaction ABB

7.3.6 Analysis Body System ABBs
An analysis body system is an idealization of an artifact'* such that it exhibits an

idealized sub-set of behaviors of the artifact. An analysis body system ABB represents an
analysis body system. Figure 7.22 illustrates a laminated shell analysis body system
ABB. A laminated shell analysis body system ABB is a stackup of shells such that
surfaces of adjacent shells are glued together. As illustrated in the figure, this
composition is reflected in the context and property attributes of this ABB, represented
by LamShell_ABSys Context and LamShell ABSys Property blocks respectively. In
addition, a volume analysis feature that represents the volume of the laminated shell

analysis body system is also defined.

4 Typically a multi-body artifact unless a single artifact is chopped to define multiple analysis bodies
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bdd [Package] Analysis_Body_System_ABB_Library [ @LamShell_ABsys ]J

<=hlock== Q
Analysis_Body System_Context

<=hlock>>
Analysis_Body_ System_ABB

associated ab context: Analysis Body Context[1.%]
associated ab interaction context:AB AB Interaction Context[1.*]
T associated afs context:Analysis Feature Context[1.%]

==hlock== = |
LamShell ABSys il
<=hlock== o |
property : LamShell_ABSys_Property
context: LamShell_ABSys_Context b e
associated ab context: Planar Shell Contesxt[1.*

associated ab interaction context: Shell Shell Tie Interaction Context[1.*]
associated vol feature : LamShell Volume AF Context

==<block>> =
Analysis_Body System_Property
constituent_ab_ab_interactions_propery : AB_AB_Interaction_Property [1..%]

constituent_afs_property : Analysis_Feature_Property [0.*]
constituent_abs_propery : ABS_Property [1.*]

|

==plock==
LamShell ABSys Property

1.*

R

+constituent ab ab intéractions propery onstituent_abs_propery +constituent_vol_feature
=<plock== = =<plock== 1 | =<plock==
Shell_Shell_Tie_Interaction_Property Planar_Shell_Property LamShell_Volume_AF_Property

Figure 7.22: Analysis Body System ABBs

7.3.7 Load ABBs
A load is the stimulus to which the response of an analysis body (or analysis body

system) is to be computed. The context and property attributes of load ABB are
represented by Load_Context and Load_Property blocks respectively. The attributes of the
Load_Context block define several dimensions on which load ABBs may be organized.
Figure 7.23 illustrates a set of load ABBs organized based on the analysis discipline, and
Figure 7.24 illustrates uniform temperature load ABB defined as a special types of load
ABB. The uniform temperature load ABB represents a temperature load (increase or
decrease in ambient temperature) to which an analysis body (or analysis body system)
may be subjected to. Since temperature change affects the entire volume of the analysis
body or analysis body system, this load is applied to the volume analysis feature. The

load distribution function in the Uniform_Temperature_Load_Property block shows that
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the final temperature is a constant (as also illustrated in the parametric diagram in Figure
7.24. The change from reference temperature to final temperature is a straight ramp.

bdd [Package] Load_ABE_Library | @Load_AElEls ]J

<<plocks== E
Load_AEB

i
| | |

==plock==> = | ==hlock==> = ==hlock==>

=

Structural_Load ABB

Electrical Load ABB

Magnetic_Load ABB

i

| | ==hlock== ==hlock==
=zh|ocks= = | zzphlocks= = Thermal_Load_AEB Inertial_Load ABB
Force Pressure —
T T
| | =<block=>= 3
<<block=> <<block=> =<hlock=> = <<block=> | | Acceleration
Moment Temperature Heat Flow Rate Convection
=<block=> 3 ==hlock=> 0
Heat Flux Heat Generate Rate

Figure 7.23: Load ABBs
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bdd [Package] Load_ABB_Library [ @Tenmel'a‘tureLoad_AElEl ]J

=<hlock==

<=block=>
Load_Property

=]

load_type : Load_Parameter_Type
load_application_domain : Analysis_Feature_Property
load_distribution_function : Mathematical_Relation [1..%]

=
=sblock== Load_Context
= load application domain: Load Application Dim [1]
context : Load_Context oad discipline specific type : Load Type Dim [1]
property : Load_Property oad parameter type:load Parameter Dim[1.%]
oad space wvariation:load Space Variation [1
load time variation:Load Time Variation [1]

i

<<hlock>>
Uniform_Temperature_Load

=

=<block==
Uniform_Temperature_Load_Context

context : Uniform_Temperature_Load_Context
property : Uniform_Temperature_Load_Property

==plock==
Uniform_Temperature_Load_Property

=

reference_temperature : Temperature

load time variation : String = Load Time Variation Static

load application domain : String = Load Distributed On Volume {g:é_t;igﬁg[ﬁitg;efuai?opnerzt:gnstam
oad discipline specific type : String = Temperature Load Type - = i

oad parameter type : String = Temperature Parameter

oad space variation : String=Load Space Variation Uniform

par [Block] Uniform_Tempersture_Load_Property [ Unifo|'|11_Ten1peraiw'e_Load_Prnperty ]J

constant : float

“e<hlock==> a | float

“=constraint==
load_type : Temperature

ad_distribution_function

! a=constant
{a=constant}

Figure 7.24: Uniform temperature load ABBs
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7.3.8 Behavior Condition ABBs
Behavior_Condition_ABB block is used for representing behavior conditions.

Behavior conditions are additional conditions applied to analysis body or analysis body
system under which their response to loads is to be computed. Figure 7.25 illustrates
behavior condition ABBs organized based on analysis disciplines. The
PointDisplacementFixed_Condition block represents a behavior condition in which a point

analysis feature is held static, i.e. the displacement parameters are set to zero.

bdd [Package] Behavior_Condition_ABE_Library [ Behavior_Condition_ABBs ]J

=<hlock=>
Behavior_Condition_ABB

:

==hlock== = | ==hlock== = |
Structural Behavior_Condition Thermal Behavior Condition
3 “b|l3l?|(>> - E ==zhlock== E
B S HE . Condition TemperatureConstant_Condition
<<hlock==>

PointDisplacementFixed_Condition

Figure 7.25: Behavior condition ABBs

Figure 7.26 illustrates the context and property attributes of this behavior condition ABB

and Figure 7.27 illustrates the behavior condition relations for this ABB.
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bdd [Package] Behavior_Condition_ABB_Library [ @PoirﬂDispIacement_ElC_AElEl ])

==plock== =
==zhlock=> Behavior_Condition_Context
Behavior_Condition_ABB c_discipline : String = Behavior Condition Discipline Dim
e EETSiE Condit T c_model : String = Behavior Condition Type Dim
e -_g ﬁmo_r_ g” &!to.”— F?”e ¢ application space : String = Behavior Condition Application Space Dim
e ez rasnndition_Propery ¢ _parameters : String [1.*]= Behavior_Condition Parameters Dim
==plock==

==hlock== o |
PointDisplacementFixed_BC_Context

be discipline : String = Behavior Structural Condition

be model : String = Boundary Value Condition

be application : String = Point

be parameters : String = Uk, Uy Uz THETAx, THETAy, THETAZ

PointDisplacementFixed_Condition

context : PointDisplacementFixed_BC_Context
property : PointDisplacementFixed_BC_Property

==hlock== =
Behavior_Condition_Property
bec_parameters : Behavior_Condition_Parameter_Dim [1.%]

be_application_domain : Analysis_Feature_Property
be_relations : Mathematical_Relation [1..%]

i

<<hlock>>
PointDisplacementFixed BC_Property

ux: Ux

uy Ly

uz: Uz

thetax : THETAx
thetay : THETAy
thetaz : THETAz
ux_lock : a=0
uy_lock: a=0
uz_lock : a=0
thetax_lock : a=0
thetay_lock : a=0
thetaz_lock : a=0

Figure 7.26: Point displacement fixed behavior condition ABB

par [Block] PoirtDisplacementFixed_BC_Property [ PointDispIacanentFixed_ElC_Property ]J
o =zponstraint== [T aeblockss _| =<Constraint=:=
| <<block>> | a ux_lock : a=0 | thetax : THETAx | thetax_lock : a=0
ux: Ux ] {a=0} e {a=0}
|-
- [ _«:bﬂck; e | =zconstraint==
_<<t;ock_>: — | a SRS | thet THETA :I thetay lock : a=0
| lock : a=0 ay ¥ o “a
| iy /] | ————— {a=0}
o : [ “ccblocks> [ | ==constraint=>
=<block=> | a  ==constraint== | thetaz : THETAz thetaz_lock : a=0
: uz: Uz ,73 uz_IncIt:a=l]{ y S :| {a=0}
T a=

Figure 7.27: Behavior condition relations for point displacement fixed behavior condition ABB
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7.4 Behavior Models

7.4.1 Abstractions
In this section, the five levels of abstractions of behavior models relevant in the

KCM are described. Figure 7.28 shows a conceptual hierarchy of models in the KCM as

a SysML block definition diagram. The five levels of abstractions of behavior models are

grouped as the behavior model stack in the diagram and are described in this section. The

behavior model abstraction at each level in the stack represents a set of behavior models.

As one moves down the stack (increase in levels), the models become more specialized

and represent a sub-set of behavior models represented by the preceding abstraction level.

The five different abstractions of behavior models in the KCM are useful for the

following reasons:

= Since the primary use case of KCM is the automated composition of behavior models,
it is necessary to distinguish the abstraction levels where the model composition
transformations are specified versus the levels at which they are executed versus the
level at which behavior models are solved to compute behavior parameters. This
approach allows one to define transformations to create a set of behavior models and
not just a specific behavior model.

= Since KCM is targeted to address VTMB problems, the abstractions allow one to
distinguish between behavior models that represent the behavior of artifacts with
different assembly system topologies versus those that represent the behavior of
artifacts with a fixed topology. The former type of behavior models are those for which
assembly system topology-specific decisions have not been taken by analysts while the
latter type of behavior models at those where these decisions have been taken.

= The abstractions also allow one to study variations of behavior models. Each level in
the abstraction corresponds to a specific type of variation of behavior models and
hence represents a set of behavior models. For example, at Level 3 in the behavior
model stack the assembly system topology of artifact may vary; at Level 4 the

topology is fixed but size and properties of artifacts may vary.
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bdd [Package] Artifact_Model_Abstractions [ KCM_Artifact_Model_Abstractions ]J
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01X)

Figure 7.28: Behavior Model Abstractions in KCM
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The five different levels of abstractions in the behavior model stack are described
below with examples
= Level 1 (B1): Artifact Behavior Meta-Model (Core Behavior Model)

The Level 1 abstraction in the behavior model stack is known as Artifact
Behavior Meta-Model. This meta-model defines the constructs and relationships for
representing behavior models of artifacts in different application areas (such as
electronics, automotive, and aerospace) for different types of analyses (such as structural
analyses, thermal analyses, and electromagnetic analyses). The Core Behavior Model
presented in this chapter is a specific example of an Artifact Behavior Meta-Model (with
special focus on VTMB artifacts). The Artifact Behavior Meta-Model is related to the
Artifact Meta-Model (Level 1 in design model stack) and this relation represents the
relation between an artifact (specifically its analyzable abstraction) and its behavior
models. In KCM, CPM2_xKCM (specific example of Artifact Meta-Model) is related to
CBM through the Behavior block as described in section 7.1 and illustrated in Figure 7.3.

= Level 2 (B2): Analysis-specific Behavior Meta-Model

The Level 2 abstraction in the behavior model stack is known as Analysis-specific
Behavior Meta-Model. This meta-model is a specialization of the Artifact Behavior
Meta-Model (B1) and it defines the constructs and relationships for representing behavior
models of artifacts in a specific application area for a specific analysis domain. For
example, the CBM may be specialized to create a behavior meta-model for thermo-

mechanical analyses of electronics artifacts.

= Level 3(B3) : VTMB Artifact Behavior Meta-Model

The Level 3 abstraction in the behavior model stack is known as VTMB Artifact
Behavior Meta-Model, where VTMB stands for Variable Topology Multi-Body. This
meta-model may be defined as a specialization of Analysis-specific Behavior Meta-
Model (B2) or directly as a specialization of Artifact Behavior Meta-Model (B1). This is
so because it may not be practical to develop a behavior meta-model for each analysis
domain for some artifact application areas. The VTMB Artifact Behavior Meta-Model

defines the constructs and relationships for representing behavior models of a family of
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artifacts with different assembly system topologies and for a specific type of analysis. All
members of this family are a specific type of artifact in a given application area and with
different (non-equivalent) assembly system topologies. An example of the VTMB
Artifact Behavior Model is a behavior meta-model defined for thermo-mechanical
analyses of multi-layered printed circuit boards. Here, the behavior meta-mode is for a
family of artifacts of a specific type (printed circuit boards) but with different assembly
system topologies (such as 5-layered, 10-layered, or 13-layered PCBs).

The PCB_nSx_ThermoMech_Behavior_Meta-Model illustrated in section 7.4.2 is
an example of the VTMB Artifact Behavior Meta-Model. It is a meta-model for

representing thermo-mechanical behavior models of n-stratum printed circuit boards.

= Level 4 (B4): FTMB Artifact Behavior Model Structure

The Level 4 abstraction in the behavior model stack is known as FTMB Artifact
Behavior Model Structure, where FTMB stands for Fixed Topology Multi-Body. This
model is defined as an instance of the VTMB Artifact Behavior Model Structure (B3). In
instantiating the B3 model, only decisions pertaining to the assembly system topology are
populated. While the B3 abstraction is a meta-model for representing behavior models of
a family of artifacts with varying assembly system topology, the B4 abstraction
represents behavior models of artifacts with a fixed topology. For example, one may
create a B4 model for representing 5-layered PCBs, or 10-layered PCBs, or 15-layered
PCBs. Since only topology-specific decisions have been populated in an FTMB Artifact
Behavior Model Structure, it is a partially-specified instance model and it provides a
structure for creating several fully-specified instances. Hence, B4 abstraction is a
behavior model structure and not a specific behavior model. It represents a set of
behavior models for artifacts with the equivalent assembly system topologies.

The PCB_5Sx_ThermoMech_Behavior_Model_Structure illustrated in section 7.4.2
is an example of the FTMB Artifact Behavior Model Structure. It represents thermo-

mechanical behavior models of a set of 5-layered printed circuit boards.
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= Level 5(B5): FTMB Artifact Behavior Model Instance

The B5 abstraction in the behavior model stack is known as FTMB Artifact
Behavior Model Instance. This model is a fully-specified instance of B3 model (VTMB
Artifact Behavior Meta-Model). In contrast to a B4 model, a B5 model is a specific
behavior model and is intended to be solvable. It incorporates all decisions that have been
taken to completely define a behavior model (i.e. a solvable behavior model). For a given
B4 behavior model (structure), several B5 models (instances) may be created. A B5
model is a behavior model of a specific artifact for a specific analysis.

The PCB_5S1 ThermoMech_Behavior_Model_Instance model illustrated in
section 7.4.2 is an example of the FTMB Artifact Behavior Model Instance. It represents

a thermo-mechanical behavior model of a specific 5-layered printed circuit board.

7.4.2 Examples
In this section, specific examples of the model abstractions in the behavior model

stack are presented. The Level 1 abstraction is the Core Behavior Model which was
presented in section 7.1. In this section, B3, B4, and B5 models are presented to illustrate
how the CBM is used for representing specialized meta-models and models. The
examples presented here show different levels of abstractions of thermo-mechanical
behavior models for multi-layered printed circuit boards. The relation of these models to
the corresponding models in the design model stack is also illustrated.

= Level 3 (B3) example: PCB_nSx_ThermoMech_Behavior_Meta-Model

Figure 7.29 below illustrates PCB_nSx_ThermoMech_Behavior_Meta-Model —a
thermo-mechanical behavior meta-model for n-layered printed circuit boards. This meta-
model is created as a specialization of the Core Behavior Model, and it defines the
constructs and relationships for representing thermo-mechanical behavior models of
multi-layered PCBs. The central entity in this meta-model is PCB-
LamShell_ThermoMech_BM block (specialization of Behavior_Model block) and it
represents a thermo-mechanical behavior meta-model where an n-layered PCB is

idealized as an n-layered laminated shell system.
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bdd [Model] PCE_nSx_ThermoMech_Behavior_Meta-Model [ @Behaviol'_Meta-ModeI_View ]J

0.1 el = 0.1 +context <<block=>
Behavior_Model o behavior_modal 07 | Behavior_Model_XContext
tof_hehavior_model T T
AT = . +context <<hlock>=> =
PCB-LamShell_ThermoMech_BM o bEhaViDr{:ﬂigzzTes context} A?CB_LamShell_ConFext-
{red_eﬂnes of__behavior_model} aa_ahs_rel: APCE_LamShell_Relationship

+of_behavior_model
==hlock== = {redefines of_behavior_model}

0.1 |Behavior_Model_ABBSys

+associated_brn_abbsys Fassociated_bm_abhsys
e v T {redefine associated_bm_abhsys}

==hlock== =
LamShell_ThermoMech_ABBSys

hehaviors : Structural_Behavior_Property

ahs_sys : LamShell_ABSys_Property

load_applications : Uniform_Temperature_Load_Froperty
hehavior_condition_applications : PointDisplacementFixed_BC_Froperty

Figure 7.29: PCB_nSx_ThermoMech_Behavior_Meta-Model (B3): A thermo-mechanical behavior
meta-model for multi-layered PCBs (View 1)
This behavior meta-model is composed of an ABB system meta-model, and a context
meta-model that relates the ABB system meta-model to the analyzable artifact meta-
model (D3 abstraction in the design model stack). LamShell_ThermoMech_ABBSys block
represents the specialized ABB system meta-model and PCB_LamShell_Context
represents the specialized context meta-model. Note that the specializations also redefine
the block properties. For example, Behavior_Model.context is of type
Behavior_Model_XContext but PCB-LamShell_ThermoMech _BM.context is of type
APCB_LamShell_Context. The ABB system meta-model (LamShell_ThermoMech_ABBSys
block) IS composed of:
(i) n-layered laminated shell system (represented by LamShell ABSys_Property block
illustrated in Figure 7.30), (ii) uniform temperature load applied to the laminated shell
system (represented by Uniform_Temperature_Load_Property block), (iii) point
displacement boundary condition (represented by PointDisplacementFixed_BC_Property
block), and (iv) set of structural behavior parameters (Structural_Behavior_Property
block). These four types of ABBs are described are described in section 7.3. Note that in
PCB_nSx_ThermoMech_Behavior_Meta-Model, specific types of loads and boundary
conditions have also been specified as part of the meta-model. However, it is not
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necessary to specify these and keep the meta-model more generic. The context meta-
model (represented by the APCB_LamShell_Context block) is composed of idealization
relationships between n-stratum analyzable PCB (Level 3 model in the design model
stack) and n-layered laminated shell system (special type of analysis body system). These
relationships are represented by the APCB_LamShell_Relationship block in Figure 7.30.
Figure 7.30 illustrates a more detailed view of the meta-model. In particular, it
shows the n-layered laminated shell system and its relationship to the n-layered
analyzable PCB model. The n-layered laminated shell system is composed of n individual
planar shells (represented by Planar_Shell_Property block), the tie interactions between
these  planar  shells that are  stacked  together  (represented by
Shell_Shell_Tie_Interaction_Property block), and the planar shell surfaces that participate
in defining the tie interactions—the secondary surface of a preceding shell is tied to the
primary  surface of the succeeding shell—that are represented by
Shell_Surface_AF_Property block. Planar shell, Shell-Shell tie interaction, and shell
surface analysis features are special types of ABBs and blocks representing these ABBs
are described in section 7.3. Corresponding to the n-layered laminated shell system in the
behavior model stack is the n-layered analyzable PCB in the design model stack. An n-
layered analyzable PCB is composed of individual stratums, the interactions between the
stratums, and the stratum surface features that participate in the interactions—explained
in details in section 6.2. The behavior idealization relationships that are defined as part of
the context meta-model relate the stratums, interactions, and surface features to the planar
shells, tie interactions, and shell surface analysis features respectively. The
APCB_LamShell_Relationship block is the central entity in this context meta-model (part
of the behavior meta-model) and represents the behavior idealization relationships
between an n-layered analyzable PCB to an n-layered laminated shell system. The
behavior idealization relationships are composed of: (i) idealization relationships between
each analyzable stratum to the corresponding planar shell, (ii) idealization relationships
between an analyzable stratum surface to the corresponding shell surface, and (iii)
idealization relationships between the interactions between adjacent analyzable stratums
and the tie interactions between adjacent planar shells. These three types of idealization
relationships are represented by AStratum_PShell_Relationship,
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<«—— Design Model Stack —— « Behavior Model Stack

AStratSurf_PShellSurf_Relationship, and AdjStrat_PShellTie_Interaction_Relationship

blocks respectively.

v

bdd [Model] PCB_nSx_ThermoMech_Behavior_Meta-Model [ a”a AArtifact_ABSys_Meta-Model_View ]J

- Bl g +associated_abs
<<block>=> g +associated_aa APCB_LamShell_Relationship = 3 <<block>>
Analyzable PCB LamShell_ABSys_Property
+ofAP1(‘.BI +pareAPCB
1
e 1. .
*hm +constituent_aa_abs_rgls "
<<hlocks> =] associated aa ot =) +constituent_ghs_property
AStratum * k — . . +associated_abs <<block=>>
AStratum_PShell_Relationship o T —
ps_of | stratun T T‘”'
] +sedondary_surface
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AStratum Surface | 2ssociated_af <<block>> . = +associated_anf |
AStratSurf_PShellSurf_Relationship Shell_surface_AF_Property
;astraiumlnteractions +af_anf_interface_rgls . ! -+constltuent_ab_ah_interactlons roperty
=<block>> Etassociated| aa_interaction =<block>> *aseffated_ab_interaction =<block>> ==
Adjacent_AStratum_Surface_Interaction AdjStrat_PShellTie_Interaction_Relationship Shell_Shell_Tie_Interaction_Property

Figure 7.30: Example D3-B3 model showing relationships between n-stratum analyzable PCBs (D3) and

corresponding n-layered laminated shell systems (B3)

= Level 4 (B4) example: PCB_5Sx_ThermoMech_Behavior_Model_Structure

Figure 7.31 below illustrates
PCB_5Sx_ThermoMech_Behavior_Model_Structure—a  thermo-mechanical  behavior
model structure for 5-stratum®® PCBs. This behavior model structure is an instance of the
PCB_nSx_ThermoMech_Behavior_Meta-Model and  represents thermo-mechanical
behavior models of printed circuit boards with 5 stratums. As shown in Figure 7.31,
central entity in this B4 model is PCB-LamShell_5Sx_ThermoMech_BM (an instance of
PCB-LamShell_ThermoMech_BM). Just like its parent meta-model and CBM,
PCB_5Sx_ThermoMech_Behavior_Model_Structure is composed of an ABB system,
and a context model that relates the ABB system to analyzable design model structure
(D4 model in the design model stack). LamShell_5Sx_Thermo-Mech_ABB_System block

15 The term “layer’ in printed circuit boards typically refers to design layers (electrically conductive). Hence the term

‘stratum’ is used to refer to all layers in general.
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represents the ABB system, and APCB_LamShell_5Sx_Context block represents the

context model for this behavior model structure.

bdd [Model] PCB_5Sx_ThermoMech_Behavior_Model_Structure [ @Eleha\riol'_Model_Stl'ucture_\'iewj ]J

=<hlock==
PCB-LamShell 55x ThermoMech BM : PCB-LamShell ThermoMech BM

- ., B <=hlock==
asstogta—teﬁﬁcbgn_fbb?hsﬂ Lsasmsgellt_s):xjhermo Mech_ABB_System LamShell 55x Behavior :
R — B ESX L nrie: Structural Behavior Property

=<hlock== = =<hlock== =
APCB LamShell 55x Context : APCE LamShell Context LamShell 55x Thermo-Mech ABB em :
i LamShell ThermoMech ABBSys
of_behavior_model = PGB-LamShell_55x_ThermaMech_BM LamsShell ThermoMech ABB
aa_abs_rel= APCB_LamShell_55x_Rel of_behavior_model = PCB-LamShell_55x_ThermoMech_BEM

abs_sys = LamShell_55x_ABSys

load_applications = UniformTempLoad_T1T2

behaviors = LamShell_55x_Behavior
behavior_condition_applications = LamShellCornervertexFixed

=<hlock== =
LamShell 55x AB! : LamShell AB Prope I

constituent_abs_property= P51, PS2, P53 P54, PS5 | |

constituent_ab_ab_interactions_property= PS1_PS2_Tie, ==hlock== = =<hlock==
PS52_PS53_Tie, PS3_PS4_Tie, PS4_PS5_Tie UniformTempload T1T2: LamShellCornerVertexFixed :
Uniform Temperature Load Property PointDisplacementFixed BC Prope
iy

Figure 7.31: PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4): A thermo-mechanical
behavior model structure for 5-layered PCBs (View 1)
The ABB system is composed of a 5-layered laminated shell system as illustrated in
Figure 7.32. The figure shows 5 planar shells, their primary and secondary surfaces, and
the tie interactions between planar shells in the laminate shell system. The planar shells,
their surfaces, and shell-shell tie interactions are ABB instances. The properties of each

ABB instance are also shown in the figure.
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bdd [Package] PBM_SSx_Thermo-Mech_ABSys [ @LamShe\l_SSx_AEISys_Viewz ]J
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Figure 7.32: Analysis body system of PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4)

Since B4 is a partially-specified instance model, the assembly system topology of the
laminate shell system is fixed but the actually sizes and shapes of each shell, and their
material behavior property values are not defined.
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<

Behavior Model Stack
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bdd [Model] PCB_SSx_ThermoMech_Behavior_Model_Structure [ Behavior_Model_Structure_View_2 U
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Figure 7.33: Example D4-B4 model showing relationships between 5-stratum analyzable PCBs (D4) and

corresponding 5-layered laminated shell systems (B4)

Figure 7.33 above shows the 5-layered laminate shell system and the context

model that associates this laminate shell system to the 5-stratum analyzable PCB model

structure. Behavior idealization relationship for shown only for stratum 1 as the structure

repeats itself for other stratums. The central entity in the context model is the
APCB_LamShell_5Sx_Context block (Figure 7.31). The context model refers to the
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behavior idealization relationship between the 5-stratum analyzable PCB and the 5-
layered laminate shell system (APCB_LamsShell_5Sx_Context.aa_abs_rel). As shown in
Figure 7.33, this idealization represented is represented by the APCB_LamShell_5Sx_Rel
block that relates the APCB 5Sx block (5-stratum analyzable PCB) and
LamShell_5Sx_ABSys block (5-layered laminate shell system). The idealization
relationship between the 5-stratum analyzable PCB and 5-layered laminate shell system
is composed of: (i) idealization relationship between each stratum and shell (represented
by blocks AStrat_PShelll_Rel, AStrat_PShell2_Rel,...), and (ii) the idealization
relationships between the stratum interfaces and the shell interactions (represented by
blocks AStrat_ShellTie_12_Interaction_Rel, AStrat_ShellTie_23_Interaction_Rel, ...).

The idealization relationship between an analyzable PCB stratum and a planar
shell in the laminate shell system refers to shape idealization relationships and material
behavior idealization relationships. These relationships represent how the shapes and
material behaviors respectively of the stratum and the shell are related—including the
mathematical relationships between the shape parameters and the material behavior
parameters. For the first stratum in the analyzable PCB and first planar shell in the
laminate shell system, SSR1 and MBR1 are the shape idealization and material behavior
idealization relationships respectively. Note that the mathematical relations associated
with these idealization relationships indicate that the shape properties and material
behavior properties of the stratum and shell are equal. The idealization relationship
between an analyzable PCB stratum and a planar shell is also composed of the
idealization relationships between their features. The primary and the secondary surfaces
of the stratum are related to the primary and secondary surfaces of the corresponding
shell by the blocks AStrat_PShell1_Prim_Rel and AStrat_PShell1_Sec_Rel.

= Level 5(B5): PCB_5S1_ThermoMech_Behavior_Model_Instance

Figure 7.34 below illustrates PCB_5S1_ThermoMech_Behavior_Model_Instance—
a thermo-mechanical behavior model for a specific 5-stratum PCB.. This behavior model
is a fully-specified instance of PCB_nSx_ThermoMech_Behavior_Meta-Model (B3 model).
In contrast to the B4 models all property values are fully-populated in B5S models,
including the material behavior properties and the shapes of the analyzable PCB stratums.
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The shape and material behavior idealization relationships between the stratums and the
shells can then be solved using math solvers. Figure 7.34 shows the shape and material
behavior properties for stratum 1 of the analyzable PCB_5S1 (in a D5 model). The values
of the corresponding shape and material behavior properties for shell as shown in the
figure are not computed.

Design Model Stack < Behavior Model Stack >
bdd [Model] PCB_551_ThermoMech_Behavior_Model_instance [ 5! Analysis_Body_System_and_Context_View ])
- <<block>> "
<<block>> o =2 <<blocke> [=
H ip
APCB 551 : Analyzable PCB I ‘ ARCE LamShell 551 Rel:APCE LamSnell Relationshy LamShell 551 ABSys : LamShell ABSys Propes
hasAStratums = AStratum_2, AStratum_1, Il “5“‘::5:—3: 3 -‘Ecsgis:. LT constituent_abs_property= PS1, PS2, PS3, PS4, PS5
AStratum_3, AStratum_4, AStratum_5 associaled_abs = LamShell_5S1_ABSys constituent_ab_ab_interactions_property = PS1_PS2_Tie,
_ - constituent_aa_abs_rels = AStrat_PShellt _Rel, AStrat_PShell2_Rel,
astratuminteractions = astratum_interface_12, PS2_PS3_Tie, PS3_PS4_Tie, PS4_PS5_Tie
3 AStrat_PShell3_Rel, AStrat_PShell4_Rel, AStrat_PShell5_Rel
astratum_interface_23, stratum_interface_34, . _ . A
stratum interface 45 af_anf_interface_rels -Astrgt_shelmej 2_Interaction_Rsl, i
- - AStrat_ShellTie_23_interaction_Rel, AStrat_ShellTie_34_Interaction_Rel, ]
[ AStrat ShellTie_45_Interaction_Rel T - Y
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| <<block>> [=] | PS1: Planar_Shell Property
| AStrstum 1: AStratum <<block=> =] primary_surface = PS1_PrimSurt
hasFunctions = Conductive AStrat PShelll Rel: AStratum PShell Relationship secondary_surface = PS1_SecSurl
hasForms = AStratum_1_Form associated_aa = AStratum 1 shape = PS1_Shape
primary_surface = AStratum_1_primary associated_abs=PS1 associated_mb_property = LEITI_1
secondary_surface = AStratum_1_secondary [ | of aa_abs rel= APGE_LamShell_551_Rel associated_behavior_property= PS1B
shape_idealization = SSR1
=<blocks> = | material_behavior_idealization = MBR1
Astratum 1 Form : AStratum Form af_anf_rel_primary= AStrat_PShell_1_Prim_Rel
7‘Drm01'ﬂ.nifatts = AStratum_1 af_anf_rel_secondary = AStrat_PShell_1_Sec_Rel
hasMaterials = AStratum_1_Mat_Soldermask ppr—
hasShapes = AStrat_1_Shape <<constraint>>
Eq52 : Equality Relation
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MMQ <<biock>> = T
| | M <<blocks> g
materialOfF orms = AStratum_1_Form | Material Behavior Material = LEIT) 12 -
hasBehavior = LEITI_AS1 | relatingBs = LEITI_AS1 | Linear Hasnie Ontholronic
| n =LEm_1 I
i = 2
T - mb_mb_relations = Eq52 |
LEITI AS1: .
i i <eblock>> =
| d MB Property SSR1 : Shape Shape Relationship <<blogk=> =
E="174056" shape_shape_relations = Eq51 P51 _Shepe:
NU="0.3" relatingShapes = AStrat_1_Shape
relatedShapes = PS1_Shape
: ~
T
<<block>> N
AStrat 1 Shape : Stratum Shape g = L N
— Eq51: Equality Relation
outline = AStrat1 _Outline [

thickness ="0.004"

lShows UNSOLVED state..

[

= 7 [ <<block=> | N
<<block>> <<blockss =] L
g AStrat1 Outline : Rectangle = AS1 P2: ...Similar FTMB instance setup and
Point ; == | | Poimt | |solve other AStratums and Planar
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Figure 7.34: Example D5-B5 model showing relationships between a specific 5-stratum analyzable PCB (D5)
and corresponding 5-layered laminated shell system (B5 model in unsolved state)

7.5 Analysis Knowledge Dimensions

Analysis knowledge dimensions provide the basic foundation for defining the
Core Behavior Model and the ABB Meta-Model. These constructs and the relationships
defined in these meta-models were based on representing the types of decisions that

analysts take in defining reusable building blocks of domain-theoretic concepts and
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composing behavior model structure based on these concepts. Analysis knowledge
dimensions provide a conceptual organization of the types of these decisions and the
choices available. The Analysis Knowledge Dimension Model presented in this
dissertation is a conceptual model that is not instantiated itself but was used to define the
Core Behavior Model and the ABB Meta-Model that may be specialized and instantiated.

In this section, the Analysis Knowledge Dimension model is presented using a set
of SysML block definition diagrams. There are two types of constructs in this conceptual
model: (a) constructs representing types of decision taken by analysts in creating
behavior models, and (b) constructs representing choices available for these decisions.
The former type of constructs is denoted as a ‘dimension’ or ‘sub-dimension’ (for sub-
decisions). Both the constructs are presented as SysML blocks. There are two types of
relationships defined among constructs:
= The composition relationship (line ending in a black diamond) denotes the composition
of higher-level decisions into sub-decisions, and it is drawn between constructs
representing dimensions.
= The generalization relationship (line ending in an arrow) denotes the choices available
for a particular type of decision, and it is drawn between constructs representing choices
to the construct representing the corresponding decision.

The central entity in Analysis Knowledge Dimension model is the
Analysis_Knowledge Dimensions block and it represents the collective decisions that
need to be taken by analysts to create a behavior model structure. As shown in Figure
7.35, such a collective decision is decomposed into four dimensions (set of decisions),

namely:

Behavior dimension (represented by Behavior_Dimension block)

Analysis body dimension (represented by Analysis_Body Dimension block)

Load dimension (represented by Load_Dimension block)

Behavior condition dimension (represented by Behavior_Condition_Dimension block)

Note that the layout of the SysML diagrams presented in this section is circular and not
hierarchical. The top-level concept is positioned in the middle of the diagram and related
concepts are arranged around the top-level concept.
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bdd [Model] Analysiz_Knowledge_Dimensions[ AKD_BDD 1|

==hlock== = ==hlock==
Behavior_Dimension Analysis_Body_Dimension

==plock== =
Analysis_Knowledge_Dimensions

==hlock== i | =<=hlock==
Load_Dimension Behavior _Condition_Dimension

Figure 7.35: Analysis Knowledge Dimension Model — top-level view

Blocks representing the four major dimensions have names ending in ‘Dimension’, and

the blocks representing the sub-dimensions under each of the four major dimensions have

names ending in ‘Dim’. The basis for abstracting these four dimensions lies in the

assumption that the behavior of an artifact in a given environment is a function of the

artifact’s form, and the loads and behavior conditions to which an artifact is subjected in

that environment. Note that when formulating behavior models, the artifact is represented

in its idealized form as an analysis body or analysis body system. Before describing the

complete structure of each of these four dimensions, it is necessary to describe the

semantic properties of the Analysis Knowledge Dimension Model. These are:

1.

Decisions need to be taken on all dimensions and their sub-dimensions, either directly
or indirectly, to create a complete behavior model structure. A complete behavior
model structure is one which when instantiated is solvable.

Analysis knowledge dimensions and their sub-dimensions may not be mutually
exclusive, and a decision taken on a particular sub-dimension may influence or
constrain a decision on other sub-dimension(s).

There may not be a sequence in which decisions are taken along particular
dimensions.

Decisions may be mutually consistent (or inconsistent), and/or redundant

The choices presented here for the dimensions are primarily primitive level choices.
More choices may be defined by creating choices that are composed of one or more

choices.
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6. Choices available for a decision may be mutually exclusive. In the SysML block
definition diagrams presented here, these choices are represented by blocks with
italicized names.

These properties reflect the inherent nature of analysis problem formulation process in

that there are several ways of creating a behavior model structure, and a valid and

complete behavior model is one for which the set of idealization decisions were mutually
complete, consistent and preferably non-redundant.

Note that the analysis knowledge dimensions presented here are extensible. The
types of decisions and the choices for each decision type presented help to illustrate the
conceptual model and in no way represent a fully exhaustive set of choices for all types
of behavior models.

7.5.1 Behavior Dimension

The Behavior dimension is meant for categorizing decisions pertaining to the
overall behavior of an artifact. It is represented by the Behavior_Dimension block and
includes six sub-dimensions, as shown by the composition relationships in Figure 7.36.

These sub-dimensions are as follows:

= Behavior_Type_Dim: This sub-dimension is used to categorize different types of
idealized behaviors of an artifact As shown in Figure 7.36, the choices for this decision
are categorized based on analysis disciplines, such as tension, torsion, vibration, and
buckling for structural behavior; and conduction, convection, and radiation for thermal
behavior. Choices that represent composite behaviors (such as bending and torsion) may

be defined by creating blocks that specialize one or more blocks.
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bdd [Package] Behavior_Dimension [ @BD_BDD ]J
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Temperature
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Behavior_Space_Dim
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Figure 7.36: Behavior Dimension
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= Behavior_Mode_Dim: This sub-dimension is used to categorize different idealized
behavior modes of an artifact for a given type of behavior. For example, depending on
the magnitude of the load, an artifact’s torsional behavior may be idealized as one
resulting in small deformation or large deformation. Here, small deformation and large
deformation are different modes of torsional behavior. Note that large deformation and

small deformation are mutually exclusive choices (denoted with italicized block names)

= Behavior_Variation_Dim: This sub-dimension is used to categorize how the variation
in the behavior of the artifact may be idealized, such as static or dynamic, linear or non-
linear. In Figure 7.36, two main specializations of this sub-dimension are shown, namely
() Linear_or_Non-Linear to specify if the response of an artifact to loads is idealized
linear or non-linear, and (b) Static_or_Dynamic to specify if the response of an artifact to
loads with respect to time is idealized as static or dynamic. Here, the response of an
artifact is measured in terms of a behavior parameter, such as deformation or
temperature. Other sub-dimensions may be added for relating the behavior of an artifact

to other parameters apart from load and time.

= Behavior_Space_Dim: This sub-dimension is used to categorize the geometric space
of an idealized artifact. There are 2 ways of measuring this: (a) the geometric space
occupied by the idealized artifact, and (b) number of independent spatial variables in the
analysis problem. As an example for a beam bending under transverse loads, the number
of independent spatial parameters is one (distance measured along the axis of the beam).
The transverse deflection is dependent on this distance. However, the geometric space
occupied by a deformed beam is 2D. One needs the both the distance along the axis of the
beam and the transverse deflection to describe the deformed shape of a beam.
Traditionally, it is the former criterion that is used for characterizing behavior analysis
problems as 1D, 2D, or 3D.

= Behavior_Parameter_Dim: This sub-dimension is used to categorize parameters used
for measuring the idealized behaviors of an artifact, such as temperature, deformation,
stress, and strain. The choices available for this dimension are organized based on
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analysis disciplines. So, there are choices available for structural behavior parameters,

and thermal behavior parameters, and so on.

7.5.2 Analysis Body Dimension
The analysis body dimension is used for categorizing decisions pertaining to

analysis bodies and analysis body systems. When creating behavior models, analyzable
artifacts are idealized as analysis bodies (or analysis body systems) as described in
section Figure 7.2. The analysis body dimension has 4 sub-dimensions, as illustrated in

Figure 7.37 and described below.

= Analysis_Body_ System_Composition_Dim: This sub-dimension is used to categorize
decisions pertaining to the composition (part-assembly structure) of an analysis body
system. The choices available for this sub-dimension are correspond to different types of
single body and multi-body systems.
= Material_Behavior_Dim: This sub-dimension is used to categorize decisions pertaining
to the constitutive material behavior of an analysis body. This sub-dimension is
composed of three sub-sub-dimensions:
O Material_Behavior_Type_Dim: This sub-dimension is used to categorize decisions
pertaining to the response of the material to applied loads. The choices are categorized
based on the type of load, such as such as elastic, plastic, and for structural loads.
O Material_Behavior_Distribution_Dim: This sub-dimension is used for categorizing
decisions pertaining to homogeneity or types of non-homogeneities of the material,
such as isotropic, transversely isotropic, orthotropic, general anisotropic, etc.
O Material_Behavior_Variation_Dim: This is used for categorizing decisions related to
quantifying the idealized variation of material response to a load or deformation,
loading rate or deformation rate, and temperature. These three criteria are represented
by the following sub-dimensions as also shown in Figure 7.37: (a) Stress_Strain_Co-
Variation_Dim for effects of loading / deformation, (b)
Strain_Rate_Based_Variation_Dim  for effects of strain rate, and (c)
Temperature_Based_Variation_Dim for effects of temperature change. Other categories
of material behavior variation may be added to this decision classification.
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O Material_Behavior_Parameters_Dim is used to categorize parameters used for
quantifying material behavior. The choices are described based on the analysis
disciplines implying that different parameters are used for quantifying material
behavior for different analysis discipline.
= Analysis_Body Type Dim: This sub-dimension is used for categorizing decisions
pertaining to the type of an analysis body. The type is characterized based on the (a) the
idealized behaviors that an analysis body exhibits, (b) geometric space used for
representing the shape of an analysis body, and (c) the number and type of degrees-of-
freedom associated with an analysis body. These criteria are represented by the following
three sub-dimensions: @ Analysis_Body_Discipline_Type, (b)
Analysis_Body_Space_Type, and (c) Analysis_Body DOF.
= Analysis_Body_Interaction_Behavior_Dim: This sub-dimension is used for categorizing
decisions pertaining to the behavior of the interaction between analysis bodies in an
analysis body system. Since the decision pertains to behavior, it is similar in nature to the

types of decisions presented under the behavior dimension.
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bdd [Package] Analysis_Body_Dimension | [, ABD_BDD ]J
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Figure 7.37: Analysis Body Dimension
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7.5.3 Load Dimension
The load dimension is used for categorizing decisions pertaining to the applied

load(s). The load dimension consists of four sub-dimensions, as illustrated in Figure 7.38
and described below:

»= Load_Type_ Dim: This sub-dimension is used to categorize decisions based on the
type of loads. The choices are organized in terms of analysis disciplines. For example,
pressure is a structural load while heat generation rate is a thermal load.

= Load_Application_Dim: This sub-dimension is used to categorize decisions concerning
the application of load to an analysis body (or analysis body system). This decision is
composed of the following two sub-decisions: (a) the application space of the load, such
as whether the load is applied to an analysis feature (geometric space) or to an inertial
mass, and (b) the direction of the load. These decisions are represented by the
Load_Application_Domain_Dim and Load_Application_Direction_Dim respectively.

= Load_Variation_Dim: This sub-dimension is used to categorize decisions pertaining to
the variation of loads over space and time, represented by the two sub-dimensions
Load_Space_Variation and Load_Time_Variation respectively.

» Load Parameter_Dim: This sub-dimension is used to categorize parameters for

quantifying loads. The choices are organized on the basis of analysis disciplines.
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bdd [Package] Load_Dimension [ @LD_BDD ]J
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Figure 7.38: Load Dimension
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7.5.4 Behavior Condition Dimension
This behavior condition dimension is used for categorizing decisions pertaining to

behavior conditions in which the behavior of an analysis body system (idealized artifact) is
to be computed. This dimension consists of the following five sub-dimensions:

= Behavior_Condition_Discipline_Dim: This sub-dimension is used for categorizing the
analysis discipline associated with the behavior condition. Behavior conditions are
described in terms of behavior parameters and thus the analysis discipline is decided based
on the discipline associated with the behavior parameters. For example, behavior a behavior
condition described in terms of displacement (a type of structural behavior parameter) is a
structural behavior condition.

= Behavior_Condition_Type_Dim: This sub-dimension is used for categorizing the types of
behavior conditions. Two prominent choices are boundary value conditions for boundary
value problems, and initial value conditions for initial value problems.

= Behavior_Condition_Application_Space_Dim: This sub-dimension is used for categorizing
the geometric application space for behavior conditions, i.e. if the behavior condition is
applied to a point analysis feature or a surface analysis feature.

= Behavior_Condition_Variation_Dim: This sub-dimension is used for categorizing the
variation of behavior conditions with respect to space and time, represented by the
following  two  sub-dimensions: Behavior_Condition_Space_Variation_Dim  and
Behavior_Condition_Time_Variation_Dim respectively.

» Behavior_Condition_Parameter_Dim: This sub-dimension is used for categorizing the
different types of parameters for quantifying behavior conditions. The categorization is

similar to that described in Behavior_Parameter_Dim.
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bdd [Package] Behavior_Condition_Dimension [ @BCD_BDD ]J
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Figure 7.39: Behavior Condition Dimension

7.6 Summary

In this chapter, the Core Behavior Model (CBM) is presented as a meta-model for
representing behavior models of VTMB design alternatives. Five levels of abstractions of
behavior models, based on the CBM, are also presented with examples. The ABB Meta-
Model that defines the constructs for representing different types of ABBs is also presented
in this chapter. The ABB Meta-Model prescribes four foundational aspects of knowledge
that must be represented in an ABB. Two of these aspects are described in details with
examples in this chapter. The other two aspects concern the transformations applied for
composing ABBs, and are presented in the following chapter (Chapter 8). The Core
Behavior Model and the ABB Meta-Model are founded on Analysis Knowledge
Dimensions that are also presented in this chapter. The Analysis Knowledge Dimensions
define the types of decisions taken by analysts in formulating behaviors models and the

choices available for each type of decision.
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Chapter 8 : BEHAVIOR MODEL FORMULATION METHOD

The focus of this chapter is to present the Behavior Model Formulation Method
(BMFM). KCM’s Behavior Model Formulation Method prescribes an approach for
formulating behavior model structures given idealized design alternatives with varying
assembly system topologies and behavior idealization specifications defined by analysts. In
this chapter, the Behavior Model Formulation Method is described and its fundamental
underpinnings in model transformations and analysis domain theories are presented. In
section 8.1, an overview of the Behavior Model Formulation Method is presented, and in
section 8.2 the model transformation process used for composing behavior model structures
and simulation templates is described in details. The idealization decisions taken by analysts
are formally represented as Behavior Model Formulation Specifications, and presented in
section 8.3. In section 8.4, the Artifact Model Transformation Library—a library of reusable

model transformation rules and patterns—is presented.

This Chapter
Chapter 8 l

Behavior Model Formulation Method

Chapter 6 Chapter 7
VTMB Design Model Abstractions Behavior Model Abstractions
(CPM2_xKCM) (CBM, ABB Meta-Model)

¢ Test Applications & Validation

Chapter 9
Multi-stratum PWB Designs
Multi-component Chip Package Designs

Figure 8.1: Behavior Model Formulation Method — focus of this chapter

8.1 Overview

The Behavior Model Formulation Method (BMFM) prescribes a model
transformation process for creating behavior model structures. By definition, a model
transformation process transforms a source model that confirms to a source meta-model (or

schema) to a target model that confirms to a target meta-model (or schema). As shown in
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the schematic of a model transformation in Figure 8.2 (Czarnecki and Helsen 2006), there

are six key elements of a model transformation process:

Source Metamodel

Source meta-model defines constructs and relationships for defining source models.
Target meta-model defines constructs and relationships for defining target models.

Source model is the input to the model transformation process, and conforms to the
source meta-model.

Target model is the output of the model transformation process, and conforms to the
target meta-model.

Transformation definition formally states the model transformation process. A
transformation definition mainly states: (a) types of entities and relationships in the
source model that are of concern or to be transformed to create a target model, (b)
transformations that will be executed on these types of source model entities and
relationships, and (c) order of execution of transformations. Since a transformation
definition is stated in terms of the types of entities and relationships, it refers to the source
and target meta-models that define these types.

Transformation engine is the software that executes the transformation definition on the

source model to create a target model.

Refers to Refers to

Transformation Definition

Target Metamodel

IConforms to T Executes I Conforms to
Source Model Reads Transl,zforljnation Writes Target Model
ngine

Figure 8.2: Schematic of a model transformation (Czarnecki and Helsen 2006)

Figure 8.3 illustrates the schematics of the model transformation process realized by

the BMFM resulting in the automated creation of behavior model structures and simulation

templates. Typically model transformations are achieved by creating a target model

different from the source model, or by changing the source model itself (in-place

transformation). The model transformation process prescribed by the BMFM is an in-place

transformation where the source model is not modified but instead additional models are

composed and related to the source model. Thus the target model is composed of the source

model and new models. This is so because the target model of the BMFM’s model

transformation process is a simulation template that relates an artifact’s design model
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structure and its behavior model structure; the source model of the BMFM’s model
transformation process is an artifact’s design model structure. In essence, the model
transformation process prescribed by BMFM is a model building process. During the model
transformation process, an artifact’s behavior model structure is created and related to the
design model structure, thereby creating a simulation template. While Figure 8.3 illustrates
the source and target meta-models and models in the context of BMFM’s model
transformation process, Figure 8.5 illustrates the source and target meta-models and models

in the design and behavior model stack (sections 6.2 and 7.4).

Artifact Model BABB library Formulation of

Transformation library simulation templates
uses

D3 Source Meta-Model Transformation Definition D3-B3 Target Meta-Model
VTMB Artifact-specific | refers to Behavior Model refers to || VTMB Artifact-specific VTMB Artifact
Meta-Model b Formulation Specifications , Meta-Model Il Behavior Meta-Model
conforms to executes ’ conforms to'[ conforms to
D4  Source|Models D4-B4 Target Models
FTMB Artifact ]| reads Transformation writes FTMB Artifact FTMB Artifact Behavior
Model Structure ; Engine "I Model Structure Model Structure i,

4

~

Simulation Templates
Figure 8.3: Schematic of KCM’s Behavior Model Formulation Method (BMFM)

The six key elements of BMFM’s model transformation process are as follows:
= Source meta-model: The source meta-model of BMFM’s model transformation process is
a VTMB Atrtifact-specific Meta-Model—D3 model in the design model stack. As shown
in Figure 8.5, this meta-model defines the constructs and relationships for representing
design and analyzable design model structures of a family of artifacts with different

assembly system topologies, such as a family of multi-stratum printed circuit boards.

= Target meta-model: The target meta-model of BMFM’s model transformation process is
the combined VTMB Artifact-specific Meta-Model (D3) and VTMB Artifact Behavior
Meta-Model (B3). As shown in Figure 8.5, this meta-model is used for representing

simulation templates for a specific type of analysis for a family of VTMB artifacts.

= Source model: The source model of BMFM’s model transformation process is an FTMB
Artifact Model Structure (D4) defined as an instance of the VTMB Artifact Meta-Model
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(source meta-model). A D4 model represents a family of fixed topology design
alternatives, and it consists of the design and analyzable design model structures (Figure

8.4) for these FTMB design alternatives, such as 5-stratum printed circuit boards.

Behavior Model
Formulation Specifications ,

FTMB Artifact Model Structure ; executes FTMB Artifact Model Structure ; FTMB Artifact Behavior Model

. Structure ;
‘ FTMB Design Model Structure ; ‘ reads Transformation ™ W/ites ‘ FTMB Design Model Structure ; ‘ ABB Systerr:-
ia
I Engine I
FTMB Analyzable Design FTMB Analyzable Design

Model Structure ; Model Structure ; —{ Behavior Model XContext ;5

>

Simulation Temp/até/;-,

Figure 8.4: Detailed view of the source and target models in BMFM

= Target model: The target model of BMFM’s model transformation process is a simulation
template that relates a FTMB artifact model structure to a FTMB behavior model
structure. As shown in the detailed view in Figure 8.4, the simulation template uses the
behavior model context to relate an ABB system and the analyzable design model
structure. As presented in Chapter 7, a behavior model context and an ABB system

together define an artifact behavior model structure.

bdd [Package] Artifact_Model_Abstractions [ E] KCMfDesignfBehaviorfModeLAbstractionsu

Design Model Stack b1 Behavior Model Stack B1
<<block>> Q <<block>>
Artifact Meta-Model (CPM2_xKCM) Artifact Behavior Meta-Model (CBM)
AN AN
D2 B2
<<block>> E <<block>>
Application-specific Artifact Meta-Model Analysis-specific Behavior Meta-Model
A A
Source Meta-Model na Target Meta-Model
- = — « _ _ |1
| <<block>> = : L <<block>> /
: VTMB Artifact-specific Meta-Model —— VTMB Artifact Behavior Meta-Model
I
I
T T T T T T T T YinstanceQf T T T ™ ! 1 | +instanceOf
1..% +instances D4 1.4 +instances B4
<<block>> Q <<block>>
FTMB Artifact Model Structure L2 FTMB Artifact Behavior Model Structure
| T Finstanceot 1..*|+instanceOf \
Source Model / 1.4 +instances D5 1.*|+instances Target Model
<<block>> E . <<block>> Q
FTMB Artifact Model Instance L2 FTMB Artifact Behavior Model Instance

Figure 8.5: Source and target meta-models and models in BMFM - design and behavior model stack view
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A FTMB design and analyzable design model structures (source model) are defined as
instances of the VTMB Atrtifact-specific Meta-Model (CPM2_xKCM), and the FTMB
behavior model structure is created as an instance of the VTMB Artifact Behavior Meta-
Model (CBM). Note that D3 and B3 models are specializations of D1 and B1 models
respectively. Thus, the concepts in D1 and B1 may be used as-is or specialized for
specific types of artifacts and specific analysis in D3 and B3 respectively. The target
meta-model (B3) consists of entities defined in the Core Behavior Model (B1l)—
especially the definition of behavior model, ABB system, and behavior model context—

and the ABB models selected for the specific types of analysis.

Transformation definition and Transformation process: In the BMFM, the transformation
definition and process are separate. This allows one to define reusable transformations
that can be used by one or more transformation processes. The transformation definitions
are building blocks of transformations while the transformation process defines the order
in which these transformations are to be executed on the source model. All
transformation definitions are stored in a library of model transformations, named
Artifact Model Transformation Library. The transformation process is known as the
Behavior Model Formulation Specifications, and it constitutes the behavior idealization
decisions taken by analysts. The BMFS is defined in terms of the source and target meta-
models, and prescribes the specific transformations from the Artifact Model
Transformation Library that will be executed and the order of execution. The BMFS
consists of conceptual specifications—idealization decisions—that may be compiled into
computable specifications—a set of transformation engine-interpretable instructions that
are defined in terms of the pre-existing transformations in the Artifact Model
Transformation Library, and are executed by the transformation engine to create the

target model.

Transformation Engine: The model transformation process in the BMFM is realized
using graph transformations where the source and target meta-models and models are
abstracted as graphs and the transformations are abstracted as graph transformations.
Hence, BMFM uses a graph transformation engine for model transformations. The
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VIATRA graph transformation engine (VIATRA 2007) is used for test cases
demonstrated in this dissertation.

As shown in Figure 8.3, BMFM’s model transformation process is realized in the following

manner:

= The source and target meta-models are defined once for a family of VTMB artifacts (such
as printed circuit boards) and for a family of analyses (such as thermo-mechanical
analyses).

= For a particular analysis, such as warpage analysis, analysts provide Behavior Model
Formulation Specifications (say BMFS,).

= The source models are defined by designers and are typically derived from parameterized
CAD models. A designer may provided a set of FTMB artifact model structures (say
FTMB artifact model structure ;, FTMB artifact model structure j, and so on)

= During the model transformation process—as illustrated in Figure 8.3 and Figure 8.4—
the transformation engine reads a FTMB Artifact Model Structure (say FTMB artifact
model structure;) and executes a Behavior Model Formulation Specification (say BMFS,)
to automatically create a simulation template (say Simulation Templatej, that is composed
of FTMB Artifact Model Structure; and Behavior Model Structure;j,). For the same BMFS
(say BMFS,), the transformation engine can read several FTMB Artifact Model
Structures (say FTMB Artifact Model Structure;, FTMB Artifact Model Structure;j, and
so on) and create corresponding simulation templates (say Simulation Template;,,
Simulation Templatej,, and so on). Also, for the same FTMB Artifact Model Structure
(say FTMB Artifact Model Structure;), analysts may provide alternate idealizations (say
BMFS,,) and automatically create a simulation template (say Simulation Templatej,). As
shown in Figure 8.4, that model transformation process results in creating a behavior
model structure and relating it to an analyzable design model structure via behavior
model context entity.

The core advantage of BMFM’s model transformation process is to use the same

BMFS to transform variable topology analyzable design model structures to create

corresponding simulation templates. As an example, Figure 8.6 illustrates how the model

transformation process will be realized for creating simulation templates for thermo-

mechanical analysis of multi-layered printed circuit boards. A BMFS created by analysts for
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thermo-mechanical analyses (say Thermo-mechanical BMFS jayer-shen) Will be executed by
the transformation engine on 5-, 6-, 7-layered analyzable PCB model structures (variable
topology design alternatives) to create thermo-mechanical simulation templates for 5-, 6-,
and 7-layered PCBs. Each simulation template for thermo-mechanical analysis of n-layered
PCB will be composed of n-layered analyzable PCB model structure and n-layered
laminated shell behavior model structure®®. In this case, Thermo-mechanical BMFS jayer-shell
represents the behavior idealizations—to idealize each layer in the PCB as a shell and to

idealize an n-layered PCB as an n-layered laminated shell.

Thermo-mechanical BMFS jayer-shell

5-layered analyzable PCB 5-layered PCB analyzable 5-layered laminated shell

model structure design model structure | |  behavior model structure
6-layered analyzable PCB 6-layered PCB analyzable 6-layered laminated shell
model structure i [ design model structure [ |  behavior model structure
7-layered analyzable PCB 7-layered PCB analyzable 7-layered laminated shell
model structure » design model structure [ |  behavior model structure

Figure 8.6: Example schematic of KCM’s Behavior Model Formulation Method applied to VTMB problems

The Behavior Model Formulation Method addresses VTMB problems because for
different desing model structures—each of which represents a set of design alternatives with
equivalent assembly system topologies—behavior model structures and simulation
templates can automatically be created for the same Behavior Model Formulation
Specifications. Additionally, behavior model structures and simulation templates can also
be automatically created for different Behavior Model Formulation Specifications and for a
given design model structure. The Behavior Model Formulation Method address all types of
variations in assembly system topology—number and types of components, features, and
interactions—of design alternatives as described in section 2.3. Automated adaptation of
simulation templates based on simulation results, as described in ST _Change Type 3
(section 2.2.2.2), is not demonstrated in the version of the Knowledge Composition
Methodology presented in this research, and is recommended for future research. However,
the meta-models and formalisms used in the KCM are positioned to address this use case. In

the version of KCM presented in this dissertation, analysts may automatically re-formulate

16 assuming that layers are preserved and not ignored in the idealization specified in BMFS
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simulation templates by varying the Behavior Model Formulation Specifications to reflect

the new knowledge gained from simulation results.
Execution of simulation templates

D4-B4 Simulation Template ;,

FTMB Artifact FTMB Artifact Behavior
Model Structure ; Model Structure i,

y x

conforms to conforms to
solves

D5

FTMB Artifact  [reads : writes B,fTMB A :
Object Solvers )—> rtifact Behavior
Model Instance i1 e S~ T > Model Instance ,_1a

writes reads -

Figure 8.7: Schematic for the execution of simulation templates

Figure 8.7 illustrates the schematic for the execution of simulation templates.
Simulation templates formulated at D4-B4 level using BMFM’s model transformation
approach can be executed in two scenarios—design verification scenario and design
synthesis scenario. In the design verification scenario, design alternatives (D5) with
equivalent assembly system topologies are input to a simulation template and corresponding
behavior model instances (B5) are formulated. These behavior model instances can then be
solved using a specific solution methods and solvers. Note that the primary focus of the
KCM is to formulate behavior models independent of a solution method and solver.
However, the model transformation approach can be easily extended to include solution
method- and solver-specific behavior model structures in simulation templates. For
example, a FEA behavior model structure could be included in simulation templates—
associated with the FTMB Artifact Behavior Model Structurej;—that specifies the element
types and mesh specifications for analysis bodies and their interactions. The design
synthesis scenario represents the use case where analysts may perform optimization of the
analysis body system (represented in a behavior model structure), and intend to update the
design model accordingly. In such a scenario, the optimized behavior model instance is
input to a simulation template and the corresponding design model instance is formulated.
Note that the execution of simulation templates in the design synthesis scenario depends on
the nature of mathematical relationships embodied in simulation templates—causal versus

non-causal relationships. While the fomer can be executed for different causalities, the latter
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may require the use of specialized numerical techniques and in some cases may not be

pragmatic to solve.

8.2 Composing Behavior Model Structures and Simulation

Templates

Given that simulation templates are automatically created from analyzable artifact
design model structures and behavior model formulation specifications provided by
analysts, it is necessary to understand the different stages of model transformations during
this process. This process of model transformation is realized by composing a behavior
model structure from analysis building blocks provided by the KCM (Chapter 7), and
composing a simulation template from the behavior model structure and design model
structure. This composition process is realized in four stages that are described in section
8.2.1. In each stage a specific type of composition is achieved, both for creating behavior
model structure and simulation template. In section 8.2.2, the semantics of composing
behavior model structures and simulation templates is described. Semantically, the process
of composing a behavior model structure and simulation template is a process of deriving
equations relating the behavior parameters to the design parameters, and the building blocks
of the composition process represent pre-defined equations representing domain theoretic
concepts that are used during this derivation. In section 8.2.3, the mechanics of the
composition process is presented in terms of graph transformations that are the theoretical
foundation of the composition process.

8.2.1 Stages of composition
The model transformation process prescribed by the Behavior Model Formulation

Method is a four-stage composition process. Figure 8.8 illustrates these four stages of
compositions that occur when a FTMB behavior model structure and simulation template
(target model) are created from an FTMB analyzable artifact model structure (source
model). The figure shows the source and target models in these four stages of composition.
The source model is a FTMB analyzable artifact model that represents an idealized design
for analysis purposes. The target model is a FTMB simulate template that includes the
source model and a FTMB behavior model structure. Thus, the model transformation

process is “in-effect” a model building process that is realized in four stages. During these
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four stages, the source model is not changed but target model entities are created that relate
to the source model. The four stages are as described below:

= Stage 1 composition: Composing analysis bodies and their relationships to analyzable
artifacts

In this composition stage, analysis bodies and their relationships to analyzable
artifacts are composed from their respective building blocks based on the Behavior Model
Formulation Specifications provided by analysts. As shown in Figure 8.8 and described in
the ABB Meta-Model and Core Behavior Model, the building blocks of an analysis body
are its features, shape, material behavior, and behavior; and the building blocks of the
relationship between an analysis body and an analyzable artifact are relationships between
their shapes, material behaviors, and features. The end products of Stage 1 composition are
(a) analysis bodies represented as instances of Analysis_Body ABB'), and (b) relationship
between analysis bodies and analyzable artifacts, represented as instances of
Analyzable_Artifact_ ABS_Relationship (see Core Behavior Model for details).

Figure 8.9 illustrates a planar shell analysis body and its relationship to the
corresponding analyzable PCB stratum, created at the end of a Stage 1 composition process.
The figure is abstracted from the example described in section 7.4.2 where a FTMB (5-
shell) thermo-mechanical behavior model structure is created for FTMB (5-stratum) printed
circuit boards. The figure shows a composed analysis body and its relationship with an

analyzable artifact for a single stratum in the analyzable PCB model.

7 Note that only the property attribute of an ABB is instantiated; the other three attributes (context, application conditions,

and transformations) are static.
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Target Model

Stage 4

<<block>>
behaviors : Behavior _ABB [0.."]
J

<<block>> [=]
abs_sys : ABS_ABB[0..1]
<<black>>
loads_applications : Load_ABB [0.."]

gtk = <<blocke> =]
] behavior_condition_applications : Behavior _Condition_ABB [0.."] |
<«
e eeblocins e = _] ______ -__? ______ ]
SR S T B
- e ] I Load_Property Behavicr_Property l
n =<block>> = I
Behavior_Condition_Property
| | |
| I
r <<block>> gj | mjo;hg;m_wm - |
| Behavior_Model_XContext | CEX | I
__________ | L — K _| : cmnm_wsywuvy:ms_n.muu:lu. |
| Source Model - ek 48
I I : St ag e 3 I constiuent_afs_property : Analysis_Feature_Property [0.°) :
| | r————=—=—== = A I comsiuent_ob_ab_interactions property AB_AB: eraction_Property[1.°] - | |
<<block=> <<block>>
Analy oc_ArtifactE 1 | _Artifa:tDiABs_Re rE ] etk =
| - 1 = | | constiuort_absys : Analysis_Body_System_Property 0.1 | |
A
! ~ 'Stage2 T T T L. " it T -
o d . 15 tage L E=====——-————= 1
X <<plock=> . blocks> =2 I <<hlocks> =]
|| Analyzable_Feature T Feature ysis_Feature_R P ll Analysis_Feature_Property |
| 1
II <<block>> =] l <<block>> =] <<block>> =] <<block>> !
|I Artifact_Artifact_Interaction H _Feature_Analysis_Feature_Interface_Relationship AB_AB_Interaction_ABB Analysis_Body_system_Prnpeny{ll
I " | l
! black
I Analy;;b:ec_:nlrac! = | l
I' I| “blogks> =]
| <<block>> 3 | Anatysis_Body_Property i
|| hasForms : Form [0.] l I s
l' | <<blocks> ] I I | shape- Shape
i Sl
hasShapes : Shape [0.] “ l fritries =

<<block>>

associsted_mb_propeny : Materisl_Dehmvior_Property |

i ) . N = | | | <<block=> g -
[[1 | rosmaoritssttmerist 5.1 |  Artifact ABS R = 0 etk =)
| —— = consttuent_analysis_features : Analysis_Feature_Property ['] _:
II - <cblock>> 8] I = || e a2l |
; asAnalyzableFeatures : Analyzable_Feature [0..'] ||_ —_—— e e e ] — e — — assocated_bohador_property:fohinos_Property 1.1 |
—_— || - - - e (T e
L Y 3 I | A
|-===== === _IStagel il piauiiniianlianiien e
i A _———— — —_——— — — —_—— = = S
I | |I - TiooE Y l <<hlock>> ]
. o> =] = ~ 91 is_Feature_Property
| | Analyzable_Feature [~ _Feature_Analysis_Feature_| P T b _Frop I
. |
I ! <<block>> I!! Sl =] I I il - | e a I
| shape |11 Shape_Shape_Relationship | } | shape Behavior_Property |
| .
I | <<block>> III =<block>> = I I block: I
li Material_Behavior_Property ” Material_Behavior_Material_| ior_Relationship | t Material_ ior_Property |
_______________________ Lo d —m—— e e e

Figure 8.8: Stages of composing simulation templates using BMFM

The same structure is repeated for other stratums in the analyzable PCB. In this example,

instances of material behavior ABB (LEOTI_1), shape ABB (PS1_Shape), and analysis

feature ABB (PS1_PrimSurf and PS1_SecSurf) are created and associated with an instance of

analysis body ABB (PS1). In addition, an instance of Shape_Shape_Relationship (SS1), an

instance of Material_Behavior_Material_Behavior_Relationship (MBR1), and two instances of

Analyzable_ Feature_Analysis_Feature_Relationship

(AStrat_PShell_1_Prim_Rel

and

AStrat_PShell_2_Sec_Rel) are created, associated with corresponding entities of the
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analyzable stratum and planar shell analysis body, and associated with an instance of

Note that instances of

Analyzable_Artifact ABS_Relationship  (AStrat_PShell1_Rel).
specialized ABBs are created during this composition process but for brevity only the

parent ABBs are mentioned here. For example, PS1 is an instance of planar shell analysis

body ABB which is a special type of analysis body ABB.

Analyzable Artifact

<sblock>> =
AStratum_1: AStratum
primary_surface = AStratum_1_primary
secondary_surface = AStratum_1_secondary
hasFunctions = Conductive
hasForms = AStratum_1_Form
1
<<block>>
AStratum 1 Form : AStratum_Form
formOfArtifacts = AStratum_1
hasMaterials = ASiratum_1_Mat_Soldermask
hasShapes = AStrat_1_Shape
T
<<block>>
AStratum 1 Mat Soldermask:

[ materialOfF orms = AStratum_1_Form
hasBehavior = LEITI_AS1

<<block=> =

LEITI AS1:
Linear Elastic Isotropic Tempind M
B_Property

<<block>> =]
AStrat 1 Shape ;
Stratum_Shape

<<blocks: =]
AStrat1 OQutline : Rectangle
startPoint= AS1_P1
endPoint=AS1_P2

Relationship between analysis body
and analyzable artifact

<<block=> =
AStrat PShell1 Rel: AStratum_PShell Relationship
associated_aa = AStratum_1
—1 associated_abs = PS1 | —
of_aa_abs_rel= APCB_LamShell_55x_Rel =
shape_idealization = SSR1
material_behavior_idealization = MBR1
af_ani_rel_primary = AStrat_PShell_1_Prim_Re|
af_anf_rel_secondary = AStral_PShell_1_Sec_Rel

<=constraint>>

Eq52 : Equality Relation &

SR

<<block>> = ‘

MBR1:
Material Behavior Material Behavior Relationship

Analysis body

<<block>> [=]
PS1:Planar_Shell Property
primary_surface = PS1_PrimSurf
secondary_surface = PS1_SecSurf
shape = PS1_Shape
associated_mb_property = LEOTI_1
associated_behavior_property= PS18

<<block>> =
~ LEOTI1;

relatingVBs = LEITI_AS1 I
—— relatedMBs = LEOTI_1
mb_mb_relations = Eq52
<<block>>

=
SSR1:Shape Shape Relationship

Tempind MB Property

=<block>> =

shape_shape_relations = Eq51
relatingShapes = AStrat_1_Shape
relatedShapes = PS1_Shape

<<constraint>>
i i atio

T

<<block=> =
AStrat PShell 1 Prim Rel: AStratSurf PShellSurf

PS1_Shape :
Planar_Shell Shap
e

=<<hlock>>

PS1_PrimSurf :

=<block>> =]

AStratum 1 primary:
AStratum Surface

<<block>> =]

AStratum_Surface

|_af= AStratum_1_secondary
associated_anf=PS1_PrimSurf

<<block>>

AStrat PShell 1 Sec Rel: AStratSurf PShellSurf Relationship
associated_af= AStratum_1_primary
associated_anf= PS1_SecSurf

Shell Surface AF Propert
¥

<<block>>

PS1 _SecSurf;
Shell Surface AF Propert
¥

...similar structure created for other planar shell analysis bodies
and analyzable stratums

Figure 8.9: Stage 1 Composition: Composing an analysis body and its relationship with
analyzable artifacts
Also note that the specialized pre-defined analysis body ABB instantiated here has
attributes whose types restricts the shape, feature, and material behavior ABB instances that
can be associated with it. For example, the Planar Shell Analysis Body ABB has a shape
attribute of type Planar Shell Shape. This allows only instances of Planar Shell Shape to be
associated with instances of Planar Shell Analysis Body ABB.
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= Stage 2 composition: Composing analysis body systems and their relationships to
analyzable artifacts

In this composition stage, analysis body systems and their relationships to
analyzable artifacts are composed from their respective building blocks based on the
Behavior Model Formulation Specifications provided by analysts. As shown in Figure 8.8
and described in the ABB Meta-Model and Core Behavior Model, the building blocks of an
analysis body system are its features, constituent analysis bodies and analysis body systems,
and interactions between constituent analysis bodies; and the building blocks of the
relationship between an analysis body system and an analyzable artifact are relationships
between their shapes, material behaviors, features, and their interactions. The end products
of Stage 2 composition are (a) analysis body systems represented as instances of
Analysis_Body System_ABB), and (b) relationship between analysis body systems and
analyzable artifacts, represented as instances of Analyzable_Artifact_ ABS_Relationship (see
Core Behavior Model for details).

Figure 8.10 illustrates a laminated shell analysis body system and its relationship to
the corresponding analyzable PCB, created at the end of a Stage 2 composition process. The
figure is abstracted from the example described in section 7.4.2 where a FTMB (5-shell)
thermo-mechanical behavior model structure is created for FTMB (5-stratum) printed
circuit boards. The figure shows a composed analysis body system and its relationship with
an analyzable artifact. For brevity, only one out of five constituent analysis bodies and one
out of four analysis body interactions are shown for the subject analysis body system. In this
example, instances of analysis body ABBs (PS1,PS2,...,PS5) created in Stage 1 and analysis
body interaction ABBs (PS1_PS2_Tie,...,PS4_PS5_Tie) created in Stage 2 are associated
with an instance of analysis body system ABB (LamShell_5Sx_ABSys) created in Stage
2. In addition, 5 instances of Analyzable Artifact_Analysis Body Relationship
(AStrat_PShelll_Rel,...,AStrat_PShell5_Rel) created in Stage 1, and four instances of
Analyzable Feature Analysis_Feature_Interface_Relationship
(AStrat_ShellTie_12_Interaction_Rel,...,AStrat_ShellTie_45_Interaction_Rel) created in
Stage 2 are associated with an instance of Analyzable Artifact ABS_Relationship
(APCB_LamShell_5Sx_Rel) created during Stage 2. In this example, the analysis body
system does not constitute other analysis body systems (sub-systems). Semantically, in this
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composition, a laminated shell analysis body system is being composed from the individual

shell bodies and the tie interactions among the adjacent shell bodies in the stackup. In

addition, a relationship between the laminated shell system and the PCB is being composed

from (a) relationships between shell bodies and corresponding idealized stratums on a PCB,

and (b) relationships between shell tie interactions and corresponding interfaces between

PCB stratums.

<<hlock==> =

<=<block=>
APCB LamShell 5Sx Rel: APCB | amShell Relationship

APCB 5Sx : Analyzable PCB

hasAStratums = AStratum_2, AStratum_1,
AStraturn_3, AStratum_4, AStratum_5
astratuminteractions = astratum_interface_12,
astratum_interface_23, stratum_interface_34,
stratum_interface_45

associated_aa = APCB_5Sx

L | associated_abs = LamShell_55x_ABSys

constituent_aa_abs_rels = AStrat_PShell1_Rel, AStrat_PShell2_Rel,
AStrat_PShell3_Rel, AStrat_PShell4_Rel, AStrat_PShell5_Rel
af_anf_interface_rels = AStrat_ShellTie_12_Interaction_Rel,
AStrat_ShellTie_23_Interaction_Rel, AStrat_ShellTie_34_Interaction_Rel,
AStrat_ShellTie_45_Interaction_Rel

of_bm_xcontext = APCB_LamShell_5Sx_Context

=<hlock=>
LamShell 5Sx AB! : LamShell AB: Prope

constituent_ahs_property= PS1, PS2, PS3, PS4, PS5
constituent_ab_ab_interactions_propery = PS1_PS2_Tig,
PS2_PS3_Tie, PS3_PS4_Tie, PS4_PS5_Tie

=<block=> =]
AStratum 1 : AStratum

<<block=>

AStrat PShell1 Rel: AStratum PShell Relationship

associated_aa = AStratum_1

primary_surface = AStratum_1_primary
secondary_surface = AStratum_1 _secondary
hasFunctions = Conductive

hasForms = AStratum_1_Form

associated_abs= P81

of_aa_ahs_rel= APCB_LamShell_5Sx_Rel
shape_idealization = SSR1
material_behavior_idealization = MBR1
af_anf_rel_primary = AStrat_PShell_1_Prim_Rel
af_anf_rel_secondary = AStrat_PShell_1_Sec_Rel

=<block=> =
PS1:Planar Shell Property
primary_surface = PS1_PrimSurf

<<hlock=>
astratum interface 12:

Adjacent AStratum Surface Interaction

=

<<block=>

secondary_surface = PS1_SecSurf
shape= PS1_Shape
associated_mb_property = LEOTI_1
associated_behavior_property= PS1B

AStrat ShellTie 12 Interaction Rel:
AdjStrat PShellTie Interaction Relationship

=<hlock== =
PS1 PS2 Tie:
Shell Shell Tie Interaction Property

parentAPCB = APCB_55x

<<block=> =
AStratum_2 : AStratum

primary_surface = AStratum_2_primary
secondary_surface = AStratum_2_secondary
hasFunctions = Non-Conductive

associated_aa_interaction = astratum_interface_12
associated_ab_interaction = PS1_PS2_Tie

and planar shells, and their interaction
relationships. ..

... The structure repeats for other stratumsj

relating_analysis_feature = P51_SecSurf
related_analysis_feature = PS2_Primsurf
relating_displacernent_parameters = D_PS1Sec
related_displacement_parameters = D_P52Prim

==hlock== =]
PS2: Planar Shell Property

primary_surface = PS2_Primsurf
secondary_surface = PS2_SecSurf
shape = PS2_Shape
associated_mb_property = LEITI_2

Figure 8.10: Stage 2 Composition: Composing an analysis body system and its relationship with analyzable

artifact

Note that Stage 2 composition is more intuitive that other stages as it is similar to

composition of physical systems where assemblies are composed from parts and the

interactions among parts. Composition in KCM is the composition of models that may or

may not represent systems that are similar to physical systems. For example, composing an

analysis body from its attributes such as shape, features, and material behavior is not

intuitively similar to composing a physical system.
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LamShellCornerVertexFixed : UniformTempload T112:

PointDi:

= Stage 3 composition: Composing a behavior model ABB system and behavior model
context

In this composition stage, a behavior model ABB system and a behavior model
context—relates ABB system to analyzable artifact—are composed from their respective
building blocks. As described in the Core Behavior Model, a behavior model ABB system
represents the behavior model structure of an analysis body system and a behavior model
context is relates the analysis body system to the analyzable artifact. As shown in Figure 8.8
and described in the ABB Meta-Model and Core Behavior Model, the building blocks of a
behavior model ABB system are its analysis body system, applied loads, applied behavior
conditions, and the set of idealized behaviors that it represents; and the building block of
behavior model context is the relationship between the analysis body system in the behavior
model ABB and the corresponding analyzable artifact. The end products of Stage 3
composition are (a) behavior model ABB system represented as an instance of
Behavior_Model_ABBSys, and (b) behavior mode context represented as an instance of

Behavior_Model_XContext.

=<hlock>> = <<block==
LamShell 5Sx Thermo-Mech ABE System : g
LamShell ThermoMech ABBS APCB LamShell 55x Context: APCB LamShell Context
of_behavior_model = PCB-LamShell_5Sx_ThermoMech_BM of_behavior_model = PCB-LamShell_55x_ThermoMech_EM
abs_sys=LamShell 55x ABSys B aa_abs_rel= APCB_Lam5hell_55x_Rel

load_applications = UniformTemplLoad_T1T2
behaviors = LamShell_5Sx_Behaviar
behavior_condition_applications = LamShellCornervertexFixed

==hlock== =
APCB LamShell 55x Rel: APCB LamShell Relationship
associated_aa= APCB_65x
ixed BC Prope Uniform Temperature |oad Property associated_ahs = LamShell_55x_ABSys

=<block=> = <<block==

constituent_aa_abs_rels = AStrat_PShell1_Rel, AStrat_PShell2_Rel,

AStrat_PShell3_Rel, AStrat_PShell4_Rel, AStrat_PShell5_Rel
<<block=> =

el A . =<hlock=> = af_anf_interface_rels = AStrat_ShellTie_12_Interaction_Rel,
EMSHENESSx Alamslis tope LamShell 5Sx Behavior : AStrat_ShellTie_23_Interaction_Rel, AStrat_ShellTie_34_Interaction_Rel,
constituent_abs_propery= PS1, PS2, PS3, PS4, PS5 Structural Behavior Property AStrat ShellTie 45 Interaction Rel

const

ituent_ab_ab_interactions_property = PS1_PS2_Tie, of bm xcontext= APCE LamShell 5Sx Context

PS2_PS3_Tie, PS3_PS4_Tie, PS4_PS5_Tie

a. Composing behavior model ABB system b. Composing behavior model context

Figure 8.11: Stage 3 Composition: Composing behavior model ABB system and behavior model context

Figure 8.11 (a and b) illustrate a behavior model ABB system and a behavior model
context model respectively, created at the end of Stage 3 composition process. The figure is
abstracted from the example described in section 7.4.2 where a FTMB (5-shell) thermo-
mechanical behavior model structure is created for a FTMB (5-stratum) printed circuit
boards. In this example, an instance of analysis body system created in Stage 2, instance of

temperature load ABB (UniformTempLoad_T1T2) created in Stage 3, instance of point
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displacement fixed boundary condition ABB (LamShellCornerVertexFixed) created in Stage
3, and instance of structural behavior ABB (LamShell_5Sx_Behavior) created in Stage 3 are
associated with an instance of behavior model ABB system (LamShell_5Sx_Thermo-
Mech_ABB_System) created in Stage 3. Semantically, in this composition, a behavior model
ABB system is being composed from the laminated shell analysis body system, uniform
temperature load, point displacement fixed boundary condition, and structural behavior
parameters and relations. The behavior model context relates the laminated shell analysis

body system and the analyzable PCB (idealized PCB design for analysis purposes).

= Stage 4 composition: Composing behavior model structure and simulation template

In this composition stage, a behavior model structure is composed from a behavior
model ABB system and a behavior model context as shown in Figure 8.8. The end product
of Stage 4 composition is a FTMB behavior model structure represented as an instance of
Behavior_Model. Figure 8.12 illustrates a FTMB thermo-mechanical behavior model
structure (PCB-LamsShell_5Sx_ThermoMech_BM) that is composed in this stage from a
FTMB behavior model ABB (APCB_LamShell_5Sx_Context) and a behavior model context
(LamShell_5Sx_Thermo-Mech_ABB_System) composed in Stage 3.

bdd [Model] PCB_5Sx_ThermoMech_Behavior_Model_Structure[ @ Behavior_Model_Structure_View _1 ]J

it =] i e2x hamme Mach A Syst =
| A
PCB-LamShell 55x ThermoMech BM: PCB-LamShell ThermoMech BM A mSheil Thermoech ABESYS
associated_bm_abbsys = LamShell_5Sx_Thermo-Mech_ABB_System of behavior model= PGE-Lamshell 5Sx Thermolech B

context= APCB_LamShell_55x_Context abs_sys = LamShell_5Sx_ABSys

load_applications = UniformTempLoad_T1T2

behaviors = LamShell_5Sx_Behavior
behavior_condition_applications = LamShellCornervVertexFixed

==block==

APCB LamShell 55x Context: APCB LamShell Context
of_behavior_maodel = PCB-LamShell_55x_ThermoMech_BM
aa_abs_rel= APCB_LamShell_&5x_Rel =<hlock== = ==hlocks=
LamShellCornerVertexFixed : UniformTemplLoad T17T2;
PointDisplacementFixed EC Prope Uniform Temperature Load Property
iy
==hlock=> =

APCE LamShell 55x Rel: APCB LamShell Relationshi ==hlock>> = —<blocke=
associated_aa=APCB_55x LEmShelRESXIAR :Lamshell AB; Frope LamShell 55x Behavior :
associated_abs = LamShell_55x_ABSys constituent_abs_property= P51, PS2, P53, PS4, PS5 Structural Behavior Property
constituent_aa_abs_rels = AStrat_PShell1_Rel AStrat_PShell2_Rel, constituent_ab_ab_interactions_property=PS1_PS2_Tie,
AStrat_PShell3_Rel, AStrat_PShelld_Rel, AStrat_PShell5_Rel PS2_PS3_Tie, PS3_P54_Tie, PS4_PS5_Tie
af_anf_interface_rels = AStrat_ShellTie_12_Interaction_Rel,

AStrat_ShellTie_23_Interaction_Rel, AStrat_ShellTie_34_Interaction_Rel,
AStrat_ShellTie_45_Interaction_Rel
of_bm_xcontext = APCB_LamShell_5Sx_Context

Figure 8.12: Stage 4 Composition: Behavior model structure view

Note that a behavior model is also the root entity (or the central entity) of a simulation
template. This is so because a behavior model is composed of behavior model context—

represented by Behavior_Model_XContext block—that relates the analysis body system in
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the ABB system to an analyzable artifact. Note that in composing a FTMB behavior model
structure, the simulation template is also composed. Figure 8.13 illustrates the thermo-
mechanical behavior simulation template that shows the analyzable artifact (APCB_5Sx)

associated with the behavior model context (APCB_LamsShell_5Sx_Rel) entity.

bdd [Moclel] PCEB_55x _ThermoMech_Behavior_Mode|_Structure [ @Behavior_Mode\_Structura_\’iew_W ]J

apiocey =] LamShell 55: m«m:r h ABB ]
LamShell 55x Thermo-Mech ABB System:
PCB-LamShell 5Sx ThermoMech BM : PCB-LamShell ThermoMech BM e AmShell ThermoMech ABBSYs
associated_bm_abhsys = LamShell_5Sx_Thermo-Mech_ABB_System of behavior model= PCE-LamShell 5Sx ThermoMech_ BM
context= APCB_LamShell_5Sx_Context abs svs:\:amshe\l 55x_ABSYs Y .

load_applications = UniformTempLoad_T1T2
behaviors = LamShell_5Sx_Behavior
behavior_condition_applications = LamShellCornerVerexFixed

<<hlock=>
APCB LamShell 55x Context : APCB | amShell Context

of_behavior_model = PCB-LamShell_5Sx_ThermoMech_BM

aa_ahs_rel=APCB_LamShell_5Sx_Rel <<block>> <<blocks>
LamShellCornerVertexFixed : UniformTempload T472:
| PointDisplacementFixed BC Prope Uniform Temperature Load Property
iy
<<blocks> =
<<block>> [=] APCE LamShell 5Sx Rel: APCB LamShell i e
APCB 55x; Analvzable PCB associated_aa= APCB_55x <<block=> =] LamShell 55x Behavior :
hasAStratums = AStratum_2, AStratum_1, associated_ahs = LamShell_58x_ABSys LamShell 5Sx ABSys : LamShell AB! Prope: Structural Behavior Property
AStratum_3, AStratum_4, AStratum_5 L | constituent_aa_abs_rels = AStrat_PShell1_Rel, AStrat_PShell2_Rel, constituent_abs_property = PS1, PS2, PS3, PS4, PS5
astratuminteractions = astratum_interface_12, AStrat_PShell3_Rel, AStrat_PShell4_Rel, AStral_PShell5_Rel constitusnt_ab_ab mleractmnslpmpleny:‘Pfﬂ 'PS2 Tie
astratum_interface_23, stratum_interface_34, af_anf_interface_rels = AStrat_ShellTie_12_Interaction_Rel, PS2 PS3 Tie PS3 PS4 Tie PS4 PS5 Tie !
stratum_interface_45 AStrat_ShellTie_23_Interaction_Rel, AStrat_ShellTie_34_Interaction_Rel, ~ N - T i -

AStrat_ShellTie_45_Interaction_Rel
of_bm_xcontext = APCB_LamShell_5Sx_Context

Figure 8.13: Stage 4 Composition: Simulation template view

The four composition stages defined here represent the following two specific
characteristics of BMFM’s model transformation process: (a) types of composition, and (b)
the dependency relation between the types of composition. For example, the Stage 2
composition depends on Stage 1 composition. However, the dependency does not imply that
the Stage 1 composition must be completed for all analysis bodies before Stage 2
composition may be initialized, or Stage 2 composition must be completed before Stage 3
composition. Thus, the composition process in different stages may be initialized and run in

parallel, although the Stage;j.+1 process cannot finish until Stage; process has finished.

8.2.2 Semantics of composition
The process of composing simulation templates is similar to the process of deriving

behavior relations for a given analysis problem, where behavior relations are analytical
formulations of simulation templates—relating design parameters to behavior parameters.
In this section, BMFM’s model composition process and the traditional process of deriving
behavior relations are compared to each other. The intent of this comparison is to establish
that the model-based composition of simulation templates is a more formal and structured
approach to formulating behavior models, and is fundamentally similar to deriving behavior

relations by “assembling” domain theoretic concepts to solve analysis problems.
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Figure 8.14 illustrates the comparison between the traditional process of deriving

behavior relations and the process of composing behavior model structure. The example

illustrated in the figure concerns formulating a behavior model structure to compute the

axial deformation of a system of two prismatic bars tied together, with one end of a bar held

fixed and a static force is applied at one end of the other bar. The figure shows both the

process of deriving behavior relations on the left side, and the behavior model structure (as

would be composed using the Behavior Model Formulation Method). The steps in the

derivation process and composition process are marked from 1-8. In this comparison, the

idealized design model and its relationships to the analysis bodies/system are not shown—

only the ABB system is shown for the behavior model structure.

Analyst’s decisions — selecting domain
theoretic concepts
1 . Assume 2 prismatic bars

- circular cross-sections, length L1, L2

- deformation along the axis ——

- measure deformation at 2 end points of each bar far1_enda fixea:
EomnPisplacememifised BC Propey
be_appiication_domain = Barl -EndA_AnalysisFeature |

2 Assume both bars are tied at ends - 5

<aiocio 18

L:bar_Rehavior Model ABRSyn:n.
Bar_Deformation Behavier Modst ABISvs

abs_sys = 2-bar-system

load_applications = Bar2_sndb_Force
bahavior_tondtion_applic3tons = Barl_sndl_Fuusd
behaviors = behavior_bar_1, behavior_bar_2

=2 <thoci»

3 Assume homogenous linear
elastic isotropic material behavior

E =/ € (Hooke’s Law)
4 Constant force F applied at end B of Bar 2

5 End A of Bar 1 held fixed
A1 B1A2 B2

Formulating equations...

6 G =F /A (Equilibrium Equation)
- stress is uniformly distributed over cross-section

- o
constRuant_abs_propenty = Ban, Barl
<onstuen_ab_ab_interactions_proporty= Bart2_Tied

1-3

s 2

Bar? endB Force : Static Poinl Feocn Progerty
Ioad_application_dormain = Bark-EndE_AnalysitF aaturel

4

retating_analysis_feasure = Barl-EndB_AnalysisFeature
retated_analysis_feature = Bar2-EndA_AnalrsisFeature |

(load acts through centroid of cross section Pt Bace | = LIRS — —

- stress concentration at the point of application prasn=c | (i Gl i g crossgechon = ¢1 _mu- it
SHE Iength == | s2iCirgte fength="= 1 ramus =~ |
is disregarded 1 length =" e

crogsSection=¢2 L length ==
crossSaction= ¢l 1
7Te=35/L (Definition of Strain) shavior b 2: Al Doformmtion Bebavios Prooesty el -

- strain is constant throughout the bar since material train strain
h stress 1,8  swess 1,8
is homogenous defarmation *7 | deformation U

behawior_computason_domain = Barl-EnaB_Analysisf eature behavior_computasion_domain = Barl-EndB_Analysisf eature
Assembling equations...
8 O =FL{/EAs; & =FLy/ E2A .
1 1 1M1, O2 2 2172 ABB lerary
<<block>> = <<block=> <<hlock>> = <<block>>
Prismatic_Bar_Property Prismatic_Shape Bar_Bar_Tie_Interaction_Property PointDisplacementFixed_BC_Property
relaling_analysis_feature : Bar_EndPoint_Analysis_Fealure_Property ux : Ux
shape : Prismatic_Shape crossSection : Closed_Curve_20 related_analysis_feature : Bar_EndPoini_Analysis_F eature_Property uy: Uy

endA_Feature : Analysis_Feature_Property
endB_Feature . Analysis_Feature_Property

associated_mb_property : Material_Behavior_Property | length : Real

relating_displacement_parameters : Ux
related_displacement_paramsters : Ux

associated_behavior_property : Axial_Deformation_Property

<<block>>
Static_Point_Force_Property
<<blotk»> = force_application_point : Point
Bar_EndPoint_Analysis_Feature_Property force_vector : Force
Fa0HaNa fatas_anape - Foinl force_distribution : a=constant
associated_ab . Bar

<<block>>
Linear_Elastic_lsotropic_Tempind_MB_Property

E : Youngs_Modulus

G : Shear_Modulus

NU : Poissons_Ratio
E_G_NU_rel:a=b=*2*(1+c)

uz: Uz

thetax : THETAx
thetay : THETAY
thetaz : THETAz
ux_lock : a=0
uy_lock - a=0
uz_lock: a=0
thetax_lock : a=0
thetay_lock : a=0
thetaz_lock : a=0

Figure 8.14: Semantics of composition
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All ABBs used for composing the behavior model structure are shown in the ABB library in
the figure. Only the property attribute of ABBs is shown (e.g. Prismatic_Bar_Property block
that is the type of Prismatic_Bar_ABB.property block).

Steps 1-5 concern the decisions take by analysts and steps 6-8 involve the
formulation and assembly of equations for this analysis problem. In step 1, a decision is
taken to idealize the behavior of a 2-bar idealized design (or idealized design) as the
behavior of a system of two prismatic bars with circular cross-sections and tied end to end.
Here, the axial deformation behavior is being studied in particular. This decision
corresponds to the instantiation of two prismatic bar analysis body ABBs (Barl and Bar2)
along with the instantiation of two prismatic shape ABBs (Barl_Shape and Bar2_Shape)
that represent the shape of the two prismatic bars, bar end analysis feature ABBs (Barl-
EndA, Barl-EndB, Bar2-EndA, Bar2-EndB) that represent the end points of prismatic bars,
and axial deformation behavior ABBs (behavior_bar_1 and behavior_bar_2) that represent
the behavior parameters to be computed for bar 1 and 2. The tag marked “1” attached to
behavior model structure entities (such as Barl and Bar2) indicates that these entities are
created in step 1. In step 2, a decision is taken to idealize the interaction between the two
analysis bars as tied interaction—deformation behavior parameters at Bar1-EndB and Bar2-
EndA are equated. In step 3, the constitutive material behavior of both the prismatic bars is
idealized as homogenous linear elastic and isotropic. This corresponds to the instantiation of
linear elastic isotropic temperature®® independent material behavior ABB
(Barl_Material_Behavior and Bar2_Material_Behavior). In step 4, a decision is taken to
idealize load as static force acting at end B of Bar 2, at the center of the cross section of end
B, and in step 5, a decision is taken to assume that end A of Bar 1 is fixed. These decisions
correspond to the instantiation of a static force ABB (Bar2_endB_Force) and point
displacement fixed boundary condition ABB (Barl_endA Fixed).

Steps 6-8 correspond to the formulation and assembly of behavior relations.
Behavior relations are formulated based on: (a) Equilibrium equation shown in step 6, (b)
Strain definition relation (or displacement relation) as shown in step 7, and (c) Hooke’s law

material behavior equation shown in step 3. Then, these equations are assembled to define

'8 The temperature independence aspect does not concern the subject analysis problem (since it is not a thermal or thermo-

mechanical problem).

214



deformation behavior of bar 1 and bar 2 as shown in step 8. The formulated equations can
be represented as mathematical relations in behavior_bar_1 and behavior_bar_2 entities (for
the deformation of each bar) and in 2-bar-system (for the overall deformation of the two bar
system).

The assumption decisions made during the derivation process are representative of
the selection of ABBs from the ABB library. Each ABB (property) represents the
parameters and relations for that ABB, such as the relation between Young’s Modulus,
Shear Modulus, and Poisson’s ratio for the case of linear elastic isotropic temperature
independent material behavior ABB shown in the figure. Similarly, the point displacement
fixed behavior condition ABB represents the displacement parameters and the constraint
equations, such as ux=0, uy=0 and so on.

As in the derivation process, the decisions taken during a step in the model
composition process may or may not constrain the choices available for the decisions taken
at the next step. For example, the material behavior idealization decision is independent of
the analysis body type and shapes (prismatic bar and prismatic shape) and it is also
independent of the interaction behavior at the interface of the two bars. Similarly, the
interaction behavior is independent of the material behavior of the two bars and the analysis
body type and shape. However, just as in the case of the derivation process, some decisions
may constraint the subsequent decisions. For example, the decision to idealize the behavior
of the designed artifact as a prismatic bar constrains the analysis features and type of shape
that can be associated with the bar. In the model composition process, it implies that
instances of only specific type of analysis feature ABBs and shape ABBs may be associated
with the instances of the analysis feature ABB. A prismatic bar by definition has two end
points that are modeled as point features and a prismatic shape associated with it. These
constraints are reflected in the definition of the prismatic bar ABB and hence automatically
handled during the behavior model composition process. Note that
Prismatic_Bar_Property.shape is of type Prismatic_Shape; and
Prismatic_Bar_Property.endA_feature and Prismatic_Bar_Property.endB_feature represent
the two end features of a prismatic bar and are of type

Bar_EndPoint_Analysis_Feature_Property that represents end point feature of a bar.
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Note that the domain theoretic principles such as Equilibrium equations, Stress and
Strain definitions are not explicitly shown in the behavior model structure in the figure
above. They can be represented as behavior relations associated with the 2-bar analysis
body system. However, for most multi-body problems, analytical formulations of the
system-level behavior relations are not available. Numerical solution techniques need to be
employed to solve the problems, such as FEA methods. Most numerical solvers, such as
FEA solvers like ABAQUS and ANSYS are “computationally-aware” of the domain
theoretic principles such as Equilibrium equations and Hook’s Law. Thus, behavior model
structures formulated from physics-based principles need to “refer” to the specific
principles when transforming ABB systems to solution method models (as prescribed by the
MRA simulation template pattern) and not necessarily “represent” the mathematical
relationships embodied in these principles. For example, the details of analytical plate
theory formulations (Timoshenko and Goodier 1970) may not be necessarily represented in
the plate analysis body ABB though the latter may refer to such formulations for the sake of
completeness. Albeit, the ABB Meta-Model provides mechanisms to represent such
formulations as required, such as Behavior_Property.behavior_parameter_relations for
behavior ABBs, and Material_Behavior_Property.mb_parameters_relations for material

behavior ABBs, and load_distribution_function for load ABBSs, and so on.

8.2.3 Mechanics of composition
As described in the previous sections, the model transformation process prescribed

by the Behavior Model Formulation Method is one where behavior model structures and
simulation templates are composed™ in four stages. In this section, the mechanics of this
composition process is described. The key computation elements necessary for achieving
the composition are described. Figure 8.15 illustrates these computation elements in the
backdrop of the schematic of Behavior Model Formulation Method, as described in section
8.1. The model transformation process is computationally realized as graph transformations.
The source and target models are represented as graphs and a graph transformation engine

creates a target graph for a given source graph. The transformation definitions in the

1® Here, model composition is regarded as a special type of model transformation.
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Avrtifact Model Transformation Library are represented as graph transformation patterns and
rules, and the transformation process defined by the Behavior Model Formulation
Specifications is represented as a graph transformation process.

GT patterns and rules library GT = Graph Transformation

Artifact Model Asslibrary  GT specifications
Transformation Iibrarij B ,

Graph schemata Tuses Graph schemata
Source Meta-Model Transformation Definition > Target Meta-Model
VTMB Design Meta-Model [« 2> ©© EEIEETLEE] refersfo ) VIMB Design || VTMB Behavior
Formulation Specifications , Meta-Model Meta-Model
A ]
conforms to executes : conforms to]‘ ‘{ conforms to
Source|Models Target Models
Fixed Topology ]| reads Transformation writes | Fixed Topology || Fixed Topology
Design Alternatives ; Engine Design Alternatives ; Behavior Models i,
: ;T :
Source graphs GT engine  Simulation Target graphs

Templates

Figure 8.15: BMFM’s model transformation process realized as graph transformations (GT)

Source and Target graphs

A graph G = (V, E) consists of two sets V and E where:

= elements of V are known as vertices (or nodes)

= elements of E are known as edges

= an edge has 1-2 vertices? associated with it (called its end points)

(Gross and Yellen 2003)

The source and target graphs in the Behavior Model Formulation Method are directed,

labeled, attributed, and typed graphs (Gross and Yellen 2003), and represented using

SysML. In general, labeled, attribute, typed graphs can be thought as formal representations

of class models (Andries, Engels et al. 1999; Czarnecki and Helsen 2006). SysML structure

models are extensions of UML 2 class models. The nodes in the source and target graphs

are represented using SysML instance specifications, and the edges are represented by

instance slots. Specifically, the source and target graph are:

= directed graphs because slots owned by an instance have values that refer to other
instances. Instances owning slots or populating slots are abstracted as graph nodes, and

2 The source and target graphs in this dissertation are not hypergraphs
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slots are abstracted as graph edges directed from nodes corresponding to instances
owning slots to nodes corresponding to instances populating slots.

= |abeled graphs because all instances and slots have names. In addition, the names are
unique with a given namespace.

= typed graphs because instance and slots have types (also known as classifiers). Instances
used for populating slots must be of the same type (or subtype) as the slot type.

= attributed graphs because slots are attributes of instances. Slots may be of complex type
(objects) or primitive type (such as integer and boolean).

The source and target meta-models in the Behavior Model Formulation Method are
formalized as SysML-based structure models with different views, such as block definition
diagrams, internal block diagrams, and parametric diagrams. In essence, the source and
target meta-models are like graph schemata (Ehrig, Engels et al. 1999) for the source and
target models (graphs). The nodes in the source and target meta-models (graph schemata)
are represented as SysML blocks, and the edges are represented as block properties—part
properties, reference properties, and constraint properties. Constraint blocks (classifier for
constraint properties) are a special type of block. Other types of edges in the source and
target meta-model include generalization relationships between blocks.

Figure 8.16 illustrates the source and target meta-model, and a source model for an
Acrtifact transformation example in both traditional graph notation and in SysML notation—
nodes shown as SysML blocks/instances and edges shown as associations/slot references.
Figure 8.16a shows the source and target meta-model (same in this case) that represent three
blocks—Artifact, Form, and Function, and the relationships between them. From a graph-
schemata perspective, the blocks correspond to node types and the association relationships
correspond to edge types. Thus, Figure 8.16a shows that source and target graphs
instantiated from this graph schemata can have three types of labeled nodes (Artifact, Form,
and Function) and two types of edges (hasForm, hasFunction) that originate from Artifact
node and end in Form node and Function node respectively. These edges are also attributes
of Artifact node, as Artifact.hasForm and Artifact.hasFunction respectively. Figure 8.16b
shows a source graph that is an instance of the schemata shown in Figure 8.16a. The figure
shows that the source graph has four nodes of type Artifact, two nodes of type Form, and
three nodes of type Function. In addition, the edges between these nodes are also shown
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(though not labeled). The edges are also represented as attributes of each node. For

example, the edge from A1 to F1 is represented as value of the attribute Al.hasForm.

Artifact <sblock=> g
[ +hasFaorm Form
hasFunction hasForm ;:r?tliofta::t> 2
| +hasFunction ;::Ect':;; =
Function Form

a. Source and target graph schemata (traditional graph notation and SysML model notation)

=<hlock==

=<hlocks> EOAE T —<blockes

: =]

Al A3 A1 : Artifact A2 : Artifact a
hasForm =F1 hasForm=F1
hasFunction = FU1 <<block=> ion=

e = hasFunction = FUA
FU1 F1  FU2 £2
==hlocks== E ;;k_)lﬁcp;‘ Q
A4 A3 : Artifact .

hasForm=F2

hasFunction=FU2 ssblock>> [
FU2 : Function

A2
FU3

==hlock== ==hlock==
A4 : Artifact FU3 : Function

hasFunction=FU3

b. Source graph (traditional graph notation and SysML model notation)
Figure 8.16: Source and target graph schemata and a source graph — Artifact transformation example

Note that although the edges in the source graph are not shown? as un-directed, they are
directed. This is evident from the fact that the attributes hasForm and hasFunction are
owned by Artifact. Thus the edges originate from Artifact instance nodes and end in Form

and Function instance nodes respectively.

Graph patterns

Graph patterns represent conditions or constraints in a declarative manner, defined on
graphs. Patterns are matched against a graph to check if they satisfy the conditions
represented by patterns (Varro and Balogh 2007; VIATRA 2007). Fundamentally, pattern

matching is a process of finding the occurrence of the graph pattern in a given graph, G. If a

21 sysMLL instance specification does not represent the directed edges between instance entities (instance specifications).
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graph L is a subgraph of G, it is denoted as L < G and it implies that the (a) nodes and
edges of L are subsets of the nodes and edges of G, (b) source and target mapping for each
edge in L coincide with the source and target mappings for each edge in G, and (c) labels of
nodes and edges in L coincide with labels of nodes and edges in G (Andries, Engels et al.
1999).

G L H
2 2 2
/\ /'\ A
L)
1@ /I 3 2 1® 3 — :.< 1=3
'-.,\.’,.'
4 1

Figure 8.17: Graph L is a subgraph of G and has an occurrence in H (Andries, Engels et al. 1999)

The occurrence of a graph pattern L in a graph G is denoted as occ: L - G and implies that
(a) there is a mapping which maps the nodes, edges, and labels of L to the nodes, edges and
labels in G, (b) for each edge e in L the source of the image of e in G coincides with the
image of the source of e in G and the target of the image of e in G coincides with the image
of the target of e in G, and (c) for all nodes and edges in L, the label of their images in G
coincide with the label of x (Andries, Engels et al. 1999). A bijective mapping is one where
(a) each node and edge in L maps to a distinct node and edge in G—injective condition, and
(b) all nodes and edges in G have atleast one corresponding node and edge in L—onto
condition. If the mapping is bijective, then L and G are isomorphic. In Figure 8.17 above,
graph L is a sub-graph of G and has an occurrence in H.

It is known that for the graph pattern matching problem, also known as the sub-
graph isomorphism problem, the number of tests that need to be performed to check if a
pattern with n nodes matches to a sub-graph in a graph with m nodes requires O(m") tests in
the worst case (Valiente and Martinez 1997). Research efforts in the past have improved the
performance of graph pattern matching algorithms for specific types of graphs. All patterns
defined in the Behavior Model Formulation Method (section 8.4) are defined for each type
of relationship in the meta-models (CPM2_xKCM and CBM). Hence, all patterns have two

nodes. Even for a source graph with large number of nodes, this approach restricts the
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number of tests that need to be performed in the worst case. In addition, all graph
transformation rules defined in the Behavior Model Formulation reuse patterns.

The Behavior Model Formulation Method leverages the VIATRA Textual
Command Language (VTCL) to define graph patterns. Figure 8.18 shows a graph pattern
(artifact_and_form) for the Artifact transformation example described using VTCL. The
pattern checks if there exists a relationship between an artifact and a form. As it can be
seen, the pattern has three arguments A, F, and Model_Space that will be bound to nodes in
the source graph. The Model_Space argument is used to define the scope of the source

model—specifically the package where the source model exists.

pattern artifact and form(A,F, Model Space)=

{
entity (Model Space) ;
Artifact (A) in Model Space;
Artifact.hasForm(AF, A, F);
Form(F) in Model Space

Figure 8.18: An example graph pattern represented in VTCL

It is not stated if the arguments are inputs or outputs of the pattern thus making the pattern

definition declarative. Thus, the pattern can be used to check for the following conditions or

provide the following matches of interest:

= If variable A is bound to an artifact instance (node), the pattern can be used to find the
form instance (node) associated with that artifact in the model space.

= If the variable F is bound to a form instance (node), the same pattern can be used to find
all artifact instances (nodes) that have the subject form.

= If arguments A and F are bound to an artifact instance and a form instance respectively,
the pattern can check if they are associated.

= If none of the arguments are bound to any instances, the pattern can be used to find all
Artifact and Form instance pairs that are associated with each other.

Thus, a single graph pattern can be used to realize multiple queries and check for

conditions. Typically, it would have taken four conditional statements (IF-ELSE) to realize

the four use cases above in a procedural language (such as C, C++, or Java).

In the example above, the artifact_and_form pattern checks for structural conditions

only—if two nodes and the relationship between them exist. Patterns can also be used to
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represent conditions that require checking specific attribute values of matched nodes. For

example, patterns may be defined to check if the name, id, or other attribute values match a

given value. In addition, patterns can call other functions that may be required to derive

certain properties before checking them against a given value. For example, given a

rectangle with length and breadth attribute values, a pattern can call a function to compute

the area of a rectangle and check against a given value (equal, greater, or less).

To summarize the characteristics and the use cases of graph patterns:

= Graph patterns can be defined to check for structural conditions, such as if a node or an
edge in the model graph is of a specific type. Examples of these types of conditions are
illustrated in the example above.

= Graph pattern can also be used to check for conditions defined in terms of the attributes
values of nodes in a model graph. For example, the check keyword in VIATRA allows
for defining conditions that return a boolean value (true/false).

= Graph patterns can call each other using the find keyword. The condition in the caller
pattern is satisfied only if the condition in the called pattern is satisfied and the local
constructs in the caller patter are satisfied. Patterns can call themselves if certain
conditions are satisfied, thus allowing for defining recursive patterns.

= Alternate graph patterns can be defined as sub-patterns within a parent pattern, such as by
grouping them with the or keyword in VTCL. In this case, the condition in any of the
sub-patterns must be satisfied for the condition in the parent pattern to be satisfied.

= Graph patterns can be called in a negative mode, such as by using the neg keyword in
VTCL, to return true if the conditions embodied in them are not satisfied.

= If a variable passed to a graph pattern is unbound, graph patterns bind all possible model
elements (to that variable) that satisfy the logical condition embodied in the pattern. If all
variable passed to a graph pattern are bound to model elements, then the pattern returns
true if the model elements bound to the variables satisfy the pattern condition, or false
otherwise.

= One can also define the search scope for pattern conditions, such as specifying the

namespaces where model elements should be searched.
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Graph transformation rule

A graph transformation rule r = (L, R, App) contains a left-hand side (LHS) graph L, a

right-hand side (RHS) graph R, and application conditions App. The application of r to a

source (host) graph G replaces occurrence(s) of L in G by R. In general, this is performed by:

= finding occurrence(s) of L in G (also denoted as graph pattern matching)

= checking the application conditions App (such as negative application conditions which
prohibit the application of the rule in the presence of certain nodes and edges)

= removing a part of the graph G determined by the occurrence(s) of L yielding the context
graph D

= gluing R and the context graph D and obtaining the target (derived) graph H

(Varro, Varro et al. 2002; Varro and Balogh 2007; VIATRA 2007)

Although the fundamental idea behind graph transformation rules is the same, graph
transformation systems implement them differently and also provide different mechanisms
to specify and control transformation rules. Typically, the occurrence of L in G is required to
be isomorphic to L. The VIATRA graph transformation system checks for sub-graph
isomorphism and provides a mechanism for parallel application of transformation rules
(replacement of L with R) to all matches of L in G. This capability is especially relevant for
variable topology problems where target model elements can be formulated in parallel for
all sub-systems (sub-graphs) in the system model (source graph) that match with the pre-
conditions of the idealization decisions.

A graph transformation rule is the atomic unit of model transformation in the
Behavior Model Formulation Method. While graph patterns define the logical conditions on
model graphs, graph transformation rules define the manipulation of model graphs. In this
section, the representation of graph transformations in the context of Behavior Model
Formulation Method is presented.

The Behavior Model Formulation Method leverages VIATRA Textual Command
Language (VTCL) for representing graph transformation rules. Graph transformation rules
represented in VTCL have two parts that are represented as patterns—the pre-condition
pattern and a post-condition pattern. The LHS and RHS of a graph transformation rule are
embodied in the pre- and post-condition patterns respectively. The application conditions of
a graph transformation rule are embodied in patterns that may be called before invoking a
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transformation rule or included in the pre-condition pattern. The application of a graph
transformation rule to a model (say source mode graph) replaces all matches of the pre-
condition pattern in the source model graph with the post-condition pattern. The source
model graph after the replacement operation is known as the target model graph.

Figure 8.19 illustrates a graph transformation rule with pre-condition and post-
condition pattern represented in traditional graph notation and VTCL. The graph
transformation rule is used in Artifact transformation example to initialize the form for all
artifacts that do not have a form associated with them. The pre-condition pattern represents
all artifact instances that do not have a form instance associated with them. Thus, the pre-
condition pattern matches all artifact nodes such that for each artifact node there are no
edges from the subject artifact node to a form node. For each artifact node matched by the
pre-condition pattern, application of the post-condition pattern creates a form node and

associates it with the artifact node.

Pre-condition A Post-condition A A is of type Artifact
pattern Q pattern F is of type Form
,/'/F F

// Initialize form for those artifacts in the model space
that do not have a form associated with them
gtrule init form(in A, in Model Space, out F, out AF)=
{
precondition pattern check artifact form(A, Model Space)=
{
entity (Model Space);
Artifact (A) in Model Space;
neg find artifact xform patterns.artifact and form(A, XF, Model Space)
}
postcondition pattern initialize form(A, Model Space, F, AF)=
{
entity (Model Space);
Artifact (A) in Model Space;
Form(F) in Model Space;
Artifact.hasForm(AF,A,F);

}

Figure 8.19: An example graph transformation rule represented in traditional graph notation and VTCL

(used for initializing the form of an artifact in the Artifact transformation example)
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In VTCL representation, the rule body begins with the gtrule keyword. The keywords
precondition pattern and postcondition pattern along with the curly braces mark the pre-
condition and post-condition patterns respectively. Note that pre-condition and post-
condition patterns are graph patterns, and hence they may call other pre-defined patterns. In
this example, the pre-condition pattern calls the artifact_and_form pattern in a negative
mode using neg find keywords.
Graph transformation rules and their pre- and post-condition patterns may also have
arguments. The rule arguments are identified as either inputs, outputs, or both. Input
arguments are those that can be bound to model elements when the transformation rule is
called while the output arguments are those that are bound to model elements as a result of
applying the transformation rule and are available to be used in constructs calling the
transformation rule, such as ASM rules that call graph transformation rules during the
transformation process (described later). Arguments that are identified as both input and
output can be pre-bound or bound when the rule is applied. VTCL keywords in, out, and
inout are used to identify input, output, and input/output arguments respectively. The
Behavior Model Formulation Method uses the following mechanism to create, delete, or
preserve model elements when defining graph transformation rules using VTCL.:
= For the creation of a new model element, a variable—to which the model element will be
bound—should be in the argument and body of the post-condition pattern but not the pre-
condition pattern argument or body. The variable may be identified as the output of the
graph transformation rule.

= For deleting a model element, a variable—to which the model element will be bound—
should be in the pre- and post-condition pattern arguments and pre-condition pattern body
but not in the post-condition pattern body.

= For preserving a model element, a variable—to which the model element will be bound—
should be in the pre- and post-condition pattern arguments and body.

If a parameter exists in both the pre-condition and post-condition arguments, then the model

elements bound to that parameter during pre-condition pattern matching are passed to the

post-condition. In the example transformation rule in Figure 8.19, the variables A and

Model_Space exist in both the pre-condition and post-condition arguments and body, and

hence model elements bound to them are not changed. However, variables F and AF exist
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only in the post-condition pattern arguments and body, and hence the model elements bound
to them are created. There are no variables such that (a) they exist in the pre-condition
pattern argument, body, and post-condition pattern argument, and (b) do not exist in the
post-condition body, and hence no model elements are deleted when the transformation rule
is applied.

As described in section 8.1, the model transformation (composition) process
prescribed by the Behavior Model Formulation Method is one where the source model is
not altered during the transformation, but instead the target model contains the source model
and the additional models. Hence, source model elements are not deleted during this model
transformation process. This is so because the Behavior Model Formulation Method uses
the graph transformation-based approach to model transformation to synthesize simulation

templates.

Graph transformation process

The Behavior Model Formulation Method uses VTCL constructs to define a graph
transformation process. The transformation process describes the conditions and order in
which the graph transformation rules are applied to the source model graph. In addition to
providing constructs to define graph patterns and graph transformation rules, VTCL also
provides constructs to define a control structure very similar to conventional programming
languages such as C, C++, and Java. The VTCL constructs used for defining this control
structure are known as ASM rules, named after Abstract State Machine constructs used in
VTCL and similar to conventional programming languages. The ASM rules are similar to
methods in object-oriented programming. In essence, the ASM rules in VTCL provide a
mechanism to provide explicit scheduling to the model transformations—a pitfall of the
graph transformation-based approach in its original form. The purpose of the Behavior
Model Formulation Method is to create a specific behavior model structure and simulation
template based on the Behavior Model Formulation Specifications—decisions taken by
analysts. Hence, there is a specific need for controlling and scheduling the transformation
rules. VTCL addresses this need by the virtue of ASM rules. In addition to constructs for

calling and scheduling graph transformation rules, VTCL also defines other control
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structures constructs similar to conventional programming languages, such as an if-else
construct.

Graph transformation rules can be called using two specific ASM rule constructs—
forall and choose. While the former allows tracking and using all model elements bound to
an output argument of a transformation rule, the latter allows tracking and using only one
model element (selected non-deterministically). The Behavior Model Formulation Method
uses the forall construct only. Figure 8.20 illustrates the forall ASM construct that is used for
applying the init_form graph transformation rule (Figure 8.19) to the source model graph
(Figure 8.16b).

// Call graph transformation rule “init form”
forall F, AF with apply artifact xform rules.init form(A, Model Space, F, AF) do
print("Initialized form");

Figure 8.20: VTCL ASM constructs used for defining model transformation process - shows the
foral/ construct used for calling the /nit_form transformation rule in the Artifact transformation
example
Figure 8.21 shows the transformed graph in the Artifact transformation example after the
transformation process is executed by the VIATRA graph transformation engine.
Specifically, this transformation is achieved by executing the forall ASM rule shown in
Figure 8.20. Artifact node A4 in the source graph was the only artifact node that did not
have an associated form node—no edges existed from A4 to any form node. After the
transformation process execution, a form node F3 and an edge from A4 to F3 has been
created. The edge creation is accompanied by the population of attribute A4.hasForm with

value F3 (corresponding to the newly created form node object).
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Figure 8.21: Target graph after the graph transformation process executed on the source graph for
the Artifact transformation example (traditional graph notation and SysML notation)

pattern artifact_and form(A,F, Model Space)=

{
entity (Model Space);
Artifact (A) in Model Space;
Artifact.hasForm(AF, A, F);
Form(F) in Model Space

} Graph pattern

// Initialize form for those artifacts in the model space
that do not have a form associated with them
gtrule init form(in A, in Model Space, out F, out AF)=

{
precondition pattern check_artifact_form(A, Model_ Space)=
{
entity (Model Space); ‘///////

Artifact (A) in Model Space;
neg find artifact xform patterns.artifact_and form(A, XF, Model Space)

}

postcondition pattern initialize form(A, Model Space, F, AF)=
{

entity (Model Space);

Artifact (A) in Model Space;

Form(F) in Model_ Space;

Artifact.hasForm (AF,A,F);

Graph transformation rule

«—

// Call graph transformation rule “init form”

forall F, AF with apply artifact xform rules.init form(A, Model Space, F, AF) do

print("Initialized form");
Graph transformation process

Figure 8.22: Summary of graph transformation approach to model transformations embodied in the
Behavior Model Formulation method

228



To summarize, the key advantages of the graph transformation-based approach to
model transformations as embodied in the Behavior Model Formulation Method are as
follows:
= Graph patterns provide a mechanism to define conditions and constraints on source
graphs in a declarative manner. The same pattern can be used to check if a source graph
satisfies a set of conditions as well as to search for model elements that satisfy the
conditions. The advantage of using this approach versus using a procedural approach is
evident in the multiple use cases that may be addressed by the same pattern—depending
upon which pattern arguments are bound to model elements and which are free.

= Graph transformation rules use graph patterns to define the atomic units of model
transformations. The rules enable one to model transformations in a declarative rather
than a procedural manner—as would be done using conventional procedural
programming languages (such as C, C++, or Java). This is achieved by using graph
patterns to model the state of sub-graphs before the transformation (pre-condition pattern)
and the state of those sub-graphs after the transformation (post-condition pattern). The
graph transformation engine can automatically interpret the transformation steps to
achieve the final state of the graph.

= ASM rules use procedural programming language-like constructs to explicitly schedule
graph transformation rules thereby enabling one to define a model transformation process
with assured termination. The existence of a control structures makes it easier to define
transformation processes (based on rule-based paradigm) that are testable, maintainable,
and reliable (Li 1991).

Figure 8.22 summarizes the graph transformation approach to model transformations as

embodied in the Behavior Model Formulation Method. Successful application and

scalability of the graph transformation-based approach for complex design models will also

depend on the availability of production-strength transformation tools.

The graph transformation approach is core to formulating simulation templates in an
effective manner—addressing VTMB variations and idealization variations and efficiently
formulating simulation templates. The formulation process is defined in terms of a graph
transformation process that can be derived from the idealization specifications provided by
analysts—see Behavior Model Formulation Specifications in the next section. Changes in
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idealization specifications result in changes in the graph transformation process used for
formulating simulation templates. The ability to apply transformation rules in parallel to all
artifacts (and their features and interactions) that satisfy specific conditions—modeled as
graph patterns—enable formulation of simulation templates for VTMB problems. For the
same idealization specifications, simulation templates can be automatically re-formulated

for families of artifacts with non-equivalent assembly system topologies.

8.3 Behavior Model Formulation Specifications

The Behavior Model Formulation Specifications (BMFS) embody the idealization
decisions taken by analysts. BMFS are defined using the Artifact Model Transformation
Library and executed by the Transformation Engine to realize the model transformations
leading to the creation of behavior model structures and simulation templates. Figure 8.23
shows a detailed view of the BMFS and its relationship with the Artifact Model

Transformation Library.

Behavior Model Formulation Specifications

Conceptual Specifications
- source and target model objects
- idealization decisions

refers to Ej
y .
derived from \ ABBllibrary
- library of ABBs
Computable Specifications
- graph patterns to define source and target model objects .
- transformation rules to execute idealization decisions tefers to Artifact MOd_el
- model formulation process Transformation library
2 - library of patterns
P - library of transformation rules
execuies (Stage 1 — Stage 4)

Transformation
Engine

Figure 8.23: Detailed view of Behavior Model Formulation Specifications

The BMFS can be divided into the following two levels:

= Conceptual Specifications represent the idealization decisions independent of the
transformation rules or process used to realize these decisions. ldeally, the same
conceptual specifications may be realized by different transformation engines,

transformation processes, and sets of transformation rules.
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= Computable Specifications represent a transformation process in a syntax that is
interpretable and executable by a specific transformation engine. The computable
specifications are derived from the conceptual specifications and use transformation

patterns and rules defined in the Artifact Model Transformation Library.

8.3.1 Conceptual Specifications
The conceptual specifications represent idealization decisions taken by analysts for

all four stages of the composition process (section 8.2.1). In this section, the specific

decisions that analysts need to take for each of four composition stages are presented.

Composition Stage 1: In this composition stage, analysis bodies and their relationships to

analyzable artifacts are composed from their respective building blocks. The idealization

decisions in this composition stage must specifically answer the following questions.

= What analysis body ABBs should be used to idealize the behavior of each type of
analyzable artifacts?

= What analysis feature ABBs should be used for each of these analysis body ABBs, and
how are these analysis features ABBs related to the analyzable features of the
corresponding analyzable artifact(s)?

= What shape ABBs should be used for representing the shape of each of these analysis
body ABBs, and how are these shape ABBs related to the shape of the corresponding
analyzable artifact(s)?

= What material behavior ABBs are used for representing the material behavior of each of
these analysis body ABBs, and how are these material behavior objects related to the
material behavior of the corresponding analyzable artifact(s)?

= What behavior ABBs are used for representing the idealized set of behaviors of these
analysis body? The behavior ABBs govern the set of behavior parameters that will be
computed for these analysis bodies.

Note that the first question corresponds to the analysis body being composed in Stage 1, and

the other four questions correspond to the attributes of analysis body that must be populated

during the composition.

Note that material behavior and shape are two types of ABBs that are associated

with both an analyzable artifact and an analysis body. An analyzable artifact may have is
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typically formulated for a large class of analysis problems, and may have multiple material
behavior models (and shape models) of different fidelities associated with it. Thus, in
answering two of the questions above regarding material behavior ABBs and shape ABBs
should be used for analysis bodies, analysts will typically make decisions in three ways as
shown in Table 8.1 below. For an analysis body, analysts can select one of the multiple
material behavior ABBs (and shape ABBS) associated with the corresponding analyzable
artifact(s). This is a special case of idealization where the idealization relationships
represent equality. Alternatively, analysts can select a material behavior ABB (or shape
ABB) for an analysis body and explicitly specify the idealization relationships between the
material behavior ABB (or shape ABB) associated with analyzable artifact(s) and those
associated with the analysis body. The third mechanism is when analysts specify conditions

for selection or idealization, such as a If-Else condition.

Table 8.1: Modes of taking decisions on material behaviors and shapes of analysis bodies

Select Selecting a material behavior ABB (or shape ABB) for an
analysis body from the list of available material behavior model
ABBs (or shape ABBs) associated with an analyzable artifact.

Idealization relationships represent equality.

Idealize as ... Selecting a material behavior ABB (or shape ABB) for an

relations ... analysis body and establishing math relations between material
behavior ABBs (or shape ABBSs) associated with an analysis
body and those associated with analyzable artifact(s).

Idealization relationships represent these math relations.

If (condition) Providing a condition for selecting or idealizing one type of
Select or Idealize... | material behavior ABB (or shape ABB) versus another type.
Else

Select or Idealize...

In general, conditions may be specified for all decisions taken by analysts in
selecting ABBs for composition Stages 1-3. Figure 8.24 below illustrates how conceptual
specifications may be represented formally using SysML Parametrics constructs. The figure
shows analysts can define the pattern of the idealization relationship between an analyzable

artifact and analysis body. When this “pattern” is applied for all analyzable artifacts, then
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these relationships will be created between all analyzable artifacts and analysis bodies, such
as shown in Figure 7.34 in section 7.4.2 for relationships created between all stratums of an
analyzable printed circuit board and corresponding planar shell analysis bodies. As an
example, Figure 8.24 below illustrates such a pattern. The pattern shows shape idealization
relationship  (shape_idealization) and material behavior idealization relationship
(mb_idealization) created between shape and material behaviors associated with an
analyzable artifact and an analysis body. Per CPM2_xKCM Meta-Model (Chapter 6), an
analyzable artifact may several forms associated with it; each form may have several shapes
and materials associated with it; and each material may have several material behavior
models associated with it. The Shape_Shape_Relationship and
Material_Behavior_Material_Behavior_Relationship are constraint blocks that embody the
mathematical relationships between associated shape and material behavior parameters
respectively. Hence, such a pattern can be used to define all three cases in Table 8.1 above.
The SysML constraint specifications shape_shape_relations and mb_mb_relations can

represent math relations (including conditions).
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Figure 8.24: Representation of specifications using SysML Parametrics constructs

Figure 8.25 illustrates a view of the conceptual specifications defined by analysts.
The model shown in the figure is a Level 3 VTMB Behavior Model (section 7.4.2). The
figure illustrates how an analyzable multi-stratum PCB is idealized. In the context of the
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Analyzable artifact

Analyzable

Analyzable

idealization questions stated above for Stage 1, the figure shows that an analyzable stratum

of the analyzable PCB is idealized as a planar shell analysis body, the primary and

secondary surfaces of the analyzable stratum are idealized as primary and secondary

surfaces of the planar shells. The figure does not show the shape and material behavior of

the analyzable stratums are idealized as the shape and material behavior of the planar shells.
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Figure 8.25: View of the Conceptual Specifications for Stage 1 and 2 compositions -
B3 model (PCB_nSx_ThermoMech_Behavior_Meta-Model from section 7.4.2)

Composition Stage 2: In this composition stage, analysis body systems and their

relationships with analyzable artifact (assembly) are composed from their respective

building blocks. The idealization decisions in this composition stage must specifically

answer the following questions:

= What analysis body system ABBs are used for representing the idealized behavior of

analyzable artifact assemblies, and how are these analysis body systems related to the

corresponding analyzable artifact assemblies?

= What analysis body ABBs and analysis body system ABBs constitute the analysis body

system being composed during this stage, and how are they related to the corresponding

analyzable artifacts?
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= What analysis body interaction ABBs are used for representing the behavior of the
interaction between the analysis bodies used in composing analysis body systems, and
how are these interactions related to the interactions between the corresponding
analyzable artifacts?
= What analysis feature ABBs should be used to define the analysis features associated with
the composed analysis body system?
= What behavior ABBs should be used for representing the idealized set of behaviors of the
composed analysis body system?
Note that the first question corresponds to the analysis body system being composed in
Stage 2, and the other four questions correspond to the attributes of analysis body system
that must be populated during the composition.
In the context of the idealization questions stated above for Stage 2 composition,
Figure 8.25 illustrates that the analyzable PCB is idealized as a laminated shell analysis
body system, and the interaction between the any adjacent stratums of the analyzable PCB
are idealized as tie interactions between the planar shell analysis bodies corresponding to
the stratums. Note that SysML Parametrics constructs, as shown in Figure 8.24 can be used

for formally representing conceptual specifications for Stage 2.

Composition Stage 3: In this composition, a behavior model ABB system is composed

from its building blocks, and a behavior model context is created to wrap the relationship

between the top level analysis body system and analyzable artifact (assembly). The

idealization decisions in this composition stage must specifically answer the following

questions:

= What load ABBs are used for representing the loads for which the behavior parameters
are to be computed?

= What behavior condition ABBs are used for representing the behavior conditions for
which the behavior parameters are to be computed?

= What behavior ABBs are used for representing the behavior parameters to be computed?
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Note that SysML Parametrics constructs, as shown in Figure 8.24 can be used for formally
representing conceptual specifications for Stage 3, such as selecting load and behavior

condition ABBs based on certain conditions defined on analyzable artifact.

Composition Stage 4: In this composition, behavior model structure and simulation
template are composed from the behavior model ABB system and behavior model context
composed in Stage 3. Except for deciding the behavior model namespace and identifiers,
there are no decisions that analysts need to take in this stage. The inputs and outputs of this

composition stage are common to all VTMB analysis problems.

8.3.2 Computable Specifications
Computable specifications are model composition instructions that are derived from

the conceptual specifications, and interpreted by the model transformation engine. While

the conceptual specifications represent the idealization decisions taken by analysts, they do

not prescribe a process for model composition. This is so because the idealization decisions

are independent of the order in which the model is composed. The computable

specifications are executable scripts that define a set of activities that can be executed in

series or parallel. Each activity in the script comprises of the following two basic steps.

= Invoke pre-defined graph patterns from the Artifact Model Transformation Library to
search for model elements in the source model. Graph pattern matches return sub-graphs
of the source model graph that satisfy the conditions embodied in the patterns. As an
example, for conceptual specifications that state that all stratums in a printed circuit board
are to be idealized a shells, the computable specifications include calls to pre-defined
graph patterns to search the printed circuit board model space and retrieve all stratums.
The conditions specified in invoked patterns may include additional constraints that need
to be satisfied by the model elements in the source graph.

= Create new model elements in the target model space by invoking graph transformation
rules defined in the Artifact Model Transformation Library. The transformation rules may
call pre-defined patterns to check for conditions before creating new model elements. The
model elements created by graph transformation rules include both entities (nodes) and

edges (relationships between entities).
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Besides the basic restrictions posed by the stages of composing simulation templates—
composition stage;,; cannot complete until stage; is completed—the process of formulating
simulation templates is not necessarily relevant to an analyst, especially since the computer
time taken to generate these templates is of the order of seconds (section 9.5.3.3).
Algorithms to derive computable specifications from conceptual specifications would
typically be managed by modelers proficient in the language in which the graph
transformation process is described (such as VTCL in this case) and conceptual
specifications.

In the proof-of-concept software implementation of the Behavior Model
Formulation Method, the computable specifications are represented as a graph

transformation processing using VTCL, as described in section 8.2.3.

8.4 Artifact Model Transformation Library (AMTL)
The Artifact Model Transformation Library of KCM’s Behavior Model Formulation

Method provides a repository of graph transformation rules that can be reused for writing
Behavior Model Formulation Specifications in the computable form for analysis problems
in general. The intent of the transformation library is to provide unit-level transformation
rules that are generic for all behavior models, and ABB-specific transformation rules that
are used when specific ABBs are used for composing a Behavior Model ABB System. The
core of the model transformation method prescribed by the Behavior Model Formulation
Method is the creation of simulation templates, and hence the two key types of graph
transformation rules in the Artifact Model Transformation Library concern creation of
entities, and creation of relationships between entities. Application results for these two
types of transformation rules are illustrated using a simple model shown in Figure 8.26.
Figure 8.26a shows an example meta-model. The meta-model shows two SysML blocks, A

and B, and a relationship between the blocks A.hasB.
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<<hlock==> +hasB [=<blocks==>
A B

a. Meta-model example for illustrating Type 1 and Type 2 graph transformation rules

<<block>> <<block>> «:"1"?:” = =<block=>
Al1:A B1:8B == | B1:B
hasB = B1
b. Application result of Type 1 c. Application result of Type 2 transformation

transformation rules — creation of new entity rules — creation of new relationship instances

instances in the model space between entity instances in the model space

Figure 8.26: Example model to illustrate Type 1 and 2 graph transformation rules in the

Artifact Model Transformation Library

Type 1 transformation rule: In this type of graph transformation rule, a new entity of type
A with a given identifier ID is created in a given model space M. As an example, Figure
8.26b illustrates that new instances of entities—A1 as an instance of A and B1 as an instance
of B—would be created in this type of transformation though there may be two different
transformation rules—one for creating instance an instance of A and one for creating an
instance of B. This type of rule corresponds to the creation of a node in the artifact model
graph. The schematic of a Type 1 graph transformation rule is as described below. The
input parameters ID and M are already bound to entities ID and M while the output
parameter is unbound when the rule is called. After the execution of the rule, the output

parameter Al will be bound to entity Al.

Type 1 transformation rule (input: ID, M; output: Al)
Pre-condition
0 there exists a model space M
0 there does not exist an entity in M with id=ID
Post-condition
0 there exists a model space M

0 there exists an entity Al of type A in M with id=ID
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The Behavior Model Formulation Method maintains a unique id for the model entities and
relationships, and hence the id of an entity is used to check for its existence in a given

model space.

Type 2 transformation rule: In this type of graph transformation rule, a new relationship
of type A.hasB is created between two given entities of type A and type B respectively in a
given model space M. As an example, Figure 8.26¢ illustrates that Type 2 transformation is
used for creating a new relationship between instances, Al.hasB=B1. This type of node
corresponds to the creation of an edge in the artifact model graph. The schematic of a Type
2 transformation rule is as described below. The input parameters Al and B1 are already
bound to entities A1 and B1 while the output parameter is unbound when the rule is called.
After the execution of the rule, the output parameter A1B1 will be bound to relationship
A1B1.

Type 2 transformation rule (input: Al, B1, M; output: A1B1)
Pre-condition
0 there exists a model space M
0 there exists an entity Al of type Ain M
0 there exists an entity B1 of type B in M
0 there does not exist a relationship of type A.hasB from Al to B1
(or implemented as pattern A_and_B (Al, B1, M) returns false)
Post-condition
0 there exists a model space M
0 there exists an entity Al of type Ain M
0 there exists an entity B1 of type Bin M
o

there exists a relationship A1B1 of type A.hasB from Al to B1

In addition to transformation rules Type 1 and Type 2, the Artifact Model Transformation
Library also has reusable patterns to check for the existence of entities and relationships, or
to search for them in the model space. These patterns are used for Type 2 transformation
rules in particular. For example, the last clause in the pre-condition of Type 2 rule could be
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implemented by calling pattern_A_and_B for entities A1 and B1 and checking that the
pattern returns false. The pattern pattern_A_and_B is as shown below:

Pattern Type 1

pattern A_and_B (An, Bn, M)

there exists a model space M

there exists an entity An, of type A, in M

there exists an entity Bn, of type B, in M

O O O O

there exists a relationship AnBn, of type A.hasB, in M

Though several types of patterns may be defined using the concept of graph patterns,

Pattern Type 1 is commonly used in the Behavior Model Formulation Method. In this type

of pattern, a condition is defined to check for the existence of a relationship between two

given model elements—as shown in the example above. To make the pattern matching

process computationally less expensive, all patterns defined in the Artifact Model

Transformation Library are based on the following strategy:

= All patterns defined in Behavior Model Formulation Method are of Type 1—checking for
a single relationship in the meta-models (CPM2_xKCM and CBM). Since all pre-defined
patterns have 2 nodes, this restricts the number of tests that need to be performed when
matching these patterns to sub-graphs in the source graph (Valiente and Martinez 1997).

= More complex patterns are realized by calls to simpler patterns.

= Wherever possible, patterns are invoked on specific sub-sets of the model space. This
limits the number of nodes and/or edges in the model space for which pattern matching
tests need to be performed.

Sections 8.4.1 to 8.4.4 describe the transformation rules and patterns for
composition stages 1 to 4. Composition stages 1-3 consist of rules that are specific to the
ABBs being composed and rules that are common to all behavior model structures and
simulation templates composed using the Behavior Model Formulation Method. Rules and
patterns specific to an ABB are attributes of the ABB itself. The ABB Meta-Model
described in section 7.2.1 prescribes four key attributes of an ABB—context, property,

application conditions, and transformation rules. When ABBs are instantiated, only their
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property attribute is populated. The other attributes are static—describe the ABB itself. The
first two properties were defined in section 7.2.1 and described for each ABB type in
section 7.3. The application conditions and transformation rules for each ABB are modeled
as graph patterns and graph transformation rules. The ABB-specific rules and patterns
described below are represented as application conditions and transformation rules for that
ABB. The representation of both dynamic and static aspects of an ABB is a key
distinguishing feature of the ABB Meta-Model with regards to existing approaches. While
the static aspects—context and property attributes of an ABB—represent the characteristics
of an ABB, the dynamic aspects—application conditions and transformation rules—
describe how an ABB is to be used in the context of creating a behavior model.

The entities and relationships created in these transformation rules described below
are created in a given model space. For brevity, this is not stated for each rule. The types
(classifiers) of instances created in these transformations are entities defined in the Core
Behavior Model (section 7.1) and the Core Product Model extended by KCM (Chapter 6).

8.4.1 Stage 1 composition - transformation rules and patterns
The set graph transformation rules for Stage 1 composition consists of rules that are

common to the creation of all behavior model structures and simulation templates, and rules
that are specific to the ABBs used in a given behavior model structure.

In this composition stage, an analysis body is composed from shape ABB, system
ABB, analysis feature ABB, material behavior ABB, and behavior ABBs. In addition, a
relationship between the composed analysis body and the corresponding analyzable artifact
is created. This relationship is composed from the relationship between the shapes of
analyzable artifact and analysis body, relationship between the material behavior of
analyzable artifact and analysis body, and relationships between analyzable features and
analysis features. The Type 1 and Type 2 transformation rules in the Artifact Model
Transformation Library for Stage 3 composition are described below. The name of the rule

is followed by a short description of its specific purpose.
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Type 1 transformation rules

Rules for initializing analysis body ABB instances - These transformation rules are
specific to the analysis body ABBs used in composing a given behavior model structure.
Example of analysis body ABBs are illustrated in Figure 7.10. For example, Beam, Rod,
Shell, and Column are different types of structural analysis body ABBs. An initialization
rule (Type 1) would exist for each of the analysis body ABBs in the Artifact Model
Transformation Library (AMTL). For example, initalize_planar_shell_analysis_body is a
rule to initialize an instance of Planar_Shell_Property (type of
Planar_Shell_ABB.property), as shown in Figure 7.11. The initialization transformation
rule and associated patterns are attributes of the specific analysis body ABBs.

Rules for initializing shape ABB instances — Similar to transformation rules for
initializing analysis body instances, the Artifact Model Transformation Library would
contain rules for initializing different types of shape ABBs. For example,
initialize_planar_shape is a rule in the AMTL to initialize an instance of Planar_Shape.
Rules for initializing analysis feature ABB instance - The Artifact Model Transformation
Library would contain rules for initializing different types of analysis feature ABBs
shown in Figure 7.18. For example, initialize_shell_surface_af is a rule in the AMTL to
initialize an instance of Shell_Surface_AF_Property entity shown in the figure.

Rules for initializing material behavior ABB instance - The Artifact Model
Transformation Library would contain rules for initializing different types of material
behavior ABBs as shown in Figure 7.12. For example,
initialize_linear_elastic_tempind_mb is a rule in the AMTL to initialize an instance of
Linear_Elastic_Isotropic_Tempind_MB_Property as shown in Figure 7.13.

Rules for initializing behavior ABB instance - The Artifact Model Transformation
Library would contain rules for initializing different types of behavior ABBs. For
example, initialize_structural_behavior is a rule in the AMTL to initialize an instance of
Structural_Behavior_Property as shown in Figure 7.17.

initialize_aa_abs_relationship - used for creating an instance of

Analyzable_Artifact ABS_Relationship for associating an analysis body system with an

analyzable artifact. Note that this rule is sued for both Stage 1 and Stage 2 composition.
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In Stage 1 composition, relationships are created between analyzable artifact and analysis
body.

initialize_af_anf_relationship - used for creating an instance of
Anlyzable_Feature_Analysis_Feature_Relationship for associating an analyzable feature
with an analysis feature. Note that this rule is used in both Stage 1 and Stage 2
compositions. In Stage 1 composition, relationships are created between analyzable
features and analysis features corresponding to an analyzable artifact and analysis body.
initialize_shape_shape_relationship - used for creating an instance of
Shape_Shape_Relationship that associates two shape instances
initialize_material_behavior_material_behavior_relationship - used for creating an
instance of Material_Behavior_Material_Behavior_Relationship that associates two

instances of material behavior ABBs.
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Type 2 transformation rules
= Rules for populating attributes of analysis body ABBs — These rules are used for
populating attributes of analysis body ABB instances. The Artifact Model

Transformation Library would have rules for associating an analysis body ABB instance

with (a) shape ABB instance, (b) material behavior ABB instance, (c) analysis feature

ABB instance, and (d) behavior ABB instance. Depending upon their specialization,

analysis body ABBs may have their own specialized association rules. For example, a

planar shell analysis body ABB will have rules to associate its instances with (a) planar

shape ABB instances (and not any shape instance), and (b) two planar shell surface
analysis feature ABB instances corresponds to its primary and secondary surface
respectively. However, a material behavior is not inherent in the definition of a planar
shell analysis body ABB, and hence it may use the generic rule that associates an analysis
body ABB with a material behavior ABB.

= Rules for populating attributes of Analyzable_Artifact_ABS_Relationship that relates an
analyzable artifact with an analysis body system (or analysis body), are described below.

O associate_aa_abs_rel_with_aa_and_abs — used for creating an instance of the
relationships Analyzable_Artifact_ABS_Relationship.associated_aa and
Analyzable_Artifact_ABS_Relationship.associated_abs that relate an instance of
Analyzable_Artifact_ ABS_Relationship to an instance of Analyzable_Artifact and
Analysis_Body_System_Property (or Analysis_Body_Property) respectively. This
transformation rule associates an analysis body system composed during Stage 2
composition with the corresponding analyzable artifact (assembly).

O associate_aa_abs_rel_with_af anf rel — used for creating an instance of the
relationship Analyzable_Artifact_ ABS_Relationship.af_anf_rels that relates an instance
of Analyzable_Artifact_ ABS_Relationship with an instance of
Analyzable_Feature_Analysis_Feature_Relationship. Here, the analyzable feature-
analysis feature relationship instances are defined between analyzable features of
analyzable artifact assembly and analysis body system.

O associate_aa_abs_rel _to_geom_idealization — used for creating an instance of the

relationship Analyzable_Artifact_ABS_Relationship.shape_idealization that relates an
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instance of Analyzable_Artifact ABS_Relationship with an instance of
Shape_Shape_Idealization

O associate_aa_abs_rel_to_mb_idealization - used for creating an instance of the
relationship Analyzable_Artifact_ ABS_Relationship.material_behavior_idealization that
relates an instance of Analyzable_Artifact ABS_Relationship with an instance of
Material_Behavior_Material_Behavior_ldealization

Rules for populating attributes of Analyzable_Feature_Analysis_Feature_Relationship

instance are described below.

0 associate_af anf_rel_with_af and_anf — used for creating an instance of each of the
following two relationships:
Analyzable_Feature_Analysis_Feature_Relationship.associated_af and
Analyzable_Feature_Analysis_Feature_Relationship.associated_anf. These
relationships relate an instance of Analyzable_Feature_Analysis_Feature_Relationship
to an instance of Analzable_Feature and Analysis_Feature_Property respectively.

0 Associate_af anf _rel_with_shape_idealization - used for creating an instance of the
relationship Analyzable_Feature_Analysis_Feature_Relationship.shape_idealization that
relates an instance of Analyzable_Feature_Analysis_Feature_Relationship to an
instance of Shape Shape_Relationship

Rules for populating attributes of Shape_Shape_Relationship instance are described

below.

O associate_ssr_with_relating_shape_and_related_shape — used for creating an instance
of each of the following two relationships: Shape_Shape_Relationship.relatedShapes
and Shape_Shape_Relationship.relatingShapes. These relationships relate an instance
of Shape_Shape_Relationship to an instance of Shape and Shape respectively.

O associate_ssr_with_idealization_relation — used for creating an instance of the
relationships Shape_Shape_Relationship.shape_shape_relations. This relationship
associates an instance of Shape_Shape_Relationship to an instance of
Mathematical _Relation.

Rules for populating attributes of Material_Behavior_Material_Behavior_Relationship

instance are defined similar to those defined for populating attributes of

Shape_Shape_Relationship instances.
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Type 1 patterns
= aa_abs_rel_and_aa - used for relationship
Analyzable Artifact ABS_Relationship.associated_aa
= aa_abs_rel_and_abs — used for relationship
Analyzable_Artifact_ABS_Relationship.associated_abs
= aa_abs_rel_and_shape_shape_idealization — used for relationship
Analyzable_Artifact_ABS_Relationship.shape_idealization
* aa_absys_rel_and_mb_idealization — used for relationship
Analyzable_Artifact_ABS_Relationship.material_behavior_idealization
= aa_abs_rel_and_af anf _rel — used for relationship
Analyzable Artifact ABS_Relationship.af_anf _rels
= af _anf rel_and_af — used for relationship
Analyzable Feature Analysis_Feature_Relationship.associated_af
= af anf_rel_and_anf — used for relationship

Analyzable_Feature_Analysis_Feature_Relationship.associated_anf

8.4.2 Stage 2 composition —transformation rules and patterns
The set graph transformation rules for Stage 2 composition consists of rules that are

common to the creation of all behavior model structures and simulation templates, and rules
that are specific to the ABBs used in a given behavior model structure.

In this composition stage, an analysis body system is composed from analysis body
ABBs or other analysis body sub-systems, analysis body interaction ABBs, and analysis
feature ABBs. Additionally, idealization relationships are created between (i) analyzable
artifact (assembly) and the composed analysis body system, (ii) analyzable features and
analysis features, and (iii) the interaction between analyzable artifacts and interactions
between analysis bodies in the analysis body system.

The Type 1 and Type 2 transformation rules in the Artifact Model Transformation
Library for Stage 3 composition are described below. The name of the rule is followed by a

short description of its specific purpose.
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Type 1 transformation rules

= initalize_AB_System - used for creating an instance of Analysis_Body System_ABB or any
of its specializations

® initialize_aa_abs_relationship — used for creating an instance of
Analyzable_Artifact_ ABS_Relationship for associating an analysis body system with an
analyzable artifact. In contrast to its usage in Stage 1 composition, this rule is used in
Stage 2 composition to create relationships between analyzable artifact (assembly) and
analysis body system respectively.

= initialize_af_anf_relationship - used for creating an instance of
Anlyzable_Feature_Analysis_Feature_Relationship for associating an analyzable feature
with an analysis feature. In contrast to its usage in Stage 1 composition, this rule is used
in Stage 2 composition to create relationships between analyzable features and analysis
features corresponding to analyzable artifact (assembly) and analysis body system
respectively.

= initialize_aa_ab_interaction_relationship - used for creating an instance of
Anlyzable_Feature_Analysis_Feature_Interface_Relationship for associating an interface
between two analyzable artifacts with the corresponding interface between two analysis
bodies—either directly or as part of interacting analysis body assemblies

Type 2 transformation rules
= Rules for populating attributes of Analysis_Body_System_ABB or its specializations are
described below. Specialized rules may be defined for populating attributes of
specializations.
O associate_absys_with_abs - used for creating an instance of the relationship
Analysis_Body System_Property.constituent_abs_property that relates an instance of
Analysis_Body System_Property?? and an instance of Analysis_Body System_Property

or Analysis_Body_Property

22 Note that when ABBs are instantiated, only their property attribute (non-static) is populated. The property attribute of
each ABB is of a specific type. For example, Analysis_Body ABB.property is of type
Analysis_Body Property.
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O associate_absys_with_abi - used for creating an instance of the relationship
Analysis_Body System_Property.constituent_ab_ab_interactions_property that relates
an instance of Analysis_Body System_Property and an instance of
AB_AB_Interaction_Property

0 associate_abs_with_anf - used for creating an instance of the relationship
Analysis_Body_System_Property.constituent_afs_property that relates an instance of
Analysis_Body System_Property or an instance of Analysis_Body_ Property with an
instance of Analysis_Feature_Property

Rules for populating attributes of Analyzable_Artifact ABS_Relationship that relates an

analyzable artifact with an analysis body system (or analysis body), are described below.

O associate_aa_abs_rel_with_aa_and_abs — same as described in Stage 1 composition
but in Stage 2 composition, this rule associates an analysis body system with the
corresponding analyzable artifact (assembly).

O associate_aa_abs_rel_to_constituent_aa_abs_rel - used for creating an instance of the
relationship Analyzable_Artifact_ ABS_Relationship.constituent_aa_abs_rels that relates
an instance of Analyzable_Artifact_ ABS_Relationship with an instance of
Analyzable_Artifact_ABS_Relationship.

O associate_aa_abs_rel_with_af anf _rel — same as used in Stage 1 composition but in
Stage 2 composition, the rule is used to relate an analyzable feature-analysis feature
relationship instance with analyzable features of analyzable artifact (assembly) and
analysis body system.

o associate_ aa_abs_rel_with_aa_ab_interaction_rel - used for creating an instance of
the relationship Analyzable_Artifact ABS_Relationship.af_anf_interface_rels that
relates an instance of Analyzable_Artifact ABS_Relationship with an instance of
Analyzable Feature_ Analysis_Feature_Relationship.

Rules for populating attributes of Analyzable_Feature_Analysis_Feature_Relationship

instance are same as described in Stage 1 composition except that in Stage 2 composition,

they are invoked for associating analyzable features of analyzable artifact (assemblies)
and analysis features of analysis body systems.

Rules for populating attributes of

Analyzable_Feature_Analysis_Feature_Interface_Relationship are described below.
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O associate_aa_ab_interaction_relationship_to_aaaai_and_ababi — used for relating an
instance of the relationship
Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_aa_interactio
n and
Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_ab_interactio
n that relate an instance of
Analyzable_Feature_Analysis_Feature_Interface_Relationship to an instance of

AA_AA_Interaction and AB_AB_Interaction_Property respectively

Type 1 patterns

» aa_abs_rel_and_constituent_aa_abs_rel - used for relationship
Analyzable Artifact ABS_Relationship.constituent_aa_abs_rels

= aa_abs_rel_and_aa_ab_irel - used for relationship
Analyzable_Artifact_ABS_Relationship.af_anf_interface_rels

= absys and_abs - used for relationship
Analysis_Body_System_Property.constituent_abs_property

» absys_and_abi - used for relationship
Analysis_Body_System_Property.constituent_ab_ab_interactions_property

= absys_and_anf - used for relationship
Analysis_Body System_Property.constituent_anf_property

= aa_ab_irel_and_aaaai - used for relationship
Analyzable Feature_Analysis_Feature_Interface_Relationship.associated_aa_interaction

* aa_ab_irel_and_ababi - used for relationship

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_ab_interaction

8.4.3 Stage 3 composition — transformation rules and patterns
The set graph transformation rules for Stage 3 composition consists of rules that are

common to the creation of all behavior model structures and simulation templates, and rules
that are specific to the ABBs used in a given behavior model structure.

In this composition stage, (a) a behavior model ABB system is composed from
analysis body system ABB, load ABBs, behavior condition ABBs, and behavior ABBs, and

(b) a behavior model context is composed from the relationship between the analysis body
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system ABB and an analyzable artifact. A behavior model ABB system represents the
idealized behavior of the analyzable artifact. The analyzable artifact is idealized as an
analysis body system. The Type 1 and Type 2 transformation rules in the Artifact Model
Transformation Library for Stage 3 composition are described below. The name of the rule

is followed by a short description of its specific purpose.

Type 1 transformation rules

= initialize_behavior_model_abbsys - used for creating an instance of
Behavior_Model_ABBSys

= initialize_behavior_model_xcontext - used for creating an instance of
Behavior_Model XContext

= Rules to initialize load ABB instances —These transformation rules are specific to the load
ABBs used in composing a given behavior model structure. Example of load ABBs are
illustrated in Figure 7.23. For example, Force, Pressure, Moment, and Temperature are
different types of structural load ABBs. An initialization rule (Type 1) would exist for
each of the load ABBs in the Artifact Model Transformation Library. For example,
initalize_uniform_temp_load is a rule to initialize an instance of
Uniform_Temperature_Load_ABB (shown in Figure 7.24).

= Rules to initialize behavior condition ABB instances — Similar to load ABBs, these
transformation rules are specific to behavior condition ABBs used in composing a given
behavior model structure. Example of behavior condition ABBs are illustrated in
Figure 7.25. For example, PointDisplacementFixed_Condition ABB and
TemperatureConstant_Condition ABB are two types of behavior condition ABBs. In the
former, the displacement is locked at a given point, and in the latter the temperature is
held constant. An initialization rule (Type 1) would exist for each of the behavior
condition ABBs in the Artifact Model Transformation Library. For example,
initalize_point_displacement_fixed_BC is a rule to initialize an instance of

PointDisplacementFixed_Condition ABB.
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Type 2 transformation rules

= Rules for populating attributes of Behavior_Model_ABBSys instance — These rules are
used for populating the attributes of Behavior_Model_ABBSys instance. There are four
such rules, one for each attribute of Behavior_Model_ABBSys, as described below:

0 associate_behavior_model_abbsys_with_absys - used for creating an instance of the
relationship Behavior_Model_ABBSys.abs_sys that relates an instance of
Behavior_Model_ABBSys and an instance of Analysis_Body System_ABB

O associate_behavior_model_abbsys_with_load - used for creating an instance of the
relationship Behavior_Model_ABBSys.load_applications that relates an instance of
Behavior_Model_ABBSys and an instance of Load_ABB

0 associate_behavior_model_abbsys_with_bc - used for creating an instance of the
relationship Behavior_Model_ABBSys.behavior_condition_applications that relates an
instance of Behavior_Model_ABBSys and an instance of Behavior_Condition_ABB

0 associate_behavior_model_abbsys_with_behavior - used for creating an instance of the
relationship Behavior.behaviors that relates an instance of Behavior_Model_ABBSys and
an instance of Behavior_ABB

= Rules for populating attribute of Behavior_Model_XContext instance — There is one rule
for populating the single attribute of Behavior_Model_XContext, as described below.

0 associate_bmx_context_with_aa_absys_rel - used for creating an instance of the
relationship Behavior_Model_XContext.aa_abs_rel that relates an instance of
Behavior_Model_ABBSys and an instance of Analyzable_Artifact ABS_Relationship

= Rules for populating attributes of load ABBs — These rules are used for populating
attributes of load ABBs instances in the behavior model structure. There are three
attributes of all load ABB properties—Iload parameters, load application domain, and
load distribution function. A rule to populate the application domain attribute of each
type of Load_ABB would be defined in the Artifact Model Transformation Library. For
example the rule associate_utl_with_vf is used for associating an instance of

Uniform_Temperature_Load_ABB with an instance of Volume_Feature_ABB, since

temperature is a volume load. Note that load parameters and the distribution function are

typically defined for each type of load ABB. However, the specific values in the

distribution function may be populated when creating behavior model instance (Level 5
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model). For example, for Uniform_Temperature_Load_ABB, the load parameter
(temperature) and distribution function (temperature=constant) are inherently decided in
the definition of the ABB but the value of the constant may be populated only when
creating behavior model instances.

Rules for populating attributes of behavior condition ABBs — Similar to load ABBs, there
are three attributes of all behavior condition ABB properties—behavior condition
parameters, application domain, and distribution function. A rule to populate the
application domain attribute of behavior condition ABB would be defined in the Artifact
Model Transformation Library. For example, the rule associate_pdc_with_pf is used for
associating an instance of PointDisplacementFixed_Condition and an instance of
Point_Feature_ABB. The behavior condition parameters and distribution function are
inherently pre-decided for specific type of behavior condition ABB. For example, the
behavior parameters for PointDisplacementFixed_Condition ABB are displacement
parameters, and the distribution function is displacement=constant, though the value of

the constant may be populated only when creating behavior model instances.

Type 1 patterns

The following Type 1 patterns are defined in the Artifact Model Transformation Library

that are typically used for Stage 3 composition

behavior_model_abbsys_and_absys - used for relationship
Behavior_Model_ABBSys.abs_sys

behavior_model_abbsys_and_load - used for relationship
Behavior_Model_ABBSys.load_applications
behavior_model_abbsys_and_bc - used for relationship
Behavior_Model ABBSys.behavior_condition_applications
behavior_model_xcontext_and_aa_absys_rel - used for relationship

Behavior_Model XContext.aa_abs_rel

8.4.4 Stage 4 composition —transformation rules and patterns

The graph transformation rules for Stage 4 composition are common to the creation

of all behavior model structures and simulation templates formulated using the Behavior
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Model Formulation Method. In this composition stage, a behavior model structure and
simulation template are composed from a behavior model ABB system—a system of
analysis building blocks that represents the idealized behavior of an analyzable artifact, and
a behavior model context—relates the analysis body system in the ABB system to the
analyzable artifact.

The types (classifiers) of instances created in these transformations are entities
defined in the Core Behavior Model (section 7.1). One of the entities, Behavior, is defined
in the Core Product Model extended for KCM—CPM2_xKCM (Chapter 6). The Type 1
and Type 2 transformation rules in the Artifact Model Transformation Library for Stage 4
composition are described below. The name of the rule is followed by a short description of

its specific purpose.

Type 1 graph transformation rules

= initialize_behavior_model - used for creating an instance of Behavior_Model

Type 2 graph transformation rules

= associate_behavior_model_with_behavior - used for creating an instance of the
relationship Behavior.behaviorModels that relates an instance of Behavior and an instance
of Behavor_Model

= Rules for populating attributes of Behavior_Model — These rules are used for populating
the two attributes of Behavior_Model, and are described below.

O associate_behavior_model_with_bmabbsys - used for creating an instance of the
relationship Behavior_Model.associated_bm_abbsys that relates an instance of
Behavior_Model and an instance of Behavor_Model ABBSys.

O associate_behavior_model_with_bmxcontext - used for creating an instance of the
relationship Behavior.context that relates an instance of Behavior_Model and an instance

of Behavor_Model_XContext

Type 1 patterns
The following Type 1 patterns are defined in the Artifact Model Transformation Library
that are typically used for Stage 4 composition
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» behavior_model_and_behavior_model_abbsys - used for relationship
Behavior_Model.associated_bm_abbsys
= behavior_model_and_behavior_model_xcontext - used for relationship

Behavior_Model.context

8.4.5 Analyzable artifact model patterns
When composing behavior model structures and simulation templates, entities in the

analyzable artifact model need to be unambiguously identified. The Behavior Model
Formulation Specifications in both conceptual and computable forms need to explicitly state
the analyzable artifacts (or their specific aspects) and the conditions that need to be satisfied
before associating behavior model entities. In the Behavior Model Formulation Method, the
identification criteria and conditions are formally represented as graph patterns. For
example, if stratums of a PCB is idealized as shell, this requires that all stratums of the PCB
be unambiguously identified and then transformation rules be executed to initialize shell
analysis body ABB and the relationships to the stratums. In addition to identifying
analyzable artifacts or their specific aspects, there may be conditions that need to be
checked. For example, stratums made of conductive material are idealized to have linear
isotropic material behavior, and stratums made of non-conductive material are idealized to
have linear orthotropic material behavior.

The Artifact Model Transformation Library would also have patterns for
relationships in the analyzable artifact model. Depending upon the variable bindings when
the pattern is called, a pattern could be used to search and identify analyzable artifact
entities or check for specific conditions. The entities and relationships are specialized for
each application domain and hence patterns are created for meta-model defined at Level 2
in the design model stack (section 6.2). Figure 6.7 and Figure 6.8 show the design and
analyzable design models for printed circuit boards. As an example, for the relationships in
the analyzable PCB model illustrated in Figure 6.8, the following Type 1 patterns are
defined in the Artifact Model Transformation Library.

» astratums_and_apwb - used for the relationship Analyzable PCB.hasStratums
= astratum_interfaces_and_apwb - used for the relationship

Analyzable PCB.astratumlInteractions
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astratum_and_surfaces - used for the relationships AStratum.primary_surface and
AStratum.secondary_surface

assi_and_preceding_stratum_surface - used for the relationship
Adjacent_AStratum_Surface_Interaction.precedingAstratumSurface
assi_and_succeding_stratum_surface - used for the relationship
Adjacent_AStratum_Surface_Interaction.succeedingAstratumSurface
astratum_and_form - used for the relationship AStratum.hasForms
astratum_and_shape - used for the relationship AStratum_Form.hasShapes (where
AStratum.hasForms: AStratum_Form)

astratum_and_material - used for the relationship AStratum_Form.hasMaterial (where
AStratum.hasForms: AStratum_Form)

astratum_and_elec_function - used for the relationship AStratum.hasFunctions

8.5 Summary

To summarize, the Behavior Model Formulation Method (BMFM) of the

Knowledge Composition Methodology is presented in this chapter. Specifically, the

following aspects of the model transformation process prescribed by BMFM are presented

here.

Schematics of the transformation process focuses on the functional components of the
transformation framework—source and target meta-models and models, transformation
specifications, model transformation library, and the model transformation engine.
Stages of the transformation process focuses on the major steps in which simulation
templates are composed from design model structures and idealization decisions.
Semantics of the transformation process relates the process of composing simulation
templates to deriving relations between behavior parameters and design parameters. The
intent of presenting this aspect is to illustrate that the BMFM is a formal and structured
approach to creating simulation templates that embody existing fundamental domain
theories. The BMFM provides a computationally effective mechanism to apply existing
domain theories and concepts to variable topology multi-body problems.

Mechanics of the transformation process focuses on how the model transformation

process is realized as a process of graph transformations.
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In addition, pre-defined graph patterns and transformation rules in the Artifact Model
Transformation Library are presented.
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PART 3: VERIFICATION & VALIDATION,

FUTURE WORK, AND CLOSURE
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Chapter 9 : TEST CASES

The focus of this chapter is to present test applications of KCM meta-models and
methods, and to validate the research hypotheses. In this chapter, test cases are presented to
demonstrate different aspects of the Knowledge Composition Methodology. The test cases
validate the model composition process prescribed by KCM’s Behavior Model Formulation
Method. Two families of test cases are presented here. In the first test case family (TCF1)
presented in section 9.2, the objective is to generate fixed topology simulation templates for
thermo-mechanical analyses of multi-layered printed wiring boards. For the second test case
family (TCF2) presented in section 9.3, the objective is to generate fixed topology
simulation templates for thermo-mechanical analyses of ball grid array (BGA) chip
packages. The test cases demonstrate automated generation of simulation templates for two
types of variations: (a) analyzable design model structures with different assembly system
topologies (VTMB problems), and (b) idealization decisions taken by analysts.

Chapter 8
Behavior Model Formulation Method

Chapter 6 Chapter 7
VTMB Design Model Abstractions Behavior Model Abstractions
(CPM2_xKCM) (CBM, ABB Meta-Model)

¢ Test Applications & Validation

. Chapter 9
This Chapter—» Multi-stratum PWB Designs
Multi-component Chip Package Designs

Figure 9.1: Applications and Validation of KCM meta-models and methods

9.1 Models in VIATRA Model Transformation Framework
The test cases presented in this chapter are implemented using VIATRA model
transformation framework. For all test cases, the model space in this framework is pre-

loaded with KCM meta-models and libraries. Figure 9.2 illustrates the KCM model space in
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the VIATRA model transformation framework. The following meta-models, models
libraries, and model transformation libraries are pre-loaded for execution the model
transformations prescribed by KCM’s Behavior Model Formulation Method. The meta-
models and model libraries presented here are implementations of the KCM meta-models
and models in VIATRA Textual Metamodeling Language, and the model transformations
presented here are implementations of KCM’s Artifact Model Transformation Library in
VIATRA Textual Command Language (VTCL).

= ,E_=| kam
= [E] Meta_Model
+[E] ABE_Meta_Model
] Analyzable_FElectronics_Design_Meta_Model
&] CBM
£] CPM2_xKCM
2 [E] Generics_Meta_Model
= [E] Model
+ [E] ABB_Library
+ [E] Analyzable Electronics_Design_FTME_Model Space

.............................

£

8 [E] mxcform_rp | Artifact Model Transformation Library

Figure 9.2: KCM meta-models, models, and model transformation libraries shown in the KCM
model space of the VIATRA model transformation framework
= Meta-Models

0 CPM2_xKCM is the implementation of the CPM2_xKCM meta-model (section 6.1) in
VTML.

0 CBM is the implementation of the Core Behavior Model (CBM - section 7.1) in
VTML.

O ABB_Meta_Model is the implementation of the ABB Meta-Model (section 7.2) in
VTML.

0 Generics_Meta_Model is the implementation of KCM’s Generic Meta-Model for
representing geometry, math relations, and other constructs that are used by all meta-
models and models.

O Analyzable_Electronics_Design_Meta-Model is a VTMB electronics artifact-specific
meta-model. It is a Level 3 model in the design model stack and contains design and

analyzable design meta-models for representing electronics artifacts of varying
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assembly system topologies. The Analyzable Electronics_Design_Meta-Model is the
meta-model for representing both types of electronics artifacts—printed wiring boards
and ball grid array chip packages—used in the test cases described in this chapter. In
section 6.2, a sub-set of this meta-model for representing design and analyzable design
aspects of printed wiring boards was presented.

= Models

O ABB_Library is the implementation of KCM’s Analysis Building Block Library (section
7.3) in VTML.

O Analyzable_Electronics_Design_FTMB_Model_Space is a model space for fixed
topology multi-body analyzable design model structures—Level 4 models in the
design model stack.

= Model transformations

o0 mxform_rp is the implementations of KCM’s Artifact Model Transformation Library

(section 8.4) in VTCL.

9.2 Test Case Family 1 (TCF1): Thermo-mechanical Analysis of
Multi-Layered Printed Wiring Boards

A printed wiring board® is an electronic artifact that transmits signals between
components mounted on it via conductive pathways (traces) originating from / terminating
in other conductive features (lands). A bare printed wiring board has no packaged
components on it. A PCB with mounted components (such as chip packages) is also known
as a printed wiring assembly (PWA/PCA). The mechanical function of a PWB is to support
the electronic circuitry laid out in multiple stratums of the PWB. Figure 9.3 illustrates the
2D layout and through-thickness stackup of a typical PWB. A PWB consists of a stackup of
materials as shown in the through-thickness view. Each layer of material is known as a
stratum. A stackup is made of alternatively electrically conductive and non-conductive
stratums. Conductive stratums have conductive features such as lands and traces as shown
in the planar layout view. Vias and through-holes are openings in the stackup from one

conductive layer to another—primarily meant to provide electrical connections across

2 Also known as printed circuit board (PCB)
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stratums. The through-thickness view shows the structure of the stackup—same for
different thicknesses of the stratums.

\

Planar (XY) Layout Through-thickness (Z) Stackup

VNV

Stratum_1, thickness N/&
Stratum_2, thickness NfA~_

— — — - - m—

[Er——

i -

Stratum_3, thickness N,.‘A-——-_'—'lT
Stratum_4, thickness N/
Stratum_5, thickness N/A

Vias Through-Hole

' I ¥ )

Figure 9.3: A typical Printed Wiring Board design (shown here with 5 stratums)

Traces

In this section, simulation templates shall be automatically generated using the
Behavior Model Formulation Method for PWBs with different number of stratums, and for
different behavior idealization decisions. These simulation templates are to be used for
thermo-mechanical analyses of printed wiring boards. Specifically, the objective of creating
these simulation templates is to compute both out-of-plane and in-plane deformation of
printed wiring boards for different temperature loads. This type of analysis is required to
simulate the deformation of printed wiring boards when components are assembled on their
surface, or when a printed wiring board is being manufactured in a sequential lamination
process in which heating and cooling result in different materials on a PWB to expand and
contract differently owing to mismatches in their coefficient of thermal expansions. The
deformation of printed wiring boards leads to mis-registration between component terminals
and the conductive footprints on the PCB where they are supposed to mount, leading to
acute reliability problems (Zwemer, Bajaj et al. 2004; Bajaj, Peak et al. 2006).

In the Behavior Model Formulation Method, the source models are fixed topology
analyzable design model structures—Level 4 models in the design model stack. If a design
is to be analyzed as-is (including all features), then the analyzable design model structure is
same as the design model structure. For the specific case of simulation templates generated
for thermo-mechanical analyses of printed wiring boards in the test cased presented here,
the design and analyzable design are different. In the analyzable design model, the stratums
are idealized as homogenous. This is a fairly common idealization in different types of
analyses of printed wiring boards, especially when global behaviors are of interest to

analysts. Figure 9.4 illustrates both design and analyzable design for a 5-stratum PWB. In
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the analyzable design, the design layers (conductive stratums) are idealized as uniform and
homogenous as opposed to having specific conductive features such as lands and traces in
the design model.

The analyzable design model structure is the starting point of the test cases
demonstrated here. Sections 9.2.1 and 9.2.2 illustrate two different behavior idealizations—
BMFS' and BMFS? respectively. For each BMFS, simulation templates are created for two
analyzable PWB design alternatives—one with 5 stratums and one with 9 stratums. The
analyzable PWB design alternatives with 5-stratums and 9-stratums have non-equivalent
assembly system topologies due to differences in number of assembly components (5 versus
9), and differences in number of interactions between components (4 versus 8).

Stratum_1, thickness N/\

Stratum_2, thickness Nff~.

e

Stratum_3, thickness NJ\ (O
Stratum_4, thickness N/
Stratum_5, thickness NJ

5-stratum PCB design

AStratum_1, thickness N/
AStratum_2, thickness N/
AStratum_3, thickness N/
AStratum_4, thickness N/
AStratum_5, thickness N/

5-stratum analyzable PCB design
Figure 9.4: 5-stratum PCB — design and analyzable design views

Table 9.1 shows the four fixed topology simulation templates that would be auto-
generated for combinations of 2 different Behavior Model Formulation Specifications and 2
analyzable design model structures with different assembly system topologies.

Table 9.1: Simulation templates created for thermo-mechanical analysis of PWBs

Analyzable Design Model Structures
5-stratum analyzable PCB 9-stratum analyzable PCB
BMFS' | Simulation Template 5" Simulation Template o*
BMFS® | Simulation Template 5 Simulation Template ¢°
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9.2.1 Behavior Model Formulation Specifications 1 (BMFS')
In this section, simulation templates auto-generated for idealization decisions

embodied in BMFS' are presented. First, the conceptual specifications in BMFS' are

presented. Then, fixed topology simulation templates auto-generated for two analyzable

PWB design model structures with different assembly system topologies are presented in

sections 9.2.1.1 and 9.2.1.2 respectively. The conceptual specifications in BMFS® are

summarized in Table 9.2 below. Note that the conceptual specifications are presented here

using the select and idealize constructs described in section 8.3.1.

Table 9.2: Conceptual specifications (BMFS?) for thermo-mechanical analyses of multi-stratum PCBs

Conceptual specifications for Stage 1 composition

Entities in analyzable PCB design model

Entities in Multi-shell analysis body system
(as instances of ABBs stated below)

Analyzable stratum

Idealize as Planar shell analysis body ABB

Planar shape

Select Planar shape ABB

Linear elastic isotropic
independent material behavior
Linear elastic orthotropic temperature-
independent material behavior

temperature-

Select Linear elastic isotropic
independent material behavior ABB

temperature

Analyzable features

Analysis features

Primary surface (planar surface feature)

Idealize as Planar surface feature ABB

Secondary surface (planar surface
features)

Idealize as Planar surface feature ABB

Conceptual specifications for Stage 2 composition

Analyzable PCB

Idealize as Multi-shell analysis body system

Analyzable stratum

Idealize as Planar shell analysis body ABB

Adjacent stratum surface interaction

Idealize as Shell-shell tie interaction ABB (perfectly
bonded shell-shell interaction)

Analyzable features

Analysis features

Volume of analyzable PCB

Idealize as VVolume feature ABB

Mid-pt of bottom soldermask stratum

Idealize as Point feature ABB

Conceptual specifications for Stage 3 composition

Heating a PCB

Idealize as Uniform temperature load ABB
associated with Volume feature ABB instance
corresponding the volume of the analyzable PCB

PCB held fixed at mid-pt of the bottom
soldermask stratum

Idealize as Point displacement constant behavior
condition ABB associated with Point feature ABB
instance corresponding to mid-pt of bottom
soldermask

The conceptual specifications are summarized for Stages 1-3 of the composition process.

Stage 4 is creation of high-level behavior model entities that are common to all behavior
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model structures formulated using KCM. Figure 9.5 illustrates specifications for
idealization relationships between an analyzable stratum in the analyzable PWB design
model structure and the corresponding planar shell analysis body in the behavior model
structure (to be created). Only assembly system topology-related aspects of the

specifications are shown.

Analg/zable Stratum ; Planar shell analysis body ;
rimary surface € » Planar surface analysis feature
| | < | |
Secondalry surface € » Planar surface analysis feature
I
| [
Adjacent stratum surface interface i, i+1 ~€——— > Tie interaction i, i+1

Primary surface € »  Pplanar surface analysis feature
IS > D

Secondary surface e > Planar surface analysis feature
Analyzable Stratum i, Planar shell analysis body i+1
< » Specifications for relationships :

Figure 9.5: Specifications for relationships between analyzable stratum and
planar shell analysis bodies (only assembly system topology-related aspects are shown)

Stage 1 composition concerns the idealizations at the level of a single analysis
body. In BMFS?, a stratum of an analyzable PCB is idealized as a planar shell analysis body
as shown in Figure 9.5. Thus, the mechanical behavior of a stratum is idealized as the
mechanical behavior of a shell, and the shape of the stratum is idealized as a planar shell
shape—a thin prismatic shape where the outline and thickness of the shape is same as the
outline and thickness of the analyzable stratum. The material behavior of all analyzable
stratums is idealized to be linear, elastic, isotropic, and temperature independent. The
primary and secondary surfaces of the analyzable stratums are idealized as planar surface
analysis features.

Stage 2 composition concerns idealizations at the level of multiple analysis bodies
in the context of an analysis body system. In BMFS!, an analyzable PWB is idealized as a
multi-shell system composed of a stack of planar shell analysis bodies—each body
corresponding to an analyzable stratum. Since the thickness of each planar shell analysis
body is small, the multi-shell system itself behavior as a laminated shell. The interactions
between the analyzable stratums, also known as adjacent stratum surface interfaces, are

relationships between the secondary surface of the preceding stratum and the primary
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surface of the succeeding stratum. In BMFS?®, an adjacent stratum surface interface is
idealized as a tie interaction between the corresponding planar shell analysis bodies. The
planar surface analysis features of two adjacent planar shell analysis bodies participate in a
tie interaction. The behavior of a tie interaction is same as if adjacent planar shell analysis
bodies were perfectly bonded. Hence, the displacement (translational and rotational
components) is continuous across the interface of adjacent planar shell analysis bodies. In
addition, two new analysis features are defined at the multi-shell analysis body system
level. These are (i) volume feature ABB instance corresponding to the volume of an
analyzable PCB, and (ii) point feature ABB instance corresponding to the mid-point of the
bottom analyzable stratum (corresponding to the soldermask stratum in the PWB design
model).

Stage 3 composition concerns the idealizations of loads and behavior conditions in
which the behavior of the analysis body system is to be computed. The process of heating a
PCB, say for mounting components, is idealized as a uniform temperature load—uniform
increase in temperature from a reference value to a target value. In addition, the load is
idealized to be uniform through the volume of the entire multi-shell analysis body system.
The behavior condition for this analysis is to hold the mid-point of the bottom analyzable
stratum as fixed. This corresponds to locking all degrees of freedom at that point in the
analysis body system. This behavior condition is realized by the use of point-displacement-
fixed ABB instance that embodies the displacement constraint, and associating it with the
point feature ABB instance corresponding to the mid-point of the bottom planar shell
analysis body. Per the idealization specifications in Figure 9.5, the bottom planar shell

analysis body corresponds to the bottom analyzable stratum.

9.2.1.1 Simulation Template 5*: Simulation template for 5-stratum analyzable PWB
design model structure and BMFS*
In this section a fixed topology simulation template auto-generated for 5-stratum
analyzable PWB design model structure and BMFS" is presented. The source model in the
model transformation shown here is PWB_5S2L—a 5-stratum, 2-layer®* analyzable PWB

2 Conductive stratums are known as layers. In this example, the analyzable PWB has 5 stratums and 2 layers.
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design model structure, shown in Figure 9.6 in the VIATRA model space. PWB_5S2L is an
instance of the Analyzable_Electronics_Design_Meta-Model (section 6.2) that is pre-loaded
in the VIATRA model space. The source model shown here is a Level 4 model in the design

model stack, and same as the PCB_5Sx model illustrated in Figure 6.10.

3-[E] Analyzable_Electronics_Design_FTMB_Model_Space

= [E] PWE_552_Modei Key
&l [E] Design_Cu_Stratum_Form : AStratum_Form | Attributes values (References to objects) I
# [E] Dielectric_FR4_Stratum_Form : AStratum_Form = ~——-----------—-—-——-————
[+ [E] Electric_Conductive : Stratum_Function Objects

#- [E] Blectric_Dielectric : Stratum_Function

[+ [E] Electric_Soldermask : Stratum_Function

=8 — — 5-stratum PWB
JEI' pwb_552L_form (-> PWB_SS2L_Form) : form )
JE pwb_552L_id (-> pwb5s2l_id) : id ¥

,'E'.i' pwb_552L_stratum_interfaces_1 (-> Soldermask_1_Cu_1_Interface) : stratum_interfaces
JEF pwh_ 552 stratum_interfaces_2 (-> Cu_1_Dielectric_Interface) : stratum_interfaces

,'.E.r pwb_552 _stratum_interfaces_3 (-> Dislectric_Cu_2_Interface) : stratum_interfaces

JB pwb 552 stratum interfaces 4 (-> Cu_2 Soldermask_2 Interface) : stratum_interfaces
,;Ei' pwb_552L _stratums_1 (-> Soldermask_Stratum_1) : stratums
,:E'.i' pwh 55 stratums_2 (-> Design_Cu_Stratum_1) : stratums
JE pwb_552L_stratums_3 (-> Dielectric_FR4_Stratum) : stratums
,:Ei' pwh_552 _stratums_4 (-> Design_Cu_Stratum_2) : stratums

musdy EEH sbrabhmee B fow Saldarmasl: Chrabms 7 0 abeab
,.-ul AT _Joch SUSOENE_J == SOhOSMMass_STallim_<&) : STSWms

# [E] Cu_1_Dielectric_Interface : Adjacent_Stratum_Surface_Interaction
® [E] Cu_2_Soldermask_2_Interface : Adjacent_Stratum_Surface_Interaction
® [E] Design_Cu_Stratum_1 : AStratum
@ [E] Design_Cu_Stratum_2 ; AStratum
' [E] Dielectric_Cu_2_Interface : Adjacent_Stratum_Surface_Interacton
™ ([E] Didlectic_FR4_Stratum : AStTatum
® B PWE_SS2_Form ; APwH_Form
# [E] Soldermask_1_Cu_1_Interface : Adjacent_Stratum_Surface_Interaction
#® [E] Soldermask_Stratum_1 : AStratum
# [E] Soldermask_Stratum_2 : AStratum
|E] PWB_552L_Edge_Shape : Closed_Shape_2D
#- [E] Soldermask_Stratum_Form : AStratum_Form
# - [E] reused_obiect_repos

Interfaces between
stratums

5 stratums

-H

Figure 9.6: PWB_5S2L has 5 analyzable stratums and 4 stratum interfaces

In the figure above, the objects in the model space denoted with an icon with letter E are
entities, and objects denoted with an icon with letter R and an arrow (->) are attributes of
the containing entity. In VTML, attributes are modeled as relationships and hence the letter
R is used o denote them in the VIATRA model space. As shown in Figure 9.6, PWB_5S2L
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has 5 analyzable stratums and 4 stratum interfaces. In the figure, the entities highlighted
using dashed lines are the show the attribute values of the PWB_5S2L entity. These values
refer to the 5 analyzable stratum objects and 4 stratum interfaces entities as shown in the
model space. Figure 9.7 illustrates an analyzable stratum object and its attribute values, and
Figure 9.8 illustrates a stratum interface object and its attribute values—preceding and

succeeding stratum surfaces.

=& |Design_Cu_Stratum_2 : AStratum

,Ei' cu_stratum_2_form (-> Design_Cu_Stratum_Form) : form

B cu_stratum_2_function (-> Electric_Conductive) : function

JE cu_stratum_2_id (-> cuid) : id

JE cu_stratum_2_primary_surf (-> Design_Cu_Stratum_2_Top_Surf) : primary_surface

B cu_stratum_2_secondary_surf (-> Design_Cu_Stratum_2 Bot Surf) : secondary_surface
[E] Design_Cu_Stratum_2_Bot_Surf : AStratum_Surface

[E] Design_Cu_Stratum_2_Top_Surf : AStratum_Surface

Figure 9.7: Stratum entity example

SRE | Dielectric_Cu_2_Interface : Adjacent_Stratum_Surface_Interaction
,EI" diel_cu2_pre {-> Diel_Stratum_Bot_Surf) : preceding_stratum_surface
JE diel_cu2_suc (-> Design_Cu_Stratum_2_Top_Surf) : succeding_stratum_surface

Figure 9.8: Stratum interface entity example

Once the FTMB analyzable design model (PWB_5S2L) is available in the model
space, BMFS! can be loaded and executed to auto-generate fixed topology simulation
template. Figure 9.9 illustrates the ABB Library, Artifact Model Transformation Library,
and BMFS' (computable specification) in the VIATRA model space. The ABB Library and
Artifact Model Transformation Library are common to all behavior model structures and
simulation templates formulated using the Behavior Model Formulation Method, but the
Behavior Model Formulation Specifications that embody the idealization decisions typically
differ from one analysis to another. Figure 9.10 illustrates the execution of BMFS' in the

VIATRA model space—right click on model space entry and select Run from the menu.
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= [E] Model

Sl]ace Library |

#[E] AB_AB_Interaction_AES_Library
# - [E] Analysis_Body_ABE_Library

® [E] Analysis_Feature_ABB_Library

# [E] Behavior_Condition_ABS_Library
#[E] Load_ABE_Library

® [E] Material Behavior ABB Library

15] cform o |
analysis_body_abbs_rp : Machine
behavior_condition_abbs_rp : Machine
cbm_rp : Machine

cpm2_xkom_rp : Machine
generic_patterns : Machine

geom_rp : Machine

load_abbs_rp : Machine

# [M] material_behavior abbs rp : Machine

1]
m

el

53]

188 18 -1 -]

# [E] Analyzable Flectronics_Design_FTMB_Model_Space

# () pwb_thermomech_analysis_bmfs1 : Machine

Analysis Building Block
Library

Artifact Model
Transformation Library

BMFS'

Figure 9.9: VIATRA model space showing ABB Library, AMTL, and BMFS"

R | pwh_thermomech_analysis_bmfs1 : Machine ISR ERR )

=| Export as VTML

E] Add Entity

Run As
Debug As
Team
Compare With
Replace With
Run As
Debug As

* r¥F ¥F ¥ ¥ ¥ ¥

Figure 9.10: Executing BMFS* in VIATRA model space.

The Behavior Model space shown in Figure 9.11 shows the simulation template
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entities auto-created by executing BMFS® (computable specifications). Figure 9.11
illustrates the relationship between an analyzable artifact, its behaviors, and behavior
models used for computing those behaviors. This is one of the core concepts in
CPM2_xKCM. Note that two attributes of the entity ThermoMech_Behavior relate
PWB_5S2L (analyzable artifact) and Multi_Shell_UniTemp_PtDx_ThermoMech_BM
(behavior model). Similarly, other thermo-mechanical behavior models of different

fidelities can be associated with the entity ThermoMech_Behavior.



= [E] Analyzable_Electronics_Design_FTMB_Model_Space
=-[E] PWB_552L_Model Key

[E] Design_Cu_Stratum_Form : AStratum_Form
[E] Dielectric_FR4_Stratum_Form : AStratum_Form
[E] Blectric_Conductive : Stratum_Function Objects
[E] Electric_Dielectric : Stratum_Function
[E] Blectric_Soldermask : Stratum_Function
@ [E] PWB_SS2L : APwD

“ [E] PWB_552._Edge_Shape : Closed_Shape_2D
Analyzable Artifact & ) soldermask_Stratum_Form : AStratum_Form

# [E] reused_object_repos
PR lows_TME : entity
s ® [E] AIDOF_Locked_Mid-Pt_Bot_Soldermask : Point_Displacement_Constant_BC
Behavior Model & (€] mid_pt_Planar_Shell_AB_Soidermask_Stratum_2 : Point_Feature_ABB
space @ [E] Multi_Shel_AB_System : Analysis_Body_System_ABS
& [E] Multi_Shell_UniTemp_PtFx_ABESys : Behavior_Model_ABBSys

- @ [E] Multi_Shel_UniTemp_PtFx_ABBSys - PWB_SS2L CONTEXT : Behavior_Model_XContext

j] #-[E] Multi_Shel_UniTemp_PtFx_ThermoMech_BM : Behavior_Model
Behavior Model 251 PWE 552 -Mult Shel AB System ASSOC : AA_ABS Relationship

-

20 =R R

‘= [E] ThermoMech_Behavior : Behavior |

I Bl assocated_models(-> Multi_Shell_UnTemp_PtFx_ThermoMech_BM) : associated_models|

Behavior

% [E] Uniform_Temp_Multi-Shell Sys : Constant Temperature Load
- [E] Volume_Multi_Shell_AB_System : Volume_Feature_ABE

Figure 9.11: Simulation template automatically created using

Behavior Model Formulation Method

ERE | Pwe_TME : entity
&[] AIDOF_Locked_Mid-Pt_Bot_Soldermask : Point_Displacement_Constant_BC
- [E] Mid_Pt_Planar_Shell_AB_Soldermask_Stratum_2 : Point_Feature_ABB
&[] Multi_shell_AB_System : Analysis_Body_System_ABS
[ & [E] mult_Shell_UnTemp_PtFx_ABESys : Behavior_Model_ABBSys | «——-— ABB System
JEI' associated_absys_attr (-> Multi_Shel_AB_System) : assocated_absys
JE assocated_behavior_condition_app_attr_AIDOF_Locked_Mid-Pt_Bot_Soldermask (-> AIDOF_Locked_Mid-Pt_Bot_Soldermask]
JH associated_load_spplications_attr_Liniform_Temp_Multi-Shell_Sys (- Uniform_Temp_Multi-Shell_Sys) : associated _load_appli
JH' id_attr (~> MULTI_SHELL_UNITEMP_PTFX) : id
|| = [E] Multi_Shell_UnTemp_PtFx_ABBSys - PWB_552L CONTEXT : Behavior_Model_XContext | == —— Context
JEI assodated_aa_absys_relation {-> PWB_5S2L - Multi_Shell_AE_System ASSOC) : assodated_aa_absys_relation
JE id_attr (-> MULTI_SHELL_UNITEMP_PTFX - PWB_552.) : id
[ = [ Muiti_Shell_UniTemp_PtFx _ThermoMech_BM : Behavior_Model |+ — — —— Behavior Model
T~ B assodated ABESys_atir (-> Muti_Shel_UniTemp_PtFx_ABBSys) : assocated_ABBSYS |
FE] Context_atir (-> Mt _Shel_UnTemp_Pex_ABBSYS - PWB_SS 2L CONTEXT)  context. |
@36 FS MO SR URIMERF PTEY THEMOVECH OB 5id —— ————

& [E] PWB_S52L - Multi_Shel_AB_System ASSOC : AA_ABS_Relationship o _’i“-f
# - [E] ThermoMech_Behavior : Behavior :‘AHrTE;Utes values 1
- [E] Uniform_Temp_Multi-Shell_Sys : Constant_Temperature_Load (References to objects) _|

- [E] volume_Multi_Shell_AB_System : Volume_Feature_ABB Objects
#-[E] Aux_sSpace : entity

Figure 9.12: Results of Stage 4 composition
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SBE fMulti_Shell_AB_System : Analysis_Body_System_ABB

Figure 9.12 illustrates the entities and relationships created in the simulation
template at the end of Stage 4 of the composition process. The figure shows a behavior
model, behavior model ABB system, and context entities during the process. The attribute
values of the behavior model entity refer to the ABB system and context entities. Figure
9.13 illustrates the behavior model ABB system entity and its attribute values creating at the
end of Stage 3 of the composition process. The figure shows the ABB system consists of the
multi-shell analysis body system, point displacement behavior condition, and a constant

temperature load.

=RE}PWE_TMB : entity _ Point displacement fixed behavior
# (] AIDOF_Locked_Mid-Pt_Bot_Soldermask : Point_Displacement_Constant BC | 47 condition application

i+ [E] Mid_Pt_Planar_Shel_AB_Soldermask_Stratum_2 : Point Feature_ASE .
#-[E] Multi_Shell_AB_System : Analysis_Body_System_ABS <+ — Analysis body system
- [E) Multi_Shell UniTemp PtFx_ABBSys : Behavior Model ABBSys «— ABB system

-1

: ,ZE'.I’| assodated_absys_attr (-> Multi_Shell_AB_System) : assodated_absys I

JE id_attr (> MULTI_SHELL_UNITEMP_PTFX) : id
- [E] Multi_Shell_UniTemp_PtFx_ABBSys - PWB_552L CONTEXT : Behavior_Model_XContext
#- [E] Multi_Shell_UniTemp_PtFx_ThermoMech_BM : Behavior_Model
®-[E] PWB_552L - Multi_Shell_AB_System ASSOC : AA_ABS_Relationship
# [E] ThermoMech_Behavior : Behavior

| & [€] Uniform_Temp_Multi-Shell_Sys : Constant_Temperature_Load | X,
®-[E] volume_Multi_Shell_AB_System : Volume_Feature_ABS Constant temperature
@ [E] Aux_Space : entity load application

Figure 9.13: Behavior Model ABB System created at the end of Stage 3 composition

<+ — — Analysis body system
B constituent_ab_ab_interactons_attr_PBSSI_Cu_1_Dielectric_interface {-> PESSI_Cu_1_Diglectric_interface) : constituent_ab_ab_interactions

JE constituent_ab_ab_interactions_attr_PBSSI_Cu_2_Soldermask_2_Interface (-> PESSI_Cu_2_Soldermask_2_Interface) ; constituent_ab_ab_interactions

)Ei‘ constituent_ab_ab_interactions_attr_PESSI_Dielectric_Cu_2_Interface (-> PESSI_Dielectric_Cu_2_Interface) : constituent_ab_ab_interactions

,IEi' constituent_ab_ab_interactions_attr_PBSSI_Soldermask_1_Cu_1_Interface (- PBSSI_Soldermask_1_Cu_1_Interface) : constituent_ab_ab_interactions

,IEF constituent_abs_attr_Planar_shell_AB_Design_Lu_soatum_1 [-> Planar_shel_AB_Design_Lu_Soatum_1) : consutuent_abs |
IEI‘ constituent_abs_attr_Planar_Shell_AB_Design_Cu_Stratum_2 (-> Planar_Shell_AB_Design_Cu_Stratum_2) : constituent_abs :
([EI" constituent_abs_attr_Planar_Shell_AB_Dielectric_FR4_Stratum (-> Planar_Shell_AB_Dielectric_FR4_Stratum) : constituent_abs |
)Eil constituent_abs_attr_Planar_Shell_AB_Soldermask_Stratum_1 (-> Planar_Shell_AB_Soldermask_Stratum_1) : constituent_abs |
JE' constituent_abs_attr_Planar_Shell_AB_Soldermask_Stratum_2 (-> Planar_Shell_AB_Soldermask_Stratum_2) : constituent_abs :

T EH At (MU SHELL ABLSYS) A T T T T T T T T T T T T T T T T e e e e

7]
]
]
=

[E] PBSSI_Cu_1_Dielectric_Interface : Perfectly_Bonded_Shell_Shell_Interaction

[E] PBSSI_Soldermask_1_Cu_1_Interface : Perfectly_Bonded_Shell_Shell_Interaction

&
®
®
@
@

[E] Planar_Shell_AB_Design_Cu_Stratum_1 ; Planar_Shell_AE
[E] Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_AB
€] Planar_Shell_AB_Dielectric_FR4_Stratum : Planar_shell_ag | < —— 5 Planar shell analysis bodies
[E] Planar_Shell_AB_Soldermask_Stratum_1 : Planar_Shell_AB
[E] Planar_shell_AB_Soldermask_Stratum_2 : Planar_Shell_AB

Figure 9.14: Analysis body system created at the end of Stage 2 composition
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Figure 9.14 above illustrates the multi-shell analysis body system created at the end of
Stage 2 composition process.

Note that the VIATRA framework orders attributes in an alphabetical order, and
hence attributes corresponding to planar shell analysis bodies do not show the stackup order
of these bodies in the multi-shell analysis body system. Figure 9.14 illustrates the attributes
of the multi-shell analysis body system that refer to the 5 planar shell analysis bodies and 4
shell-shell tie interactions automatically created during the Stage 2 composition. In addition
to the analysis bodies and their interactions, the relationships between the 5-stratum
analyzable PWB and 5-shell analysis body system is also automatically created at the end of
Stage 2 composition. Figure 9.15 below illustrates the five relationships created between
analyzable stratums and planar shell analysis bodies—1 relationships for each pair, and the
four relationships created between the analyzable stratum interfaces and the tie interactions
between planar shell analysis bodies—1 relationship for each pair. These relationships
realize the specifications illustrated in Figure 9.5.

__ Relationship between analyzable PWB

SHENPWB_552L - Multi_Shell_AB_System ASSOC : AA_ABS_Relationship [ N .
I assocated_aa_attr (-> PWB_552L) : associated_aa and multi-shell analysis body system

a, SesOOated pa o b2 Ml Ans) s e

JEI' associated_abs_attr (-> Multi_Shell_AB_System) : associated_abs :

,Ef constituent_sa_ab_interaction_relations_attr_PBSSI_Cu_1_Dielectric_Interface - Cu_1_Dielectric_Interface ASSOC (-> PBSSI_Cu_1_Dielectric_Interface - Cu_1_Di|

JE constituent_aa_ab_interaction_relations_attr_PBSSI_Cu_2_Soldermask_2_Interface - Cu_2_Soldermask_2_Interface ASSOC (-> PESSI_Cu_2_Soldermask_2_Intert!

[
|
|
|
|
i ,Ef constituent_aa_ab_interaction_relations_attr_PBSSI_Dielectric_Cu_2_Interface - Dielectric_Cu_2_Interface ASSOC (-> PBSSI_Dielectric_Cu_2_Interface - Dielectric
|
|
|
|
|
|
|
|

JEf constituent_aa_ab_interaction_relations_attr_PBSSI_Soldermask_1_Cu_i_Interface - Soldermask_1_Cu_i_Interface ASSOC (-» PESSI_Soldermask_1_Cu_1_Interi|

,Ef constituent_aa_abs_rels_attr_Planar_Shell_AB - Design_Cu_Stratum_1 ASSOC (-3 Planar_Shell_AB - Design_Cu_Stratum_1 ASS0C) : constituent_aa_abs_rels 1
,Ef constituent_aa_abs_rels_atir_Planar_Shell_AB - Design_Cu_Stratumn_2 ASSOC (-> Planar_Shell_AB - Design_Cu_Stratum_2 ASS0C) : constituent_aa_abs_rels |
,E; constituent_aa_abs_rels_attr_Planar_Shell_AB - Diglectric_FR4_Stratum ASSOC (-> Planar_Shell_AB - Dielectric_FR4_Stratum ASS0C) : constituent_aa_abs_rels |
,Ef constituent_aa_abs_rels_attr_Planar_Shell_AB - Soldermask_Stratum_1 ASSOC (-» Planar_Shell_AB - Soldermask_Stratum_1 ASSQC) : constituent_sa_abs_rels :
|-/ constituent_sa_sbs rels_att_Planar Shell AB - Soldermask Stratum, 2 ASSOC (-> Planar _Shel_AB - Soldermask_Stratum_2 ASSOC) : constituent, 33 _abs,rels |
,E]rid_ath' (-= PWB_552L_Multi_Shell_AB_System ASSOC) : id
[E] PBSSI_Cu_1_Dielectric_Interface - Cu_1_Dielectric_Interface ASSOC : AA_AB_Interaction_Relationship
[E] PBSSI_Cu_2_Soldermask_2_Interface - Cu_2_Soldermask_2_Interface ASSOC : AA_AB_Interaction_Relationship " Relationships between
% 2:::;_ziTLectriciIu_Ec_InterIfatce; Diele;trli;_Cu_El:Imzrface;\?S?C : i:;;gijn;:ra;:n;_tnela:nns};pl - ~ analyzable stratum
E oldermask_1 Cu_1_Interface - Soldermask_1 Cu_1_Interface : nteraction_Relationship . .
[E] Planar_Shell_AB - Design_Cu_Stratum_1 ASSOC : AA_ABS_Relationship mtera.chons E,md planar
[E] Planar_Shell_AB - Design_Cu_Stratum_2 ASSOC : AA_ABS_Relationship shell interactions
[E] Planar_Shell_AB - Dielectric_FR4_Stratum ASSOC : AA_ABS_Relationship
[E] Planar_Shell_AB - Soldermask_Stratum_1 ASSOC : AA_ABS_Relationship
[E] Planar_Shell_AB - Soldermask_Stratum_2 ASSOC : AA_ABS_Relationship

% Relationships between analyzable stratums
and planar shell analysis bodies

BB B EE e EE

Figure 9.15: Relationship between analyzable PWB and multi-shell analysis body system

A relationship between an analyzable artifact and an analysis body consists of
relationships between their shapes, material behaviors, and analysis features. Hence, for
every relationship between an analyzable stratum and a planar shell analysis body, several
sub-relationships are also automatically created at the end of Stage 1 composition. Figure

9.16 illustrates these sub-relationships for an analyzable stratum and an analysis body. The
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entity Planar_Shell_AB — Design_Cu_Stratum_1_ASSOC represents the relationship between
an analyzable stratum (specifically Design_Cu_Stratum_1) and the corresponding planar
shell analysis body. The attribute values of this relationship refer to the relationships
between (i) their primary and secondary features represented by entities of type
AF_ANF_Relationship, ~ (ii)  their  shapes represented by entity of type
Geom_Geom_Relationship, and (iii) their material behaviors represented by entity of type

Material_Behavior_Material_Behavior_Relationship.

Given - Part of FTMB Analyzable Design Model Structure

B Design_Cu_Stratum_1 : AStratum |

Jlﬂi' cu_stratum_1_form (-> Design_Cu_Stratum_Form) : form

,B!’ cu_stratum_1_function (-> Electric_Conductive) : function

JE cu_stratum_1_id (-> culid) : id

,Bi' cu_stratum_1_primary_surf (-> Design_Cu_Stratum_1_Top_Surf) : primary_surface

JE cu_stratum_1_secondary_surf (-> Design_Cu_Stratum_1_Baot_Surf) : secondary_surface
[E] Design_Cu_Stratum_1_Bot_Surf : AStratum_Surface

[E] Design_Cu_Stratum_1_Top_Surf : AStratum_Surface

Automatically created using Behavior Model Formulation Method
SBE [Pianar_shell_AB - Design_Cu_Stratum_1 ASSOC : AA_ABS_Relationship
JEl assocated_aa_attr (-> Design_Cu_Stratum_1) : associated_aa

,Rf assodated_abs_attr (-> Planar_Shell_AB_Design_Cu_Stratum_1) : assocated_abs

_ Relationships between an analyzable stratum and
a planar shell analysis body

_=d CONSUIUENL al_ani_reis atlld UEsan LU _-Ualum_1 10D _oUrt - Frimary oUrface Flanar_oNel_AD_Uesin LU _oUalum_L AosL -~ UESOn LU _>Urall

JEi id_attr (-> PSAB - Design_Cu_Stratum_1 ASSOC) : id

T H material_behavior_idealization_attr g-) MB_MB Rel LEITI Cu LEITI PSAB Planar Shell AB Design_Cu,_Stratum, 1) : material_behavior_idealization !
|

\JB shape_idealization_attr (-> GGR - Design_Cu_Stratum_Shape - PSS_Planar_Shell_AB_Design_Cu_Stratum_1) : shape_idealization J

!jﬁl‘&?&ﬂ?n?}?n?r?_@?ﬁc?}éﬂr; (-> Primary_Surface_Planar_Shel_AB_Design_Cu_Stratum_1) : constituent_primary_surface_feature

: JE constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1) : constituent_secondary_surface_feature
a8t (-5 PSAB_DeSgn 0 SEalim (] id ~ -~~~ T~ T T T T oo TT oo oo oooooooooooooo oo
L shape_attr (->PSS Planar_Shell AR Design Cu_Stratum_1): shape|

@ [E] LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_1 : Linear_Elastic_Isotropic_Temperature_Independent_MB
[E] PSS_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Shape

[E] Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Primary_Surface

@ [E] Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Secondary_Surface

Figure 9.16: Relationship between an analyzable stratum and analysis body created in Stage 1 composition

Figure 9.17 illustrates the planar shell analysis bodies created at end of Stage 1
composition. Each planar shell analysis body is an instance of Planar Shell Analysis Body
ABB. The attributes of each planar shell analysis body is populated with other ABB
instances. The shape attribute is populated by Planar Shape ABB instance, the material
behavior attribute is populated by Linear Elastic Isotropic Temperature Independent

Material Behavior ABB instance (highlighted in the figure), and the primary and secondary

272



analysis feature attributes are populated by Planar Surface Analysis Feature ABB instances
(Planar Shell Primary Surface is a special type of Planar Surface Analysis Feature ABB).
Note that the figure shows the planar shell analysis body entities and not their occurrence

in the multi-shell system.

R | Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_a5 [l Planar shell analysis body
| B associated_mb_property_attr (-> LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_1) : assocated_mb_property |
| B - omis I eiary_SUrface FeSture T- 5 PPy Srface_Plafar-Shell AB DESE CUSHAIA_T) Tesn4BtiAt_Frimary_surface_feature
JE constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shel_AB_Design_Cu_Stratum_1) : constituent_secondary_surface_feature
JE id_atir (-> PSAB_Design_Cu_Stratum_1) : id
JE shape_attr (-> PSS_Planar_Shel_AB_Design_Cu_Stratum_1) : shape
[ |E] LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_1 ; Linear_Elastic_lsotrapic_Temperature_Independent_MB |
b E Fan Flanar onel AD DeEsior or & LM H ANA 2
- [E] Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shel_Primary_Surface
L W [E] secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Secondary_Surface
SWE | Flanar_shell_AB_Design_Cu_Stratum_2 : Planar_Shell_AB
Il i) associated_mb_property_attr (-> LETTI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_2) : assocated_mb_property |
“Conshituent_primary_surface Teature {-> Primary_Surface_Planar_Shel B Design Cu_Sbatum_2) § consbtuent_primary_surface_feature
JE constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shel_AB_Design_Cu_Stratum_2) : constituent_secondary_surface_feature
JE id_attr (-> PSAB_Design_Cu_Stratum_3) : id
atir (-> PSS _Planar AB ign_Cu_Stratum 2 :
® [E] LETTI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_2 : Linear_Elastic_[sotropic_Temperature_Independent_MB |
# - [E] P55 _Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_Shape
] [E] Primary_Surface_Planar_Shel_AB_Design_Cu_Stratum_2 : Planar_Shel_Primary_Surface
& [E] Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_Secondary_Surface
=] Planar
E{ B associated_mb_property_attr (-» LEITI_PSAB_Planar_Shell_AE _Dielectric_FR4_Stratum) : assodiated_mb_propertyl
JE constituent_primary_surface_feature (-> Primary_Surface_Planar_Shell_AB_Dielectric_FR4_Stratum) : constituent_primary_surface_feature
JE constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shel_AB_Dielectric_FR4_Stratum) : constituent_secondary_surface_feature
JE id_sttr (-> PSAB_Dielectric_FR4_Stratum) : id
- .- _ L_AE._ D _FRd Strabiem) - shape
& [E] LEITI_PSAB_Planar_Shel_AB_Dielectric_FR4_Stratum : Linear_Elastic_Isotropic_Temperature_Independent MB |
. [E] p55_Planar_Shell_AB_Dislectric_FR4_Stratur : Planar_Shel_Shape
& [E] Primary_Surface_Planar_Shel_AB_Dielectric_FR4_Stratum : Planar_Shell_Primary_Surface
® [E] secondary_Surface_Planar_Shell_AB_Dielectric_FR4_Stratum : Planar_Shell_Secondary_Surface .
B=REFianar shell B Soldermask_Stratum_1 : Planar Shell AB [l Planar shell analysis body

PERET SHEl ShEne

B Tomsttuent_primary_surface_fedture [ Primary_Surface_Planar_Shel A8 Soldermask_SEatum_T) Tconsituent primary_surface_feature
JB constituent_secondary_surface _feature (-> Secondary_Surface_Planar_Shel_AB _Soldermask_Stratum_1) : constituent_secondary_surface _feature
JE id_attr (-> PSAB_Soldermask_Stratum_1) : id
JE shape_attr (-> PSS_Planar_Shel_AB_Soldermask_Stratum_1) : shape
. [® [E] LETTI_PSAB_Planar_Shel_AB_Soldermask_Stratum_1 : Linear_Flastic_lsotropic_Temperature_Independent_M8 |
] _Shell_AB_Soldermask_stratum_1 ; Flanar_shel_shape

| E [E] Primary_Surface_Planar_Shel _AB_Soldermask_Stratum_1 : Planar_Shell_Primary_Surface

& [E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_1 : Planar_Shell_Secondary_Surfacs )

= O EN ] «———————— Planar shell analysis body
Il El associated_mb_property_attr (-> LEITI_PSAB_Planar_Shell_AB_Soldermask_Stratum_2) : assodated_mb_property |
JE constinient_primary_surface_feature (- Primary_Surface_Planar_Shell_AB_soldermask_Stratum_2) : constituent_primary_surface_feature
,Eﬂ constituent_sscondary_surface_feature (-> Sscondary_Surface Planar_Shel AE Soldermask _Stratum_2) : constituent_sscondary _surface_feature
JE id_sttr (-> PSAB_Soldermask _Stratum_2) : id

- Stratm J) ¢ shape
& (€] LEITI_PSAB_Planar_Shell_AB_Soldermask_Stratum_2 : Linear_Elastic_Isotropic_Temperature_Independent_ME |
& [E] PSS_Planar_Shel_AB_Soldsrmask_Stratum_2 : Planar_Shel_Shape
@ [E] Primary_Surface_Planar_Shel_AB_Soldermask_Stratum_2 : Planar_Shell_Primary_Surface
- [E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 : Planar_Shell_Secondary_Surface

Figure 9.17:Planar shell analysis bodies created in Stage 1 composition
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9.2.1.2 Simulation Template ¢': Simulation template for 9-stratum PWB design model
structure and BMFS!
In this section, the simulation template automatically created for the same Behavior
Model Formulation Specifications (BMFS?') as in the previous section but for a 9-stratum
analyzable PWB design is presented.

Y-stratum

/ analyzable PWB Key |
- o Eer s vk Rofrorco 00

J&' pwb_954L_form (-> PWB_3S4._Form) : form Cbjects
JE pwb_954 id (-> pwb9s4_id) : id

pwb_ 954 stratum_interfaces_1 (-> Soldermask_1_Cu_1_Interface) : stratum_interfaces

,EI' pwb_954L _stratum_interfaces_2 (-> Cu_1_Dielectric_1_Interface) : stratum_interfaces :
JE pwb_954L_stratum_interfaces_3 (-> Dielectric_1_Cu_2_Interface) : stratum_interfaces :

i B pwb_954L_stratum_interfaces_4 (-> Cu_2_Core_Dielectric_Interface) : stratum_interfaces 8 sh'atum:
,ZEI" pwb_954L_stratum_interfaces_5 (-> Core_Dielectric_Cu_3_Interface) : stratum_interfaces  interfacesi
JE& pwb_954_stratum_interfaces_6 (-> Cu_3_Dielectric_2_Interface) : stratum_interfaces :
JE pwb_954L_stratum_interfaces_7 (-> Dielectric_2_Cu_4_Interface) : stratum_interfaces :
|

A

(-
:
|
|
I
|
|
|
|
:

1B pwb_954L_stratum_interfaces_8 (-> Cu_4_Soldermask_2_Interface) : stratum_interfaces
|
1
I
1
1
1
1
1
1
1
1
1
1
I
1

JE pwb_954L_stratums_1 (-> Soldermask_Stratum_1) : stratums :
JE pwb_954L_stratums_2 (-> Design_Cu_Stratum_1) : stratums I
i JE pwb_954L_stratums_3 (-> Dielectric_FR4_Stratum_1) : stratums :
JEI' pwb_954L_stratums_4 (-> Design_Cu_Stratum_2) : stratums 9 analyzable 1
JE pwb_954._stratums_5 (-> Core_Dielectric_FR4_Stratum) : stratums  Stratums :
i JE pwb_954L_stratums_6 (-> Design_Cu_Stratum_3) : stratums :
,EI* pwb_954L_stratums_7 (- Dielectric_FR4_Stratum_2) : stratums :
JE pwb_954L_stratums_8 (-> Design_Cu_Stratum_4) : stratums |
JE pwb_954L_stratums_9 (-> Soldermask_Stratum_2) : stratums :
@ [E] Core_Dielectric_Cu_3_Interface : Adjacent_Stratum_Surface_Interaction |
- [E] Core_Dielectric_FR4_Stratum : AStratum
] E Cu_1_Dielectric_1_Interface : Adjacent_Stratum_Surface_Interaction
#[E] Cu_2_Core_Dielectric_Interface : Adjacent_Stratum_Surface_Interaction
@ E Cu_3_Dielectric_2_Interface : Adjacent_Stratum_Surface_Interaction
+ [E] 4 Soldermask nterface : Adiacen ratum Surface Interact
#-[E] Design_Cu_Stratum_1 : AStratum
- [E] Design_Cu_Stratum_2 : AStratum
- [E] Design_Cu_Stratum_3 : AStratum
@ [E] Design_Cu_Stratum_4 : AStratum
[ |E] Dielectric_1_Cu_2_Interface : Adjacent_stratum_surface_Interacton
@ E Dielectric_2_Cu_4_Interface : Adjacent_Stratum_Surface_Interaction
[+ |E] Dielectric_FR4_Stratum_1 : AStratum
- [E] Dielectric_FR4_Stratum_2 : AStratum
- [E] PWB_954._Form : APwb_Form
Soldermask_1_Cu_1I_Interface : Adjacent_Stratum_Surface_Interacton
- [E] Soldermask_Stratum_1 : AStratum
- [E] Soldermask_Stratum_2 : AStratum

Figure 9.18: PWB_9S4L has 9 analyzable stratums and 8 stratum interfaces
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Figure 9.18 illustrates PWB_9S4L—a 9-stratum, 4-layer analyzable PWB design model
structure—in the VIATRA model space. Like PWB_5S2L presented in the previous
section, PWB_9S4L is also a Level 4 model in the design model stack, and is an instance of
the Analyzable_Electronics_Design_Meta-Model (section 6.2).

Only those aspects of the simulation template are presented here that are different
for the 9-stratum analyzable PWB design. Simulation template entities and relationships
created in composition Stages 1, 3 and 4 are the same for Simulation Template s' and
Simulation Template o*. However, results of composition Stage 2 are different. This is so
because the changes in assembly system topology due to changes in the number of
analyzable artifacts and their interactions (as in this case) affects the number of analysis
bodies and their interactions in the analysis body system—composed in Stage 2

composition.

= [E] Multi_Shel_AB_System : Analysis_Body_System_aB8 <«——  Analysis body system

T /& consBtuent_ab_ab_intéracbons_att_PBSSI_Core_Didlectnic_Cu_3_Interface [-> PESSI_Core_Dielectiic_Cu_3_Interface) T consbtuent_ab_ab_interactons |

,'B.i‘ constituent_ab_ab_interactions_attr_PBSSI_Cu_1_Dielectric_1_Interface (-> PBSSI_Cu_1_Dielectric_1_Interface) : constituent_ab_ab_interactions

Bl constituent_ab_ab_interactions_attr_PBSSI_Cu_3_Dielectric_2_Interface (-> PBSSI_Cu_3_Dielectric_2_Interface) : constituent_ab_ab_interactions

,'E.i' constituent_ab_ab_interactions_attr_PBSSI_Dielectric_1_Cu_2_Interface (-> PBSSI_Dielectric_1_Cu_2_Interface) : constituent_ab_ab_interactions

,'E.i' constituent_ab_ab_interactions_attr_PBSSI_Dielectric_2_Cu_4_Interface (-> PBSSI_Dielectric_2_Cu_4_Interface) : constituent_ab_ab_interactions

,'B.i‘ constituent_ab_ab_interactions_attr_PBSSI_Cu_2_Core_Dielectric_Interface (-> PBSSI_Cu_2_Core_Dielectric_Interface) : constituent_ab_ab_interactions

,'E.i' constituent_ab_ab_interactions_attr_PBSSI_Cu_4_Soldermask_2_Interface (->» PBSSI_Cu_4_Soldermask_2_Interface) : constituent_ab_ab_interactions

JEl constituent_ab_ab_interactions_attr_PBSSI_Soldermask_1_Cu_1_Interface (-> PBSSI_Soldermask_1_Cu_1 Interface) : constituent_ab_ab_interactions

,'E.i' constituent_abs_attr_Planar_Shell_AB_Core_Dielectric_FR4_Stratum (-> Planar_Shell_AB_Core_Dielectric_FR4_Stratum) : constituent_abs
JEI' constituent_abs_attr_Planar_Shell_AB_Design_Cu_Stratum_1 (-> Planar_Shell_AB_Design_Cu_Stratum_1) : constituent_abs

,'E.i' constituent_abs_attr_Planar_Shell_AB_Design_Cu_Stratum_2 (-> Planar_Shell_AB_Design_Cu_Stratum_2) : constituent_abs

,'E.i' constituent_abs_attr_Planar_Shell_AB_Design_Cu_Stratum_3 (-> Planar_Shell_AB_Design_Cu_Stratum_3) : constituent_abs

,'E.i' constituent_abs_attr_Planar_Shell_AB_Design_Cu_Stratum_4 (-> Planar_Shell_AB_Design_Cu_Stratum_4) : constituent_abs

,Ei' constituent_abs_attr_Planar_Shell_AB_Dielectric_FR4_Stratum_1 (-> Planar_Shell_AB_Dielectric_FR4_Stratum_1) : constituent_abs

,'ki' constituent_abs_attr_Planar_Shell_AB_Dielectric_FR4_Stratum_2 (-> Planar_Shell_AB_Dielectric_FR4_Stratum_2) : constituent_abs

JEI' constituent_abs_attr_Planar_Shell_AB_Soldermask_Stratum_1 (-> Planar_Shel_AB_Soldermask_Stratum_1) : constituent_abs

,'Ri' constituent_abs_attr_Planar_Shell_AB_Soldermask_Stratum_2 (-> Planar_Shel _AB_Soldermask_Stratum_2) : constituent_abs

(@ [E] PBSSI_Core_Dielectric_Cu_3_Interface : Perfectly_Bonded_Shell_Shell_Interaction
- [E] PBSSI_Cu_1_Dielectric_1_Interface : Perfectly_Bonded_Shell_Shell_Interaction
#-[E] PBSSI_Cu_2_Core_Dielectric_Interface : Perfectly_Bonded_Shell_Shell_Interaction 8 shell-shell perfectly bonded
- [E] PBSSI_Cu_3 Dielectric_2_Interface : Perfectly_Bonded_Shell_Shell_Interaction “ (tie) interactions

- [E] PBSSI_Cu_4_Soldermask_2_Interface : Perfectly_Bonded_Shell_Shell_Interaction
- [E] PeSSI_Dielectric_1_Cu_2_Interface : Perfectly_Bonded_Shell_Shell_Interaction

- [E] PBSSI_Dielectric_2_Cu_4_Interface : Perfectly_Bonded_Shell_Shell_Interaction
| & [E] PBSSI_Soldermask_1_Cu_1 _Interface : Perfectly Bonded Shell_Shell_Interaction
- [E] Planar_Shell_AB_Core_Dielectric_FR4_Stratum : Planar_Shell_AB

#[E] Planar_Shel_AB_Design_Cu_Stratum_1 : Planar_Shell_AB

@ [E] Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_AB <— 9 planar shell analysis bodies
#-[E] Planar_Shell_AB_Design_Cu_Stratum_3 : Planar_Shell_AB
- [E] Planar_Shell_AB_Design_Cu_Stratum_4 : Planar_Shell_AB
#-[E] Planar_Shell_AB_Dielectric_FR4_Stratum_1 : Planar_Shell_AS Key

|
(#)-[E] Planar_Shell_AB_Dielectric_FR4_Stratum_2 : Planar_Shell_A3 | Attributes values (References to objects)

#-[E] Planar_Shell_AB_Soldermask_Stratum_1 : Planar_Shell_AB

| Objects

- [E] Planar_shell_AB_Soldermask_Stratum_2 : Planar_Shell_AB

Figure 9.19: Multi-shell analysis body system created in composition Stage 2 for Simulation Templates®
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_,ElrconsI:ituent_aa_abs_rels_attr_PIanar_Shell_AB - Core_Dielectric_FR4_Stratum ASSOC (-> Planar_Shell_AB - Core_Dielectric_FR4_Stratum ASSOC) : constituent_aa_abs_rels |

[# [E] Planar_Shell_AE - Core_Dielectric_FR4_Stratum ASSOC : AA_ABS_Relationship

Figure 9.18 illustrates the analysis body system automatically created in Stage 2 of
the composition process for Simulation Template ¢'. The figure shows 9 planar shell
analysis bodies and 8 shell-shell perfectly bonded (tie) interactions created as components
of multi-shell analysis body system at the end of composition Stage 2. The 9 analysis bodies
correspond to the 9 analyzable stratums, and the 8 tie interactions correspond to the 8

stratum interfaces in PWB_9S4L.

Relationship between analyzable PWB
and multi-shell analysis body system

PWB_954L - Multi_Shell_AB_System ASSOC : AA_ABS_Relationship
Bl assodated_aa_attr (-> PWB_954L) : assodated_aa
B assodated_abs_attr (-> Multi_Shell_AB_System) : associated_abs

" constituent_aa_ab_interaction_relations_attr_PBSSI_Core_Dielectric_Cu_3_Interface - Core_Dielectric_Cu_3_Interface ASSOC (-> PBSSI_Core_Dielectric_Cu_3_Interface - Core_Dielectric_Cu_3_Interfa

JE constituent_aa_ab_interaction_relations_attr_PESSI_Cu_1_Dislectric_1_Interface - Cu_1_Dielectric_1_Interface ASSOC (-> PBSSI_Cu_1_Dielectric_1_Interface - Cu_1_Dielectric_1_Interface ASSOC} Y-
JE constituent_aa_ab_interaction_relations_attr_PBSSI_Cu_2_Core_Dielectric_Interface - Cu_2_Core_Dielectric_Interface ASS0C (-> PBSSI_Cu_2_Core_Dielectric_Interface - Cu_2_Core_Dielectric_Interfa
,Ei' constituent_aa_ab_interaction_relations_attr_PBSSI_Cu_3_Dielectric_2_Interface - Cu_3_Dielectric_2_Interface ASSOC (-> PBSSI_Cu_3_Dielectric_2_Interface - Cu_3_Dielectric_2_Interface ASSOC* H«
Bl constituent_aa_ab_interaction_relations_attr_PBSSI_Cu_4_Soldermask_2_Interface - Cu_4_Soldermask_2_Interface ASSOC (-> PBSSI_Cu_4_Soldermask_2_Interface - Cu_4_Soldermask_2_Interface AS
,Bf constituent_aa_ab_interaction_relations_attr_PBSSI_Dielectric_1_Cu_2_Interface - Dielectric_1_Cu_2_Interface ASSOC (-> PBSSI_Dielectric_1_Cu_2_Interface - Dielectric_1_Cu_2_Interface ASSOCi <

JE constituent_aa_ab_interaction_relations_attr_PESSI_Dielectric_2_Cu_4_Interface - Dielactric_2_Cu_4_Interface ASSOC (-> PBSSI_Dielectric_2_Cu_4 _Interface - Dielectric_2_Cu_4_Interface ASSOC) : ¢
,Ei' constituent_aa_ab_interaction_relations_attr_PBSSI_Soldermask_1_Cu_1_Interface - Soldermask_1_Cu_1_Interface ASSOC (-> PBSSI_Soldermask_1_Cu_1_Interface -So\dennask_l_Cu_l_lrmerfaalp Al

JEl constituent_aa_abs_rels_attr_Planar_Shell_AB - Design_Cu_Stratum_1 ASSOC (- Planar_Shell_AB - Design_Cu_Stratum_1 ASSOC) : constituent_aa_abs_reis !

,Bi' constituent_aa_abs_rels_attr_Planar_Shel _AB - Design_Cu_Stratum_2 ASSOC (-> Planar_Shell_AB - Design_Cu_Stratum_2 ASSOC) : constituent_sa_abs_rels

JE constituent_aa_abs_rels_attr_Planar_Shel_AB - Design_Cu_Stratum_3 ASSOC (-> Planar_Shell_AE - Design_Cu_Stratum_3 ASSOC) : constituent_sa_abs_rels

) constituent_aa_abs_rels_attr_Planar_Shel_AB - Design_Cu_Stratum_4 ASSOC (-> Planar_Shell_AB - Design_Cu_Stratum_4 ASSOC) : constituent_aa_abs_rels

,Ei' constituent_aa_abs_rels_attr_Planar_Shel_AB - Dielectric_FR4_Stratum_1 ASSOC (-> Planar_Shell_AB - Dielectric_FR4_Stratum_1 ASS0OC) : constituent_aa_abs_rels
JEl constituent_aa_abs_rels_attr_Planar_Shel_AB - Dielectric_FR4_Stratum_2 ASSOC (-> Planar_Shell_AB - Dielectric_FR4_Stratum_2 ASSOC) : constituent_aa_abs_rels
,Bf constituent_aa_abs_rels_attr_Planar_Shel _AB - Soldermask_Stratum_1 ASSOC (-> Planar _Shell_AB - Soldermask_Stratum_1 ASSOC) : constituent_aa_abs_rels

_,Ef constituent_aa_abs_rels_attr_Planar_Shel_AE - Soldermask_Stratum_2 ASSOC (-> Planar_Shell_ABE - Soldermask_Stratum_2 ASSOC) : constituent_aa_abs_rels

[E] PBSSI_Core_Dielectric_Cu_3_Interface - Core_Dielectric_Cu_3_Interface ASSOC : AA_AB_Interaction_Relationship)

[E] PBSSI_Cu_1_Dielectric_1_Interface - Cu_1_Dielectric_1_Interface ASSOC : AA_AB_Interaction_Relationship
PBSSI_Cu_2_Core_Dielectric_Interface - Cu_2_Core_Dielectric_Interface ASSOC : AA_AB_Interaction_Relationship| w,
PBSSI_Cu_3_Dielectric_2_Interface - Cu_3_Dielectric_2_Interface ASSOC : AA_AB_Interaction_Relationship

1]

= . . . .
[E] PBSSI_Cu_4_Soldermask_2_Interface - Cu_4_Soldermask_2_Interface ASSOC : AA_AB_Interaction_Relationship Relationships be.tween a}nalyzable stratum interactions
B and planar shell interactions

8

PBSSI_Dielectric_1_Cu_2_Interface - Dielectric_1_Cu_2_Interface ASSOC : AA_AB_Interaction_Relationship

[E] Planar_Shell_AB - Design_Cu_Stratum_1 ASSOC : AA_ABS_Relationship
[E] Planar_Shell_AS - Design_Cu_Stratum_2 ASSOC : AA_ABS_Relationship *
[E] Planar_shel_AB - Design_Cu_Stratum_3 ASSOC : AA_ABS_Relationship ~
[E] Planar_Shel_AB - Design_Cu_Stratum_4 ASSOC : AA_ABS_Relationship Relationships between analyzable stratums
[E] Planar_Shel_AB - Dielectric_FR4_Stratum_1 ASSOC : AA_ABS_Relationship and planar shell analysis bodies

[E] Planar_Shell_AB - Dielectric_FR4_Stratum_2 ASSOC : AA_ABS_Relationship
[E] Planar_Shell_AB - Soldermask_Stratum_1 ASSOC : AA_ABS_Relationship
[E] Planar_shel_aB - Soldermask_Stratum_2 ASSOC : AA_ABS_Relationship

Figure 9.20: Relationship between analyzable PWB design and multi-shell analysis body system created in
composition Stage 2

Figure 9.20 illustrates the relationship between PWB_9S4L and the multi-shell

analysis body system created at the end of Stage 2 composition process. Note that in this

case nine analyzable stratum—planar shell analysis body relationships have been created

(one for each pair), and eight relationships have been created between analyzable stratum

interfaces and analysis body tie interactions (one for each pair). Hence for the same BMFS,
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the Behavior Model Formulation Method can be used to automatically compose simulation

templates for design alternatives with non-equivalent assembly system topologies.

9.2.2 Behavior Model Formulation Specifications 2 (BMFS?)
In this section, simulation templates automatically generated for the second set of

Behavior Model Formulation Specifications (BMFS?) are presented. In BMFS?, the material
behavior idealization decisions are changed as compared to BMFS'. Instead of idealizing
the material behavior of all analyzable stratums as linear, elastic, isotropic, and temperature
independent (as in BMFS?'), the following conditions is used to select the material behavior
ABB to be associated with a planar shell analysis body associated with an analyzable
stratum:
If (electrical function of an analyzable stratum is CONDUCTIVE or SOLDERMASK)

Select linear elastic isotropic temperature-independent material behavior ABB
Else if (electrical function is DIELECTRIC)

Select linear elastic orthotropic temperature independent material behavior ABB
These idealization decisions are reflected in both the conceptual and computable Behavior
Model Formulation Specifications. Note that these idealization decisions are at the level of
individual analysis bodies since material behavior is an attribute of an analysis body. Thus,
the new idealizations in BMFS? affect results of the Stage 1 composition only. Hence, only
results of the Stage 1 composition are presented below. Figure 9.21 and Figure 9.22 below
illustrate the planar shell analysis bodies created for PWB_5S4L and PWB_9S4L with the
new idealization decisions embodied in BMFS?. The figures show that the planar shell
analysis bodies corresponding to conductive and soldermask stratums are associated with
instances of Linear Elastic Isotropic Temperature-independent Material Behavior ABB, and
those associated with dielectric stratums are associated with instances of Linear Elastic
Orthotropic Temperature-independent Material Behavior ABB during composition Stage 1.
The figures clearly illustrate that with changes in idealization decisions, simulation
templates can be easily and automatically generated for design alternatives with different

assembly system topologies.
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9.2.2.1 Simulation Template s°: Simulation template for 5-stratum PWB design model
structure and BMFS?

EREFlanar_Shell_AB_Design_Cu_S
m &' assodated_mb_property_attr (-> LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_1) : assodated_mb_property |
T canstitient_primary_suiface_featire (-5 Primary_surface, Planar_Shel_AB_Design_Cu_Sfratum_ 1) : consttuant_prmary Sucface _feature
,EB' corstituent_secondary _surface_feature (-> Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1) : constituent_ face_feature
JH id_attr (> PSAB_Design_Cu_Stratum_1) : id
B ,g E}'::s {->Pss _::;smel EJ:::: Cu_Stratum_1) _;:De - . linear elastic isotropic
Planar Design_ tratum_1 : Linear tic_Isotropic_Temperature_[ndependen :
e s Pl e Teo oo TP e e tempgrature-m@ependent
[E] Primary_Surface_Planar_Shel_AB_Design_Cu_Stratum_1 : Planar_Shell_Primary_Surface material behavior
- [E] Secondary_Surface_Planar_Shell_AE_Design_Cu_Stratum_1 : Planar_Shell_Secondary_Surface
= [E] Planar_Shel_AB_Design_Cu_Stratum_2 : Planar_shel_as +———  Corresponds to conductive s:ryu/

Fmrassoﬁamd_nb _praperty_attr (-> LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_2) : assocated_mb_property |
TH toneBtieaT_primary_suiTace Teahie (-5 Frimary_surface Flanar _Shel AE Design_Cu SFafim_J): Tonsfiuent_primary_surface_feature
& constituent_secondary _surface_feature (-»> Secondary_Surface_Planar_Shel_AB_Design_Cu_Stratum_2) : constituent_secondary_surface_feature
JE id_attr (-> PSAB_Design_Cu_Stratum_2) : id
JH' shape_attr (-> PSS_Planar_Shell_AB_Design_Cu_Stratum_2) : shape
Ef [E] LEITI_PSAE_Planar_shel_AB_Design_Cu_Stratum_2 : Linear_Elastic_Isotropic_Temperature_Independent_MB |
& 1E] F35_Flanar_Shell_AE_Design_Cu_Stratum_2 : Flanar _Shell_Shape
[®-[E] Primary_Swurface_Planar_Shel_AB_Design_Cu_Stratum_2 : Planar_Shell_Primary_Surface
® [E] Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_Secondary_Surface

| B oRSTHRAT iy SUTTate Temtre T 5 PiiE - S0rfacE. Planar Sl AB_Didkibic FRA-STATM) TransTient b face_feature
JE constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Dielectric_FR4_Stratum) : constituent_sec y_surface_feature
ﬁ id_attr (-t: l;swpgsudecw_:dﬁ:;h_ﬂ} tid s seaten) linear elastic orthotropic
- dlape_a o _F‘imu'_ _ [:.*ctnc_ al H djm R
[E] LEOTI_P5AB_Planar_Shel_AB_Dielectric_FR4_Stratum : Linear_Elastic_Orthotropic_Temperature_Independent_M8 lempgrature m@ependent
- material behavior

_Siratum
® [E] Primary_Surface_Planar_Shel_AB Dielectric_FR4_Stratum : Planar_Shell_Primary_Surface
] secondary_Surface_Planar_shell_AB_Dielectric_FR4_Stratum : Planar_Shel_Secondary_Surface

T esRsBriRAT primary_surface Feahire T-5 Primary_SUrface_Planar_Shel 4B Teldermask_cFatian,_1) {eonsBhignt prmary_ _feature
,Elﬂ' constituent_secondary _surface_feature (> Secondary_Surface_Planar_Shel_AB_Soldermask_Stratum_1) : constituent_: surface_feature
JH id_atr (> PSAB_Soldermask_Stratum_1) : id
g ,; Ef&f& (ﬁﬁwjﬂﬁ sblci:m*_snm 1) ﬂ’:‘x_; s ™ linear elastic isotropic
X Soldermask_Stratum_1 : Linear tic_[sotropic_Temperature_Independen .
7 [E] PS5_Planar_Shel_AB_Scidermask_Statum_1 : Planar_Shel_Shape tempgrature-m{:iependenl
[E] Primary_Surface _Planar_Shel_AB_Soidermask _Stratu_1 : Planar_Shel_Priary_Surface material behavior
% [E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_1 : Planar_Shell_Secondary _Surface )
= () Planas_Shel A6 Soldemask Stratun 2 Planar_Shell 48 % —— Corresponds to conductive stratum

,]ﬂ' associated _mb_property_attr (-> LEITI_PSAB_Planar_Shell_AB_Ssoldermask _Stratum_2) : associated mb_property |

Tl consBtuent_primary_surface feature (-> Primary_Surface_Planar_Shel_AB_Soldermask_Statum_J) : consttuent_primary_surface_feature
,ilf constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shel_AB_Soldermask_Stratum_2) : constituent_secondary_surface_feature
JE id_attr (-> PSAB_Soldermask_Stratum_2) : id
attr (-> PSS Planar Shell AB Soldermask Stratum 2) : shape
[E] LEITI_PSAB_Planar_Shel _AB_Soldermask_Stratum_2 : Linear_Elastic_Isotropic_Temperature_Independent_MS |
& [E] PSS_Planar_Shell_AB_Soldermask_Stratum_2 : Planar_Shel_Shape
(& [E] Primary_Surface_Planar_Shel_AB_Soldermask_Strabtum_2 : Planar_Shel_Primary_Surface
® [E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 : Planar_Shell_Secondary _Surface

Figure 9.21: Planar shell analysis bodies created for BMFS? and PWB_5S4L in composition Stage 1
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9.2.2.2 Simulation Template ¢>; Simulation template for 9-stratum PWB design model
structure and BMFS?

= [E] Planar_Shell_AB_Core_Dielectric_FR4_Stratum : Planar_Shel_AB Correspond to dielectric stratum
|~ B associated_mb_property_attr (-> LEQTI_PSAB_Planar_shel_AB_Core_Dielectric_FR#_Stratum) : assodated_mb_property |
.Tmﬁtjﬁent_ﬁaﬁﬁfaﬁ_ﬁab?e T-> Primary_Surface_Planar_shell_AB_(Core_Dielectnic_FR4_Stratum) : o?nsﬁ.ue?t_p_ﬁm?y_?aﬁoe_&awe
; B constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Core_Dielectric_FR4_Stratum) : constituent_secondary_surface_feature
; JEi' id_attr (-> PSAB_Core_Dielectric_FR4_Stratum) : id
,[Ef shape_attr (<> PS5_Planar _Shell_AB_Core_Dielectric_FR4_Stratum) : shape
- [E] LEOTI_PSAB_Planar_Shell_AB_Core_Dielectric_FR4_Stratum : Linear_Elastic_Orthotropic_Temperature_[ndependent_MB I
anar_shell_AB_Core_Dielectric_FR4_stratum : Planar_shel_Shape
#-[E] Primary_Surface_Planar_Shell_AB_Core_Dielectric_FR4_Stratum : Planar_Shell_Primary_Surface
#-[E] secondary_Surface_Planar_shell_AB_Core_Dielectric_FR4_Stratum : Planar_Shell_Secondary_Surface
= [E] Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_AB  * Correspond to conductive stratum
|7 associated_mb_property_attr (- LEITI_PSAB Planar_Shell_AB _Design_Cu_Stratum_1) : assodated_mb_property 1
; constituent_primary_surface_feature {-> Primary_Surface_Planar_shell_AB_Design_Cu_Stratum_1) : ?onﬁmﬁt_?ﬁm_aryfm'ﬁctfe'a'we
; B constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1) : constituent_secondary_surface_feature
& id_attr (-> PSAB_Design_Cu_Stratum_1) : id
,[Ei' shape_attr (-> PSS_Planar _Shel_AB_Design_Cu_Stratum_1) : shape
[ [E] LETTI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_1 : Linear_Elastic_Isotropic_Temperature_Independent_M8 |
; \E] PS5_Planar _Shell_AB_Design_Cu_Stratum_1 : Planar _Shell_Shape
[ [E] Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Primary_Surface
#-[E] secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Secondary_Surface )
=[] Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shel_AB Correspond to conductive stratum
| & ‘associated_mb_property_attr (> LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_2) : associated_mb_property 1
; i coristtient primary_surface_ feature (~> Primary_surface_Planar_shell_AB_Design_Cu_Stratum,_3) ¢ ﬁsﬁaeﬁfﬁnﬁ_ﬁrgm:&aﬁwe
; Bl constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shel_AB_Design_Cu_Stratum_2) : constituent_secondary_surface_feature
B id_attr (-> PSAB_Design_Cu_Stratum_2) : id
; JEi' shape_attr (-> PSS_Planar_Shel_AB_Design_Cu_Stratum_2) : shape
i | [+ [E] LEITI_PSAE_Planar_Shell_AB_Design_Cu_Stratum_2 : Linear_Elastic_Isotropic_Temperature_Independent_MB |
_ anar _AB_Design_Cu_stratum_2 : Flanar_shel_shape
- [E] primary_Surface_Planar_Shell_aB_Design_Cu_Stratum_2 : Planar_Shell_Primary_Surface
# [E] Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_Secondary_Surface .
&[] Planar_Shel_AB_Design_Cu_Stratum_3 : Planar_Shel_AB Correspond to conductive stratum
|7 assadiated mb_property_sttr (> (ETTI_PSAB_Planar_Shel_AB_Design_Cu_Stratum_3) : assodiated_mb_property 1
; el EonstifEnT_prmary_ sirface_featire [ Brimary. Surfate Planar Sheal_AB_Design_Cu_statam_3) : fonsBtusnt primary surface Teature
; JEf constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_3) : constituent_secondary_surface_feature
- JH id_attr (-> PSAB_Design_Cu_Stratum_3) : id
P JE? shape_atlr (-> PS5_Planar_Shell_AB_Design_Cu_Stratum_3) : shape
| |E] LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_3 : Linear_Elastic_Isotropic_Temperature_Independent_MB |
; anar _AB_Design_iu_Stratum_3 : Planar_shell_Shape
- [E] primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_3 : Planar_Shell_Primary_Surface
@ [E] secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_3 : Planar_Shell_Secondary_Surface
= (E] Planar_shel_AB_Design_Cu_Stratum 4 : Planar Shel o8 «———————_—_—_ _ Correspond to conductive stratum
assodated_mb_property_attr (<> LEITI_PSAB_Planar _Shell_AB_Design_Cu_Stratum_4) : associated_mb_property J
"B constituent_primary_surface_feature (-> Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_d) : constituent_primary_surface_feature
; JEf constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_4) : constituent_secondary_surface_feature
B id_sttr (-> PSAB_Design_Cu_Stratum_4) : id
,[Ef shape_attr (-> PS5_Planar_Shell_AB_Design_Cu_Stratum_4) : shape
|_® [E] LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_4 : Linear_Elastic_Isotropic_Temperature_Independent MB |
#-[E] PS5_Planar_shell_aB_Design_Cu_Stratum_4 : Planar_Shell_Shape
#-[E] primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_4 : Planar_Shell_Primary_Surface
[ [E] Secondary_Surface_Planar_Shel_AB_Design_Cu_Stratum_4 : Planar_Shell_Secondary_Surface
= [E] Planar_Shell_AB_Dielectric_FR4_Stratum_1 : Planar_Shell_AB Correspond to dielectric stratum
| E associated_mb_property_attr (-> LEOTI_PSAB_Planar_shel_AB Dielectric_FR4 Stratum_1) : associated_mb_property 1
; ) EnsTt.Et_Fim?ry].urﬁoefﬁea_we_[-?Pﬁ?ar?ﬁfaﬁ_ﬁ'an?ﬁeﬂ__mﬁde‘cm?_FFﬁItaT.;mTl)TmﬁﬁEen%&?_sﬁ‘aE_ﬁame
; Bl constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Dielectric_FR4_Stratum_1) : constituent_secondary_surface_feature
- id_attr (-> PSAB_Dielectric_FR4_Stratum_1) : id
; ,[m" shape_attr (-> PSS_Planar _Shell_AB_Dielectric_FR4_Stratum_1) : shape
L [E] LEOTI_PSAB_Planar_shell_AB_Dielectric_FR4_Stratum_1 : Linear_Elastic_Orthotropic_Temperature_Independent_ME I
; [E] P55 _Flanar_Shell_AB_Dielectric_FR4_Stratum_1 : Planar_shell_Shape
[ [E] Primary_Surface_Planar_Shell_AB_Dielectric_FR4_Stratum_1 : Planar_Shell_Primary_Surface
(- [E] Secondary_Surface_Planar_Shell_AB_Dielectric_FR4_Stratum_1 : Planar_Shell_Secondary_Surface
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= [E] Planar_Shel_AB_Dielectric_FR4 Stratum_2 : Planar_Shell_AS Correspond to dielectric stratum

&l Constituent_primary_sirface_feature (> Primary_Surface_Planar Shell_AB_Diglectric PRI Strahum_J7) cﬁlsﬁﬁ.leﬁf_p_n'mﬁyﬁjr’ra_cejeature

JH constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Dielectric_FR4_Stratum_2) : constituent_secondary_surface_feature
JE id_attr (> PSAB_Dielectric_FR4_Stratum_2) : id
Bl shape_attr (->PSS_Planar_Shell_AB_Dielectric_FR4_Stratum_2) : shape

# [E] LEOTI_PSAB_Planar_Shel_AB_Dielectric_FR4_Stratum_2 : Linear_Elastic_Orthotropic_Temperature_Independent_MB |

% [E] PSS_Planar_Shell_AB_Dislectric_FR4_Stratum_2 : Planar_Shel_Shape

#[E] Primary_Surface_Planar_Shel_AB_Dielectric_FR4_Stratum_2 : Planar_Shell_Primary_Surface

& [E] Secondary_Surface_Planar_Shel_AB_Dielectric_FR4_Stratum_2 : Planar_Shel_Secondary_Surface

& [E] Planar_Shel_AB_Soldermask_Stratum_1 : Planar_Shell_AB < orrespond to soldermask stratum
I8 assocated_mb_property_atir (-> LEITI_PSAB_Planar_Shell_AB_Soldermask_Stratum_1) : associated_mb_property ]
7E Constituent primary_surface_feature (-> Primary_Surface_Planar_shell_AB_Soidermask_Stratum_1) : consttuent_primary_gurface_feature
,ﬂ constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_1) : constituent_secondary_surface_feature
JH id_attr (-> PSAB_Soldermask_Stratum_1) : id
Ji shape_attr (-> PSS _Planar_Shell_AB_Soldermask_Stratum_1) : shape
| @ [£] LEITI_PSAB_Planar_Shel_AB_Soldermask_Stratum_1 : Linear_Elastic_Isotropic_Temperature_Independent_MB

i [E] PSS_Planar_Shel _AB_Soldermask_Stratum_1 : Planar_Shell_Shape

#[E] Primary_Surface_Planar_Shel_AB_Soldermask_Stratum_1 : Planar_Shell_Primary_Surface

(0] E Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_1 : Planar_Shell_Secondary_Surface

= [E] Planar_shel_AB_Soldermask_Stratum_2 : Planar_Shell_a5 < Correspond to soldermask stratum

J&" assocated_mb_propérty_attr (-> LELTI_PSAS_Planar_Shell_AB_Soldermask_Stratum_2) : associated_mb_property 1
JH consHiLént_primary Surface _feature (-5 Primary_Sirface_ Planar_Shell BB Soldermask Statum_2) T constient_prmary_surface Teafire
& constituent _secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2) : constituent_secondary_surface_feature
JH id_attr (-> PSAB_Soldermask_Stratum_2) : id
Ji shape_attr (-> PSS_Planar_Shell_AB_Sokdermask_Stratum_2) : shape

[P B0 LETTI_PSAB_Planar_Shel_AB_Soldermask_Stratum_2 : Linear_Flastic_Isotropic_Temperature_Independent_MB |

- [E] PSS_Planar_Shel_AB_Soldermask_Stratum_2 : Planar_Shell_Shape

@ [E] Primary_Surface_Planar_Shel_AB_Soldermask_Stratum_2 : Planar_Shell_Primary_Surface

#[E] secondary_Surface_Planar_Shel_AB_Soldermask_Stratum_2 : Planar_Shell_Secondary_Surface

Figure 9.22: Planar shell analysis bodies created for BMFS? and PWB_9S4L in composition Stage 1

9.3 Test Case Family 2 (TCF2): Thermo-mechanical Analysis of
Ball Grid Array (BGA) Chip Packages

A ball grid array (BGA) chip package is a surface mount electronic package that
interconnects with a printed wiring board via balls of solder arranged in a grid on the
bottom surface of the package. In general, an electronic chip package embodies integrated
circuits (ICs). The solder balls on the bottom surface of a BGA? are meant to conduct
electrical signals between the IC and the PWB on which the BGA is mounted. BGAs are
commonly used today in most electronics devices, such has handhelds and computers.
Figure 9.23 (left) shows snapshots of BGAs used for consumer electronics and
microprocessors, and Figure 9.23 (right) shows a three-dimensional CAD model of an
idealized BGA assembly—mold around the silicon chip is not shown. Figure 9.24 shows
assembled and exploded views of an idealized BGA assembly mounted on a PWB. Figure

9.25 shows a cross-sectional view of a BGA assembly.

% Ball grid array chip packages are referred as BGAs for brevity
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Figure 9.23: Ball grid array (BGA) chip packages (left) and 3D CAD models of idealized BGAs (right)

.y PWB
Assembled view of idealized BGA

mounted on PWB Exploded view of idealized BGA
mounted on PWB

Figure 9.24: Assembled and exploded views of an idealized BGA mounted on a PWB

Mold Si Chip
Die Attach
Substrate = cD:ioeplgcétrric
= So|dermask
Solder balls
S

Pads on the

Figure 9.25: Cross-sectional view showing components of an idealized BGA chip package assembly

Figure 9.25 also shows the key components of a BGA assembly in the context of
VTMB analysis problems presented in this section. The idealized BGA assembly shown in
the figure consists of the following components:
= Substrate is a multi-layered structure similar to a PWB that embodies other electronic

functions supporting the IC
= Solder balls are ball-shaped solder material structures that connect the chip package to a

PWB, both electrically and mechanically. Solder balls are arranged in a grid on the
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bottom surface of a BGA, and interface with the conductive pads on the surface of a
PWB when the BGA is mounted.
= Si Chip is a silicon die that houses the integrated circuit.
= Die Attach is a mechanical adhesive that binds the chip to the substrate.
= Mold is an enclosing to protect the chip.
Note that the design of a BGA is more complicated and variant than described in the
idealized view above. The idealized design presented above is the basis for analyzable
design models used in this section for demonstrating the Behavior Model Formulation
Method.

In this section, the Behavior Model Formulation Method is used to automatically
generate simulation templates for thermo-mechanical analysis of BGAs. Thermo-
mechanical issues lead to reliability problems for BGAs. The heat from the surrounding
regions or that generated from the chip causes different materials in a BGA assembly to
expand and contract differently due to mismatches in their coefficient of thermal expansions
leading to deformation of the BGA assembly and reliability issues resulting thereof. In this
section two analyzable BGA design models are considered—one with 16 solder bodies and
one with 36%° solder bodies. Two different Behavior Model Formulation Specifications are
used for generating simulation templates for the two BGA assemblies that have non-
equivalent assembly system topology. Table 9.3 below shows the four simulation templates
that will be automatically created by the combination of two variable topology BGA
alternatives and two Behavior Model Formulation Specifications. These simulation
templates are presented in sections 9.3.1 and 9.3.2.

Table 9.3: Simulation templates created for thermo-mechanical analysis of BGAs

Analyzable Design Model Structures
16-solder ball analyzable BGA 36-solder ball analyzable BGA
BMFS* | Simulation Template 15" Simulation Template s¢*
BMFS® | Simulation Template 3¢ Simulation Template 35°

% Note that the number of solder balls may well be over 100 for a complex BGA. The low number of solder balls shown

here are purely for demonstration of VTMB aspects of the Behavior Model Formulation Method.
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The objective of the simulation templates generated here is to compute the
deformation of a BGA assembly when it is uniformly heated, either due to the heat

generated from the chip or the heat from the surroundings—as in an assembly process.

9.3.1 Behavior Model Formulation Specifications 1 (BMFS?)
The conceptual specifications for BMFS® for all composition stages are stated in

Table 9.4. In addition, Figure 9.26 illustrates the idealization decisions to create a Multi-
Shell-Solid analysis body system corresponding to an analyzable BGA design model
structure. The chip substrate is idealized in the same manner as the PWB in BMFS? in
section 9.2.2. The chip, mold, and solder balls are idealized as generic solid analysis bodies
with no shape idealizations—analysis body has the same shape as the analyzable artifact,
and with linear elastic isotropic temperature-independent material behavior. The bottom
surface of the chip mates with the die attach and the outer surface of the chip mates with the
bottom (inner) surface of the mold. All these features are idealized as generic analysis
features (instances of analysis feature ABB). The die attach is modeled as a planar shell
analysis body ABB and its top (primary) and bottom (secondary) features are idealized as
instances of planar surface analysis feature ABB—same as in the case for primary and
secondary surfaces of all stratums in the chip substrate. The solder ball is also idealized as a
generic solid with linear elastic isotropic temperature-independent material behavior. The
solder ball is shaped as a truncated sphere with two truncation features—top and bottom—
that connect it with the chip substrate and PWB respectively.

For Stage 2 composition, all interfaces are idealized as tie interactions. The idealized
BGA corresponds to a Multi-Shell-Solid analysis body system as shown in Figure 9.26 and
stated in Table 9.4.
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Idealized BGA Chip Package
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Solder balls
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Figure 9.26: BMFS! relationship specifications between idealized BGA and

Multi-Shell-Solid analysis body system

Table 9.4: Conceptual specifications (BMFS?) for thermomechanical analysis of multi-component BGAs

Conceptual specifications for Stage 1 composition

Entities in analyzable BGA design model

(as instances of ABBs stated

Entities in Multi-shell-solid analysis body system

Analyzable stratum (of chip substrate)

Idealize as Planar shell analysis body ABB

below)

Shapes
Planar shape

Material Behaviors

Select Planar shape ABB

Linear elastic isotropic temperature-
independent material behavior
Linear elastic orthotropic temperature-
independent material behavior

If(stratum function is conductive or soldermask)
Select Linear elastic isotropic temperature
independent material behavior ABB

Else If(stratum function is dielectric)
Select Linear elastic orthotropic temperature
independent material behavior ABB

Analyzable features

Analysis features

Primary surface

Idealize as Planar surface feature ABB

Material behaviors

Secondary surface Idealize as Planar surface feature ABB
Si Chip Idealize as Generic solid ABB
Shape Idealize as Cuboid shape ABB
Cuboid

Select Linear elastic isotropic

temperature

Linear elastic isotropic temperature independent material behavior ABB

independent material behavior ABB
Analyzable features Analysis features

Bottom surface Idealize as Analysis feature ABB

Outer surface Idealize as Analysis feature ABB

Mold Idealize as Generic solid ABB

Shape Select 3D shape representation ABB

3D shape representation
Material behaviors Select Linear elastic isotropic temperature
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Linear elastic isotropic temperature
independent material behavior ABB

independent material behavior ABB

Analyzable features

Analysis features

Bottom surface

Idealize as Analysis feature ABB

Die Attach

Idealize as Planar shell analysis body ABB

Shapes
Planar shape

Select Planar shape ABB

Material behaviors
Linear elastic isotropic temperature
independent material behavior ABB

Select Linear elastic isotropic temperature

independent material behavior ABB

Analyzable features

Analysis features

Primary surface

Idealize as Planar surface feature ABB

Secondary surface

Idealize as Planar surface feature ABB

Solder Ball

Idealize as Generic solid ABB

Shape
Truncated sphere

Select Truncated sphere shape ABB

Material behaviors
Linear elastic isotropic temperature
independent material behavior ABB

Select Linear elastic isotropic temperature

independent material behavior ABB

Analyzable features

Analysis features

Top truncation feature

Idealize as Analysis feature ABB

Bottom truncation feature

Idealize as Analysis feature ABB

Conceptual specifications for Stage 2 composition

Analyzable BGA

Idealize as Multi-Shell-Solid Analysis Body System

Chip Substrate

Idealize as Multi-shell analysis body system

Analyzable stratum

Idealize as Planar shell analysis body ABB

Stratum interfaces

Idealize as Shell-shell tie interaction ABB

Mold-Chip interface

Idealize as Solid-solid tie interaction ABB

Mold-Substrate interface

Idealize as Solid-shell tie interaction ABB

Chip-Die Attach interface

Idealize as Solid-shell tie interaction ABB

Die Attach-Substrate interface

Idealize as Shell-shell tie interaction ABB

Substrate-Solder Ball interface

Idealize as Shell-Solid tie interaction ABB

Analyzable features

Analysis features

Volume of analyzable PCB

Idealize as Volume feature ABB

Mid-pt of bottom soldermask stratum of
BGA substrate

Idealize as Point feature ABB

Conceptual specifications for Stage 3 composition

Heating a BGA

Idealize as Uniform temperature load ABB
associated with Volume feature ABB instance
corresponding the volume of the analyzable BGA

BGA held fixed at mid-pt of the bottom
soldermask stratum of the substrate

Idealize as Point displacement constant behavior
condition ABB associated with Point feature ABB
instance corresponding to mid-pt of bottom
soldermask of the BGA substrate

285



Stage 3 composition concerns the idealizations of loads and behavior conditions in
which the behavior of the Multi-Shell-Solid analysis body system corresponding to an
idealized BGA. A uniform temperature load is used for idealizing the thermal load on a
BGA when it is heated (due to the heat generated from the chip or during the assembly
process). The behavior condition for this analysis is to hold the mid-point of the bottom
analyzable stratum as fixed. This corresponds to locking all degrees of freedom at that point
in the analysis body system. This behavior condition is realized by the use of point-
displacement-fixed ABB instance that embodies the displacement constraint, and
associating it with the point feature ABB instance corresponding to the mid-point of the
bottom planar shell analysis body.

Note that the conceptual specifications have been presented here in a tabulated
form. The intent here is to describe the types of idealization decisions taken by analysts
when developing conceptual specifications. Conceptual specifications are represented more
formally using SysML Parametrics constructs as shown in Figure 8.24 of section 8.3.1.

9.3.1.1 Simulation Template 15*: Simulation template for 16-solder ball analyzable BGA
model structure and BMFS*
Figure 9.27 illustrates CP_BGA _5S2L._16SB—analyzable design model structure
for a 16-solder ball BGA.
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= [E] CP_BGA_552L_1658 : APackaged BGA_Part

| ,.Ef_ chip_da (-> Chip_Die_Attach_Interaction) : component_interactions

Chip - die attach interaction

I J& chm_mid_chp (-> Chip_Mold_Chip_Interface) : component_interactions

Chip — mold interaction

I B chm_mid_tsm (-> Chip_Mold_Top_SM_Interface) : component_interactions  Mold—substrate ir'|te|*a|x:’I]'c:.nI

I~ )2 cp_chip (> 5i_Chip) : chip_components

Chip component|

A o_id (> cpid) : id

[ I e TaiE (> Thip Mod] © old_tompanent

JE cp_sb10 (->5B10) :
JE cp_sb11 (->SB11):
JH p_sb12 (->SB12):
JE cp_sb13(->5B13):
JH cp_sb14(->SB14) :
JH cp_sb15 (->SB15) :
J& cp_sb16 (-> SB16) :

solder_ball_components
solder _ball_components
solder_ball_components
solder_ball_components
solder_ball_components
solder_ball_components
solder_ball_components

|
|
|
|
1
|
1
| & cp_sb2 (-> $82) : solder_bal_components
| B ep_sb3 (->583) : solder_ball_components
| & cp_sb4 (-> 584) : solder_ball_components
L& p_sb5 (-> 585) : solder_ball_components
| ,ﬁ' cp_sh6 (-> 5B6) : solder_ball_components
| & cp_sb7 (-> 587) : solder_ball_components
L&' cp_sb8 (-> 588) : solder_ball_components
! o _sb9 (-> 589) : solder_ball_components

Solder ball components

[ JEI' cp_substrate (-> Substrate_552L) : substrate

Substrate component |

[&"da_sm1 (-> Die_Attach_Bot_Surf_Soldermask_Stratum_1_Top_Surf_Interaction) : component interactions
<b10_sm2 (> S810_TTF_Soldermask_Stratum_2 Bot_Surf_Interaction) :

| & sb11_sm2 (-> SB11_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| & sb12_sm2 (-> SB12_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
|- & sb13_sm2 (-> SB13_TTF_Soldermask_Stratum_2_Bot_Surf Interaction) :
L& sb14_sm2 (-> SB14_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| & sb15_sm2 (-> SB15_TTF_Soldermask_Stratum_2_Bot_Surf Interaction) :
Ji sb16_sm2 (-> SB16_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

| & sb1_sm2 (-> SB1_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| JE sb2_sm2 (-> SB2_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| JEI' sb3_sm2 (-> SB3_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
' JE' sb4_sm2 (-> SB4_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| JE sb5_sm2 (-> SBS_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
' JE sb6_sm2 (-> SB6_TTF _Soldermask_Stratum_2_Bot_Surf_Interaction) :
: JE sb7_sm2 (-> SB7_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

JE§ sb8_sm2 (-> SB8_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

: JE sb9_sm?2 (-> SBS_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I

component_interactions
component_interactions
component_interactions
component_interactions
component_interactions
component_interactions
component_interactions

component_interactions
component_interactons
component_interactions
component_interactions
component_interactions
component_interactions
component_interactons
component_interactions
component_interactions

s — yoepe aig

n

4

uonoelaiul a1l

Figure 9.27: 16-solder body analyzable BGA design model structure (CP_BGA_5S2L_16SB)
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= [E] substrate_552L : APwb
JE' Substrate_552L_id (-> subSs2_id) : id
A pnb_SS2_form (-> Substrate SS2 Form)iform
I,ﬂ sub_5521 _stratum_interfaces_2 (-> Cu_1_Dielectric_Interface) : stratum_interfaces |
!,ET sub_5S2L_stratum_interfaces_3 (-> Dielectric_Cu_2_Interface) : stratum_interfaces |

) SUE-EEL-EEE"‘_-EEE-BES_-*_(‘>_Ci-2_-53145'"3=£-2_-1n_w_f£el_=Szaiurn_-"_tef_fac_es_l
|mub_551_stawms_1 (-> Soldermask_Stratum_1) : stratums

I,Rf sub_552L_stratums_2 (-> Design_Cu_Stratum_1) : stratums
|,£‘]: sub_552L_stratums_3 (-> Dielectric_BT_Stratum) : stratums
| /Bl sub_SS2_stratums_4 (-> Design_Cu_Stratum_2) : stratums
I,.Ef sub_552L _stratums_5 (-> Soldermask_Stratum_2) : stratums

Figure 9.28: 5-stratum, 2-layer analyzable chip substrate design model structure (Substrate 5S2L)

Figure 9.27 shows 16 solder ball components and their interactions with the substrate (one
interaction for each solder ball component). The figure also shows the chip, mold, die
attach, and substrate components, and their interactions. Figure 9.28 shows
Substrate_5S2L—analyzable design model structure for the chip substrate. The 5 stratum
components (2 layers) and the 4 interfaces between them are shown in the figure.

After the execution of BMFS® a thermo-mechanical behavior model for the 16-
solder ball analyzable BGA is created. Figure 9.29 illustrates this behavior model
(BGA_ThermoMech_UniTempp_PtFx_BM) and its associated ABB system and context
created at the end of Stage 4 composition. Figure 9.30 illustrates the ABB system created at
the end of Stage 3 composition. The ABB system consists of an analysis body system
(Multi_Shell_Solid_Analysis_Body_System), a constant-temperature load applied to the entire
volume of the analysis body system, and a point-displacement-fixed behavior condition
applied to the mid-point of the bottom surface of the last planar shell analysis body
(corresponding to the last soldermask layer) in the analysis body system corresponding to

the substrate.
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= [E] CP_TMB : entity

IEREBGA_ThermoMech_UniTemp_PtFx_BM : Behavior_Mode! it = T-1 s AV o]l Y| (aTa [=]]
,'Ei assodated_ABBSys_attr (-> Multi_Shell_Solid_ThermoMech_UniTemp_PtFx_ABBSys) : associated_ABBSys
JE context_attr (-> Multi_Shell_Solid_ThermoMech_UniTemp_PtFx_ABBSys - CP_BGA_552L_1658 CONTEXT) : context
JEF id_attr (-> BGA_THERMOMECH_UNITEMP_PTFX_MODEL) : id
CP_BGA_552L_165SB - Multi_Shell_Solid_AB_System ASSOC : AA_ABS_Relationship !ABB system
Multi_Shell_Solid_AB_System : Analysis_Body_System_ABB 4

8

3] v
[E] Multi_Shell_Solid_ThermoMech_UniTemp_PtFx_AEBSys : Behavior_Model_ABBSys |
E
E

Multi Shell Solid ThermoMech UniTemp PiFx ABBSys - CP BGA 5521 1658 CONTEXT : Behavior Model XCnntextl

ThermoMech_Behavior : Behavior ¥

BB e e E

" Context
Figure 9.29: Behavior Model structure created for CP_BGA_5S2L_16SB and BMFS' in
composition Stage 4

= [E] Model

- [E] ABB_Library

[E] Analyzable_Electronics_Design_FTME_Model_Space
# [E] cP_552L_1658_Model

[E] cP_TMB : entity

o-®

m

#[E] BGA_ThermoMech_UniTemp_PtFx_BM : Behavior_Model L/oad
#-[E] CP_BGA_552L_16SB - Multi_Shell_Solid_AB_System ASSOC : AA_ABS_Relationship "l
[ & [E] Const_Temp_Load : Constant_Temperature_Load | Analysis body
# [E] Mid_Pt_Planar_Shell_AB_Soldermask_Stratum_2 : Point_Feature_ABB +  system
# [E] Multi_Shell_Solid_AB_System : Analysis_Body_System_ABB ¥
@} Multi_Shell_Solid_ThermoMech_UniTemp_PtFx_ABBSys : Behavior_Model_ABESys |V -ABB System
| —J&" associated_absys_attr (-> Multi_Shel_Solid_AB_System) : associated_absys |

| Bl associated_behavior_condition_app_attr_Point_Displacement_Fixed (-> Point_Displacement_Fixed)l : associated_bel

i, associated_load_applications_attr_Const_Temp_Load (-> Const_Temp_Load) : assodated_load_aoplicaﬁons]
H id_attr (-> MULTI_SHELL_SOLID_THERMOMECH_UNITEMP_PTFX_ABBSYS) :id
[E] Multi_Shell_Solid_ThermoMech_UniTemp_PtFx_ABBSys - CP_BGA_552L_1658 CONTEXT : Behavior_Model_XContext

[E] Point_Displacement_Fixed : Point_Displacement_Constant_BC
[E] ThermoMech_Behavior : Behavior *

[E] volume_Multi_Shell_Solid_AB_System : Volume_Feature_ABB

B

Behavior
~ Condition

~

B ®

Figure 9.30: ABB system created for CP_BGA_5S2L_16SB and BMFS* in composition Stage 3

Figure 9.31 illustrates the Multi-Shell-Solid analysis body system—corresponding
to the analyzable BGA—created in Stage 2 of the composition process. The figure shows
the 16 generic solid analysis body components corresponding to the solder balls in the
analyzable BGA design assembly, and the 16 solid-shell tie interactions between these
analysis bodies and the last planar shell analysis body—corresponding to the bottom
soldermask layer—of the substrate analysis body system. The figure also shows the multi-

shell analysis body system—corresponding to the chip substrate created in Stage 2
composition.
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E constituent_ab_ab_interactions_attr_ANF_Chip_Mold_Bot_Surf - ANF_Si_Chip_Outer_Surf (-> ANF_Chip_Mold_Bot_Surf - ANF_Si_Chip_Ou
constituent_ab_ab_interactions_attr_ANF_Chip_Mold_Bot_Surf - Primary_Surface_Planar_Shell_AB_Soldermask_Stratum_1 (-» ANF_Chip_|

gi) ab_ab ANF_Chip_Mold_Bat_Surf - Pri Surf; Pl Shell_AB_Sald sk_Stratu (- ANF_Chip b
JH constituent_ab_ab_interactions_attr_ANF_Si_Chip_Bot_Surf - Primary_Surface_PSAB_Die_Attach (-> ANF_Si_Chin_Bot_Surf - Primary_Sur!
iy constituent_ab_ab_interactions_atir_PBSSI_Die_Attach_Bot_Surf Soldermask_Stratum_1_Top_Surf_Interaction (-> PBSSI_Die_Attach_Bol

| i) constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_S5B11_Top_Truncation_Feature {j
| i) constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_S812_Top_Truncation_Feature (4
| ) constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB13_Top_Truncation_Feature ({
| JE' constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB14_Top_Truncation_Feature 4
& constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_S815_Top_Truncation_Feature (

I JH constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB16_Top_Truncation_Feature (-i
| &' constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB1_Top_Truncation_Feature (-3
| ' constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB2_Top_Truncation_Feature {v)l
| JE' constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB3 _Top_Truncation_Feature {,J
| iy constituent_ab_ab_interactions_atir_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB4_Top_Truncation_Feature {r.‘.i
,Bj' constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SBS_Top_Truncation_Feature (-3
| yi:i) constituent_ab_ab_interactions_attr_Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB&_Top_Truncation_Feature (-3
,B.f constituent_ab_ab_interactions_attr Secondary Surface Planar_Shell_AB_ Soldermask_Stratum_2 - ANF_SB7 Top_Truncation_Feature {—)I

I ,B;f constituent_ab_ab_interactions_attr Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_5B8_Top_Truncation_Feature (-
| & constiuent_ab_sb_interactions_attr_Secondery,Surface. Planar_Shel_ AR, Soidermask_Stratum, 2 - ANF_SB9 Top Truncation Feature (-3

constituent_abs_attr_GSAB_Chip_Mold (-> GSAB_Chip_Mold) : constituent_abs Solid — shell tie interaction
(solder body — substrate)

| ,]I‘.r constituent_abs_attr_GSAB_SB10 (-> GSAB_SB10)
| ' constituent_abs_attr_GSAB_SB11 (-> GSAB_SB11)

JH' constituent_abs_attr_GSAB_SB12 (-> GSAB_SB12)
| JH' constituent_abs_attr GSAB_SB13 (-> GSAB_SB13)
| ' constituent_abs_attr_GSAB_SB14 (-> GSAB_SB14)

JH constituent_abs_attr_GSAB_SB15 (-> GSAB_SB15)
| JH' constituent_sbs_attr_GSAB_SB16 (-> GSAB_SB16)

: constituent_abs
: constituent_abs
: constituent_abs
: constituent_abs
: constituent_abs
: constituent_abs
: constituent_abs

| & constituent_abs atr GSAB SB2 (-> GSAB_SB2)
| JH' constituent_abs_atr_GSAB_SB3 (-> GSAB_S83)
| JH constituent_ahs_attr_GSAB_SB4 (-> GSAB_SB4)
I JH' constituent_sbs_attr_GSAB_SB5 (-> GSAB_SB5)
JH constituent_abs_attr GSAB_SBS (-> GSAB_S85)
JH' constituent_abs_attr_GSAB_SB7 (-> GSAB_S87)

: constituent_abs
: constituent_abs
: constituent_abs
: constituent_abs
: constituent_abs
: constituent_abs

Generic solid (solder bodies)

I ,ﬁ constituent_abs_attr_GSAB_SBS8 (-> GSAB_SB3) : constituent_abs
!_,ﬁ constituent_abs_attr_GSAB_5B89 (-> GSAB_SB9) : constituent_abs

JH constituent_abs_attr GSAB_Si_Chip (-> GSAB_Si_Chip) : constituent_abs Multi-shell system

Figure 9.31: Analysis body system created for CP_BGA 5S2L_16SB and BMFS* in composition Stage 2

Figure 9.32 illustrates 16 association relationships created between generic solid
analysis bodies (corresponding to solder balls) in the multi-shell-solid analysis body system
and the solder balls in the analyzable BGA design assembly in composition Stage 2. The
figure also shows the 16 analyzable artifact-analysis body interaction relationships between
(a) interface between these generic solid bodies and the bottom surface of the last planar
shell analysis body in the multi-shell analysis body system (corresponding to the chip
substrate) and (b) interface between the solder balls and the bottom surface of the last
stratum (soldermask) of the analyzable chip substrate.
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E CP_BGA_552L_165B - Multi_Shell_Solid_AB_System ASSOC ;: AA_ABS_Relationship
JE associated_sa_attr (-> CP_BGA_552L_165B) : associated_aa
B associated_abs_atir (-> Multi_Shell_Solid_AB_System) : associated_abs
B constituent_aa_ab_interaction_relations_attr Chip_Die_Attach_Interaction - ANF_Si_Chip_Bot Surf - Primary_Surface PSAE
)'Ef mﬂsﬁmnt_aa_&_ntaﬂacﬁm_mlbﬁw sty Chin Mald Fhin Tatarfara < AME Chin Mald Bat Sowf o ANE € Fhin Mdar ©
| constituent_sa_ab_interaction_re relationships between Solder body - substrate interactions AND

JE' constituent_sa_ab_interaction_re Generic solid - multi-shell system interaction

| )’EI' constituent_aa_ab_interaction_relations_attr_SB11_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction - Secondary_Surface
| JE constituent_sa_ab_interaction_relations_attr_5812_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction - Secondary_Surface
,IET constituent_aa_ab_interaction_relations_attr_S813_TTF_Soldermask_Stratum_2_Bot_Surf Interaction - Secondary_Surface
|
B constituent_aa_ab_interaction_relations_attr 5814 TTF_Soldermask_Stratum_2 Bot Surf Interaction - Secondary_Surface
|
B constituent_aa_ab_interaction_relations_attr 5815 _TTF Soldermask_Stratum_2 Bot Surf Interaction - Secondary Surface
) constituent_aa_ab_interaction_relations_attr_5816_TTF_Soldermask_Stratum_2_Bot_Surf Interaction - Secondary_Surface
' constituent_aa_ab_interaction_relations_attr_SB1_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction - Secondary_Surface
I JEIl constituent_aa_ab_interaction_relations_atir_SB2_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction - Secondary_Surface_|
| JEI' constituent_aa_ab_interaction_relations_attr_SB3_TTF_Soldermask_Stratum_2_Bot_surf_Interaction -Semndar'.rjurfa:e_I
,IE.T constituent_aa_ab_interaction_relations_attr_S84 TTF_Soldermask_Stratum_2_Bot_Surf_Interaction -Se:ondarvh&:rfa:ej
| B constituent_aa_ab_interaction_relations_attr_SB85_TTF_Soldermask_Stratum_2 Bot_Surf_Interaction - Secondary_Surface |
I B constituent_aa_ab_interaction_relations_attr S86_TTF Soldermask_Stratum_2 Bot Surf Interaction - Secondary Surface |
| & constituent_aa_ab_interaction_relations_attr_SB87_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction - Secondary_Surface_|
I JB constituent_aa_ab_interaction_relations_attr_SB8_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction - Secondary_Surface_|
| ,IEI' constituent_aa_ab_interaction_relations_attr_SB9_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction - Secondary_Surface |
“JE constituent_aa_abs_rels_attr_Chip_Mold - GSAB Chin Mold ASSOC )C (-> Chin Mold - GSAB Chin Mold ASSOC) : constituent_;
JE' constituent_sa_abs_rels_attr_Die_a S0lder body — Generic solid ABB instance relationships dituen
| B constituent_aa_abs_rels_attr_SB1 - GSAB_SB1 ASSOC (-» SB1 - GSAB_SB1 ASSOC) : constituent_aa_abs_rels |
| B constituent_aa_abs_rels_attr SE10 - GSAE_SB10 ASSOC (-> SB10 - GSAE_SE10 ASSOC) : constituent_aa_abs_rels I
| JRI' constituent_aa_abs rels_attr SB11 - GSABE_SB11 ASSOC (->SB11 - GSAE_SB11 ASSOC) : constituent_aa_abs _rels I
| & constituent_aa_abs_rels_attr S812 - GSAB_SB12 ASSOC (-> 5812 - GSAB_SB12 ASSOC) : constituent_aa_abs rels I
| JRI' constituent_aa_abs_rels_attr_SB13 - GSAB_SB13 ASSOC (-> 5B13 - GSAB_SB13 ASS0OC) : constituent_aa_abs_rels I
| JEI' constituent_aa_abs_rels_attr_SB14 - GSAB_SB14 ASSOC (-> SB14 - GSAB_SB14 AS50C) : constituent_aa_abs_rels |
I ,IEI' constituent_sa_abs_rels_attr_SB15 - GSAB_SB15 AS50C (-> 5815 - GSAB_SB15 ASS0C) : constituent_aa_abs_rels |
| JE constituent_sa_abs_rels_atir_SB16 - GSAE_SB 16 ASSOC (-> SB16 - GSAB_SB16 ASS0C) : constituent_sa_abs_rels |
| B constituent_aa_abs_rels_attr_SB2 - GSAB_SB2 ASSOC (-> 5B2 - GSAB_SB2 ASSOC) : constituent_aa_abs_rels [
| I
| I
| I
| I
| I
| I
I

B constituent_aa_abs_rels_attr SB3 - GSAB_SB3 ASSOC (-> 583 - GSAB_SB3 ASSOC) : constituent_aa_abs_rels
B constituent_aa_abs_rels_attr S84 - GSAB_SB4 ASSOC (-> 5B4 - GSAB_SB4 ASSOC) : constituent_aa_shs_rels
JE constituent_aa_abs_rels_attr_SBS - GSAB_S5B5 ASSOC (-> SBS5 - GSAB_S85 ASSOC) : constituent_aa_abs_rels
Ef constituent_aa_abs_rels_attr_SB6 - GSAB_SB6 ASSOC (-> SB6 - GSAB_SB6 ASS0C) : constituent_aa_abs_rels
,IEI' constituent_aa_abs_rels_attr_SB7 - GSAB_SB7 ASSOC (-> SB7 - GSAB_SB7Y ASS0C) : constituent_aa_abs_rels
JEI' constituent_aa_abs_rels_atlr_SBS - GSAB_SBS ASS0C (-> 5B8 - GSAB_SES ASSQC) : constituent_aa_abs_rels
JE constituent_sa_abs_rels_attr_SES - GSAB_SBS ASSOC (-> SB9 - GSAB_SES ASSOC) : constituent_aa_sbs_rels

Y e e T B i B e P i e O s el B W e i b . .

Figure 9.32: Relationship between analyzable BGA design model structure (CP_BGA 5S2L_16SB)
and Multi-Shell-Solid analysis body system for BMFS! in composition Stage 2

Figure 9.33 illustrates the material behavior of five planar shell analysis bodies in

the multi-shell analysis body system corresponding to the chip substrate. Per the

idealization decisions in BMFS!, the planar shell analysis bodies corresponding to

conductive and soldermask stratums have an isotropic material behavior as opposed to

orthotropic material behavior for the body corresponding to the dielectric stratum.
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Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_AB 1—__C_O|'E-‘5£02d5_t0_02nflUC_ﬁ\’E stratum .

- |1 & sssocated_mb_property_attr (-> LEITT_PSAB_Planar_Shell_AB Design_Cu_Stratum_1) : associated_mb_property_ _,
i constituent_primary_surface_feature (-> Primary_Surface_Planar_Shel_AB_Design_Cu_Stratum_1) : constituent_prim:
& constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_A8_Design_Cu_Stratum_1) : constituent
i id_attr (-> PSAB_Design_Cu_Stratum_1) : id

JE shape_atir (-> PSS_Planar_Shell_AB_Design_Cu_Stratum_1) : shape
LEITI_PSAB_Planar AB ign_Cu_Stratum_1 : Linear_Elastic ic_Ti ature MB
- [E] P5S_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Shape
@ [E] Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Primary_Surface
#-[E] Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Secondary_Surface

e e e T L e E e D Wl < Corresponds to conductive stratum

. &l assodated mb_property_attr (-> LETTT_PSAB_Planar_Shell AB_Design_Cu_Stratum_2) : assodated_mb_property

b E constituent_primary_surface_feature (-> Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_2) : constituent_prim:
- JH constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_2) : constituent
8 id_attr (-> PSAB_Design_Cu_Stratum_2) : id

! ([EI" shape_attr (-> PSS_Planar_Shell_AB_Design_Cu_Stratum_2) : shape

| ®-[E] LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_2 : Linear_Elastic_Isotropic_Temperature_Independent_MB |
- [E] PsS_Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_Shape
#-[E] Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_Primary_Surface

- [E] secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_2 : Planar_Shell_Secondary_Surface

= E F’Ignar_shell_AEt_DieIech':c_BT_Strath : Planar_Shell_AB

|

. constituent_primary_surface_feature (-> Primary_Surface_Planar_Shell_AB_Dielectric_BT_Stratum) : constituent_primz
_ JE constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Dielectric_BT_Stratum) : constituent
- JH id_attr (-> PSAB_Dielectric_BT_Stratum) : id

i shape_attr (-> PSS_Planar_Shell_AB_Dielectric_BT_Stratum) : shape

i LEOTI_PSAB_Planar_Shell_AB_Dielectric_BT_Stratum : Linear_Flastic_Orthotropic_Temperature_Independent MB |
- [E] PSS_Planar_Shell_AB_Dielectric_BT_Stratum : Planar_Shell_Shape
- [E] Primary_Surface_Planar_Shell_AB_Dielectric_ET Stratum : Planar_Shell_Primary Surface

i #-[E] Secondary_Surface_Planar_Shell_AB Dielectric_BT Stratum : Planar_Shell_Secondary_Surface

2 B e W e g e IR e e W]« Corresponds to soldermask stratum

.| TIEr_assodat:d_n'b _property_attr (- LEITI_PSAB_Planar_Shell_AB_Soldermask_Stratum_1) : assodated_mb J:mpertv_l-l
" JH constituent_primary_surface_feature (-> Primary_Surface_Planar_Shel_AB_Soldermask_Stratum_1) : constituent_prim
i JEl constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_1) : constituen
JH id_attr (-> PSAB_Soldermask_Stratum_1) : id
B shape_attr (-> PSS_Planar_Shell_AB_Soldermask_Stratum_1) : shape
) LEITI_PSAB_Planar_Shell_AB_Soldermask_Stratum_1 : Linear_Elastic_Isotropic_Temperature_Independent_MB |
£ PSS_Planar_Shell_AB_Soldermask_Stratum_1 : Planar_Shell_Shape
#-[E] Primary_Surface_Planar_Shell_AB_Soldermask_Stratum_1 : Planar_Shell_Primary_Surface
i@ [E] secondary_Surface_Planar_Shel_AB_Soldermask_Stratum_1 : Planar_Shell_Secondary_Surface
ERE fPlanar_Shell_AB_Soldermask_Stratum_2 : Planar_Shell_Ap [P Corresponds to soldermask stratum
| = JH associated_mb_property_attr (-> LETTI_PSAB_Planar_Shell_AB_Soldermask_Stratum_2) : assotiated_mb_propertyl

JE constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2) : constituen
JH id_attr (-> PSAB_Soldermask_Stratum_2) : id
,IEI’l shape_attr (-> PSS_Planar_Shell_AB_Soldermask_Stratum_2) : shape
LEITI_PSAB_Planar_Shell_AB_Soldermask_Stratum_2 : Linear_Elastic_Isotropic_Temperature_Independent_MB |
[ |E] P55_Planar_Shel_AB_Soldermask_Stratum_2 : Planar_Shell_Shape
- [E] Primary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 : Planar_Shell_Primary_Surface
#-[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 : Planar_Shell_Secondary_Surface

Figure 9.33: Material behavior of analysis bodies corresponding to substrate stratums
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FE' GSAB_ Chip_Mold : Generic_Solid_AB Analysis body corresponding to the chip mold |

| - J& associated_mb_property_attr (-> LEITI_GSAB_Chip_Mold) : associated_mb_property
| JET constituent_analysis_features_attr_ANF_Chip_Mold_Bot_Surf (-> ANF_Chip_Mold_Bot_Surf) :
| & id_attr (-> GSAB_Chip_Mold) : id
| - & shape_attr (-> SR3D_GSAB_Chip_Mold) : shape
& [E] ANF_Chip_Mold_Bot_Surf : Analysis_Feature_ABB
g [E] LEITI_GSAB_Chip_Mold : Linear_Elastic_Isotropic_Temperature_Independent_MB
g [E] SR3D_GSAB_Chip_Mold : Shape_Representation_3D
rEI GSAB_Si_Chip : Generic_Solid_AB Analysis body corresponding to the chip |
""" [T associated_mb_property_attr (-> LETTI_GSAB_S|_Chip) : associated_mb_property |
| i ,ZEi' constituent_analysis_features_attr_ANF_Si_Chip_Bot_Surf (-> ANF_Si_Chip_Bot_Surf) : constituent_analysis_features I
|8 constituent_analysis_features_attr_ANF_Si_Chip_Outer_Surf (-> ANF_Si_Chip_Outer_Surf) : constituent_analysis_features |
| id_attr (-> GSAB_Si_Chip) : id
| " & shape_attr (-> CUBOID_GSAB_Si_Chip) : shape
| & [E] ANF_Si_Chip_Bot_Surf : Analysis_Feature_ABE
| ® [E) ANF_Si_Chip_Outer_Surf : Analysis_Feature_ABB
| ® [E] cusoID_6SAB_Si_Chip : Cuboid
| EEI [E] LEITI_GSAB_Si_Chip : Linear_Elastic_Isotropic_Temperature_Independent_MB

El PSAB_Die_Attach : Planar_Shell_AB Analysis body corresponding to the Die Attach
i )ZEI’| associated_mb_property_attr (- LEITI_PSAB_Die_Attach) : assodated_mb_property
)ZEI’| constituent_primary_surface_feature (-> Primary_Surface_PSAB_Die_Attach) : constituent_primary_surface_feature

,[EI’| constituent_secondary_surface_feature (-» Secondary_Surface_PSAB_Die_Attach) : constituent_secondary_surface fealuie

& id_attr (-> PSAB_Die_Attach) : id

" JH shape_attr (-> PSS_PSAB_Die_Attach) : shape

[E] LEITI_PSAB_Die_Attach : Linear_Elastic_Isotropic_Temperature_Independent M8
[E] Pss_PSAB_Die_Attach : Planar_Shel_Shape

[E] Primary_Surface_PSAB_Die_Attach : Planar_Shell_Primary_Surface

[E] secondary_Surface_PSAB_Die_Attach : Planar_Shell_Secondary_Surface

I'@ Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shel_ag Analysis body corresponding to a substrate stratum |
|" " & associated_mb_property_attr (-> LEITI_PSAB_Planar_Shell_AB_Design_Cu_Stratum_1) : associated_mb_property I
I JB.I‘ constituent_primary_surface_feature (-> Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1) : constituent _j |
I ,[E]‘ constituent_secondary_surface_feature (-> Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1) : constit I
| & id_attr (-> PSAB_Design_Cu_Stratum_1) : id |
| & shape_attr (-> PSS_Planar_Shell_AB_Design_Cu_Stratum_1) : shape I
IIE [E] LEITI_PSAE_Planar_Shel_AB_Design_Cu_Stratum_1 : Linear_Elastic_Isotropic_Temperature_Independent_MB I
#[E] PSS_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Shape I
|65 [ Primary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shel_Primary_Surface |
& [E] Secondary_Surface_Planar_Shell_AB_Design_Cu_Stratum_1 : Planar_Shell_Secondary_Surface I

GSAB_SB1 : Generic_Solid_AB Analysis body corresponding to a solder ball !
JE assodated_mb_property_attr (-> LEITI_GSAB_SB1) : associated_mb_property

}Ei' constituent_analysis_features_attr_ANF_SB1_Bot_Truncation_Feature (-> ANF_SB1_Bot_Truncation_Feature) : g

Ei' constituent_analysis_features_attr_ANF_SB1_Top_Truncation_Feature (-> ANF_SB1_Top_Truncation Feau.n'e)l

JH' id_attr (-» GSAB_SB1) : id |

JE shape_attr (-> TruncSphere_GSAB_SB1) : shape I

#-[E] ANF_SB1_Bot_Truncation_Feature : Analysis_Feature_AEB |

|

|

|

|E [E] ANF_SB1_Top_Truncation_Feature : Analysis_Feature_ABB
2 [E] LEITI_GSAB_SB1 : Linear_Elastic_Isotropic_Temperature_Independent_MB8

Figure 9.34: Types of analysis bodies created for CP_BGA_552L_16SB and BMFS* in

composition Stage 1
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Figure 9.34 illustrates the different types of analysis bodies, corresponding to
components in the analyzable BGA assembly, created in composition Stage 1. The number
of each type of analysis body is shown in Figure 9.31. For example, 16 generic solid
analysis bodies (corresponding to 16 solder balls) were created in Stage 1 of the
composition process. The intent of Figure 9.34 is to illustrate the different types of entities
created for each analysis body. The figure shows shape, material behavior, and analysis
features created for analysis bodies corresponding to mold, chip, die attach, substrate
stratum, and solder balls. In addition, associations between shape, material behavior, and
analysis features of each analysis body and the corresponding component in the analyzable
BGA assembly are also created during Stage 1 composition.

9.3.1.2 Simulation Template 35*: Simulation template for 36-solder ball analyzable BGA
model structure and BMFS*

In this section, the simulation template automatically created for an analyzable BGA
design model structure with 36 solder balls and for idealization decisions embodied in
BMFS' is presented. The analyzable BGA assembly with 36 solder balls has a non-
equivalent assembly system topology as compared to the analyzable BGA assembly with 16
solder balls. For the same BMFS, change in assembly system topology of the design
alternative affects results of composition Stages 1 and 2 only. If the topology variation is
only due to changes in the number of artifacts in the design alternative assembly, the
number of analysis bodies created during Stage 1 composition changes. In addition, the
analysis body system composed in Stage 2 has a different number of analysis body
components and their interactions.

Figure 9.35 illustrates CP_BGA_5S2L_36SB—an analyzable BGA design model
structure with 36 solder balls. The figure shows the 36 solder ball components and the 36
interactions between the solder balls and the bottom stratum of the chip substrate—one
interaction per solder ball. Note that in this example BGA assembly, the number of solder
balls (and associated interactions) is the only change compared to the 16 solder ball BGA

example illustrated in the previous section.
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Idealized BGA Chip

[ & [& cp_BGA_552L_3658 : APackaged BGA_Part | Package

8l chip_da (-> Chip_Die_Attach_Interaction) : component_interactions

)8 chm_mid_chp (-> Chip_Mold_Chip_Interface) : component_interactions

)8 chm_mid_tsm (-> Chip_Mold_Top_SM_Interface) : component_interactions

& p_chip (-> Si_Chip) : chip_components

8 cp_die_attach (-> Die_Attach) : die_attach

- JH cp_id (-> cpid) : id

i ,[ET cp_mold (-> Chip_Mold) : mold_component

|~/ &_851T-5"S6T) {Solder bal_fomporents y

| /& cp_sb10 (->SB10) : solder_ball_components
|8 cp_sb11(-> SB11) : solder_bal_components |
|- &l cp_sb12 (> 5B12) : solder_ball_components |
|- & cp_sb13 (> $813) : solder_ball_components |
| ,lET cp_sb14 (-> 5B14) : solder_ball_components |
| ,IET cp_sb15 (-> SB15) : solder_ball_components |
| JE cp_sb16 (-> SB16) : solder_ball_components |
LBl cp_sb17 (-> $B17) : solder_ball_components |
: B cp_sb18 (-> 5B18) : solder_bal_components |
| JE' cp_sb19 (-> $B19) : solder_ball_components |
| JET cp_sb2 (-> 5B2) : solder_ball_components |
I ,Ef cp_sb20 (-> SB20) : solder_ball_components |
1 g cp_sb21 (-> $821) : solder_ball_companents | 36 Solder ball
| B 23 o 5929 solr bl sompanene | COMPONENES
| B cp_sb24 (-> SB24) : solder_bal_components :
| & cp_sb25 (-> SB25) : solder_ball_components |
|
| I
I
|
|
|
|
|
|
I
|
|
|
|
|
l
|
|
|

|8 cp_sh26 (-> SB26) : solder_ball_components
| ,ﬂ cp_sb27 (-> SB27) : solder_ball_components |
| Bl cp_sb28 (-> SB28) : solder_ball_components |
JE cp_sb29 (-> SB29) : solder_ball_components |
,[Ef cp_sb3 (-> 5B3) : solder_ball_components |
JE' cp_sb30 (-> S830) : solder_ball_components |
JE cp_sb31 (-> SB31) : solder_ball_components |
JE cp_sh32 (->5832) : solder_bal_components |
B cp_sb33 (-> 5833) : solder_bal_components |
B cp_sb34 (->SB34) : solder_bal_components |
J&' cp_sh3s (-> SB35) : solder_ball_components |
,[Ef cp_sb36 (-> SB36) : solder_ball_components |
B cp_sb4 (->5849) ; solder_bal_components |
,lET cp_sb5 (-> SB5) : solder_ball_components
i) cp_sbé (-> 5B6) : solder_ball_components
J& cp_sb7 (-> SB7) : solder_bal_components
| ,Iﬂ' cp_sb8 (-> SB8) : solder_ball_components
JET cp_sb9 (-> SB9) : solder_ball_components

o e e e e A e
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36 solder ball — substrate interactions

I ,ﬁ' sb11l_sm2 (-> SB11_TTF_Soldermask_Stratum_2 Bot_Surf _Interaction) :
| ,ﬁ' sb12 sm2 (-» SB12_TTF_Soldermask_Stratum_2 Bot_Surf_Interaction) :
| ,ﬁ' sb13_sm?2 (-» 5B13_TTF_Soldermask_Stratum_2 Bot_Surf_Interaction) :
| Jﬁ sb14 sm2 (-= SB14_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I JEi' sb15 sm2 (-> SB15_TTF_Soldermask_Stratum_2 Bot_Surf Interaction) :
,ﬁ' sb16_sm2 (-> SB16_TTF_Soldermask_Stratum_2 Bot_Surf _Interaction) :
,ﬁ' sb17_sm?2 (-» SB17_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I Jﬁ sb18_sm2 (-> SB18_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I JEi' sb19_sm2 (-> SB19_TTF_Soldermask_Stratum_2 Bot_Surf Interaction) :

+ companent_interacbons |
component_interactions

component_interactions

component_interactions I
component_interactons

component_interacbons |
component_interactions |
component_interactions |
component_interactons |
component_interacbons |

| Jﬂ' sbl sm2 (-> SB1_TTF_Soldermask_Stratum_2_Bot_Surf Interaction) : component_interactions

| ,ﬁ' sh20_sm2 (-> SB20_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| Jﬁ sb21_sm2 (-> SB21_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| Jﬁ sb22 sm2 (-> SB22_TTF_Soldermask_Stratum_2 Bot_Surf _Interaction) :
I Jﬁ' sb23_sm2 (-> SB23_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
Jﬂ' sb24_sm2 (-> SB24_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
,ﬁ' sh25_sm2 (-> SB25_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I Jﬁ sb26_sm2 (-> SB26_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I JEi' sb27 _sm2 (-> SB27_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| B sb2s_sm2 (-> SB28_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| ,ﬁ' sb29_sm2 (-» SB29_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

component_interactbons
component_interactons
component_interacbons
component_interactions |
component_interactbons |

component_interactions |
component_interacbons |
component_interacbons |
component_interactons |
component_interacbons

| Jﬁ sb2_sm2 (-> SB2_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) : component_interactions I

JEi' sb30_sm2 (-> SB30_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

i JRi' sb31_sm2 (-> SB31_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction)

,[E'j' sb32_sm2 (-» SB32_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| JEi' sb33_sm2 (-> SB33_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I JRi' sb34 _sm2 (-= SB34_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I JBj' sb35_sm2 (-> SB35_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| &l sb36_sm2 (-> SB36_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

component_interacbons
: component_interactions |
component_interactbons |
companent_interactions |
component_interacbons |
component_interactions
component_interactbons

| ,Ei' sb3_sm2 (-> SB3_TTF _Soldermask_Stratum_2_Bot_Surf_Interaction) :
| ,lki' sbd_sm2 (-> SB4_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

,EE'.i' sb5_sm2 (-> SBS_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
| ,[Ei' sb6_sm2 (-> SBE_TTF_Soldermask_Stratum_2_Bot_Surf_[nteraction) :

,&i' sb7_sm2 (-> SB7_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
I )Bf sb8_sm2 (-> SB8_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :
! JB.i' sb9_sm2 (-> SB9_TTF_Soldermask_Stratum_2_Bot_Surf_Interaction) :

component_interactbons
component_interacbons
component_interactions
component_interactions
component_interactions
component_interactions
component_interactions

Figure 9.35: 36-solder body analyzable BGA design model structure (CP_BGA_5S2L_36SB)

Figure 9.36 illustrates the 36 analysis bodies created as a result of executing BMFS*
on analyzable BGA design model structure with 36 solder balls. The figure also shows the
36 tie interactions created between these 36 analysis bodies and the planar shell analysis

body corresponding to the last (bottom) stratum of the chip substrate.
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= [E] GSAB_SB1 : Generic_Solid_AB

- il associated_mb_property_attr (-> LEITI_GSAB_SB1) : associated_mb_prope

~JE' constituent_analysis_features_attr_ANF_SB1_Bot_Truncation_Feature (->.

)Bf constituent_analysis_features_attr_ANF_SB1_Top_Truncation_Feature (->
' id_attr (-> GSAB_SB1) : id

_ ;ai' shape_attr (-> TruncSphere_GSAB_SE1) : shape

# [E] ANF_SB1_Bot_Truncation_Feature : Analysis_Feature_ABB

#[E] ANF_SB1_Top_Truncation_Feature : Analysis_Feature_ABB

@ [E] LEITI_GSAB_SB1 : Linear_Elastic_Isotropic_Temperature_Independent_MB
@ [E] TruncSphere_GSAB_SB1 : Truncated_Sphere
#-[E] GSAB_SB10 : Generic_Solid_AB
@ [E] GSAB_SB11: Generic_Solid_AB
#[E] GSAB_SB12 : Generic_Solid_AB
@ [E] GSAB_SB13 : Generic_Solid_AB
@ [E] GSAB_SB14 : Generic_Solid_AB
#-[E] GSAB_SB15 : Generic_Solid_AB
#-[E] GSAB_SB16 : Generic_Solid_AB
#-[E] GSAB_SB17 : Generic_Solid_AB
- [E] GSAB_SB18 : Generic_Solid_AB
- [E] GSAB_SB19 : Generic_Solid_AB
- [E] GSAB_SB2 : Generic_Solid_AB
@ [E] GSAB_SB20 : Generic_Solid_AB
#-[E] GSAB_SB21 : Generic_Solid_AB
- [E] GSAB_SB22 : Generic_Solid_AB
#[E] GSAB_SB23 : Generic_Solid_AB
@ [E] GSAB_SB24 : Generic_Solid_AB
#-[E] GSAB_SB2S : Generic_Solid_AB
@ [E] GSAB_SB26 : Generic_Solid_AB
#-[E] GSAB_SB27 : Generic_Solid_AB
#-[E] GSAB_SB28 : Generic_Solid_AB
@ [E] GSAB_SB29 : Generic_Solid_AB
- [E] GSAB_SB3 : Generic_Solid_AE
- [E] GSAB_SB30 : Generic_Solid_AB
@ [E] GSAB_SB31 : Generic_Solid_AB
@ [E] GSAB_SB32 : Generic_Solid_AB
#-[E] GSAB_SB33 : Generic_Solid_AB
#[E] GSAB_SB34 : Generic_Solid_AB
@ [E] GSAB_SB3S : Generic_Solid_AB
#-[E] GSAB_SB36 : Generic_Solid_AB

36 analysis bodies
corresponding to solder balls

#-[E] GsaB_sB4
@ [E] GSAB_SBS
[E] GsAB_sBs
- [E] GSAB_SB7
@ [E] GsAB_sBS
- [E] GsaB sB9

: Generic_Solid_AB
: Generic_Solid_AB
: Generic_Solid_AB
: Generic_Solid_AB
: Generic_Solid_AB
: Generic_Solid AB
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36 tie interactions between analysis bodies (corresponding to solder balls) and
planar shell analysis body (corresponding to the bottom stratum of the substrate)

[E] Secondary_Surtace_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB10_Top_Truncation_Feature : Pertectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB11_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
E Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB12_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB13_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB14_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB15_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB16_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB17_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shel_AB_Soldermask_Stratum_2 - ANF_SB18_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_5B19_Top_Truncation_Feature ; Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB1_Top_Truncation_Feature : Perfectly Bonded_Solid_Shell_Interaction

[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SE20_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB21_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB22_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB23_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB24_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB25_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
E Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB26_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_5827_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB28_Top_Truncation_Feature ; Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB29_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB2_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction

[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB30_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shel_AB_Soldermask_Stratum_2 - ANF_5831_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
E Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB32_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB33_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB34_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB35_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB36_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction
[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB3_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shel_Interaction

[E] secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB4_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction

[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB5_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shel_Interaction

E Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB&_Top_Truncation_Feature ; Perfectly_Bonded_Solid_Shell_Interaction

[E] Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SB7_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction

[E] secondary_Surface_Planar_Shell_AE_Soldermask_Stratum_2 - ANF_SB8_Top_Truncation_Feature ; Perfectly_Bonded_Solid_Shell_Interaction

E Secondary_Surface_Planar_Shell_AB_Soldermask_Stratum_2 - ANF_SBS_Top_Truncation_Feature : Perfectly_Bonded_Solid_Shell_Interaction

=R - R R R R R - R - R R R R R - IR R R - R R R = R IR R B R R YR = R R R R R

Figure 9.36: Analysis bodies and tie interactions corresponding to 36 solder balls in CP_BGA_5S2L_36 SB

9.3.2 Behavior Model Formulation Specifications 2 (BMFS?)
In BMFS?, an alternate idealization is prescribed for the solder balls. In contrast with

BMFS!, the shape of a solder ball is to be idealized as a cuboid in BMFS? This type of
idealization is common for thermo-mechanical analyses of a BGA when the global behavior
of the package is to be computed (Zeng 2004). The shape transformation relations may vary
from (a) creating a cuboid whose height is same as the height of the truncated sphere (solder
ball shape), and whose length and width are same as the diameters of the sphere, to (b)
creating a cuboid those height is same as the height of the truncated sphere (solder ball
shape), and whose length and width are equal and computed such that volume of the cuboid

iIs same as the volume of the truncated sphere. The affect of this idealization change in
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BMFS? is seen at composition Stage 1 where analysis bodies corresponding to solder balls
are created.

Figure 9.37 illustrates the shape of the analysis body corresponding to solder ball
SB1, created in Stage 1 composition after executing BMFS? The figure shows the entity
representing the cuboid shape of this analysis body.

= [E] GsAB_SB1: Generic_Solid_AB «—— Analysis body corresponding to solder ball SB1
,Ri' associated_mb_property_attr (-> LEITI_GSAB_SB1) : assodated_mb_property
,Rf constituent_analysis_features_attr_ANF_SB1_Bot_Truncation_Feature (-> ANF_SB1_Bot_Truncation_Feature) :
,ﬁ constituent_analysis_features_attr_ANF_SB1_Top_Truncation_Feature (-> ANF_SB1_Top_Truncation_Feature)
JH' id_attr (-> GSAB_SB1) : id

& E ANF_SB1_Bot_Truncation_Feature : Analysis_Feature_ABB

#-[E] ANF_SB1_Top_Truncation_Feature : Analysis_Feature_ABB
[ TEJ Cuboid_GSAB_SB1 : Cuboid | Cuboid shape of analysis body
+-[E] LEITI_GSAB_SB1: Linear_Elastic_Isotropic_Temperature_Independent_MB

Figure 9.37: Analysis body corresponding to solder ball SB1 has a cuboid shape

Figure 9.38 shows the analyzable artifact-analysis body relationship between solder ball
SB1 and the corresponding analysis body. As shown, the shape idealization relationship is
an attribute of the analyzable artifact-analysis body relationship, and it represents the math
relations embodying the shape idealization transformations.

(=551 - GSAB_SB1 ASSOC : AA_ABS_Relationship | Relationship between solder ball SB1 and
JH' associated_aa_attr (-> SB1) : assocated_aa corresponding analysis body
,B.i' associated_abs_attr (-> GSAB_SB1) : assodated_abs
(Bi' constituent_af_anf_rels_attr_SB1_Bot_Truncation_Feature - ANF_SB1_Bot_Truncation_Feature (-> SB1_Bot_Truncation_Feature - ANF_SB1_Bot_Truncation_F
J& constituent_af_anf_rels_attr_SB1_Top_Truncation_Feature - ANF_SB1_Top_Truncation_Feature (-> SB1_Top_Truncation_Feature - ANF_SB1_Top_Truncation,
JE id_attr (-> SB81 - GSAB_SB1 ASSOC) : id
(Bi' shape_idealization_attr (-> SB1_Shape - Cuboid_GSAB_SB1 ASSOC) : shape_idealization
.rJ’ [E] TEIM Solder - LENTT_GSAE_SB1 ASSOC Matenal_Behavior_Matenal_Behavior_Refafionship
- [E] 581_Bot_Truncation_Feature - ANF_SB1_Bot_Truncation_Feature : AF_ANF_Relationship
[E_EJ S8 1_Shape - Cuboid_GSAB_S51 ASSOC : Geom_Geom Relationship | Shape idealization relationship
JEI' geom_geom_relations_attr_MathRel_SB1_Shape - Cuboid_GSAB_SB1 ASSOC (-> MathRel_SB1_Shape - Cuboid_GSAB_SB1 ASSOC) : geom_geom_relations
,BT id_attr (-> SB1_Shape - Cuboid_GSAB_SB1 ASSOC) : id
JE related_geometry_attr_Cuboid_GSAB_SB1 (-> Cuboid_GSAB_SB1) : related_geometry Analysis body shape
,BT relating_geometry_attr_SB1_Shape (-> SB1_Shape) : relating_geometry Solder ball Shape

[# [E] MathRel_SB1_Shape - Cuboid_GSAB_S81 ASSOC : Relation ] Math relation for shape idealization relationship
#-[E] SB1_Top_Truncation_Feature - ANF_SB1_Top_Truncation_Feature : AF_ANF_Relationship

Figure 9.38: Shape idealization relationship between truncated sphere shape of SB1 and cuboid shape of the
corresponding analysis body

In this case, no specific math relations are specified but the entity Relation (type of math

relation shown in the figure below) can represent the parameters and the math relations

among these parameters—similar to a constraint blocks in SysML.
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9.3.2.1 Simulation Template 16°: Simulation template for 16-solder ball analyzable BGA
model structure and BMFS?
The simulation template generated using BMFS? for CPM_BGA_5S2L_16SB—
analyzable BGA design with 16 solder balls—is same as shown for BMFS' (section 9.3.1.1)
except for the shape attribute of all analysis bodies corresponding to solder balls.

9.3.2.2 Simulation Template 35°: Simulation template for 36-solder ball analyzable BGA
model structure and BMFS?

The simulation template generated using BMFS? for CPM_BGA_5S2L_36SB—analyzable

BGA design with 36 solder balls—is same as shown for BMFS! (section 9.3.1.2) except for

the shape attribute of all analysis bodies corresponding to solder balls.

9.4 Execution of Simulation Templates

In this section, the value of a single simulation template in performing trade studies
on design alternatives is demonstrated. The simulation template shown here corresponds to
the simulation template STs' for thermo-mechanical analysis of 5-stratum PWBs per the
idealization decisions in BMFS! (section 9.2.1.1). The execution of this simulation template
in two different causalities—design verification and synthesis scenarios—is shown here. In
the design verification scenario, the values of design parameters are given and the values of
the analysis body parameters are computed. In the design synthesis scenario, the values of
analysis body parameters are given and the values of design parameters are computed. The
design synthesis scenario represents the case where analysts have optimized the
performance of the analysis body system and intend to update the design based on these
values. In each scenario, the simulation template can be used to solve for different values of
the “given” parameters to compute corresponding values of the “target” parameters.

Figure 9.39 below illustrates a high-level tree view of the simulation template that
would be automatically created using the Behavior Model Formulation Method. In this
figure, the simulation template has been loaded in ParaMagic™'—an object solver that can
execute math relationships for multiple causalities. The figure shows that the simulation
template is composed of the analyzable artifact structure (5-stratum PWBs) and a behavior
model structure (for thermo-mechanical analysis of PWBs). The 5 stratums of the PWB and
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the 5 planar shell analysis bodies (psabl-5) are shown in the figure. In addition, the
idealization relationships embodied in the simulation template can be seen in lower part of
ParaMagic browser.

N ParaMagic(TM) 15.5 sp1 - SmTempil FE)E
Simulation Template Name Symbol | Type o sl
L] ThermoMech_SimTempiate ] ThermoMech_SimTemplate
@) associatedPCE PCE
. | G- stratum_1_smask Stratum
S-stratum PCB deSlgn E]—. skratum_2_design Skraktum
El. stratum_3_dislectric Stratum
| [3-@ stratum_d_design Stratum

Behavior Model | - stratum_S_smask Stratum

@ Behaviorodel ThermoMech_BM
. ABESys
5-shell analysis / 5@ absystem Mulki_Shell_ABSystem
body system | B psab Planar_Shell_aAB
| B-@ psab2 Flanar_Shel_AB
I Planar_Shell_AB
. Planar_Shell_AB
i G- psabs Flanar_Shell_AB
EI'. behaviorCondition Paoint_Displacement_BC
| E- load Uniform_Temperature_Load
@ context ] Context

Behavior Model Context [ Expand || Colapse Al | = -

PR S

rook { ThermoMech_SimTemplate )

. . . Fﬁﬁe Tocal | On.., | Relaton Active
Ideal/zgt/or_v relationships el i associatedPCH . stratum_1_smask.shape.outline.L = beha... [+] A
embodied in the template\‘ a2 Y associstedPCH,stratum_1_smask.shape.outline. W = beha... E |

e3 A associstedPCE, stratum_1 _smask,shape.thickness = beha... [v]

ed \ associatedPCE stratum_1 _smask.materialBehavior .E = be. .. —'
26 \ associatedPCE, stratum_1 _smask.materialBshavior Nu = b...

7 ¥ associatedPCB.stratum_1_smask.materialBzhavior CTE = ... 2

Figure 9.39: Analyzable Artifact (PCB) and Behavior Model Context

Figure 9.40 and Figure 9.41 illustrate shape and material behavior idealization relationships
for a single stratum and analysis body in this simulation template (SysML block definition
diagram view). Note that the same structure is repeated for all stratums and analysis bodies
in the simulation template.
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par [Block] ThermoMech_SimTemplate [ ThermoMech_SimTemplate ]) =<hlock==

==hlack== = behaviorModel : ThermoMech_BM
associatedPCB : PCB 2<blocks>
==plockss g context: Context
stratum_1_smask : Stratum biock
=<ploCK=> E
<<hlock=> = stratum_psab_1 : Stratum_PSAB_Rel
shape : Planar_Shape
=<hlock== = ) ) ==hlock== ] )
outline : Rectangle shapeldealization : Planar_Shape_ldealization
<<ValueType>> <<ValueTypes> a2 ==<\alueType=>>
L : Real &1 L1 : Real L2 : Real
==<WalueType=> ==ValueType=> —
=<\alueType=> do a1
3 W2 : Real
W : Real R = el
<<ValueType== 4 <<ValueType=> 53 ==ValueTypes>
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Figure 9.40: Analyzable artifact and behavior model context relationships for a single stratum - SysML block definition diagram view
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Figure 9.42: Design verification scenario - Analysis body parameters computed from design parameters
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Figure 9.40 illustrates the connections between a stratum in the PWB design
model structure to the analyzable artifact—analysis body relationship in the Behavior
Model Context; and Figure 9.41 illustrates the connections between analyzable artifact—
analysis body relationship to the analysis body in the analysis body system.

Figure 9.42 above shows an expanded tree view of the simulation template in
ParaMagic browser for a single PWB design model instance. For a given PWB design
model structure in the simulation template, multiple instances may be defined
(corresponding to different values of parameters). The figure shows the given values of
shape and material behavior parameters for all 5 stratums in the PWB. The figure also
shows that the shape and material behavior parameter values for the 5-stratum analysis
body system are targets. When the simulation template is executed (using ParaMagic) to
solve for values of the analysis body system parameters, they are computed as shown in
the figure as target values in the solved state. ParaMagic uses Mathematica to solve for
the idealization relationships embodied in the simulation template. Note that the
computed values of the target parameters are the same as given parameters because the
idealization relationships in this simulation template equated the material behavior and
shape parameters of stratums to those of planar shell analysis bodies. More complex
idealization relationships can be embodied in the SysML constraint blocks shown in
Figure 9.40 and Figure 9.41.

For the design verification scenario, shape and material behavior parameters of
planar shell analysis bodies are computed for different values of shape and material
behavior parameters of PWB design stratums. This corresponds to formulating behavior
model instances (B5 models) for design model instances (D5 models). Figure 9.43
illustrates executions of the simulation template STs* (illustrated in Figure 9.40, Figure
9.41, and Figure 9.42) for two design model instances. In the first design model
instance—Ileft hand side of the Figure 9.43—the effective co-efficient of thermal
expansion (CTE) of the bottom design layer (stratum_4_design) is higher than that of the
top design layer (stratum_2_design), other aspects of the stackup remaining balanced.
Hence, when the PWB is heated from 25°C - 250°C, the bottom design layer expands
more than the top design layer, resulting in a bowl-shaped deformation of the PWB
(concave when viewed from the top). In the second design instance—right hand side of
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the Figure 9.43—the effective co-efficient of thermal expansion of the top design layer
(stratum_2_design) is higher than that of the bottom design layer (stratum_4_design),
other aspects of the stackup remaining balanced. Hence, when the PWB is heated from
25°C - 250°C, the top design layer expands more than the bottom design layer, resulting
in a dome-shaped deformation of the PWB (convex when viewed from the top).

Figure 9.44 illustrates the execution of the same simulation template (STs') in the
design synthesis scenario. Here, a design model instance (D5 model) is automatically
created from a given behavior model instance (B5 model) using the simulation template.
This scenario represents the use case where an analyst optimizes the shape and/or
material behavior properties of a multi-shell system to minimize the out-of-plane
deformation. The optimal multi-shell system (represented as a behavior model instance)

is then used to derive a PWB design instance.
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The automated creation of behavior model instances corresponding to different
design model instances using a simulation template demonstrates the value of simulation
templates in performing trade studies over fixed topology design alternatives. The
capability of the Behavior Model Formulation Method to automatically create simulation
templates for variable topology design alternatives greatly enhances the effectiveness of
analysis problem formulation process. The FEA results also validate the completeness of
information represented by the KCM meta-models. If the information were incomplete,
solution method-specific models (such as FEA models) could not have been solved. The
behavior model instances formulated by executing simulation templates are independent
of the solution method (FEA in this case), and can be solved using different solution

methods and solvers.

9.5 Validation of Research Hypotheses

In this section, the primary and secondary research hypotheses are validated using
results obtained for two classes of analysis problems using KCM’s Behavior Model
Formulation Method. First, both the secondary research hypotheses are discussed. The
validation of the primary research hypothesis depends upon the validation of the
secondary research hypotheses. Capabilities of specific aspects of the test results and
KCM components in the context of each hypothesis are highlighted. Then, a description
of the effectiveness of the Knowledge Composition Methodology for analysis problem
formulation is presented. The focus of this description is to present how KCM answers
the primary research question in general, including addressing the two research gaps

identified in section 2.4.2.
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9.5.1 Validation of Secondary Research Hypothesis 1
The secondary research question SRQ1 and the corresponding hypothesis

presented in Chapter 4 are stated below.

Secondary Research Question 1 (SRQ1): How can we formalize an ABB such that it can

be reused for composing simulation templates?

Hypothesis (SRH1): We can formalize an ABB such that it can be reused for composing

simulation templates by:

= using a non-causal, declarative formalism to describe the concept and the knowledge
represented by an ABB

= using a model transformation-based formalism to describe the method for using an
ABB when composing simulation templates

The validation approach for SRH1 is founded on selecting formalism for
representing ABBs, and demonstrating that ABBs represented in this formalism can be
reused for composing simulation templates.

The ABB Meta-Model (section 7.2) of the Knowledge Composition Methodology
provides the formalism for representing analysis building blocks (ABBs). It defines the
nature of knowledge represented in ABBs. It defines four aspects of this knowledge—
context, property, application conditions, and application transforms. The first two
aspects represent the concept and the knowledge embodied in an ABB, and the second
two aspects represent the conditions and model transformations associated with using an
ABB for composing simulation templates. The ABB Meta-Model presented in section 7.2
specifically describes the context and property attributes of 9 different types of ABBs,
such as analysis body ABBs and load ABBs. The ABB library presented in section 7.3
shows examples of each of different types of ABBs. SysML blocks (extensions of UML
classes) provide a non-causal and declarative formalism to describe the concept
embodied in an ABB.

The other two aspects of the knowledge embodied in an ABB (application
conditions and application transforms) are represented using graph patterns and graph
transformation rules respectively. The Artifact Model Transformation Library presented
in section 8.4 defines Type 1 graph transformation rules for creating ABB instances, and
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Type 2 graph transformation rule for associating an ABB instance with other parts of a
simulation template. The composition of a simulation template is presented in four stages
and the types of ABBs participating in each composition stage are presented in section
8.2.1.,

Simulation templates automatically created for test case families 1 and 2 (sections
9.2 and 9.3 respectively) demonstrate that ABBs defined using the ABB Meta-Model can
be used for composing simulation templates. For each test case family, four simulation
templates are automatically created for variation of VTMB design alternatives and
idealization decisions. Depending upon the idealization decisions, the simulation
templates reuse the same ABB definitions (including the patterns and transformation
rules for each ABB). For example, analysis body ABBs (representing planar shell
analysis body), material behavior ABBs (representing isotropic and orthotropic material
behaviors), temperature load ABB, and behavior conditions ABBs defined in the ABB
Library and the Artifact Model Transformation Library are used for all 8 simulation
templates created in the test case families 1 and 2. As shown in Figure 9.2, the ABB
Library and Artifact Model Transformation Library are pre-loaded in the KCM model
space in the VIATRA model transformation framework before the simulation templates

are automatically created.

9.5.2 Validation of Secondary Research Hypothesis 2
The secondary research question SRQ2 and the corresponding hypothesis

presented in Chapter 4 are stated below.

Secondary Research Question 2 (SRQ2): How can we systematically and automatically

compose simulation templates from ABBs?

Hypothesis (SRH2): We can systematically and automatically compose simulation

templates from ABBs by:

= representing idealization decisions in terms of specific ABBs to be used in composing
simulation templates and the conditions for using these ABBs

= formalizing the process of composing simulation templates as a model transformation
process that automatically creates simulation templates for VTMB design alternatives

and idealization decisions
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The Behavior Model Formulation Method defines Behavior Model Formulation
Specifications (BMFS) for representing the idealization decisions taken by analysts in
Figure 8.4. The conceptual specifications in BMFS are used by analysts in terms of the
ABBs used for each composition stage, including conditions that need to be satisfied for
using specific ABBs. The computable specifications are in the form of a script for
explicitly scheduling the graph transformation rules for composing simulation templates.
The computable specifications are derived from the conceptual specifications.

In both test case families (TCF1 and TCF2), two different conceptual
specifications (BMFS' and BMFS?) are defined for composing simulation templates.
These conceptual specifications are defined in terms of the ABBs used for composing
simulation templates and conditions for using each ABB. For example, in BMFS' of test
case family 1, all stratums of a PCB are to be idealized as planar shell analysis bodies.
This is realized by creating an instance of planar shell analysis body ABB for each PCB
stratum. The conditions for using ABBs may be existential (all stratums are idealized as
planar shell analysis bodies), or based on values of certain properties of design objects—
the material behavior of stratums with conductive function is idealized as linear, elastic,
isotropic, and temperature independent.

The Behavior Model Formulation Method presented in Chapter 8 prescribes a
model transformation process based on graph transformations for automatically
composing simulation templates for VTMB design alternatives and idealization
decisions. Simulation templates automatically created for both test case families (TCF1
and TCF2) validate the capability of the Behavior Model Formulation Method in creating
simulation templates. In TCF1, design model structures PWB_5S2L and PWB_9S4L
represent two families of PWB design alternatives. Design alternatives in one family are
topologically non-equivalent to the design alternatives in the other family. For two sets of
idealization decisions (BMFS' and BMFS?) and two design model structures, the
Behavior Model Formulation Method automatically generates four different simulation
templates—one for each combination of BMFS and design model structure. Similarly in
TCF2, design model structures CP_BGA 5S2L _16SB and CP_BGA 5S2L_36SB
represent two families of BGA chip package design alternatives such that design
alternatives in one family are topologically non-equivalent to design alternatives in the
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other family. For two sets of idealization decisions (BMFS* and BMFS?) and two design
model structures, the Behavior Model Formulation Method automatically generates four
different simulation templates—one for each combination of BMFS and design model

structure.

9.5.3 Validation of Primary Research Hypotheses
Validation results for the secondary research hypotheses above also validate the

primary research hypothesis indirectly. In this section, a summary of results from test
case families (TCFs) 1 and 2 is presented in support of the primary research hypothesis.
The intent of this section is to describe the effectiveness of KCM’s Behavior Model

Formulation Method in formulating analysis problems.

VTMB
variations

Idealization Formulation
variations Efficiency

Figure 9.45: Measures of effectiveness of analysis problem formulation

In section 2.4, three measures of effectiveness of analysis problem formulation
methods were presented. As shown in Figure 9.45, these measures are: (1) VTMB
variations, (2) ldealization variations, and (3) Formulation Efficiency. As described in
section 2.4, the effectiveness of a method for anlysis problem formulation depends on its
ability to address VTMB problems and variations in idealization decisions, and formulate
simulation templates efficiently. Quantitative results for the first two measures of
effectiveness (VTMB variations and Idealization variations) of the Behavior Model
Formulation Method as applied to test case families 1 and 2 are presented in sections
9.5.3.1 and 9.5.3.2 respectively. Results for the third measure-of-effectiveness
(Formulation efficiency) are presented in section 9.5.3.3.

Table 9.5 below summarizes the effectiveness of the Behavior Model Formulation
Method—as applied to test case families TCF1 (section 9.2) and TCF2 (section 9.3)—in

terms of its ability to address VTMB variations and idealization variations. For each test
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case family, the table shows results for the four simulation templates automatically
generated for combinations of two Behavior Model Formulation Specifications (BMFS*
and BMFS?) and two VTMB design alternatives. Eight columns corresponding to eight
simulation templates created for the two test case families are shown in the table. The
rows in the table show results for two measures of effectiveness of Behavior Model
Formulation Method. The first set of rows corresponds to VTMB design variations, and
the second set of rows corresponds to idealization variations.

Table 9.5: VTMB design variations and Idealization variations results for TCF1 and TCF2
(Measures of effectiveness of the Behavior Model Formulation Method)

Test Case Family 1 Test Case Family 2
Test Case Families —=|(PWB thermo-mech analysis)| [BGA thermo-mech analysis)
|dealization Decisions = BIMFS BMFS5- BMFS BIMFS®
E E E E o o o ]
= = = E= N = O = T = =
WTMB Wariations —» E % g *..‘E: E @ E @ E @ E @
[Ty) [a3] (] (a3 - {2 - {2
Simulation Template IDs —»| 5T:' | STy’ | 572 | T2 | ST STas' | STee” | STas”
VTMB Design Variations
Mumber of components 5 9 5 9 25 45 25 45
Types of components 3 3 3 3 g8 g8 g8 8
Levels of components 1 1 1 1 2 2 2 g
Mumber of interactions 4 B 4 g 24 44 24 44
Types of interactions 2 2 2 2 7 7 7 7

—
]
]
o]
—
]
]
Lo ]
= |.
w
o0
w
=
w
o0
w

Mumber of features

Types of features 5 5 5 5 9 9 9 9
Idealization Variations
Types of analysis bodies (ABs) 1 1 1 1 2 2 2 2
Types of analysis body shapes 1 1 1 1 4 4 4 4
Types of material behaviors 1 1 2 2 2 2 2 2
Types of analysis features 3 3 3 3 3 3 3 3
Types of AB systems 1 1 1 1 2 2 2 2
Types of AB interactions 1 1 1 1 3 3 3 3
Types of loads 1 1 1 1 1 1 1 1
Types of behavior conditions 1 1 1 1 1 1 1 1
Based on entity types Wes | Yes | Yes | Wes | Yes | Yes | Yes | Yes
Based on attribute values Yes | Yes | Yes | Yes | Yes | Yes

Results presented in this table are described below.

9.5.3.1 VTMB Design Variations
The first set of rows in Table 9.5 measure VTMB variations of the design

alternatives in each of the test case families. The variations are measured in terms of the
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key factors that are used for defining the assembly system topology of artifacts. As
described in section 2.3, assembly system topology is characterized using number and
types of components in an assembly, interactions among components in an assembly, and
the features participating in these interactions. These six aspects are used for
characterizing the VTMB variations for the design alternatives in the two test case
families (TCF1 and TCF2). For TCF1 in which simulation templates are created for
thermo-mechanical analysis of printed wiring boards (PWBSs), there are two families of
PWB design alternatives—one family of design alternatives for PWBs with 5 stratums
and one family of design alternatives for PWBs with 9 stratums. For TCF2 in which
simulation templates are created for thermo-mechanical analysis of BGA chip packages,
there are two families of BGA design alternatives—one family of design alternatives for
BGAs with 16 solder balls and one family of design alternatives for BGAs with 36 solder
balls. The six aspects used for measuring VTMB variations in these design alternatives
and the quantitative values for each design alternative are as described below.

= Number of components, as the name implies, corresponds to the number of components
(analyzable artifacts) in the artifact assembly. For TCF1, the PWB stratums are the
components. Thus, PWB design alternatives with 5 stratums have 5 components, and
PWB design alternatives with 9 stratums have 9 components. For TCF2, the
components in the BGA assembly consists of (1) chip mold, (2) chip, (3) die attach, (4)
substrate, (5) stratums in the substrate, (6) solder balls. Thus, BGA design alternatives
with 16 solder balls have 25 components—1 of each of the first four component types,
5 stratums in the substrate, and 16 solder balls. Similarly, BGA design alternatives

with 36 solder balls have 45 components.

= Types of components correspond to the number of components with distinct functions.
PWB design alternatives in TCF1 have three types of stratums—conductive, dielectric,
and soldermask. Similarly BGA design alternatives in TCF2 have 8 types of
components—chip mold, chip, die attach, substrate, 3 types of stratums in the

substrate, and solder ball.
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= Levels of components imply if the components are leaf-level components in the
assembly or composed of multiple levels of sub-assemblies. PWB design alternatives
in TCF1 have only one assembly level—PWB is an assembly composed of stratums.
BGA design alternatives in TCF2 have two assembly levels—BGA assembly consists

of a substrate that is composed of stratums.

= Number of interactions corresponds to the number of interactions among components
in the assembly. For PWB design alternatives in TCF1, there are 4 interactions among
stratums for 5-stratum PWBs and 8 interactions among stratums for 9-stratum PWBs.
For BGA design alternatives in TCF2, the number of interactions are counted in terms
of interactions between (1) mold and chip, (2) mold and substrate, (3) chip and die
attach, (4) die attach and substrate, (5) stratums in the substrate, and (6) solder balls
and substrate. Both 16-solder ball and 36-solder ball BGA design alternatives have one
interaction of each of the first four types, 4 interactions between the stratum substrates,
and one interaction between each of the solder balls and the substrate. Thus, the two

sets of design alternatives have 24 and 44 interactions respectively.

= Types of interactions are counted based on the types of components participating in the
interactions. For PWB design alternatives in TCF1, there 2 types of interactions—one
between soldermask stratums and conductive stratums, and one between conductive
stratums and dielectric stratums. For BGA design alternatives in TCF2, there are 7
types of interactions—2 types for the substrate and 5 other types as described above in

Number of interactions.

= Number of features corresponds to the number of analyzable features defined on
components. For PWB design alternatives in TCF1, (1) two features are defined for
each stratum corresponding to its surfaces, (2) a feature is defined corresponding to the
volume of the PWB, and (3) a feature is defined corresponding to the mid-point of the
bottom surface of the last stratum in the stackup. Thus, PWB design alternatives with 5
and 9 stratums have 12 and 20 features respectively. For BGA design alternatives in
TCF2, (1) one feature is defined for the mold, (2) two features are defined for the die
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attach, chip, each solder ball, and each stratum in the substrate, (3) one feature is
defined corresponding to the volume of the BGA assembly, and (4) one feature is
defined corresponding to the mid-point of the bottom surface of the last stratum in the
substrate stackup. Thus, BGA design alternatives with 16 and 36 solder balls have 49

and 89 features respectively.

Types of features are characterized based on the shape of the feature, function of the
feature, type of artifact for which the feature is defined, or a combination of these. In
the table, the types of features are characterized based on their shape and the type of
artifact for which the feature is defined. For PWB design alternatives in TCF1, there
are 5 types of features—3 types corresponding to the surfaces of 3 types of stratums, 1
type corresponding to the PWB volume, and 1 type corresponding to the mid-point of
the bottom stratum. For BGA design alternatives in TCF2, there are 9 types of

features—7 types corresponding to each of the seven types of leaf-level?’

components,
and 2 types corresponding BGA volume and mid-point of the bottom surface of the last

stratum in the substrate stackup.

In summary, the results from TCF1 and TCF2 demonstrate the Behavior Model
Formulation Method can be used for formulating simulation templates for large set of

design variations, especially VTMB-type variations.

9.5.3.2 Idealization Variations

The second set of rows in Table 9.5 measure types of idealizations used for
formulating simulation templates in both test case families TCF1 and TCF2. The
idealization variations are measured in terms of the number of specializations of each
type of ABB used in formulating simulation templates. The table shows eight®® types of

ABBs used for measuring the variations in the idealizations. Two additional criteria are

2 No features are defined for the substrate (as a whole) for BGA alternatives in TCF2
% All structural behavior parameters are to be computed for the test case families. Hence, behavior ABB does not

contribute to the variations.
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used to denote if idealization decisions were specified in terms of types of design objects
(components, features, and interaction), or also using the properties of these objects.

Note that the rationale for defining analysis building blocks is that a relatively
small set of ABBs can be used for formulating a large class of analysis problems. Hence,
an entire class of analysis problems, such as thermo-mechanical analyses of PWBs, can
be formulated using a few specializations of each type of ABB. The type of ABB

corresponds to the type of decision taken by analysts.

= Types of analysis body ABBs: One specialization of analysis body ABB (planar shell
analysis body ABB) is used for simulation templates created in TCF1, and two
specializations of analysis body ABB—planar shell analysis body ABB and generic

solid analysis body ABB—are used for simulation templates created in TCF2.

= Types of shape ABBs: One specialization of shape—planar shell shape—is used for
simulation templates created in TCF1 and four specializations of shape—
corresponding to the shape of mold, chip, die attach or substrate stratums, and solder

ball—are used for simulation templates created in TCF2.

= Types of material behavior ABBs: Except for simulation templates created using
BMFS' in TCF1, all simulation templates created in TCF1 and TCF2 use two
specializations of material behavior ABB, corresponding to linear elastic isotropic
temperature-independent and linear elastic orthotropic temperature-independent

material behaviors.

= Types of analysis feature ABBs: In the simulation templates created in TCF1, 3
specializations of analysis feature ABBs are used—point feature, planar surface
feature, and volume feature ABBs. In addition to these three analysis features,
simulation templates created in TCF2 also used a generic surface analysis feature for

representing the non-planar surfaces, such as the bottom surface of the mold.
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= Types of analysis body systems: For simulation templates created in TCF1, one type of
analysis body system (multi-shell analysis body system) is used, and for simulation
templates created in TCF2, two types of analysis body systems are used—multi-shell

system for the BGA substrate used in a solid-shell system.

= Types of analysis body interaction ABBs: For simulation templates created in TCF1, 1
type of analysis body interaction ABB is used (shell-shell tie interaction ABB), and for
simulation templates created in TCF2, 3 types of analysis body interaction ABBs are

corresponding to tie interactions between two solids, solid and shell, and two shells.

= Types of load ABBs and behavior condition ABBs: For simulation templates created in
TCF1 and TCF2 one type of load ABB (temperature load) and one type of behavior
condition ABB (point displacement fixed condition ABB)

Though the number of specializations of each ABB type demonstrated for
simulation templates in TCF1 and TCF2 is low, the process is similar for using other
specializations defined in the ABB Library or those that can be created based on the ABB
Meta-Model. Graph patterns and transformation rules defined in the Artifact Model
Transformation Library for composition Stages 1-4 are defined in terms of the different
ABB types. Thus, all specializations of each ABB type can use the same set of patterns
and rules for composition. If relationships particular to a specialized ABB need to be
created in these composition stages, existing patterns and rules for that ABB type can be
extended or new patterns and transformations rules may be created.

In addition to the types of ABB used for representing the idealization decisions,
the Behavior Model Formulation Method also allows analysts to specify conditions for
idealization decisions. Conditions can be specified based on the types of design objects,
such as those that check for the existence of a specific type of component, or feature, or
interaction in the design assembly. Conditions can also be specified based on the
properties of design objects or other properties derived from these properties, such as
those that check for attribute values of specific types of components, features, or
interactions. As an example, in TCF1, simulation templates created for BMFS? check the
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value of the function attribute of stratums to use isotropic versus orthotropic material
behavior.

In summary, the results from TCF1 and TCF2 demonstrate the Behavior Model
Formulation Method can be used for formulating simulation templates for variations in

idealization decisions taken by analysts.

9.5.3.3 Formulation Efficiency

In this section, quantitative results for Formulation Efficiency (third measure-of-
effectiveness) of the Behavior Model Formulation Method (BMFM) in creating
simulation templates for test case families TCF1 and TCF2 are presented. Table 9.6
below consists of two sets of rows. The first set of rows present results for the
formulation efficiency of KCM’s BMFM (referred in the table as KCM for brevity). The
second set of rows show the number of entities in the source model (given) and the
number of entities automatically generated by the BMFM in formulating simulation
templates.

The formulation efficiency of the BMFM is characterized in terms of the
percentage reduction in the time taken to formulate simulation templates using the
BMFM versus current methods. The table shows how the cost of formulating simulation
templates using the BMFM is computed. Here, cost is measured in terms of time
(assuming a constant cost/time factor). The cost of formulating simulation templates
using the BMFM consists of two parts: (1) Fixed cost, and (2) Marginal cost.

The fixed cost is an upfront cost to create VTMB design meta-model (D3 model),
create ABBs, and specialize pre-defined patterns and transformation rules (if needed).
KCM provides the CPM2_xKCM model that can be directly used as a VTMB design
meta-model for a particular artifact. For TCF1, it took 5 hours to define a D3 model
(PDMM and PAMM in section 6.2); and for TCF2, it took 7 hours to define a D3 model
Note that a VTMB design meta-model is used for representing design alternatives with
different assembly system topologies, and not specific to a particular type of analysis.
The time for creating D3 models (as shown in the table) is based on the assumption that

the D3 models did not exist previously (worst case scenario).
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Table 9.6: Formulation Efficiency results for TCF1 and TCF2
(Measure-of-effectiveness of the Behavior Model Formulation Method)

Test Case Families >> TCF1 TCF2
Idealization Decisions >>|  BMFS’ BMFS® BMFS" BMFS®
ElVE| 5|5 |&_|s_|g_|&_
VIMB Variatons>> & | € | E | E [28[28|2E[g%
el 2212 |g | |g
Lo (o)) Lo [e)] — ™ — o
Simulation Template 1Ds >>[ ST.' | ST, | ST | STo? | STuet | STagt | STue? | STae?
Formulation Efficiency
cost stated below in terms of time taken
Total Cost (in terms of time taken) using KCM
Fixed Cost
Create VTMB design meta-model (D3) 5h 7h
Create library primitives (ABBs) 10n" 18h™
Specialize/Extend patterns and transformation rules 2h 2h
Marginal Cost | | |
Define conceptual specifications (minutes) 10m° 2m*** 30m° Sm***
Automatically generate simulation template <b5s| <5s|<b5s| <b5s| <5s |<15s| <5s|< 15s
7otal Cost per template using KCM = Fixed Cost / Number of templates + Marginal cost
Total Cost per template (for 20 templates) 0.93h] 0.93h]0.95h| 0.95h| 1.6h | 1.6h | 1.64h] 1.64h
Total Cost per template (for 40 templates) 0.51h] 0.51h]0.53h| 0.53h| 0.93h | 0.93h] 0.97h] 0.97h
Total Cost per template (for 80 templates) 0.30h| 0.30h]0.31h| 0.31h| 0.59h | 0.59h | 0.63h] 0.63h
Total Cost (in terms of time taken) using Current Methods 5h° | 30| 2h™"| 50" | 15h° | 50| 50" | 100"
Reduction in time (KCM versus Current Methods)
% Reduction in time for 20 templates 81% | 88% | 86% | 91% | 89% | 92% | 92% | 93%
% Reduction in time for 40 templates 90% | 94% | 92% | 95% | 94% | 95% | 95% | 96%
% Reduction in time for 80 templates 94% | 96% | 96% | 97% | 96% | 97% | 97% | 97%
**[1 hr / ABB x 10-18 ABBs]=10-18 hrs; "*"additional time with respect to the base time; X" base time for TCF
Number of given and generated entities
Given entities
(FTMB Analyzable Artifact Model Structure)
Number of analyzable artifacts (AAs) 5 9 5 9 25 45 25 45
Aux entities (shapes, material behaviors,...) 10 18 10 18 50 90 50 90
Number of interactions (AAI) 4 8 4 8 24 44 24 44
Number of analyzable features (AFs) 12 20 12 20 49 89 49 89
Aux entities (shapes,...) 12 20 12 20 49 89 49 89
Number of given entities* 43 75 43 75 | 197 | 357 | 197 | 357
Automatically generated entities
(FTMB Artifact Behavior Model Structure)
Number of analysis bodies (ABs) 5 9 5 9 25 45 25 45
Aux entities (shape, material behavior) 10 18 10 18 50 90 50 90
Number of AB - AA relations 5 9 5 9 25 45 25 45
Aux entities (shape idz, material behavior idz) 10 18 10 18 50 90 50 90
Number of analysis body interactions (ABI) 4 8 4 8 24 44 24 44
Number of AAI - ABI relations 4 8 4 8 24 44 24 44
Number of analysis features (ANFs) 12 20 12 20 49 89 49 89
Number of AF - ANF relations 12 20 12 20 49 89 49 89
Aux entities (shape idz) 12 20 12 20 49 89 49 89
Number of generated entities* 74 | 130 ] 74 | 130 | 345 | 625 | 345 | 625
Number of entities in a simulation template* 117 | 205 | 117 | 205 | 542 | 982 | 542 | 982

* excluding attribute relations and auxiliary entities
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Similarly, 10 ABBs were used for TCF1 and 18 ABBs were used for TCF2. Assuming
that these ABBs did not exist in the library, it would typically take 1 hour to create an
ABB model as an instance of KCM’s ABB Meta-Model. Also assuming that pre-defined
transformation rules and patterns may need to be extended for new D3 models defined as
specializations of CPM2_xKCM, the table shows an additional 2 hours for such
extensions. Note that these three component costs of the total fixed cost are expended
once upfront. The required time (as shown in the table) is also based on the assumption
that ABBs and meta-models required for the two test case families were completely
different (which was certainly not the case). This is also a worst-case scenario.

The marginal cost is the additional cost to formulate each simulation template
beyond the fixed cost. The marginal cost for formulating simulation templates using the
BMFM consists of two components: (1) cost to specify idealization decisions (conceptual
specifications), and (2) cost to automatically generate simulation templates. As with the
fixed cost, the marginal cost is also stated in the table in terms of the time. For TCF1, the
time required for defining conceptual specifications BMFS* was around 10 minutes, and
the time required to modify BMFS® to create BMFS?was around 2 minutes. Similarly, for
TCF2, the time required for defining conceptual specifications (BMFS') was around 30
minutes, and the time required to modify BMFS' to create BMFS? was around 5 minutes.
The time taken to automatically generate simulation templates was of the order of
seconds (15 seconds for the the 36-solder ball BGA design in TCF2).

The table shows the total cost of formulating each simulation template as a sum of
the fixed cost per template and the marginal cost. The fixed cost per template is computed
by dividing the total fixed cost with the number of simulation templates (as an estimate)
for which the meta-models and ABBs can be reused. The total cost of formulating each
simulation template is computed based on the fixed cost distributed over 20, 40, or 80
simulation templates. Note that the estimated numbers of simulation templates over
which the fixed cost is distributed are realistic. As an example, 8 simulation templates are
created for two test case families TCF1 and TCF2 for only two VTMB variations and two
idealization variations.

In the BMFM, the conceptual specifications are defined once for all VTMB

variations. However, this is not the case for existing methods where variations in the
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number or configuration of components and interactions require significant increases in
the amount of time spent in formulating simulation templates. As an example, the time
required for formulating the simulation template shown in Figure 9.40 and Figure 9.41
(for 5-stratum PWBs based on BMFSY) is around 5 hours—based on personal
experiences by the author. Table 9.6 also shows the time required for formulating
simulation templates manually and modifying them for VTMB variations and idealization
variations. As an example, it would take ~5 hours to formulate STs' (simulation
templates for 5-stratum PWB based on BMFS') and an additional 3 hours to add more
relationships for 9-stratum PWB (based on the same BMFS). With changes in the BMFS,
the time required to manually re-wire simulation templates can be significant too. For
example, it took 2 additional hours to modify STs' for BMFS?, thereby resulting in STs.
In addition to time, manual “re-wiring” of simulation templates is more error-prone and
may require significant debugging effort.

Based on the time required to formulate simulation templates using the KCM and
using current methods, the percentage reduction in time (using the KCM versus current
methods) is presented in Table 9.6 for each simulation template. The percentage
reduction is presented for all the three scenarios—fixed cost in formulating simulation
templates using the KCM is distributed over 20, 40, and 80 simulation templates.
Overall, the results show 90% or greater (on average) reduction in the time required for
formulating simulation templates using the KCM versus current methods. The results
clearly support the higher formulation efficiency of the KCM when compared to current
methods.

Note that the fixed costs depend on the meta-models, ABBs, and extensions to
pre-defined transformation rules and patterns for formulating simulation templates. With
a lower fixed cost, the breakeven point for formulating simulation templates using the
KCM may seem to be achievable with less usage. However, this is countered by the lost
opportunity to formulate a larger variety of simulation templates. Meta-models and ABBs
that may be used for representing only few types of artifact design variations and for
formulating simulation templates for specific analyses may lower the fixed cost but add

to the lost opportunity to formulate a large set of simulation templates.
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The contribution of different aspects of the KCM in increasing the set of
simulation templates that may be formulated using the Behavior Model Formulation

Method, thereby lowering the cost and effort to do so is described below:

= Meta-Models: KCM provides meta-models for representing different aspects of
simulation templates. CPM2_xKCM—extension of CPM2 (Fenves 2004)—is a
generic meta-model for abstract representation of design alternatives in different
application areas. Chapter 6 illustrates how artifact-specific design meta-models can be
defined as specializations of CPM2_xKCM. These artifact-specific meta-models can
be used for representing VTMB design alternatives of the artifact. The Core Behavior
Model (Chapter 7) provides an abstract meta-model for representing physics-based
behavior models for VTMB problems, including idealization relationships between
design models and behavior models. The CBM is abstract and extensible. It depends
on the analysis building blocks (ABBs) to represent domain-theoretic analysis

knowledge.

= ABB Library: KCM provides an initial library of ABBs that can be used as-is. Nine

different types (categories) of ABBs are defined in the ABB Meta-Model. The library

contains specializations of each ABB type. Additional specializations of ABBs can be

easily defined. Creation of simulation templates for a new class of problems requires

creation of new specializations of existing types of ABBs. Creation of new ABBs is

one of the few aspects of the KCM that is requires effort. However, this effort is

minimal and can enable formulation of simulation templates for a large class of

analysis problems as below.

0 A large class of analysis problems can be addressed by each new specialization of an
ABB type.

0 The number of specializations of each ABB type for a given physics-based domain
(such as structural analysis or thermal analysis) is limited.

o If anew ABB can be associated with concepts in the solver tools, such as an element
type in an FEA solver, then analysts do not need to represent all domain theoretic
mathematical relationships when defining ABBs, thus saving time and effort. For
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example, the definition of a shell analysis body ABB does not require the
representation of domain theoretic equations for shell behavior since FEA tools (for

example) have elements to represent shells.

= Artifact Model Transformation Library: KCM provides a library of reusable graph
patterns and transformation rules based on the meta-models. For the design model
stack, these rules and patterns are defined at both Level 1 and Level 3. For the behavior
model stack, these rules and patterns are defined at Level 1, for each ABB type, and in
some cases for specializations of ABB types. Since Level 1 meta-models do not
change from one class of problems to another, the graph patterns and transformation
rules defined for them can be reused for all types of simulation templates formulated
using the Behavior Model Formulation Method. The Level 3 meta-model in the design
model stack is for representing VTMB design alternatives for an entire family of
artifacts, such as printed wiring boards. This governs the applicability of graph patterns

defined for Level 3 meta-models in the design model stack.

= Conceptual specifications to control computable specifications: One of the key factors
that contribute to the efficiency of formulating simulation templates using KCM’s
Behavior Model Formulation Method is the ability to change idealizations with relative
ease. As demonstrated for test case families TCF1 and TCF2, the conceptual
specifications are defined in terms of the ABBs, including the conditions for using
specific ABBs. This provides a higher level of semantic handle on defining
idealizations as opposed to writing procedural code (such as the computable

specifications).

= Use of graph transformation-based approach to compose simulation templates: The use
of the graph transformation-based approach to model composition provides a modular
and extensible to automatically formulate simulation templates. Graph patterns,
transformation rules, and transformation process together provide a three-tier
framework (Figure 8.22, section 8.2.3) for formulating simulation templates. Graph
patterns provide a declarative and highly efficient representation for describing
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conditions and constraints, as well as searching model elements. Due to their non-
causal representation, a single pattern can be used for achieving multiple use causes
depending upon variables that are bound or unbound during pattern calls (section
8.2.3). In addition, graph transformation rules enable the representation atomic units of
model transformations that can reused across for formulating simulation templates.
Graph transformation rules provide a declarative representation of a transformation
step in terms of the source and target model graphs and not in terms of the process of
creating a target model graph. This approach is more intuitive to modelers and analysts
who want to define new specializations of ABBs or extend the KCM meta-models.
Table 9.6 also presents a summary of the number of entities in the source model
and the number of entities automatically generated by the BMFM when formulating
simulation templates (target models) for TCF1 and TCF2. The numbers provide an
estimate of the number of entities automatically created in formulating information-rich
simulation templates. As an example, for simulation template STss” in TCF2, 625 entities
were created and the total number of entities in the simulation template is ~1000. Manual
creation and modification of simulation templates with large number of entities is
certainly not feasible. In this light KCM’s Behavior Model Formulation Method
provides a much superior approach to formulating simulation templates.

9.6 Summary

Two families of test cases are presented in this chapter to demonstrate the
capability of the Behavior Model Formulation Method in handling VTMB-type design
variations and idealization variations when automatically composing simulation
templates. Automated composition of eight simulation templates using the Behavior
Model Formulation Method—as realized in the VIATRA graph transformation
framework—is demonstrated for both test case families combined. The illustrations
demonstrate the extent and the depth of model elements automatically created for each
simulation template. In addition, the execution of simulation templates for generating
behavior model instances that can be solved in FEA tools is also demonstrated. The

execution of simulation templates both in design verification and synthesis scenarios
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demonstrates the value of a single simulation template in addressing routine analysis
problems.

In section 9.5, a detailed validation of the secondary and primary research
hypotheses is presented based on the simulation templates automatically created in both
test case families. The effectiveness of the Behavior Model Formulation Method in
formulating simulation templates is established using the results summarized in Table
9.5. In addition, a discussion on other components of the KCM that strongly contribute to
increasing both the efficiency and effectiveness of formulating simulation templates

using this approach is presented.
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Chapter 10 : RESEARCH CONTRIBUTIONS AND FUTURE WORK

In this chapter, a summary of research contributions and recommended future

work are presented in sections 10.1 and 10.2 respectively.

10.1 Research Contributions

Figure 10.1 below shows the state-of-the-art in formulating and executing
simulation templates before the development of the Knowledge Composition
Methodology. Simulation templates were formulated manually / semi-automatically and
modified manually for VTMB problems and for changes in idealization decisions taken
by analysts. This made the usage of simulation templates ineffective and costly for multi-
disciplinary design optimization problems and for evaluation of system performance in
general. However, the execution of simulation templates has benefited from
advancements in commercial off-the-shelf object solvers, math solvers, and solution
method-specific solvers (such as FEA tools). These solvers have been used successfully
to execute simulation templates—solve for the unknown (target) variables from the
known (input) variables.

- Manually / Semi-automatically created Execution of
- Manually modified simulation templates

D4-B4 Simulation Template ;,

FTMB Artifact FTMB Artifact Behavior

Model Structure ; Model Structure i,
A

conforms to conforms to
solves

D5 B5

: it
FTMB Artifact 10805 =)+ o ivers ) | FTMB Artifact Behavior
ModellInstance i; [ S > Model Instance ;/°

writes reads -

Before KCM

Figure 10.1: Lack of effective methods to formulate VTMB-related simulation templates
before KCM
The Knowledge Composition Methodology (KCM) addresses two critical
research gaps in effectively formulating simulation templates—formalizing the
knowledge necessary for formulating simulation templates, and providing the Behavior
Model Formulation Method to automatically formulate simulation templates for VTMB

problems and idealization variations. Figure 10.2 below illustrates the “enhanced” state-
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of-the-art in formulating and executing advanced simulation templates with the
Knowledge Composition Methodology.
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Figure 10.2: KCM enables effective formulation of advanced simulation templates

The specific research contributions (RCs) are summarized below.

Research Contribution 1 (RC1)

The Knowledge Composition Methodology developed in this research provides a
mechanism to formulate advanced simulation templates in an effective manner.
Simulation templates formulated by the KCM are executable. With the capability to (i)
automatically formulate simulation templates for VTMB problems and variations in
idealizations and (ii) execute simulation templates, KCM makes the use of simulation
template more effective for multi-disciplinary design optimization problems and for
evaluating system performance in general. In addition to handling VTMB problems and
idealization variations, test results show significant increase in formulation efficiency
using KCM versus current methods—90% or greater (on average) reduction in the time

required for formulating simulation templates using the KCM versus current methods.
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KCM’s Behavior Model Formulation Method plays the central role in formulating
simulation templates. Founded on graph transformations, the BMFM enables automated
composition of simulation templates from reusable building blocks.

This dissertation also defines the concept of Assembly System Topology (AST)
and a special type of graph construct and corresponding visualization diagram—an
Assembly System Topology diagram—to help characterize VTMB problems and
visualize and communicate changes in AST. In addition to formulating simulation
templates, KCM provides a fundamental graph transformation-based approach to model
formulation for variable topology problems in general, such as from logical/functional
system design models to physical system design models (Friedenthal 2006).

Research Contribution 2 (RC2)

KCM provides meta-models and an approach for representing simulation
templates. The Core Behavior Model developed in this research is a meta-model for
representing artifact behavior models, and fine-grained relationships between behavior
models and design models. KCM provides five different abstractions for representing
behavior models and simulation templates, depending upon the scope of the artifacts and
type of analysis. The ABB Meta-Model developed in this research is a meta-model for
representing the building blocks of behavior model structure. Though focused on physics-
based behavior of artifacts, the ABB Meta-Model provides generic constructs—four
types of knowledge represented in building blocks—that would be used for defining

building blocks for other types of behaviors, such as state-based behavior.

Research Contribution 3 (RC3)

KCM’s Behavior Model Formulation Specifications (BMFS) provides a
mechanism for capturing and representing idealization decisions taken by analysts. These
decisions serve as specifications for simulation templates automatically formulated by the
BMFM. The specifications, aka Behavior Model Formulation Specifications, are defined
at two levels of abstractions—conceptual specifications and computable specifications.
The conceptual specifications represent the intent of the idealization decisions and are
defined by analysts. The computable specifications, derived from the conceptual
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specifications, represent the graph transformation process for composing simulation
templates. Differentiating conceptual specifications from computable specifications
enables analysts to focus on the idealization intent (conceptual specifications) and not on
the actual computer code for the transformation process (computable specifications).
Apart from representing idealization knowledge as conceptual specifications, this
approach makes it easier for analysts to change idealization decisions and automatically
re-formulate simulation templates without worrying about updating computer scripts for

formulating simulation templates.

Research Contribution 4 (RC4)

KCM also provides graph transformation-based algorithms formalized as reusable
graph patterns and graph transformation rules for automatically composing simulation
templates from building blocks. These patterns and rules are defined in terms of the KCM
meta-models (CPM2_xKCM, CBM, and ABB Meta-Model) and hence are applicable for
all specializations of these meta-models. In essence, patterns and rules together provide
something similar to an application programming interface (API) for the KCM. Scripts to
formulate simulation templates—formalized as graph transformation process—use these
pre-defined patterns and rules. In addition, KCM also provides a library of ABBs—
building blocks of behavior models and hence simulation templates. KCM’s Artifact
Model Transformation Library includes all graph patterns and transformation rules,

including transformation rules defined specifically for each type of ABB.

Research Contribution 5 (RC5)

KCM extends the Core Product Model (CPM2) to define CPM2_xKCM—a meta-
model for representing VTMB artifact design alternatives. KCM provides five abstraction
levels of design models to characterize the set of design alternatives represented by each
model, and to distinguish models used for defining the formulation of simulation
templates versus models used in simulation templates. Abstractions D3, D4, and D5 of
design models are of specific importance. Instead of formulating design models for an
artifact at two levels (a meta-model and instances), the KCM provides three different
abstraction levels (D3, D4, and D5) that serve the following purposes: (1) D3 model used
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represents all variable topology alternatives of an artifact, and is used for defining
specifications for composing simulation templates; (2) D4 model is the source model for
formulating simulation templates, and represents a set of design alternatives with
equivalent assembly system topologies; and (3) D5 model represents a specific artifact as
an instance of D4 model, and is used for creating behavior model instances using a

simulation template.

10.2 Recommended Future Work

The following applications and extensions of this research are recommended for
the future. These recommendations are divided in two categories: (a) Conceptual
extensions—theory-related extensions of the KCM, and (b) Implementation extensions—

software development-oriented extensions of the KCM (or KCM Framework).

Conceptual extensions

1. Application of KCM’s model transformation approach to variable topology problems
in system engineering design and analysis, such as designing the following types of
systems: manufacturing systems, real time embedded systems, energy distribution
systems, and software systems.

2. Application of the concept of assembly system topology (defined in this research) and
graph transformation-based techniques for composing simulation templates to
systems with hardware, software, and human components.

3. Addition of new types of ABBs to represent concepts of state-based behavior, such as
time and events, activities, and decision nodes. While state machine representation in
UML (and SysML) and UML profiles such as MARTE provide a standards-based
representation of these concepts, the composition of simulation templates for state-
based behavior requires that these concepts be wrapped as ABBs. In addition, hybrid
simulation templates composed of physics-based ABBs and state-based ABBs can be
used for co-simulation.

4. Representation of dynamic simulation templates to model problems where the
assembly system topology of design alternatives change during the solution process.

This can be achieved by defining conditions for existence of relationships in a
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simulation template. Depending upon the computed values, the relationships may be
“disabled” temporarily. As an example, when the shear stresses between two layers in
a PCB increases beyond the peel strength, it leads to delamination of layers.
Delamination changes the assembly system topology of a PCB and hence interaction
relationships between analysis bodies representing delaminated layers would need to
be “disabled”.

5. Application of KCM’s model transformation approach (based on graph
transformation) variable topology problems where transformations are performed to
generate one aspect of a design model from another aspect, such as from logical
design view to physical design view. Implementation of OMG’s Model Driven
Architecture to systems engineering involves transformations from Platform
Independent Models (PIMs) to Platform Specific Models (PSMs) (Friedenthal 2006).
Graph transformation-based approach to VTMB problems can provide a foundation
for intra-disciplinary transformations.

6. Development of solver managers for open standards-based simulation templates.
Such solver managers can solve simulation templates by delegating relationships to a
“cloud of solvers” without worrying about the transformations between solver-
independent and solver-specific models. This allows the automated execution of
different types of relationships—procedural code to math-based constraints—in
simulation templates. In addition, depending upon the nature of the relationships,
simulation templates (or parts of it) can be executed in multiple directions.

7. Investigation and development of better metrics to characterize model formulation
efficiency.

Implementation extensions

1. Application of the KCM’s Behavior Model Formulation Method to automatically
compose simulation templates for analysis problems in different disciplines, such as
thermal analysis, dynamics and vibration analysis, and fluid dynamics.

2. Extension of Behavior Model Formulation Method’s graph transformation-based
approach to compose simulation templates from simulation templates. As an example

for test case family TCF2, simulation templates for thermo-mechanical behavior of
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BGA could be composed from existing simulation templates for thermo-mechanical
behavior of substrates.

Representation and use of decision nodes in simulation templates. Decisions nodes
can be represented by extending SysML constraint blocks. When used in simulation
templates, decision nodes can be used for verifying if computed values of behavior
parameters satisfy requirements.

Simulation templates, as composed by the KCM in this dissertation, consist of
solution method- and solver-independent formulations of behavior models. The
rationale for this was to enable analysts to use multiple solution methods and solvers
for the same analysis problems. KCM’s model composition approach can be used to
formulate solution method-specific and solver-specific behavior models (such as FEA
models in ABAQUS) that are associated with the solution- and solver-independent
behavior models. Examples of FEA scripts automatically formulated from solution
method- and solver-independent behavior models are shown in (Peak, Burkhart et al.
2007). Solution method and solver specifications (such as FEA mesh specifications)
would be provided by analysts and will be included in the Behavior Model
Formulation Specifications (BMFS). Conceptual specifications in BMFS may include
conditions that are checked post-solution, such as mesh refinements based on the
results. This use case corresponds to the research in adaptive idealizations by
Shephard et al. (Shephard, Beall et al. 2004). Changes in the topology of simulation
templates based on solution results would be handled in a similar manner as for

dynamic simulation templates described in item 4 (Conceptual extensions) above.

334



Chapter 11 : CLOSURE

The Knowledge Composition Methodology (KCM) for effective formulation of
analysis problems is presented in this dissertation. The representation of analysis
problems as simulation templates enhances the reuse of analysis knowledge in
formulating behavior models for a large set of design alternatives. However, simulation
templates are typically brittle to variations in assembly system topology and idealization
decisions taken by analysts. This makes them ineffective for analyzing the performance
of design alternatives and for using them in design optimization problems. To
characterize the types of changes that require manual updates and “re-wiring” of
simulation templates, the concept of assembly system topology has been defined in
Chapter 2 of this dissertation. Based on the concept of assembly system topology, this
dissertation defines a special class of problems, namely Variable Topology Multi-Body
(VTMB) problems where the assembly system topology of design alternatives varies.
VTMB problems are defined and illustrated in Chapter 2. In this context, the Knowledge
Composition Methodology answers the following primary research question: How can we
improve the effectiveness of the analysis problem formulation process for VTMB
problems? Specifically, KCM addresses the following two key research gaps in existing
methods for formulating analysis problems: (a) lack of formalization of the knowledge
used by analysts in formulating simulation templates, (b) inability to leverage this
knowledge to define model composition methods for formulating simulation templates.

The Knowledge Composition Methodology is presented in details in Part 2 of this
dissertation (Chapters 5-9). Based on the research questions and hypotheses presented in
Chapter 4, the functional and design specifications of KCM are presented in Chapter 5.
The KCM Framework is a computational embodiment of the KCM. It provides a testbed
for KCM models and methods. The use cases and components of the KCM Framework

are also presented in Chapter 5.
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The key functional components of the KCM for formulating simulation templates

were presented as follows:

= CPM2_xKCM is an extension of the Core Product Model (Fenves 2004) for the
Knowledge Composition Methodology. CPM2_XKCM provides a meta-model for
representing VTMB design alternatives. Based on CPM2_xKCM, five levels of
abstractions of design models are described with examples in Chapter 6.

= CBM (Core Behavior Model) provides a meta-model for representing behavior models
of VTMB artifacts. Based on the CBM, five different levels of abstractions of behavior
models are presented in this Chapter 7. Behavior models in the KCM consist of two
core components: (a) ABB System—artifact-independent model composed of ABB
models, and (b) Context—model that associates an ABB System to artifact design
models.

= ABB Meta-Model provides a meta-model for representing analysis building blocks
(ABBs). ABBs are units of analysis knowledge that can be reused for formulating a
large class of behavior models. Nine different classes of ABBs are defined based on
the ABB Meta-Model. Examples of ABBs in each class are also presented. The ABB
Meta-Model and ABBs are presented in Chapter 7. Some classes of ABBs defined in
this version of the KCM are primarily targeted for physics-based behavior models. For
other types of behavior models, such as state-based behavior models, new classes of
ABBs can be defined based on the ABB Meta-Model in a similar manner. In contrast
to representations of domain theoretic knowledge in existing methods, ABBs in the
KCM also embody the model transformations associated with using them in a behavior
model.

= Behavior Model Formulation Method (BMFM) is a model transformation approach for
automatically composing behavior model structures from ABBs, based on the
idealization decisions taken by analysts. The BMFM is presented in details in Chapter
8 of this dissertation. The idealization decisions are represented as selections of ABBs
for idealizing VTMB design alternatives and representing the environmental
conditions (such as loads and behavior conditions) in which the behavior of design
alternatives is to be computed. In addition to specifying ABBs, the conditions for using
one ABB versus the other based on properties of design alternatives can also be
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represented. The model transformation approach in the Behavior Model Formulation
Method is founded on graph transformations. Graph transformations provide a formal
approach for model transformations since entity-relationship type of models can be
structurally abstracted as graphs. The model transformation approach is four-tiered—
graph patterns, graph transformation rules, computable specifications to explicitly
schedule the execution of transformation rules, and conceptual specifications to
embody the idealization decisions taken by analysts.

The test applications of KCM meta-models and methods, and validation of
research hypotheses are presented in Chapter 9. The Behavior Model Formulation
Method (implemented in the VIATRA graph transformation framework) is used for
automatically generating simulation templates for thermo-mechanical analyses of two
families of VTMB design alternatives—multi-stratum printed wiring boards, and multi-
component ball grid array chip packages. The simulation templates generated for each
test case family are illustrated in details in Chapter 9. Table 9.5 and Table 9.6 summarize
results of the three measures of effectives of Behavior Model Formulation Method for the
test case families. In addition to handling VTMB variations and idealization variations,
the results clearly show a 90% or more (on average) reduction in the time taken to
formulate simulation templates using the KCM versus current methods. With the increase
in the number of components and interactions, the improvements in formulation
efficiency are significant when using KCM’s BMFM versus current methods. In contrast
to existing methods where variations in idealization decisions may require several hours
to update and “re-wire” simulation templates, the time required using BMFM is of the
order of minutes (less than a minute for minor variations).

There are two key directions for deploying and extending the current capabilities
of the KCM. The first direction concerns the ability to formulate a larger variety of
simulation templates for a larger variety of design families; and the second direction
concerns the ability to use KCM approach for formulating models for variable topology
problems in general.

The application of KCM for analyzing artifact behavior depends on the existence
of ABB models to represent domain theoretic concepts used in these analyses. These
ABB models can be created as specializations of existing ABB types. Some of the ABB

337



types defined in this dissertation are especially relevant for physics-based behavior. For
analyzing other types of artifact behaviors, such as state-based behavior, additional types
of ABBs and their specialization need to be defined based on the ABB Meta-Model.

For applying KCM methods for artifact families in different application areas,
such as automobile, electronics, and aircrafts, the CPM2_xKCM meta-model can be
leveraged to define application-specific meta-models. STEP (ISO 10303) application
protocols provide an extensive set of design concepts for some of these application areas.
The VTMB artifact models for representing multi-stratum PWBSs in this dissertation
leverages concepts defined in the STEP AP210 standard for electronics artifacts. In
addition, standards such as OMG MARTE (MARTE 2008) provide constructs for
representing design and analysis information for real-time embedded systems—
composed of both software and hardware components—whose functions are primarily
defined in terms of state-based behavior.

Overall, KCM’s design meta-model (CPM2_xKCM) can be specialized to define
VTMB artifact meta-models for artifact families in different application areas by
leveraging concepts defined in standards adopted in that application area. KCM’s
behavior meta-model (CBM) and ABB Meta-Model can be specialized to define ABBs
(and behavior models) for other different types of behaviors.

The second direction to deploy and extend the capabilities of KCM concerns a
unique contribution of the KCM—a formal model transformation approach for
formulating models for variable topology problems. The graph transformation-based
approach can be used for formulating different types of artifact (or system) models where
variable topology poses a significant challenge in automatically formulating and adapting
models to changes in specifications provided by model authors. Examples of this are
plenty in today’s system engineering processes, such as creating physical system design
models from logical system design models (and vice versa) based on the specifications
provided by designers. For instance in this case, a designer specifies the type of physical
component to be used for realizing each type of logical component (unit). With variations
in number, type, or configuration of logical components, or the specifications provided
by designers, KCM’s model transformation approach can be used for automatically
formulating physical design models.
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The Knowledge Composition Methodology achieves its primary objective to
make analysis problem formulation a more effective process as compared to the methods
and tools representative of the current state-of-the-art. It successfully achieves this
objective and in doing so opens a new application area for its model transformation
approach as applied to variable topology problems. As opposed to spending costly
resources on interoperability of design and analysis models, it is envisioned that the
Knowledge Composition Methodology shall provide the foundation to bridge the
significant gap between system definition and analysis tools. As a result, the Knowledge
Composition Methodology will provide system designers, analysts, and other

stakeholders a greater opportunity to focus on the function and the quality of systems.
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APPENDICES

Appendix 1 : Description of Basic Concepts
Brief descriptions of the commonly used terms and concepts are presented in this
appendix. The intent of this appendix is to describe these terms and concepts in the sense

that they are used in this dissertation.

Data are symbols which represent information for processing purposes, based on implicit
or explicit interpretation rules. In general, data lacks semantics. Even if the interpretation
rules are explicit, they are informally documented (Schenck and Wilson 1994; Giarratano
and Riley 1998).

Information is data with formal and explicit semantics. Information can be communicated
between two or more partners. Semantics is a key aspect of information because the
partners need to have a unique and unambiguous understanding of every piece of

information.

Knowledge extends beyond the notion of information by also including relationships
between pieces of information. Knowledge is also known as value-added information for
the purpose of decision making. Knowledge may be represented in different ways, such
as rules, semantic nets, schema, and logic symbols. The collective knowledge pertaining
to a given universe-of-discourse may be formalized in different ways, such as

taxonomies, thesauri, and ontologies.

A Model is a computable approximation of a “thing” for an intended purpose. A model is
a surrogate for the actual thing itself and enables us to answer questions about it. The
fidelity to which a model approximates a “thing” limits the types of questions that may be
answered about that thing. A model that is computable may be interpreted or solved using
computer-based methods. In a more generic sense, a model may imply both - a physical
model or a computable model, but this research specifically focuses on the latter. The
specific thing approximated by a model may be a physical object such as a car or a ship; a
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process, such as manufacturing or quality control; collection of physical objects or
processes; specific characteristic(s) of them; or even a model itself.

There are two key aspects of a model, namely semantics and syntax. Semantics is
concerned with the meaning of the thing that a model represents. Syntax is the computer-
interpretable form in which the model is formalized.

Per the definition above, in this dissertation the term Model also implies
Information Model (Schenck and Wilson 1994) or Knowledge Model.

A Meta-Model consists of constructs and rules that are needed to build models in a
universe of discourse. A meta-model is also a model and it can have any number of
instance models (or instances for brevity). In essence, a meta-model is a “model” of the
universe of discourse. Figure Al illustrates the conceptual relationship between a model,
a meta-model, and model instance using SysML (SysML 2007) notation. The core entity
is a Model. The terms meta-model and instance denote the relationship between two
models such that one describes the constructs and rules necessary to create the other. A
model always has a meta-model and a meta-model may have any number of model
instances. A model cannot be a meta-model (or instance) of self. For example, a web
page is internally represented as an information model written in HTML which confirms
to a meta-model defined by World Wide Web Consortium (W3C), specifically W3C
HTML DTD (W3C 1999).

<<block>> =

+meta-model
Model

*
+instances

Figure Al: Conceptual relationship between meta-model and instance (using SysML notation)

In the context of this dissertation, the terms meta-model, model schema, and
model structure imply the same and are used interchangeably. Unless otherwise stated,

the term model implies model instance.

An Ontology defines a set of representational primitives to model a universe of

discourse. These representational primitives are classes (or sets), attributes (or
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properties), and relationships (relations between classes) (Gruber 1995; Gruber 2007). As
an example, STEP AP210 (ISO 10303-210 2001) is an ontology for describing the design
of electro-mechanical products. An ontology is concerned with defining the “semantics”
to communicate about a universe of discourse, and not necessarily concerned with
organizing and implementing information models of the universe of discourse across one
or more databases. In the context of this dissertation, the term Ontology is used
interchangeably with meta-model or model structure to denote the semantics of the
universe of discourse being represented. An ontology (or meta-model or model structure)

is described using a representation language, also known as a modeling language.
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Appendix 2 : Systems Modeling Language (SysML) Notation

In this appendix, visual notations of OMG’s System Modeling Language

(SysML) used in this dissertation are presented. The text and pictures shown in the table

below are abstracted from standard definitions of elements in the SysML standard

specifications (SysML 2007).

Block

A Block is a modular unit that describes the structure of a

system or element. It may include both structural and

behavioral features, such as properties and operations, that

represent the state of the system and behavior that the system

may exhibit.

= Block properties typed by blocks using part associations
are known as part properties.

= Block properties typed by blocks using reference
associations are known as reference properties.

= Block properties typed by primitive values (such as integer
and string types) are known as value properties.

= Block properties typed by constraint blocks are known as
constraint properties.

The difference between part properties and reference

properties is that block instances associated with a parent

block instance as part properties are owned by the parent

block.

«block»
{encapsulated}
Block1

{x=y}

constraints

operation1(p1:Type1): Type2

operafions

oa
property1:Block?2

irfs

property2: Block3 [0..*]{ordered}

references

property3: Integer = 99 {read Only}
property4: Real=10.0

values

propertys: Type 1

properties

Block Definition Diagram (BDD)

A Block Definition Diagram is a view of the system model,
and it shows the properties of blocks and the relationships
between blocks using part associations, reference
associations, and generalizations.

bdd Namespacey

Block1

parti

> —

o.r

Block 2

Internal Block Diagram (IDB)

An Internal Block Diagram shows the internal structure of a
block. It shows the properties of a block and the connections
between these properties.

ibd Block1 J

pl:
Type1

cl: al 1 pZ:

Type2

p3

Part Association

Part Associations are used for relating a parent block and a
child block. The black diamond connects to the parent block.
The other end connects to the child block. A part association
means that the parent block has a property of type of the child
block. When a model instantiated, a parent block instance
owns the child block instance(s).

association property

0.1

{ordered} 1.

Reference Association

In contrast to part associations, when blocks related by a
reference association are instantiated, the referring block
instance does not own the referred block instance.

P azsociation property1

—

{ordered} 1.7
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Generalization

Generalization is used for representing generalization
relationship between concepts represented by blocks. The
head of the arrow connects to the parent block and the tail of
the arrow connects to a child block. A generalization
relationship implies that the child block represents a concept
that is a specialization of the concept represented by the
parent block.

Constraint Block

Constraint blocks are used for representing reusable
mathematical relationships, including domain concepts such
as the definition of Newton’s Second Law (F=m*a, or
F=m*dv/dt). Constraint blocks primarily consist of constraint
parameters and constraint specifications that define the
mathematical relationships between constraint parameters. A
constraint block may also contain other constraint blocks.

econstraints
ConstraintBlock1

sonsiraints

{iL1} x >y} ,
nested: ConstraintBlock2

parsmelers
% Real
y: Real

Parametric Diagram

A Parametric Diagram includes usages of constraint blocks to
constraint the properties of a block. Constraint blocks used in
the context of a block (as constraint properties) are denoted as
rectangles with rounded corners.

par Block1 )

length: Real

X

C1: Constraint1
widih: Real

D—

VB

Use Case
Use case of a system represents the functionality of the
system that is achieved when actors interact with the system.

UseCaseName

Actor
Actors are users of a system

ActorMame

Include

Include relationship is defined between a base use case and
the included use case. This relationship denotes that the
included use case is performed as part of realizing the base
use case.

ginclude»
———e e ===

Association (Communication Path)

Actors are associated with use cases via a communication
path (association). The communication path represents the
interaction between an actor and a system when the specific
use cases are being realized.
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Package P1
A Package defines a namespace for model elements, and may

contain other packages.

Table A2: Summary of SysML modeling elements used in this dissertation
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Appendix 3 : KCM’s Generic Properties Meta-Model

Figure A3 illustrates KCM’s Generic Properties Meta-Model. The constructs
defined in this meta-model are used in other KCM meta-models and models. Specifically,
this meta-model defines specializations of the CoreProperty entity defined in CPM2 (and
included in CPM2_xKCM Meta-Model). In CPM2_xKCM, CoreProperty is the basic
abstract block used for representing properties of an artifact, such as shape and material.
In the Generic Properties Meta-Model, the CoreProperty is specialized to define
CoreBehaviorProperty as the base block for representing a basic set of concepts used for
defining the behavior of artifacts. The concepts shown in this version of the Generic
Properties Meta-Model are targeted for the test applications and models described in this
dissertation—mostly physics-based behavior models with emphasis on thermal and
mechanical analysis. The Generic Properties Meta-Model is intended to be extensible as
new types of ABBs and analysis concepts are added to the KCM.

Two primary types of specializations to the CoreProperty concept are developed
in the Generic Properties Meta-Model. The first type specialization concerns the
specializations to the concept of Shape (renamed from Geometry in CPM2 to Shape in
CPM2_xKCM). Shape is the parent entity for defining the geometric shape of all
abstractions of artifacts and features. It is also used as the Shape ABB in the definition of
analysis bodies and analysis body systems. In general, KCM shall leverage STEP Part 42
to extend the representation of geometric shapes. However, for demonstrating the test
applications of KCM, some basic specializations of Shape are developed here. As shown
in Figure A3, one dimensional (point), two dimensional (such as lines and arcs), and
three dimensional shapes (Sphere and Cuboid) are defined as specializations of the Shape
block. The Shape_Representation_2D and Shape_Representation_3D blocks are parent
blocks for the representation of two dimensional and three dimensional shapes

respectively.
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bdd [Moclel] Generic_Properties [ @Gene\ ic_Property_BDD ]J

<<block=> [
CoreProperty
T ==hlock=>
| Core_Behavior_Property
<<block=> [ ?
Shape |
T hlock <<hlock=> = <<hlock==
o = Load_Parameter_Type
Inertial_Parameter_Type DOF_Parameter_Type o -
<<hlock>> 3 T T
Il Point [ L
=<hlock=> =<hlocks= =] <<hlock=>
et Structural_DOF_Parameter_Type Thermal_DOF_Parameter_Type
=shlock==> = =<block>> = <<hlock=>
H Shape_Representation_2D T T Structural_Load_Parameter_Type Thermal_Load_Parameter_Type
q <<hlock=>
Mass_Moment_Of_Inertia Temperature_DOF Y
<=block>> block: ‘ ! :
bl < | <shlock>> | | =<hlock>> 3| || <==block>> 7| [ ==<block>> 3 =<hlock>>
| Segment [ Ux_DOF Force Moment Pressure Heat_Flux Heat_Flow
<<hlock=>
Temporal_Parameter_Type
<<block>> 3 || s=block>>= =<<hlock>> =] =<plock=>
Line T Uy_DOF Temperature Heat_Generation_Rate
<<block>> 5
=<block>> 3 Time =<hlock>>
Arc — uz_poF
<=block>>
<=hlock>> = Circle <=zhlock=> <<plocks>>
—{ Closed_Curve_2D — THETAx_DOF Behavior_Parameter
<<blocks> 3 43
R | [ <<blocke=>
<<hlock=> = THETAy_DOF
Closed_Shape_2D EEREEEE <<block>>
Structural_Behavior_Parameter Thermal_Behavior_Parameter
=shlock=>
L|THETAZz DOF = T
=<hblock==>
Shape_Representation_3D =<hlock=> = ==hlock=> =
Displacement Temperature
T [
<<hlocks> o B; <<hlocks>
Solid theta_x : THETAx '—— Material Behavior_Parameter
theta_y : THETAY
‘r theta_z : THETAz T
[ [ [ ] [ 1
<<blocks= 7| | <<block=> 3 | [ <<block=> 3 | | <<hlock== 3 ||| =<block=> = <<block== <=block=> g
Cuboid Cone Sphere Cylinder Shell_Shape <;E‘riiks” =] Youngs_Modulus Bulk_Modulus
<<plotk=> 3 o «ht'_“k;h = <<biocke> <<blocks> O <biock=> O
Cube laanc>nape Strain Poissons_Ratio Shear_Modulus
fay
<<block=>
Planar_Shell_Shape

Figure A3: Generic Properties Meta-Model
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The second type of specialization to the CoreProperty block is the
CoreBehaviorProperty block as the parent block for representing parameters used in
defining ABBs. The parameters represented in the Generic Properties Meta-Model
represent the following aspects of the concepts represented by ABBs:
- definition of the dimensionality and units for representing the concept
- definition of the type of quantity used for representing the concept, such as scalars,
vectors, or tensors
- definition of symbols used for denoting the concepts, such as F for force
In general, the representation of parameters is equivalent to the representation of
specialized data types with symbolic notation.
The CoreBehaviorProperty block is specialized into five blocks—each
representing a type of parameter—as defined below. Note that these types and the
specializations within each type are based on the parameters required for demonstrating
the KCM using specific test cases. Additional types of parameters and their
specializations must be defined to make this meta-model useful for representing ABBs in
general.
= Interial_Parameter_Type block is used for representing the inertial parameters of an
artifact, such as mass and moment of inertia. These parameters are shown as
specializations of the Inertial_Parameter_Type block.

= Temporal_Parameter_Type block is used for representing time and related temporal
parameters that are useful in representing the dynamic behavior of artifacts. KCM shall
leverage other standards such as OMG MARTE (MARTE 2008) that extensively
define these temporal concepts.

= DOF_Parameter_Type block is used for representing degrees-of-freedom (DOFs)
parameters associated with different types of behaviors of an artifact. The
DOF_Parameter_Type block can be specialized for representing DOFs for a specific
type of behavior. For example, Structural_ DOF_Parameter_Type block and
Thermal_DOF_Parameter_Type block represent the DOF parameters for structural and
thermal behavior respectively.

= Behavior_Parameter block is used for representing behavior parameters for different

analysis disciplines. The Behavior_Parameter block is specialized for each type of
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analysis discipline. For example, the Behavior_Parameter block is specialized as
Structural_Behavior_Parameter and Thermal_Behavior_Parameter  block for
representing behavior parameters for structural and thermal behavior of artifacts
respectively. Additionally, the Material_Behavior_Parameter block represents the
parameters used for defining the behavior of materials (constituting artifacts).

= Load_Parameter_Type block is the base block for representing parameters used for
characterizing loads. It is specialized into Structural_Load Parameter Type and
Thermal_Load_Parameter_Type block for representing structural and thermal load
parameters respectively. Parameters used for representing force, moment, and pressure
are examples of structural load parameters; and parameters used for representing heat
generation rate and heat flux are examples of thermal load parameters.

Note that parameters defined in the Generic Properties Meta-Model are not the

representation of the concepts themselves but only the definition of parameters used for

denoting those concepts. For example, the force parameter is not the definition of force.

The Force ABB (type of Load ABB) is used for representing the concept of force.
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