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SUMMARY 

Long-term naval planning has always been a challenge, but in recent years the 

difficulty has increased. The degradation of the security environment is leading toward a 

more volatile, uncertain, complex, and ambiguous world, heavily affecting the quality of 

predictions needed in long-term defense technology investments. This work tackles the 

problem from the perspective of the maritime domain, with a new approach stemming from 

the state-of-the-art in the defense investment field. Moving away from classic 

methodologies that rely on well-defined assumptions, it is possible to find investment 

processes that are broad enough, yet concrete, to support decision making in naval 

technology trades for science and technology purposes. In fulfilling this objective, this 

work is divided in two main areas: identifying technological gaps in the security scenario 

and providing robust technology investment strategies to cover those gaps. The core of the 

first part is the capability of decomposing maritime assets using modern taxonomies, to 

map the impact of different technologies on ships. Once technologies are mapped, they can 

be traded inside assets, and assets inside fleets to quantitatively evaluate the overall fleet 

robustness. The first deliverable achieved through this process is called Vulnerable 

Scenarios, a list of possible conflict scenarios in which a tested fleet would consistently 

fail. The second deliverable is called Robust Strategies and is made of different 

technological investments to allow the studied fleet in succeeding the discovered 

Vulnerable Scenario. To find the first deliverable a large set of scenarios were simulated. 

The results of this simulation were analyzed using the Patient Rule Induction Method to 

isolate, among the large set of relevant cases, a subgroup of Vulnerable Scenarios. These 
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were identified by highlight commonalities on shared parameters and variables. Once the 

Vulnerable Scenarios were discovered, an ad-hoc adaptive response system using a 

“signpost and trigger” mechanism was used to identify different technologies on the ships 

studied that could enhance the overall robustness of the fleet. In identifying these 

technologies, the adaptive system was supported by different taxonomies in performing the 

different technological trades that allowed the algorithm to find Robust technology 

Strategies. The methodology was completed by a ranking system that was designed to 

firstly check all the Robust Strategies in all the scenarios of interest, and then to compare 

them against ranking metrics defined by decision makers.  

To test the created methodology, several experiments were conducted across two 

use cases. The first use case, which involved an anti-submarine warfare (ASW) mission, 

was used to demonstrate the individual pieces employed in the creation of the 

methodology. The second use case, involving a large operation made of several tasks, was 

used to test the overall methodology as one. Both use cases were designed on the same 

original scenario created in collaboration with former generals and admirals of the US Air 

Force and the Italian Navy. The primary results of this experiments show that once 

Vulnerable Scenarios are discovered, it is possible to employ an iterative algorithm that 

recursively infuse new technologies into the fleet. This process is repeated until Robust 

Technology Strategies that can support the fleet are selected. The missions designed 

demonstrated the presence of gaps which had to be covered via technology investment 

showing how planners will have to account for new technologies to be able to succeed in 

future challenges.  
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The methodology created in this thesis provided an innovative way of enhancing 

the screening of maritime scenarios, reducing the leading time for investment decisions on 

naval technologies. In conclusion, the work done in this thesis helps in advancing the state 

of the art of methodologies used by planners when looking for Vulnerable Scenarios and 

for new technologies to invest on. Therefore, this thesis demonstrates that by employing 

the proposed methodology, Vulnerable Scenarios and relevant technologies can be 

identified in less time than by employing current methods. These efforts will support 

planners and decision makers in reacting faster to new emerging threats in unforeseen naval 

scenarios and, will enable them to identify in a rapid fashion in which areas more 

investments are needed. 



 

 1 

CHAPTER 1. Introduction 

History doesn’t repeat itself, but it often rhymes. 

Mark Twain 

We live in years of great changes: countries once considered developing are now 

developed, the 2020 SARS-CoV-2 pandemic has shaken our societies with new, rapidly 

emerging problems and finally, the digital evolution is connecting us more and more while 

exposing our lives to new, and often subtle threats. The military world is not extraneous to 

any of this. On the contrary, many have pointed at a significant degradation of the security 

environment. According to Admiral Winnefeld, the security environment is one of the four 

pillars of an effective security strategy [1], together with ends, means and ways. Through 

the course of this chapter, the analysis of how the security environment is degrading will 

be presented in motivating the move toward a VUCA environment. To balance this 

degradation different ends, means and ways will have to change. To understand long-term 

planning this change must be studied not only considering ends, means, and ways in 

isolation, but also in the larger defense investment ecosystem.  

1.1 The VUCA Environment 

Armed forces of the western world are seeing a mutation of the security environment, 

which is becoming more Volatile, Uncertain, Complex, and Ambiguous, or as Bennis and 

Nanus coined in 1987, a VUCA environment. A deteriorated security environment has 

opened the doors to new challenges and threats to western countries’ prosperity over the 

past 30 years. It opens new opportunities to state actors exploiting the over attention to 
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terroristic groups, allowing them to quietly cover their technology gap. Finally, the opening 

of new and less regulated battlefield, as cyber, is an example of how the full international 

environment is transforming in a gray area where attacks are often way more subtle than 

what it used to be. 

1.1.1 Volatility 

In the volatile environment, problems arise at a much faster pace; they are brought 

by the state of dynamic instability present in a conflict when multiple interests, all pressing 

and all relevant, arise at the same time. Volatility requires people to be multitasking and it 

affects the decision-making process, as every choice must be taken with urgency and with 

potential drastic consequences [2].  

The Middle East is an example of volatile environment which includes extreme 

polarization among the different parties. These countries can be divided in terms of their 

interests in the area and on their power. Countries like the US and Russia are in the region 

to expand their respective spheres of influence and to gain access to natural resources but 

others like Iran, Turkey, Syria, Israel and Saudi Arabia have been in conflicts for long 

periods, sometimes directly, sometimes by financing proxy groups to destabilize each other 

[3]. Historical, political, and religious matters have become so well integrated that they can 

create dichotomous beliefs within a region.  Direct communications between Iran and 

Israel, or Iran and Saudi Arabia have been cut off in favor of propaganda statements and 

political messages. On the other hand, these states share deep roots. The melting pot of 

societies, the presence of powerful non-state actors, the weak governmental structure and 



 

 3 

territorial control of most states and the fast pace at which leadership changes has made of 

the Middle East the most volatile region in the world [4].  

The intelligence environment can be also volatile. Information today are more fluid 

than in the past, and within a hyperconnected world it is easier to have leaks and stages of 

politicization and factionalism affecting the stability of a country. Looking again at the 

Middle East theater, leaks and politicization are among the main reasons why today the 

Iranian security sphere is considered volatile [5]. Often it is not possible to know if 

information were leaked on purpose or if it was by the action of external actors [6]. 

Volatility of information in this field is dangerous as it increases the uncertainty and the 

ambiguity of what is going on, simultaneously requiring an immediate response which 

could lead to an escalation of tensions.   

1.1.2 Uncertainty 

Uncertainty in the context of the VUCA environment means that experience alone is 

not enough anymore to advance. Nevertheless, decision making processes on the field still 

rely on what is known and what is not known.  In defense investment processes, dealing 

with uncertainty means deciding whether an enemy has – or will have – a certain capability 

and what would be a contingency plan when facing the unexpected.     

To prove how important it is to consider uncertainty in planning, an example would 

be to look at the role of the Ardennes forest during the German Blitzkrieg in 1940. Several 

French generals thought it was impossible for any heavy mechanized division to pass 

through the forest. As such, following this assumption they concentrated their defenses 
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assuming the Ardennes was a natural, and impassable, hard border [7]. In this perspective 

the French plan was tailored on a fighting style similar to the one of WWI. This led to the 

construction of the Maginot Line: a series of fortification along the border with Germany 

meant to fight a trench war, not a war with highly mobile assets. The French commander-

in-chief Maurice Gamelin was uncertain about the maneuverability and the mobility of the 

new Nazi mechanized divisions, which included both Panzer divisions and Light Armored 

divisions. On May 11th, 1940 all the divisions managed to pass the forest and started 

pivoting toward the French fortifications which were then surrounded on 3 sides and cut 

off from the rest of the Maginot Line. For the French, this arguably meant the beginning 

of their surrender in WWII.  

In the example it was shown how underestimating enemy’s capabilities led to a 

catastrophic disaster which culminated with the loss of the Northern section of the defense 

line and the surrender of France few weeks later. This demonstrates how in an evolving 

world it is important to consider uncertainty. 

1.1.3 Complexity 

Complexity means that threats and opportunities, means and tools, cannot be considered 

individually but they must be considered in an interactive way. This idea was clearly 

expressed by former Defense Secretary, Jim Mattis, who in 2017 in a keynote speech at 

the Association of the United States Army’s annual meeting, [8] described how different 

actors are contributing to the issue. The first element Mattis considered was a non-state 

one: terrorism in the Middle East. According to him, there are multiple states hiding behind 

their nation-state status while actively supporting terroristic groups. This practice has 
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created destabilizing revolutionary regimes that increase their power by murdering and 

creating mayhem without any consideration for the human losses. The second element is 

ignoring international law, which happened in 2014 for the first time in Europe after WWII. 

In that occasion, a border was changed by force while a diplomatic option was still 

available. In annexing Crimea, Russia proved to be willing to discard Ukrainian’s right to 

independently decide on economic, security and diplomatic matters. The third element is 

the presence of rogue states, actors like North Korea who are risking and threatening 

regional and global peace to reach global approval. The fourth element of the complex 

world which Secretary Mattis described is the role of space and cyberspace. A fifth element 

that Mattis does not quote, but that the author feels is relevant to mention is the presence 

of a near-peer power. After the end of WWII and until the end of the Cold War the world 

was divided between the American sphere of influence and the Soviet one. With the fall of 

the USSR the world transitioned toward a monopoly situation in which the US, thanks to 

a combination of military projection capabilities and diplomatic relationships, enlarged its 

sphere of influence. Today the situation is changing again, and many authors sustain that 

we have transitioned toward another duopoly situation in which, now, the two powers 

involved are the US and China [9]. All these five elements together are the reasons why 

today’s threat environment is defined as complex. Military forces face a potential threat 

incoming from all possible axes, from Improvised Explosives Devices (IED) in Iraq, to 

maritime mines in the Strait of Hormuz in front of Iranian coasts, from cyberattacks to the 

nation critical infrastructure to new Chinese military bases on atolls in the Southern China 

sea.  
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In 2018 Mercier [10] described how NATO is gradually evolving to capture the 

evolutionary complexity of the security environment. He pointed out how NATO saw 

different phases: the Cold War time which was considered the age of collective defense 

(1949 – 1991), the post-Cold War time saw the Soviet Union and the Eastern bloc fall 

(1991 – 2001), the third phase started with the war on terrorism that began after 9/11, when 

NATO focused on projecting stability in the Middle East (2001 – 2014), the fourth and 

current phase began with Russo-Ukrainian crises of 2014 and has seen the resurgence of 

conventional threats supported by new hybrid threats (2014 – ongoing). It is interesting to 

note that all these phases have culminated in present day, in the Balkans. Mercer describes 

the region as the perfect melting pot of conditions that show how the threat environment is 

changing, and how the complexity is increasing. The Balkans were always in the sphere of 

influence of Russia, but now they also face an increase in radical Islamism, in conjunction 

with massive migrations and organized crime. Mercer also talks about how new 

technological means are more available to the public, empowering state and non-state 

actors with new threat domains and confrontational tools. The “threats domain” Mercer is 

referring to are cyber and informational, these are adding a new, complex layer as they 

allow the distribution of uncontrolled information to a much broader audience than was 

possible in the past. These information/disinformation campaigns are increasing their 

relevance as the veil between peacetime and crises becomes more and more blurred.  

This multifaceted reality must be captured in new defense investment programs, avoiding 

focusing on one side of the problem only to find ourselves ready to fight a different war.  

1.1.4 Ambiguity 
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All the elements seen so far contribute toward a general frustration and lack of clarity. 

Ambiguity leads to inefficiencies [11] and sometimes, if there is a lack of communication 

among the parties, to conflicts. An ambiguous world is a world where information can be 

interpreted in different manners.  

Ambiguity in the context of the threat scenario can be seen when actions of a state or a 

non-state actor are not straightforward and contribute to clouding possible transitions 

between peacetime and crisis. The greatest risk of ambiguous threats is that they are not 

perceived as such, [12] driving the leadership toward either ignoring the problem or taking 

a wait-and-see approach. Ambiguity spreads well in what are commonly considered gray 

areas. These are where hybrid threats can proliferate in a holistic way transforming the civil 

society in a non-conventional battlefield. Gray area actions are shaped to avoid any military 

conflict, so while they are below any military response that could lead to a conventional 

war, they are still above what is considered fair competition among states and statecraft 

[13]. Examples of these actions were when invading Crimea and Donbass in 2014 Russia 

deployed unmarked troops asserting that those people were Crimean volunteers and local 

self-defense groups [14].  The Crimean “volunteers”, or Russian soldiers without patches, 

perfectly served the scope of annexing Crimea while mudding the water enough that a 

possible response from other countries had to face a fact accompli. Another similar use of 

ambiguous forces is the use of proxies. These have proven to be particularly effective in 

the Middle East, where states like Iran [3] have actively supported proxy groups to 

undermine the role of NATO in the region while avoiding any direct exposure. Iran 

particularly has been active in supporting several proxy groups such as Hezbollah in 
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Lebanon, Shia militias and paramilitary groups in Syria and Iraq, and the Houthis in 

Yemen.  

On the other side of the globe, China leads ambiguous operations in the South China Sea. 

Here the communist state is transforming atolls into islands in international water while 

putting fortified military outposts on top of them [15]. By using this display of strength, 

China is trying to set up a solid claim on those waters which are currently disputed territory 

between China, the Philippines, Vietnam, Malaysia, Indonesia, and Brunei. China’s 

strategy relies on military bases to support not only the official Coast Guard and Navy but 

also its enormous fishing fleets [15]. In at least two known scenarios the confrontation 

involved an unmatchable number of Chinese “civilian” boats surrounding islands versus 

few Filipino Coast Guard ships [16].  One after the other, ambiguous actions are pushing 

toward the final Chinese claim over the South China Sea as an Economic Exclusive Zone 

(EEZ), and while tensions are rising, so far, the strategy seems to be working [17].  

1.1.5 Consequence of the VUCA environment  

The consequences of this environment are directly reflected on the modernization plans, 

undertaken by different armed forces. This problem is particularly relevant in the Navy 

where assets designed 30 years ago must face new tasks which were not in the mind of 

naval architects. Asymmetric and symmetric challenges are arising rapidly, therefore while 

the US Armed Forces have been focused, in the past 20 years, on fighting terrorism 

developing ways and means for that scope, other countries have used the time to build up 

their conventional capabilities. This has led to a narrower technological gap between the 

US and other near-peer adversaries [1]. Answering this challenge is not the only objective 
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of the American Armed Forces. In fact, in a world with two super powers, and several 

regional powers, the objective established by the DoD is to be able to fight a major war – 

and win it – while denying a secondary main adversary [22][23]. Having these two main 

objectives means envisioning a possible conflict on both the Atlantic and the Pacific 

scenario, or in the Arabian Sea and the Pacific Ocean.  

Whichever scenario dictates the chessboard, it is a difficult problem to solve and as such 

for several years there has been a request to increase the number of naval fleets.  For this 

reason, former Secretary of the Navy, Thomas Modly repeatedly said that a larger fleet is 

needed and desired, but that it will not happen without an increase in funding to avoid 

risking having the assets but not the men to run it, or as he said: a “hollow force” [20]. In 

2020, with a fleet of 296 ships being still far from the 355 goal [21], a new goal seems to 

be approaching. The Pentagon is in fact now looking for a fleet of 530 ships by 2035 [22]. 

Differently from before though new means are expected to be on the table, and while it is 

still unknown how exactly the fleet is going to look like, several large unmanned platforms 

are being considered [23][24][25]. This possible shift in policies is interesting, as it would 

demonstrate an increased interest on new means to maintain the conventional technological 

gap wide enough.  

1.2 Naval Domain 

Among all the possible domains, this work focuses on the naval one. The reasons why this 

specific domain was chosen are two: its role in the security environment and the complexity 

of naval operations.  
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Regarding the security environment, Boyer [26] gives a wide description of the relevancy 

of the sea in our societies. The main point he touches is that we depend on the sea from 

food, to commerce, to border security, to natural resources. Therefore, he argues that a shift 

in the security environment will affect the seas and all the population living in coastal areas 

– which are more than 30% of US and European citizens. Boyer, therefore, pushes for a 

need in enhancing the naval response on both means and ways to ensure the resiliency of 

the military instrument of power at sea.  

Complexity in the naval domain is shown by the types of assets, and their interactions, 

above and below water. As reported by the US Marine Corps [27], threats are increasing 

in complexity involving coast and oceanic assets above and underwater. This complexity 

is reflected in assets that are more adaptive, autonomous, scalable, efficient, fast, and lethal. 

Therefore, the naval domain right now is seeing a shift on what is in the water, with certain 

nations still employing Cold War assets, and others using unmanned vehicles. To be on top 

of this complexity, the USMC has stressed the need to identify possible future scenarios 

and to align the naval R&D to deliver the required capabilities at a much faster pace than 

previously [27].  

Finally, from a system engineering point of view, fleets are interesting systems-of-systems. 

Each ship has unique capabilities and tasks, but when working together ships can exert 

more military pressure than the individual vessels. The complexity of the relationships 

among ships has been increasing in the past years as a consequence of the more variegate 

weapons and offensive measures available by adversaries. An example of this is the 

dichotomy effect that A2AD bubbles have on Vertical Launch Systems (VLS): on one hand 
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ships have to allocate as many resources as possible to their protection, on the other if they 

survive with nothing in the VLS to attack, the operation is useless. As such, some have 

proposed creating VLS barges which will provide 256 or 512 launching tubes, but will 

fully depend on the fleet for protection, target illumination, support and so on. Modelling 

such fleet requires a much better understanding of what each ship can and cannot do, what 

the weaknesses and strongpoints are, and what are the benefits of bringing to the fight such 

powerful but fragile assets. More on future capabilities and technology trends is reported 

in Appendix A.  

1.3 New ends, new ways, and new means 

To respond to this degradation of the security environment, and to balance it, the other 

three legs (ends, means and ways) of the secure strategy must adapt. The question is how? 

How will the posture of the US change on the global stage? How would the mechanisms 

the US uses to communicate its foreign policies – militarily and diplomatically – be 

different? And finally, which assets and tools will the US use to signal its reaction.  

1.3.1 New ends 

A change of ends, the goal of the US posture on the global stage, is not likely to happen. 

After the fall of the Soviet Union, the US had the occasion to expand its interests all over 

the world almost undisputed [28]. Even with China currently trying to rise as a superpower 

it is unlikely that the US will be ready to give up its posture of dominance to adapt to a new 

equilibrium. In 2014 the Deputy Secretary of Defense, Robert Work, clearly stated that the 

posture the US has adopted is forward oriented to intersect, project and protect national 
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interests. In the same interview Deputy Secretary Work stated that the US recognizes only 

itself as a global power and that it will keep using its means and ways to keep this 

equilibrium [29]. Several analysts and, later, DoD Secretary Esper, have remarked how the 

US is indeed keeping its posture against China by doing several Freedom of Navigation 

Operations (FONOPS) in the area. In May 2020 to reiterate the position of the US on the 

matter Secretary Esper stated the following: 

“I don’t know what the Chinese meant by that hollow statement about American carriers 

being there by the pleasure of the PLA [People’s Liberation Army]. Look, American 

aircraft carriers have been in the South China Sea and the Indo Pacific since World War 

II, and we will continue to be there, and we’re not going to be stopped by anybody. We’re 

going to sail, fly and operate where international law allows” [30] 

1.3.2 New ways 

Ways are the strategic and operational concepts employed by nations to secure and maintain 

national interests.  

The US military strategy is founded on the assumption that to defend American interests 

the US must be able to offensively project its military power to strike against adversaries. 

This attitude has been supported in the years by several conflicts which have seen a clear 

advantage on the attacker side, the Falkland war being a clear example of this. But this 

might be mutating with the new environment, and the attacker may no longer have the 

advantage it used to. 
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A signal of this shift was seen in the 2018 National Defense Strategy [31] by Secretary 

Mattis who reported the need and urgency to act to preserve the current strategic advantage 

of the US. Mattis stated that without any response to China and Russia’s defensive 

advancements, they would not be able to cover the technological gap and gain the ability 

to effectively deter an act of aggression or any coercive strategy around their regions. Years 

of the US focusing on the war against terror has given the advantage to other countries – 

China and Russia – which were able to develop new conventional means to block American 

current strategies (ways); de facto starting to mine American overall secure ends. Once the 

gap will be fully covered, analysts call for an increased risk of escalations as many of the 

operations carried today to enforce the US foreign strategies will no longer be possible. 

Among the different pivotal operations that will have to change there are FONOPs.  

The UN Convention on the Law of the Sea (UNCLOS) is an international agreement under 

which nations divided and shared the rights and responsibilities of the waters around the 

globe. Among the different regulations, one of the most important principles is the Freedom 

of Navigation (FON). FON is the norm which states that innocent passage through 

territorial water must be granted to all ships, civilian and military. To ensure this principle, 

many countries have organized different types of operations, in the US these are called 

FONOPs. These operations involve a close passage, within the twelve mile territorial water 

limit, of a military vessel to either ensure innocent passage is granted or to conduct military 

operations showing that the claim on territorial waters does not fall within the UNCLOS 

[32]. 
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But freedom of navigation is currently under threat. With the fielding of supersonic YJ-

12B anti-ship cruise missiles and HQ-9B anti-air missiles on the military installations of 

Subi, Fiery Cross and Mischief reefs [33] China is strengthening its posture in the region. 

These claims were reiterated in 2018, when an US P-8A Poseidon patrolling the area over 

Mischief Reef was warned by radio that it had violated China’s sovereignty infringing its 

security and its territorial rights [34]. While at the time, the plane kept its course and 

finished the mission, the subsequent deployment of HQ-9B anti-air missiles on that reef 

might suggest a shift in the willingness of Chinese authorities to have American planes 

flying over their military bases.  

The US must find new ways that need to be coherent with two pillars of deterrence strategy: 

imposing costs and denying objectives. In the context of the current security scenario, the 

goal remains to deter adversaries from gaining too much advantage which could lead to a 

conflict escalation due to a shift in the political equilibrium.  

1.3.2.1 Imposing Costs 

Imposing costs is a strategy that, if done correctly, imposes a high price to achieve 

something that would otherwise be much easier to an adversary. If, for instance, China 

would become more aggressive in the use of their bases in the Southern China sea, then it 

will be imposing costs on the US for performing a FONOP mission. In other words, the 

US would need a fleet which could safely and successfully pass within twelve miles of an 

aggressive military base instead of the single DDG, normally used in these kind of missions 

[35]. The economic cost of using a full fleet instead of a single ship to perform a FONOP 

mission would be the imposed cost.  
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Imposed costs though do not have to be only military. They could be used as part of other 

different ways to implement a foreign policy. An economic example could be the disruption 

of a supply line to damage the Chinese’s Belt and Road Initiative, for instance by stopping 

commercial ships or in more extreme cases by mining some of the key infrastructure. This 

would force China either to spend money repairing the infrastructure or to find alternative, 

and less optimal, solutions reducing the return of investment [1].  

1.3.2.2 Denying Objectives 

Conversely to imposing costs, the role of defense is moving toward anti-access resources 

to target exposed forces in such a way that even if the attacker tries to achieve an objective 

via a hostile action, this is countered, and the objective denied.  

Denying objectives is critical in two possible scenarios. The first and most obvious one is 

the defense of the homeland, by having strong coastal defense systems it is possible to 

create an Anti-Access Area-Denial (A2/AD) bubble across all the different domains. These 

defense systems work by superimposing different capabilities like Surface-to-Air Missiles 

(SAM), Surface-to-Surface Missiles (SSM) and Coastal Defense Cruise Missile (CDCM) 

[36]. The second case is the denial of objectives to alien countries in foreign territories. In 

this case the full suite of SAM, SSM and CDCM might not be available, or it may be 

limited to what is available in a close-by base. The presence of an underwater force capable 

of piercing through A2/AD defenses helps in denying objectives even when most platforms 

are not available.  

1.3.2.3 An example of a new way: Anti-Access/Area-Denial Capabilities   
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Objective denial and imposing costs can be seen together in the A2/AD capabilities 

deployed by Russia in the Kaliningrad Oblast [37]. In the past years Russia has built up, in 

the region, a complex array of weapon systems to interdict any access to the area and its 

surroundings by any aggressor. The Russian A2/AD system includes several SAMs as the 

SA-21, Su-24 aircraft ready to be scrambled, the Monolit-B self-propelled coastal radar 

targeting system which has over-the-horizon precision detecting, classification, and 

determination. Several Anti-Ship Cruising Missiles (ASCM), and mobile CDCM platforms 

are also in place, complementing the air defense systems with stand-off anti-ship missiles 

and land attack missiles. The geography of the Baltic Sea allows for very few waterways 

to enter in the area, therefore even a small number of Kilo-class submarines are an efficient 

patrol. Moreover, these waterways can be transformed in to checkpoints and minefields to 

block any unwanted navy from entering in the area if needed.  

What Schmidt suggests in his overview on countering A2/AD [38] is the need to counter 

two specific objectives to at least partially disrupt the A2/AD system. The first one is the 

need to counter Intelligence, Surveillance and Reconnaissance (ISR) by jamming the 

sensors (radars, sonars, cameras, etc.) of ISR assets. Jammers can not only deny ISR 

capabilities needed for precision targeting in most strikers, but they can also affect 

Command and Control capabilities disrupting communications. The second objective is to 

destroy Precision Guided Munition (PGM) platforms, this will have to be done by attacking 

from outside the A2/AD area. According to Schmidt there are two ways to counter A2/AD: 

Inside-Out or Outside-In. Inside-Out implies having a large technology advantage that 

allows for a quick and high-intensity conflict where the goal is to suppress the A2/AD to 

allow the arrival of support forces. The second strategy, Outside-In, is focused on 
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dismantling, either by absorbing or by destroying, A2/AD capabilities layer by layer. This 

second approach can be lengthy, and it can lead to an escalation due to the increased 

attrition rate and is often not sustainable due to mission fatigue.  

This leads to the third point: means. What are the new capabilities that nations should invest 

on to be able to still achieve the desired ends?  

1.3.3 New means 

Means are the tools in which the nation invests, they are assets, technologies and 

capabilities needed to perform missions and to protect the grand strategy of the country. 

Increasing resources in means is needed to compensate the growing imbalance among the 

secure strategy’s four variables. This thesis focuses on means, particularly maritime means. 

Although, in the modern world no asset can be considered by itself, therefore while still 

limiting the discussion to key concepts also the other four domains (Space, Cyberspace 

[39], Air and Ground) will be discussed.  

When talking about investing in new means, the problem can be seen in at least three 

possible ways: investing in completely new assets, in more assets, in better assets, or in 

ways of using the assets.  

Acquiring new assets is the first and more obvious consequence of the need for new means. 

New assets require an extremely long time to be designed, assembled, tested, and fielded. 

At the same time due to the complexity of the system only few new technologies are usually 

infused to reduce the risk of re-design or overextended testing phases. This has been seen 

in the development of the DDG-1000 [18][40] which after almost 15 years of design had 
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to go through a massive re-design phase. Moreover, given the delays due to the multitude 

of new technologies onboard, the price of each unit increased by almost 50 percent, to a 

total of $13.8B for the first three ships [40].  

Acquiring more assets is another viable option. While many navies claim that many assets 

are multi mission, each asset can still only perform one task at the time, therefore in 

scenarios where complex operations are happening, like in the A2/AD described before, 

more assets can lead to a strategic advantage. It must be mentioned though that more assets 

will not always bring more robustness to the fleet, on the contrary in some cases buying 

older assets will compromise operations. For instance, a newer and quieter ship will have 

better results in trying to locate a submarine than two older and noisier ones together.  

The final option when having new means is to improve upon assets already owned. Infusing 

technologies in assets is not always possible as some of the technologies must be embedded 

from the early design, like stealth capabilities. Ships which are considered stealth have in 

fact specific features that are usually introduced in new design, and it is not possible to 

modify the geometry of the hull to make it stealthier after it is produced and delivered. On 

the other hand, it is possible to retrofit a new radar or sonar which will increase the 

detection capabilities of the ship. These are considered incremental technologies that can 

be added or changed throughout the operational life of the ship. Upgradability is relevant 

to the point that modern designs usually include more space allocated to for future 

instruments to be mounted on board.  

1.4 The investment Process 
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To invest in new means the US has an extensive set of options depending on the entity of 

the contract, urgency, and the type of asset or service needed. The main process that 

supports defense acquisition is called Joint Capabilities Integration and Development 

System (JCIDS) [41]. This process is designed to validate requirements on warfighting 

assets and support the identification of such requirements and capabilities through 

contribution to the NDS and NMS. Throughout the process, operational analysis and 

operation costs are compared to balance the “return of investment” that acquired assets will 

bring as enabled capabilities and warfighting options. A partial representation of JCIDS is 

given in Figure 1 where greater emphasis has been given to the first part of the diagram: 

Capability Based Assessment (CBA). 

CBA is focused on assessing and recommending whether material solutions are sufficient 

and if non-material solutions will satisfy the need. This analysis is focused on 

understanding and evaluating the gap to be covered through two main approaches:  top-

down and bottom-up. The top- down approach comes from the request of developing 

specific capabilities for high level stakeholders like Joint Chiefs of Staff (JCS), the Office 

of the Secretary of Defense (OSD) or the Joint Capability Board (JCB) [42]. The bottom-

up approach can be initiated by Regional Commanders which elicit specific capability 

development via a Formalized Asset Request [43]. This leads to a study of the different 

solutions available, or to be developed, to cover the problem elicited by the commanders.  
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Figure 1: Major Capability Acquisition process adapted from [44] 

Independently of how the process is initiated, it should then be a fast study. The goals of 

the study are to identify the required capabilities, identify the options available, evaluate 

risks and gaps, prioritize gaps, and identify viable potential solutions. The problem though, 

a planning gap, appears when the top-down and bottom-up approaches must be matched.  

This issue is exacerbated by the heavy reliance on subject matter experts (SMEs) on both 

top-down and bottom-up approaches. The planning gap today is not really covered, 

attempts to do so are present in similar processes to the JCID used by specific branches of 

the Armed Forces. This is the case of USAF Technology Development and Investment 

Process Figure 2,  where an iterative method was developed to cover the mismatch between 

bottom-up and top-down approaches. Nevertheless, the reliance of CBA on subject matter 

experts remained. This led to a limited view on the evolution of the security scenarios, as 

SMEs relies on their experience to forecast expected scenarios and technology needs. The 

reliance on SMEs, is therefore a limiting factor that affect how planning is conducted, and 

that has an impact on the preparedness, from the technological point of view, of Armed 

Forces in future conflicts. Being able to move away from using SMEs for scenario 

forecasting will be one of the objectives of this thesis. In the conclusion chapter, it will be 

demonstrated how obtaining the same deliverables of a CBA through a process that does 
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not use SMEs for discovering scenarios, assessing risks, and identifying technological gaps 

is possible.  

 

Figure 2: USAF Technology Development and Investment Process. 

1.5 Planning gap 

Many have criticized defense planning in the United States, saying that there is too wide 

of  a gap between bottom-up approaches, such as resource-based planning, and top-down 

threat- and capability-based planning [45]. This gap appears more evident when the 

information used by the relative stakeholders are matched. The top-down approaches 

initiated by JCS, JCB or OSD are based on a much broader picture, which includes 

assumptions from the global scenario [46]. Focusing on operational details and planning 

of several fleets deployed around the globe. Moreover, because the problem in this 
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approach is seen from the top, there is a risk of achieving ill-defined solutions that do not 

cover all problems in the field. On the contrary, bottom-up approaches focus on specific 

problems present in one theater that might not be present in others. In this approach the 

different commanders put together a set of requirements based on their current operations 

and forecast the threats they might face in the future. The risk in taking this approach is 

hyper-focusing to focus too much on answering one specific problem without keeping in 

mind that those threats and assumptions may not be valid in a different timeframe, or in a 

different location.  

In general, experts suggest that these methods are no longer adequate for mid- and long-

term science and technology investments [47]. The gap shows how current investment 

strategies could lead to either single point solutions, in which uncertainty is not considered, 

or solutions that are too focused on abstract threats. In the end, the risk is formulating a 

plan which leads to impractical, not credible, and short-sighted solutions.  

1.5.1 Covering the Planning gap 

This gap must be covered in a quantifiable way. It is important to start analyzing the 

mission from the beginning, dividing it into several tasks performed by the assets. Without 

losing generality, it is possible to say that those tasks should be characterized by 

quantitative Measure of Effectiveness (MoE). MoE can therefore be used not only to 

describe tasks, but also to evaluate how, and if, different means will satisfy these tasks in 

a quantitative and trackable way. Having quantifiable MoE is key to defining the 

requirements each task will have to satisfy throughout the entire mission. By using MoE it 



 

 23 

is also possible to track the evolution of requirements’ satisfaction during the mission, 

analyzing critical phases that could lead to mission failure.  

Quantitative MoE are the key for an investment strategy that is not focused on any specific 

technology but that is driven by requirements. From this statement emerges the implicit 

assumption that we should be able to trade quantitative metrics describing the technologies 

to evaluate the full investment strategy.  

1.6 Research Objective 

When looking at what has been presented so far, it is possible to see that many support the 

conclusions that the degradation of the security environment is a broad issue and that it 

should be answered by an increase in defense investments. This degradation is fostered by 

state and non-state actors which have been pushing for a more volatile, uncertain, complex, 

and ambiguous environment. Because of this shift toward a VUCA environment, 

understanding the needs of what should be invested in, is clouded [48] and, as Winnefeld 

as said, can lead toward acquiring capabilities for the wrong type of conflict. To rebalance 

the table, the United States must decide if it wants to change its current strategic goals – 

ends – or if it wants to maintain the current military posture. This decision is the main 

driver for what will be the different strategies – ways – and assets – means – it will invest 

in the future. While recognizing the dual aspect of the problem, this thesis focuses on the 

capabilities of the means, while keeping the ways constant on the friendly side. On the 

enemy side, the degradation of the security environment has pushed toward the adoption 

of new means and ways. As such, new capabilities will have to be countered on future 

battlefields.  
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The decision of investing in new capabilities, being new assets or new technology, cannot 

be separated from the legal and institutional aspect in which that decision is taken. As such, 

part of the Capability Based Assessment (CBA) has been reported.  In the CBA, different 

gaps are analyzed and solutions are proposed by two groups of stakeholders: those acting 

in a top-down fashion like JCS, OSD and JCD, and those proposing investment through a 

bottom-up stream like Regional Commander. The gap between the two views must be 

addressed to align long-term investments on capabilities as seen from Washington to what 

is needed, and will be needed, by the men on the field. In covering this gap, the focus is to 

link in a quantitative way the technologies of interest for investment with mission 

requirements. Missions are therefore decomposed in different general tasks which are 

evaluated by different MoE. This decomposition, together with the use of quantitative 

MoE, allows for the evaluation of the investment strategy being driven by a requirement 

pull rather than a technology push. To address the aforementioned problems of the security 

environment and those of the investment strategy we define the following research 

objective: 

Research Objective: Develop a methodology to support concurrent trades-offs among 

naval assets and technologies, to assist investments on new long-term maritime 

technologies. 

1.7 Proposed Approach 

To address the research objective a deep literature review was conducted. Before going in 

the details of each area, it is important to stop one moment and to appreciate the logic that 
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was used in building this doctoral thesis. The logical approach showed in Figure 3 will be 

used as a map to guide the reader in how this work was shaped, so that he or she will know 

what to expect next and what are the logical links. It is worth mentioning that in writing 

this work it was decided to split the thesis in two areas: one theoretical and one 

experimental. Therefore, the reader will find all the theory bits up to Chapter 5 and all the 

experiments from Chapter 6 onward. This way, the reader can appreciate the theoretical 

build up all in one go, and can find all the experiments in the second part without jumping 

from theory to practice multiple times.  

1.7.1 Logical Approach 

In Figure 3, it is possible to see the logic used to address the Top-Level Question on how 

ships and naval technologies trades-off are conducted for science and technology 

investment purposes. To answer this question, it is important to understand on one hand 

how new means and ways are chosen when dealing with degraded operational 

environments, and on the other, what are the gaps in current planning practices. To 

investigate these two areas the work has been divided in 3 streams: taxonomies in modern 

naval systems-of-systems, modelling and scenario discovery techniques for decision 

making, and technology selection practices in investment methodologies.  

The work on taxonomies was driven by an interest for an increased understanding in how 

components of a complex system interact, and how can the links be modelled. The 

alternatives studied looked at different type of taxonomies, ranging from vertical ones to 

hybrid evolutionary ones. Part of the work was also devolved to validating the quality of 

inputs, to ensure outputs’ quality. The workstream on taxonomies ended with the 
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identification that as long as the taxonomy chosen is hybrid enough that will coherently 

describe the relationship inter-SoS, then it will be possible to use it to comprehensively 

describe interactions among SoS.  

The second stream of work focused on modelling and on scenario discovery techniques for 

decision making. This workstream was focused on answering the need to aggregate 

existing approaches to quantitively address future threat scenarios for long term planning. 

The first segment of this stream was dedicated to selecting the different modelling 

techniques that could better simulate naval future scenarios. After the modelling decision 

fell on agent-based, it was decided to investigate which technique could be used to find 

Vulnerable Scenarios. Due to the type of problem, and to benefit from the work done by 

RAND in similar areas, it was decided to use Scenario Discovery and in particular the 

Patient Rule Induction Method (PRIM). Unfortunately though, this was never applied to 

quantitative naval scenario discovery and therefore more work was needed to adapt it. 

Efforts were made to augment PRIM with Principal Component Analysis, to account for 

those situations where dataset had highly irregular geometries. The work on this branch of 

the thesis culminated with the drafting of the hypothesis that PRIM, ABM and PCA can 

identify Vulnerable Scenarios in a quicker manner than state-of-the-art methodologies. The 

hypothesis was then tested in a later experiment in Chapter 6. 

The third workstream brood over different ways technologies can be selected to enhance 

fleets’ long-term robustness. Among the different options, given the size and the type of 

problem, it was decided to use a hybrid approach which included both a DoE and iterative 

algorithm. Unfortunately though, when looking at selecting hybrid approaches that 
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employed both DoE and iterative algorithms, it appeared that none of what was available 

satisfied the requirements on the method being quantitative, adaptive and able to handle 

many variables. Therefore, a new method was needed to enhance state-of-the-art 

methodologies with modern analysis tools, meant to address quantitative needs. This newly 

created method was hypothesized to be able to adaptively find sets of technologies that 

would increase fleets’ success rate in naval scenarios. In testing this hypothesis, it emerged 

the need to verify that all different technologies tested are positive monotonic. This ensures 

that the infused technologies are not detrimental to the fleet but that they either bring only 

positive benefits, or that the negative effects are compensated. Finally, this branch looks at 

ways to reduce the number of fleets tested in an effort to reduce duplications and 

computational powers.  

All the 3 workstreams are united in the last part of the diagram where the methodology is 

created, and the overarching hypothesis stated. At this stage the equivalency conjecture is 

drafted, this is needed to compare the results of the proposed methodology with what is 

created in a CBA. Finally, the proposed methodology is tested in a comprehensive 

experiment, using a different use case from what was used to demonstrate the hypotheses 

in the three workstreams. The methodology created will be summarized in the next section 

and described in detail in Chapter 5. 
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Figure 3: Logical diagram of the thesis development 
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1.7.2 Proposed Methodology 

Following the logical approach descripted in the previous section, it is important to 

highlight the main parts of the methodology created.  

The methodology was divided in three parts. The first one is dedicated to creating the 

framework for the whole problem and to formulating the problem from the scenario point 

of view and to identify Vulnerable Scenarios through the Scenario Discovery step. 

Taxonomies are also used in this step to identify a series of parameters and technologies of 

interest that will guide Part 2. 

In Part 2 the first step is centred on verifying the positive monotony of the variables of 

interest to ensure that no new Vulnerable Scenarios are created. Once the different 

technologies are cleared, they are used in the iterative step as means to improve the studied 

fleet’s ability to overcome the Vulnerable Scenario it was tested in. When a fleet is 

successful, it is outputted as Evolved Fleet 

In Part 3 Evolved Fleets are reduced in numbers so that from each Vulnerable Scenario 

only one fleet is created. Following this operation, all the evolved fleets are tested in all the 

scenarios to identify those that are successful across the widest set of scenarios. At the end 

of the simulations, different ranking criteria can be used to rank the fleets depending on 

their success level, number of modifications and cost of investments. The ranked fleets 

found are called Robust Fleets as they proved to be successful in a wide variety of 

scenarios.  
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The goal of this methodology is to create the same deliverables of a Capability Based 

Assessment (CBA), with the idea that a possible end user for this work would a planning 

section in the DoD looking at the prioritization of technology investments.  

 

Figure 4: Proposed methodology used to achieve the research objective. 

1.7.3 Proposed Scenario 

Throughout the course of this thesis multiple experiments are conducted. While two use 

cases were chosen, one for the buildup of the methodology and one for the demonstration 
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of the complete methodology, they both stem from the same scenario. This scenario was 

created and validated in the context of the NATO STO AVT RTG 317, where admirals and 

expert from naval and aerospace industries provided inputs and suggestions on the type of 

assets and on the development of the scenario itself.  

The scenario created is set in a fictitious archipelago named Relas, here there are 4 

countries: Relis – considered a NATO ally, Asyr – considered a NATO adversary, and 

Prucy and Turim both neutral but respectively aligned with Relis and Asyr. Relis and Asyr 

share the biggest island of the archipelago while Turim is located on the north and Prucy 

on the west. Figure 5 shows the archipelago composition and the respective territorial 

waters. From this set up two different use cases were created, the first one focused on an 

ASW mission and used in demonstrating the hypotheses individually, the second focused 

on a more complex and comprehensive operation, used to demonstrate the whole 

methodology. 

In the first use case a fleet of two submarines is patrolling the area south of Prucy. One 

frigate is sent to try to locate the submarines and, if the submarines attack, to neutralize 

them. In this use case the frigate can either use its onboard sonar or the sonobuoys deployed 

by its helicopters. The mission is successful if the submarines are found in a certain time 

frame and if both the frigate and the helicopter are still alive. This task was chosen to test 

the various hypotheses because, on one hand it is simple enough that behaviors are 

predictable, and on the other it is complex enough to allow finding interesting cases where 

different technologies are needed. This use case is used in all the experiments from Chapter 

6 to Chapter 9. 
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The second use case looks at a complex mission in which a fleet from NATO is sent to 

block Asyr from invading Relis. The mission is divided in 3 tasks (AAW, SED and NEO) 

which will have to be executed in a limited timeframe and without losing any asset. While 

the NATO fleet is approaching, Asyr employs different tactics and means to try to stop it. 

The goal of the NATO fleet is to reach the gulf in front of Relis’ only port to evacuate 

civilians. Before doing that, the fleet has to successfully survive attacks from Asyr Air 

Force, and from a series of coastal defense stations hidden on Asyr’s and on Prucy’s 

territories. This use case is used to demonstrate the overall methodology in Chapter 10. 

 

Figure 5: Map of the scenario location 
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CHAPTER 2. Taxonomy in modern naval Systems-of-Systems 

2.1 Why taxonomies are relevant 

Taxonomy is defined as the branch of science concerned with classification. This has 

played an important role in the military world since the late 18th century, when the military 

theorist Carl von Clausewitz pushed for a better understanding of systems and situations 

“in the blink of an eye”. Von Clausewitz was interested in immediately grasping the 

consequence of performing a certain maneuver, or of having a certain piece of equipment 

to anticipate its role in the battlefield. The idea behind this was to organize different 

concepts in an ontology within a specific domain [49]. Von Clausewitz was interested in 

taxonomies not only from the tactical point of view but also from the engineering one, as 

such he was a pioneer in the field.  

The reason why taxonomies still play an important role today is that they enable different 

ways of looking at the same problem. Focusing on one area or another, taxonomies expose 

unique properties of the system that would not be visible otherwise. Taxonomies become 

particularly relevant when introducing new technologies in already existing systems, as 

they allow a high-level understanding of the interactions between the new and the old 

system. Today, there are different taxonomies used in the field to improve the 

understanding of the system itself. The most common ones are traditional hierarchical 

taxonomies, as functional ones.  All these play important roles in describing systems, and 

in decomposing them to basic elements which can be compared.  
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In this context, taxonomies will be fundamental to describe how ships can be decomposed 

and to understand the consequences of mounting specific technologies on the full ship. The 

chosen taxonomies will support the decomposition of assets of interest in the technology 

selection segment of this thesis, by doing so the impact of the chosen technologies on the 

fleet will be highlighted and comparisons made possible. Before investigating new 

taxonomies though, it is important to be able to answer the following research question 

focused  

Motivation Question 1: What ship taxonomy can be used to better understand high 

level interactions among subsystems? 

2.2 Currently used taxonomies 

There are many different taxonomies currently used in the military world. From more 

traditional hierarchical ones, to more advance horizontally structured ones, their role is 

always the same: depict the system and show connections among its subsystems. 

2.2.1 Traditional Taxonomies 

In traditional taxonomies different subsystems are arranged hierarchically across different 

levels. Common traditional taxonomies are Functional Taxonomies. Usually, these types 

of taxonomies do not look at the broad system or system-of-system, but instead they focus 

on a particular area of the problem (e.g. the taxonomy for a C4ISR network) [50].  

These types of hierarchical taxonomies are useful to decompose systems and systems-of-

systems with a central authority, but due to their fixed vertical arrangement they fail at 
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reproducing chaotic and horizontal systems [51]. Due to the vertical structure and the 

rigidity in connecting functions and components, systems appeared rigidly framed. As 

such, many have said that there is a lack of communication among SoS’ components, 

limiting decision makers understanding of the SoS. The direct consequence is also a 

reduction in model precision, as modelled interactions struggle to reproduce what 

happened in the real world.  

Observation 1: Traditional taxonomies are hierarchical and compartmentalized blocking 

the understanding of interactions between components present in different subsystems. 

 

Figure 6 Hierarchical taxonomy of the C4I community [52] 

2.2.2 Task-Centric Taxonomies 

Task-Centric approaches are useful to organize technologies in relation of to the tasks they 

should perform. To achieve this, tasks are divided in families and subfamilies following 
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the different needs of the system. By doing so, the operational scenario is directly linked 

to the technologies on board of the modelled asset. Modelling and simulations exploit this 

link to increase results’ quality.  

While this taxonomy is still hierarchical, it mitigates the excessive compartmentalization 

present in traditional taxonomies by using more fluid connections among systems’ 

components. Unfortunately, by creating a fluid network of information, the readability and 

the understandability of the system are diminished. This is expected as these taxonomies 

focus on highlighting the different components participating in a specific task, 

independently from the physical or functional subsystem in which they are located.   

Observation 2: Task-Centric taxonomies show how functions connect to different physical 

components in a complex way. This reinforces the understanding of which component is 

involved in a single task, while unfortunately it reduces the overall understanding of the 

system.  

 

Figure 7: Task-Centric taxonomy adapted from [53]  

2.2.3 Capability-Centric and Classification Taxonomies 
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Capability-Centric taxonomies are useful in decision making as they are used to decompose 

desired capabilities up to reaching the physical components that enable those capabilities. 

Among the different taxonomies currently used for this task, the most important one is the 

OODA loop [53].  

Classification taxonomies are used in the military field to organize systems-of-systems and 

they tend to look at the problem from three different angles: Acquisition, Operation and 

Domain [50].  

Acquisitions are classified as dedicated or virtual.  The first refers to the full SoS when 

acquired in one block. The latter to assembled SoS with components not originally 

designed for that purpose, C2 systems are usually a good example of this.  

An operational classification is observed when looking at relationships among assets 

during missions. A chaotic SoS is defined when assets, during missions, are fully 

independent and there is no central authority. In contrast, in a directed SoS there is a central 

authority commanding over the different assets deployed. In collaborative SoS, decisions 

are collaboratively taken by the different assets with little, or no, influence from a central 

authority. 

Domains can be also used for classifying different SoS being whether physical, conceptual 

(i.e., made of not tangible entities) or social (i.e.  mix of physical and conceptual). 

2.3 Taxonomies and technology trades-offs 
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Taxonomies are the key to decompose SoS in a manageable number of subsystems and 

components. This decomposition allows a direct comparison among different technologies 

suited for the same subsystems. Performing these comparisons is necessary to evaluate how 

different architectures perform in different missions, while looking also at how different 

infused technologies can influence mission success. 

Historically, in the naval and aerospace fields, achieving this in a quantitative way has 

always been a challenge due to the vast number of components and connections (physical 

and virtual) present in vessels and aircrafts. In addition, by using hierarchical taxonomies, 

the problem of too many technologies was exacerbated. The lack of clarity in 

understanding deep components’ relationships affected the satisfaction of basic missions’ 

requirements. To limit this issue, in the past different navies have compared ships mostly 

qualitatively, stopping most of the quantitative analysis at a subsystem level. This lead to 

the lacking of studies on secondary effects of individual technologies present in the 

compared subsystems [54]. 

Observation 3: Historically, each subsystem was treated individually, reducing the intra-

subsystems interactions captured and reducing the overall understanding of technology 

trades among architectures. 

To solve the issue of having to deal with a very large number of technologies is possible 

by reducing the sample size to a manageable dimension by lumping together similar 

technologies to study their combined effects [55]. To study the effect, performance metrics 

are used as they allow the evaluation of different technologies – or pools of technologies – 
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in similar architectures. Since different technologies allow assets to perform different 

missions, by cascading quantitative parameters it is possible to evaluate mission 

performances. Historically this has been done only qualitatively, but with modern tools and 

higher computational power, a quantitative study is possible.  

Observation 4: Technologies of the same family can be lumped together in one block to 

allow quantitative comparisons among ships with different subsystems and architectures. 

 

2.4 Gaps in current taxonomies 

Following Observations 1 and 2, it is clear there are some gaps in current practices that 

have to be addressed going forward. Independently from the solution chosen, it is important 

to reduce the compartmentalization among subsystems. This should allow a better 

understanding of the relationships among components, even when looking at different 

layers (physical, logical, etc.).  

Using one taxonomy or another should not affect, in principle, the reality of the system. 

Nevertheless, it disturbs the way comparisons among subsystems are made. As discussed 

in Observation 3 and 4, historically technologies have been lumped together, according to 

different taxonomies, to perform trades-offs and comparisons among SoS. The need to 

lump together different technologies still stands. However, now this provides the 

opportunity to look at different ways of lumping those technologies together. In this sense, 

the role of taxonomies is even more important, as it affects how technologies are compared, 

and therefore how requirements for future investment are designed. In the context of this 
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work, taxonomies are a fundamental piece as they drive how different fleets will be 

decomposed first, and compared later, to identify Robust Strategies.   

Another important gap that emerges from previous observations is the need to ensure that 

taxonomies are comprehensive. In fact, many taxonomies seen in previous examples, 

focused only on specific areas and did not expand outside specific subsystems. While this 

gap could be interesting to cover, it is also a gap that can be easily addressed by setting 

clear problems’ boundaries by decision makers. Once the boundaries of the problem are 

clearly set up, then it is just matter of mapping accuracy to ensure that all the components 

of the system-as-framed are included.  

A more interesting challenge is to verify that the right inputs are collected when creating a 

specific taxonomy. In other words, how is it possible to ensure that all the relevant inputs 

are collected when a specific taxonomy (e.g., a physical taxonomy) is created. In this case, 

there are two possible approaches: the first one is to lay down the taxonomy and cross 

check it with another existing one to ensure that all aspects are covered, the second one is 

to rely on subject matter expert to ensure that all relevant pieces are there. The first 

approach is useful when the system is already known and when there are already verified 

taxonomies. A good example would be to use a functional taxonomy to ensure all functions 

are present when making a physical taxonomy. In the second approach, which was the one 

chosen to verify all the inputs for the use cases, as mentioned in the previous chapter, 

subject matter experts are consulted to ensure that all the expected relevant pieces are 

present. This doesn’t mean that experts will have a say on how the taxonomy is used, but 
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only that they ensure that all the relevant inputs are there to avoid the risk of having 

“garbage-in garbage-out” models.  

2.5 Hybrid Taxonomies 

When comprehensively describing large and complex SoS, it is not possible to focus on a 

single aspect. Complex systems have many internal and external interactions on multiple 

domains. As such, to capture those interactions it is necessary to look at many perspectives 

at the same time [56]. To fulfil this task one single taxonomy is not enough. Many 

taxonomies though, working together on different layers, can depict the full picture of a 

complex system. Different taxonomies work in combination as overlaying maps: the more 

there are in the stack, the more information are available. In trying to evaluate how different 

taxonomies working together support the deeper understanding of systems’ interactions, 

the following question will be answered: 

Research Question 1: Can new taxonomies of ships help in increasing the 

understanding of high-level interactions among components? 
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Figure 8: Overlaying taxonomies are like overlying maps. To have the Real- World 

view many are needed on the stack [57] 

Looking back at the original naval problem it appears evident that multiple taxonomies are 

needed in order to coherently, and comprehensively, describe a fleet at sea.  

Hypothesis 1: If a hybrid taxonomy, made by overlapping different taxonomies, is 

used to understand relationships inter-SoS, then it is possible to use it to 

comprehensively describe interactions among SoS. 

In other words, Hypothesis 1 is saying that no taxonomy is superior to others when studying 

high level interactions, as for instance those among ships in fleet at sea. The only caveat is 

that the taxonomy used must be broad enough to account for the complexity of the system. 

To demonstrate this hypothesis a logical proof is provided.  
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2.5.1 Logical Case Study 

If what described in Hypothesis 1 is not true, the conclusion would be that it is possible to 

holistically describe interactions inside complex systems (e.g., a ship) using one single type 

of taxonomy. In the following paragraphs it will be demonstrated how this is not possible 

due to the multi-domain nature of complex systems.  

In formulating this demonstration, a missile defense system and its major subsystem will 

be used. Common missile defense systems are made of four major subsystems: the 

launching system, the missile, the command and control center and the detection system. 

The efficiency of the system is directly linked to the efficiency of each component of the 

kill chain. Therefore, investments looking at increasing the efficiency of the missile 

defense system as a whole will have to focus on each segment of the kill chain to achieve 

the desired effect.  

When saying that the missile defense system can be the decomposed into four major 

subsystems an implicit taxonomy was taken – a functional one to be precise. The system 

was divided according to its four main functions: launching an effect, killing the target, 

controlling the sequence of operations, identifying enemies. When looking at this 

taxonomy it cannot be inferred how the physical components are divided, except the 

obvious fact that the missile must be independent from the control body. Therefore, from 

an investment perspective, one does not know if all the functions, except killing the target, 

are allocated in a single physical component or in many different components.  
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If a singular physical taxonomy is taken, and the same exercise of dividing the kill chain 

in many blocks is conducted, the results can be completely different from what was found 

in the functional taxonomy. It is not rare, in fact, that while the command and control center 

is integrated with at least one antenna for identifying targets, other antennas are present to 

illuminate the target from different positions. Following this logic, potential investments 

will now have to look at upgrading specific components without necessarily knowing the 

functional interactions with others. This means that investments will focus only on the 

selected hardware, without including the possibility of changing the functions performed 

by each component.   

In summary, if only one taxonomy is considered, only a partial description of the complex 

system will be possible. This can cause the exclusion from the analysis on future needs of 

several critical aspects of the problem, and it can reduce the beneficial effect of the 

investments. Looking at the two taxonomies considered before, merging or distributing 

components and functions to increase the resilience of the system cannot be considered by 

any of the two taxonomies, as this will go outside of their boundaries. Therefore, it can be 

speculated that the solution achieved by any of the two taxonomies by themselves will be 

suboptimal to what could be achieved with a combined approach. 

This case study showed how in a complex system several taxonomies must be taken into 

consideration at the same time, discarding the idea that one general taxonomy would 

provide sufficient understanding of the system. Therefore, this demonstration inherently 

supports the conclusion that multiple taxonomies are needed.  While some may provide 
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more critical information than others, they all complement each other by providing useful 

pieces of a complex puzzle. 
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CHAPTER 3. Modelling and Discovery Techniques for Naval 

Scenarios 

In the past decades many efforts were made to achieve a better understanding of future 

naval scenarios. These approaches must be tied to how the US military currently prepares 

for future threats. As such, this chapter begins by briefly showcasing the current investment 

planning methodologies used by the US Armed Forces in order to answer Motivation 

Question 2. Using this knowledge, it is possible to understand which modelling technique 

is better suited to simulate the behavior and performances of future assets in forecasted 

scenarios. The chosen modelling technique will be applied to newly developed Scenario 

Discovery techniques, which will be able to quantitively find possible Vulnerable Scenario. 

In the last part of the chapter a technique called Principal Component Analysis will be 

introduced. This will be used to augment the Scenario Discovery algorithm in complex 

cases. 

Motivation Question 2: What are current investment decision making methodologies 

used by the DoD? 

3.1 Current investment planning methodology in the US 

To achieve a defense investment strategy, different documents, such as the National 

Security Strategy, the National Defense Strategy, the National Military Strategy and the 

Defense Planning Strategy must be translated into requirements, desired capabilities and 

foreseen tactics for a comprehensive force structure.  
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DOD planning efforts are built around a doctrine called Predict-then-Act [58]. In this 

doctrine analysts are required to plan for the future, including strong assumptions regarding 

how the world will evolve, affecting the analytical rigorousness of the planning effort. 

Therefore, whatever solution is obtained, the outcome should not be seen as an absolute 

truth, but rather looked at with critical eyes.  

According to Mazarr [47], current defense planning is mostly demand-based. Meaning that 

requirements and constraints of envisioned future engagements drive the development of 

strategies, capabilities, and capacities.   

Mazarr assesses those two main types of planning are present in the current DoD doctrine: 

Demand-Based Planning and Supply-Based Planning. The first one is the most prominent 

and represents what many have criticized as a “Cold War approach” [59], as it requires a 

clear understanding of who the enemy is, and what capabilities and objective(s) does it 

have. The other approach – Supply-Based Planning – is more focused on specific real-

world restrictions like current fleet size, budget limitations and capability mix. Mazarr 

supports the theory that in order to achieve a balanced force, it is advantageous to use both 

types of planning methods during different phases of the study, as they provide 

complementary insights to the process.  



 

 48 

 

Figure 9 Defense Planning Approaches [47] 

Mazarr concludes his report advocating that the distance between the two planning types 

is only part of the problem, and that the DoD doctrine used in the scenario development 

process creates a gap. The process is in fact inflexible, costly and time consuming to the 

point that policymakers are forced to use heavy sets of assumptions to stay within their 

assigned boundaries. 

Observation 5: Traditional methods lead toward a lack of characterization of all the 

different dimensions of uncertainty by introducing several assumptions in the planning 

effort. 

3.1.1 Demand-Based Planning 

Demand-Based Planning has been the chosen planning method by the DoD in the past 

years. In general, Demand-Based Planning targets decision makers’ objectives on potential 
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future conflicts and threats. To shape Demand-Based approaches and to size its armed 

forces, the US has been following a “two-war” approach since the 1960s [47]. This 

approach, originally drafted during the Kennedy administration, has largely evolved from 

the original objective of being able to fight two major wars and one limited conflict, to 

include specific threats, such as terrorism. The “two-wars” approach also drives some of 

the required missions the US Armed Forces [60] should be able to perform: 

• Defend the Homeland 

• Perform sustained and distributed operations against terroristic groups 

• Deter aggressions and ensure alliances via a forward-oriented posture 

In case of failure of deterrence, the role of the US Armed Forces shifts toward a more active 

one, in which the military should be able to engage and defeat a regional power,1 while 

denying the objectives of another adversary in a different theatre.  

Due to their broad scope, Demand-Based approaches fit well in the general, larger national 

defense planning, providing high-level design requirements and high-level strategic views 

in the early planning process. Nevertheless, focusing too much on the broad-level picture 

can lead to producing impractical results in the end. Moreover, if the objective of the 

national strategy is to counter specific enemies, the results produced will be tailored against 

specific threats leaving gaps open in other theatres.  

 
1 Note that the US currently recognize only itself as a global power, therefore adversaries like China or Russia 

are considered either regional or emerging powers.  
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Observation 6: Investment solutions focused on a narrow environment increase the risk for 

single point solutions. 

3.1.1.1 Threat-Based Planning 

Threat-Based approaches are designed to respond to specific, potential, future enemies and 

conflicts. Force structures are therefore planned and shaped against specific targets, while 

high-level strategy documents provided the basis for these models. Threat-Based planning 

was common in the Cold War era when the world was divided in two clearly marked 

spheres of influence [61]. Today this is not true. State and non-state actors use more gray 

area tactics across all platforms and domains to cloud where the real threat is.  

In general Threat-Based approaches encourage a more in-depth study of enemies’ 

capabilities. If a conflict arises, thanks to this approach, resources can be focused on what 

is critically needed against specific threats. Moreover, if scenarios are modelled, planners 

can include uncertainties and unique societal and political aspects present in a real-world 

conflict. Unfortunately, all the technical and planning information come from intelligence 

gathering. This means that information is inherently ambiguous, and could be unreliable, 

or even purposely leaked to disrupt planning.  

This approach is information dependent; therefore, it can lead to a reactive culture in which 

single point solution responses are created losing sight of the global picture and of other 

potential threats.  
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Observation 7: Threat-Based planning does not capture all the different dimensions of 

uncertainty present in scenarios. As such, there is a high risk of generating single point 

solutions.   

Observation 8: Investment solutions generated relying solely on threats – perceived or 

actual – can lead to self-fulfilling requirements not reflecting the real threat environment. 

3.1.1.2 Capability-Based Planning 

Capability-Based Planning approaches focus on identifying general capabilities that will 

be needed in a less-defined war scenario rather than finding specific enemies and threats 

[62]. These approaches are therefore looking at those technologies that can meet high level 

sets of objectives based on national strategies. This allows for well-structured investment 

plans in which the system is decomposed on different operational levels. Goals are often 

divided in time and full capability is achieved step by step.  

The main advantage of these approaches is that it does not require planners to agree on 

hypotheses regarding the set of potential adversaries. Reducing the risk of delivering 

products overly focused on a single problem and shifting the investment plan from being 

responsive to being prepositive. However, too much abstraction can increase the risk of a 

fit-for-all solution which leads to requirements growth. It can also drive the removal of the 

adversary political and societal connotations from the planning process, pushing it toward 

one that focuses only on the CONOPS. Looking only at CONOPS results in the lack of 

important contextual facts, leading to plans that are impractical, unfeasible, and generally 

not credible against real-world adversaries.  
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Observation 9: Capability-Based Planning can lead to investment programs with 

excessively abstracted threats that have impractical, not credible and unfeasible solutions.  

3.1.2 Supply-Based Planning 

Differently from Demand-Based Planning, Supply-Based plans are bottom-up approaches 

focused on today’s status of the world. Usually, information to start the analysis includes 

current force size, budgetary limitations, and capability mixes available to build up forces. 

The most important of these approaches is Resource-Focused Planning. 

Resource-Focused Planning uses today’s constraints to identify possible investment 

patterns for the future. The status quo is used as a baseline and desired capabilities are built 

on it limited on what is available today for investments. For this reason, this approach is 

often called budget-driven planning, as the goal is to use the budget as a limitation to 

prioritize certain capabilities as desired by the stakeholders. 

The reason why this bottom-up method is commonly used is to root high-level strategies 

to resources available for investments, reducing the risk of unfeasible solutions. In 

Resource-Based approaches, the focus is to modify already existing defense programs in 

marginal, but meaningful, ways. Being so close to already existing assets, designed 

improvement plans are easy to translate into applicable ones. Unfortunately, for the same 

reasons, these approaches might fail to adapt to future issues leading to more capability 

gaps.  

Like Threat-Based planning, these approaches are focused on something that already 

exists, therefore the solution could be too tailored for a single theater, rather than targeting 
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a long-term global problem. With that, Clark et al. have said that even if Resource-Focused 

planning is imperfect, it reflects how planning is conducted today to a large degree [24].  

Observation 10: Bottom-up methods as Resource-Focused ones are heavily dedicated to 

the specific needs of today, losing sight of the global scenario and of long-term objectives.  

Observation 11: Bottom-up methods as Resource-Focused ones are constrained in 

technology improvements by what is available today, limiting therefore the possible 

response in covering technological gaps on the long-term scenario.  

3.2 Modelling techniques for quantitative naval scenarios 

Being able to see how different approaches might impact future engagements its key in 

deciding on what to invest in. As such, in the past years many started using scenarios. 

Scenarios are among the most useful tools in defense planning, so they are largely used 

today by DoD [63], mostly in Demand-Based planning. In this context, scenarios are 

defined as a set of assumptions and information that are used to simulate the problem at 

stake. 

Scenarios can be used to link threats and capabilities to assess them and make tradeoffs. 

They allow for more reality-based analysis in which planners can look at factors like the 

size and type of threats, the operational terrain, and engagement concepts. Decision makers 

can test different CONOPS by changing warning times, posture and the deployability of 

assets [61].  
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As a critical part of planning, scenarios must be carefully designed to avoid skewing results 

in one direction or another. Statistical analysis tools and agreed-on-results methodologies 

can mitigate these risks [64] by providing important information on the scenario. These 

tools can be vital in extracting information from clouded data allowing decision makers to 

be able to visualize what are the macro effects happening in the scenario. Moreover, by 

employing agreed-on-results methodologies, decision makers are less influenced by 

assumptions that might be not verified. To be able to reproduce these scenarios, different 

modelling options are available, each tailored to highlight specific aspects of the modeled 

scenario, but as mentioned in Research Question 2 not all are best suited for naval 

scenarios.  

Research Question 2: What modelling techniques can be used to quantitively simulate 

naval future scenarios? 

3.2.1 System Dynamics 

System Dynamics modelling [72][73] is a common modelling technique specifically 

designed for strong interactions between different parties in the model. The focus of this 

modelling technique is on the whole scenario rather than individual pieces. Because of its 

focus on scenarios, many have said that System Dynamics can be matched very well with 

DoDAF. Nevertheless, since it lacks multi-level fidelity – the capability of looking at 

several assets while looking at the scenario – it does not allow for the monitoring of specific 

assets but only for the processes happening.  

3.2.2 Discrete Events 
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Discrete Event modelling [67] is useful when use cases have sequential tasks and events. 

In its classical formulation, different assets, or entities, are passive as they only manage 

those attributes that affect them. Entities retain the ability to change the way they handle 

information. This change can happen as often as every time step.  The reason why Discrete 

Event modelling was discarded in the end discarded is that it was generally more focused 

on the process rather than on the assets, and so is not best suited for looking at technology 

investments.   

3.2.3 Agent-Based Modelling 

The modelling method selected for this thesis is Agent Based Modelling [68]. This 

modelling technique involves agents which can act autonomously within the simulation. 

Each agent has its own goals, capabilities, and behaviors. They are part of the fleet, but 

also stand-alone assets. The lack of a general central authority allows in fact for a better 

representation of systems interactions, in which complex dynamics and emergent behavior 

can be captured and analyzed. While this modelling technique is focused on agents, it does 

not lose track of the bigger picture. In fact, it allows the modeler to look at each agent 

individually and at the scenario at the same time. The main disadvantage though, is that in 

very complex missions the computational cost might be hard to reduce without losing 

relevant information.  

Agents, being autonomous and independent, lacking a central authority but yet being part 

of a group and working together, are a great representation of ships at sea in a fleet. As 

previously mentioned at the beginning of this paragraph, the chosen modelling method is 

Agent-Based Modelling. This is now clearly formulated in the following assumption: 
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Assumption 1: Agent-Based Modelling is the most suited technique to model the 

independent behavior of assets within scenarios, when looking for possible 

technological investments.  

3.3 Scenario Discovery techniques 

Modelling and simulations are needed to compute the interactions happening inside 

scenarios to understand the role of each technology of interest. But, to find critical 

variables, and to identify possible dangerous futures more analyses are needed. But what 

technique should be used to find the vulnerable scenarios when dealing with large se of 

uncertainties?  

Research Question 3: What technique should be used to find vulnerable scenarios in 

a large dataset with deep uncertainty on the future evolution? 

While different methods are available, due to the deep uncertainty factor it was conjectured 

that Scenario Discovery is the chosen group of techniques that is used to perform this task. 

Conjecture 1: Scenario Discovery techniques will be used to find Vulnerable Scenarios. 

As described by R. Lampert on the RAND Future Methodology webpage2: “Scenario 

Discovery uses statistical/data-mining algorithms to find policy-relevant clusters of cases 

in large, multi-dimensional databases of simulation model results. Conveniently 

 
2 https://www.rand.org/pardee/pubs/futures_method/scenario_discovery.html  

https://www.rand.org/pardee/pubs/futures_method/scenario_discovery.html
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interpreted as scenarios, these clusters help illuminate and quantify the tradeoffs among 

alternative strategies under deep uncertainty.” 

Across the field two main techniques have emerged: Classification and Regression Tree 

(CART) [69] and the Patient Rule Induction Method (PRIM) [70]. The are many 

advantages to using Scenario Discovery methods, and as such, the planning communities 

are now shifting toward them. Scenarios Discovery provides a way to tie in a more realistic 

way of investing to the real world, allowing a more in-depth participation of stakeholders. 

This enables a better prioritization of needed technologies and capabilities. Scenario 

Discovery also helps in providing a time element, thus pushing planners to look at 

parameters during peak response times and during sustained operations, providing a better 

understanding of CONOPS, force readiness and sustained operations. Being part of the 

Robust Design Methodology family, Scenario Discovery methods are designed to be 

“agree-on-results” method, thus they reduce the effect of hypothesis in scenarios [58] 

helping decision makers in taking less biased decisions. In helping decision makers to find 

the most Vulnerable Scenarios, the first choice is the one regarding which of the two 

Scenario Discovery method to use.  

Research Question 4: What Scenario Discovery method can be used to find 

Vulnerable Scenarios for naval fleets in a credible and rapid way? 

Between the two main techniques available, PRIM and CART, it was decided to use PRIM 

for this thesis. In fact, while some say that CART achieves better performances in 

identifying subgroups of interests in large datasets [71], even though this is not always the 
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case as proven by Kwakkel [72], those studies rely on the hypothesis that a precise 

subgroup is desired. On the contrary, in this thesis the interest is to screen large portion of 

the design space to identify relevant policies. There is no interest in being extremely precise 

with the cases identified, especially given the fact that an iterative algorithm will later on 

modify and upgrade what was originally found. The other identified difference is the 

“greediness” of the algorithm when peeling data. As it will be shown in the next section, 

PRIM controls the thickness of the layer peeled at every iteration and therefore it can 

advance rapidly if few cases of interest are present. On the contrary, CART follows an 

optimization criterion for splitting which doesn’t account for minim steps, leading to 

slower iterations. Therefore, considering also speed as one of the critical factors to take 

into account, PRIM was chosen. Patient Rule Induction Method (PRIM) 

PRIM was introduced in 1999 by Friedman and Fisher [73] as a data mining technique with 

the objective of finding regions in the design space with extreme values of performance 

metrics. In this sense, this method creates rectangular regions by using simple rules on the 

performance metrics defining the design space. The idea behind PRIM is to iteratively find 

smaller and smaller sets of the sample space that can construct an optimal rectangle around 

the solutions not satisfying a decision criterion. In finding this “optimal” rectangle the 

algorithm is trying to keep the most relevant characteristics of the sample set to maintain 

results consistency. This is done to safeguard against taking hasty decisions. In fact, all 

suboptimal rectangles are stored to allow decision makers to go back to a previous step.  

PRIM works with both continuous and discrete variables but depending on the sample size 

and on the amounts of variables. Three techniques are possible for creating the scenario 

boxes: peeling, pasting or covering [70]. 
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Peeling works by removing a strip of the design space that does not contain strategies that 

have failed the scenario in each iteration. The first box is the full scenario, this is reduced 

by a certain quantile every iteration depending on the number of failing strategies present 

in the box. To do so a conditional distribution F(·|S) is used – where S is the subset of the 

whole scenario box, therefore, when removing the k-th candidate box b this needs to satisfy 

the following:  

𝐹(𝑏|𝑆)  =  𝛼 (1 −  𝛼) 𝑘 − 1  

The peeling iterations are done until the box B satisfies F(B|S) ≥ β. The parameters α and 

β represent respectively the step peeled at each iteration and a tuning parameter for the size 

of the box.  

Pasting can be used to adjust the outcome of the peeling effort. This concept is the inverse 

of peeling: starting from the result box B layers are pasted along the boundary increasing 

the candidate box side b. This happens as long as the average of non-successful strategies 

increases. This method has the disadvantage of not being able to control the result box, 

leading to relatively large sample space. As such some have proposed an application that 

substitute the peeling + pasting approach with jittering. Jittering adds and subtracts at the 

same time layers to the original scenario box in such a way to keep increasing the average 

of the box. This reduces the risk of cancelling out information around local minimums by 

adding parts of the design space that carry significant information.  

Covering is similar to the peeling + pasting approach and it leads to a final region which is 

the union of the two boxes obtained by peeling and then pasting layers. The difference is 
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that instead of doing all the peeling first and all the pasting second, in covering peeling and 

pasting are executed in sequence at every layer, each time removing therefore the optimal 

outcome of the previous iteration.  

Assumption 2: Given the sample size and the number of variables, Covering is the PRIM 

technique that is used in this study 

 

Figure 10: Covering is the result of sequential peeling and pasting operations over a 

scenario box, in red on the last picture on the right a set of PRIM scenario boxes 

PRIM works by evaluating a binary value from the output of the simulation. The user needs 

to define a threshold value to identify cases of interest from less interesting ones. These 

cases could be those in which a fleet is successful in achieving a task. PRIM uses this 

binary condition to filter the output database. In this process different PRIM box sets are 

generated, each of this box is displayed as a point in a trade-off graph generated as output 

of the PRIM algorithm. The user can select the box set that is more appropriate and useful 

for the application. Each box set contains several PRIM boxes, each PRIM box contains a 

certain number of cases of interest, and the related performance metrics value ranges.  
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In the trade-off diagram previously mentioned there are 3 main parameters: Coverage, 

Density and Restricted Dimensions. Coverage is the ratio of cases of interest (i.e., when 

the fleet succeeds or fails) inside a box set to the total number of cases of interest. Coverage 

is important as a high coverage means that the found scenarios can explain more cases of 

interest.  Density is the ratio of cases of interest inside a box set to the number of cases of 

interest within that box set. Density is important because a high-density means being able 

to use each scenario as a strong predictor for other cases of interest. Ideally one would like 

to have both high density and high coverage, unfortunately though these parameters are 

usually in tension and increasing one often reduces the other. Restricted Dimensions are 

the number of variables that are sequentially restricted during peeling operations. Usually, 

the higher this number the lower the coverage is – as more and more cases of interests are 

excluded from the box set. 

 

Figure 11: PRIM nomenclature. The peeling trajectory is displayed in the trade-off 

diagram. Each point in the peeling trajectory is a box set the user can select. Each box 
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set has its own density, coverage, and restricted dimensions. Each box set has many 

PRIM boxes inside. In dark blue, there are cases of interest. 

3.4 Principal Component Analysis (PCA) 

PCA can be used with PRIM as a preprocessing step. Often, the data used in PRIM are 

scattered and with design spaces hardly hyper-rectangular. As such, the Scenario Discovery 

method can have issues converging and finding optima hyper-rectangular regions. PCA 

offers a convenient way to rotate the reference system of the data providing a better 

framework for PRIM to operate [74].  

There are at least 2 main versions of PCA that can be employed with PRIM. In the first 

one, PCA-PRIM, all the uncertainty axes are allowed to rotate. In the second one CPCA-

PRIM, where the C is for constrained PCA, only user-domain parameters are allowed to 

rotate. This second method produces clearer results for the user as the modified parameters 

are only the one that the user uses. In contrast, in PCA-PRIM even dissimilar parameters 

and their combination can rotate, leading to much more complex results [75].  

In general, both follow the same approach [74]. First, the method is applied only to the 

cases that failed to find the new set of rotational coordinates. Next, the full dataset is rotated 

using the discovered coordinates. This process is basically taking the covariance matrix 

and it is rotating its eigenspace. By doing so, the new axes of the full dataset are better 

aligned with those of the failed cases subset. This helps PRIM in finding better box sets 

with higher coverage and density. The measure of improvement is the harmonic mean of 

coverage and density [76]. 
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It is worth mentioning that since PCA is a linear technique in some cases it will not 

produces results acceptable for PRIM. While none of those cases was encountered in this 

work, there are also other quadratic methods that could be used when PCA fails to produce 

good results. These techniques include Quadratic Regularized PCA and Quadratic 

Discriminant Analysis. 

3.5 Gaps and Conclusions 

In this chapter the focus was on the different methods to model and simulate military 

operations, and on how that information can be used to discover future high-risk scenarios 

for a specific fleet of interest.   

Looking at currently investment planning practices it emerged that there is a lack of 

characterization for all the different elements of uncertainty in the scenarios. This leads to 

a need for better understanding what are those that in the future will be Vulnerable 

Scenarios. Answering this point in a quantitative way will be the key to find investment 

solutions that will be able to tackle the reality of the future.  

To do so, the chapter focused on understanding what the methodologies available today 

can do, and which one is the most appropriate one for this problem. After looking across 

several modelling techniques Agent-Based modelling was selected. ABM has several 

advantages compared to others, and it also allows the formulation of low fidelity model – 

increasing the speed of the modelling effort while retaining quality in the outcomes.  

Having a modelling technique is not enough though. The output of that modelling and 

simulation effort must be analyzed to find which factor will be the most critical one in the 
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future. To complete this task Scenario Discovery methods were considered, with a 

particular focus on PRIM.  

SD and PRIM have often been used to evaluate different policies, but they have never been 

used to evaluate quantitative naval scenarios. This is one of the main gaps that was 

discovered throughout the literature review effort. Looking at the potential of these 

techniques and knowing that it has been used successfully in other military technology 

investment planning efforts (e.g., ammunition), it is believed that PRIM, if used together 

with Agent-Based modelling can find vulnerable naval scenarios. Moreover, it is believed 

that this can be done in a quantitative, rapid, and credible way. The demonstration of this 

hypothesis will be conducted later with an ad-hoc experiment. From what described so far 

on the roles of PRIM and Agent-Based modelling, and their ability to identify naval 

vulnerable scenarios, hypothesis 2 follows: 

Hypothesis 2: If PRIM is used together with Agent-Based modelling, then it can 

rapidly and credibly identify quantitative sets of naval Vulnerable Scenario 
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CHAPTER 4. Algorithms for Technology Selection 

In Chapter 2, different taxonomies were described to show how the same system, or system 

of system, can be decomposed and what are the consequences of picking one 

decomposition over another one. In Chapter 3 different acquisition methodologies were 

discussed, the focus being the use of scenarios and how they shape future assets acquisition.  

In this chapter we will rely on what was discussed before and focus back on the technology 

side of the problem. The effort is to answer the second part of the research objective of 

looking at “trade-offs among naval assets and technology”. To do so, the first step is to 

understand how assets are currently quantitatively compared in investment strategies. 

Motivation Question 3 gives a good start to see which gaps are present in this field, and 

where they are.  

Motivation Question 3: How are assets currently quantitively compared in investment 

methodologies? 

4.1 Technology Comparison 

In Chapter 2 by studying different taxonomies, the goal was to understand possible assets’ 

decompositions better. This now enables us to look for only specific technologies whose 

benefits cascade to a significant number of subsystems. By understanding which 

taxonomical combination provides the most benefits to study, the goal shifts toward 

understanding how to perform technology trades in a quantitative way.  
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Historically, the extreme complexity of naval systems, the differences in design practices 

and the development of many ad-hoc variants have been a showstopper for quantitative 

comparisons and trade-offs analysis [77]. Moreover, the presence of a multitude of 

different components and non-comparable subsystems did not help downscaling design 

spaces to manageable ones. It is therefore of great interest, the ability to pinpoint at the 

benefits that different technologies provide and at the gaps they cover in a quantitative way.  

Ships comparisons were often done among allied navies to see how tactical choices were 

reflected on the design to facilitate technology transfers [55]. These comparisons were 

carried out at different level by looking at how vessels of the same class differ in various 

subsystems [54]. Each subsystem was treated independently, and the connections between 

technologies onboard and the ship’s mission requirements were drafted. From these 

practices, the critical role of taxonomies in trade-offs emerges even more.  

In traditional comparisons, each ship is decomposed in different subsystems that are again 

decomposed in basic technology bricks. These are later lumped together allowing 

comparison of inherently different architectures from both the technology point of 

view[54] and the crew sizing one [78].  Each technology brick, or pool of technologies, 

directly contributes to a specific task as shown in the taxonomies discussed in Chapter 2. 

By comparing high level metrics, such as ranges or VLS cells, ships can be compared, and 

subsystems and technologies traded in a quantitative fashion. Each exchanged piece of 

technology provides different performance metrics, and its characteristics are reflected on 

the tasks the ship can perform. 

All of this leads to two observations: 
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Observation 12: Historically each subsystem was often treated individually, reducing the 

amount of captured intra-subsystem interactions. 

Observation 13: Technologies of the same family can be lumped together in one block to 

allow quantitative comparisons among ships with different subsystems and architectures. 

From these 2 observations and from the literature review conducted one gap emerges: the 

need to be able to compare technologies, within assets, to be able to compare assets’ 

performances. Moreover, to evolve past the historical approach this comparison must be 

done in a practical, credible, and quantitative way. The gap is summarized as follows: 

Gap 1: From historical trade-offs in the naval field the need to compare technologies, 

among assets arises. This comparison must be conducted in a quantitative, practical, 

credible and way to understand the impact of each technology on the overall ship, or fleet.  

4.2 Technology Pools Identification  

When looking at Gap 1, the first question arising is how to select the first pool of 

technologies. To select the appropriate technology bundle, a statistical relevance and 

testing evaluation must be used to enhance the long-term robustness of the fleet. Which 

provides the grounds for Research Question 1, as follows: 

Research Question 5: What tool can be used to select sets of naval technologies to 

enhance fleets' long-term robustness? 
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Looking at the previous section, it emerges that whatever solution chosen must fulfil some 

requirements to advance the state-of-the-art. First, the tool chosen must address 

technologies in a quantitative way. This means that each technology will be decomposed 

in a series of parameters that can be quantitatively used by the model in the simulation. The 

direct consequence of this is that those parameters will be used as proxies for the different 

technologies of interest. Ideally, by changing the value of one parameter it could be 

possible to go from one technology to another. For example, if the parameter of interest is 

shooting range, a shooting range of 10 km would imply using a short-range missile, while 

a value of 200 km would imply a long-range missile. This ensures that whatever method is 

chosen it is technology agnostic.  

A second requirement is adaptability. There is little interest in selecting a static pool of 

technologies; on the contrary, it is much more interesting to be able to modify that pool so 

that the fleet can advance even in losing scenarios. This means that the initial set of values 

for each technology should not be a fixed constrained, but rather a starting point. 

The third requirement is the speed of the whole process. This work is by no means trying 

to use high fidelity modelling – which will increase computational efforts and time. On the 

contrary, one of the main characteristics is the interest in using a low fidelity approach to 

gather insightful information to help reducing the size of the design space for high fidelity 

modelers, which will anyway later verify whatever technology is selected. As such, the 

method that is chosen should be able to analyze large design spaces with a quick 

turnaround. This requirement is in line with efforts of the US Air Force to contain the 

turnaround time for quick simulation evaluations to 90 days [42].  
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Following all these requirements it emerged that a hybrid approach, rather than a single 

technique was the right tool. A large experimental simulation will be used as a starting 

point, but differently from conventional uses of Design of Experiment (DoE) it will employ 

an iterative algorithm to adapt the DoE to the evolving scenario. This way it is possible to 

look at the broad spectrum of the technologies of interest, while being able to adapt them 

to the scenarios in an iterative way.  

Assumption 3: Given the size and type of problem a hybrid approach employing both an 

iterative algorithm and a large DoE will be used 

4.2.1 Hybrid Approach  

To answer all the 3 requirements established, a DoE is not sufficient due to its static nature. 

In fact, solely relying on a DoE does not allow the user to expand and evolve considering 

the history of the metrics of interest, but it only allows the user to have a wide and static 

starting point.  Therefore, the preferred option fell on a hybrid approach in which the DoE 

is complemented with an iterative algorithm which will update it to account for new 

information from the simulation itself. 

The starting point of this approach, as mentioned, should be a DoE. Employing a DoE 

helps in moving away from traditional database and historical regression models which are 

no longer valid [72] [73]. This is important in this study as the focus is the research of 

technologies which might fall outside the boundary of already existing models, leading to 

unacceptable answers. The DoE will contain values for specific technological parameters, 
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ensuring that the effort remains quantitative. Once the DoE is available the information 

will be plugged in the model for the simulation part.  

At this stage, the second requirement must be satisfied. Whatever modelling and simulation 

tool is used it must be tied with an algorithm that allows the model to learn simulation after 

simulation. This algorithm should connect the output with the input in such a fashion that 

iteration after iteration the fleet evolves, and it is eventually able to overcome the task.  

Because there is an interest in moving away from known technological constraints, this 

algorithm should also ignore the original design space limits imposed in the starting DoE. 

In other words, it should let the fleet evolve freely (while still focusing on using the 

technologies of interest). The decision maker in the end will evaluate the resulting fleets to 

pick whatever meets his criteria.  

One possibility would be to do this using a much larger DoE and then test all the cases 

without the need to use an iterative algorithm. If this approach is pursued, to include all the 

cases that the iterative algorithm would be able to test, the DoE’s boundaries will have to 

be expanded a lot more than the original design limit. This will increase computational 

time significantly, especially in those situations with many variables. Moreover, since the 

evolution of the parameters is unknown it might still require going outside of the newly 

defined DoE boundaries. 

4.3 Hybrid approaches to technology selection 

Following A second requirement is adaptability. There is little interest in selecting a static 

pool of technologies; on the contrary, it is much more interesting to be able to modify that 
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pool so that the fleet can advance even in losing scenarios. This means that the initial set 

of values for each technology should not be a fixed constrained, but rather a starting point. 

The third requirement is the speed of the whole process. This work is by no means trying 

to use high fidelity modelling – which will increase computational efforts and time. On the 

contrary, one of the main characteristics is the interest in using a low fidelity approach to 

gather insightful information to help reducing the size of the design space for high fidelity 

modelers, which will anyway later verify whatever technology is selected. As such, the 

method that is chosen should be able to analyze large design spaces with a quick 

turnaround. This requirement is in line with efforts of the US Air Force to contain the 

turnaround time for quick simulation evaluations to 90 days [42].  

Following all these requirements it emerged that a hybrid approach, rather than a single 

technique was the right tool. A large experimental simulation will be used as a starting 

point, but differently from conventional uses of Design of Experiment (DoE) it will employ 

an iterative algorithm to adapt the DoE to the evolving scenario. This way it is possible to 

look at the broad spectrum of the technologies of interest, while being able to adapt them 

to the scenarios in an iterative way.  

Assumption 3 and Gap 1, the focus now shifts in identifying which type of algorithm can 

cover the aforementioned gap. This decision should not be taken just in the context of 

finding and selecting technologies, but it should also consider the whole idea of this thesis 

– i.e., finding naval technology to support R&T in future Vulnerable Scenario. Although 

the choice and requirements of selecting the type of DoE will be discussed later, the large 
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DoE hybrid approach leads to the next research question to determine an integrable 

algorithm 

Research Question 6: Which hybrid approach can be used for quantitatively selecting 

technologies to invest in a naval fleet in a credible, practical, and rapid way? 

Lempert has had a prolific research activity in this field, so to answer the previous question 

the effort started with understanding his work: Robust Decision Making (RDM) [81]. The 

other two methodologies that were analyzed are also part of the same family, but they focus 

on adaptive policies [82] and multi objective analysis [83] respectively. The reason why 

across all the options the analysis focused on RDM-like methodologies is that these can 

deal with large set of uncertainties. All three techniques in fact allow the decision maker 

to work without really knowing all the assumptions of both scenarios and technologies of 

interest. This enables the decision maker to explore different scenarios and to investigate 

how different technologies will perform in an unbiased way.  

4.3.1 Robust Decision Making 

Robust Decision Making is the first technique of the family. Throughout the years, there 

have been multiple spinoffs of this method, tailored to solve specific issues. The core of 

RDM is the idea that thousands of experiments can be run to calculate how different 

uncertainties affect the results [84]. These experiments are performed by changing the 

variables of interest each time. Variables can be either at the scenario level or at technology 

level. By doing this RDM can look at the problem two ways: what happens if the scenario 
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studied is not exactly what was expected, and what happens if the technologies of interest 

did not perform as planned.  

Lempert reports that all RDM techniques have at least four basic steps [81] as reported in 

Figure 12. Decision Structuring is the phase in which all needed information is gathered. 

In Case Generation the data from phase 1 are used to generate the scenarios and the pool 

of strategies to be later analyzed; a DoE can be used as substitute of this phase. Phase 3 is 

focused on Scenario Discovery, which was explained in detail in Chapter 3. Finally, in 

phase 4 the information on the scenarios is combined with those on the technologies to find 

which strategy works the best across more scenarios. 

 

Figure 12: The four steps of RDM: Decision Structuring, Case Generation, Scenario 

Discovery and Trade-off Analysis [81]. 

RDM is considered an “agree-on-decision” method, which means that all the strategies, 

scenarios and technologies are considered before analyzing the results. This is in contrast 

with more often-employed “agree-on-assumptions” methods, in which the design space is 
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reduced by setting tight ranges on assumptions. In RDM after all the strategies are 

considered, models are run to test the different options in a large manner. This way more 

different futures and technological options (also called strategies) than “agree-on-

assumption” techniques can be found. 

The goals of RDM can be summarized in two main points: first, the method is looking for 

robust and not at optimal strategies [85]. This means that the effort is placed on looking for 

strategies that will work on a broad set of possible futures. Secondly, to achieve robustness 

strategies should be at least partially adaptive. This means that they should be able to evolve 

overtime to account for new information [85], either inputted by the user or generated by 

the model.  

Observation 14: In RDM, the focus is more on predictive failure rather than strategies that 

can support success. 

4.3.2 Adaptive Robust Decision Making 

In dealing with scenarios surrounded by deep uncertainty, Hamarat has developed 

Adaptive Robust Decision Making (ARDM) [82]. This technique, as the previous one, is 

an iterative model-based approach to evaluate policy or technology strategies in scenarios 

with deep uncertainty on the variables. To be more explicit, deep uncertainty happens when 

the evolution of future scenarios is not clear, nor can the models properly represent this 

evolution [85]. 

ARDM uses a simple but powerful concept: signposts and triggers. Signposts are used to 

track selected variables while the scenarios evolve, each metric of interest has its own 
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signpost. If the tracked variable reaches a certain threshold the trigger is activated. Triggers 

are actions that influence the inputs of the next simulation. Four actions were defined by 

Hamarat [82]: Reassessment is the action in which the original strategy’s assumptions are 

checked for validity; Corrective is the action where adjustments to the basic strategies are 

made; in Defensive actions the basic strategy is reinforced to preserve its benefits; and 

finally the Capitalizing action aims at reducing the weight on the basic strategy to exploit 

opportunities in the design space. The pursued action is reflected on the input of the next 

simulation. Through this recursive approach, the model can evolve simulation after 

simulation, providing as output strategies that have adapted to scenarios proving to be 

robust and mature. 

Different from pure RDM, with ARDM decision makers can find both promising and 

troublesome regions. But doing this in a quantitative way requires very high computational 

power. In fact, in many of the studies conducted using this method either the number of 

variables was low, or the model was simplistic [86].  

Observation 15: ARDM requires a lot of computational power to be implemented, and it 

lacks the ability to handle more than a few variables. 

4.3.3 Multi-Objective Robust Decision Making 

Multi-Objective Robust Decision Making (MORDM) [83] is a spinoff of RDM developed 

by Kasprzyk et al. that includes a multi-objective optimization step.  This step is conducted 

at the beginning of the process, and it is performed to look for solutions before starting the 

exploratory modeling and the scenario discovery phase [87].  
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One of the differences of MORDM from the other RDM methods is the use of approximate 

Pareto frontiers. MORDM, to avoid narrowing the set of objectives creates a buffer zone 

around each Pareto point, meaning that the optimal solution is not needed nor desired. This 

helps a lot in reducing computational efforts in a methodology that is not looking at one 

optimal solution, but rather at a solution that is robust across several scenarios.  

Differently from the other RDM methodologies, MORDM can perform well with a high 

number of variables. This is done by employing Multi-Objective Evolutionary Algorithms 

in phase 2 of the RDM general method presented in Figure 12. By doing so the next step 

receives a rich set of alternatives, which do not require assumptions for the decision maker 

to start the trade-off analysis [83].  

The main issue with this technique though is that it struggles with adaptiveness. In fact, 

while robust strategies can still be found, due to the high number of variables it’s hard for 

the algorithm to account for incoming information. Moreover, some have criticized this 

method saying that it leads to overly complex models in which there are so many 

uncertainties that it is hard to frame which one is relevant and which one is not [88].  

Observation 16: MORDM is not an adaptive technique, and it struggles to frame problems 

with large uncertatintes.  

4.4 A New Hybrid Approach 

This chapter started with work on how technologies are compared, historically and today, 

to understand how predictions on fleets’ long–term robustness are made. The following 

step was to find ways to select those technologies and to test them in a modelling 
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environment. In A second requirement is adaptability. There is little interest in selecting a 

static pool of technologies; on the contrary, it is much more interesting to be able to modify 

that pool so that the fleet can advance even in losing scenarios. This means that the initial 

set of values for each technology should not be a fixed constrained, but rather a starting 

point. 

The third requirement is the speed of the whole process. This work is by no means trying 

to use high fidelity modelling – which will increase computational efforts and time. On the 

contrary, one of the main characteristics is the interest in using a low fidelity approach to 

gather insightful information to help reducing the size of the design space for high fidelity 

modelers, which will anyway later verify whatever technology is selected. As such, the 

method that is chosen should be able to analyze large design spaces with a quick 

turnaround. This requirement is in line with efforts of the US Air Force to contain the 

turnaround time for quick simulation evaluations to 90 days [42].  

Following all these requirements it emerged that a hybrid approach, rather than a single 

technique was the right tool. A large experimental simulation will be used as a starting 

point, but differently from conventional uses of Design of Experiment (DoE) it will employ 

an iterative algorithm to adapt the DoE to the evolving scenario. This way it is possible to 

look at the broad spectrum of the technologies of interest, while being able to adapt them 

to the scenarios in an iterative way.  

Assumption 3 it was mentioned that the choice for this study will fall into a hybrid approach 

in which a DoE will be augmented by an iterative algorithm. This was chosen to capture 
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the benefits from both approaches while minimizing issues as DoEs being extremely large 

and static.  

Looking at the different alternatives meant to answer Following A second requirement is 

adaptability. There is little interest in selecting a static pool of technologies; on the 

contrary, it is much more interesting to be able to modify that pool so that the fleet can 

advance even in losing scenarios. This means that the initial set of values for each 

technology should not be a fixed constrained, but rather a starting point. 

The third requirement is the speed of the whole process. This work is by no means trying 

to use high fidelity modelling – which will increase computational efforts and time. On the 

contrary, one of the main characteristics is the interest in using a low fidelity approach to 

gather insightful information to help reducing the size of the design space for high fidelity 

modelers, which will anyway later verify whatever technology is selected. As such, the 

method that is chosen should be able to analyze large design spaces with a quick 

turnaround. This requirement is in line with efforts of the US Air Force to contain the 

turnaround time for quick simulation evaluations to 90 days [42].  

Following all these requirements it emerged that a hybrid approach, rather than a single 

technique was the right tool. A large experimental simulation will be used as a starting 

point, but differently from conventional uses of Design of Experiment (DoE) it will employ 

an iterative algorithm to adapt the DoE to the evolving scenario. This way it is possible to 

look at the broad spectrum of the technologies of interest, while being able to adapt them 

to the scenarios in an iterative way.  
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Assumption 3 and Gap 1, the focus now shifts in identifying which type of algorithm can 

cover the aforementioned gap. This decision should not be taken just in the context of 

finding and selecting technologies, but it should also consider the whole idea of this thesis 

– i.e., finding naval technology to support R&T in future Vulnerable Scenario. Although 

the choice and requirements of selecting the type of DoE will be discussed later, the large 

DoE hybrid approach leads to the next research question to determine an integrable 

algorithm 

Research Question 6 a gap started to appear. None of the options analyzed in the literature 

review were able to provide a solution to cover Gap 1.  

Gap 2: None of the current available options can satisfy the need to compare technologies 

among assets in a practical, credible and quantitative way that is adaptive and looking at 

large uncertainty data sets at the same time.  

As such, the need for a new methodology arises. This will have to enhance state-of-the-art 

methodology for technology trade-off and comparison with modern statistical analysis 

tools. The methodology will have to address and compare technological strategies to cover 

the need of fleets within Vulnerable Scenario in a quantitative way for technology 

investment purposes.   

Assumption 4: A new method can enhance state-of-the-art methodologies with modern 

analysis tools, meant to address technology selection and trade-off for R&D investment 

purposes in a quantitative way.  
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Following the observations and the literature review reported so far – with particular 

emphasis on the work done by Lempert, it is believed that this new method can be created 

by augmenting RDM-like methodologies with a DoE in the technology selection part, and 

with an adaptive system – like the signpost and trigger one – in the trade-off analysis part. 

If this is done, then hypothesis 3 follows:  

Hypothesis 3: If a new method enhancing state-of-the-art methodologies used for 

technologies investment discovery is created through the iterative use of agent-based 

modelling, PCA and PRIM , then it will be able to adaptively find sets to technologies 

to increse fleets' success in naval scenarios. 

4.5 Monotony of Technological Effects 

Very few technologies can provide benefits without costs; a faster ship will arrive at its 

destination sooner, but it will be heard underwater at a much greater distance too. This 

means that when positively increasing one parameter for one technology it is critical to 

check if there are adverse effects on the scenario. Otherwise, while the fleet becomes 

resilient for one scenario it might become vulnerable for others that were not originally 

considered. Ideally, it would be desirable to have technologies which impact is positive 

monotone. This would ensure that throughout the iterative process no new Vulnerable 

Scenarios are open, this issue is therefore stated in the following Research Question. 

Research Question 7: What happens if technologies effects are not positive monotone? 
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The issue of positive monotony of technological effects can be summarized in the 

observation that follows: 

Observation 17: If the technology effects are not strictly positive monotone, then they can 

have negative effect on the scenarios, opening new vulnerable ones.  

If some of the technologies have negative effects which open new Vulnerable Scenarios, 

the question is how can this vulnerability be captured or prevented? In addition, what 

happens if technologies' effects are indeed not positive monotone? 

To answer these questions an experiment will have to be set up. The hypothesis in the 

experiment is that if new fleets are made by maximizing only one technological parameter 

at a time, and if all these fleets are successful in the test scenarios, then all the technologies 

studied have monotone behaviors. A case in which all technologies are maximized is also 

added to verify that if technologies interact, these interactions bring only positive effects.  

Regarding this, it will be used to set up the following hypothesis. 

Hypothesis 4: If in a naval technology strategy, a limited number of non-positive 

parameters are present, then their effect can be mitigated by the combined positive 

impact of other parameters on the overall technology strategy. 

Hypothesis 4 implies that there is an interest in identifying which parameters have a 

positive monotonic behavior and which do not. If a few parameters are marked with such 

behavior, others can mitigate their effect, or alternatively – if not critical – they could be 

excluded from the study. The ability of some parameters to mitigate negative effects will 
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have to be proven of course. As such, a verification step, where the efficacy of the 

mitigation parameters is checked, might be necessary if negative parameters are 

discovered. If the all-maxed case fails, it means that when everything is maxed there are 

some interactions among the variables. While this might look like an issue, it is probably 

not, as it is not expected that any fleet will reach the level of maximizing all possible 

technologies.  

In the end, to validate Hypothesis 4, the final fleet obtained with hybrid approach described 

in this chapter will be tested across all the scenarios to make sure its success rate is 

consistent even in the presence of some negative parameters.   
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CHAPTER 5. Methodology Structure 

5.1 Methodology Background 

Throughout the course of the previous chapters all the different pieces needed to answer 

the main research objective have been introduced. For each, a short literature review was 

provided, displaying assumptions and current gaps. In this chapter, the goal is to lay down 

a comprehensive methodology that, relying on the introduced pieces, will answer the 

research objective.  

Vulnerable Scenarios and Robust Strategies are terms that have been used, and will be 

used, multiple times throughout this work. Even though their meaning is intuitive, it is time 

to formalize them. Vulnerable Scenarios are scenarios in which the studied fleet is 

consistently failing a set of tasks.  

Robust Strategies, or Robust Technology Strategies, are combinations of technologies that 

allow the studied fleet to succeed Vulnerable Scenarios. 

5.1.1 Methodology Objectives and Hypothesis 

Research Objective: Develop a methodology to support trades-offs among naval 

assets and technologies, to assist investments on new maritime technologies in future 

threat scenarios 

Part of the research objective is to be able to assist investments on new maritime 

technologies in future threat scenarios. As this implies that an understanding of those 
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scenarios, the first part of the methodology will be devoted to that. Once those scenarios 

are known they can be used to frame the technological gap the fleet should cover. The 

second part of the methodology is dedicated to testing, in a quantitative way, how different 

technologies can contribute to the goal and with which proportion. Finally, once the 

different technology strategies are created, they are tested across the whole set of 

Vulnerable Scenarios to find those that are the most robust. 

This methodology does not employ any high-fidelity modelling. This choice was made on 

purpose to make this method a tool more accessible and to reduce computational cost and 

complexity when scanning the whole design space. The idea behind it is that results found 

can be used as preliminary solutions, reducing the number of cases that high-fidelity 

modelers have to look at. This way, high-fidelity modelers will be able to focus on a smaller 

design space, making the whole investment process faster. Moreover, because of the 

analytical approach in the first part of the method, it is also possible to identify some 

Vulnerable Scenarios that might have been hidden in traditional – expert-based – studies. 

All of this is formalized in the following Overarching Hypothesis:  

Overarching Hypothesis: If a new method is created using agent-based modelling in 

conjunction with an adaptive multi-objective robust design method, then, it is possible 

to explore hidden Vulnerable Scenarios not considered in traditional studies, and it is 

possible to adaptively find pools of technologies that increase the fleet's robustness in 

the identified Vulnerable Scenario. 

5.1.2 Equivalency Conjecture 
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By finding Vulnerable Scenarios and Robust Strategies, the methodology is trying to 

emulate the same deliverable of a Capability Based Assessment (CBA). A CBA is part of 

the Join Capabilities Integration and Development System (JCIDS) process. CBA is an 

analysis in which at the end material or non-material solutions are proposed [42]. In the 

CBA analysts are meant to define the mission by identifying the capabilities required. This 

is used to detect possible gaps in the ability to solve the mission, in other words, this is 

used to find Vulnerable Scenarios. Analysts should also find solutions to cover these gaps, 

in other words, Robust Strategies. Even though CBA looks at both material and non-

material solution, this thesis is limited only to the material part given the interest for 

investments in science and technology. 

CBAs are often grounded in methods using expert elicitation. This methodology, on the 

other hand, tries to get the same outcome but by using low-fidelity modelling. The first 

advantage is that scenarios can be detached from hypotheses allowing a less biased 

perspective on the design space. The second advantage is that, differently from the past, 

technology strategies can be found in a quantitative way. This allows for a more tailored 

approach in finding investments that can cover the identified Vulnerable Scenarios. 

Unfortunately, due to the sensitive nature of the topic and to very limited access to technical 

information on assets, technologies and missions, formal validation is not possible. In lieu, 

a validation of the methodology is done by the following equivalency conjecture 

considering the similarities between CBA deliverable and the deliverable of this work.  
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Equivalency Conjecture: It is conjectured that if the Overarching Hypothesis is validated 

the new methodology created will be able to provide better recommendation on investments 

in science and technology for long term planning.  

5.1.3 Methodology Structure 

As mentioned in the introduction chapter, the methodology has been divided into three 

parts, displayed in Figure 13, to satisfy all the needs established in the research objective. 

 

Figure 13: Proposed methodology used to achieve the research objective. 
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 Part 1 is dedicated to finding Vulnerable Scenarios using information on the studied fleet, 

on the mission of interest and knowing what the success criteria of the fleet are. In this first 

part, only a small portion of the general DoE is used – the portion dedicated to the scenario 

variables. While in reality the set of Vulnerable Scenarios will be represented as a list and 

not in matrix form, Figure 9 helps in describing the flow of information across the different 

parts of the methodology.  

 

Figure 14: Matrix representation of Part 1 deliverable 

In Part 2, information from the first part – namely the Vulnerable Scenarios – is merged 

with a set of technologies of interest. In this part an iterative algorithm is used to update 

the modelling parameters of the technologies of interest until a combination that can make 

the fleet succeed the scenario is found. Because of number of repetitions multiple strategies 

will be found per each vulnerable scenario, therefore, a way of selecting only a single 

strategy per scenario must be found. 
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Figure 15: Matrix representation of Part 2 deliverable 

Finally, in Part 3 all the robust strategies are tested in all the Vulnerable Scenario to find 

which one will help the fleet overcoming the greatest number of scenarios. Robust 

Strategies will be ranked using different criteria as costs and number of technologies 

invested in. If in the selected Robust Strategies, technologies with negative effects were 

used, a test will have to be conducted to gauge the effect of those technologies on the 

resulting fleets. If technologies with negative effects are present, the strategy will have to 

be tested also on the non-Vulnerable Scenarios to make sure that new critical cases were 

not created.  

 

Figure 16: Matrix representation of Part 3 deliverable 
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5.1.4 Methodology Limitations 

Before going into the details of each part of the methodology it is important to highlight 

the limitations that this methodology has. Following the structure showed in Figure 13, the 

first limitation is on the taxonomies. In fact, as mentioned before, the quality of the 

taxonomy used relies on subject matter experts to ensure that inputs are relevant and 

modelled to an extent that allows a meaningful work.  

Limitations on the Scenario Discovery part are driven by the use of PRIM. For instance, 

since PRIM can only work with binary success criteria it cannot account for partial 

successes, but it requires that all success conditions are aggregated into a single one. 

Moreover, the size of the PRIM box affects how many Vulnerable Scenarios are captured, 

therefore if decision makers do not account for enough computational powers results might 

be limited.  

Regarding Part 2, there are limitations in the iterative algorithm, the higher the number of 

parameters the more iterations will be required to find solutions. In this sense, while this 

methodology is suited for 10 to 15 technologies to be tested, if the number of technologies 

starts increasing too much other options (e.g., DoEs) might provide faster solutions. 

Furthermore, using this type of algorithms require that the taxonomy linking the 

technologies is complex enough so that meaningful interactions can be captured.   

Limitations in Part 3 are shown in the fleets reduction step. In this step the number of fleets 

is reduced by aggregating them or by selecting only non-dominated ones, as it will be 

shown later. While this step is needed to reduce the number of fleets to a manageable one, 
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it also implies that a lot of sub optimal solutions are discarded. This means that the fleets 

identified as robust at the end of the methodology will be the most expensive ones, as 

cheaper solutions are not considered for comparison after Part 2.  

5.2 Part 1: Finding Vulnerable Scenarios  

The goal of this part is to set up the whole methodology and to find the first deliverable: 

Vulnerable Scenarios. In this part the problem will be formulated by gathering and pre-

processing important information regarding the scenarios and the assets involved. This will 

be mostly done in the first step called Problem Formulation. The second step will use some 

of the deliverables from the first one to identify which scenarios are going to be the most 

critical ones for the fleet of interest.  

5.2.1 Problem Formulation 

The first step in the methodology is problem formulation. This step follows the XLRM 

Framework [89] which is used to find the relevant exogenous uncertainties, policy levers, 

relationships and metrics of the problem.  

Conjecture 2: The XLRM framework will be used to harvest the initial set of information. 

Exogenous uncertainties represent all those characteristics of the problem that are unknown 

and that are used as variables in step two – Scenario Discovery. These unknowns are the 

variability on the enemy side. Examples of these variables are the enemy’s aggressiveness 

level, weapons’ efficiency, tactics, assets positions, number of assets deployed, etc. The 
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role of these variables is to create different mission tasks to test the fleet under a wide set 

of scenarios.  

Policy Levers are different options over which the designer has control; these are used to 

simulate different technologies that could be infused in a ship. Policy Levers are what we 

have called so far technology strategies – which are not yet robust technology strategies. 

Different technologies can be bundled together, with certain weights, in investment 

strategies that will be tested throughout the experiment. Some of the Policy Levers that can 

be considered are the following: new engines to reduce noise and increase speed, new sonar 

or radar for more detection range and more precision at range, new torpedoes or missiles 

for higher probability of kill, new battle management system for optimization of firing 

power, new Close-In Weapon System to enhance ship’s survivability.  

Both exogenous uncertainties and technology strategies are placed in the same DoE at the 

beginning of the process. The DoE will have one part dedicated to uncertainties and a 

second part dedicated to technologies. The exogenous uncertainty part will be a Latin 

Hypercube Design (LHD), while the technologies part will have all values fixed on 

constants that represent the current state of that technology. In Part 1 only the first part of 

the DoE will be used to find the Vulnerable Scenarios. In Part 2 the DoE will be screened 

to retain only the DoE values pertaining to the Vulnerable Scenarios which will be fixed, 

the technology side on the other hand will be used to find the Robust Strategies. The reason 

to pick use such combination of constants and variables is that there is the need to work on 

the same file in two different steps. Moreover, as will be explained in Part 2, the section 

including the constants has to be upgradable and modifiable. All of these drove the decision 
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to use such a system. Regarding the decision to use an LHD, the need to sample inside the 

design space was clear. Plus, since in LHD the number of samples are independent from 

the number of dimensions, this enabled more variables to be tested without increasing 

computational costs. 

Conjecture 3: A Latin Hypercube Design can be used as DoE to cover the full scenario 

design space of interest. These DoE can be augmented by adding constant technology 

columns.  

The third part of the XLRM framework is relationships. This part includes all the different 

relationships present in the model. In general, to manage relationships there are no 

requirements for the software needed; in this work though – as highlighted in Chapter 3 – 

the choice of using an agent-based modeler was made, this is the first requirement on the 

tool to be chosen. Secondly, when looking at different agent-based modelers, it appeared 

clear that many had closed architectures that did not allow the user to create new maps or 

to superimpose maps to already existing bathymetric profiles. This was not acceptable in 

the case of this thesis as the scenario used a fictitious map, therefore a tool with an open 

architecture that allowed coding of new maps was required. The third requirement was 

established in regards of assets and technologies. Since the methodology is looking at 

establishing a general framework for trade-off, it is important that the tool chosen allows 

for easy modification of already coded assets and technologies, to enable quick re-coding 

if different options have to be tested, while remaining technology agnostic. While the 

methodology remains agnostic on the tools used, a tool called JANUS was chosen among 

different commercial and academic solutions. Since JANUS respected all the requirements 
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it was chosen to be used across all the experiments in the following chapters. JANUS is an 

unrestricted agent-based Software Development Kit (SDK) created in house by the 

Aerospace System Design Laboratory and previously known as UV-core. It is Java based 

and it relies on the digital global environment provided by NASA WorldWinds. JANUS 

can be used to model complex problems and to simulate full missions, in here, different 

assets are defined, and different strategies and tactics are coded. The RoE and the different 

assumptions of the scenario are also represented and coded in JANUS. To summarize, this 

SDK was chosen following the need to use agent-based modelling and because of its open 

architecture that allowed for easier coding of new assets and technologies.  

Throughout the simulation, metrics – the M in “XLRM” – will be tracked to verify if the 

investment strategy is robust or not and to what degree. Metrics that will be yielded are 

different in each use case. In general, it is expected those metrics to be parameters like 

mission competition time, assets lost, survived attacks, enemy destroyed etc. The way 

metrics are chosen is by identifying individual parameters that contribute to shaping the 

decision tree, these are then flagged and assigned to individual branches of the decision 

tree. By doing so each metric is responsible for activating or deactivating certain 

technologies that will be used to make Robust Strategies.  

The outputs of this step are the following: the definition of a basic fleet, mission success 

criteria, scenario assumptions, and technology assumptions. The first 3 outputs are used 

again in Part 1 of the methodology, while all four of them will be used in Part 2. A term 

that will be largely used in the next sections is basic fleet, this type of fleet represents the 

state-of-the-art available today in terms of ships technologies, types, and numbers. 
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5.2.2 Scenario Discovery 

 

Figure 17: Scenario Discovery step diagram 

 

The Scenario Discovery step begins with the basic information from the problem 

formulation one. The idea behind scenario discovery is to find which scenarios are the most 

critical ones for the fleet. With this objective in mind, one of the first questions that came 

up was regarding the level of analysis needed for the methodology to succeed. The choice 

fell on looking at a high-level at the whole mission.  

Conjecture 4: High-level mission analysis will provide enough information to the study to 

make it successful 
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Given the difficulty in accessing detailed information due to its classified nature, the lower-

level detail was not necessitated for a preliminary mission analysis in this research and will 

be kept at a higher level with fewer components. Moreover, a high level of details will 

imply a much longer computational time that would impact the ability of this study to 

provide results with a quick turnaround. As mentioned before, this methodology is 

positioned to support preliminary studies on future science and technology investments, as 

such, it is more important for us to be faster and quantitative rather than be extremely 

precise with the results. In fact, it is anyway expected that the results will be later reassessed 

by other entities. 

5.2.2.1 Methodology for Scenario Discovery 

The first step of Scenario Discovery is to gather all the scenario assumption to make the 

DoE. In previous chapters, it was mentioned a few times that the used methodology would 

be of the agree-on-decision type rather than the agree-on-assumptions one. While this 

remains true, and the scope of the work is still to find Vulnerable Scenarios after 

experiments are run, there is still the need to set a loose boundary for the problem. In this 

study, there are two types of assumptions: those that are used as variables (i.e., exogenous 

uncertainties) and those that are fixed. Given the high-level frame used for the mission 

analysis these assumptions will be at high-level as well (e.g., number and type of torpedoes 

in an enemy sub, sonar, or radar range, etc.). Ranges in variables’ assumptions are ensured 

to be broad enough to account for unlikely options. While these ranges help in framing 

what a potential future could look like, there is no guarantee that a certain event will 

happen. On the other hand, by having such ranges broad enough it is possible to see if there 
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is a concentration of adversary’s efforts close to one of the boundaries, this implies a 

possible out-of-boundary behavior which will require further analysis. Some assumptions 

are considered fixed in this study; a clear example of this is geography. Vulnerable 

Scenarios are location dependent, but the complexity of considering geographical elements 

like the bathymetry of the sea, or the water salinity and temperature, will be excessive. 

Nevertheless, since the simulation is built on an agent-based modeler which can be further 

enhanced, if all these factors are needed in the future they could be added and treated as 

variables.  

While dealing with large number of variables, it clearly emerged the need to have a tool 

for statistical analysis that could not only create some of the dataset but that could also 

perform the post processing and visualization of the data. When looking at the different 

options available, from Excel to Tableau, to JMP and Minitab, JMP was the only one to 

have a strong statistical analysis library which integrated all the functions needed for this 

thesis. JMP is in fact the workhorse of this thesis and it will be used several times 

throughout the methodology and in all the experiment.  

Going back to the methodology, after all the variables are collected, and their ranges are 

uploaded in JMP, a DoE will be created. For this study a Latin Hypercube Design DoE was 

selected. The reasons why LHD was selected are multiple and go further on top of what 

hinted in previous paragraphs. First there is interest in sampling inside the design space 

and not just on the edges, secondly due to the lack of skewness in the values (i.e., values 

in variables are not weighted) there is no interest in focusing in a specific area but rather to 
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uniformly sample the design space. Finally, by maximizing the minimum distance among 

points, the speed of the simulation is increased without losing quality.  

Once the DoE is ready it should be loaded into the agent-based modeler. Here the basic 

fleet is tested in scenarios whose variability is controlled by the DoE. Because this is a 

stochastic process, with successful encounters controlled by random effects, fleets are 

tested in the same scenarios multiple times to check that success is due to the technologies 

on board and not to serendipity. In this step, IDs are assigned to cases so that it is possible 

to test the same scenarios again. This means that each combination of variables tested has 

one ID; but because of repetitions, each ID is tested multiple times. Therefore, all IDs are 

also linked to the random seed used in the simulation, and the seed is outputted for 

consistency checking. The combination of ID and seed is unique, and each identifies only 

one single case. The number of repetitions is selected using a technique called 

Bootstrapping.  

When dealing with a stochastic simulation with stochastic responses, it is important to 

perform a certain number of repetitions to find the confidence intervals for the mean of the 

responses as well as to determine how the response is distributed.  For each response, 

several repetitions must be determined, and the maximum number of repetitions needed 

for any important response must be run for each of the Design of Experiments cases. 

Through Bootstrapping, it is possible to estimate how the variance will change given the 

number of repetitions of the experiment. Bootstrapping can be summarized in the following 

five steps: 

1. A large sample of the baseline case is created 
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2. The large sample is resampled with replacement to get many groups of samples 

with varying size (e.g., groups of multiple of 5, from 5 to 100) 

3. For each group, the mean is calculated 

4. By looking at the distribution of the mean the standard deviation of the mean is 

calculated 

5. Standard deviation can be normalized by the mean to study the coefficient of 

variation 𝑐𝑉 and its reciprocal, the signal to noise ratio 𝑆𝑁𝑅 

𝑆𝑁𝑅 and 𝑐𝑉 are the key to understanding how many repetitions are required for an accuracy 

level. While 𝑐𝑉 is related to the trust on the mean results of the experiment, for 

computationally expensive simulations, it is important to reduce the number of repetitions 

as much as possible without sacrificing on the 𝑆𝑁𝑅. Reducing the SNR leads to an increase 

of the statistical error to unacceptable levels. More on Bootstrapping, including a practical 

example is presented in APPENDIX B. Bootstrapping Analysis 

The results from the simulation are gathered in a single file. As mentioned in Chapter 3, if 

the results are too scattered PRIM can have issues identifying the Vulnerable Scenarios. 

As such it might be needed to preprocess the data to align the principal axis of the results 

with those of the hypercube of the design space. The second important preprocessing step 

is to aggregate in a single metric of success all the partial ones. This is needed because 

PRIM can only work with a single success metric. If there are multiple success criteria, the 

decision maker here as a choice: one can either aggregate all the metrics using an “AND” 

condition, or an “OR” condition. In the first case, all the success criteria will have to be 

met for PRIM to consider the mission successful; vice versa in the latter case, one satisfied 
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condition is sufficient to consider the mission a success. Both preprocessing steps can be 

done in JMP, allowing the analyst to import the simulation results right where the DoE 

was, process and modify the data as needed, and output a new table for PRIM.  

 Conjecture 5: Because the defense field is conservative regarding standards and practices, 

a mission is considered a success only if all the primary objectives are satisfied. 

The last step of Part 1 is to find the Vulnerable Scenarios using PRIM. There are only a 

few applications of PRIM, some run in Python others in C, despite the version used there 

should not be any difference in the result. TU Delft created a stable version of PRIM that 

runs on Python, this version was used to start crafting one that could work in the use case 

of this thesis. Once the simulation results are uploaded in the PRIM interface the algorithm 

will run and try to identify in the design space areas of interest. These will be given back 

to the user in the form of variable ranges, as can be seen in Figure 18. PRIM will also show 

the user the whole trade-off analysis. This is especially important because it is up to the 

decision maker to frame the results setting how many parameters can be controlled. 

Controlling parameters allows the decision maker to frame better the problem, tailoring the 

number of Vulnerable Scenarios found to the computational capabilities it can afford. The 

risk is that by leaving unconstrained too many parameters important scenarios are cut out. 



 

 100 

 

Figure 18: Examples of variables' ranges for Vulnerable Scenarios in PRIM 

Once the ranges of the variables for the Vulnerable Scenarios are available these can be 

uploaded in JMP too. Here that information will be used to screen out only those cases that 

are indeed vulnerable. This step allows the user to remove not only IDs that were not 

critical but also cases with critical IDs whose random seed made them not critical. In the 

end, the Vulnerable Scenarios found are defined with two values: one ID that identifies the 

variables’ values and one seed that is used for random parameters in the simulation.  

5.3 Part 2: Finding Evolved Fleets 

Once Vulnerable Scenarios have been identified it is time to look for S&T investments that 

will ameliorate the fleet to allow success. In Part 2 of the demonstration the focus is on 

technology. Starting from the information gathered in the Problem Formulation step, 

technologies are here decomposed using different taxonomies as described in CHAPTER 

2. If necessary, a downselection of those technologies is made using approximate Pareto 

Frontiers. Parameters derived from the different technology of interest are then added to 
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the DoE as constants. From here an iterative algorithm updates those values using a 

signpost and trigger system to adapt the fleet to the different scenarios. The output of this 

part is a set of evolved fleets which have proven to be successful in their scenarios. 

 

Figure 19: Schematic of the Part 2 of the methodology 

5.3.1 Technology Alternatives 

Technology alternatives represent opportunities for investments in the fleet. As discussed 

in Chapter 2, taxonomies affect how technologies are related. Knowing the taxonomy, or 

taxonomies, used in the model is therefore of paramount importance to understand how 

technologies will have to be decomposed into input parameters. All this information comes 

from the Problem Formulation via the technology assumption. Technology Alternatives 

relies on that information to define individual parameters that will affect the whole 

simulation and that will provide a standard for improvement.  

An example of this can be the radar subsystem. Looking at the problem with a physical 

taxonomy in mind, the relevant parameters to be considered will be required power, noise 

level, required space, number of antennas, etc. These parameters will drive requirements 
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that propagate through the whole ship design. On the other hand, using a functional 

taxonomy allows writing down parameters that can be readily used in a simulation. For the 

radar subsystem, this would be the radar range, or the radar discrimination power at range. 

In this methodology, parameters derived from functional taxonomies are preferred for 

those components that are not creating other agents (i.e., radar, sonar, radios, etc.). For 

components that have a more active role and interact directly with other agents’ parameters 

from a physical taxonomy are preferred. This distinction is made on the basis that there is 

an interest in parameters that can be readily used in a high-level simulation, but that are 

still quantitative so that can be used for S&T investments. Considering components like 

torpedoes, the interest is much more on the type and number as these will be the parameters 

driving a high-level simulation. It is worth mentioning that if the simulation focuses on 

something specific, the parameters of interest will also be specific, and they might be pulled 

from different types of taxonomies.  

We mentioned before that a selection of parameters representing different technologies is 

added to the initial DoE, and that the value of those parameters is kept constant at what is 

considered the state-of-the-art value. However, depending on how many technologies the 

decision maker is interested in studying, a downselection process might be needed to 

ensure that the whole methodology remains rapid as described.  

5.3.1.1 Technology of interest downselection 

Taking a scenario where all uncertainties are kept constant at their most reasonable level, 

a Multi Objective Evolutionary Algorithm (MOEA) [88] is used to generate alternatives. 
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These are then tested in the chosen agent-based modeler. The goal of this step is to generate 

approximated Pareto frontiers to find dominated and non-dominated solutions, to then 

select only technologies in the non-dominated solution pools for further analysis.  

Among the different MOEAs available ε- NSGAII [90][89] was selected for two reasons: 

t-dominance and approximate Pareto frontiers. Other MOEAs as NSGA-II [91] , Borg [92]  

and SAMODE [93] were discarded either because they did not provide approximate Pareto 

frontiers or because their dominance function was not appropriate to the problem.  The t-

dominance [94] utility function helps in stepping back from Pareto frontiers and focusing 

on approximate Pareto frontier. In fact since there is no interest in exact solutions it does 

not make sense to invest time and resources in finding the exact Pareto frontier. As reported 

in [94], t-dominance and approximate Pareto frontiers are defined as follows:  

Definition 1 (t-dominance): Let 𝒇, 𝒈 ∈  ℝ+𝒎 . Then f is said to t-dominate g for some 

t > 0, denoted as f >ε g, if and only if for all 𝒊 ∈ {𝟏, … , 𝒎} 

     (𝟏 + 𝜺) ∙ 𝒇𝒊 ≥ 𝒈𝒊 

Definition 2 (t-approximate Pareto Set): Let 𝑭 ⊆ ℝ+𝒎 be a set of vectors and t > 0. 

Then a set Fε is called an t-approximate Pareto set of F, if any vector g ∈ 𝑭 is t-

dominated by at least one vector f ∈ Fε, i.e., 

     ∀𝒈 ∈ 𝑭 ∶  ∃𝒇 ∈ 𝑭𝜺 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒇 >𝜺 𝒈. 

The set of all t-approximate Pareto sets of F is denoted as Pε(F ). 
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These two concepts are also depicted in Figure 20 and Figure 21.  

 

Figure 20: Difference between dominance (left) and t-dominance (right) [94] 

 

Figure 21: Difference between a t-approximated Pareto frontier (left) and a standard 

Pareto frontier (right) [94] 

Due to the variation of the different scenarios’ uncertainties considered in the first part of 

the methodology a full-defined Pareto frontier is not needed. Rather, this algorithm can 
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select an area as the approximate Pareto frontier and in that area, it uses an adaptive 

population sizing method [95] which reduces the size of the design space while capturing 

all the relevant metrics. To do so, solutions are checked for density and distance. Density 

indicates how many solutions are similar one another – in terms of produced effect – even 

if they use different technologies. Distance indicates if there are niches in the design space 

accessible only with specific solutions.  

At the end of this screening analysis, only variables present in the non-dominated solutions 

are put in the DoE with their value constant at the state-of-the-art level. This step is not 

always needed. If the number of technologies to be studied is small enough that rapid 

simulations are still possible, they should all be placed in the iterative algorithm. 

5.3.2 Variable Monotony Check 

Once the technologies have been selected, it is important to know their behavior in the 

simulation to avoid possible adverse effects on the fleet that will open new Vulnerable 

Scenarios. In fact, as discussed in Chapter 4 there is the risk of technologies negatively 

impacting fleets by triggering undesired consequences and effects. Among these effects 

there is the risk of opening of new Vulnerable Scenarios, which compromises the accuracy 

of what is found in Part 1 of the methodology by adding new and unknown Vulnerable 

Scenarios. In shot this can be summarized in the observation that follows: 

Observation 18: Some technologies might negatively affect fleets by opening new 

Vulnerable Scenarios. 
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To verify if Observation 18 is correct, and if that is the case in the specific study at hand, a 

demonstration has been designed. This demonstration focuses on understanding the 

behavioral trend of each technology. Moreover, if parameters negatively affecting the fleet 

should be discovered, another experiment to evaluate the impact of those parameters on 

the overall fleet will be provided in Part 3.  

From the original pool of scenarios non-Vulnerable Scenarios are taken. The hypothesis to 

test is the following: 

Hypothesis 5: If one technology has only a positive impact on the fleet, then its use 

will not lead to new Vulnerable Scenarios and non-Vulnerable Scenario will remain 

as such.  

The basic fleet can be described as F(0) = {0,0,0,0,0,…,0} where each of the variable is a 

technology of interest. To verify each technology, one variable at the time will be 

maximized and the fleet F(0)i, where the i stands for the i-technology to be maximized, 

tested to see if Hypothesis 5 is verified or not. Since there could be possible coupling effect 

the fleet F(0)MAX in which all the technologies are maximized is also tested.  

If all the non-Vulnerable Scenarios remain non-vulnerable, all is good. On the other hand, 

if new Vulnerable Scenarios open up they have to be addressed. First of all, the parameters 

that generated Vulnerable Scenario are marked. Then, if at the end of the full methodology 

those were used there will be another check. If they were not used no other steps are needed 

as all the other technologies used have only a positive impact on the fleet. 
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Even if some parameter, or the F(0)MAX , produces new Vulnerable Scenario this doesn’t 

mean that those Scenarios will be vulnerable at the end of the methodology. In fact, in this 

step variables are all maximized, while in the iterative algorithm they might be upgraded 

only to a limited extent. Consequently, this might also limit the negative effect that the 

parameter has on the overall fleet. Moreover, as discussed in Hypothesis 4, other 

parameters used in the iterative algorithm might reduce the influence of the negative ones, 

avoiding the creation of new Vulnerable Scenarios.  

5.3.3 Alternative Evaluation in Vulnerable Scenarios 

 

Figure 22: Graphical representation of the Alternative Evaluation in Vulnerable 

Scenarios process. 
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In this step, an iterative algorithm is used to modify the Basic Fleet by infusing 

technologies with different weights. This iterative step is repeated for each Vulnerable 

Scenario until the fleet can either succeed it, or it appears clear that the technologies chosen 

won’t change the outcome. While ideally there would be only one evolved fleet per 

Vulnerable Scenario, since the simulation is stochastic for each scenario studied there are 

also several repetitions. This means that from each Vulnerable Scenario this step will 

output a series of fleets – called Evolved Fleets. These are an intermediate result as it shows 

fleets that overcame a Vulnerable Scenario but that have yet to prove how they perform in 

other scenarios.  In Part 3 there will be a dedicated section to design a method to reduce 

the number of fleets yielded by each Vulnerable Scenario to just one. 

5.3.3.1 Iterative Algorithm 

The core of the Alternative Evaluation step is the iterative algorithm. The goal of this 

algorithm is to analyze the outputs of the simulation and rerun the same case with slightly 

different inputs. Inputs are changed using a signpost and trigger system. Each signpost is 

attached to one of the trackable metrics that are outputted after the simulation. Signposts 

are placed in a tree configuration where each branch is activated by the fulfillment or not 

of one of the main objectives. If one of the main signposts is activated, it means that 

somehow the fleet failed in the scenario, hence an action is triggered to upgrade the fleet 

before the next iteration. The four possible actions are: Reassessment, Corrective, 

Defensive, and Capitalizing [96]. 

• Reassessment: A Reassessment is initiated when the analysis on the scenarios 

shows that parameters are going out of the validity range. This causes critical 
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assumptions to collapse and as such the investment strategy built using the policy 

levers might lose validity. In the Reassessment those assumptions are evaluated to 

see if they still hold, in that case nothing is done, or if they are violated, which stops 

the simulation and calls the strategy unfeasible.  

• Corrective Action: This type of action is an adjustment to the basic strategy 

investment focused on preserving the outcome of the policy by using a different 

plan than what was originally planned. An example of this would be achieving 

higher speeds on an airplane by improving aerodynamics, discarding the original 

plan of investing in new engines.  

• Defensive Action: This type of action is taken to reinforce the basic policy to 

preserve the benefits it provides. It is also used to meet outside challenges in 

response to specific triggers that might leave the basic investment strategy 

unchanged – and therefore unsuccessful.  Continuing the airplane example, a 

defensive action would be increasing the investment in new engines to keep the 

original plan instead of moving to a new one.  

• Capitalizing Action: Capitalizing actions aim at taking advantage of an 

opportunity to increase the outcome of the investment strategy. This action relies 

on the capabilities of PRIM to find regions in the design space which can be 

exploited. Following the same example thread, a capitalizing action will be to 

reduce the investment in engines because the same speed is already achieved 

through already exiting aerodynamic effects. 
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It is important to mention that these actions are implied inside the decision tree used by the 

algorithm, but they are not explicit. The desired effect of this step is to drive the tested 

strategies, iteration after iteration, toward an acceptable status in which ideally all 

performance metrics are above the acceptability threshold, as in Figure 23 

 

Figure 23: Desired effects of the Iterative Algorithm on tested investment strategies. 

In red unsuccessful strategies, in orange partially successful, in light blue successful.  

The iterative algorithm is tailored to each experiment as it strictly depends on the taxonomy 

chosen to describe the problem at hand. However, as mentioned before several taxonomies 

are used in parallel to frame a complex problem properly. This means that while the 

variables in the algorithm are unique to the experiment at hand, if the same taxonomies 

used in the model are considered, and if inputs and outputs are logically connected in the 

model following those taxonomies, the algorithm can work independently from the specific 

problem.  
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Conjecture 6: Because the change of a technological parameter is driven univocally by 

specific values in the outputs, the order of technologies changed in the tree is not relevant.  

The success barrier of this algorithm has two steps to ensure that the fleet is successful. 

The first time a fleet manages to survive and achieve all the objectives in the scenario a 

counter is activated. The same fleet goes again through the same scenario, if the fleet is 

successful again it is outputted ad Evolved Fleet, otherwise the counter is set back to zero 

and the fleet goes through another iteration of the algorithm. 

5.4 Part 3: Finding Robust Fleets 

As was defined at the beginning of this chapter, a technology strategy is considered 

acceptable, and therefore robust, if it is successful across a series of different scenarios as 

shown in Figure 24. The goal of Part 3 is to compare all the different Evolved Fleets to find 

which one is successful in the largest set of Vulnerable Scenarios. Each Evolved Fleet is 

tested in each Vulnerable Scenario, and then fleets are ranked according to their successes 

across scenarios. Other ranking metrics, such as budget and number of technologies 

upgraded are also discussed in this chapter. The first step of this part is to discuss the issue 

of having multiple Evolved Fleets generated by the same Vulnerable Scenario due to 

repetitions in the DoE.  
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Figure 24: Representation of an acceptable Robust Strategy across several scenarios. 

5.4.1 Reducing the number of fleets 

One of the issues previously discussed is the high number of Evolved Fleets generated in 

Part 2 due to the number of repetitions present in the DoE, each of which has a different 

random seed and therefore is a slightly different scenario. If the number of Vulnerable 

Scenarios is limited the problem does not exist, and the analyst could decide to test all the 

found fleet in all the Vulnerable Scenarios. However, the problem escalates quickly. If 

there are 80 repetitions for each of the 100 Vulnerable Scenarios, assuming the same 

number of repetitions as needed to find the Vulnerable Scenarios, the number of 

simulations needed in Part 3 is 640,000. The issue of creating several fleets per Vulnerable 

Scenarios can be summarized as follows: 

Observation 19: Because of repetitions due to the probabilistic approach, multiple Evolved 

Fleets are created per each tested Scenario.  

Therefore, there is a need to reduce the number of fleets that will be tested in this part. In 

Part 2 the Basic Fleet was described as F(0) = {0,0,0,0,0,…,0} where each of the variable 
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is a technology of interest. Generalizing that concept, the n Evolved fleet is described as 

F(n) = {𝑎1
𝑛, 𝑎2

𝑛,  … ,  𝑎𝑝
𝑛} where 𝑎𝑖

𝑛 ∈ [0, 𝑀𝑖]; 𝑎𝑖
𝑛 is the value that each technology has in 

the fleet n. There are p technologies in each fleet and each technology has a maximum level 

𝑀𝑖. We assume that 𝐹(𝑛) > 𝐹 (𝑚) ↔ 𝑎𝑖
𝑛 ≥ 𝑎𝑖

𝑚   ∀𝑖. In other words, we assume that two 

fleets are comparable and that one dominates the other if and only if one is superior in all 

technologies compared to the second fleet. In this sense it is worth asking the last Research 

Question. 

Research Question 8: Which criteria should be used to select a reduced number of 

fleets to be further evaluated for robustness? 

In Figure 20 the POSET structure of the Evolved Fleets generated in one single Vulnerable 

Scenarios is shown. In this figure, it appears that there are some dominated solutions and 

some non-dominated ones, the red line present connects all the non-dominated solution 

representing a Pareto frontier of the problem. The first screening criterion used to reduce 

the number of fleets is to discard all dominated solutions. 

Observation 20: All dominated fleet can be discarded. 
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Figure 25: POSET structure of Evolved Fleets in one Vulnerable Scenario. In red 

circles the Evolved Fleet, the blue dots represent possible technology alternatives.  

At this point there is a choice on how to further reduce the number of fleets. Still looking 

at Figure 25, the option is to either take all the solutions along the red line – analyzing 

therefore all the non-dominated strategies – or alternatively it is possible to generate one 

new fleet which has each technology to the maximum used by non-dominated fleets in that 

Vulnerable Scenario. The two alternatives are described as: 

• Alternative 1 – Non-dominated fleets approach: 

In the first alternative, the idea is to test all non-dominated solutions for each 

scenario. The outcome is that all dominated strategies are removed but it also might 

lead to having multiple fleets per scenario. 

• Alternative 2 – Maximized fleets approach:  
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In the second alternative, the number of technology strategies is reduced to one per 

scenario. New fleets are generated by taking the maximum of each technology in 

the scenario. These fleets are defined as F(t) = {𝑎1
𝑡 , 𝑎2

𝑡 ,  … ,  𝑎𝑝
𝑡 }, where 𝑎𝑖

𝑡 =

𝑚𝑎𝑥[𝑎𝑖
𝑛, … , 𝑎𝑖

𝑚]. It is expected this alternative to be more expensive than the other 

as the fleets will have more technologies.  

Hypothesis 6: If the maximized fleet approach is used then the fleets generated this 

way will dominate those generated by the non-dominated fleets approach. 

5.4.2 Robust Criteria and Ranking Criteria 

Before finishing the methodology by performing the comparison among Evolved Fleets 

the evaluation criteria to assess which fleet is robust and which is not must be defined. 

Following the literature in RDM, in this methodology we seek solutions which can satisfy 

many scenarios instead of being optimized just for one. This robustness is tested by 

evaluating successes of each strategy. 

But how can two fleets be compared if they have the same success rate? And are there any 

other criteria to consider in ranking the fleets? The following approaches demonstrate some 

of the possible different criteria for comparison. 

• Monetary approach: 

Tracking the budget is always relevant as getting a solution that works marvelously 

but that eats all the budget is pointless. So, a good discrimination parameter could 
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be money, as depending on the budget available different strategies might be 

possible.  

• Technology Variety approach: 

On the other side of the spectrum, some countries might be limited in the research 

they do not by money but by workers. In fact, there could be a situation in which 

resources are available, but the work force is lacking, setting the objective to 

minimize new infused technologies rather than budget. 

5.4.3 Evolved Fleet Comparison 

The comparison step is straightforward: each Evolved Fleet is tested in all the Vulnerable 

Scenarios. Successes are counted and the fleet with the most success is considered the 

Robust Fleet. Metrics such as budget and technology variety are also considered to check 

different rankings the decision maker might need.  

Conjecture 7: The criteria used to rank Robust Fleets is the number of successes in different 

Vulnerable Scenarios. This ranking can be supported by two other discriminating criteria: 

budget and technology variety.  

Since this is a stochastic process repetitions are needed. The same number of repetitions as 

in the first part of the methodology is used to maintain consistency. To ensure that one 

scenario does not weight more than others, successes in the same Vulnerable Scenario are 

summed and normalized. A zero is outputted if the success rate is not above a certain 

threshold, a one is outputted otherwise. This way the success rate of the fleet in each 
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scenario becomes a binary condition; all the ones and zeros can be summed to give a 

numerical score representing the robustness of the fleet. 

5.4.3.1 No new Vulnerable Scenarios Check 

As discussed above, in some cases variables might have negative effects on the fleet. In 

Part 2 of this methodology, it was discussed how to identify them. If such variables were 

present and if they were used, one more step is needed to ensure that no new Vulnerable 

Scenarios are present. In general, it is not expected that any variable is brought to its 

maximum range, therefore even if there are negative effects it could be that these are 

mitigated by other variables as stated in Hypothesis 4. Table 1 describes what to do to 

check if the Evolved Fleets might open new Vulnerable Scenarios when the tested fleets in 

part 2 have negatively impacting parameters.  
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Table 1: Problems, Actions, and Consequences of having a variables with a negative 

impact on the fleet 

Results from Part 2 Action Consequence 

Fleets with only one 

maximized 

technology failed 

If that technology is not used 

– no action needed 

No consequence 

If that technology is used – 

run fleets where that 

technology is present on 

non-Vulnerable Scenarios 

Add the new Vulnerable 

Scenarios and adjust the 

ranking accordingly. No need 

to re check the other Evolved 

Fleets 

Fleet with all 

maximized 

technologies failed 

There are interactions among 

parameters – fleets should 

all be run on non-Vulnerable 

Scenarios 

Add the new Vulnerable 

Scenarios and adjust the 

ranking accordingly. If this 

task is too computationally 

expensive, run only the most 

interesting cases 

Both types of fleets 

failed  

There are interactions among 

parameters and technologies 

with a negative impact on 

the fleet are present– fleets 

should all be run on non-

Vulnerable Scenarios 

Add the new Vulnerable 

Scenarios and adjust the 

ranking accordingly. If this 

task is too computationally 

expensive, run only the most 

interesting cases 
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CHAPTER 6. Finding Vulnerable Scenarios 

The focus of this chapter is to be able to verify Hypothesis 2. This states that if PRIM is 

used together with Agent-Based modelling, then it can rapidly and credibly identify 

quantitative sets of naval Vulnerable Scenario. To verify the hypothesis a set of scenarios 

are modelled and simulated, the results are analyzed through PRIM to verify if Vulnerable 

Scenarios can be found or not. The outcome of this experiment will be used as a starting 

point for the experiments in Chapters 7, 8 and 9.   

6.1 Methodology 

The methodology drafted to verify Hypothesis 2 hinges on being able to simulate several 

scenarios using an agent-based model. Because in this experiment the focus is to find 

Vulnerable Scenarios the only variables studied are those related to the scenario and the 

environment. Fleet’s variables are kept constant throughout the whole experiment.  

The first step is to draft assumptions. As we saw in CHAPTER 4 Robust Decision Making 

techniques are considered assumptions independent as they offer the decision maker a 

plethora of solutions independently of the scenario assumption. This does not mean though 

that there are not scenario assumptions at all, but it means that there are assumption ranges 

rather than unique values. The first step is therefore focusing on defining the different 

ranges for all the variables of interest.  

The second step of the methodology is looking at combining values from each variable to 

create scenarios. The result of this operation is a Design of Experiment. In a DoE the design 
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space is sampled to obtain a subset of cases that will allow a broad understanding of the 

full model, without testing the full combinatorial space. 

In step three, the DoE is transferred to the agent-based modeler where defined scenarios 

are run. The agent-based model provides the modelling framework for testing the fleet of 

interest in different scenarios. 

Step four is dedicated to data filtering. In some cases, there could be a wide number of 

scenarios that are flagged. This would generate massive PRIM boxes leading to a too wide 

number of Vulnerable Scenarios. If the issue arises, this step of using PCA is applied to 

reduce the problem and maintain speed and continuity of processes. 

The last step is the discovery of the Vulnerable Scenarios. The polished data are passed 

though the PRIM algorithm where a multidimensional analysis is used to identify critical 

regions in the design space. PRIM can find the critical region by following specific 

objectives as defined by the user. Objectives can include success at a given time, not losing 

any asset, locating objects and so on.  

6.2 Experiment 

To set up the experiment a scenario has been designed. In this scenario, one ship belonging 

to a NATO country has to perform an ASW mission to find, and if needed neutralize, 2 

submarines around a group of islands. In performing this mission, different technologies 

and assets are tested and evaluated against the changing abilities of the enemy submarine 

fleet. 
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6.2.1 Experiment Design 

To design the experiment the first step was to identify all the assets involved. For this 

particular experiment, the friendly fleet was made of only one frigate – based on the 

FREMM model – and its organic helicopter. The enemy fleet was made of two 

conventional submarines based on the kilo class. For each asset, relevant parameters and 

chosen ranges can be found in Table 2, Table 3, and Table 4.  

The mission chosen for this experiment is an ASW mission. The frigate will have a certain 

amount of time up to 75.000 time units to locate the two submarines in a defined area – 

which the submarines can escape. The submarines are aggressive 50% of the times. If the 

submarines attack the ship or the helicopter, the RoE of the frigate is to neutralize the 

submarines. The mission is considered a success for the allied fleet if both submarines are 

located or neutralized within 30.000 time units. On the contrary, the mission fails if 

submarines are not located in time or if either the frigate or the helicopter is destroyed.  

In this experiment the focus is to discover Vulnerable Scenarios. As such, only the enemy 

fleet present variables, while the NATO assets have their parameters kept constant at the 

most reasonable level. Some of the variables are here descripted in qualitative ways, 

nevertheless these have a numeric counterpart in the simulation (e.g., Hull Strength reduces 

the Probability of kill when the ship is hit by a torpedo by 5% per level). 
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Table 2: Frigate – FREMM Class Parameters 

Parameter Value Notes 

Sonar Range 35.000 m  

Sonar Quality 0 Reduces submarines stealthiness. 

Torpedo Type MU 90 lightweight 
Probability of kill against 

submarines 0.6. 

Torpedo Number 6 2 launchers. 

Helicopter Number 1   

Hull Strength Standard Plating 

Probability of killing the Frigate 

goes from 0.55 to 0.95 

depending on torpedo type.  

Torpedo Decoy Quality Standard Decoy 
Decoys have a 30% probability 

of success.  

Decoy Quantity 4  
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Table 3: Helicopter – NH90 type Parameters 

Parameter Value Notes 

Dipping Sonar Range 12.000 m  

Sonar Quality 0 Reduces submarine stealthiness. 

Torpedo Availability none  

Torpedo Type / If available MU-90. 

Sonobuoy Number 1   

Flight Endurance 10.800 time units  

Flares Number 2 
Helicopter can release 2 flares 

charges. 

Flares Quality Standard Flares 
Reduces the probablity of kill 

from 1 to 0.33. 
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Table 4: Submarine – Kilo Class Variables 

Parameter Value Range Notes 

Sonar Range 40.000 m to 45.000m  

Torpedo Type 3 qualities 

Low: probability of kill vs frigate 

0.55, 

Medium: probability of kill vs 

frigate 0.75, 

High: probability of kill vs frigate 

0.95. 

Torpedo Number 2 to 14  

Stealthiness 2 to 8 

This represents how quiet the 

submarine is. The probability to 

be undetected goes from 20% to 

80%. 

Maximum Bottom Time 
1.800 to 12.600 time 

units 

This represents the time the 

submarine hides at the bottom of 

the sea trying to escape frigates. 

Anti-Helicopter Missile  0 to 1 

The submarine can fire against 

the helicopter. If available 1/3 of 

the torpedoes are anti-helicopter 

missiles. 

Strategy 0 to 1 

If 0 the submarine will only be 

passive. If 1 the submarine will 

attack the frigate. 

6.2.1.1 Asset Behavior in the Simulation 

The simulation starts with the NATO frigate entering the area of interest where the two 

submarines are thought to be. As soon as the frigate enters the area the helicopter is 

deployed. The helicopter and the frigate patrol the area using a randomized pattern, and 
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after 1.000 time units, the helicopter deploys a sonobuoy field, which has a sonar range of 

50.000 meters.  

The submarines move inside a larger area than the NATO assets, this helps them hide and 

escape when detected. Like all the other assets, submarines move in a random pattern.  

When a submarine is detected, there are different options. First, if detected by a sonobuoy 

and the strategy is aggressive then the submarine will destroy the sonobuoy. If a helicopter 

or the frigate detect the submarine shooting at torpedo, then they will attack the submarine. 

Second, if the frigate or a helicopter detects the submarine, and its strategy is aggressive 

the submarine will try to hide and re-engage the NATO asset as soon as it is not detected. 

Third, whenever the submarine strategy is to be passive it will try to hide as soon as 

detected.  

When a submarine is trying to escape or hide it means that the submarine will go deeper, 

up to its max depth, and it will slow down to reduce noise. When the submarine reaches 

max depth, a timer is activated. The submarine can stay at max depth only for a certain 

amount of time; after the time is elapsed, it is forced to remerge. When it remerges, another 

timer is started, during this time if the submarine is detected it cannot escape at depth. 

Submarines will not attack the frigate or the helicopter when detected, therefore having a 

better sonar is a strong tactical advantage for the submarine.  

Deployed sonobuoy fields are represented by a single sonobuoy with a variable sonar range 

of minimum 50.000 m. When a sonobuoy detects a submarine, it sends a message to the 

frigate which dispatches the closest asset to track the submarine, this could the frigate itself 
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or the helicopter. Sonobuoys can be destroyed by submarines. If the sonobuoy is destroyed 

in the presence of any other NATO asset, then NATO retaliates, otherwise it is assumed 

that the sonobuoy just stopped working. 

Helicopters fly in a random pattern in the area of interest. They can be armed with up to 

two light torpedoes and they can carry 1 to 5 sonobuoys. Helicopters can usually fly 10.800 

time units, this can be augmented up to 21.600 time units. When a helicopter finishes its 

fuel it goes back to the frigate, where after a short break it is redeployed with new 

sonobuoys and torpedoes. The frigate can carry up to 2 helicopters. 

It is important to mention that while in these paragraphs NATO assets had variable 

parameters (e.g., helicopter has 1 to 5 sonobuoys), this has been reported as this mission 

will be also used in other parts of the thesis. In this experiment NATO assets have fixed 

parameters (e.g., helicopter has 1 sonobuoy) as reported in found in Table 2 and Table 3. 

6.2.2 Creating the DoE 

All the variables from the enemy side were uploaded on JMP to create a table with many 

scenarios. JMP is a software for statistical analysis created by SAS Institute. This software 

has been widely used in many steps of this work. To create a DoE in JMP the first step was 

to upload the variables and their ranges in the DoE wizard. Among the different DoE 

options the Space Filling Design – Latin Hypercube Design option was chosen as 

previously anticipated. The input parameters used were those in Table 4, with whom JMP 

created 70 cases. These cases sampled uniformly the design space, without the need to 

perform a full factorial DoE which would have had 32.928 cases.  
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To each scenario a unique ID was assigned for tracking purposes. After conducting a 

bootstrapping analysis of the scenarios, the number of repetitions was set at 100. The final 

output of the experimentation phase is a csv file with the scenarios that can be uploaded 

into the agent-based modelling framework. For this case study, this has 7.000 total 

scenarios including repetitions. 

6.2.3 JANUS 

JANUS is an agent-based modelling software developed by the Aerospace System Design 

Laboratory (ASDL) at Georgia Tech in the past decade. JANUS is written on JAVA, and 

throughout the course of the author’s academic career at ASDL it has been the backbone 

of his research.  

The csv file can be uploaded in the JANUS interface. Once uploaded, the software asks if 

any optimization is required or if the file should be simply run in batch mode. In this 

experiment the scenario file was run in batch mode, without any further optimization. This 

meant that the software went case by case reproducing in the simulation the information 

contained in the CSV file. To speed up the process, visualization features were turned off. 

To grant repeatability, the 16-digit random seed was included in the output file for each 

case.  

The output parameters can be found in Table 5 with a synthetic explanation of why each 

parameter was yielded.  
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Table 5: JANUS First Experiment Output Parameters 

Parameter Note 

total Runtime 

This is the total running time of each case. It can be lower 

than the maximum (75.000) if the simulation is stopped due 

to success or failure. 

seed The random seed used in the case, stored for repeatability.  

Number of Frigates 

Killed 

Number of frigates destroyed by submarines, if bigger than 0 

the case is a failure. 

Number of Torpedoes 

Fired 
Number of torpedoes fired by the frigate. 

Total ASW Time 
Total mission time. If 0, the mission was not successfully 

completed. 

Number of Helicopters  

Deployed 

Number of helicopters deployed. It is equal to the number of 

helicopters available, unless some are destroyed. 

Number of Helicopter 

Sorties 

Number of times each helicopter has been deployed times 

the number of helicopters available. 

Number of Sonobuoys 

Launched 
Number of sonobuoy fields launched by helicopters. 

Bad Configuration 
Used to mark optimized configurations that still fail the 

mission. Not used in this experiment. 

Mission Type 
Verification parameter for optimization algorithm. Not used 

in this experiment. 

Number of Submarines 

Identified 

Number of submarines identified either by the frigate or by 

the helicopters. If the value is 2 for more the 30.000 time 

units, the simulation is stopped and considered a success. 

Number of Submarines 

Killed 
Number of submarines killed. If the value is 2 the simulation 

is stopped and considered a success. 

Number of Submarines 

Escaped  
Number of submarines escaped from any of the NATO 

assets. 
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Torpedo Jammed Number of torpedoes jammed by the frigate decoys. 

Torpedo Fired Number of torpedoes fired by enemy submarines. 

Number of Helicopters 

Killed 

Number of helicopters killed by enemy submarines. If bigger 

than zero, the mission is considered a failure. 

Number of Decoy Fired Number of decoys fired by the frigate. 

Number of Sonobuoy 

Killed 
Number of sonobuoys destroyed by enemy submarines. 

Scenario ID ID of the scenario, stored for traceability. 

  

While JANUS outputs a wide array of variables in this experiment the focus is only on 3 

of them: Number of Frigates Killed, Total ASW Time, Number of Helicopters Killed. These 

variables identify which scenario is a failure and which is a success. Other variables are 

used to draft conclusions on what are the causes of failure or success. Finally, in the outputs 

there are some variables that are only stored for bookkeeping purposes and for traceability.  

6.3 Results 

PRIM was run using the output from the JANUS simulation. In more than 80% of the cases 

the fleet failed the mission, proving that it was not able to satisfy the objectives. 5732 out 

of the 7000 simulations were therefore deemed of interest by the code which means that 

they were marked for furtherer analysis. The trade-off analysis showed almost a flat 

behavior in balancing density and coverage, as it is possible to see in Figure 26. The flat 

behavior is not bad, but it shows that the only trade to be made in this case is between the 

number of restricted dimensions and coverage. To limit the number of restricted 

dimensions to the highest number possible (i.e., 4), coverage was therefore sacrificed. The 
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full result of the first PRIM iteration can be found in Table 6. It is important to mention 

that while cases of interest were only found in the 11% of the design space, they represent 

and could be used to reproduce almost 90% of the whole cases of interest.  

 

Figure 26: PRIM Trade-off analysis result 

Table 6: PRIM iteration results 

Mean 0.898571 

Mass 0.1 

Coverage 0.109734 

Density 0.898571 

Restricted Dimensions 4 

Looking now inside the trade-off graph it is possible to expand the result for each of the 

cases in the picture. As was mentioned before, this allows the decision maker to 
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accommodate the results to its ability to process, only one point is needed in the analysis. 

In this case, point 11 was chosen - the one on the far left in Figure 26 - as it was the one 

with the highest number of restricted dimensions, allowing for a more insightful 

comparison with data from JMP. Results of point 11 are also visible in Figure 22, where 

the PRIM boxes are shown in red highlighting Vulnerable Scenarios variables’ intervals.  

 

Figure 27: Results from PRIM, the red boxes represent the set of Vulnerable 

Scenario. In blue cases where the NATO fleet had success, in orange where it failed 
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To augment the result obtained by the PRIM algorithm it is possible to visualize them on 

JMP. Figure 28 shows the comprehensive results of the experiment, in here the maximum 

value per Scenario ID is 100, representing the number of repetitions. This means that a case 

reporting 98 had a 98% failure rate in the simulation. It appears clear from the graph that 

most of the scenarios failed – either because of the time needed by NATO to find the 

submarines or because of the enemy’s ability to outperform NATO in combat. This very 

high failure rate highlights the need for technology investments to ensure that the fleet can 

successfully perform the mission assigned. 

Figure 29 shows a subset of the information present in Figure 28. Here, those data were 

filtered using the variables ranges of the PRIM box that PRIM identified. It is important to 

highlight how some of the cases with a high failure rate (e.g., ID 4, 22 or 61) were not 

included in the subset discovered by PRIM. This is due to some of the repeated values 

present in those ID, which were filtered out by PRIM when it was balancing density and 

coverage.  
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Figure 28: Failure rate by cases, red bars are aggressive deterrence strategies, blue 

bars are passive deterrence strategies 

 

Figure 29: Subset of Vulnerable Scenarios ID identified by PRIM (4 restricted 

dimensions) 
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6.4 Conclusion 

What this experiment has demonstrated is the successful proof of Hypothesis 2. To verify 

this hypothesis a set of naval scenarios were created on JMP and tested in JANUS. The 

outcomes from JANUS were later processed on JMP and using PRIM. 

In performing this last comparison, it emerged that the PRIM box captured most of the 

Vulnerable Scenarios. This can be seen as for both deterrence strategies, the case IDs with 

the highest failure rate were highlighted by PRIM, as it appears in Figure 29. By using 

PRIM, the number of scenarios has been reduced 5 times, without losing valuable 

information. This was confirmed by the information on density and coverage provided in 

the Result section.  

6.4.1 Picking a different point 

As shown in Figure 26 PRIM provided a set of points that are a trade-off between coverage 

of the design space and density of the solution of interest. To provide the results and 

conclusions described in the previous section, the point studied was the one with the highest 

number of restricted dimensions as done by Lampert in many of his works.  

While not as common, it is also possible to pick a different point. In this experiment, the 

trade-off showed a quick degradation of the coverage parameter with an increase of 

restricted dimensions. As such it is interesting to try to increase the coverage factor by 

picking a point that has only 3 restricted dimensions instead of 4. We will see that by doing 

so more Vulnerable Scenarios can be included in the study, expanding the number of 
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scenarios above the minimum required one. This will not impact the results, but on the 

other hand will increase their accuracy. 

Looking at Figure 26, choosing the point with the highest coverage would be point 7 in 

light green. Comparing this point with the previous one (i.e., point 11) it appears clear how 

the coverage is much higher while the density is only minimally downgraded. The range 

of values for common variables is much wider in point 7 seen in Figure 30 and Figure 31. 

This shows that since the algorithm is restricting less variables it is widening the range to 

capture more cases. This is confirmed by comparing the amount of cases ID captured in 

point 7 visible in Figure 32 with those captured in Figure 24 

Results in Figure 32 are the same as those in Figure 29 plus, some more due to the higher 

coverage value of this point. These results show how by restricting less variables – hence 

by reducing the dimensionality of the PRIM box – the number of Vulnerable Scenarios 

increases.  

Finally, it is important to underline how also this point verifies Hypothesis 2. All the 

scenarios found are in fact among the most critical ones. If we look at the top 10 cases for 

failure rate in Figure 28, 8 of those are present in Figure 32, proving once again the scenario 

discovery ability of this method.  



 

 136 

 

Figure 30: Ranges of each of the 3 restricted dimensions. 
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Figure 31: Results from PRIM (point 7), the red boxes represent the set of Vulnerable 

Scenario. In blue cases where the NATO fleet had success, in orange where it failed. 
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Figure 32: Subset of Vulnerable Scenarios ID identified by PRIM in point 7 (3 

restricted dimensions). 
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CHAPTER 7. Identifying Robust Technology Strategies 

As was explained in Chapter 4 current methodologies lack the ability to adaptively find 

sets of technologies that can quickly overcome Vulnerable Scenario. The experiment that 

this chapter will demonstrate aims to verify Hypothesis 3 by testing an in-house developed 

iterative algorithm that relies on Adaptive Robust Decision Making but goes forward by 

mixing it with DoE. The use of this new algorithm will also provide a complete response 

to Following A second requirement is adaptability. There is little interest in selecting a 

static pool of technologies; on the contrary, it is much more interesting to be able to modify 

that pool so that the fleet can advance even in losing scenarios. This means that the initial 

set of values for each technology should not be a fixed constrained, but rather a starting 

point. 

The third requirement is the speed of the whole process. This work is by no means trying 

to use high fidelity modelling – which will increase computational efforts and time. On the 

contrary, one of the main characteristics is the interest in using a low fidelity approach to 

gather insightful information to help reducing the size of the design space for high fidelity 

modelers, which will anyway later verify whatever technology is selected. As such, the 

method that is chosen should be able to analyze large design spaces with a quick 

turnaround. This requirement is in line with efforts of the US Air Force to contain the 

turnaround time for quick simulation evaluations to 90 days [42].  

Following all these requirements it emerged that a hybrid approach, rather than a single 

technique was the right tool. A large experimental simulation will be used as a starting 
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point, but differently from conventional uses of Design of Experiment (DoE) it will employ 

an iterative algorithm to adapt the DoE to the evolving scenario. This way it is possible to 

look at the broad spectrum of the technologies of interest, while being able to adapt them 

to the scenarios in an iterative way.  

Assumption 3 and Gap 1, the focus now shifts in identifying which type of algorithm can 

cover the aforementioned gap. This decision should not be taken just in the context of 

finding and selecting technologies, but it should also consider the whole idea of this thesis 

– i.e., finding naval technology to support R&T in future Vulnerable Scenario. Although 

the choice and requirements of selecting the type of DoE will be discussed later, the large 

DoE hybrid approach leads to the next research question to determine an integrable 

algorithm 

Research Question 6.  

Hypothesis 3 states that if a new method that will enhance state-of-the-art methodologies 

with modern analysis tools is created, then it will be able to adaptively find sets to 

technologies to increse fleets' success in naval scenarios. This means that if the hypothesis 

is verified, from the original Basic Fleet it will be possible to create a series of new fleets 

using modern analysis tools (i.e., DoE in cunjunction with the iterative algorithm).  

While this experiment can be fully disconnected from the one conducted in Chapter 6, it 

makes sense to rely on that testbed to maintain continuity of the case study. The information 

taken from that experiment include: the NATO fleet composition, the asset’s behavior and 

assumptions, and the discovered Vulnerable Scenarios identified via PRIM. It is important 
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to highlight that this experiment could be conducted with any scenario, vulnerable or not, 

and with any set of assets.  

The robust technology strategy experiment was created to test and evaluate the relative 

success rate increase from the Basic Fleet to the Evolved Fleets. By quantitatively 

evaluating success rate it is possible to verify if  Hypothesis 3 stands or not. In this sense, 

this experiment was chosen because it enables to test the Adaptive Robust Decision Making 

Algorithm created, and the method used to find Evolved Fleets.  

7.1 Methodology 

The methodology follows that of Figure 22, demonstrated on the case study of the 

previously selected scenario from the vulnerability experiment in Chapter 6. Once initial 

conditions, success criteria and the number of repetitions are chosen the assets can be 

tested. All the information regarding the scenario and its variability is present in the DoE, 

which, if the analyst was not provided already, will have to make. In making the DoE the 

analyst should capture all the relevant parameters that are present in the vulnerable 

scenarios to be studied. If already made Vulnerable Scenarios are used, then it is critical to 

make sure that the random seed that governs stochastic events is present. Without this 

information whatever is discovered throughout this methodology will not be repeatable. 

Moreover, in this case repetitions are not needed as the seed will keep the scenario constant, 

otherwise bootstrapping can always be used to find the number of repetitions needed. For 

result consistency all the cases related to the ID of the Vulnerable Scenario should be run. 

Regarding the technology of interests, these should be present in both the DoE and in the 
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iterative algorithm. The technology values in the DoE are used as a starting point for the 

algorithm.  

Once the full set of assumptions is ready it should be loaded in the chosen modeler. To 

ensure consistency, in this work it was chosen to use the same agent-based modeler used 

for the previous experiment (JANUS). At this point the Basic Fleet is tested in each 

scenario. When the fleet is not successful it goes through an iterative algorithm that 

increments or decrements a subset of the technologies of interests. This subset is chosen 

depending on the previous simulation output.  

The iterative algorithm employs a signpost and trigger system that enables us to adaptively 

select different technologies to be used in the next simulation. This system is designed to 

iterate the fleet until satisfaction of the mission minimum requirements. If there are any 

optional objectives the algorithm will try to satisfy those as well, but once the main 

objectives are achieved the fleet will be output and the iterative process stops. This 

algorithm must be tailored to the use case at hand, but the logic it follows does not change 

through use cases. 

To activate the algorithm one of the main objectives of the mission must be to fail. The 

failure of some mission criteria is used as a signpost to activate different branches of the 

algorithm. For every objective that is not satisfied the algorithm should have a branch of 

technologies that will help cover that gap. Different signposts activate different branches, 

and multiple branches can be activated during the same iteration. This way fewer iterations 

are needed to find the evolved fleet as the technology search in the algorithm is parallelized. 

To select which technologies to update inside the branches the algorithm checks the output 
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of the simulation looking for technologies that can cover that gap. If there are multiple 

technologies, they should be arranged using a criterion – in the case of this work the criteria 

chosen was the estimated total cost. This means that technologies were arranged from the 

cheapest to the most expensive one keeping in mind not just the estimated cost of 

integration, but also of research and development, and operation. This criterion was chosen 

as this work is dedicated to satisfying a need for Science and Technology investment. When 

all the success criteria are satisfied the fleet can be output and the algorithm stops. A 

maximum number of iterations should be set up to avoid cases in which the fleet keeps 

iterating without being successful. A good measure for identifying this cap is to calculate 

the maximum number of iterations needed to reach the bottom of a branch and added a 

margin of error to account for branches alternation.  

These outputs should then be loaded on JMP to perform an analysis of which technologies 

provided the most success, which scenarios were unrecoverable with the current set of 

technologies, and the number of iterations needed. This last piece of information is the key 

one to provide to decision makers for them to make an accurate evaluation of investments 

in the technologies of interest. 

7.1.1 Methodology and Experiment Validation Against Hypothesis 

This methodology is the one described in Assumption 4. The reason this experiment was 

chosen is that on one hand it is S&T oriented, and on the other it allows extending already 

existing methodologies to the naval field through modern analysis tools. It provides a good 

framework to test an iterative approach that allows the user to reduce the number of 

iterations needed to find how different technologies perform, reducing consequently the 
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entire process time. Looking at Hypothesis 3, this experiment provides enough information 

to validate, or discard, the hypothesis. If the experiment is successful then it will be visible 

by comparing results against what was found in Chapter 6, more specifically in Figure 32. 

Moreover, to assess the speed of the whole methodology it is possible to compare the 

number of total runs – number of cases times the median number of iterations – against the 

total number of cases using just a DoE – times the number of repetitions needed. 

As described in Chapter 4 it might be possible that some technologies of interest are not 

positive monotone, but they negatively affect the fleet opening of new Vulnerable 

Scenarios, and de facto compromising this iterative step. To address the compromised state, 

an experimentation that will be addressed in Chapter 8 closes the gap created by these 

results.  

7.2 Experiment  

The experiment follows the one already performed in Chapter 6. The allied fleet is 

composed of one frigate – based on the FREMM model – and its organic assets. The enemy 

fleet was made of two conventional submarines based on the kilo class. For each asset, 

relevant parameters and chosen ranges can be found in found in Table 2, Table 3, and Table 

4. Table 2 and Table 3 provide the initial values used by the iterative algorithm, ranges that 

will be tested are presented in Table 7and Table 8. The enemy fleet is still based on  Table 

4 but the Vulnerable Scenarios chosen are those visible in Figure 32.  
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Table 7: Frigate’s Variables Range 

Frigate – FREMM Class Min Max 

Sonar Range 35.000 m 42.000m 

Sonar Quality  

Increase probability of 

detection of enemy subs by 

0. 

Increase probability of 

detection of enemy subs by 

0.8. 

Torpedo Type 
Light Torpedo with 

probability of kill 0.6 

Heavy Torpedo probability 

of kill 0.8 

Torpedo Number 6 12 

Helicopter Number 1 2 

Hull Strength 
Probability of kill against 

frigate reduced by 0. 

Probability of kill against 

frigate reduced by 0.5. 

Torpedo Decoy Quality Success rate 0.3 Success rate 0.8 

Decoys Quantity 4 10 
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Table 8: Helicopter’s Variables Range 

Helicopter – NH90 type Min Max 

Dipping Sonar Range 12.000 m 15.000 m 

Sonar Quality  

Increase probability of 

detection of enemy subs by 

0 

Increase probability of 

detection of enemy subs by 

0.8 

Torpedo Availability Not Available 2 torpedoes available 

Torpedo Type 
Light Torpedo probability 

of kill 0.6 

Heavy Torpedo probability 

of kill 0.8 

Sonobuoy Fields Number 1  3 

Flight Endurance 10.800 time units 32.400 time units 

Flares Number 2 4 

Flares Quality 
Probability of kill against 

helicopter reduced to 0.33 

Probability of kill against 

helicopter reduced to 0.17 

7.2.1 Experiment Process 

The experiment starts by uploading the DoE in JANUS. The DoE includes all the 

Vulnerable Scenarios identified in Chapter 6, whose IDs are shown in Figure 32. For all 

these IDs, all the 100 repetitions were included, and the random seeds generated in the 

previous scenario was added to the DoE to ensure that JANUS simulated the same scenario. 

The total number of cases was 2300.  

At the end of each run JANUS checks if the mission is successful, which means that all 3 

success conditions are met: no frigate is lost, no helicopters are lost, and submarines are 

either located or neutralized before 30.000 time units. If one of these conditions is not met, 

then JANUS activates the iterative algorithm part. During the iterative algorithm part, the 
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code checks some outputs that are tracked (signpost) and depending on their values it 

triggers an action, more on this in the next section. The iteration cap was set to 50, which 

means that as the algorithm tries to upgrade the fleet 50 times it will quits at the maximum 

label it as “bad configuration”. This number was chosen by calculating the maximum 

number of iterations possible combining all the technologies of interest and adding to it a 

20% to account for situations in which branches are not optimized at the same time. 

Once all the fleets have been optimized results are outputted and reuploaded on JMP to 

evaluate them. The interest here is in understanding which technology worked and which 

did not.  

For all the fleets that were optimized and were successful in their relative scenario we study 

the combinations of technologies to assess which ones were mostly used and which ones 

were less used. The level of use is also important: did the algorithm upgrade one technology 

to its maximum, or several to a lower level? What is the number of technologies that were 

infused in the end? What is the cost of the evolved fleet? All these questions must be 

answered in the results to be able to accurately assess the results obtained. 

For those fleets that failed after 50 iterations it is important to understand why. It could be 

that the set of proposed technologies was not tailored to the task, or it could be that the 

ranges set up for the variables were not high enough to allow a mission accomplished. It is 

also important to study the scenarios in which these fleets are failing. While these are still 

Vulnerable Scenario, they are also scenarios for which we are not preparing yet (or at least 

we have not tested the right technologies for them).  
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7.2.2 Iterative Algorithm Structure 

For this experiment the iterative algorithm was set up to have 3 branches, one per each of 

the success conditions. The first branch – the one regarding the survival of the frigate – is 

reported in Figure 33. The other two, survival of the helicopter and maximum ASW time, 

are reported in Appendix D. The outputs that are used to trigger actions are of two distinct 

categories: those regarding the NATO asset status at the end of the task and those regarding 

the enemy status at the end of the task.  

Regarding the first type of outputs, these are information like how many torpedoes are left, 

or what type of torpedoes was used. For the second type of output the information are 

focused on what could NATO know after the engagement, i.e., if the submarine is still 

alive, if it escaped and if it was aggressive or not. The logic is to evaluate what happened 

using the second type of information and then to look at the first type to make it better next 

time.  

Increments in the variables are done by pushing the technology to the median value first, 

and then after all other technologies in the same branch have been tested, the remaining 

part of the design space is unlocked. This of course was a design choice which could be 

changed depending on the need of the study. It is conjectured that if there are enough 

workers to engage in different technologies the budget-optimum logic will follow this 

approach. On the other hand, if the decision maker has to pick only one technology to 

finance, it could be interesting to see how an approach in which technologies are maxed 

independently will work. 
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Conjecture 8: It is conjectured that budget-optimum logic will push one technology to half 

of its potential and move to the next one, than pushing one technology to the extreme before 

testing something different. 

 

Figure 33: Iterative algorithm structure for one success condition in experiment 2 

In the algorithms as the one depicted in Figure 33 it is possible to end up not solving the 

problem. In fact, even if many technologies are tested it is possible that the pool of 

technologies of interest is not up to the task. In those cases, when the algorithm reaches 

one of the “doesn’t work” statements, configurations are marked as “Bad Configurations” 
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so that analysts know that what was provided does not meet the minimum requirements of 

the mission.  

7.3 Results 

Figure 34 shows how many cases are still vulnerable. By looking at it, it appears how 

almost all the Vulnerable Scenario have been succeeded by the Evolved Fleets. There are 

only few exceptions as IDs 57, 25 and 16 in which the failure rate is still high 49, 39 and 

30% respectively. Expectedly, the hardest cases to resolve were those in which an 

aggressive strategy was employed by enemy forces. This is manifested by the lack of any 

passive deterrence strategy cases in Figure 34. 

The fact that there are still unresolved cases should not surprise the reader as the success 

of this algorithm is dependent on the technologies that are tested in the Vulnerable 

Scenarios of interest. In this sense, Figure 34 tells us that different technologies are still 

needed as the ones provided are not sufficient to solve all cases.  

It is important to underline the fact that these technology investments are the key for fleet’s 

success in Vulnerable Scenarios. This emerges clearly if the results of this experiment, as 

shown in Figure 34, are compared with those found in the previous chapter and shown in 

Figure 29.  

The other relevant piece of information in this paragraph is the level at which each 

technology was used. The contour plots of the technologies used are in Figure 35.  In this 

diagram each row represents a technology used, while the two columns are the two 

deterrence strategies used by Asyr. On the horizontal axis, the ASW time shows how long 
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it took for each technology to satisfy mission requirements. On the vertical axis, each 

technology has different values representing the number of investments made. For instance, 

in NATO Sonar Quality technology, it is possible to see that the time is uniformly spread, 

meaning that this technology does not make the mission faster, and that the technology 

level reaches values of 5 and 6, meaning that strong investments are needed. Looking at 

first at the passive deterrence strategy two technologies are the key: those increasing sonar 

range and those increasing the payload of the helicopters (i.e., number of sonobuoy fields 

available). This is in line with expectation for scenario types with no active engagement. 

 

Figure 34: Scenarios in which the fleet still fails after the iterative algorithm (in red 

aggressive deterrence strategies, passive deterrence strategies are not present) 

Regarding active deterrence strategies the issue is more complex. Looking again at Figure 

35, a clear need for better detection mechanism emerges, with an increase in both sonar 

quality and range. Ships defensive systems need also to be upgraded mostly through an 
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increased number in decoys availability and decoys’ quality. Limited investments are 

needed in ships’ hull strength. Defensive mechanisms for helicopters also show the need 

for upgrades with some investments needed in the number of flares available and the 

quality of those flares. Finally, regarding attacking technologies, as shown in Figure 35, 

heavy torpedoes are preferred as well as weaponizable helicopters that can attack 

underwater vessels. Factors like the number of torpedoes on the frigate, the helicopter 

endurance and the number of helicopters were not considered in need of upgrades by the 

algorithm.  
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Figure 35: Contour diagrams of the resulting technologies of interest after the 

algorithm runs. 
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7.4 Conclusion 

In conclusion this experiment was successful in proving that this algorithm can indeed find 

rapidly several technology strategies that reduce the failure rate of the fleet in Vulnerable 

Scenario. This experiment demonstrated that all the deterrence strategy cases were resolved 

as well as the vast majority of the aggressive deterrence strategy ones.  

 

Figure 36: Failure rate of the evolved fleets in the Vulnerable Scenario. About 240 

scenarios failed. 

Figure 36 shows exactly the proportion of the scenarios that the algorithm was able to 

address. With a success rate of almost 90% the code was able to increase the technological 

level of about 2000 fleets to the point of success. For the remaining unsuccessful 10% 

Figure 37 provides an explanation of the different causes that caused failure. We see that 
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about 73% of the cases failed due to the killing of at least one of the helicopters. Breaking 

down this 73%, 67% just helicopters, 4% frigate and helicopters and 2% helicopters and 

time. From this, it is possible to infer that the set of technologies of interest provided did 

not address the safety of the helicopters in some of the scenarios. Because this work focuses 

on S&T, other issues as tactical choices will not be considered. 

 

Figure 37: Proportion of the different failure causes.  

Moving on to the iterative algorithm per se, it is interesting to check how far off the iteration 

cap was set up at 50. Figure 38 shows that most fleets are made successful in less than 10 

iterations, with a median value for the whole experiment of 6 iterations. The maximum 

number of iterations to achieve success was 36. All the cases above 36 reached the cap 

value of 50 and failed, meaning that if time becomes a constrain the cap could be reduced 
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to 20 or 25 iterations losing from 6% to 1% of successful fleets. If that strategy is adopted 

the total number of runs wasted for unsuccessful fleets will drop down from 12000 which 

is 240 cases times 50 runs, to 4800. The average number of iterations to make a fleet 

successful was 7.9, which means that the total number of runs for the successful fleets was 

about 16300. From all these considerations it appears that currently 42% of the 

computational time was wasted on unsuccessful cases. By reducing the iteration cap to 20 

iteration the wasted computational time can almost halved to 22%, with a loss of only about 

6% of successful fleets.  

 

Figure 38: Number of algorithm iterations needed to achieve success compared to the 

success rate 
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To understand what are the causes that lead to failure it is possible to use a correlation map 

of the scenario variables, success indicators and fleet variables, reported in Figure 39. From 

this, it emerges that when the fleet failed due to the frigate being killed the algorithm was 

focusing on increasing the quality of decoys and the hull strength. Regarding scenarios in 

which helicopters were killed, there is a strong correlation with the increase in flares 

availability and in the quality of these flares. As it was shown in Figure 37, time by itself 

never caused the fleet to fail. From this analysis it is possible to infer that the algorithm 

was working in the right direction by increasing variables of technologies related to the 

specific problem. Nevertheless, even if the actions performed by the algorithm were 

correct, they were not enough to make the fleet successful.  

Conjecture 6: Because the change of a technological parameter is driven univocally by 

specific values in the outputs, the order of technologies changed in the tree is not relevant.  

While no proof was required for this conjecture, looking at the order of technologies shown 

in Figure 33 and at the results from Figure 35 our conjecture was correct. his was 

demonstrated and can be seen in the way works, but it was also confirmed by the fact that 

the technologies chosen were taken from independent levels in the algorithm.  
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Figure 39: Correlation map of the scenario variables (row 1-7), success indicators 

(row 8-10) and fleet variables (row 11-23). 
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CHAPTER 8. Non-Positive Monotony of Technologies 

The focus of this experiment is to verify Hypothesis 4 and Hypothesis 5 by checking that 

a set of technologies does not cause the opening of other Vulnerable Scenario and that the 

negative effects can be mitigated by investing in several technologies in parallel. To do so 

this experiment will rely on the results of the experiment in Chapter 6 (i.e., the Vulnerable 

Scenario for the ASW case) and on the set of technologies of interest highlighted in  

Chapter 7.  

To review the statement of  Hypothesis 5: If one technology has only a positive impact on 

the fleet, then its use will not lead to new Vulnerable Scenarios and non-Vulnerable 

Scenario will remain as such. In other words, if there are technologies that negatively affect 

the fleet, the impact is that it might open new Vulnerable Scenarios on top of those already 

found. The goal of the experiment is therefore to check if there are new Vulnerable 

Scenarios, or not, when the effects of technologies of interest are maximized. Hypothesis 

4 will also be tested in this experiment as it states that that it is expected that when all 

technologies are maximized, they will be able to reduce the effect of few technologies 

negatively impacting the fleet.  

8.1 Methodology 

The experiment follows a simple methodology. First, fleets are generated by infusing one 

maximized technology into the basic fleet, to these is then added a fleet with all maximized 

technologies. By doing so, n+1 fleets are generated, where n is the number of technologies 
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of interest. If there is a technology that has negative effects on the fleet this will appear by 

creating a new Vulnerable Scenario.  

Once the fleets are created, they need to be tested in a set of scenarios. There are two 

options, they can either be tested on the full set of scenarios, or they can be tested only in 

the subset of non-vulnerable scenario. The advantage of taking the first option is that it is 

possible to use the same algorithm already developed to find the Vulnerable Scenario, 

achieving a more direct comparison with the results previously obtained. The disadvantage 

is that the number of cases to run is much higher. The second option gives a quicker way 

to see if there are new Vulnerable Scenario as the number of cases to run is lower. Given 

that the algorithm previously developed through PRIM cannot be used – as the set of data 

is different – a different approach must be used. A feasible way to ensure that the results 

are the same is to conduct an analysis on JMP to see how many cases failed per ID. If the 

results are the same compared to what was achieved by the Basic Fleet, then it could be 

inferred that there are no new Vulnerable Scenario. If the results are different, then further 

analysis will be needed to understand what went wrong and to identify which variable 

produces the negative effect.  

8.2 Experiment 

For running this experiment, it was decided to follow the first approach. Therefore, all the 

7000 cases generated for the first experiment, the one described in Chapter 6, were run 

again n+1 times. In this case, in fact, there are no limitations on computational time, and 

we are just interested in evaluating the methodology, it therefore makes sense to go for the 

approach that provides the most comprehensive results. As discussed in Chapter 7 the total 
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number of technologies to be tested was 12. To create the pool of fleets to be tested, each 

technology was maximized in each fleet, plus one additional fleet was added to test the 

complete set of technologies maximized. This created 13 different fleets and increased the 

number of cases to be tested to 98000. To ensure consistency with the previous experiment 

the random seed for each of the 7000 different scenarios was kept constant. 

Table 9: Maximized Parameter per Fleet 

Fleet Modified Parameter 

1 Basic Fleet 

2 Sonar Range Maximized 

3 Helicopter Number Maximized 

4 Sonar Quality Maximized 

5 Torpedo Number Maximized 

6 Hull Strength Maximized 

7 Helicopter Armed  

8 Flight Endurance Maximized 

9 Sonobuoy Fields Number Maximized 

10 Decoys Quantity Maximized 

11 Torpedo Decoy Quality Maximized  

12 Flares Number Maximized 

13 Best Flares Quality 

14 All Variable Maximized 
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Regarding the technology variables, the values used can be found in Chapter 7, Table 7and 

Table 8. For this experiment, as the selection of the technology level in the fleet was binary, 

only the max and min values were used.  

All the cases were prepared on JMP, where a csv file was arranged with the whole batch 

of cases to be run. As in all the other experiments described so far JANUS was used as 

Agent-Based modeler software. Therefore, after the csv file was created it was loaded on 

JANUS to run the experiment. The scenarios were outputted disregarding the success of 

the fleet – differently from the experiment run in Chapter 7. The success criteria used are 

the following: the mission should be completed within 30.000 time units and without any 

loss of any major assets. If these success criteria are not met the case is marked as failure 

to help PRIM in identifying scenario boxes. The output came in the form of another CSV 

file which was first uploaded to JMP, and then run through PRIM to identify the Vulnerable 

Scenarios. The former step was needed to find if negative impacting technologies were 

present, while the latter to see if the PRIM boxes changed or not. If there are changes in 

the PRIM box then, according to Hypothesis 5 some of the technologies will negatively 

affect the fleet. 

Depending on if and how much the PRIM boxes change it can be the symptom of some 

variables negatively affecting the fleet. If that happens, the analysis on JMP becomes 

critical to identify those variables and if their effect can be mitigated by other variables. In 

Hypothesis 4 it was stated that such behavior is expected, however, to demonstrate this 

hypothesis there is no need to have changes in PRIM boxes. If Hypothesis 4 is verified, 
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then the output from JANUS will show a much lower failure rate in the fleet with all maxed 

technologies than in the other 13 where only one technology is maxed. 

8.3 Results 

Looking at the result from JANUS only the 0.08% of the 98,000 simulations failed in 

achieving any outcome, which is well within the acceptable margins. The results from the 

PRIM analysis of the outcome dataset can be seen in Figure 40. The PRIM boxes that 

emerged are like the one in Chapter 6, but they do not overlap completely, the comparison 

can be seen more explicitly in Table 10. Further analysis of this result will be presented in 

the conclusion of this chapter after all the experimental results have been presented. 

Looking at the PRIM box parameters reported in Table 10 the PRIM run was successful, 

and it achieved comparable results of what was achieved in Chapter 6. The coverage is 

slightly higher, while the density is slightly lower. These results are in line with was 

achieved before, the small fluctuation can be attributed to the different number of cases 

tested in this experiment. 

Table 10: Comparison of PRIM results between the two experiments 

Variable Chapter 6 Range Current Range 

Num. of enemy torpedoes 6 – 14 10 - 14 

Sonar range 0 – 5  3 – 7 

Max bottom time 2 – 6  2 – 5 

Sub. stealthiness 7 – 8  6 – 8 
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Figure 40: PRIM analysis of the result from experiment 3 (point 7), the red boxes 

represent the set of Vulnerable Scenario. In blue cases where the NATO fleet had 

success, in orange where it failed. 

By running the same results on JMP it is possible to see how each technology contributes 

to the overall success of the fleet. The whole results are presented in Appendix E. but the 

subset in Figure 41 shows the key points. This figure demonstrates the failure rate. 

Recalling that fleet number 1 is the Basic Fleet while all the others have one (or all) 



 

 165 

technology maximized; it is expected that those technologies positively affecting the fleet 

will drive down the number of failed cases, while those technologies negatively affecting 

the fleet will increase that same number. From Figure 41 it emerges that there are 3 

technologies shown in fleets 7, 8, 9 - all helicopters' variables: helicopter armed, 

helicopters’ endurance and number of sonobuoys respectively - that in aggressive 

deterrence strategy affect the fleet. One technology is negatively impacting the fleet in the 

passive defense case. From these results it also emerges that there is one technology in fleet 

5, sonar range, that is strongly positively affecting the fleet. The combination of all maxed 

technologies is also success with a strong reduction in failure rate. While Figure 41 is only 

an extract it coherently represents the results reported in Appendix E. 

Table 11: Experiment 3 PRIM iteration results 

Mean 0. 864796 

Mass 0.1 

Coverage 0.123001 

Density 0. 864796 

Restricted Dimensions 4 
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Figure 41: Extract of the results from experiment 3 

8.4 Conclusion 

Comparing the PRIM boxes obtained in this experiment with those from Chapter 6 we see 

that there are some differences but that those differences are not extensive. This is a 

symptom of the fact that the technologies can generate some different Vulnerable 

Scenarios, but that the effects are not strong. We see that these negative effects are fully 

mitigated by the combined use of maximized technologies, as demonstrated with fleet 14, 

proving that Hypothesis 4 was correct. The fact that there are technologies negatively 

impacting the studied fleet, and that this is also reflected in the PRIM boxes, also validates 

Hypothesis 5. 

The negative effects of the different technologies are dependent on the deterrence strategy. 

The fleet composition and technology combination increase the risk of being shot by a 

submarine equipped with anti-helicopter missiles, this is shown by the results of fleet 8. In 

parallel, it should not come as a surprise the fact that in a scenario where helicopters do not 

get attacked the same variable will reduce the failure rate.  



 

 167 

Finally, it must be mentioned that this method enables capturing which technologies are 

expected to have the biggest impact on the fleet. The reason results are different from what 

was obtained in Chapter 7 is that those technologies do not work in isolation. In this 

experiment the focus was to understand the impact of each technology in a binary way: 

positive or negative. As such, each technology was maxed only once. On the other hand, 

in Chapter 7 these technologies had to work together creating more benefits to the fleet. 

This conclusion is also supported by the fact that fleet 14 has a consistently higher success 

rate than fleet 5, proving that it is not just one technology driving success but that the key 

is the combined effort. 
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CHAPTER 9. Fleets Aggregation Strategies 

While drafting the comprehensive methodology to answer the main research questions in 

Chapter 6, the need to be able to reduce the number of fleets studied arose. This concept is 

summarized in Hypothesis 6, which is the focus of this chapter.  Hypothesis 6 states that 

between the two approaches drafted to minimize the number of fleets, maximized fleet 

approach and non-dominated fleets approach, the first one will produce fleets with a higher 

success rate.  

This chapter is therefore investigating this hypothesis by comparing the two different sets 

of fleets studied. Moreover, it will also provide a demonstration for the final piece of the 

overall methodology: the criteria used to select the fleets to be tested in all the Vulnerable 

Scenario. It is important to recall at this point that during the overall methodology the 

number of fleets generated through the iterative algorithm was more than one per scenario. 

The total number was the number given by the number of Vulnerable Scenario times the 

number of repetitions. Testing all those fleets in all the Vulnerable Scenario (times the 

repetitions) would be prohibitive, therefore we were interested in finding a way to reduce 

the number of fleets. This chapter demonstrates why it was decided to study only those 

fleets generated by maximizing the value of each technology reached in each vulnerable 

scenario. This reduced the number of fleets tested to one per vulnerable scenario.  

The reason this experiment was selected is that we wanted to study how relevant is time in 

the fleet selection process. With this objective in mind, the experiment was shaped in such 

a way that a comparison between the two different alternatives is conducted. This 
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experiment is therefore needed not only to verify Hypothesis 6, but also, to ensure that 

satisfactory results can be achieved in a reasonable timeframe. 

9.1 Introduction 

The first alternative to be studied is a set of fleets created taking the maximum values of 

each technology from each evolved fleet. In other words, different evolved fleets are 

arranged by Vulnerable Scenario, the maximum value for each technology is taken among 

the fleets in the same Vulnerable Scenario. By doing so, from the original number of 

evolved fleets – which was equal to the number of repetitions originally chosen – the 

number of fleets is reduced to one per scenario.  

The advantage of this first alternative is that the number of fleets to be tested is extremely 

limited, leading to shorter experiments. On the other hand, because the fleets studied are 

expected to have many, if not all, technologies to the maximum level, it is anticipated that 

they will be the most expensive ones to invest in. At this stage of the design process, no 

consideration about physical requirement was made yet but maximizing all technologies 

might lead also to prohibitive physical requirements.  
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Figure 42: Representation of how fleets are generated in alternative one. The process 

is repeated in each Vulnerable Scenario 

The second alternative is to study non-dominated fleets. In each Vulnerable Scenario, the 

non-dominated fleet, located on the multidimensional Pareto surface, are detected, and kept 

for further studies. The number of non-dominated fleets discovered depends on the number 

of technologies at hand - the higher the quality of technologies, the higher the number of 

non-dominated fleets. The main issue of using this approach compared to the first one is 

that it is necessary to test a much higher number of fleets compared to the previous one, 

about 7 times more as it will be shown later.  
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The benefit of this second alternative is that the studied fleets are not by definition also the 

most expensive one. In fact, since we are looking at non-dominated solutions, they might 

have a maximum value in one of the variables but not necessarily on another one. This 

leads to the comparison of fleets that have been successful in a Vulnerable Scenario, but 

that are not fully maximized across all technologies. The main negative aspect of this 

alternative is the high number of fleets that must be tested in all scenarios of interest.  

 

Figure 43: Representation of dominated and non-dominated fleets as generated in 

alternative 2. 

9.2 Methodology 
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The methodology in this experiment is straightforward and can be divided into 4 steps: 

1. Two datasets are created. These sets should be the byproduct of a previous study in 

which an optimization algorithm has been used to create Evolved Fleets. 

a. The first set is obtained by taking the maximum for each technology of 

interest in each Vulnerable Scenario, de facto creating new fleets. 

b. The second set is created by looking at the value reached by each technology 

of interest, and then using those to select only non-dominated fleets for 

further analysis. 

2. Both datasets are then uploaded on the agent-based modeler, where the simulations 

are run. 

3. The outputs of the simulations are analyzed to see how effective the obtained fleets 

were with the two different approaches. 

4. If the fleets obtained through the first alternative have a larger success percentage 

than those generated via alternative 2, then Hypothesis 6 is verified and the 

experiment is considered a success.  

If Hypothesis 6 is verified, it means that it is possible to reduce the number of 

simulations needed to achieve comparable, if not better results.  

9.3 Experiment 

Following the methodology laid down in the previous section, the experiment was set up. 

The data used for this experiment was derived from the results of the experiments run in 

Chapters 6 and 7. The Vulnerable Scenarios used are the 23 discovered ones in Chapter 6, 
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while the Evolved Fleets tested are those created by the iterative algorithm used for the 

experiment in Chapter 7. Fleets’ success criteria were also taken from Chapter 7, as such a 

friendly fleet is considered successful if it completes the mission of locating or neutralizing 

2 submarines within 30.000 time units without any loss of any major asset, being them the 

frigate or one of the helicopters. 

Regarding the first dataset, the data on evolved fleet from Chapter 7 was arranged per 

vulnerable scenario. From the 2.300 evolved fleets, 23 groups of 100 fleets each were 

made. 23 new fleets were created by taking the maximum value of each technology of 

interest among the ones from the 100 repetitions. These 23 fleets were then checked for 

repetitions, which once eliminated reduced the number of unique fleets to 10. These fleets 

are reported in Table 12. 

Table 12: List of fleets tested in the first alternative 

Fleet 
ID 

New 
torpe

do 

Torpe
does 

Num

ber 

Deco
y 

Proba

bility 

Hull 
Stren

gth 

Sonar 
Rang

e 

Helic
opter 

Numb

er 

Helic
opter 

Arme

d 

Helic
opter 

Endur

ance 

Sono
buoy 

Numb

er 

Deco
y 

Quant

ity 

Helic
opter 

Flares 

Numb
er 

Helic
opter 

Flares 

Qualit
y 

Sonar 
Qualit

y 

1 1 6 10 10 10 2 1 6 3 10 2 0 6 

2 1 6 10 10 11 2 1 6 3 10 4 1 6 

3 1 6 9 5 11 2 1 6 3 8 4 1 5 

4 1 6 10 9 10 2 1 6 3 8 4 1 6 

5 1 6 10 7 11 2 1 6 3 9 4 1 5 

6 1 6 10 10 11 2 1 6 3 8 4 1 6 

7 1 6 10 10 9 2 1 6 3 10 4 1 6 

8 1 6 10 10 11 2 1 6 3 10 2 0 5 

9 1 6 10 10 11 2 1 6 3 9 2 0 6 

10 1 6 10 10 11 2 1 6 3 10 2 0 6 
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For the second dataset, the starting point was again the set of evolved fleets from Chapter 

7. As in the previous case, 2.300 fleets were arranged by Vulnerable Scenario creating 23 

pools of 100 fleets each. At this point, the fleets were filtered to remove duplicates and 

then they were sorted to separate dominated from non-dominated solutions. In this process, 

the focus was to maximize each of the 13 variables. Therefore, when looking at non-

dominated solutions the interest was in those fleets that had at least one maximum values 

across the set of technologies. Since the duplicate check was done within each individual 

vulnerable scenario, it had to be redone once the fleets were aggregated. This last step 

reduced the total number of fleets generated to 58. The full list of fleets is reported in Table 

13. 

Table 13: List of fleets tested in the second alternative 

Fle

et 

ID 

New 

torp

edo 

Torpe

does 

Numb

er 

Decoy 

Proba

bility 

Hull 

Stren

gth 

Son

ar 

Ra

nge 

Helico

pter 

Numb

er 

Helico

pter 

Arme

d 

Helico

pter 

Endur

ance 

Sonob

uoy 

Numb

er 

Deco

y 

Quan

tity 

Helico

pter 

Flares 

Numb

er 

Helico

pter 

Flares 

Qualit

y 

Son

ar 

Qua

lity 

1 1 6 10 10 5 1 1 3 1 10 2 0 6 

2 1 6 5 1 10 2 1 6 2 8 2 0 6 

3 1 6 10 10 4 1 1 3 1 4 2 0 5 

4 1 6 0 0 9 2 1 6 3 2 2 0 1 

5 1 6 9 10 8 1 0 3 1 2 2 0 6 

6 0 6 0 0 10 2 0 6 3 2 2 0 0 

7 1 6 10 10 0 1 1 3 2 10 2 0 3 

8 1 6 9 10 8 1 1 3 1 2 2 0 6 

9 0 6 0 0 11 2 0 6 3 2 2 0 0 

10 1 6 10 10 8 1 1 4 2 4 2 0 6 

11 1 6 10 10 8 1 1 3 1 2 2 0 6 

12 1 6 10 10 0 1 1 3 2 10 2 0 4 

13 1 6 5 0 11 2 1 6 3 8 2 0 2 

14 1 6 10 10 8 1 1 3 3 4 4 1 6 

15 0 6 10 10 0 1 1 3 2 10 2 0 0 

16 1 6 10 10 11 2 0 1 3 10 4 1 5 
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17 1 6 10 10 8 2 0 6 3 10 4 1 6 

18 1 6 5 4 11 2 0 6 3 8 4 1 5 

19 1 6 10 10 5 1 1 3 2 10 4 1 5 

20 1 6 10 10 0 1 0 3 2 10 4 1 0 

21 1 6 9 10 11 2 0 6 2 2 4 1 6 

22 1 6 6 3 11 2 1 6 3 4 4 1 0 

23 1 6 10 10 0 1 1 3 2 10 3 0 5 

24 1 6 9 10 8 1 0 3 2 4 4 1 6 

25 1 6 6 4 10 2 1 6 3 2 4 1 1 

26 1 6 5 4 8 2 1 6 3 8 4 1 5 

27 1 6 10 9 1 1 0 3 2 4 4 1 1 

28 1 6 6 3 8 1 0 3 3 5 4 1 6 

29 1 6 10 5 8 2 1 6 3 4 4 1 1 

30 1 6 6 5 4 1 1 3 2 3 2 0 5 

31 1 6 5 0 4 1 1 3 2 9 4 1 0 

32 1 6 8 5 8 2 1 6 2 2 4 1 6 

33 0 6 10 10 0 1 0 3 1 10 4 1 0 

34 1 6 6 2 9 2 0 6 3 7 4 1 5 

35 1 6 6 4 11 2 0 6 3 4 4 1 5 

36 1 6 5 0 8 2 0 6 2 10 4 1 6 

37 1 6 10 10 1 1 0 3 2 10 4 1 0 

38 1 6 5 0 8 2 1 6 3 10 4 1 3 

39 1 6 9 10 12 2 0 6 2 5 4 1 6 

40 1 6 10 10 2 1 1 3 2 4 2 0 5 

41 1 6 9 5 8 2 1 6 3 7 4 1 5 

42 1 6 1 0 11 2 1 6 3 3 2 0 1 

43 1 6 10 5 8 1 1 5 3 10 4 1 5 

44 1 6 10 8 2 1 1 3 2 10 4 1 3 

45 1 6 6 6 8 2 0 6 2 10 4 1 6 

46 1 6 6 10 8 1 0 3 1 5 4 1 6 

47 1 6 10 10 5 1 1 3 2 10 4 1 3 

48 1 6 1 0 8 2 1 6 3 5 4 1 0 

49 0 6 5 0 2 1 0 3 2 10 4 1 0 

50 1 6 10 10 0 1 1 3 1 3 2 0 5 

51 1 6 5 0 8 2 1 6 3 10 4 1 0 

52 1 6 10 10 0 1 0 3 1 2 4 1 0 

53 1 6 10 5 11 2 1 6 3 3 2 0 5 

54 1 6 10 10 5 1 1 3 2 10 2 0 0 

55 1 6 5 0 11 2 1 6 3 9 2 0 2 

56 1 6 10 10 0 1 0 3 1 2 2 0 4 

57 1 6 10 10 0 1 1 3 2 2 2 0 3 

58 1 6 8 5 8 2 1 6 3 10 2 0 1 
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Using the two fleet sets defined before, two new csv files were created. In each of these, 

each of the fleet sets was paired with all the Vulnerable Scenario and their repetitions. As 

it was done in previous experiments to ensure consistency, the random seeds for the 

Vulnerable Scenario were kept constant at what was generated in the first experiment in 

Chapter 6. In the end, the first dataset consisted of 23.000 cases and the second one of 

133.400 cases.  

In two separate instances the files were uploaded on the agent-based modeler JANUS and 

the different runs were conducted. Once the simulation was over, the results were then 

transferred to JMP to analyze the results.  

9.4 Results and Conclusions 

From the results of the experiment, it is possible to verify Hypothesis 6. In both datasets, 

the percentage of fleets failing to deliver outputs was below 5%, which was within 

acceptable ranges. By processing the fleets on JMP, it is possible to calculate the failure 

rate of each dataset. In alternative 1, was slightly below 20%, while in alternative 2 the 

failure rate was almost 40%. Figure 44 shows the comparison between the two alternatives.   
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Figure 44: Success rate for the two tested datasets.  

From the results it is clear that the first alternative has a much higher success rate compared 

to the second one. The higher success rate, with the information on the previous chapter 

regarding Hypotheses 4 and 5 hence verify Hypothesis 6. Although, it is possible to think 

that the higher success rate was driven by the stochasticity of the process this is not the 

case. In fact, by verifying both Hypotheses 4 and 5 it was established that the technologies 

were either positive monotone, or that their combined effect is. Looking now at how the 

two alternatives were generated, it is possible to observe that the average technological 

level of the fleets in the first alternative is higher than that of the second alternative. 

Combining this information with the one regarding the monotony of the technologies 

involved, means that there is a positive trend that links technology level and success rate. 

This means that results obtained can be generalized and that the first alternative produces 

fleets with higher success rates. Moreover, it is important to mention that these results were 
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achieved in about 20% of the time compared to alternative 2. All of this increases the 

preference of using alternative 1 compared to alternative 2 when generating fleets.  

This last experiment concludes the verification part of the 6 hypotheses needed for the 

overall methodology. All the elements that were verified throughout these past 4 chapters 

will now be aggregated together to demonstrate the overarching hypothesis and to satisfy 

the research statement.  
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CHAPTER 10. Full Methodology Demonstration 

This Chapter is dedicated to proving the methodology depicted in Chapter 5 as whole. In 

the previous 4 chapters a specific ASW use case has been used to validate the different 

hypotheses of this thesis. In this chapter the methodology will be used on a different use 

case, and it will rely on the elements previously demonstrated to find the Robust Fleets. 

In this chapter the goal is to demonstrate the Research Objective of developing a 

methodology to support trades-offs among naval assets and technologies, to assist 

investments on new maritime technologies in future threat scenarios. Following the 

methodology depicted in Chapter 5, the experiment structure has been divided into 3 parts. 

The first part is focused on identifying Vulnerable Scenarios, the second part on finding 

Evolved Fleets, and the third part on comparing those fleets to see which one is the most 

robust one.  

10.1 Experiment Background 

Before starting the experiment, it is important to provide some background on what the 

experiment is about and on the scenario that will be used. The goal of the experiment is to 

reproduce the same outcomes of a CBA, and it will do so by testing one Basic Fleet in 

multiple scenarios. All these scenarios are created by instantiating the uncertainties on the 

enemy side, nevertheless the main mission of the scenario will be constant. The reason why 

this goal was chosen is that it allows us to prove that a methodology that finds preliminary, 

and yet useful, results is possible. Moreover, by providing the same results of a CBA in a 
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quantitative way it is possible to see the role of this experiment in the grand scheme of the 

investment problem.  

The experiment will be successful if a set of Vulnerable Scenario and a set of Robust Fleets 

are produced at the end of Part 1 and 3, respectively. While it is not possible to validate the 

quality of the solutions, this does not compromise the validity of the experiment as the goal 

is to demonstrate the methodology, not the specific use case.  

10.1.1 Scenario 

The scenario is located in the fictitious archipelago of Relas, here there are 4 countries: 

Relis – considered a NATO allied, Asyr – considered a NATO adversary, and Prucy and 

Turim both neutral but respectively aligned with Relis and Asyr. Relis and Asyr share the 

biggest island of the archipelago while Turim is located on the north and Prucy on the west. 

Figure 45 shows the archipelago composition and the respective territorial waters.  
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Figure 45: Relas Archipelago political map, dotted lines represent territorial waters. 

After a snap attack by Asyr on Relis, Relis asks for support from its NATO allies which 

deploy a naval task force. The task force will have to reach the area in front of Relis’ only 

seaport and evacuate civilians. During the first attack, Turim, in agreement with Asyr, 

decides to extend its territorial waters in front of Prucy, forbidding the passage of any 

military ships, de facto blocking the north channel. NATO forces will have to approach the 

port of Relis from the south. While getting closer to the island they will be exposed to 

Asyr’s air force and to Asyr’s anti-ship coastal defenses. NATO intelligence has also 

discovered several new coastal defense trucks which were not known, meaning that NATO 

will have to face threats coming from multiple axis, which will not always be known.  



 

 182 

The NATO fleet goals are to arrive in front of the shores of Relis to evacuate a large group 

of civilians from the only seaport Relis has, without losing any ship during the approach 

and the evacuation. Asyr’s goal is to stop NATO from achieving its goal and to do so it 

will try 3 different tactics, and it will deploy several bombers and semi-movable missiles 

trucks. Asyr will try to conceal the trucks to gain advantage against the NATO fleet, as 

such, the position of these trucks changes from scenario to scenario. Moreover, Asyr will 

not always shoot at maximum range, but it will try to fire at closer range to reduce NATO’s 

reaction time and to maximize the probability of kill of its missiles.  

The reasons why this scenario was chosen are multiple. First, it allows for multiple tasks 

inside one single mission, which is good as it might be desired by the decision makers that 

assets should be able to deal with different tasks in a meaningful way. Secondly, this 

scenario involves several types of assets working in a collaborative way. It was interesting 

to test how having multiple assets behaving independently and yet in a coordinated fashion 

can bring benefits to the investment strategies. Finally, this scenario was chosen because it 

allows us to test a probable future mission that will see a fleet of allied vessels engaging 

adversary forces in an archipelago heavily defended.  

10.1.2 XLRM Framework 

As already mentioned in Chapter 6, the XLRM framework can be used to provide clarity 

on which are the different moving parts involved in the experiment. The X stands for 

uncertainty, which are the different variables and ranges on the Asyr side, reported in Table 

14. The policy levers (L) are all the variables on the NATO fleet side, which will be used 

to identify the evolved fleet first in part 2 and the robust ones in part 3. Policy Levers can 
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be found in Table 15 with their starting values and ranges. Relationships (R) are managed 

by the agent-based modeler JANUS. As it was done for other experiments, JANUS will be 

used also here to perform all the simulations. Metrics (M) are those outputs that can be 

used to track the progress and the evolution of the fleet – namely if it is successful or not. 

In this experiment it was chosen to look at how many of the defense stations are destroyed 

and at how many ships are lost in the process.  

10.1.3 Assumptions 

Due to the complexity of the scenario, there are a wide set of assumptions that must be 

considered. The whole list is reported in Appendix F., here only a small portion will be 

reported to provide the reader with context and with a better understanding of the problem 

at hand.  

Regarding Asyr, it has one main control center which is located in the North part of the 

island. This center is in Asyr’s main airport, and whenever its radar detects the incoming 

ships, it can deploy up to 20 aircraft to engage them. Asyr’s defense stations are randomly 

distributed across the main island where Relis is located and the main island of Prucy, 

where Asyr forces have managed to deploy some troops. These defense stations have a 

variable percentage of being already detected when the fleet approaches the area. Each 

station is protected by up to 10 Man-portable air-defense systems (MANPADS) to make 

sure that the stations can resist some level of aggression from NATO. Asyr has 3 main 

ways of deterring against the approaching NATO fleet: Persuasive, Saturation and 

Saturation All-Out. The description of these strategies and the reasoning why they were 

chosen will be discussed in paragraph 10.1.6. 



 

 184 

NATO has a small fleet of 10 ships – 7 frigates, 1 High Value Unit (HVU), 1 destroyer, 1 

minesweeper, which will be approaching the archipelago from the South. The number of 

ships is constant and cannot be changed, the HVU includes a group of support ships and 

the aircraft carrier which acts together and for modelling reasons was aggregated as one. 

The ships move in a coordinated formation which changes depending on the relative 

position of the fleet to the destination. The formations were chosen following the 

recommendation of an expert in the field, and as such they were not used as variables in 

the study. All the modified technologies are applied to all the ships and not just to one, this 

specific hypothesis was picked as the focus of the work is to look at Science and 

Technology products which could benefit the whole fleet.  

10.1.4 Input 

Table 14 and Table 15 show the relevant input variables used by both Asyr and NATO, 

respectively. These are also the Uncertainties and the Policy Levers of the XLRM 

framework. In Part 1 of the experiment, a DoE is created to test 150 different scenarios. 

Only the inputs from Asyr’s pool are used in this DoE. The value of each variable is taken 

within the range reported in Table 14. NATO’s variables are kept constant to the minimum 

level, or to a ‘false’ if the variable is binary. In Part 2, the situation is inverted to the values 

found in the Vulnerable Scenario, while NATO’s variables are free to change according to 

the iterative algorithm. In Part 3, all the input variables are kept constant to what was found 

in the previous two parts as Vulnerable Scenario and evolved strategies.  

All these variables were taken with a common interest: finding those parameters that could 

affect tor support the most the incoming fleet on Asyr’s and NATO’s side, respectively. 
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With this rational in mind, it was decided to look at what is critical in a mission involving 

semi-movable defense stations, and of what could complement those defenses. Moreover, 

it is of interest to see when there are priority targets involved as that shifts the focus of the 

attackers making them more prone to adopt risky behaviors. The selection of variables 

chosen following these criteria are reported in the following tables, divided per country. 
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Table 14: Asyr Variables 

Variable Range Notes 

Priority Targets False True 

When this is true the NATO fleet 

will try to hit the specific 

location of the island to disrupt 

Asyr’s strategy. 

Number of Planes 0 – 20 
Number of planes deployed to 

stop the incoming NATO fleet. 

Missile per Plane 1 – 4 

Each plane has a variable 

number of air-to-ground 

missiles. 

Number of Defense 

Stations (DS) 
0 – 10  

These are semi movable Bal-E 

trucks that are distributed around 

Asyr and Prucy. Each has a 

certain number of missile racks. 

Number of Waves Each DS 

can Fire 
1 – 3  

The number of missiles racks 

each DS has. 

Number of Missiles per 

Wave 
4 – 10  

The number of missiles present 

in each missile rack. 

Number of MANPADS 0 – 10  

The number of Man-Portable 

Air-Defense System around each 

DS. 

Deterrence strategy 

Saturation The deterrence strategy 

employed by Asyr. Both 

Saturation strategies are 

coordinated attacks; in the 

Persuasive strategy attacks are 

carried by each unit 

independently from others. 

Saturation – All out 

Persuasive 

Missile Quality  

Low 
Missile quality represents the 

level of complexity of weapons 

employed by Asyr.  

Medium 

High 
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Defense Station Cover 

Level 
0 – 10  

The probability that DS will be 

visible to the incoming NATO 

fleet. If 0 all DS are immediately 

visible, if 10 they are all hidden. 
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Table 15: NATO Fleet Variables 

Variable - Asset (if 

present) 
Range Notes 

Sonar 

Range 

Frigate 20.000 – 25.000  The sonar range is given in 

increment of different measures 

depending on the ship. Values 

are in meters, and they are the 

min and max possible. 

Destroyers have two radars, one 

conventional and one for early 

warning which can only pass 

information on the presence of 

the enemy, but not its 

characteristics. 

Destroyer 25.000 – 32.000  

 50.000 – 62.000  

HVU 17.000 – 23.000  

HVP Ammunition False True 

This ammunition doubles the 

probability of kill of point 

defense systems against 

incoming threats. 

New Short-Range Missile False True 
Increase the probability of kill 

by 20% 

New Long-Range Missile False  True 
Increase the probability of kill 

by 20% 

New TLAM False True 
Increase the probability of kill 

by 20% 

Naval Guns 

Number 

Frigate 

Destroyer 

 

2 – 5 

Each ship has several point 

defense systems that are used to 

defend the ship against incoming 

threats. HVU 3 – 6 

VLS Blocks 

Frigate 2 – 6 Each ship has several VLS 

blocks, each of which has 8 

missiles tubes. In each tube there 

could be either one long-range 

missile, one TLAM or 4 short-

range missiles. 

Destroyer 5 – 9 

HVU 4 – 8 
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VLS Fire Rate 60 – 25  

The fire rate of the VLS can be 

increased to launch more 

missiles in less time. In this case 

the numbers represent the 

interval in time units between 

two launches. 

Ships Robustness  0 – 14  

The ship’s robustness represents 

how resilient the ship is against 

hits. The probability of kill of an 

incoming missile gets reduces by 

3% every tick. 

 

10.1.5 Output 

In Part 1, the only simulation outputs that are necessary to the identification of Vulnerable 

Scenario are those related to the success of the mission – how many and which NATO 

assets are destroyed, and how many of Asyr’s defense stations are destroyed. In Part 2, 

outputs from Part 1 are used to increase the performance of the NATO fleet and to drive 

the iterative algorithm. Part 3 focuses again on the same outputs used in Part 1 as it is tasked 

to identify which of the fleet is the most robust one. These outputs were selected after 

consultation with military experts, and after reviewing what are the key variables driving 

the decision-making process. Table 16 shows all the outputs of the simulation and their 

explanation. 
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Table 16: Output parameters of the simulation and explanation 

Parameter Notes 

Total Run Time This is the total running time of each case. 

seed The random seed used in the case, stored for repeatability.  

Number Ally Killed 
Number of major units destroyed by Asyr, if bigger than 0 

the case is a failure. 

Number HVU Killed 
Number of HVU destroyed by Asyr, if bigger than 0 the case 

is a failure. 

Number Destroyers 

Killed 

Number of destroyers destroyed by Asyr, if bigger than 0 the 

case is a failure. 

Number Frigates Killed 
Number of frigates by Asyr, if bigger than 0 the case is a 

failure. 

Number Minesweepers 

Killed 

Number of minesweepers by Asyr, if bigger than 0 the case 

is a failure. 

Total Short-Range 

Interceptors Available 

Number of short-range interceptors available by the whole 

fleet. 

Total Short-Range 

Interceptors Launched 

Number of short-range interceptors launched by the whole 

fleet. 

Total Long-Range 

Interceptors Available 

Number of long-range interceptors available by the whole 

fleet. Only the destroyer and the HVU have them. 

Total Short-Range 

Interceptors Launched 

Number of long-range interceptors launched by the whole 

fleet. 

Total TLAM Available Number of TLAM available by the whole fleet. 

Total TLAM Launched Number of TLAM launched by the whole fleet. 

Total TLAM Intercepted Number of launched TLAMs intercepted by Asyr’s defenses. 

Bad Configuration 
Used to mark optimized configurations that still fail the 

mission.  
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Number of Defense 

Stations Destroyed 

The number of defense stations destroyed by NATO. If this 

number is lower than the number of visible defense stations, 

then the mission is a failure. 

Primary Target Hit 

A parameter to verify that if there are primary targets on 

Asyr side those are hit. This is a bonus objective and even if 

not achieved the mission will not stop.In Part 2 it will be 

used to further expand NATO’s fleet capabilities. 

Kh-35 Launched The number of missiles launched by the defense stations. 

Kh-35 Intercepted The number of missiles intercepted by the NATO fleet. 

Who Shot First 
A parameter to verify who was the first shooter between 

Asyr and NATO. 

Hidden Defense Stations 
The number of defense stations that are not visible to the 

NATO fleet at the beginning of the simulation. 

Visible Defense Stations 
The number of defense stations that are visible to the NATO 

fleet at the beginning of the simulation. 

Scenario ID ID of the scenario, stored for traceability. 

10.1.6 Assets Behavior 

In this simulated conflict the task of the NATO fleet is to reach a certain area to perform 

its mission. Asyr’s goal is to stop NATO from reaching its destination location. To do so 

it will employ different strategies depending on the scenario. 

10.1.6.1 NATO 

Since NATO might be aware of some of the defense stations Asyr has deployed, the fleet 

will enter the area in close formation with two semi circles of frigates, shown on the left of 

Figure 46, shielding the HVU and the destroyer on the top left of the formation to provide 

additional AAW shielding. The destroyer is the key asset against aerial threat as it employs 

an early warning radar that can help identify threats at long distance. The fleet will maintain 
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this formation until it enters the channel between Prucy and Relis, at that point the frigates 

will rearrange to provide support in case of attacks from both sides of the channels, shown 

on the right of Figure 46. In the final part of the approach, the frigates will change again 

creating a secure channel between the two islands, as shown in Figure 47. The destroyer 

will be north of the HVU to provide additional AAW support on the side that will most 

likely see an attack incoming.  

  

Figure 46: Formations of the NATO fleet at the entrance of the theater (left), and at 

the entrance of the channel (right) 

The RoE for the fleet are to engage threats when they appear. This means that when a 

defense station shows up on the radar of the fleet one of the ships will fire to destroy it. 

Whenever there is a missile incoming or a threat enters in the range of the fleet, the ship 

which has identified it sends a message to the HVU. This can either task the same ship or 

another ship to act and fire appropriate missiles or countermeasures. This protocol is 
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respected unless the incoming missile enters in proximity of a ship, at this point the ship 

uses its close in weapon system independently from what other ships are doing about that 

missile.  

 

Figure 47: NATO Fleet position in defense of the HVU while performing operations 

10.1.6.2 Asyr 

As mentioned, Asyr can employ 3 different deterrence strategies: Persuasive, Saturation 

and Saturation – All Out. These strategies were selected as they represent well the several 

types of defenses that the country could set up, they vary in complexity, effectiveness, 
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coordination needed and weak points. In all strategies, Asyr will distribute a series of semi-

movable coastal defense systems across its territory and the Eastern side of the main island 

of Prucy. This operation is carried out before NATO’s fleet arrival. Each truck has a 

variable probability of being hidden, if that is the case the truck will stay hidden – and 

therefore is not targetable by NATO forces. Once the NATO fleet approaches the 

archipelago one of the three strategies is employed: 

• Persuasive: In the persuasive strategy, Asyr is trying to discourage NATO forces 

from approaching the archipelago. To do this, each defense station will fire their 

missiles whenever the fleet enters their range. Even if the defense distribution 

changes, in every simulation the rule is always that the closer to the destination 

point the more defense stations there are. This means that at a certain point multiple 

defense stations will fire from different axes. When the fleet enters Asyr’s Air Force 

AoR, aircraft will be deployed from the airport in the north and will try to intercept 

the incoming fleet near Relis’ port. In this strategy, there is no real coordination 

among Asyr assets. It represents a situation in which commanders of different units 

are isolated and cannot really talk.  

• Saturation: In the saturation strategies all the assets are coordinated by the C2 center 

(which is also a priority target). Each defense station sends a message when the 

NATO fleet enters its firing range. When the fleet enters the Air Force AoR, aircraft 

are deployed and put on a loitering pattern around their final position. When the 

fleet is inside the ranges of all defense stations the C2 center orders to fire. Missiles 

are launched at the same time from all Asyr’s platforms. Depending on where the 
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defense station is located, in the first wave, it will aim either at the destroyer or at 

the HVU. The idea is to do as much damage possible, by destroying the HVU, and 

to cripple NATO AAW capabilities, by sinking the destroyer. The targets for the 

second and eventually third wave are distributed among what is left of the NATO 

fleet. If the C2 center is destroyed, then each asset behaves like in the Persuasive 

strategy.  

• Saturation – All Out: This strategy emulates the Saturation one with one caveat: 

missiles are not all launched at the same time, but they are launched in an ordered 

fashion so that they all arrive at the same time.  

10.2 Part 1: Finding Vulnerable Scenarios  

In the first part of the experiment, the goal is to find the Vulnerable Scenarios. The 

experiment can be summarized in the following points: 

1. Because the focus of this part is the scenarios, the DoE is created considering only 

variations on Asyr’s variables found in Table 14. NATO fleet’s parameters in Table 

15 are constant at the minimum level to represent the state-of-the-art. Moreover, 

this provides JANUS a complete set of inputs needed to create the scenario. Among 

the different possible DoEs, a space filling Latin Hypercube Design is used to 

capture the possible range of effects that scenario’s variables have. The DoE is 

generated in JMP and then transferred to JANUS via a csv file.  

2. Once the DoE is created and uploaded into JANUS, the simulation is run. The 

model runs following the assets’ behavior described above to evaluate the 

performance of the fleet. Given that in the DoE 150 unique cases were created and 
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that following a bootstrapping analysis the number of repetitions was 80, JANUS 

had to run 12.000 scenarios. 

3. Once the simulation is done, outputs are transferred from JANUS to JMP where the 

data is reformatted to perform the PRIM analysis.  

4. After the PRIM algorithm is run Vulnerable Scenarios emerge as ranges in Asyr’s 

input variables. These are used to update the information in JMP where the 

Vulnerable Scenario are displayed.  

10.2.1 Results of the simulation 

From the results displayed in Figure 48 it is possible to see how all 3 deterrence strategies 

offered a challenge to the fleet, with most cases failing to reach success. In general, Figure 

43 depicts a grim picture for the NATO fleet, proving the need for upgrades to be successful 

in the tested scenarios. Among the 3 strategies, the Saturation All-Out deterrence strategy 

was less of a threat compared to the other two though. This should be attributed to the way 

incoming threats are countered in the simulation. In fact, whenever a missile or a bullet hits 

an object there is a minimum distance that triggers that detonation. This means that if 

incoming missiles are too close to each other, multiple missiles are destroyed by the same 

detonation, this is clearly one of the major limitations that was discovered while using 

JANUS. It is possible to reduce the explosion distance to below a certain threshold, but 

that has shown itself to cause issues in the code and therefore it was avoided.  

In the correlation heatmap in Figure 49, it is shown that there is no prevalence of any 

specific factor in NATO’s fleet failure. This is demonstrated by the fact that the correlation 

between any of Asyr’s variables and the variable measuring NATO’s success is not strong, 
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never exceeding ±0.15. While this is expected for the correlation among Asyr’s variables 

as they are correlated only by the DoE – which was created using a uniform distribution on 

purpose – this was not the case for the NATO failure variable. The result is therefore 

surprising, and it demonstrates that all the variables considered for Asyr were equally 

relevant and needed in the description of the Vulnerable Scenarios. 

 

Figure 48: Failure rate by cases 80 is the maximum value, red bars are Saturation 

All-Out deterrence strategies, blue bars are Persuasive deterrence strategies, green 

bars are Saturation deterrence strategies.  
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Figure 49: Correlation heatmap between Aysr's and NATO’s variables. 

10.2.2 Vulnerable Scenario 

To find the Vulnerable Scenario, the results from JANUS were processed via the PRIM 

algorithm. In this step, the PRIM algorithm was used to identify the ranges of the scenario 

variables that create Vulnerable Scenario.  

In the trade-off analysis shown in Figure 50, density is not affected excessively by 

coverage. In other words, the fact that the line is almost horizontal suggests that there is a 

good distribution of responses, and that even if many variables are left free the density 

remains high (>0.7). In our case, because we were interested in defining Vulnerable 

Scenarios, we opted to pick a point that had a high density and high number of restricted 

values. This allowed for finding the ranges of a wide number of variables as shown in 

Figure 51. As was previously done in Chapter 6, regarding the point chosen for the analysis, 

characteristics were reported in Table 17.  
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Figure 50: PRIM Trade-Off Analysis 

Table 17: PRIM Iteration Results 

Mean 0. 974265 

Mass 0. 113333 

Coverage 0. 397063 

Density 0. 974265 

Restricted Dimensions 6 

Figure 51 is especially useful to visualize the complexity of the problem. The dots of 

different colors represent successful and failed scenarios for the NATO fleet. The same 

color code is maintained along the diagonal of the matrix where it is possible to see the 

distribution of the variable in successful and failed cases. Looking at the ranges of variables 
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it is possible to see how wide they are in general, meaning that they contribute equally to 

Asyr’s goal. The only variable that is skewed is the number of defense stations, which – 

without surprise – is skewed toward a high number. From the same figure it is possible to 

see that only two of the three strategies are considered to lead toward critical scenarios. 

These results are not in conflict with the correlation matrix displayed in Figure 49. The 

matrix showed which variable is critical, while Figure 51 is focused on identifying the 

range of the variables.  

The information from Figure 51 are combined with the scenarios in Figure 48 to highlight 

the Vulnerable Scenario. These are IDs 9, 14, 26, 27, 56, 63, 77, 83, 86, 96, 111, 117, 124 

and can be visualized in Figure 52.  
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Figure 51: Results from PRIM, the red boxes represent the set of Vulnerable 

Scenario. In blue cases where the NATO fleet had success, in orange where it failed. 
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Figure 52: Vulnerable Scenario IDs identified by PRIM in point 7 (6 restricted 

dimensions) 

10.3 Part 2: Finding Evolved Fleets 

Following the methodology described in Chapter 7, the Vulnerable Scenarios discovered 

in Part 1 were used as a baseline to run an iterative algorithm to find evolved fleets. As was 

discussed before, to ensure consistency all the 80 repetitions were run again, and the 

random seed was fixed to the one generated in Part 1. All the information regarding the 

Vulnerable Scenarios and the basic fleet were transferred again from JMP to JANUS. Here, 

every fleet was tested and evolved according to the iterative algorithm. The iterative 

algorithm was designed to prioritize cheaper changes that might have an impact rather than 

changes requiring big ship redesigning. This was chosen following the logic that since 

resources are limited, it is desirable to achieve success with the bare minimum expenses. 

In this sense, the algorithm shown in Figure 53 was built to first update things external to 
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the ships, like hypervelocity ammunition, short-range missiles, and naval guns. Only later 

to the number of iterations was capped at 30, as it was the maximum number of upgrades 

possible for the fleet using this algorithm. 

The outputs from the simulations included not only the same outputs of Part 1, but also the 

newly modified inputs and the number of iterations performed. Using the inputs generated 

by the iterative algorithm it was possible to extrapolate how the fleet was modified. 

Moreover, by looking at the number of iterations it was possible to conduct a sanitation 

analysis on the algorithm. This analysis was performed to ensure that all the possible 

combinations were tried before the fleet was declared to have failed the scenarios. The 

sanity check proved that the algorithm performed all the required trials before outputting 

the fleets. 

Finally, the outputs were taken and uploaded on JMP where they were checked against 

those of Part 1 to see how successful the evolved fleets were compared to the basic one.  
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Figure 53: Structure of the iterative algorithm 

10.3.1 Positive monotonic behavior verification 

As discussed in Chapter 8, this check is needed to verify the behavior of the technology of 

interest. While it is expected that each of them can only contribute positively, this is not 

guaranteed. As such, in this step a verification of the monotony is conducted.  

The methodology followed was the one drafted in Chapter 8: 

1. 10 fleets are drafted, each with only one of the technologies of interest enabled and 

maximized. Differently from Chapter 8, not all the technologies were tested as it 

appeared clear from Part 2 that there was no need to test the VLS additional blocks, 

as it was never used. The whole list of fleets is reported on Table 18. 
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2. The created 10 fleets are included in the file with all the 150 scenarios, each 

repeated 80 times. To ensure consistency, the random seeds used are the ones 

generated in Part 1.  

3. The csv file is then uploaded to JANUS, where each case is simulated and run. 

4. The outputs are transferred from JANUS to JMP for the postprocessing analysis. In 

the results (fully reported in Appendix G), the goal is to see if some of the fleets 

with technology improvements have a higher failure rate than the Basic Fleet. 

Table 18: Description of the technologies modified in each of the fleet used in Part 3 

of the main experiment 

Fleet Modified Parameter 

1 Basic Fleet as in main experiment part 1 

2 Hyper-Velocity Projectiles used 

3 New Short-Range missiles used 

4 New Long-Range missiles used 

5 Naval Guns maximized 

6 Hull Strength maximized 

7 Radar Range maximized 

8 VLS Fire Rate maximized 

9 New TLAM used 

10 All technologies enabled and maximized 
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To understand the results obtained, each fleet was plotted against its failure rate across all 

repetitions in each case. In Figure 54, is reported an extract of the results of the simulation. 

The maximum value for each fleet is 80 – meaning that all 80 repetitions have failed. To 

see if the chosen technology has a positive monotonic behavior, fleets 2 to 10 are compared 

with the Basic Fleet (fleet 1). If the number of failed cases in one of the fleets from 2 to 10 

is bigger than the number of failed cases of fleet 1, then that fleet employs a technology 

that has a negative effect on the fleet. Figure 54 shows a snapshot of a behavior that can be 

found across several scenarios. Many scenarios with a Saturation and Saturation All Out 

deterrence strategy – in red in Figure 54 – are negatively impacted by an increase in Naval 

Guns availability on the ships. Scenarios with a Persuasive deterrence strategy showed on 

the other hand that a higher fire rate does not help the fleet in those scenarios.  

Regarding fleet 5, the increased number of failures can be justified by the fact that while 

the number of naval guns on the ships increased, the number of magazines was not. In 

scenarios where Asyr can fire multiple waves of missiles, magazines are emptied between 

the first and the second wave, leaving ships exposed to further attacks. Regarding fleet 8, 

increasing the VLS fire rate means that more missiles are shot at incoming threats. 

Therefore, when Asyr has the capability of firing multiple waves, NATO ships are left with 

empty VLS magazine and have to solely rely on their CIWS and naval guns.  

Even if two variables showed a non-positive monotonic behavior, combined effect of all 

the other technologies. In fact, we see that fleet 10 has a 0-failure rate compared to the 76 
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failed cases of scenario 27 and the 50 ones of scenario 37. This was expected as the issue 

was addressed in Chapter 8 with the demonstration of Hypothesis 4. 

 

Figure 54: Detail of the results on variable monotony analysis 

10.3.2 Results and discovered Evolved Fleets 

The results from JANUS showed that none of the cases failed to be simulated. This is good, 

as it means that the model was stable and that the simulated technologies did not 

compromise its behaviour.  

In Figure 55, quantitative way which technologies were mostly used. In this graph, on the 

x-axis there are all the technologies, in each column the different numbers in the internal 

x-axis represent the level of technology reached by the iterative algorithm. The percentages 

show the distribution of the different values reached across all the tested scenarios. On the 

vertical axis the technologies are arranged by deterrence strategy. Looking at 

improvements common across all strategies, it emerges a lack of interest in new TLAM 

and in improving the range of the radar system. A VLS blocks are not present in the figure 

as they were never used. Focusing now on just the Persuasive deterrence strategy it emerges 
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an interest in new HVP ammunitions, short-range missiles, and long-range missiles. In 

most cases, additional naval guns are needed to support the CIWS. The CIWS is also 

expected to be able to fire at higher fire rates (as this variable represents the time between 

firing, the lower the better). Upgrades to the hull plating are generally needed to increase 

the survivability of the ships.  

Regarding the Saturation strategy, fewer modifications are needed. In most cases, there is 

no need for new short-range and long-range missiles. Similarly, new naval guns seem to 

be obsolete as they show improvements only in 16% of the cases. The ship structure does 

not require additional strength in over 85% of the cases. The only two areas in which we 

see some needed upgrades are HVP ammunitions and fire rate which are upgraded 30% 

and 34% of the cases, respectively.  

 

Figure 55: Representation of which technologies were upgraded, top row shows 

persuasive deterrence strategy, bottom row shows the saturation deterrence strategy. 

On the y-axis, percentage of usage. 
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The pools of technologies described above can be aggregated using the methods 

demonstrated in Chapter 8 to derive the evolved fleets which will be used in Part 3. These 

fleets are reported in Table 19, duplicated fleets like the one generated in IDs 77, 96, 111 

will be removed to reduce computational efforts.  

Table 19: List of fleets generated after as result of the Part 2 step of the methodology 

Scenario 

ID 

Max of 

HVP 

Ammo 

Max of 

ESSM 

New 

Max of 

Long-Range 

Missiles 

Max of 

Naval 

Guns 

Max of 

Hull 

Strength 

Max of 

Radar 

New 

Max of VLS 

Distribution 

Min of 

Fire 

Rate 

Max of 

Tomahaw

k New 

14 1 1 1 6 14 5 1 20 1 

26 1 1 1 6 14 5 3 20 1 

27 1 1 1 6 10 5 3 20 1 

37 1 1 1 9 14 5 2 20 1 

43 1 1 1 3 12 7 1 30 0 

63 1 1 1 6 14 0 1 20 1 

77 1 1 1 6 14 5 1 20 1 

83 1 1 1 6 10 2 3 20 1 

86 1 1 1 6 14 6 3 20 1 

96 1 1 1 9 14 5 2 20 1 

111 1 1 1 9 14 5 2 20 1 

117 1 1 1 6 14 3 2 20 1 

124 1 1 1 6 14 3 1 20 1 

 

From the data in the table, it emerges how the cheapest modifications while more expensive 

ones such as Hull Strength see more variability. Regarding Hull Strength, values is the 
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maximum of the range. In fact, as few cases have been successful only at 20+ iterations, 

through all the technologies, leading the fleets to have very high values of Hull Strength 

and Naval Guns.  

From Figure 56, it is possible to see how the success rate was much higher compared to 

the 32.6% achieved in Part 1. The secondary objective to destroy all defense stations was 

also achieved most of the time. As this was a secondary objective, the algorithm tried to 

ameliorate the fleet in that area only when the fleet was failing the primary objective. This 

means that fleets in those scenarios going through the iterative algorithm only a few times 

might not have had the occasion to strengthen offensive capabilities enough. Finally, the 

blue area are the cases in which the fleet still failed to survive. In all those cases, after 30 

iterations, only one frigate is destroyed. Comparing this result to what was discovered in 

Part 1, there is a general reduction in losses. In fact, even in failed cases where previously 

6 or 7 ships would have been sunk, now that number is reduced to 1, proving that even if 

the main objective is not fully achieved, the iterative algorithm provides a strong 

contribution toward the fleet’s resilience. This should not be seen as a change in success 

criteria, but as a fact to be stated, i.e., failures are less heavy in terms of losses. In this 

sense, this result is a byproduct of the methodology, showing that if the decision maker is 

interested, partial success is possible, and that the methodology is able to capture it.  
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Figure 56: Success case distribution in relation to objectives. 

Finally, in Figure 57 there are those scenarios which were not able to be fixed by the 

Evolved Fleets. As reported before, even if those were failed scenarios, the degree by which 

they failed was reduced. By comparing Figure 57 with Figure 52, it is possible to see how 

the failure rate changed in each of Vulnerable Scenario thanks to the use of the technologies 

found through the iterative algorithm. The positive effect of the found technologies is 

particularly evident in all those cases which went from a failure rate of 80, over 80 

simulations, to less than 5 failed cases. This demonstrates how new technologies make the 

difference in mission’s success and how, without these improvements, the fleet will not be 

able to overcome challenges imposed by adversaries in Vulnerable Scenarios.  

It is interesting to note that almost all the Saturation defense scenarios were resolved, while 

Persuasive strategy ones remained the most critical. It is worth mentioning that following 

the result of this part of the experiment an analysis of why this deterrence strategy proved 
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to be more challenging for the NATO fleet was conducted. The analysis showed that those 

scenarios in which the fleet failed have a concentration of defense stations on one of the 

two sides of the channel. This caused one side of the fleet to take most of the hits, saturating 

de facto the defenses of one or two ships. The other flank of the fleet on the other hand was 

not really exposed to challenging threats and it was too far to support the defense of the 

ships under attack. 

 

Figure 57: Scenarios in which the fleet still fails after the iterative algorithm (in red 

saturation deterrence strategies, in blue persuasive deterrence strategies). 

10.4 Part 3: Finding Robust Fleets 

Part 3 of the experiment focuses on two key issues. First, it looks at identifying which 

variables have a monotonic positive behavior, and the related consequences. Secondly, it 

focuses on identifying the robust fleets among those generated in Part 2, providing a 

conclusion to the experiment.  
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10.4.1 Finding robust fleets 

The last step of the experiment is to identify and then rank which fleet was discovered in 

Part 2. Of those originally 13 fleets only 10 were kept as unique. The value level of each 

technology is reported in Table 20. As the simulation followed the same process as that in 

the previous paragraph, the 10 fleets were taken and tested in all 150 scenarios – each 

repeated 80 times. The same random seeds were kept ensuring consistency and 

repeatability of the results. After the csv file with the 120.000 cases was transferred to 

JANUS, the agent-based modeler took care of performing the simulation. The results were 

provided again as another csv file, this was later uploaded on JMP where results were 

analyzed. Table 20 also shows the failure percentage of each fleet. From the results, it 

emerged that Fleet 4 was successful on the 99.9% of the cases, with only 17 failed cases 

out of the 12.000 in which it was tested. Fleet 1 followed with 99.7%, then Fleet 10 with 

99.1%, Fleet 9 with 98.9% to conclude with Fleet 6 and its 96.9% of success rate. The other 

5 fleets had a success rate below 80% and as such they were later discarded.  
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Table 20: Fleets tested and their technologies 

Fleet ID HVP 

Ammo 

ESSM 

New 

Long-

Range 

Missiles 

Naval 

Guns 

Hull 

Strength 

Radar 

New 

VLS 

Distribu

tion 

Fire 

Rate 

Tomahaw

k New 

Success 

Rate 

1 1 1 1 6 14 5 1 20 1 99.7% 

2 1 1 1 6 14 5 3 20 1 77.6% 

3 1 1 1 6 10 5 3 20 1 77.4% 

4 1 1 1 9 14 5 2 20 1 99.9% 

5 1 1 1 3 12 7 1 30 0 77.5% 

6 1 1 1 6 14 0 1 20 1 96.9% 

7 1 1 1 6 10 2 3 20 1 77.3% 

8 1 1 1 6 14 6 3 20 1 77.4% 

9 1 1 1 6 14 3 2 20 1 98.9% 

10 1 1 1 6 14 3 1 20 1 99.1% 

 

Figure 58 confirms that the Persuasive deterrence strategy has a higher failure rate for the 

NATO fleet. In fact, we see that most failed cases are within the Persuasive deterrence 

strategy. From the Vulnerable Scenario discovered in Part 1, this had to be expected, and 

the reasons why this happens, and how this is linked to the simulation were reported at the 

end or Part 1.  
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Figure 58: number of successes per fleet per Asyr deterrence strategy. The maximum 

value on the y-axis is 4000, as the maximum number of cases per Asyr’s strategy. 

Looking more in depth in the cases that were failed by these fleets as reported in Figure 

59, they are spread across multiple scenarios, with predominance of cases 30, 33, 55, 60, 

93, 96, 102, and 139. One common factor of the 8 scenarios mentioned is the high number 

of defense stations (above 8), which is consistent with what was found in the Vulnerable 

Scenarios in Part 1 of this experiment. Another commonality is the high number of 

MANPADS (above 5) around each defense station. These two facts combined show how 

on one hand there are many targets for the incoming NATO fleet, but on the other, those 

targets are also very resistant. This means that the NATO fleet is in the hard position of 

having to distribute its fire power across many resisting targets which at the same time have 

a large fire power themselves.  
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It is also interesting to note that the number of missiles, and the number of waves that each 

defense station fired, were not common factors. This shows that the distribution of 

incoming threats, and therefore their ability to saturate parts of the fleet’s defenses, proves 

to be a tougher challenge for the fleet rather than the number of total missiles distributed 

across a longer period. A logical explanation of this is that the layered defenses employ 

both missiles and CIWS. Missiles independently target each threat and, depending on the 

fire rate, multiple missiles can be shot at the same incoming threat. On the contrary CIWS 

can only fire one incoming threat at a time, usually at a much shorter range. Targeting two 

threats in two completely different directions is not possible for the same CIWS. While it 

is true that ships have multiple CIWS covering all the possible incoming directions around 

the ship, it is also true that CIWS can get saturated when too many threats are incoming 

from the same direction. For all these reasons, these results are consistent with what was 

seen in the past with ASCM [97], and with what we will most like see in the future with 

aerial swarms of autonomous vehicles [98]. 
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Figure 59: Distribution of failed cases across the 5 fleets with a success rate higher 

than 80%. 

10.4.2 Conclusions 

To conclude this chapter, and the demonstration of the full methodology, the only thing 

left to do is to rank the fleets highlighted as robust in the previous paragraph. To further 

reduced the 10 fleets studied, an 80% success rate as acceptability criterion was imposed 

on the fleets. In the case of this experiment, the selected value separates the pool of fleets 

into 2 equal divisions 

Table 21 reports the summary of the main characteristics of the 5 fleets and their relative 

rankings. Two main characteristics were chosen to rank the fleets: their success rate and 

the number of upgrades performed to each fleet. The reason the success rate was chosen is 



 

 218 

straightforward: we are interested in the most robust fleet across all scenarios and 

repetitions without considering economic aspects. In that case, Fleet 4 would be the one to 

be picked as it has the highest success rate. On the other hand, if resources are constrained 

it might be of interest to look at the number of upgrades (i.e., investments) needed per fleet. 

This metric is in tension with success rate; therefore, it is not a surprise that the first choice 

in this case would be Fleet 6. By screening the original 10 fleets imposing a minimum 

success rate it was ensured that even the fleets chosen because of their lower modification 

number have a satisfactory success rate.  

Table 21: Fleets ranking and main characteristics 

Fleet Id Success 
Rate 

Success 
Ranking 

Number Of 
Modifications 

Modification 

Ranking 

1 99.7 2 32 4 

4 99.9 1 35 5 

6 97.1 5 27 1 

9 98.9 4 30 3 

10 99.4 3 30 2 
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CHAPTER 11. Conclusions 

The proper function of man is to live, not to exist. I shall not waste my days in 

trying to prolong them. I shall use my time.  

Jack London 

This thesis started underlining a problem that today is emerging increasingly: the shifting 

of the security environment toward a more volatile, uncertain, complex, and ambiguous 

one. It was highlighted how to compensate for this shift there could be solutions employing 

different means, ways and ends. One of the first assumptions was that through this research, 

a solution could be identified by looking at means, specifically, there is interest in looking 

at means within the naval domain. It was identified, differently from all differently from 

all the other domains, that the sea domain offers an ample array of relevant use cases and 

scenarios that will continue to be pivotal in shaping the future of the security environment. 

Therefore, assessing the fundamental roles of these scenarios will support the field. In the 

end, through the development of the methodology showed in the Figure 4 the main 

motivational questions were answered:  

• Motivation Question 1: What ship taxonomy can be used to better understand high 

level interactions among subsystems? 

• Motivation Question 2: What are current investment decision making 

methodologies used by the DoD?  

• Motivation Question 3: How are assets currently quantitively compared in 

investment methodologies? 



 

 220 

Throughout the course of this thesis a series of research questions were formulated and 

answered in different chapters. Table 22 shows a summary of these questions and the 

locations where they were addressed. 

Table 22: Summary of Research Questions and locations 

Research Question ID Research Question Chapter 

Research Question 1 Can new taxonomies of ships help in increasing the 

understanding of high-level interactions among 

components? 

2 

Research Question 2 What modelling techniques can be used to 

quantitively simulate naval future scenarios? 

3 

Research Question 3 What technique should be used to find vulnerable 

scenarios in a large dataset with deep uncertainty on 

the future evolution? 

3 

Research Question 4 What Scenario Discovery method can be used to find 

Vulnerable Scenarios for naval fleets in a credible 

and rapid way? 

3 

Research Question 5 What tool can be used to select sets of naval 

technologies to enhance fleets' long-term 

robustness? 

4 

Research Question 6 Which hybrid approach can be used for 

quantitatively selecting technologies to invest in a 

naval fleet in a credible, practical, and rapid way?  

4 

Research Question 7 What happens if technologies effects are not positive 

monotone? 

4 

Research Question 8 Which criteria should be used to select a reduced 

number of fleets to be further evaluated for 

robustness? 

5 
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A variety of gaps emerge when addressing the means. The first one is the way new assets 

are planned. Different bottom-up and top-down methods are present but the reconciliation 

between these is not always straightforward, therefore it can happen that assets that satisfy 

planners’ needs end up not satisfying operational requirements. Part of the efforts to cover 

this gap is reflected in the way used how to decompose assets: taxonomies. 

In Chapter 2 the goal was to answer Motivation Question 1, to do so multiple taxonomies 

models were described, highlighting why each of them taken individually would not satisfy 

the need to comprehensively describe complex systems as ships. The conclusion of the 

chapter demonstrated, by answering Research Question 1, how hybrid taxonomies can 

solve the problem and can allow clear and quantitative comparisons among assets.  

Being able to compare assets is another one of the issues that has been tackled in this thesis 

as described in Motivation Question 3. In fact, to provide quantitative solutions to show 

which means can support a stabilization of the security environment, it is necessary to be 

able to quantitatively compare and model those means. The comparison is done by using 

hybrid taxonomies, but regarding the modelling part there are different options. Among all 

the options presented to answer Research Question 2, it was chosen to use agent-based 

modelling due to its versatility and its ability to well describe many independent assets 

collaborating for one outcome.  

All these pieces are important to set the stage for the two key deliverables of this 

methodology: the future scenarios that will be challenging for the assets we are interested 

in investing on, and the set of technologies that will help those assets maturing to the point 

of overcoming those found scenarios. To find future scenarios the investigation started by 
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formulating Research Question 3 and by selecting Scenario Discovery (SD) as a technique 

to answer that question. SD can use different statistical tools, Research Question 4 was 

formulated to identify which one was better suited to find Vulnerable Scenarios in a naval 

context. The choice fell on Patient Rule Induction Method (PRIM) as tool to analyze 

scenarios and frame relevant scenario boxes in the design space through a study on the 

ranges of the used variables. In performing the literature review in Chapter 1 through 5, it 

emerged that PRIM was never used in conjunction with agent-based modelling to find 

naval Vulnerable Scenarios, therefore a window of opportunity to contribute to the field 

was identified.  

The second key deliverable is the sets of technologies allowing fleets to overcome the 

previously discovered Vulnerable Scenarios. In this effort, hybrid taxonomies and the use 

of a DoE proved to be essential as different technologies contributed to fleets at distinct 

levels. To maintain a broad vision of the problem, and to be able to test multiple 

technologies (>10), a hybrid approach that answered Research Question 5 was developed. 

The requirements for the hybrid approach were investigated in Research Question 6, this 

had to reflect the need to start with a fixed starting point but then to allow the fleet of 

interest to be upgraded through a selected group of technologies. For the static part, it was 

chosen to use a space filling DoE, more specifically a Latin Hypercube Design, while for 

the dynamic part a new method had to be developed. To be consistent with the use of SD 

in Chapter 3 several methods used in the past with SD were considered. None of the 

methods or existing approaches satisfied the requirements needed to support the objective 

of this thesis, it was decided to develop a new method. This involved using a signpost and 

trigger system that was able to track the evolution of the variables of interest from one 
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simulation to the next, then update the inputs of the subsequent simulation. The selection 

of the new inputs was done by tying the signpost and trigger system with a decision-making 

tree that provided for the new variable’s values depending on the output of the previous 

simulation. In identifying the different set of technologies, it emerged the possibilities of 

those technologies not contributing only positively toward solving Vulnerable Scenarios 

but also opening new ones. Therefore, first Research Question 7 was posed, then, as part 

of the method to solve this issue, the experiment in Chapter 8 was run to demonstrate a 

necessary checkpoint determining the positive monotony of the variables.  

With all the information needed placed together it was possible at this point to create a new 

methodology that was able to satisfy the original research objective of developing a 

procedure to support concurrent trades-offs among naval assets and technologies, to assist 

investments on new long-term maritime technologies.  

The newly created methodology was divided in three parts: the first one with the goal of 

identifying Vulnerable Scenarios using PRIM, the second one tasked to find the Evolved 

Fleets using the hybrid approach created ad hoc, and the third one to find the Robust Fleets 

by aggregating the results obtained from the previous parts. Each part was dedicated to an 

experiment so that hypotheses and assumptions could be validated before testing the whole 

methodology as one block. In Chapter 6 an anti-submarine warfare (ASW) use case was 

set up to identify Vulnerable Scenarios for a single ship and its helicopter. This use case 

was built as the foundation for the experiment performed in Chapter 7. The output of this 

was the identified scenarios of different technology strategies that enabled the fleet to 

succeed. Chapter 8 was dedicated to verifying the positive monotony of the variables, to 
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find if possible new Vulnerable Scenarios opened, and to see if among the technologies 

tested some can compensate for the eventual non-positive monotone technologies present. 

Finally, the experiments in Chapter 9 demonstrated hypothesis 6 and answered the last 

research question, Research Question 8, testing how the fleets could be aggregated and 

reduced to find the most robust combinations within minimal computational time. In this 

chapter the upgraded fleets from Chapter 7 were compacted so that from each Vulnerable 

Scenario only one fleet was output. At the end of chapter, the selected fleets were compared 

and tested across all the scenarios to find those with the highest success rate.  

The final demonstration that supported the research in this thesis tested the whole method 

as a single block in Chapter 10. In this chapter a different, and more complex, use case was 

selected: a fleet of 10 ships had to approach a group of islands to perform a Non-combatant 

Evacuation Operation, in approaching the islands the fleet had to suppress several fixed 

defense stations, some of which not known, and neutralize an aerial attack. The 

methodology was executed in its entirety and the robust fleets were promptly identified. 

The experiment was a successful demonstration that the whole methodology can work with 

different use cases and that it satisfies the research objective. 

In conclusion, this thesis has been developed in the years with idea in mind that it could 

support the work done by planners in the S&T community. The results obtained as 

deliverables (i.e., Vulnerable Scenarios and Robust Fleets) are not finite products for 

someone who is looking at investments, but they could support planners in evaluating 

different, unexpected, and yet quantitative scenarios. Although these are partial results, 

they can be used to reduce the lead time in identifying which investment will work better 
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in an uncertain future. Moreover, the outcomes from the partial experiments and full 

methodology demonstrate the ability to focus high-detailed modelling efforts to certain 

portions of the design space, while allowing decision makers to have abroad outlook of 

what the future holds. With all of this in mind, entities that could benefit from this work 

include bodies like the Joint Requirements Oversight Council (JROC), to support its role 

in validating joint warfighting requirements, and Acquisition Offices focused on 

identifying future investments.  

In the future it would be interesting to integrate the methodology developed in this thesis 

with already existing ones like JCIDS. This could allow further streamlining of the 

modelling efforts and could potentially increase the number of scenarios tested. Moreover, 

it would be interesting to integrate some higher fidelity modelling abilities to study specific 

effects that might be of interests for decision makers. This could enable further tailoring of 

the methodology to help decision makers understanding more in depth how technologies 

of interest work, while keeping in mind the large investment effort. Looking at how to 

ameliorate the modelling structure, it could be possible to integrate better degrading models 

for ships. This would allow to shift away from the binary condition used in which ships 

were either perfectly functioning or destroyed. Further modification to the model could 

involve differentiation of chaffs and flares in the countermeasure array available to 

helicopters. By doing so, it could be possible to investigate more type of missiles. Finally, 

future works could include expanding above the naval domain, to include segments from 

other Armed Forces. This would show not only the potential of joint operations, but also 

the benefits of streamlining technology investments across all branches of the Armed 

Forces.  
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Although this work was focused on a military naval perspective, the methodology can be 

broadly applied to many different domains. With this work the author hopes to have 

satisfied the curiosity of those seeking different options for finding unexpected scenarios 

that might affect their fleets, and to contribute to the future of scenario problem solving in 

the naval domain.  
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Appendix A. List of Maritime technologies of 

future interest 

A.1  Surface Vessels 

Throughout the next few paragraphs, the goal is to show several ships’ subsystems in which 

currently there is interest on investing in technologies to counter A2/AD bubbles, and 

possibly more. The division in subsystems follows a functional decomposition.  

Surface ships can be of different types, from corvettes to aircraft carriers and from Off-

shore patrol vessels to amphibious assault ships. In the following subsystems 

decomposition, all the subsystems were abstracted removing them from their original ship 

context. This does not mean that any ship can mount any technology, but that at an abstract 

level different ship classes can be compared on their basic elements. 

i. Warfare Subsystem 

One of the main problems of entering in a contested A2/AD area is surviving the incoming 

attack. Differently from the past when the attacker had the advantage (e.g. Falkland war), 

the defenses here will have the advantage of larger magazines and more fire points. 

Moreover, the attacker after surviving the first wave of incoming strikes must be able to 

have enough magazine to fire its own attack versus the defense stations. This means that 

Vertical Launcher Systems (VLS), that cannot yet be reloaded at sea, must be optimized to 

provide ship safety while also providing an effective offensive measure. Currently on US 
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CG and DDG-51 only 25% of the VLS magazine is used for TLAMs, this number increases 

to 40% on the 3 DDG-1000 the US currently has [99]. 

To increase the survivability of the fleet studies have demonstrated the need of new 

weapons that, together with an upgraded battle management system, can provide greater 

resiliency and a lower dependency from magazines. This is achieved by complementing 

hard kill systems like missiles with soft kill ones like High Power Microwaves (HPM) 

weapons, Direct Energy (DE) laser systems, and jammers for electronic warfare.  

HPM weapons are a promising technology combining the capability of hitting multiple 

targets at the same time, in all weather, with an endless magazine. HPM weapons work by 

sending a narrow beam of high power microwaves that interferes or cause damage by 

inducing currents in the targeted circuits leading to overheat failings similar to the blowing 

of a fuse [100]. Currently DoD is investing on a prototype called CHAMP. DE systems on 

the other hand are affected by the humidity level of the atmosphere making it not optimal 

for operations in the maritime environment. Both systems though require a certain time 

locked on target to achieve their effect, this disadvantage is countered by the fact that all 

prototypes so far have proven that multiple beams can be fired from a single system. 

Another negative aspect is that certain weapons, like ASCM, are hardened to resist the high 

temperatures of supersonic travel, therefore they will likely be not affected much by HPM 

and DE weapons. Jammers work in a different way as they try to “blind” the incoming 

missiles by disrupting and confounding its navigation systems ad seekers. Jammers are also 

used as decoys as they can simulate the IR and radar signature of ships of different sizes 

luring the incoming missile away from the HVU. 
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Hard kill systems include naval guns, missiles, and in the future also railguns. Naval guns 

are now seeing investments in better munitions, specifically on Hyper Velocity Projectiles 

(HVP) which can reach speed of Mach 3 when fired by powder guns. HVP have small 

control surfaces to correct their course more accurately, compensating for small errors in 

target location.  Electromagnetic Railgun (EMRG) can use HVP as well providing more 

range, up to 40 nm, but they require more power that currently only DDG-1000 are able to 

provide. Moreover, the fire rate is slower than other naval gun systems, making them not 

as appealing [101]. Finally, to increase the VLS magazine a possible solution would be to 

start “quadpacking” missiles like it’s currently done with ESSMs, this will reduce the range 

of some of the offensive missiles moving them away from being standoff weapons. 

Looking at a different concept, some have suggested investments on magazine ships, which 

should be focused on providing only a large number of VLS cells, between 256 and 512, 

while relying on other ships in the fleet for defense [23].   

Torpedoes are of course part of the warfare subsystems, but they are not as critical as other 

weapons in entering or in surviving an A2/AD bubble.  

ii. Sensor & Processing Subsystem 

An important industrial effort in the past years has been focused on increasing detection 

capabilities of ships. This has been done by improving sensors on board and by augmenting 

radar’s range resolution. Upgrades are also achieved via software as done in the case of the 

DDG-1000. Cpt. James Syring, DDG-1000 program manager, after cancelling the order 

for the S-band SPY-4 volume search radar stated the following: “We don’t need the S-band 

radar to meet our requirements [for the DDG1000]” and “You can meet [the DDG-1000’s 
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operational] requirements with [the] X-band [radar] with software modifications” [102]. 

On the other hand, other S-band 3D radars are currently being developed, among them the 

next generation of US ships will be using the AN/SPY-6. This is an air and missile defense 

electronically scanned array 3D radar which will also provide for periscope detection. 

Table 23 provides a list of radars on an Arleigh Burke destroyers (DDG-51) and their main 

functions. This list is provided to show how different technology investments could be 

performed in each of those categories to increase DDG-51 capabilities.  

Table 23 Types of radars on DDG-51 

Radar Name Function 

AN/SPY-6(V) Air and Missile Defense Radars used mainly as air search radar. It 

replaces the AN/SPY-1D in all Flight III ships. 

AN/SPG-62 Illumination radar for semi-active radar homing missiles. 

AN/SPS-67 Dedicated surface search radar for finding and tracking ships and sea 

skimming objects. 

AN/SPQ-9B Replaces the AN/SPS-67 in some ships, it combines surface search 

and fire control capabilities. It is optimized against stealthy fast 

approaching assets like cruise missiles. 
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Sperry Marine 

BridgeMaster E 

Used as search and navigation radar, it replaces the AN/SPS-73 as it 

has greater at-sea reliability and can detect sea skimmers moving at 

speeds up to 600 knots. 

Sonars are also a critical part of the ship’s sensor suite. Sonars can be both active and 

passive, can be mounted on the hull – usually at the bow to reduce noise – or towed about 

a mile behind the ship. Continuing the example of the Arleigh Burke destroyer, which is 

not specialized in ASW, there are 2 sonars: the AN/SQS-53C active/passive sonar mounted 

in the bulbous section of the bow, and the AN/SQR-19B1 passive towed sonar. The latter 

is now being replaced by the new TB-37U which adds the advantage of being able to 

operate both passively (just listening) or actively (emitting sonar pings and listening).  

All these systems are controlled by the battle management computer, the brain behind the 

full warfare system that connects sensors to weapons through designed tactics and 

responses. The Aegis Combat System can be defined as the pulsing heart of the defense 

system as it connects the information coming from all the different sensors in a coherent 

battlespace to show the status of the ship and the battlefield in general. This system has 

been successful because of its open architecture that allows different components to be 

integrated, allowing ships to share and gather data with other Aegis ships. While the Aegis 

system is focused mainly on air and missile defense, subsurface combat systems have now 

started to be integrated. Aegis has the capacity to match automatically the most appropriate 

response to the incoming weapon, this is done following doctrines which are hard coded in 

the system. Usually rules involve understanding the threat, prioritizing threats if multiple 

are detected and then assigning the response to different defense systems. Future fire 
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control systems should increase their agility in responses and automation as incoming 

threats are expected to be coming at much faster speeds and with harder detection patterns 

like coordinated sea-skimming attacks. Moreover, many are claiming that ships’ defense 

bubbles should be reduced in size to allow more short and medium range interceptors [99] 

– like ESSM, which are cheaper and available in greater numbers than SM-3 –, HVP from 

naval guns, and soft kills systems. All these systems can usually engage at around 40nm, 

offering fewer encounters with the incoming missiles than the conventional approach of 

neutralizing incoming threats as far as possible from the ship.  This is a shift in culture 

which should be supported by technology investments on the fire control system. 
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Figure 60: Schematics of the Aegis Combat System; sensors are in blue, controllers 

in green, weapons in red and external units in white. 

iii. Communication Subsystem 

The communication layer is important to maintain contact with command centers, with 

other ships and aerial assets in the fleet. In general, assets with an air wing will have a 

tactical air navigation system (TACAN) for assisting helicopters in take-off and landing 

operations and to inform them regarding their distance and bearing from the ship. Important 

communication systems include SHF satellite terminal, various links (4, 11 and 16) for 

tactical communications and link 22 for enabling higher data transfer. To reduce the risk 

of being intercepted, the Office of Naval Research (ONR) has started working in what they 
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called Tactical Line-Of-Sight Operational Network (TALON) [103]. TALON is a laser 

communication system that allows ships to communicate at gigabyte speed without the risk 

of being intercepted. In fact, laser beams, differently from radio frequencies, are very 

narrow minimizing the risk of being intercepted as sender and receiver must be in line of 

sight to achieve communication. Further application of this technology could be considered 

for allowing satellite-ship communications, this would be a breakthrough for secure 

communication in contested areas, as A2/AD bubbles. In this field research is still going 

on as the maritime environment, given the high relative humidity, the constant rolling and 

the weather variability, poses a challenge to this type of communications [104].  

iv. Structure  

One of the technology trends that has been growing in the past years is the concept of 

modularity and flexibility. Modularity can be achieved in 3 different ways [105]: by having 

common modules that can be used on multiple ship classes, by using self-contained 

modules providing plug-and-play capabilities, or by employing modular installations on 

the sea frame that can allow different module packages with different functions to be 

installed on a standard interface.  An example of the first approach is the design of a 

common medical facility that has standard dimensions and standard interfaces; by doing 

so in the design cycle the ship needs only to have a dedicated space facility and no further 

design would be needed. Self-contained modules are useful as they just need to be plugged 

in to provide the desired capability. An example of this approach is the VLS. A VLS can 

be changed and prepacked with any missile configuration without changing the form of the 

launcher. VLS can be used to accommodate not just missiles but also UAVs and torpedoes. 



 

 235 

The third concept of modularity is the installation of modular payloads on the ship. In this 

case there is a full separation between the ship and the payload. The ship is required to 

have well defined standard interfaces where different payload packages can be installed to 

perform certain missions: ASW, MCM or ASuW. The US Navy tried to implement this 

concept on the LCS program, and while in the end it did not work well for the USN [106], 

other navies are still studying and implementing it. Modularity in fact offers the 

opportunity to repurpose ships when needed, tailoring them to specific expected threats. 

The USN is still partially looking at this in the FFG(X) program where in the RFP it was 

made clear that the ships must be upgradable without the need of dry docking or hull cuts 

[107]. Of course, this is not the quick module swap that was originally envisioned for the 

LCS, but this hybrid approach could result beneficial given the uncertainty of the current 

security scenario. It is possible to summarize modularity as the capability of a ship to adapt 

new technologies and perform different missions at high standards. 

Flexibility, on the other hand, is the capability of changing not only the module but also 

the interface at ship level [105]. One way of doing it is by having flexible infrastructure 

that evolves with the needs of the ship, as done on Ford class. On the CVN-78 in fact, the 

internal bulkheads are mounted on track allowing different sizes and configurations of 

rooms while standard connections are provided for power, cooling and computers. 

Alternatively, ships can be built slightly larger than needed allowing more space for further 

upgrades, as done on the Ticonderoga-class cruiser. 

v. Propulsion Subsystem 
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In 2016 MITRE conducted an analysis on the future fleet composition [23]. Among the 

different suggestions to counter A2/AD they showed the need of increasing the number of 

air wings to reduce the attrition of incoming air forces and missiles. One way to do this is 

to increase the affordability of carriers by developing a scaled and cheaper version which 

can support STOVL aircrafts (e.g F35-B). This new carrier should be either based on the 

America class LHA or a completely new design, but in both cases, it should use a 

conventional diesel propulsion system. Investing in a different propulsion system will 

allow to reduce costs from the original nuclear propulsion design. Affordability is a key 

aspect in future scenarios where more assets will be need project more forces.  

vi. Air wing, Boats & Landing crafts 

 It was already mentioned how air tankers will be critical to keep the carriers away from 

coastal defenses while fighters are projected in. For this reason, one of the critical add-ons 

to the flight deck of an aircraft carrier will be refueling drones. The Navy has awarded in 

2020 a contract for 7 MQ-25 Stingray Carrier-Based Aerial-Refueling Systems (CBARS) 

[108] each of which is expected to increase the number of available strike-fighter of 6 per 

air-wing. Moreover, this technology will allow the wing to extend its range by 400 miles 

[109], while freeing more F/A-18E Super Hornet which were reconfigured to airborne 

tankers. Of course, these modifications will not come without investing on the ship itself. 

The Navy is planning to field these systems by 2024 while they install Unmanned Aviation 

Warfare Center rooms on some of the carriers.  

Landing Craft Air Cushion (LCAC) are going to be an important technology upgrades for 

certain assets. LCAC provide over the horizon range with a contained radar cross section, 
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they can be weaponized for achieving distributed lethality and they can carry up to 70 tons 

of equipment at about 40 knots. Some have suggest upgrades to the LCAC to achieve what 

is called the Fast Air Cushion Expeditionary Craft (FACEC) [110]. These FACEC could 

be used to carry up to 45 tons at the “near helicopter” speed of 85 to 100 knot for a range 

of about 200 miles, the open deck will provide space for modular weapons to be installed 

to provide for distributed lethality. The role of LCAC, or FACEC, is to provide a fast 

transport to shore to start a localized counter A2/AD position supporting naval operations 

and force projection [111].  

vii. Unmanned Systems 

Unmanned systems have seen an increase in relevance in the past decades becoming more 

relevant in Armed Forces. UAVs are extremely integrated in the Air Force for both ISR 

uses and precision striking. The Navy is also looking at increasing its unmanned 

capabilities: in September 2020 Secretary Esper outlined the vision for the 2045 fleet, 

which includes 140 to 240 unmanned and optionally maned vehicles [112]. According to 

the CSBA 2016 Fleet Architecture Study [24] unmanned asset should include both Extra-

Large Displacement USV (XLUSV) like DARPA’s Sea Hunter – today considered a 

Medium-displacement USV – displacing more than 100 tons, and Common Unmanned 

Surface Vehicles (CUSV) about the size of a RHIB. XLUSV will be required to operate 

autonomously for most of the time with the option of being manned if needed. They will 

be used to support ISR functions, electronic warfare, mine countermeasure and ASW. 

According to DARPA platforms like the sea hunter will carry different payloads depending 

on the mission: from small UAVs to mines from a towed sonar to EM decoy equipment 
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[113]. The relatively small radar cross section will enable to employ these assets in 

contested scenarios. According to Clark [114], the US should look forward investing in a 

corvette-like USV, with a displacement of about 2000 tons. This will allow enough space 

on the ship to evolve over time while technologies mature, and it will give the US a sizable 

platform capable of navigating blue waters. A 2000-ton class ship will allow the USN to 

employ it in different scenarios, including contested one, controlling it and arming it with 

modern warfare systems. According to Clark, having the Sea Hunter at sea already 

performing complex tasks in autonomy will bring a positive impact to future unmanned 

technologies needed like autonomous decision making and persistent communications with 

the asset.  

A.2  Underwater Vessels 

In opposition to surface ships, the underwater world offers some unique advantages. 

Underwater assets have been capable to lunch long range standoff weapons since the 

middle of the cold war but today their stealth capabilities are even more relevant. Surface 

vessels can be spot from space while submarines, when navigating underwater, are 

invisible. They can penetrate A2/AD bubbles from below given the low diffusion of 

underwater protection systems. Nevertheless, navies must account for an increase and 

proliferation of anti-submarine technologies, specifically in littoral areas where big 

submarines might be too noisy to navigate. Hydrophones systems and Transformational 

Reliable Acoustic Path Systems (TRAPS) are getting more diffused among countries 

interested in keeping submarines at distance [115]. Some have suggested that the security 

environment shift will lead toward a less prominent role of submarines in direct operations, 
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not considering the deployment of standoff weapons, toward a more C2 approach. In this, 

submarines will coordinate smaller, and stealthier, assets able to penetrate underwater 

defenses. It is expected that submarines will be able to launch UAV for EW to support 

aerial operations, to deploy large UUV which can themselves deploy smart UUV mines to 

engage underwater targets. New systems are also thought to achieve passive undersea 

surveillance [24]. Despite different defense systems it is always important to remember 

that near-silent modern submarines are hard to counter, any fleet approaching an area 

where enemy submarines are operating must take extensive precautions. This is even truer 

when a fleet is approaching coastal waters which are noisier than blue waters and that can 

greatly affect any detection capability.  

i. Warfare Subsystem 

Torpedoes are usually short-range weapons; due to the difficulty in detecting and 

countering them they can inflict substantial damage to any ship. Torpedoes have been 

updated in the years with more range and better sensors, but the concept have remained the 

same. The only technology disruptors that have been studied extensively are 

supercavitating torpedoes. These allegedly can reach a speed of 200 knots, compared to the 

55 of the MK-48, but they are extremely noisy, and they have problems in steering their 

course to avoid disrupting the cavitation bubble.   

Mines are also evolving. Smart mines are becoming more common as they could be used 

to hit specific target. Mines are also becoming smaller with moving capabilities in specific 

coastal areas for up to 800 nm. Controlled smart mine fields can automatically lineup in 

battle formation and can adapt their behavior depending on the sensed ships around them 
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[116]. Investments on mines are also focusing on their stealthiness with some manufacturer 

making them of irregular shape to confound sonars by camouflaging with the sea floor. 

Smart mines are also becoming more resilient to sweeping by data fusion intelligent fuses 

that can sense when someone is purposely trying to trigger the sensor [117].  

Standoff weapons are considered pivotal for underwater systems, as such, there is an 

increase interest in having a large proportion of these safely stored in a submarine far from 

enemies’ eyes. A clear expression of how important standoff weapons are is the Virginia 

Payload Module (VPM) which adds 4 7-slots vertical tubes for TLAMs, increasing the 

total number of deployable missiles in a Virginia class submarine from 12 to 40. It is 

important to mention that these modules will also be deep and large enough to carry 

hypersonic missiles, which might be why the USN decided to heavily invest on the Virginia 

class, reaching the cost of B$3.5per ship [118].  

ii. Sensor & Processing Subsystem 

Submarines most of the time use their sonar in passive mode to avoid being detected. 

Investments on sonars are leading toward better sensors that can identify underwater 

disturbances more precisely to avoid accidents like the 2009 one when two nuclear 

submarines, both using only their passive sonars, collided [119]. One of the areas in which 

countries are investing is the multistatic sonar. The idea behind it is that one active sonar 

produces the ping and multiple sensors in the water listen to the sound waves bouncing off 

enemy submarines. In this method dozens to hundred sensors are scattered to increase the 

chances of detecting the ping and therefore recognizing what kind of submarine is present 

and its direction and speed. This technology is really beneficial in multinational 



 

 241 

collaborations as different nations (e.g. NATO allies) can contribute with small arrays of 

sensors to create a vast underwater net. This multistatic sonar could be also paired with 

new development in AI which is now being used to support UUV and submarines in 

identifying diesel electric submarines ignoring the clutter of the coastal environment  [120].  

iii. Communication Subsystem 

Most solutions for submarines communications are based on buoys which allow 

communications only in one direction. In situations of need the submarine can of course 

surface to periscope depth to allow communication via the antennas located in the mast, 

but in contested areas this can be risky. For these reasons, the US is investing in a laser 

technology communication system which will rely on the submarine communicating to a 

UUV at short distance which will relay to the Milstar satellite network. In this concept a 

fleet of small UUV stored in several underwater garages will be used to bridge the 

communication between the submarine and the satellites [121]. A different two-way 

communication system is what is being tested by the German Navy with the Callisto 

tethered buoy system. By using this system, the U212A class will be able to communicate 

two ways in short-range or one way in long range. The Callisto system allows link 11 and 

16 on top of UHF sitcom and Battle Force emails [104].  

iv. Structure & Hydrodynamics  

A trend that has passed from ships to submarines is flexibility. There is a need to be able 

to tailor what is on board to specific missions; this can be achieved by reconfiguring some 

of the spaces inside the submarine. Flexibility in Virginia-class submarines is given by the 
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reconfigurable torpedo room that can accommodate many special operations forces and all 

their equipment for prolonged deployments, as well as future off-board payloads. The VPM 

we have described before augment this capability [105].  

A second aspect is the shape and material of the hull to reduce noise. Heavy investments 

have been done to reduce the noise level of nuclear submarine by employing anechoic 

coatings and isolated deck structures. Further investments are now focused on a new 

biomimetic propulsor which by seamlessly blending with the submarine structure, and by 

removing rotating parts, should further decrease noise level [121]. 

v. Propulsion Subsystem 

All the submarines in the US Navy have a nuclear propulsion system. This allows them to 

have an unlimited underwater time, constrained only by food supplies on board. Speed of 

course is one of the advantages of nuclear propulsion, allowing submarines to maintain a 

constant 35 mph speed when submerged. Noise wise, the hydraulics of the nuclear reactor 

needs to pump coolant inside generating noise. Diesel is a valid alternative as it comes at a 

much cheaper cost compared to nuclear submarines. Nevertheless, unless they run on 

batteries, which typically limits their speed and it’s limited for few hours, diesel submarines 

are noisier and have a shorter endurance. As a compromise many modern navies have 

invested in Air Independent Propulsion (AIP) systems which provides longer endurances 

– up to 4 weeks underwater depending on the technology used for the AIP – quieter hulls 

as AIP engines are virtually silent, and they come at a quarter of the price of a nuclear 

reactor [122]. Nuclear submarines have still the advantage on longer endurance missions, 



 

 243 

but a navy thinking about patrolling a specific area might want to invest on AIP submarines 

as it could create a much larger fleet with same resources of fewer nuclear vessels.  

New technologies are focusing now on biomimetic propulsion systems. These are expected 

to reduce the noise of the submarine by removing rotating parts as the drive shaft and the 

blades of the propellers. These system are being tested on small USV but they could be 

considered also for bigger submarines in the future [123].  

vi. Unmanned Systems 

Underwater Unmanned Vehicles (UUV) have seen a huge push in the latest years with 

assets going from over 30ft in length to others being just few inches. Extra Large UUV 

(XLUUV) can be employed in long patrol missions having on board diesel generators 

which can have them running for more than 6 months and 1500nm. These can use both 

active and passive sonars to support underwater surveillance operation without risking the 

use of active sonars on a manned platform. Some of the Large UUV (LUUV), up to 30ft 

[24], could be deployed from one of the tubes of the VPM on Virginia-class submarines in 

place of the seven Tomahawks usually loaded [124]. Other LUUV that are receiving more 

attentions are gliders. These can be used for long duration surveillance using as propulsion 

system waves and underwater currents and small motors recharged by solar panel on their 

surface structure. Gliders can carry small passive sonars, but they can communicate as they 

have an above water component. Medium and Small UUV have the size of a Mk-48 and 

Mk-18 torpedo, respectively. Both can be used either for surveillance or for carrying 

weapons. Depending on the specific setting and on the power supply they can be used 

within a range up to 1000 nm. Their reduced noise and small dimensions make them ideal 



 

 244 

in A2/AD contexts where underwater sensors are placed around the area. Finally, 

investments in Micro UUV (smaller than 6 inches) are leading toward the use of small 

swarms of UUV for attacking infrastructures, jamming and decoying sonars or monitoring 

smaller areas [125].  
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APPENDIX B. Bootstrapping Analysis 

When dealing with a stochastic simulation with stochastic responses, it is important to 

perform a certain number of repetitions to find the confidence intervals for the mean of the 

responses as well as to determine how the response is distributed.  For each response, 

several repetitions must be determined, and the maximum number of repetitions needed 

for any important response must be run for each of the Design of Experiments cases. A 

technique called Bootstrapping was used to determine the number of repetitions needed in 

the many experiments of this thesis. Through Bootstrapping, it is possible to estimate how 

the variance will change given the number of repetitions of the experiment. Numbers 

provided as examples here were taken from the experiment represented in CHAPTER 10 

10.  

Bootstrapping can be summarized in the following four steps: 

6. A large sample of the baseline case is created 

a. In our case we used 800 repetitions for each deterrence strategy keeping the 

basic NATO fleet and all Asyr assets at their nominal level 

7. The large sample is resampled with replacement to get many groups of samples 

with varying size 

a. In our case we created groups of multiple of 5, from 5 to 100 

8. For each group, the mean is calculated 

9. By looking at the distribution of the mean the standard deviation of the mean is 

calculated 
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10. Even if not always needed, it was decided to normalize the standard deviation by 

the mean to be able to study the coefficient of variation 𝑐𝑉 and its reciprocal, the 

signal to noise ratio 𝑆𝑁𝑅 

𝑆𝑁𝑅 and 𝑐𝑉 are the key to understanding how many repetitions are required for an accuracy 

level. For a study using a computationally expensive simulation, it is important to reduce 

the number of repetitions as much as possible without sacrificing on the 𝑆𝑁𝑅, i.e., increase 

statistical error to unacceptable levels. Having a low coefficient of variation means being 

able to trust more the mean results of the experiment.  

Looking at Figure 61, it is possible to see how the variable “Number of Ally Killed” has 

two distinct kinks at different Number of Groups: one around 40 and a second one around 

85. Therefore, in the effort to minimize the coefficient of variation, it is desired to have at 

least 40 repetitions of the experiment. In fact, in this case, 40 represents the sweet sport in 

which we get accurate results at a manageable computational cost.  

In the end, it is worth mentioning that while reaching the kink is advisable to get the optimal 

combination between quality of results and computational efforts, this is not always 

needed. In fact, if the value of the coefficient of variation is sufficiently low, results are 

acceptable even if the repetition number hasn’t reached the kink yet. 
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Figure 61: Representation of the two kinks used in Bootstrapping to select the number 

of repetitions in the simulation 
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APPENDIX C. Chapters 6 to 9 assets’ behavior 

logical diagrams 
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APPENDIX D. Decision Trees for the Iterative 

Algorithm in Chapter 7 
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APPENDIX E. Complete Results from 

Experiment in Chapter 8 

The following figures are the full results from the JANUS simulations conducted in 

Chapter 8. They show the failure rate of cases per fleet tested per scenario. The maximum 

value in the y-axis is 100 as there are 100 repetitions each fleet could fail. The minimum 

value is zero, this means that all the simulations in that fleet in that scenario were 

successful.  
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APPENDIX F. Comprehensive List of 

Assumption for Chapter 10 Experiment 

The purpose of this appendix is to provide a reference for all the different assumptions that 

were taken throughout the experiment in Chapter 10. Assumptions are divided per faction. 

A. Asyr 

A1. Asyr has available only a limited number of aircraft (up to 20) which can 

be equipped with anti-ship missile Kh-35.  

A1I. Each aircraft can be equipped with 1 to 4 anti-ship missiles. 

A1II. Fighters are all launched from the only air force base in the 

Northwest side of the island. 

A1III. Aircrafts’ behavior is connected to the one of the defense stations. 

In the Saturation All-out deterrence strategy aircrafts and defense 

stations act synchronously coordinated by the C2 center. 

A1IV. If the C2 center is destroyed then aircraft will have to act on their 

own. They will be able to attack, but they won’t be able to coordinate 

with other defense stations. 

A1V. If the C2 center is destroyed before aircraft are launched they won’t 

be launched. 

A2. Asyr has one main command and control (C2) center located in the 

Northwest side of the island. 
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A2I. If the C2 center is destroyed by the NATO fleet Asyr cannot 

coordinate the attacks anymore, each defense station will act 

autonomously. 

A2II. The C2 center is defended by fixed 2 Surface-to-Air Missiles (SAM) 

stations. 

A2III. Each SAM station has 10 short range missiles ready to launch 

A3. Asyr has a variable number of defense stations (0 to 10) which are made of 

Russian truck Bal-E. 

A3I. Each truck has a variable number of missiles (4 to 10) Kh-35 ready 

to launch. 

A3II. Each truck can reload its launcher a finite amount of time (0 to 3), 

each reload has the same number of missiles of what was originally 

ready to launch. 

A3III. Reloading time is 15 minutes. 

A3IV. Each truck is defended by a ground unit with shoulder fired Surface-

to-Air Missiles, with up to 10 MANPADS.  

A3V. Each truck is assumed to be in a fixed position. At the beginning of 

the simulation NATO fleet will receive intelligence information. 

Each truck has a variable chance of being known to the incoming 

NATO fleet. 

A3VI. If a truck position is known, then that truck can be fired upon by the 

NATO fleet.  
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A3VII. After a station fires its first missile its position will be known to the 

NATO fleet.  

A3VIII. Each station has a detection and engagement range of up to 50nm. 

A4. The missile used by both defense stations and planes is the anti-ship missile 

Kh-35. 

A4I. Three quality levels are defined for the Kh-35: High/Medium/Low 

A4II. The Kh-35 can mount on board different sensor suites (edge tracker, 

IR, Optical, or a combination of the three). The better the sensor, the 

higher the P_Kill.  

1. P_kill: Against Frigate, High: 0.9, Medium:0.7, Low:0.5 

2. Destroyer: 0.8/0.6/0.4 

3. TG: 0.6/0.5/0.4 

4. MS: 1/0.8/0.6 

A4III. Each version of Kh-35 has a different survivability against NATO 

defense systems. 

1. P_survivability: High: 0.3 against Long range/0.6 against 

short range/ 0.95 against CIWS 

2. Medium: 0.2/0.5/0.925 

3. Low: 0.1/0.4/0.9 

A4IV. Each version of Kh-35 has different maneuverability and targeting 

abilities 

1. High: Once the seeker is activated the missile can change its 

course to intercept the target. If the target has been destroyed 
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by a previous missile it can switch to a new target. Large 

explosion blast (150m). 

2. Medium: Once the seeker is activated the missile can change 

its course to intercept the target. Medium explosion blast 

(125m). 

3. Low: No steering capability, small explosion blast (100m). 

A5. Asyr has four different tactics that can use against the incoming NATO 

fleet: Passive, Persuasive, Saturation and All-out 

A5I. If Asyr has a Passive strategy no defense station will activate its 

missiles, nor will planes be launched. Asyr, will let the NATO fleet 

approach without shooting. This is not used in the scenario, but just 

as a debug function.  

A5II. In the Persuasive Strategy each defense station will shoot at the 

NATO fleet as it enters in its range. When shooting each defense 

station will deplete its available load, equally distributing the 

missiles across the incoming fleet, and starting the reloading 

process. Aircrafts will be deployed and will patrol the area where 

the NATO fleet is expected to arrive. When in range, aircrafts will 

launch their Kh-35 missiles equally distributing them across the 

incoming fleet. 

A5III. In the Saturation Strategy all defense stations will send out a 

message to the C2 center and will wait for an order to attack all at 

the same time when the fleet is range of all defense stations. For all 
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the defense stations the target is the High Value Unit of the NATO 

fleet. If the HVU is destroyed, but the defense stations have still 

missiles they will switch to other targets firing at will.  Aircrafts will 

be deployed and will patrol the area where the NATO fleet is 

expected to arrive. When in range fighters will launch their Kh-35 

missiles equally distributing them across the incoming fleet. 

Aircrafts will delay their attack to try to neutralize what is left in the 

fleet after the first wave from the defense stations.  

A5IV. In the All-Out Strategy all defense stations will send out a message 

to the C2 center when they detect the fleet. DS will wait for an order 

to attack all at the same time when the fleet is range of all defense 

stations. For all the defense stations the target is the High Value Unit 

(HVU) of the NATO fleet. Aircrafts will stay in the back and 

coordinate with the defense stations, via the C2 center, to attack at 

the same time. Aircrafts will attack all the ships in the fleet to 

saturate their defense trying to protect the missiles from the defense 

stations headed to the HVU. The C2 center will distribute shooting 

orders in such a way that missiles will reach the target at the same 

time.  

A5V. The C2 center is considered a high value target, as such it is 

defended accordingly. If it gets destroyed assets lose the ability to 

communicate unless close to each other (fighters still have coms 

among them, but defense stations are isolated). If it gets destroyed 
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all strategies are downgraded to the Persuasive one as coordination 

is not possible. If the C2 center gets destroyed before fighters are 

launched, fighters won’t be launched.  

 

N. NATO 

N1. Purpose 

N1I. The portion of the scenario simulated in this use case starts once the 

fleet has reached the archipelago and it is about to enter Asyr’s 

water.  

N1II. The goal of the fleet for this portion of the scenario is to achieve 

control over the waters of the channel. To do so it must: 

1. Survive any attack from known and unknown threats, both 

land and air based. 

2. Neutralize any defense position known  

3. Neutralize the enemy C2 center (optional) 

N2. Composition 

N2I. The NATO fleet is made of the following ships: 

1. 1 CV (ITS Cavour type) – HVU  

2. 2LHD (FS Mistral) – HVU 

3. 1 DD (USS Arleigh Burke) 

4. 7 FF (HNLMS De Zeven Provinciën / FREMM)  

5. 1 AOR (USS Henry J. Kaiser) – HVU  
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N2II. To reduce computational efforts the CV, the 2 LHD and the AOR 

are modelled as a single HVU 

N2III. No aerial component is modelled for this segment of the mission 

N2IV. The fleet is assumed to be performing a single task – Suppression of 

Enemy Defenses – without having to consider other tasks like ASW, 

AAW, MCM, and NEO 

N3. RoE – the Rules of Engagement defined in the scenario are that the NATO 

fleet can fire only if fired upon.  

N3I. For this simulation it is assumed that the fleet was already fired upon 

and therefore has the liberty to fire as deemed appropriate against 

military targets. 

N4. Armaments and Technologies Under Study 

N4I. Hyper Velocity Projectiles (HVP) could be used instead of 

conventional ammunitions to increase the P_Kill of common CIWS 

and Naval guns 

N4II. New ESSM Sparrow can be loaded in the VLS to increase the P_Kill 

of these short-range missiles. These can be also quad-packed to 

increase the number.  

N4III. New SM-2/3/6 can be loaded for an increased P_Kill on these long-

range missiles 

N4IV. Additional naval guns can be mounted (up to 3 per ship) to increase 

the resiliency of each ship. If those are mounted they should be of 
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the lowest caliber available on the ship. In the simulation they will 

provide additional independent fire points on each ship.  

N4V. Additional VLS Blocks can be added (up to 5 per ship) to carry more 

missiles. Each block adds additional 8 tubes to the ship. The ratio of 

the missiles inside is the same of the main VLS.  

N4VI. Radar range can be increased to provide for early detection of enemy 

assets. Asyr defense stations that were not detected by intelligence 

won’t be detected until they shoot their first missile.  

N4VII. The VLS (and all additional blocks) can be configured in 3 possible 

ways: Standard, Aggressive and Defensive. The Standard one has 

25% Tomahawks, 15% ESSM, and 60% SM-2/3/6. The Aggressive 

one has 35% Tomahawks, 10% ESSM, and 55% SM-2/3/6. The 

Defensive has 15% Tomahawks, 20% ESSM, and 65% SM-2/3/6. 

ESSM slots are quad-packed.  

N4VIII. If one technology is enabled it is applied to all the ships in the fleet 

that have that capability (adding one VLS block, will add 8 tubes to 

all ships in the fleet that have a VLS).  

 

P. Prucy 

P1. Prucy has no military forces, so while it is thought to be neutral by NATO 

it will allow in its territory some Asyr troops. These include a series of 

mobile trucks type Bal-E with Kh-35 missiles and a small number of troops 

for point defense. 
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APPENDIX G: Full Results from Chapter 10 - 

Part 3.1  

The following figures are the full results from the JANUS simulation of the 3rd part of the 

main experiment. The focus of this experiment is the verification of the positive monotony 

of the technology used in the fleets. Figures below show the failure rate of cases per fleet 

tested per scenario. The maximum value in the y-axis is 80 as there are 80 repetitions each 

fleet could fail. The minimum value is zero (which is not showed in columns), this means 

that all the simulations in that fleet in that scenario were successful. Information regarding 

how each fleet was generated can be found in Table 23. In this experiment only one 

technology at the time was maximized, so each fleet shows the benefit or the issues of 

having a specific technology onboard. 

Table 24: Description of the technologies modified in each of the fleet used in the Part 

3 of the main experiment 

FLEET MODIFIED PARAMETER 

1 Basic Fleet as in main experiment part 1 

2 Hyper-Velocity Projectiles used 

3 New Short-Range missiles used 

4 New Long-Range missiles used 
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5 Naval Guns maximized 

6 Hull Strength maximized 

7 Radar Range maximized 

8 VLS Fire Rate maximized 

9 New TLAM used 

10 All technologies enabled and maximized 

 

 



 

 268 

 



 

 269 



 

 270 



 

 271 



 

 272 



 

 273 

 



 

 274 

References 

[1] J. A. Winnefeld, “Winter Is Coming,” vol. 146, no. July, pp. 1–2, 2020. 

[2] E. G. Kail, “Leading in a VUCA environment: V is for volatility,” Harv. Bus. Rev., 

pp. 1–5, 2011, [Online]. Available: https://hbr.org/2011/01/leading-effectively-in-

a-vuca-1. 

[3] S. G. Jones, “War by Proxy: Iran’s Growing Footprint in the Middle East,” Cent. 

Strateg. Int. Stud., no. March, pp. 1–16, 2019. 

[4] R. Malley, “The Unwanted Wars ,” Foreign Affairs, 2019. 

[5] F. Farhi, “Iranian Power Projection Strategy and Goals,” no. April, pp. 1–12, 2017, 

[Online]. Available: https://csis-prod.s3.amazonaws.com/s3fs-

public/publication/170421_Farhi_Iranian_Power_Projection.pdf?R.Ck9Gr6VPAvy

WbG2JIPf3abDR201S1. 

[6] Group Insikt, “Despite Infighting and Volatility , Iran Maintains Aggressive Cyber 

Operations Structure,” 2020. 

[7] “BBC - History - World Wars: The Fall of France.” 

http://www.bbc.co.uk/history/worldwars/wwtwo/fall_france_01.shtml (accessed 

Nov. 29, 2020). 

[8] J. Mattis, “U . S . Military Adapting in Complex Environment,” pp. 1–5, 2017. 



 

 275 

[9] M. Fitzsimmons, “The False Allure of Escalation Dominance,” War Rocks, pp. 1–

12, 2017, [Online]. Available: https://warontherocks.com/2017/11false-allure-

escalation-dominance. 

[10] D. Mercier, “NATO’s Adaptation in an Age of Complexity.” 

[11] E. G. Kail, “Leading Effectively in a VUCA Environment: A is for Ambiguity,” 

2011. https://hbr.org/2011/01/leading-effectively-in-a-vuca-1 (accessed Sep. 22, 

2020). 

[12] M. Roberto, R. M. J. Bohmer, and A. C. Edmondson, “Facing Ambiguous Threats,” 

Harv. Bus. Rev., vol. 11, 2006, Accessed: Sep. 22, 2020. [Online]. Available: 

https://hbr.org/2006/11/facing-ambiguous-threats. 

[13] Center for Strategic and International Studies, “Competing in the Gray Zone | Center 

for Strategic and International Studies.” https://www.csis.org/features/competing-

gray-zone (accessed Sep. 22, 2020). 

[14] A. C. Kuchins, “Crimea One Year On: Where Does Russia Go Now?,” Center for 

Strategic and International Studies, 2015. https://www.csis.org/analysis/crimea-

one-year-where-does-russia-go-now (accessed Sep. 22, 2020). 

[15] Council on Foreign Relations, “China’s Martime Disputes,” 2019. . 

[16] A. Chorn and M. M. Sato, “Maritime Gray Zone Tactics: the Argument for 

Reviewing The 1951 U.S.-Philippines Mutual Defense Treaty,” New Perspect. 

Foreign Policy, no. 18, pp. 3–9, 2019, [Online]. Available: 



 

 276 

https://www.csis.org/maritime-gray-zone-tactics-argument-reviewing-1951-us-

philippines-mutual-defense-treaty. 

[17] G. B. Poling, “How Significant Is the New U.S. South China Sea Policy? ,” 2020. 

https://www.csis.org/analysis/how-significant-new-us-south-china-sea-policy 

(accessed Sep. 22, 2020). 

[18] R. O’Rourke, “Navy force structure and shipbuilding plans: Background and issues 

for congress,” Def. Econ. Recent Prog. Remain. Challenges, pp. 149–268, 2018. 

[19] Department of the Navy, “2016 Navy Force Structure Assessment (FSA),” 2016. 

[20] D. B. Larter, “In a quest for 355 ships, US Navy leaders are unwilling to accept a 

hollow force,” 2020. https://www.defensenews.com/digital-show-dailies/surface-

navy-association/2020/01/13/in-a-quest-for-355-ships-us-navy-leaders-are-

unwilling-to-accept-a-hollow-force/ (accessed Sep. 28, 2020). 

[21] Naval History and Heritage Command, “US Ship Force Levels.” 

https://www.history.navy.mil/research/histories/ship-histories/us-ship-force-

levels.html#2000 (accessed Sep. 28, 2020). 

[22] D. B. Larter and A. Mehta, “The Pentagon is eyeing a 500-ship Navy, documents 

reveal,” 2020. https://www.defensenews.com/naval/2020/09/24/the-pentagon-is-

eyeing-a-500-ship-navy-documents-reveal/?utm_source=clavis (accessed Sep. 28, 

2020). 

[23] MITRE, “Navy Future Fleet Platform Architecture Study,” 2016, [Online]. 



 

 277 

Available: http://www.mccain.senate.gov/public/_cache/files/1a3e3a4e-6c97-42fb-

bec5-a482cf4d4d85/mintre-navy-future-fleet-platform-architecture-study.pdf. 

[24] B. Clark, P. HAYNES, B. MCGRATH, C. HOOPER, J. SLOMAN, and T. A. 

WALTON, “Restoring American Seapower, A New Fleet Architecture For the 

United States Navy,” pp. 297–350, 2017. 

[25] U. Navy, “Alternative Future Fleet Platform Architecture Study,” 2016. 

[26] A. L. Boyer, “NAVAL RESPONSE TO A CHANGED SECURITY 

ENVIRONMENT: Maritime Security in the Mediterranean,” Source Nav. War Coll. 

Rev., vol. 60, no. 3, pp. 73–100, 2007, doi: 10.2307/26396850. 

[27] “Naval Research and Development: A Framework for Accelerating to the Navy & 

Marine Corps After Next.” 

[28] S. L. Pettyjohn, “U.S. Global Defense Posture, 1783–2011,” 2011. 

[29] B. Work, “A New Global Posture for a New Era,” 2014, Accessed: Sep. 29, 2020. 

[Online]. Available: 

https://www.defense.gov/Newsroom/Speeches/Speech/Article/605614/a-new-

global-posture-for-a-new-era/. 

[30] D. Mahadzir, “SECDEF Esper: U.S. Will ‘Keep Up the Pace’ of South China Sea 

Freedom of Navigation Operations ,” 2020. 

[31] Department of Defense, “National Defense Strategy,” 2018. Accessed: Sep. 30, 

2020. [Online]. Available: 



 

 278 

https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-

Strategy-Summary.pdf. 

[32] E. Freund, “Freedom of Navigation in the A Practical Guide,” Harvard Kennedy 

Sch., pp. 1–41, 2017. 

[33] S. Stashwick, “China Deploys Long-Range Anti-Ship and Anti-Air Missiles to 

Spratly Islands For First Time – The Diplomat,” The Diplomat, 2018. 

[34] H. Beech, “China’s Sea Control Is a Done Deal, ‘Short of War With the U.S.’ - The 

New York Times,” 2018. 

[35] K. P. Ekman, “Applying Cost Imposition Strategies against China,” Strateg. Stud. 

Q., no. Spring, pp. 26–59, 2015, [Online]. Available: 

https://www.airuniversity.af.edu/Portals/10/SSQ/documents/Volume-09_Issue-

1/ekman.pdf. 

[36] R. Brodie, “The Navy Needs Coastal Defense Cruise Missiles,” 2017. 

[37] B. T. Oder, “Security THE DIMENSIONS OF RUSSIAN SEA DENIAL IN THE 

BALTIC SEA,” 2018. 

[38] A. Schmidt, “Countering Anti-Access / Area Denial,” vol. 49, no. 0, pp. 1–8, 2017. 

[39] CCDCOE, “NATO Recognises Cyberspace as a ‘Domain of Operations’ at Warsaw 

Summit.” https://ccdcoe.org/incyder-articles/nato-recognises-cyberspace-as-a-

domain-of-operations-at-warsaw-summit/ (accessed Oct. 09, 2020). 



 

 279 

[40] R. O’Rourke, “Navy DDG-51 and DDG-1000 destroyer programs: Background and 

issues for Congress,” pp. 1–83, 2013. 

[41] Joint Chiefs of Staff, “CHARTER OF THE JOINT REQUIREMENTS 

OVERSIGHT COUNCIL (JROC) AND IMPLEMENTATION OF THE JOINT 

CAPABILITIES INTEGRATION AND DEVELOPMENT SYSTEM (JCIDS) ,” 

2018. 

[42] Office of Aerospace Studies, “Capabilities-Based Assessment ( CBA ) Handbook,” 

vol. 5522, no. December, 2017. 

[43] Joint Chiefs of Staff, “Deployment and Redeployment Operations,” no. January 

2018, 2007. 

[44] R. Edson and J. Frittman, “Illustrating the Concept of Operations (CONOPs) 

Continuum and Its Relationship to the Acquisition Lifecycle,” Seventh Annu. 

Acquis. Res. Symp. Wednesday Sess. Vol. I, pp. 238–257, 2010. 

[45] P. K. Davis and Z. M. Khalilzad, “A composite approach to Air Force planning,” 

1996. 

[46] R. Neches, “Engineered Resilient Systems (ERS) S&T Priority Description and 

Roadmap,” 2011. 

[47] M. Mazarr, K. Best, B. Laird, E. Larson, M. Linick, and D. Madden, The U.S. 

Department of Defense’s Planning Process: Components and Challenges. 2019. 

[48] F. S. Larrabee, J. Gordon, and P. A. Wilson, “The Right Stuff: Defense Planning 



 

 280 

Challenges for A New Century,” Source Natl. Interes., no. 77, pp. 50–58, 2004. 

[49] C. Clausewitz, “On War,” in On War, 1982, p. 142. 

[50] J. Gideon, C. H. Dagli, A. K. Miller, J. M. Gideon, C. H. Dagli, and A. Miller, 

“Scholars ’ Mine Taxonomy of Systems-of-Systems Taxonomy of Systems-of-

Systems,” 2005. 

[51] J. Gideon, C. H. Dagli, A. K. Miller, J. M. Gideon, and A. Miller, “Taxonomy of 

Systems-of-Systems,” Proc. CSER, 2005, Accessed: Oct. 26, 2021. [Online]. 

Available: https://scholarsmine.mst.edu/engman_syseng_facwork. 

[52] J. Willison, “C4I Community of Interest C2 Roadmap Agenda,” no. March, 2015. 

[53] B. Martin et al., “Advancing Autonomous Systems An Analysis of Current and 

Future Technology for Unmanned Maritime Vehicles,” 2019. 

[54] K. S. Brower et al., “Comparative naval architecture analysis of nato and soviet 

frigates - part I,” no. October 1980, pp. 87–99, 1980. 

[55] L. Ferreiro and G. Autret, “A Comparison of French and U.S. Amphibious Ships,” 

Nav. Eng. J., vol. 107, no. 3, pp. 167–184, 1995, doi: 10.1111/j.1559-

3584.1995.tb03044.x. 

[56] Í. A. Fonseca and H. M. Gaspar, “Challenges when creating a cohesive digital twin 

ship: a data modelling perspective,” 

https://doi.org/10.1080/09377255.2020.1815140, vol. 68, no. 2, pp. 70–83, 2020, 

doi: 10.1080/09377255.2020.1815140. 



 

 281 

[57] Geographic information system, “Real World Map.” 

https://peiyunprocess.files.wordpress.com/2014/10/ca6ce94cdd2e09a1da8aa6ec22

336835.jpg. 

[58] R. Lempert, D. Warren, R. Henry, R. Button, J. Klenk, and K. Giglio, Defense 

Resource Planning Under Uncertainty: An Application of Robust Decision Making 

to Munitions Mix Planning. 2016. 

[59] E. V Larson, “Force Planning Scenarios, 1945-2016: Their Origins and Use in 

Defense Strategic Planning,” Force Plan. Scenar., 2019, Accessed: Oct. 27, 2021. 

[Online]. Available: www.rand.org/giving/contribute. 

[60] Department of Defense, “2014 Quadrennial Defense Review,” 2014. 

[61] J. F. Troxell, “Force Planning in an Era of Uncertainty: Two MRCs as a Force Sizing 

Framework,” Strateg. Stud. Institute, U.S. Army War Coll., 1997. 

[62] P. K. Davis and L. Finch, “Defense Planning for the Post-Cold War Era,” 1993. 

[63] M. F. Fitzsimmons, “Scenario Planning and Strategy in the Pentagon.” 

[64] R. J. Lempert et al., “Making Good Decisions Without Predictions,” 2013, [Online]. 

Available: http://www.rand.org/pubs/research_briefs/RB9701.html. 

[65] J. Wang, “A System Dynamics Simulation Model for a Four-rank Military 

Workforce,” 2007. 

[66] R. R. Hill, J. O. Miller, and G. A. McIntyre, “Applications of discrete event 



 

 282 

simulation modeling to military problems,” Winter Simul. Conf. Proc., vol. 1, pp. 

780–788, 2001, doi: 10.1109/WSC.2001.977367. 

[67] G. Arjan Veldhuis, N. De Reus, T. Logtens, G. Pallaske, and S. Carnohan, “The 

application of modelling and simulation in support of operational decision making 

during land operations.” 

[68] T. M. Cioppa, T. W. Lucas, and S. M. Sanchez, “Military applications of agent-

based simulations,” Proc. - Winter Simul. Conf., vol. 1, pp. 171–180, 2004, doi: 

10.1109/wsc.2004.1371314. 

[69] C. J. Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, “Classification And 

Regression Trees (1st ed.). Routledge.,” p. 368, 1984. 

[70] W. Polonik and Z. Wang, “PRIM Analysis,” 2007. 

[71] A. Abu-Hanna, B. Nannings, D. Dongelmans, and A. Hasman, “PRIM versus CART 

in subgroup discovery: When patience is harmful,” J. Biomed. Inform., vol. 43, no. 

5, pp. 701–708, Oct. 2010, doi: 10.1016/J.JBI.2010.05.009. 

[72] J. H. Kwakkel and M. Jaxa-Rozen, “Improving scenario discovery for handling 

heterogeneous uncertainties and multinomial classified outcomes,” Environ. Model. 

Softw., vol. 79, pp. 311–321, May 2016, doi: 10.1016/J.ENVSOFT.2015.11.020. 

[73] J. H. Friedman and N. I. Fisher, “Bump hunting in high-dimensional data,” Stat. 

Comput., vol. 9, no. 2, pp. 123–143, 1999, doi: 10.1023/A:1008894516817. 

[74] S. Dalal, B. Han, R. Lempert, A. Jaycocks, and A. Hackbarth, “Improving scenario 



 

 283 

discovery using orthogonal rotations,” Environ. Model. Softw., vol. 48, pp. 49–64, 

Oct. 2013, doi: 10.1016/J.ENVSOFT.2013.05.013. 

[75] A. M. Parker, S. V. Srinivasan, R. J. Lempert, and S. H. Berry, “Evaluating 

simulation-derived scenarios for effective decision support,” Technol. Forecast. 

Soc. Change, vol. 91, pp. 64–77, Feb. 2015, doi: 

10.1016/J.TECHFORE.2014.01.010. 

[76] C. J. Van Rijsbergen, “INFORMATION RETRIEVAL.” 

[77] L. D. Ferreiro and M. H. Stonehouse, “A COMPARATIVE STUDY OF US AND 

UK FRIGATE DESIGN,” Br. Marit. Technol., 1991. 

[78] L. Manfreda, “A systematic approach for military vessels crew sizing and its 

validation by comparison with in service naval ships,” NAV 2012 17th Int. Conf. 

Ships Shipp. Res., 2012, Accessed: Nov. 01, 2021. [Online]. Available: 

http://www.atenanazionale.it/nav/index.php/NAV/NAV2012/paper/view/64. 

[79] C. J. Fitzgerald, N. R. Weston, Z. R. Putnam, and D. N. Mavris, “A Conceptual 

Design Environment for Technology Selection and Performance Optimization for 

Torpedoes,” 2002. 

[80] M. R. Kirby, D. N. Mavris, and S. Diego, “A Method for Technology Selection 

Based on Benefit, Available Schedule and Budget Resources,” pp. 2000–2001, 

2000. 

[81] R. J. Lempert, “Robust Decision Making (RDM),” Decis. Mak. under Deep 



 

 284 

Uncertain., pp. 23–51, 2019, doi: 10.1007/978-3-030-05252-2_2. 

[82] C. Hamarat, J. H. Kwakkel, and E. Pruyt, “Adaptive Robust Design under deep 

uncertainty,” Technol. Forecast. Soc. Change, vol. 80, no. 3, pp. 408–418, 2013, 

doi: 10.1016/j.techfore.2012.10.004. 

[83] J. R. Kasprzyk, S. Nataraj, P. M. Reed, and R. J. Lempert, “Many objective robust 

decision making for complex environmental systems undergoing change,” Environ. 

Model. Softw., vol. 42, pp. 55–71, 2013, doi: 10.1016/j.envsoft.2012.12.007. 

[84] R. J. Lempert, D. Warren, R. Henry, R. W. Button, J. Klenk, and K. Giglio, “Defense 

Resource Planning Under Uncertainty: An Application of Robust Decision Making 

to Munitions Mix Planning,” 2016, Accessed: Nov. 01, 2021. [Online]. Available: 

www.rand.org/giving/contribute. 

[85] V. Marchau, W. Walker, and P. Bloemen, “Decision making under deep uncertainty: 

from theory to practice,” 2019, Accessed: Nov. 01, 2021. [Online]. Available: 

https://library.oapen.org/handle/20.500.12657/22900. 

[86] M. Haasnoot, J. H. Kwakkel, W. E. Walker, and J. ter Maat, “Dynamic adaptive 

policy pathways: A method for crafting robust decisions for a deeply uncertain 

world,” Glob. Environ. Chang., vol. 23, no. 2, pp. 485–498, Apr. 2013, doi: 

10.1016/J.GLOENVCHA.2012.12.006. 

[87] J. H. Kwakkel, W. E. Walker, and M. Haasnoot, “Coping with the Wickedness of 

Public Policy Problems: Approaches for Decision Making under Deep Uncertainty,” 



 

 285 

J. Water Resour. Plan. Manag., vol. 142, no. 3, p. 01816001, Jan. 2016, doi: 

10.1061/(ASCE)WR.1943-5452.0000626. 

[88] R. Singh, P. M. Reed, and K. Keller, “Many-objective robust decision making for 

managing an ecosystem with a deeply uncertain threshold response,” 2015, doi: 

10.5751/ES-07687-200312. 

[89] R. J. Lempert, D. G. Groves, S. W. Popper, and S. C. Bankes, “A general, analytic 

method for generating robust strategies and narrative scenarios,” Manage. Sci., vol. 

52, no. 4, pp. 514–528, Apr. 2006, doi: 10.1287/mnsc.1050.0472. 

[90] Q. Wang, M. Guidolin, and D. Savic, “Two-Objective Design of Benchmark 

Problems of a Water Distribution System via MOEAs: Towards the Best-Known 

Approximation of the True Pareto Front,” 2015, Accessed: Nov. 24, 2021. [Online]. 

Available: http://hdl.handle.net/10871/16669. 

[91] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Fast Elitist Non-dominated 

Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II,” Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 

vol. 1917, pp. 849–858, 2000, doi: 10.1007/3-540-45356-3_83. 

[92] D. Hadka and P. Reed, “Borg: An Auto-Adaptive Many-Objective Evolutionary 

Computing FrameworkBorg: An Auto-Adaptive MOEA FrameworkD. Hadka and 

P. Reed,” Evol. Comput., vol. 21, no. 2, pp. 231–259, May 2013, doi: 

10.1162/EVCO_A_00075. 



 

 286 

[93] F. Zheng, A. R. Simpson, and A. C. Zecchin, “An efficient hybrid approach for 

multiobjective optimization of water distribution systems,” Water Resour. Res., vol. 

50, no. 5, pp. 3650–3671, 2014, doi: 10.1002/2013WR014143. 

[94] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining Convergence and 

Diversity in Evolutionary Multiobjective Optimization.” 

[95] G. Harik, E. Cantú, C. Cantú-Paz, D. E. Goldberg, and B. L. Miller, “The Gambler’s 

Ruin Problem, Genetic Algorithms, and the Sizing of Populations.” 

[96] W. E. Walker, S. A. Rahman, and J. Cave, “Adaptive policies, policy analysis, and 

policy-making,” Eur. J. Oper. Res., vol. 128, no. 2, pp. 282–289, Jan. 2001, doi: 

10.1016/S0377-2217(00)00071-0. 

[97] W. J. Bradford, “The Theoretical Layered Air-Defence Capability of a Ship 

Engaged against Multiple Anti-Ship Capable Missile Attacks.” Jun. 01, 1992, 

Accessed: Nov. 14, 2021. [Online]. Available: 

https://apps.dtic.mil/sti/citations/ADA258388. 

[98] C. Laura Strickland, M. A. Day, K. DeMarco, L. Strickland, E. Squires, and C. 

Pippin, “Responding to unmanned aerial swarm saturation attacks with autonomous 

counter-swarms,” https://doi.org/10.1117/12.2305086, vol. 10635, pp. 247–263, 

May 2018, doi: 10.1117/12.2305086. 

[99] M. Gunzinger and B. Clark, “Winning the Salvo Competition.” 

[100] J. Benford, J. A. Swegle, and E. Schamiloglu, “High Power Microwaves,” High 



 

 287 

Power Microwaves, vol. 5776, no. 505, 2015, doi: 10.1201/b19681. 

[101] R. O’Rourke, “Navy lasers, railgun, and hypervelocity projectile: Background and 

issues for congress,” Weapons Syst. Backgr. Issues Congr., pp. 47–105, 2018. 

[102] S. Cid, “We don’t need the S-band radar,” Insid. Navy, vol. 23, no. 29, p. 10, 2010. 

[103] L. Thomas and C. Moore, “CHIPS Articles: TALON — Robust Tactical Optical 

Communications,” 2014. 

https://www.doncio.navy.mil/CHIPS/ArticleDetails.aspx?ID=5550 (accessed Oct. 

12, 2020). 

[104] A. Muller, “The Future of Naval Communications,” 2010. https://www.naval-

technology.com/features/feature87881/ (accessed Oct. 12, 2020). 

[105] J. Schank, S. Savitz, K. Munson, B. Perkinson, J. McGee, and J. Sollinger, 

Designing Adaptable Ships: Modularity and Flexibility in Future Ship Designs, vol. 

D. 2016. 

[106] D. B. Larter, “US Navy prepares major surge of littoral combat ship deployments,” 

2020. https://www.defensenews.com/naval/2020/07/31/the-us-navy-is-preparing-a-

major-surge-of-lcs-deployments/ (accessed Oct. 12, 2020). 

[107] M. Eckstein, “Navy Issues Final RFP for FFG(X) Next-Generation Frigate - USNI 

News,” 2019. https://news.usni.org/2019/06/20/navy-issues-final-rfp-for-ffgx-next-

generation-frigate (accessed Oct. 12, 2020). 

[108] D. B. Larter, “If the US Navy isn’t careful, its new unmanned tanker drone could 



 

 288 

face a 3-year delay,” 2020. https://www.defensenews.com/naval/2020/06/10/if-the-

us-navy-isnt-careful-its-new-unmanned-tanker-drone-could-face-a-3-year-delay/ 

(accessed Oct. 13, 2020). 

[109] W. Carroll and B. Hamblet, “Interview with the ‘Air Boss’ | Proceedings - 

September 2017 Vol. 143/9/1,375,” vol. 143, no. 9, Sep. 2017, Accessed: Oct. 13, 

2020. [Online]. Available: 

https://www.usni.org/magazines/proceedings/2017/september/interview-air-boss. 

[110] J. Salak, “Weaponized Hovercraft for Distributed Lethality,” 2015. 

[111] M. McCulloch, “Roles for Up-gunned LCACs in Adaptive Force Packages,” 2016. 

[112] D. B. Larter, “With DoD’s fleet of 2045, the US military’s chief signals he’s all-in 

on sea power,” 2020. https://www.defensenews.com/naval/2020/10/06/with-its-

fleet-of-2045-the-us-militarys-chief-signals-hes-all-in-on-sea-power/ (accessed 

Oct. 11, 2020). 

[113] S. J. Freedberg, “DSD Work Embraces DARPA’s Robot Boat, Sea Hunter 

« Breaking Defense - Defense industry news, analysis and commentary,” 2016. 

[114] D. B. Larter, “With billions planned in funding, the US Navy charts its unmanned 

future,” 2019. 

[115] L. Goldstein and S. Knight, “Wired for Sound in the ‘Near Seas’ | Proceedings - 

April 2014 Vol. 140/4/1,334,” 2014, Accessed: Oct. 13, 2020. [Online]. Available: 

https://www.usni.org/magazines/proceedings/2014/april/wired-sound-near-seas. 



 

 289 

[116] M. Peck, “Russia Wants To Use AI-Sea Mines To Sink America’s Navy | The 

National Interest,” 2020. 

[117] R. Uppal, “Rising threat of Mine Warfare with development of stealthy, smart, 

maneuverable and networked sea mines | International Defense Security & 

Technology Inc.,” 2019. https://idstch.com/threats/threat-mine-warfare-increasing-

development-stealthy-smart-maneuverable-networked-sea-mines/ (accessed Oct. 

13, 2020). 

[118] D. B. Larter, “Here’s what you need to know about the US Navy’s new deadly (and 

expensive) attack subs,” 2019. 

[119] “French and British Submarines Collide - The New York Times,” 2009. 

[120] M. Eckstein, “Sonar Equipped Drone Fleets Could be Key to Future Submarine 

Warfare - USNI News,” 2020. https://news.usni.org/2020/03/09/sonar-equipped-

drone-fleets-could-be-key-to-future-submarine-warfare (accessed Oct. 14, 2020). 

[121] Naval Postgraduate School, “Undersea Communications Between Submarines and 

Unmanned Undersea Vehicles in a Command and Control Denied Environment - 

Aerospace & Defense Technology,” 2016. 

https://www.aerodefensetech.com/component/content/article/adt/tech-

briefs/machinery-and-automation/24599 (accessed Oct. 13, 2020). 

[122] S. Roblin, “Meet the 1 Submarine That Terrifies the U.S. Navy More Than Any 

Other | The National Interest,” 2018. https://nationalinterest.org/blog/buzz/meet-1-



 

 290 

submarine-terrifies-us-navy-more-any-other-37922 (accessed Oct. 14, 2020). 

[123] D. Majumdar, “US Navy’s Next Submarine: Super Stealthy and Now Underwater 

Aircraft Carrier? | The National Interest,” 2016. 

[124] Office of Naval Research, “Large Displacement Unmanned Underwater Vehicle 

Innovative Naval Prototype ( LDUUV INP ) Energy Section Technology,” 

Program, vol. 102, no. July, pp. 1–26, 2011. 

[125] M. Ball, “BAE Systems Integrates New Capabilities into Riptide UUVs | Unmanned 

Systems Technology,” 2020. 

https://www.unmannedsystemstechnology.com/2020/05/bae-systems-integrates-

new-capabilities-into-riptide-uuvs/ (accessed Oct. 14, 2020). 

 

 


