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SUMMARY 

 

The mechanical and physical properties of polymers are determined primarily by 

the underlying nano-scale structures and characteristics such as entanglements, 

crystallites, and molecular orientation.  These structures evolve in complex manners 

during the processing of polymers into useful articles.  Limitations of available and 

foreseeable computational capabilities prevent the direct determination of macroscopic 

properties directly from atomistic computations.  As a result, computational tools and 

methods to bridge the length and time scale gaps between atomistic and continuum 

models are required.  In this research, an internal state variable continuum model has 

been developed whose internal state variables (ISVs) and evolution equations are related 

to the nano-scale structures.  Specifically, the ISVs represent entanglement number 

density, crystal number density, percent crystallinity, and crystalline and amorphous 

orientation distributions.  Atomistic models and methods have been developed to 

investigate these structures, particularly the evolution of entanglements during thermo-

mechanical deformations.  A new method has been created to generate atomistic initial 

conformations of the polymer systems to be studied.  The use of the hyperdynamics 

method to accelerate molecular dynamics simulations was found to not be able to 

investigate processes orders of magnitude slower that are typically measurable with 

traditional molecular dynamics simulations of polymer systems.  Molecular dynamics 

simulations were performed on these polymer systems to determine the evolution of 

entanglements during uniaxial deformation at various strain rates, temperatures, and 

molecular weights.  Two methods were evaluated.  In the first method, the forces 



 

 xxv

between bonded atoms along the backbone are used to qualitatively determine 

entanglement density.  The second method utilizes rubber elasticity theory to 

quantitatively determine entanglement evolution.  The results of the second method are 

used to gain a clearer understanding of the mechanisms involved to enhance the physical 

basis of the evolution equations in the continuum model and to derive the model’s 

material parameters.  The end result is a continuum model that incorporates the atomistic 

structure and behavior of the polymer and accurately represents experimental evidence of 

mechanical behavior and the evolution of crystallinity and orientation. 
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CHAPTER 1 

INTRODUCTION 

 

Motivation 

Use of polymers has been steadily increasing in the past two decades. Semi-

crystalline polymers are converted to useful articles through thermo-forming processes in 

which polymers are subjected to large deformations.  Temperature, strain rate, and total 

strain are some of the processing parameters that can be varied to affect the properties of 

the manufactured article.  Some common processing techniques are blow molding for 

beverage containers, drawing of film and fibers, and vacuum forming of various parts.  In 

addition to providing the appropriate shape for the final article, an objective in these 

shaping operations is to engineer the microscopic and nanoscale molecular characteristics 

in order to provide the necessary mechanical and physical properties of the material.  The 

molecular characteristics of interest in most processes include crystallinity, orientation, 

and molecular entanglements.  As the polymer is deformed, its macromolecules become 

elongated and more oriented in the directions of the deformation.  This elongation and 

orientation can have a significant effect on the evolution rates of molecular 

entanglements and crystal structures.  Typically, an increase in the amount of 

crystallization, entanglements, or orientation will result in a mechanically stronger 

material with greater resistance to small molecule diffusion.  While increased crystallinity 

can improve mechanical and barrier properties, the size of the crystal structures can also 

affect the optical clarity of the material which may be a significant design parameter. 



 

 2

The evolution of these nanoscale molecular structures depends on complex 

dependencies on the processing characteristics and interactions between the structures.  

Unfortunately, these complex dependencies and interactions make optimization of the 

manufacturing process difficult and typically necessitate expensive and time-consuming 

experimental trials.  For these reasons, it is desirable to create analytical and numerical 

models to simulate these processes and to predict the effects of process modifications on 

material morphology and behavior. 

To understand the relationship between nanoscale structures and mechanical 

properties, the complex set of interactions governing polymer molecules must be 

elucidated.  The integration of atomistic, monomeric, and configurational attributes of 

polymer molecules must be included in the development of models.  An accurate model 

can have benefits beyond just predicting the mechanical response of the material.  It can 

provide useful information regarding morphological evolution during the manufacturing 

process, and it can help identify the required polymer nanostructures to achieve specific 

properties.  The latter, which contributes to design of the material itself, is potentially a 

useful tool in the development of new materials, reducing the amount of time-consuming 

physical testing of materials with various microstructures.  The modeling of morphology 

evolution is also relevant to determining other material properties such as permeability, 

optical clarity, and environmental stability. 

The evolution and interactions of the nanoscale morphology need to be related to 

the macroscopic mechanical responses.  Due to the difficulty of experimentally observing 

the development of this morphology, computational modeling is a more feasible method 

currently available to better understand the transient evolution of these structures during 
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deformation.  Using valid constitutive frameworks, models of the morphology evolution 

and interactions must be integrated together.  Ideally, each morphological entity would be 

modeled utilizing atomistic methods, the results of which could then be implemented into 

a mesoscopic constitutive model. 

A constitutive model that incorporates the evolution of the major morphological 

components of semi-crystalline polymers has been previously developed (Shepherd 

2002).  These morphological components include molecular chain orientation, size and 

number of crystallites, and molecular entanglements.  The complex inter-dependencies of 

the morphology evolution and process history dependence are also considered.  The 

model is based on an internal state variable (ISV) constitutive framework that employs 

statistical mechanics and encompasses the molecular level and nanoscale effects such as 

crystallization, relaxation, and orientation and includes strain, strain-rate, and temperature 

dependencies.  In its completed form, the model can be effectively utilized in finite 

element method (FEM) software to investigate material response during processing.  It is 

highly desirable for this model to be informed by molecular calculations to form a more 

predictive link.  This is a principal motivation for the present dissertation. 

 

Objectives and Goals 

The overall goal of this research is to develop molecular modeling methods to 

support the characterization of the ISV model’s parameters and evolution equations 

entirely from the chemical structure and morphology of the material.  Molecular 

modeling techniques will be used to inform the ISV model by quantifying relationships 

between polymer morphology and the resulting mechanical behavior as well as to 
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determine the evolution of the morphology under various processing conditions.  These 

derived relationships will effectively bridge the gap between molecular and continuum 

level models.  Specifically, the following aspects will be investigated: 

• the correlation between the statistical mechanics based models of rubber 

elasticity and the actual behavior of polymer networks in the rubbery, and in 

some cases, glassy state, including improved models for instantiating the 

initial geometric configuration of molecules in the polymer; 

• the progression of molecular entanglements as a function of orientation, 

temperature, and time; and 

• the enhancement of the ISV model to incorporate the results from the 

atomistic modeling investigation of rubber elasticity behavior and 

entanglement evolution.   

The proposed tasks involve detailed investigations and model development to 

determine the behavior of various molecular organizations and nanostructured assemblies 

of molecules. 

 

Benefits of this Research 

The principal benefit of this research will be the development of methods and 

tools that can be used to extrapolate the properties of a polymer molecule to the bulk 

behavior of an assembly of these polymer molecules at the macroscopic scale.  By 

utilizing molecular models, which are based on first principles, the methods and models 

should be applicable to a large range of polymer types.  This research could then be used 
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not only to optimize the manufacturing processes for currently used polymers, but could 

also be used to develop new polymers and additives to meet particular needs. 

 

Primary Challenges 

The primary challenge regarding the use of molecular modeling tools to study 

polymer systems is the computational cost of simulating polymer systems at the desired 

length and time scales.  Another significant challenge of this research is to create 

atomistic models that separate and characterize the evolution of key components such as 

entanglements, crystallites, and connectivity so that appropriate evolution relations can be 

established.  The difficulty arises due to the inter-dependent nature of these components.  

The modeling methods proposed should reasonably account for the effects each of these 

components. 

 

Methods 

While there has been much discussion about bridging the atomistic and mesoscale 

models for polymer systems in general (Uhlherr and Theodorou 1998; Goddard III et al. 

2001; Glotzer and Paul 2002; Theodorou 2004), none of these proposed methods have 

been applied to link atomistic simulations of structure development to continuum models.  

The actual applications of these ideas have only come in the form of specific relaxation 

modes in melts or of a solitary behavior in solids such as yield softening (Argon et al. 

1995) and separately, cross-link development (Rottach et al. 2004).  The combined use of 

molecular models and continuum models to capture the effect of nanoscale structure 
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development on the macroscopic behavior of polymers is not known to have been 

attempted.  The methods proposed in this thesis serve as a framework to meet this goal. 

On a macroscopic scale at large strains, semi-crystalline polymers typically 

exhibit a hardening response to deformation represented by increasing rates of work 

hardening at increasing strains.  This hardening is primarily due to the reduction of 

configurational entropy associated with the straightening of chains resulting from 

elongation.  For a given polymer, the magnitude of this hardening is affected by 

molecular entanglement evolution and crystallization, both of which are rate and 

temperature dependent processes. 

Entanglements are physical interactions between molecules and, in some cases, 

within molecules that constrain inter-molecular motions.  Entanglement slippage allows 

the chains to return to a higher level of entropy by reducing these physical constraints on 

the polymer chains, thereby reducing the hardening effect of the material.  Because 

entanglement slippage is a nonequilibrium process of thermally-activated character, 

lower strain rates and higher temperatures increase the amount of entanglement slippage 

and therefore reduce the hardening effect.  This reduction of the hardening rate is 

confirmed by the experimental work performed by Raha and Bowden (1978), who found 

that the number of "cohesion points" or entanglements decreases exponentially with 

strain at a fixed strain rate and temperature.  In this research, molecular dynamics 

methods are developed to identify and track the evolution of entanglements.  The results 

and ‘lessons learned’ from simulations using these methods will be used to develop 

evolution equations for the continuum model. 
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Strain-induced crystallization (SIC) reduces the entropy of the polymer chains by 

adding more constraints, thereby increasing the magnitude of hardening.  The rate at 

which a semi-crystalline polymer is deformed has two competing effects on the rate of 

crystallization.  Decreasing the strain rate allows more time for the polymer chains to 

relax towards a less oriented state, thereby reducing the degree of SIC.  But decreasing 

the strain rate also allows more time for the chain segments to engage in an increased 

number of molecular interactions, on average, that are favorable to increasing the 

crystallization rate.  Salem (Salem 1992b) demonstrated from experimental work that the 

relaxation effect is dominant, and the onset of SIC is delayed at lower strain rates.  

Higher strain rates reduce the degree of chain relaxation at a given strain level, resulting 

in more preferred orientation and increased likelihood for crystal nuclei to form (Le 

Bourvellec et al. 1986; Salem 1992b; Clauss and Salem 1995; Salem 1998), even at lower 

strains.  Crystal growth depends on the temperature and the degree of noncrystalline 

polymer chain orientation in relation to the crystallite orientation.  The exothermic nature 

of the crystallization process increases the temperature and possibly causes localized 

softening, followed by necking, in the material during stretching (Ziabicki 1988). 

Rubber elasticity models have been used successfully to simulate the 

configurational entropy of bulk polymer systems which is the driving mechanism behind 

the resistance of polymer molecules to deformation.  In this research, the relationship 

between rubber elasticity models and molecular dynamics simulations of actual polymers 

are investigated.  The results of these simulations are used to verify the applicability of 

rubber elasticity models for use in the continuum model and give insight to the 
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relationship between the parameters of the rubber elasticity model and the properties of 

the polymer. 

While the overall goal of this research is to develop methods that will be 

applicable to a wide range of polymers over all reasonable time and temperature ranges, 

the actual development will be performed on a more practical scope.  Linear polyethylene 

is the material used in this research due to its simple structure and substantial 

experimental and computational characterization.  The temperature range of this 

investigation will be limited from 25°C to 100°C, which corresponds to the rubbery state 

of polyethylene in which ample experimental and computational data exist.  Despite these 

limitations in scope, the methods should be general enough to be valid for most polymer 

systems in the rubbery state and many polymer systems in the glassy state.  Validation of 

this claim will be reserved for future research. 

The ISV model (Shepherd 2002) has been enhanced to more correctly account for 

the effect of nanoscale structures on the thermo-mechanical behavior during deformation 

(Shepherd et al. 2006).  In the previous model (Shepherd 2002), crystallization and 

molecular entanglement slippage were based on the orientation and degree of crystallinity 

of the entire assembly of molecules.  The model was modified to account for the 

orientation distribution and degree of crystallinity of all of the monomers in the system in 

order to incorporate the local molecular architecture.  Additionally, the entanglement, 

crystal nucleation, and crystal growth evolution equations were modified and the 

exothermic nature of crystallization was included.  The resulting model is theoretically 

more faithful to various physical mechanisms and more accurately simulates 

experimental results.  This model, bridging nanoscale attributes and macroscopic level 
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properties, is now ready for the incorporation of additional input from atomistic 

modeling.  The governing equations and material model constants for rubber elasticity, 

entanglement evolution, and crystallization will be modified, if necessary, according to 

the results of the atomistic modeling.   This next step is critical in order to reach the 

overall goal of this research. 

 

Dissertation Structure 

Chapter 2 provides details of the molecular dynamics methods used in this 

research, particularly those related to the deformation of the polymer system.  Results of 

parametric studies performed to determine the most plausible MD parameters are 

provided. 

In Chapter 3, a new method of generating polymer configurations is presented and 

evaluated.  This method has the advantages of generating a low energy molecular 

assembly with specified structural properties.  Detailed descriptions of the 

implementation of this method are included, as well as comparisons of this 

implementation with another widely used method. 

Chapter 4 covers the results from several accelerated molecular dynamics 

methods explored in this thesis to increase the time scales available to the polymer 

deformation simulations.   The theory and implementation of these methods are described 

as well as the benefits and limitations of these methods as related to this research. 

Chapter 5 presents an investigation of entanglement evolution utilizing atomic 

modeling tools.  A new method is presented to identify entanglements based on the bond 

forces along the polymer chains.  The effects of strain rate, temperature, and molecular 
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weight are determined.  The results of this method are qualitative in nature and seem to 

be counter-intuitive at high strains. 

Chapter 6 presents a study of the relationship between atomistic simulations of 

actual polymer systems and the more idealistic statistical network models.  Molecular 

dynamics simulations of a cross-linked polymer system are performed.  The key network 

model parameters can be determined by disabling non-bonded potentials which has the 

effect of removing restrictions to molecular movement.  These relationships permit the 

entanglement evolution of non-cross-linked systems to be quantitatively determined.  

Additionally, the network model was found to be capable of accurately representing 

polymer behavior. 

Chapter 7 presents an improved version of the ISV-based constitutive model that 

includes the evolution results from the atomistic simulations performed in this research.  

The development of the ISV model is detailed and the model is compared to experimental 

results. 

Chapter 8 summarizes the significant accomplishments of this research and 

proposes further research directions in this research field. 
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CHAPTER 2 

ATOMISTIC MODELING OF POLYMER DEFORMATION 

 

Molecular Dynamics Simulations of Polymers 

As there is a substantial amount of literature detailing the history, theory, and 

implementation of atomistic modeling, e.g. (Leach 2001; Rapaport 2004), the focus of 

this chapter will be specific to issues related to modeling polymer systems. 

The molecular dynamics (MD) software LAMMPS (Plimpton 1995) and the 

visualization and post-processing software VMD (Humphrey et al. 1996) are used to 

perform the atomistic simulations and review the results.  These codes were selected due 

to their extensibility, the capabilities required in this research, the open software licenses 

that permit the modification and sharing of source code, and the ability to work with large 

sets of atoms. 

 

Time and Length Scale Issues 

One of the most significant issues faced when performing atomistic simulations of 

polymer systems is the immense amount of computational time required to model 

sufficiently large systems for durations long enough to capture all relevant mechanisms.  

Polymers used in engineering applications typically consist of tens of thousands to 

millions of atoms per molecule.  Furthermore, since multiple molecules must be included 

in the system in order to account for intermolecular interactions, the number of atoms in 

the system is increased many-fold.  To capture the atomic dynamics correctly, integration 
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time steps must be on the order of the period of atomic vibrations (10-14s).  Polymer 

mechanisms necessary for understanding of macroscopic deformation behavior occur 

over time periods many orders of magnitude larger.  The primary mechanism for large 

deformations on the molecular level is bond rotation about the dihedral angles, which 

occurs at the time scale of 10-11s.  For larger ordered motions, the characteristic time (e.g. 

Rouse time) for a molecular chain to diffuse from its original location is on the order of 

10-3s to 103s. 

The limits of MD simulations are constrained by the multiplicative combination 

of the number of atoms to be modeled and the amount of time that the simulation is to be 

run which can be measured in atom-s.  With currently available computing, this limit is 

typically on the order of 10-3atom-s.  Therefore, effective means of reducing the degrees 

of freedom in line with available computational resources or techniques must be 

developed to simulate larger periods of time with fewer integration time steps.  There are 

several techniques for reducing the degrees of freedom.  Multiple neighboring atoms can 

be represented by a single “united atom”.  Atom positions can be constrained to points on 

a lattice to remove the number of positional states for an atom.  Periodic boundary 

conditions can be used to mimic the effect of neighboring atoms and permit polymer 

molecules whose length exceeds that of the simulation cell.  Inter-atomic potentials can 

be simplified or eliminated if the effect of these potentials is not significant in relation to 

the desired results.  For example, bead-spring potentials which do not include bond angle 

or dihedral potentials are commonly used when the detailed chemical structure of the 

polymer is not of interest.  Some of these techniques will be utilized in this research.  
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Additionally, time acceleration methods in molecular dynamics are investigated and 

discussed in detail in Chapter 4. 

 

General Molecular Dynamics Components 

As a result of numerical approximations required in MD simulations, especially 

the use of cut-off distances in potentials to reduce the computational requirements, the 

energy in the system can drift over time.  Therefore, methods must be implemented to 

maintain thermodynamic constraints from the effect of cumulative errors.  In this 

research, an isothermal and isobaric (NPT) ensemble is chosen for proper deformation.  

Constraining the volume (NVT) would not account for any change in density during 

deformation and could lead to inaccurate pressures on free surfaces of the simulation cell.  

Nose (Nose 1984) implements an external thermal bath and its associated momentum to 

permit the energy in the system to fluctuate while maintaining a NVT or NPT ensemble 

using time and distance scaling.  A similar ensemble has been presented by Berendsen 

(1984).  Hoover (1985) modified the Nose ensemble to remove time scaling.  Hoover also 

demonstrated that Berendsen’s ensemble is not time reversible and does not lead to the 

canonical distribution. 

The non-equilibrium NPT ensemble proposed by Melchionna et al. (1993) is an 

extension to the Nose-Hoover ensemble to more precisely sample the NPT ensemble.  

This ensemble is available natively in LAMMPS and was used throughout this research. 

A united atom approximation is utilized in which the methyl groups are 

represented by a single “atom” or unit.  The effect of the hydrogen atoms on the 

polymer’s configuration is accounted for in the potentials, while the mass is included in 
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the mass of the united atom.  This technique has been shown to work well with melts, but 

the loss of anisotropy and the incorrect center of mass of the united atom may be a 

liability for the denser solid models being investigated in this research.  The potentials of 

Paul et al. (1995) are chosen due to their accuracy in predicting correct behavior of 

polyethylene and in particular for ordered structures such as crystals (Lavine et al. 2003).  

The bond force potential is modified from a rigid link to a stiff spring (Bolton et al. 1999; 

Capaldi et al. 2004) using the harmonic bond potential in LAMMPS, i.e., 

 ( )2
b b b oV k r r= −  (2.1) 

where kb = 350 kcal/mol, rb is the bond length, and r0 is the equilibrium bond length, 

1.53Å.  The bond angle potential is also defined as a harmonic potential, 

 ( )2
0a a aV k θ θ= −  (2.2) 

where ka = 60 kcal/mol rad2, θa is the bond angle, and θ0 is the equilibrium bond angle, 

109.5°.  The dihedral or bond rotation potential is defined as a multi-harmonic potential, 
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where k1 = 1.73 kcal/mol, k2 = -4.49 kcal/mol, k3 = 0.776 kcal/mol, k4 = 6.99 kcal/mol, 

and φd is the dihedral angle.  The non-bonded interactions such as van der Waals forces 

were implemented by use of a Lennard-Jones potential, 
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where ljε = 0.112 kcal/mol, σlj = 4.01Å, and rlj is the distance between the two atoms.  The 

non-bonded interactions are disabled between any atoms that are within four bonds of 
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each other on the same chain, since those non-bonded interactions are already embedded 

in the other potentials. 

Figure 2.1 shows the potential energies as a function of their relevant degrees of 

freedom for each of the potentials described above.  From the plots, it is apparent that the 

bond length and bond angle potentials provide the greatest constraints on the system, 

while the dihedral potential provides the least constraints.  As a result, the majority of 

deformation in a polymer system is a result of dihedral rotations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 16

 
 

 
 

 
 

 
 
Figure 2.1 Plots of each potential showing the relative strengths of each. 

 

Full periodic boundary conditions are implemented in order to permit the creation 

of long polymer chains without resorting to unlikely, crowded configurations to avoid 
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artifacts of simulation.  The use of full periodic boundary conditions also reduces edge 

effects. 

 

Deformation Procedure 

Prior to any deformation simulation, the initial configuration is relaxed to ensure 

that the system is in relative equilibrium.  An NPT ensemble is used to maintain a 

constant temperature, typically 300 K, and to allow the system volume to change so that 

the relaxed density is achieved at an external pressure of 1 atm.  The relaxation is run for 

500 ps with an integration time step of 1.0 fs.  Post-processing scripts written in Perl were 

created to extract information regarding the energies and structure of the system during 

the relaxation process.  The potential and kinetic energies as well as the temperature, 

volume, and pressure are extracted from LAMMP’s normal output file.  The scripts use 

the coordinates of each atom which LAMMPS writes out at periodic time steps to 

determine the evolution of end-to-end lengths, radii of gyration, and rotational isomeric 

states. 

Most of the atomistic studies in this research require the polymer model to be 

deformed.  For uniaxial deformation, this process is achieved by setting the two sets of 

opposing surfaces perpendicular to the applied deformation direction at a constant, 

ambient pressure of 1 atm for the duration of the deformation.  The remaining set of 

surfaces is then displaced at a specified true strain rate.  This deformation is achieved by 

combining a volume rescaling routine in the x-direction with an NPT ensemble where the 

pressures in the y- and z-directions were set to 1 atm and the pressure in the x-direction 

was not regulated.  In LAMMPS each time step begins with the NPT calculations to 
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determine the pressure derived displacements to the faces normal to the y- and z-

directions followed by the prescribed displacements to the faces normal to the x-

direction.  All of the atoms in the simulation box are moved proportional to their 

distances from the displaced faces, resulting in affine deformation.  By default LAMMPS 

is only capable of deforming the simulation cell at a constant deformation rate.  

LAMMPS was modified so that the simulation cell could be deformed at a constant rate 

of true strain to better pair with the true stress that is recorded, to account for the 

significant dimensional changes at large deformations, and to mimic typical large 

deformation experiments.  The true strain is measured in the logarithmic form based on 

the dimensions of the periodic unit cell, i.e., 
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where x is the current length of the cell, x0 is the initial length of the cell prior to the 

commencement of deformation.  

The pressures on the faces of the simulation cell and the strains are monitored 

during the simulation and used to determine the stress- or strain-dependent relationships.  

The pressure on each face is given as the normal tensor component of the virial stress, 
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where V is the current volume of the periodic unit cell, mi is the mass of atom i, vi is the 

velocity, Natoms is the number of atoms in the system, rij is the vector between the atoms i 

and j, and Uij is the potential energy between atoms i and j. 
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Throughout the remainder of this dissertation, in the context of molecular 

dynamics results, the term ‘stress’ refers to the virial stress and the term ‘strain’ refers to 

the true, or logarithmic, strain measure. 

Since polymer chains are long and there are substantial differences between 

intermolecular and intramolecular forces, the size of the simulation cell could have an 

effect on the continuity of the results.  The larger the size of the simulation cell with the 

appropriate density, the more likely that configuration will represent a continuum.   

However, larger simulation sizes take much more computational time.  One of the initial 

goals was to find out the smallest size of a system that still maintains the deformation 

behavior of larger systems in the hope of minimizing computational requirements while 

reducing size effects.  Three equal density assemblies consisting of 20, 50, and 100 linear 

molecules with 1000 monomers per molecule were created resulting in systems of 

20,000, 50,000, and 100,000 atoms respectively.  The initial configurations were 

generated using the methods and parameters described in Chapter 3.  These systems were 

relaxed and then deformed at a true strain rate of 1010 s-1 and a temperature of 300 K.  

Figure 2.2 shows that for true strains under 1.5 there are not any substantial differences 

between the stress-strain behaviors of the different sized systems.  At higher strains, there 

seems to be systematic differences between the stress responses for the differently sized 

systems, where the larger systems result in higher stresses. 
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Figure 2.2 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 20, 50, and 100 molecules each with 1000 unified atoms at 
a temperature of 300 K and a true strain rate of 1010 s-1. 

 

While these results indicate that the 100,000 atom system may be more accurate 

than the 20,000 atom system at true strains above 1.5 and the 50,000 atom system at true 

strains above 1.75, a smaller sized system is preferred due to the significantly higher 

computational expense of the 100,000 atom system.  A system size of 50,000 atoms is 

used throughout the research rather than the smaller 20,000 atom system due to its closer 

representation of the larger system and the smoother response.  Additionally, the 50,000 

atom system gives the ability to investigate polymer molecules with higher molecular 

weights while keeping the system size constant over the 20,000 atom system.  The 

discrepancies in the results for the differently sized systems are an artifact of the polymer 

systems forming voids at the higher strains (Figure 2.3).  Due to the selection of 50,000 

atom systems, further simulations are limited to a strain of 1.75. 
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a) undeformed 

 
b) true strain of 1.0 

 
c) true strain of 2.0 

 
d) true strain of 3.0 (partial image) 
 
Figure 2.3 Deformation sequence of a polymer system consisting 50 molecules 

each with 1000 unified atoms at a temperature of 300 K and a true 
strain rate of 1010 s-1 showing void formation at a true strain of 2.0 (c) 
and void growth and chain coiling at a true strain of 3.0 (d). 

 

Another concern is the consistency between simulations with different initial 

velocity distributions.  At the start of a MD simulation, the atoms must be assigned 

velocities in a manner that ensures the kinetic energy of the system conforms to the 

desired temperature.  In LAMMPS, the initial velocities are assigned randomly to each 

atom through the use of a Boltzmann distribution.  The velocity distributions were 

modified by changing the random number generator seed.  Figure 2.4 shows that the 

distribution of initial velocities does not have a significant effect on the deformation 

behavior at strains below 1.75.  Therefore a single initial velocity profile should be 

sufficient for each of the simulations performed in this research. 
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Figure 2.4 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 50 molecules each with 1000 unified atoms with different 
initial velocity distributions at a temperature of 300 K and a true strain 
rate of 1010 s-1. 

 

A further concern is the consistency between simulations with different initial 

configurations having similar structures.  Three initial configurations consisting of 50 

molecules with 1000 unified atoms each were generated using the method described in 

Chapter 3.  Figure 2.5 shows that initial configurations generated with the same 

parameters but different random number seeds do not have a significant effect on the 

consistency of the deformation behavior at true strains less than 1.75.  Therefore a single 

initial configuration should be sufficient for the simulations performed in this research. 
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Figure 2.5 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 50 molecules each with 1000 unified atoms with different 
initial configurations at a temperature of 300 K and a true strain rate 
of 1010 s-1. 

 

Other MD parameters that must be considered for their effects on the deformation 

behavior are the integration time step size, the frequency of scaling the simulation box to 

correspond with the desired deformation rate, and the values of the temperature and 

pressure dampening parameters.  Small integration time steps result in more accurate 

dynamics, but at a computational cost.  Increasing the integration time steps too much can 

result in numerical instabilities.  For example, if two atoms are approaching one another 

at a high enough velocity, a large integration time step could permit the atoms to overlap 

during the next integration step resulting in a numerical singularity for typical pair 

potentials.  The goal is to find the largest time step while maintaining the desired 

accuracy and stability.  Integration time steps of 0.5, 1.0, and 2.0 fs were evaluated.  An 

integration time step of 2.0 fs occasionally caused numerical instabilities which resulted 
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in crashes of LAMMPS.  There were no significant differences between the 0.5 and 1.0 fs 

integration steps at true strains below true strains of 1.75 (Figure 2.6).  Therefore, the 

integration time step of 1.0 fs is used throughout this research since it will require half as 

much computational resources for a given simulation than the 0.5 fs integration step and 

does not lead to the occasional crashes as with the 2.0 fs time step. 

 

 
 
Figure 2.6 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 50 molecules each with 1000 unified atoms using 
integration time steps of 0.5, 1.0, and 2.0 fs at a temperature of 300 K 
and a true strain rate of 1010 s-1. 

 

During the deformation process, the MD simulation box must be rescaled to 

represent the change in shape of the simulation box.  Since this rescaling requires 

computational time to reposition all of the atoms, the rescaling should only be performed 

as frequently as necessary.  The stress-strain behavior was evaluated with the simulation 

box being rescaled every 1, 10, and 20 time steps.  Since there were not any significant 
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differences between the stress-strain behaviors due to the frequency of the rescaling 

(Figure 2.7), the simulation cell is rescaled every 20 time steps. 

 

 
 
Figure 2.7 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 50 molecules each with 1000 unified atoms, rescaling the 
simulation box every 1, 10, and 20 time steps at a temperature of 300 K 
and a true strain rate of 1010 s-1. 

 

By default, rescaling all of the atoms in the simulation cell in the draw direction 

will result in affine deformation.  Another approach would entail just modifying the 

simulation cell dimensions and not directly repositioning the atoms.  As a result, bonds 

traversing a cell boundary would suddenly have their lengths changed, affecting these 

bond forces.  These bond forces would subsequently result in an eventual repositioning of 

the remaining atoms as lower energy states are sought.  Arguably, this approach more 

realistically mimics actual material deformation.  A simulation was run using this 

approach and compared to the default affine deformation method.  The stress-strain plots 
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in Figure 2.8 indicate that non-affine deformation results in more compliant behavior at 

higher strains than affine deformation.  At high true strains where the difference between 

affine and non-affine behaviors become prominent, the chains are mostly elongated in the 

direction of deformation.  With affine deformation, the chains are stretched almost 

uniformly throughout their lengths; while with non-affine deformation, the chains are 

stretched from their ends.  Pulling from the chains ends facilitates sliding of chains past 

one another, resulting in lower stresses than the affinely deformed system.  To better 

represent actual polymer behavior, the non-affine behavior is used in the simulations in 

this research. 

 

 
 
Figure 2.8 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 50 molecules each with 1000 unified atoms, with affine and 
non-affine deformation during rescaling of the simulation box every 
time step at a temperature of 300 K and a true strain rate of 1010 s-1. 
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The NPT ensemble regulates the system temperature and pressure with external 

temperature and pressure baths.  Dampening parameters are used to adjust the flux 

between the simulation system and the baths.  The parameters need to be set such that the 

system temperature and pressures are damped enough to prevent severe oscillations but 

not too much such that the system reaches its quasi-equilibrium point too slowly, 

especially for the high strain-rate deformation simulations.  Three values for each of the 

temperature and pressure dampening parameters were evaluated.  For the temperature 

dampening parameter, a value of 500 fs-1 resulted in too little dampening, causing severe 

temperature oscillations during the relaxation simulation (Figure 2.9) and poor 

representation of the yielding behavior during deformation (Figure 2.10).  The values of 5 

and 50 fs-1 resulted similar behaviors in the stress-strain results during deformation; 

however, the 5 fs-1 dampening resulted in severe oscillations during the initial 

picoseconds of the relaxation simulation. 
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Figure 2.9 Comparisons between the temperatures of polymer systems consisting 

of 50 molecules each with 1000 unified atoms during relaxation with 
temperature dampening parameters of 5, 50, and 500 fs-1. 

 

 
 
Figure 2.10 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 50 molecules each with 1000 unified atoms with 
temperature dampening parameters of 5, 50, and 500 fs-1 at a 
temperature of 300 K and a true strain rate of 1010 s-1. 
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A pressure dampening parameter of 10,000 fs-1 resulted in higher pressure 

oscillations that converged to the equilibrium pressure much more slowly during the 

relaxation simulation (Figure 2.11).  The value of the pressure dampening parameter did 

not have a noticeable effect on the stress-strain results during deformation (Figure 2.12). 

 

 
 
Figure 2.11 Comparisons between the pressures of polymer systems consisting of 50 

molecules each with 1000 unified atoms during relaxation with pressure 
dampening parameters of 100, 1000, and 10000 fs-1 at a temperature of 
300 K. 
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Figure 2.12 Comparisons between the stress-strain behaviors of polymer systems 

consisting of 50 molecules each with 1000 unified atoms with pressure 
dampening parameters of 100, 1000, and 10000 fs-1 at a temperature of 
300 K and a true strain rate of 1010 s-1. 

 

Conclusions 

This parametric study was useful for gaining a better understanding of the 

sensitivities of the various parameters used in the molecular dynamics performed in this 

research and gaining confidence in the accuracy of the simulations.  Some compromises 

were made when selecting parameter values when significant reductions in computational 

expense could be achieved at the cost of high strain accuracy, specifically the overall 

number of atoms in the system.  When accurate quantitative data is required at high 

strains, the simulations should be run with a larger system size.  Also of interest is the 

significant effect that non-affine deformation has on the stress-strain results at high 

strains.  The use of non-affine deformation of polymer systems with MD has not been 
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reported in the literature that was reviewed for this research.  With this parametric study 

complete, the values of the parameters used throughout this research are given in Table 

2.1. 

 

Table 2.1 MD parameters used throughout this research. 

Integration Time Step ∆tMD 1 fs 
Volume Rescaling Frequency ωvol 20 steps 
Temperature Dampening Tdamp 50 fs-1 
Pressure Dampening Pdamp 1000 fs-1 
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CHAPTER 3 

GENERATION OF POLYMER INIITIAL CONFIGURATIONS 

 

Introduction 

The generation of the initial state of a polymer system is one of the most complex 

aspects of atomistic modeling of polymers.  Typical polymer systems of interest are 

generally not ordered enough to generate simplistic crystalline-like configurations nor are 

they random enough to create completely arbitrary configurations.  The “random order” 

of the polymer systems must be correctly captured in order for atomistic simulations to 

yield reasonable and relevant results.  The initial structure needs to consist of likely 

configurations.  Additionally, the topology of the polymer molecules may need to be 

specified, whether they be branched, ring, or linear.  There may also be a desire to control 

other aspects of the order of the polymer system such as orientation or degree of 

crystallinity. 

In general, the criteria for a good configuration are to minimize the potential 

energy of the system and to create molecules that have realistic structural attributes such 

as the end-to-end lengths, radius of gyrations, and distribution of rotational isomeric 

states.  The system should also be well dispersed and have a realistic overall density at a 

given pressure. 

Since large scale relaxation processes involving an entire polymer chain occur 

over time periods much longer than can be simulated using atomistic modeling methods, 

it is imperative that the initial structure be generated as close to the relaxed configuration 

as possible.  Otherwise, the long relaxation times of polymers would require simulation 
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times too long to effectively establish relative equilibrium.  In essence, the generation of 

the initial polymer structure is a partial solution to the time scale problem in that the 

relaxation processes which are much too slow to model with atomistic methods are 

already accounted for in the initial structure. 

A multitude of initial configuration generation methods have been presented in 

the literature, but none of them create configurations close to equilibrium with realistic 

structures and permit sufficient control the resulting structure.  The earliest methods 

attempted to mimic the polymerization process (Rigby and Roe 1987) with additional 

cross-linking (Duering et al. 1994).  In these methods, the system is randomly populated 

with dispersed monomers.  Special potentials are used to establish bonds between nearest 

neighbor monomers.  Continuation of this process forms long chains.  Because of the lack 

of control over the bonding process and general randomness of this method, many 

unbonded monomers remain.  It can also be difficult to specify consistent chain lengths 

or control the distribution of chain lengths.  There is also no control over the orientation 

or other statistical properties of the polymer system.  The formation process also 

generates high dihedral energies that relax very slowly. 

Instead of starting with all of the monomers already placed in the system, another 

class of polymer generation methods creates the polymer chains by adding monomers 

directly to growing chains in the system in a stepwise manner.  The addition of these 

monomers can be performed by random walk algorithms or rotational isomeric state 

(RIS) algorithms (Flory 1974).  The RIS algorithms use the probabilities of the different 

isomeric states for the particular polymer occurring in actual polymer chains.  While the 

RIS algorithms generate more realistic configurations, they require previous knowledge 
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of the RIS probabilities and require more computational time.  The algorithms for the 

stepwise creation of the chains can permit atoms to initially occupy the same space.  

While allowing atom overlaps reduces the complexity of generating the initial chain 

configurations, the overlaps need to be eliminated prior to use in a simulation; otherwise, 

numerical instabilities will typically occur due to the fact that most pair potentials are 

singular as the separation distance approaches zero.  Typically, special potentials that 

sufficiently separate the atoms without numerical problems are used prior to simulation.  

These “soft core” potentials do not result in numerical singularities as the atom-to-atom 

distance approaches zero.  However, the overlaps are resolved by local motions that 

result in an increase in energies associated with bond lengths, bonds angle, and dihedral 

angles for the remainder of the polymer chain.  Non-uniform distributions of monomers 

may also occur, with high densities occurring in regions where overlaps occur.  

Accounting for long range interactions by modifying the RIS probabilities to include pair 

energies can better disperse the polymer chains (Theodorou and Suter 1985).  High 

temperature annealing has also been used to reduce the chain energies by increasing the 

rate at which chain motions occur (McKechnie et al. 1992; McKechnie et al. 1993). 

To avoid the issues caused by permitting initial atom overlaps, self avoiding 

random walk algorithms can be implemented.  These algorithms are typically more 

complex and require more computational time than the methods that permit overlaps.  

Additionally, chains can grow into regions where there are no possible completion paths 

due to the growing end being surrounded by neighboring atoms, a problem that becomes 

significant at high densities.  The added constraints of volume exclusion lead to an 
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unrealistic increase in the number of gauche RIS states, resulting in a reduced number of 

trans RIS states (McKechnie et al. 1992). 

In order to circumvent the difficulties of generating an initial configuration at high 

densities, Sok et al. (1992) proposed the generation of random walk chains at very low 

densities.  The simulation cell would then be compressed to the desired density using a 

soft core potential, i.e., 
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Here, rsc is the cutoff distance and 
maxscV controls the magnitude of the potential.  The 

attractive portion of the potential is excluded to prevent clustering during compression.  

This soft core potential will permit atoms to pass through one another which helps reduce 

the amount of localized high-energy areas.  However, some high energy regions are still 

created and cannot be relaxed within a reasonable simulation time.  Additionally, the 

compression method tends to create relatively isolated chains with few entanglements.  

Modifying this method to only include the repulsive portions of the Lennard-Jones pair 

potential was found to distribute the atoms more uniformly (van der Vegt et al. 1996).  

Control over the final structure is also difficult due to compression effects.  When the 

chains are created at a very low density, there are few entanglements between the chains 

and the compression process does not create further entanglements as shown through an 

example described in detail later (Figure 3.1).  Also, the final end-to-end distance, trans – 

gauche RIS distributions, radius of gyration and other relevant properties cannot be 



 

36 

reliably controlled with this method.  Additionally, the MD compression step can require 

a significant amount of computational time, especially for large systems. 

 

a) b)  
 
Figure 3.1 An example of an initial configuration generated at a low density of 

0.11 g/cm3 (a) and the final compressed configuration at a density of 
0.91 g/cm3 (b) showing the relative lack of molecular entanglements. 

 

Initial configurations generated at density with overlaps and subsequently relaxed 

were compared to configurations generated by the low density/compression methods 

using the repulsive portions of the soft core and Lennard-Jones potentials.  Solubility of 

small molecules was simulated with MD for each of the configurations.  Solubility was 

chosen because it is a good indicator of the density distribution and homogeneity of the 

initial structure (van der Vegt et al. 1996).  They found that the low density/compression 

method gave the lowest initial energies and was closest to experimental results. 

A novel method was introduced by Faulon et al. (1997) that permits the 

generation of polymer systems at the desired density without the problem of the growing 
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end being trapped, preventing further growth.  The principle behind this method is to 

create straight, low molecular weight preliminary chains with the same end-to-end length 

as the desired final, higher molecular weight chains.  Two end points are selected on a 

lattice which are separated by the predetermined length, usually the characteristic length 

(<r2> =  N Cinf l2), of a polymer molecule consisting of N segments or bonds.  This 

process permits the stepwise growth of the chains to be performed at relatively low 

densities since the straight chains will consist of much fewer atoms than the final, fully 

grown chains.  The straight chains are grown to the final molecular weight by randomly 

removing a bond and inserting a specified number of new bonded polymer segments in 

its place (Figure 3.2).  This insertion process also uses shortest distance algorithms and is 

repeated until the chain has the desired molecular weight. 

 

New Loop

Deleted Bond

New Loop

Deleted Bond
 

 
Figure 3.2 Diagram showing the insertion process of the Faulon et al. initial 

configuration generation method. 

 

Since the chain can be grown from any interior bond, there is a higher likelihood 

of finding vacant neighboring sites to add more atoms.  So instead of only having a single 

site from which to grow the chain, as in the stepwise method, there are Ns sites, where Ns 

becomes larger as the system becomes denser and fewer lattice sites are available.  
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Volume exclusion is taken into consideration by not allowing more than one atom at a 

single lattice point.  X-ray scattering intensities, initial energies, and diffusion of small 

molecules determind by MD simulations using the resulting initial configurations 

indicates that this method performs as well as the low density/compression mthod but has 

the advantages of requiring less computational resources and allowing greater control 

over the topology of the generated polymer system.  The process of generating the 

preliminary chain and inserting atoms entails shortest distance algorithms for 

computational simplicity at the cost of limiting the amount of control over the 

configuration of the new chains, especially when specific rotational isomeric states are 

desired.  Another limitation is that only backbone atom exclusion is considered which 

results in the van der Waal forces being initially excessive due to the interactions between 

side atoms and chains, resulting in the chains being initially too compressed. 

 

Method 

For this research, a method is desired that permits a greater amount of control 

over the characteristics of a high density initial configuration and generates a low energy, 

near equilibrium configuration.  The method presented here permits relaxed dense 

polymer systems to be created with reasonable computational expense and permits the 

control of the distribution of rotational isomeric states, end-to-end distances, radius of 

gyration, number of atoms per molecule, number of molecules in the system, and the 

system density. 
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Lattice 

In order to efficiently track volume exclusion and limit the degrees of freedom in 

the system, a lattice is utilized to position the atoms.  The lattice does have the 

disadvantage of constraining the configurations available to the molecules to be grown on 

the lattice.  This limitation can become significant if the lattice topology does not closely 

resemble the topology of the polymer molecules to be modeled.  For instance, cubic 

lattices are commonly used when generating initial configurations due to the relative ease 

at which they can be implemented into computer programs.  A typical three dimensional 

array that is available in almost any computer language can be easily correlated to a cubic 

lattice since the positions of a cubic lattice map directly to the array while the adjacent 

elements in the array represent the connectivity of the lattice.  However, the backbones of 

most polymers consist of carbon or other atoms that do not have bond angles that 

correspond to the 90 and 180 degree connectivity angles in a cubic lattice.  While there 

are methods to extend the connectivity beyond the nearest neighbors to allow more 

flexibility with the bond angles and lengths, this added complexity negates the simplicity 

offered by the traditional use of the cubic lattice.  The primary deficiencies of the cubic 

lattice can also be overcome by implementing a diamond or tetrahedron lattice.  These 

lattices have an angle between neighboring lattice points that is very similar to the 

common carbon-carbon bond angle.  However, the connectivity mapping between the 

coordinates and a memory array of a diamond lattice are much more complex.  The 

method presented here is general to the application of practically any lattice.  In the 

implementation section, the specifics of mapping cubic and diamond lattices to computer 

arrays are detailed. 
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Generation of molecules 

Molecules are added to the lattice in a step-wise manner.  For each molecule, the 

first atom is added to an available site on the lattice.  Then the molecule is grown by 

successively adding atoms to available neighboring lattice sites.  Here, “atoms” refers to 

any component of a molecule such as an actual single atom or collections of atoms such 

as unified atoms consisting of side atoms or chains, or even entire monomers.  Atoms are 

added in this manner until the desired length of the molecule has been achieved.  The 

effectiveness of this method to generate molecules with specific characteristics is 

determined by the manner in which neighboring lattice sites are selected for the 

placement of atoms.  The initial configuration generation method presented here is based 

on a method to make the appropriate selection of neighboring lattice sites.  This selection 

process will be detailed later, but first, an overview of process to generate molecules and 

assemblies of molecules is presented. 

In a similar manner to the Faulon et al. (1997) method, the fundamental goal is to 

create a low molecular weight version of the final molecule so that the initial molecules 

are generated at a low density.  By connecting two points separated by the desired end-to-

end length with a relatively straight line of atoms, the preliminary molecule will contain 

significantly fewer atoms than the final form of the molecule.  Since additional atoms can 

be inserted at any point in the molecule, the likelihood of completing the molecule at high 

densities is greatly increased.  By systematically controlling the methods by which the 

atoms are inserted into the chain, the desired properties of the final molecule can be 

achieved.  A schematic diagram of this process is provided in Figure 3.3. 
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Figure 3.3 Schematic showing the preliminary segment generation algorithm. 

 

The initial step of generating a molecule involves the selection of two lattice sites 

on which the end points of the molecule will be placed.  The selection of lattice sites for 

the endpoints can either be at random or directed by finding sites in low density regions 

or at specific orientations or distances from one another.  By defining the separation 

distance, the end-to-end length of the resulting molecule is then specified, though the 

discrete nature of the lattice spacing precludes exact specification of the separation 

distance.  Instead of initially selecting both of the end points, an alternative method 

entails only the selection of the starting lattice site and determining the end site after 
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growth has commenced and specific criteria are met, such as end-to-end distance.  An 

advantage of this alternative method is that the likelihood of successfully completing the 

preliminary chain is increased since a specific end point does not have to be reached.  

This advantage is particularly beneficial when a large number of short molecules are to 

be generated such that the last molecules are being generated at relatively high densities. 

The preliminary chain is grown from the starting atom by selecting a neighboring 

lattice site.  The number of neighbors for each lattice site and the geometric direction to 

each neighboring site is dependent upon the topology of the lattice.  For example, each 

lattice site on a diamond lattice has four neighboring lattice sites (Figure 3.4).  Each 

lattice site on a cubic lattice has six neighboring lattice sites. 

 

 
Figure 3.4 Diagram of an initial atom (black) on a diamond lattice and the 

possible neighboring sites (white). 

 

If volume exclusion is incorporated into the procedure, sites containing previously 

located atoms of the growing preliminary chain or atoms from previously generated 

chains may reduce the number of available neighboring sites (Figure 3.5). 
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Figure 3.5 Diagram showing a reduced number of available neighboring sites 
(white) as a result of the previous atom in the chain (black) and an 
atom from another molecule (gray). 

 

From the available neighboring sites, a single site needs to be selected for the 

placement of the next atom to continue the growth of the chain.  The selection process is 

based on the combination of several criteria.  Examples of criteria include random 

selection, selection of the neighboring site closest to the least dense area in the simulation 

cell, selection of the neighboring site that is closest to the pre-selected end point, 

selection of the neighboring site with the lowest energy, and selection of the neighboring 

site that results in a specific RIS.  The specifics of these criteria will be described in detail 

in the next section.  Each of these criteria assigns a selection probability to each 

neighboring lattice site.  For each neighboring lattice site, these probabilities are weighted 

and then combined, creating a selection probability table that can be used to determine 

which of these sites should be selected.  A sample probability table is shown in Table 3.1, 

with Figure 3.6 mapping these probabilities onto the available neighboring sites of an 

atom on the lattice. 
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Table 3.1 Example probability table. 

Neighbor  Weighting 
Factor 1 2 3 

Closest-to-End 0.1 0.0 0.6 0.4 
Least-Dense 0.1 0.3 0.7 0.0 
Lowest-Energy 0.3 0.3 0.1 0.6 
RIS 0.5 0.2 0.2 0.6 
Total  0.2 0.3 0.5 

 

 
Figure 3.6 Diagram showing the available neighboring sites (white) of a molecule 

(black) on diamond lattice with associated selection probabilities. 

 

For the random selection criterion, each neighbor is assigned an equal probability.  

The probability is simply defined as the inverse of the number of available neighboring 

sites.  For example, if there are four available sites, each site would be assigned a 

probability of 0.25. 

For the closest-to-end criterion, the distance from each available neighboring site 

to the end point is calculated.  The distance of the furthest neighbor is used as the base 

distance (Figure 3.7).  The differences between the base distance and the distance to each 
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neighbor from the end point is used to calculate the selection probability of each available 

site, i.e., 

 max
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where n is the number of available sites, dmax is the longest distance, and f is a weighting 

factor that determines the dependence of the probabilities on the overall distance.  When  

f = 1, the probabilities are independent of the overall distance with the lowest probability 

always being equal to zero.  An example with f = 1 is given in Table 3.2. 

 

 
 

Figure 3.7 Diagram showing the available neighboring sites (white) of a molecule 
(black) on a diamond lattice with associated closest-to-endpoint 
criterion selection probabilities to the end point (gray). 

 

Table 3.2 Closest-to-end point criterion probability calculations. 

Neighbor Distance (Å) Difference (Å) Probability 
1 52.5 0.0 0.0 
2 51.0 1.5 0.6 
3 51.5 1.0 0.4 

 

The probabilities for the least-dense criterion are determined in a similar fashion 

as the closest-to-endpoint criterion.  The only difference being that the distance to the 
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least dense lattice site is used rather than the distance to the end point.  The effective 

density for each lattice site, ρi, is determined by 
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where n is the total number of atoms in the lattice, mj is the mass of atom j, and dij is the 

distance between lattice site i and atom j.  The lattice site with the lowest value is 

considered to be the least dense lattice site.  If multiple sites have the same minimum 

density, the least dense site is chosen at random from this pool of sites.  Limiting the sites 

used in the calculation so that they are within a certain distance of the available 

neighboring sites permits local regions rather than the entire system to be targeted.  This 

reduction of the sites analyzed decreases the amount of computational resources required, 

but may not even out the overall system density. 

For the RIS criterion, the probability assigned to each neighbor is determined by 

the probability of a specific RIS configuration (eg. trans, gauche+, gauche-, as explained 

below) that would be formed if that neighbor were selected based on the locations of the 

current and previous atoms required to determine the RIS.  These probabilities are 

typically available for most polymers in the literature or can be easily calculated (Mattice 

and Suter 1935).   The number of possible RIS configurations is dependent upon both the 

lattice type used and the polymer being modeled.  For example, polyethylene on a 

diamond lattice has three RIS configurations; trans, gauche+, and gauche-.  The 

probability of each configuration occurring is dependent upon the previous RIS, thus the 

probabilities are conditional probabilities for more realistic solutions.  Table 3.3 shows 

the probability table for polyethylene on a diamond lattice (Sharaf et al. 2001). 
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Table 3.3 RIS probabilities for polyethylene on a diamond lattice. 

 Previous RIS 
Current RIS Trans Gauche+ Gauche- 
Trans 0.5909 0.7382 0.7382 
Gauche+ 0.2045 0.2555 0.0064 
Gauche- 0.2045 0.2555 0.0064 

 

Figure 3.8 shows a sample polyethylene molecule ending in a trans state and the 

RIS probabilities for each available site corresponding to their state (trans, gauche+, 

gauche-). 

 

 
Figure 3.8 Diagram showing the available neighboring sites (white) of a molecule 

(black) on a diamond lattice ending in a trans state with associated RIS 
criterion selection probabilities. 

 

For the lowest-energy criterion, the total energies after establishing a bond with 

each available neighbor are determined.  The energies are typically functions of the bond 

length, bond angle, dihedral angle, and/or non-bonded pair interactions.  For each 

available neighbor, the energies associated to connecting with this neighboring atom with 

all of the atoms within a cut-off distance would be summed.  The selection probability for 

each available neighbor, pi, is proportional to the inverse of the energy for that neighbor, 

i.e., 
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where Ei is the energy for the neighbor and n is the total number of neighbors within the 

cut-off distance. 

Once the probability table is completed, one of the neighbors can be selected.  

The selection process begins by calculating the cumulative probability of all available 

neighbor sites (by summing the weighted probabilities for all of the available neighbors 

for the current end atom) and then generating a random number between zero and this 

cumulative probability.  The probabilities are then summed again, though only one 

probability at a time, with this intermediate sum being compared to the random number.  

The probability of the neighbor that increases the intermediate sum above the value of the 

random number is selected.  For example, if three neighbors to the end atom have the 

probabilities of 0.2, 0.1, and 0.5, then a random number is generated between 0.0 and 0.8.  

If this number falls in the range of 0.0 to 0.2, the first neighbor will be selected.  If the 

random number falls in the range of 0.2 to 0.3, the second neighbor will be selected.  Any 

other random number would fall in the range of 0.3 to 0.8, which would result in the third 

neighbor being selected.  The spans of these intervals are the same magnitudes as the 

probabilities for the corresponding neighbor.  

The weight given to each criterion has a significant effect on the likelihood of a 

preliminary chain to be completely grown to the desired length and on the properties of a 

successfully generated preliminary chain, such as RIS configuration ratios or energies.  If 

RIS or random criteria are weighted too heavily, the chain growth could meander in a 

way that generates too long of a chain or grows into a lattice site completely surrounded 
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by occupied sites, preventing further growth.  The least dense criterion is useful to 

improve the distribution of atoms in the system to be more uniform, but can lead a 

growing chain away from the end point or generate a poor distribution of RIS 

configurations.  Giving full weight to the closest to end point criterion will result in a 

near linear preliminary chain as is accomplished with the Faulon et al. (1997; 2001) 

method.  The linear preliminary chain often results in unlikely configurations for the 

completed molecule as the chain tends to grow more in the center leaving the end points 

near the periphery of the chain, fewer entanglements are created, and trans configurations 

tend to overly dominate RIS distributions. 

After a backbone atom is added, side atoms, such as hydrogen, or side chains can 

be added to neighboring lattice sites, reserving these sites from being occupied by other 

backbone atoms or side chains to those backbone atoms.  In fact, in the process of 

growing the chain, the potential lattice site to which an atom can be added must be 

checked to ensure that the side chains can be accommodated. 

Once a preliminary chain has been created (Figure 3.9a), it is grown to the desired 

number of atoms by removing a series of adjacent atoms (Figure 3.9b) and then inserting 

a larger segment of atoms (Figure 3.9c).  This inserted segment is generated in a similar 

manner as the preliminary chain, except that different weights for the probability criteria 

are typically used.  Different weights are used to improve the likelihood of completing 

the shorter segments and when additional criteria are desired.  The sites exposed by the 

removal the segment are used as the end points for directing the growth of the segment 

for insertion.   If a replacement segment cannot be generated due to the inability to 

connect the endpoints of the vacated segment, then the replacement segment is discarded 
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and the vacated segment is restored.  To maintain a likely radius of gyration for the 

molecule, only segments that approach the desired radius of gyration for the chain would 

be accepted. 

 

 
a) 

 
b) 

 
c) 

 
Figure 3.9 The process of growing a preliminary chain, a, by removing a section, 

b, and then inserting a segment of new atoms, c. 

 

Generation of Polymer Molecular Assemblies 

The method of generating relatively short preliminary chains and then filling them 

in with additional atoms works well for generating assembles of polymers, especially 

when dense systems are desired.  This method reduces the difficulties due to volume 

exclusion associated with the construction of long molecules.  In the traditional method 

of growing the entire molecule at once, as the system becomes dense, the likelihood is 



 

51 

high that the growing end will become trapped at a lattice site which is completely 

surrounded by occupied sites.  The method presented here alleviates this problem because 

the preliminary chains are completed while the system is at a relatively low density, 

enhancing the likelihood of completing these preliminary chains.  When growing the 

completed preliminary chains, instead allowing the growth at only a single location, this 

method permits almost every site on the chain to be available for growth, substantially 

increasing the success rate of finding additional sites for growth.  A schematic of the 

polymer system generation algorithm is provided in Figure 3.10. 
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Figure 3.10 Schematic of polymer system generation. 

 

All of the preliminary chains are created sequentially as the first step.  It is 

important that these preliminary chains consist of fewer atoms than desired in the final 

molecules so that the density of the preliminary system does not become too high, 

reducing the effectiveness of this method.  Limiting the size of the preliminary chains can 

be accomplished by discarding any preliminary chains that have more than a specified 

fraction of the total number of desired atoms.  Once all of the preliminary chains have 

been created, they are all grown to their final lengths.  An example of a system of 



 

53 

polyethylene atoms generated on a diamond lattice at a density of 0.91 g/cm3 with full 

volume exclusion, including the hydrogen side atoms, is shown in Figure 3.11. 

 

 
 

Figure 3.11 Example polymer system at a density of 0.91 g/cm3. 

 

If the global density of a system becomes so high that the desired configurational 

characteristics for the molecular assembly cannot be achieved due to the low number of 

available lattice sites and further generation of molecules becomes either computationally 

undesirable or infeasible, the volume exclusion condition can be relaxed to make more 

lattice sites available for growth.  During the process of selecting a neighboring lattice 

site to grow a chain, instead of completely eliminating occupied sites from being 

selected, a very low probability of selection can be assigned to that neighbor for addition.  

For example, if a neighboring lattice site is occupied, instead of assigning that site an 
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effective probability of zero, a multiplier of 0.001 could be applied to the final 

probability.  This small probability will still allow enough atom overlaps to facilitate 

reasonable computational time.  While overlapping of backbone atoms may not be 

desirable, relaxing the volume exclusion for side atoms will typically increase the 

probability of incorporating segments with less of an impact on the final configuration.  

An example of this approach is illustrated with the probability table in Table 3.4. 

 

Table 3.4 A probability table including volume overlap. 

Neighbor  Weighting 
Factor 1 2 3 

Closest-to-End 0.1 0.0 0.6 0.4 
Least-Dense 0.1 0.3 0.7 0.0 
Lowest-Energy 0.3 0.3 0.1 0.6 
RIS 0.5 0.2 0.2 0.6 
Total  0.2 0.3 0.5 
Occupied  0.001 1.0 1.0 
Final  0.0002 0.3 0.5 

 

Generation of Network Polymers 

Cross-linked networks of polymer molecules can easily be created using the 

general method presented by Faulon et al. (Faulon et al. 1997; Faulon 2001) and by 

extension, the method presented here.  A benefit of these methods is that the number and 

locations of cross-links and dangling ends can be specified.  However, Faulon et al. did 

not specify the algorithms for selecting the locations of the end points or the methods for 

determining the connectivity of the chains in the system.  The end points of the molecules 

are assigned to the locations of the cross-links and dangling ends.  After this step, the 
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previously described methods of growing the chains can be followed with a few 

modifications. 

For the creation of a cross-link or dangling end, a lattice site is selected either at 

random or using any rule-based selection process.  The number of molecular ends that 

will be assigned to each cross-link site needs to be defined.  For example, the 

functionality of the cross-linker used to generate an actual polymer network could be 

used.  A single molecular end is assigned to each dangling end site.  Once the end points 

of each molecule are assigned to particular cross-links or dangling ends, the molecules 

can be generated using the process described in the previous sections. The functionality 

of the cross-linker limits the maximum number of polymer chain ends that can be 

connected with a cross-link site. The ends of each molecule will be connected with a 

cross-link site or will be left dangling. Once the connectivity of molecules is completed, 

molecules can be generated using the process described in the previous sections. 

In many cases, instead of randomly assigning the connectivity, the distance 

between cross-links needs to be taken into consideration.  Generally, cross-links closest 

to one another should be connected to increase the likelihood of the formation of a 

preliminary chain between them.  A more uniform network would result from 

implementing an algorithm to locate the cross-links to be connected at a distance equal to 

the characteristic end-to-end length.  An advantage with this initial configuration method 

is that the number of dangling ends, loops, and any other property of the network, can be 

explicitly defined.  An example of a network generated with this method is shown in 

Figure 3.12. 
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Figure 3.12 Example polymer network system showing two cross-links. 

 

 Generation of Ring Molecules 

A benefit of the proposed method is that it can be used to easily create ring 

polymers or macrocyclic rings (Figure 3.13).  By simply defining the two end points of 

the preliminary chain to have the same location, a ring polymer will be created.  On a 

diamond lattice without any nearby occupancy, the initial chain will be a benzene ring.  

Atoms are then inserted in the same manner they are for a linear molecule. 

 

 
Figure 3.13 Example ring polymer. 
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Implementation 

This method has been implemented in a C++ program taking advantage of the 

language’s object oriented capabilities.  The following objects and their contents were 

created. 

 

Objects 

The lattice site objects represent each discrete spatial location on the lattice within 

the simulation box.  These objects contain the geometric coordinates of the lattice site, an 

array containing pointers (links) to each of the neighboring lattice site objects that bonds 

can be made to, an array containing pointers to all of the neighboring lattice site objects 

within a specified cut-off distance, the occupancy state of the site, and the effective 

density at the site’s location.  Pointers are used extensively in the program to reduce 

memory consumption and maintain consistency.  By referring to the coordinates and 

neighbor lists for each lattice site, piecewise operations can be completed without 

knowledge of the underlying topology.  The lattice site objects also contain methods 

(functions) that add or remove neighbors, determine availability of the site for placement 

of atoms and/or side atoms, and set the occupancy states of the site. 

The base lattice object represents the entire lattice of the simulation box and 

contains an array holding pointers to all of the lattice site objects in the lattice, an array 

holding pointers to all of the molecules in the system, the dimensions of the simulation 

cell, the bond length between neighboring lattice sites, and the various parameters that 

control chain generation and growth algorithms.  This object also contains all of the 

methods used for the generation of molecules, querying of lattice properties, and 
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outputting of the entire system to specific file formats used by other programs including 

LAMMPS and VMD.  All of the methods and contents of the base object are valid for all 

lattice types.  Child lattice objects that are specific to the type of lattice, e.g. cubic or 

diamond, are separate objects which inherit all of the base lattice object’s contents and 

methods and add functionality specific to that type of lattice.  This added functionality 

includes the replacement of base class methods as well as the addition of new methods.  

For example, RIS generation methods in the base object are just random generation 

methods since the base class has no knowledge of the lattice structure.  The diamond 

lattice object replaces the base object’s RIS generation methods with methods specific to 

the connectivity of the diamond lattice. 

The atom objects represent the atoms that are added to the lattice and contain the 

actual geometric coordinates of the atom, a pointer to the lattice site object associated 

with the atom, an array of pointers to other atom objects that are bonded to this atom 

object, an array of pointers to neighboring lattice sites that contain virtual side atoms (e.g. 

the hydrogen atoms for a methyl “atom”), and the molecular weight of the atom.  Since 

periodic boundary conditions are assumed for this method, it is possible for the atom’s 

geometric coordinates to differ from the lattice site coordinates at which the atom is 

located within the simulation cell.  The atom geometric coordinates are required to 

determine molecular properties which extend beyond the simulation cell such as end-to-

end length.  Methods contained within the atom object add and remove bonded atoms, 

reserve neighboring sites for side atoms, and suppress and restore atoms from the lattice. 
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a) b)  
 
Figure 3.14 A single system configuration showing actual geometric coordinates of 

each atoms (a) and the lattice site coordinates of each atom (b). 

 

The molecule objects represent all of the molecules and segments in the system 

and contain the properties of the molecule, an array containing pointers to the atom 

objects associated with the molecule, and information detailing the order at which 

different atom types are added to the molecule.  The methods found in this object 

determine the properties of the molecule and add or remove atoms to the molecule 

 

Diamond Lattice 

Cubic and diamond lattices were implemented in the software.  Representing the 

cubic lattice as a lattice object was trivial as the cubic lattice topology corresponds 

directly to a three dimensional array as implemented in C++.  Unlike cubic lattices, 

diamond lattices do not map directly to programming arrays, so a method had to be 

implemented in the diamond lattice object to associate the diamond lattice topology to a 
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C++ array.  Meyer (1999; 2000) has presented methods and mappings of various lattice 

geometries to computer memory.  The use of object oriented programming methods in 

this implementation permits the incorporation of any of these lattice geometries including 

cubic, diamond, honeycomb, and quadrilateral lattices.  For a lattice site stored in a 

memory array, the mappings specify which relative positions in the memory array 

contain lattice sites that are connected to the current lattice site.  For the simple cubic 

lattice, the mappings for the six neighbors are 

 (1,0,0), ( 1,0,0), (0,1,0), (0, 1,0), (0,0,1), (0,0, 1)− − −  (3.5) 

This mapping completes the connectivity of the lattice, but does not give the 

actual coordinates of each site.  The transformation of lattice site indices to geometric 

coordinates is determined by 

 ( 0.5) , ( 0.5) , ( 0.5)x i l y j l z k l= + = + = +  (3.6) 

where i, j, and k represent the indices in the three-dimensional memory array of the lattice 

site and l is the distance between neighboring atoms, typically the bond length.  The 

addition of the 0.5 term facilitates the centering of the lattice within the simulation box 

with periodic boundary conditions.  In the implementation of these mappings, the indices 

range from negative to positive values so that the center of the simulation box is at 

(0,0,0).  This treatment requires the indices referencing an actual memory array to be 

shifted since only non-negative values are permitted by C++. 

For some lattice geometries, including the diamond lattice, there are two sets of 

mappings, one for “even” lattice sites and the other for “odd” lattice sites.  The “odd” and 

“even” attributes alternate when progressing between neighboring lattice sites.  For the 

diamond lattice, the memory array mappings are 
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(1,0,0), (-1,0,0), (0, 1,0), (0,0, 1) even
(1,0,0), (-1,0,0), (0,-1,0), (0,0,-1)  odd

 (3.7) 

These mappings are just one valid set for diamond lattices.  Using different 

mappings will change the orientation of the lattice to the simulation box.  The lattice site 

to coordinate transformation was determined by correlating the diamond lattice memory 

array mappings to a set of geometric coordinate neighbor mappings, 

 
< 1, 1, 1>, < 1,-1,-1>, <-1, 1,-1>, <-1,-1, 1> even
< 1, 1,-1>, < 1,-1, 1>, <-1, 1, 1>, <-1,-1,-1>  odd

 (3.8) 

and extracting the relationships manually, resulting in 

 

(2( ) 0.5)
3

(2( ) 0.5)
3

(( ) 0.5)
3

(( ) 0.5)
3

li k i j k odd
x

li k i j k even

ly i j k

lz i j k

 + − + + =  =  
 + + + + =
  

= − + + +

= − − + +

 (3.9) 

This manual process entailed the creation of a simple program to find valid 

relationships.  The program used a brute force method to find out which associations 

between the memory and geometric mappings correctly identified connectivity loops.  

Again, there are different valid geometric coordinate transformations for the diamond 

lattice, each resulting in different lattice orientations with regards to the simulation cell.  

With the lattice-to-memory and lattice-to-coordinate mappings, the complete lattice can 

be constructed. 

These mappings permit the lattice sites to be defined, but the set of valid lattice 

sites that would comprise a system lattice with periodic boundary conditions must be 

determined. A lattice site on one edge of the simulation box must have a valid neighbor 
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on the opposing side of the simulation box.  The lattice is complete when all the lattice 

sites are defined within the boundaries of the simulation box and all of the lattice sites’ 

neighbors are valid and assigned. 

 

Polymer Chain Generation 

One of the most difficult implementation issues to resolve was the completion of 

a preliminary chain or segment where the end point is specified as an existing atom.  An 

advantage of the method presented here is that it accounts for energies and side atoms in 

order to generate a realistic configuration.  This aspect essentially drives the growth or 

chains and segments away from other atoms.  However, completing a chain or segment at 

a specific end point where an atom already exists at the end point is in opposition to the 

normal generation algorithm.  As such, algorithms are employed that monitor the distance 

between the growing segment and the end point.  Once this distance falls below a 

specified threshold distance, the algorithm walks all of the possible paths containing 

fewer than a specified number of hops.  If one of these paths leads to the end point, it is 

selected.  While this method has proven successful in completing segments within a 

reasonable time frame, the selection of the path generally ignores the selection criteria 

other than lowest-energy for the atoms in the path.  Any path that is found to create 

energies above a specified threshold is excluded.  Additionally, while finding a path, if 

two neighboring lattice sites to the last lattice site on the path are equidistant from the 

endpoint, the algorithm will use the RIS criterion in the selection process.  By not 

accounting for all of the criteria, some control over the final structure is lost.  This 

problem can be mitigated by creating larger segments, which would have the effect of 
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reducing the overall percentage of atoms in a chain that were selected along the final 

completion path. 

 

Polymer Assembly Generation 

The theory behind generating an assembly of polymer chains is relatively 

straightforward.  However, in practice the algorithms required to generate the entire 

assembly in an efficient manner are more complex.  A robust algorithm entails the 

selection of the chain that requires the addition of the maximum number of atoms, which 

is typically the shortest chain.  A segment is inserted into this selected chain.  If this chain 

still requires a lager number of atoms compared to the other chains, then an additional 

segment will be inserted.  Otherwise, another chain that now requires the most atoms will 

be selected.  This process ensures a uniform growth of all of the chains so that they are all 

finished at nearly the same time.  Other methods such as randomly selecting a chain from 

the pool of available chains or sequentially selecting chains tend to leave a few chains 

that require a substantial amount of additional atoms after all of the other molecules have 

been generated and the system has become dense.  The probability of adding enough 

atoms to these remaining chains then becomes low, and the computational expense 

becomes high.  Completing the addition of all of the atoms at a similar rate improves the 

speed at which the entire system is generated. 

As the system becomes dense, there are times when randomly selecting a position 

and length of segment to be removed does not permit a longer segment to be inserted 

within a reasonable timeframe.  After a certain number of attempts, the algorithm steps 

through each position on the existing chain and attempts to insert a new segment at this 
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position.  This stepping algorithm can be repeated after removing segments with different 

lengths until an insertion is successful. 

In some cases, even this stepping algorithm is not successful in finding a place to 

insert a segment.  This condition is usually a result of the molecule being completely 

surrounded by occupied sites.   For further improvement  another routine can be used that 

steps through all of the molecules in the system with the objective that the replacement of 

existing segments of these chains with the newly inserted segments would move one of 

the neighboring molecules away from the molecule of interest, creating an area for 

growth.  By limiting the length of the inserted segments to be identical to the length of 

the segments removed in a molecule, the neighboring molecules can have their 

configurations modified, but not the number of atoms in the molecule.  This constraint 

prevents the neighboring chains from being completed while trying to make room for the 

addition of atoms into the shortest chain. 

 

Network Generation 

In this implementation with polyethylene on a diamond lattice, the number of 

cross-links and dangling ends are determined by the number of molecules to be generated 

in the network.  The number of molecular ends assigned to each cross-link depends on 

the functionality of the cross-linker and is set equal to four in this case.  Thus, the integer 

component of two times the number of molecules divided by four is the number of cross-

links that needs to be created.  The remainder of this division is the number of dangling 

ends.   For example, a network consisting of nine molecules would have four cross-links 

and two dangling ends.  For networks with a low number of molecules, a molecule could 
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begin and end at the same cross-link forming a loop or more than one molecule could 

connect the same pair of cross-links.  Once the number of cross-links and dangling ends 

is determined, the locations of these entities are randomly chosen.  The connectivity is 

assigned based on shortest distances between the cross-link and dangling end locations.  

A sample connectivity for the nine molecule example is given in Table 3.5. 

 

Table 3.5 An example assignment of cross-link and dangling end sites for nine 
molecules. 

End Point Connecting Sites 
Cross-link 1 Cross-link 2 Cross-link 3 Cross-link 4 Dangling End 

5 
Cross-link 2 Cross-link 1 Cross-link 3 Cross-link 4 Cross-link 4 
Cross-link 3 Cross-link 1 Cross-link 2 Cross-link 4 Dangling End 

6 
Cross-link 4 Cross-link 1 Cross-link 2 Cross-link 2 Cross-link 3 

Dangling End 5 Cross-link 1    
Dangling End 6 Cross-link 3    

 

In order to create networks of chains with predefined end-to-end lengths, the 

distance between connected cross-links must be controlled.  In this implementation, the 

initial positions of the cross-links and dangling ends are randomly positioned as described 

earlier.  The distance between these points are modified using pair potentials.  The 

Lennard-Jones potential is calculated for each pair of points connected by a chain.  

Forces on each point can then be determined from the gradient of the potential.  

Additionally, pair potentials with only the repulsion portion enabled between each non-

chain linked pair can be implemented to disperse cross-links and prevent clustering that 

would increase the difficulty of successfully generating the chains as discussed later.  The 

final forces can then be used to perturb the points on the lattice until the “lowest energy” 
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configuration is found.  Due to the discrete nature of the lattice, a unique algorithm was 

devised to efficiently find the lowest energy state.  Once all of the force components on 

each point have been determined from all of the chain pair and non-chain pair potentials, 

the position of every point is moved to the lattice site that is closest to the direction of the 

force vector on that point.  Once all of the points have been moved, the new energy is 

determined.  Since the overall lowest energy may be achieved by only moving a portion 

of the points, the perturbation is repeated, but the atom with the lowest magnitude of 

force is excluded from movement.  The energy of this new state is then determined.  The 

perturbation step is continued, removing the atom with the next lowest force until only 

one atom is actually moved.  Then the perturbation that resulted in the lowest energy is 

selected.  New forces are calculated on this new configuration.  This process is repeated 

until a lower energy configuration can not be found.  To prevent a local energy minimum 

to be selected where the end-to-end lengths are not at the desired values, the algorithm 

further perturbs the configuration to move it out of the local energy well.  This method 

has been found to be very efficient in finding configurations with end-to-end lengths that 

are within one bond length of the desired distance, preventing clustering of the end 

points. 

One issue that must be overcome when generating cross-linked networks is that 

the density around each cross-link becomes relatively high as more chains are connected 

to the cross-link, reducing the probability of another growing chain to actually reach the 

cross-link.  This is particularly problematic when trying to grow the final preliminary 

chain to a particular cross-link.  This issue has been overcome by using a combination of 

ends-to-middle preliminary chain generation and sequential atom-by-atom chain 
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assembly growth.  Instead of growing a preliminary chain from one end point to another 

endpoint as described earlier, the ends-to-middle preliminary chain generation creates a 

chain by adding atoms from both ends sequentially until they meet in the middle.  

Generating preliminary chains in full prior to generating subsequent preliminary chains 

using this method can still result in a lack of available paths for subsequent preliminary 

chains being generated from the cross-links since previously generated preliminary 

chains could coil around a cross-link completely surrounding the cross-link with its 

atoms.  Growing all of the preliminary chains simultaneously by adding a single atom to 

each of the chain’s end points in a sequential manner permits all of the initial chains to 

find paths from the cross-links. 

For large systems, the likelihood of the growth of chains to still be trapped near a 

cross-link increases.  Two additional modifications were made to help alleviate this 

problem.  First an additional criterion, the furthest-distance criterion, was added.  This 

criterion is similar to the closest-distance criterion, except the furthest distance has a 

higher probability of being selected.  Including this criterion at the beginning of the chain 

growth with the distance reference point set to the cross-link that the chain is originating 

from encourages the growth to be directed away from the cross-link, reducing the 

likelihood of it interfering with the growth of other chains emanating from the same 

cross-link.  The second modification is that instead of discarding an entire chain if its 

growth can not continue; only the last half of the chain is discarded.  This modification 

prevents the atoms nearest the originating cross-link to be discarded, decreasing the 

likelihood of the chain being trapped near the cross-link. 
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Effectiveness of the Method 

A polymer system with 50 molecules consisting of 1,000 atom molecules was 

created as a test case.  A diamond lattice, as described earlier, was used with neighboring 

lattice points separated by the equilibrium bond length, 1.53 Å.  The simulation box 

dimensions were calculated to give a density of 0.91 g/cm3, assuming each unified atom 

represents a CH2 structure with an atomic weight of 14.027 g/mol.  To apply periodic 

boundary conditions, the lattice requires discrete dimensions for symmetry, which makes 

it difficult to precisely define the number of molecules, number of atoms per molecule, 

and overall density.  Due to these limitations, the actual final density was 0.90 g/cm3.   

The end points of these preliminary configurations were determined by selecting a 

random point and then growing the initial chain until the characteristic length of the 

molecule (<r2> = N Cinf l2) was reached, where Cinf = 6.7.  Again the accuracy of this 

distance is limited by the discrete nature of the lattice.  The RIS probabilities for 

polyethylene are given by Sharaf et al. (2001) as previously listed in Table 3.3.  Since the 

bond length and angle energies are already minimized by use of the diamond lattice and 

the RIS criterion should minimize the dihedral energies to some extent, only the van der 

Waals energies need to be considered for the lowest-energy criterion.  The energies for 

the Lennard-Jones potential determined by Equation 2.4 were used.  The weighting 

factors used for both the initial chain growth and the atom insertion phases are shown in 

Table 3.6. 
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Table 3.6 Weight factors employed in the initial configuration generation. 

Criterion Initial Growth Weight Insertion Weight 
Closest-to-End  0.0 0.2 
Least-Dense 0.0 0.1 
Lowest-Energy 0.2 0.1 
RIS 0.8 0.6 

 

Full volume exclusion was used, including volume exclusion of the neighboring 

side sites that would be occupied by hydrogen atoms.  Placement of the 50,000 atom 

lattice takes less than a couple of hours on a single processor, 2.2GHz AMD Opteron 

based computer.  Over 90% of the atoms are placed within 30 minutes.  The calculation 

of the lattice densities and energies consumes a significant portion of this time. 

For comparison purposes, another configuration was created using the method of 

generating a polymer system at a low density and then compressing it to the desired 

density (van der Vegt et al. 1996).  A system of 50 molecules consisting of 1,000 atoms 

was generated on a diamond lattice at a density of one eighth of the desired density, 0.114 

g/cm3.  The same weight factors were used.  Due to the low density, the configuration 

was generated in a few minutes.  The low density configuration was gradually 

compressed to the same dimensions as the initial configuration created with the new 

method by running an MD simulation with a non-equilibrium NPT ensemble 

(Melchionna et al. 1993) over  a simulation time of 500 ps with an integration step size of 

0.5 fs and at a temperature of 300 K.  All of the potentials were enabled, except the cut-

off distance for the van der Waals potential was reduced to 4.01 Å to eliminate the 

attractive portion of the potential (van der Vegt et al. 1996).  The full cut-off distance of 

10.0 Å was reinstated for the remaining MD simulation steps.  The compression process 
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took three hours to complete when run on a computer cluster using 12 2.2GHz AMD 

Opteron processors. 

After the initial configurations were generated, they were relaxed to determine 

how much they changed from their initial states.  The MD simulation was run with a non-

equilibrium NPT ensemble holding the pressures at 1 atm for 250 ps with an integration 

step size of 1.0 fs and at a temperature of 300 K.  The less the change as a result of 

relaxation, the better the initial configuration can be considered.  

The low density/compression method was previously found to generate 

configurations with low energies (van der Vegt et al. 1996).  The results from the 

relaxation simulations confirm this observation and show that the new method generated 

configurations with the same energies, which are at near equilibrium within 40 ps (Figure 

3.15).  There are some initial changes to the energies in the first few picoseconds due to 

the diamond lattice constraints with the present method, and with the increase of the cut-

off distance for the van der Waals potential with the low density/compression method.  If 

the new method did not include the volume exclusion of the hydrogen side atoms or the 

lowest-energy criterion, the van der Waals energies would be many orders of magnitudes 

higher, requiring significantly longer relaxation times. 
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Figure 3.15 System energies during relaxation process. 

 

The change of volume during the relaxation process gives an indication of how 

well dispersed the polymer molecules are and how well the potentials employed mimic 

actual behavior.  As with the energy results, there is an initial jump in volume which is 

quickly relaxed to a volume very close to the initial volume of the simulation cell (Figure 

3.16). 
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Figure 3.16 Change of volume during relaxation. 

 

The minimal change of energy and volume indicate that both the new and the low 

density/compression methods generate very good initial configurations based on overall 

system properties.  Tracking the changes in RIS percentages, average end-to-end length, 

and average radius of gyration during the relaxation process gives a good understanding 

of how much the individual molecules change as they relax into individual lower energy 

states.  The evolution of the percentages of trans, gauche+, and gauche- states indicates 

that the initial configuration does not create enough trans states (Figure 3.17).  For both 

methods the initial percentage of trans states is lower than the target value of 65% 

(Sharaf et al. 2001) during generation.  The lower percentage of trans states is likely due 

to a difference in the RIS probabilities used in this method and the probabilities of these 

states resulting from the PYS potentials.  Additionally, the lower percentage of trans 

states with the new method is due to the closest-to-end, lowest-energy, and least-dense 
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criteria.  These criteria weaken the strength of the RIS criterion.  Increasing the trans 

probabilities in the RIS criterion could help compensate for the lower number of trans 

states.  The configuration generated by the low density/compression method has a lower 

percentage of trans states as a result of the compression process reducing the number of 

“straight” trans states and increasing the number of “bent” gauche states.   Increasing the 

compression time would likely reduce this effect of this problem, but would increase the 

computational time. 

 

 
 

Figure 3.17 Change of trans and gauche percentages during relaxation. 

 

The average end-to-end length (Figure 3.18) and average radius of gyration 

(Figure 3.19) graphs demonstrate the significant differences in the configurations 

generated by these two methods.  Initially, the molecules generated by both methods have 

statistically correct end-to-length and radius of gyration.  However, the compression step 
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in the low density/compression method reduces the values of these properties.  The lack 

of apparent change over a time span of 250 ps indicates that the process of returning to 

the most probable end-to-end length and radius of gyration values is well outside of the 

timeframe permissible by typical MD simulations. 

 

 
 

Figure 3.18 Change of average end-to-end length during relaxation. 
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Figure 3.19 Change of average radius of gyration during relaxation. 

 

The effect of the two methods can be further elucidated by examining the 

geometric changes of a molecule during the relaxation process.  A molecule extracted 

from the initial configuration created with the new method is given in Figure 3.20 and a 

molecule extracted from the initial configuration created with the low 

density/compression method is given in Figure 3.21.  These representative molecule 

structures demonstrate that the low density/compression method generates less realistic 

“balled up” configurations having little entanglement with neighboring molecules while 

the new method generates more realistic, spread out molecules that permit much more 

interaction with neighboring molecules. 
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a) b)  
 

Figure 3.20 Change in geometry of a sample molecule from the system created with 
the new method from the initial configuration, a, to the relaxed 
configuration, b. 

 

a) b)  
 
Figure 3.21 Change in geometry of a sample molecule from the system created with 

the least dense/compression method from the initial configuration, a, to 
the relaxed configuration, b. 
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Conclusions 

The method presented here is a significant improvement to the Faulon et al. 

method (Faulon et al. 1997; Faulon 2001), permitting the creation of realistic polymer 

configurations at high densities with low energies while maintaining a significant degree 

of control over the final properties of the system.  The control over the relaxed 

configuration and the relatively low amount of computational time required to reach the 

relaxed state are advantages over other methods.  In addition to being able to control the 

statistical properties of the molecules, specifying the endpoints of every molecule permits 

the orientation distribution of the polymer system to be controlled.  Complex molecular 

configurations such as cross-linked networks, ring polymers, and branched polymers can 

also be generated with specified properties. 

While the low density/compression method was found to generate configurations 

that provide reasonable results in small molecule diffusion simulations (van der Vegt et 

al. 1996), these configurations would not likely do as well in mechanical simulations 

where molecular entanglement would be important.  The new method presented here 

should provide initial structures with more realistic behavior during MD simulations of 

deformation processes.  The molecular assembly generation methods presented here have 

advantages over the Faulon et al. method on which it was based.  RIS characteristics can 

be specified and energies can be minimized as a result of the implementation of 

probability tables, particularly the RIS and lowest-energy criteria.  This new method 

entails the removal of multiple bonds at the point where a longer segment is inserted, 

while the Faulon et al. method entails the removal of a single bond.  Removing more than 
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a single bond during the insertion stage probably increases the amount of entanglement 

between molecules, though this has not been evaluated. 

This new method takes much less computational time than the low 

density/compression method, but significantly more time than the Faulon et al. method.  

The increased computational time over the Faulon et al. method is a result of the more 

complex molecule growth algorithms.  Eliminating some of the criteria such as the 

lowest-energy or least-dense criteria significantly decreases the computational time 

required.  The implementation of the new method presented here was programmed for 

correctness and the algorithms have not been optimized for efficiency. Additionally, the 

program is currently single-threaded and does not take advantage of multi-processor 

environments.  It is likely that the computational time can be reduced significantly after 

profiling and optimizing the code.  The majority of computational time is spent placing 

the last few percent of the atoms.  Therefore generating an initial configuration at around 

90% of the desired density with the new method and then compressing it to the final 

density may give better performance and still result in good control of the relaxed 

structure. 

Though a relatively simple polyethylene molecule was generated here, generating 

more complex molecules can easily be implemented by either adding specific atoms and 

side groups in the order found along the backbone, or having each atom on the lattice 

represent an entire monomer.  After the initial configuration is generated, the atoms can 

be replaced with the appropriate monomer structure for MD simulations.  The type of 

lattice chosen will have a direct bearing on the accuracy of more complex molecules to 

their relaxed state.  If the bond lengths are different between backbone atoms, the 
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magnitudes of the bond length energies in the initial configuration will be higher than in 

the relaxed configuration.  Likewise, the angles between lattice sites will directly affect 

the bond angle and dihedral energies.  An advantage of the new method presented here is 

that different lattices can be compared with little effort. 

Further evaluation needs to be performed to better understand the differences in 

mechanical and other relevant behaviors of the initial structures generated with this 

method.  However, the evaluation presented here indicates that this method might be 

expected generate much more realistic configurations than any other method presented in 

the literature. 
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CHAPTER 4 

TIME ACCELERATION OF MOLECULAR DYNAMICS 

 

Background 

Simulating polymer deformation processes with atomistic models can permit the 

prediction of mechanical behaviors based on first principles.  However, the permissible 

time scales for atomistic simulations preclude accurate predictions of events that take 

place at slow rates and at long times typical of real world applications.  This limitation is 

particularly problematic for this research since the mechanical behavior of many 

polymers has significant rate dependencies.  Molecular dynamics (MD) allows 

reasonably large atomistic systems to be studied, on the order of tens to hundreds of 

thousands of atoms.  Due to current and foreseeable computational limitations, MD 

simulations are limited by the length of time that can be modeled per number of atoms.  

Since traditional MD requires integration time steps on the order of the vibrational 

frequencies of the atoms in the simulation, e.g. 10-14s, simulations of polymer systems are 

usually limited to the nanosecond range.  Deformation in many forming processes such as 

bottle and film blowing, fiber spinning, and film drawing takes place in millisecond or 

longer timeframes, requiring many orders of magnitude longer MD simulations than can 

be currently performed.  To increase the timescales of MD simulations many techniques 

have been employed to reduce the degrees of freedom in the system such as the use of 

united atoms, periodic boundary conditions, and cut-off distances.  However, these 

methods do not permit enough of an increase of the timescale. 
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Another approach is to neglect the vibrational detail and focus on the more 

significant, less frequent events that affect the mechanical performance.  The dihedral 

rotation of polymer chains about the bonds is the primary mechanism influencing 

deformation.  Due to the presence of other atoms and side chains in close proximity to the 

group of atoms undergoing a dihedral rotation, the barriers to rotation are significant 

enough to reduce the rate of rotational transitions to several orders of magnitude lower 

than the vibrational rates.  Therefore, methods that focus on the less frequent 

conformational changes instead of the vibrational changes might be able to increase the 

timescales accessible through MD by several orders of magnitude. 

Several methods have been presented for time accelerating methods to capture the 

long term events while maintaining reasonable detail of short term events (Voter et al. 

2002).  Transition State Theory (TST) is the basis for most of the time accelerating 

methods.  TST is based on the assumption that there are several energy minima or states 

that an entity (atom, segment, or system) can independently transition between (Figure 

4.1). 
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Figure 4.1 Diagram showing the primary features of a potential energy related to 
transition state theory. 

 

The entity resides in a particular state, on average, for a specific time.  This time 

is inversely related to the rate constant for the transition.  Making the assumption that the 

vibrations are harmonic, the rate constant can be defined as 

 0 expHTST a
A

B

Ek v
k T→

 −
=  

 
, (4.1) 

where HTST
Ak →  the harmonic transition state theory constant, v0 is the ratio of the normal 

mode frequencies at the minimum energy points to the normal mode frequencies at the 

transition points, Ea is the activation energy of the transition, kB is the Boltzmann’s 

constant, and T is the absolute temperature.  This rate constant can be used in kinetic 

Monte Carlo (kMC) simulations to direct the probability of a state change event 

occurring.  One of the primary limitations of TST in MC simulations is that all relevant 

transitions must be known a priori, a limitation not inherent to classical MD.  

Additionally, only independent events are addressed, excluding cases for which a 

transition is quickly followed by a return transition or an even number of back-and-forth 
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transitions that do not result in a net change in state.  Also, multiple changes in state may 

be required prior to achieving a stable state.  To address the need for defining all relevant 

transition states before starting a MC simulation, the self learning or on-the-fly kMC 

method was developed (Henkelman and Jonsson 2001).  This method attempts to 

determine all of the saddle points on the potential energy surface between states using the 

dimer method (Henkelman and Jonsson 1999).  From the saddle point energies, the 

transition rates can be determined and are then implemented into the kMC method. While 

this permits significant acceleration, the dimer search must be performed after each 

transition.  With the large number of bond rotations occurring in a large polymer system, 

this method would require too much computational overhead to be useful. 

Somewhat similar to the on-the-fly kMC is the Temperature Accelerated 

Dynamics (TAD) method (Sorensen and Voter 2000).  TAD relies on higher 

temperatures increasing the rate at which transitions occur.  Increasing the temperature 

alone is not sufficient as transitions with different saddle point energies would have their 

transition rates increased by different amounts.  TAD compensates for the difference in 

relative transition rates between the various types of transitions in the system.  A MD 

simulation is run at a higher temperature than the desired simulation temperature until a 

transition occurs.  The nudged elastic band method (Henkelman and Jonsson 2000) is 

used to determine the saddle point of that transition. The time to this initial transition is 

noted and the transition is reflected back to its previous state.  The MD simulation is 

continued for a specific period of time based on the value of the saddle point energy of 

this first transition.  This additional time is required to find other transitions that may 

occur in shorter time periods at lower temperatures.  Subsequent transitions are recorded 
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and reflected back as was done with the initial transition.  After the pre-determined 

period of time has been completed, the lowest energy transition is accepted.  The time to 

the lowest energy transition is mapped back to the lower temperature and the simulation 

time is increased by the low temperature time, i.e., 

 1 1explow high a
B low B high

t t E
k T k T

  
= −      

. (4.2) 

Here, tlow is the equivalent low temperature time, thigh is the high temperature simulation 

time, Ea is the activation energy of the transition, Tlow is the desired low temperature, and 

Thigh is the high temperature of the simulation.  The greater the ratio of the higher 

temperature to the lower temperature, the greater the speedup.  However, higher 

temperatures result in an increased number of transition events, including more correlated 

events.  These additional transition events reduce the accuracy of the underlying 

assumptions in this method.  Therefore, the high temperature should be chosen to be as 

low as possible and still meet the desired acceleration goals.  This method makes more 

approximations than the previously discussed methods, but as long as too high of a 

temperature is not used, the results can be accurate with a time acceleration factor on the 

order of thousands for small molecular systems.  The calculations required to find the 

saddle point scale between the number of atoms in the system, Natoms, and Natoms
2, so for 

large systems, these calculations can take away any gain from the time acceleration. 

The parallel replica method for both MC (Swendsen and Wang 1986) and MD 

(Hukushima and Nemoto 1996; Voter 1998) simulations permits the temporal 

decomposition of a simulation so that the time can be parallelized over multiple 

processors in a similar manner as the more typically used spatial decomposition.  In this 
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method, the system is replicated on multiple processors.  The atomic velocities for each 

replica are randomized so that each replica has the same configuration but separate 

dynamics.  All of the replicas are then run independently until a state change occurs in 

one of the replicas.  At this point, all of the replica simulations are halted except for the 

one in which the state change occurred.  This replica is then run for a little longer to 

ensure that the state does not revert back.  If the state change is still valid, the overall 

simulated time is increased by the sum of the simulated times for each of the replicas.  

Then the replica in which the state change occurred replaces all of the other replicas, the 

dynamics are randomized, and the process is repeated.  This method works well for small 

systems for which spatial decomposition is not highly parallelizable.  Though this method 

has been applied to small polymer systems (Halley and Duan 2002), it has little appeal in 

this research since the polymer systems of interest are generally quite large and can be 

spatially parallelized more efficiently.  Additionally, dihedral transitions occur at some 

point in the system at every time step which would make this method impractical.  The 

parallel replica method can also be combined with other time acceleration methods. 

Another approach to accelerate MD is to modify the system potential surface in 

order to increase the rate at which infrequent events occur (Grimmelmann et al. 1981).  

This approach entails increasing the potential energy in the wells between transition 

saddle points to reduce the amount of additional energy required to cross over these 

saddle points, thereby increasing the frequency at which transitions occur.  The 

modifications to the potential energy surface must be made in a manner that ensures that 

the energies at the saddle points are unmodified; otherwise, the rates of each transition 
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will be affected differently, possibly leading to unrealistic behaviors.  Since the potential 

energy “wells” are increased, vibrational detail is lost. 

Grubmuller (1995) proposed a conformational flooding method to speed up 

simulation of macromolecules, particularly proteins.  A short MD simulation is run to 

reduce the degrees of freedom in the conformational space by calculating a 

conformational space density model.  This coarse grain conformational space model is 

then used to calculate a flooding potential which is then applied to the system 

Hamiltonian.  The flooding potential essentially fills in the potential energy wells in the 

system potential.  While this method yielded good accelerations for the very small protein 

that was evaluated, the computational cost of calculating the system Hamiltonian would 

overcome the acceleration gains for large systems of interest in this research. 

Voter (1997b; 1997a) proposed the hyperdynamics method which adds a bias 

potential to the system potential energy surface.  This bias potential approaches zero near 

saddle points to maintain the correct saddle point energies.  The bias potential is based on 

the Hessian matrix of the second derivatives of the potential energy with respect to the 

atomic positions.  This approach does not require knowledge of the system potentials 

prior to the simulation.  Near the saddle point, the lowest eigenvalue of the Hessian will 

become negative.  Therefore, the bias potential is defined such that it approaches zero as 

the lowest eigenvalue becomes negative.  While this method provides a general solution, 

the calculations of the system Hessian result in large systems becomes too 

computationally expensive.  Calculating the Hessian of only neighboring atoms to the 

atom of interest can help this method scale computationally for larger systems (Gong and 

Wilkins 1999; Duan and Gong 2003).  However, larger systems are more likely to 
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produce a negative lowest eigenvalue value away from the transition, reducing the 

effectiveness of the method.  This issue was noticed even on a system with only nine 

moving atoms (Voter 1997b) during an Ni adatom diffusion simulation. 

Voter later proposed a modification that only requires the first derivative of the 

potential energy to be computed which is already required in normal MD operations 

(Voter 1997a).  This method requires only tens of calls to the force routines of the MD 

software, though some knowledge of the potential is required in order to implement 

optimal parameters for the bias potential.  As long as the increase in rate is more than 

around 30, a net gain will be realized.  However, this method is applied to the entire 

system, where state transitions are separated by relatively large time spans. 

Another bias potential has been described by Steiner et al. (1998) which sets a 

minimum or floor energy and has the benefits of being easier to code and 

computationally inexpensive.  Basically, wherever the potential energy falls below the 

floor energy, it is simply assigned the floor energy (Figure 4.2).  To maintain continuity 

in the modified potential, a blending function is implemented.  The higher the floor is set, 

the better the time scaling.  However, the floor must be set lower than the lowest saddle 

point or transitions that depend on the lowest saddle point will be lost.  As a result, this 

method can become ineffective for systems with a large number of states as the 

probability for a state to lie below the floor energy becomes more likely (Voter 1997b). 
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Figure 4.2 Diagram showing a boost potential with the floor energy in red and the 
blending energy in green. 

 

A similar approach is followed by Pal and Fichthorn (1999) where the potential 

below a threshold value is increased but, instead of adding a bias potential, the base 

potential is multiplied by a boost function.  The boost must be equal to unity in the saddle 

point regions so as not to affect the relative rates of transitions.  Their boost function 

includes two parameters that permit the ‘aggressiveness’ of the boost to be adjusted.  

However, this boost function can produce modified potentials with small energy wells 

within the region to be boosted, though they are not believed to have a significant effect 

on the final impact of the boost function as was demonstrated with their Ag adatom 

diffusion simulations. 

Both this approach by Pal and Ficthorn and the simple bias potential by Steiner et 

al. are less effective for large systems in which the transitions tend to get overpowered by 

the fluctuations in the potential energies within large systems.  Wang et al. (2001) 

overcome this small system limitation by basing the boost potential on the potentials of 

each atom for simulations of the diffusion of Lennard-Jones atoms on a fcc surfaces.  

Dihedral Angle 

P
ot

en
tia

l E
ne

rg
y 

Floor Energy 

Blend Energy



 

89 

Two forms of this local boost method are presented.  The first is based on the maximum 

potential of all the atoms in the system, i.e., 

 max
( ) ( )( ) ( )

1 ( ) ( )b
V f VV V

V f V
 Θ ∆ ∆

∆ =  +Θ ∆ ∆ 
r r  (4.3) 

where ∆Vb(r) is the boost potential, r represents the positional degrees of freedom for all 

of the atoms, Vmax(r) is the largest potential energy of all of the atoms in the system in the 

configuration defined by r, Θ(∆V) is a stepping function which is 1 if ∆V is greater than 

zero and 0 otherwise, f(∆V) is a blending function to ensure continuity, and ∆V is the 

difference between the floor energy, Vfloor, and Vmax(r), given by 

 ( )floor maxV V V∆ = − r . (4.4) 

The blending function is given as 

 
( )
( )

exp /
( )

1 exp /
cb b V

f V
b V
γ

γ

− ∆
∆ =

+ − ∆
, (4.5) 

where bc and bγ are parameters that affect the shape of the blending curve.  The other 

form of the local boost method is based on the minimum difference in energy between 

each atom’s potential and the floor energy, i.e., 

 ( )( ) ( )
1 ( )

n

n

b
c

b b
c

b VV V V
b V

 ∆
∆ = ∆ Θ ∆  + ∆ 

r , (4.6) 

where bc and bn are blending parameters.  This second form has the advantage of 

requiring less computational resources as the blending function is simpler, especially if bn 

is set to unity, and a search through all of the atoms in the system for the maximum 

potential energy is not required. 

Wang et al. (2001) also propose using multiple cut-off energies to facilitate boosts 

in heterogeneous systems.  As with the other bias and boost potential methods, when 
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multiple transitions occur simultaneously, the boost will be reduced by a factor of the 

number of atoms making the transition.  Additionally, this method is intended for systems 

in which a single transition occurs at a time and the acceleration is only significant when 

a large percentage of the atoms are being boosted. 

Miron and Fichthorn (2003) developed a method similar to hyperdynamics and 

the local boost method to study the surface diffusion on Cu surfaces.  Their boost 

potential is based on geometric changes to the system instead of directly on the system 

potential energy surface.  In their implementation, the bond length between two atoms is 

monitored.  When the bond length is at or near its equilibrium point, the bias potential is 

large.  As the bond is stretched away from the equilibrium point, the bias potential goes 

to zero.  This method takes advantage of calculations already performed in normal MD 

simulations and therefore requires little computational overhead for small systems.  

However, once the atoms separate enough for a new state to be achieved, a conjugant 

gradient type of algorithm must be used to determine the equilibrium point of the new 

state for future calculations.  For large systems with many potential transitions, the 

number of equilibrium calculations necessary to achieve good acceleration would be 

prohibitively high. 

Systems for which low energy barriers separate small regions of high frequency 

transitions that are not of interest are not well accelerated with the bias and boost 

potential based methods, since there is no time acceleration when transitions are reached.  

To overcome this limitation, Miron and Fichthorn (2004) presented a method to bridge 

these adjacent low energy regions together with a bridge potential. 
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The primary challenge with implementing accelerated dynamics for large polymer 

systems is the number of transitions that either occurs or are about to occur 

simultaneously throughout the entire system.  One of the premises of the hyperdynamics 

method is to boost the potential surface based on the configuration of the entire system of 

atoms.  At any time that the configuration of the entire system approaches a transition 

point, the boost potential must approach zero, effectively eliminating any time 

acceleration at that time.  In applications of the hyperdynamics method presented in the 

literature, small systems typically only traverse a few transitions and the transitions occur 

very infrequently; as a result, the hyperdynamics method is capable of significant time 

acceleration.  In the case of the large polymer systems employed in this research, 

however, RIS transitions occur at a rate of about five per 1 fs time step.  Since the system 

cannot be accelerated during a transition, the hyperdynamics method, and all others 

except for the parallel replica method, would result in no time acceleration.  An intriguing 

question is whether a large polymer system can be broken down into enough smaller 

subsystems to enable significant acceleration for each subsystem.  The boost factor for 

each of these subsystems could then be averaged to determine an effective system boost 

factor.  This approach may circumvent the underlying assumption of the hyperdynamics 

method that the potential energy surface is only to be boosted when the configuration is 

far from a transition.  The averaging of all of the subsystems will reduce the amount of 

acceleration possible with each subsystem.  However, if the following approach is able to 

accelerate the system time and maintain the correct dynamics, the approach would be 

useful in either studying slower processes or reducing the computational requirements. 
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Method 

The most direct method to accelerate the dynamics of a polymer system, also 

requiring the least amount of computational expense, is applying a boost potential to the 

dihedral potential.  In this method, only the dihedral potential is modified.  An advantage 

to this method is that the shape of the potential energy for each dihedral group is known 

and can be manipulated directly.  Since the specifics of this potential are known, the 

maximum boost energy and blending function parameters that do not affect the transition 

regions of the potential can be determined prior to performing the simulation. The 

modifications to LAMMPS are also relatively minor and have an insignificant effect on 

the computational requirements.  Only a few functions need to be added to calculate the 

magnitude of the boost potential for each dihedral group, the approximate magnitude of 

time acceleration, and the derivative of the boost potential with respect to the cosine of 

the dihedral angle which is used to account for the effect of the boost potential on the 

forces. 

While any of the bias potentials discussed here could be used, the boost function 

presented by Wang et al. (2001) was found to be the least computationally expensive.  

The difference between the normal dihedral potential energy, Vd(φd), and the floor 

energy, Vfloor, is determined for each dihedral group, i.e., 

 ( ) ( )d floor d dV V Vφ φ∆ = − . (4.7) 

The boost potential for the dihedral group is then determined by, 
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where bc and bn are the blending parameters.  This form requires significantly less 

computational resources when bn = 1.  The forces on each atom are determined from the 

derivative of the potential energy, which for the dihedral potential is given by, 
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where ki are the parameters of the dihedral potential defined in Chapter 2.  In addition to 

the forces resulting from the dihedral potential, the additional effect of the boost potential 

on the atomic forces must also be accounted for, i.e., 
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Modifying the potential energy by adding the boost energy will accelerate the 

dynamics of the system.  The magnitude of this acceleration needs to be determined at 

each time step in order to determine the amount of accelerated time during the integration 

step to maintain correct overall system dynamics, e.g. RIS transition rates and the rate at 

which the system is to be deformed for the uniaxial extension experiments.  This time 

acceleration magnitude can be referred to as the boost factor which is determined at each 

time step as 

 
( )

( )exp
d

b d

B V

Vboost factor
k T

φ

φ ∆
=  

 
, (4.11) 

where 
( )dV φ

 is the canonical ensemble average over the non-boosted potential energy 

surface.  For a given measurable quantity, P, the canonical ensemble average is given by 

(Voter 1997b), 
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where p is the momentum and K is the kinetic energy.  Since the boost potential energy is 

independent of the momentum and the integrals can be approximated by considering the 

potential energies at each dihedral group within the system, the expression for the 

average boost per time step reduces to 
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where Nd is the total number of dihedrals in the system.  The contribution to the potential 

energy from the bond length, bond angle, and non-bonded pair potentials needs to be 

determined for each dihedral group.  For each of these potentials, the potential energy is 

calculated for each atom pair or triplet and then divided equally among these atoms.  

Summing the contributions from all of the potentials acting on an atom gives the overall 

potential energy for that atom.  The overall potential energies of each atom in a dihedral 

group are summed and then added to the dihedral potential energy for that dihedral group 

to determine the overall potential energy for the dihedral group. 

Each dihedral group is considered a separate sub-system.  Since consecutive 

dihedral groups along the backbone of a polymer molecule overlap, this approach 

actually evaluates a system of overlapping sub-systems.  While there are concerns as to 

the validity of averaging overlapping sub-systems, it will give the best case scenario in 

regards to the maximum amount of acceleration that is achievable by boosting the 
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dihedral potentials since this approach will result in the largest possible increase to the 

potential energy of the entire system. 

Once implemented into LAMMPS, the boost factor was determined for a system 

of 50,000 atoms consisting of 50 molecules, each with 1,000 atoms that had already been 

relaxed using the methods described in Chapter 2.  An accelerated MD simulation was 

run using a NPT ensemble with 1 atm pressure maintained on each face at 300 K.  As the 

floor energy is increased, so is the boost factor (Figure 4.3).  The initial spikes in the 

boost factors are a result of the previously relaxed system adjusting to the new boosted 

potentials.  Initially, a large percentage of the dihedral states are in the potential energy 

wells below the floor energy.  When the boost potential is first applied, this relatively 

large difference between the floor energy and the initially low potential energy state of 

the dihedral results in large boost factors.  Once the bond, angle, dihedral, and non-

bonded potential energies within the system reach equilibrium with the boost potentials, 

the boost factors stabilize at a reasonable level. 
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Figure 4.3 Boost factors during relaxation simulation of a polymer system 
consisting of 50 molecules each with 1000 unified atoms using dihedral 
boost potentials with different floor energies at a temperature of 300 K. 

 

These boost factors, while not the several orders of magnitude achieved by other 

methods for systems having infrequent transition events as reported in the literature, 

could still quite useful for investigating a single order of magnitude slower processes and 

in reducing the computational expense of simulations if the method is valid over a wide 

range of simulations. 

The behavior of the system during relaxation was then investigated to determine if 

this implementation of the hyperdynamics method has any adverse effects on the relaxed 

configuration.  While the volume, average end-to-end length, and average radius of 

gyration were not affected, the ratio of trans to gauche RIS states changed significantly 

during the relaxation (Figure 4.4).  This change occurred quickly and the magnitude of 

the overall change was related to the floor energy.  These results indicate that the use of a 
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constant floor energy over all dihedral angles affects the forward and reverse transition 

rates differently.  Since the potential energy well of the trans state has on average a lower 

energy, it is affected more than the higher energy gauche state potential energy wells.  As 

a result, the transition rate from the trans state to the gauche states is increased more than 

the reverse transition rate leading to a statistically incorrect distribution of RIS states.  In 

this case, the increased percentage of gauche states will result in the molecules becoming 

more coiled than they would be in an unaccelerated simulation. 

 

 
 

Figure 4.4 Evolution of the percentage of trans states during relaxation simulation 
of a polymer system consisting of 50 molecules each with 1000 unified 
atoms using dihedral boost potentials with different floor energies at a 
temperature of 300 K. 

 

The applications of the floor energy methods described in the literature did not 

depend on the reverse rates of transitions, so they were not affected by this apparent 

limitation.  To overcome this issue, either the parameters of the blending function could 
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be modified to better represent the shape of the original potential or different floor 

energies could be used for each energy well as suggested by Wang et al. (2001).  

Attempts at modification of the parameters did not result in a shape of the accelerated 

potential matching the original potential due to the inability of the blending function to 

match shape of the energy wells.  The use of multiple floor energies was implemented, 

one for the trans well and one for the two gauche wells.  The gauche floor energy was set 

to a near maximum level of 3.26 kcal/mol.  The trans floor energy was then adjusted until 

the equilibrium percentage of trans states was the same as the unaccelerated percentage, 

resulting in a trans floor energy of 2.85 kcal/mol. 

The accuracy of the derived boost factor was evaluated by comparing the rate of 

trans-gauche state transitions in both accelerated and unaccelerated relaxation 

simulations.  LAMMPS was further modified to enumerate the number of dihedral 

transitions per time step by inserting the required code into the dihedral potential 

calculations to store the previous dihedral state and compare it to the current state.  The 

rate of transitions for the accelerated simulation was found to be half of rate for the 

unaccelerated simulation, indicating that the boost factor is too high (Figure 4.5). 
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Figure 4.5 Rate of dihedral transitions during relaxation simulation of a polymer 
system consisting of 50 molecules each with 1000 unified atoms using 
the multiple floor energy boost potential with and without a corrective 
factor at a temperature of 300 K. 

 

The high boost factor is likely a result of not accounting for the interaction 

between overlapping dihedral subsystems.  Since boost potentials should not be applied 

to a system/subsystem when a near a transition configuration, when a dihedral group is 

near a transition configuration, the overlapping dihedral groups should also not have any 

boost potentials applied.  While this approach may improve the correctness of the boost 

factor by reducing the transition rate discrepancies, it will also result in a lower boost 

factor for the entire system, as approximately 75% of the dihedral groups will no longer 

be boosted due to overlapping dihedral groups being near a transition state.  The 

effectiveness of this approach will be discussed later. 

Another approach is to artificially correct the boost factor to account for any 

violations to the underlying assumptions made in deriving the hyperdynamics method.  
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This approach will have the benefit of determining the maximum possible boost factor 

when applying boost potentials to the dihedral groups.  A constant corrective factor was 

applied to the boost factor so that the number of dihedral transitions in the accelerated 

simulation matched the number of dihedral transitions in the unaccelerated simulation, 

i.e., 

 corrected boostboost boost f= ⋅ , (4.14) 

where fboost (fboost < 1)is the corrective factor.  From the dihedral transition rate differences 

between the accelerated an unaccelerated systems (Figure 4.5), the corrective factor was 

found to be 0.26.  The application of the constant corrective factor substantially reduces 

the boost factor (Figure 4.6). 

 

 

 
 

Figure 4.6 Boost factors during relaxation simulation of a polymer system 
consisting of 50 molecules each with 1000 unified atoms using the 
multiple floor energy dihedral boost potential with and without a 
corrective factor at a temperature of 300 K. 
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At this point, both the structure of the relaxed configuration and the rate of 

dihedral transitions are equivalent between the accelerated and unaccelerated cases.  The 

effectiveness of this method when applied to deformation simulations was then 

investigated.  It is apparent from the stress-strain results (Figure 4.7) that the constant 

scaling factor is insufficient to account for the approximations made in this method.  As 

the system is deformed, the percentage of dihedral groups with configurations near a 

transition increases.  As a result, the boost factor should be reduced as the number of 

dihedral groups near transition states increases.  The constant scaling factor does not 

account for this behavior. 

 

 
 

Figure 4.7 Stress-strain curves during uniaxial deformation simulations of a 
polymer system consisting of 50 molecules each with 1000 unified atoms 
using the multiple floor energy dihedral boost potential at a 
temperature of 300 K and a true strain rate of 1010 s-1 comparing the 
effect of a constant corrective factor. 
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More elaborate corrective factors could be employed in order to better fit the 

accelerated deformation behavior with the unaccelerated deformation behavior.  For 

example, the corrective factor could be made a function of the deformation of the system, 

the virial stress in the system, or the change in entropy in a manner such that the 

acceleration of the system is reduced as the deformation is increased.  However, these 

relationships would not be based on correcting the violation of the no boost potential near 

a transition state assumption of the hyperdynamics method.  Additionally, these 

relationships would involve significant reductions of the boost factor as deformation 

progresses, making this approach too complicated and system-specific, reducing any 

benefit of employing this accelerated dynamics method. 

To determine whether overlapping dihedral groups are the primary cause for the 

discrepancies between accelerated and unaccelerated transition rates, the multiple floor 

potential was only applied to dihedral groups that do not overlap one another.  The 

overall system boost factor is very similar to the case where all of the dihedral groups 

were accelerated (Figure 4.8). 
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Figure 4.8 Boost factor during a relaxation simulation of a polymer system 
consisting of 50 molecules each with 1000 unified atoms at 300 K with 
the multiple floor energy dihedral boost potential not applied to 
overlapping dihedrals. 

 

Since this approach eliminates 75% of the dihedral groups from being accelerated, 

the overall increase in the potential energy of the system is significantly reduced.  Since 

the boost factor is similar to the case where all of the dihedral groups were accelerated, 

the rate of dihedral transition is lower (Figure 4.9). 

 



 

104 

 
 

Figure 4.9 Rate of dihedral transitions during a relaxation simulation of a 
polymer system consisting of 50 molecules each with 1000 unified atoms 
at 300 K with the multiple floor energy dihedral boost potential not 
applied to overlapping dihedrals. 

 

Similar to the previous approach of overlapping dihedral groups, the use of non-

overlapping dihedral groups still requires a corrective factor.  Even though the dihedral 

groups do not overlap along the backbone of the molecule, dihedral groups from other 

molecules or from further sections of the same molecule that are in close geometric 

proximity will still be affected by a boost potential.  In effect, even the non-overlapping 

dihedral groups are still interacting.  Additionally, the similar boost factors indicate that 

the canonical ensemble average may not be appropriate for determining the overall boost 

factor for the system.  Number averaging was also applied, but the results were not 

improved. 
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Conclusions 

One of the fundamental assumptions made in the derivation of the hyperdynamics 

method is that the system cannot be accelerated when the configuration of the system is 

near any transition state.  In the case of large polymer systems of 50,000 atoms, several 

dihedral transitions are typically occurring at each time step somewhere in the system.  

The approach of subdividing the entire system into many sub-systems then averaging the 

boost factors of these sub-systems to determine the overall system boost factor still 

results in interactions between these sub groups, violating the basic hyperdynamics 

assumption.  Implementation of hyperdynamics or any similar time acceleration method 

would require either a new method to subdivide the system into non-interacting sub-

systems or a substantial investigation into statistical averaging methods that may account 

for the interactions between the subgroups. 

One possible sub-dividing method would be to spatially decompose the 

simulation cell.  Utilizing the parallel processing code within the molecular dynamics 

program which already performs spatial decomposition of the simulation cell would 

simplify the implementation of this method.  However, the large number of sub-regions 

required to sufficiently limit the transition rate per sub-region could result in significant 

communication overhead between the processes, reducing the effectiveness of the 

method.  Another approach to determine the boost factor is to consider the free energy of 

the system instead of just the potential energy.  Due to the entropic nature of polymer 

systems, the effect of entropy on the boost factor could be significant, especially during 

deformation.  The entropy of the system could be determined in a computationally 

efficient manner by use of rubber elasticity network models which are discussed in detail 
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in Chapter 6.  The end-to-end length of the chains along with the structure of each chain 

can be implemented into a rubber elasticity model to determine the entropy at any point 

during the simulation. 

Since the maximum boost factors possible for the polymer systems of interest in 

this research are less than an order of magnitude, even if the interaction problem is 

overcome, the time acceleration methods do not seem to be capable of meeting the 

original goals of implementing these methods for this research: to account for polymer 

mechanisms that occur at many orders of magnitude slower than can be simulated with 

molecular dynamics.  However, if the boost factor can be accurately determined over a 

wide range of simulations, the acceleration methods could eventually be used to 

substantially reduce the computational cost of MD simulations of large polymer systems 

which would be a valuable contribution and one worth pursuing. 
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CHAPTER 5 

ATOMISTIC MODELING OF ENTANGLEMENT EVOLUTION 

 

Entanglements are generally defined as mechanical interlocks of polymer 

molecular chains.  Since entanglements comprise a large portion of the total interconnects 

in a physical polymer network, and contribute substantially to network behavior and 

irreversibility, both the number and evolution of entanglements must be determined and 

their effect must be implemented into any physically-based continuum constitutive 

model. 

 

Background 

One of the primary issues in atomistic modeling of entanglements is the process 

of actually defining an entanglement in computations.  Yashiro et al. (2003) determined 

entanglements geometrically by defining “flexion nodes” in the initial configuration and 

following these nodes during deformation.  They found that the “flexion nodes” did not 

always correlate to entanglements during deformation as the “flexion nodes” would 

straighten out.  Tanaka et al. (2000)  identify “local knots” that are defined by comparing 

the geometry of neighboring chains.  This method cannot account for all of the various 

forms of entanglements. 

Very little research has been done to study the evolution of entanglements during 

deformation with molecular modeling tools.  In one case, entanglements are created 

artificially by kinking two chains about one another (Theodorou 2004).  These artificial 
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entanglements are tracked, but other entanglements that are formed randomly during 

creation of the initial structure or that develop during deformation are not accounted for. 

In another study, cross-links are evolved during deformation by the introduction 

of a cross-linking potential (Rottach et al. 2004).  The evolution of cross-links is then 

modeled in a modified rubber elasticity network model.  Though the mechanisms of 

cross-link formation are different than entanglement evolution, the linking of the 

molecular and network models is similar to the directions of the present research. 

Here, the use of bond forces to identify and track entanglements is proposed as a 

more effective method than geometry-based methods.  Since geometric identification of 

entanglements is unlikely to be accurate due to the various means by which a chain can 

become constrained by other chains or even with itself, an alternate method is desired.  

The purpose behind studying entanglement evolution in this research is due to their role 

as mechanical interconnects.  Instead of identifying entanglements as a function of their 

geometric properties, it is proposed to identify them as a function of their impact on 

deformation behavior.  Since interconnects serve as restrictions to deformation, it is 

assumed that this restriction will generate tensile loads on the chains that are constrained 

by the interconnects.  LAMMPS has been modified to enable the extraction and 

evaluation of bond information during deformation.  This information is analyzed to find 

consecutive bonds under tension that would indicate a segment of a constrained polymer 

chain.  Due to the dynamic behavior of MD simulations, bonds in a polymer chain under 

tension could sporadically have compressive forces.  As a result, for each desired 

sampling of the system to find consecutive bonds under tension, many adjacent time steps 

are queried to determine the average bond data.  With this line of reasoning, evaluating 
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the progression of these constrained chains gives the evolution of effective 

entanglements. 

 

Method 

LAMMPS was modified to output the bond lengths for each bond pair at specific 

intervals throughout the simulations.  At the completion of the simulation, this output file 

is used to determine the location and evolution of entanglements.  A post-processing 

application written in Perl is used to analyze the output file.  Normally, LAMMPS 

outputs the bond data in a random order and provides no information regarding which 

bond belongs to which molecule and the order in which the bonds are connected within 

the molecule.  The post-processing application must then use a reference file that contains 

this information.  The data input file for LAMMPS includes the geometric coordinates of 

each atom and the connectivity, which provides the necessary information.  The post-

processing application reads the LAMMPS data input file to set up the internal memory 

structures to represent the molecular connectivity of the polymer system being modeled.  

As the bond information from the simulation is read at each time step, the atom numbers 

given for each bond pair are used to reference the corresponding bond in the memory 

structure.  After reading the bond information for each time step, all of the bond data are 

then properly placed into memory arrays for each corresponding bond pair. 

By default, LAMMPS does not store the bond forces for each bond pair; it simply 

aggregates the forces determined by each potential for each atom.  Since LAMMPS uses 

and stores the difference between the actual bond length and the equilibrium bond length 
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for each bond pair, this signed distance from equilibrium is actually outputted and used 

for the bond calculations. 

Outputting the bond information at each integration time step would generate an 

enormous amount of data and significantly increase the run time of the simulation.  For 

example, a 50,000 atom polymer system will have on the order of 50,000 bond pairs and 

the simulations in this research are run from between 300,000 and 3,000,000 integration 

steps.  If all of the bond lengths and corresponding bond pair atom IDs are written for 

each time step, the output file would contain over 1.5x1010 values.  The resulting output 

files would consume substantial disk space and require significant computational 

resources to post-process.  When running an MD simulation on a computational cluster, 

the inter-process communication becomes a limiting factor on the overall scalability of 

the simulation.  Outputting the bond information for each time step would dramatically 

increase the communication requirements and the requirement of synchronizing the 

simulation at the end of each time step would further reduce computational efficiency.  

As a result, the bond length information was only written periodically. 

However, due to the dynamic nature of MD simulations, the bond lengths can 

fluctuate significantly about their average lengths over periods of only tens of time 

increments.  To determine this average, the bond lengths were outputted for enough 

subsequent time steps to capture at least two vibrational periods starting at each output 

interval.  The maximum and minimum distances from equilibrium were determined for 

each of these sequences of time steps.  These values were then averaged and used to 

represent the effective distance from equilibrium for each interval. 



 

 111

Once the averaged bond lengths have been determined, each molecule is traversed 

along its backbone investigating the bond length for each consecutive bond pair.  When 

the first bond length is reached that is greater than the pre-defined threshold length, a new 

constrained segment is assumed to have begun.  The bond pair ID is recorded as the 

starting point for this segment.  The number of consecutive bond lengths that are greater 

than the threshold is considered to be the length of the segment, i.e., once a bond length is 

reached that is less than the threshold length, the segment is considered to have ended.  

The last bond pair of the constrained segment is recorded as the end point of the segment.  

The search is then continued along the molecule until the next length greater than the 

threshold is reached, at which point the above process is repeated. 

 

 
 

Figure 5.1 Diagram showing a constrained segment consisting of stretched bond 
lengths (red) flanked by compressed bond lengths (blue). 

 

After analyzing every bond of every molecule in the system, the post-processing 

application has now stored the total number of constrained segments found and, for each 

segment, the length of the segment as well as the starting and ending points.  This 

information can then be used to track the evolution of the constrained segments. 

After the attributes for each constrained segment are determined for each time 

interval recorded, the post-processing application then compares the locations of the 
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segments between consecutive time intervals.  If the location of a segment in the earlier 

time interval overlaps the location of a segment in the latter time interval, the segment is 

considered to be stable.  If there are no segments in the latter time step that occupy the 

same location as a segment in the earlier time interval, the earlier segment is considered 

to have been removed.  Likewise, if multiple segments in the latter time interval have 

locations that overlap the location of an earlier segment or if a segment in the latter time 

interval occupies a location that is not occupied by a segment in an earlier time interval, 

the extra segments in the latter interval are considered to be added.  With this 

information, the evolution of the number of stable, removed, and added segments can be 

tracked as well as the overall number of segments. 

There are two parameters used in this method that have an effect on the results; 

the minimum number of consecutive bonds with lengths above the threshold distance and 

the value of the threshold distance.  A parametric study was performed to investigate the 

dependencies of these parameters on the results.  As expected, the actual number density 

of entanglements changes as these parameters are changed; however the shape of the 

curves remains the same (Figures 5.2 and 5.3). 
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Figure 5.2 Evolution of the overall number density of entanglements during 
deformation of a 50,000 unified atom system at a true strain rate of 1010 
s-1, a temperature of 300 K, and different threshold distances. 

 

 
 

Figure 5.3 Evolution of the overall number density of entanglements during 
deformation of a 50,000 unified atom system at a true strain rate of 1010 
s-1, a temperature of 300 K, and different minimum number of 
consecutive bonds in tension. 
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  These relationships show that the number densities of entanglements determined 

by this method are not quantitative, but that the evolution of entanglements is 

independent of the parameter values within the ranges evaluated.  In other words, the 

evolution of entanglements using this method is qualitative and insensitive to the 

parameters. 

In the remaining simulations, the threshold was set equal to zero and the 

minimum number of consecutive bonds set equal to six.  These values were chosen since 

they produce results with a significant number density of entanglements relative to the 

fluctuations or noise in the number density of entanglements. 

 

Results 

Simulations were performed to develop a comprehensive description of the 

evolution of entanglements under various rates of deformation, temperatures, molecular 

chain lengths, numbers of atoms in the model, and initial chain conformations.  As found 

in Chapter 2 when investigating the dependency of initial chain configurations and the 

total number of atoms in the simulation cell on the stress-strain behavior, the evolution of 

entanglements was also found to be relatively insensitive to differences in the initial 

configuration (Figure 5.4) and the number of atoms in the system (Figure 5.5) at true 

strains below 1.75. 
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Figure 5.4 Evolution of the overall number density of entanglements during 
deformation of a 50,000 unified atom system at true strain rate of 1010 
s-1, a temperature of 300 K, and different initial configurations. 

 

 
 

Figure 5.5 Evolution of the overall number density of entanglements during 
deformation at a true strain rate of 1010 s-1, a temperature of 300 K, 
and different numbers of 1,000 unified atom molecules in the system. 
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The bond force method was applied to systems deformed at various strain rates, 

temperatures, and molecular weights.  As expected, the results show a decrease in the 

number density of entanglements at lower strain rates relative to higher rates (Figure 5.6).  

The slower strain rates permit more time for relaxation events to occur that may reduce 

the number density of entanglements compared to higher strain rates.   

 

 
 

Figure 5.6 Evolution of the overall number density of entanglements during 
deformation of a 50,000 unified atom system at true strain rates of 1011, 
1010, and 109 s-1 and a temperature of 300 K. 

 

The evolution of the number density of stable entanglements (Figure 5.7) shows 

the same trends as the overall number density of entanglements (Figure 5.6).  The overall 

number density of entanglements is higher than the number density of stable 

entanglements at equivalent strains because the stable quantity does not include 

entanglements that were removed or added during that time interval.  The similarity 
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between the overall and stable graphs indicates that the evolutions of the removed and 

added entanglements should also be similar to one another. 

 

 
 

Figure 5.7 Evolution of the number density of stable entanglements during 
deformation of a 50,000 unified atom system at true strain rates of 1011, 
1010, and 109 s-1 and a temperature of 300 K. 

 

The strain rate results seem to indicate that there are two competing processes.  

First is a possibly rate-independent increase in the number density of entanglements as 

deformation progresses.  The second is a rate-dependent process that reduces the number 

density of entanglements.  At the higher strain rates, the rate-independent increase in 

entanglements dominates, while at the slower rates there is sufficient time for rate-

dependent processes to significantly reduce the number density of entanglements.  The 

rate-independent process could be a result of entanglements that are initially too loosely 

coupled but become active as deformation tightens their interactions.  The rate-dependent 
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process could be a result of chains sliding past one another or sufficient energy being 

added to the system that physical interactions are overcome, eliminating the effect of the 

physical interactions.  The similarity between the evolution of the addition (Figure 5.8) 

and removal of entanglements (Figure 5.9) predicted earlier does not give further insight 

into this assumption of the mechanisms.  

 

 
 

Figure 5.8 Evolution of the number density of added entanglements during 
deformation of a 50,000 unified atom system at true strain rates of 1011, 
1010, and 109 s-1 and a temperature of 300 K. 
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Figure 5.9 Evolution of the number density of removed entanglements during 
deformation of a 50,000 unified atom system at true strain rates of 1011, 
1010, and 109 s-1 and a temperature of 300 K. 

 

These results may not be representative of actual entanglement evolution.  It is 

difficult to justify the number density of entanglements increasing by an order of 

magnitude as the high strain rate results suggest.  It is also curious that the number 

density of entanglements is directly proportional to the post-yield stress, as shown in 

Figure 5.10.  The behavior of a network of polymers does not demand an increase in the 

number density of entanglements to support increased stress at higher strains, as the stress 

will normally increase significantly at higher strains with a constant number density of 

entanglements. 
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Figure 5.10 Evolution of stress in the draw direction during deformation of a 
50,000 unified atom system at true strain rates of 1011, 1010, and 109 s-1 
and a temperature of 300 K. 

 

The average length of each segment constrained by entanglements (Figure 5.11) 

and the percentage of bonds that are found in these constrained segments (Figure 5.12) 

indicate that constrained segments are small in size and number at low strains and 

increase in size and number proportional to the rate of increase in stress (Figure 5.10).   
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Figure 5.11 Average constrained segment size between entanglements during 
deformation of a 50,000 unified atom system at true strain rates of 1011, 
1010, and 109 s-1 and a temperature of 300 K. 

 

 
 

Figure 5.12 Percentage of bonds that are found in constrained segments between 
entanglements during deformation of a 50,000 unified atom system at 
true strain rates of 1011, 1010, and 109 s-1 and a temperature of 300 K. 
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The temperature results are counter-intuitive.  The number density of 

entanglements at low strains should be relatively equivalent for the different temperatures 

(Figure 5.13).  The number density of entanglements should then decrease at a higher rate 

for the higher temperature simulation.  While the number density of entanglements 

decreases at a higher rate for higher temperatures, the number density of entanglements at 

low strains is higher for higher temperatures.  This discrepancy is likely a result of the 

increased kinetic energy at the higher temperature increasing the average bond lengths.  If 

this is the case, the bond lengths need to have a correction factor applied to them to 

compensate for the temperature effects. 

 

 
 

Figure 5.13 Evolution of the number density entanglements during deformation of 
a 50,000 unified atom system at a true strain rate of 109 s-1 and 
temperatures of 240, 300, and 360 K. 
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For the relatively small differences in molecular weights that could be evaluated, 

there is not a significant dependence on the length of the molecule (Figure 5.14).  There 

seems to be consistently fewer entanglements for the higher molecular weight chains at 

high strains, which is not expected.  Longer chains should maintain entanglements more 

than shorter chains due to the increased motions required to slide past one another. 

 

 
 

Figure 5.14 Evolution of the number density of entanglements during deformation 
of a 50,000 unified atom system at a true strain rate of 109 s-1, a 
temperature of 300 K, and molecule lengths of 1,000 and 10,000 atoms. 

 

Conclusions 

While this method provides data that indicates a possible evolution of 

entanglements in a consistent and qualitative manner, taking all of the results into 

consideration sheds significant concern over the accuracy of this method to track the 

actual evolution of entanglements.  Since there is not any known experimental evidence 
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to compare these results with, it is difficult to validate this method of determining 

entanglement evolution.  As a result, a method that can determine the evolution of 

entanglements that is quantitative in nature and can be shown to represent actual 

entanglement evolution through additional evidence would be more desirable for 

multiscale modeling.  Such a method is proposed and evaluated in Chapter 6. 
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CHAPTER 6 

ATOMISTIC INVESTIGATION OF NETWORK MODELS 

 

Rubber elasticity models based on statistical mechanics represent the mechanical 

behavior of polymers by determining the change in entropy of a network of chains 

composed of freely rotating rigid segments with the chain ends joined together at 

interconnects.  Typically these interconnects represent chemical cross-links, but they 

could be associated with any morphological entity that would constrain a polymer 

molecule at a particular point, such as crystallites and entanglements (Figure 6.1). 

 

 
Figure 6.1  Rubber elasticity representation of a polymer (Tomita 2000). 

 

Statistical mechanics based models of rubber elasticity make several assumptions 

that can limit their effectiveness in modeling actual polymer networks: volume 

exclusions for overlapping segments are not accounted for, the segments are freely 

rotating and rigid, intermolecular interactions such as van der Waals forces are neglected, 

and all of the chains between interconnections are considered to have an equal number of 

segments.  In addition, the effects of morphological features such as crystal size and 
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orientation on the behavior of the polymer are not included.  Network models are also 

strain history and strain rate independent.  These models are traditionally good at 

modeling behavior of highly cross-linked polymers, but poor at modeling the behavior of 

semi-crystalline polymers.  The primary cause for this discrepancy is that the low density 

of interconnects makes the effect of volume exclusion and chain interactions more 

significant.  Additionally, the effective number of interconnects in a semi-crystalline 

polymer evolves during deformation due to crystallization and entanglement slippage. 

Though volume exclusion is not inherently included in rubber elasticity models, 

these models are typically extended to require constant volume deformation.  The effect 

of maintaining constant volume can be considered to mimic the effect of the combination 

of volume exclusion and non-bonded interactions. 

There has been little use of molecular modeling techniques to bridge the 

predictions of rubber elasticity network models to real polymer behavior.  Typically, the 

network model parameters are simply fit to macroscopic experimental data, but no 

connection is made between the values of these parameters and the structure of the 

polymer being modeled. 

Everaers (1999) performed a comprehensive study comparing classical and tube 

models to simplified molecular models of polymer melts.  He found that classical models 

under-predicted the stress at a given strain and the tube models predicted the stress well.  

A similar study (Grest et al. 2000) agrees with these results.  Bergstrom and Boyce 

(2001) studied the evolution of bond angles, bond forces, chain angles, and chain end-to-

end lengths using both molecular dynamics simulations and an eight-chain network 

model.  They found good agreement of these attributes between the two methods.  None 
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of these comparisons between network models and atomistic simulations investigated the 

relation of actual polymer systems to network models.  Angle and dihedral potentials 

were neglected to more closely mimic the freely rotating rigid segment assumption in 

rubber elasticity. 

It is desirable to find a link between actual polymer properties and network model 

parameters.  Ideally, the network model’s parameters would be set equal to the actual 

values of the polymer, e.g. the number of monomers and interconnects (cross-links, 

entanglements, crystallites).  These parameters would then be scaled with a material 

parameter specific to a particular polymer in a manner similar to the characteristic length 

factor, Cinf, which is used to correlate a polymer molecule’s structure with its equilibrium 

end-to-end length (r2 = N Cinf l2). 

 

MD Simulations of Ideal Network 

As previously mentioned, rubber elasticity models do not directly represent the 

behavior of actual polymers primarily due to the lack of inclusion of segment interactions 

and deviation of monomer structures from freely rotating rigid segments.  To demonstrate 

the magnitude of the differences in these simulation approaches, a MD simulation was 

compared to a rubber elasticity model.  A system of 100 molecules consisting of 500 

atoms each and fully interconnected with 50 cross-links was generated using the initial 

configuration method discussed in Chapter 3.  The system was deformed using the 

methods described in Chapter 2.  The rubber elasticity model by Wu and van der Giessen 

(1993) considers the principal stress components, iσ , to be determined by the 

deformation of a network of chains with an orientation distribution, Ca(θ,φ), i.e., 
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where n is the number density of chains, kB is the Boltzmann’s constant, T is the absolute 

temperature, N is the number of freely rotating rigid segments per chain, p is a 

hydrostatic stress that is determined from the boundary conditions, 1−L  is the inverse of 

the Langevin function, 
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The two network model parameters n and N were assigned the number density of 

molecules and the number of bonds per molecule in the MD model respectively.  The 

deformation of a polymer using MD simulations as detailed in Chapter 2 reaffirms the 

expected stiffer behavior of actual polymers compared to the network model (Figure 6.2).  

The amount of deviation of the MD results from the network model results are rate 

dependent; therefore, the rate of deformation must be considered when correlating 

network models with MD. 
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Figure 6.2 Comparison of the stress-strain behavior for an ideal network model 
and a molecular dynamics simulation of 100 cross-linked molecules 
with 499 bonds each at a true strain rate of 1010 s-1 and a temperature 
of 300 K. 

 

To determine a link between the network model parameters and the actual 

structure of the polymer, the effects of these two parameters must be separated and 

investigated independently.  One approach is to assume that the difference between the 

monomer structure and a freely rotating segment is captured by the number of segments 

per chain, N, and that the segmental interactions are captured by the number density of 

chains, n.  In a typical MD simulation, separating the effect of deformation of the 

polymer on these two parameters is not possible.  Here, the MD simulation is initially 

modified to eliminate segmental interactions so that the relationship between N and the 

actual monomer structure can be determined.  Segmental interactions can be eliminated 

by simply disabling the non-bonded pair potential. 
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Since the non-bonded pair potential is required to maintain proper pressure-

density relationships, the deformation procedure described in Chapter 2 that was used to 

generate the results shown in Figure 6.2 must be modified.  Instead of using an NPT 

ensemble, the density-pressure relationship must be explicitly defined.  Here, an 

assumption is made that the volume does not change significantly during deformation so 

an NVT ensemble can be used which fixes the system volume and temperature during 

deformation.  This assumption is the same for the network model as well.  In addition to 

using the NVT ensemble, the simulation cell had to be stretched in the uniaxial draw 

direction and compressed in the directions perpendicular to the uniaxial draw direction as 

prescribed in Chapter 2 in order to maintain constant deformation at each time step.  If a 

pair of opposing faces on the periodic unit cell is displaced from one another, the NVT 

ensemble considers the new shape to be the constant volume in its calculations.  As a 

result, all dimensions of the simulation cell must be prescribed prior to the NVT 

calculations for each time step as the NVT algorithm will not modify the periodic unit 

cell’s dimensions, only the positions of the atoms within the prescribed boundaries.  A 

system of 200 molecules was used, consisting of 250 atoms each and fully interconnected 

with 100 cross-links.  With the absence of the non-bonded pair potential, these 100 cross-

links are the only relevant segmental interactions in the network model.  Additionally, 

these cross-links remain constant in number throughout deformation, making correlation 

with the network model much simpler.  As a result, the number density of chains, n, is 

now defined, i.e, 

 2 x

cell

nn
V

=  (6.5) 
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where nx is the number of cross-links in the simulation cell and Vcell is the volume of the 

simulation cell.  The network model was run with the same deformation evolution, 

number density of chains, and the number of segments per chain as the MD simulation.  

Figure 6.3 shows the MD simulation still having a stiffer response than the ideal network 

model, but it is much more similar than the results from the full MD simulation.  The 

difference between the full MD simulation (Figure 6.2) and the MD simulation without 

non-bonded potentials (Figure 6.3) indicates the effect of volume exclusion and other 

segment interactions.  The difference between the MD simulation and ideal network 

shown in Figure 6.3 represents the effect of the deviation of the monomer structure from 

a freely rotating rigid segment.  These results indicate that the effect of segment 

interactions is much greater than the effect of monomer structure for this polymer system, 

which is not surprising considering the simplicity of the polymer structure investigated.  

More complex polymers may reduce the difference between these effects or may even 

reverse the dominance of the effect of segment interactions over the effect of the 

structure.  Another fundamental difference between the MD and network models is that 

the network model does not include the dynamic effects that are inherent in MD.  To 

minimize the effects of the dynamics, either a sufficiently slow strain rate MD simulation 

or a Monte Carlo or similar statistical method should be performed on the polymer 

system.  However, an argument can be made that the dynamics are dependent upon the 

structure of the molecule and the effects of the dynamics should be included within the 

network model parameter N. 

The network model was then fit to the MD results by modifying the parameter N 

(Figure 6.3)  The fit value for N of 23 indicates that that 10.8 polyethylene bonds are 
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equivalent to a freely rotating rigid segment which correlates reasonably well with 8.0 

polyethylene bonds determined experimentally (Aharoni 1983).   

 

 
 

Figure 6.3 The stress-strain curve for an ideal network model is fit to the stress-
strain curve from a molecular dynamics simulation of 100 cross-linked 
molecules with 499 bonds each at a true strain rate of 109s-1 and a 
temperature of 300 K with the pair potentials disabled. 

 

The stress-strain results for the simulation without non-bonded potentials was 

found to only be rate sensitive for true strain rates above 109 s-1 (Figure 6.4). 
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Figure 6.4 Rate dependency of the stress-strain behavior for molecular dynamics 
simulations of 100 cross-linked molecules with 499 bonds each at a 
temperature of 300 K with the pair potentials disabled. 

 

With the two parameters of the network model now known, the overall number 

density, Na, of freely rotating rigid segments can be determined, i.e., 

 aN nN= . (6.6) 

An interesting and useful aspect of this parameter is that it should be constant for 

a particular polymer regardless of the deformation characteristics such as rate, 

temperature, or deformation mode.  As a result, Na becomes a property of the polymer.  

With Na a constant, n and N are now dependent on one another in a definable manner 

throughout deformation, leading to a single independent parameter for the network 

model. 

If the assumption is made that entanglements have the same effect as cross-links 

on an assembly of polymer chains, the network model can be used to evaluate the number 
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and effect of entanglements.  Assuming a similar connectivity as cross-links, the number 

density of entanglements, ne, is directly related to the number density of chains in the 

system, ne = n / 2.  Here, entanglements represent the effect of any non-bonded physical 

interactions on the parameters of the network model.  This definition of entanglements 

includes both traditional representation of looping mechanical interlocks and non-

traditional, non-specific resistances to deformation due to neighboring segments.  As a 

result, entanglements are not considered to be specific structures in this method, but 

rather a measure of the effective constraints in the system.  Since the parameters N and ne 

are dependent, the number density of these effective entanglements can be determined by 

fitting the network model to the stress at a specific strain for an MD simulation or even 

experimental stress-strain data, i.e., 

 
2

a
e

Nn
N

=  (6.7) 

Since network models are strain history independent, any point on the stress-strain 

plot can be used to determine the number density of effective entanglements at that point 

(Figure 6.5).  The network model can then be fit to the stress and stretch at any point to 

determine the number density of entanglements at that point. 
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Figure 6.5 The number of entanglements can be determined at any point of a 
stress-strain curve. 

 

This method provides the means to determine the continuum network model 

parameters entirely from molecular dynamics simulations.  Evolution equations and their 

respective parameters can be determined from the number density of entanglements data 

collected from MD simulations at various rates, temperatures, molecular weights, and any 

other pertinent dependency. 

 

Results 

This method was used to determine the number density of entanglements 

throughout the deformation of a non-cross-linked polymer system.  An uncross-linked 

polymer system consisting of 50 molecules with 1,000 atoms each was generated using 

the method described in Chapter 3.  The entanglement evolution was determined for 

(λ,σ), Na → n
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various true strain rates (Figure 6.6), temperatures (Figure 6.7), and molecular weights 

(Figure 6.8).  The strain rate entanglement results demonstrate how little variation on the 

number of entanglements is required to yield substantial stress differences (Figure 6.9). 

 

 
 

Figure 6.6 Evolution of the number of entanglements in the simulation cell 
resulting from uniaxial deformation of 50 molecules with 1,000 atoms 
each at a temperature of 300 K and different true strain rates. 

 

The temperature results show a measurable dependence on temperature at low 

strains that diminishes at higher strains.  As expected higher temperatures lead to a 

reduction in the number of entanglements. The molecular weight results do not show 

significant differences within the ranges evaluated. 
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Figure 6.7 Evolution of the number of entanglements in the simulation cell 
resulting from uniaxial deformation of 50 molecules with 1,000 atoms 
each at a true strain rate of 109 and different temperatures. 

 

 
Figure 6.8 Evolution of the number of entanglements in the simulation cell 

resulting from uniaxial deformation of a 50,000 atom system at a true 
strain rate of 109, a temperature of 300 K, and different molecular 
weights. 
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Figure 6.9 Stress-strain results for true strain rates of 109, 1010, and 1011 s-1 

resulting from uniaxial deformation of 50 molecules with 1,000 atoms 
each at a temperature of 300 K. 

 

The results at different strain-rates show a significant reduction in the number of 

entanglements as deformation initially progresses at low strains.  The rate of this decrease 

in the number of entanglements increases with a reduction in strain rates.  This portion of 

the deformation includes the initial linear elastic and subsequent flow effects.  Lower 

strain rates result in a lower number of entanglements at the end of this initial section.  At 

high strains, there is an increase in the number of entanglements that is more prominent at 

the higher strain rates.  These results, along with the results from the bond-force method 

(Chapter 5), indicate that two processes may be occurring: a rate dependent process and a 

strain dependent process.  Since the number of entanglements varies with the deformation 

attributes and with strain, a constant parameter cannot be used to relate the number 

density of chains in the model with the number density of entanglements, as originally 

sought using a parameter similar to Cinf. 
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Through a trial-and-error process, relationships were found to model the two 

proposed processes.  The rate independent process is considered to be dependent on the 

overall deformation of the material, i.e.,  

 ( )exp ( 1)
base inite en n S V= − , (6.8) 

where 
initen  is the initial number density of entanglements, S is a parameter that accounts 

for the magnitude of the dependency on deformation, and V is the overall normed stretch 

given by 

 
3

2

1

1
3 i

i

V λ
=

= ∑ . (6.9) 

Here, λi are the principal stretches of the network. 

The rate-dependent reduction in the number density of entanglements is assumed 

to have a power law dependence on the stress and an Arrhenius dependence on the 

temperature, i.e., 

 0 exp base slip

slip

base

e eqe
e e

B e

n nFn n
k T n

τ
−  ∆

= −        
, (6.10) 

where 0en  is an entanglement slippage pre-exponential constant, eF∆  is the thermal 

activation energy, q is the stress related power factor, and τ is the equivalent shear stress.  

The last term accounts for the reduced number of entanglements available for slippage as 

deformation progresses.  The equivalent shear stress is defined by 

 1
2 ,τ ′ ′= ⋅σ σ  (6.11) 

where ′σ  is the deviatoric stress tensor. 

The entanglement results from Figure 6.6 where used to fit the parameters which 

are given in Table 6.1. 



 

140 

Table 6.1 Entanglement evolution parameters for fitting the MD-based 
entanglement results. 

initen  4.998×1021 cm-3 
S 0.607 

0en  2.186×1051 cm-3s-1 

eF∆  2.000×10-19 J 
Q 1.336 

 

These equations were implemented into the network model so that the evolution 

of the number density of entanglements and stress could be evaluated over the full course 

of deformation.  The modified network model fit the entanglement data well (Figure 

6.10). 

 

 
 

Figure 6.10 Comparison of the MD results and the fitted evolution equations for the 
number of entanglements resulting from uniaxial deformation of 50 
molecules with 1,000 atoms each at a temperature of 300 K and 
different strain rates. 
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The stress determined by the modified network model also compares reasonably 

well with the MD results (Figure 6.11). 

 

 
 

Figure 6.11 Comparison of the MD results and the fitted evolution equations for the 
stress resulting from uniaxial deformation of 50 molecules with 1,000 
atoms each at a temperature of 300 K and different strain rates. 

 

The hardening behavior is modeled well across the strain rates investigated.  

However, the yield strength is consistently under-predicted and the post-yield softening is 

not captured for the higher strain rates. 

 

Conclusions 

The method of defining entanglement evolution proposed here permits the 

quantitative determination of entanglements as related to a network model.  There are 

several key assumptions that have been made in the development of this method.  First 
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and foremost, the mechanical behavior of polymers is assumed to be able to be 

represented accurately by the statistical mechanics derived theories of rubber elasticity 

network models.  Since the structure of the network models correlate well to the 

structures of polymers and network models with constant parameters have been shown to 

accurately represent the behavior of highly cross-linked polymers <insert Trealor 

reference>, this first assumption can be argued to be reasonable.  The second assumption 

is that the effects of the polymer structure and segmental interactions can be separated 

and described separately by the two network model parameters, n and N.  While seemly a 

questionable assumption, there are two aspects to the network model that make this 

assumption reasonable.  First, the two model parameters are not independent, but related 

through the total number density of segments in the system, i.e., Na = n N.  In fact, while 

the effects of the structure and interactions of the polymer are separated into the 

parameters N and n, respectively, dependencies between these parameters are captured 

through Na.  Second, by eliminating all segmental interactions by excluding the non-

bonded pair interactions in the MD simulation, this modified MD simulation represents 

the structure of the network model very well.  The only discrepancy between the two 

methods is the dynamics which are included with MD.  But the dynamics can be 

considered insignificant as long as the MD simulation converges on the correct locking 

strain, which is the measure used to fit the network model to the MD simulation.  The 

third assumption is that all non-structural effects on mechanical behavior can be 

categorized as the result of entanglements.  Since entanglements are defined here as the 

effect of segmental interactions and not solely by the traditional definition of looping 

chains, this assumption is reasonable. 
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This method is difficult to test experimentally since entanglements, especially 

with the broad definition of entanglements used in this research, are impossible to 

quantify.  The most useful validation procedure is to implement the network model and 

entanglement evolution equations into a continuum model and test the model over a 

range of polymer systems and deformations.  This validation is shown in part with the 

continuum model proposed in Chapter 7. 

While this method has been solely applied to MD results here, it can also be used 

with a combination of MD simulations and experimental results.  The MD simulations 

are required to determine the polymer structure property, Na.  However, once this 

parameter is defined through the use of MD simulations, any stress-strain results can be 

used to fit the entanglement evolution equations.  This flexibility yields another approach 

to bridging the time scales of atomistic simulations and continuum experiments.  An 

interesting future research topic would entail the use of a more complex polymer system 

that can also be evaluated both with MD models and experiments.  The simple polymer 

system chosen in this research for the MD simulations is not well characterized 

experimentally as a purely non-crystalline material due to its low glass transition 

temperature, so this research direction cannot be carried out within the scope of the 

current research. 

In constitutive models, the yielding behavior is typically modeled with a visco-

elastic component that is distinct from the network model, e.g. Shepherd et al. (2006), 

Boyce et al. (2000), and Buckley and Jones (1995).  The linear elastic and yielding 

behaviors demonstrated by many polymers can be considered to be caused by physical 

interactions of neighboring atoms.  Since these physical interactions fall into the broad 
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definition of entanglements used here, the entanglement evolution equations could be 

used to simulate the visco-elastic behavior as well as the more traditional hardening 

behavior.  While the relatively simple equations presented here do not accurately describe 

the correct yielding behavior, they may be close enough at the much slower strain rates 

typically modeled at the continuum level to be useful or more sophisticated evolution 

equations can be derived.  Additionally, the fit is much better at lower strain rates that are 

more likely to be simulated with continuum models.  Replacing the visco-elastic 

components would remove several model parameters and permit more direct linking 

between atomistic results and the continuum model.  The effectiveness of these equations 

at simulating the visco-elastic behavior will be investigated with the constitutive model 

presented in Chapter 7. 
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CHAPTER 7 

CONTINUUM MODEL 

 
The continuum model serves as the framework that integrates the atomistic 

modeling results and links together all of the nano-structrual details into a macroscopic 

response.  In this application, a continuum model must address the effects of distinct 

attributes of microstructure on the macroscopic behavior, and must reflect the statistical 

mechanics of thermally activated processes.  The evolution of these microstructure 

attributes in effect are represented by internal state variables (ISVs, cf. McDowell (2005)) 

that enter into equations that directly relate to the physical properties of these structures.  

 

Background 

Constitutive models by Adams et al. (2000), Bergstrom et al. (2002), Boyce et al. 

(2000), and Wu and van der Giessen (1993) are typical of the state-of-the-art in that they 

synthesize the cumulative effects of orientation, crystallization, and entanglement 

slippage with phenomenological relationships to correlate mechanical behavior.  These 

existing continuum models do not sufficiently consider the evolution and 

interdependencies of these major morphological attributes that occur in polymers during 

thermo-mechanical deformation, and the effect of these attributes on the polymer's 

mechanical behavior and other properties.  Additionally, these primarily 

phenomenological models require the determination of many material constants based on 

mechanical testing. 
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A model has been presented (Shepherd 2002) that overcomes these deficiencies 

by defining ISVs that are directly related to the underlying morphological attributes.  

Evolution equations are implemented to simulate the interactions between these 

morphological attributes and the nonequilibrium evolution of these attributes with 

deformation.  However, this model contains several deficiencies.  The evolution 

equations for entanglement slippage were developed with no basis of actual entanglement 

evolution mechanisms.  At high strains, the entanglement slippage equations were unable 

to reduce the number of entanglements at high strain rates enough to prevent premature 

strain locking; moreover, they did not reduce the number of entanglements as much at 

low strain rates to prevent any hardening.  The crystallization kinetics were based solely 

on the orientation distribution of the overall chain end-to-end vectors and not on the 

distribution of the monomer or statistical segment orientations.  As a result, the 

crystallization behavior conflicted to some extent with experimental data.  Particularly, 

the model predicted an increase in overall crystallinity as the strain rate is increased, 

while experiments generally show the opposite behavior.  The model assumed that 

entanglement evolution directly effects the orientation distribution of the end-to-end 

chains.  While changes in the number density of entanglements does have an indirect 

effect on the orientation distribution of the segments within the chain by changing the 

number of segments per chain, the actual end-to-end orientation of the overall chain is 

not affected.  This model was significantly enhanced in both theory and implementation 

to overcome these deficiencies and to improve the computational efficiency. 
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Model Development  

As described in more detail in Chapter 6, statistical mechanics rubber elasticity 

models represent the mechanical behavior of polymers by determining the change in 

entropy of a network of chains composed of freely rotating rigid segments, with the chain 

ends joined together at interconnects.  While in the theory, these interconnects represent 

cross-links, in practice they can represent any constraint of a polymer molecule at a 

particular point or on average, including crystallites, entanglements, and intermolecular 

barriers to free motion.  This proposed model is unique in that all of the network model 

parameters are represented by history dependent parameters that evolve according to 

morphological changes.  While previous models have linked network model parameters 

to the deformation state of the material, they have only addressed a single parameter at a 

time in a history independent manner and have not included the effects of a full network 

model (Arruda and Boyce 1993a; Sweeney and Ward 1996; Matthews et al. 1997; Tomita 

2000). 

The present model, which has been outlined in Shepherd et al. (2006) and further 

extended in this thesis, implements the ISVs into the network model proposed by Wu and 

Van der Giessen (1993), which uses the exact treatment of an affine network model 

consisting of an orientation distribution of chains of freely rotating segments.  While this 

method requires more computational resources than more common models based on a 

small number of chains connected in geometrically simplified forms, such as the three, 

four, and eight chain models (Flory and Rehner 1943; James and Guth 1943; Arruda and 

Boyce 1993b), the inclusion of an orientation distribution permits orientation dependent 

processes to be more fully addressed. 
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The ISVs are based on evolving microstructure attributes that have a direct effect 

on the mechanical properties of polymer systems.  These ISVs include the amorphous 

chain orientation distribution (COD), Ca(θ,φ); the crystalline segment orientation 

distribution (SOD), Sc(θ,φ); the number density of statistical segments in the amorphous 

phase, Na; the number density of statistical segments in the crystalline phase, Nc; the 

number density of crystal nuclei, nc(θ,φ); and the number density of entanglements, ne.  

The CODs and SODs give the relative number density of statistical chain end-to-end 

vectors and the relative number density of chain segments, respectively, that are oriented 

relative to the polar, θ, and azimuthal, φ, coordinates of the global spherical coordinate 

system and are normalized such that the integration over all directions is equal to unity. 

The amorphous COD, along with the stretch of the continuum, λ(θ,φ), define the 

distribution of stretches for all of the chains in the system which affects the entropic 

response of the network model giving the orientation dependence of the stress.  Since 

crystals and entanglements serve as constraints to intermolecular motions, the number 

densities of crystals and entanglements account for the number density of interconnects in 

the network model and also define the effective average number of segments in a chain.  

This implementation assumes that only the amorphous phase affects the network model.  

Therefore, an increase in crystallization, represented by the ratio of the number density of 

segments in the crystalline phase to the number density of segments in the amorphous 

phase, results in a reduction of the number density of amorphous segments between 

interconnects in a chain, thereby decreasing the entropy in the system. 

It is noted that adoption of CODs and SODs, along with number densities of 

amorphous and crystalline segments, as ISVs does not imply fully dissipative processes; 
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in fact, entropic changes associated with orientation may occur in an equilibrium fashion 

if there is no evolution in the network interconnects (entanglement evolution or 

crystallization), and viscoelastic effects (time dependent bond rotations) are neglected. 

The CODs and SODs need to evolve with network stretch, crystallization, and 

entanglement slippage in a manner that depends on the history of deformation.  The 

CODs and SODs are implemented as two-dimensional matrices that represent a grid in 

the discretized θ and φ coordinates of a spherical coordinate system.  Each cell of the 

matrix contains a value that represents the number density of statistical chains or 

segments that are oriented within that particular discrete range of directions. 

The amorphous SOD, Sa(θ,φ), which represents the orientation distribution of all 

of the amorphous segments in the system, is required for the crystallization calculations.  

The amorphous SOD is not an independent ISV as it is explicitly determined by the 

current state of the polymer network, i.e., 
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where sinθ θ φ′ ′ ′∆ ∆  is the area represented by a cell in the discrete COD and 

( , , , )segp θ φ θ φ′ ′  is the probability of a segment having an orientation of (θ,φ) in a chain 

consisting of N segments with an end-to-end orientation of ( , )θ φ′ ′  and a stretch of 

( , )λ θ φ′ ′ , given by (Kuhn and Grun 1942) 
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Here, 1−L  is the inverse of the Langevin function, 
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 1( ) coth( )x x
x

= −L  (7.3) 

and ( , , , )β θ φ θ φ′ ′  is the cosine of the angle between a segment having an orientation of 

(θ,φ) and a chain with an end-to-end orientation of ( , )θ φ′ ′ , given by 

 ( , , , ) sin sin cos( ) cos( ) cos( )β θ φ θ φ θ θ φ φ θ θ′ ′ ′ ′ ′= − + . (7.4) 

Details of the morphological parameters, the nature of their evolution, and the 

manner in which they are incorporated into the model are provided in the following 

sections. 

 

Crystal Nucleation 

As the polymer system is deformed, the amorphous segments become more 

oriented towards the directions of deformation.  This preferential alignment of the 

amorphous segments enhances the probability of thermally activated crystal nucleation.  

The orientation-dependent rate of nucleation is addressed through the thermodynamic 

nucleation model presented by Ziabicki and Jarecki (1985).  This model is based on the 

Turnbull and Fisher (1949) rate of homogeneous nucleation which assumes that the 

segments are added to the forming nucleus in a stepwise manner.  The Turnbull and 

Fisher expression was modified by Ziabicki and Jarecki to include the dependence of the 

number density nucleation rate on the orientation of the developing nucleus through the 

free energy parameter.   The virtual number density nucleation rate, ( , )cvn θ φ , which 

assumes that nucleation is not impeded by the reduction in the amount of amorphous 

segments available to be added to a forming nucleus as crystallization progresses or 

volume impingement, is given as 
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Here, *( , )nF θ φ∆  is the free energy change required to form a critically sized nucleus, ∆H* 

is the heat of activation of the jump process at the nucleus interface, 0cn  is the number 

density nucleation rate factor in the undeformed state, kB is the Boltzmann’s constant, and 

T is the absolute temperature.  The actual number density nucleation rate, ( , )cn θ φ , is 

dependent upon the ratio of virtual number density of crystalline segments to the total 

number density of segments in a particular orientation (Avrami 1941), i.e., 
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where Ncv(θ,φ) is the orientation dependent virtual number of segments in the crystalline 

phase; this is the number density of crystalline segments if volume exclusion is ignored 

and an inexhaustible source of non-crystalline segments were available.  The total 

number density of crystal nuclei is simply the sum over the entire orientation space, 
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Deformation-induced orientation of the polymer chains, and hence the segments, 

decreases the entropy of the system and therefore reduces the amount of free energy 

required to form a nucleus of critical size.  Ziabicki and Jarecki (1985) related the critical 

nucleation free energy, *( , )nF θ φ∆ , to the orientation of polymer molecule segments 

within the vicinity of a nucleus via the change of configurational entropy induced by the 

change of the segmental distribution.  The critical nucleation free energy of an oriented 
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polymer, assuming the nucleus is a rectangular parallelpiped, is given by (Hoffman and 

Lauritzen 1961) 
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where sσ  is the side surface free energy of a crystal, eσ  is the end surface free energy of 

a crystal, and ∆f(θ,φ) is the bulk free energy in the deformed state.  For the case of a 

single chain, the deformed bulk free energy is defined by Ziabicki and Jarecki (1985) to 

include the loss of a segment from its chain to a developing nucleus and the probability 

that a chain segment is at the same orientation as the developing nucleus, i.e., 
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Here, ( )( , ),chainp Nλ θ φ′ ′  is the probability that a chain with N segments has a stretch of 

( , )λ θ φ′ ′ , and ∆f0 is the undeformed, randomly oriented bulk free energy (Hoffman and 

Lauritzen 1961), i.e., 
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In this equation, ∆h is the equilibrium enthalpy of crystallization and Tm is the 

melting temperature of the polymer.  The probability of a chain having a specific end-to-

end length is defined as (Wang and Guth 1952) 
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where C is a normalizing constant set equal to the inverse of ( )1,chainp N .  The first term 

of Equation 7.11 is sufficient for large values of N, but the second term is also required 

for improved accuracy for the relatively low values of N that are often encountered in the 

application of this model for typical polymer systems. 

The deformed bulk free energy averaged over all of the chains in the unit volume 

is defined as 

( )

0

2 2 1

0 0 0 0

( , )

ln ( , , , ) ( , ), ( , )sinN
a seg chain a

f f

N kT p p N C
π π π π

θ φ θ φ
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θ φ θ φ λ θ φ θ φ θ θ φ−

′ ′= = = =

∆ = ∆

′ ′ ′ ′ ′ ′ ′ ′ ′− ∆ ∆∑∑∑∑
.(7.12) 

As crystal nucleation occurs, segments convert from the amorphous to the 

crystalline phase.  The initial size of a crystallite is assumed to be equal to the critical size 

of a nucleus and will only increase in size due to growth, to be described later.  The 

number density of amorphous segments that form nuclei is calculated from the number 

density of nuclei formed multiplied by the number of segments required to form a 

nucleus of critical size.  The rate of change of the virtual number density of segments 

forming nuclei, where virtual represents the ideal growth without consideration of 

volume impingement or exhaustion of the supply of amorphous segments, is given by 
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 ( , ) ( , ) ( , )nv cvN G nθ φ θ φ θ φ= , (7.13) 

where G(θ,φ) is the number of segments required to form a stable nucleus of critical size 

(George 1985), i.e., 

 
2

3

64( , )
( , )
s e totNG

f
σ σθ φ
θ φ

= −
∆

. (7.14) 

In (7.14), Ntot is given as the total number of segments per unit volume, i.e. Ntot = 

Na+Nc. 

The orientation dependence of the nucleation rates results in an orientation-

dependent distribution of the number density of crystallites and the orientation 

dependence of the size of a stable nucleus results in an orientation-dependent distribution 

of the crystallite sizes.  This nucleation model has the advantage that all of its parameters, 

except the pre-exponential nucleation rate constant, are based on measurable 

thermodynamic properties of the polymer. 

 

Crystal Growth 

Segments in the amorphous phase that are preferentially oriented with segments 

in the crystalline phase are more likely to be added to the crystals.  As with nucleation, 

crystal growth entails a transfer of segments from the amorphous phase to the crystalline 

phase, leading to evolution of the amorphous and crystalline SODs.  The kinetics of 

crystal growth are assumed to be similar to crystal nucleation, i.e., 
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where ( , )gn θ φ  is the rate of segments being added to a crystallite during growth, K0 is 

the pre-exponential growth rate factor, and *( , )gF θ φ∆  is the critical free energy of stable 

growth on the surface of an established rectangular parallelepiped-shaped crystallite with 

a unit cell width b, i.e., 

 * 4( , )
( , )
s e

g
bF

f
σ σθ φ
θ φ

∆ = −
∆

. (7.16) 

The time rate of change of the virtual number density of segments that attach to 

previously formed crystals depends upon the number density of crystallites aligned in the 

same orientation, i.e., 

 ( , ) ( , ) ( , )gv g cvN n nθ φ θ φ θ φ= . (7.17) 

The total rate of change of the number density of segments that enter the 

crystalline phase is then expressed as 

 ( , ) ( , ) ( , )cv nv gvN N Nθ φ θ φ θ φ= + . (7.18) 

The quantity ( , )cvN θ φ  does not account for volume impingement or availability 

of amorphous segments, which become significant factors at the crystallinity levels that 

can be encountered with this model.  The actual oriented crystallinity accounting for the 

limitations on crystal growth is given by 

 ( ) ( , )( , ) ( , ) ( , ) 1 exp
( , ) ( , )

cv
c c max a a c c

a a c c

NN S X N S N S
N S N S

θ φθ φ θ φ θ φ
θ φ θ φ

  −
= + −   +  

,(7.19) 

where Xmax is the maximum allowable level of crystallinity. The rate of transfer of 

segments between the amorphous and crystalline phases is determined by 

 ( )
2

0 0
( , ) sinc c c

dN N S
dt

π π

θ φ

θ φ θ θ φ
= =

= ∆ ∆∑∑ , (7.20) 
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with conservation of segments being maintained by 

 a cN N= − . (7.21) 

Since the amount of crystallization is determined quantitatively, the heat of 

crystallization can be calculated to determine the temperature increase in the material.  

The rate of temperature increase is determined by the rate of crystallization, i.e.,  

 c f

tot

N H
T

N c
∆

= , (7.22) 

where ∆Hf is the heat of fusion and c is the specific heat of the polymer.  The effects of 

heat conduction also needs to be considered in the energy equation in the implementation 

of the model, of course, as (7.22) assumes adiabatic conditions. 

The amorphous COD is assumed to not be affected directly by the phase change 

of segments, although the increase of the number density of crystallites and the decrease 

in the number of segments of the amorphous phase will have a measurable effect on the 

amorphous SOD by changing the number of segments per chain. 

 

Entanglement Slippage 

The evolution of entanglements is defined using the same relationships derived 

from molecular dynamics simulations as detailed in Chapter 6.  This aspect represents an 

extension of the recently published work (Shepherd et al. 2006).  Two processes were 

assumed, a rate dependent and a rate independent process.  The rate independent process 

is considered to be solely dependent on the overall deformation of the material, i.e.,  

 ( )exp ( 1)
base inite en n S V= − , (7.23) 
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where 
initen  is the initial number density of entanglements, S is a parameter that accounts 

for the magnitude of the dependency on deformation, and V is the overall stretch given by 
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V λ
=

= ∑ . (7.24) 

Here, λi are the principal stretches. 

The rate-dependent reduction in the number density of entanglements is assumed 

to have a power law dependence on the stress and an Arrhenius dependence on the 

temperature, i.e., 

 0 exp base slip

slip
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e eqe
e e

B e

n nFn n
k T n

τ
−  ∆

= −        
, (7.25) 

where 0en  is an entanglement slippage pre-exponential constant, eF∆  is the thermal 

activation energy, q is the stress power factor, and τ is the equivalent shear stress.  The 

last term accounts for the reduced number of entanglements available for slippage as 

deformation progresses.  The equivalent shear stress is defined by 

 1
2 ,τ ′ ′= ⋅σ σ  (7.26) 

where ′σ  is the deviatoric stress tensor. 

The entanglement density is simply the difference between these two processes, 

i.e., 

 
base slipe e en n n= − . (7.27) 

The number density of chains in the system, n, is related to the number density of 

interconnects, which are represented by entanglements and crystals, and given by 

 ( )2
tote cn n n= + . (7.28) 
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Framework of the Model 

The framework presented by Boyce et al. (2000) is a thermodynamically 

admissible implementation that is valid for finite deformation and permits the inclusion 

of both intermolecular and network resistances, along with a viscous component to 

capture yielding associated with the intermolecular resistance.  The overall deformation is 

assumed to consist of the effects of the entropic resistance of the network of polymer 

chains and the resistance between neighboring molecules.  The deformation gradients 

associated with the network and intermolecular resistances, Fn, and Fi, respectively, are 

both set equal to the continuum deformation gradient, i.e., 

 i n= =F F F . (7.29) 

The deformation gradient associated with the intermolecular resistance is 

decomposed into an elastic component, e
iF , which accounts primarily for bond stretching 

and reversible change in bond angle, and an inelastic component, p
iF , which includes the 

remaining deformation as 

 e p
i i i=F F F . (7.30) 

The left Cauchy Green tensor is determined from the deformation gradient 

associated with the network resistance, i.e., 

 T
n n=B F F . (7.31) 

The eigenvalues of the left Cauchy Green tensor give the square of the associated 

principal stretches.  The corresponding eigenvectors are used to transform the principal 

network stress components back to the global system. 

The stretches in any orientation are determined by (Wu and van der Giessen 

1993) 
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where λi are the principal stretches and the direction components are defined as 
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The amorphous COD is defined by Wu and van der Giessen  (1993) to be directly 

related the stretch in an affine manner, i.e., 

 
3( , )( , )

4aC λ θ φθ φ
π

= . (7.34) 

In order to maintain the history dependence of the model on the deformation state, 

this relationship is implemented in its rate form, i.e., 

 
23 ( , ) ( , )( , )

4aC λ θ φ λ θ φθ φ
π

= . (7.35) 

It is likely that the crystalline phase included in this model would affect the 

deformation-induced change in the amorphous COD, and therefore this equation is 

approximate.  After the amorphous COD is updated, the ISVs are then modified as 

described previously. 

The network response is assumed to depend only on the number density and 

orientation of the amorphous statistical segments and not explicitly on the crystalline 

statistical segments, which are assumed to be locked within the crystals and therefore 

unable to directly contribute to the deformation of the network model.  Since the ISV 

evolution equations involve the transition of statistical segments from the amorphous to 

the crystalline phase, the number of statistical segments between interconnects, N, must 

be updated prior to the network resistance calculation and is determined from the number 
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density of amorphous statistical segments in the model, Na, and the number density of 

chains assuming a monodispersed molecular weight distribution, n, i.e., 

 aNN
n

= . (7.36) 

The resulting modified version of the Wu and Van der Giessen (1993) network 

model is used to determine the stress arising from the resistance of the network to 

stretching, i.e., 
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where ˆ
inσ are the principal stress components and p is a hydrostatic stress parameter that 

is determined from the boundary conditions.  The network stress components are rotated 

back to the global system and into tensor form, nσ . 

As with the Boyce model, the total Cauchy stress is the sum of the stress due to 

network resistance and the stress due to intermolecular resistance, i.e., 

 n i= +σ σ σ . (7.38) 

The Cauchy stress due to intermolecular resistance is determined in the current 

configuration from the elastic Hencky strain as 

 ( )1 ln ,e
i iJ
= ⋅σ C V  (7.39) 

where J = det e
iF , C is the rotated fourth rank elasticity tensor, and e

iV  is the left Cauchy 

Green tensor of the elastic deformation gradient, defined as 

 ( )
1
2e e eT

i i i=V F F . (7.40) 

Following along the lines of the Boyce model, the flow rule is given as 
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 ,p p
i γ=D N  (7.41) 

where p
iD  is the rate of inelastic stretching, pγ  is the inelastic shearing rate and N is the 

direction defined in the current configuration by 

 i
iτ
′=

1N σ
2

. (7.42) 

Here, i′σ  is the deviatoric portion of the Cauchy stress due to intermolecular resistance 

and τi is the equivalent shear stress due to the intermolecular resistance defined as 

 ( )
1
21

2i i iτ ′ ′= ⋅σ σ . (7.43) 

For the inelastic shear strain rate, the double-kink Argon relaxation model (Argon 

1973) was employed with a single relaxation time as in the Boyce et al. (2000) model, 

i.e., 

 0 exp 1p p i

B

A
k T s

τγ γ
  = − −  

  
, (7.44) 

where 0
pγ  is a pre-exponential factor, A is the energy barrier to flow, and s is the athermal 

shear stress. 

The velocity gradient associated with the intermolecular resistance is given in the 

current configuration by 

 
1 1p e p p e p p

i i i i i i i

− −

= = +L F F F F D W , (7.45) 

where p
iL  is the inelastic velocity gradient which is separated into a symmetric part, p

iD , 

representing the inelastic rate of deformation and an anti-symmetric part, p
iW , that 

represents the inelastic spin tensor. 
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In order to complete the framework, the inelastic spin tensor must be specified.  

Pereda et al. (1993) define the inelastic spin tensor in the isoclinic intermediate 

configuration as a function of the principal stretch components, i.e., 

 ( ) ( ) ( )
2 2

2 2 , , , nosum on ,p pk l
i i k lkl kl

k l

k l k lλ λ λ λ
λ λ

+
= ≠ ≠

−
W D , (7.46) 

where 
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−

=D F D F . (7.47) 

The rate of inelastic spin in the intermediate configuration is transformed into the 

current configuration according to 

 
1p e p e

i i i i

−

=W F W F . (7.48) 

   

Implementation 

The constitutive framework must be implemented using a numerical integration 

scheme.  For purposes of numerical integration, the model only requires four external 

variables to be specified by the parent finite element analysis routine that calls the 

constitutive update subroutine: the continuum deformation gradient at the beginning of 

the time step, continuum deformation gradient at the end of the time step, temperature at 

the beginning of the time step, and time increment.  Due to the boundary condition-

dependent hydrostatic stress parameter, p, in the network stress equation (Eq. 7.36), this 

constitutive model cannot be directly implemented in many commercial codes, e.g. 

ABAQUS (2003), solely as a user defined constitutive model.  As a result, a wrapper 

program was created to determine the evolution of the deformation gradient during the 

simulations and store the state variables.  One method to generalize the model in order to 
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incorporate it into a general finite element analysis package is to assume that only the 

deviatoric component of the network stress should be accepted from (7.36)  (Boyce et al. 

2000). 

The most significant disadvantage of the Wu and van der Geissen network model 

is the computational expense due to the numerical integration over the orientation 

distribution functions.  As a result, reducing the size of the ODFs can have a dramatic 

effect on the overall computational time required.  For the simulations performed in this 

research, two methods were implemented to reduce the size of the ODFs.  First, the 

symmetry of uniaxial deformation, given random initial orientation distribution, permits 

only one eighth of the entire orientation space to actually be calculated.  Second, the cells 

of the ODFs were defined such that the cells over which large changes in the density of 

the segments or chains cover a smaller area of the orientation space compared to the cells 

in the remaining orientation space.  As a result, the cells are nonuniform in the amount of 

area of the orientation space that they cover.  Large uniaxial deformation, in both 

compression and tension, results in large gradients of orientation density to occur in 

predictable small regions of the ODFs, assuming that the initial orientation distribution is 

uniform.  The combination of these methods permits ODFs with only 12 divisions in each 

of the two spherical directions for a total of only 144 cells, while maintaining an 

integration accuracy of less than 1% of the network stress.  In the case of uniaxial 

deformation, the ODFs can be further reduced to one dimension since gradients only 

occur over the θ-direction if the uniaxial deformation is applied in the z-direction. 

Due to several interdependencies of the rate functions, the solution of the entire 

model requires the implementation of methods to solve the ordinary differential equations 
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(ODEs) and systems of nonlinear equations.  Figure 7.1 shows a schematic of the 

implementation of the model for each time step. 

 

F0, F1, ∆t Provided by parent displacement-
based FE code. 

  

F, p
iF , Ca(θ,φ), T, 

slipen  

ncv(θ,φ), Ncv(θ,φ),NcSc(θ,φ) 
Extrapolated from previous step. 

  

λ(θ,φ) = f(Ca(θ,φ))  

baseen  = f(λ(θ,φ))  

σi = f( p
iF , F)  

Na, Nc, Sc(θ,φ) = f(NcSc(θ,φ))  
  

nc = f(Sa(θ,φ), Na) 
N = f(

slipen , 
baseen , nc, Na) 

Sa(θ,φ) = f(Ca(θ,φ), N, λ(θ,φ)) 

Solve for Sa(θ,φ), N, nc using 
Newton’s method. 

  

σn = f(
slipen , 

baseen , nc, N, Ca(θ,φ),σi)  
  

F  = f(F0, F1, ∆t) 
p

iF  = f( p
iF , F) 

( , )aC θ φ  = f( F ,F) 

slipen = f(σi, σn, 
slipen , 

baseen ) 

( , )cvn θ φ  = f(Na, Ca(θ,φ), N, λ(θ,φ)) 
( , )cvN θ φ  = f(Na, Ca(θ,φ), N, λ(θ,φ)) 

Determine rates to find values for the 
next time step. 

  

d(NcSc(θ,φ))/dt = f(Na, Nc, Sa(θ,φ), ( , )aS θ φ ) 
( , )aS θ φ  = f( ( , )aC θ φ , Ca(θ,φ), λ(θ,φ), N, N ) 

N  = f(d(NcSc(θ,φ)/dt, ( , )aS θ φ , 
slipen , 

baseen , nc,  

 
slipen , cn , ( , )aC θ φ , Na) 

cn  = f(d(NcSc(θ,φ)/dt, ( , )aS θ φ , Sa(θ,φ), Na) 

Solve for d(NcSc(θ,φ)/dt, ( , )aS θ φ , N ,  

cn using Newton’s method. 

 
Figure 7.1 Schematic of the numerical implementation for each time step. 
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Two groups of equations form nonlinear systems of equations.  These systems are 

solved at each time step using a globally convergent Broyden’s method algorithm with 

line searches (Press et al. 1996).  The model is integrated using the fifth-order Cash-Karp 

Runge-Kutta method with adaptive step sizes (Press et al. 1996).  This method proved to 

be superior to lower order methods in both computational resource requirements and the 

ability to converge at high strains. 

 

Results 

To demonstrate the effectiveness of the model to simulate actual polymer 

deformation, the model was compared to experimental results at several strain rates and 

temperatures just above the glass transition temperature.  The polyethylene homopolymer 

modeled with the molecular dynamics simulations was not used to validate the 

constitutive model because of the lack of useful amorphous experimental data to validate 

the model results.  The low glass transition temperature of the ideal polyethylene 

homopolymer precluded availability of sufficient low crystallization experimental data in 

the literature necessary to fully test the constitutive model.  Instead, a common semi-

crystalline polymer was considered, polyethylene terephthalate (PET). 

Comprehensive experiments covering all of the capabilities of this model, i.e., 

temperature- and rate-dependent stress, orientation, and crystallinity versus strain, were 

not found in a single publication.  Therefore, two sets of experimental results were used 

to evaluate the model.  Clauss and Salem (1992) measured stress-strain, orientation, and 

crystallinity of PET at a single temperature just above the glass transition temperature, 

90°C.  This uniaxial tension experiment included measurements at two nominal strain 
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rates, 0.56s-1, and 0.01s-1.  Llana and Boyce (1999) provided uniaxial compression stress-

strain data at multiple true strain rates and temperatures.  Also included were relative 

final crystallinity measurements. The model was implemented as discussed previously.  

Boundary conditions were set up to simulate the experiments.  Heat generation and 

transfer were not included as the experimental details pertaining to heat conduction were 

not specified in the literature. 

Many of the model parameters were taken from the literature.  The remaining 

parameters were fit to all of the experimental data using the covariance matrix adaptation 

(CMA) evolutionary algorithm scheme (Hansen and Ostermeier 2001) as implemented in 

the OpenBeagle framework (Gagne and Parizeau 2002).  The values for all of the 

parameters are included in Table 7.1. 
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Table 7.1 Model parameters for both experiments (Clauss and Salem 1992; Llana 
and Boyce 1999). 

Parameter Llana and Boyce Clauss and Salem Source 
E 40 MPa - 1.2 MPa K-1(T - 353 K) (Boyce et al. 2000) 
Ν 0.49 (Boyce et al. 2000) 
S 0.15 E/(2(1+ν)) (Boyce et al. 2000) 
A 3.98×10-20 J Fit 

0γ  7.21 s-1 Fit 
Na 8.05×1020 cm-3 (Aharoni 1983) 
N 6.0 5.6 Fit 
S 04.42 0.023 Fit 

0en  3.81×1064 cm-3s-1 3.87×1036 cm-3s-1 Fit 

eF∆  5.41×10-19 J 2.00×10-19 J Fit 
Q 2.71  Fit 
∆h -180 J/cm3 (Palys and Phillips 1980) 
Tm 553 K (Palys and Phillips 1980) 
∆H* 9.39×10-20 J (Gregory and Watson 1970) 
B 5.0×10-8 cm (George 1985) 

sσ  10.2×10-7 J/cm2 (Palys and Phillips 1980) 

eσ  190×10-7 J/cm2 (Palys and Phillips 1980) 

0cn  2.59×1050 cm-3s-1 6.78×1049 cm-3s-1 Fit 
K0 2.08×1020 s-1 9.53×1018 s-1 Fit 
Xmax 0.25 Fit 

 

The crystallisation kinetics only require three parameters to be fit to the 

experimental data, 0cn , K0, and Xmax.  The remaining parameters (∆h, Tm, ∆H*, b, sσ , eσ ) 

are thermodynamic properties that can be found in the literature or possibly through the 

use of atomistic modeling methods. 

The amorphous PET used in the experiments had a density of 1.339 g/cm3, which 

is equivalent to 4.2×1021 monomers per cm3.  The number density of statistical segments, 

Na, is determined by scaling the number density of monomers by the ratio of the Kuhn 

length, 11.1Å (Aharoni 1983), to the average monomer length, 2.135 Å (Aharoni 1983). 
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The model correlates well to the experimental uniaxial stress-strain data reported 

by Clauss and Salem (Figure 7.2).  The model becomes unstable at the high strains where 

the data terminate.  This instability is due to reaching the locking strain at this point.  

When the square root of the number of segments per chain approaches the stretch of the 

material, the rubber elasticity portion of the model approaches an infinite stress.  As 

shown in Figure 7.3, this condition is met at the point at which the model stops.  

Normally, as the locking strain is approached, the stress becomes high enough to 

substantially increase the rate of entanglement slippage due to its power law dependence 

on stress.  The loss of entanglements increases the number of segments per chain which 

increases the strain at which the locking behaviour occurs.  This interplay between 

entanglement slippage and the locking strain indicates an interesting mechanism of 

intermolecular interactions at high strains where sufficient strain energy is required to 

overcome these barriers to molecular motion. 
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Figure 7.2 Stress-strain curves for the continuum model and experimental data at 
90°C. 

 

 
 

Figure 7.3 The number of segments per chain as a function of strain for the 
continuum model and the number of segments per chain that result in 
locking behavior at 90°C. 
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The predicted overall crystallinity as a function of strain (Figure 7.4) 

demonstrates several characteristics of the model.  The lack of model data at high strains 

is a result of the previously covered strain-locking behaviour.  The model is able to 

correctly reproduce the relative shapes of the crystallisation curves and points at which 

crystallisation commences.  However, the model gives high rates of crystallization than 

the experiments.  This discrepancy is likely due to a shortcoming in the crystallization 

kinetics.  While the model does account for the overall maximum percentage of 

crystallization, it only does so at each orientation, independently.  The model assumes 

that all of the amorphous segments oriented in the direction of crystal growth are 

available for addition to the crystal.  In an actual polymer, amorphous segments oriented 

in different directions and crystals forming and growing in different directions will hinder 

or completely separate the aligned amorphous segments. 
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Figure 7.4 Overall crystallinity as a function of strain for the continuum model 
and experimental data at 90°C. 

 

The average size of the crystals increases with deformation and strain rate (Figure 

7.5).  These results indicate that the growth of a crystal is not as dependent on orientation 

as is the nucleation process.  Since nucleation requires a critical number of segments to 

be aligned in the same direction, while crystal growth can be performed in much smaller 

increments, it is likely that these results simulate actual behavior.  The reduction in the 

rate of crystal growth at the slower strain rate near a strain of 0.75 is a result of the 

amorphous segments in the direction of orientation becoming consumed to the point that 

an insufficient number density of amorphous segments exists to maintain the previous 

growth rate.  The subsequent increase in growth rate coincides with the strain hardening 

of the polymer.  This significant hardening increases the number of amorphous segments 

aligned in the direction of deformation, allowing more segments to be available for 

growth. 
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Figure 7.5 Average crystal size as a function of strain for the continuum model 
and experimental data at 90°C. 

 

The primary driver for the increase in nucleation rate is the increase in orientation.  

The slowest nominal strain rate, 0.01s-1, permits over an order of magnitude more time 

for nucleation to occur than at the faster rate, 0.56s-1.  As would be expected, the slower 

rate results in a much higher nucleation rate at low strains than the faster rates (Figure 

7.6).  This trend is reversed as deformation continues and the orientation dependence 

overcomes the difference in time.  Also of interest is that the number density of nuclei is 

always orders of magnitude less than the number density of entanglements.  This 

observation indicates that the entanglements have a greater effect on constraining the 

network of chains than the nuclei.  Recent experimental evidence comparing the 

mechanical behavior of PET and a non-crystallizing copolymer PETG (Dupaix and 

Boyce 2005) indicates that strain induced crystallization is not significantly responsible 

for the strong hardening behavior of PET as also demonstrated with this model. 
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Figure 7.6 Number densities of crystals and entanglements as a function of strain 
for the continuum model and experimental data at 90°C. 

 

The model accurately represents the experimentally measured amorphous 

segment orientation distribution (Figure 7.7).  The Herman’s orientation, P2, is 

determined over the entire orientation space, i.e., 
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. (7.49) 

 The combination of the orientation and crystallization results indicate that the 

highly orientation dependent crystallization kinetics employed in the model are valid. 
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Figure 7.7 Orientation development of the amorphous segments as a function of 
strain for the continuum model and experimental data at 90°C. 

 

To determine the accuracy of the model over a wider range of strain rates and 

temperatures, the model was fit to the experimental data provided by Llana and Boyce.  

True stress-strain curves from the model and experiments for temperatures of 90°C, 

100°C, and 105°C at a strain rate of -0.1s-1 are provided in Figure 7.8.  As the 

temperature is increased, the rate of entanglement slippage becomes greater, reducing the 

hardening rate.  Stress-strain results from the model and experiments for strain rates of     

-0.005 s-1, -0.1 s-1, and -1.0 s-1 at 100°C are provided in Figure 7.9.  As the strain rate is 

increased, the hardening rate is likewise increased due primarily to the lack of time for 

entanglement slippage to become significant and the increase in stress induced 

crystallization.  The model is able to capture the experimental data exceptionally well.  

The stress at which yielding occurs and the shape of the yielding behaviour shows a 
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discrepancy between the model and experiment.  The single relaxation time model is the 

likely culprit.  Implementing a multi-relaxation time model similar to Hasan and Boyce 

(1995) or Dooling et al. (2002) could correct this deficiency.  However, these relaxation 

models require more parameters to be fit and increase the computational cost of solving 

the model.  If large strain behaviour is of interest, then the discrepancies at the very low 

strain will not have a significant effect on the results. 

 

 
 

Figure 7.8 Temperature dependence of true stress-strain behavior at a true strain 
rate of -0.1s-1 for the continuum model and experimental data. 
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Figure 7.9 Rate dependence of true stress behavior at a temperature of 100°C for 
the continuum model and experimental data. 

 

The results of the network model evaluation performed in Chapter 6 indicated that 

the entanglement evolution equations might be capable of simulating the visco-elastic 

portion of the deformation behavior.  To determine the ability of the entanglement 

evolution equations to simulate the visco-elastic behavior, the intermolecular resistance 

portion of the model was disabled, i.e., the calculations related to Fi and iσ  were skipped.  

The model was then fit to the Llana et al. experimental data as before.  The Llana et al. 

experimental data was chosen since it captures the yielding behavior at lower strains.  

The stress-strain behavior is modeled well for different temperatures (Figure 7.10) and 

true strain rates (Figure 7.11).  The results from the model show the yielding occurring at 

slightly higher strains than the experimental data.  Additionally, the yielding predicted by 

this model is not as rate- or temperature-dependent as the experimental data.  However, 
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the post-yield behaviors are modeled nearly as well as with the model including the 

visco-elastic component. 

 

 
 

Figure 7.10 Temperature dependence of true stress-strain behavior at a true strain 
rate of -0.1s-1 for the continuum model and experimental data. 
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Figure 7.11 Rate dependence of true stress-strain behavior at a temperature of 
100°C for the continuum model and experimental data. 

 

A significant advantage of the model without the visco-elastic component is that 

five fewer model parameters are required, particularly parameters that must be fit to 

experimental data (Table 7.2).  Furthermore, if a non-crystallizing polymer is to be 

modeled, the crystallization related parameters would no longer be needed leaving only 

six parameters for the entire model.  It is also possible that the entanglement models 

could be enhanced to better model the yielding behavior.  While this enhancement will 

likely require the use of additional parameters, the actual material mechanisms may be 

better modeled. 
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Table 7.2 Model parameters for both experiments (Clauss and Salem 1992; Llana 
and Boyce 1999) for the case without the intermolecular resistance 
component. 

Parameter Llana and Boyce Source 
Na 8.05×1020 cm-3 (Aharoni 1983) 
N 3.00 Fit 
S 3.98 Fit 

0en  3.42×1061 cm-3s-1 Fit 

eF∆  4.98×10-19 J Fit 
Q 2.39 Fit 
∆h -180 J/cm3 (Palys and Phillips 1980) 
Tm 553 K (Palys and Phillips 1980) 
∆H* 9.39×10-20 J (Gregory and Watson 1970) 
B 5.0×10-8 cm (George 1985) 

sσ  10.2×10-7 J/cm2 (Palys and Phillips 1980) 

eσ  190×10-7 J/cm2 (Palys and Phillips 1980) 

0cn  1.73×1047 cm-3s-1 Fit 
K0 1.06×1021 s-1 Fit 
Xmax 0.48 Fit 

 

Conclusions 

A constitutive model has been presented to characterize the mechanical behavior 

of semi-crystalline polymers as well as major morphological mechanisms in polymers 

during deformation.  The mechanisms include entanglement slippage, orientation, and 

strain-induced crystallization, comprising both crystal nucleation and crystal growth.  The 

combination of these separate mechanisms has been shown to correctly simulate the 

trends of observed complex experimental mechanical behavior.  The simulated 

mechanical behavior agrees very well with experimental evidence (Clauss and Salem 

1992; Llana and Boyce 1999)  over the temperatures and strain rates evaluated.  Unlike 

other models that simulate the mechanical behavior of semi-crystalline polymers 

(Buckley and Jones 1995; Adams et al. 2000; Boyce et al. 2000), the model presented 
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here also tracks the development of morphology.  The evolution of the ISVs during 

deformation agree reasonably well with experimental evidence, with the relaxation 

resulting from entanglement slippage dominating the effects of strain-induced 

crystallization, as suggested from experimental evidence (Salem 1992a). 

The model is shown to perform well at simultaneously fitting transient 

crystallization, orientation, and stress-strain data.  This performance indicates that this 

particular implementation of thermodynamically derived crystallization models and 

entanglement evolution equations into a rubber elasticity model can represent actual 

material behavior well.  The ISVs implemented in the model have a direct relation to 

quantitative morphological attributes and can be queried to determine the morphological 

state of the material at any point during deformation.  This aspect of the model makes it a 

very powerful tool to not only determine the mechanical behavior of the material but also 

to investigate and predict the evolution of morphology during deformation, permitting the 

optimization of manufacturing processes for desired morphologies.  In many commercial 

applications the resulting morphology of the polymer is as important as its mechanical 

behavior.  Some of these applications include beverage bottles and films where the 

permeation of gases through the polymer is dependent upon the amount of crystallization 

and orientation, which can be characterized by this model.  The direct correlation of the 

ISVs with morphological entities could facilitate the design of new polymer systems, 

where the material designer can specify molecular characteristics that would have 

specific effects on certain ISVs. 

The ISVs evolve in a history dependent manner and have the capability of 

describing complete anisotropy of the polymer system.  These attributes allow the model 
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to predict complex deformation modes and histories.  In this research, only the monotonic 

initial uniaxial deformation was studied.  Further work should investigate the model’s 

ability to simulate more complex deformation modes such as biaxial, relaxation behavior 

after deformation, and complex deformation histories that include combinations of 

loading and unloading.  To further evaluate the abilities of the model, additional 

orientation and crystallization data taken at different temperatures as well as rates would 

be useful. 

Though a large number of model parameters must be defined, many of these are 

fundamental properties of the polymer and can be found in the literature for most 

common polymers.  However, the remaining parameters are mostly very interdependent 

and it could be difficult to determine accurate values for these constants without 

performing a significant number of experiments, especially for polymers for which 

thermodynamic properties have not been previously characterized.  It is also difficult to 

validate the material constants and the evolution of the ISVs due to the lack of 

experimental data regarding the evolution of crystal nuclei, crystal size, and entanglement 

slippage during strain-induced crystallization.  As shown in this research, another 

approach is to use molecular models to derive these parameters.  The derivation of the 

entanglement evolution equations from atomistic simulations and implementation into the 

continuum model shows how this length scale bridging can be performed.  The 

correspondence of the ISVs with morphological entities makes it feasible to completely 

determine all of the model parameters from molecular modeling.  This capability would 

permit the determination of mechanical behavior of the polymer at the continuum scale 
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without even physically constructing the polymer, which represents an ultimate goal of 

this research. 
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CHAPTER 8 

CONCLUSIONS 

 

The objective of this research was to develop models and methods to bridge 

atomistic and continuum models of deformation processes in polymer systems.  Of 

particular interest was the identification and tracking of morphological entities at the 

atomistic level and the extrapolation of these results into the continuum level.  The 

research presented here has met this goal by providing a foundation for multi-scale 

modeling of deformation processes in semi-crystalline polymers.  Atomistic tools and 

methods have been developed that integrate with a continuum model resulting in a multi-

scale model framework.  The successful bridging of entanglement evolution from 

atomistic to continuum models is a specific application of this process that serves as a 

direction for similar bridging of other morphological entities. 

 

Significance 

This research has yielded a much clearer understanding of the influence of the 

underlying structures on mechanical behavior through the development of significantly 

more accurate material models based on the nanoscale attributes of polymers, particularly 

the evolution of entanglements.  The ultimate goal of the research was to develop 

methods to determine macroscale model parameters largely from molecular level models, 

reducing the need for experimental derivation of these parameters while providing 

additional capability for material design.  Significant steps toward this goal have been 

completed.  Specifically, the following contributions have been made: 
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• A thorough investigation of the application of molecular dynamics methods to 

simulating the deformation of polymers has been completed.   The sensitivity of 

the molecular dynamics method to the various method parameters and polymer 

system initial configurations has been determined.  The optimal parameters in 

regards to accuracy and computational efficiency were selected as well as the 

number of trials required for consistency of results.  The confirmation of the 

molecular dynamics method was essential in ensuring that the remaining atomistic 

simulations can be trusted. 

• An initial configuration algorithm has been developed which generates more 

realistic configurations and requires less computational resources than current 

methods.  This method permits fine control over the properties of the polymer 

system such as end-to-end lengths and overall orientations of the chains, 

distribution of RIS states, and polydispersity.  Additionally, this method can 

ensure a low energy configuration with relatively even density.  Complete control 

over the topology of cross-linked networks is possible along with the creation of 

ring molecules and other formations.  Development of this algorithm was 

instrumental in creating the initial configurations near equilibrium as required for 

this research and particularly the completely cross-linked systems at high 

densities used in the network model comparisons. 

• A thorough investigation of the application of time acceleration methods to large 

polymer systems has been completed.  A successful method was not found that 

would permit the investigation of long time scale events due to the large number 

of nearly simultaneous transitions violating the assumptions that the acceleration 
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methods were based on.  However, the results from this investigation show the 

potential of this method to enhance the computational efficiency of molecular 

dynamics simulations.  Additionally, directions for further research to try and 

overcome the limitations in the accelerated dynamics methods have been 

proposed. 

• An original method of computationally defining entanglements by their 

mechanical function instead of their geometry has been presented.  This method 

of evaluating the bond forces yields consistent qualitative results that give some 

insight into the evolution of entanglements. 

• The ability of rubber elasticity models to correlate with the behavior of actual 

polymers through atomistic studies has been confirmed.  The correlation between 

an ideal rubber elasticity model and an atomistically modeled polymer was found 

by linking the parameters of the network model to the molecular structure and 

interactions of the polymer system. From this correlation, the evolution of 

entanglements was determined from which equations were derived to model this 

behavior. 

• A constitutive model for semi-crystalline polymers for which the internal state 

variables directly relate to the underlying structures of the material was enhanced 

to much more accurately simulate experimental evidence.  Most significantly, the 

evolution of entanglements is guided by molecular dynamics investigations.  

Additionally, the oriented crystallization kinetics provided by Ziabicki and Jarecki 

(1985) for the history independent, uniaxial case was enhanced to a general 

implementation in three dimensions with history dependence. 



 

 186

These contributions will have a significant impact in the field of polymer 

mechanics by shedding light on the relationship between nanoscale structures and 

macroscopic behavior as well as providing methods to quantitatively link these scales. 

For purposes of materials design, the relationships obtained between nanoscale 

morphology and the resulting behavior of polymers can support optimization and robust 

design methods to determine the morphological compositions for specific end uses.  

Furthermore, the determination of ISV model structures and parameter values based on 

atomistic models would facilitate prediction of mechanical behavior and morphology 

evolution of novel polymers without the need to synthesize them.  Additionally, these 

methods, in conjunction with parametric studies, will permit the robust design of novel 

polymers that will meet desired mechanical behavior.  Thus, the main thrust of this 

proposal is to advance the utilization of current atomistic models to incorporate 

information into molecular-based ISV models. 

 

Suggested Future Work 

The research presented here has cumulated in the development of methods and 

models to link atomistic and continuum models.  The next steps in this research should 

focus on further implementation of these methods to other morphological entities and a 

more thorough validation of these methods with experimental evidence.  The primary 

focus of this research was on the evolution and effect of entanglements and the 

interaction of polymer chains across the length scales.  The next morphological entities 

that should be studied are crystals. 
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Through experiments, it is very difficult to separate the nucleation and growth 

from the overall development of crystallization due to the difficulty of measuring the 

transient development of these nanoscale structures.  As a result of this experimental 

limitation, molecular models could be used to study the initiation and development of 

crystallization.  The rate, temperature, and orientation dependence of both nucleation and 

growth could be compared to existing thermodynamics-based crystallization models for 

compatibility.  By investigating the correlation between the molecular model results and 

existing macroscopic material behavior models, the fitness of the macroscopic model to 

capture the molecular behavior can be determined.  If the fit is good, then appropriate 

macroscopic model parameters can possibly be obtained directly from the atomistic 

models.  Otherwise, modifications to these macroscopic models or development of a 

novel model may be required. 

Because of the time required for nucleation events to occur in the dense polymer 

systems of interest here, time accelerating methods will need to be implemented in the 

crystallization studies.  Completely amorphous configurations will be modeled without 

any applied deformation to determine the unoriented nucleation rate.  Replicas of the 

initial configuration of the amorphous system could be uniaxially deformed to various 

stretches and hence various levels of orientation.  Fast deformation rates could be used to 

limit the amount of crystallization during stretching.  The system would then be held at 

the final stretch while crystallization occurs. 

To determine both nucleation and growth rates, the number and size of the 

crystallites could be measured using the orientation order parameter method of Ko et al. 

(2004).  The orientation distribution of the monomers would also be determined during 
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the crystallization measurements.  The data from these measurements could then be used 

to evaluate the fitness of the crystallization model (Ziabicki and Jarecki 1985) 

implemented in the continuum model. 

Due to practical limitations with experiments on non-crystalline polyethylene 

homopolymers, there is not sufficient data to determine the accuracy of linking 

entanglement evolution across the length scales.  A next step would include the 

simulation of more complex polymer structures that do not crystallize so easily.  For 

example, linear-low density polyethylene copolymer is relatively simple in structure and 

adequate experimental data is available to validate the methods proposed in this research.  

The initial configuration generation software would only need minor modifications to 

generate the necessary structures.  Potentials for the different monomers of this polymer 

and their parameters would need to be determined and validated for the molecular 

dynamics simulations.  Another material that has a substantial amount of macroscale 

experimental data and reasonable atomistic model development is polyethylene 

terephthalate (PET).  The structure of PET is much more complex than linear-low density 

polyethylene and would be a good candidate for further validation of the multiscale 

methods proposed in this research. 

The bridging of the morphological processes over the many orders of magnitude 

of time scales needs to be evaluated further.  While the accelerated dynamics methods do 

not seem to be able to bridge significant time scales, other methods should be 

investigated such as coarse graining.  Time dependent processes should also be validated 

with experimental evidence. 
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