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SUMMARY

The prediction of vehicle dynamic response is an essential aspect of helicopter flight

mechanics, having relevance to flight simulation, handling quality assessment, aeroelasticity

analysis and control law development. Many current helicopter simulation models suffer

from an off-axis response correlation discrepancy problem, where the predicted initial off-

axis response to cyclic control stick input is opposite in variation trend to that of the

corresponding flight test data. This off-axis response correlation discrepancy problem is

believed to be caused by inaccurate representation of inflow across the rotor disk during a

pitch or roll maneuver.

In this dissertation, a new rotor dynamic wake distortion model, which can be used to

account for the rotor transient wake distortion effect on inflow across the rotor disk during

helicopter maneuvering and transitional flight in both hover and forward flight conditions,

is developed. The dynamic growths of the induced inflow perturbation across the rotor disk

during different transient maneuvers, such as a step pitch or roll rate, a step climb rate and

a step change in advance ratio are investigated by using a dynamic vortex tube analysis.

The dynamic vortex tube analysis results indicate that the dynamic growths of rotor inflow

perturbations during different transient maneuvers exhibit a first order behavior with time.

Therefore, a rotor dynamic wake distortion model, which is expressed in terms of a set of

ordinary differential equations, with rotor longitudinal and lateral wake curvatures, wake

skew and wake spacing as states, is developed. Also, both the Pitt-Peters dynamic inflow

model and the Peters-He finite state inflow model for axial and forward flight are augmented

to account for rotor dynamic wake distortion effect during helicopter maneuvering flight.

To model the aerodynamic interaction among main rotor, tail rotor and empennage during

helicopter maneuvering flight, a reduced order model based on a vortex tube analysis is

developed to account for the effect of main rotor wake curvature on main rotor downwash

at tail rotor and empennage, for the side wash induced at the aerodynamic centers of vertical

xix



tail and tail rotor by the main rotor wake curvature and for the up/down wash induced

at the aerodynamic center of horizontal tail by the tail rotor wake curvature effect. To

account for the fuselage blockage effect on the main rotor mean induced inflow, a reduced

order model is developed by treating the fuselage as an equivalent flat plate panel.

Both the augmented Pitt-Peters dynamic inflow model and the augmented Peters-He

finite state inflow model, combined with the developed dynamic wake distortion model,

together with the main rotor/tail rotor/empennage interaction model are implemented in a

generic helicopter simulation program of UH-60 Black Hawk helicopter and the simulated

vehicle control responses in both time domain and frequency domain are compared with

flight test data of a UH-60 Black Hawk helicopter in both hover and low speed forward flight

conditions. Effect of model refinements in hover on the correct off-axis response predictions

is also addressed.
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CHAPTER I

INTRODUCTION

Rotorcraft are versatile flying vehicles characterized by their rotating rotors. Unlike their

contemporary fixed wing aircraft, rotorcraft do not depend on forward motion to produce

lift. Due to their unique design, rotorcraft rotors are used to produce lift, control forces and

moments as well as propulsive forces while for fixed-wing aircraft, these forces and moments

are usually generated through different mechanisms. Actually, due to the novel design of

rotating rotors, rotorcraft are versatile flying vehicles that possess the abilities to take-off

and land vertically, hover motionless in air and even fly backward.

However, the appealing agility and maneuverability of rotorcraft come at a price. They

tend to be much more noisy, suffering from high level of vibrations and various types of

aeroelastic instabilities. Compared with fixed-wing aircraft, rotorcraft rotors are composed

of large aspect ratio flexible blades. By virtue of rotation of blades, the airflow through

the rotor disk is very slow. Hence, unlike fixed-wing aircraft where the trailed wake behind

wings convects far downstream very quickly, the trailed wake behinds rotors remains in

close proximity to the rotor disk for a significant long time. These trailed and shed vortices

will induce strong nonlinear inflow over rotor blades, hence resulting in complex three

dimensional airloads on rotor blades. In turn, flapping response of rotor blades due to these

airloads will also alter the structure of the rotor wake. Hence, the whole problem is a highly

nonlinear coupled problem between rotor inflow, rotor wake and blade dynamics even during

steady motion. With the advancement in aerodynamics, materials, flight mechanics and

control system design methods, modern helicopters can carry out some highly challenging

maneuvers, similar to their contemporary fixed-wing aircraft. One example is shown in

Figure 1.1, where the Lynx helicopter is carrying out an agile pitch maneuver [1]. It is

perceivable that the rotor wake structure and the inflow field around the helicopter during

the maneuver are extremely complex. Due to the maneuver, the rotor wake geometry will
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Figure 1.1: The Empire Test Pilot School’s Lynx in an agile pitch maneuver
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be different from that during steady flight. Since the rotor wake is in close proximity to the

rotor disk plane for a significant long time, changes in rotor wake geometry will also result in

significant changes in the induced inflow over the rotor disk, and hence, the incurred blade

flapping and vehicle responses will also change. In turn, the vehicle response change will also

be fed back to the whole system and will influence the rotor wake structure. Therefore, the

coupling between the rotor wake, inflow and dynamic response is severe during maneuvering

flight.

Due to the unique and dominant role of rotors in rotorcraft, a proper understanding and

the ability to accurately predict rotor wake effect on the whole coupled rotor wake, inflow

and dynamic response problem, especially when the helicopter is carrying out maneuvers or

changing flight phases, is important in the development process, such as aeroelasticity anal-

ysis, handling quality assessment and flight control law development for modern helicopters.

Also, many flight operational procedures require extensive flight testing for pilot training

and for certifications. Due to the prohibitive expense and difficulty involved with obtaining

the required experimental database, it is highly desirable to accurately model important

flight dynamics aspects through mathematical models. While it may be beyond dispute

that well developed theories are vital to correctly predict the behavior of rotorcraft before

the first flight, however, rotorcraft experience to date is still not so good. For example,

In the AHS Nikolsky Lecture (1989) [2], Crawford promotes a ”back to basics” approach

to improve rotorcraft modeling in order to avoid major redesign effort resulting from poor

understanding and predictive capability.

Since rotorcraft rotors are used to produce lift, propulsive forces, control forces and

moments, rotorcraft are characterized by severe cross-couplings in practically every axis-

pairing. The prediction of helicopter control response is complicated by the fact that the

main rotor introduces additional degrees of freedom associated with each blade as well as

those associated with the rotor wake. It is perceivable that the cross couplings will have

significant influence on the whole helicopter’s characteristics. Padfield [1] pointed out that

satisfying the direct, or ”on-axis”, response characteristics, is necessary but not sufficient

to guarantee good flying qualities. The off-axis, i.e., cross-coupled response, is also essential
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in order to obtain good flying and handling qualities. In fact, FAA Level D rotorcraft flight

simulator certification requires that the simulated off-axis response be similar to that of the

real rotorcraft [3]. The development of flight dynamic models for helicopters has matured

to the point where the prediction of the primary response of single rotor helicopters to

small control inputs, or the on-axis response, is fairly well estabilished. However, accurate

prediction of the off-axis response is still problematic. For many years, helicopter flight

simulation models have predicted the off-axis response in hover and low speed forward flight

to be opposite in sign to the corresponding flight test data [4, 5, 6, 7, 8, 9], a mystery [10]

that has perplexed researchers for many years. As an example, Figure 1.2, taken from

Takahashi [4], shows the predicted control response of a UH-60 Black Hawk helicopter to

a lateral cyclic control stick doublet input in hover condition. As can clearly be seen from

Figure 1.2, the initial on-axis roll rate response is predicted fairly well in simulation, at least

in the initial seconds, both quantitatively and qualitatively. However, this is not the case

for the off-axis pitch rate response to the same lateral cyclic control stick doublet input.

The predicted result for the initial pitch rate response is in sign reversal when compared

with the actual flight test data.

1.1 Literature Review

Since the similar off-axis response correlation discrepancy problem, i.e., the simulated he-

licopter off-axis response to cyclic control stick input is reversed in sign when compared

with the corresponding flight test data, has been observed and documented for different

helicopters [4, 5, 6, 7, 8, 9], there must have been some fundamental phenomena missing or

not treated correctly in all the previous flight simulation models. To understand this per-

plexing off-axis phenomena, there have been many attempts in the literature to explain the

primary source of this problem. Most of the theories and methods to explain this off-axis

coupling response correlation discrepancy problem can be classified as

1. gyroscopic forces due to the angular momentum of the rotor wake [11]

2. aerodynamic interaction between helicopter rotor and body [12]
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Figure 1.2: Comparison of simulation models (linearized and full nonlinear) with flight test
data responses of a hovering UH-60 Black Hawk helicopter to a lateral cyclic control stick
doublet input
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3. filtering of the airfoil lift and drag coefficients and the aerodynamic phase lag method

[13, 14, 15, 16, 17]

4. dynamic twisting due to the gyroscopic feathering moment effect [18]

5. wake distortion/curvature effect

• Free wake approach [19, 20, 21, 22, 23, 24, 25]

• dynamic vortex ring model [26, 27, 28]

• extended momentum model [29, 30, 31, 32, 33, 34, 35, 36]

• Augmented Pitt-Peters dynamic inflow model and augmented Peters-He finite

state inflow model [37, 38, 39, 40, 41, 42, 43]

One of the explanations for the off-axis response correlation discrepancy problem was

offered by von Grünhagen [11]. It was claimed that the inplane rotational component of the

induced velocity by rotor wake would induce an equivalent angular momentum, which leads

to a virtual magnification of the moment of inertia of the helicopter rotor, and was termed

”virtual inertia effect”. The global effect of this ”virtual inertia effect”, treated similar

to the effect of a spinning rotor, can be coupled into the body and the inflow differential

equations, which results in simple correction terms that can be added to a dynamic inflow

theory. By including this ”virtual inertia effect” associated with the swirl in the rotor wake,

the agreement of the predicted off-axis response of a BO-105 helicopter to cyclic control

stick input with flight test data can be improved.

Ballin, et al, [12] argued that the off-axis response correlation discrepancy problem was

due to the effect of interactions between helicopter rotor and fuselage. Although including

the aerodynamic interactions between the main rotor wake and the fuselage may improve

the agreement of the off-axis response prediction with test data, it should be noticed that

an isolated rotor can still suffer to the same off-axis response phenomena [7, 16].

A different approach was proposed by Mansur and Tischler, et al, [13, 14, 15, 16, 17].

They emphasized the potential role of commpressibility effect in the airfoil unsteady aero-

dynamics. They propose that this effect can be modeled as an increased aerodynamic phase
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lag for the lift and drag coefficients of blade airfoils. The value of this equivalent phase lag

was then determined from flight test data using system identification techniques. Their

results indicate that the total aerodynamic phase lag contributes to improve the prediction

of the off-axis flapping response to cyclic control stick input when compared with the SBMR

(Sikorsky Bearingless Main Rotor) wind tunnel data.

Simons, et al, [18] argued that the feathering moments caused by the gyroscopic forces

acting on rotor blades during a pitch and/or roll maneuver would have influence on the off-

axis response coupling problem. The consequent blade elastic feathering motion incurred

by the gyroscopic moment was shown to give rise to reduced cross-coupling in blade flap-

ping motion. Especially, for blades of low feathering stiffness, inclusion of the gyroscopic

feathering moment effect would account for some part of the off-axis flapping response.

It is fairly certain that the main source of the above mentioned off-axis coupling problem

is aerodynamic in nature and therefore, the coupling effect can be captured by aerodynamic

principles. Since rotorcraft are characterized by the uniquely designed rotating rotors,

proper modeling of the rotor wake effect during different flight conditions can be generalized

to all rotor systems, rather than using an ad hoc method which can only produce solutions

to a specific helicopter configuration. A flight simulation model that can be applicable to

arbitrary vehicle configuration and can accurately predict the vehicle dynamic response to

control stick input during all flight regimes would be of great benefit in the design and

development phases of rotorcraft.

Some researchers pointed out that a key source of the off-axis dynamic response corre-

lation discrepancy arises from the interaction of rotor flapping dynamics and rotor inflow

environment during maneuvering flight. It is proposed that the effect on rotor inflow result-

ing from rotor wake distortion during maneuvering flight is one of the main contributing

factors of the off-axis response correlation discrepancy problem, which manifests as a pitch

response resulting from a lateral cyclic control stick input, and/or a roll response resulting

from a longitudinal cyclic control stick input. It is perceivable that a maneuver, whether

it is a pitch maneuver or a roll maneuver or a combination of both, will cause additional
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distortion to the rotor wake geometry, which will be significantly different from that ob-

tained under steady flight conditions. In turn, the distorted wake geometry will change

the induced inflow across the rotor disk, and hence, will affect the blade loads, rotor blade

dynamic flapping response and finally the vehicle response characteristics. Therefore, the

required control stick for the maneuver will also be different from that required for steady

flight.

The first major contribution to the understanding of the off-axis response correlation

discrepancy problem came from Rosen and Isser [19, 20]. Rosen and his colleagues use

a complex dynamic model of the rotor wake to show that a geometric distortion of the

rotor wake structure occurs under a steady rotor shaft pitch and/or roll motion. This dis-

torted rotor wake geometry induces a lateral inflow gradient perturbation across the rotor

disk for a roll motion and a longitudinal inflow gradient perturbation for a pitch motion,

which is counter to the kinematic inflow perturbation due to the shaft pitch and/or roll

rate. Therefore, they proposed that this inflow change due to the wake geometric distor-

tion effect could yield a sign reversal in the off-axis flapping response in hover condition.

Through including the wake geometric distortion effect during a pitch and/or roll maneuver

in their unsteady aerodynamic model (TEMURA), a significant improvement in the off-axis

response correlation with a UH-60 Black Hawk helicopter flight test identification results

was achieved.

Bagai, Leishman and Bhagwat, et al, [21, 22, 23, 24] used a free vortex method for

the rotor wake to study the aerodynamics of a helicopter undergoing a steady pitch and/or

roll maneuver. Through solving the rotor wake geometry under a prescribed pitch and/or

roll rate using either a five-point central difference algorithm [44, 45] or a time accurate

free vortex algorithm [23, 24], it is shown that the rotor pitch and/or roll maneuver is

an additional source of distortion to the rotor wake geometry in both hover and forward

flight. However, the wake distortion effect strongly depends on flight condition. In hover

and low speed forward flight, the distorted rotor wake geometry due to the pitch and/or

roll maneuver induces an inflow gradient across the rotor disk, which is proportional to the

rotor pitch and/or roll rate and manifests as a counter effect to the kinematic inflow across
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the rotor disk. At higher advance ratios, the effect of maneuver induced wake distortion is

still present, but is reduced by about half relative to that in hover condition.

In [25], Theodore and Celi investigated the effect of rotor wake modeling on the predic-

tion of the off-axis response to pilot cyclic control stick input by incorporating a free wake

model [21, 22, 23] for helicopters with both a hingeless and an articulated rotor configu-

ration and compared the simulation results with available flight test data. Although some

improvements on the initial off-axis response prediction are achieved, their results suggest

that deficiencies are still present in the wake model, and that other aerodynamic mech-

anisms associated with the rotor wake dynamics may play a roll in affecting the off-axis

dynamic response correlation. They suggested that these mechanisms potentially might

include the effect of unsteady aerodynamics and the transient effect associated with the

development of the wake itself.

At the same time, Park and Leishman [22] studied the unsteady aerodynamics effect

on the rotor wake distortion for a helicopter undergoing a prescribed pitch and/or roll

rate. A conventional blade element unsteady aerodynamics model based on the indicial

function [46] was incorporated to partly represent the unsteady effect associated with the

shed wake downstream of the blade. However, their results show that the effect of unsteady

aerodynamics on the prediction of the rotor wake geometry and inflow during a steady

maneuver is relatively small.

Although the free wake method for rotor wake has the advantage of directly computing

the wake geometry distortion effect without imposing any pre-assumed aerodynamic inflow

on the rotor and wake geometry, it is computationally expensive and therefore, not suit-

able for applications, such as flight simulation, where a stringent computational efficiency

is required. Also, the state of the art of the free wake method is still suffering from poten-

tial instabilities, especially near hover condition. Since fast calculations of the rotor wake

induced inflow and rotor aerodynamic loads are necessary for flight dynamics applications

such as real-time and pilot-in-the-loop simulation, it would be much more beneficial to ap-

proximate the rotor wake effect by using a reduced order model. In the point of view of

investigating the off-axis response correlation discrepancy problem, there have been some
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other simpler but computationally more efficient methods, which are appealing for flight

simulation, in the literature to study the rotor wake distortion effect on inflow across rotor

disk during a steady maneuvering flight.

In [26, 27, 28], Basset modeled the wake distortion effect during a steady pitch and/or

roll maneuver by using a dynamic vortex wake model. In his model the main rotor wake

is represented by a series of vortex rings distributed along the wake to model the trailing

vortices together with radial vortex segments to account for the effect of shed vortices.

The attitude and vorticity of each vortex ring evolve dynamically as a function of rotor

airloads and motion. The induced velocity at an arbitrary point in the flow field due

to a vortex ring can be obtained in a closed form, which uses the first and the second

elliptic integrals. Through computing the inflow perturbations across the rotor disk for a

prescribed rotor pitch and/or roll rate, the variations of the rotor wake distortion effect

are studied to investigate the influence of different configuration and operation parameters

such as airspeed, center of rotation, climb rate and rotor thrust. By including the rotor

wake geometric distortion effect, improvements in the prediction of the off-axis response of

a BO-105 helicopter to cyclic control stick input near hover were shown.

In recent years, the Pitt-Peters dynamic inflow model [47] and the Peters-He finite state

inflow model [48], which are now routinely used in rotorcraft industry, have emerged as

a robust and efficient tool for helicopter flight simulation, handling quality evaluation and

vibration analysis. In these models, a finite number of inflow states are used to represent the

global rotor wake effect. One unique advantage of these models is that they are expressed

in state space. Recently, some researchers have also investigated the rotor wake distortion

effect on the off-axis response correlation discrepancy problem by extending the Peters-He

finite state inflow model and the Pitt-Peters dynamic inflow model to account for the rotor

wake curvature effect during a steady helicopter maneuvering flight.

Keller [29, 30, 31] investigated the off-axis dynamic response correlation discrepancy

problem by using a combination of a vortex ring representation for the rotor wake and an

extended momentum model. In his work, the rotor wake geometry during a steady pitch

and/or roll rate was prescribed and the inflow gradient across the rotor disk due to the
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maneuver was calculated by using a vortex ring representation for the rotor wake. His

results show that the inflow gradient due to maneuver is approximately proportional to the

pitch and/or roll rate for a hovering rotor. Therefore, it is proposed that the wake geometric

distortion effect on the inflow perturbation across the rotor disk can be captured by using

an empirical wake distortion parameter called KR. Subsequently, he extended the induced

inflow model based on momentum theory to include rotor wake distortion effect. His results

demonstrate that inclusion of the rotor wake distortion effect results in a significant change

in the rotor blade off-axis flapping response to a steady rotor pitch and/or roll rate. Then

the extended inflow model was coupled with a linearized rotor/body dynamics model, and

comparisons were made between the simulated results and flight test data for a UH-60 Black

Hawk in hover [29, 30, 31, 32]. The Results show that inclusion of the rotor wake distortion

effect improves correlation between the off-axis response to cyclic control stick input and

the flight test data.

Rosen [35, 36] derived an approximate actuator disk model for a rotor in hover and axial

flight based on both a vortex modeling for the rotor wake and an approximate solution of

the equations for an imcompressible/inviscid potential flow through the rotor disk. The

wake distortion effect during a pitch and/or roll maneuver was included in his model and

the longitudinal and lateral inflow gradient perturbations due to the wake distortion effect

during maneuvering were represented by using two first order ordinary differential equations.

A comparison of his simulation results using the actuator disk model with flight test data

of a UH-60 Black Hawk helicopter and an AH-64 helicopter in hover showed improvements

in the off-axis response correlation.

He [43] adopted a full span prescribed vortex wake model consisting of discrete trailing

and shed vortex elements to model the rotor wake geometric distortion effect during a

pitch and/or roll rate. The vortex wake is modeled with respect to the physical blade tips

and blade lifting segments to account for the effects from both the hub linear translation

and angular rotation. At each time step, the first trailed vortex element is attached to the

physical blade bound vortex while all the other vortex elements follow the summation of the

current freestream velocity and the mean induced downwash. Then the rotor wake geometric
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distortion effect was extracted as perturbational induced velocities, which were added to the

Peters-He finite state inflow model [48] to model the rotor wake geometric wake distortion

effect. This rotor geometric wake distortion effect was implemented in a comprehensive

rotorcraft simulation program, FLIGHTLAB, and simulated control response of a UH-60

Black Hawk helicopter to a lateral cyclic control stick doublet input in hover was compared

with the corresponding flight test data. The comparison showed that the correlation of the

off-axis pitch rate response prediction to a lateral cyclic control stick doublet input with

flight test data was improved, although the magnitude was under predicted.

Considerable work was done at the FlightSim Lab at the Georgia Institute of Tech-

nology to improve the fidelity of rotorcraft simulations by including more complex models

of helicopter dynamics. Lewis [49] and later Sturisky [50] examined the off-axis response

prediction of an AH-64 helicopter with a FLIGHTLAB simulation model by including both

an elastic blade bending model and an inflow model that incorporated up to the 2nd har-

monics for rotor inflow. It was theorized that the higher harmonic inflow coupled the rotor

and body dynamics and that properly modeling these effects could improve the off-axis

response prediction. In the frequency domain, improvements were shown for the off-axis

response prediction when the simulation results that includes an elastic blade model with

the 2nd harmonic inflow were compared with those using only a simple rigid blade model

with uniform inflow.

Most recently, Krothapalli, et al, [37, 38, 39, 40, 41, 42] studied the rotor wake distortion

effect during helicopter maneuvering flight by using various analytical tools, and finally

obtained a generalized dynamic wake model with quasi-steady wake curvature augmentation

in hover. The effect of the prescribed rotor angular rate on the inflow gradient across

the rotor disk plane was captured by using an empirical parameter called KRe, which is

equivalent to the wake distortion parameter KR proposed by Keller (as will be shown in

Section 3.8). Their newly developed wake model, when coupled with a rigid blade flapping

dynamics model, showed that the reversal in sign of the off-axis flapping response to a cyclic

control stick input in hover condition was captured when the quasi-steady wake curvature

terms were included. Using the extended generalized wake model coupled with a rigid blade
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flapping model, the simulated off-axis flapping response to both longitudinal and lateral

cyclic control stick inputs have shown fairly well qualitative results, when compared with the

SBMR (Sikorsky Bearingless Main Rotor) wind tunnel test data [7], for all but a few notable

exceptions in the range of frequencies below the first lag mode. In addition, including the

wake curvature terms has nearly no effect on the on-axis response predictions. Also, a

nonlinear coupling term between steady wake skew and wake curvatures was identified from

the SBMR wind tunnel test data. When this nonlinear coupling term was considered, the

correlation of the simulated off-axis response with the SBMR wind tunnel test data was

improved.

In the previous studies, an empirical wake distortion/curvature parameter is used to

capture the effect of the prescribed rotor angular rate on inflow across the rotor disk during

maneuvering flight. However, there is a rather large discrepancy between the values of

the wake curvature parameter obtained by different researchers. For example, Table 1

summarizes the results in hover given by different researchers. The identified aerodynamic

phase lag angle by Schulein, et al, [34, 51] for the UH-60A Black Hawk helicopter in hover

is 42.6o, which is converted to an equivalent wake curvature parameter using the formula

in Refs. [34] and [51] and the value is shown in Table 1. The discrepancies between the

results are due to the nature of various vortex wake models used where different numerical

assumptions have been made among the researches. Also, as pointed out by Barocela

and Peters, et al, [38] the theoretical maximum value for the wake distortion/curvature

parameter is 2.0, and for realistic rotor circulation distribution, this value should fall between

1.0 and 2.0.

1.2 Present Work

The rotor wake/inflow/body dynamics is highly coupled. When a helicopter transitions

through different flight phases, such as carrying out a pitch and/or roll maneuver, the ro-

tor wake geometry will also change from one steady shape to another steady shape. It

is perceivable that the transient effects between these steady phases will have important

influences on the response and controllability of the helicopter. It would be highly desirable
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Table 1: Comparison of values for the wake distoriton/curvature parameter in hover
Reference Model KR (KRe)

Rosen [19] Prescribed wake 0.75
Keller, et al [29] Spiral vortex tube 1.5
Basset [26] Spiral vortex ring 1.5
Bagai, et al [21] Free wake 1.75
He [52] Prescribed full span wake 1.2
Peters, et al [38] Momentum, prescribed wake 1.0
Krothapalli [41] vortex lattice 1.33
Tischler, et al [7, 51] Aerodynamic phase lag 1.89

to accurately model these transient effects of the rotor wake in the analyses, especially for

real-time simulation and control law design development. Most of the previous investiga-

tions on the off-axis dynamic response correlation discrepancy problem as reviewed in the

previous section assume a quasi-steady wake geometry model, which implies that the rotor

wake distortion is developed simultaneously at each time instant, and therefore,does not ac-

count for the transient wake distortion effect whenever there is a change in flight conditions.

The quasi-steady assumption gives rise to erroneous response predictions during helicopter

maneuvering flight phases where the rotor wake transitions through different shapes. Also,

most of the previous investigations only look at specific flight condition, therefore, their

methods (models) do not rigorously apply to the whole flight regimes.

The objective of this research is to investigate the dynamic wake distortion effect during

helicopter maneuvering and transitional flight, and develop a generalized dynamic wake

distortion model, which can be applied to most of the helicopter flight regimes and when

combined with an appropriate flight dynamics model, can be easily used in a simulation ap-

plication to account for the transient rotor wake distortion effect for high fidelity simulations

and analyses.

This thesis describes the details of the development of a rotor dynamic wake distortion

model in both hover and forward flight conditions to account for the transient wake distor-

tion effect by using a dynamic vortex tube analysis including comparisons with results from

a free wake method. The dynamic vortex tube analysis is used to systematically develop the
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generalized dynamic wake distortion model, which can be expressed as a compact set of or-

dinary differential equations with four states for the wake skew, wake spacing, longitudinal

and lateral wake curvatures. Also, the inflow perturbations across the rotor disk plane for

arbitrary rotor loading distribution in both hover and forward flight are obtained and are

used to augment the Pitt-Peters dynamic inflow model [47] and the Peters-He finite state

inflow model [48]. A reduced order model is developed to account for the main rotor/tail

rotor/empennage interaction during maneuvering flight. The augmented Pitt-Peters dy-

namic inflow model and the augmented Peters-He finite state inflow model, combined with

the developed dynamic wake distortion model, together with the interaction model among

main rotor, tail rotor and empennage, are implemented into a generic helicopter flight

simulation program [53]. The developed model is validated through comparing simulation

results, especially the off-axis response predictions of a UH-60 Black Hawk helicopter to

cyclic control stick inputs from both hover and forward flight conditions, with the available

flight test data [54]. Also, the effect of wake distortion parameters on the off-axis response

predictions is investigated.

1.3 Organization of Dissertation

The fundamental problem of the off-axis dynamic response correlation discrepancy and the

current state-of-the-art method on this topic are introduced through a literature review

given in Chapter I. The focus of the current work stems from the need to properly and

systematically model the transient wake distortion effect on the inflow across the rotor disk

and on the vehicle dynamic response, and to account for the dynamic wake distortion effects

in all helicopter flight regimes.

In Chapter II, variations of inflow across the rotor disk during helicopter maneuvering

and transitional flight phases, such as undergoing a step pitch and/or roll rate, a step change

in advance ratio and a step change in climb rate are investigated by using a dynamic vortex

tube analysis. Based on the numerical results from the dynamic vortex tube analysis, time

constants associated with rotor wake distortion dynamics are extracted and a rotor dynamic

wake distortion model, which uses four additional states, that is, longitudinal and lateral
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wake curvatures, wake skew and wake spacing, is developed.

In Chapter III, both the Pitt-Peters dynamic inflow model and the Peters-He finite state

inflow model for axial and steady forward flight are augmented to account for the rotor

wake distortion effect. The augmented dynamic inflow model and the augmented Peters-

He finite state inflow model, combined with the rotor dynamic wake distortion model,

are implemented in a generic helicopter simulation program to investigate the influence

of coupling effect between rotor inflow and rotor mean/cyclic loading due to rotor wake

distortion during maneuvering flight. The effect of rotor dynamic wake distortion on the

stability of flapping dynamics is also investigated.

In Chapter IV, a reduced order model is developed to account for the aerodynamic

interaction among main rotor, tail rotor and empennage during helicopter maneuvering

flight, which includes an equivalent wake skew due to main rotor wake curvature effect, an

additional side wash induced at the aerodynamic center of vertical tail and/or tail rotor due

to main rotor wake curvature and an additional up/down wash induced at the aerodynamic

center of horizontal tail due to tail rotor wake curvature.

In Chapter V, model refinements in hover condition, which include a state-space repre-

sentation of airfoil unsteady aerodynamics, a reduced order model to account for fuselage

blockage effect on mean induced inflow across the rotor disk and representation of gyroscopic

feathering moment effect during helicopter maneuvering flight are described.

In Chapter VI, both the augmented Pitt-Peters dynamic inflow model and the aug-

mented Peters-He finite state inflow model (developed in Chapter III), together with the

main rotor/tail rotor/empennage interaction model (Chapter IV) and model refinements

in hover condition (Chapter V), combined with the rotor dynamic wake distortion model

(Chapter II), are implemented in a generic helicopter simulation program and the developed

model is validated through comparing simulated response predictions, especially the off-axis

response predictions, with flight test data of a UH-60 Black Hawk helicopter in both hover

and forward flight conditions. Also, the effect of model refinements in hover condition is

investigated.

An overview of the conclusions and accomplishments in this research is given in Chapter
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VII. Also, recommendations for future work are given.

Appendix A gives the detailed derivation of a dynamic vortex tube model, which de-

scribes the dynamic variations of inflow across the rotor disk for a rotor undergoing a step

pitch and/or roll rate, a step change in advance ratio and a step change in climb rate.

Appendix B gives the detailed derivation of the quasi-steady inflow perturbations across

the rotor disk due to rotor mean and cyclic loading effect during a steady pitch and/or roll

motion.

Appendix C gives the detailed derivation of a reduced order model to account for the

aerodynamic interaction among main rotor, tail rotor and empennage during helicopter

maneuvering flight.

Appendix D is a summary of the developed rotor dynamic wake distortion model and

the augmented inflow models for helicopter maneuvering flight.
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CHAPTER II

DYNAMIC WAKE DISTORTION MODEL

In this chapter, a model is established to account for rotor dynamic wake distortion effect

during helicopter maneuvering flight, such as undergoing a step pitch and/or roll rate, a

step change in advance ratio and a step climb rate, by using a dynamic vortex tube analysis

(Appendix A). In the vortex tube method, the vortices generated around rotor blades are

assumed to be wrapped around a tube of continuous vorticity, representing the outer surface

of the rotor wake. The induced inflow across the rotor disk due to the wake tube can be

obtained by using the Biot-Savart law. This method can be easily extended to the case of

a rotor undergoing transient maneuvers, by prescribing the distorted rotor wake geometry

at each time instant, corresponding to a dynamic vortex tube, whose shape continuously

changes with time.

2.1 Dynamic Wake Distortions In Hover

2.1.1 Dynamic Wake Bending Effect In Hover

Figure 2.1 schematically shows the dynamic vortex tube geometry for a helicopter rotor

undergoing a step pitch rate q from hover (side view, in the rotor disk coordinate system).

The dynamic vortex tube, as shown in Figure 2.1, is comprised of two parts, a curved part

and a noncurved part. The curved part has an equivalent radius of curvature d0 = λ/q̄,

which is measured from the center of wake curvature to the center axis of the wake tube.

The noncurved part is smoothly connected to the curved part and extends downstream to

infinity. A circular cross section of the wake displaced downstream along the rotor wake axis

by a distance η and subtending an angle α to the rotor disk plane is shown in Figure 2.1. The

position of a point on this circular section can be specified in terms of the vortex tube radius

r̄0 and azimuth angle ψ0. The general case of the induced inflow (positive along negative

z-axis) across the rotor disk due to a dynamic vortex tube of a pitching rotor in forward
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Figure 2.1: Dynamic vortex tube geometry of a rotor undergoing a step change in pitch-up
velocity from hover(port side)

flight is given in Appendix A (Equations A.12.e and A.12.f). With the assumption that

the equivalent radius of wake curvature d0 = λ/q̄ is large, i.e., the curvature 1/d0 = q̄/λ is

small, the mean induce inflow and longitudinal inflow gradient (ψ = 0 in Equations A.12.e

and A.12.f) across the rotor disk can be extracted from Equations A.12.e and A.12.f by

substituting µ = 0 and carrying out Taylor series expansion about q̄/λ up to the first order

as follows (which is valid up to the first order of pitch rate)

v
(I)
0 =

γ̄

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r̂2 − 2r̂cosψ0

[

η̄0
√

1 + r̂2 + η̄2
0 − 2r̂cosψ0

]

dψ0dr̂ (2.1.a)

v(I)
c =

3γ̄r̄0

8πd0

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)(r̂ + cosψ0)

r̂(1 + r̂2 − 2r̂cosψ0)

[

1

4
sinθ0 −

1

12
sin3θ0

]

dψ0dr̂

+
γ̄r̄0

8πd0

∫ 1

0

∫ 2π

0

cosψ0

r̂

[

tan

(

π

4
+

θ0

2

)

− sinθ0

]

dψ0dr̂ (2.1.b)

v
(II)
0 =

γ̄

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r̂2 − 2r̂cosψ0

[

1 − η̄0
√

1 + r̂2 + η̄2
0 − 2r̂cosψ0

]

dψ0dr̂ (2.1.c)

v(II)
c =

3γ̄r̄0

8πd0

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)(r̂ + r̂0cosψ0)

r̂(1 + r̂2 − 2r̂cosψ0)
tan2θ0

[

2

3
− 3

4
sinθ0 −

1

12
sin3θ0

]

dψ0dr̂

+
γ̄r̄0

8πd0

∫ 1

0

∫ 2π

0

cosψ0

r̂
tan2θ0 (1 − sinθ0) dψ0dr̂ (2.1.d)
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where superscripts (I) and (II), respectively, denote contributions from the curved part and

the noncurved part of the dynamic vortex tube, γ̄ is vorticity density around the vortex

tube. In Equations 2.1.a to 2.1.d,

tanθ0 =
η̄0

√

1 + r̂2 − 2r̂cosψ0

(2.2)

where η̄0 = η0/r̄0 and η0 is the length of the curved tube part along the tube axis.

The total mean induced inflow across the rotor disk is

λ0 = v
(I)
0 + v

(II)
0 =

γ̄

2
(2.3)

which is independent of the rotor pitch rate. Similarly, the total longitudinal inflow gradient

across the rotor disk induced by the whole dynamic vortex tube can be written as

∆λ1c = v(I)
c + v(II)

c (2.4)

For the case where the curvature of the dynamic vortex tube is fully developed, an analytical

solution to the integrals in equation 2.4 can be obtained as

(∆λ1c)ss =
γ̄

2d0
(2.5)

which is consistent with the results given by Barocela [38]. For the general case of the

dynamic vortex tube with both curved and noncurved parts, the integrals in equation 2.4

are evaluated numerically.

A typical variation with time of the longitudinal inflow gradient across the rotor disk is

shown in Figure 2.2 for a nondimensional pitch rate of q̄ = 0.005 and thrust coefficient of

CT = 0.0065. It can be seen that the inflow gradient exhibits a first order behavior with

time. Figure 2.2 shows a first order approximation with a nondimensional time constant

of 6.1 superimposed in the plot. Also shown in the plot are the results from a free wake

analysis [55, 56]. From a comparison of the vortex tube and free wake analysis results, it

is clear that the global effect due to dynamic wake bending on the variation of the inflow

gradient with time is captured by the current dynamic vortex tube model.

The free wake analysis results by Zhao, et al [55, 56], show that the nondimensional

time constant associated with dynamic wake bending effect in hover is roughly constant for
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Figure 2.2: Inflow gradient growth with time due to wake curvature effect for a four-bladed
isolated rotor in hover, q̄ = 0.005, CT = 0.0065

Figure 2.3: Variation of the nondimensional time constant associated with wake curvature
effect versus rotor thrust coefficient near hover
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a nondimensional pitch rate up to q/Ω ≤ 0.015. Therefore, for each specific rotor thrust

coefficient, one nondimensional time constant can be used to represent the rotor dynamic

wake bending effect for small pitch and roll rates.

Figure 2.3 shows the values of the nondimensional time constant associated with the

wake bending dynamics for different values of thrust coefficient (CT ) as extracted from the

dynamic vortex tube analysis results. In Figure 2.3, the symbols are those predicted by the

dynamic vortex tube analysis and the solid line is an empirical approximation obtained as

τR =
16

15πvh
(2.6)

where vh denotes the mean induced velocity in hover. It can be seen that the above empirical

formula (Equation 2.6) agrees well with the results predicted by the dynamic vortex tube

model. On the other hand, equation 2.5 shows that the steady inflow gradient across the

rotor disk is proportional to the steady wake curvature (1/d0) of the vortex tube. Therefore,

it can also be assumed that the transient wake curvature follows the same variation as the

inflow gradient. Since the wake bending dynamics is characterized by the wake curvature,

the formula in Equation 2.6 can also be used to represent the time constant associated with

the wake bending dynamics near hover.

2.1.2 Dynamic Wake Skew Effect In Hover

Figure 2.4 schematically shows the dynamic vortex tube geometry (side view, in the rotor

disk coordinate system) for a helicopter rotor undergoing a step change in advance ratio

from hover, i.e., transition from hover to low speed forward flight. The dynamic vortex

tube is composed of two parts, a skewed part and a vertically straight part as shown in

Figure 2.4. The skewed part will gradually convect far downstream and finally dominate the

inflow across the rotor disk, whereas the influence of the vertically straight down part will

gradually diminish. When the transient effect diminishes, the steady skewed wake shape

corresponding to the specific value of the advance ratio will be achieved. The general case

of the induced inflow across the rotor disk for a rotor undergoing a step change in advance

ratio in forward flight is given in Appendix A (Equations A.34.a and A.34.b). Under

the assumption that the change in advance ratio (∆µ) is small, i.e., the wake skew angle
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Figure 2.4: Dynamic vortex tube geometry of a rotor undergoing a step change in advance
ratio from hover (side view)

perturbation ∆χ is small, the mean induced inflow and longitudinal inflow gradient (ψ = 0)

across the rotor disk can be extracted from Equations A.34.a and A.34.b by substituting

µ = 0 (χ = 0) and carrying out Taylor series expansion for ∆χ up to the first order as

follows

v
(I)
0 =

γ̄

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r̂2 − 2r̂cosψ0

[

η̄0
√

1 + r̂2 + η̄2
0 − 2r̂cosψ0

]

dψ0dr̂ (2.7.a)

v(I)
c =

γ̄∆χ

4π

∫ 1

0

∫ 2π

0

cosψ

r̂
√

1 + r̂2 − 2r̂cosψ
(1 − cosθ0) dψ0dr̂

+
3γ̄∆χ

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)(r̂ + cosψ0)

r̂(1 + r̂2 − 2r̂cosψ0)3/2

[

1

3
− cosθ0

4
− cos3θ0

12

]

dψ0dr̂ (2.7.b)

v
(II)
0 =

γ̄

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r̂2 − 2r̂cosψ0

[

1 − η̄0
√

1 + r̂2 + η̄2
0 − 2r̂cosψ0

]

dψ0dr̂ (2.7.c)

v(II)
c =

γ̄∆χ

4π

∫ 1

0

∫ 2π

0

cosψ

r̂
√

1 + r̂2 − 2r̂cosψ
tanθ0(1 − sinθ0) dψ0dr̂

+
3γ̄∆χ

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)(r̂ + cosψ0)

r̂(1 + r̂2 − 2r̂cosψ0)3/2
tanθ0

[

2

3
− 3sinθ0

4
− sin3θ0

12

]

dψ0dr̂

(2.7.d)
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where ∆χ is the steady wake skew angle corresponding to the advance ratio change ∆µ,

superscripts (I) and (II) denote contributions from the skewed tube part and the vertically

straight part, respectively. γ̄ is the vorticity density around the vortex tube and

tanθ0 =
η̄0

√

1 + r̂2 − 2r̂cosψ0

(2.8)

where η̄0 = η0/r̄0 and η0 is the length of the skewed tube part along the vortex tube axis

as shown in Figure 2.4.

The total inflow gradient perturbation induced by the whole dynamic vortex tube across

the rotor disk can be written as

∆λ1c = v(I)
c + v(II)

c (2.9)

The integrals in Equation 2.9 are evaluated numerically.

Figure 2.5 shows a typical variation of the inflow gradient across the rotor disk with

time to a step change in advance ratio of ∆µ = 0.01 from hover for a thrust coefficient

of CT = 0.0065. It can be seen that the inflow gradient variation exhibits a first order

behavior with time, and therefore, a first order approximation is superimposed on the plot.

Also shown in the plot are the results predicted by a free wake method [55, 56]. From a

comparison between the vortex tube and free wake analysis results, it is seen that the global

effect due to dynamic wake skew on the inflow gradient variation with time is captured by

the dynamic vortex tube model used here.

Figure 2.6 shows the values of the nondimensional time constant associated with the

dynamic wake skew effect for different values of thrust coefficient as extracted from the

vortex tube analysis results. In the figure, the symbols are the results predicted by the

dynamic vortex tube analysis used here and the solid line is an empirical approximation

obtained as

τX =
16

15πvh
(2.10)

where vh denotes the mean induced velocity in hover. It can be seen that the above formula

agrees well with the results predicted by the dynamic vortex tube analysis. Therefore, it

can be used to represent the time constant associated with the wake skew dynamics near

hover.
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Figure 2.5: Inflow gradient across the rotor disk due to a step change in advance ratio from
hover, ∆µ = 0.01, CT = 0.0065

Figure 2.6: Variation of the nondimensional time constant associated with wake skew effect
versus rotor thrust coefficient near hover
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2.1.3 Dynamic Wake Spacing Effect In Hover

Figure 2.7 schematically shows the dynamic vortex tube geometry (side view, in the rotor

disk plane coordinate system) for a helicopter rotor undergoing a step change in climb

rate Vc from hover. During the transient, the net mean inflow across the rotor disk will

gradually increase to a higher value due to the climb velocity. Hence, the wake spacing will

also gradually increase to a higher value. The dynamic vortex tube shown in Figure 2.7 is

comprised of two parts, one with a higher wake spacing corresponding to the steady climb

state and the other with a lower wake spacing corresponding to the steady hover condition.

The tube part with higher wake spacing will gradually convect far downstream and finally

dominate the wake effect on inflow across the rotor disk. The general case of the mean

induced inflow across the rotor disk by the dynamic vortex tube of a rotor undergoing

a step change in climb rate in forward flight is given in Appendix A (Equations A.44.a

and A.44.b). After substituting µ = 0, i.e., χ = 0, Equations A.44.a and A.44.b can be

rewritten as follows

v
(I)
0 =

γ̄1

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r̂2 − 2r̂cosψ0
sinθ0 dψ0dr̂ (2.11.a)

v
(II)
0 =

γ̄2

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r̂2 − 2r̂cosψ0
(1 − sinθ0) dψ0dr̂ (2.11.b)

where γ̄1 and γ̄2, are the vorticity densities around the two parts of the dynamic vortex

tube in Figure 2.7 with higher and lower wake spacings, respectively. In equations 2.11.a

and 2.11.b,

tanθ0 =
η̄0

√

1 + r̂2 − 2r̂cosψ0

(2.12)

where η̄0 = η0/r̄0 and η0 is the length of the part with a higher wake spacing along the

vortex tube axis. The mean induced inflow across the rotor disk induced by the whole

dynamic vortex tube shown in Figure 2.7 can be written as

λ0 = v
(I)
0 + v

(II)
0 (2.13)

There are two limiting cases corresponding to the initial and the steady state of the ma-

neuver. At the initiation of the maneuver, equation 2.13 reduces to

λ0 =
γ̄2

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r̂2 − 2r̂cosψ0
dψ0dr̂ =

γ̄2

2
(2.14)
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Figure 2.7: Dynamic vortex tube geometry of a rotor undergoing a step change in climb
rate (side view)

when the wake reaches its steady shape corresponding to the steady climb rate, Equa-

tion 2.13 becomes

λ0 =
γ̄1

4π

∫ 1

0

∫ 2π

0

(1 − r̂cosψ0)

1 + r2 − 2r̂cosψ0
dψ0dr̂ =

γ̄1

2
(2.15)

Further more, under the assumption of small climb rate Vc and uniform circulation distri-

bution, we have

λ0 =
γ̄2

2
=

√

CT

2
= vh (2.16)

at the initiation of the maneuver and

λ0 =
γ̄1

2
=

CT

Vc + 2vh
(2.17)

when the wake reaches its steady shape at the end of the maneuver. Equations 2.16 and 2.17

are consistent with the results from momentum theory [57]. During the transient phase of

the maneuver, the integrals in equation 2.13 are evaluated numerically.

Figure 2.8 shows a typical variation with time of the mean induced inflow normalized by

the inflow at hover for a step climb rate of Vc = 0.1vh. Each curve in the plot corresponds
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Figure 2.8: Mean induced inflow variation with time for different values of CT following a
step change in climb rate, ∆Vc = 0.1vh

to a different value of thrust coefficient. It can be seen that all the inflow variations exhibit

a first order behavior with time. The normalized steady inflow (normalized by the value of

inflow at hover) for different values of thrust coefficient is the same, which is consistent with

momentum theory. Also, for higher values of thrust coefficient, the mean induced inflow

reaches its steady state faster.

In Figure 2.9, the thrust coefficient is fixed to a value of CT = 0.0065 while the climb

rate is varied. Each curve in the plot corresponds to a different climb rate. It can be seen

again that all the inflow variations exhibit a first order behavior with time. With an increase

in climb rate, the steady value of the induced mean inflow is reduced because of the wake

vorticity will convect far downstream faster, which is consistent with momentum theory.

Figure 2.10 shows values of the nondimensional time constant associated with wake

spacing dynamics for different values of thrust coefficient as extracted from the vortex tube

analysis results. The solid line in the figure is an empirical approximation obtained as

τS =
32

15πvh
(2.18)

Where vh is the mean induced velocity in hover.
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Figure 2.9: Mean induced inflow variation with time across the rotor disk for different
values of climb rate, CT = 0.0065

Figure 2.10: Variation of the nondimensional time constant associated with wake spacing
effect versus rotor thrust coefficient near hover
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2.2 Dynamic Wake Distortions In Forward Flight

2.2.1 Dynamic Wake Bending Effect in Forward Flight

A typical variation of the longitudinal inflow gradient across the rotor disk with time,

predicted by the dynamic vortex tube analysis developed in Appendix A, is shown in Fig-

ure 2.11, for a nondimensional pitch rate of q̄ = 0.005 and thrust coefficient of CT = 0.0065

at a forward flight advance ratio of µ = 0.05. It can be clearly seen that the inflow gradient

variation exhibits a first order behavior with time. Therefore, a first order approximation

is also superimposed on the plot.

Figure 2.12 shows the values of the nondimensional time constant associated with wake

bending dynamics in forward flight with an advance ratio of µ = 0.05 versus thrust co-

efficient as extracted from the dynamic vortex tube analysis results. In Figure 2.12, the

symbols are those predicted by the dynamic vortex tube analysis and the solid line is an

empirical approximation obtained as

τR =
32

15πV̄
(2.19)

where V̄ is the mass flow parameter associated with the first and higher harmonics of inflow

and is given by

V̄ =
µ2 + (λ0 + Vc)(2λ0 + Vc)

Vm
(2.20)

where Vm is the mass flow parameter associated with the mean inflow, which is given by

Vm =
√

µ2 + (λ0 + Vc)2 (2.21)

From Figure 2.12, it can be seen that the extracted empirical formula (Equation 2.19)

agrees well with the results predicted by the dynamic vortex tube model. For hover case,

µ = 0 and equation 2.19 reduces to

τR =
16

15πvh
(2.22)

where vh denotes the nondimensional mean induced velocity in hover. It can be seen that

in hover case the time constant associated with wake curvature effect reduces to exactly the

same form as that given by Equation 2.6.
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Figure 2.11: Inflow gradient variation with time due to wake curvature effect for a four-
bladed rotor in forward flight, µ = 0.05, CT = 0.0065, q̄ = 0.005.

Figure 2.12: Variation of nondimensional time constant associated with wake curvature
effect versus rotor thrust coefficient in forward flight, µ = 0.05.
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2.2.2 Dynamic Wake Skew Effect In Forward Flight

Figure 2.13 shows a typical variation of the longitudinal inflow gradient with time to a

step advance ratio of ∆µ = 0.01 from forward flight (µ = 0.05) at a thrust coefficient of

CT = 0.0065, predicted using the dynamic vortex tube analysis developed in Appendix A.

It can be seen from Figure 2.13 that the inflow gradient once again exhibits a first order

variation with time. Figure 2.14 shows the values of the nondimensional time constant

associated with the dynamic wake skew effect in forward flight for different values of thrust

coefficient as extracted from the dynamic vortex tube analysis results. In Figure 2.14, the

symbols are the results predicted by the dynamic vortex tube analysis and the solid line is

an empirical approximation obtained as

τX =
32

15πV̄
(2.23)

where V̄ is the mass flow parameter associated with the first and higher harmonics of inflow

and is given by Equation 2.20.

It can be seen from Figure 2.14 that the formula given in Equation 2.23 agrees well with

the results predicted by the dynamic vortex tube analysis. Therefore, it can be used to

represent the time constant associated with the wake skew dynamics in low speed forward

flight. For hover case, µ = 0, Equation 2.23 reduces to

τX =
16

15πvh
(2.24)

which is exactly the same expression for the time constant associated with dynamic wake

skew effect in hover as that given by Equation 2.10.

2.2.3 Dynamic Wake Spacing Effect in Forward Flight

Figure 2.15 shows a typical variation with time of the mean induced inflow normalized

by the mean induced inflow in hover for a step change in climb rate of Vc = 0.1vh at

forward flight with an advance ratio of µ = 0.05, as predicted from the dynamic vortex

tube analysis developed in Appendix A. It can be seen that the inflow variation exhibits a

first order behavior with time. Figure 2.16 shows values of the nondimensional time constant
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Figure 2.13: Inflow gradient across the rotor disk due to a step advance ratio from forward
flight, µ = 0.05, CT = 0.0065, ∆µ = 0.01.

Figure 2.14: Variation of nondimensional time constant associated with dynamic wake
skew effect with rotor thrust coefficient in forward flight, µ = 0.05
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associated with wake spacing dynamics in forward flight for different values of rotor thrust

coefficient as extracted from the vortex tube analysis results. The solid line in Figure 2.16

is an empirical approximation obtained as

τS =
32

15πVm
(2.25)

where Vm is the mass flow parameter associated with the mean inflow and is given by

Equation 2.21.

For hover case, µ = 0, equation 2.25 reduces to

τS =
32

15πvh
(2.26)

and is exactly the same form as the time constant for dynamic wake spacing effect in hover

given by Equation 2.18.

2.3 Dynamic Wake Distortion Model

It is clear from the dynamic vortex tube analysis in the previous sections that dynamic wake

distortion effects, i.e., dynamic wake bending, wake skew and wake spacing have significant

influence on the rotor inflow during maneuvering and transitional flight phases where the

rotor wake transitions through different shapes. The results given by the dynamic vortex

tube model in the previous section show that the variations of inflow across the rotor disk

due to dynamic wake bending, wake skew and wake spacing essentially exhibit a first order

behavior with time. Therefore, the effect of dynamic wake distortions on the inflow across

the rotor disk can be represented by a set of first order differential equations as
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(2.27)

where X, S, κc, κs, are wake skew, wake spacing, longitudinal and lateral wake curvatures,

respectively,
⋆

() denotes differentiation with respect to nondimensional time, subscript qs

34



Figure 2.15: Mean induced inflow variation with time following a step climb rate in forward
flight, µ = 0.05, Vc = 0.1vh.

Figure 2.16: Variation of nondimensional time constant associated with dynamic wake
spacing effect versus rotor thrust coefficient in forward flight, µ = 0.05.
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denotes quasi-steady values. Matrix [τD] contains the nondimensional time constants as-

sociated with dynamic wake distortion effects, i.e., dynamic wake bending, wake skew and

wake curvature effect. In general, the wake skew, wake spacing and wake curvatures are

fully coupled. However, the coupling effects among these states are neglected in the present

study and the time constant matrix [τD] is assumed to take a diagonal form as

[τD] =



















τX O

τS

τR

O τR



















(2.28)

Where τX , τS , τR are given by the empirical formulae (Equations 2.23, 2.25, and 2.19,

respectively) developed in the previous section using a dynamic vortex tube analysis. The

right hand side of Equation 2.27 corresponds to the quasi-steady wake skew, wake spacing,

longitudinal and lateral curvatures, which are given by

(X)qs = tan
(χ

2

)

(2.29.a)

(S)qs = 2πVm (2.29.b)

(κc)qs =
q̄ −

⋆
β1c

λ0 + Vc
(2.29.c)

(κs)qs =
p̄ −

⋆
β1s

λ0 + Vc
(2.29.d)

In the above equations, q̄ and p̄, respectively, denote the nondimensional pitch and roll

rates.
∗

β1c,
∗

β1s are the rotor disk longitudinal and lateral flapping rates. χ is the steady

wake skew angle, which can be calculated from the momentum theory [57] as

χ = tan−1

(

µ

λ0 + Vc

)

(2.30)

Vm is the mass parameter associated with rotor mean inflow and is given by Equation 2.21.

The wake spacing parameter S defined by Equation 2.29.b physically represents the distance

that the rotor wake travels at a velocity of Vm during one rotor revolution.
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CHAPTER III

ROTOR INFLOW MODEL FOR MANEUVERING

FLIGHT

For helicopters in maneuvering and transitional flight, the rotor wake trailed behind rotor

blades will be distorted and will be significantly different from that in steady flight. Since the

rotor wake remains in close proximity to the rotor disk, it is perceivable that the distorted

rotor wake will induce strong variations in rotor inflow and therefore alter the blade dynamic

response and vehicle response. Alternatively, the blade and vehicle dynamic responses will

influence the rotor wake distortion. To account for the rotor wake distortion effect for flight

simulation and control law development, it would be highly desirable to represent the wake

distortion effect in closed form solutions. In this chapter, a reduced order model using

a vortex tube analysis is developed to model the couplings between inflow perturbations

across the rotor disk and rotor mean and cyclic loadings during helicopter maneuvering

flight. Then, both the Pitt-Peters dynamic inflow model [47] and the Peters-He finite state

inflow model [48], which are routinely used in rotorcraft industry, are augmented to account

for rotor wake distortion effect during maneuvering flight.

3.1 Inflow Perturbations Due To Rotor Wake Distortions

In this section, a reduced order model is developed to account for the couplings between

rotor inflow perturbations and rotor mean and cyclic loadings due to rotor wake distortions

during maneuvering flight.

3.1.1 Inflow Perturbations Due to Mean Loading

The coupling between inflow perturbations and rotor mean loading due to rotor wake distor-

tion effect during helicopter maneuvering flight is obtained by using a vortex tube analysis

as developed in Appendix B. In the present vortex tube analysis, the vortices generated at
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the rotor blades are assumed to be wrapped around a tube of continuous vorticity, repre-

senting the outer surface of the rotor wake. The induced inflow across the rotor disk due

to the vortex tube can be calculated using the Biot-Savart Law. For the representation of

rotor mean loading effect, it is assumed that the vorticity strength around the vortex tube

is circumferentially uniform.

Using the vortex tube analysis [58, 59, 60], the inflow perturbations across the rotor

disk (∆vz) induced by a single distorted rotor wake tube with a radius of r̄0 and a uniform

strength of γ̄0 during a steady rotor pitch and/or roll motion is developed in Appendix B

(Equation B.20) and can be written as

∆v(mean)
z (r̄, ψ) =



































































γ̄0

2
κcXr̄0e1(r̂) +

γ̄0

2
r̄0Xe2(r̂)(κccos2ψ + κssin2ψ)

+
γ̄0

2
κcr̄

(

1 − 3

2
X2

)

cosψ +
γ̄0

2
κsr̄

(

1 +
3

2
X2

)

sinψ (r̂ < 1)

γ0

2
κcXr̄0e3(r̂) +

γ̄0

2
r̄0Xe4(r̂)(κccos2ψ + κssin2ψ)

+
3γ̄0

4
r̄0X

2e5(r̂)(κccosψ + κssinψ) (r̂ > 1)

+
3γ̄0

4
r̄0X

2e6(r̂)(κccos3ψ + κssin3ψ)

(3.1)

where superscript (mean) denotes the rotor mean loading effect, r̂ = r̄/r̄0, r̄ and ψ, respec-

tively, are the radial position and azimuth angle on the rotor disk, κc, κs are the longitudinal

and lateral wake curvatures, X is wake skew, ei(r̂), i = 1, 2, . . . , 6 are defined in Appendix

B (Equations B.11.a, B.11.b, B.11.c, B.11.d, B.11.e, B.11.f).

3.1.2 Inflow Perturbations Due to Cyclic Loading

For helicopters in maneuvering flight, rotor bound circulation also changes circumferentially,

and therefore, the inflow perturbations due to the circumferential variation of rotor bound

circulation during helicopter maneuvering flight need to be investigated and its effect on

response prediction need to be assessed. In the current study, only the first harmonic cyclic

variation of rotor bound circulation is considered, that is, the longitudinal variation of

bound circulation (Γ̄1c) and the lateral variation of bound circulation (Γ̄1s).

When rotor bound circulation (Γ̄) changes around the azimuth by a dΓ̄, a free radial
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vortex of strength −dΓ̄ is released at the same time and the free tip vortex strength is

increased by dΓ̄. The calculation of the induced inflow due to rotor cyclic loading distribu-

tion is very complicated. Dress [61] proposed a simplified approach to calculate the induced

inflow across the rotor disk due to a cyclic variation of rotor bound circulation for a rotor in

steady forward flight. A similar approach is followed in the present study to approximate

the inflow perturbations due to rotor cyclic loading effect during maneuvering flight. As

illustrated in Figures B.1 and B.2, the shed radial and tip vortices due to the cosine and sine

parts of the cyclic variation of rotor bound circulation are taken together and it is assumed

that they form two tube cylinders with uniform vortex strength on both sides of the y-axis

(x-axis), i.e., two hypothetical rotor wake tubes, each with a radius of r̄0/2, one with a

vortex strength of γ̄1c (γ̄1s) and the other with a vortex strength of −γ̄1c (−γ̄1s) to account

for the effect of Γ̄1c (Γ̄1s). Therefore, the problem is reduced to a simpler one similar to the

mean loading case and Equation 3.1 can be used to calculate the inflow perturbations due

to the cyclic loading effect for helicopters in maneuvering flight.

To account for the effect of longitudinal variation (cosine part) of rotor bound circula-

tion, as shown in Figures B.1, the shed radial and tip vortices due to the cosine part of the

circumferential variation of rotor bound circulation is approximated by two hypothetical

vortex tubes placed on both sides of the y-axis, each of them with a radius of r̄0/2, one

tube with a vortex strength of γ̄1c at ψ = 00 and the other with a vortex strength of −γ̄1c at

ψ = 1800. For the effect of lateral variation (sine part) of rotor bound circulation, as shown

in Figures B.2, the shed radial and tip vortices due to the sine part of the circumferential

variation of rotor blade bound circulation is approximated by two hypothetical vortex tubes

placed on both sides of the x-axis, each of them with a radius of r̄0/2, one tube with a vor-

tex strength of γ̄1s at ψ = 900 and the other with a vortex strength of −γ̄1s at ψ = 2700.

Since the two hypothetical vortex tubes have uniform vorticity density (γ̄1c or γ̄1s) around

the tubes, the problem is reduced to a simpler one similar to the mean loading case. The

details of derivation are given in Appendix B. From Appendix B, the contributions to the

mean and first harmonic variations of inflow perturbations across the rotor disk due to rotor
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cyclic loading effect during maneuvering flight can be written as

∆v(cyc)
z (r̄, ψ) =















































































γ̄1c

2
{κcXr̄0d1(r̂)cosψ + κsXr̄0d2(r̂)sinψ}

+
γ̄1s

2
{κcXr̄0d4(r̂)sinψ}

+
γ̄1s

2
{κsXr̄0d2(r̂)cosψ} (r̂ < 1)

γ̄1c

2
{κcXr̄0d3(r̂)cosψ + κsXr̄0d2(r̂)sinψ}

+
γ̄1s

2
{κcXr̄0d5(r̂)sinψ}

+
γ̄1s

2
{κsXr̄0d2(r̂)cosψ} (r̂ > 1)

(3.2)

where superscript (cyc) denotes contribution from rotor cyclic loading effect, di(r̂), i =

1, 2, . . . , 5 are defined in the Appendix B (Equations B.27, B.28, B.34, B.41 and B.47).

Therefore, the total inflow perturbations across the rotor disk due to rotor mean and cyclic

loadings during maneuvering flight can be written as the sum of those due to the mean

loading effect and those due to the cyclic loading effect, respectively, i.e.,

∆vz(r̄, ψ) = ∆v(mean)
z (r̄, ψ) + ∆v(cyc)

z (r̄, ψ) (3.3)

3.2 Augmentation of the Pitt-Peters Dynamic Inflow Model

In the Pitt-Peters dynamic inflow model [47], the rotor wake is represented by a straight

wake, which does not account for the rotor wake distortion effect during helicopter maneu-

vering flight. In this section, the Pitt-Peters dynamic inflow model is augmented to account

for rotor wake distortion effect during helicopter maneuvering flight conditions.

In the current study, the rotor wake is represented by a single vortex tube with a tube

radius of r̄0 = 1 and the rotor bound circulation can be written as

Γ̄(ψ) = Γ̄0 + Γ̄1ccosψ + Γ̄1ssinψ (3.4)

where Γ̄0 is the mean rotor bound circulation, Γ̄1c and Γ̄1s, respectively, are the longitudinal

and lateral variations of rotor bound circulation. Therefore, the mean and cyclic vorticity

strengths around the vortex tube in Equations 3.1 and 3.2 can be related to the mean and
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cyclic variations of rotor bound circulation as follows

γ̄0 =
Γ̄0

Vm
(3.5.a)

γ̄1c =
Γ̄1c

Vm
(3.5.b)

γ̄1s =
Γ̄1s

Vm
(3.5.c)

where Vm is the mass flow parameter associated with the rotor mean inflow, which is given

by Equation 2.21.

Similarly, the inflow perturbations across the rotor disk due to the rotor mean and cyclic

loadings during helicopter maneuvering flight can be expanded up to the mean and first

harmonic terms as

∆vz(r̄, ψ) = ∆λ0 + ∆λ1cr̄cosψ + ∆λ1sr̄sinψ (3.6)

where ∆λ0 is the mean inflow perturbation, ∆λ1c and ∆λ1s are the longitudinal and lateral

inflow gradient perturbations, respectively. Using the orthogonal property of trigonometric

functions, these inflow perturbation coefficients can be extracted from Eqnuations 3.1, 3.2

and 3.3 as

∆λ0 =
1

π

∫ 2π

0

∫ 1

0
∆vz(r̄, ψ)r̄ dr̄dψ (3.7.a)

∆λ1c =
4

π

∫ 2π

0

∫ 1

0
∆vz(r̄, ψ)r̄2cosψ dr̄dψ (3.7.b)

∆λ1s =
4

π

∫ 2π

0

∫ 1

0
∆vz(r̄, ψ)r̄2sinψ dr̄dψ (3.7.c)

where ∆vz(r̄, ψ) is given by Equation 3.3. Also, the rotor thrust, pitch and roll moment

coefficients, i.e., CT , CM and CL, can be calculated from momentum theory [57] as

CT =
1

2π

∫ 2π

0

∫ 1

0
(r̄ + µsinψ)Γ̄ dr̄dψ (3.8.a)

CL = − 1

2π

∫ 2π

0

∫ 1

0
(r̄ + µsinψ)Γ̄r̄sinψ dr̄dψ (3.8.b)

CM = − 1

2π

∫ 2π

0

∫ 1

0
(r̄ + µsinψ)Γ̄r̄cosψ dr̄dψ (3.8.c)

Substituting the expression for rotor bound circulation in Equation 3.4 into Equa-

tions 3.8.a, 3.8.b, 3.8.c and solving for the rotor bound circulation in terms of rotor thrust,
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pitch and roll moment coefficients gives rise to

Γ̄0 =
CT

1 − 3

2
µ2

+
3µCL

1 − 3

2
µ2

(3.9.a)

Γ̄1c = −3CM (3.9.b)

Γ̄1s = −3CL − 3

2
µCT (3.9.c)

In Equation 3.9.a, the factor (1−3µ2/2) is taken to be 1.0 since µ2 is much smaller compared

with 1.0 for low speed forward flight. Substituting Equations 3.1, 3.2, 3.3, 3.9.a, 3.9.b

and 3.9.c into Equations 3.7.a, 3.7.b and 3.7.c and rearranging the result in matrix form

gives rise to






















∆λ0

∆λ1c

∆λ1s























=
1

Vm
[∆L]























CT

−CL

−CM























(3.10)

where matrix [∆L] represent perturbation to the inflow gain matrix due to the mean and

cyclic loading effects during helicopter maneuvering flight. To clearly illustrate the contri-

butions to this matrix due to different sources, [∆L] can be further decomposed to the sum

of three sub matrices as

[∆L] = [∆L1] + [∆L2] + [∆L3] (3.11)

where [∆L1] denotes coupling between wake curvature and rotor mean loading. [∆L2]

accounts for the coupling effect between wake curvature/wake skew and rotor mean loading,

and matrix [∆L3] represents the coupling effect between wake curvature/wake skew and

rotor cyclic loading. They can be expressed as

[∆L1] = KRe















0 0 0

κs

2
0 0

κc

2
0 0















(3.12)

[∆L2] = KRe















0 0 0

3

4
κsX

2 0 0

−3

4
κcX

2 0 0















(3.13)
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[∆L3] = KRe

















0 0 0

5

4
µκcX l22 −5

2
κsX

5

4
µκsX l32 − 3

10
κcX

















(3.14)

where

l22 = −5

2
κcX − 3µ

2
κs(1 +

3

2
X2)

l32 = −5

2
κsX − 3µ

2
κc(1 − 3

2
X2)

Replacing the mass flow parameter Vm in Equation 3.10 by the mass flow parameter matrix

[V ] gives rise to






















∆λ0

∆λ1c

∆λ1s























= [V ]−1[∆L]























CT

−CL

−CM























(3.15)

The Pitt-Peters dynamic inflow model [47] for helicopter axial and steady forward flight

can be formulated as

[M ]

⋆






















λ0

λ1s

λ1c























+ [V ][L̃]−1























λ0

λ1s

λ1c























=























CT

−CL

−CM























(3.16)

where λ0, λ1c and λ1s are the mean induced inflow, longitudinal and lateral inflow gradients

across the rotor disk, respectively. The apparent mass matrix [M ], mass flow parameter

matrix [V ] and inflow gain matrix [L̃], respectively, can be written as

[M ] =













128

75π
O

16

45π

O
16

45π













(3.17)

[V ] =













Vm O

V̄

O V̄













(3.18)
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[L̃] =













1

2
0 −15π

64
X

0 2(1 + X2) 0

15π

64
X 0 2(1 − X2)













(3.19)

where X is wake skew, the mass flow parameters Vm and V̄ associated with mean and higher

harmonics of inflow are given by Equations 2.21 and 2.20, respectively.

Assuming that the unsteady part of rotor pressure perturbations due to wake distortion

effect is negligible, the Pitt-Peters dynamic inflow model (Equation 3.16) can be augmented

with Equation 3.15 to account for the wake distortion effect during helicopter maneuvering

flight as follows

[M ]

⋆






















λ0

λ1s

λ1c























+ [V ][L]−1























λ0

λ1s

λ1c























=























CT

−CL

−CM























(3.20)

where the augmented inflow gain matrix [L] can be written as

[L] = [L̃ + ∆L] = [L̃ + ∆L1 + ∆L2 + ∆L3] (3.21)

The inflow gain matrix perturbation [∆L] is obtained based on the vortex tube results,

which uses Taylor expansion up to the first order of pitch and/or roll rate and up to the

second order of wake skew, therefore, matrices [∆L1], [∆L2] and [∆L3] are valid up to the

first order of wake curvatures (κc, κs), and the second order of wake skew X.

3.3 Augmentation of the Finite State Inflow Model

Similarly, the Peters-He finite state inflow model [48] for axial and steady forward flight can

be augmented to include rotor wake distortion effect during helicopter maneuvering flight

as described in the following.

The relationship between inflow perturbation distribution across the rotor disk and rotor

mean/cyclic loadings induced by a single distorted vortex tube is given by Equation 3.3.

With superposition of concentric vortex tubes, the inflow perturbation distribution across

the rotor disk plane for a maneuvering rotor with radially non-uniform loading distribution
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can be obtained as

∆λ(r̄, ψ) =

∫ 1

0
∆vz(r̄, ψ) dr̄0 (3.22)

where ∆vz denotes the inflow perturbation induced by a single vortex tube, which is given by

Equation 3.3. The inflow perturbations induced by the whole distorted rotor wake (Equa-

tion 3.22), which includes a series of concentric distorted vortex tubes, can be expanded in

terms of the normalized associated Legendre functions and trigonometric functions as

∆λ(r̄, ψ) =
∞

∑

r=0

∞
∑

j=r+1,r+3,...

φr
j

[

∆αr
jcosrψ + ∆βr

j sinrψ
]

(3.23)

where φr
j is the radial expansion function used in the induced inflow expansion as given by

He [48]. The perturbations of the inflow coefficients, i.e., ∆αr
j , ∆βr

j , can be extracted from

Equation 3.23 by using the orthogonality property of the trigonometric functions and the

associated Legendre functions as

∆α0
j = − 1

2π

∫ 1

0

∫ 2π

0
r̄∆λ(r̄, ψ)P̄ 0

j (ν̄) dr̄ (3.24.a)

∆αr
j = − 1

π

∫ 1

0

∫ 2π

0
r̄∆λ(r̄, ψ)P̄ r

j (ν̄)cosrψ dr̄ (3.24.b)

∆βr
j = − 1

π

∫ 1

0

∫ 2π

0
r̄∆λ(r̄, ψ)P̄ r

j (ν̄)sinrψ dr̄ (3.24.c)

where P̄ is the normalized associated Legendre function of the first kind. Similarly, ro-

tor mean and cyclic loadings can be expanded as linear combinations of the normalized

associated Legendre function of the first kind as

Γ̄0 =
∑

n

τ0
nP̄ 0

n (3.25.a)

Γ̄1c =
∑

n

τ1c
n P̄ 1

n (3.25.b)

Γ̄1s =
∑

n

τ1s
n P̄ 1

n (3.25.c)

where τmc
n , τms

n (m = 0, 1 here) are the rotor forcing functions. Substituting Equations 3.3,

3.23, 3.25.a, 3.25.b and 3.25.c into Equations 3.24.a, 3.24.b and 3.24.c, the perturbations of

inflow coefficients induced by the concentric distorted rotor wake tubes can be obtained in

matrix form as follows










∆αr
j

∆βr
j











=
KRe

2Vm

[

[D]0 + [D]1X + [D]2X
2
]











τmc
n

τms
n











(3.26)
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where

[D]0 = κc[C]c1 + κs[C]s1 (3.27.a)

[D]1 = κc[C]cX + κs[C]sX (3.27.b)

[D]2 = κc[C]cX2 + κs[C]sX2 (3.27.c)

where the [C]’s matrices denote coupling effects among rotor inflow, wake curvatures and

wake skew. For example, [C]c1 and [C]s1 denote coupling effect between rotor inflow, lon-

gitudinal and lateral wake curvatures, respectively. [C]cX and [C]sX , respectively, denote

the inflow-wake curvatures-linear wake skew coupling effect. Similarly, [C]cX2 and [C]sX2 ,

respectively, represent the inflow-wake curvatures-quadratic wake skew coupling effect.

Assuming that the unsteady part of rotor pressure perturbations due to wake distortion

effect is negligible, the inflow gain matrix [L] of the Peters-He finite state inflow model can

be augmented to include rotor wake distortion effect during helicopter maneuvering flight

as follows

[L] =
[

[L̃] + [∆L]
]

(3.28)

In Equation 3.28, [L̃] retains its original form from the Peters-He finite state inflow model

and [∆L] accounts for the inflow perturbations induced by the concentric distorted wake

tubes during helicopter maneuvering flight, which can be written as

[∆L] = KRe

(

[D]0 + [D]1X + [D]2X
2
)

(3.29)

Hence, the augmented Peters-He finite state inflow model can be written as

[K]

⋆










αr
j

βr
j











+ [V ] [L]−1











αr
j

βr
j











=
1

2











τmc
n

τms
n











(3.30)

where [K] is the apparent mass matrix given by He [48].

Both the augmented Pitt-Peters dynamic inflow model (Equation 3.20) and the aug-

mented Peters-He finite state inflow model (Equation 3.30) depend on the wake skew X,

longitudinal and lateral wake curvatures, i.e., κc, κs, respectively. The mass flow parame-

ter matrix [V ] depends on the wake spacing S. Therefore, the augmented inflow models
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(Equations 3.20 and 3.30) and the rotor dynamic wake distortion model (Equation 2.27)

developed in Chapter II can be solved simultaneously to account for rotor dynamic wake

distortion effect during helicopter maneuvering and transitional flight.

In the following sections of this chapter, the dynamic wake distortion model (Equa-

tion 2.27), combined with the Augmented Pitt-Peters dynamic inflow model (Equation 3.20)

is implemented in a generic helicopter simulation program [53] to study the coupling effect

between rotor inflow and rotor mean/cyclic loading due to rotor wake distortions during

helicopter maneuvering flight.

3.4 Effect of Wake Distortion Dynamics on the Stability
of Flapping Dynamics

Initially, simulation runs are carried out to investigate the adequacy of the quasi-steady

wake distortion model (using only Equations 3.20 or 3.30 without Equation 2.27). Figure 3.1

presents the off-axis pitch rate response of a UH-60 Black Hawk helicopter to a lateral cyclic

control stick doublet input from hover for four different values of wake curvature parameter

KRe, predicted with the quasi-steady wake distortion model. For comparison purposes, the

corresponding flight test data are also superimposed on the plot. From Figure 3.1, it can

be clearly seen that the off-axis pitch rate response prediction without any wake curvature

effect, i.e., the wake curvature parameter KRe is zero, goes opposite to the corresponding

flight test data. Also, it can be observed that the off-axis pitch rate response prediction is

improved with a higher value of KRe. However, a simulation divergence problem is observed

when the value of wake curvature parameter (KRe) is increased to 1.8 and beyond. This

is in agreement with a similar finding in the literature [34]. It is felt that this may be due

to the fact that, with a quasi-steady wake distortion model, the wake curvature effect is

brought in too quickly. However, the simulation divergence problem is alleviated with the

use of the developed dynamic wake distortion model as shown in the later results in this

study. To gain further insight into this phenomena, the effect of wake distortion dynamics

on the stability of rotor flapping dynamics is investigated in this section.

For small flapping angles, the coupled cyclic mode equations of flapping dynamics for
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Figure 3.1: Simulation divergence observed with a quasi-steady wake distortion model in
hover

an articulated rotor in hover can be written in the multi-blade coordinate system as [1, 57]










⋆⋆
β 1c + 2

⋆
β1s + eββ1c

⋆⋆
β 1s − 2

⋆
β1c + eββ1s











= γlock











MF1c

MF1s











(3.31)

where β1c and β1s, respectively, are the longitudinal and lateral tip path plane tilt angles,
⋆

() denotes differentiation with respect to nondimensional time. eβ = λ2
β − 1, λβ is the

blade flapping frequency, MF1c
and MF1s

, respectively, are the longitudinal and lateral

aerodynamic flapping moment coefficients, which can be formulated as










MF1c

MF1s











= Mθ











θ1c

θ1s











+ Mβ̇











⋆
β1c + β1s

⋆
β1s − β1c











+ Mλc











λ1c

λ1s











(3.32)

where

Mθ =
1

8
c2 Mβ̇ = −1

8
d1 Mλc

= −1

8
c2

and

c2 = 1 − ē + ē2 + ē3

3
d1 = 1 − 2ē + ē2

3

where ē is the equivalent flapping hinge offset.
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The augmented Pitt-Peters dynamic inflow model (Equation 3.20) for helicopter ma-

neuvering flight, involving only the cyclic inflow modes, can be written in hover as

τi

⋆










λ1c

λ1s











+











λ1c

λ1s











=















CM

λ0
+ KReλ0κc

CL

λ0
+ KReλ0κs















(3.33)

where τi is the time constant in the Pitt-Peters dynamic inflow model in hover and can be

formulated as

τi =
16

45πλ0

The dynamic wake distortion model, involving only the wake curvature dynamics in

hover, can be written as

τR

⋆










κc

κs











+











κc

κs











=











κc

κs











qs

(3.34)

where the time constant for the wake curvature dynamics in hover is given by Equation 2.6,

the quasi-steady longitudinal and lateral wake curvatures, i.e., κc and κs, in the right hand

side of Equation 3.34 are given by Equations 2.29.c and 2.29.d.

To couple the inflow dynamics with rotor flapping dynamics, expressions for the aero-

dynamic pitch and roll moment coefficients, i.e., CM and CL, can be related to the flapping

moment coefficients (MF1c
and MF1s

) as follows [62]
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MF1c
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(3.35)

Carrying out the Laplace transform for the flapping equation (Eqnuation 3.31), the

flapping moment equation (Eqnuation 3.32), the dynamic wake distortion equation (Equa-

tion 3.34) and the inflow dynamics equation (Equation 3.33) gives rise to the characteristics

polynomial of the coupled flapping-inflow-wake distortion dynamics as

∆(s) =
[

(τis + 1 + KL)(τRs + 1)(s2 + eβ) − γMβ̇(τis + 1)(τRs + 1)s + γKReMλc
s
]2

+
[

2s(τis + 1 + KL)(τRs + 1) − γMβ̇(τis + 1)(τRs + 1)
]2

(3.36)
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Figure 3.2: Variation of the root for the progressive flapping mode with the wake curvature
parameter KRe, ē = 0.0

The eigenvalues of the characteristics polynomial (Equation 3.36) of the coupled flapping-

inflow-wake distortion dynamics are solved numerically for different values of the wake cur-

vature parameter KRe and the equivalent hinge offset ē. It is assumed that the flapping

frequency (λβ) can be written as

λ2
β = 1 +

3ē

1 − ē

Figures 3.2, 3.3 and 3.4 show the ”KRe” root locus for the progressive flapping mode at

different values of hinge offset ē, with KRe ranging from 0.0 to 5.0 in incremental step of 0.25.

It can be clearly seen from these figures that with a quasi-steady wake distortion model,

the progressive flapping mode becomes unstable as KRe is increased beyond a certain value.

However, with the dynamic wake distortion model, the progressive flapping mode is still

stable for all the values of KRe considered in this study. Also, from Figures 3.2 through 3.4,

it is seen that higher values of hinge offset somewhat reduce the instability problem with a

quasi-steady wake distortion model.

50



-1.0 -0.5 0.0 0.5 1.0
1.0

1.2

1.4

1.6

1.8

2.0

KRe=2.25

x

 v0=0.07, quasi-steady WD
 v0=0.07, dynamic WD
 v0=0.05, quasi-steady WD
 v0=0.05, dynamic WD

 

 

Im
ag

. p
ar

t

Real part

x
KRe=1.65

e=0.04
_

KRe

KRe

Figure 3.3: Variation of the root for the progressive flapping mode with the wake curvature
parameter KRe, ē = 0.04
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3.5 Rotor Mean Loading Effect

From the augmented Pitt-Peters dynamic inflow model (Equation 3.20), it can be seen

that the cyclic loading effect ([∆L3]) manifests as product of wake curvatures and wake

skew (κcX, κsX). Similarly, the coupling effect between wake curvatures and wake skew

([∆L2]) manifests as product of wake curvatures and quadratic wake skew (κcX
2, κsX

2).

Therefore, the cyclic loading effect and the coupling effect between quadratic wake skew

and wake curvautres are small for maneuvering flight near hover condition since wake skew

X is close to zero. However, the mean loading effect ([∆L1]) will be the most significant

effect.

Figures 3.6 and 3.7, respectively, show the on-axis roll rate and off-axis pitch rate re-

sponse predictions of a UH-60 Black Hawk helicopter to a lateral cyclic control stick doublet

input as shown in Figure 3.5. Also, for comparison purposes, the flight test data [54] are

also superimposed on Figures 3.6 and 3.7. From Figure 3.6, which is the on-axis roll rate

response to the lateral cyclic control stick doublet input of Figure 3.5, it can be seen that

dynamic wake distortion has very little effect on the on-axis response prediction, which is

consistent with previous findings in the literature [41, 42]. From Figure 3.7, which is the

off-axis pitch rate response to the lateral cyclic control stick doublet input as shown in

Figure 3.5, it can be clearly seen that the prediction without any wake distortion effect,

i.e., KRe = 0.0, goes opposite to the flight test data. However, the developed dynamic

wake distortion model with a value of 3.8 for the wake curvature parameter KRe gives good

correlation of off-axis response with flight test data.

Similarly, Figures 3.9 and 3.10, respectively, are the vehicle on-axis pitch rate and off-

axis roll rate responses to a longitudinal cyclic control stick doublet input with a profile

shown in Figure 3.8. For comparison purposes, the results from the corresponding flight

test data are also shown in Figures 3.9 and 3.10. Once again, it is seen from Figure 3.9,

which is the on-axis pitch rate response to the longitudinal cyclic control stick doublet input

of Figure 3.8, that dynamic wake distortion has very little effect on the on-axis response

prediction. However, the off-axis roll rate response prediction (Figure 3.10) to the same

longitudinal cyclic control stick doublet input of Figure 3.8 is significantly improved with
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Figure 3.5: Profile of the lateral cyclic control stick doublet input used in the UH-60 Black
Hawk helicopter flight test program in hover
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Figure 3.6: UH-60 Black Hawk helicopter on-axis roll rate response from hover to the
lateral cyclic control stick doublet input of Figure 3.5
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Figure 3.7: UH-60 Black Hawk helicopter off-axis pitch rate response from hover to the
lateral cyclic control stick doublet input of Figure 3.5
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Figure 3.8: Profile of the longitudinal cyclic control stick doublet input used in the UH-60
Black Hawk helicopter flight test program in hover
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Figure 3.9: UH-60 Black Hawk helicopter on-axis pitch rate response from hover to the
longitudinal cyclic control stick doublet input of Figure 3.8
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Figure 3.10: UH-60 Black Hawk helicopter off-axis roll rate response from hover to the
longitudinal cyclic control stick doublet input of Figure 3.8
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the dynamic wake distortion model with a value of 3.8 for the wake curvature parameter

KRe.

3.6 Rotor Cyclic Loading Effect

In the augmented Pitt-Peters dynamic inflow model (Equation 3.20), the [∆L3] matrix ac-

counts for the coupling effect between wake curvatures/wake skew and rotor cyclic loading

during helicopter maneuvering flight. An inspection of the [∆L3] matrix reveals that the

coupling manifests in the form of product of wake curvatures and wake skew (κcX, κsX).

Therefore, the cyclic loading effect will exist mainly in maneuvering at forward flight con-

ditions. Figures 3.12 and 3.13, respectively, show the on-axis roll rate and off-axis pitch

rate response predictions of a UH-60 Black Hawk helicopter to a lateral cyclic control stick

doublet input starting from 40 knots with a profile shown in Figure 3.11. On the plots, the

results predicted with only the mean loading effect ([∆L1]) are also shown. The value of

3.8 for the wake curvature parameter KRe is taken from the hover value. From Figure 3.12,

which is the on-axis roll rate response to the lateral cyclic control stick doublet input of

Figure 3.11, it can be seen that the initial on-axis response prediction is slightly improved

with including the cyclic loading effect ([∆L3]). Also, it can be see from Figure 3.13 that the

off-axis pitch rate response to the same lateral cyclic control stick doublet input is slightly

improved with including the cyclic loading effect.

3.7 Wake Curvature/Skew Coupling Effect

In the augmented Pitt-Peters dynamic inflow model (Equation 3.20), the [∆L2] matrix

accounts for the coupling effect between wake curvature/wake skew and rotor mean loading

during maneuvering flight. An inspection of the [∆L2] matrix reveals that the coupling

manifests in the form of product of wake curvatures and quadratic wake skew (κcX
2, κsX

2).

Therefore, the wake curvature/skew coupling effect will also exist mainly in maneuvering

at forward flight conditions. Figures 3.14 and 3.15, respectively, show the on-axis roll rate

and off-axis pitch rate response predictions of a UH-60 Black Hawk helicopter to the lateral

cyclic control stick doublet input starting from 40 knots as shown in Figure 3.11. From
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Figure 3.11: Profile of the lateral cyclic control stick doublet input used in the UH-60 Black
Hawk helicopter flight test program at 40 knots
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Figure 3.12: Effect of cyclic loading on on-axis roll rate response of a UH-60 Black Hawk
helicopter at 40 knots flight speed to the lateral cyclic control stick doublet input of Fig-
ure 3.11
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Figure 3.13: Effect of cyclic loading on off-axis pitch rate response of a UH-60 Black
Hawk helicopter at 40 knots flight speed to the lateral cyclic control stick doublet input of
Figure 3.11

Figure 3.14, which is the on-axis roll rate response to the lateral cyclic control stick doublet

input of Figure 3.11, it can be seen that the initial on-axis response prediction is also

improved by including the [∆L2] matrix. Also, The results in Figure 3.13 show that, when

the coupling effect between wake curvature/skew and mean loading ([∆L2]) is accounted

for, a lower value of 2.5 for the wake curvature parameter KRe gives comparable off-axis

pitch rate response predictions to those obtained using a value of 3.8 for KRe with only the

mean loading effect.

3.8 Comparison of Wake Distortion Models

In this section, the augmented Pitt-Peters dynamic inflow model (Equation 3.20) developed

in this study will be compared with the inflow model proposed by Keller in order to clarify

any difference between them.

Keller [29] proposed a method to represent the quasi-steady wake distortion effect during

helicopter maneuvering flight. The corresponding augmented inflow model can be written

as (only the longitudinal case is considered here, the same analysis can be applied to the
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Figure 3.14: Effect of wake curvature/skew coupling on on-axis roll rate response of a UH-
60 Black Hawk helicopter at 40 knots flight speed to the lateral cyclic control stick doublet
input of Figure 3.11
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Figure 3.15: Effect of wake curvature/skew coupling on off-axis pitch rate response of a
UH-60 Black Hawk helicopter at 40 knots flight speed to the lateral cyclic control stick
doublet input of Figure 3.11

59



lateral case)
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where KR is the wake distortion parameter. In Equation 3.37, Keller models the wake

curvature effect as additional forcing terms in the inflow model. Carrying out the matrix

inversion in Equation 3.37 and simplifying the resulting equation gives rise to
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(3.38)

where Vm and V̄ , respectively, are the mass flow parameters associated with the mean inflow

and higher harmonics of inflow.

On the other hand, the augmented Pitt-Peters dynamic inflow model with quasi-steady

wake curvature effect in the present study is given by Equation 3.20, which includes ro-

tor mean/cyclic loading effect and wake curvature/skew coupling effect. Since the model

proposed by Keller only considers the mean loading effect, only the mean loading effect in

the augmented Pitt-Peters dynamic inflow model (Equation 3.20) will be compared with

Keller’s model. The augmented Pitt-Peters dynamic inflow model (Equation 3.20), only

including the rotor mean loading effect can be written as (only the longitudinal case is

considered here, the same application can be carried out for the lateral case)
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(3.39)

It is clear from Equation 3.39 that the present study models the wake curvature effect as a

modification to the system gain matrix. Equation 3.39 can be simplified as
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(3.40)
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Generally, the perturbations in the total mean inflow λ0 in Equations 3.38 and 3.40 are

small. Therefore the equation for the longitudinal inflow gradient appearing in Equations

3.38 and 3.40 are the same if the following expression is true

KR(q̄ −
⋆
β1c) = KReκcλ0 (3.41)

After substituting the definition for the longitudinal wake curvature, it can be seen that if

KR = KRe (3.42)

is satisfied, then the augmented Pitt-Peters dynamic wake distortion model and the Keller’s

model are consistent if only rotor mean loading effect is considered.
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CHAPTER IV

MAIN ROTOR/TAIL ROTOR/EMPENNAGE

INTERACTION DURING MANEUVERING FLIGHT

The higher maneuverability and agility requirements of modern helicopters often require

that the rotor be closer to the body, higher rotor speed and higher disk loading, which

severely increase the aerodynamic interactions among main rotor, fuselage, tail rotor and

empennage. Prouty et al [63] discussed the difficulties in designing the empennage and tail

rotor of the YAH-64 helicopter due to a poor understanding of the aerodynamic interaction

effect among main rotor, tail rotor and empennage. There have been several research stud-

ies carried out in the literature [43, 52, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77] to

study the aerodynamic interaction effect among different components of helicopters. How-

ever, most flight dynamics simulation programs of rotorcraft only account for the aerody-

namic interaction effect among main rotor, tail rotor and empennage during a steady axial

and steady forward flight condition, i.e., the rotor wake is either vertically down or skewed.

For helicopters carrying out maneuvers such as that schematically shown in Figure 1.1,

where the rotor wake is not straight anymore, it is perceivable that the aerodynamic inter-

action phenomena among main rotor, tail rotor and empennage will be significantly different

from those during steady flight, and therefore, the rotor wake distortion effect will also play

a role in the interaction during maneuvering flight and need to be assessed. However, the

aerodynamic interaction among main rotor, tail rotor and empennage is complicated even in

steady flight condition. To properly account for the aerodynamic interaction effect among

main rotor, tail rotor and empennage during maneuvering flight, a reduced order model

based on a vortex tube analysis is developed in this chapter to model the aerodynamic

interaction caused by rotor wake distortion effect.
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Figure 4.1: Schematic of the equivalent wake skew during helicopter maneuvering flight

4.1 Equivalent Wake Skew Due To Main Rotor Wake Cur-

vature

When a helicopter is operating in forward flight condition, the skewed main rotor wake will

sweep through the tail rotor and empennage, and induce downwash at these aerodynamic

components. For a helicopter in a steady forward flight condition, the steady wake skew

angle χ is the parameter used to calculate the main rotor downwash at the tail rotor and the

empennage in a simulation environment. However, for a helicopter carrying out maneuvers,

the curved main rotor wake will impact the main rotor downwash at these aerodynamic

components. To account for the main rotor downwash at the tail rotor and empennage due

to main rotor wake curvatures during maneuvering flight, an approximate method based on

equivalence between wake curvature and wake skew (as developed in Appendix C) can be

used, which is schematically shown in Figure 4.1. The analysis is based on the augmented

Pitt-Peters dynamic inflow model (Equation 3.20). The rotor dynamic wake distortion
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model (Equation 2.27) developed in Chapter II can be written as
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(4.1)

Also, the augmented Pitt-Peters dynamic inflow model (Equation 3.20) developed in

Chapter III for helicopter maneuvering flight can be written as
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(4.2)

The quasi-steady induced inflow due to rotor loading can be obtained from the above

equation as
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(4.3)

where subscript qs means quasi-steady. Substituting expressions for the mass flow param-

eter matrix [V ] (Equation 3.18) and the augmented inflow gain matrix [L] (Equation 3.21)

into the above expression gives rise to the quasi-steady longitudinal inflow gradient (λ1c)

across the rotor disk in terms of rotor thrust coefficient as

λ1c

V̄
=

[

15π

64
X +

KRe

2
κc

(

1 − 3

2
X2

)

+
5KRe

4
κsµX

]

CT (4.4)

where the first term inside the bracket is the same as that during a steady forward flight

and the remaining terms are due to main rotor wake curvature effect during maneuvering

flight. For low advance ratio µ, using the approximation of

X = tan(
χ

2
) ≈ µ

2(λ0 + Vc)
(4.5)

Equation 4.4 can be rewritten as

λ1c
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Therefore, an equivalent wake skew due to main rotor wake curvature effect during maneu-

vering flight can be defined as

∆Xeq =
32KRe

15π
κc

(

1 − 3

2
X2

)

+
32KRe

3π
κs(λ0 + Vc)X

2 (4.7)

which can also be written approximately in terms of an equivalent wake skew angle as

∆χeq =
64KRe

15π
κc

(

1 − 3

2
X2

)

+
64KRe

3π
κs(λ0 + Vc)X

2 (4.8)

This equivalent wake skew can be added to the steady wake skew from momentum theory

to model the main rotor downwash effect on the tail rotor and empennage during helicopter

maneuvering flight.

4.2 Sidewash At Vertical Tail Due To Main Rotor Wake

Curvature

As shown in Figure 4.2, when a helicopter is carrying out a roll maneuver, the curved main

rotor wake will induce an additional sidewash at the aerodynamic centers of the tail rotor

and vertical tail. By using a vortex tube representation as developed in Appendix C, this

additional sidewash (∆νV T
yMR

) at the aerodynamic centers of the tail rotor and vertical tail

induced by the distorted main rotor wake during maneuvering flight, when expressed along

the main rotor y− axis, can be obtained as [78]

∆vV T
yMR

= (κsλ0)MR

(

iMR
0 + iMR

1 X + iMR
2 X2

)

(4.9)

where superscript V T denotes that the side wash is calculated at the aerodynamic centers

of vertical tail and/or tail rotor, subscript and superscript MR denotes that this effect is

due to the main rotor wake curvature effect, iMR
0 , iMR

1 , iMR
2 are the interference coefficients

given in Appendix C by Equations C.16.a, C.16.b and C.16.c, which are determined by the

relative geometric positions of the main rotor and the aerodynamic centers of vertical tail

and tail rotor.
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4.3 Up/Down Wash At Horizontal Tail Due to Tail Rotor
Wake Curvature

Similarly, as shown in Figure 4.3, when a helicopter is carrying out a roll maneuver, the

curved tail rotor wake will also induce an additional up/down wash at the aerodynamic

center of the horizontal tail, which will affect the pitch moment and consequently the off-

axis pitch rate response to a lateral cyclic control stick input. By using a vortex tube

representation as developed in Appendix C, this additional up/down wash (∆νHT
yTR

) at the

aerodynamic center of the horizontal tail induced by the distorted tail rotor wake during

maneuvering flight, when expressed along the tail rotor y− axis, can be obtained from the

vortex tube analysis as [78]

∆vHT
yTR

= (κsλ0)TR

(

iTR
0 + iTR

1 X + iTR
2 X2

)

(4.10)

where superscript HT denotes that the up/down is calculated at the aerodynamic center of

the horizontal tail, subscript and superscript TR denotes that this effect is due to the tail

rotor wake curvature effect, iTR
0 , iTR

1 , iTR
2 are the interference coefficients given in Appendix

C by Equations C.18.a, C.18.b and C.18.c, which are determined by the relative geometric

positions of the tail rotor and the aerodynamic center of the horizontal tail.

4.4 Main Rotor/Tail Rotor/Empennages Interaction Ef-

fect On Response Prediction

In this section, the aerodynamic interaction effect among main rotor, tail rotor and em-

pennage during helicopter maneuvering flight on response predictions, especially on the

off-axis response prediction will be investigated. Figures 4.4 and 4.5, respectively, are the

on-axis roll rate and off-axis pitch rate responses of a UH-60 Black Hawk helicopter to a

lateral cyclic control stick doublet input of Figure 3.11, predicted with including the main

rotor wake distortion effect, i.e., including [∆L1], [∆L2] and [∆L3], and the main rotor/tail

rotor/empennage interaction effect developed in this chapter. A value of 1.0 for the wake

curvature parameter KRe is used. From Figure 4.4, which is the on-axis roll rate response

to the lateral cyclic control stick doublet input of Figure 3.11, it can be seen that including
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Figure 4.2: Schematic of the interaction between main rotor, tail rotor and empennage
during a roll maneuver

Figure 4.3: Schematic of the interaction between tail rotor and horizontal tail during a roll
maneuver
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Figure 4.4: Combined effect of main rotor wake distortion and main rotor/tail ro-
tor/empennage interaction on the on-axis roll rate response of a UH-60 Black Hawk heli-
copter at 40 knots flight speed to the lateral cyclic control stick doublet input of Figure 3.11

both the main rotor wake distortion effect and the main rotor/tail rotor/empennage inter-

action effect improves the on-axis roll rate response prediction as compared with the case

without any wake distortion effect. Also, From Figure 4.5, which is the off-axis pitch rate

response prediction to the same lateral cyclic control stick doublet input of Figure 3.11, it

can be seen that the off-axis pitch rate response predicted with the main rotor wake distor-

tion effect and the main rotor/tail rotor/empennage interaction effect correlates well with

the corresponding flight test data when compared with the results predicted without any

wake distortion effects. More importantly, it is noted that with both the main rotor wake

distortion effect and the main rotor/tail rotor/empennage interaction model, the value of

KRe needed for good off-axis response correlation is 1.0, which is the value obtained from

momentum theory.
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Figure 4.5: Combined effect of main rotor wake distortion and main rotor/tail ro-
tor/empennage interaction on the off-axis pitch rate response of a UH-60 Black Hawk heli-
copter at 40 knots flight speed to the lateral cyclic control stick doublet input of Figure 3.11
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CHAPTER V

MODEL REFINEMENT IN HOVER

The investigations [58, 79] of rotor dynamic wake distortion effect on helicopter response

predictions, especially on the off-axis response predictions, and the preliminary results in

Chapter III show that a value of 3.8 for the wake curvature parameter KRe is needed in

the model to correlate well with flight test data of a UH-60 Black Hawk helicopter in hover

condition. However, the value of 3.8 is considerably higher than the value of KRe = 1.0

obtained from momentum theory. It is felt that this discrepancy may be due to several other

sources, such as the effect of airfoil unsteady aerodynamics, the fuselage blockage effect on

the mean induced velocity across the main rotor disk and the gyroscopic feathering moment

effect during a pitch and/or roll motion, etc. In this chapter, these effects on the off-axis

response predictions during maneuvering flight are investigated.

5.1 Effect of Airfoil Unsteady Aerodynamics

For helicopters in maneuvering flight, rotor blades encounter a broad spectrum of unsteady

effects such as the excursion in angle of attack resulting from blade and fuselage motions.

Therefore, the effect of airfoil unsteady aerodynamics needs to be examined and its impact

on the correct off-axis response prediction during helicopter maneuvering flight needs to be

assessed. For rotorcraft applications, the dynamic inflow model [47] and the Peters-He finite

state inflow model [48] capture the dynamic response of rotor inflow to changes in rotor disk

loading. Similarly, when rotor inflow changes, the response of the rotor disk loading will also

be dynamic. In most rotorcraft simulation programs using a blade-element model, the lift

and drag coefficients for each blade element at each time instant are obtained through table

look-up, which is a quasi-steady representation. From this point of view, airfoil unsteady

aerodynamics may also be a potential factor to improve the off-axis response correlation.

Since rotor inflow and rotor loading calculations are both necessary parts of the closed loop
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system in helicopter flight mechanics and aeroelasticity applications, it is possible to combine

the rotor dynamic wake distortion effect and the effect of airfoil unsteady aerodynamics in

the off-axis response prediction. Schulein and Tischler [51] carried out some preliminary

investigations on combining the effects of wake distortion and the aerodynamic phase lag

model [80], which is an empirical method to account for the two dimensional compressibility

effect.

In this study, the state-space representation proposed by Leishman, et al, [81, 82, 83,

84, 85] is used to account for the effect of airfoil unsteady aerodynamics. This state-space

representation inherently includes the compressibility effect and accounts for the effect of

airfoil unsteady aerodynamics in the form of ordinary differential equations, which is suitable

for time-marching in a simulation environment. The state-space model can be written as
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(5.1)

with the output equation for the normal force coefficient at each blade section as

Cn = [CUA]xT + [DUA]











αaf

qaf











(5.2)

where,
⋆

() denotes differentiation with respect to nondimensional time, αaf and qaf are the

airfoil angle of attack and angle-of-attack rate, respectively, xi (i = 1, 2, 3, 4) are the state

variables, Cn is the airfoil section normal force coefficient and the matrices [AUA], [BUA],

[CUA], [DUA] can be written as

[AUA] =



















a11 O

a22

a33

O a44



















(5.3)
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(5.4)

[CUA] = [ c11 c22 c33 c44 ] (5.5)

[DUA] =

[

4

Mmach

1

Mmach

]

(5.6)

where Mmach is the Mach number and the detailed expressions for the elements in the above

matrices are given by Leishman, et al, [81, 82, 83, 84, 85] as follows

a11 = −2Vsec

c
β2

pgb1 (5.7.a)

a22 = −2Vsec

c
β2

pgb2 (5.7.b)

a33 = − 1

KαTI
(5.7.c)

a44 = − 1

KqTI
(5.7.d)

c11 =
2π

βpg

(

2V∞

c

)

β2
pgA1b1 (5.7.e)

c12 =
2π

βpg

(

2V∞

c

)

β2
pgA2b2 (5.7.f)

c13 = − 4

Mmach

1

KαTI
(5.7.g)

c14 = − 4

Mmach

1

KqTI
(5.7.h)

where, A1 = 0.3, A2 = 0.7, b1 = 0.14, b2 = 0.53, Vsec is the section resultant velocity,

βpg=
√

1 − M2
mach is the Prandtl-Glauert compressibility factor, TI is the non-circulatory

time constant given by

TI =
c

asound
(5.8)

where c is the airfoil chord length and asound is the sound velocity. Kα and Kq, respectively,
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are given by

Kα =
[

(1 − Mmach) + πβpgM
2
mach(A1b1 + A2b2)

]

−1
(5.9)

Kq =
[

(1 − Mmach) + 2πβpgM
2
mach(A1b1 + A2b2)

]

−1
(5.10)

To implement the above state-space unsteady aerodynamics model in a rotorcraft simu-

lation environment, which uses the Pitt-Peters dynamic inflow model or the Peters-He finite

state inflow model (both implicitly include the Theodorsen’s function effect), the contribu-

tions to the airfoil normal force coefficient (Cn) from the circulatory lift part due to the

angle of attack in the above model must be excluded to avoid duplicating the rotor wake

effect [86]. This can be obtained by setting the corresponding element in the [BUA] matrix

(Equation 5.4) in the state space model to be zero and the resulting [BUA] matrix can be

obtained as follows

[BUA] =





















0
1

2

0
1

2

1 0

0 1





















(5.11)

5.2 Fuselage Blockage Effect

For helicopters operating near hover condition, the rotor wake will be significantly in-

fluenced by the fuselage. The rotor wake/fuselage interaction problem, even in steady

flight condition, is very complicated and highly nonlinear. There have been many research

works [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100] carried out to study the rotor

wake/fuselage interaction during steady flight condition in the recent past. However, the

global blockage effect of fuselage on rotor inflow is to reduce the mean induced velocity

across rotor disk. From Equations 2.29.c and 2.29.d, it can be seen that the quasi-steady

longitudinal and lateral wake curvatures are defined in terms of the total inflow across the

rotor disk, therefore, the reduced mean induced velocity across the rotor disk due to the

fuselage blockage effect will impact the quasi-steady rotor wake curvatures, consequently,

the vehicle’s response to control stick inputs. To represent the first order effect of the fuse-

lage blockage effect on rotor wake curvature dynamics near hover condition for helicopter
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maneuvering flight simulation applications, the fuselage is treated as an equivalent flat plate

panel in the present study. Similar to the modeling of partial ground effect developed by

Xin [101] , the equivalent flat plate panel is treated as a pressure perturbation, ΦF , which is

presented as a source-like singularity. It is assumed that the rotor and fuselage panel pres-

sure perturbations share a common free stream since the source-like pressure perturbation

of the fuselage panel creates no energy of its own. Therefore, the total pressure perturbation

in the flow field of combined rotor and fuselage, is the superposition of the contributions

from the rotor and the equivalent fuselage panel, i.e.,

Φ = ΦR + ΦF (5.12)

where the rotor and fuselage panel pressure perturbations, i.e., ΦR and ΦF , respectively, can

be expanded in terms of the normalized associated Legendre functions and trigonometric

functions as

ΦR(ν, η, ψ) =
1

2

∞
∑

m=0

∞
∑

n=m+1,···

P̄m
n (ν)Q̄m

n (iη) [τmc
n cos(mψ) + τms

n sin(mψ)] (5.13)

ΦF (ν̂, η̂, ψ̂) =
1

2

∞
∑

l=0

∞
∑

k=l,l+2,···

P̄ l
k(ν̂)Q̄l

k(iη̂)
[

σlc
k cos(lψ̂) + σls

k sin(lψ̂)
]

(5.14)

where σlc
k , σls

k are the fuselage panel pressure coefficients, τmc
n , τms

n are the rotor pressure

coefficients (also called rotor forcing functions), P̄ and Q̄ are the normalized associated

Legendre functions of the first kind and the second kind, respectively. (ν, η, ψ) and (ν̂, η̂, ψ̂),

respectively, are the nondimensinal rotor and fuselage panel ellipsoidal coordinates.

The fuselage panel pressure coefficients can be related to the rotor pressure coefficients

through applying the pressure condition at the fuselage panel, which states that the fuselage

panel pressure perturbation at the fuselage must be equal to the rotor pressure perturbation

at the fuselage, that is,

ΦF |fus = ΦR|fus (5.15)

Using the orthogonality propertities of the normalized associated Legendre functions and

the trigonometric functions, the fuselage panel pressure coefficients (σlc
k , σls

k ) can be related
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to the rotor pressure coefficients (τmc
n , τms

n )in a matrix form as
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(5.16)

where expressions for the elements of the fuselage blockage effect matrix [BF ] are similar to

those expressions for the partial ground effect matrix given by Xin [101], but with integration

carried over the surface of the equivalent fuselage panel.

Analogous to the expansion for rotor induced velocity in the Peters-He finite state inflow

model [48], the fuselage interference velocity distribution at rotor disk (wF ) can be expanded

in terms of the associated Legendre functions and trigonometric functions as,

wF =
∞

∑

r=0

∞
∑

j=r+1,r+3,···

P̄ r
j (ν)

[

f rc
j cos(rψ) + f rs

j sin(rψ)
]

(5.17)

where f rc
j , f rs

j are the fuselage panel interference velocity coefficients, which can be related

to the pressure coefficients of the fuselage panel (σlc
k , σls

k ) as
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(5.18)

where the elements of the matrix [AF ] are the same as those given by Xin [101] for the

influence coefficient matrix of ground interference velocity due to ground pressure.

Combining Equations 5.16 and 5.18, the relationship between the fuselage interference

velocity coefficients and the rotor pressure coefficients can be written as

{f} =
1

Vm
[AF ][BF ]

{τ

2

}

=
1

Vm
[F ]

{τ

2

}

(5.19)

where matrix [F ] represents the influence of the fuselage blockage effect on the rotor induced

velocity. Therefore, the ratio (KF ) of the mean induced velocity in hover at the rotor disk

plane with fuselage blockage effect to that without fuselage blockage effect can be written

as

KF ≈ 1 − (F 00
11 )cc (5.20)

In general, the fuselage blockage effect depends on the normalized height (h̄) of the rotor

center above the fuselage panel and the normalized half-width (b̄) of the fuselage, both of
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them are normalized by the rotor radius. In this study, the parameters used for a UH-60

Black Hawk helicopter are b̄ = 0.1 and h̄ = 0.2, respectively, and the corresponding value

of KF is approximately 0.91.

Assuming that the unsteady part of the pressure perturbation due to the fuselage block-

age effect is negligible, the quasi-steady wake curvatures defined in Equations 2.29.c and

2.29.d can be rewritten as

(κc)qs =
q̄ −

⋆
β1c

KF λ0 + Vc
(5.21.a)

(κs)qs =
p̄ −

⋆
β1s

KF λ0 + Vc
(5.21.b)

5.3 Effect of Gyroscopic Feathering Moment

For helicopters in a pitch and/or roll maneuver, there will be gyroscopic forces acting on

rotor blades due to the blade rotating and pitch/roll motions. Due to the blade chordwise

mass distribution, these gyroscopic forces will form a gyroscopic feathering moment. Si-

mons, et al, [18] proposed that the rotor blade elastic feathering motion incurred due to this

gyroscopic feathering moment during a pitch and/or roll motion would have some influence

on the off-axis coupling prediction. Zhao, et al, [102] studies the gyroscopic feathering mo-

ment effect on the off-axis response prediction and showed that this gyroscopic feathering

moment effect was very small when compared with rotor wake distortion effect.

For simplicity, It is assumed that the feathering hinge, center of mass and elastic feath-

ering axis are coincident so that pitch-flap coupling is absent. The equation governing the

elastic twisting motion due to the gyroscopic feathering moment takes the form as

⋆⋆
∆θ + λ2

θ∆θ = −2(p̄sinψ + q̄cosψ) (5.22)

where ∆θ= ∆θ1ccosψ + ∆θ1ssinψ is the blade elastic twist about feathering hinge due to

the gyroscopic feathering moment and λθ is the blade nondimensional natural feathering

frequency in the rotating frame, q̄ and p̄, respectively, are the nondimensional pitch and roll

rates. The elastic twist incurred due to the gyroscopic feathering moment can be obtained
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by using the harmonic balancing technique as follows

∆θ1c = − 2p̄

λ2
θ − 1

(5.23)

∆θ1s = − 2q̄

λ2
θ − 1

(5.24)

The perturbed equation governing the flapping dynamics in hover for an articulated rotor

without flapping hinge offset and hinge spring takes the form as

⋆⋆
∆β +

γlock

8

⋆
∆β + ∆β =

γlock

8
[∆θ1ccosψ + ∆θ1ssinψ]

+
γlock

8
[(p̄ − ∆λ1s)sinψ + (q̄ − ∆λ1c)cosψ]

+
γlock

8
[2p̄cosψ − 2q̄sinψ] (5.25)

where γlock is the blade Lock number, ∆λ1c and ∆λ1s, respectively, are the quasi-steady

longitudinal and lateral inflow gradients across the rotor disk due to wake curvature effect

and can be obtained from Equation 3.20 as

∆λ1c = KReq̄ (5.26)

∆λ1s = KRep̄ (5.27)

The steady state flapping response can be obtained from Equation 5.25 by using the har-

monic balancing technique as

∆β1s =
16

γlock
p̄ + q̄

[

1 − KRe −
2

λ2
θ − 1

]

(5.28)

∆β1c =
16

γlock
q̄ − p̄

[

1 − KRe −
2

λ2
θ − 1

]

(5.29)

where the first terms in Equations 5.28 and 5.29 are the on-axis lateral flapping due to

the roll rate and the on-axis longitudinal flapping due to the pitch rate, respectively. The

second terms in Equations 5.28 and 5.29 are the off-axis lateral flapping due to the pitch

rate and the off-axis longitudinal flapping due to the roll rate, respectively. For the off-axis

response, it can be seen that

∆β1s

q̄
= −∆β1c

p̄
= 1 − KRe −

2

λ2
θ − 1

(5.30)
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where the first term in the right hand side of Equation 5.30 is due to the kinematic effect,

the second term is due to rotor wake curvature effect and the third term is due to gyroscopic

feathering moment effect. Therefore, it can be clearly seen that the gyroscopic feathering

moment effect on the off-axis response is equivalent to rotor wake curvature effect in hover

with a change in the equivalent wake curvature parameter as

∆KRe =
2

λ2
θ − 1

(5.31)

where λθ is the blade nondimensional torsional natural frequency. Typical range of this

parameter is from 4.0 to 5.0. Therefore, it can be seen that the equivalent wake curvature

parameter ∆KRe is around 2/15, which shows that the gyroscopic feathering moment effect

cannot be a primary source of the off-axis response problem for typical values of blade

nondimensional torsional frequency.
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CHAPTER VI

SIMULATION RESULTS AND DISCUSSION

To study the influence of rotor wake distortion dynamics on helicopter response predictions,

especially on the off-axis response predictions, and to validate the developed rotor dynamic

wake distortion model for helicopter maneuvering flight, both the augmented Pitt-Peters dy-

namic inflow model (Equation 3.20) and the augmented Peters-He finite state inflow model

(Equation 3.30), together with the main rotor/tail rotor/empennage interaction model,

combined with the dynamic wake distortion model (Equation 2.27), are implemented in a

generic helicopter flight simulation program [53]. Simulated response predictions are com-

pared with flight test data [54] of a UH-60 Black Hawk helicopter in both hover and forward

flight conditions in this chapter. The simulation results are predicted with three levels of

modeling, i.e.,

Level 1: predictions without any wake distortion effect.

Level 2 (Model A): predictions using the augmented Peters-He finite state inflow

model together with the interaction model and the dynamic wake distortion model developed

in this study.

Level 3 (Model B): predictions using the augmented Pitt-Peters dynamic inflow model

together with the interaction model and the dynamic wake distortion model.

6.1 Validation In Hover Condition

The effect of rotor wake distortion dynamics on response predictions of a UH-60 Black

Hawk in hover is examined first. It is observed during simulation in hover that there are

no significant differences between the results predicted using models A and B (up to fifteen

states for Model A is tried). Therefore, only the results predicted with model B are shown

and compared with the corresponding flight test data in hover in both the frequency domain

and the time domain as follows.
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6.1.1 Frequency Domain

The simulation program is run to obtain vehicle responses to frequency sweep input signals

and the frequency response is extracted from the time history of responses using the CIFER

(Comprehensive Identification from FrEquency Responses) program [103]. For current ap-

plications, the lower frequencies (below 10 rad/sec) are of interest since the effect of rotor

wake distortion dynamics is expected to be a low frequency phenomenon.

Figures 6.1 and 6.3, respectively, show the on-axis roll rate-to-lateral cyclic stick input

and the on-axis pitch rate-to-longitudinal cyclic stick input frequency response predictions of

the UH-60A Black Hawk helicopter in hover condition. In the plots, the response predictions

using Model B with KRe = 1.0, which is the value obtained from momentum theory, and the

model without any wake distortion effect, i.e., KRe = 0.0, are superimposed and compared

with the corresponding flight test results. From Figures 6.1 and 6.3, it can be clearly seen

that rotor dynamic wake distortion has very little effect on the on-axis response prediction in

hover. Figures 6.2 and 6.4, respectively, are the off-axis pitch rate-to-lateral cyclic stick input

and the off-axis roll rate-to-longitudinal cyclic stick input frequency response predictions of

a UH-60 Black Hawk helicopter in hover, predicted using model B with a value of 1.0 for

the wake curvature parameter KRe. Also, for comparison purposes, the predictions without

any wake distortion effect, i.e., KRe = 0.0, are included in these plots. Both Figures 6.2

and 6.4 clearly indicate that there is a significant phase discrepancy of approximately 180

degrees between the flight test results and the simulation results predicted without any wake

distortion effect, which also indicates that there is a sign reversal between the actual flight

test data and the simulation results predicted without any wake distortion effect. However,

as shown in Figures 6.2 and 6.4, when the rotor dynamic wake distortion effect is included,

the response predictions with a value of 1.0 for the wake curvature parameter KRe correlate

well with flight test results in the phase. The good correlation in phase indicates that

using the rotor dynamic wake distortion model with KRe = 1.0, the sign of the response is

qualitatively captured. This finding is important because for flight simulation and control

law design, an accurate representation of phase behavior in the model is important for the

stability of the closed-loop system. However, it can be seen from Figures 6.2 and 6.4 that
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there is still some discrepancy in the magnitude correlation between the simulation results

and the corresponding flight test results.

6.1.2 Time Domain

The vehicle response to a lateral cyclic control stick doublet input with a control profile

as shown in Figure 3.5 is considered first. Figures 6.5 and 6.6, respectively, show the on-

axis roll rate and off-axis pitch rate response predictions using model B with a value of

1.0 for the wake curvature parameter KRe, including comparisons with the corresponding

flight test data. For comparison purposes, the results predicted without any wake distortion

effect, i.e., KRe = 0, are also superimposed on the plots. Again, from Figure 6.5, which is

the on-axis roll rate response to the lateral cyclic control stick doublet input of Figure 3.5,

it can be seen that rotor dynamic wake distortion model has very little effect on on-axis

response prediction in hover, which is consistent with the frequency domain results in hover

(Figures 6.1 and 6.3). From Figure 6.6, which is the off-axis pitch rate response to the

lateral cyclic control stick doublet input of Figure 3.5, it can be clearly seen that the initial

off-axis pitch rate response predicted without any wake distortion effect goes opposite to

the actual flight test data. However, it can be seen that the rotor dynamic wake distortion

model with a value of 1.0 for the wake curvature parameter KRe qualitatively captures the

correct off-axis response behavior as observed in the flight test data when compared with

the results without any wake distortion effect. The vehicle response to a longitudinal cyclic

control stick doublet input is considered next. Figures 6.7 and 6.8, respectively, are the

on-axis pitch rate and off-axis roll rate response predictions of a UH-60 helicopter in hover

to a longitudinal cyclic control stick doublet input of Figure 3.8, with comparisons to the

corresponding flight test data. Once again, it can be seen that the off-axis roll rate response

predictions as shown in Figure 6.8 are improved using the rotor dynamic wake distortion

model together with a value of 1.0 for the wake curvature parameter KRe, when compared

with the results predicted without any wake distortion effect.
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Figure 6.1: On-axis roll rate-to-lateral cyclic stick input frequency response of a UH-60
Black Hawk helicopter in hover
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Figure 6.2: Off-axis pitch rate-to-lateral cyclic stick input frequency response of a UH-60
Black Hawk helicopter in hover
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Figure 6.3: On-axis pitch rate-to-longitudinal cyclic stick input frequency response of a
UH-60 Black Hawk helicopter in hover
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Figure 6.4: Off-axis roll rate-to-longitudinal cyclic stick input frequency response of a
UH-60 Black Hawk helicopter in hover
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Figure 6.5: On-axis roll rate response of a UH-60 Black Hawk helicopter in hover to the
lateral cyclic control stick doublet input of Figure 3.5
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Figure 6.6: Off-axis pitch rate response of a UH-60 Black Hawk helicopter in hover to the
lateral cyclic control stick doublet input of Figure 3.5
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Figure 6.7: On-axis pitch rate response of a UH-60 Black Hawk helicopter in hover to the
longitudinal cyclic control stick doublet input of Figure 3.8
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Figure 6.8: Off-axis roll rate response of a UH-60 Black Hawk helicopter in hover to the
longitudinal cyclic control stick doublet input of Figure 3.8
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6.1.3 Effect of Model Refinement In Hover

Comparisons of the off-axis response predictions in hover with flight test data of a UH-60

Black Hawk helicopter in both the frequency domain (Figures 6.2 and 6.4) and the time

domain (Figures 6.6 and 6.8) show that the results predicted using the developed rotor

dynamic wake distoriton model with a value of 1.0 for the wake curvature parameter KRe

qualitatively capture the correct off-axis response, although there is still some quantitative

discrepancy in the magnitude correlation. Previous investigations carried out by Zhao, et

al, [58, 79] and the results in Chapter III show that a value of 3.8 for the wake curvature

parameter KRe, which is significantly higher than the value of 1.0 obtained from momentum

theory [37, 38], is needed to correlate well in magnitude with flight test data of a UH-60

Black Hawk helicopter in hover condition. It is felt that this discrepancy in magnitude

could be due to several other sources, such as the difference between the predicted on-axis

response and the corresponding flight test data, the effect of airfoil unsteady aerodynamics,

the fuselage blockage effect on the main rotor mean induced velocity and the gyroscopic

feathering moment effect, etc. Zhao, et al, [58, 79] studied the effect of specifying the on-

axis roll rate response directly from the flight test data on the off-axis pitch rate response

prediction of a UH-60 Black Hawk helicopter to a lateral cyclic control doublet stick input

in hover. The results show that with the on-axis roll rate directly specified from the flight

test data, a lower value for the wake curvature parameter is sufficient to capture the correct

off-axis response. In this section, the impacts of airfoil unsteady aerodynamics, fuselage

blockage effect on the mean induced velocity across the main rotor disk plane and the

gyroscopic feathering moment effect on the off-axis response predictions during maneuvering

in hover are investigated.

Figure 6.9 shows comparisons of the simulated off-axis pitch rate response of a UH-60

Black Hawk helicopter to a lateral cyclic control doublet stick input starting from hover as

shown in Figure 3.5, predicted with different levels of modeling. Starting with the baseline

model which does not include any wake distortion effect, the dynamic wake distortion

effect, fuselage blockage effect, gyroscopic feathering moment effect and the effect of airfoil

unsteady aerodynamics are successively included in the simulation program. It can be
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Figure 6.9: Effects of different factors on the off-axis pitch rate response of a UH-60 Black
Hawk helicopter in hover to the lateral cyclic control stick doublet input of Figure 3.5
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clearly seen that inclusion of the dynamic wake distortion effect with KRe = 1.0 qualitatively

captures the correct reversal-in-sign phenomena when compared with the corresponding

flight test data, although the magnitude is under-predicted. Inclusions of the fuselage

blockage effect, gyroscopic feathering moment effect and airfoil unsteady aerodynamics effect

further improve the correlation in magnitude with the flight test data. With the final

combined model, which includes the dynamic wake distortion effect, fuselage blockage effect,

gyroscopic feathering moment effect and the effect of airfoil unsteady aerodynamics, a value

of 1.0 for the wake curvature parameter KRe significantly improves the correlation of the

off-axis pitch rate response with flight test data as compared with the results using only the

rotor dynamic wake distortion effect with KRe = 1.0. But there is still some discrepancy

in magnitude correlation between the results predicted using the combined model with

KRe = 1.0 and the flight test data. To further investigate the effect of the wake curvature

parameter KRe on the off-axis pitch rate response predictions, the results predicted using

the combined model with a value of 2.0 for the wake curvature parameter KRe are also

superimposed on Figure 6.9. It can be seen that the predictions using the combined model

with KRe = 2.0 capture the correct off-axis response behavior as observed in the flight test

data. Therefore, it can be seen that the value of the wake curvature parameter needed for

accurate off-axis response prediction in hover is influenced by several other sources, such as

the effect of airfoil unsteady aerodynamics, the fuselage blockage effect and the gyroscopic

feathering moment effect, which individually may be small.

Figure 6.10 shows the comparison of the simulated off-axis pitch rate-to-lateral cyclic

stick input frequency response of the UH-60A Black Hawk helicopter in hover, predicted

using the combined model with two values for the wake curvature parameter (KRe = 1.0

and KRe = 2.0). For comparison purposes, the predictions using only the dynamic wake

distortion model with KRe = 1.0 is also superimposed on the plots. It can be seen that the

results predicted using the combined model with KRe = 2.0 correlate well with the flight

test results as compared with the results using the dynamic wake distortion model only,

which is consistent with the results in the time domain shown before.
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Figure 6.10: Off-axis pitch rate-to-lateral cyclic stick input frequency response of a UH-60
Black Hawk helicopter in hover, predicted with the combined model
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6.2 Validation In Forward Flight

6.2.1 Frequency Domain

The vehicle response to both a lateral and a longitudinal cyclic stick input at 30 knots of

flight speed is examined first. Shown in Figures 6.11 and 6.12, respectively, are the on-axis

roll rate-to-lateral cyclic stick input frequency response and the off-axis pitch rate-to-lateral

cyclic stick input frequency response of a UH-60 Black Hawk helicopter at 30 knots of flight

speed. To separate the effect due to the aerodynamic interaction among main rotor, tail

rotor and empennage, the simulation program is also run with the main rotor wake dis-

tortion effect only, i.e., without the developed main rotor/tail rotor/empennage interaction

model in Chapter IV, and the predicted frequency responses are also superimposed on the

plots. Similarly, Figures 6.13 and 6.14 are the vehicle on-axis pitch rate-to-longitudinal

cyclic stick input frequency response and the off-axis roll rate-to-longitudinal cyclic stick

input frequency response of the helicopter at 30 knots of flight speed. For comparison pur-

poses, the simulation results without any rotor wake distortion effect, i.e., with a value of

zero for the wake curvature parameter KRe, are also superimposed on these plots. From

Figures 6.11 and 6.13, which are the on-axis roll rate-to-lateral cyclic stick input frequency

response and the on-axis pitch rate-to-longitudinal cyclic stick input frequency response,

it can be seen that the three levels of modeling give basically the same on-axis frequency

response predictions as compared with the corresponding flight test results. However, as

can be clearly seen from Figures 6.12 and 6.14, which are the off-axis pitch rate to lateral

cyclic stick input frequency response and the off-axis roll rate to longitudinal cyclic stick

input frequency response, there is a phase discrepancy of approximately 180 degrees be-

tween the results predicted using model A (or model B) with a value of 1.0 for the wake

curvature parameter KRe and the results predicted without any wake distortion effect as

compared with the corresponding flight test results. Also, as clearly shown in Figure 6.12,

the phase response prediction matches the flight test data well with only including the main

rotor wake distortion effect and with a value of 1.0 for the wake curvature parameter KRe,

although there is still some discrepancy in the magnitude correlation. Therefore, from the
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Figure 6.11: On-axis roll rate-to-lateral cyclic stick input frequency response of a UH-60
Black Hawk helicopter at 30 knots of flight speed
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Figure 6.12: Off-axis pitch rate-to-lateral cyclic stick input frequency response of a UH-60
Black Hawk helicopter at 30 knots of flight speed
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Figure 6.13: On-axis pitch rate-to-longitudinal cyclic stick input frequency response of a
UH-60 Black Hawk helicopter at 30 knots of flight speed
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Figure 6.14: Off-axis roll rate-to-longitudinal cyclic stick input frequency response of a
UH-60 Black Hawk helicopter at 30 knots of flight speed
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results shown in Figure 6.12, it can be seen that inclusion of the main rotor wake distor-

tion effect with KRe = 1.0, which is the value obtained from momentum theory, captures

the sign of the off-axis response when compared with the corresponding flight test results

and it seems that the effect of main rotor/tail rotor/empennage interaction is mainly to

improve the magnitude correlation. The good correlation in phase is of importance since

for flight simulation and control law design, it is essential for the stability of the closed-loop

system. More over, from the magnitude comparisons of the off-axis responses as shown in

Figures 6.12 and 6.14, it is seen that both the off-axis roll rate-to-longitudinal cyclic stick

input frequency response and the off-axis pitch rate-to-lateral cyclic stick input frequency

response are significantly improved with the augmented Peters-He finite state inflow model,

when it is combined with the main rotor/tail rotor/empennage interaction model (Model

A).

Next, frequency response predictions at 50 knots of flight speed are considered. Fig-

ures 6.15 and 6.16, respectively, are the on-axis roll rate-to-lateral cyclic stick input fre-

quency response and the off-axis pitch rate-to-lateral cyclic stick input frequency response

of a UH-60 Black Hawk helicopter at 50 knots of flight speed. Figures 6.17 and 6.18, respec-

tively, show the on-axis pitch rate-to-longitudinal cyclic stick input frequency response and

the off-axis roll rate-to-longitudinal cyclic stick input frequency response of the helicopter

at 50 knots of flight speed. Similar to the results for the 30 knots case, it is seen from

Figures 6.16 and 6.18 that both the magnitude and phase correlations with the flight test

results are significantly improved with Model A (augmented Peters-He finite state inflow

model combined with the main rotor/tail rotor/empennage interaction model). Again, a

value of 1.0 for the wake curvature parameterKRe is used in these results.

6.2.2 Time Domain

To further validate the developed dynamic wake distortion model, the vehicle response

predictions to cyclic control doublet stick inputs at forward flight are compared with the

flight test data in the time domain. The first case studied is the vehicle response to a

lateral/longitudinal cyclic control doublet stick input starting from 40 knots of flight speed.
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Figure 6.15: On-axis roll rate-to-lateral cyclic stick input frequency response of a UH-60
Black Hawk helicopter at 50 knots of flight speed
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Figure 6.16: Off-axis pitch rate-to-lateral cyclic stick input frequency response of a UH-60
Black Hawk helicopter at 50 knots of flight speed
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Figure 6.17: On-axis pitch rate-to-longitudinal cyclic stick input frequency response of a
UH-60 Black Hawk helicopter at 50 knots of flight speed
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Figure 6.18: Off-axis roll rate-to-longitudinal cyclic stick input frequency response of a
UH-60 Black Hawk helicopter at 50 knots of flight speed
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Figures 6.19 and 6.20, respectively, show the on-axis roll rate and the off-axis pitch rate

responses of the helicopter to a lateral cyclic control doublet stick input of Figure 3.11. From

Figure 6.19, it can be seen that both models A and B slightly improve the on-axis roll rate

response predictions as compared to the case without any wake distortion effect. As in the

frequency domain analysis, to distinguish the effect of the main rotor/tail rotor/empennage

interaction, the off-axis pitch rate response predicted by including only the main rotor wake

distortion effect with KRe=1.0 is also superimposed in Figure 6.20. From Figure 6.20, it is

seen that the off-axis pitch rate response prediction without any wake distortion effect goes

opposite to the flight test data. However, including the main rotor wake distortion effect

with KRe=1.0 captures qualitatively the correct off-axis response behavior as observed in the

flight test data when compared with the results without any wake distortion effects, which

is consistent with the results in the frequency domain as shown in Figure 6.12. However,

the response magnitude is under predicted. Also, as shown in Figure 6.20, with a value of

1.0 for the wake curvature parameter KRe, both models A and B, which include the main

rotor/tail rotor/empennage interaction effect, correlate well with flight test data. From the

off-axis response correlations in the time domain (Figure 6.20) and in the frequency domain

(Figure 6.12), it can be clearly seen that inclusion of the main rotor wake distortion effect

with a value of 1.0 for the wake curvature parameter KRe captures qualitatively the correct

sign of the off-axis response when compared with the corresponding flight test data and

that the effect of main rotor/tail rotor/empennage interaction is mainly to improve the

magnitude correlation.

Figure 6.21 shows the longitudinal cyclic control stick doublet input used in the flight

test program at 40 knots of flight speed. Figures 6.22 and 6.23, respectively, are the on-axis

pitch rate and off-axis roll rate responses to the longitudinal cyclic control stick doublet

input of Figure 6.21. From Figure 6.23, it can be seen that the off-axis roll rate response

predictions using Model A correlate well with the flight test data, which is again consistent

with the frequency domain results.

Next, the vehicle response to a lateral/longitudinal cyclic control stick doublet input at

80 knots of flight speed is considered. Figures 6.25 and 6.26, respectively, show the on-axis
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roll rate and off-axis pitch rate responses to a lateral cyclic control stick doublet input of

Figure 6.24. From Figure 6.26, it is clear that using both models A and B with a value of

1.0 for the wake curvature parameter KRe, the off-axis pitch rate response predictions are

significantly improved when compared with the case without any wake distortion effects.

The vehicle response to a longitudinal cyclic control stick doublet input of Figure 6.27 are

shown in Figures 6.28 and 6.29. From Figure 6.29, it is seen that the off-axis roll rate

response predictions are significantly improved with Model A.

From the validations in hover presented in the previous section, it can be seen that the

augmented inflow models, combined with the developed dynamic wake distortion model,

using a value of 1.0 for the wake curvature parameter capture the correct off-axis phase

response in hover. However, the off-axis magnitude response is under predicted in hover.

Also, it is shown that the correct off-axis magnitude response is dependent on several other

effects, such as fuselage blockage effect, airfoil unsteady aerodynamics effect and gyroscopic

feathering moment effect. With all the effects considered in this study included, it is shown

that a value of 2.0 for the wake curvature parameter captures the correct off-axis response

in hover. From the validations in forward flight, it is shown that both Models A and B,

with a value of 1.0 for the wake curvature parameter, capture the correct off-axis response

behavior. Therefore, an equivalent wake wake curvature parameter (KRe)eq can be defined

as

(KRe)eq =
V̄

Vm
(6.1)

where Vm and V̄ , respectively, are the mass flow parameters associated the mean and higher

harmonics of inflow. From equation 6.1, it can be seen that the equivalent wake curvature

parameter has a value of 2.0 in hover and gradually reduces to a value of 1.0 at forward

flight. Therefore, this equivalent wake curvature parameter can be used to capture the

correct off-axis response in both hover and forward flight conditions .
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Figure 6.19: On-axis roll rate response of a UH-60 Black Hawk helicopter at 40 knots of
flight speed to the lateral cyclic control stick doublet input of Figure 3.11
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Figure 6.20: Off-axis pitch rate response of a UH-60 Black Hawk helicopter at 40knots of
flight speed to the lateral cyclic control stick doublet input of Figure 3.11
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Figure 6.21: Profile of the longitudinal cyclic control stick doublet input used in the UH-60
Black Hawk helicopter flight test program at 40 knots of flight speed
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Figure 6.22: On-axis pitch rate response of a UH-60 Black Hawk helicopter at 40 knots of
flight speed to the longitudinal cyclic control stick doublet input of Figure 6.21
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Figure 6.23: Off-axis roll rate response of a UH-60 Black Hawk helicopter at 40knots of
flight speed to the longitudinal cyclic control stick doublet input of Figure 6.21
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Figure 6.24: Profile of the lateral cyclic control stick doublet input used in the UH-60 Black
Hawk helicopter flight test program at 80 knots of flight speed
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Figure 6.25: On-axis roll rate response of a UH-60 Black Hawk helicopter at 80 knots of
flight speed to the lateral cyclic control stick doublet input of Figure 6.24
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Figure 6.26: Off-axis pitch rate response of a UH-60 Black Hawk helicopter at 80knots of
flight speed to the lateral cyclic control stick doublet input of Figure 6.24
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Figure 6.27: Profile of the longitudinal cyclic control stick doublet input used in the UH-60
Black Hawk helicopter flight test program at 80 knots of flight speed
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Figure 6.28: On-axis pitch rate response of a UH-60 Black Hawk helicopter at 80 knots of
flight speed to the longitudinal cyclic control stick doublet input of Figure 6.27
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Figure 6.29: Off-axis roll rate response of a UH-60 Black Hawk helicopter at 80knots of
flight speed to the longitudinal cyclic control stick doublet input of Figure 6.27
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this study, a rotor dynamic wake distortion model is developed and the effect of rotor

dynamic wake distortion on helicopter response predictions, especially on the off-axis re-

sponse predictions, during maneuvering flight is studied. In developing the rotor dynamic

wake distortion model, the following conclusions have been obtained:

1. The inflow perturbations across the rotor disk during different transient maneuvers,

such as a step pitch and/or roll rate, a step climb rate and a step change in advance

ratio, are investigated using a dynamic vortex tube analysis and the results are com-

pared with available results from a free wake analysis results. It is shown that the

inflow perturbation during maneuvering flight exhibit a first order behavior with time.

2. A rotor dynamic wake distortion model, expressed in terms of a set of ordinary differ-

ential equations, which use the longitudinal and lateral wake curvatures, wake skew

and wake spacing as four states, is developed. The time constant matrix of the rotor

dynamic wake distortion model is extracted from the dynamic vortex tube analysis

results.

3. Based on the vortex tube analysis results, both the Pitt-Peters dynamic inflow model

and the Peters-He finite state inflow model are augmented to account for coupling

effect among rotor inflow, rotor wake distortion, rotor mean and cyclic loadings during

helicopter maneuvering in both hover and forward flight condition.

4. The augmented Pitt-Peters dynamic inflow model is compared with the inflow model

proposed by Keller in oder to clarify any difference between the two models. It is

shown that the two models are consistent with each other if only the rotor mean
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loading effect is considered (Keller’s model only considers the rotor mean loading

effect while the augmented Pitt-Peters dynamic inflow model considers both the rotor

mean/cyclic loading effect and the wake curvature/skew coupling effect).

5. A reduced order model is developed to account for the aerodynamic interaction among

main rotor, tail rotor and empennage due to main rotor and tail rotor wake curva-

tures during helicopter maneuvering flight. An equivalent wake skew angle is used

to represent the main rotor wake curvature on main rotor downwash at tail rotor

and empennage. The additional side wash induced at the aerodynamic centers of the

vertical tail and tail rotor due to the main rotor wake curvature effect is obtained by

using a vortex tube analysis. Similarly, the additional up/down wash induced at the

aerodynamic centers of the horizontal tail due to tail rotor wake curvature effect is

obtained by using the vortex tube analysis.

6. A reduce order model is developed to account for the fuselage blockage effect on the

main rotor mean induced inflow. A fuselage blockage effect factor, which is the ratio

of the mean induced inflow with fuselage blockage effect to that without fuselage

blockage effect is obtained.

7. Both the augmented Pitt-Peters dynamic inflow model and the augmented Peters-He

finite state inflow model, combined with the developed rotor dynamic wake distortion

model, together with the main rotor/tail rotor/empennage interaction model, are im-

plemented in a generic helicopter simulation program of UH-60 Black Hawk helicopter

to investigate the effect of rotor dynamic wake distortion on control response predic-

tions, especially on the off-axis response predictions, during helicopter maneuvering

flight. Simulated control responses in both time domain and frequency domain are

compared with flight test data of a UH-60 Black Hawk helicopter in both hover and

forward flight conditions.

8. Using a quasi-steady wake distortion model, the high frequency progressive flapping

mode is destabilized, which causes simulation divergence problem. However, using

the developed rotor dynamic wake distortion model, the high frequency progressive
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flapping mode is still stable, and therefore, it alleviates the simulation divergence

problem observed with a quasi-steady wake distortion model.

9. The augmented Peters-He finite state inflow model with a value of 1.0 for the wake

curvature parameter KRe, combined with the dynamic wake distortion model and

the main rotor/tail rotor/empennage interaction model, captures the correct off-axis

response behavior at forward flight conditions.

10. The primary effect of the aerodynamic interaction among main rotor, tail rotor and

empennage during maneuvering flight is on the off-axis response magnitude correlation

in forward flight.

11. With a value of 1.0 for the wake curvature parameter KRe, the dynamic wake dis-

tortion model captures qualitatively the correct off-axis response behavior in hover,

although there is still some quantitative discrepancy in the magnitude correlation.

12. The value of KRe needed to accurately predict the off-axis magnitude response in hover

is influenced by several sources, such as the fuselage blockage effect on rotor mean

induced inflow, the airfoil unsteady aerodynamics effect, the gyroscopic feathering

moment effect and the correct on-axis response prediction, which individually may be

small.

13. With the combined model in this study, which includes rotor dynamic wake distortion

effect, airfoil unsteady aerodynamics effect, fuselage blockage effect and gyroscopic

feathering moment effect, a value of 2.0 for the wake curvature parameter captures

the correct off-axis response behavior of the UH-60 Black Hawk helicopter in hover.

14. An equivalent wake curvature parameter, which is the ratio of the mass flow parameter

associated with higher harmonics of inflow to that associated with the mean inflow,

is shown to capture the correct off-axis response in both hover and forward flight.
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7.2 Recommendations For Future Work

1. In this study, assuming that all vortex tubes bend with the same curvature, a series of

concentric vortex tubes are used to represent the helicopter rotor wake for a general

load distribution. The wake curvature is defined in terms of tip-path-plane pitch and

roll rates and the mean inflow across the rotor disk. Since the real rotor inflow varies

around the radial direction, future work is recommended to carry out the investigation

where each vortex tube follows its own local wake curvature, which is defined in terms

of the tip-path-plane pitch and roll rates and the local inflow at which the vortex tube

convects. In this manner, it is possible to get a larger value for the equivalent wake

curvature parameter (KRe > 1.0), which is needed to improve the off-axis magnitude

response correlation in hover condition. The main reason is that by using a local wake

curvature for each tube, an inner tube will have a larger wake curvature due to the

reduced inflow there than an outer tube. In forward flight, the free stream velocity

will wash this effect out and therefore it should have small effect at forward flight.

2. In the present study, the time constant matrix associated with rotor wake dynamic

distortion effect is assumed to take a diagonal form, i.e., neglecting couplings between

the wake curvature, wake skew and wake spacing states. It is recommended that

further CFD analyses be performed on maneuvering rotors so as to identify the off-

diagonal elements in the time constant matrix and to fully understand and assess the

coupling effect between wake curvature state, wake skew state and wake spacing state

on response predictions.

3. The effect of rotor disk loading on inflow perturbations across the rotor disk due to

wake distortion effect is addressed. Only the effect of rotor mean loading and first

harmonic cyclic loading terms are considered. But real rotors are with finite number of

blades, and therefore, higher harmonics of rotor loading on inflow across the rotor disk

during maneuvering flight should be studied and their effects on helicopter response

predictions need to be assessed.

4. In the present study, only the coupling between rotor wake distortion effect and the
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blade rigid flapping motion is considered. Although the blade elastic motion alone on

the correct off-axis response prediction is studied in the literature, the coupling effect

between rotor dynamic wake distortion and blade elastic motion need to be studied

and their effect on helicopter response predictions need to be assessed.

5. It is recommended to study the effect of rotor dynamic wake distortion on the ro-

tor inplane inflow perturbations and investigate their effect on helicopter response

predictions during maneuvering near hover.

6. Further work needs to be carried out to fully understand the contributing factors to

the wake curvature parameter KRe in hover condition.

7. In this study, a limited set of correlations with flight test data of a UH-60 Black Hawk

helicopter is considered. It is recommended to carry out additional correlations with

available flight test data of different helicopters.

8. The motivation for this study is to develop a rotor inflow model that would be suitable

for real-time simulation and control law development. Therefor, the next logical step

would be to implement the current inflow model in a full helicopter simulation model

to carry out pilot-in-the-loop simulation. Also, it is recommended to use the current

wake distortion model in control law development.
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APPENDIX A

DYNAMIC VORTEX TUBE MODEL

A.1 Dynamic Vortex Tube For a Pitching Rotor

Figure A.1 schematically shows the dynamic vortex tube definition for a helicopter rotor

undergoing a step pitch rate q. The dynamic vortex tube is composed of two parts, one

curved part (part I) and the other uncurved part (Part II). A typical point (P0) on the

curved wake tube (Part I) can be written as

xI
0 =

λ

q̄
(1 − cosα) +

µ

q̄
sinα + r̄0cosψ0cosα (A.1.a)

yI
0 = r̄0sinψ0 (A.1.b)

zI
0 = r̄0cosψ0sinα − λ

q̄
sinα +

µ

q̄
(1 − cosα) (A.1.c)

and a typical point (P0) on the uncurved wake tube (Part II) can be formulated as

xII
0 =

λ

q̄
(1 − cosα0) +

µ

q̄
sinα0 + r̄0cosψ0cosα0

+
µ

q̄
tan(α − α0) +

λ

q̄
tan(α − α0)sinα0 (A.2.a)

yII
0 = r̄0sinψ0 (A.2.b)

zII
0 = r̄0cosψ0sinα0 −

λ

q̄
sinα0 +

µ

q̄
(1 − cosα0) −

λ

q̄
tan(α − α0) (A.2.c)

where µ is advance ratio, λ is the total mean inflow across the rotor disk, r̄0 is the vortex

tube radius, ψ0 is the azimuth angle on a cross section of vortex tube and α is the angle of a

typical circular cross section of the vortex tube subtends to the rotor disk plane (as shown

in Figure A.1), superscripts I and II denote contributions from the curved wake tube part

and uncurved wake tube part, respectively.

Assuming a constant vorticity strength γ̄ around the vortex tube, the vorticity distri-

bution around the vortex tube can be written as

~γI =~i(γ̄sinψ0cosα) −~j(γ̄cosψ0) + ~k(γ̄sinψ0sinα) (A.3)
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Figure A.1: Dynamic vortex tube definition for a pitching rotor
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for the curveud wake tube (Part I) and

~γII =~i(γ̄sinψ0cosα0) −~j(γ̄cosψ0) + ~k(γ̄sinψ0sinα0) (A.4)

for the uncurved wake tube (Part II). where (~i,~j,~k) are unit vectors along the rotor disk

coordinate system as shown in Figure A.1.

A typical point (Pr) on the rotor disk plane can be written as

x = r̄cosψ (A.5.a)

y = r̄sinψ (A.5.b)

z = 0 (A.5.c)

where r̄ is the radial position on the rotor disk and ψ is the azimuth angle on the rotor disk.

The induced velocity on point Pr by the whole dynamic vortex tube can be obtained

using the Biot-Savart law as follows

~ν =
1

4π

∫ 2π

0

∫

∞

0

~γ × (~Pr − ~P0)

|~Pr − ~P0|3
dS = ~νI + ~νII (A.6)

where ~νI and ~νII denote contributions from the curved wake tube part (part I) and the

uncurved wake tube part (part II), respectively, and can be written as

~νI =
1

4π

∫ 2π

0

∫ η0

0

~γI × (~Pr − ~P I
0 )

|~P − ~P I
0 |3

dS (A.7)

~νII =
1

4π

∫ 2π

0

∫

∞

η0

~γII × (~Pr − ~P II
0 )

|~P − ~P II
0 |3

dS (A.8)

where

~Pr = ~ix +~jy + ~kz (A.9.a)

~P I
0 = ~ixI

0 +~jyI
0 + ~kzI

0 (A.9.b)

~P II
0 = ~ixII

0 +~jyII
0 + ~kzII

0 (A.9.c)

After defining r̄ = r̂r̄0, η =
α
√

µ2 + λ2

q̄
= η̄r̄0, b̄ =

√

1 + r̂2 − 2r̂cos(ψ0 − ψ), for small q̄

and µ, ~νI and ~νII can be obtained as

~νI = νxI

~i + νyI

~j − νzI

~k (A.10)

~νII = νxII

~i + νyII

~j − νzII

~k (A.11)
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where

νxI
=

γ̄

4π

∫

2π

0

∫ η̄0

0

[

η̄q̄r̄0

λ
(1 + r̂sinψ sinψ0) − η̄cosψ0 +

η̄2µq̄r̄0

2λ2
cosψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2q̄r̄0

λ
(r̂cosψ + cosψ0)

]3/2
(A.12.a)

νxII
=

γ̄

4π

∫

2π

0

∫

∞

η̄0

[

η̄0q̄r̄0

λ
(1 + r̂sinψ sin ψ0) − η̄cosψ0 +

η̄2

0
µq̄r̄0

2λ2
cosψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2

0
q̄r̄0

λ
(r̂cosψ + cosψ0)

]3/2
(A.12.b)

νyI
=

γ̄

4π

∫

2π

0

∫ η̄0

0

[

η̄q̄r̂r̄0

λ
cosψ sin ψ0 − η̄sinψ0 −

η̄2µq̄r̄0

2λ2
sinψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2q̄r̄0

λ
(r̂cosψ + cosψ0)

]3/2
(A.12.c)

νyII
=

γ̄

4π

∫

2π

0

∫

∞

η̄0

[

η̄0q̄r̂r̄0

λ
cosψ sin ψ0 − η̄sinψ0 −

η̄2

0
µq̄r̄0

2λ2
sinψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2

0
q̄r̄0

λ
(r̂cosψ + cosψ0)

]3/2
(A.12.d)

νzI
=

γ̄

4π

∫

2π

0

∫ η̄0

0

[

1 − r̂cos(ψ0 − ψ) +
µη̄

λ
cosψ0 +

η̄2q̄r̄0

2λ
cosψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2q̄r̄0

λ
(r̂cosψ + cosψ0)

]3/2
(A.12.e)

νzII
=

γ̄

4π

∫

2π

0

∫

∞

η̄0

[

1 − r̂cos(ψ0 − ψ) +
µη̄

λ
cosψ0 +

η̄2

0
q̄r̄0

2λ
cosψ0

]

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2

0
q̄r̄0

λ
(r̂cosψ + cosψ0)

]3/2
(A.12.f)

where η̄0 is the length of the curved tube part (part I) along the tube axis.

A.2 Dynamic Vortex Tube For A Rolling Rotor

Figure A.2 schematically shows the dynamic vortex tube definition for a helicopter rotor

undergoing a step roll rate p. The dynamic vortex tube is composed of two parts, one

curved part (part I) and the other uncurved part (part II). A typical point (P0) on the

curved wake tube(Part I) can be written as

xI
0 = r̄0cosψ0 +

µ

λ
α (A.13.a)

yI
0 = r̄0sinψ0cosα +

λ

p̄
(1 − cosα) (A.13.b)

zI
0 = r̄0sinψ0sinα − λ

p̄
sinα (A.13.c)
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Figure A.2: Dynamic vortex tube definition for a rolling rotor
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and a typical point (P0) on the uncurved wake tube (Part II) can be formulated as

xII
0 = r̄0cosψ0 +

µ

λ
α (A.14.a)

yII
0 = r̄0sinψ0cosα0 +

λ

p̄
(1 − cosα0) +

λ

p̄
tan(α − α0)sinα0 (A.14.b)

zII
0 = r̄0sinψ0sinα0 −

λ

p̄
sinα0 −

λ

p̄
tan(α − α0)cosα0 (A.14.c)

where superscripts I and II denote contributions from the curved wake tube part and

uncurved wake tube part, respectively.

Assuming a constant vorticity strength γ̄ around the vortex tube, the vorticity distri-

bution around the tube can be written as

~γI =~i(γ̄sinψ0) −~j(γ̄cosψ0cosα) − ~k(γ̄cosψ0sinα) (A.15)

for the curved tube part (part I) and

~γII =~i(γ̄sinψ0) −~j(γ̄cosψ0cosα0) − ~k(γ̄cosψ0sinα0) (A.16)

for the uncurved wake tube part (part II). where (~i,~j,~k) are unit vectors along the rotor

disk coordinate system as shown in Figure A.2.

A typical point on the rotor disk plane (Pr) is

x = r̄cosψ (A.17.a)

y = r̄sinψ (A.17.b)

z = 0 (A.17.c)

where r̄ is the radial position on the rotor disk and ψ is the azimuth angle on the rotor disk.

The induced velocity on point Pr by the whole dynamic vortex tube can be obtained

using the Biot-Savart law as follows

~ν =
1

4π

∫ 2π

0

∫

∞

0

~γ × (~Pr − ~P0)

|~r − ~r0|3
dS = ~νI + ~νII (A.18)

where ~νI and ~νII denote contributions from the curved wake tube part (part I) and the

uncurved wake tube part (part II), respectively, and can be written as

~νI =
1

4π

∫ 2π

0

∫ η0

0

~γI × (~Pr − ~P I
0 )

|~P − ~P I
0 |3

dS (A.19)
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~νII =
1

4π

∫ 2π

0

∫

∞

η0

~γII × (~Pr − ~P II
0 )

|~P − ~P II
0 |3

dS (A.20)

where

~Pr = ~ix +~jy + ~kz (A.21.a)

~P I
0 = ~ixI

0 +~jyI
0 + ~kzI

0 (A.21.b)

~P II
0 = ~ixII

0 +~jyII
0 + ~kzII

0 (A.21.c)

After defining r̄ = r̂r̄0, η =
α
√

µ2 + λ2

p̄
= η̄r̄0, b̄ =

√

1 + r̂2 − 2r̂cos(ψ0 − ψ), for small p̄

and µ, ~νI and ~νII can be obtained as

~νI = νxI
ī + νyI

j̄ − νzI
k̄ (A.22)

~νII = νxII
ī + νyII

j̄ − νzII
k̄ (A.23)

where

νxI
=

γ̄

4π

∫

2π

0

∫ η̄0

0

[

η̄p̄r̂r̄0

λ
sinψcosψ0 − ηcosψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2p̄r̄0

λ
(r̂sinψ + sinψ0)

]3/2
(A.24.a)

νxII
=

γ̄

4π

∫

2π

0

∫

∞

η̄0

[

η̄0p̄r̂r̄0

λ
sinψcosψ0 − ηcosψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2p̄r̄0

λ
(r̂sinψ + sinψ0)

]3/2
(A.24.b)

νyI
=

γ̄

4π

∫

2π

0

∫ η̄0

0

[

η̄p̄r̄0

λ0

− η̄p̄r̄0

λ
r̂cosψcosψ0 − η̄sinψ0 +

µη̄2p̄r̄0

λ2
cosψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2p̄r̄0

λ
(r̂sinψ + sinψ0)

]3/2
(A.24.c)

νyII
=

γ̄

4π

∫

2π

0

∫

∞

η̄0

[

η̄0p̄r̄0

λ
− η̄0p̄r̄0

λ
r̂cosψcosψ0 − η̄sinψ0 +

µη̄2

0
p̄r̄0

λ2
cosψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2p̄r̄0

λ
(r̂sinψ + sinψ0)

]3/2
(A.24.d)

νzI
=

γ̄

4π

∫

2π

0

∫ η̄0

0

[

1 − r̂cos(ψ0 − ψ) +
µη̄

λ0

cosψ0 +
η̄2p̄r̄0

2λ
sinψ0

]

dη̄ dψ0

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2p̄r̄0

λ
(r̂sinψ + sinψ0)

]3/2
(A.24.e)

νzII
=

γ̄

4π

∫

2π

0

∫

∞

η̄0

[

1 − r̂cos(ψ0 − ψ) +
µη̄

λ
cosψ0 +

η̄2

0
p̄r̄0

2λ
sinψ0

]

[

b̄2 + η̄2 − 2
µη̄

λ
(r̂cosψ − cosψ0) −

η̄2p̄r̄0

λ
(r̂sinψ + sinψ0)

]3/2
(A.24.f)
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A.3 Dynamic Vortex Tube For A Rotor Undergoing A Step
Change In Advance Ratio

Figure A.3 schematically shows the dynamic vortex tube definition for a helicopter rotor

undergoing a step change in advance ratio (∆µ). The dynamic vortex tube is composed

of two parts, i.e., part I and part II as shown in Figure A.3. Part I has a skew angle of

χ + ∆χ corresponding to an advance ratio of µ + ∆µ and part II has a skew angle of χ

corresponding to an advance ratio of µ. A typical point (P0) on part I of the vortex tube

can be written as

xI
0 = r̄0cosψ0 + ηsin(χ + ∆χ) (A.25.a)

yI
0 = r̄0sinψ0 (A.25.b)

zI
0 = −ηcos(χ + ∆χ) (A.25.c)

and a typical point (P0) on part II of the vortex tube can be written as

xII
0 = r̄0cosψ0 + η0sin(χ + ∆χ) + (η − η0)sinχ (A.26.a)

yII
0 = r̄0sinψ0 (A.26.b)

zII
0 = −η0cos(χ + ∆χ) − (η − η0)cosχ (A.26.c)

where η is distance along the vortex tube axis and η0 is the length of part I along the vortex

tube axis.

Assuming a constant vorticity strength γ̄ around the vortex tube, the vorticity distri-

bution around the vortex tube can be written as

~γ = ~γI = ~γII =~i(γ̄sinψ0) −~j(γ̄cosψ0) (A.27)

A typical point (Pr) on the rotor disk plane can be written as

x = r̄cosψ (A.28.a)

y = r̄sinψ (A.28.b)

z = 0 (A.28.c)
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Figure A.3: Dynamic vortex tube definition for a rotor undergoing a step change of advance
ratio
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The induced velocity on point Pr by the whole dynamic vortex tube can be obtained

using the Biot-Savart law as follows

~ν =
1

4π

∫ 2π

0

∫

∞

0

~γ × (~Pr − ~P0)

|~r − ~r0|3
dS = ~νI + ~νII (A.29)

where ~νI and ~νII denote contributions from the tube part I and tube part II, respectively,

and can be written as

~νI =
1

4π

∫ 2π

0

∫ η0

0

~γI × (~Pr − ~P I
0 )

|~P − ~P I
0 |3

dS (A.30)

~νII =
1

4π

∫ 2π

0

∫

∞

η0

~γII × (~Pr − ~P II
0 )

|~P − ~P II
0 |3

dS (A.31)

where

~Pr = ~ix +~jy + ~kz (A.32.a)

~P I
0 = ~ixI

0 +~jyI
0 + ~kzI

0 (A.32.b)

~P II
0 = ~ixII

0 +~jyII
0 + ~kzII

0 (A.32.c)

The induced velocity (positive along negative z axis) can be obtained as

νz = −~ν · ~k = νzI
+ νzII

(A.33)

where

νzI
=

γ̄

4π

∫

2π

0

∫ η̄0

0

[1 − r̂cosψ0 + η̄sin(χ + ∆χ)cosψ0] dη̄ dψ0

[

b̄2 + η̄2 − 2η̄sin(χ + ∆χ)(r̂ − cosψ0)
]3/2

(A.34.a)

νzII
=

γ̄

4π

∫

2π

0

∫

∞

η̄0

[1 − r̂cosψ0 + η̄0sin(χ + ∆χ) + (η̄ − η̄0)sinχcosψ0] dη̄ dψ0

[

b̄2 + η̄2 − 2η̄0sin(χ + ∆χ)(r̂ − cosψ0) − 2(η̄ − η̄0)sinχ(r̂ − cosψ0)
]3/2

(A.34.b)

where b̄ =
√

1 + r̂2 − 2r̂cosψ0,r̂ = r̄/r̄0,η̄ = η/r̄0.

A.4 Dynamic Vortex Tube For A Rotor Undergoing A Step

Change in Climb Rate

Figure A.4 schematically shows the dynamic vortex tube definition for a helicopter rotor

undergoing a step climb rate (Vc). The dynamic vortex tube is composed of two parts, i.e.,

part I and part II as shown in Figure A.4. Part I has a higher wake spacing and part II has
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Figure A.4: Dynamic vortex tube definition for a rotor undergoing a step change of advance
ratio
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a lower wake spacing. A typical point (P0) on the vortex tube (for both part I and part II)

can be written as

x0 = r̄0cosψ0 + ηsinχ (A.35.a)

y0 = r̄0sinψ0 (A.35.b)

z0 = −ηcosχ (A.35.c)

The vorticity on the vortex tube can be written as

~γI =~i(γ̄Isinψ0) −~j(γ̄Icosψ0) (A.36)

for tube part I and

~γII =~i(γ̄IIsinψ0) −~j(γ̄IIcosψ0) (A.37)

for tube part II. Where γ̄I and γ̄II , respectively, denote vorticity strengths along tube part

I (with higher wake spacing) and tube part II (with lower wake spacing), respectively.

A typical point (Pr) on the rotor disk plane can be written as

x = r̄cosψ (A.38.a)

y = r̄sinψ (A.38.b)

z = 0 (A.38.c)

The induced velocity on point Pr by the whole dynamic vortex tube can be obtained

using the Biot-Savart law as follows

~ν =
1

4π

∫ 2π

0

∫

∞

0

~γ × (~Pr − ~P0)

|~r − ~r0|3
dS = ~νI + ~νII (A.39)

where ~νI and ~νII denote contributions from the tube part I and tube part II, respectively,

and can be written as

~νI =
1

4π

∫ 2π

0

∫ η0

0

~γI × (~Pr − ~P0)

|~P − ~P I
0 |3

dS (A.40)

~νII =
1

4π

∫ 2π

0

∫

∞

η0

~γII × (~Pr − ~P0)

|~P − ~P II
0 |3

dS (A.41)

where

~Pr = ~ix +~jy + ~kz (A.42.a)

~P0 = ~ix0 +~jy0 + ~kz0 (A.42.b)
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The induced velocity (positive along negative z axis) can be obtained as

νz = −~ν · ~k = νzI
+ νzII

(A.43)

where

νzI
=

γ̄I

4π

∫

2π

0

∫ η̄0

0

[1 − r̂cosψ0 + η̄sinχcosψ0] dη̄ dψ0

[1 + r̂2 − 2r̂cosψ0 + η̄2 − 2η̄sinχ(r̂ − cosψ0)]
3/2

(A.44.a)

νzI
=

γ̄II

4π

∫

2π

0

∫

∞

η̄0

[1 − r̂cosψ0 + η̄sinχcosψ0] dη̄ dψ0

[1 + r̂2 − 2r̂cosψ0 + η̄2 − 2η̄sinχ(r̂ − cosψ0)]
3/2

(A.44.b)

where b̄ =
√

1 + r̂2 − 2r̂cosψ0,r̂ = r̄/r̄0,η̄ = η/r̄0.
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APPENDIX B

ROTOR INFLOW PERTURBATIONS DURING

MANEUVERING FLIGHT

B.1 Inflow Perturbations Due To Mean Loading Effect

B.1.1 Rotor In Pitching Motion

The normal inflow distribution across the rotor disk of a pitching rotor induced by a single

dynamic vortex tube with tube radius r̄0 and mean loading γ̄0 is developed in Appendix

A (Equations A.12.e and A.12.f). When the wake shape is fully developed, i.e., η̄0 = ∞

in Equations A.12.e and A.12.f, the normal inflow distribution across the rotor disk can be

written as

vz(r̄, ψ) =
γ̄0

4π

∫ 2π

0

∫

∞

0
K

(µ

λ
,
q̄

λ

)

dη̄ dψ0 (B.1)

where function K(·, ·) is given by,

K
(µ

λ
,
q̄

λ

)

=

(

1 − r̂cos(ψ0 − ψ) +
q̄r̄0

2λ
η̄2cosψ0 +

µ

λ
η̄cosψ0

)

∆3/2
(B.2)

r̂ = r̄/r̄0 (B.3)

with,

∆ = 1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2 − 2
µ

λ
η̄(r̂cosψ − cosψ0) −

q̄r̄0

λ
η̄2(cosψ0 + r̂cosψ) (B.4)

Expanding function K(·, ·) (Equation B.2) into Taylor series about
µ

λ
and

q̄

λ
and neglecting

high order terms gives rise to

K
(µ

λ
,
q̄

λ

)

= K(0, 0) + K1(0, 0)
µ

λ
+ K2(0, 0)

q̄

λ
+ K12(0, 0)

µq̄

λ2
+ K112(0, 0)

µ2q̄

2λ3
(B.5)
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where subscripts 1 and 2 denote differentiation with respect to the first and the second

variables in function K(·, ·), respectively. These derivatives can be formulated as

K(0, 0) =
(1 − r̂cos(ψ0 − ψ))

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]3/2
(B.6.a)

K1(0, 0) =
η̄cosψ0

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]3/2

+
3η̄[1 − r̂cos(ψ0 − ψ)](r̂cosψ − cosψ0)

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]5/2
(B.6.b)

K2(0, 0) =
r̄0η̄

2cosψ0

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]3/2

+
3r̄0η̄

2[1 − r̂cos(ψ0 − ψ)](r̂cosψ + cosψ0)

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]5/2
(B.6.c)

K12(0, 0) =
3r̄0r̂η̄

3cosψcosψ0

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]5/2

+
15r̄0η̄

3[1 − r̄cos(ψ0 − ψ)](r̂cosψ − cosψ0)(r̂cosψ + cosψ0)

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]7/2
(B.6.d)

K112(0, 0) =
15r̄0η̄

4cosψ0(r̂cosψ − cosψ0)(r̂cosψ + cosψ0)

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]7/2

+
15r̄0η̄

4cosψ0(r̂cosψ − cosψ0)
2

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]7/2

+
105r̄0η̄

4(1 − r̂cos(ψ0 − ψ))(r̂cosψ − cosψ0)
2(r̂cosψ + cosψ0)

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]9/2
(B.6.e)

Therefore, the inflow perturbation across the rotor disk induced by a single vortex tube

during a pitch motion of the rotor can be obtained as

∆vz(r̄, ψ) =
γ̄0

4π

∫ 2π

0

∫

∞

0

[

K2(0, 0)
q̄

λ
+ K12(0, 0)

µq̄

λ2
+ K112(0, 0)

µ2q̄

2λ3

]

dη̄ dψ0 (B.7)

Defining the longitudinal wake curvature for a pitching rotor as

κc =
q̄

λ
(B.8)

For small advance ratio µ, The following approximations can be made

µ

λ0
= 2X (B.9)

Substituting expressions for the partial derivatives given by Equations B.6.c, B.6.d and B.6.e
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into Equation B.7 and carrying out integrations gives rise to

∆vz(r̄, ψ) =


































γ̄0

2
κcXr̄0e1(r̂) +

γ̄0

2
κcr̄

(

1 − 3

2
X2

)

cosψ +
γ̄0

2
κcXr̄0e2(r̂)cos2ψ r̂ < 1

γ̄0

2
κcXr̄0e3(r̂) +

3γ̄0

4
κcX

2r̄0e5(r̂)cosψ +
γ̄0

2
κcXr̄0e4(r̂)cos2ψ

+
3γ̄0

4
κcX

2r̄0e6(r̂)cos3ψ r̂ > 1

(B.10)

where,

e1(r̂) =
3(r̂ − 1)2E(k) − (3r̂2 + 1)F (k)

r̂ − 1
(B.11.a)

e2(r̂) =
(r̂ − 1)2(2 + 5r̂2)E(k) − (2 + 5r̂2 + 5r̂4)F (k)

3r̂2(r̂ − 1)
(B.11.b)

e3(r̂) =
−3(r̂ − 1)2E(k) + (3r̂2 + 1)F (k)

r̂ − 1
(B.11.c)

e4(r̂) =
(−r̂ − 1)2(2 + 5r̂2)E(k) + (2 + 5r̂2 + 5r̂4)F (k)

3r̂2(r̂ − 1)
(B.11.d)

e5(r̂) =
1

r̂
(B.11.e)

e6(r̂) =
r̂2 + 1

r̂3
(B.11.f)

E(k) =

∫ π

2

0

√

1 − ksin2θ dθ (B.11.g)

F (k) =

∫ π

2

0

1√
1 − ksin2θ

dθ (B.11.h)

k(r̂) =
−4r̂

(r̂ − 1)2
(B.11.i)

B.1.2 Rotor In Rolling Motion

The normal inflow distribution across the rotor disk of a rolling rotor induced by a single

dynamic vortex tube with tube radius r̄0 and mean loading γ̄0 is developed in Appendix

A (Equations A.24.e and A.24.f). When the wake shape is fully developed, i.e., η̄0 = ∞

in Equations A.24.e and A.24.f, the normal inflow distribution across the rotor disk can be

written as

vz(r̄, ψ) =
γ̄0

4π

∫ 2π

0

∫

∞

0
K

(µ

λ
,
p̄

λ

)

dη̄ dψ0 (B.12)

where funciton K(·, ·) is given by,

K
(µ

λ
,
p̄

λ

)

=

(

1 − r̂cos(ψ0 − ψ) +
p̄r̄0

2λ
η̄2sinψ0 +

µ

λ
η̄cosψ0

)

∆3/2
(B.13)

130



with,

∆ = 1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2 − 2
µ

λ
η̄(r̂cosψ − cosψ0) −

p̄r̄0

λ
η̄2(sinψ0 + r̂sinψ) (B.14)

Expanding function K(·, ·) (Equation B.13) into Taylor series about
µ

λ
and

p̄

λ
and neglecting

high order terms gives rise to

K
(µ

λ
,
p̄

λ

)

= K(0, 0) + K1(0, 0)
µ

λ
+ K2(0, 0)

p̄

λ
+ K12(0, 0)

µp̄

λ2
+ K112(0, 0)

µ2p̄

2λ3
(B.15)

where subscripts 1 and 2 denote differentiation with respect to the first and second variables

in function K(·, ·), respectively. These derivatives can be formulated as,

K(0, 0) =
(1 − r̂cos(ψ0 − ψ))

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]3/2
(B.16.a)

K1(0, 0) =
η̄cosψ0

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]3/2

+
3η̄[1 − r̂cos(ψ0 − ψ)](r̂cosψ − cosψ0)

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]5/2
(B.16.b)

K2(0, 0) =
r̄0η̄

2sinψ0

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]3/2

+
3r̄0η̄

2[1 − r̂cos(ψ0 − ψ)](r̂sinψ + sinψ0)

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]5/2
(B.16.c)

K12(0, 0) =
3r̄0r̂η̄

3sin(ψ0 + ψ)

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]5/2

+
15r̄0η̄

3[1 − r̄cos(ψ0 − ψ)](r̂cosψ − cosψ0)(r̂sinψ + sinψ0)

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]7/2
(B.16.d)

K112(0, 0) =
15r̄0η̄

4cos(ψ0)(r̂cosψ − cosψ0)(r̂sinψ + sinψ0)

[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]7/2

+
15r̄0η̄

4sinψ0(r̂cosψ − cosψ0)
2

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]7/2

+
105r̄0η

4(1 − r̂cos(ψ0 − ψ))(r̂cosψ − cosψ0)
2(r̂sinψ + sinψ0)

2[1 + r̂2 − 2r̂cos(ψ0 − ψ) + η̄2]9/2
(B.16.e)

Therefore, the inflow perturbation across the rotor disk induced by a single vortex tube

during a roll motion of the rotor can be obtained as

∆vz(r̄, ψ) =
γ̄0

4π

∫ 2π

0

∫

∞

0

[

K2(0, 0)
p̄

λ
+ K12(0, 0)

µp̄

λ2
+ K112(0, 0)

µ2p̄

2λ3

]

dη̄ dψ0 (B.17)

Defining the lateral wake curvature for a rolling rotor as

κs =
p̄

λ
(B.18)
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Substituting expressions for the partial derivatives given by Equations B.16.c, B.16.d and B.16.e

into Equation B.17 and carrying out integrations gives rise to

∆vz(r̄, ψ) =


































γ̄0

2
κsr̄

(

1 +
3

2
X2

)

sinψ +
γ̄0

2
κsXr̄0e2(r̂)sin2ψ r̂ < 1

−3γ̄0

4
κsX

2r̄0e5(r̂)sinψ +
γ̄0

2
κsXr̄0e4(r̂)sin2ψ

+
3γ̄0

4
κsX

2r̄0e6(r̂)sin3ψ r̂ > 1

(B.19)

Combining Equations B.10 and B.19 gives rise to the inflow perturbations across the

rotor disk induced by a single distorted vortex tube due to rotor mean loading effect during

a steady pitch and/or roll motion as follows

∆vz(r̄, ψ) =


































































γ̄0

2
κcXr̄0e1(r̂) +

γ̄0

2
κcr̄

(

1 − 3

2
X2

)

cosψ +
γ̄0

2
κsr̄

(

1 +
3

2
X2

)

sinψ

+
γ̄0

2
κcXr̄0e2(r̂)cos2ψ +

γ̄0

2
κsXr̄0e2(r̂)sin2ψ r̂ < 1

γ̄0

2
κcXr̄0e3(r̂) +

3γ̄0

4
κcX

2r̄0e5(r̂)cosψ − 3γ̄0

4
κsX

2r̄0e5(r̂)sinψ

+
γ̄0

2
κcXr̄0e4(r̂)cos2ψ +

γ̄0

2
κsXr̄0e4(r̂)sin2ψ r̂ > 1

+
3γ̄0

4
κcX

2r̄0e6(r̂)cos3ψ +
3γ̄0

4
κsX

2r̄0e6(r̂)sin3ψ

(B.20)

B.2 Inflow Perturbations Due to Cyclic Loading Effect

When rotor bound circulation changes around the azimuth by a dΓ̄, there is released at

the same time a free radial vortex of strength −dΓ̄ and the free tip vortex strength is

increased by a dΓ̄. The calculation of the induced inflow perturbations due to the cyclic

loading distribution around the rotor disk is very complicated. A reduced order model to

account for the effect of rotor cyclic loading effect during maneuvering flight is developed

in this section. As illustrated in Figures B.1 and B.2, the radial and tip vortex due to rotor

cyclic circulation variation will be taken together and it is assumed that they form two

cylinders with a circular cross-section. Therefore, two hypothetical rotors will be formed on

both sides of the x-axis and y-axis, respectively, to account for the effects of longitudinal

circulation variation Γ̄1c and lateral circulation variation Γ̄1s, respectively. Since vortex
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Figure B.1: Simplified approximate method to calculate the inflow perturbation across
rotor disk due to the cosine part of cyclic loading during maneuvering flight

Figure B.2: Simplified approximate method to calculate the inflow perturbations across
rotor disk due to the sine part of cyclic loading during maneuvering flight

tubes of the two hypothetical rotors have uniform vorticity density, Equation B.20 can be

used to calculate the inflow perturbations due to the cyclic loading effect when the rotor is

undergoing a pitch and/or roll motion.

B.2.1 Γ̄1c Effect

As shown in Figure B.1, the vortices due to rotor lateral cyclic loading effect are approxi-

mated by two hypothetical vortex tubes placed along the x-axis, each of them with a radius

of r̄0/2, one tube has a vorticity strength of γ̄1c and the other one has a vorticity strength

of −γ̄1c. The inflow perturbations at points A,B,C and D as shown in Figure B.3 can be

obtained by using Equation B.20. Only contributions to the mean and first harmonic vari-

ations of inflow will be considered and contributions to all the other higher harmonic terms
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Figure B.3: Illustration of calculation points for the inflow perturbation induced by the
cosine part of the cyclic loading during maneuvering flight

will be dropped off. Denoting

r̄ = |OA| = |OB| = |OC| = |OD| (B.21.a)

r̄1 = |O1A| = |O2B| = r̄ − r̄0

2
(B.21.b)

r̄2 = |O1B| = |O2A| = r̄ +
r̄0

2
(B.21.c)

r̄3 = |O1C| = |O1D| = |O2C| = |O2D| =

√
4r̄2 + r̄0

2
(B.21.d)

and normalizing r̄ by r̄0 and r̄1, r̄2, r̄3 by r̄0/2 gives rise to

r̂ = r̄/r̄0 r̂1 = 2r̂ − 1 r̂2 = 2r̂ + 1 r̂3 =
√

4r̂2 + 1 (B.21.e)

B.2.1.1 Case I: Calculation Points Inside of Vortex Tube (r̄ < r̄0)

The calculation points A, B, C and D are shown in Figure B.3(a). The inflow perturbations

at points A, B, C and D can be obtained as

Inflow Perturbation at Point A:

(∆vz)A =
γ̄1c

2

{

1

2
κcXr̄0[e1(r̂1) + e2(r̂1)] + κcr̄1

(

1 − 3

2
X2

)}

− γ̄1c

2

{

1

2
κcXr̄0[e3(r̂2) + e4(r̂2)] +

3

4
κcX

2[e5(r̂2) + e6(r̂2)]

}

(B.22)
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Inflow Perturbation at Point B:

(∆vz)B =
γ̄1c

2

{

1

2
κcXr̄0[e3(r̂2) + e4(r̂2)] −

3

4
κcX

2[e5(r̂2) + e6(r̂2)]

}

− γ̄1c

2

{

1

2
κcXr̄0[e1(r̂1) + e2(r̂1)] − κcr̄1

(

1 − 3

2
X2

)}

(B.23)

Inflow Perturbation at Point C:

(∆vz)C =
γ̄1c

2

{

κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κc[e5(r̂3)cosψ1 + e6(r̂3)cos3ψ1]

}

(B.24)

Inflow Perturbation at Point D:

(∆vz)D =
γ̄1c

2

{

−κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κc[e5(r̂3)cosψ1 + e6(r̂3)cos3ψ1]

}

(B.25)

By comparing the inflow perturbations at points A, B, C and D in Equations B.22 through

B.25, it can be seen that the contributions to the mean and first harmonic inflow perturba-

tions can be written as

∆vz =
γ̄1c

2
{κcXr̄0d1(r̂)cosψ + κsXr̄0d2(r̂)sinψ} (B.26)

where,

d1(r̂) =
1

2
[e1(r̂1) + e2(r̂1) − e3(r̂2) − e4(r̂2)] (B.27)

d2(r̂) = e4(r̂3)sin2ψ1 = −4e4(r̂3)

4r̂2 + 1
(B.28)

B.2.1.2 Case II: Calculation Points Outside of Vortex Tube (r̄ > r̄0)

The calculation points A, B, C and D are shown in Figure B.3(b). The inflow perturbations

at points A, B, C and D can be obtained as

Inflow Perturbation at Point A:

(∆vz)A =
γ̄1c

2

{

1

2
κcXr̄0[e3(r̂1) + e4(r̂1)] +

3

4
κcX

2r̄0[e5(r̂1) + e6(r̂1)]

}

− γ̄1c

2

{

1

2
κcXr̄0[e3(r̂2) + e4(r̂2)] +

3

4
κcX

2r̄0[e5(r̂2) + e6(r̂6)]

}

(B.29)
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Inflow Perturbation at Point B:

(∆vz)B =
γ̄1c

2

{

1

2
κcXr̄0[e3(r̂2) + e4(r̂2)] −

3

4
κcX

2r̄0[e5(r̂2) + e6(r̂2)]

}

− γ̄1c

2

{

1

2
κcXr̄0[e3(r̂1) + e4(r̂1)] −

3

4
κcX

2r̄0[e5(r̂1) + e6(r̂1)]

}

(B.30)

Inflow Perturbation at Point C:

(∆vz)C =
γ̄1c

2

{

κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κc[e5(r̂3)cosψ1 + e6(r̂3)cos3ψ1]

}

(B.31)

Inflow Perturbation at Point D:

(∆vz)D =
γ̄1c

2

{

−κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κc[e5(r̂3)cosψ1 + e6(r̂3)cos3ψ1]

}

(B.32)

By comparing the inflow perturbations at points A, B, C and D in Equations B.29 through

B.32, it can be seen that the contributions to the mean and first harmonic inflow perturba-

tions can be written as

∆vz =
γ̄1c

2
{κcXr̄0d3(r̂)cosψ + κsXr̄0d2(r̂)sinψ} (B.33)

where,

d3(r̂) =
1

2
[e3(r̂1) + e4(r̂1) − e3(r̂2) − e4(r̂2)] (B.34)

B.2.2 Γ̄1s Effect

As shown in Figure B.1, the vortices due to rotor lateral cyclic loading effect are approxi-

mated by two hypothetical vortex tubes placed along the y-axis, each of them with a radius

of r̄0/2, one tube has a vorticity strength of γ̄1s and the other one has a vorticity strength

of −γ̄1s. The inflow perturbations at points A,B,C and D as shown in Figure B.4 can be

obtained by using Equation B.20. Only contributions to the mean and first harmonic vari-

ations of inflow will be considered and contributions to all the other higher harmonic terms
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Figure B.4: Illustration of calculation points for the inflow perturbation induced by the
sine part of the cyclic loading during maneuvering flight

will be dropped off. Denoting

r̄ = |OA| = |OB| = |OC| = |OD| (B.35.a)

r̄1 = |O1C| = |O2D| = r̄ − r̄0

2
(B.35.b)

r̄2 = |O1D| = |O2C| = r̄ +
r̄0

2
(B.35.c)

r̄3 = |O1A| = |O1B| = |O2A| = |O2B| =

√
4r̄2 + r̄0

2
(B.35.d)

and ormalizing r̄ by r̄0 and r̄1, r̄2, r̄3 by r̄0/2 gives rise to

r̂ = r̄/r̄0 r̂1 = 2r̂ − 1 r̂2 = 2r̂ + 1 r̂3 =
√

4r̂2 + 1 (B.35.e)

B.2.2.1 Case I: Calculation Points Inside Vortex Tube (r̄ < r̄0)

The calculation points A, B, C and D are shown in Figure B.4(a). The inflow perturbations

at points A, B, C and D can be obtained as

Inflow Perturbation at Point A:

(∆vz)A =
γ̄1s

2

{

−κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κs[e5(r̂3)sinψ1 − e6(r̂3)sin3ψ1]

}

(B.36)

137



Inflow Perturbation at Point B:

(∆vz)B =
γ̄1s

2

{

κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κs[e5(r̂3)sinψ1 − e6(r̂3)sin3ψ1]

}

(B.37)

Inflow Perturbation at Point C:

(∆vz)C =
γ̄1s

2

{

1

2
κcXr̄0[e1(r̂1) − e2(r̂1)] + κsr̄1

(

1 +
3

2
X2

)}

− γ̄1s

2

{

1

2
κcXr̄0[e3(r̂2) − e4(r̂2)] −

3

4
κcX

2[e5(r̂2) + e6(r̂2)]

}

(B.38)

Inflow Perturbation at Point D:

(∆vz)D =
γ̄1s

2

{

1

2
κcXr̄0[e3(r̂2) − e4(r̂2)] +

3

4
κsX

2[e5(r̂2) + e6(r̂2)]

}

− γ̄1s

2

{

1

2
κcXr̄0[e1(r̂1) − e2(r̂1)] − κsr̄1

(

1 − 3

2
X2

)}

(B.39)

By comparing the inflow perturbations at points A, B, C and D in Equations B.36 through

B.39, it can be seen that the contributions to the mean and first harmonic inflow perturba-

tions can be written as

∆vz =
γ̄1s

2
{κsXr̄0d2(r̂)cosψ + κcXr̄0d4(r̂)sinψ} (B.40)

where,

d4(r̂) =
1

2
[e1(r̂1) − e2(r̂1) − e3(r̂2) + e4(r̂2)] (B.41)

B.2.2.2 Case II: Calculation Points Outside of Vortex Tube (r̄ > r̄0)

The calculation points A, B, C and D are shown in Figure B.4(b). The inflow perturbations

at points A, B, C and D can be obtained as

Inflow Perturbation at Point A:

(∆vz)A =
γ̄1s

2

{

−κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κs[e5(r̂3)sinψ1 − e6(r̂3)sin3ψ1]

}

(B.42)

Inflow Perturbation at Point B:

(∆vz)B =
γ̄1s

2

{

κsXr̄0e4(r̂3)sin2ψ1 +
3

2
X2r̄0κs[e5(r̂3)sinψ1 − e6(r̂3)sin3ψ1]

}

(B.43)
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Inflow Perturbation at Point C:

(∆vz)C =
γ̄1s

2

{

1

2
κcXr̄0[e3(r̂1) − e4(r̂1)] −

3

4
κsX

2[e5(r̂1) + e6(r̂1)]

}

− γ̄1s

2

{

1

2
κcXr̄0[e3(r̂2) − e4(r̂2)] −

3

4
κsX

2[e5(r̂2) + e6(r̂2)]

}

(B.44)

Inflow Perturbation at Point D:

(∆vz)D =
γ̄1s

2

{

1

2
κcXr̄0[e3(r̂2) − e4(r̂2)] +

3

4
κsX

2[e5(r̂2) + e6(r̂2)]

}

− γ̄1s

2

{

1

2
κcXr̄0[e3(r̂1) − e4(r̂1)] +

3

4
κsX

2[e5(r̂1) + e6(r̂1)]

}

(B.45)

By comparing the inflow perturbations at points A, B, C and D in Equations B.36 through

B.39, it can be seen that the contributions to the mean and first harmonic inflow perturba-

tions can be written as

∆vz =
γ̄1s

2
{κsXr̄0d2(r̂)cosψ + κcXr̄0d5(r̂)sinψ} (B.46)

where,

d5(r̂) =
1

2
[e3(r̂1) − e4(r̂1) − e3(r̂2) + e4(r̂2)] (B.47)

Combining Equations B.26, B.33, B.40 and B.46 gives rise to the inflow perturbations

induced by the distorted rotor wake due to rotor cyclic loading effect during a steady pitch

and/or roll motion as follows

∆vz =



















































γ̄1c

2
{κcXr̄0d1(r̂)cosψ + κsXr̄0d2(r̂)sinψ}

+
γ̄1s

2
{κcXr̄0d4(r̂)sinψ + κsXr̄0d2(r̂)cosψ} (r̂ < 1)

γ̄1c

2
{κcXr̄0d3(r̂)cosψ + κsXr̄0d2(r̂)sinψ}

+
γ̄1s

2
{κcXr̄0d5(r̂)sinψ + κsXr̄0d2(r̂)cosψ} (r̂ < 1)

(B.48)

where di(r̂), i = 1, 2, . . . , 5 are defined in Equations B.27, B.28, B.34, B.41 and B.47.
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APPENDIX C

MAIN ROTOR/TAIL ROTOR/EMPENNAGE

INTERACTION DURING MANEUVERING FLIGHT

C.1 Equivalent Wake Skew Due To Main Rotor Wake Cur-
vatures

The dynamic wake distortion model developed in Chapter II (Equation 2.27) can be written

as

[τD]

⋆


































X

S

κc

κs



































+



































X

S

κc

κs



































=



































X

S

κc

κs



































qs

(C.1)

The augmented Pitt-Peters dynamic inflow model developed in Chapter III (Equation 3.20)

during maneuvering flight can be written as

[M ]

⋆






















λ0

λ1s

λ1c























+ [V ][L]−1























λ0

λ1s

λ1c























=























CT

−CL

−CM























(C.2)

where the augmented inflow gain matrix [L] can be written as

[L] = [L̃ + ∆L1 + ∆L2 + ∆L3] (C.3)

where

[∆L1] = KRe















0 0 0

κs

2
0 0

κc

2
0 0















(C.4.a)

[∆L2] = KRe















0 0 0

3

4
κsX

2 0 0

−3

4
κcX

2 0 0















(C.4.b)
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[∆L3] = KRe

















0 0 0

5

4
µκcX a22 −5

2
κsX

5

4
µκsX a32 − 3

10
κcX

















(C.4.c)

From Equations C.1 and C.2, it can be seen that the wake skew and wake curvatures can

be treated as equivalent to each other. From Equations C.4.a, C.4.b, C.4.c, it can be seen

that the coupling between the longitudinal inflow gradient and rotor thrust coefficient can

be written as

λ1c

V̄
=

[

15π

64
X +

KRe

2
κc

(

1 − 3

2
X2

)

+
5KRe

4
κsµX

]

CT (C.5)

For low advance ratio µ, using the approximation of

X = tan(
χ

2
) ≈ µ

2(λ0 + Vc)
(C.6)

Equation C.5 can be rewritten as

λ1c

V̄
=

[

15π

64
X +

KRe

2
κc

(

1 − 3

2
X2

)

+
5KRe

2
κs(λ0 + Vc)X

2

]

CT (C.7)

Therefore, an equivalent wake skew due to main rotor wake curvature effect during maneu-

vering flight can be defined as

∆Xeq =
32KRe

15π
κc

(

1 − 3

2
X2

)

+
32KRe

3π
κs(λ0 + Vc)X

2 (C.8)

which can also be written approximately in terms of an equivalent wake skew angle as

∆χeq =
64KRe

15π
κc

(

1 − 3

2
X2

)

+
64KRe

3π
κs(λ0 + Vc)X

2 (C.9)

This equivalent wake skew can be added to the steady wake skew (non-maneuvering) from

momentum theory to model the main rotor downwash effect on the tail rotor and empennage

during helicopter maneuvering flight.

C.2 Side Wash At Vertical Tail Due to Main Rotor Wake
Curvature

When a helicopter is in a roll maneuver, the curved main rotor wake will induce an additional

sidewash at the aerodynamic centers of the vertical tail and tail rotor. It is assumed that the

the aerodynamic centers of the vertical tail and tail rotor are in the main rotor disk plane
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in the following derivations. Also, only the vortex tube with constant vorticity strength γ̄0

and tube radius r̄0 = 1, corresponding to the main rotor tip vortex, is considered.

For a helicopter in a roll maneuver, the induced velocity along the y axis of the main

rotor disk coordinate can be obtained from the dynamic vortex tube analysis in Appendix

A (Equations A.24.c and A.24.d). When the curved wake shape is fully developed, i.e.,

η̄0 = ∞, Equations A.24.c and A.24.d can be written as

νy =
γ̄0

4π

∫ 2π

0

∫

∞

0

[

η̄κs(1 − r̂cosψcosψ0) − η̄sinψ0 + 2η̄2κsXr̄0cosψ0

]

dη̄ dψ0

b̄2 + η̄2 − 4η̄X(r̂cosψ − cosψ0) − η̄2κs(r̂sinψ + sinψ0)
(C.10)

Therefore, the induced velocity perturbation at the aerodynamic centers of the vertical tail

and tail rotor, ∆νy, due to the roll maneuver can be written as

∆νy =
γ̄0κs

4π

[

Ap + ApXX + ApX2X2
]

(C.11)

where,

Ap =

∫ 2π

0

∫

∞

0

[

η̄(1 − r̂cosψcosψ0)

(b̄2 + η̄2)3/2
− 3η̄3sinψ0(sinψ0 + r̄sinψ)

2(b̄2 + η̄2)5/2

]

dη̄ dψ0 (C.12.a)

ApX =

∫ 2π

0

∫

∞

0

[

2η̄2cosψ0

(b̄2 + η̄2)3/2
+

6η̄2(1 − r̂cosψcosψ0)(r̂cosψ − cosψ0)

(b̄2 + η̄2)5/2

]

dη̄ dψ0

−
∫ 2π

0

∫

∞

0

15η̄4sinψ0(r̂sinψ + sinψ0)(r̂cosψ − cosψ0)

(b̄2 + η̄2)7/2
dη̄ dψ0 (C.12.b)

ApX2 =

∫ 2π

0

∫

∞

0

12η̄3cosψ0(r̂cosψ − cosψ0)

(b̄2 + η̄2)5/2
dη̄ dψ0

+

∫ 2π

0

∫

∞

0

30η̄3(1 − r̂cosψcosψ0)(r̂cosψ − cosψ0)
2

(b̄2 + η̄2)7/2
dη̄ dψ0

−
∫ 2π

0

∫

∞

0

105η̄5sinψ0(sinψ0 + r̂sinψ)(r̂cosψ − cosψ0)
2

(b̄2 + η̄2)9/2
dη̄ dψ0 (C.12.c)

where b̄ =
√

1 + r̂2 − 2r̂cos(ψ − ψ0). After making the following substitutions

η̄ = b̄tanθ dη̄ = b̄sec2θ (C.13)
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these integrals can be carried out to be

Ap =
2[(r̂ − 1)2E(k) − r̂2F (k)]

|r̂ − 1|

− 2[(r̂2 + 1)(r̂ − 1)2E(k) − (r̂4 + r̂2 + 1)F (k)]

3r̂2|r̂ − 1| cos2ψ (C.14.a)

ApX =
π

[

(8r̂2 − 5r̂)cosψ − 3r̂2cos3ψ
]

2(r̂ − 1)
(r̂ < 1) (C.14.b)

ApX =
π

[

(4r̂3 − 7r̂2)cosψ − (2r̂3 − 5r̂2 − 3r̂ + 3)cos3ψ
]

2r̂3(r̂ − 1)
(r̂ > 1) (C.14.c)

ApX2 =
3

[

(r̂2 − 1)E(k) − (r̂2 + 5)F (k)
]

|r̂ − 1|

− 4[(7r̂2 + 4)(r̂ − 1)2E(k) − (7r̂4 + 7r̂2 + 4)F (k)]

3r̂2|r̂ − 1| cos2ψ

−
[

(3r̂4 − 8r̂2 − 32)(r̂ − 1)2E(k) − (3r̂6 + 7r̂4 − 8r̂2 − 32)F (k)
]

5r̂4|r̂ − 1| cos4ψ

(C.14.d)

Using the fact that γ̄0 = 2λ0 (Equation 2.3) and assuming that the aerodynamic centers

of the vertical tail and tail rotor lie on the main rotor y axis, the sidewash at the aerodynamic

center of horizontal tail due to main rotor wake curvature effect can be written as (expressed

along the main rotor y− axis)

∆νV T
yMR

= (κsλ0)MR

(

iMR
0 + iMR

1 X + iMR
2 X2

)

(C.15)

where subscript V T means that the sidewash are calcualted at the aerodynamic center of

the vertical tail and tail rotor, subscript and superscript MR denotes that this effect is due

to the main rotor wake curvature. iMR
0 , iMR

1 , iMR
2 are the interference coefficients, which

are determined by the relative geometric positions of the main rotor and vertical tail/tail

rotor, which are given by

iMR
0 =

Ap(ψ
V T/MR, l̄V T/MR)

2π
(C.16.a)

iMR
1 =

ApX(ψV T/MR, l̄V T/MR)

2π
(C.16.b)

iMR
2 =

ApX2(ψV T/MR, l̄V T/MR)

2π
(C.16.c)

where ψV T/MR is the azimuth angle of the vertical tail/tail rotor in the main rotor disk

plane, l̄V T/MR is the distance between main rotor center and the aerodynamic center of

vertical tail/tail rotor.
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C.3 Up/Down Wash At Horizontal Tail Due to Tail Rotor
Wake Curvature

When a helicopter is in a roll maneuver, the curved tail rotor wake will also induce an

additional up/down wash at the aerodynamic center of the horizontal tail. It is assumed

that the the aerodynamic center of the horizontal tail is in the tail rotor disk plane and only

a vortex tube with constant vorticity strength γ̄0 and tube radius r̄0 = 1, corresponding to

the tail rotor tip vortex, is considered.

The up/down wash velocity on the horizontal tail induced by the distorted tail rotor

wake can be obtained similarly to the side wash velocity on the vertical tail/tail rotor

induced by the distorted main rotor wake and can be formulated as (expressed along the

tail rotor y axis)

∆νHT
y = (κsλ0)TR

(

iTR
0 + iTR

1 X + iTR
2 X2

)

(C.17)

where subscript HT means that the up/down wash is calculated at the aerodynamic center

of the horizontal tail, subscript and superscript TR denotes that this effect is due to the

tail rotor wake curvature effect. iTR
0 , iTR

1 , iTR
2 are the interference coefficients, which are

determined by the relative geometric positions of the tail rotor and horizontal, which are

given by

iTR
0 =

Ap(ψ
HT/TR, l̄HT/TR)

2π
(C.18.a)

iTR
1 =

ApX(ψHT/TR, l̄HT/TR)

2π
(C.18.b)

iTR
2 =

ApX2(ψHT/TR, l̄HT/TR)

2π
(C.18.c)

where ψHT/TR is the azimuth angle of the aerodynamic center of horizontal tail in the tail

rotor disk plane, l̄HT/TR is the distance between tail rotor center and the aerodynamic

center of horizontal tail.
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APPENDIX D

SUMMARY OF ROTOR DYNAMIC WAKE DISTORTION

MODEL AND AUGMENTED INFLOW MODELS

For reference, the developed rotor dynamic wake distortion model, the augmented Pitt-

Peters dynamic inflow model and the augmented Peters-He finite state inflow model are

summarized as follows.

D.1 Rotor Dynamic Wake Distortion Model

The developed rotor dynamic wake distortion model can be written as

[τD]

⋆


































X

S

κc

κs



































+



































X

S

κc

κs



































=



































X

S

κc

κs



































qs

(D.1)

where X, S, κc, κs, are wake skew, wake spacing, longitudinal and lateral wake curvatures,

respectively,
⋆

() denotes differentiation with respect to nondimensional time, subscript qs

denotes quasi-steady values. Matrix [τD] contains the nondimensional time constants asso-

ciated with dynamic wake distortion effects and is assumed to take a diagonal form as

[τD] =



















τX O

τS

τR

O τR



















(D.2)

Where τX , τS , τR are given by

τX =
32

15πV̄
(D.3.a)

τS =
32

15πVm
(D.3.b)

τR =
32

15πV̄
(D.3.c)
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where Vm and V̄ , respectively, are the mass flow parameters associated with mean and

higher harmonics of inflow and are given by

Vm =
√

µ2 + (λ0 + Vc)2 (D.4.a)

V̄ =
µ2 + (λ0 + Vc)(2λ0 + Vc)

Vm
(D.4.b)

where λ0 is the mean induced inflow across rotor disk, µ is advance ratio and Vc is climb

rate.

The right hand side of Equation D.1 corresponds to the quasi-steady wake skew, wake

spacing, longitudinal and lateral wake curvatures, which are given by

(X)qs = tan
(χ

2

)

(D.5.a)

(S)qs = 2πVm (D.5.b)

(κc)qs =
q̄ −

⋆
β1c

λ0 + Vc
(D.5.c)

(κs)qs =
p̄ −

⋆
β1s

λ0 + Vc
(D.5.d)

In the above equations, q̄ and p̄, respectively, denote the nondimensional pitch and roll

rates.
∗

β1c,
∗

β1s are the rotor disk longitudinal and lateral flapping rates. χ is the steady

wake skew angle given by

χ = tan−1

(

µ

λ0 + Vc

)

(D.6)

D.2 Augmented Pitt-Peters Dynamic Inflow Model

The augmented Pitt-Peters dynamic inflow model for helicopter maneuvering flight can be

written as

[M ]

⋆
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λ1s

λ1c























+ [V ][L]−1
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λ1s

λ1c























=























CT

−CL

−CM























(D.7)

where the apparent mass matrix [M ] and mass flow parameter matrix [V ], respectively, can

be written as

[M ] =













128

75π
O

16

45π

O
16

45π













(D.8)
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[V ] =













Vm O

V̄

O V̄













(D.9)

where Vm and V̄ are given by Equations D.4.a and D.4.b. The augmented inflow gain

matrix [L] in Equation D.7 can be written as

[L] == [L̃ + ∆L] = [L̃ + ∆L1 + ∆L2 + ∆L3] (D.10)

where [L̃] is the original inflow gain matrix, [∆L1] denotes coupling between wake curva-

ture and rotor mean loading. [∆L2] accounts for the coupling effect between wake curva-

ture/wake skew and rotor mean loading, and matrix [∆L3] represents the coupling effect

between wake curvature/wake skew and rotor cyclic loading. They can expressed as

[L̃] =













1

2
0 −15π

64
X

0 2(1 + X2) 0

15π

64
X 0 2(1 − X2)













(D.11)

[∆L1] = KRe















0 0 0

κs

2
0 0

κc

2
0 0















(D.12)

[∆L2] = KRe















0 0 0

3

4
κsX

2 0 0

−3

4
κcX

2 0 0















(D.13)

[∆L3] = KRe

















0 0 0

5

4
µκcX l22 −5

2
κsX

5

4
µκsX l32 − 3

10
κcX

















(D.14)

with

l22 = −5

2
κcX − 3µ

2
κs(1 +

3

2
X2)

l32 = −5

2
κsX − 3µ

2
κc(1 − 3

2
X2)

where KRe is the wake curvature parameter.
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D.3 Augmented Peters-He Finite State Inflow Model

The augmented Peters-He finite state inflow model for helicopter maneuvering flight can be

written as

[K]

⋆










αr
j

βr
j











+ [V ] [L]−1











αr
j

βr
j











=
1

2











τmc
n

τms
n











(D.15)

where [K] and [V ], respectively, are the apparent mass matrix and the mass flow parameter

matrix given by He [48]. The augmented inflow gain matrix [L] can be written as

[L] =
[

[L̃] + [∆L]
]

(D.16)

In Equation D.16, [L̃] retains its original form from the Peters-He finite state inflow model,

[∆L] accounts for the inflow perturbations induced by the distorted wake tube during

maneuvering flight, which can be written as

[∆L] = KRe

(

[D]0 + [D]1X + [D]2X
2
)

(D.17)

where

[D]0 = κc[C]c1 + κs[C]s1 (D.18.a)

[D]1 = κc[C]cX + κs[C]sX (D.18.b)

[D]2 = κc[C]cX2 + κs[C]sX2 (D.18.c)

where KRe is the wake curvature parameter, the [C]’s matrices denote coupling effects

among rotor inflow, wake curvatures and wake skew. For example, [C]c1 and [C]s1 denote

coupling effect between rotor inflow, longitudinal and lateral wake curvatures, respectively.

[C]cX and [C]sX , respectively, denote the inflow-wake curvatures-linear wake skew coupling

effect. Similarly, [C]cX2 and [C]sX2 , respectively, represent the inflow-wake curvatures-

quadratic wake skew coupling effect.
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