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SUMMARY 

 

The surveillance of geographic borders and critical infrastructures using limited 

sensor capability has always been a challenging task in many homeland security 

applications. Geographic borders may be very long and may go through isolated areas 

that are sometimes uninhabitated. Critical assets may be large and numerous and may be 

located in highly populated areas. As a result, it is virtually impossible to secure both 

each and every mile of border around the country, and each and every critical 

infrastructure inside the country. Most often, a compromise must be made between the 

percentage of asset covered by surveillance systems and the induced cost. However, 

various entities may have distinct performance and cost expectations for the surveillance 

architecture. This difference in preference needs to be captured in order to determine 

surveillance and detection architectures able to provide the required protection at the 

projected level of cost. Although threats to homeland security can be conceived to take 

place in many forms, those regarding illegal penetration of the homeland under the cover 

of day-to-day activities have been identified to be of particular interest by the U.S. and 

several European governments. For instance, the proliferation of low altitude aerial 

systems, combined with regular air traffic growth, poses a unique challenge for the 

surveillance of homeland airspace and in particular for identifying potentially hostile 

vehicles interoperating with friendly aircraft. Similarly, the proliferation of drug 

smuggling, illegal immigration, international organized crime, and more recently, modern 

piracy, require the strengthening of land border and maritime awareness, and point to 

increasingly complex and challenging national and coastal security environments. In this 
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context, it is critical to be able to monitor, collect information (i.e. detect, identify) and 

eventually intercept suspicious entities or systems well before they reach the border or 

strategic land and coastal sites. Nevertheless, suspicious aerial, ground or maritime 

systems can efficiently interoperate with friendly systems so as to compromise the 

situational awareness of border and maritime protection missions. As a consequence, it is 

necessary to comprehensively understand what composes the aerial, ground and maritime 

domains to determine a strategy of action.  

The complexity and challenges associated with the above mission and with the 

protection of the homeland may explain why a methodology enabling the design, 

modeling, simulation, and optimization of detection architectures able to provide accurate 

scanning of the air, land, and maritime domains, in specific geographic and climatic 

environments, is a capital concern for the defense and protection community. As a result, 

the present thesis focuses on the development of surveillance architectures of distributed 

ground platforms and sensors for detecting aerial, land, and maritime systems. This task 

primarily involves identifying the best combination and positioning of detection and 

surveillance systems able to monitor the homeland and its shores, and to collect 

information about the surrounding aerial, terrestrial and maritime environments. To do so, 

it is imperative to quantitatively assess current state-of-the-art as well as future notional 

systems, generate meaningful comparisons across disparate platforms, explore tradeoffs 

between a myriad of factors, and identify key technological gaps.  

This thesis proposes a seven-step methodology aimed at addressing the 

aforementioned gaps and challenges. The methodology facilitates the traceable, 

structured, and reproducible design, Modeling, Simulation, and Optimization of 
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Distributed Detection system architectures for surveillance missions in the context of 

homeland security, and is thus named M-SODDA. M-SODDA considers a set of 

heterogeneous detection systems and distributes them over large areas of interest in order 

to design detection architectures providing the maximum global detection coverage at 

reasonable costs in specific topographic and climatic environments. Additionally, it 

enables the decision maker to really understand the nature of the detection architectures, 

assess their capabilities through a number of notional ―what-if‖ scenarios and analyze the 

relative sensitivity of trade-offs at the architecture level, the system level, and the 

operational level.  

More precisely, M-SODDA reformulates the homeland security problem in clear 

terms so as to facilitate the subsequent modeling and simulation of potential operational 

scenarios of interest. The problem is first decomposed into its main elements and relevant 

alternatives and attributes capturing the whole spectrum of possibilities are investigated. 

Then, the operational compatibilities between pairs of elements, alternatives and 

attributes are assessed to create notional, yet realistic, simulation scenarios. Next, a 

detailed description of a multidisciplinary strategy for the design and optimization of 

distributed detection system architectures in terms of detection performance and cost is 

provided. This implies the creation of a framework for the modeling and simulation of 

previously selected scenarios, as well as the development of improved methods for the 

rapid optimization of detection architectures in specific operational situations. In other 

words, the present thesis describes a new approach to determining detection architectures 

able to provide effective coverage of a given geographical environment at a minimum 

cost. This is done by optimizing the composition and the geometrical structure of the 
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detection system-of-systems. To do so, two candidate evolutionary optimization 

approaches (genetic algorithm and particle swarm optimization) are selected to potentially 

solve the homeland security optimization problem of interest. The optimization 

algorithms are then adapted and refined from their original versions in order to account 

for the peculiar characteristics of the homeland security application. Next, appropriate 

sets of algorithm parameters adapted to the homeland security mission are obtained by 

applying the modified optimization algorithms to simpler analytical test problems (whose 

solutions are known) presenting similar properties as the original problem. It is found that 

the resulting set of algorithm parameter values, able to ensure the convergence of the 

optimization algorithms to accurate distributed system architecture solutions is dictated 

by the maximum size of the detection architecture. The convergence properties of the 

candidate evolutionary optimization approaches are further studied and compared to 

determine the optimization method which globally presents the best performance and the 

lowest computational cost. It is found that the particle swarm optimization algorithm is 

better suited to find solutions to the original optimization problem. Subsequently, a 

heuristic recursive optimization scheme is developed to check the accuracy of the 

solutions provided by the modified particle swarm optimization algorithm when applied 

to the original homeland security application. It is found that the modified algorithm is 

successful at finding reliable detection architectures able to satisfy the constraints of the 

homeland security mission scenario. In other words, the adapted particle swarm 

optimization method is able to efficiently optimize concurrently the number, the types, 

the properties, and the positions of a set of heterogeneous detection systems over a large 

area of operations for a specific homeland security mission, given performance 
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requirements and/or cost constraints. At that point, the detection architecture solutions are 

composed of sensor systems having a fixed position on the theater of operations. In a final 

step, the modeling and simulation framework is used to rapidly, quantitatively, and 

efficiently evaluate the operational effectiveness of a portfolio of fixed Pareto efficient 

detection architectures obtained with the modified particle swarm optimization algorithm. 

It is found that complementing the fixed detection architectures with mobile detection 

systems transported by patrol units notably enhances their coverage and operational 

performance. Finally, the modeling and simulation framework is used to obtain a Pareto 

frontier of distributed detection system architectures able to satisfy varying customer 

preferences on coverage performance and related cost. 
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CHAPTER I 

MOTIVATION 

1.1. Introduction 

 

The word engineering comes from the Latin ingenerare which means ―to create.‖ 

Engineering is the discipline of acquiring and applying scientific and technical knowledge 

to the design, analysis, and/or construction of works for practical purposes. It is the 

application of science to the optimum conversion of the resources of nature to the uses of 

humankind. The American Engineers' Council for Professional Development, also known 

as ECPD, defines Engineering as: "The creative application of scientific principles to 

design or develop structures, machines, apparatus, or manufacturing processes, or works 

utilizing them singly or in combination; or to construct or operate the same with full 

cognizance of their design; or to forecast their behavior under specific operating 

conditions; all as respects an intended function, economics of operation and safety to life 

and property." 0, [2], [3]. 

As such, while the function of the scientist is to know, that of the engineer is to do. 

Unlike the scientist, the engineer is not free to select the problem that interests him; he 

must solve problems as they arise; his solution must satisfy conflicting requirements. 

Usually efficiency costs money; safety adds to complexity; improved performance 

increases weight. The engineering solution should hopefully be the most robust solution, 

and always be the end result that, taking many controllable and uncontrollable factors into 

account, is most desirable.  

However, it is not always easy to determine the most robust solution to a problem 

especially when it comes to problems involving complex, interacting or disparate 

systems. Indeed, engineering problems span domains and timescales, with complexity 

that changes dramatically with the context of evolution of the world. As engineering 

knowledge and experience advance, man has been able to better design systems meeting 

his needs, in fields more challenging each time. As systems become more and more 

complex, the focus is now on designing a robust system-of-systems composed of 
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elements that may be different in their nature, but almost always interacting and 

interoperating. These elements need to be associated in a particular manner to reach a 

desired outcome. 

 

Such a challenge dominates thinking in the defense community of western countries: 

How can heterogeneous systems best be distributed over large areas to provide adequate 

global coverage at a reasonable cost in the context of homeland security? 

 

Indeed, the risks associated with interacting with foreign entities, whether it be by air, 

by land, or by sea keeps increasing and people struggle to find a way to protect borders, 

civil vital assets, population areas, land and coastal sites, as well as strategic sites and 

critical infrastructures. The sharing of information and the rapid evolution of technology 

not only enhance our life, but also confound hostile systems with friendly systems, thus 

increasing the lethality of threats to the national security of first world nations. Moreover, 

the development of sophisticated and advanced technologies and methods, and their 

availability to individuals engaged in criminal activities, pose an extreme challenge to the 

detection of potential malevolent entities hiding among daily activities and systems.  

Therefore, enhancing the capabilities of detection of items of interest (IoIs) that could 

be a threat to the populations and the nations’ assets is a necessity. This involves 

identifying the best positioning of detection systems enabling the protection of land and 

maritime borders with neighboring countries, as well as key assets and populations, in a 

timely fashion. However, this is hindered by the complex nature of the system-of-systems 

required to provide an adequate protection. Therefore, current systems used for the 

protection of borders, of populations and of national assets are generally not adapted to 

and not optimized for the problem at hand. Indeed, their efficient combination is usually 

hindered by the size of the assets to protect and by the cost required to protect them to an 

acceptable level. Besides, the assets requiring protection against potential malevolent 

systems are highly heterogeneous in nature, as are the potential threats to these assets. 

That may explain why as new threats and risks continue to emerge, armed forces are 

being called upon to secure and protect people and assets anywhere in the world. Such 

protection is no longer limited to times of war; civil unrest, peacekeeping, border 
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protection, and anti-terrorism operations are the new focus of developed nations.  Thus, 

increasingly rapid and flexible deployment of interrelating and interoperating systems, 

beyond normal theaters of operation to extremely diverse urban and rural environments, 

is required. This is why the definition of a portfolio of sensor systems able to provide 

adequate protection in a specific context is of high interest and is investigated as part of 

this work. 

 

1.2. Problem Definition and Motivation 

 

 “The world will not be destroyed by those who do evil, but by those who watch and 

do nothing.” 

 

- Albert Einstein 

 

During the World Wars, systems were designed to counter known adversaries with 

predictable doctrines and strategies. The current strategic environment, on the other hand, 

is dominated by uncertainty and driven by opponents that seek to exploit non-traditional 

weaknesses in the national security of developed countries.  

 

The first step in providing an efficient protection of the nations’ borders, key assets 

and populations, is to better delineate the scope of the problem and try to understand each 

term involved. 
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1.2.1. Homeland Security 

 

“[NATO] An Alliance in which Europe and North America are consulting every day 

on the key security issues before them. Acting together, in the field, to defend our shared 

security… Because in a dangerous world, business as usual is not an option.” 

 

- NATO Secretary General, Jaap de Hoop Scheffer 

 NDA Conference, May 17, 2004 

 

 

First and foremost, the general context of this study is homeland security. Homeland 

security “refers to domestic government actions against the threats of terrorism.  This 

term became prominent following the 9/11 attack. It includes emergency mobilization, 

including volunteer medical, police, and fire personnel. It also includes new domestic 

surveillance efforts, secret arrests and detention, and infrastructure protection, as well as 

border control” [4]. 

 

The tenets of homeland security are fundamentally different from those historically 

defined for national security. Indeed, historically, securing the nation entailed the 

protection of the armed forces outside the borders of the country. The goal was to ―keep 

the neighborhood safe‖ in the global and geopolitical sense. Nevertheless, the emergence 

of international terrorism within the nation’s own borders has moved the front line of 

domestic security to the streets. Faced with the realities and the cruelty of the September 

11
th

 attacks in the United States, the mission to protect our homeland now entails 

―keeping our neighborhood safe‖ in the most literal sense of the words [5]. 

 

Homeland security is further defined by Richard Falkenrath, former Deputy Assistant 

to the President and Deputy Homeland Security Advisor, as ―a concerted comprehensive 

and nationwide effort to prevent future terrorist attacks, to protect the most vulnerable 

targets against future terrorist attacks and to be ready to respond against possible attacks 
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and minimize loss of life and damage if such attacks occur‖ (NDA Conference, 

November 17, 2003) [6]. 

 

Finally, the ―National Strategy for Homeland Security‖ [4] aligns homeland security 

efforts into six critical mission areas:  
 

 Intelligence and warning 

 Border and transportation security 

 Domestic counterterrorism 

 Protecting critical infrastructures and key assets 

 Defending against catastrophic terrorism 

 Emergency preparedness and response 

 

As a summary, homeland security is essentially oriented towards the protection of our 

Nation’s main assets and our populations against potentially harmful activities that could 

operate by air, by land, or by sea. The main three aspects of homeland security studied in 

this research concern critical infrastructures protection, key assets monitoring, and border 

surveillance. These three areas of study are described in more details in the following 

sections.  

 

1.2.2. Critical Infrastructures  

 

 “Critical infrastructures consist of those physical and information technology 

facilities, networks, services and assets which, if disrupted or destroyed, would have a 

serious impact on the health, safety, security or economic well-being of citizens or the 

effective functioning of governments in the member states. Critical infrastructures extend 

across many sectors of the economy, including banking and finance, transport and 

distribution, energy, utilities, health, food supply and communications, as well as key 

government services” [7]. 
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Critical infrastructures are further defined as being those “systems and assets, whether 

physical or virtual, so vital to […] [ a country] that the incapacity or destruction of such 

systems and assets would have a debilitating impact on security, national economic 

security, national public health or safety, or any combination of those matters. More 

specifically, critical infrastructures are those people, things, or systems that must be 

intact and operational in order to make daily living and working possible” [8]. 

 

Critical infrastructures can be found in various sectors of activity, each important as 

regards to the general functioning of a human society. Examples include: 

 Energy 

 Water Services 

 Agriculture and Food 

 Communications and Information Technologies 

 Public Health Care 

 Emergency Services 

 Banking and Finance 

 Public and Legal Order and Safety 

 Civil Administration 

 Postal and Shipping 

 Transportation 

 Chemical and Nuclear Industry and Hazardous Materials and Biological 

Industries 

 Production, Storage and Transport of Dangerous Goods 

 Space and Research 

 Government 

 Defense Industrial Base 

 

Hence, it is vital for a community which depends on critical infrastructures for 

economic, security, quality of life, delivery of service and governance to protect such 

vital assets. 
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Indeed, the Homeland Security Presidential Directive 7 [9] clearly states that “Critical 

infrastructure and key resources provide the essential services that underpin […] [the] 

society. The Nation possesses numerous key resources, whose exploitation or destruction 

by terrorists could cause catastrophic health effects or mass casualties comparable to 

those from the use of a weapon of mass destruction, or could profoundly affect our 

national prestige and morale. In addition, there is critical infrastructure so vital that its 

incapacitation, exploitation, or destruction, through terrorist attack, could have a 

debilitating effect on security and economic well-being.” 

 

1.2.2.1. The Case for Critical Infrastructures 

 

Critical infrastructures frame our daily lives and enable us to enjoy one of the highest 

overall standards of life in the world. Needless to say that when we flip a switch, we 

expect light; when we pick up the receiver, we expect a dial tone; when we turn on a tap, 

we expect drinkable water; when we open the refrigerator, we expect to find fresh food; 

when we go to the pharmacy, we expect to find medicines. Electricity, 

telecommunications, clean water, food, medicines are only a few of the critical 

infrastructure services that we tend to take for granted. They are so well ingrained in our 

daily life that it is only when service is disrupted that we notice them. In such cases, we 

expect reasonable explanations and rapid restoration of service.  

As such, critical infrastructure sectors provide goods and services that contribute to a 

strong national defense and thriving economy. They also create a sense of confidence in 

the society, and their reliability, robustness and resiliency form a major part of the 

national identity and strategic purpose.  

However, whether it be in the United States or in Europe, critical infrastructures are 

highly sophisticated, complex, interdependent and connected. They consist of human 

capital and physical and cyber systems working together in processes that are highly 

interdependent. This is the result of the concentration of populations in urban areas, the 
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rationalization of the industry, the consolidation of corporation, and the adoption of 

efficient business practices, especially in Europe.  

To complicate the matter further, critical infrastructure components are often 

dispersed over large areas and are typically interconnected. They represent a true system-

of-systems as they dependent on the continued availability and operation of other 

dynamic systems and functions. Critical infrastructures have become more dependent on 

common information technologies such as mobile phones, internet and space-based radio-

navigation and communication. Hence, it is not difficult to conceive that problems can 

cascade through these interdependent infrastructures, causing unexpected and 

increasingly more serious failures of essential services. The interconnectedness and 

interdependence existing between critical infrastructures, along with their sheer numbers 

and pervasiveness, make them more vulnerable to disruption or destruction. The dynamic 

nature of these interdependent infrastructures and the extent to which our daily life relies 

on them, make a terrorist attack to destroy or disrupt them have a tremendous impact 

beyond the immediate target: the effects of the attack could indeed continue to 

reverberate long after the immediate damage is done [7], [10]. Nevertheless, given the size 

and scope of the potential target set for terrorists, one cannot assume that it will be 

possible to protect them all, completely, at all times, against all conceivable types of 

threats. Even with continuous monitoring and surveillance, threat interdiction remains an 

elusive and unrealistic goal.  

Moreover, trying to identify all possible exposure, to all possible threat events, across 

all critical components, and forecasting all possible consequences is an unthinkable task. 

Indeed, while one protective measure is developed against a particular terrorist tactic on a 

particular target, terrorists are already focusing on the development of a new tactic to 

attack another target. Hence, in order to be efficient and effective, one needs to have a 

thorough understanding of these complexities. 
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1.2.2.2. The Meaning of Criticality 

 

The Commission of the European Communities of 2006 [7] defines three major criteria 

for identifying critical infrastructures: scope and magnitude of the impact of the loss, and 

time scale of the impact. Each of these criteria may be defined as follows. 

First, the scope of the impact of the loss of a critical element is rated by the extent 

of the geographic area which could be affected by its loss or unavailability, and is 

separated into four categories: International, National, Provincial/territorial, and Local. 

Then, the magnitude of the impact of the loss of a critical element is assessed using 

a qualitative scale, as follows: None, Minimal, Moderate, and Major. 

Moreover, some criteria are defined in order to assess potential magnitude: 

 Public impact, namely the amount of population affected, the number of 

casualties, medical illness, serious injuries, the need of evacuation of a 

populated area 

 Economic, namely the effect on the GPD, the significance of economic loss 

and/or degradation of products or services 

 Environment, namely the impact on the public and surrounding location 

 Interdependency, namely the connection of the critical element under 

consideration with other critical infrastructure elements 

 Political, namely the confidence in the ability of government to tackle the 

problem 

Finally, the effects of time which ascertain at what point in time the loss of a critical 

element could have a serious impact, are measured using a quantitative scale such as: 

Immediate, 24-48 hours, One week, One month, One year, and Other. 

 

Taking the example of European countries, all infrastructures vital to the maintenance 

of primary social and economic processes are considered critical sectors. These critical 

sectors are the following: 
 

 Banking and Finance 

 Chemical and Biotechnological Industries 
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 Energy and Electricity 

 Nuclear Power Stations 

 Public Health 

 Public Safety and Order 

 Telecommunications 

 Transportation Systems 

 Water Supply 

 

In ―Risk Management and CIP: Assessing, Integrating, and Managing Threats, 

Vulnerabilities and Consequences‖ [11], criticality is typically defined as a measure of the 

consequences associated with the loss or degradation of a particular asset. Consequences 

can be categorized as follows: Economic, Financial, Environmental, Health and Safety, 

Technological, Operational, and Time to recover from an attack. 

While the immediate impact is important, the time and the resources required to 

recover from an attack or, if possible, to replace the lost capability, are quite significant as 

well. If the loss of an asset results in a large immediate disruption but the asset can be 

replaced or the service restored quickly and cheaply, or there are cost effective substitutes 

to the asset and/or the service provided, then the total consequence may not be so great. 

However, if the loss of an asset results in a small immediate disturbance but that 

disturbance continues for a long period of time because the capability cannot be 

reconstituted quickly or is lost forever, then the consequences are significantly more 

dramatic. 

Another issue is the interdependency among infrastructures: the higher the 

interdependency or dependency of one infrastructure on (an)other(s), the higher the risk 

of cascading consequences that might affect more than one facility/company/sector. For 

example, the loss of electric power can cause problems in the water purification process. 

Moreover, when assessing the criticality of an infrastructure, it is necessary to not 

only look at the dependent assets but also to look at the asset(s) on which the considered 

infrastructure depend(s). Indeed, a firm may rely on the output from a specific asset 

operated by someone else. The user may thus consider this asset critical from his 

perspective, but the owner and operator of the asset in question may not. Hence, it is 
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necessary to account for the vulnerability of those assets owned or operated by someone 

else that provide critical input(s) into (an)other system(s). 

Consequently, the interdependency issue can be seen as both technical and political or 

legal in the sense that it might be possible to induce an entity to protect another entity not 

considered critical by its owner or operator but critical for the former entity. 

 

1.2.3. Key Assets 

 

Key assets and high profile events are also potential targets for terrorist attacks that, in 

the worst case scenarios, could result in not only loss of a large number of lives and in 

property destruction, but also in profound damage to the nation’s prestige, morale and 

confidence. Even if it appears that key assets such as nuclear power plants, dams and 

hazardous materials storage facilities are not vital to the continuity of critical services 

within the nation, a successful strike on such targets could affect public health and highly 

damage public safety in the long term, in addition to human casualties and property 

destruction.  

Other key assets are simply part of the major symbols of the nation: national icons, 

monuments, museums, cultural buildings and historical attractions preserve history and 

culture, honor achievements, and represent the natural grandeur of a country. They 

celebrate the nation’s ideals and way of life, and present attractive targets to terrorists 

since they are highly coupled with national events and celebratory activities that bring 

together a significant amount of people at the same place and time.  

Another category of key assets includes facilities and structures that represent national 

economic power and technological advancement such as hazardous materials, fuels and 

chemicals storage facilities. Destruction or disruption of such facilities could have a 

significant impact on the public health and safety, as well as on national confidence and 

on the economy.  

A last category of key assets includes those places where large numbers of people 

regularly gather to conduct business activities or personal transactions, to shop or to enjoy 

themselves, such as commercial centers, sport stadiums, office buildings, national parks 
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and amusement parks. Given the national-level interest for these sites and the potential 

consequences on human life and societal well being, it is imperative to protect them to 

prevent fatalities and to preserve public confidence. 

In short, key assets represent such a broad array of unique facilities, sites and 

structures that, if they happen to be destroyed or disrupted, it could do great harm in 

multiple dimensions [5]. 

 

1.2.4. National Borders 

 

The national land and maritime borders are being secured by the National Border 

Patrol under the U.S. Customs and Border Protection (CBP) agency [12]. CBP is a special 

component of the Department of Homeland Security (DHS) tasked at deterring, detecting, 

and preventing threats from entering the country while facilitating legitimate trade and 

travel. This involves countering criminal and terrorist activities such as the illegal 

―exploitation of international passenger and commercial cargo transportation systems at 

327 official air, land, and sea (POEs).‖ [12] CBP is also responsible for securing about 

7,000 miles of land border and 95,000 miles of shoreline in collaboration with the U.S. 

Coast Guard. While its primary mission is the prevention of terrorism, the U.S. CBP is 

also responsible for apprehending illegal immigrants, drug and human smugglers, and 

other contraband-related individuals to protect the intellectual, economic and agricultural 

interests of the country [13]. 

In this context, the National Border Patrol’s strategy consists of five main objectives, 

described as follows [12]. 

 Preventing terrorists and terrorist weapons from entering the United States by 

detecting and apprehending terrorists and their weapons as they attempt to cross 

land and/or maritime borders. This may be done by enhancing partnership with 

other federal, state, local, and tribal law enforcement agencies, as well 

strategically deploying sensor systems able to detect, respond and interdict illegal 

border crossings.  
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 Strengthening, maintaining and expanding the operational control of borders to 

deter and prevent illegal entries of terrorists, terrorist weapons, drug smugglers, 

and illegal aliens into the United States. This may be done by the strategic 

deployment of border patrol personnel, equipment, technology, and infrastructure 

items such as roads, lights and fences.  This has already proven to be an efficient 

approach in high-traffic corridors and high-threat areas along the southwest border 

with Mexico where illegal border crossings and smuggling is a serious issue.  

 Protecting the citizens by prohibiting the introduction of illegal drugs, harmful 

materials and organisms, and by deterring human smuggling and other contraband 

activities. This may be done by deploying adequate resources in concerned 

geographic environments so as to detect, interdict, and respond to potential 

smuggling threats. This entails collecting, sharing, and processing related 

information, data and intelligence, in partnership with other centers and agencies 

such as the National Targeting Center (NTC) and the Immigration and Customs 

Enforcement (ICE) agency.  

 Making use of ―Smart Border‖ technology to enhance situational awareness, 

monitor, detect, respond to, and identify potential threats. This implies an 

appropriate coordination of activities between border patrol personnel and 

technology such as camera systems for day/night and infrared detection, radar 

platforms, aerial platforms, and other portable detection devices.  

 Reducing crime in border communities and improving the quality of life and 

economic well-being of concerned areas. This involves not only deploying 

resources in areas deemed high-threat or high-priority, but also conducting public 

outreach to educate populations about the risks associated with helping terrorists 

and smugglers to enter the country. 

 

The primary challenges faced by the U.S. Customs and Border Patrol consist in 

addressing dynamic threats and vulnerabilities by improving detection and surveillance 

capabilities able to complement and support existing agent resources, and by increasing 

the cooperation with Mexico and Canada to improve safety and slow illegal entries.  
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1.2.4.1. National Security 

 

In terms of national security, CBP faces the challenge of maintaining its vigilance in 

screening international travelers in order to try to uncover terrorist groups or individuals 

willing to harm the country. Such malevolent entities are indeed constantly improving 

their techniques to inflict harm on the country by cooperating with local terrorist groups, 

by intensifying their efforts to operate directly from the country they are targeting, and by 

attempting to acquire chemical, biological, radiological, and nuclear material to build 

weapons of mass destruction. Therefore, the CBP must adapt its plans and operations to 

detect and interdict terrorist threats to the public safety and security. In doing so, the CBP 

must adopt a multilayered approach in which it receives a-priori information on cargo, 

people, and other commercial goods about to enter the country, it identifies high-risk 

shipments, individuals, and other commercial goods with automated targeting systems 

and advanced inspection technologies, and it extends its authority outside of the country’s 

borders by cooperating with foreign law enforcement entities. Securing the country’s 

borders thus demands a complex, risk-based, layered approach. Gaining and maintaining 

control of the borders requires the deployment of a robust mix of technology, law 

enforcement personnel, and tactical infrastructure, as well intelligence and strong 

partnership with federal, state, local, tribal, and foreign governments [14].  

Moreover, illegal immigration and smuggling compromises the national security by 

creating pathways for illegal entry, demand for false documentation and identities. While 

most illegal immigrants and drug smugglers do not pose a direct threat to national 

security, they do provide underground networks for terrorists to successfully blend into 

the national population [15]. This is why controlling the flow of illegal immigrants across 

the borders is critical and challenging at the same time, and requires a proper mix of 

resources to enhance the ability of CBP to detect, apprehend, and prosecute people 

illegally crossing the borders in high-traffic and high-threat areas.  

Illegal drug smuggling and trafficking complicates the problem further in that they 

flow in both directions across the country’s borders and make use of both private and 

commercial vehicles, low-flying aircraft, small boats and all-terrain vehicles, as well as 

human transporters. This makes it laborious for law enforcement agencies to distinguish 
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between legitimate activities and suspicious entities despite the current radar technology 

deployed along the borders from which people, vehicles, and low-flying aircraft can 

escape detection in extreme terrains.  

 

1.2.4.2. Regional Threat Profile 

 

In this fight for national safety and security, the border is not merely physical. 

Maintaining control of and securing the borders thus involves paying attention to each 

specific region of the borders and to what happens far outside the country. Border 

security is a continuum of actions relying on the geographical border as the last line of 

defense rather than the first. Each region of the geographical border requires focused 

analysis, strategies and implementation plans that are tailored to address problems 

specific to that region [13]. For instance, three main regions can be indentified in the U.S. 

border: the northern border region with Canada, the southwest border region with 

Mexico, and the southeast coastal border region with the Caribbean countries and the 

Central American countries through the Gulf of Mexico [12].  

 The northern border region corresponds to the area running between Canada and 

the United States from Washington state through the Great Lakes Region to the 

state of Maine. Although the border is neither actively patrolled nor militarized, 

illegal immigration and smuggling regularly occur from major Canadian cities that 

are proximate to the U.S. border. Furthermore, known extremist and terrorist 

groups have been historically present along the northern border both in Canada 

and in the United States.  

 The southwest border region spans more than 2,000 miles between the United 

States and Mexico. The terrain around the border is typically extremely harsh and 

inhospitable which represents a challenge to border security missions. The 

southwest border region provides relatively easy access into the United States for 

the most common transnational threats such as drug trafficking, human 

smuggling, and terrorism. The southwest border is currently equipped with 33 

legitimate ports of entry separated by hundreds of miles of open desert, 
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mountains, the Rio Grande River, and the corresponding coastal waters. These 

scarcely populated areas provide a perfect environment for cross-border illegal 

and criminal activities. The most rampant national security vulnerability concerns 

drug and human trafficking which exploits the border in both directions: from 

Mexico to the United States to smuggle drug and people, and from the United 

States to Mexico to move money and weapons.  

 The southeast coastal region which extends for more than 2,000 miles, represents 

a unique detection and surveillance challenge for ground, aircraft, and sea patrols 

due to the difficulty at effectively maintaining a comprehensive situational 

awareness of low-flying aircraft and water-surface vehicles over large geographic 

areas. The major threat faced by the CBP at the southeast border mainly concerns 

contraband smuggling originating from the Yucatan peninsula and the Caribbean 

islands, proceeding to the southern islands of the Bahamas. Aerial and maritime 

vessels combine their efforts to then transport the merchandise to Florida’s 

western coast and to the rest of the United States. This presents a troublesome 

threat in that smugglers usually operate at night via aerial and marine vehicles 

moving at maximum speeds, only stopping to refuel and check for surveillance 

systems.  

 

1.2.4.3. Customs and Border Protection Goals and Objectives 

 

The first strategic goal of the CBP is to ―secure the Nation’s borders to protect [the 

country] from the entry of dangerous people and goods and prevent unlawful trade and 

travel.‖ [14] The corresponding main objectives are: 

 To gain and maintain control of aerial, ground, and marine borders by using a 

robust mix of technology, people, and tactical infrastructure. Effective control of 

segments of the border implies being able to detect, identify, classify, 

satisfactorily respond and resolve suspicious activities and illegal entries into the 

country. In order to do so, it is necessary to enforce laws and regulations related to 

immigration, customs, trade, and agriculture. This involves developing a layered 
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defense approach through which robust technology solutions can support and 

complement personnel and tactical infrastructures such as roads, lights, pedestrian 

and vehicles fences in their security efforts.  

 To detect and interdict the illegal entry of materials, goods, and weapons into the 

United States through the use of advanced scanning and inspection techniques at 

ports, airports, seaports, permanent land ports of entry, and international areas 

where CBP operates. The success of this approach resides in the continuous 

improvement and deployment of non-intrusive inspection technologies able to 

detect and interdict weapons, drugs, currency, and other contraband concealed in 

large commercial containers. This ensures that the CBP can respond to increases 

in both the local and national threat level as well as in the volume of cargo and 

goods crossing the borders.  

 To prevent the entry of malevolent entities into the United States through the 

adequate gathering of intelligence, biographical information, and biometric data at 

ports, airports, seaports, permanent land ports of entry, and international areas 

where CBP operates. This objective is enabled by intelligence technologies such 

as the U.S. Visitor and Immigrant Status Indicator Technology (US-VISIT) 

program and the Automated Biometric Identification System/Integrated 

Automated Fingerprint Identification Systems (IDENT/IAFIS) which collects and 

maintains a database of fingerprints and photographs of every one individual 

entering the United States. This provides an unalterable and unassailable way of 

preventing identity fraud and identifying people with criminal histories or related 

to terrorist groups or activities.  

 To provide the training and the technological means to the CBP agents on the field 

to enhance their ability to address crucial interdiction missions. This entails 

―executing counterterrorism and counternarcotics operations, initiating high-risk 

arrests, safeguarding Federal assets and personnel‖, protecting ports of entries, 

managing high-risk entries, ―conducting special interdiction operations‖, and 

addressing any other similar tactical events.  
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The second strategic goal of the CBP is to ―ensure the efficient flow of legitimate 

trade and travel across U.S. borders.‖ [14] The corresponding objectives are: 

 To effectively and efficiently process people and goods at ports, airports, and 

seaports using accurate intelligence and modern inspection and processing 

techniques. For instance, the Trade Act of 2002, the 24-hour rule, and the SAFE 

Port Act enable collecting information about passengers and goods arriving in the 

United States. Then, the Automated Targeting System (ATS) can perform 

additional analysis on people and shipments requiring closer inspection. As for the 

Automated Commercial Environment (ACE), it provides the CBP and other law 

enforcement personnel with intelligence regarding cargo so that is can either be 

expedited or be further inspected due to potential risk issues. This improves traffic 

management and efficient movement of passengers and goods at ports, airports, 

and land ports of entry. Concerning passengers, the Secure Electronic Network for 

Traveler Rapid Inspection program, developed at the southwest border in 

collaboration with Mexico, and the NEXUS program, developed in cooperation 

with Canada, facilitate the process on entry into the United States of low-risk 

trusted travelers. As for commercial drivers, and commercial air travelers, they are 

covered from the Free and Secure Trade program and from the Global Entry 

program respectively. The most recent addition to the above suite of advanced 

inspection and processing technologies is the coupling of the Enforcement case 

Tracking System (ENFORCE) with modern biometric techniques. This system 

utilizes a more accurate fingerprint capture and validation process to expedite 

clearance at land ports of entry of eligible travelers having no prior disqualifying 

criminal activity.  

 To consistently apply enforcement actions so as to target and deter non 

compliance with international trade rules. This objective is meant to prevent illicit 

and unfair trade practices and enterprises while facilitating the movement of 

goods and people into the country. This is complicated by the ever-increasing 

demand for international trade and the resulting complex and dynamic commercial 

environment. To meet this objective, CBP must employ a layered approach 

involving ―state-of-the-art analysis and targeting, international verification, 
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focused border enforcement, post-entry reviews and audits, and stiff punitive 

actions.‖ [14] 

 To facilitate the effective release of legal commercial cargo by conducting regular 

reviews and ensuring compliance with trade rules. In order to identify potentially 

high-risk trade areas and to balance security, risk and efficiency, the CBP 

prioritizes its efforts on three main principles. The first one concerns trade issues 

that relate to the economic well-being of the country, and to the public health and 

safety. The second principle involves trade issues that may present non-

compliance, technical problems, lack of automation, and complexity. The third 

and last principle is meant to provide guidance to commercial traders by 

formulating regulations, rules, and directives to perform legal trade with the 

United States.  

 

In order to enable the above strategic goals and objectives, it is necessary to put into 

place three major cross-cutting tools and techniques that will prove critical to CBP’s 

mission success. The first action plan consists in increasing the sharing of intelligence 

information to maximize border security. This entails collecting real-time data from 

detection infrastructures at the border as well as from officers and agents on the field so 

as to help in decision-making. The gathered information can then be reported and 

disseminated to other critical mission partners and offices. The second action plan 

requires establishing and strengthening partnerships with federal, state, local, tribal, 

industrial and international entities to facilitate global trade and travel while complying 

with agricultural, immigration, and other federal laws and regulations. This is meant to 

enhance the clearance of cargo, the security of the supply chain, and the compliance with 

trade rules. To do so, agriculture specialists, Border Patrol agents, CBP officers, and Air 

and Marine Interdiction agents are being deployed in selected western countries to 

prevent illegal immigrants, drugs, terrorists, and weapons from entering the country. 

Their duty is to train foreign government agency personnel to collect information and 

interdict potentially high-risk people and products from crossing the borders of the United 

States. On the mainland, CBP cooperates with the U.S. Coast Guard (USCG), the ICE, 

and other affiliates of the DHS to gain better control of the border by deterring and 
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apprehending suspicious people and products before they are the subject to any criminal 

activity within the U.S. territory. In addition to the enhancement of partnerships and 

collaborative efforts to promote security and improve border control, the CBP engages in 

pursuing new relationships with the U.S. Food and Drug Administration (FDA), the 

Centers for Disease Control and Prevention (CDCP), and the U.S. Consumer Product 

Safety Commission (CPSC) in order to protect public health against potential chemical, 

radiological, nuclear, agricultural, and other products-related threats. The third action plan 

consists in promoting an environment that leverages ―state-of-the-art technologies, 

innovative strategies, and worldwide partnerships to protect America’s communities and 

defend its borders.‖ [14] This involves bringing together several technology-, finance-, 

resource-, training-, and program-related management practices to create a global 

framework able to attract a talented and dedicated workforce motivated by an 

achievement and results-driven culture that fosters integrity. The success of this action 

plan requires highly trained mission support personnel, supervisors, managers, and 

executives dedicated to prevention, detection, and investigation. This implies 

strengthening the measures and processes followed when hiring new personnel by 

promoting security specialists, polygraph examiners, and behavior analysts so as to 

enhance and accelerate background checks, deal with corruption and misconduct in the 

field, and ―conduct covert field surveys, inspections, and surveillance in efforts to 

strengthen integrity.‖ [14] 

 

Several measures of performance can be brainstormed to capture the effectiveness of 

the two aforementioned strategic goals. These are essentially quantifying the ability of the 

CBP to control and secure the Nation’s borders on the ground, in the air, or at sea, as well 

as the compliance with trade regulations at the border, the efficiency of cross-cutting tools 

and technologies enabling the collection and sharing of intelligence, and the quality of 

training of CBP personnel. Such measures of effectiveness for the first strategic goal 

include, but are not limited to, the number of land and coastal borders under control, the 

total number of border miles covered by permanent tactical infrastructure, the percentage 

of active ground personnel, of air support launches and marine support launches 

accomplished to secure the border, the percentage of strategically controlled high-risk 
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border miles, of commercial containers and trucks inspected, and of apprehensions 

performed at the border. The measures of performance for the second strategic goal 

include, but are not limited to, the percentage of compliant passengers, and agricultural 

vehicles with law, regulations, and trade rules, the speed of clearance of passengers and 

cargo that do not require additional screening, the percentage of foreign suspicious or 

high-risk people and cargo examinations resolved, the total amount of shared information 

between the CBP and other concerned government agencies, as well as the number of 

patrol agents proficient in prevention, detection and investigation. 

 

1.2.5. Threats to Homeland Security 

 

The threats to homeland security are numerous and come in several forms [18]. They 

can be categorized as follows: 

 

 

 Biological 

o Epidemic 

o Infestation 

o Public Health Emergency 

o Medical Emergency 

 

 Geological 

o Earthquake 

o Landslide 

o Tsunami 
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 Meteorological 

o Cold Wave/Heat Wave 

o Drought 

o Flood 

o Storm Surges 

o Thunderstorm  

o Tropical Storm 

o Hurricane/Typhoon 

o Tornado 

o Snowstorm 

o Snow Avalanche 

o Freezing Rain 

o Water Main Break 

 

 Technological 

o Industrial Accident (Hazardous Chemical Leak, Industrial Fire, 

Gas Explosion, Fuel Spill, Hazardous Material Spill) 

o Transport Accident (Train, Automobile, Aircraft) 

o Other Accident 

o Fire 

o Hazardous Chemicals Release 

 

 Man-induced 

o Terrorism 

o Civil Unrest 

o Computer Hacking 

o Malicious Damage 

o Drug and Human smuggling 

o Contraband 

o Illegal Border Crossing 
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Therefore, the threats to homeland security can be classified into two main categories, 

namely natural and ―man related.‖ In light of what has been presented so far, the present 

work focuses on ―man related‖ threats. Among these, terrorism and illegal border 

crossing have been identified as the most rampant and, thus, deserve if not all, the major 

part of our most careful attention. 

 

1.3. Protection of Critical Assets as it is Organized Today 

 

In order to elaborate a strategy for surveillance, monitoring, and protection missions 

in the context of homeland security, it may be worthwhile to look more closely at how 

critical assets protection, including national borders control, is organized in the United 

States and in Europe, two of the major developed nations facing man-related threats to 

homeland security. 

 

1.3.1. United-States vis-à-vis Europe 

 

The September 11
th

, 2001 attacks on the World Trade Center and the Pentagon in the 

United States, along with subsequent terrorist attacks in European countries such as the 

United Kingdom and Spain, have prompted both sides of the Atlantic Ocean to 

reinvestigate their efforts to ensure homeland security and combat terrorism inside, at, 

and beyond their borders. However, European countries tend to approach homeland 

security, counterterrorism, and border protection differently from the United States. 

 

1.3.1.1. United States 

 

The American people have chosen to reorganize their domestic security and border 

protection institutions in order to include federal, state and local entities in the effort. This 

reorganization is characterized by the creation of a particular institution, the Department 

of Homeland Security (DHS), to provide the unifying core for the vast national network 



24 

 

of organizations and institutions involved in the implementation of the national strategy 

for homeland security and counterterrorism. This strategy involves the cooperation and 

coordination of both public and private sectors playing a role in the protection of the 

homeland and the emergency planning of response to a threat, whether it be a natural 

disaster, a human error or a terrorist attack.  

Indeed, federal, state and local officials have different roles in disaster response, 

homeland security and terrorism response situations. In natural disaster events, the federal 

government is responsible for early detection and forecasting activities. Federal agencies 

including FEMA, USACE and USDOT assist state and local governments in response 

and recovery operations. For homeland security and terrorist threats, the federal 

government is responsible for the detection and prevention of terrorist attacks, while state 

and local groups carry out preparedness and response activities. In order to be effective, 

disaster planning, response, recovery and mitigation activities must be fully integrated 

into ―normal‖ planning and operational activities conducted in an inter-agency climate of 

cooperation and coordination. Disaster management represents a set of interdependent 

problems that require intensive communication and coordination among organizations 

and jurisdictions to reduce risk and losses [16]. For border protection, the U.S. Customs and 

Border Protection collaborates with federal, state, local, tribal, and international entities to 

enhance the security of both land and coastal borders while facilitating the legal travel 

and trade [17]. This layered approach involves several agencies, such as the Office of 

Border Patrol (OBP), the Office of Air and Marine (OAM), the Office of Technology, 

Innovation and Acquisition, and the Office of International Trade, that ensure that the 

U.S. borders are neither the first nor the last line of defense but one among many others. 

 

1.3.1.1.1. Reference Documents 

  

On July 16
th

, 2002, President Bush issued the ―National Strategy for Homeland 

Security‖ [4], an overarching strategy for mobilizing and organizing the American Nation 

to secure the U.S. homeland from terrorist attacks. It communicates a comprehensive 

approach “based on the principles of shared responsibility and partnership with 
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Congress, state and local governments, the private sector, and the American people”—a 

truly national effort, not merely a federal one. The National Strategy for Homeland 

Security defines ―homeland security‖ and identifies a strategic framework based on three 

national objectives.  

 

In order of priority, these are:  

 Preventing terrorist attacks within the United States  

 Reducing America’s vulnerability to terrorism 

 Minimizing the damage and recovering from attacks that do occur 

 

To attain these objectives, the ―National Strategy for Homeland Security‖ [4] aligns 

homeland security efforts into six critical mission areas: intelligence and warning, border 

and transportation security, domestic counterterrorism, protecting critical 

infrastructures and key assets, defending against catastrophic terrorism, and 

emergency preparedness and response.  

 

Then, the ―National Strategy for the Physical Protection of Critical Infrastructures and 

Key Assets‖ [5], takes the next step to facilitate the strategic planning process for a core 

mission area identified in the ―National Strategy for Homeland Security‖ – reducing the 

Nation’s vulnerability by protecting our critical infrastructures and key assets from 

physical attack. It identifies a clear set of national goals and objectives, and outlines the 

guiding principles that underpin the efforts to secure the infrastructures and assets vital to 

the U.S. national security, governance, public health and safety, economy, and public 

confidence. It also provides a unifying organizational structure and identifies specific 

initiatives to drive the near-term national protection priorities and inform the resource 

allocation process. Most importantly, it provides a foundation for building and fostering 

the cooperative environment in which government, industry, and private citizens can 

carry out their respective protection responsibilities more effectively and efficiently. 

 

Finally, the ―National Border Patrol Strategy‖ [12] along with the ―Secure Borders, 

Safe Travel, Legal Trade‖ [14] complement the ―National Strategy for Homeland Security‖ 
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by defining the critical role of the U.S. Customs and Border Protection in securing the 

Nation’s borders – land, sea, and air – at major ports of entry and in between [15], while 

facilitating the movement of legal passengers and cargo in and out of the United States. 

The ―National Border Patrol Strategy‖ identifies the major goals of the Border Patrol, lists 

the corresponding enablers, and summarizes the efforts required to take and maintain the 

operational control of the nation’s borders, particularly that with Mexico and Canada. It 

builds upon many elements of previously enforced deterrence programs, such as 

Operations Gatekeeper and Hold the Line, but goes way beyond by incorporating six core 

elements: to deploy an appropriate combination of patrol agents, integrated detection and 

sensor technology, air and marine assets, and tactical infrastructure, to improve the rapid 

and efficient deployment of counteraction and interdiction units according to changes in 

smuggling routes and tactical intelligence, to develop operational control at and between 

interior check points, away from the physical border, to successfully deny illegal 

migration inside the country, to expand coordination and partnerships with other national 

or foreign law enforcement agencies to achieve better control of the borders, to improve 

the gathering, the sharing, and the exploitation of border intelligence and awareness, and 

to strengthen and centralize the structure of the command centers. In order to fulfill the 

priority mission of the Department of Homeland Security to prevent terrorists and 

terrorist weapons from entering the United States, the ―National Border Patrol Strategy‖ 

focuses on the traditional Border Patrol’s missions of detecting and apprehending illegal 

immigrants, drug and human smugglers, and other contraband dealers before they cross 

the borders. Finally, the ―Secure Borders, Safe Travel, Legal Trade‖ completes ―National 

Border Patrol Strategy‖ by addressing the issue of facilitating legal trade and travel while 

securing the nation’s borders. It provides an overview of the main mission, the core 

values, and the vision of the CBP, as well as the challenges involved and the regional 

threats to the national security, the economy, and the public safety. It also gives a detailed 

description of CBP’s main goals and objectives, and of the related cross-cutting enablers 

that are critical to CBP success in its double mission of expanding and maintaining 

operational control of the nation’s borders while facilitating the flow of legal people and 

goods through the borders. 

 



27 

 

1.3.1.1.2. Organization 

 

From an organizational point of view, in the United States, federal, state, and local 

entities have been combined into the Department of Homeland Security which mainly 

deals with border and transportation security, critical infrastructures and key assets 

protection, and defense against catastrophic terrorism, via its various affiliate offices and 

agencies. This is shown in Figure 1. 

 

 

Figure 1: Organization of the Homeland Security in the United States 
[14]

 

In the above figure, the Transportation Security Administration (TSA), the U.S. 

Customs and Border Protection (USCBP), and the U.S. Coast Guard (USCG) collaborates 

to secure the nation’s land, air, and sea transportation systems and borders while 

facilitating the flow of legal people and goods into and out of the United States.  

In particular, the protection of critical infrastructures and key assets is organized 

around a variety of departments which have their own field of action corresponding to the 

sectors of critical infrastructures defined in the ―National Strategy for Homeland 

Security‖ [4], such as agriculture, food, water, public health, emergency services, 
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government, defense industrial base, information and telecommunications, energy, 

transportation, banking and finance, chemical industry and hazardous materials, postal 

and shipping. Figure 2 shows the federal government organization for the protection of 

critical infrastructures and key assets in the United States [5]. This is a centralized structure 

at the center of which is the Secretary of Homeland Security who coordinates the various 

departments, offices, and agencies responsible for securing the nation’s assets. 
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President 

 

 

Secretary of Homeland Security 

Federal, state, local, and private sector coordination and integration 

Comprehensive national infrastructure protection plan 

Mapping threats to vulnerabilities and issuing warnings 

 

Sector Lead Agency 

Agriculture Department of Agriculture 

Food:  

Meat and Poultry Department of Agriculture 

All other food products Department of Health and Human Services 

Water Environmental Protection Agency 

Public Health Department of Health and Human Services 

Emergency Services Department of Homeland Security 

Government:  

Continuity of Government Department of Homeland Security 

Continuity of Operations All departments and agencies 

Defense Industrial Base Department of Defense 

Information and Telecommunications Department of Homeland Security 

Energy Department of Energy 

Transportation Department of Homeland Security 

Banking and Finance Department of the Treasury 

Chemical Industry and Hazardous Materials Environmental Protection Agency 

Postal and Shipping Department of Homeland Security 

National Monuments and Icons Department of the Interior 

Figure 2: Federal Government Organization to protect U.S. Critical Infrastructures and Key Assets 

In terms of border and transportation security, the U.S. Customs and Border 

Protection Agency is composed of several offices, each taking care of a particular aspect 

of border protection. For instance, the secure border initiative [13] and the secure freight 
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initiative are meant to ensure the operational control of the border while allowing the 

legal movement of people and cargo through the national land and coastal borders. The 

above various offices are under the command of the chief of border patrol, the assistant 

commissioner of air and marine customs and border protection, and the assistant 

commissioners of intelligence and operations coordination, of field operations, and of 

international trade. This is depicted in Figure 3 which also highlights the importance of 

border protection through the secure border initiative and the chief of border patrol in 

apprehending illegal immigrants, drug and human smugglers, and other contraband- or 

terrorist-related individuals or groups. 

 

Figure 3: Organization of U.S. Customs and Border Protection Agency 
[13]

 

 

1.3.1.2. Europe 

 

On the opposite side of the Atlantic, the European countries have decided to take 

advantage of their already existing institutional architectures to combat terrorism and 

respond to other security challenges and disasters, both natural and man-made. European 

countries have long been confronted to terrorist threats requiring military, law 

enforcement and intelligence responses. It is essential to recognize that the European 

experience with terrorism differs fundamentally from the threat of mass terrorism posed 
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in recent years by terrorist organizations in the United States. In particular, European 

countries have been subjected to attacks by home-bred terror groups which are 

completely different in nature and in mentality from the contemporary transnational 

terrorist groups.  These groups did not seek the destruction of a state or government, and 

were not really interested in causing major loss of life. Rather, they sought changes in 

policy or independence, and mass casualties would have compromised their cause.  

However, it is legitimate to recognize that most European countries, with the 

exception of Spain and the United Kingdom (UK) which suffered from bombings in 

Madrid in 2004 and London in 2005, have not directly experienced the kind of 

catastrophic terrorism that has been directed against the United States. If they had, it is 

likely that they would now perceive the threat in a much different light. This may explain 

the differences in approaching the terrorist threat between the United States and Europe. 

For example, the Department of Homeland Security has no exact counterpart in European 

countries. As a matter of fact, the word ―homeland‖ is relatively new in Europe, and the 

issue of homeland security has only been brought to attention in recent years. As such, 

most of the functions of the Department of Homeland Security are spread across a range 

of ministries and government agencies in Europe, such as the Ministries of Defense, 

Interior and Justice. Therefore, there is no entitled central entity that coordinates the 

efforts of homeland security in Europe, as is the case in the United States through the 

Department of Homeland Security.  

 

1.3.1.2.1. Defending the Homeland 

 

Homeland defense is part of the more general homeland security mission. As 

mentioned by John Clarke [19], ―The homeland defense mission, as set forth in doctrinal 

publications of the US armed forces, focuses on the role that military and other armed 

security forces play in ensuring the key elements of homeland security.‖  

Protection of populations and critical assets against potential harmful individuals, 

groups, or activities is one of the main issues in the homeland security rubric. This entails 

preventing people and cargo from illegally penetrating through the various land, air, and 
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sea borders of the country via ports, airports, and permanent land ports of entry. In this 

area, European countries are almost unbeatable. As in the United States, there are critical 

infrastructures and key assets upon which European countries rely in order to function 

properly. These systems have become highly vulnerable over the past few years, even if 

they have gained in efficiency due to automation and electronic management. 

Nevertheless, they offer tempting targets for terrorists. 

To face the terror movements of the 1970’s and 1980’s, European countries have 

devoted considerable resources to the protection of a broad range of potential targets that 

we now refer to as critical infrastructures. Therefore, European law enforcement and 

military forces have quite a developed experience in providing security for key 

governmental assets and individuals. In particular, the Ministry of Defense plays an 

essential role in the prevention of, and in the fight against, terrorism. For instance, in 

France, the armed forces, the national gendarmerie, the General Delegation for the 

Armament (DGA) (French Department of Defense), the Military Health Service (SSA) 

and the intelligence agencies under the Ministry of Defense are permanently in alert to 

secure the French population and the critical assets they depend on. ―Defense has the 

mission to ensure the security and the integrity of the territory as well as the population 

safety, any time, under any circumstances and against any attack‖ [20].  

European Ministries of Defense and associated agencies are equipped with specific 

capabilities to ensure the security of the population in every situation, along with the 

well-being of the society. For example, in France, the protection of the population against 

chemical, biological, radiological, nuclear and bacteriological threats is made possible 

through the expertise of hundreds of scientists working in the laboratories of the General 

Delegation for the Armament (DGA) or in the Military Health Service (SSA). Other 

missions incumbent on the Defense sector include securing maritime and aerial routes and 

borders by employing state-of-the-art technology, gathering intelligence, supporting the 

population in the organization of special events, providing emergency medical assistance, 

controlling supply flows, protecting critical installations, and planning and managing 

complex crisis situations. 

Actually, as shall be detailed in subsequent sections, the Defense sector in Europe is 

the only public institution capable of deploying a rapid and strong response to face a 
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particular situation, not only in terms of strength, but also in terms of volume and power 

of the technologies used in the field, and in terms of logistics and organization of the 

activities. The protection of the national territory, of the population and of the interests of 

the country is at the heart of the mission of the Ministry of Defense and related agencies. 

The emergence of a mass terrorism has made homeland security a priority. It is now all 

about protecting the nation’s borders, critical assets and population against aerial and 

maritime threats, securing sites, protecting freedoms and continuity of government action 

by ensuring the delivery of essential services for the safeguard of the population and the 

well-being of the society [10]. 

Besides, Europe has considerable experience in intelligence sharing as part of a 

counter-terrorism effort: in France, the ―Secrétariat Général de la Défense Nationale‖ 

(SGDN) coordinates the efforts of the judicial and executive branches. European 

countries are facing the same concern as the United States as regards the implementation 

of a strategy improving security, but still compliant with civil liberties. While there has 

been vigorous debate on such issues in the United Kingdom, civil liberties are fervently 

and traditionally protected in Germany, Spain, and Italy in light of their histories. 

Nevertheless, due to recent terrorist activities, such as the terrorist attacks on commuter 

trains in Madrid in 2004 or the metro bombings in London in 2005, these countries are 

currently discussing the strengthening of measures destined to ensure domestic security.  

As to France, even if such values as free speech and freedom of religion are still 

vigorously protected, the need for public order that emerged after the September 11
th

, 

2001 attacks in the United States has progressively lead the French society to take steps to 

enhance security [21]. 

When it comes to the budget allocated to intelligence and law enforcement efforts 

against terrorism, it varies widely among European countries, although most of them have 

devoted increased funds to such efforts over the last years. For instance, the European 

commission allocated 15 Million Euros of funding to 15 projects in the field of security 

between 2004 and 2006. The projects were funded under the Preparatory Action for 

Security Research (PASR), which focuses on bridging the gap between civil research and 

national security research initiatives. The security issues addressed by the funded projects 

go from the detection of explosives and biological agents to the development of tracking 
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and surveillance systems [22],[23]. Between 2004 and 2007, the PASR has funded a total of 

39 security research projects to the tune of 45 Million Euros. Indeed, security research is 

a key part of the Seventh Framework Program or 7FP with an average annual budget of 

200 Million Euros. The European commission has also prepared a program for the 

―prevention, preparedness and consequence management of terrorism.‖ The funding is 

supposed to be approximately 1,400 million Euros ―sufficient for soft issues.‖ However, 

the commission considered making available an annual amount of 250 million Euros 

between 2007 and 2013 for research into practical strategies for risk mitigation [24] under 

the Security Work Program. The later program is strictly focused on the implementation 

of policies to support civil applications of security in the domains of transport, health, 

energy, environment, and population protection. The primary mission areas funded under 

the FP7 Security program encompass the protection of citizens against terrorist activities 

and organized crime, the protection of infrastructures, potential target sites of political or 

symbolic value, and utilities such as energy, transport, communication, and finance, the 

surveillance of the borders against illegal entries of people and goods, the enhancement of 

emergency management, recovery, and rescue tasks in case of a security crisis, the 

improvement of the integration, intercommunication, and interoperability of security 

systems, equipments, services, and processes, as well as of the standardization and 

sharing of intelligence information and processing, the study of the socioeconomic 

aspects of security measures such as the attitude of citizens, the behavior of crowds, the 

communication issues with the public, the public acceptance and understanding of 

security and control measures, and the analysis and building of scenarios to coordinate 

and structure security research [25]. Nonetheless, since responsibilities for homeland 

security issues are often spread among different government entities, it is difficult to 

evaluate and compare funding allocated to measures for strengthening transport security, 

improving emergency preparedness and planning, countering chemical-biological 

incidents and protecting populations and critical assets among European countries.  

This is especially true in the domain of border protection, where two separate entities, 

the Customs Administration and the Border Guards Administration, share responsibilities 

in managing the borders of the European countries [26]. Indeed, depending on the country, 

the form and extent of cooperation between the two agencies vary significantly, from 
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being completely independent and lacking communication, through having a substantially 

developed cooperation, to being merged into a single entity. This diversity in handling 

border protection from one European country to the next essentially comes from the 

differences in institutional set-up, legislation, and historical powers and competencies of 

both Customs and Border Guards Administrations. More specifically, the main challenges 

to cooperation between the aforementioned administrations can be divided in three 

classes. The first class concerns operational challenges such as legal obstacles related to 

privacy, sharing of financial planning, equipment, infrastructure and costs, trade and 

intelligence data protection and sharing, as well as technical incompatibility or mistrust 

between the two entities. The second class consists of challenges related to differences in 

institutional cultures, and to functional and organizational inequalities which produce 

tension between the two agencies and prevent them from cooperating and communicating 

efficiently. For instance, on the one hand, Customs agencies in the European Member 

States such as the Civil Guard Corps in Spain, the Guardia di Finanza in Italy, the 

Gendarmerie Maritime in France, and the Coast Guard in Greece are part of the Finance 

Ministry which has the institutional culture of a civil administration. On the other hand, 

the Border Guards and other Law Enforcement Agency Institutions performing similar 

duties often belong to the Ministry of the Interior or to the Ministry of Defense whose 

organizational structures has retained some form of military culture. This generates 

significant differences in the models of recruitment, education, training, and carrier paths 

of both Customs and Border Guards officers, so that their competencies used to exclude 

any overlap of tasks and functions and cooperation is mostly based on informal contacts. 

The last class of challenges concerns political considerations. Political influence on 

border protection is felt differently depending on the European Member State considered: 

it can be inexistent at all levels of command, it can be present at the highest level of 

command only, or it can act directly via the election of the Heads of Customs and of 

Border Police. This political influence presents two main obstacles to the cooperation 

between the Customs and the Border Guards Administrations. First, the loyalty of 

Customs to the Ministry of Finance, and that of the Border Guards to the Ministry of 

Defense generates suspicion and avoidance of cooperation with the competing ministry. 

Second, changes in the organizational structure of the agencies tend to make it difficult to 
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maintain informal contacts and trust developed between their managements in the long 

run [26].  

 

1.3.1.2.2. Military Civil Support and Forces for Homeland Security 

 

Europe has a broader experience concerning missions involving military support to 

civil authorities: the restrictions are less definitive and the range of operations is larger 

than in the U.S. Many countries, such as France and Germany, do assign military forces 

specific authority to support civil authority. On the contrary, in the United States, the 

military forces are always in a supporting role, generally restricted to executing missions 

of military assistance to civil authorities. 

In many European countries, the use of military forces is not considered a last resort. 

Rather, their employment is often considered a matter of course. As such, military forces 

have broader responsibilities than in the United States: they directly support civilian 

authorities in times of disaster, whether natural or man-caused. In the United States, 

presidential authority is required for the employment of active-duty forces, whereas in 

Europe generally much simpler requirements apply. Many European armies can be 

directed to engage in support tasks by the defense minister, rather than the president or 

the prime minister. Hence, it is not uncommon to find military units supporting 

international events, such as bicycle and ski races, as well as large cultural events such as 

major exhibitions and fairs. In this European context, military forces have been employed 

so often that their support to civil authorities during major disturbances is relatively 

uncontested and even taken for granted [19]. 

Contrary to the United States, European countries do not have a federal structure and 

decentralized law enforcement. Instead, they have considerably more options at their 

disposal for carrying out key homeland security tasks. Indeed, in addition to military 

forces, there are many different kinds of police forces playing a significant role in 

homeland security that do not have any equivalent in the United States. Unlike the United 

States, European countries have long employed active-duty forces and reserve forces in 

executing key homeland security missions, and still maintain a large number of military 
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formations on their home territory. Consequently, they have a high density of armed 

forces relative to population, and these are available for homeland security missions. 

In addition, many European countries have specialized police forces at their 

disposition, capable of a broad range of homeland security functions. In particular, the 

paramilitary forces have long experience in carrying out tasks associated with combating 

terrorism such as infrastructure protection and special event security. Forces like France’s 

Gendarmerie, Italy’s Carabinieri and Spain’s Guardia Civil represent force models nearly 

ideal for homeland security missions due to their high mobility, equipment and 

experience in law enforcement activities. 

Finally, to complement these paramilitary forces, several kinds of police forces also 

carry out homeland security tasks. For example, in addition to municipal and local police 

forces, many European countries have national police forces, such as Austria’s 

Gendarmerie, composed of small, highly specialized units responsible for domestic 

counterterrorism operations. In France, the ―Compagnies Républicaines de Sécurité‖ 

function as the principal reserve of the national police force and are frequently employed 

in special event security tasks and critical infrastructure protection. 

 

1.3.1.2.3. Reference Documents 

 

As part of the critical infrastructures and key assets protection, the ―Critical 

Infrastructures Protection as part of the fight against Terrorism‖ [18], defines the major 

threats faced by the European critical assets and lays out clear suggestions about how to 

improve European prevention, preparedness, and response to terrorism involving critical 

infrastructures. In the ―Prevention, Preparedness and Response to Terrorist Attacks‖ [27] 

and the ―EU Solidarity Programme on the Consequences of Terrorist Threats and 

Attacks‖ [28], the European Commission proposed a European Programme for Critical 

Infrastructure Protection (EPCIP) [29] and a Critical Infrastructure Warning Information 

Network (CIWIN) [30] in order to homogenize the procedures and rules for the protection 

of critical assets in all Member States of the European Union.  
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As part of border protection, the Laeken European Council of 2001 adopted the 

concept of ―integrated management system for external borders‖ which states that the 

issues of terrorism, illegal immigration, and drug and human trafficking can be addressed 

more efficiently via better coordination and management of all the activities performed by 

the public authorities of the Member States to efficiently control Europe’s external 

borders [31]. In this context, the Seville European Council of 2002 approved an ―Action 

Plan on the Management of External Borders of the European Union‖ which defines 

legislative and operational measures for the collaboration of agencies on the national 

level. These measures are mainly based on a Commission Communication of May 2002 

on integrated border management [32] and on a feasibility study of May 2002 on a 

European Border Police. In 2005, the European Council adopted the Hague Programme 

[33] to structure the objectives of action for the following five years and to define the 

development of a second generation set of measures to strengthen the control of the 

Union’s external borders. The Hague Program promotes coordination both at the 

European level and at the national level between law enforcement agencies such as the 

Police, the Customs, and the Border Guards, so as to reach optimal levels of protection. In 

actuality, cooperation of customs agencies at the European level has developed 

independently since the foundation of the customs union in 1968 and of the Community 

Customs Code (CCC) in 1992 which defined a uniform scope, as well as rules and 

procedures for border control at the European Union level [26]. In particular, the 2005 

amendments of the CCC introduced a layered approach to the movements of goods across 

international borders through the World Customs Organisation Framework of Standards 

to Secure and Facilitate Global Trade (SAFE Framework) at the EU level which has to be 

equally and fully applied in all the Member States [34]. Other provisions on cooperation in 

customs criminal enforcement (―third pillar‖) have been added to those laid out by the 

Customs Union after the Amsterdam Treaty of 1997 [35]. Then, the Vienna Action Plan of 

1998 [36] ratified the Convention on mutual assistance and cooperation between Member 

States (Naples II) [37] and the Convention on the use of technology for Customs purposes 

(CIS Convention) [38] in order to specify the goals of the ―third pillar‖ customs 

cooperation. In 2003, the Commission focused on the cooperation between Customs and 

other border agencies to integrate their border management practices, to develop common 
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risk analysis schemes, and to exchange intelligence information and apprehension data. 

These ideas are supported in the ―Strategy for the Evolution of the Customs‖ [39] of 2008 

where coordination and cooperation of the Customs with other law enforcement agencies 

with similar duties are highlighted as major components of the evolution of the customs 

administrations at the European Union level. Since 1999, when the Amsterdam Treaty 

went into application, the European Council on Justice and Home Affairs had been trying 

to strengthen the cooperation in the area of migration and security of people and goods 

across Europe’s external borders. In 2002, this led to the creation of six centers of 

command to form the External Border Practitioners Common Unit tasked with overseeing 

European-wide projects and operations related to border management. Two years later, in 

2004, the six ad-hoc centers – the Risk Analysis Centre in Helsinki (Finland), the Centre 

for Land Borders in Berlin (Germany), the Air Borders Centre in Rome (Italy), the 

Western Sea Borders Centre in Madrid (Spain), the Ad-Hoc Training Centre in 

Traiskirchen (Austria), the Centre of Excellence in Dover (united Kingdom), and the 

Eastern Sea Borders Centre in Piraeus (Greece) – were complemented by the 

establishment of agency for the Management of Operational Cooperation at the External 

Borders of the Member States of the European Union (Frontex) [40]. Although the 

European Union has defined measures for cross-border and external-borders cooperation 

between Member States and between Member States and the Commission, it has still not 

regulated the inter-agency collaboration between Customs and Border Guards at national 

levels [26]. Some preliminary regulations or recommendations have been adopted but a 

number of factors are adversely affecting police and customs cooperation in many 

Member States. These factors have already been explored in the previous sections and 

mainly concern the different nature of the procedures, of the institutional cultures, and of 

the backgrounds, the competition between the agencies, and the detrimental absence of a 

strategic approach to the issues of border management. 
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1.4. Focused Problem 

 

This work is performed as part of a more general question about the methods and 

tools useful in organizing the protection of borders, critical infrastructures, key assets and 

populations against illegal activities and terrorism. The surveillance of geographic 

borders and critical infrastructures using limited sensor capability has always been a 

challenging task in many homeland security applications. Although threats to homeland 

security can be conceived to take place in many forms, those regarding illegal penetration 

of the air, land, and maritime domains under the cover of day-to-day activities have been 

identified to be of particular interest by some U.S. and European governments. For 

instance, the proliferation of low altitude aerial systems, combined with regular air traffic 

growth, poses a unique challenge for the surveillance of homeland airspace and in 

particular for identifying potentially hostile vehicles interoperating with friendly aircraft. 

Similarly, the proliferation of drug smuggling, illegal immigration, international 

organized crime, resource exploitation, infectious diseases, environmental degradation, 

and more recently, modern piracy, require the strengthening of land border and maritime 

awareness. Hence, land border and maritime intelligence assessments point to 

increasingly complex and challenging national and coastal security environments. In this 

context, the ability to monitor, collect information (i.e. detect, identify) and eventually 

intercept suspicious entities or systems well before they reach the border or strategic land 

and coastal sites is of critical importance to prevent dangerous activities from 

jeopardizing populations and governments. 

 

1.4.1. The Wake up Call 

 

The terrorist attacks of September 11
th

 2001 constitute the most striking example of 

the proliferation of a kind of terrorism that uses systems developed by humans to make 

their life more pleasant and enjoyable, to their own detriment. On that tragic day of 

September 11
th

 2001, leaders of governments from all around the world as well as 

millions of private citizens were awoken from their slumber of national security and 
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safety. Since that catastrophic and unforgettable event, people living in societies qualified 

as ―developed‖ have realized how their life could turn out to be, should a major attack on 

critical assets happen. Reliance on many basic necessities such as electricity, water or 

food, is so high that a large disruption in those services could turn day to day life into a 

nightmare. Can you really imagine surviving without water, electricity, home heating oil, 

natural gas, automobile gasoline, telephones, Internet access, emergency services, etc? 

[41]
. 

The attacks proliferated in 2001 in the United States raise the issue of efficiently 

detecting and identifying potential malevolent systems, entities or activities among 

widely accepted systems, behaviors or procedures, before they cross the land, air, and sea 

borders and take place in the country, in order to protect human life and property. Indeed, 

it cannot be assumed that attacks on the scale of the September 11
th

 tragedies will not be 

repeated one day, or that the attacks will be similar in terms of instruments and targets. 

Clearly, the anthrax attacks that followed demonstrated that the threat goes beyond 

specific terrorist networks and the use of hijacked aircraft as weapons. 

Finally, one can notice that, beyond the political objectives that may motivate the use 

of terrorism, the principal motivation is the creation of fear. The psychological impact is 

one of the main reasons for terrorist-like violence, such that over-responding to an attack 

is precisely what terrorists are looking for: over-reacting to an attack would give it full 

credit by exaggerating the threat and its consequences. 

 

1.4.2. A Widespread Disease 

 

As mentioned earlier, illegal movement of people and goods through national air, land 

and marine borders has now become a widespread issue as part of the general fight 

against terrorist activities. In particular, aerial systems flying at low altitudes, drug and 

human traffickers, and illegal contraband smugglers have become rampant items of 

interest in recent years. This may be explained by the quasi-inability of detection and 

warning systems able to properly detect, identify, and classify the above items of interest 

in a timely fashion. With time, the later have demonstrated the ability to exploit 
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vulnerabilities and know how to adapt to changes in security measures applied to both Air 

and Border Protection. For instance, the exploitation of the Air Domain by terrorists and 

hostile nations using unconventional and sophisticated attack methods is not a recent 

phenomenon.  

In the years following the September 11
th

 attacks, security in the aviation sector has 

been significantly strengthened in many countries over the world, especially in the United 

States. For example, measures taken in the United States include: “a federalized 

Transportation Security Officer workforce that screens passengers and baggage traveling 

on passenger aircraft; hardened cockpit doors to prevent unauthorized access to flight 

deck; Federal Air Marshalls who fly anonymously on commercial passenger aircraft to 

provide a law enforcement presence; enhanced explosives and threat detection 

technology deployed in hundreds of airports; airspace and air traffic management 

security measures; and a cadre of canine explosives detection teams screening baggage, 

cargo, and increasingly, carry-on items” [43]. In addition to these measures, expanding air, 

land, and marine surveillance and interdiction efforts have been put into place to counter 

terrorist threats, and traditional defense activities against threats from hostile nation-states 

continue to be performed. 

Threats to the homeland security are numerous, complex and adaptive, essentially 

because of globalization, technological advances, proliferation of weapons of mass 

destruction and emergence of terrorism as a global phenomenon. They can be analyzed in 

two ways depending on the originator and on the targets and tactics: 
 

 Terrorists groups are a kind of originators. They are politically, as well as in some 

cases religiously, motivated. They mostly use premeditated violence to affect a particular 

audience and give a greater impact to their. For instance, their ultimate goal in the Air 

Domain is to conduct multiple, simultaneous, catastrophic attacks exploiting the Aviation 

Transportation System because it is being interpreted as a symbol of the global presence 

and economic influence of modern developed nations. 

 However, the terrorist threat is changing in form and intensity as terrorists’ 

intentions and capabilities change and countermeasures are instituted. They are adapting 

their tactics and techniques on multiple fronts (e.g. planning, complexity of attack and 

style of execution) to exploit vulnerabilities in the system. They also choose the type, 
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location and frequency of attacks depending on their perception of the level of security of 

a target at that period in time, in the current context. That is why such parameters as type, 

location and frequency of attacks cannot be extrapolated from historical patterns and 

therefore, current threats must be regularly reassessed.  

 

1.4.3. The step Towards a Cure 

 

To counter all these threats to the protection of the homeland and especially the ones 

willing to illegally penetrate the nation’s border to harm critical assets or populations, 

advanced warning is incontrovertible since it grants time and distance to counter 

adversaries, whether they are planning an operation or are en route to commit an attack or 

any other unlawful act. 

Needless to say malevolent individuals or entities will continue to exploit the global 

air traffic growth and the globalization of trade to threaten the Nation’s critical 

infrastructures, key assets and population. Nations must therefore continuously monitor 

and exert unambiguous control over the access to its airspace, and its land and coastal 

borders. Enhanced surveillance coverage coupled with security measures, collection, 

sharing and efficient dissemination of intelligence information, as well as response 

capability, will allow the nation to seize initiatives and influence events before 

adversaries can cause harm to people and property.   

Furthermore, to achieve all of the strategic objectives including deterring and 

preventing terrorism, illegal immigration, smuggling and contraband, as well as 

protecting the Nation and its interest, or mitigating the effects of any unlawful act, it is 

indispensable to maximize global air, land, and sea awareness. Nevertheless, this heavily 

dependents upon advanced information collection and unprecedented cooperation and 

action among various elements of the public and private sectors, both nationally and 

internationally. At the same time, all such procedures and actions still have to be 

compliant with laws protecting civil liberties and free flow of people and goods, which 

complicates the matter further.  
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Additionally, air traffic growth, technological advancements in aircraft design, and 

development of air tourism cause the emergence of new challenges such as the detection 

of stealth aircraft, or aircraft flying at low altitudes or following terrain features very 

closely to mask their presence. It is then crucial to maximize the Nation’s capability to 

detect and monitor aircraft within its airspace and its contiguous areas, from large 

commercial aircraft to low-altitude, low-observable manned or unmanned aircraft. 

Similarly, with the development of global commerce and tourism, border protection 

becomes cumbersome. It is now all about being able to detect and identify people or 

products that could harm the Nation as they hide among the common flow of people and 

goods at the country’s ports of entry.  

Another important issue is the monitoring of those aircraft, cargo and persons of 

interest from the point of origin, throughout their aerial, ground, or maritime route, to the 

point of entry, so as to ensure the integrity of the transit, manage aviation or maritime 

traffic routing, and, if necessary, interdict and/or divert aircraft, ground vehicles, or 

marine vessels for law enforcement or defensive action. The aforementioned missions can 

be leveraged by the development and, where appropriate, the implementation of new and 

emerging technologies including both airborne and ground-based systems for detecting 

potential items of interest, as well as for reducing susceptibility and vulnerability to 

illegal immigration, smuggling, and contraband, and consequently to terrorism. In this 

effort, it seems worthwhile to conduct comprehensive assessments of threat, likelihood, 

vulnerability, and criticality to identify security measures that require improvement, as 

well as to develop a consistent risk management approach. 

The objective of homeland security is to protect the people, physical entities and 

cyber systems that are indispensably necessary for survivability, continuity of operations 

and mission success, as well as to deter or mitigate attacks by people (terrorists, 

hackers,…), by nature (hurricanes, tornadoes,…), and by HazMat accidents. Nonetheless, 

it is impossible to prevent all attacks against the whole nation. Hence, applying a 

methodology to protect people and infrastructures can reduce the chances of future 

attacks, make it more difficult for terrorists to succeed in their objectives of degrading 

infrastructures or causing mass casualties, and mitigate the outcomes when they do occur.  
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Protection of the air, land, and marine borders as part of the protection of populations, 

and critical infrastructures and key assets is meant to be proactive, preemptive and 

deterrent in nature, having in mind the will to change the behavior of those willing to do 

evil: the proper protection might have the potential to develop a new ―mindset‖ among 

the later that their action will be futile and not yield the results they seek [44]. 

The ultimate objective of homeland security is thus to deter future attacks on our 

homeland by convincing terrorists and other perpetrators of illegal acts that their action 

will not succeed or that our response will cripple their cause. As such, the strategy mantra 

for the future should be the power of balance rather than the balance of power. This 

means that deterrence in the 21
st
 century will require an evolving suite of operational 

capabilities that hedge our bets against thinking adversaries equipped with an infinite 

array of asymmetric weaponry. The approach suggested to tackle 21
st
 century terrorism 

involves deterrence, prevention, preemption, crisis management, consequence 

management, attribution, and response. Deterrence is twofold: denial and punishment. 

Prevention is most effectively accomplished through layers of defense to deny adversaries 

from acquiring materials, equipment, intelligence or knowledge that would enable them 

to create or deliver items that could harm the nation’s populations and critical assets. The 

present thesis work is intended to address the aforementioned last point of the preventive 

action. Namely, the goal is to define detection architectures of both fixed and mobile 

sensors able to protect specific critical assets in various operational environments through 

early and accurate detection of potential threats. 

Nevertheless, the dilemma, in such cases, is always to decide how much protection is 

enough, that is, to effectively exploit the power of balance. An optimal system will 

integrate a nationwide array of preventive actions, whose sensitivities are adjusted in near 

real time according to the level of threat, and the synthesized sensory data. This enhances 

tactical situational awareness, essential to denying the adversaries achievement of the 

desired impact, while informing an evolving assessment of asymmetric threats to the 

homeland [45]. 

To summarize, in order to preserve life and to minimize the risk to public safety, it is 

required to prevent terrorist attacks, criminal activities, hostile acts or unlawful 

exploitation of legal trade and travel. Indeed, as strongly highlighted, aerial, ground, and 
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maritime border crossings have become highly suitable for the proliferation of means to 

approach not always enough, but supposed protected, yet vulnerable, assets. Then, sound 

and timely decisions about, and response to, the full range of aerial, land, and maritime 

threats need to be supported, to enable shared situational awareness of the homeland. This 

integrates intelligence, surveillance – including sensor inputs, reconnaissance – and other 

useful information, including information on other critical infrastructure elements such as 

potential ground targets [9]. 

 

1.5. The Missing Piece 

 

1.5.1. Strategic Challenges 

 

As mentioned earlier, our populations and way of life are the source of great strength, 

but also a source of inherent vulnerability. Our populations are large, diverse and highly 

mobile, allowing people willing to perform terrorism or any other illegal activities to hide 

within our midst. The organization of our societies makes people congregate at schools, 

sporting arenas, office buildings, concert halls, high-rise residences, and commercial 

malls, presenting targets with the potential for mass casualties and facilitating illegal 

transport of drugs, humans, and other contraband [4]. 

Thus, a key challenge faced by the defense and protection community is to be able to 

properly detect and identify potential harmful or illegal people and activities, as they 

blend into the daily routine of legal trade and travel. A French government agency 

summarizes the focus of the defense community in Europe as follows: ―During different 

types of conflicts [and even during peace] it is not only relevant to perform the detection, 

but also to evaluate the air situation to distinguish between friend and foe and to 

determine a ranking in severity of threat” [46]. For instance, aerial systems flying at low 

altitudes could turn out to be potential threats to critical assets due to their rampant 

proliferation and the quasi-absence of systems able to detect and identify them properly in 

a timely fashion. ―The Air Domain serves as the medium for a variety of threats that 
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honor no national frontier and that seek to imperil the peace and prosperity of the world‖ 

[43]. The most unsettling observation is that many of these threats hide among legitimate 

systems.  They take advantage of regular air traffic growth, general aviation, and leisure 

travel, either to carry out hostile acts, or to make available illegal merchandises, or even 

weapons of mass destruction, related materials or their delivery systems to hostile 

individuals or groups willing to disrupt the national security, the economy, the public 

safety, and the critical infrastructures and key assets. 

Thus, the European Defense Community is convinced that there is an undeniable need 

for enhancing the capabilities of detection and intervention against those that could be a 

threat to the Nation’s homeland. In such a context, anticipation and flexibility are the 

main characteristics. Anticipation is made possible by the collection of intelligence 

information beforehand and is based on the cooperation of several entities at the local and 

international levels. Flexibility is ensured by the mobilization and coordination of a 

number of means of intervention scattered across the territory, or by special units of 

operation. Moreover, it is necessary to enhance the protection of borders, critical assets 

and populations by deploying efficient surveillance and response equipments able to 

prevent and mitigate illegal or harmful actions before they happen or as they are 

unfolding. Also needed is a broadening of the database on means and capabilities made 

available to the military forces to protect populations against illegal or terrorist acts [10]. 

In other words, in the particular context of homeland and airspace protection, the 

issue is to determine the adequate types and positioning of ground-based detection 

systems that provides adequate surveillance of all borders, critical assets and populations. 

The inherent challenge in designing and optimizing a robust detection and protection 

architecture of sensors is further compounded by the complex nature of the systems-of-

systems required to provide efficient and effective coverage of the whole aerial, land and 

maritime area surrounding the border or the critical asset of interest, as well as nearby 

populations. 

Furthermore, the wish to protect all geographic borders and critical assets using 

limited sensor capability is usually hindered by the length of the border or the nature of 

the area it runs through, as well as by the size and number of the critical assets and the 

populations living around. As a result, it is virtually impossible to secure both each and 
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every mile of border around the country, and each and every critical infrastructure inside 

the country. Most often, a compromise must be made between the percentage of border or 

critical asset covered by surveillance systems and the induced cost. This is also valid 

when trying to satisfactorily and economically protect a densely populated area where 

many lives are at stake and where detection of suspicious and potentially harmful 

activities is highly compromised due to the nature of the surrounding environment. 

Another challenge faced by the defense and protection organizations is the 

evolutionary nature of the notion of criticality in the determination of the assets to protect 

and in the way to defend the borders. Criticality varies as a function of time, risk and 

market changes. Acting to secure the highest priority facilities, systems and functions, 

one should remain aware that adversaries can shift their interest to less protected targets 

that are more likely to yield desired shock effects, or can adapt to the current state of 

protection and invent new ways to counter it. 

Finally, several forms of data are crucial for the decision makers to make an efficient 

and effective choice as regards the protection architecture. Data must be available as soon 

as possible. Although they can be provided by several types of sensors deployed on-site 

(such as radars, optronic systems, humans, etc), investigating, verifying and using the 

data in real-time is a nontrivial task. Plus, the data required for early detection and 

warning in real-time are perishable and must be updated and verified regularly.  

Another issue stems from the fact that the state of technology of critical assets, which 

particularly impacts their vulnerability, might be rapidly outdated due to the ever 

increasing modernization of security requirements for such structures. Hence, the level of 

protection required for a critical asset today might be different from what it will need to 

be in a few years. Similarly, the technology used to protect borders from illegal entries of 

people and goods today might become obsolete in a few years as people respond to the 

current state-of-the-art by developing new means to perform their illegal or harmful 

actions. As such, the defense and protection community needs to find a way to forecast 

the future state of the world, as well as the corresponding level of protection required, 

depending on the current vulnerability to specific threats [47]. The prospective plan has 

been established to forecast the potential future states of the world and to design adequate 

systems to tackle emerging challenges. Now, there is a need for a methodology enabling 
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the design and optimization of a protection architecture, able to merge newly developed 

systems among themselves, or with existing systems, in an effective manner, in order to 

protect borders and critical assets in an environment of persistent and evolving threats. In 

a systems-architecture study, many interactions between the components of a system-of-

systems are highly interdependent and interrelated. Besides, the system-of-systems nature 

of the problem involves handling a large number of variables which can go from the 

system level to the environmental and human factors, and thus be highly heterogeneous. 

Another problem incumbent to system-of-systems studies is the integration and the 

reconfiguration of system interactions with the emerging of new or existing systems with 

time. 

However, to date, a structured methodology for the design of network-enabled 

systems does not exist: communications pathways and sensor attributes are often held 

constant in systems studies, when in fact they may be the dominant design drivers for 

future systems-of-systems. Hence, a methodology that addresses network connectivity 

and the selection of systems’ attributes must be infused with existing techniques for 

platform sizing and synthesis.  

Therefore, the envisioned goal for the proposed research is the development of a high-

level, robust and adaptable methodology, “a set or system of methods, principles, and 

rules for regulating a given discipline” [48]. This methodology will be developed with the 

problem of border and critical assets protection in mind, but is intended to be sufficiently 

general to be applied to a range of problems in the fields of systems-of-systems 

engineering and distributed sensor networks. 

Additionally, the application of this process to the protection of borders and critical 

infrastructures and key assets is intended to result in the creation of a parametric tradeoff 

environment which would synthesize the data and show relevant information to decision 

makers. This preliminary framework is meant to demonstrate the feasibility of a more 

complex environment capable of grasping the whole extent of the problem of distributed 

sensor networks. 
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1.5.2. Research Objectives 

 

The primary objective for this work is the development of a structured methodology 

that supports the generation of a prioritized portfolio of ground-based detection 

architectures, for the protection of national air, land, and sea borders, as well as of critical 

infrastructures, key assets and populations. For each operational scenario considered, the 

idea is to determine the optimum combination of type, number, position, and design 

characteristics of each constituting detection system in the architecture.  A key challenge 

in developing such a methodology lies in the integration of multiple heterogeneous 

elements that comprise a ―system-of-systems‖ and that must work together or interact to 

provide a desired capability.  

 

With this in mind, the overall research objective can be summarized as follows: 

 

The focus of the proposed study is the development of a structured, traceable, 

reproducible and practical methodology, addressing the multi-criteria design, 

Modeling, Simulation, and Optimization of Distributed Detection system 

Architectures (M-SODDA) in the context of homeland security applications. On the 

one hand, the M-SODDA methodology is intended to facilitate a quantitative 

assessment of the operational and technological potential of optimized protection 

architectures, with respect to capability-level measures of effectiveness. On the other 

hand, the M-SODDA methodology is meant to allow a rigorous analysis of the 

design and optimization factors enabling the decision maker to explore the design 

space and assess the relative sensitivity of tradeoffs at the system and subsystem 

levels. 

 

Due to shortcomings in current methods for resource allocation, the proposed 

methodology needs to be ―structured, valid, defensible and practical‖ and thus implies a 

―quantitative assessment.‖ A structured methodology that relies on the physics of the 

problem is a way to quantify the benefit of technologies and to enable more informed 

decisions. The term ―technological potential‖ refers to the ability of a technology to meet 
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precise high level requirements through the possibility for further development or, more 

precisely, the possibility for further improvement in the technology attributes relative to 

inherent limits. The term ―capability‖ refers to ―the ability to undergo or be affected by a 

given treatment or action‖ [48] or to the ability to achieve an effect. 

 

Finally, another objective of this research is to cut through the complexity of systems-

of-systems, namely to integrate large and disparate volumes of data, and to filter and 

display the resulting relevant information, in such a way to aid the decision maker to 

make informed decisions earlier in the design process [49]. To formulate a successful 

approach, however, it is first necessary to review existing methods for designing, 

modeling, simulating, and optimizing detection systems-of-systems or other distributed 

sensor networks, in order to identify whether current techniques address the needs for 

resource allocation and network connectivity inherent to systems-of-systems studies. 

 

The focused problem is then the multi-criteria modeling, simulation and optimization 

of complex, multi-disciplinary detection architectures for the protection of air, land, and 

sea borders, and of critical infrastructures and key asset in the contexts of homeland 

security and public safety. In summary, what is of interest for this research is the 

detection of illegal or harmful individuals, groups of individuals or activities.  
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CHAPTER II 

BACKGROUND RESEARCH 

 

A review of theory and current literature is given before describing the various steps 

of the M-SODDA methodology and going into more details about its implementation. 

The discussion is qualitative for now. The following theoretical concepts are reviewed: 

1. Systems-of-systems 

2. Systems engineering and systems-of-systems engineering 

3. Parametric analysis 

4. Modeling and simulation 

5. Optimization  

 

This chapter serves as the basis for the construction of the research questions and 

hypotheses discussed in the next chapter. 

 

2.1. Introduction to Systems-of-Systems 

"Everything should be made as simple as possible, but not simpler."  

- Albert Einstein 

 

While systems have been widely studied over the last several years, there still exists a 

lack of proper methods to deal with systems-of-systems. The subsequent sections 

introduce a terminology for systems and systems-of-systems, and delineate the frontier 

between a system-of-systems and a system architecture for the purpose of defining 

baseline definitions in the context of the present research. 
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2.1.1. What is a System? 

 

The word system, which comes from the Greek ―sunistanai‖ meaning ―to combine,‖ is 

defined in the Department of Defense (DoD) dictionary [50] as ―A functionally, physically, 

and/or behaviorally related group of regularly interacting or independent elements; that 

group of elements forming a unified whole.‖ The DoD further describes a system as ―A 

collection of components organized to accomplish a specific function or set of functions.‖ 

In the same vein, the International Council on Systems Engineering (INCOSE) [51] 

considers a system as ―A combination of interacting elements organized to achieve one or 

more stated purposes.‖ 

The Institute of Electrical and Electronics Engineers (IEEE) [52] more broadly specifies 

a system as an ―Interdependent group of people, objects, and procedures constituted to 

achieve defined objectives or some operational role by performing specified functions. A 

complete system includes all of the associated equipment, facilities, material, computer 

programs, firmware, technical documentation, services, and personnel required for 

operations and support to the degree necessary for self-sufficient use in its intended 

environment.‖ 

Finally, the SMC Systems Engineering Primer & Handbook [53] summarizes the 

previous definitions in one sentence, namely ―A system can be thought of as a set of 

elements which interact with one another in an organized or interrelated fashion toward 

a common purpose which cannot be achieved by any of the elements alone or by all of the 

elements without the underlying organization.‖ 

 

2.1.2. Categories of Systems 

 

In the light of the aforementioned definitions, the system’s structure can be divided 

into three different groups: simple, complicated and complex, each corresponding to 

specific properties.  

Simple systems can be defined as isolated systems in their dynamics and their 

observation: they can be reduced to a set of weakly coupled one-component sub-systems, 
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each of them exhibiting dynamics that are mainly ones of isolated elements slightly 

perturbed by other elements and by outside sources [54]. Examples of simple systems 

include oscillators and pendulum, whose behaviors are exactly predictable through the 

use of closed-form analytical equations. 

Complicated systems can be defined as locally isolated systems: they can locally be 

decoupled into a set of weakly internally coupled one-component sub-systems that can be 

acted upon and controlled by external sources. A given system can be acted upon by as 

many sources as the number of elements in the system since each element can be 

distinguished from the others [54]. 

Complex systems can be defined as highly internally coupled systems whose 

dynamics are mainly determined by components’ interactions. This is in agreement with 

the etymology: the word ―complex‖ comes from the Latin ―cum plexus‖ meaning ―tied up 

with.‖ Therefore, any action on such systems can only be performed globally and not at 

the component level, as was the case for complicated systems.  

Complex systems differ from simple systems and from complicated systems through 

the concepts of self-organization and emergent behavior. Indeed, the components of 

complex systems are more sophisticated than those of simple or complicated systems. 

Components of complex systems are usually referred to as agents: these entities are 

searching through a collective behavior the satisfaction of properties they cannot reach 

individually. This feature of complex systems, called emergent behavior or feedback of 

―function‖ onto ―structure,‖ comes from the fact that components or agents are adapting 

their behavior from their interactions with other agents, and with the environment.  

Finally, complex systems are less sensitive to outer control or action than complicated 

systems since their components are so strongly coupled that they cannot be identified: an 

internal control replaces a classical control from the outside. As a consequence, the more 

complex the system is internally, the less complicated it is when looked at from outside 

[53], [54]. Examples of complex systems include the human body, herds of animals, insect 

colonies, population activity in an economy, weather, and networks of computers. 

 

To summarize, simple systems and complicated systems are usual ones nicely 

approachable by the methods of scientific reductionism [55], [56]. Complex systems, by their 
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very global nature, cannot just be reduced to the effects of their components [57], [58]: they 

require some adjustment for being correctly handled because the key point is the way the 

system behaves under (or against) the action of its environment. In this context, 

―complex‖ and ―complicated‖ are not synonyms: complicated tends to refer to large 

systems with many loosely coupled components, highly dependent on outside action, 

while complexity is derived from the internal interconnection and interaction of 

components of complex systems, that are mostly insensitive to outside control. 

 

2.1.3. Detailed Definition of Complex Systems 

 

As mentioned in previous chapters, the present study deals with the protection of 

critical assets and homeland borders, using fixed and mobile surveillance systems such as 

various types of radars and cameras. Needless to mention that the systems involved are 

complex systems, combined with one another, providing a capability to accomplish a 

given mission. Therefore, it is of interest to look more closely at the characteristics of 

complex systems to better understand their behavior and to maximize their ability to 

perform their intended mission. Collating ingredients of definitions from INCOSE [59], [60], 

University of Michigan [61], Clemson University [62], Mitre Corporation [63] and the New 

England Complex Systems Institute [64], the following properties of complex systems have 

been identified: 
 

1. Non-linearity: complex systems exhibit non-linear dynamics and rarely any long-

term equilibrium 
 

2. Interaction/Connection: complex systems have many autonomous components 

(individual agents of the system), interacting or being connected in some fashion 

with each other 
 

3. Many nearly degenerate/equivalent configurations: complex systems have many 

inherently heterogeneous components which can be arranged in a large number of 

potentially useful ways 
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4. Hierarchies: agents of complex systems are often organized in groups or 

hierarchies 
 

5. Emergent/self-organizing behavior:  

 Complex systems display emergent macro-level behavior that results from the 

actions and interactions of the individual agents, but that cannot be predicted 

from them when studied in isolation 

 The structure and behavior of complex systems are not deductible, nor may 

they be inferred, from the structure and behavior of their component parts 
 

6. Adaptation and “Intelligent agents”: 

 Complex systems adapt to their environment as they evolve: their complexity 

increases and the response of each of their agents changes according to the 

behavior of neighboring agents 

 Complex systems are non-deterministic: they exhibit an unpredictable 

behavior 
 

7. Fuzzy boundary: the boundary of a complex system is often hard to define 
 

8. Multi-scale: the structure of a complex system tends to highlight a number of 

different scales, any of which can affect the behavior of the system as a whole 

 

Figure 4 shows a pictorial definition of a complex system with the above identified 

properties [64]. 
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Figure 4: Complex Systems Representation 

 

2.1.4. Systems-of-Systems 

 

The next level of complexity in the field of systems study concerns the association of 

multiple systems to form a ―system-of-systems.‖  

 

2.1.4.1. Definition 

 

The term ―system-of-systems‖ has become an increasingly popular terminology for 

large scale systems composed of a variety of heterogeneous, interoperable, and 

collaborative systems. ―The term „systems-of-systems‟ is generally used to define a class 

of systems wherein a set of independent systems, each having unique behavior and 

performance, is organized to perform collaboratively and coherently to achieve a 
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purpose‖ [65]. Therefore, there must exist a relationship among the system components, 

and a common objective or purpose for each component, ―above and beyond any 

individual objective or purpose for each component‖ in accordance with a study from the 

Department of Defense [66]. 

Adding to the DoD principles, Maier [67] defines five principal characteristics 

describing a true system-of-systems (SoS), distinguishing it from complex systems: 
 

1. Operational independence of the elements: the component systems of a system-of-

systems can be usefully operated independently if the system-of-systems is 

decomposed 
 

2. Managerial independence of the elements: the individual systems forming a 

system-of-systems are separately acquired, and therefore are actually run and 

maintained independently of each other 
 

3. Evolutionary development: the development of a system-of-systems is 

evolutionary in that functions can be added, removed, and modified with 

experience in use of the system. Therefore, a system-of-systems never actually 

appears to be fully formed 
 

4. Emergent behavior: the entire system-of-systems performs functions and carries 

out purposes that emerge from the actions and interactions of its component 

systems, but that cannot be localized to any of them in particular. The principal 

purpose of a system-of-systems is fulfilled by its emergent behavior 
 

5. Geographic distribution: the independent component systems of a system-of-

systems can only readily exchange information, and not substantial items like 

mass or energy 

 

2.1.4.2. Challenges 

 

Although Maier’s criteria are usually used to identify a system as a system-of-

systems, there exist, in the scientific community, some disagreements regarding the 

classification of systems as systems-of-systems, families of systems, federations of 
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systems, architectures of systems, coalitions of systems, collaborative systems, 

interoperable systems, complex systems, complex adaptive systems, super-systems and so 

on. That is why the INCOSE [51] offers a new set of challenges unique to systems-of-

systems: 
 

1. System elements operate independently: each component system of a system-of-

systems is likely to be operated by its own right, independently of the other and of 

the whole system-of-systems to which it belongs 
 

2. System elements have different life cycles: the component systems of a system-of-

systems may be at different stages of their life-cycle. While some are possibly in 

their development phase, others are already deployed and operational. In some 

cases, some component systems may be scheduled for disposal before the 

replacement systems are deployed. 
 

3. The initial requirements are likely to be ambiguous: due to the different time 

scales characterizing a system-of-systems (see property 2 above), the requirements 

are likely to be ambiguous in the sense that they can be very explicit for already 

deployed component systems, while being very unclear or changing for 

component systems that are still in the design stage. As such, the requirements for 

a system-of-systems evolve as the component systems evolve and the design 

matures. 
 

4. Complexity is a major issue: as new component systems are added to a system-of-

systems, the complexity of the interactions involved increases rapidly and can 

hinder the definition of exchanges between component systems. 
 

5. Management can overshadow engineering: the component systems of a system-

of-systems can exist in their own right and can have different time scales 

essentially because they have their own product/project office. Therefore, the 

development of a system-of-systems is further complicated by the necessary 

coordination of requirements, schedules, interfaces, budget constraints and 

technology upgrades among the various entities involved. 
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6. Fuzzy boundaries cause confusion: unless a central entity is in charge of the 

definition and the control of the scope of a system-of-systems, and manages the 

interfaces and boundaries of the component systems, no one controls the 

definition of the external boundaries of the system-of-systems under 

consideration. 
 

7. System-of-systems engineering is never finished: after all component systems of a 

system-of-systems are deployed and operational, management still needs to 

account for possible changes in the various component systems’ life cycles, such 

as the emergence of new technologies or the necessity for replacement of 

component systems due to preplanned product improvement. 

 

2.1.4.3. The Challenges of Complexity and Heterogeneity 

 

According to the previous guidelines, the combination of multiple complex detection 

systems able to ensure the protection of critical assets and populations defines a system-

of-systems, more commonly called architecture of systems. The primary difficulty with 

assessing detection capabilities is not the hierarchical nature of the problem. This could 

be the case for a more complicated study of the Design and Optimization of Detection 

Architectures (DODA) involving not only detection systems but also systems able to 

track and identify detected systems, and eventually systems for intercepting or addressing 

suspicious detected items of interest. Nevertheless, for the problem under consideration, 

the difficulty rather lies in the complex interactions between the components of the 

detection architecture. Indeed, such interactions can be temporary, evolutionary, or 

unpredictable, complicating the analysis of heterogeneous systems architectures.  

Furthermore, what usually causes major troubles when designing multidisciplinary 

systems with complex interactions and many components is the evaluation of different 

options providing the same overall capability. Indeed, different detection architectures 

provide different levels of effectiveness and varying levels of cost, technology, and time 

for implementation and deployment. The complexity of such architectures is compounded 

by the fact that the detection systems of interest are rarely developed all at once. Indeed, 
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there currently is a tendency to optimize the different elements of an architecture of 

systems in isolation, such that they are individually seen as ideal by the members of their 

respective design organizations. As a consequence, no structured methodology exists for 

the comparison of dissimilar systems against the same top-level measures of 

effectiveness. 

Finally, the heterogeneity of complex architectures of systems adds to the somehow 

tedious task of organizing a system-of-systems into a hierarchy. While the distinction 

between a system-of-systems and a system can be debatable, the delineation between a 

system and a sub-system can be equally challenging. Indeed, depending on the point of 

view, an entity can be defined as either a system or a sub-system. For instance, to a car 

manufacturer, the car is viewed as a system and the engine is viewed as a sub-system. To 

an engine manufacturer, the engine itself is a system and is comprised of sub-systems 

such as the cylinder(s), the piston(s) and the valves. This challenge is summarized by 

Hatley [68] : ―every system below the level of the whole universe is a component of one or 

more larger systems. The larger systems are the context or environment in which the 

component system must work.‖ An alternative way of addressing this challenge is to 

understand a system as the level at which you ―are,‖ a sub-system as the level at which 

you require to ―function‖ and a system-of-systems as the level at which you ―belong.‖ 

This three-level scale depends on the perspective of the user. Therefore, there exist 

different types of descriptions of the same entity related to the different aspects of the 

entity being described. Each description represents a specific perspective, each standing 

alone, and each being different from the others, even though all the descriptions may 

pertain to the same entity and therefore are inextricably related [69]. 

 

  



62 

 

2.2. Systems Engineering and Systems-of-Systems Engineering 

 

As a result of the particularities and properties of complex systems and systems-of-

systems highlighted in previous sections, a decomposition-based approach that does not 

take into account the strong interactions between system elements, is not appropriate for 

the thorough study of complex systems and systems-of-systems. 

 

2.2.1. Systems Engineering 

 

Although many disciplines have been developed for the analysis and design of 

different types of systems, the overarching scientific discipline for complex-systems 

study is called Systems Engineering.  

According to the NASA Systems Engineering Handbook [70], ―Systems engineering is 

a robust approach to the design, creation, and operation of systems. In simple terms, the 

approach consists of identification and quantification of system goals, creation of 

alternative system design concepts, performance of design trades, selection and 

implementation of the best design, verification that the design is properly built and 

integrated, and post-implementation assessment of how well the system meets (or met) the 

goals. The approach is usually applied repeatedly and recursively, with several increases 

in the resolution of the system baselines (which contain requirements, design details, 

verification procedures and standards, cost and performance estimates, and so on).‖ In 

the same vein, the Systems Engineering Fundamentals [71] defines systems engineering as 

―an interdisciplinary engineering management process that evolves and verifies an 

integrated, life-cycle balanced set of system solutions that satisfy customer needs.‖ 

The International Council on Systems Engineering [60] further specifies: ―Systems 

Engineering is an interdisciplinary approach and means to enable the realization of 

successful systems. It focuses on defining customer needs and required functionality early 

in the development cycle, documenting requirements, and then proceeding with design 

synthesis and system validation while considering the complete problem. Systems 
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Engineering considers both the business and the technical needs of all customers with the 

goal of providing a quality product that meets the user needs.‖ 

Finally, the SMC Systems Engineering Primer & Handbook [53] introduces the notion 

of uncertainty in the design of complex systems through its definition of systems 

engineering: ―Systems engineering is a standardized, disciplined management process for 

development of system solutions that provide a constant approach to system development 

in an environment of change and uncertainty.‖ 

Therefore, in light of the above definitions, systems engineering is focused on the 

development of total systems solutions, including supportability, and operations and 

training, that satisfy the customer requirements while balancing cost, schedule, 

performance, and risk.  As such, systems engineering is a process that is comprised of a 

number of activities that will assist in the definition of the requirements for a system, 

transform this set of requirements into a system through development efforts, provide for 

deployment of the system in an operational environment, and ensure the maintenance of 

the system throughout its life-cycle. 

By its very nature, systems engineering is thus performed in concert with system 

management. Indeed, in order for the system manager to make the right decisions, the 

system engineer needs to provide useful and accurate information about the design, such 

as the identification and characterization of alternative design concepts. Also, an 

important aspect of the system engineer’s role is to create models of the system so as to 

facilitate the assessment of the alternative concepts in various dimensions such as cost, 

performance, and risk. 

The systems engineering definition of a system is particularly relevant to this 

research: ―an integrated composite of people, products, and processes that provide a 

capability to satisfy a stated need or objective‖ [53]. Of greater interest though is to define 

the word ―complex system‖ in the perspective of systems engineering. The following 

definition will be taken as a baseline for this research: “Complex systems are systems that 

do not have a centralizing authority and are not designed from a known specification, but 

instead involve disparate stakeholders creating systems that are functional for other 

purposes and are only brought together in the complex system because the individual 

“agents” of the system see such cooperation as being beneficial for them” [72]. 
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2.2.2. Systems-of-Systems Engineering 

 

As described in previous sections, a ―system-of-systems‖ is inherently different from 

a ―system.‖ Therefore, it is safe to assume that there are principles of system-of-systems 

engineering that are different in essence from systems engineering.  

Systems engineering has long been considered as the theory of everything so that 

there can be nothing that does not fall into its preview. Over ten years ago, Mark Maier’s 

argument for denoting certain systems as ―system-of-systems‖ was based on the fact that 

the principles applied differ between systems and system-of-systems. Using a similar 

argument, the difference in name and in essence between systems engineering and 

system-of-systems engineering is justified because of the principles that do apply to 

systems-of-systems but that do not hold for systems, especially the properties of emergent 

complex behavior, heterogeneity, and interaction. System-of-systems engineering is thus 

meant to stretch the boundaries of traditional systems engineering in three areas [73]: 

 First, high levels of ambiguity and uncertainty pertaining to problems involving 

systems-of-systems are not addressed by traditional systems engineering. 

Systems-of-systems are characterized by highly dynamic and turbulent 

development and operational environments that most often than not result in shifts 

and pressures on problem definition and requirements. As a consequence, 

traditional systems engineering is unable to effectively and efficiently address 

problems with a high degree of contextual influence as is the case for a detection 

architecture. 

 Second, contextual influences are usually placed in the background of the systems 

engineering process although the latter does not completely ignore the influence 

of the context on the system in the problem formulation, analysis, and resolution. 

Nevertheless, problems involving system-of-systems cannot be artificially 

separated from their context. Indeed, the circumstances within which such a 

problem is embedded can highly constrain and overshadow the technical analysis 

in determining system solution success. For instance, the topographic and climatic 

environments, along with the operational situation in which a detection 

architecture of distributed systems evolve, drive the physical and functional 
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design of the detection system-of-systems,. As such, they need to be fully 

incorporated in the definition and optimization of detection architectures. 

 Third, systems engineering provides complete system solutions, optimally 

developed through iterative design and development processes. However, there is 

an increasing demand for deploying systems-of-systems that may offer incomplete 

or partial solutions that might be iterated upon after development, based on a 

range of resource, time or technological constraints. This may be achieved 

through the use of systems-of-systems engineering which provides a way to obtain 

fully or partially complete detection architecture solutions responding to specific 

surveillance and protection requirements. These detection architectures might then 

be completed or iterated upon to uncover solutions that best fit custom constraints.  

 

2.2.2.1. Issues Relating to Systems-of-Systems Knowledge 

 

Before detailing the concept of system-of-systems engineering, it is worth noting that 

there exist some discrepancies in current knowledge of systems-of-systems [73].  

First, there is no universal definition for the term ―system-of-systems.‖  

Second, there usually is little development of the concept of system-of-systems 

beyond superficial explanations: 

 There is no “identified linkage/basis in [the] body of theory and knowledge” 

pertaining to systems-of-systems 

 There is an insufficient “depth to demonstrate detailed grounding within one 

or more disciplines” involved in systems-of-systems studies 

 There is no “empirical development of an associated body of knowledge for 

use as a guide, furthering knowledge development and practical applications” 

[73] 

Therefore, there exist no fundamental principles, underlying theory, accepted 

methodologies, or body of empirical work that would constitute foundations for a 

discipline pertaining to the engineering of systems-of-systems.  

Third, system-of-systems concepts are mostly defined and applied in information 

technology, although the latter only offers a partial perspective for engineering a system-
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of-systems solution. This is due to the interdisciplinary nature of the systems engineering 

discipline. 

Fourth, although systems engineering has been effective in providing methodologies, 

processes, and tools to cope with simple systems complexity, most attempts to deal with 

systems-of-systems using the traditional systems engineering process have been fruitless. 

Indeed, success of systems engineering at a single system level does not guarantee the 

success at the system-of-systems level. 

Fifth, systems engineering mostly addresses the technical aspect of the problem being 

solved. Nevertheless, the contextual, human, organizational, policy, and political 

dimensions are just as important, and ultimately shape the decision space and the feasible 

solutions for the technical system problem. 

 

2.2.2.2. Differences Between Systems Engineering and Systems-of-Systems 

Engineering 

 

As evidenced in a previous section, there exist several definitions for systems 

engineering. In particular, Martin’s definition illustrates a necessary shift in thinking 

about system-of-systems engineering: ―Systems engineering is the process that controls 

the technical system development effort with the goal of achieving an optimum balance of 

all system elements‖ [74].  

Systems engineering differs from system-of-systems engineering in many different 

ways. First, on the one hand, systems engineering only deals with single complex system 

problems. As such, the complete systems engineering process, including definition, 

analysis, and development, is meant to bring into being one complex system to address a 

specific problem or need. On the other hand, system-of-systems engineering focuses on 

the integration of multiple complex systems into a system-of-systems. The latter may 

involve already existing systems, newly designed systems, or a mixture of the two. The 

whole purpose of system-of-systems engineering is thus to form a system-of-systems 

comprised of possibly heterogeneous complex systems brought about by an emerging 

need or mission. Second, traditional systems engineering concentrates on system 
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performance optimization [75]: ―Systems engineering is the management function that 

controls the total system development effort for the purpose of achieving an optimum 

balance of all system elements. It is a process that transforms an operational need into a 

description of system parameters and integrates those parameters to optimize the overall 

system effectiveness.‖ However, since complex systems are subjected to uncertainty, 

heterogeneity, complexity, and are constrained by resources, seeking solutions that work, 

also called ―robust solutions‖, is actually preferable to searching for an optimal solution. 

System-of-systems engineering adopts this perspective [76]. The focus is now to develop 

satisfactory solutions to complex system problems such that they are appropriate for 

present and near future conditions and circumstances, bearing in mind that the deployed 

system solution may evolve based on demands that cannot be fully anticipated in advance 

of deployment. As such, system-of-systems engineering must remain flexible to adjust to 

shifting problem contexts and conditions. In particular, it has to primarily focus on the 

development of a methodology rather than a process. Indeed, when dealing with complex 

systems-of-systems, a simple n-step process is not enough: a more dynamic structure is of 

rigor in order to be compatible with the potentially rapidly changing conditions 

characteristic of system-of-systems engineering. 

Third, as stated in the first point, systems engineering concentrates its efforts on the 

production of a system solution to address a problem or need. On the contrary, system-of-

systems engineering focuses on the deployment of an initial response and not on a final 

system solution since the latter does not necessarily exists or is not necessarily expected.  

Fourth, systems engineering has successfully been applied to clearly defined problems 

with relatively clear goals and boundaries. Nevertheless, such problems are not the 

majority when it comes to rapidly evolving complex systems-of-systems [77]. Therefore, 

system-of-systems engineering is based on a dynamic process able to cope with the 

increase in information intensity, contextual richness, and problem complexity in order to 

address emergent complex system-of-systems problems. 

Fifth, as brought to attention earlier, while systems engineering reduces its concern to 

the technical aspect of a problem, system-of-systems engineering must increasingly 

appreciate contextual, human, and political influence in addition to the technical domain. 
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Sixth, systems engineering processes have been developed with the assumption that, 

once properly defined, the goals or objectives for a system are fixed and unitary, meaning 

that subsequent analysis could move forward and could always refer back to the systems 

goals if needed. This is no longer the case for complex systems-of-systems for which the 

objectives can be ill-defined, potentially pluralistic, shifting, and possibly ambiguous. For 

instance, two contractors working on the same project may have completely different tacit 

objectives which have nothing to do with the system performance goals, but which 

express their relative desires for profitability and power. That is why system-of-systems 

engineering is intended to consider and account for dynamic pluralistic system objectives. 

Lastly, in systems engineering approaches, boundaries are identified primarily from a 

technical point of view and somewhat fixed throughout the analysis. For system-of-

systems engineering however, boundaries are likely to be arbitrary, permeable and 

probably evolving throughout the analysis. In Mitroff’s mind [78], inappropriately 

bounding a system problem is a major source of error for resolving complex system 

problems. Is this perspective, system-of-systems engineering seems to be at a deadlock. 

Nevertheless, in the context of complex systems-of-systems, boundary shift is usually not 

the result of a poorly defined problem, but rather a consequence of potential emergent 

technology, evolving requirements, or changing conditions. Therefore, system-of-systems 

engineering differs from systems engineering in that it has to be capable of recognizing 

and compensating for possible sudden or dramatic changes in system-of-systems 

boundaries. 

Despite the aforementioned differences, system-of-systems engineering can draw on 

the following strengths of systems engineering to increase its ability to deal with more 

and more complex and dynamic system-of-systems problems [73]: 

 ―Linkage to systems theory and principles for design, analysis and execution‖ 

 ―Interdisciplinary focus in problem solving and system development‖ 

 ―Emphasis on disciplined and structured processes to achieve results‖ 

 ―Iterative approach to develop systems to meet expectations for problem 

resolution‖ 
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2.2.2.3. Perspectives of Systems-of-Systems Engineering 

 

In ―System of Systems Engineering‖ [73], the authors define system-of-systems 

engineering as ―The design, deployment, operation, and transformation of metasystems 

that must function as an integrated complex system to produce desirable results. These 

metasystems are themselves comprised of multiple autonomous embedded complex 

systems that can be diverse in technology, context, operation, geography, and conceptual 

frame.‖ In this definition, the metasystem is the system-of-systems of interest, namely the 

distributed systems detection architecture, whose composition includes a hierarchy of 

multiple, possibly heterogeneous complex detection subsystems it is intended to integrate. 

These subsystems are within the boundaries of the system-of-systems. As such, their 

autonomy of decision, action, and interpretation is constrained by the interactions with 

other subsystems and the operation of the whole system-of-systems. Moreover, the 

detection subsystems are considered complex because they have the characteristics of 

complex systems enounced by Jackson [79]: 
 

 Large number of variables or elements 

 Rich interactions among elements 

 Difficulty in identifying attributes and emergent properties 

 Loosely organized interactions among elements 

 Probabilistic (as opposed to deterministic) behavior in the system 

 System evolution and emergence over time 

 Purposeful pursuit of multiple goals by system entities or subsystems 

 Possibility of behavioral influence or intervention in the system 

 Largely open to the transport of energy, information, or resources across the 

system boundary from/to the environment 

 

Finally, the complex detection subsystems are very much likely to be heterogeneous 

in multiple dimensions, namely “technology, context, operation, geography, and 

conceptual frame” [79], such that they need to be handled differently from a managerial 

point of view as well as from a conceptual point of view. Thus, there might be very 
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diverse, even conflicting, worldviews driving perspectives within the system-of-systems, 

and responsible for the uniqueness of the constraints imposed on the system-of-systems 

by local circumstances and conditions of subsystems [80]. 

 

To summarize, system-of-systems engineering addresses the requirement for the 

development of more and more complex systems and their incorporation into increasingly 

integrated complex systems-of-systems. The systems-of-systems engineering approach is 

not necessarily an extrapolation of the traditional systems engineering process, and the 

successes of the latter in developing individual complex systems cannot be taken for 

granted when it comes to designing heterogeneous systems-of-systems. Systems-of-

systems engineering is thus an evolution of systems engineering in the sense that it 

incorporates its strengths, its disciplined inquiry and rigor, while addressing its 

shortcomings in dealing with increasingly more complex system problems. In this 

context, systems-of-systems engineering is particularly appropriate for designing and 

optimizing distributed system architectures in the context of homeland security. 

Nevertheless, the accurate definition of detection systems-of-systems in specific 

operational environments requires the detailed analysis of each of its component. This 

way the physical and functional interfaces between the various elements of the systems-

of-systems may be revealed and understood. This is performed through the use of 

parametric analysis where the detection architecture is first decomposed into its main 

components. Each component is then further analyzed so as to reveal a set of relevant 

attributes that facilitate the design, modeling, simulation, and optimization of the 

complete system-of-systems. 

 

2.3. Parametric Analysis 

 

As clearly stated in previous sections, the components of the detection system-of-

systems have a certain level of autonomy: each element within the system architecture 

has its own distinct goals, such as self-preservation and maintenance of a certain level of 

safety [81], that it pursues in parallel with sub-goals defining its contribution to the 
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achievement of the overall detection and surveillance goals. However, this independence 

property may have adverse effects on the system-of-systems in that it may entail conflicts 

of responsibility at the architectural level. Indeed, some partially or fully autonomous 

components of a system-of-systems may have such a degree of freedom that they become 

a risk to themselves and to the architecture as a whole [82]. Nevertheless, this characteristic 

of certain systems-of-systems consisting of more or less autonomous components, also 

works to their advantage. Indeed, it makes them very adaptable, thus allowing 

improvements to take place within different layers. 

Moreover, the very nature of the detection system-of-systems, which, by definition, is 

composed of multiple, possibly heterogeneous components interacting with each other, 

makes possible the effective design of the system-of-systems by considering each of its 

components independently. Indeed, the detection architecture can be divided into smaller 

systems allowing for a simpler approach to be taken concerning the analysis of the 

system-of-systems’ functional interfaces. This is first done by considering the detection 

system-of-systems as a whole, then decomposing it into its component systems, analyzing 

the components’ interrelationships and interactions, and finally recomposing the detection 

architecture. A structured way to accomplish the decomposition of a system-of-systems 

into its components is to follow a functional decomposition technique, or more generally 

a morphological decomposition technique. Such decomposition consists of defining the 

elements of a system-of-systems from the high-level requirements they enable [83]. 

Originally, functional decomposition was developed by Pahl and Beitz [84], and Koller [85] 

to describe the direction of the flow information in a system.  

In the case of the protection of critical assets and populations, the purpose is to 

decompose the problem in terms of the entities involved in an operational scenario. Such 

operational scenario takes place in a particular geographic environment, under specific 

climatic conditions and operational situation featuring items of interest that need to be 

detected. In such a scenario, detection systems may or may not already be deployed in the 

theater of operations. In any cases, the goal of such a scenario is to determine which 

detection architecture is best suited to provide adequate protection of certain assets or 

populations, i.e. which detection system-of-systems is capable of efficiently and 

effectively detect items of interest for the situation of interest.  
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In such a problem, the analyst is challenged both by the need to characterize a wide 

range of existing elements (such as various critical assets, various items of interest, and 

various detection systems), and the incentive to generate new notional ones. Hence, a 

structured and traceable, yet flexible, characterization scheme must be adopted. Such a 

scheme is built on the concept of parametric representations, whereby a set of parameters 

of interest with their respective domain of allowable values is identified and used to 

generate different configurations of a given element of the problem, or different elements 

altogether, depending on the application. To facilitate the generation of parametric 

representations, it is desirable to use a structured approach whereby the detection and 

surveillance problem is progressively decomposed, both physically and functionally, so 

that different elements can be adequately grouped, revealing sets of common parameters.  

A convenient way to structure the problem decomposition for parametric representations, 

and the subsequent synthesis, is through Morphological Analysis (MA). 

 

2.3.1. Morphological Analysis 

 

2.3.1.1. Origin and Applications 

 

”... within the final and true world image everything is related to everything, and nothing 

can be discarded a priori as being unimportant.”  

 

- Fritz Zwicky 

 Discovery, Invention, Research through the Morphological Approach 

 

Morphological Analysis (MA) was developed in 1942-1943 by the Swiss-American 

astrophysicist and aerospace scientist Fritz Zwicky, while at the California Institute of 

Technology (Caltech). It is a method for ―structuring and investigating the total set of 

relationships contained in multi-dimensional, non-quantifiable, problem complexes‖ 
[86]

. 

Zwicky applied it to a variety of problems such as the classification of astrophysical 

objects, the development of new forms of propulsive power systems (jet and rocket), and 
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the legal aspects of space travel and colonization. He also founded the Society for 

Morphological Research and advanced the ―morphological approach‖ for some 40 years, 

between the early 1930's until his death in 1974. 

From the late 1960’s to the early 1990’s, a limited form of MA was employed by a 

number of engineers, operational researchers and policy analysts for structuring complex 

engineering problems, for developing scenarios and for studying security policy options. 

However, these earlier studies were carried out by hand or with only rudimentary 

computer support, which is highly time-consuming, prone to errors, and which severely 

limits the number and range of parameters that can be treated. That is why the Swedish 

Defence Research Agency later extended and computerized Morphological Analysis. As 

a result, the General Morphological Analysis (GMA) was developed in the middle of the 

1990’s. The GMA is typically used for structuring complex policy and planning issues, 

developing scenario and strategy laboratories, and analyzing organizational and 

stakeholder structures. 

 

Recently, Morphological Analysis and its derivatives have been successfully applied 

to a number of research topics in the U.S.A. and in Europe, in such various contexts as: 

 Analyzing policy and futures studies  

 Structuring complex policy and planning issues 

 Relating means and ends in complex policy spaces 

 Developing scenarios and scenario modeling laboratories, especially for 

military applications 

 Developing strategy alternatives  

 Analyzing risks 

 Developing models for positional or stakeholder analysis 

 Evaluating organizational structures for different tasks  

 Presenting highly complex relationships in the form of comprehensible, visual 

models 

 

Morphological Analysis has also been employed successfully for: 

 Modeling society’s capacity to manage extraordinary events 
[87]
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 Studying the protection of nuclear facilities against sabotage 
[88]

 

 Developing scenarios and strategies for the protection of nuclear facilities [89]  

 Modeling multi-hazard disaster reduction strategies [90] 

 Evaluating preparedness for accidents involving hazardous materials [91]  

 Developing policies for the protection of the air transportation system [92] 

 

To summarize, though MA is not new, it has certainly benefitted from recent 

advances in computation, and in turn has led to a number of successful methodological 

variants across a wealth of contemporary DODA applications, such as air transportation 

systems risk assessment [93], sabotage and attacks to nuclear power infrastructure, and 

other major events [94]. 

 

2.3.1.2. Method 

 

Morphological Analysis is carried out by developing a discrete parameter space of 

the problem complex to be investigated, and defining relationships between the 

parameters on the basis of internal consistency. Such an internally linked parameter space 

is called a morphological field. The approach therefore uses a morphological matrix 

(sometimes referred to as a matrix of alternatives) to document how a system of interest is 

decomposed into main element classes, and enumerates possible alternatives for each 

element class. A Cross Consistency Matrix (CCM) then documents relational data 

between element alternatives, thus establishing the combinatorial logic that drives the 

synthesis of element alternatives into a number of internally consistent system 

configurations. The general method of Morphological Analysis is summarized in Figure 

5: 

1. In the first step, the problem under consideration is clearly and concisely stated so 

as to have a precise idea of what is at stake.  

 

2. In the second step, the parameters of importance for the problem considered are 

identified. Alternatives are also defined for each main parameter, and ranges of values or 

conditions are brainstormed for each alternative.  
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3. In the third step, the information gathered in the previous step is regrouped in a 

variable and variable-condition matrix called a morphological field, which implicitly 

contains the solution space for the problem at hand. However, usually, the morphological 

field contains hundreds of thousands of theoretically possible combinations of 

alternatives/values/conditions.  

 

4. Therefore, in the fourth step, the internal consistency of all pairs of variable 

conditions is assessed in order to weed out all inconsistent, contradictory or incompatible 

pairs. This step of the process is actually the most cumbersome and time consuming but 

also the most important. Indeed, more often than not, this is when it becomes clear that 

the variable conditions are poorly defined, i.e. that ―we do not know what we are talking 

about.‖ This leads to a review of the first two steps and iteration between steps 1 and 4 

until the internal consistency assessment begins to work smoothly. 

 

5. In the fifth step, an internally consistent outcome space is synthesized by going 

through all of the possible configurations in the morphological field and reducing the 

field by eliminating the combinations that contain internal contradictions. This is usually 

done with computer support. The outcome is the ―solution space‖ of the defined problem. 

 

6. Finally, in the last step, dependencies between alternatives of the ―solution space‖ 

are analyzed, and adjustments to the variables and variable conditions are made as 

required.  

It is worth noticing that all of the steps in a morphological analysis are iterative and 

therefore somewhat time consuming. Nevertheless, these iterations are necessary and 

valuable since knowledge about the problem develops and grows over time. 
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Figure 5: Sequence of steps for the Morphological Analysis (the blue circular arrows indicate 

iterative procedures within steps or between steps) 

To summarize, the morphological approach has several advantages over less 

structured approaches in that it seeks to be integrative and to help discover new 

relationships or configurations. Additionally, it encourages the identification and 

investigation of the limits and extremes of different parameters within the problem space. 

Nevertheless, these limits and extremes are usually based on ranges of values or 

alternatives that tend to be dictated by current state-of-the-art, although margins may be 

considered when delineating a problem space. The issue lies in the fact that future state-

of-the-art in a particular field might not follow directly from current state-of-the-art in 

that same field. Similarly, current alternatives might become obsolete with time, while 

others might emerge that one could simply not have thought about at the time of the 
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study. Therefore, there is an inherent uncertainty associated with the design of a complex 

system-of-systems in that, although one can try to forecast possible future states of the 

world, one can neither be hundred percent sure about which one will prevail nor if this 

particular one will ever be among the set of forecasted futures. 

A NASA white paper describes those kinds of design problems that have a non 

deterministic formulation as uncertainty-based designs [95].  

 

2.3.1.3. Morphological Analysis Applied to Critical Assets and Populations Protection 

 

This research incorporates two important improvements to the traditional formulation 

of MA, as described in the previous section. First, the inherent hierarchical structure of 

the original MA formulation only provides two levels, that is, a single 

decomposition/synthesis step between a system and its elements. This research explicitly 

incorporates a multi-level approach accommodating any successive decomposition steps 

that may be required, thus more closely following the conceptual formulation of the 

systems engineering ―Vee‖ [96]. This results in the creation of as many morphological 

matrices as that dictated by the multi-level decomposition approach. Then, the traditional 

MA formulation applies to a single complex system entity that is being analyzed. The 

present research expands the morphological analysis technique to the decomposition and 

synthesis of a complex problem, that of the surveillance and protection of critical assets 

and populations in specific operational situations. Such a problem may be considered as a 

system-of-systems containing various disparate elements that need to be assembled to 

generate an operational capability. Thirdly, traditional MA uses a binary scale in its cross-

consistency matrix to determine whether two elements are compatible (1) or incompatible 

(0). The current research builds on previous efforts [93] to assess the consistency of the 

information contained in the morphological matrices, and encodes relational data with 

higher resolution scales to capture more complex interactions. More precisely, it 

implements a probabilistic scale instead of the traditional MA binary scale to introduce 

some nuance in the cross-consistency assessment. This once again results in the creation 
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of as many cross-consistency matrices as that dictated by the multi-level decomposition 

approach.  

With these improvements in mind, MA is used as a mechanism to structure and 

document the top-down physical and functional decomposition of the detection problem, 

as well as the relational data that drives its bottom-up synthesis back to the highest level 

of the hierarchical structure. The complete MA process as applied to DODA is described 

in Chapter 3. 

 

2.3.2. Systems Engineering “Vee” Process 

 

2.3.2.1. Definition 

 

The Systems Engineering Process (SEP) is described by the DoD as an iterative 

process starting with requirements analysis, proceeding to functional analysis and 

requirements allocation, then to synthesis. The SEP is initiated by proper inputs from 

relevant customers, as indicated by the “Process Input” element on the left of Figure 6. 

Iteration can occur within each step of the core activities of Systems Engineering located 

inside the yellow oval in Figure 6, or via the requirements, design, and verification 

feedback loops. The outer feedback loop, labeled “Verification Loop,” ensures that the 

evolving design satisfies the functional and performance requirements, and meets the 

design constraints. The first inner feedback loop, labeled “Requirements Loop” checks 

that each function addresses at least one requirement and that, if this is not the case, the 

said function is either not needed, or a requirement is missing. Similarly, the second inner 

feedback loop, labeled “Design Loop,” ensures that each element of the design solution 

addresses at least one function. As for the “Technical Management Processes,” they 

represent a series of technical management activities listed on the upper right corner of 

Figure 6. These activities enable the selection and evaluation of alternatives, the 

assessment of progress, and the documentation of data and decisions throughout the 

project development. They can be separated into “Decision Analysis” activities and 

“Technical Assessment” activities as suggested by the red boxes on the upper right corner 
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of Figure 6. Finally, the SEP ends with the generation of a “Process Output” such as a 

decision database, system/subsystem architectures, or specifications and baselines, 

depending on the level of application of the SEP and on the project.  

 

 

Figure 6: Systems Engineering in the DoD 

 

2.3.2.2. ―Vee‖ Model 

 

The ―Vee‖ model was developed by NASA as part of the Software Management and 

Assurance Program (SMAP) and modified by Forsberg and Mooz [96] in order to describe 

“the technical aspect of the project cycle.” The ―Vee‖-shaped chart starts with user needs 

on the upper left and ends with a user validated system on the symmetric upper right. 

Figure 7 illustrates the example of a ―Vee‖ chart in the context of Intelligent 

Transportation Systems [97]. 
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Figure 7: “Vee” Chart Example in the context of Intelligent Transportation Systems 

As can be seen in Figure 7, on the left side of the chart, “Definition and 

Decomposition” flows down and to the right, as in a ―waterfall‖ model. The ―waterfall‖ 

model is a sequential software development model in which development is seen as 

flowing steadily downwards, like a waterfall, through the phases of requirements analysis, 

design, implementation, testing (validation), integration, and maintenance. The origin of 

the term ―waterfall‖ is often cited to be an article published in 1970 by Winston W. 

Royce,
 
although Royce did not use the term ―waterfall‖ in this article. Ironically, Royce 

was presenting this model as an example of a flawed, non-working model [98]. The 

―waterfall‖ model is depicted in Figure 8 (it is Figure 2 in [98]). 
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Figure 8: Original “Waterfall” Model as in [98] 

In Figure 7, on the right side of the chart, “Integration, Verification and Validation” 

flows up and to the right as successively higher levels of assemblies, units, components, 

and subsystems are verified, culminating at the system level. 

In other words, the early steps in the ―Vee‖ chart define the project scope and 

determine the feasibility and acceptability as well as the costs and benefits of the project. 

Planning and programming/budgeting, which are intended to identify high-level risks, 

benefits, and costs, and to determine if the project is a good investment, are supported by 

these early steps. For their part, the last steps are intended to support project 

implementation, then transition into operations and maintenance, changes and upgrades, 

and ultimate retirement or replacement of the system when appropriate. 

 

2.3.2.3. Definition and Decomposition 

 

The ―Vee‖ chart typically provides a three-dimensional view of a project. Indeed, 

though not shown in Figure 7, each box in the ―Vee‖ represents a number of parallel 
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boxes symbolizing subsystems that may make up the system at the level of decomposition 

considered. For instance, in the case of the top left box, labeled “Concept of Operations,” 

the various parallel boxes would represent alternative design concepts being evaluated in 

the early stages of the project. As the project progresses, a baseline is established for each 

alternative design and is put under formal configuration management as soon as it is 

approved. This ensures that that the requirements do not change once the baseline design 

has been accepted.  

As mentioned earlier, the left side of the ―Vee‖ chart is similar to the ―waterfall‖ 

model or ―requirements-driven design‖ model of a project development process. This side 

of the ―Vee‖ represents the evolution of user requirements into system, subsystem, and 

component level requirements and eventually into the system design solution through the 

process of decomposition and definition.  

Besides, in accordance with the ―requirements-driven model,‖ the project is 

punctuated by control gates defining significant decision points, beyond which work 

should not progress until documents containing the agreed upon decisions have been 

published and controlled by the project manager. However, this necessary precaution 

does not exclude conducting detailed work early in the project. In fact, detailed analysis 

and design in the very earliest stages of the project may be beneficial. Such an approach 

can help clarify user needs or establish credibility for the claim of feasibility of the 

design. Furthermore, implementation of concurrent engineering early in the project 

implies that off-core processes are included into systems engineering activities at each 

level of the ―Vee.‖ Such off-core processes involve system design, advanced technology 

development, trade studies, risk management, and specialty engineering analysis and 

modeling. These activities are performed at each level of the ―Vee‖ and may be repeated 

multiple times within a phase, possibly leading to many kinds of studies and decisions. 

Nevertheless, only decisions made at the core level are put under configuration 

management at the various control gates. For their part, off-core activities, analyses, and 

models are not formally controlled but rather are used to complete and support the core 

decisions and to ensure that risks have been determined to be acceptable or mitigated. 

Therefore, analyses, data and results associated to off-core work still needs to be archived 

to facilitate replication at the appropriate times and levels to support introduction into the 
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baseline. As a consequence, there should be enough iteration downward in order to 

establish feasibility and to identify and quantify risks. However, upward iteration with the 

requirements statements should be kept to a minimum. The user is allowed to generate 

new requirements or to change existing ones up or down to a certain level and until a 

certain time into the project. Indeed, upward confirmation of solutions with the users is 

sometimes necessary when user requirements cannot be adequately or concisely 

formulated at the inception of the project. Nevertheless, if upward iterations are 

maintained for too long, cost and schedule are likely to get out of control. Past a certain 

point, called the ―Project Design Review‖ (PDR), modification of user requirements 

should be held for the next model or the next release of the project. If some modifications 

are to be made after the PDR, then the project should be stopped and restarted with a new 

―Vee‖ chart, completely reinitializing the project. In such a case, restarting the project 

may be more appropriate given the lessons learned but all the steps have to be redone 

from the start. 

Finally, time and project maturity flow from the upper left to the lower right on the 

“Definition and Decomposition” side of the ―Vee‖ chart. Therefore, once a control gate is 

passed, backward iteration is not possible. 

 

2.3.2.4. Integration, Verification and Validation 

 

The right side of the ―Vee‖ chart is devoted to the “Integration, Verification and 

Validation” process. This side of the ―Vee‖ represents the integration and qualification of 

the final design solution. The integration and qualification of the system can be further 

broken down into the lower level processes of integration, test, delivery, and fielding of 

the system. In this “Integration, Verification and Validation” process, activities are 

ascending from left to right and are in direct correspondence with activities of the 

“Definition and Decomposition” process which are descending on the left side of the 

―Vee.‖ This is obviously voluntary in the sense that the verification method must be 

determined as the requirements are developed and documented at each level of the 

project. This ensures that requirements are formulated in such a way that they can be 



84 

 

measured and verified. This is why the system verification approach must be determined 

at the highest level, as user requirements are translated into system requirements. Besides, 

cost and schedule can be driven by the technical demands of the verification process, 

which can further lead to a choice between alternative concepts. For instance, engineering 

models that are to be used for verification and validation purposes must be specified and 

studied in terms of their characteristics, their cost, and their development time which has 

to be introduced into the project schedule from the start. 

Moreover, if it happens that the user requirements are not well-specified or are too 

vague to permit final approval at the PDR, the project can be developed incrementally. 

The first step would be to make sure that a minimum set of user requirements is met. 

Then, subsequent steps would try to provide additional functionalities and performance 

based on user feedback, i.e. new or modified requirements. This incremental approach is 

necessary when the users are not aware of what they are really looking for right from the 

beginning or when the project requires several iterations with the users in order to 

progress in the right direction. This is relatively easy to describe in terms of the ―Vee‖ 

chart: all increments have a common heritage which is the PDR and each ―release‖ or 

―iteration‖ has its own ―Vee.‖ Therefore, the project development process is characterized 

by a series of displaced and overlapping ―Vees‖ corresponding to the several ―iterations‖ 

with the users. 

 

2.3.2.5. Concurrent Engineering 

 

As defined by NASA [70], ―concurrent engineering is the simultaneous consideration 

of product and process downstream requirements by multidisciplinary teams.‖ In this 

scheme, specialty engineers from all disciplines involved in the project must be part of 

the project team at each stage of the development process, so that they can provide their 

expertise when necessary during the system life cycle. Therefore, the system engineer is 

responsible for ensuring that all disciplines are represented in the early phases of the 

project, even if they happen to effectively come into play in later stages of the design 

process. This ensures that accepted requirements can be met and that selected design 
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concepts can be built, tested, operated and/or maintained. Indeed, if technical experts are 

not included early enough in the design process, then the project is more likely to pass 

early control gates prematurely, resulting in a need for significant iteration of 

requirements and designs later in the development process. This, in turn, can result in 

increased costs and shifted schedules. 

 

2.4. Modeling and Simulation 

 

―The purpose of computing is insight, not numbers‖ 

 

- Richard Hamming  

 

Modeling, defined as ―the representation, often mathematical, of a process, concept, 

or operation of a system, often implemented by a computer program,‖ is the act of 

creating a model of a system, process, or observed phenomenon [127]. It is often associated 

with simulation, defined as ―the representation of the behavior or characteristics of one 

system through the use of another system, especially a computer program designed for 

the purpose‖ [127].  

Furthermore, according to the terminology established by the Department of Defense, 

a model is a ―physical, mathematical, or otherwise logical representation of a system, 

entity, phenomenon, or process,‖ and a simulation is a ―method of implementing a model 

over time. Also, a technique for testing, analysis, or training in which real-world and 

conceptual systems are reproduced by a model.‖ 

According to Dieter, ―a model is an idealization of part of the real world that aids in 

the analysis of a problem […] Simulation is a manipulation of the model‖ [107]. The 

manipulation of the model consists of sequentially varying its input conditions and 

observing its behavior. Generally, a model can be described as being either descriptive or 

predictive, in the sense that it can either enable understanding a real-world system, or 

enable understanding and predicting its performance.  
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Dieter further classifies models as being either [128]: 

 Static or dynamic 

 Deterministic or probabilistic 

 Iconic, analog or symbolic 

 

The first level of classification deals with the time dependence property of the model: 

the model is said to be static if its properties are independent of time while it is said to be 

dynamic if its properties vary with time. The second level of classification deals with the 

uncertainty associated with the prediction of the outcome of an event by the model: the 

model is said to be deterministic if the outcome is known with certainty while it is said to 

be probabilistic if the outcome is not known with certainty. The third and last level of 

classification deals with the nature of the model itself. The model is said to be iconic if it 

physically represents the entity being modeled: this is the case of a wind tunnel model of 

an aircraft wing. The model is said to be analog if it only represents the behavior of the 

entity being modeled without physically describing it: this is the case of a flow chart. The 

model is said to be symbolic if it only represents abstractions and/or quantifiable 

components of the physical entity being modeled: this is the case of mathematical 

equations. Therefore, for example, a physical representation of an entity that can be 

described by random or probabilistic variables that can vary with time would be a 

dynamic-probabilistic-iconic model.  

Finally, according to Przemieniecki [129], symbolic models can be further broken down 

into two categories, namely analytic models or simulation models. The analytic model 

yields exact solutions to deterministic outcomes, whereas the simulation model yields 

converged solutions to very complex problems characterized by uncertainty and possibly 

risk [130]. Przemieniecki then differentiates a deterministic simulation model from a 

probabilistic simulation model.  

To summarize, the aforementioned model classes can be hierarchically related, as 

shown in Figure 9. 
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Figure 9: Model Classification 
[129]

 

In the case of the surveillance and protection of critical assets and populations, the 

elements of the problem may be modeled both physically and symbolically and described 

by probabilistic variables that can vary with time. These elements may also be simulated 

to study their performance under operational conditions so that customized detection 

architecture solutions may be uncovered. Therefore, the problem of DODA under study 

may be encapsulated in various types of models: dynamic-symbolic-mathematical-

simulation-deterministic models will be used to model the behavior of detection systems, 

dynamic-symbolic-mathematical-simulation-probabilistic models will be used to model 

the behavior of items of interest, while symbolic-mathematical-simulation-probabilistic 

models will be used to model weather conditions and symbolic-descriptive models will be 

used to model the critical asset under consideration. 
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Depending on the problem at hand, a particular type of model of the system, entity, 

phenomenon or process of interest might be more suitable than another. There exist 

different ways of representing a system, entity, phenomenon or process, depending on the 

context of study, and on the level of insight expected from the modeling and simulation 

environment. However, there is no such thing as the best model: the choice of a model 

depends on several factors such as the goal of the model (for instance knowing the 

detailed physics), the modeler’s background (statistics, engineering or physics), and the 

time available for developing the model. The main properties of the most commonly used 

design models in the field of engineering are exposed subsequently. 

 

2.4.1. Stochastic Design Model 

 

This is the most realistic model of all kinds. It is a function of both time and a set of 

variables describing the system, entity, phenomenon or process under consideration. 

Among those variables, at least one is random, i.e. is characterized by a probability 

distribution. Therefore, a stochastic model is both dynamic and probabilistic. Moreover, 

both the ranges of the design variables and the uncertainty vary with time. Finally, the 

goal of a stochastic model is to capture the evolution of the design over time. 

 

2.4.2. Probabilistic Design Model 

 

Contrary to a stochastic model, a probabilistic model is only a function of a set of 

variables describing the system, entity, phenomenon or process under consideration. 

Among those variables, at least one is random, i.e. is characterized by a probability 

distribution. Therefore, a probabilistic model can be considered a snapshot in time of the 

evolution of a stochastic model, i.e. a limiting case of a stochastic model at a fixed instant 

in time. In this case, the outcome of an event is not known with certainty. 
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2.4.3. Deterministic Design Model 

 

A deterministic model is a function of a set of non-random or deterministic variables 

describing the system, entity, phenomenon or process under consideration, and possibly a 

function of time. Therefore, a deterministic model can be considered a snapshot of a 

probabilistic model in the probability space, i.e. a limiting case of a probabilistic model as 

the variance of the random variables approaches zero. In this case, the outcome of an 

event is known with certainty. A physics-based model is sometimes called a deterministic 

model although this is arguable. Indeed, a physics-based model follows from fundamental 

physical laws such as conservation of mass or Newton’s laws of motion. A physics-based 

model involves measurable parameters and provides precise and trustable insight into the 

physical process that it models. It is therefore more mechanistic than deterministic in 

nature. 

 

2.4.4. Virtual Design Model 

 

A virtual model is the assessment of real-time interactive computer simulation of 

physical interactions in engineering systems. 

 

2.4.5. Types of Design Models Involved in the Design and Optimization of Detection 

Architectures 

 

In order to define detection architectures responding to specific surveillance and 

protection constraints in the context of homeland security, several types of models are 

implemented.  

 Physics-based models are used to model the behavior of detection systems 

 Physics-based probabilistic models are used to model the behavior of items of 

interest 

 Probabilistic models are used to model weather conditions 
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 Simple descriptive models are used to model the geographic environment 

 All of the above models are finally implemented in a stochastic framework. 

 

2.5. Optimization 

  

Whether it be in physics, biology, economy or sociology, researchers often have to 

deal with the classical problem of optimization. In the majority of cases, purely analytical 

methods widely prove their efficiency. Nevertheless, they suffer from an insurmountable 

weakness residing in the fact that reality rarely obeys to the wonderful differentiable 

functions on which standard analytical optimization methods are based.  

With the advent of new research areas such as that of system-of-systems and 

distributed sensor networks from which the problem under consideration is extracted, 

analytical methods proved less and less effective at finding an accurate solution to the 

optimization problem. Indeed, traditional optimization often fails in the above studies 

because requirements are either not well known at project start, or creep as a project 

matures, or include subjective criteria which are not easily accounted for. Therefore, 

several other optimization methods, combining mathematical analysis and random search 

have been developed. In such methods, one can imagine small robots searching a 

mountainous landscape representing the function to be optimized and wandering around 

to find the highest mountain. The robots can follow the path of steepest ascent they find. 

When one of them reaches a mountain top, it can claim that it has found an optimum. The 

method is very efficient if the mountainous landscape is composed of a single mountain, 

but in the opposite case, when the landscape contains several peaks of different altitudes, 

then there is no proof that the highest peak or optimum has been found: each robot could 

be blocked at a local optimum. Such kinds of methods actually only work with reduced 

search spaces. Systems-of-systems and distributed sensor network studies almost always 

involve multimodal functions, such that several local optima can be scattered around a 

global optimum. Hence, the challenges reside in the necessity of optimizing non-smooth 

data as efficiently as smooth data, and searching for global optima as effectively as local 

optima.  
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The problem of DODA under study implies the optimization of a detection 

architecture (system-of-systems) in terms of the types, the number, the properties and the 

positions of component detection systems. This has to be performed under the constraints 

imposed by an operational scenario, featuring various items of interest evolving in a 

particular geographic and climatic environment. DODA therefore appears to be a high 

dimensional, non-linear, discontinuous, and multi-criteria optimization problem. In this 

context, several optimization methods have been identified, that could prove potentially 

applicable to the optimization of detection architectures for the protection of critical 

assets and populations as part of the more global topic of distributed sensor networks. The 

main characteristics of each method are described subsequently, and a comparison of the 

most promising optimization techniques for the DODA problem is provided as a 

conclusion. 

 

2.5.1. Distributed Sensor Networks 

Surveillance of large terrains and geographic borders using a limited detection 

capability has always been an issue in the defense and protection community of many 

developed countries. Geographic borders are usually very long and may go through 

isolated areas with little or no inhabitants. As a result, it is almost always impossible to 

completely secure each and every mile of border against potential smugglers, drug 

dealers, illegal border crossing, and malevolent entities who are trying to enter a country 

to exploit or harm its people or infrastructures. In addition, the costs associated with the 

development of efficient architectures of protection systems may be so large that they 

become prohibitive. A compromise must therefore be made and a balance must be found 

between the level of acceptable protection and the cost governments are willing to invest. 

However, different countries may have different preferences when it comes to 

compromising between protection efficiency and cost, mostly depending on their histories 

and related experiences. Capturing such disparities is not straightforward and often 

requires the use of a parametric analysis or cost/benefit analysis. In addition, different 

preferences result in different protective solutions. Therefore, there exists a need for a 

method able to provide customized protection alternatives for varying levels of 
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performance and cost. Such a method is found in the domain of optimization which 

enables the design of protection architectures that perform efficiently in a wide range of 

external conditions. These architectures are defined as Pareto optimal and are obtained by 

performing parametric optimizations.  

Although optimizing sensor location over large terrains is a crucial need for the 

defense and protection community, very little work has been published in this domain in 

the open literature. For instance, in 1994, Franklin et al. [131] worked on optimizing the 

number and placement of observers on 1D and 2D terrains so that each point of the terrain 

could be visible from at least one observer. To do so, they proposed a greedy algorithm 

where the terrain elevation is given at the vertices of regular grids. However, this 

approach does not work properly on terrains having multiple local optima where sensor 

systems can be placed. Then, in 1998, Kewley and Embrecht [132] studied the positioning 

of military combat units for optimum performance. Contrary to Franklin et al. [131], their 

goal was not to entirely cover the terrain but rather to successfully complete a tactical 

mission in a battle. For this, they developed a fuzzy genetic algorithm in which potential 

solutions are evaluated through the simulation of a battle and a fuzzy logic module maps 

the simulation results to a single fitness value that is optimized by the genetic algorithm. 

In 2000, Can [133] created a meta-heuristics based on genetic algorithm to study the 

placement of sensor platform systems on large terrains. Then, in 2001, Vasquez and Hao 

[134] developed a tabu search algorithm to study the positioning of antennae for radio 

network planning. In a first step, they applied a constraint-based preprocessing approach 

to determine a set of efficient positioning sites offering the best performance given a set 

of predefined sites. In a second step, they used tabu search to optimize the number, types, 

and design parameters of the antennae in the network. In a third and final step, they 

developed a post optimization algorithm to improve the solutions given by the tabu 

search. At the same time, Kim and Clarke [135] developed new spatial optimization 

techniques to search for the locations which offered the best view of a topological surface 

in Geographic Information Systems (GIS). They investigated four algorithms - an 

extensive iterative search technique which evaluates each grid location on the surface, a 

conventional Tornqvist-based spatial search algorithm, and two evolutionary optimization 

algorithms, a genetic algorithm and a simulated annealing algorithm – and compared their 
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ability to solve a visibility site selection problem. They showed that even with poor 

starting configurations, both the genetic algorithm and the simulated annealing can 

generate acceptable solutions. In 2003, Dhillon et al. [136] studied the problem of 

optimizing the coverage of distributed sensor networks for sensor resource management 

in the military domain, under the constraints of imprecise detections and terrain 

properties. For this, they developed a polynomial-time sensor placement optimization 

algorithm in order to determine the minimum number of sensors required and their 

locations so as to satisfy a given level of terrain coverage and preferential coverage of 

predefined terrain sites. More recently, in 2007, Murray et al. [137] worked on identifying 

an optimal configuration of video surveillance systems and their locations in order to 

maximize the coverage of large 3D urban areas to support security monitoring. Starting 

from a 3D terrain model, they modeled the video cameras and their locations by the 

Maximal Covering Location Problem (MCLP) and the Backup Coverage Location 

Problem (BCLP). Then, they combined a coverage optimization algorithm with a 

visibility analysis to determine the optimal configuration and placement of the 

surveillance systems improving both coverage and efficient resource allocation. In 2008, 

Krause et al. [138] looked into the problem of optimizing sensor placement to detect 

malicious introduction of contaminants in large water distribution networks. They 

investigated a two sided approach in which they combined either a greedy algorithm or a 

Mixed Integer Programming approach with a local search to improve the final solution. 

They showed that their approach naturally extends to multi-criteria optimization problems 

with large numbers of variables by analyzing the trade-offs between various objective 

functions and computing Pareto frontiers. At the same time, Bottino and Laurentini [139] 

developed an incremental Edge Covering (EC) sensor placement technique to solve the 

problem of positioning a minimum number of visual sensors in 2D able to cover the 

edges of a specific polygon. They combined an Integer Edge Covering Algorithm 

(IECA), a Lower Bound Algorithm (LBA) and the Indivisible Edges incremental 

Algorithm (INDIVA) to balance computational times and closeness to optimality even for 

problems of large dimensionality. In 2009, Hsieh et al. [140] developed a two-phase 

approach to determine the optimal set of surveillance cameras to secure a specific asset. 

First, they applied the immune-based algorithm to obtain the number, types, and locations 
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of surveillance cameras in the optimal solution. Then, they further improved the locations 

of the surveillance cameras by assuming that the maximum failure detection probability 

was the same at all points of the asset. This two-phase approach significantly improves 

the final solutions while covering a wide range of budgets. In addition, they showed that 

as the budget increases, the final surveillance system is larger and composed of more 

efficient cameras. This decreases the failure detection probability until a large enough 

budget is reached, after which the failure detection probability tends to an asymptotic 

value. In 2010, Hamel et al. [141] simulated and optimized sensors to detect and track the 

release of airborne toxins in a large urban environment. They integrated models from 

Computational Fluid Dynamics (CFD), an integer-programming-based technique, and 

population mobility dynamics to determine the optimum sensor configuration able to 

mitigate the effects of released contaminants on civilian populations by providing 

accurate prediction of agent dispersion depending on the season and on the prevailing 

winds. The same year, Xu et al. [142] used a Particle Swarm Optimization (PSO) to improve 

the coverage of a large area by a network of cameras with known locations and type 

parameters. The problem of optimization consisted in determining the optimal orientation 

of each camera by either minimizing the number of cameras in the network to monitor a 

fixed area, or maximizing the coverage of a network composed of a fixed number of 

cameras. Constraints such as regions of variable importance and possible obstacles in the 

field of view of the cameras can be taken into account to cover a wider range of 3D 

applications. Finally, in 2012, Tao et al. [143] explored a polynomial-time algorithm to 

optimize the barrier coverage in directional sensor networks. The problem consisted in 

determining the minimum number of sensors and their orientations so that they can 

efficiently detect events occurring along the barrier joining the sensors.  

Although examples of sensor placement in the domain of defense and protection do 

not abound, a rather extensive literature can be found in its encompassing area of 

distributed sensor networks [144],[145],[146],[147],[148],[149],[136],[150],[151].  In recent years, distributed 

sensor networks have been the focus of interest in numerous applications such as border 

protection [139],[143], surveillance and security monitoring [140],[142],[137],[152],[136],[153],[154],[141], water 

distribution and water quality monitoring [138],[155],[156],[157],[158], pollution monitoring [159], 

damage detection and characterization [160],[161], fault detection and diagnosis [162],[163], 
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structural health monitoring [164],[165],[166],[167],[168], etc [150].  In these studies, various types of 

optimization algorithms were implemented, such as Glowworm Swarm Optimization 

(GSO) [144], Ant Colony Optimization (ACO) [145], Particle Swarm Optimization 

[160],[169],[142],[146],[170],various types of Genetic Algorithms [171],[172],[168],[161],[162],[164],[155],[165],[156],[173],[166], 

Simulated Annealing [170], Multi-objective Optimization [157],[158],[136], Integer Linear 

Programming [148],[163], combination of the NeuroEvolution of Augmenting Topologies 

(NEAT) method [174] and Pareto-dominance to create the Flexible algorithm for sensor 

placement FLEX [149], pareto optimization [159], polynomial-time algorithms [136],[143], 

stochastic optimization [175], and many others [167],[176],[150].  

Coverage is a fundamental and widely accepted metric to evaluate the performance of 

surveillance systems in domains such as intrusion detection and border surveillance. The 

major goal in such applications is to detect intruders as they penetrate a protected region 

or before they cross the border. This constitutes a barrier coverage problem. Unlike other 

applications, the above problems do not require the coverage of each and every point of a 

given region but rather the coverage of that portion of the region through which intruders 

can penetrate. As such, the sensors can be deployed as a barrier to decrease the cost and 

achieve an acceptable coverage. However, coverage and cost are conflicting objectives in 

the sensor placement problem since increasing the number of sensors in the network 

increases both the coverage and the cost although what is looked for is to get the 

maximum coverage at the minimum cost.  Multiple conflicting objectives call for multi-

objective evolutionary optimization algorithms such as Genetic Algorithm and Particle 

Swarm Optimization which have proven to be well suited to tackle the problem of sensor 

placement under a variety of situations, in particular for border surveillance and intrusion 

detection [150],[151],[143],[140],[177],[178]. 

 

2.5.1.1. Linear Programming (LP) 

 

Linear programming, also called linear optimization, is a specific case of 

mathematical programming or mathematical optimization. Is has first been developed 

secretly by Kantorovich in 1939 to reduce costs to the army during World War II by 
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planning expenditures and returns [179]. In 1947, Dantzig unveiled linear programming to 

the public by publishing the simplex method [180] and Von Newman developed the theory 

of duality to solve linear optimization problems [181]. After the war, linear programming 

was essentially used in the fields of daily planning and game theory.  

 

Linear programming is a technique used to determine the maximum profit or the 

lowest cost of a given linear, real-valued, affine objective function, subject to linear 

equality and linear inequality constraints or requirements [182]. In this context, the feasible 

space is a convex polyhedron, obtained by the intersection of a finite number of half 

spaces defined by the linear inequality constraints. The goal of the linear programming 

algorithm is then to find a point inside or at the nodes of the polyhedron where the 

function has the smallest or the largest value if such a point exists.  

 

Linear programming problems can be defined canonically as follows: 

maximize or minimize x0  c
Tx  cixi

n

i 1

 

subject to Ax b or  aijxi

n

i 1

 bj for j 1,…,m 

with xi  0 for i 1,…,n 

Where x is the unknown vector of positive variables to be optimized, c and b are vectors 

of known positive coefficients, A is a known matrix of positive coefficients, and x0 is the 

objective function. The inequality constraints specify the convex polytope over which the 

objective function is to be maximized or minimized. The above standard form of linear 

programming problems is therefore composed of three parts [183]: 

 A linear objective function 

 Non-negative variables 

 Problem constraints 
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Before a linear programming problem can be solved by the simplex algorithm [184], it is 

necessary to introduce non-negative variables, called slack variables, in order to 

transform inequality constraints into equality constraints [185]. In this case, the linear 

programming problem can be written in a block matrix form as follows: 

maximize Z 

satisfying:  

 
 
 
   

 
 
 
  
 
 
  

   
 
 
  

Where Z is the variable to be maximized,    , and      is the newly introduced slack 

variables. The above linear programming problem is said to be in an augmented or slack 

form. 

 

 

Linear programming can be applied to various fields of study such as business [230],[231], 

economics [232], engineering [148],[163], transportation [233],[234], energy [235],[236], 

telecommunications [237], manufacturing [238],[239], and operations research. Indeed, several 

problems can be expressed in a linear programming formulation, including network flow 

problems [241],[242] such as planning, routing, scheduling, assigning, and designing, 

microeconomics and company management issues [243], such as planning, production, 

transportation, and technology, but also maximization of profits or minimization of costs 

with limited resources in modern management problems.  

 

More details about duality theory, covering and packing problems, solution space, and 

methods for solving linear programming problems may be found in Appendix A. 

 

2.5.1.2. Stochastic Optimization 

 

Stochastic optimization methods are to stochastic problems what deterministic 

optimization methods are to deterministic problems. Stochastic problems are generally 



98 

 

formulated as a function of random variables, and may involve random objective 

functions, or random constraints. Stochastic optimization methods therefore generate 

random iterates to solve stochastic problems [244]. In some cases, the function values may 

be contaminated by some random noise due to experimental error in the measurements of 

the objective, and statistical estimation techniques must be used to infer the ―real‖ values 

of the criterion. This is especially encountered in areas such as real-time estimation and 

control, as well as simulation-based optimization [245]. This is where Monte Carlo 

simulations come in handy to get approximations of the actual system values. Other 

statistical estimation techniques include, but are not limited to, the following: 

 Stochastic Approximation (SA) [246] 

 Finite-difference SA [247] 

 Stochastic gradient descent [248] 

 Simultaneous perturbation SA [249] 

 

Some stochastic optimization algorithms willingly introduce randomness into their 

search process in order to accelerate convergence [250] to the global optimum if it exists, 

and to lessen the sensitivity of the algorithm to modeling errors. Indeed, adding 

randomness increases the ability of the algorithm to escape a local optimum and 

eventually to find a global optimum. The randomization principle also makes the 

algorithm more likely to perform equally well for a wide variety of input data and for 

many kinds of problems. Stochastic optimization algorithms applying the randomization 

principle include, but are not limited to: 

 Simulated Annealing (SA) to be discussed in a subsequent section 

 Quantum Annealing 

 Reactive Search Optimization (RSO) [252],[253] 

 Random Search [254],[255] 

 Stochastic Tunneling [256] 

 Stochastic Hill climbing 

 Swarm Algorithms such as Particle Swarm Optimization (PSO) to be 

examined subsequently 

 Evolutionary Algorithms to be described in the following section 
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o Genetic Algorithms 

o Evolution Strategies 

 

Stochastic optimization plays an important role in the analysis, design, and operation 

of systems encountered in a wide variety of disciplines such as statistics, aerospace 

engineering, traffic engineering, medical science, and business, among a large array of 

others. Stochastic optimization techniques provide a way to cope with inherent system 

randomness, non-linearity, and large dimensionality where classical deterministic 

optimization methods turn out to be inefficient. Stochastic optimization methods typically 

work by minimizing a scalar-valued loss function, also called performance measure, 

objective function, measure-of-effectiveness, fitness function, or criterion, over a domain 

of allowable values for the vector of design variables for the problem. Although 

stochastic optimization is usually formulated as a minimization algorithm, a 

maximization problem can simply be transformed into a minimization problem by 

changing the sign of the objective function. Contrary to deterministic optimization where 

perfect knowledge about the loss function is available and used to determine the direction 

of search at every step of the algorithm, stochastic optimization applies to problems 

where there is some random error in the measurement of the objective function and some 

random (Monte Carlo) approximation is made to determine the direction of search as the 

algorithm iterates towards a potential solution [255].  

 

Finally, as any optimization technique, stochastic optimization presents some 

limitations [255],[257]. The first issue concerns the noisy information about the objective 

function which induces some resulting error in the output of the stochastic optimization 

algorithm. The error in the solution decreases as the inverse square root of the number of 

objective function evaluations, and thus can only be reduced by increasing, sometimes 

significantly, the number of measurements of the loss function which is fed into the 

optimization algorithm. In this context, it is generally very cumbersome (sometimes 

impossible) to systematically indicate when the optimization algorithm has converged 

close enough to the solution and can therefore be stopped. Indeed, there always exists the 

possibility that the actual optimal solution lies in some yet unexplored region of the 
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search space. This is especially true when the objective function measurements are noisy, 

but this may also be true when the objective function involved is simple and well-behaved 

[258]. Another shortcoming of multivariate stochastic optimization resides in the curse of 

dimensionality. As the number of dimensions of the problem increases, the volume of the 

search region increases, and the optimization algorithm becomes less efficient at 

searching for a global optimum. Furthermore, practical applications often involve a set of 

constraints on the problem variables that sometimes needs to be handled differently than 

the allowable search space using ad hoc practical methods specially tuned to the problem 

at hand [259]. This results in either a wide array of stochastic optimization methods to 

choose from when trying to optimize a given problem, or the development of again 

another new practical method to handle the specific problem under study. This leads to 

the No Free Lunch (NFL) theorem which supports the intuitive statement that there ―is a 

fundamental tradeoff between algorithm efficiency and algorithm robustness (reliability 

and stability in a broad range of problems).‖ In other words, algorithms that turn out to be 

extremely efficient for a certain type of problems may be completely ineffective for other 

kinds of problems. In the same way there rarely is a ―universally best‖ solution for a 

general problem, there can never be a ―universally efficient‖ search algorithm [260].  

 

2.5.2. Evolutionary Optimization 

 

The general idea of evolutionary computing was introduced by Rechenberg in the 

1960’s [261]. His ideas were then carried on by several other researchers who developed 

various evolutionary algorithms aimed at mimicking the biological processes at the root 

of evolution. Evolutionary algorithms have the advantages of finding a global optimum 

without being trapped in local optima, and handling nonlinear and discontinuous 

problems with large numbers of variables. However, due to their stochastic nature, 

evolutionary algorithms require a great number of iterations to get significant results and 

consequently, have their performance measured in terms of speed of convergence. 

Finally, the problem of premature convergence of the best individuals of the population to 

a local optimum is a well known drawback frequently found in these techniques [262]. 
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2.5.2.1. Genetic Algorithm (GA) 

 

Genetic Algorithms (GAs) were invented by Professor John Holland and developed 

by himself and his students at the University of Michigan in the 1960’s and 1970’s [263]. 

When inventing GAs, Holland had two ideas in mind: (1) to encode the properties of 

natural systems into artificial systems in order to (2) improve the understanding of natural 

adaptation processes. In essence, GAs are adaptive heuristic search algorithms based on 

the mechanics of natural selection, genetics (crossover and mutation), and evolution 

inspired from the principles first laid down by Charles Darwin of survival of the fittest. 

Hence, they can be thought of as an intelligent exploitation of a random search within a 

defined search space associated with a specific problem.  

The basic principle of GAs is to work on the genetic pool of a population of 

individuals, in order to find the solution, or a potentially better solution, to a given 

adaptive problem. This method is especially effective since it not only considers the role 

of mutation, which randomly improves the algorithm, but also utilizes the principle of 

recombination, or crossover, of chromosomes to improve the capability of the algorithm 

to approach, and eventually find, an optimum solution [264]. As such, GAs are one of the 

most effective evolutionary algorithms: they use simulated evolution of a population of 

individuals in order to ―breed‖ computer programs to find solutions to optimization or 

search problems. GAs are also considered to be one of the best ways to solve a problem 

for which little is known: they are very general and usually work for any type of search 

space.  

Since their introduction by Holland, GAs have been widely studied, experimented and 

applied to various fields of engineering problems. This is essentially due to their ability to 

provide alternative methods to solving problems and to consistently outperform 

traditional optimization methods in most of the cases. For most of the real world 

problems, optimization means finding a set of optimal parameters. Although traditional 

methods usually perform poorly in such cases, GAs are ideal candidates for the task. GAs 

evolve in an environment in which a very large set of candidate solutions to the problem 

lies. The search space may also be composed of several ―hills‖ and ―valleys.‖ In most 

environments, GAs are able to find an optimum solution to the problem. Nevertheless, in 
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some cases, they can be greatly outclassed by more situation specific algorithms. 

Sometimes, GAs can be computationally expensive, which makes them not always 

feasible for real time use. Consequently, GAs are not always the best choice for 

optimizing a problem. They are however one of the most powerful algorithms able to 

create relatively quickly high quality solutions to a problem [265].  

There is no rigorous definition of ―genetic algorithm‖ that actually distinguishes GA 

from other evolutionary computation methods. Nonetheless, one can easily say that the 

term ―genetic algorithm‖ encompasses methods that have at least the following properties 

in common: populations of chromosomes, selection according to a fitness function, 

crossover to produce new individuals, and random mutation of new offspring [266]. GAs 

are based on the following important operators [267], [268]: 

o Selection: this operator selects individuals in the population for reproduction, 

according to a fitness function: the fitter the individual, the more likely it is to be 

selected to reproduce. 

o Crossover: this operator randomly selects a starting location and an ending 

location in the two fittest chromosomes, and exchanges the sub-sequences 

between these locations to create two offsprings. Crossover is characterized by a 

probability which gives the likelihood of the selected individuals to be crossed-

over. A low probability means that the fittest individuals are most often crossed-

over to produce offsprings, while a high probability means that the fittest 

individuals are directly transferred as offsprings to the next generation without 

being crossed-over. 

o Mutation: this operator is applied to the offsprings of the two selected fittest 

individuals, and randomly flips some of the components or bits of their 

chromosomes. Mutation can be applied to every bit of a chromosome or to one or 

more random bits of each chromosome in the population. Mutation is 

characterized by a probability which quantifies the likelihood with which a given 

bit may be flipped. A low probability means that the bit has a low chance of being 

flipped, while a high probability means that the bit has a high chance of being 

flipped. 
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In this context, a genetic algorithm starts with the creation of a population of 

randomly generated individuals (solutions) represented by chromosomes. The 

chromosomes should somehow contain the information about the solutions they 

represent. Therefore, the chromosomes are then encoded, most commonly in a binary 

string. In this case, each chromosome in the population is a binary string and each bit in 

the string represents some characteristic of the solution. Of course, there are many other 

ways of encoding chromosomes, for instance using integers or real numbers. This mainly 

depends on the problem to be solved. The individuals in the population are then evaluated 

according to a pre-specified evaluation function, called the fitness function, which gives a 

score to each individual based on its performance at a particular task. Then, the fittest 

individuals are selected to ―reproduce.‖ These individuals, called parents, are crossed-

over to create one or more offspring(s), according to a crossover probability or crossover 

rate. This process of ―reproduction‖ is motivated by the hope that the new population will 

be better than the old population, with regards the fitness function. Finally, the offsprings 

are randomly mutated to create a new population, according to a mutation probability or 

mutation rate. This process continues until a suitable solution to the problem has been 

obtained or a certain number of generations have passed [267]. A simple GA is detailed in 

Appendix B. 

There exist several models for implementing reproduction of the population in a GA. 

The most common are ―proportional representations,‖ especially the ―roulette wheel,‖ the 

―rank selection‖ and the ―elitist approach,‖ and the ―tournament selection‖ [269]. Each of 

these methods is described in Appendix B. 

 

GAs have been and are still currently applied to a large variety of scientific and 

engineering problems and models. Some examples of application include, but are not 

limited to [266]: 

 Optimization (numerical and combinatorial) 

 Automatic programming (evolution of computer programs for specific tasks, 

design of other computational structures)  

 Machine learning (classification, prediction, determination of weights for neural 

networks)  
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 Economics (modeling of innovation processes, development of bidding strategies, 

emergence of economic markets) 

 Immune systems (various aspects of natural immune systems) 

 Ecology (symbiosis, resource flow) 

 Population genetic (conditions for evolutionarily viable genes) 

 Evolution and learning (interaction between individual learning and species 

evolution) 

 Social systems (evolution of cooperation and communication in multi-agent 

systems) 

 

Because of their success in the above and other areas of study, GAs have gained a 

growing interest among researchers in many disciplines, such as filtering, noise control, 

computational intelligence, speech recognition, production planning and scheduling, 

communication systems, distributed sensor networks, and many others [267]. However, 

there is no rigorous way to know whether GA is a good method to use for a given 

problem. For instance, if the search space is large, is known to be multimodal and non 

smooth (i.e. consists of several local optima and of a single smooth global optimum), or is 

not well defined, or if the fitness function is noisy, and if it only requires to quickly find a 

sufficiently good solution to the problem, then a GA will have a good chance of being 

competitive with, or even surpassing, other weak optimization methods that are not 

domain specific. On the contrary, if the search space is large, is smooth and unimodal, 

then a gradient-based method, such as the steepest ascent or hill climbing, will be much 

more efficient than a GA in exploiting the smoothness of the search space. If the search 

space is well defined, then domain-specific methods will often outperform GAs. If the 

fitness function is noisy, methods such as simple hill climbing, which search the space 

according to a one-candidate-solution-at-a-time procedure, might be mistaken by noise, 

whereas GAs are thought to perform robustly in the presence of small amounts of noise 

due to the accumulation of fitness statistics over many generations. GAs also work well 

on mixed (continuous and discrete) combinatorial problems. Most real-world problems 

involve multiple conflicting objectives where improving one objective may deteriorate 

the performance in terms of one or more other objectives. In particular, the problem of 
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design and optimization of detection architectures for the surveillance and protection of 

critical assets and populations as studied in this research is highly multi-modal, is mixed, 

and involve two conflicting objectives. Therefore, a modified GA has been developed, 

tested, and applied to the above problem to determine detection solutions. More 

generally, many heuristic algorithms have been developed to solve multi-objective 

optimization problems including genetic algorithm and simulated annealing, to be 

described next. However, it has been proved that GA is an intelligent optimization 

algorithm able to balance the tradeoff between exploration and exploitation among other 

significant advantages [270].   

 

The aforementioned statements are only intuitions, and do not rigorously predict the 

performance of GAs when applied to any specific problems, compared to other search 

procedures. Indeed, the efficiency of a GA highly depends on the method employed to 

encode candidate solutions (binary encoding, many-character and real-valued encodings, 

tree encodings), on the operators, on the parameters settings, and on the particular 

convergence criterion [266]. That is why, when applying GA to the problem of DODA, it is 

necessary to perform a rigorous analysis involving: 

 The choice of an appropriate reproduction method  

 The selection of analytic test functions presenting similar properties to the 

problem of interest 

 The determination of appropriate operators, parameter settings (mutation rate, 

population size, etc), and convergence criterion using the analytic test functions 

 The application of the resulting GA to the initial DODA problem 

 

More details about the advantages and shortcomings of GA may be found in 

Appendix B. 
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2.5.2.2. Simulated Annealing (SA) 

 

Simulated Annealing is a probabilistic optimization method adapted from the 

Metropolis-Hastings algorithm [276], a Monte Carlo method to generate sample states of a 

thermodynamic system. More details about the construction of the SA algorithm may be 

found in Appendix C. SA has been proposed independently by Scott Kirkpatrick, Daniel 

Gelatt, and Mario Vecchi in 1983 [274], and by Vlado Cerny in 1985 [275], in order to find 

the global minimum of a multimodal cost function (that may thus possess several local 

optima). In essence, SA is a generic probabilistic method used to optimize a problem by 

iteratively trying to improve a candidate solution according to a given objective function 

or measure of quality. The method makes few or no assumptions about the problem being 

optimized, and is able to search very large spaces of candidate solutions for a good 

approximation of the global optimum of a given objective function. Nevertheless, it does 

not guarantee an optimal solution is ever found. SA is often used for discrete search 

spaces as well and, in certain cases, can be more effective than systematically 

enumerating all possible candidate solutions and checking whether each candidate 

satisfies the problem’s statement. This is especially true if the goal is to find an 

acceptably good solution to an optimization problem in a reasonable amount of time, 

rather than the best possible solution.  

 

SA has been applied to a variety of combinatorial optimization problems, including 

circuit partitioning and placement [278],[279],[280],[281],[282], strategy scheduling [283],[284] for capital 

products with complex product structure, umpire schedule in US Open Tennis tournament 

[285],[286], event-based learning situations [287],[288], image processing [289],[290],[291], Boltzmann 

Machines [292],[293], graph partitioning [294],[295], graph coloring [296],[297],[298], number partitioning 

[298],[299], the Traveling Salesman Problem (TSP) [300], and many others [301],[302],[303]. In most 

problems, it appears that the cooling schedule of the SA algorithm significantly 

influences the quality of the solution obtained. For instance, in the graph partitioning 

problem, the quality of the solution can differ as much as 10% depending on the type of 

cooling schedule employed (exponential, linear, logarithmic, static, dynamic, etc). 

Finally, despite their relative ease of implementation and their ability to provide 
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reasonably good solutions for many combinatorial optimization problems, SA algorithms 

often require excessive computational times and a careful choice of their tunable 

parameters [304]. 

 

To conclude, when it comes to multimodal optimization problems, SA algorithms 

usually perform better than greedy algorithms. Furthermore, SA guarantees convergence 

towards an acceptable solution after a sufficiently large number of iterations. 

Nonetheless, due to the dependence of the obtained solution on the cooling schedule, and 

the excessive computational times sometimes observed, various alternatives to the 

traditional SA algorithm have been proposed. For instance, in 1986, Bohachevsky, 

Johnson, and Stein [305] proposed a generalized SA procedure for continuous optimization 

problems, and applied it to an optimal design problem. Other variants of SA based on 

Bayesian ideas have been suggested in 1989 by Laud, Berliner, and Goel [306], and by Van 

Laarhoven et al. [307]. Finally, SA is related to a variety of other methods, including, but 

not limited to: 

 Stochastic tunneling which overcomes the difficulty of SA in escaping from local 

minima as the temperature decreases, by ―tunneling‖ through energy barriers. 

 Stochastic gradient descent which runs many greedy searches from random initial 

states. 

 Tabu search which preferentially transitions to lower energy states, but can 

occasionally transition to higher energy states when it is stuck in a local minimum. 

It also avoids going back to a previously ―visited‖ state by keeping a “taboo list” 

of already seen solutions. 

 Genetic algorithms which work on a population of solutions rather than just a 

single one. 

 Graduated optimization which smoothes the target function while optimizing it. 

 Ant colony optimization which uses many agents to explore the solution space and 

find locally productive areas. 

 Particle swarm optimization which models the intelligence of a swarm to find a 

solution to an optimization problem, or to model and predict social behavior in the 

presence of objectives. 



108 

 

2.5.2.3. Tabu Search 

 

Tabu search is a metaheuristic local optimization algorithm created by Glover in 1986 

[308] and formalized in 1989 [309],[310]. It is based on a neighborhood search procedure 

described in details in Appendix D. It starts from a potential solution to the problem and 

iteratively examines its neighbors in order to find an improved solution, until some 

stopping criterion is satisfied or some fitness threshold is reached. Conceivably, local 

optimization techniques often have a tendency to get stuck in suboptimal regions or on 

plateaus where several solutions can be equally fit. In order to avoid such pitfalls and 

explore the search space more thoroughly, tabu search introduces memory structures that 

describe all the solutions visited at any given step of the optimization process or that 

contain user-prescribed sets of rules [309]. If, during the search, a potential solution has 

been previously encountered by the algorithm, or if it has violated a rule provided by the 

user, it is marked as ―taboo‖ and cannot be re-admitted to the neighborhood of the current 

potential solution as a potential improved solution. The memory structures therefore 

construct a tabu list of solutions that have been visited in the past. They can be short-term, 

intermediate-term or long-term structures as follows [311]: 

 Short-term memory structures contain a list of solutions that have been 

recently visited. If a potential solution belongs to this list, it cannot be re-

visited until the short-term memory expires.  

 Intermediate-term memory structures are composed of a list of rules that bias 

the search towards areas where promising solutions tend to be located. For 

instance, the rules may prohibit certain types of solutions or certain moves that 

would lead to undesirable solutions. Such solutions have so-called ―tabu-

active‖ attributes that must be banned from the search over a given period of 

time. 

 Long-term memory structures are formed of rules that intensify and diversify 

the search process by resetting the solution when the algorithm gets stuck in a 

suboptimal region or on a plateau.  
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Although short-term memory structures are generally enough to reach a solution 

presenting better fitness properties than those found by conventional local search 

algorithms, intermediate-term and long-term structures may be necessary when 

considering complex optimization problems. 

 

Like any other local optimization technique, tabu search has some major issues. The 

first one is that it is only effective in discrete space, and it has some difficulty dealing 

with large or highly-dimensional problems where it tends to explore only a small portion 

of the search space. In order to extend the exploration capability of the algorithm, some 

implementations of the tabu search focus on some specific attributes of the solution, 

rather than its entire form, and create a tabu list of these attributes that need to improve. 

Nevertheless, this type of memory structures that contains a list of one or more attributes 

to avoid rather than complete solutions, tend to eliminate, at least temporarily, solutions 

that might have excellent overall qualities, although they contain the tabu-active 

attributes. In order to mitigate this effect, some tabu search algorithms use ―aspiration 

criteria‖ to override the tabu state of a solution that has a better fitness than the current 

best solution, but that would otherwise be excluded from allowable set. Such a solution is 

thus allowed to be visited temporarily even though it contains banned attributes [312].  

 

To conclude, tabu search has successfully been applied to various fields of study 

including, but not limited to the following: 

 Company management (scheduling, assignment) [308],[314],[315],[316] 

 Telecommunications [317] 

 Probabilistic problems [318] 

 Neural networks [319] 

 Traveling salesman problem [320] 

 Graph theory [321] 

 Flow shop problems [322],[323] 

 Electronics [324] 

 Non-convex optimization [325] 
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2.5.2.4. Ant Colony Optimization (ACO) 

 

Ant Colony Optimization is a metaheuristic probabilistic technique developed by 

Marco Dorigo in 1992 [326],[327] to solve computational problems aiming at finding optimal 

paths in graphs. It belongs to the family of swarm optimization methods and is based on 

the behavior of ants exploring paths between their nest and sources of food. The basic 

idea lies in the abilities of ants to collectively find the shortest path between a source of 

food and the colony using their individual limited cognitive skills. The underlying 

optimization process is described in Appendix E. 

 

In the realm of computational problem optimization, the ants searching for food by 

laying down pheromones along the paths they explore between the nest and a food source 

model the individual optimization agents searching for a global optimum by 

communicating with each other as they explore the graph representing the problem to 

solve [330]. In this context, pheromone evaporation is a way for the optimization algorithm 

to avoid convergence to a local optimum. If the pheromones did not evaporate, then the 

trails followed by the first ants would become increasingly attractive to the nearby ants as 

more and more ants would be attracted by and would enhance the original pheromone 

trails. In this case, the exploration of the solution space would be constrained to the 

regions explored by the first ants. Indeed, the other ants would not be inclined to follow 

different paths with no pheromone signature, and thus would not search for other more 

optimal routes to the food source.  

 

Since its creation in 1992, the ACO algorithm has diversified and is now applied to a 

wide class of problems in computer sciences and operations research. Variations of the 

ACO algorithm and examples of applications are provided in Appendix E. ACO 

algorithms are particularly interesting in network routing problems [352] and transportation 

system because of their ability to continuously adapt to dynamic problem changes in real 

time. This is an advantage compared to similar evolutionary approaches such as 

Simulated Annealing or Genetic Algorithm. Furthermore, contrary to other swarm 

optimization algorithms, ACO algorithms iteratively construct solutions to combinatorial 
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problems. Therefore, it is always possible to find a best solution, even though no ant 

actually travels the shortest route. The latter can be built from the paths which have the 

strongest pheromone signature. This can be problematic for real variable problems where 

the notion of neighbors does not exist. Current research in ACO algorithms is mainly 

devoted to theoretical foundations and to applications to emerging challenging problems 

[353],[354],[355],[356],[357]. In 2000, Gutjahr [358] initiated the development of theoretical foundations 

and was the first to prove the probabilistic convergence of an ACO algorithm. A general 

description of theoretical results for the ACO algorithm can be found in Dorigo and Blum 

[359].  

 

Finally, ant colony optimization is one example of a large variety of swarm 

intelligence algorithms. Another similar algorithm is the Glowworm Swarm Optimization 

(GSO) algorithm, presented by Krishnanand and Ghose in 2009 [360]. The GSO algorithm 

shares some features with ACO and PSO to be discussed below, and allows the 

simultaneous computation of multiple optima of multimodal functions. It involves 

glowworms emitting light from the luminescent substance they carry, the luciferin, in 

order to interact with other glowworms and give them information about their current 

location. Each glowworm is attracted towards the brighter glow of other glowworms in 

their neighborhood and moves towards one of the neighbors which emits the higher 

amount of light. The motion of glowworms which depends on the intensity of luciferin 

owned by their neighbors allows the swarm to partition into disjoint subgroups. This type 

of algorithm has been used in a variety of optimization problems where the initially 

obtained solution needs some refinement [144]. 

 

2.5.2.5. Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy in 1995 

[361]. It is a stochastic, unconstrained optimization technique dealing with non-linear 

functions that has roots in two main component methodologies: Artificial Life (A-life) 

and swarming theory. PSO is also related to evolutionary computation, and has 
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similarities with both genetic algorithms and evolution strategies. Nonetheless, PSO is 

different from traditional evolutionary algorithms in that, instead of exploiting the 

competitive aspects of evolution, it exploits its cooperative and social aspects. PSO was 

indeed inspired by swarm intelligence behavior, such as bird flocking and fish schooling 

[362]. It is based on a suitable model of social interaction between independent agents 

(particles), and it uses social knowledge (or swarm intelligence) to find the global 

optimum of a generic function. PSO is based on the principle that each individual can 

benefit from the discoveries and previous experience of all other companions during the 

search for food. In the PSO algorithm, each companion, or particle, in the population 

called a swarm, is assumed to ―fly‖ over the search space to find promising regions of the 

landscape. Unlike any other evolutionary algorithm, PSO does not use evolutionary 

operators to manipulate individuals of the swarm. Rather, each individual in the swarm 

flies in the search space with a ―velocity‖ which is dynamically adjusted according not 

only to its own flying experience, but also to that of its companions [363]. Hence, PSO has 

the ability to search effectively large spaces. 

 

The PSO algorithm is somehow similar to a genetic algorithm [364] in that it is 

initialized with a population of random potential solutions called particles. Unlike a GA, 

however, each potential solution or particle is assigned a random position and a random 

velocity. Each particle is also characterized by a scalar fitness value derived from the 

objective function that needs to be optimized. The particles are then flown through the 

search space such that the ―flying‖ pattern of a given particle is influenced not only by the 

location of the best solution achieved by the particle itself during its trip, but also by the 

location of the best solution achieved by the population as a whole. These best solutions 

are called particle best and global best respectively [363], [365], [366]. Furthermore, in PSO, the 

addition of a velocity to the current position of a particle to generate its next position 

resembles the mutation operation in GA, except that ―mutation‖ in PSO is guided by both 

the particle’s flying experience and the group’s flying experience. As such, PSO can be 

said to perform “mutation with a conscience.” Besides, by looking at the particle’s own 

best position obtained so far as additional population members, PSO also presents a form 

of selection even though it is relatively weak [367]. Finally, because there is no crossover 
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operator in PSO, each individual in an original population has a corresponding partner in 

a new population. As such, PSO can to some extend avoid the premature convergence and 

stagnation observed with GAs [368]. In short, the basic PSO algorithm may be stated as 

follows: 

1. Define the optimization problem to be solved, i.e. the objective function to 

optimize, and determine the search space.  

2. Create a population (swarm) of random particles uniformly distributed over the 

search space and with initial random velocities. 

3. Evaluate the position of each particle of the swarm according to the objective 

function. 

4. If a particle’s current position is better than its previous best position, then update 

it. 

5. Determine the best particle of the swarm according to the particles’ previous best 

positions (the swarm’s best position can be defined as the best of the particles’ 

best positions). 

6. Update the particles’ velocities according the particles’ bests and the global best. 

7. Move the particles to their new positions. 

8. Go back to step 3 until the stopping criteria are satisfied (good enough solution or 

maximum number of iterations). 

 

Some additional comments concerning the local and the global characteristics of the 

PSO algorithm may be found in Appendix F. 

 

One of the advantages of PSO is its simplicity. Indeed, at each iteration, the particles’ 

positions and velocities are updated according to: 

 The particles’ positions at the previous iteration 

 The particles’ velocities at the previous iteration 

 Learning factors or acceleration parameters (cognitive and social parameters) 

 An inertia weight parameter 

 The particles’ bests at the previous iteration 

 The global best at the previous iteration 
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The inertia weight is employed to control the impact of the previous history of the 

particle on its current behavior. Accordingly, this parameter regulates the trade-off 

between the global (wide-ranging) and the local (nearby) exploration capability of the 

swarm. A large inertia weight facilitates global exploration, while a small one tends to 

facilitate local exploration. Consequently, it is worth making a compromise for the value 

of the inertia weight such that the exploration capability decreases as the swarm is 

evolving. The swarm therefore has a high global exploration capability during the first 

iterations so as to find the region in which the global optimum is located, and then, when 

this region has been determined, the swarm fine tunes the search area around the global 

optimum so as to locate it more precisely. 

 

To summarize, PSO has good performance, low computational cost and is easy to 

implement. Due to its population-based solutions mechanisms, PSO is suitable for multi-

disciplinary optimization. It is indeed capable of providing several solutions in one 

execution, in contrast to traditional techniques where one execution is capable of 

providing one single solution. The reason for the high quality of the PSO algorithm in 

certain experiments may be that: 

1. The coverage of the search space is random and wide. Therefore, an increase in 

population size has a greater probability of reaching the global optimum at an 

early stage of the search. 

2. The global nature of the search offers insight into various local neighborhoods of 

the search space. 

3. Particles moving fast towards the best particle of the swarm allow PSO to perform 

detailed search of a good region at an early stage. 

 

However, these properties of PSO can also result in locating a local optimum. To 

alleviate this problem, Parsopoulos et al. suggested a modified PSO, which has been 

shown to exhibit improved performance in numerous experiments related to classic 

optimization problems [380], [381], [382], [383].  
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Last but not least, PSO are similar to GAs, and therefore are able to solve many of the 

same kinds of problems. However, PSO does not suffer from the same difficulties as 

GAs. In PSO, progress towards the solution is enhanced and not detracted by interaction 

between particles (individuals) of the group (population). Moreover, a particle swarm 

system has a memory: each particle keeps both the memory of its own best position and 

of the group’s best position. In PSO, individuals who fly past optima are made to return 

towards them since knowledge of good solutions is retained by all particles. On the 

contrary, changes in the genetic populations in GAs result in the destruction of previous 

knowledge of the problem, except when the best individual or the first several best 

individuals of a given generation is/are automatically passed to the next generation 

through the elitist approach. In the later case, one or a small number of individuals 

effectively retain their ―identities‖ (or memories) as they are passed to the next population 

[361]. This may explain why PSO has successfully been applied to many areas of research, 

including artificial neural network for evolving connection weights during training [368], 

[384], design of controllers [385], optimization of biochemistry processes [386], optimization of 

power flow [387], tuning of controller parameters [388], dynamic bifurcation analysis of 

chemical processes [389], optimization of the Traveling Salesman Problem [390], hydraulics 

[391], networked sensor systems [392], image classification [393], design of combinatorial logic 

circuits [394], automated operations [395], flowshop scheduling [396], and many others. 

 

2.5.2.6. Pareto Optimization 

 

Pareto optimality is a concept named after the Italian engineer, economist, sociologist, 

political scientist, and philosopher Vilfredo Pareto [397],[398], initially developed for studies 

of economic efficiency and income distribution. In its economic application, Pareto 

efficiency refers to an economic allocation in which no one can be made better off 

without degrading at least one individual. A Pareto improvement corresponds to a change 

in the allocation of goods among a group of individuals which makes at least one 

individual better off without making any other individual worse off. When no further 

Pareto improvement is possible in an economic allocation, then the allocation is said to be 
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―Pareto efficient‖ or ―Pareto optimal‖. In the context of economics, Pareto efficiency does 

not necessarily mean that the distribution of resources is socially desirable, equitable, or 

even adapted to the well-being of the society [399],[400].  

 

Pareto optimality has also been largely applied to engineering problems where the 

goal is to select efficient alternatives among a set of design solutions. Each potential 

option is assessed under a set of criteria and a portfolio of Pareto optimal options whose 

members are not categorically outperformed by any other option members is identified. 

Given a group of choices and a way of assessing them, the Pareto frontier or Pareto front 

is the ensemble of choices that are Pareto efficient. Instead of evaluating the full range of 

options, a designer can then restrict the study to the group of choices that are Pareto 

efficient. By definition, the Pareto frontier is the set of feasible designs that are not 

strictly dominated by any other point. The general definition of Pareto optimality is 

provided in Appendix G. 

 

Engineering problems most often involve multi-criteria optimization in which the 

notion of Pareto optimality comes in handy. Solving multi-objective optimization 

problems with conflicting objectives usually leads to a set of non-dominated solutions 

rather than a unique solution. This set of non-dominated solutions, which can be 

continuous, discontinuous, smooth, or non-smooth, is the Pareto front. In general, when 

the problem involves highly non-linear objectives and constraints, or multiple disciplines, 

the Pareto frontier cannot be determined analytically, and obtaining a single Pareto 

solution can be very time consuming due to the complexity of the problem [403].  

For many years, engineering optimization has been characterized by a single objective 

function, although this is not a rigorous assumption for most real-world problems which 

usually involve multiple, potentially conflicting, objectives. In this context, most of the 

design tradeoffs made at that time were mainly based on experience, rather than on some 

optimal criterion [404]. However, multi-objective optimization problems typically present a 

solution space composed of alternatives which are superior to the rest of the solutions but 

which may be inferior to other solutions in one or more objectives when every criterion is 

considered. Such Pareto optimal solutions can be defined as being better than any other 
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solution but cannot be distinguished between each others. Therefore, the goal of multi-

objective optimization is to be able to obtain as many Pareto optimal solutions as 

possible. Once the complete set of Pareto efficient solutions has been found, higher-level 

decision-making considerations must be considered to qualify one of them as the optimal 

solution for the problem under study. When trying to solve multi-criteria optimization 

problems, classical methods such as weighted sum, goal programming, and min-max are 

not efficient because of their inability to find multiple Pareto optimal solutions in a single 

run. Indeed, they need to be applied as many times as the number of desired Pareto 

optimal solutions and multiple evaluations of these methods do not guarantee the quality 

of the obtained Pareto solutions. On the contrary, because they use populations of 

solutions in their search, evolutionary optimization algorithms have proven to be able to 

find the full set of Pareto optimal solutions in a single run. Several algorithms have been 

developed in that perspective and are now widely used to determine the set of Pareto 

optimal solutions for multi-criteria optimization problems [415],[416],[417],[403],[405],[406],[407],[408],[409].  

Some of them are described in Appendix G. 
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CHAPTER III 

RESEARCH QUESTIONS, HYPOTHESES, AND PROPOSED 

APPROACH 

 

3.1. Summary of the Problem and Proposed Methodology 

 

As thoroughly mentioned in previous sections, the surveillance of geographic borders, 

critical infrastructures, or large areas using limited sensor capability has always been a 

challenging task in many homeland security and distributed sensor network applications. 

Indeed, geographic borders may be very long and may go through isolated areas that are 

sometimes uninhabitated. As for critical assets, they may be large and numerous and may 

be located in highly populated areas. As a result, it is virtually impossible to secure both 

each and every mile of border around the country, and each and every critical 

infrastructure inside the country. Most often, a compromise must be made between the 

percentage of border or critical asset covered by surveillance systems and the induced 

cost.  

Although threats to homeland security can be conceived to take place in many forms, 

those regarding illegal penetration of the air, land, and maritime domains under the cover 

of day-to-day activities have been identified to be of particular interest by the American 

government and by several European governments. For instance, the proliferation of low 

altitude aerial systems, combined with regular air traffic growth, poses a unique challenge 

for the surveillance of homeland airspace and in particular for identifying potentially 

hostile vehicles interoperating with friendly aircraft. Similarly, the proliferation of drug 

smuggling, illegal immigration, international organized crime, and more recently, modern 

piracy, require the strengthening of land and maritime borders awareness. Hence, land 

border and maritime intelligence assessments point to increasingly complex and 

challenging national and coastal security environments. In this context, the ability to 

monitor, detect, identify, and eventually intercept suspicious entities or systems well 

before they reach the border or strategic land and coastal sites is of critical importance to 
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prevent dangerous activities from jeopardizing populations and governments. 

Nevertheless, suspicious aerial vehicles, persons, ground systems or maritime entities can 

dexterously hide amongst and efficiently interoperate with friendly persons and systems 

so as to compromise the situational awareness of border and maritime protection 

missions. This calls for security improvements in the aerial, border and maritime domains 

while preserving prosperity and minimizing disruptions or delays to commerce and global 

trade. As a consequence, it is necessary to comprehensively understand what composes 

each of the aforementioned domains, which entails acquiring accurate knowledge about 

the movement of aircraft, ground vehicles, marine vessels, cargo, and people.  

The complexity and challenges associated to the above mission and to the protection 

of the homeland may explain why a methodology enabling the design, modeling, 

simulation, and optimization of detection architectures or networks of distributed sensor 

systems, able to provide accurate scanning of the air, land, and maritime domains, in a 

specific geographic and climatic environment, is a capital concern for the defense and 

protection community. As a result, the present work focuses on the development of 

adequate architectures of ground platforms and sensors for monitoring aerial, land, and 

maritime systems. This primarily involves identifying the best combination and 

positioning of detection and surveillance systems able to monitor the homeland and its 

shores, and to collect information about the surrounding aerial, terrestrial and maritime 

environments. To do so, it is imperative to quantitatively assess current state-of-the-art as 

well as future notional systems, generate meaningful comparisons across disparate 

platforms, explore tradeoffs between a myriad of factors, and identify key technological 

gaps. However, this effort is riddled with difficulties inherent in the definition, analysis, 

and assessment of systems-of-systems (SoS) where a variety of distributed heterogeneous 

systems actively interact to generate a top-level capability [426]. In fact, it should be 

recognized that most DODA applications share a majority of these challenges [11], [427], [428]. 

One of them is concerned with the large number of possible platforms that can be 

considered to compose the detection architecture. Many of these may offer overlapping 

functionalities or may not be directly comparable altogether. Another issue deals with the 

importance of an operational context in terms of how it drives the physical and functional 

architecture of the detection SoS, and the performance requirements of each of its 
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platforms. For instance, the physical placement of detection systems within the 

architecture and their need to communicate among themselves is driven by the terrain, the 

weather, and other environmental conditions. In turn, said environmental factors may 

translate to performance requirements for individual platforms in the architecture or to 

constraints in the global structure. These and other related challenges vastly expand the 

combinatorial nature and the complexity of the problem. This represents in itself a 

hindrance to the analyst who seeks to formulate and understand the problem construct, 

conduct an exhaustive study of all available possibilities, and present key tradeoffs in a 

transparent fashion. Often times, this leads to an unintentional overreliance on expert 

opinion and past experience. While recognizing their importance, the objective of the 

defense community should be to formulate flexible processes that leverage on established 

analytical techniques and practices while incorporating necessary modifications where 

required. 

 

This thesis proposes a methodology aimed at addressing the aforementioned gaps and 

challenges. The Modeling, Simulation and Optimization of Distributed Detection system 

Architectures or M-SODDA methodology particularly reformulates the problem in clear 

terms so as to facilitate the subsequent modeling and simulation of operational scenarios 

of interest. The needs and challenges involved in the proposed study are investigated and 

a detailed description of a multidisciplinary strategy for the design and optimization of 

distributed detection system architectures in terms of detection performance and cost is 

provided. First, a multi-level morphological decomposition of the problem is performed 

to identify its main elements, and investigate relevant sub-elements, alternatives and 

attributes able to capture the various facets of the homeland security mission of interest. 

Second, the pair-wise compatibilities between the various elements, sub-elements, 

alternatives, and attributes identified, are assessed so as to obtain consistent and realistic, 

yet notional, operational scenarios. Third, a framework for the modeling and simulation 

of previously selected scenarios is created, and improved methods for the rapid 

optimization of detection architectures in specific operational situations are developed. 

More precisely, the present thesis describes a new approach to determining detection 

architectures able to provide effective coverage of a given geographical environment at a 
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minimum cost, by optimizing the appropriate number, types, and locations of surveillance 

and detection systems on the theater of operations. In this study, the physical design 

parameters of the sensor systems are either specified or allowed to vary within predefined 

ranges, and the customer preference with respect to performance and cost is captured by a 

parametric benefit to cost analysis encapsulated in the objective function to optimize. The 

goal of the optimization is twofold. First, given the topology of the terrain under study, 

several promising locations are determined for each type of detection system based on the 

percentage of terrain it is covering. Second, architectures of distributed, fixed sensor 

systems able to effectively cover large percentages of the terrain at minimal costs are 

determined by optimizing the number, the types and the locations of each detection 

system in the architecture. To do so, two evolutionary optimization approaches (Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO)) are selected to solve the 

homeland security mission of interest. Their structure is modified compared to their 

original versions, and their main parameters are tuned to satisfy the specific requirements 

of the optimization problem. The convergence properties of the modified optimization 

approaches are then compared, and the algorithm presenting the best performance at the 

lowest computational cost is selected for further study. Finally, a recursive heuristic 

optimization algorithm is developed to obtain benchmark detection architectures and to 

assess the ability of the previously selected modified optimization algorithm to provide 

consistent results and accurate solutions to the original homeland security application.  

 

Because of the various sources of uncertainty involved in engineering design, an 

optimized solution may turn out to be suboptimal if not infeasible. In this work, 

sensitivity analysis is used to study the impact of perturbations in the design variables on 

the optimized detection architectures. Indeed, the optimization process yields a portfolio 

of fixed detection architectures, composed of detection systems that are located at specific 

positions on the theater of operations. However, the performance and the cost of the 

optimized detection architectures are direct functions of their structure and their 

composition. Indeed, such criteria highly depend on the number, the types, the properties, 

and the positions of the detection systems constituting the detection architectures. In order 

to determine whether these optimized detection architectures are able to perform under 
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real-world situations, they first need to be incorporated into the modeling and simulation 

framework and to be exercised in a simulation where items of interest are actively 

detected by the architectures. This enables the user to identify potential gaps of detection 

in the simulated architectures and to bridge these gaps with mobile detection systems that 

are transported by patrol units. Once the performance of the fixed detection architectures 

has been enhanced by mobile detection systems when and where necessary, the 

robustness of the resulting architectures may be evaluated. This may be done by 

exercising the resulting detection architectures under various operational scenarios in the 

modeling and simulation environment. This may also be done through a sensitivity 

analysis in which the number, the types, the properties, and/or the positions of fixed and 

mobile detection systems in the detection architectures are changed, and the impacts of 

these changes on the performance and cost are investigated. This sensitivity analysis 

provides insights into the influence of the structures and the compositions of the detection 

architectures on their performance and cost, and enables the user to obtain a portfolio of 

detection architectures, composed of both fixed and mobile sensor systems, able to 

properly detect items of interest in the specific operational environment considered at a 

minimal cost. 

 

To conclude, the M-SODDA methodology provides a structured, traceable, and 

reproducible way of obtaining coverage- and cost-efficient detection architectures able to 

properly monitor large areas in specific operational environments. It is not meant to yield 

a fully implementable and deployable surveillance and detection system-of-systems that 

has been validated and verified in real-world situations. Therefore, it does not target the 

operational agents actively operating and maintaining the detection systems on the terrain. 

Rather, the proposed methodology is structured around a set of methods and tools that 

make it the perfect fit for government industries as they try to demonstrate their 

capabilities to potential decision makers in the field of homeland security, and for 

government entities as they solicit the industry to perform a study of their needs and to 

suggest solutions to their requests. Indeed, the proposed methodology provides the 

industry managers and decision makers with a means to market their products or services 

and to respond to the specific needs of a potential governmental user by demonstrating 



123 

 

their ability to design and optimize detection architectures featuring one or more of their 

own systems. It also provides the governmental manager or decision maker with an 

integrated framework for understanding the process of designing and optimizing detection 

architectures for surveillance and protection missions of interest. With this framework, 

the decision maker may play any kind of ―what-if‖ scenarios on the suggested 

architectures in order to generate one or more detection architecture solutions satisfying 

specific expectations and operational constraints.  

 

3.2. Research Objectives, Research Questions and Hypotheses 

 

3.2.1. Research Objectives 

 

The information contained in the previous chapters help identify the main objectives 

of this research. These are the following: 

 Homeland security surveillance and protection missions 

 Detection of various types of items of interest  

 Discovery of a portfolio of distributed sensor architectures featuring both fixed 

and mobile detection systems 

 Optimization of the number, types, properties, and positions of detection 

systems on the terrain, given geographic and climatic conditions 

 Performance and cost of detection architectures 

 Formulation of a structured, traceable, and reproducible methodology that 

features flexible processes leveraging on established analytical techniques and 

practices while incorporating necessary modifications where required 
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3.2.2. Observations, Research Questions (RQ) and Hypotheses (H) 

 

In this section, several observations are made, accompanied by research questions and 

hypotheses addressing the problem of designing, modeling, simulating, and optimizing 

distributed detection system architectures for specific homeland security missions. 

 

OBSERVATION: New threats to the homeland are continuously emerging and may 

be hard to detect in our modern, busy societies. In order to be able to adapt its response to 

the growing number of potentially harmful people and systems, the defense and 

protection community needs to be able to timely, properly and effectively detect what 

could be a threat to the homeland. As a result, the development of efficient detection 

architectures for airborne, ground, and/or maritime threats to critical assets and 

populations is a major priority.  

 

OBJECTIVES: To do so, it is imperative to quantitatively assess current state-of-the-

art as well as future notional systems, generate meaningful comparisons across disparate 

platforms, explore tradeoffs between a myriad of factors, and identify key technological 

gaps.  

 

OBSERVATION: However, a detection architecture is a system-of-systems 

composed of disparate detection system concepts. Therefore, the effort is riddled with 

difficulties inherent in the definition, analysis, and assessment of systems-of-systems, 

where a variety of distributed heterogeneous systems actively interact to generate a top-

level capability.  

 

OBSERVATION/CHALENGES: A large number of possible detection systems can 

be considered to compose the detection architecture. Many of these may offer 

overlapping functionalities or may not be directly comparable altogether. Also, the 

operational context is significant since it drives the physical and functional architecture of 

the detection system-of-system, and the performance requirements of each of its 

elements. For instance, the physical placement of detection systems within the 
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architecture and their need to communicate among themselves and with external entities 

is mainly driven by the terrain features and the weather conditions. In turn, said 

environmental factors may translate into performance requirements for individual 

detection systems in the architecture or constraints in the global structure. 

These and other related challenges vastly expand the combinatorial nature and the 

complexity of the problem. This represents in itself a hindrance to the analyst who seeks 

to formulate and understand the problem construct, conduct an exhaustive study of all 

available possibilities, and present key tradeoffs in a transparent fashion. Often times, this 

leads to an unintentional overreliance on expert opinion and past experience.  

 

OVERARCHING RESEARCH QUESTION: How may heterogeneous systems 

best be distributed over large areas to provide adequate global coverage at a reasonable 

cost in the context of homeland security? Several examples of homeland security 

applications of interest are depicted in Figure 10. 

 

 

 

Figure 10: Examples of Homeland Security Applications Requiring the Definition of Distributed 

Detection System Architectures 
[429]
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OBJECTIVE: Formulation of a methodology that features flexible processes 

leveraging on established analytical techniques and practices while incorporating 

necessary modifications where required. 

 

OBSERVATION: In order to formulate a structured methodology for the design and 

optimization of adequate detection architectures for the protection of critical assets and 

populations in specific operational contexts, the decision maker first needs to understand 

the nature of the detection architecture, its composition, and its interactions with external 

entities and operational conditions. 

 

METHODOLOGY CONSTRUCTION – RESEARCH QUESTION: How can the 

decision maker truly understand the nature of the distributed system architecture, assess 

its capabilities, and capture the key tradeoffs between the various elements of the 

problem? 

 

HYPOTHESIS 1: Physics-based representations of the various elements of the 

homeland security mission in a modeling and simulation environment will provide the 

decision maker with a means to play any number of notional ―what-if‖ scenarios through 

which the capabilities of the systems architecture, as well as the relative sensitivity of 

tradeoffs at each level of the problem may be assessed. 

 

OBSERVATION: The analyst is ultimately attempting to represent a wide variety of 

existing detection systems and various entities (people and aerial, ground, or maritime 

vehicles) identified as being of particular interest. At the same time, the analyst seeks to 

have the flexibility to generate notional detection systems representative of future 

advanced concepts. Similarly, it is highly desirable to have the freedom to consider 

notional threats that had not originally been conceived. This is also applicable in the 

representation of a wide range of critical assets, located in various operational 

environments (i.e. various combinations of geographic and climatic conditions). 
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PARAMETRIC REPRESENTATION – RESEARCH QUESTION: How can the 

decision maker represent various states of the world through a wide range of both existing 

and notional entities composing the homeland security mission of interest? 

 

HYPOTHESIS 2: A structured, yet flexible, characterization scheme, built on the 

concept of “parametric representations,” will provide a way to fulfill both the need to 

characterize a wide range of existing elements, and the incentive to generate new notional 

ones in a single step. 

 

PROBLEM DECOMPOSITION – RESEARCH QUESTION: How can the 

generation of parametric representations be facilitated?  

 

HYPOTHESIS 2.1: A structured approach whereby the homeland security problem 

of interest is progressively decomposed into its main elements, both physically and 

functionally, will enable the generation of parametric representations by adequately 

regrouping different elements of the problem, thus revealing sets of common parameters. 

 

MORPHOLOGICAL ANALYSIS – RESEARCH QUESTIONS: How can the 

functional and physical decomposition of the homeland security problem be structured for 

parametric representations and subsequent analysis? 

Once the elements of the homeland security mission have been parametrically 

represented, how can the problem be subsequently recomposed, or synthesized, so that 

top-level capabilities, resulting from lower level representations and interactions, be 

revealed? 

 

OBSERVATION: The problem spaces for critical assets, detection systems, items of 

interest, and geographic and climatic environments, need to be analyzed in an explorative 

and exhaustive fashion.  

 

HYPOTHESIS 2.2: Morphological Analysis (MA) combined with Hierarchical 

Decomposition methods will provide a robust, rigorous, structured and traceable process 
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to decompose the problem for parametric representations. Both methods combined with 

fundamental systems engineering concepts of decomposition and synthesis, such as the 

systems engineering ―Vee‖ diagram, will provide a means to recompose or synthesize the 

problem so that lower level representations and interactions may be revealed. 

 

OBSERVATION: Though MA is not new, it has certainly benefitted from recent 

advances in computation. This has led to a number of successful methodological variants 

across a wealth of contemporary applications such as air transportation systems risk 

assessment, sabotage and attacks to nuclear power infrastructure, and other major events. 

Nevertheless, the inherent hierarchical structure of most MA formulations only provides 

two levels, that is, a single decomposition/synthesis step between a system and its 

elements. The problem of protection of critical assets and populations, as studied in this 

research, is composed of several functional and physical levels that need to be captured 

according to a balance between exhaustiveness and relevance to the current application. 

 

MORPHOLOGICAL ANALYSIS REVISITED – RESEARCH QUESTION: 

How can the classic MA approach be modified to represent all levels of functional and 

physical decomposition for the problem under consideration, and to provide a set of 

alternatives that is neither unmanageable nor incomplete? 

 

HYPOTHESIS 2.3: Incorporating a multi-level approach to the original MA method, 

will enable the determination of a set of alternatives that best matches all levels of 

decomposition, and will allow accommodating any successive decomposition steps that 

may be required, thus more closely following the conceptual formulation of the systems 

engineering ―Vee.‖ 

 

OBSERVATION: The general MA approach uses a morphological matrix or matrix 

of alternatives documenting how a system of interest is decomposed into main element 

classes. It further enumerates, for each element class, all possible alternatives in an 

iterative process. However, these alternatives may be of various natures and may have 

different properties. They may also have different scales associated with them (in terms of 
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size, time, etc) and may not be compatible when considered concurrently in a given 

scenario. In addition, a typical morphological matrix usually contains far too many 

combinations of alternatives to be inspected by hand. 

 

CROSS-CONSISTENCY ASSESSMENTS – RESEARCH QUESTION: Given 

the proposed decomposition of the homeland security mission, the parametric 

representations of the main elements identified, as well as the nature of these elements, 

how can internal relationships be examined so as to ―reduce‖ the number of scenarios that 

can be played to an operationally relevant set? 

 

HYPOTHESIS 2.4: Cross-consistency assessment methods will enable documenting 

relational data between alternatives identified in the problem decomposition, thus 

establishing the combinatorial logic that drives the problem synthesis into a number of 

internally consistent operational configurations. 

 

OBSERVATION: Traditional MA uses a binary scale in its cross-consistency 

assessment to determine whether two elements are compatible (1) or incompatible (0). 

Each alternative in the Morphological Matrix is compared, in a pair-wise manner, to all of 

the others, much like a cross-impact matrix. For most problems, with each pair-wise 

relation, a judgment is made as to whether – or to what extent – the pair can co-exist, i.e. 

whether it is a compatible or an incompatible relationship. Nevertheless, for the problem 

under consideration, a simple assessment of compatibilities is not enough and is actually 

not appropriate. Indeed, it turns out that, most of the time, the question ―Is this alternative 

or concept compatible with this other alternative?‖ does not have a simple ―yes‖ or ―no‖ 

answer. Rather, the answer is most likely ―it depends‖ or ―well, not really but the 

alternatives are not strictly incompatible either.‖ 

 

CROSS-CONSISTENCY ASSESSMENTS REVISITED – RESEARCH 

QUESTION: How can the ambiguity resulting from cross-consistency assessments of 

alternatives be resolved for the homeland security mission under study, given that the 
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traditional binary scale used to study the compatibilities between alternatives in the 

original MA formulation is neither sufficient nor appropriate? 

 

HYPOTHESIS 2.5: Cross-consistency assessments based on probabilistic or 

likelihood representations will provide a way to describe the relative consistencies at each 

level of decomposition identified in the Morphological Matrix, as well as the coexistence 

of alternatives in an operational scenario depending on their characteristics. Such cross-

consistency assessment schemes will enable encoding relational data with higher 

resolution scales to capture more complex interactions. 

 

TRANSITION/HYPOTHESIS: With the aforementioned improvements, the proposed 

MA approach may be used as a mechanism to structure and document the top-down 

physical and functional decomposition of the detection SoS, as well as the relational data 

that drives its bottom-up synthesis back to the highest level of the hierarchical structure. 

At that point, the information gathered along the multi-level morphological 

decomposition of the problem and the multi-level cross-consistency assessments of its 

elements, paves the way for the modeling and simulation of candidate scenarios. In this 

context, a modeling and simulation framework needs to be developed so that all relevant 

analyses may be conducted while appropriately capturing the relevant constituents of the 

operational theater. In particular, surveillance of critical assets, populations, and of aerial, 

ground or maritime borders is a highly complex problem, characterized by constant 

changes in the environment (items of interest, detection systems, critical assets, and 

geographic and climatic conditions). Furthermore, the sensitivity of the detection 

architecture to such changes can have dramatic consequences on the ability to perform 

efficient surveillance and protection missions as part of homeland security efforts. 

 

MODELING, SIMULATION, AND OPTIMIZATION ENVIRONMENT – 

RESEARCH QUESTION: How can the decision maker accurately, rapidly and 

efficiently capture the impact of changes in the operational situation on the structure 

(composition and design) of the distributed system architecture?  
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OBSERVATION: Proper detection of items of interest in a specific operational 

environment, involves considering systems-of-systems and complex non linear dynamic 

autonomous systems interacting together to perform a capability and reacting/adapting 

their behavior to changes in their environment. 

 

HYPOTHESIS 3: Physics-based modeling, combined with agent-based modeling 

will provide a means to develop a modeling and simulation environment enabling the 

identification of key factors driving the structure of the distributed system architecture 

according to changes in operational conditions. Such modeling capabilities, 

complemented with the modified MA method, will allow the definition of a structured, 

robust, rigorous and traceable process for the simulation of notional homeland security 

mission scenarios. 

 

OBSERVATION: Surveillance and protection of national critical assets and 

populations as studied in this research, requires the definition of sensor system 

architectures able to detect people, as well as aerial, ground and maritime vehicles that 

could represent potential threats to the homeland. Determining a proper detection 

architecture for a particular critical asset of interest requires the consideration, 

combination and optimization of several detection systems that may interact with each 

other and with their environment, and that may vary in: 

 Number 

 Types 

 Properties  

 Positions in the architecture 

 Performance 

 Cost  
 

and whose performance depends on the size of the item to detect and monitor, on the 

terrain features, and on the weather conditions. 
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MODELING AND SIMULATION – RESEARCH QUESTION: How can a 

portfolio of distributed detection system architectures be determined given the 

interactions of a variety of heterogeneous systems with each other and with their 

surrounding operational, geographic and climatic environments? 

 

HYPOTHESIS 4: The determination of a portfolio of distributed detection system 

architectures will be facilitated by the definition of top level relationships capturing the 

interactions between the various elements of the homeland security mission, and allowing 

the comparison of the various system architectures with each other. 

 

OBSERVATION: Detection architectures and detection systems may be characterized 

by a myriad of figures of merit, going from performance, cost, to reliability, survivability, 

flexibility, etc. However, for the problem at hand, what is of interest is: 

1. How well the detection architecture scores at detecting people as well as 

aerial, ground, or maritime systems depending on the operational scenario 

2. How much the implementation of the detection architecture costs to the 

decision maker 

 Therefore,  

 The performance of the detection architecture, and 

 The cost of the detection systems (with the exclusion of the cost of positioning 

those detection systems on the terrain, as well as any additional costs related to 

the purchase of complementary equipment, parcels of land, etc),  

may be identified as the most appropriate measures of effectiveness for the detection 

architecture, as well as for the component detection systems.  

 

OBSERVATION: The identification of an adequate portfolio of detection 

architectures given specific operational conditions, performance requirements and/or cost 

constraints requires the optimization of the detection systems composing the architecture, 

in terms of: 

o Number  

o Types  
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o Properties  

o Positions in the detection architecture  

depending on the operational situation, the terrain features and the climatic conditions. 

 

OPTIMIZATION METHOD – RESEARCH QUESTION: How can the number, 

types, properties, and positions of heterogeneous systems, be optimized concurrently so 

as to define a distributed system architecture for a specific operational scenario, given 

performance requirements and/or cost constraints? 

 

OBSERVATIONS:  
 

 The problem of constructing a distributed detection system architecture from a 

pool of available types of sensors, with varying properties, that can be 

positioned at a specified set of positions on the terrain, in various operational, 

geographic and climatic environments is a highly discontinuous and non-linear 

problem that may present several local optima. 

 Similarly, being able to detect a wide range of entities, whether it is people or 

aerial, ground, or maritime vehicles, in a given operational scenario involves 

several elements of different natures that need to be handled differently. This 

also presents discontinuous and non-linear properties that complicate the 

design and optimization of detection architectures. 

 The problem involves two conflicting objectives – performance and cost – 

such that improving one of them may result in the degradation of the other. 

 The problem requires the exploration and exploitation of the space of 

detection systems (in terms of number, types, properties and positions in the 

detection architecture) in order to devise an optimum detection architecture in 

a specific context of operations.  

 The problem requires the determination of a portfolio of detection 

architectures adapted to a specific operational scenario according to 

performance requirements and/or cost constraints, rather than a single 

optimized detection architecture. 
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 The problem under study is composed of a large number of variables. This 

may be computationally expensive when trying to determine a portfolio of 

detection architectures since the objective function to be optimized needs to be 

evaluated several times. 

 

HYPOTHESIS 4.1: Evolutionary optimization algorithms such as Genetic Algorithm 

(GA), or Particle Swarm Optimization (PSO), will provide a means to solve the multi-

objective, discontinuous and non-linear optimization problem considered in this research, 

balance the tradeoff between exploration and exploitation, find a number of optimally 

efficient solutions rather than a single solution for the distributed system architectures in 

specific operational contexts, handle performance and/or cost constraints, and explore the 

search space more thoroughly with smaller numbers of objective function evaluations. 

 

OBSERVATION: Evolutionary optimization algorithms such as GA or PSO have 

been shown to present convergence issues for highly dimensional, discontinuous, non-

linear problems, due to the dependence of the algorithm parameters on the nature of the 

problem to which they are applied. Indeed, the efficiency of a GA or a PSO algorithm 

highly depends on the method employed to encode candidate solutions (binary encoding, 

many-character and real-valued encodings, tree encodings), on the operators, on the 

parameters settings, and on the particular convergence criterion. 

 

OPTIMIZATION PARAMETER SETTINGS – RESEARCH QUESTION: How 

can we determine a set of optimization algorithm parameters adapted to the design of 

distributed detection system architectures to ensure good convergence properties and the 

adequacy of the resulting solutions? 

 

HYPOTHESIS 4.2: Applying the GA or PSO to a simpler analytical test problem 

(whose solution is known) presenting similar discontinuous, non-linear, and dimensional 

properties as the original problem, and varying the algorithm parameters will provide a 

way to analyze the sensitivity of the solution to the algorithm parameter settings and 

combinations, and determine the set of algorithm parameter values that provides the most 
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accurate solution for the test problem. Then, using this resulting set of algorithm 

parameter values on the original problem is assumed to ensure the convergence of the 

optimization algorithm to efficient distributed detection system architecture solutions. 

 

OBSERVATION: Evolutionary optimization algorithms such as GA and PSO have 

been shown to yield solutions that may not always be reproducible for large dimensions, 

discontinuous, non-linear problems such as the design and optimization of distributed 

detection system architectures (DODA) 

  

SOLUTIONS BENCHMARKING AND ACCURACY CHECKING – 

RESEARCH QUESTION: How can we check the accuracy of the solutions provided by 

the optimization algorithms when applied to the DODA problem? 

 

HYPOTHESIS 4.3: Developing a heuristic recursive optimization scheme based on 

simple performance, cost and geometrical positioning rules will enable benchmarking and 

checking the accuracy of the detection architecture solutions provided by the evolutionary 

optimization approach. 

 

OBSERVATION: The surveillance of geographic borders and critical assets using 

limited sensor capability has always been a challenging task in many homeland security 

applications. Geographic borders may be very long and may go through isolated areas 

that are sometimes uninhabitated. As for critical assets, they may be large and numerous 

and may be located in highly populated areas. As a result, it is virtually impossible to 

secure each and every mile of border around the country, and each and every critical 

infrastructure inside the country. Most often, a compromise must be made between the 

percentage of asset covered by surveillance systems and the induced cost. However, 

governments may be willing to invest differently into securing their borders and critical 

assets. Once potential detection architecture solutions have been obtained for a specific 

customer need, the goal is to verify their predicted performance in an actual operational 

context and to potentially complement the architecture by additional mobile or fixed 

systems so as to increase its operational effectiveness.  
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SOLUTIONS ANALYSIS – RESEARCH QUESTION 5: How can we rapidly, 

quantitatively, and efficiently assess the operational effectiveness of the portfolio of 

distributed detection system architectures obtained though evolutionary optimization? 

 

HYPOTHESIS 5: A flexible agent-based and physics-based framework will allow 

creating a simple model so as to both rapidly, quantitatively, and efficiently evaluate the 

operational effectiveness of the portfolio of distributed system architectures and 

potentially complement the architecture by additional mobile or fixed sensor systems so 

as to increase its operational effectiveness. 

 

OBSERVATION: The focus of the proposed study is the development of a structured, 

valid, defensible, adaptive and practical methodology facilitating multi-criteria decision 

making processes for the protection of critical assets and populations, in the context of 

homeland security. On the one hand, the methodology is intended to facilitate the 

quantitative assessment of the operational, economic and technology potential of 

detection architecture solutions, with respect to capability-level measures of 

effectiveness. On the other hand, the methodology is meant to allow a traceable analysis 

of the design and optimization factors enabling the decision maker to explore the design 

space and assess the relative sensitivity of tradeoffs at all levels of the hierarchy. This 

involves being able to assess the impacts of changes in the structure of the detection 

architecture on its performance and cost, when the number of detection systems, their 

types, properties, and/or positions on the terrain are modified. 

 

WHAT-IF ANALYSIS – RESEARCH QUESTION 6: How can we assess the 

impacts of changes in the structure of the distributed system architecture on its 

performance and cost?  

 

HYPOTHESIS 6: The flexible agent-based and physics-based framework will both 

allow the decision maker to play ―what-if‖ scenarios, thus exploring the impact of varying 

the structure of the distributed system architecture on the performance and cost metrics, 
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and support the development of a quantitative, transparent, adaptive and practical 

methodology, while ensuring the traceability and the accuracy/validity of the definition of 

distributed system architecture solutions for a specific homeland security mission. 

 

3.3. Proposed Methodology 

 

To truly understand the nature of the detection architecture, assess its capabilities, and 

capture the key tradeoffs between detection platforms, items of interest, critical assets, 

and operational environment, it is necessary to create sufficiently accurate representations 

in a modeling and simulation environment, where any number of notional ―what-if‖ 

scenarios can be played. However, before any modeling effort can be undertaken, it is 

vital to recognize that the analyst is ultimately attempting to represent a wide variety of 

existing sensor systems (such as various types of radars, and various categories of 

cameras) as well as various items of interest identified as being relevant to the problem 

(such as general aviation aircraft, Unmanned Aerial Vehicles (UAVs), motorized gliders, 

ultralights, individual persons, groups of people, land vehicles, marine vessels, etc). At 

the same time, the analyst seeks to have the flexibility to generate notional detection 

systems representative of future advanced concepts. Similarly, it is highly desirable to 

have the freedom to consider notional threats that have not yet been conceived. This is 

also applicable to the representation of a wide range of critical assets (such as air, land, 

and maritime borders, airports, governmental assets, nuclear power plants, electric 

facilities, dams, commercial centers, chemical industries, refineries, national monuments 

and icons, etc), located in a variety of operational environments (i.e. various combinations 

of geographic and climatic conditions).  

The analyst is thus challenged both by the need to characterize a wide range of 

existing elements and the incentive to generate new notional ones. Hence, a structured, 

yet flexible, characterization scheme must be adopted. Such a scheme is built on the 

concept of parametric representations, whereby a set of parameters of interest with their 

respective domain of allowable values is identified and used to generate different 

configurations of a given system, or different systems altogether, depending on the 
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application. Such an approach has been successfully applied to the exploration of the 

design space of a variety of aerospace systems 
[430], as well as to the generation of 

operational scenarios [431]. This approach is also implicit in some stochastic optimization 

schemes which have also been successfully used in various defense and aerospace 

applications, such as genetic algorithms previously applied to aircraft design and 

optimization problems [432], [433], [434], [435]. 

To facilitate the generation of parametric representations, it is desirable to use a 

structured approach whereby the detection system-of-system is progressively decomposed 

into components with increasing levels of details, both physically and functionally. The 

resulting elements may then be adequately grouped, thus revealing sets of common 

parameters. In turn, once its various elements have been parametrically represented in a 

modeling environment, the initial system-of-system may be subsequently recomposed, or 

synthesized. Top-level capabilities, resulting from lower level representations and 

interactions, may finally be revealed. It is evident that this approach to parametric 

representations applies the fundamental systems engineering concepts of decomposition 

and synthesis, both at the physical and functional levels, as well as the concept of 

hierarchical decomposition [107], [436], as shown in Figure 11. 
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Figure 11: Decomposition/Recomposition Process Flowchart 

 

In order to facilitate the Modeling, Simulation, and Optimization of Distributed 

Detection system Architectures, a seven-step methodology, named M-SODDA, is 

proposed. This methodology aims at discovering coverage- and cost-efficient 

combinations and geometrical configurations of fixed and mobile detection systems 

distributed over large terrains able to adequately detect items of interest evolving in a 

specific geographic and climatic environment. The seven steps of the M-SODDA 

methodology, as well as the general elements involved in each step, are displayed in 

Figure 12.  
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Figure 12: Proposed Methodology for the Multidisciplinary Design, Modeling, Simulation and 

Optimization of Architectures of Fixed and Mobile Detection Systems Distributed Over Large Areas 

for Surveillance and Protection Missions in Homeland Security (M-SODDA) 

The first step of the M-SODDA methodology has already been addressed in Chapter I 

and Chapter II where the main motivation for this work was presented and the associated 

useful theory and literature was discussed.  

 The second step of the M-SODDA methodology features a detailed demonstration of 

the use and combination of enabling methods and tools for decomposing the DODA 

problem into its main elements and for reformulating the problem into operationally 

relevant terms. These methods and tools include Functional Decomposition from Systems 

Engineering, Morphological Analysis, Interactions and Consistency Analysis, Heuristic 

Optimization, Evolutionary Optimization, and Sensitivity Analysis among others. More 

precisely, the second step of the M-SODDA methodology consists of: 

M-SODDA 
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 The decomposition of the problem into its main elements, sub-elements, 

alternatives, attributes, and relevant representations of the various types of 

attributes indentified. 

 The analysis of the compatibilities between the various elements, sub-elements, 

alternatives, attributes, and attributes representations, to determine consistent 

operational scenarios and eliminate infeasible or non-probable situations. 

 

The M-SODDA methodology then focuses on a detailed description of a 

multidisciplinary strategy for the design and optimization of detection architectures in 

terms of detection performance and cost. More precisely, the third step uses the 

information gathered in the previous step to create a framework for the modeling, 

simulation, and optimization of detection architecture solutions for various potential 

operational scenarios of interest. The fourth, fifth, and sixth steps of the M-SODDA 

methodology then develop a structured and transparent process for the optimization of 

distributed detection system architectures in specific operational contexts, and for testing 

the accuracy of the resulting solutions. Finally, the seventh step of the M-SODDA 

methodology features guideline principles for checking the accuracy of the detection 

architecture solutions obtained in the previous steps and for customizing their properties 

by performing various kinds of sensitivity analyses and ―what-if‖ games. More precisely, 

the last five steps of the M-SODDA methodology consists of: 
 

 The modeling of the elements involved in the study, namely critical areas (assets 

or borders), items of interest, detection systems, and geographic and climatic 

conditions, using physics-based and agent-based models. 

 The investigation of optimization approaches adapted to the mixed, multi-criteria, 

multi-dimensional, highly discontinuous problem of DODA. 

 The determination of a set of optimization algorithm parameters adapted to the 

problem of DODA by using testing functions presenting similar characteristics as 

the original optimization problem. 

 The down-selection and the refining of an optimization approach for obtaining 

distributed detection system architecture solutions for the problem of DODA. 
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 The development of a heuristic optimization approach to provide benchmark 

detection architectures for the solutions provided by the refined optimization 

algorithm. 

 The optimization of the structure and the composition of detection architectures 

able to perform the original detection and surveillance mission in the operational 

situation considered, using the modified optimization algorithm. The detection 

architectures are initially statically optimized, meaning that they are composed of 

fixed sensor systems distributed over the area under consideration, at locations 

determined to be promising in terms of detection performance. 

 The investigation of the accuracy of the solutions provided by the refined 

optimization approach applied to the original optimization problem using the 

benchmark detection architectures obtained from the heuristic optimization 

algorithm. 

 The analysis of the performance of fixed Pareto efficient detection architectures 

provided by the modified optimization approach and their enhancement with 

mobile detection systems in regions of the theater of operations lacking detection 

coverage. 

 The analysis of the sensitivities of the performance and cost of the complete 

Pareto efficient detection architectures, featuring both fixed and mobile detection 

systems, to changes in their structures and their compositions, to obtain 

customized detection architecture solutions. This may be performed directly by 

the end user in the modeling and simulation framework developed as part of this 

work, by playing any kind of ―what-if‖ games on the detection architectures. 

 

In this work, two homeland security applications will be considered to demonstrate 

the M-SODDA methodology. The first example concerns the homeland security mission 

of Critical Assets Protection (CAP). It refers to the protection of those assets that are so 

vital to the stability and the normal operation of a nation that their disruption or 

destruction are expected to have a debilitating impact across economic, social, health, and 

other dimensions. This application will be used to demonstrate the first two steps of the 

proposed methodology. The second example concerns the homeland security mission of 
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Customs and Border Protection (CBP). It refers to the surveillance of large terrains and 

geographic borders against potential smugglers, drug dealers, illegal border crossings, and 

malevolent entities who are trying to enter a country to exploit or harm its people or 

infrastructures. It focuses on the southwest land border between the state of Arizona in 

the United States of America and the state of Sonora in Mexico. It implies the design, 

modeling, simulation, and optimization of multispectral three-dimensional detection 

architectures for border protection and intrusion detection at the Arizona-Sonora border 

and will be used to demonstrate the last five steps of the proposed methodology.  
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CHAPTER IV 

IMPLEMENTATION – PROBLEM DECOMPOSITION AND 

ANALYSIS 

 

4.1. Morphological Analysis of a Proof-of-Concept Scenario 

 

This section addresses the parametric analysis research question along with the 

corresponding problem decomposition, morphological analysis, morphological analysis 

revisited, cross-consistency assessments, and cross-consistency assessments revisited 

research questions, and serves as a test to the corresponding hypotheses.  

 

A convenient way to structure system’s decomposition for parametric representations, 

and the subsequent synthesis of the detection SoS, is through Morphological Analysis 

(MA). This approach uses a morphological matrix to document how a system of interest 

is decomposed into main element classes, and enumerates possible alternatives for each 

element class. A Cross Consistency Matrix (CCM) documents relational data between 

element alternatives, thus establishing the combinatorial logic that drives the synthesis of 

element alternatives into a number of internally consistent system’s configurations. This 

research incorporates two important improvements to the traditional formulation of MA.  

First, it explicitly incorporates a multi-level approach accommodating any successive 

decomposition steps that may be required, thus more closely following the conceptual 

formulation of the systems engineering “Vee” [96]. Hence, in a first step, the problem 

under consideration is decomposed into main parameters of importance, namely the 

critical area to be protected (asset or border), the detection system(s), the terrain or 

geographic environment, the potential ―threats‖ to the area to protect or items of interest, 

and the climatic conditions under which a scenario can take place. Several alternatives are 

then brainstormed for each parameter and regrouped in a High-Level or Operational-

Level Morphological Matrix (HLMM). Then, the problem is further decomposed, and 

relevant attributes for each element of the problem are identified. In a last step, 
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appropriate ranges of values (for continuous variables), or appropriate discrete values (for 

discrete variables), and appropriate ways of representing qualitative variables are 

determined for each attribute. This allows the creation of a Sub-Level or System-Level 

Morphological Matrix (SLMM).  

Second, this research builds on previous efforts [93] to assess the consistency of the 

information contained in the HLMM and in the SLMM, and encodes relational data with 

higher resolution scales to capture more complex interactions. More precisely, it 

implements a probabilistic scale instead of the traditional MA binary scale (0 for 

incompatibility and 1 for compatibility) to introduce some nuance in the cross-

consistency assessment. This method allows specifying more accurately the degree of 

likelihood that two elements can coexist in a given operational scenario. The consistency 

of the information contained in the Morphological Matrices is finally assessed at both the 

operational level and the system level. This enables the creation of two Cross-

Consistency Matrices (Operational-Level and System-Level: HLCCM and SLCCM) and 

paves the way for the modeling and simulation of candidate scenarios defined from the 

Sub-Level Morphological Matrices. 

 

4.1.1. High-Level Decomposition  

 

In this adapted version of MA, the decomposition process begins at the highest level 

where the problem construct is decomposed into corresponding functional and physical 

parts. As has been mentioned, there are three primary component types in this application, 

namely the asset to be protected, the detection systems, and the items of interest 

―threatening‖ the critical area under study. Let us consider the example of a Critical 

Assets Protection (CAP) mission which refers to the protection of those assets that are so 

vital to the stability and normal operation of a nation that their disruption or destruction 

are expected to have a debilitating impact across economic, social, health, and other 

dimensions [9],[437],[438]. Such assets can be physical infrastructures, land and maritime 

borders, as well as virtual aerial boundaries. Though threats to critical assets can be 

conceived to be of various forms [18], those related to low or very low altitude aerial 



146 

 

systems have been recognized to be of particular interest by some governments [21]. As a 

result, the development of customized detection architectures for airborne threats to 

critical assets has been identified as a major priority by the defense community [10]. 

Indeed, there are three primary threats to the Air Domain: to and from aircraft, to the 

Aviation Transportation System Infrastructure, and from hostile exploitation of cargo.  

 

1. The threats to and from aircraft are composed of large passenger aircraft, large all-

cargo aircraft, small aircraft, non-traditional aircraft such as UAVs, ultra-lights, gliders or 

aerial-application aircraft. These categories might be susceptible to carrying explosives, 

weapons of mass destruction, to spying on a particular critical asset, to smuggling of 

terrorists and instruments of terror, or be subject to hijacking as well as be the prey of 

Man Portable Air Defense Systems (MANPADS). 

a. Large passenger aircraft have been at greatest risk to terrorism due to their 

potential to inflict catastrophic damage and their likelihood to disrupt the Aviation 

Transportation System. Whether passengers and aircraft are used as targets or 

aircraft are used as weapons, the goal is always to inflict as much damage as 

possible, aiming at the greatest death toll.  

b. Large all-cargo aircraft might be used when more attractive targets such as 

large passenger aircraft are absent. If terrorists adapt their tactics this way, large 

all-cargo aircraft may be more attractive as weapons, such as through hijacking to 

attack ground targets, or as conveyance means. 

c. For their part, small aircraft might be used in high numbers as weapons to 

destroy a critical asset or portion of infrastructure. The most serious threat 

involving small aircraft is the transport of weapons of mass destruction or related 

materiel, the transport and release of chemical or biological agents, as well as 

spying such as videotaping or taking pictures of a critical asset in order to plan for 

a large scale attack. 

d. Finally, non-traditional aircraft might be employed as weapons, as a means to 

disseminate weapons of mass destruction or to release chemical or biological 

agents, or as a means of espionage to prepare a future attack on a critical asset. For 

example, terrorists might use non-traditional aircraft for missions of limited range, 
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requiring limited accuracy or having a specific target and small asset in mind, or 

simply to videotape or take pictures of more or less accessible asset(s) to plan for 

eventual large scale attack(s). 

 

2. The threats to the Aviation Transportation System Infrastructure are relatively few 

due to the relatively low public profile of Aviation Navigation Services such as Air 

Traffic Control facilities and systems, the robustness and resilience of these systems 

thanks to many layers of redundancies, and the Nation’s likely capacity to recover rapidly 

and thus limit psychological or economic impact of any attack. However, despite all these 

measures to deter terrorists from attacking the Aviation Transportation System 

Infrastructure, terrorists might target passenger concentration at commercial airports, 

recycling tactics from many years ago. Terrorists might also target multi-use airports such 

as those combining commercial and military operations, or commercial and general 

aviation operations. 

 

In the context of the current CAP application, the different elements involved fulfill 

corresponding top-level roles/functions, namely ―be protected‖, ―detect‖ and ―threaten the 

protection mission‖. Additionally, the operational environment is recognized as a key 

driver impacting performance at all levels, and is represented as an additional element of 

the system, both in terms of terrain/geographic conditions and climatic conditions.  

Each of these elements is then further decomposed into sub-elements, as shown in 

Figure 13, effectively implementing a new level in the hierarchical structure of the 

problem construct. The definition and determination of sub-elements was conducted 

through brainstorming and literature search [11],[19],[140],[143],[150],[151],[178],[439],[440], and was 

complemented by multiple iterations with subject matter experts. Finally, for each sub-

element, a list of possible alternatives is identified. A balance between exhaustiveness and 

relevance to the current application is key in providing an alternatives set that is neither 

unmanageable nor incomplete. Similarly, alternatives were defined through brainstorming 

and literature search [4],[12],[14],[18],[441],[442],[443],[444], and complemented by multiple iterations 

with subject matter experts. The hierarchical breakdown of top-level elements, sub-

elements, and their corresponding alternatives is documented in the High Level 
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Morphological Matrix (HLMM). This is shown in Figure 13 for the homeland airspace 

protection (CAP) mission. 

 

 

ELEMENT 
SUB-

ELEMENT 
ALTERNATIVES 

CRITICAL 

ASSET 

Type 

Agriculture and Food Water Public Health 
Emergency 

Services 

Defense 

Industrial 

Base 

Information, 

Telecommunications 

and Technologies 

Energy Transportation 
Banking and 

Finance 

Chemicals 

and 

Hazardous 

Materials 

Postal and 

Shipping/Civil 

Administration 

Space and 

Research 

Public & Legal 

Order and Safety 

National 

Monuments and 

Icons 

Nuclear 

Power 

Plants 

Dams 
Government 

Facilities 
Military Assets 

Commercial 

Key Assets 

 

Scope of 

Impact 
Local Regional National International 

Degree of 

Loss or 

Severity 

Immediate Impact 
Impact in 24 

to 48 hours 

Impact in One 

Week 
Other 

Effect of Time None Minimal Moderate Major 

Impact 

Assessment 

Public Economic Environment Political effects 
Psychologic

al Effects 

Interdependency  

TERRAIN 

Mountain Isolated Mountain 
Chain of 

Mountains 
 

Body of Water River Lake Sea/Ocean/Coast  

Forest Very small Small Medium Large Very large 

Urban 

Environment 
Cluster of houses Town City 

City + 

Neighborhoods 
Metropolis 

CLIMATIC 

CONDITIONS 

Atmosphere Tropical 
Mid-latitude 

Summer 

Mid-latitude 

Winter 

Subarctic 

Summer 

Subarctic 

Winter 

Aerosol State Clear Hazy  

ITEM OF 

INTEREST 
Type 

General Aviation 

Aircraft 
Crop Duster Ultralight 

Motorized 

Glider 
Helicopter 

Unmanned Air 

Vehicle 

Air to 

Surface 

Missile 

Cruise Missile  

 

Figure 13: High Level Morphological Matrix of the CAP Mission 
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SENSOR 

Active Radar 

Classic Radar + 

Mechanical Scan 

Classic 

Radar + 

Mechanical 

Scan + Track 

While Scan 

Classic Radar + 

Electronic Scan 

Classic Radar + 

Electronic Scan 

+ Track While 

Scan 

UHF Radar 

+ 

Mechanical 

Scan 

UHF Radar + 

Mechanical Scan + 

Track While Scan 

UHF Radar 

+ Electronic 

Scan 

UHF Radar + 

Electronic Scan 

+ Track While 

Scan 

 

Passive Radar 3 Tx1 + 1 Rx2 + CU3 
1 Tx + 3 Rx 

+ CU 

Multiple Tx +       

1 Rx + CU 

1 Tx + Multiple 

Rx + CU 
 

Optronic 

System 

Infrared 1 
Infrared 1 

Bi-field 
Infrared 2 

Infrared 2 Bi-

field 
Infrared 3 

Infrared 3 Bi-field  

Figure 13: High Level Morphological Matrix of the CAP Mission 

The next part of the decomposition deals with the definition of sets of attributes and 

their associated ranges of values with which parametric representations of system 

elements can be effectively made with a modeling and simulation capability in mind. The 

selection of said attributes and value ranges should be such that they can adequately 

capture the spectrum of alternatives prescribed for each ―Element‖ in the HLMM, and 

should furthermore allow for additional parametric definitions of other alternatives not 

considered therein. It is important to note that attributes may be continuous or discrete, 

and that value ranges are therefore defined accordingly. This phase of the system 

decomposition effort is certainly not trivial. Indeed, the objective is to capture features of 

relevance across a heterogeneous set of alternatives through a small number of attributes. 

This way, the analysis has an acceptable fidelity but remains manageable. Moreover, 

identifying what these attributes are can be cumbersome and may require extensive 

literature search and iterations with subject matter experts. In some instances, however, 

relevant attributes are readily identified, for instance as the basic design parameters of a 

radar platform.  The result of this process, namely the definition of attributes and value 

                                                 
1
 Tx is the abbreviation for Transmitter 

2
 Rx is the abbreviation for Receiver 

3
 CU is the abbreviation for Central Unit 

4
 Cases where the detection coverage is between 0% and 1% are highly improbable. There will always be at 

least one sensor system in the architecture such that its coverage will always be strictly larger than 1% even 

2
 Rx is the abbreviation for Receiver 

3
 CU is the abbreviation for Central Unit 
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ranges of each sub-element, is documented in the Sub Level Morphological Matrix 

(SLMM). 

4.1.2. Sub-Level Decomposition  

 

4.1.2.1. Defended Asset Element 

 

In the homeland airspace protection mission, a salient feature for the parametric 

representation of critical assets is their relative importance to the decision maker so that 

an appropriate level of protection required can be specified in every particular case. 

Consequently, the problem is best approached by giving the decision maker the 

opportunity to define a level of protection to be achieved with the detection SoS. In this 

context, the focus being only on the detection of potential threats to specific critical 

assets, a relevant attribute to be considered is the required probability of detection of an 

airborne threat, within a given distance from the defended asset. Moreover, the level of 

protection might not only depend on the specific asset in mind, but also be a function of 

the performance of protection systems (especially effectors) that may already be in place. 

In order to capture the efficiency of said known or unknown systems, field experts 

usually consider the time required to deal with a potential harmful threat with such 

systems. This gives a distance before which a potential threat has to be detected and 

identified to be efficiently handled. This distance can be represented as a sphere of 

protection around the defended asset, or as a cylinder if it is associated with a notion of 

limit altitude of detection. The attributes and ranges in the SLMM for the ―critical asset‖ 

in the CAP mission are provided in Table 1. This process of defining relevant attributes 

for the defended asset obviously implies several iterations with experts in the field so as 

to determine a set of adequate attributes capturing the whole extent of the problem while 

still yielding a manageable design space. 

Table 1: Attributes and Ranges for the Critical Asset in the CAP Mission 

CRITICAL 

ASSET 

ATTRIBUTE UNIT 
MINIMUM 

VALUE 

MAXIMUM 

VALUE 

Probability of Detection Required for % 0 100 
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the SoS before Limit Distance 

Time Required for Effectors to act 

from Defended Asset 
min 0 30 

 

4.1.2.2. Aerial System Element 

 

The definition of attributes for the ―item of interest (IoI)‖ element necessitates taking 

into account requirements for the modeling of detection systems, essentially the 

calculation of their performance metrics depending on the ―item of interest‖ attributes. 

Therefore, the wide variety of potential items of interest can be captured into five 

attributes for the CAP mission. The attributes and ranges in the SLMM for the ―item of 

interest‖ are provided in Table 2. Once again, the definition of relevant attributes for the 

―item of interest‖ involves multiple iterations with experts in the field so as to determine a 

set of adequate attributes capturing the whole extent of the problem while still yielding a 

manageable design space. 

Table 2: Attributes and Ranges for the Item of Interest in the CAP Mission 

ITEM OF 

INTEREST 

ATTRIBUTE UNIT 
MINIMUM 

VALUE 

MAXIMUM 

VALUE 

Speed m/s 1 1600 

Altitude m 0 12000 

Range m 0 20000 

Heading ° 0 360 

Radar Cross Section 

(RCS) 
dm2 0 10000 

 

4.1.2.3. Geography and Climate Elements 

 

A similar approach can be adopted to define appropriate attributes for the terrain and 

the climatic conditions. A wide spectrum of terrain features is considered, such as 

mountains, bodies of water, forests, and urban environments. Nevertheless, in a scenario 

simulation, the characteristics of primary operational importance are the general size and 

shape of each feature and its distance to the critical asset. 

As for the climatic conditions, they essentially influence the performance of the 

optronic detection systems (cameras). Indeed, radars, whether active or passive, are 
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relatively insensitive to the presence of clouds, rain, snow and fog through which they can 

―see‖ without any restrictions. However, optronic detection systems are highly sensitive 

to the amount of aerosols in the air. A detailed private study from a foreign government 

industry on the interactions between the performance of optronic detection systems and 

the numerous atmospheric properties shows that two weather-related attributes are 

sufficient. These are cloud ceiling for detection (representing the altitude of eventual 

cloud coverage above the theater of operations) and visibility (representing the amount of 

aerosols in the air). The attributes and ranges in the SLMM for the terrain and the climatic 

conditions are provided in Table 3 and Table 4 respectively. 

Table 3: Attributes and Ranges for the Geography Element in the CAP Mission 

TERRAIN 

Type 

Mountainous Environment 
Isolated Peak 

Chain 

Aqueous Environment 

River 

Lake 

Coast 

Forested Environment 

Small 

Medium 

Large 

Urban Environment 

Cluster of Houses 

Town 

City 

City + Neighborhoods 

Metropolis 

ATTRIBUTE UNIT MIN VALUE MAX VALUE 

Distance from Defended Asset m 0 10000 

Surface Covered km2 0 12000 

Average Height m 0 9000 

Angular Location from Defended Asset ° 0 360 

Width (for River) m 0 500 

 

Table 4: Attributes and Ranges for the Climate Element in the CAP Mission 

CLIMATIC 

CONDITIONS 

ATTRIBUTE UNIT MIN VALUE MAX VALUE 

Clouds Ceiling for Detection m 50 12000 

Visibility km 0 50 

 

4.1.2.4. Detection System Elements 
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As mentioned previously, the attributes characterizing the detection systems of 

interest, namely active radars and visible or infrared cameras, fall out directly from the 

intrinsic design parameters of those systems. The attributes and ranges in the SLMM for 

the detection systems element are provided in Table 5 and Table 6. 

Table 5: Attributes and Ranges for the Active Radar Element in the CAP Mission 

ACTIVE 

RADAR 

Type 
Classic   

UHF   

Scanning Scheme 
Mechanical   

Electronic   

Waves Propagation Scheme for 

UHF Radar 

LOS   

NLOS   

ATTRIBUTE UNIT MIN VALUE MAX VALUE 

Peak Emitted Power W 10 10000 

Frequency of UHF Radar MHz 300 1000 

Frequency of Classic Radar GHz 1 10 

Losses + Noise Factor dB 3 21 

Bandwidth MHz 1 300 

Elevation Coverage ° 0 60 

Azimuth Coverage ° 0 360 

Antenna Length 
# of 

wavelength 
1 50 

Antenna Height 
# of 

wavelength 
1 50 

Speed of Scan if Applicable 
Rotation 

per…s 
1 15 
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Table 6: Attributes and Ranges for the Optronic System Element in the CAP Mission 

OPTRONIC 

SYSTEM 

Type 

1   

2   

3   

Bi-field 
Yes   

No   

ATTRIBUTE UNIT MIN VALUE MAXVALUE 

Wavelength Infrared 1 µm 10 10 

Wavelength Infrared 2 µm 3 5 

Wavelength Infrared 3 µm 8 12 

ARRAY SIZE 

Number of Horizontal Pixels - 480 480 

Number of Vertical Pixels - 640 640 

Focal Dimension cm 1 100 

Optic Diameter cm 3 15 

OPTICAL SYSTEM 

Detection Range km 1 20 

Sensibility (NedT) mK 1 150 

Integration Time Infrared 1 ms 40 40 

Integration Time Infrared 2 ms 20 20 

Integration Time Infrared 3 ms 5 5 

 

The definition of a parameter space in the SLMM allows the analyst to create 

parametric representations for each of the element alternatives prescribed in the HLMM. 

All alternatives for a given element are represented by a common vector of parameters, 

and are distinguished from each other by means of the specific values selected. This 

provides the analyst with the flexibility of creating an operational scenario to be modeled 

in two ways. One is to use the HLMM, and directly select prescribed alternatives for 

which parametric representations have been provided. The other is to use the SLMM and 

dial in one by one the attribute values for all elements, hence departing from prescribed 

alternatives and formulating notional ones. A combination of the two may also be used, 

for instance by selecting alternatives from the HLMM as a starting point, and then 

implementing small perturbations by altering parameter values. A summary of the process 

followed to obtain the Morphological Matrices is provided in Figure 14. 
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Figure 14: Morphological Decomposition Process Flowchart 
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4.2. Cross-Consistency Assessments 

 

A typical morphological matrix can contain far too many configurations of 

alternatives to be inspected by hand. For instance, assuming that the alternatives in the 

High Level Morphological Matrix in Figure 13 are all compatible with each other, the 

total number of configurations or scenarios adds up to 3.48*10
9
! Thus, the next step in the 

proposed approach is to examine the internal relationships between parameters in the 

Morphological Matrix and to ―reduce‖ the number of combinations by weeding out all 

mutually contradictory conditions. This is achieved through a cross-consistency 

assessment. Each ―alternative‖ in the High Level Morphological Matrix is compared, in a 

pair-wise manner, to all of the others, much like a cross-impact matrix. For most 

problems, with each pair-wise relation, a judgment is made as to whether – or to what 

extent – the pair can co-exist, i.e. whether it is a compatible or an incompatible 

relationship. The results of cross-consistency assessments between high level alternatives 

are graphically depicted in a High Level Cross-Consistency Matrix (HLCCM). 

 

4.2.1.1. Probabilistic Cross-Consistency Assessments 

 

For the problem under consideration, a simple assessment of compatibilities is not 

enough and is actually not appropriate. For instance, in the cases: 
 

 of the ―item(s) of interest‖ with respect to the terrain or 

 of the critical asset with respect to the ―item(s) of interest‖, 
 

the question ―Is this alternative or concept compatible with this other alternative?‖ does 

not have a simple ―yes‖ or ―no‖ answer. Most of the time, the answer could be ―it 

depends‖ or ―well, not really but the alternatives are not strictly incompatible either‖.  

To solve this ambiguity, one can describe relative consistencies in terms of 

probability or likelihood that two alternatives or concepts can coexist in reality, i.e. in an 

operational scenario, or even in a notional scenario. 
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To perform this task, the following scale is proposed: 

 

o 0: the alternatives are strictly (always) incompatible as part of their 

very nature 

o 0.2: it is very unlikely to find these two alternatives coexist in reality, 

and thus in a scenario (based on experience or on empirical grounds) 

o 0.4: it is unlikely to find these two alternatives coexist in reality, and 

thus in a scenario (based on experience or on empirical grounds) 

o 0.6: it is likely to find these two alternatives coexist in reality, and thus 

in a scenario (based on experience or on empirical grounds) 

o 0.8: it is very likely to find these two alternatives coexist in reality, 

and thus in a scenario (based on experience or on empirical grounds) 

but they are not strictly compatible, i.e. they cannot coexist in all cases 

o 1: the alternatives are strictly (always) compatible as part of their very 

nature 

 

4.2.1.2. Examples of Cross-Consistency Assessments 

 

In the CAP application, each terrain alternative is compatible with all others and with 

itself, in the sense that one can define the same terrain feature more than once, with 

similar or different properties. For instance, the user can choose to define two isolated 

mountains in his/her scenario. Therefore, the diagonal portion of the High Level Cross-

Consistency Matrix (HLCCM) for the terrain is composed of only 1s. . Similarly, each 

―item of interest‖ alternative is compatible with all others and with itself, in the sense that 

one can define the same ―item of interest‖ more than once with similar or different 

properties. For instance, the user can choose to consider two general aviation aircraft in 

his/her scenario, yielding only 1s in the diagonal portion of the High Level Cross-

Consistency Matrix for the ―item of interest.‖ 

Furthermore, there are no strict incompatibilities between ―item of interest‖ 

alternatives and ―critical asset‖ alternatives, meaning that there exists or will exist (maybe 

High Compatibility 

Low Compatibility 

0% Compatibility 

100% Compatibility 
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some time in the future) a possibility for a given ―item of interest‖ to be a threat to a 

given critical asset, but that this threat is more or less likely to exist in real life. For 

example, a crop duster attacking a nuclear power plant would not make any significant 

damage and is thus assumed very unlikely. This example is displayed in red in Figure 15. 

 

Critical 

Asset / 

Threat 

Agriculture 

and Food 
Water 

Public 

Health 

Emergency 

Services 

National 

Monuments 

and Icons 

Nuclear 

Power 

Plants 

Dams 
Government 

Facilities 

Military 

Assets 

Commercial 

Key Assets 

General 

Aviation 

Aircraft 

1 1 1 1 1 1 1 1 1 1 

Crop 

Duster 
1 1 1 0.3 1 0.2 0.2 0.2 0.2 1 

Ultralight 1 1 0.2 0.2 1 1 1 1 1 1 

Motorized 

Glider 
1 1 0.3 0.5 1 1 1 1 1 1 

UAV 0.4 0.4 0.4 0.2 1 1 0.6 1 1 1 

Figure 15: Snapshot of a Cross-Portion of the High Level Cross-Consistency Matrix for the Critical 

Asset and the Item of Interest, in the CAP Mission 

Similarly, most of the ―item of interest‖ alternatives are strictly compatible with most 

of the terrain features. However, once again, some nuance can be introduced. For 

instance, a crop duster is very unlikely to be found in a mountainous environment or in an 

urban environment such as a medium or a big city. This case is depicted in red in Figure 

16. 

 

Terrain / 

Threat 

Mountainous 

Environment 

Cluster of 

Houses 
Town City 

City and 

Neighborhoods 
Metropolis 

General Aviation 

Aircraft 
1 1 1 1 1 1 

Crop Duster 0.2 1 1 0.2 0.2 0.2 

Ultralight 1 1 1 0.3 0.2 0.2 

Motorized Glider 1 1 1 0.3 0.2 0.2 

UAV 1 1 1 1 0.4 0.4 

Figure 16: Snapshot of a Cross-Portion of the High Level Cross-Consistency Matrix for the Terrain 

Element and the Item of Interest, in the CAP Mission 
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As can be inferred from the previous discussion, determining high level compatibilities 

does not yield a satisfactory assessment since it seems that almost every alternative is 

compatible with every other. Indeed, apart from very isolated cases (such as those 

described above), the HLCCM is mostly composed of 1s. Therefore, in order to specify 

the likelihood assessments in the HLCCM, it is necessary to go down one level of 

definition and apply a similar process to the attributes and ranges of the SLMM so as to 

create a Sub-Level Cross-Consistency Matrix (SLCCM). Nevertheless, once again, a 

simple assessment of attributes’ compatibility with one another is not enough and is 

actually not appropriate. Indeed, in most cases, two given attributes are neither strictly 

compatible nor strictly incompatible but their compatibility depends on their respective 

values.  

 

To capture these dependencies, a 0, 1, 2 scale may be used in the creation of the Sub-

Level Cross-Consistency Matrix: 

 0: the attributes compared are never compatible regardless of their respective 

values 

 1: the attributes compared are always compatible regardless of their respective 

values 

 2: the attributes compared can be compatible or not depending on their respective 

values  

 

For example, the RCS of an ―item of interest‖ depends on the type of radar 

considered, so this pair is given a 2, as depicted in red in Figure 17. 
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Threat / 

Active Radar 

Average 

Speed (m/s) 

Average 

Altitude 

(m) 

Average 

Range 

(m) 

Heading 

(°) 

Radar 

Cross 

Section 

(dm
2
) 

Type 1 1 1 1 0.2 

Peak Emitted Power (W) 1 1 1 1 1 

Losses and Noise Factor (dB) 1 1 1 1 1 

Bandwidth (Hz) 1 1 1 1 1 

Elevation Coverage (°) 1 1 1 1 1 

Azimuth Coverage (°) 1 1 1 1 1 

Antenna Length (# wavelength) 1 1 1 1 1 

Antenna Height (# wavelength) 1 1 1 1 1 

Scanning Scheme 1 1 1 1 1 

Speed of Scan if Applicable (rotation 

per s) 
1 1 1 1 1 

Figure 17: Snapshot of a Cross-Portion of the Sub Level Cross-Consistency Matrix for the Active 

Radar Element and the Item of Interest, in the CAP Mission 

Moreover, it seems quite clear that the definition of the detection zone around the 

critical asset is highly dependent on the terrain. For instance, the radius of a sphere of 

protection around the critical asset, depending on the level of protection required and the 

time required for the effector systems to deal with a potential harmful aerial system is 

mostly determined by the terrain features surrounding the defended asset and their 

relative distance and location with respect to the latter. This translates into a cross-

consistency assessment between attributes of the critical asset and attributes of the terrain 

yielding mostly 2s, as depicted in the red square in Figure 18 for the radius of the sphere 

of protection. 
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Critical Asset / 

Terrain 

Probability of Detection Required 

for the Architecture Before Limit 

Distance (%) 

Time Required for Effectors to 

act From Defended Asset (min) 

Type 0.2 0.2 

Distance From Critical 

Asset (m) 
0.2 0.2 

Surface Covered (m
2
) 0.2 0.2 

Average Height (m) 0.2 0.2 

Average Location From 

Critical Asset (°) 
0.2 0.2 

Width (for Rivers) 0.2 0.2 

  

Figure 18: Snapshot of a Cross-Portion of the Sub Level Cross-Consistency Matrix for the Terrain 

Element and the Critical Asset, in the CAP Mission 

From this point on, pairs of attributes which were given a 2 are investigated further to 

determine for which of their values they are compatible and for which they are not. 

Several kinds of dependencies, leading a pair of attributes to be ―not always compatible‖ 

as well as ―not always incompatible‖, may be identified as part of this task. These 

include, but are not limited to: 

 Mathematical dependency (e.g. speed and range for the ―item of interest‖) 

 Technological or state of the art dependency (e.g. number of horizontal pixels 

and number of vertical pixels constituting the detection array of an optronic 

system) 

 Operational or scenario dependency (location of the transmitter/receiver 

antennae for passive radar systems and terrain features) 

 

After having fully determined the ―compatibilities‖ at the sub level, the 

―compatibilities‖ at the high level can be better specified. Moreover, the process 

consisting of going back up from the Sub-Level Cross-Consistency Matrix to the High 

Level Cross-Consistency Matrix, may help identify some situations or scenarios or 

combinations of alternatives in the High Level Morphological Matrix which are 

incompatible, although they appeared to be compatible, or more or less likely, in the first 

place. As such, the creation of the Cross-Consistency Matrices is really an iterative 

process, as is the creation of the Morphological Matrices, in the sense that their adequate 
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creation requires several back-and-forth between accurate definition of the problem and 

M&S requirements. A summary of the process followed to obtain the Cross-Consistency 

Assessments is provided in Figure 19. 

 

 

Figure 19: Cross-Consistency Assessments Process Flowchart 
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To conclude, Figure 20 depicts flowcharts of the morphological decomposition and of 

the cross-consistency assessment for the problem under consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Flowcharts of the Morphological Decomposition and of the Cross-Consistency Assessment 
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4.3. Concluding Remarks on Morphological Analysis and Cross-Consistency 

Assessments 

 

The sections above have demonstrated the construction of a structured, yet flexible 

characterization scheme whereby the homeland security problem of interest is 

progressively decomposed into its main elements, both physically and functionally to 

generate parametric representations. This was done by adequately regrouping different 

elements of the problem, thus revealing sets of common parameters.  

First, a multi-level approach has been incorporated to the original Morphological 

Analysis (MA) method in order to determine a set of alternatives that best matches all 

levels of decomposition, and to accommodate any successive decomposition steps that 

may be required, thus more closely following the conceptual formulation of the systems 

engineering ―Vee.‖ This step addressed the problem decomposition, morphological 

analysi, and morphological analysis revisited research questions, and validated the 

corresponding hypotheses.  

Then, cross-consistency assessment methods have been used to document relational 

data between alternatives identified in the problem decomposition, thus establishing the 

combinatorial logic that drives the problem synthesis into a number of internally 

consistent operational configurations. The traditional binary scale used to study the 

compatibility between alternatives in the original MA formulation has been modified to 

describe the relative consistencies at each level of decomposition identified in the 

previous step. Cross-consistency assessments based on probabilistic or likelihood 

representations have been introduced to examine the nature of the internal relationships 

between elements of the problem and to reduce the number of scenarios to an 

operationally relevant set. Such cross-consistency assessment schemes also enabled 

encoding relational data with higher resolution scales to capture more complex 

interactions. This step addressed the cross-consistency assessments and cross-consistency 

assessments revisited research questions, and validated the corresponding hypotheses. 

With this, the first leg of the ―Vee‖ diagram is complete and the parametric 

representations research question is fully addressed as depicted in Figure 21. 
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Figure 21: Morphological Breakdown of the Problem 

 

4.4. How to Define a Relevant Operational Scenario 

 

The definition of a parameter space in the SLMM allows the analyst to create 

parametric representations for each of the element alternatives prescribed in the HLMM. 

All alternatives for a given element are represented by a common vector of parameters, 

and are distinguished from each other by means of the specific values selected. This 

provides the analyst with the flexibility to create an operational scenario to be modeled in 

two ways. One way is to use the HLMM, and to directly select prescribed alternatives for 

which parametric representations have been provided. The other way is to use the SLMM 

and to dial in one by one the values of the attributes for all elements, hence departing 

from prescribed alternatives and formulating notional ones. A combination of the above 

two ways for defining a candidate scenario may also be used, for instance by selecting 

alternatives from the HLMM as a starting point, and then implementing small 

perturbations by altering parameter values.  The selected alternatives and parameter 
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values for the candidate scenario can finally be assessed for compatibility using the 

Cross-Consistency Matrices to determine whether the considered scenario is valid. If it is 

not, alternatives and/or parameter values may be changed until an adequate combination 

is obtained. 

In other words, the information contained in the various morphological matrices can 

be used to define scenarios for surveillance and protection missions in the context of 

homeland security, as follows. The alternatives identified in the HLLM are modeled using 

intrinsic design relationships and physics-based representations involving the various 

attributes and their ranges of values or settings defined in the corresponding SLMM for 

each element considered. The information concerning the compatibility of alternatives 

depending on the values or settings of their attributes, contained in the HLCCM and the 

SLCCMs, is then used to eliminate those combinations of alternatives, attributes, and 

values or settings that are contradictory with each other or that do not represent realistic 

situations. Only those scenarios presenting a meaningful operational context remain. The 

said scenarios may then be modeled and simulated in a modeling and simulation (M&S) 

framework so as to derive useful information regarding customized detection architecture 

solutions able to protect a critical area of interest in a specific geographic and climatic 

environment.  
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CHAPTER V 

IMPLEMENTATION – MODELING OF A PROOF-OF-CONCEPT 

SCENARIO 

 

Once the Morphological Matrices and the Cross-Consistency Matrices are completely 

finalized, the information they contain may be used to develop a modeling and simulation 

environment, or, more precisely a multidisciplinary design and optimization framework, 

where any number of notional ―what-if‖ scenarios can be played.  

This section addresses the modeling, simulation, and optimization, solutions analysis, 

and what-if analysis research questions, along with the corresponding optimization 

method, optimization parameter settings, and solutions benchmarking and accuracy 

research questions, and serves as a test to the corresponding hypotheses. 

  

In this section and in the remainder of this work, we will consider the example of a 

Customs and Border Protection (CBP) mission which is well suited for the design, 

modeling, simulation, and optimization of distributed systems detection architectures. 

Indeed, the surveillance of large terrains and geographic borders using a limited detection 

capability has always been an issue in the defense and protection community of many 

developed countries. Geographic borders are usually very long and may go through 

isolated areas with little or no inhabitants. As a result, it is almost always impossible to 

completely secure each and every mile of border against potential smugglers, drug 

dealers, illegal border crossings, and malevolent entities who are trying to enter a country 

to exploit or harm its people or infrastructures. In addition, the costs associated with the 

development of efficient architectures of protection systems may be so large that they 

become prohibitive. A compromise must therefore be made and a balance must be found 

between the level of acceptable protection and the cost governments are willing to invest. 

However, different countries may have different preferences when it comes to 

compromising between protection efficiency and cost, mostly depending on their histories 

and related experiences. Capturing such disparities is not straightforward and often 
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requires the use of a parametric analysis or cost/benefit analysis. In addition, different 

preferences result in different protective solutions. Therefore, there exists a need for a 

method able to provide customized protection alternatives for varying levels of 

performance and cost. Such a method is found in the domain of optimization which 

enables the design of protection architectures that perform efficiently in a wide range of 

external conditions. These architectures are defined as Pareto optimal and are obtained by 

performing parametric optimizations.  

In the context of CBP missions, optimizing sensor location over large terrains is a 

crucial need for the defense and protection community. In this context, coverage and cost 

are fundamental and widely accepted metrics to evaluate the performance of surveillance 

systems in domains such as intrusion detection and border surveillance. The major goal in 

such applications is to detect intruders as they penetrate a protected region or before they 

cross a border. This constitutes a barrier coverage problem. Unlike other applications, the 

aforementioned problems do not require the coverage of each and every point of a given 

region but rather the coverage of that portion of the region through which intruders can 

penetrate. As such, the sensors can be deployed as a barrier to decrease the cost and 

achieve an acceptable coverage.  

The present research concentrates on the design and optimization of multispectral 

multi-platform sensor architectures for border surveillance missions. More precisely, it 

considers the example of illegal crossings of the Arizona- Mexico border. The current 

study formulates an optimization problem that is then investigated using both a modified 

Genetic Algorithm and a modified Particle Swarm Optimization (PSO) algorithm. 

Appropriate sets of parameters for both optimization algorithms are derived and their 

ability to reliably find adequate detection architectures that provide the maximum 

detection coverage at the minimum cost is compared. Finally, a parametric analysis is 

performed on the objective function so as to capture the unknown customer preference 

between performance and cost of the detection architecture, and to determine a set of 

Pareto optimal or non-dominated solutions capable of satisfying constraints on both 

performance and cost. 
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Figure 22 shows a schematic representation of the modeling, simulation, and 

optimization environment developed to analyze the CBP mission scenario.  

 

 

Figure 22: Schematic Representation of the Modeling, Simulation, and Optimization Environment 

The picture on the left of Figure 22 represents a map of the terrain at the Arizona-

Mexico border for the CBP mission scenario considered. The goal of the M&S and 

optimization environment is to determine the optimum combination of detection systems 

in terms of types, numbers, properties, and positions on the theater of operations that 

yields the maximum detection performance at the minimum cost. For this, the available 

information concerns the types and categories of detection systems, pre-selected positions 

on the terrain where those detection systems will be preferentially located when 

optimizing the detection architecture, and the various items of interest in the surveillance 

mission under study. Other necessary inputs are the geographical properties of the theater 

of operations, as well as the operational context in which the scenario is taking place, 

which includes the time required for potential interception of detected suspicious items of 

interest. Finally, as can be seen on the right of Figure 22, MATLAB is used to develop an 
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optimization algorithm able to reliably find detection architectures providing adequate 

coverage at reasonable cost in the context of the CBP mission scenario of interest. The 

subsequent sections will detail the selection of the modeling, simulation and optimization 

framework elements for the analysis of the CBP mission scenario, and will go through 

each step of the methodology leading to the reliable design and optimization of 

appropriate detection architectures. 

 

5.1. Selection of the Modeling, Simulation, and Optimization Framework 

 

In order to perform the above analysis, it is necessary to select both an appropriate 

modeling and simulation framework and an optimization environment where the problem 

can be accurately represented and optimized. Given the emergent behavior of the 

detection system-of-systems under study, an agent-based modeling and simulation 

(ABM&S) framework is required. Then, in order to perform the optimization of the 

detection architecture, an optimization framework is selected. The selection of both the 

ABM&S and the optimization frameworks is performed by examining candidate 

platforms and tools, and rating them according to a set of selection criteria. The 

programming platforms and tools considered are Eclipse, MATLAB, NetLogo, and other 

ABM tools (such as SWARM, RePast, and MASON). The selection criteria against 

which the above programming platforms and tools are compared are availability, learning 

curve, ease of use, computational expense, fidelity of physics and agent behavior, 

availability of a visualization capability, level of user interactivity, and compatibility with 

other software used for this research (especially Excel for the Morphological Analysis 

and for post-processing). NetLogo and MATLAB turn out to be the most suitable tools 

for modeling, simulation, and optimization (MS&O) of the CBP problem of interest, 

essentially because they enable the user to build up models and optimization algorithms 

from scratch and they provide a high flexibility and transparency in the programming of 

the modeling, the simulation, and the optimization routines. 
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5.1.1. Definition of Selection Criteria 

 

Firstly, due to cost and implementation constraints, the MS&O tool need to be 

available, either publicly or widely used in the industry. 

Secondly, due to time constraints, it is required that the learning curve of the tools be 

reasonable, which translates into MS&O tools familiar to the author.  

Thirdly, the elements of the scenario (especially the items of interest and the detection 

systems), described in previous sections, need to be modeled using physics-based models. 

In other words, models are supposed to be built with mathematical equations or basic 

concepts, relating to the design, the performance, the behavior, etc, of the parameters of 

the study.  

Fourthly, the M&S tool is required to be agent-based so as to be able to simulate the 

behavior of the items of interest and of the detection systems over time, while the 

optimization framework needs to be sufficiently flexible and transparent to develop 

custom optimization algorithms. 

Fifthly, the final product is intended to provide a visual support for in-house 

demonstration purposes, and to be interactive. Therefore, other desired features of the 

M&S tool are its visualization capability, its user friendliness, and its compatibility with 

other M&S software that may be already in use at governmental industries.  

Sixthly, the MS&O tools need to be compatible with Excel and/or other mathematical 

software. Indeed, such tools may come in handy for calculation purposes and/or for 

recording the results at each step of the methodology in case they are needed later in the 

process. 

Lastly and maybe most importantly, due to the modeling and simulation requirements 

associated with the problem under study, it can only be a good idea to consider the worst 

case scenario and assume that the MS&O software will have to deal with computationally 

expensive simulations and optimizations. Therefore, the last criterion for selection is that 

the MS&O tools have acceptable memory capacities and a sufficient computational 

power. 
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To summarize, the MS&O tools are required to have the following characteristics: 

 Readily available 

 Reasonable learning curve 

 Familiar to the author 

 Physics-based / Agent-based 

 Flexible and Transparent 

 Visualization Capability 

 Interactive Capability 

 Compatibility with Excel and mathematical Software 

 Computationally friendly 

 

5.1.2. Description of Candidate ABM Programming Platforms and Tools 

 

Several relevant ABM and optimization programming platforms and tools potentially 

satisfying one or more of the aforementioned criteria are identified through literature 

search. These are: 

 SWARM  

 RePast (Recursive Porous Agent Simulation Toolkit) 

 MASON 

 NetLogo 

 Eclipse 

 MATLAB 

 

Each of them is briefly described in Appendix H. 

 

5.1.3. Comparison and Selection of the MS&O Framework 

 

Based on the characteristics of the relevant ABM&S and optimization programming 

platforms and tools described in previous sections, a table can be created to compare the 
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ability of these tools to satisfy the selection criteria identified previously. The results are 

depicted in Table 7. 

Table 7: Comparison of Relevant ABM&S and Optimization Programming Platforms and Tools 

According to Selection Criteria 

Tools 

Criteria 
Eclipse MATLAB NetLogo SWARM Repast MASON 

Available 
      

Reasonable learning curve 
      

Easy to use 
      

Computationally friendly 
      

Physics-based / Agent-based 
      

Flexible / Transparent 
      

Visualization Capability 
      

Interactive Capability 
      

Compatibility with Excel and 

Mathematical Software 
      

 

Legend: 

 does  have that property 

  not specified 

 

As can be noticed from Table 7, MATLAB turns out to be the most appropriate 

optimization tool for the problem at hand, while NetLogo turns out to be the most 

appropriate ABM&S tool to model and simulate detection architectures under various 

operational conditions. Therefore, NetLogo and MATLAB are used to model, simulate 

and optimize the detection architecture for a proof-of-concept scenario of interest. This 

test operational scenario is constructed from the Morphological Matrices, and is simulated 
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using the compatibility information contained in the Cross-Consistency Matrices. A 

description of the proof-of-concept scenario and of the models of the terrain, the defended 

asset, the items of interest, and the detection systems is provided in subsequent sections. 

 

5.2. Morphological Decomposition of the Customs and Border Protection Mission 

Scenario 

 

5.2.1. Problem Decomposition 

 

Similarly to the CAP mission analyzed in previous sections, the decomposition 

process of the CBP mission begins at the highest level where the problem construct is 

decomposed into its primary components, namely the border, the detection systems, and 

the items of interest trying to cross the border. Additionally, the operational environment 

is recognized as a key driver impacting performance at all levels. It is represented as an 

additional element of the system, both in terms of topographic and climatic conditions. 

Each of the above elements is then further decomposed into sub-elements, effectively 

implementing a new level in the hierarchical structure of the problem construct. Finally, 

for each sub-element, a list of possible alternatives is identified and documented in the 

High Level Morphological Matrix (HLMM). This is shown in Figure 23 for the Customs 

and Border Protection (CBP) mission. 

 

 

 

 

 

 

 

 

 



175 

 

ELEMENT 
SUB-

ELEMENT 
ALTERNATIVES 

CRITICAL 

ASSET 
Type 

Full Land 

Border 

Border 

Sector 

Border 

Control 

Point 

 

TOPOGRAPHIC 

CONDITIONS 

Mountain 
Isolated 

Mountain 

Chain of 

Mountains 
 

Body of Water River Lake 
Sea/Ocean/

Coastline 
 

Forest Very small Small Medium Large Very large 

Urban 

Environment 

Cluster of 

houses 
Town City 

City + 

Neighborhoods 
Metropolis 

CLIMATIC 

CONDITIONS 

Atmosphere Tropical 

Mid-

latitude 

Summer 

Mid-

latitude 

Winter 

Subarctic 

Summer 

Subarctic 

Winter 

Aerosol State Clear Hazy  

ITEM OF 

INTEREST 

Air 

General 

Aviation 

Aircraft 

Crop 

Duster 
Ultralight 

Motorized 

Glider 

Unmanned 

Air Vehicle 

Ground 
Pedestrian 

Group of 

Pedestrians 
Car Van Truck 

Motorcycle Bicycle Horse  

SENSOR 

Active Radar 

Air/Ground 
Radar A Radar B Radar C Radar D … 

Camera 

Air/Ground 
Camera A Camera B Camera C Camera D … 

Figure 23: High Level Morphological Matrix for the Customs and Border Protection Mission 

The next part of the decomposition deals with the definition of sets of attributes and 

the associated ranges for their values with which parametric representations of system 

elements can effectively be made with a modeling and simulation capability in mind. The 

selection of attributes and ranges is such that it adequately captures the whole spectrum of 

alternatives prescribed for each ―Element‖ in the HLMM, and also allows for additional 

parametric definitions of other alternatives not yet considered. These attributes may be 

continuous or discrete, and therefore ranges of values or other adequate representations of 

variables must be defined accordingly. The definition of the attributes and their 

representations for each sub-element of the problem is documented in Sub Level 

Morphological Matrices (SLMMs). 

 

In the CBP mission, a salient feature for the parametric representation of the border is 

its relative importance to the decision maker so that an appropriate level of required 

protection can be specified for any specific case. Consequently, the problem is best 
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approached by giving the decision maker the opportunity to define a level of protection to 

be achieved with the detection SoS. In this context, the focus being only on the detection 

of potential illegal border entries, a relevant attribute is the threshold detection probability 

of an item of interest within a given distance from the border. Moreover, the level of 

protection might be a function of the performance of protection systems that may already 

be in place along the border. In order to capture the efficiency of said known or unknown 

systems, field experts consider the time needed to deal with the detection or interception 

of items of interest using those systems. This yields a distance before which a tentative 

illegal entity has to be detected and identified to be efficiently handled. This distance 

before which items of interest must be detected may be represented as a band of 

protection along the border. The band of protection is the sum of the ―staging zone‖, 

located south of the border, and of the ―crossing zone‖, located north of the border as 

depicted in Figure 24. Three other zones are considered around the border, namely the 

―sanctuary zone‖ south of the border, the ―hide zone‖ north of the border, where the items 

of interest tend to hide so as not to be intercepted by local authorities, and the ―transit 

zone‖ north of the border, where the items of interest are free to move in the United States 

and are assumed to blend in the local population. 

 

 

Figure 24: Definition of the Arizona-Sonora Border 
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Table 8 provides the attributes and ranges in the SLMM for the ―critical asset‖ in the 

CBP mission. 

Table 8: Attributes and Ranges for the Critical Asset in the CBP Mission 

CRITICAL ASSET 

ATTRIBUTE UNIT MIN VALUE MAX VALUE 

Distance from Border of Sanctuary Zone km 10 20 

Distance from Border of Staging Zone km 1 10 

Distance from Border of Crossing Zone km 1 15 

Distance from Border of Hide Zone km 15 30 

Distance from Border of Transit Zone km > 30 

 

The definition of attributes for the ―item of interest (IoI)‖ element necessitates taking 

into account requirements for the modeling of detection systems, especially the 

calculation of their performance metrics depending on the nature of the ―item of interest‖. 

Therefore, the wide variety of potential items of interest can be captured into three 

attributes for the CBP mission. Table 9 provides attributes and ranges in the SLMM for 

the ―item of interest‖. 

Table 9: Attributes and Ranges for the “Item of Interest” in the CBP Mission 

GROUND ITEM 

OF INTEREST 

ATTRIBUTE UNIT 
MIN 

VALUE 

MAX 

VALUE 

Average Speed km/h 5 130 

Average Radar Cross Section Pedestrians m2 0.5 4 

Average Radar Cross Section Vehicles m2 2 100 

  

A similar approach can be adopted to define appropriate attributes for the terrain and 

the climatic conditions. The attributes and ranges in the SLMMs for the terrain and for the 

climatic conditions for the CBP mission are the same as those for the CAP mission and 

are summarized in Table 3 and Table 4 respectively.  

 

The attributes characterizing the detection systems of interest, namely active radars 

and cameras, fall out directly from intrinsic design parameters of those systems. For 
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instance, Table 10 and Table 11 provide the attributes and ranges in the SLMMs for the 

ground radars and for the optronic systems considered in the CBP mission.  

Table 10: Attributes and Ranges for the Ground Active Radar in the CBP Mission 

RADAR OPTION 

Type 

Radar A 
 

 
 

Radar B 
 

 
 

Radar C 
 

 
 

Nature 
Mobile 

 
 

 
Fixed 

 
 

 

Rotating? 
Yes 

 
 

 
No 

 
 

 

ATTRIBUTE UNIT 
MIN 

VALUE 

MAX 

VALUE  

Frequency MHz X-band 
  

Losses + Noise Factor dB 3 21 
 

Bandwidth MHz 1 300 
 

Elevation Tilt Up ° 0 20 
 

Elevation Tilt Down ° 0 20 
 

Elevation Coverage ° -20 140 
 

Azimuth Beamwidth ° 4 4.3 
 

Field of View ° 100 360 
 

Minimum Detectable Target 

Speed 
km/h 0 50 

 

Maximum Number of Targets 

Tracked 
- 60 100 

 

Range for pedestrians 

detection 
km 

22 31.5 Radar A 

16 26 Radar B 

8 15 Radar C 

Range for vehicles detection km 

22 36 Radar A 

18 30 Radar B 

11 17 Radar C 

Range for aircraft detection km 

9 36 Radar A 

7 30 Radar B 

7.4 17 Radar C 

Scanning Rate If Applicable °…s 32 64 
 

Cost Kdollars 150 850 
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Table 11: Attributes and Ranges for the Optronic Systems in the CBP Mission 

OPTRONIC 

SYSTEM 

Type 

1   

2   

3   

Bi-field 
Yes   

No   

ATTRIBUTE UNIT MIN VALUE MAX VALUE 

Wavelength Infrared 1 µm 10 10 

Wavelength Infrared 2 µm 3 5 

Wavelength Infrared 3 µm 8 12 

ARRAY SIZE 
Number of Horizontal Pixels - 480 480 

Number of Vertical Pixels - 640 640 

OPTRONIC SYSTEM 
Focal Dimension cm 1 100 

Optical Diameter cm 3 15 

Detection Range km 1 20 

Sensibility (NedT) mK 1 150 

Integration Time Infrared 1 ms 40 40 

Integration Time Infrared 2 ms 20 20 

Integration Time Infrared 3 ms 5 5 

 

As mentioned earlier, this section deals with the problem of designing and optimizing 

multispectral 3D detection architectures for border protection and intrusion detection at 

the Arizona-Sonora border. However, sensor placement requires accurate yet 

computationally efficient sensor detection models, as well as a sufficiently fine 

representation of the terrain topography.  

 

5.2.2. Cross-Consistency Assessments 

 

In order to define relevant scenarios for the CBP mission, the morphological analysis 

of the problem is complemented by probabilistic cross-consistency assessments of the 

various elements identified. Similarly to the CAP mission analysis, these cross-

consistency assessments are based on the likelihood scale defined in section 4.2.1.1. This 

likelihood scale is intended to be flexible enough for decision makers to analyze a wide 

range of homeland security missions. Using empirical data and specific knowledge about 

the situation they are trying to model and simulate, experts in the field of homeland 

security can determine probabilistic assessments between the various elements involved 
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in the CBP mission. From these cross-consistency assessments, they may then define 

relevant scenarios so as to gain insight into the structure and the performance of the 

distributed detection system architecture required to perform the CBP mission of interest.  

For instance, past experience and recent knowledge about the operational situation at 

the Arizona-Sonora border may lead experts to believe that drug dealers riding a camel in 

the desert are highly unlikely. Therefore, it is unnecessary to model this situation in an 

operational scenario. Similarly, it may be very unlikely that pedestrians will hide in 

forested areas in the Arizona-Sonora border region due to the lack of forests. However, 

although it may be unlikely to see groups of pedestrians climbing mountains in an 

operational scenario, it is rather likely than they will follow river streams, and very likely 

that they will walk along successful smuggling trails. Finally, in a CBP mission scenario, 

it is always true that pedestrians will avoid border control check points as they try to 

illegally penetrate the United States of America. 

 

5.2.3. Scenario Definition – Example 

 

The information contained in the morphological matrices for the CBP mission, 

depicted in Figure 23, and Table 8 to Table 11, may be combined with the likelihood 

cross-consistency assessments developed in the previous section to define relevant 

operational scenarios for the CBP mission. In practice, the information provided by the 

problem decomposition and the compatibility assessments may be used to analyze a 

detection architecture in the modeling and simulation environment described in the 

following section. This implies determining the operational efficiency of a newly 

designed detection architecture, analyzing the sensitivity of its performance to changes in 

the operational situation, studying the impact of changes in its structure and composition 

on its detection capability, or complementing it with carefully selected fixed or mobile 

detection systems to enhance its operational effectiveness when required.  

A sample scenario, taking place along the Southwest border between the state of 

Arizona in the United States of America and the state of Sonora in Mexico, in the 

Douglas sector area of operations, is described subsequently. 
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The Douglas Station is located within the Southwest Cochise County and covers 

approximately 1400 square miles. The station’s area of operations includes approximately 

47 linear miles of the Arizona-Sonora border. There are currently 515 Border Patrol 

agents assigned to the Douglas Station. The communities of Douglas, Pirtleville, Elfrida, 

and McNeal, AZ are within the station’s area of operations.  The City of Douglas shares 

the border with Aqua Prieta, MX.  The terrain of the area is relatively high desert, with 

numerous washes, and is bordered by the Dragoon and Mule Mountains to the west, and 

the Chiricahua, Pedregosa, and Perillla, and Peloncio Mountains to the east. This is 

depicted in Figure 25. 

 

 

Figure 25: Douglas Sector 

 

Consider Ali Mohammed, a person of interest, born in Saudi Arabia, and trained in 

Afghanistan and Pakistan. The group by which he was recruited decided to send Ali to the 

United States via Mexico. The group contacts a smuggler in Mexico City, who has 
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contacts with other smuggling groups throughout northern Mexico. The group also 

decides that the best way for Ali to enter the U. S. is illegally, thereby the U.S. having no 

record of Ali's entry into the United States.  

Since Ali is very intelligent, having graduated from some of the better schools in 

Saudi Arabia and Europe, it is thought that having him being fluent in Spanish would be a 

great asset to Ali, both in Mexico and in the United States, especially if apprehended by 

the Border Patrol. Since Ali was born of a Saudi Father and Hispanic Mother, he could 

possibly pass himself off as a Mexican National and be repatriated to Mexico. If he were 

repatriated to Mexico, rather than waiting for a deportation hearing as a Saudi National, 

he could re-enter the United States quickly. Thus, if Ali persists in claiming that he is a 

Mexican National, with his looks and Spanish fluency, the Border Patrol will grant him a 

―Voluntary Return‖ to Mexico. The group which recruited Ali is supposed to be 

knowledgeable about the Border Patrol assets and intelligence resources. 

Ali is furnished an altered Mexican Passport, is flown from Mexico City to 

Hermosillo and then takes a bus to Agua Prieta. The group does not want to fly him 

directly into the area, because of the Mexican Policia de Fronteriza (Border Police). As 

Ali arrives in Agua Prieta, he is met by a person hired by the smuggling group, unknown 

to the Mexican Policia de Fronteriza. He is taken to a ―safe house‖ where he is 

temporarily housed until the smuggling group is able to gather enough people for a trip 

north into the United States. At this point, Ali begins to speak nothing but Spanish.  

It is planned that after 3 days in the ―safe house‖, the group will be taken west out of 

Agua Prieta, approximately 30 miles and dropped off in a mountainous area. The group 

will then be met by a Guide who is to take them to a location on Interstate 19, where they 

are to be picked up by a driver in a blue van and taken to Tucson, Arizona. Before that, 

the group will have to walk through the mountains for about 5 hours, setting off several 

Border Patrol sensors, which had been placed along the trail.  
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The goal of the simulation of the previous scenario in a modeling and simulation 

environment may be twofold:  

 Testing the operational efficiency of a newly designed detection architecture to 

determine whether it responds to a specific need: in the scenario above, this means 

detecting Ali and its group before they arrive in Tucson.  

 Complementing an existing detection architecture with carefully selected fixed or 

mobile detection systems to enhance its ability: in the scenario above, this means 

being able to detect Ali and its group as they are dropped off in the mountainous 

area, or as they walk through the mountains along well known smuggling trails, or 

as they are taken to Interstate 19 by the Guide, or as they are picked up by the blue 

van to be driven to Tucson. 

 

5.3. Modeling of the Customs and Border Protection Mission Scenario 

 

5.3.1. Modeling and Simulation Environment 

 

5.3.1.1. Setup and Main Dimensions 

 

The terrain is modeled using Shuttle Radar Topography Mission (SRTM) data 

obtained from Google Earth [461]. It is imported in the agent-based programmable 

modeling environment NetLogo through a ―map creator‖ specifically developed for this 

application. This is depicted in Figure 26, which shows the actual terrain as depicted in 

Google Maps and in the NetLogo environment where the border is modeled as an angled 

red line separating the American territory (located north of the border) from the Mexican 

territory (located south of the border).  
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Figure 26: Terrain Topography and Border Modeling in the CBP Mission 

The above environment is called the ―world‖. The ―world‖ is a two-dimensional 

environment made out of ―patches‖, similar to a pixel the size of which is representative 

of a physical distance in the real world. In the NetLogo environment developed, each 

patch corresponds to a square of size 1 km x 1 km. The ―map creator‖ automatically re-

samples the SRTM elevation dataset by converting high-resolution meshes to lower 

fidelity meshes adapted to the 1-km length scale of the modeling and simulation 

Border 
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environment. Each ―patch‖ in the ―world‖ is thus characterized by three parameters: a 

latitudinal location and a longitudinal location which define the two-dimensional position 

of the patch on the terrain, and an elevation value which defines a third vertical 

dimension. The elevation value of each terrain patch is obtained by averaging the 

elevation values of the nearest data points provided by the SRTM data. The average 

elevation data associated with each patch yields an elevation map from which a gradient 

map of the terrain elevation may be derived. The gradient map of the terrain elevation is 

shown in Figure 27.  

 

 

Figure 27: Gradient Map of the Terrain 

 

The gradient map encompasses east-west and north-south data that may then be used 

to determine the gradient-dependant speed of motion of the ―agents‖ in the ―world‖. This 

will be described in the following sections. With the aforementioned conventions, the 

horizontal extent of the ―world‖ corresponds to 408 km while the vertical extent of the 

world is 258 km. In terms of longitude and latitude, this translates into an area extending 

from 110.5° West to 114.8° West, and from 30.6° North to 33° North. Moreover, 1 km in 

the real world corresponds to 0.1° latitude in the vertical dimension. This is depicted in 

Figure 28. 
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Figure 28: NetLogo Environment and Main Dimensions 

 

5.3.1.2. Border Definition and Band of Detection 

 

In the NetLogo modeling and simulation environment, the border is modeled by 

Equation 1: 

 

Lat.    
-0.28157895*Long. + 0.074736842       for  Long.   -111   Western portion of the border 

31.33                                                    for  Long.   -111  Eastern portion of the border 
  

Equation 1 

In order to be able to detect illegal border crossings, a band of detection is defined 

across the border line. The detection band encompasses the ―crossing zone‖ and the 

―staging zone‖ depicted in Figure 24, and extends 15 km on the American side and 10 km 

on the Mexican side. This corresponds to a longitudinal location varying from 110.5° 

West to 114.8° West, and to a latitudinal location varying by either 0.15° from its value at 

the border along the inclined portion of the border (longitude smaller than 111° West) or 
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0.1° from its value at the border along the horizontal portion of the border (longitude 

larger than 111° West), i.e. between 31.23° and 31.48° in the last case. This corresponds 

to a 0.15° and 0.1° variation in latitude on the American side and on the Mexican side 

respectively.  

 

The problem is now to determine the combinations of sensor systems in terms of 

numbers, types and locations (latitudes and longitudes), that maximize the surface 

coverage of the band of detection while minimizing the cost of the resulting protection 

architectures. While the band of detection extends across the border on the Mexican side, 

the sensor systems have to be placed only on the American side of the band of detection. 

Therefore, their longitudinal location still ranges from 110.5° West to 114.8° West but 

their latitudinal location now varies by 0.15° from its value at the border along the 

inclined portion of the border, and from 31.33° to 31.48° along the horizontal portion of 

the border. However, a potential position for the detection systems on the American side 

of the band of detection is represented by a terrain patch in the NetLogo environment, and 

a terrain patch models an area of 1 km
2
. Therefore, there exit about 10,700 possible 

positions for the detection systems inside the band of detection. This is depicted in red in 

Figure 29, along with the band of detection represented in blue and a white terrain patch 

of 1 km
2
 modeling a potential position for the detection systems inside the band of 

detection. The part of the band of detection in which the detection systems may be 

positioned corresponds to the crossing zone defined in Figure 24. 
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Figure 29: Band of Detection 

 

5.3.1.3. Coverage Efficiency and Architecture Coverage 

 

In accordance to the aforementioned positioning constraints, it is worthwhile defining 

the notion of coverage as it is used in this research for both a single detection system and 

a detection architecture of distributed detection systems.  

 

5.3.1.3.1. Coverage Efficiency 

 

Consider first a detection system positioned at the center of a patch in the NetLogo 

environment. This patch corresponds to a position inside the crossing zone and is 

associated with an elevation value Ed. In order to determine the coverage efficiency of a 

detection system, it is necessary to create a ―line-of-sight‖ algorithm which determines 

the terrain patches that are visible from the position of the detection system in the theater 

of operations. Consider a detection system located at a position x on the theater of 

operations. This detection system is characterized by its design detection range R and its 

design elevation angle θ. These two attributes define the half-sphere of detection of the 

sensor. The ―line-of-sight‖ algorithm first determines the set S of terrain patches located 

Potential Detection 

System Position 
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within the base of the half-sphere of detection of the sensor by correlating the two-

dimensional position of the terrain patches with the extent of the base of the half-sphere 

of detection. Consider a terrain patch i located within the half-sphere of detection of the 

sensor, characterized by the elevation value Ei. Define the straight line between the sensor 

and the terrain patch i as the ―line-of-sight‖ and projects it on the two-dimensional terrain. 

Then, consider the set P of all other terrain patches located within the half-sphere of 

detection of the sensor and along the line-of-sight between the terrain patch i and the 

detection system. Each terrain patch in the set P is characterized by an elevation value Ep. 

For each terrain patch in the set P, the ―line-of-sight‖ algorithm determines whether the 

elevation value Ep associated with this patch is smaller or larger than the elevation value 

Ei associated with the terrain patch i of interest. If all the elevation values Ep are smaller 

than the elevation value Ei, then the detection system actually sees patch i. In this case, 

patch i is in the ―line-of-sight‖ of the detection system as notionally shown in Figure 30. 

In Figure 30, the blue square is the detection system located on the side of a mountain, the 

blue half-sphere is the half-sphere of detection of the sensor, the red circle is the 

projection of the half-sphere on the two-dimensional terrain (or base of the half-sphere); 

the green square is the terrain patch i of interest located on a flat area; the purple squares 

are terrain patches in the set P; the white vertical arrows starting from the detection 

system, the terrain patch i, and the terrain patches in set P are modeling the elevation 

values of the corresponding patches; the orange line is the line-of-sight between the 

notional height of the detection system given by the corresponding patch elevation Ed and 

the notional eight of the terrain patch i given by Ei, and the dashed orange line is the 

projected line-of-sight on the two-dimensional terrain (or on the base of the half-sphere of 

detection of the sensor).  

On the contrary, if one of the elevation values Ep is larger than the elevation value Ei, 

then the detection system cannot see patch i. In this case, patch i is ―out-of-sight‖ from 

the detection system position, as notionally represented in Figure 31. In Figure 31, the 

same symbol and color conventions as in Figure 30 are used. The aforementioned process 

is repeated for each terrain patch i in the set S of terrain patches within the design 

detection range of the sensor. 
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Figure 30: “Line-of-Sight” Algorithm: “Line-of-Sight” Case 

 

 

 

 

 

Figure 31: “Line-of-Sight” Algorithm: “Out-of-Sight” Case 
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Using the ―line-of-sight‖ algorithm, it is possible to determine three different regions 

of patches inside the half-sphere of detection of a detection system of interest. Consider 

the notional situation depicted in Figure 32. In Figure 32, the blue area represents the 

terrain patches inside the band of detection. Superimposed on the blue area are a yellow 

area and a green area. The yellow area corresponds to the terrain patches within the band 

of detection that are ―out-of-sight‖ or not visible from the position of the detection 

system. In other words, the yellow patches are not actually seen by the detection system 

due to topographic obstacles in its line of sight. Finally, the green area represents the 

terrain patches within the band of detection that are in the ―line-of-sight‖ or visible from 

the position of the detection system. In other words, the green patches are actually seen 

by the detection system because there are no topographic obstacles in its line of sight. The 

coverage efficiency of the detection system may then be defined as the ratio of the green 

area to the green + yellow areas as shown in Equation 2. 

 

Coverage Efficiency  
Green Patches

Green+Yellow        
 

 

Equation 2 

 

 

Figure 32: Coverage Efficiency of a Single Detection System 
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5.3.1.3.2. Architecture Coverage 

 

Consider the notional detection architecture of distributed detection systems depicted 

in Figure 33 in the NetLogo environment. In Figure 33, the white circles with the grey 

symbols inside are the detection systems. Using the ―line-of-sight‖ algorithm for each 

sensor in the detection architecture, it is possible to determine three different regions of 

patches. The blue area represents the terrain patches inside the band of detection. 

Superimposed on the blue area are a yellow area and a green area. The yellow area 

corresponds to the terrain patches within the band of detection that are not visible from 

any detection system in the detection architecture due to topographic obstacles in their 

lines of sight. The green area represents the terrain patches within the band of detection 

that are visible from one or more detection systems in the detection architecture. In order 

to determine the actual coverage of the detection architecture, it is necessary to account 

for any overlap in coverage provided by the detection systems composing the 

architecture. To do so, the ―line-of-sight‖ algorithm is coupled to an ―overlap‖ algorithm 

which ensures that terrain patches visible from more than one detection system in the 

architecture are counted as being seen by the whole architecture only once. Similarly, the 

―overlap‖ algorithm ensures that terrain patches that are not visible from any detection 

system in the architecture are counted as being not seen by the whole architecture only 

once. This avoids counting multiple times ―visible‖ and ―not visible‖ patches (i.e. green 

and yellow patches respectively), which would bias the resulting architecture coverage 

value. Indeed, counting too many ―visible‖ patches would inappropriately increase the 

architecture coverage value, while counting too many ―not visible‖ patches would 

inappropriately decrease the architecture coverage value. The coverage of the detection 

architecture may then be defined as the ratio of the green area to the green + yellow + 

blue areas as shown in Equation 3.  

 

Architecture Coverage  
Green        

Green+Yellow + Blue        
 

 

Equation 3 
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Figure 33: Architecture Coverage 

 

The architecture coverage corresponds to a three-dimensional surface coverage that 

will be involved in the construction of the fitness function used to optimize the structure 

of the distributed detection system architectures for a specific CBP mission.  

 

5.3.1.4. Types of Agents 

 

Several types of agents may be modeled in the modeling and simulation environment 

described previously. These include: 

 Ground items of interest, such as pedestrians, cars and trucks 

 Aerial items of interest, such as general aviation aircraft, Unmanned Aerial 

Vehicles and Helicopters 

 Maritime items of interest, such as speed boats, fishing boats, canoes and zodiacs 

 Detection systems, such as radars, cameras, infrared goggles, acoustic sensors, 

chemical sensors and pressure sensors 

 Customs and Border Protection units, such as CBP agents, CBP patrol units 

(mobile units), CBP command centers (headquarters) 
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In this research, the items of interest are mainly ground units trying to cross the 

Arizona-Sonora border, the detection systems are various types of radars and cameras, 

and the Customs and Border Protection units involve CBP agents and CBP patrol units. 

Specifics on the modeling and simulation of each of these agent types are described in 

subsequent sections. 

 

5.3.2. Modeling and Simulation of Items of Interest 

 

In the CBP mission scenario, the items of interest are modeled as agents moving in 

the theater of operations. They emanate uniformly from a random position in the southern 

part of the border. They are characterized by an average speed, which depends on the 

gradient of terrain elevation in their direction of travel, and an average radar cross section, 

which depends on the detection system involved in their detection. Both attribute values 

fall within the ranges defined in the sub-level morphological matrix for the ―item of 

interest‖ given in Table 9. In general, items of interest tend to travel along paths of lowest 

elevations, exploring valleys or walking along water streams, to reach the border region. 

Nevertheless, some simulation scenarios may involve smarter items of interest that tend 

to avoid traveling along common low elevation paths where their risk of being detected is 

more likely, and that prefer evolving in mountainous or hilly regions as they make their 

way to the border.  

In addition, some kind of intelligent behavior of the items of interest, including prior 

knowledge about the locations of deployed detection systems and/or about the 

performance of the currently deployed detection architecture and mobile patrol units, is 

captured via the concepts of ―smuggling paths‖ and ―exit points‖. As they make their way 

to the border, items of interest tend to travel towards pre-defined smuggling paths located 

in the northern part of the border. These smuggling paths are statistically high illegal 

activity areas where past successful illegal entries have occurred [462], [463]. They include 

highways and high-traffic roads where items of interest manage to mix in with legal 

activities and mislead more easily detection systems and CBP agents. Any number of 

smuggling paths may be defined interactively in the M&S environment to best represent 
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the current operational situation. In this process, the user just needs to draw the structure 

of the smuggling paths directly on the ―world‖ of the modeling and simulation 

environment with a mouse. Examples of pre-defined smuggling paths used in this 

research are depicted in Figure 34. 

 

 

Figure 34: “Smuggling Paths” of the Items of Interest in the CBP Mission Scenario 

If an item of interest manages to cross the border, even though it has been detected, it 

is assumed that it travels along these smuggling paths and is heading towards statically 

pre-defined exit points [462],[463]. The pre-defined exit points are characterized by an 

attractive potential corresponding to major U.S. cities in Arizona, such as Yuma, Phoenix, 

and Tucson. Any number of exit points may be defined by the user to best represent the 

current operational situation. In this process, the user just needs to create a text file 

specifying the number of exit points, and the corresponding latitudinal and longitudinal 

coordinates, as exemplified in Figure 35. 

 

 

 

Figure 35: Example of a File Defining Exit Points 

Smuggling Paths 
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Examples of pre-defined exit points used in this research are depicted in Figure 36.   

 

 

Figure 36: “Exit Points” for the Items of Interest in the CBP Mission Scenario 

 

As they move in the theater of operations, items of interest first sample the few terrain 

patches located within a given distance from their current position, and select the one that 

is the closest to a pre-defined smuggling path and/or in the direction of an exit point. 

Once the items of interest reach their new position, a decision is made as to their next 

move. If an item of interest has not been intercepted by a CBP agent before it is within 

two minutes or 1 km of an exit point, it is assumed that it has escaped and has 

successfully penetrated the American territory illegally. In other words, it can no longer 

be distinguished from the rest of the population. In this case, the item of interest is 

removed from the simulation environment and a new item of interest of the same kind is 

created. This enables to keep a constant number of items of interest evolving in the 

modeling and simulation environment, and thus to have more leverage on the execution 

speed of the simulation and the repartition of the types of items of interest. 

 

 

 

Exit Points 
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5.3.3. Modeling and Simulation of Detection Systems 

 

In this study, several types of radars and cameras are considered. Their number, types, 

and locations are optimized so as to get the detection architectures providing the 

maximum terrain coverage at the minimum cost. The two main objectives of the problem 

are thus the three-dimensional terrain coverage and the cost of the complete detection 

architecture [14]. In this context, the sensor systems are modeled by their average range of 

detection calculated from their ranges of detection for each specific type of item of 

interest, their field of view (FOV), and their average cost which is a multi-parameter 

function of their main design parameters. The three types of radars and the three types of 

cameras of increasing performance and cost considered in this research are defined in 

Table 12. 

Table 12: Description of the Sensor Systems Considered in the CBP Mission 

Sensor Properties /  

Sensor Type 

Average Range of detection 

(km) 

Field Of View (FOV) 

(°) 

Average Cost 

(k$) 

Low Cost Radar (LCR) 12 100 150-220 

Medium Cost Radar 

(MCR) 
21 120 Around 580 

High Cost Radar (HCR) 26 120 650-850 

Low Cost Camera (LCC) 5 120 Around 14 

Medium Cost Camera 

(MCC) 
10 120 Around 40 

High Cost Camera (HCC) 15 120 Around 160 

 

These systems can either look in a fixed direction or rotate over a 360° angle. In the 

case where the system has a fixed field of view, the direction in which it is pointing is 

given by an azimuth angle that can take any value between 0 and 360°. This pointing 

direction is the heading of the detection system. 

 

On the one hand, it is assumed that radar systems are always able to detect items of 

interest, even if it is raining, or if the atmospheric visibility is reduced, or in the presence 
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of clouds. In other words, radars are assumed to be relatively insensitive to the presence 

of clouds, rain, snow and fog. 

 

On the other hand, the design cost of cameras depends on their optical diameter and 

on their category, as expressed in Equation 4. Assuming average optical diameters 

provided in Table 11, one gets the average costs summarized in Table 12. 

design cost of LCC   10 +  
optical diameter

30
 
2

 

design cost of MCC   30 + 1.5 *  
optical diameter

30
 
2

 

design cost of HCC   120 + 2 *  
optical diameter

30
 
2

 

Equation 4 

Finally, it is assumed that the design detection range of cameras is divided by two [460] 

in the presence of low altitude clouds, rain, snow and fog, or when the atmospheric 

visibility is reduced. In addition, it is assumed that both radars and cameras have infrared 

detection capabilities and have similar daytime and nighttime performance. 

 

The role of detection systems is to detect items of interest as they intend to cross the 

border. In order to do so, a ―detection‖ algorithm, based on the principles involved in the 

―line-of-sight‖ algorithm, has been developed. To start with, it is assumed that detection 

systems having a rotating field-of-view will eventually detect items of interest over the 

course of one rotation. Indeed, the speeds at which antennas of detection systems are 

rotating are much larger that the speeds at which items of interest are moving in the 

theater of operations. For detection systems having a fixed field-of-view, the ―detection‖ 

algorithm directly applies. The ―detection‖ algorithm assumes that items of interest 

moving in the theater of operations are confounded with their current patch location in the 

modeling and simulation environment. The ―detection‖ algorithm further assumes that 

items of interest have negligible heights compared to the elevation value of the patch they 

are located at. They are therefore associated with a zero elevation value. In a first step, the 
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―detection‖ algorithm determines which and how many items of interest are located 

within the base of the half-sphere of detection of the sensor by comparing their current 

latitudinal and longitudinal positions with the location of the center and the extent of the 

base of the half-sphere of detection. This provides a set I of patches occupied by items of 

interest within the half-sphere of detection of the sensor. In a second step, the ―detection‖ 

algorithm changes the elevation values of the terrain patches in set I to zero, 

corresponding to the virtual height of the items of interest they represent. Using this 

information, the ―line-of-sight‖ algorithm is then applied to each patch of the set I so as to 

determine which and how many of them are in the line-of-sight of the detection system. 

Relating back the resulting patches to their associated items of interest, this gives the set 

of items of interest that are detected by the detection system. 

 

5.3.4. Modeling and Simulation of Customs and Border Protection Agents 

 

In the CBP mission scenario, two additional categories of agents need to be 

considered. These are the Customs and Border Protection Agents and Patrol Units. 

 

5.3.4.1. CBP Agents 

 

The Customs and Border Protection agents are initially randomly assigned to CBP 

command centers located near the border. Any number of CBP command centers may be 

defined by the user to best represent the current operational situation. In this process, the 

user just needs to create a text file specifying the number of CBP command center, and 

the corresponding latitudinal and longitudinal coordinates, as exemplified in Figure 37. 

The corresponding CBP command centers are depicted in Figure 39 as blue houses.  
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Figure 37: Example of a File Defining Customs and Border Protection Command Centers 

 

The CBP agents have the ability to intercept potential illegal items of interest that 

have been detected near the border region. They are modeled as individuals moving at a 

random speed dependent on the gradient of terrain elevation in their direction of motion 

and on the properties of the items of interest they are trying to intercept, if any. The 

interception procedure unfolds as follows: 

 A sensor system detects an item of interest and establishes a ―detection link‖ with 

this item.  

 The detection system starts tracking the item of interest and sends a ―request for 

interception link‖ to the closest command center, which analyzes the status of the 

detected item of interest. If the item of interest is identified as being illegal or 

potentially harmful, the requested command center dispatches the closest available 

CBP agent (if any). It is assumed that a suspicious item of interest can only be 

intercepted by a single CBP agent at a time.  

o If no CBP agent is available for intercepting the item of interest for more 

than five minutes of real simulation time, then the item of interest is 

released free.  

o If a CBP agent is available for intercepting the suspicious item of interest, 

an ―interception link‖ is created between the item of interest and the CBP 

agent assigned to it interception. It is assumed that the CBP agent receives 

updated information about the current speed and position of the suspicious 

item of interest as long as tracking by the detection system is effective. In 
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this case, the CBP agent moves along the shortest path to the item of 

interest, at a speed larger than the tracked item of interest. 

 If tracking of the item of interest is lost, it is assumed that the CBP agent moves in 

a straight line from its last updated position and gives up pursuit of the item of 

interest if tracking is lost for more than five minutes of real simulation time. 

 When the CBP agent and the suspicious item of interest get sufficiently close to 

each other, at a distance shorter than that traveled by the CBP agent over one 

simulation step, the interception is considered successful. The item of interest is 

then removed from the simulation environment and its statistics are stored 

(identity of the detection system that detected it, identity of the terrain patch where 

it was detected, times at which it crossed the border, location at which it crossed 

the border, identity of the CBP agent that intercepted it, time required for 

interception, identity of the patch where it was intercepted). 

 Once the interception is complete, the CBP agent returns to its command center of 

origin at a speed dependent on the gradient of terrain elevation in its direction of 

motion. 

 

5.3.4.2. CBP Patrol Units 

 

They represent the CBP patrol agents patrolling the border with horses or cars. They 

are moving between pre-defined ―patrol points‖ at a random speed. They have the ability 

to set up ―mobile detection systems‖ as they patrol the border. This includes installing the 

detection device on the ground or in their truck, or preparing visible or infrared goggles 

for observation, stationing at the patrol point to monitor the border region for a certain 

amount of time, and packing up the surveillance equipment to horseback ride or drive to 

the next patrol point. Any number of patrol points may be defined by the user to best 

represent the current operational situation. In this process, the user just needs to create a 

text file specifying the number of patrol points, and the corresponding latitudinal and 

longitudinal coordinates, as exemplified in Figure 39. The corresponding CBP patrol 

points are depicted in Figure 39 as blue flags. 
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Figure 38: Example of a File Defining Patrol Points 

 

 

Figure 39: “CBP Command Centers” and “CBP Patrol Points” in the CBP Mission Scenario 

 

5.3.5. Modeling of Weather, and Day and Night Conditions 

 

In the CBP mission scenario, weather is modeled very simply. It is assumed that it is 

either sunny or rainy during the simulation. Indeed, although radars are relatively 

insensitive to weather conditions, the detection performance of cameras is highly 

dependent on the atmospheric temperature and humidity. Nevertheless, the relationship 

between the design detection range of cameras and the atmospheric visibility is not trivial 

and cannot be expressed as a linear law or any other simple relationship. Therefore and 

for practical purposes, the weather conditions in the theater of operations are modeled via 

CBP Patrol Points 

CBP Command Centers 
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the notion of atmospheric visibility. This assumption is valid in the sense that cameras are 

essentially sensitive to the presence of rain, and it was previously assumed that their 

design detection range was divided by two under rainy conditions. As the simulation 

progresses, the atmospheric visibility adapts to the time of the day and to the local 

climatic conditions (occurrence of rain, cloudy, or sunny) based on statistical weather 

data in the Arizona-Sonora border region.  

Concerning modeling of day and night conditions, it was assumed that both radars and 

cameras have infrared detection capabilities and have similar daytime and nighttime 

performance. In addition, it assumed that day and night are equally spread over the 24-

hour period, meaning that there is 12 hours of daylight and 12 hours of night.  

 

5.3.6. Reducing the Problem Dimension: Selection of Most Promising Locations 

 

In the optimization problem considered in this research, the numbers, types, and 

locations of surveillance systems are unknown and have to be decided simultaneously. 

More specifically, the problem has a large and multimodal search space, is combinatorial, 

with a mix of discrete and continuous variables having a large number of settings or large 

domains of variations. Therefore, it may be computationally intensive for optimization 

algorithms to find a solution to the above problem formulation. The most demanding part 

of the optimization resides in determining the locations of the sensor systems in the 

detection architectures from the complete spectrum of 10,700 positions available in the 

crossing zone inside the band of detection. Indeed, as mentioned previously, the sensor 

systems can have a longitudinal location ranging from 110.5° West to 114.8° West and a 

latitudinal position varying by 0.15° from its value at the border depending on the 

longitude. Among all the potential locations within the crossing zone, some may result in 

efficient coverage while some may not be worth looking at. For instance, a detection 

system located on top of a mountain is typically able to cover a significant portion of the 

terrain within its range of detection. On the contrary, a sensor located in a valley will 

most likely cover only a tiny portion of the terrain within its range of detection due to 

obstacles such as hills and mountains that are blocking its line-of-sight. In order to 
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alleviate the work of the optimization algorithms, some promising positions, from where 

a relatively large portion of the surrounding terrain is visible, can be derived from the 

modeling environment for each type of detection system. To do so, each type of sensor is 

successively located at each of the 10,700 terrain patches in the crossing zone inside the 

band of detection depicted in Figure 29. Then, the number of patches within the detection 

range of the sensor and visible from the current sensor location is determined according to 

the terrain features. Finally, using the ―line-of-sight‖ algorithm and the coverage 

efficiency defined in Equation 2 for the type of detection system considered (i.e. the ratio 

of the total number of patches within the range of detection of the sensor system to the 

number of patches actually seen by the sensor), a location- and sensor-specific detection 

performance is calculated and associated to the current location of the type of sensor 

considered. All of the possible locations in the crossing zone are evaluated this way for 

each type of detection system and compared to determine a set of most promising 

locations having the highest associated detection performance for the type of system 

considered. The sets of most promising locations for the three types of radar systems are 

depicted in Figure 40.  

 

 

Figure 40: Sets of Promising Locations for the Radar Detection Systems in the CBP Mission Scenario 
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In Figure 40, the increasing yellow gradient of color models locations with increasing 

detection performance. Looking at the terrain’s features in the band of detection (Figure 

26), one may notice that the most promising locations are mainly located at higher 

elevations. Furthermore, lower ranges of detection translate into positions closer to the 

border (LCR compared to MCR compared to HCR), while larger ranges of detection lead 

to more distinct positions (HCR compared to MCR compared to LCR). One may also 

note that the sets of most promising locations are very similar for the three radar detection 

systems represented in Figure 40. In fact, it can be predicted that the most promising 

locations for sensor systems with large detection ranges will also be most promising 

locations for sensor systems with lower detection ranges. These locations thus constitute a 

global set of most promising positions common for all types of sensors. Then, the lower 

the detection range, the more the number of promising locations are added to the global 

common set. Indeed, detection systems with lower detection ranges are globally less 

impacted by terrain obstacles and thus are generally able to cover most of the terrain 

within their ranges at any given location compared to sensor systems with larger detection 

ranges. In particular, they will be more efficient in valleys. Finally, the sets of most 

promising locations for the camera detection systems are highly similar to those depicted 

in Figure 40 for the radar detection systems, and the above comments concerning the 

structure of the most promising positions for cameras of decreasing ranges of detection 

also applies.  

 

Once the sets of most promising locations for each type of detection system are 

obtained, they can be combined to form a global set of most promising locations where 

sensor systems may be placed to compose the sought-after detection architectures. The 

combination is such that the final set of most promising locations covers a relatively wide 

spectrum of detection ratios above a certain threshold and is not limited to only those 

positions having the largest detection ratios. Indeed, when combining systems to create a 

detection architecture, all the sensor systems cannot be placed at the same best locations. 

Some have to be placed at poorer positions. This significantly decreases the number of 

locations to look at and ensures that the sensor systems are only placed at ―efficient‖ 

positions providing the highest coverage ratio. A set of 256 most promising locations has 
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been defined in this study so that each location can be represented as an integer from 1 to 

256. This makes the encoding of the location of a sensor system easier, especially for the 

modified genetic algorithm to be described later. The 256 most promising locations are 

summarized in Appendix I and displayed in Figure 41. In Appendix I, X and Y are the 

coordinates in the NetLogo environment. 

 

 

 

Figure 41: Plot of the 256 Most Promising Positions 
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5.3.7. Simulation Environment 

 

Figure 42 is an example simulation of a notional detection architecture involving 

mobile patrol units, in the NetLogo environment. The detection architecture is defined 

from a text file which contains the total number of detection systems in the detection 

architecture, and the same number of lines specifying the properties of the constituting 

detection systems, namely their latitudinal and longitudinal coordinates, their heading, 

their type and their rotational state (rotating or fixed field-of-view). The first few lines of 

the text file defining the detection architecture depicted in Figure 42 is exemplified in 

Figure 43. 

 

 

Figure 42: Simulation of a Notional Detection Architecture in the NetLogo Environment 

CBP Patrol Agent 

CBP Command Center 

Item of Interest Detection System 

CBP Patrol Unit 

CBP Patrol Point 
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Figure 43: Example of a File Defining a Detection Architecture 

 

In the simulation environment, the blue persons are the CBP agents, the grey icons are 

the items of interest (pedestrians, cars, and trucks), the blue houses are the CBP command 

centers, the blue cars are the CBP mobile units, and the blue flags are the CBP patrol 

points. The yellow lines model links between detected items of interest and sensor 

systems that have detected them, the grey lines represent links between sensor systems 

and items of interest within their detection ranges but out-of-sight, the red lines 

correspond to links between detected items of interest and CBP agents assigned to their 

interception, and the white lines model links between a mobile patrol unit and the patrol 

point it is travelling to. Links may be turned on or off by the user as the simulation goes 

using vertical switches. This is shown in Figure 44. 

 

 

 

Figure 44: Simulation Environment – Links 

 

A simulation step corresponds to a minute of real time. Therefore, agents moving in 

the simulation environment represent real agents in the theater of operations whose state 

(including position, detection information, interception information, etc) is updated every 

minute.  
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Several initial conditions of the simulation may be tuned by the user via slide bars, as 

depicted in Figure 45. These are divided in three main categories defining simulation 

properties of the items of interest, the CBP agents, and the mobile patrol units. For 

instance: 

 ―communicationTime‖ sets to the time required for the detection systems having 

detected an item of interest to send the detection information over to the closest 

CBP command center, and then from the corresponding CBP command center to 

the CBP agent dispatched for its interception. 

 ―CBPpatrolRadius‖ corresponds to the radius of interception of items of interest 

by CBP agents. An item of interest that has previously been detected by a 

detection system and that is currently being tracked by the same detection system, 

has to be located within this distance of an available CBP agent for the agent to be 

dispatched for its interception. 

 ―setupCBPdepth‖ represents the maximum distance between the border and the 

initial position of a CBP agent. 

 ―installationTime‖ sets to the time required for the mobile patrol units to install 

their detection systems on their mobile platforms. It is about 5 minutes in the 

example provided. 

 ―stationTime‖ corresponds to the period of time over which the surrounding 

environment is scanned by the mobile detection systems once installed. It is about 

17 minutes in the example provided.  

 ―deinstallationTime‖ represents the time required for the mobile patrol units to 

dismount their detection systems from their mobile platforms before moving on to 

the next patrol point. It is about 9 minutes in the example provided. 
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Figure 45: Simulation Environment – Initial Conditions 

 

In terms of agent statistics, it is assumed that every time an item of interest is removed 

from the simulation environment because it has reached an exit point, or it has been 

intercepted by a CBP agent, a new item of interest of the same kind is created in the 

southern part of the border within 50 km. This enables to keep a constant number of items 

of interest evolving in the modeling and simulation environment, and thus to have more 

leverage on the execution speed of the simulation and the repartition of the types of items 

of interest. On the other side, CBP agents and mobile units, if any, are neither destroyed 

nor replaced, meaning that the numbers of CBP agents and mobile units specified as part 

of the initial conditions, remain constant during the simulation. 

 

Several output parameters are tracked during the simulation to determine the 

operational performance of the detection architecture of interest. These are: 

 The number of items of interest that have crossed the border (detected or 

undetected), named ―IoIcrossed‖.  

 The number of items of interest that have successfully been intercepted by a CBP 

agent, denoted ―IoIintercepted‖.  

 The number of items of interest that have reached an exit point, called 

―IoIescaped‖. These items of interest may have been detected, and a CBP agent 

may have tried to intercept them. 

 The number of items of interest that have been detected, named ―IoIDetected‖.  
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The output parameter values are updated constantly as the simulation progresses and 

written in output boxes, as those shown in Figure 46. 

 

 

Figure 46: Simulation Environment – Output Parameters 

 

To conclude, various data may be stored during the simulation to create statistics. 

This includes, but is not limited to: 

 The trajectory of the ground items of interest 

 The identities of the detection systems that have detected items of interest 

 The identities of detected items of interest 

 The identities of the terrain patches where items of interest were detected 

 The times at which items of interest crossed the border 

 The location at which items of interest crossed the border 

 The identities of the CBP agents that intercepted items of interest 

 The times required for each interception 

 The identities of the terrain patches where items of interest were intercepted 

 The total number of items of interest generated during the simulation, which is 

the sum of the number of items of interest present in the simulation at the current 

step, the number of items of interest that have escaped (reached an exit point) so 

far, and the number of items of interest that have been detected so far 

 

5.3.8. Capabilities of the Modeling and Simulation Environment  

 

The modeling and simulation (M&S) environment developed for this research is able 

to accommodate any kind of homeland security mission taking place in any kind of 

topographic, climatic, and operational environment. Indeed, the M&S framework has the 

capability to model any type of elevation, climatic, and operational data of interest to the 
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decision maker. It represents a ―plug and play‖ environment in which any number and 

any type of agent may be defined at leisure to model and simulate specific situations.  

Although the present study focuses on the detection of ground items of interest as they 

are trying to cross a land border, any type of ground, aerial, or maritime items of interest 

may also be defined. Similarly, depending on the homeland security mission considered, 

any type of sensor device, such as visible sensors, infrared sensors, acoustic sensors, 

chemical sensors, and pressure sensors may be incorporated in the M&S environment. It 

is also possible to introduce some nuance in the intelligent behavior of the items of 

interest, such as a priori knowledge about how to avoid detection and interception, 

spoofing, jamming, and non-cooperative smart behavior. In this context, the M&S 

environment developed as part of this research may be used for various types of analyzes.  

The present study focuses on the optimization of distributed detection system 

architectures to monitor a border region for illegal crossings, and on the performance 

analysis of the resulting detection architectures. However, the M&S framework has the 

ability to play any kind of ―what-if‖ scenario that may be used for instance to: 

 Gain insight into an operational situation 

 Train military personnel to respond to specific operational conditions when 

performing on the terrain 

 Demonstrate the capabilities of sensor systems to potential customers 

 Design of new sensor systems adapted to a specific situation 

 Analyze the internal relationships and compatibilities between the various agents 

modeled 

 Adapt existing surveillance architectures to changing operational conditions 

 Enhance the operational effectiveness of existing protective solutions 

 Analyze the sensitivity of the performance and the cost of detection architectures 

to changes in their composition or in the operational situation 
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5.3.9. Concluding Remarks on Modeling and Simulation of the Customs and 

Border Protection Scenario 

 

The previous sections have demonstrated how a physics-based approach combined 

with agent-based modeling provides a means to develop a modeling and simulation 

environment for the design, modeling, and simulation of distributed detection system 

architectures in the context of homeland security. Such modeling capabilities, 

complemented by the multi-level morphological analysis method constructed in previous 

sections, adds to the definition of a structured, robust, rigorous and traceable process for 

the simulation of notional homeland security mission scenarios. The aforementioned 

sections addressed the modeling, simulation, and optimization environment research 

question as well as the modeling and simulation research question, and validated the 

corresponding hypotheses. 
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CHAPTER VI 

IMPLEMENTATION – OPTIMIZATION OF THE DETECTION 

ARCHITECTURE FOR A PROOF-OF-CONCEPT SCENARIO 

 

The optimization of a portfolio of detection architectures for the CBP mission 

scenario implies determining the combinations of the numbers, types, and positions of 

distributed detection systems able to provide the maximum detection coverage at the 

minimum cost. The optimization problem may therefore be characterized as follows: 

 Mixed (involving continuous and discrete variables) 

 Combinatorial  

 Involving a large,  

 Multimodal,  

 And non-smooth search space 

 

The employment of an optimization algorithm presenting the following properties 

is therefore required: 

1. Non-linear 

2. Adaptive 

3. Multi-criteria  

4. Able to handle both continuous and discrete variables  

 

Furthermore, the goal of the CBP mission scenario is to gain insight into the real 

world problem without being overwhelmed by complex and tedious optimization tasks. 

The only requirement in this case is to find a sufficiently good solution. This implies 

finding a portfolio of detection architectures providing adequate detection performance at 

relatively low costs. In other words, the good-enough detection architectures are required 

to be able to adequately detect items of interest using affordable detection systems. In this 

context, the portfolio of detection architectures is obtained by optimizing the problem 

according to both coverage performance and cost. The performance of a detection 

architecture is calculated using the M&S framework NetLogo, as described in Equation 3, 

while the cost of the detection architecture is defined as the sum of the design costs of its 
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component systems. Costs related to the deployment, exploitation, and maintenance of the 

detection architecture are not considered in this research. However, coverage and cost are 

conflicting objectives in the sensor placement problem since increasing the number of 

sensors in the architecture increases both coverage and cost.  Multiple conflicting 

objectives call for multi-objective evolutionary optimization such as Genetic Algorithm 

and Particle Swarm Optimization which have proven to be well suited to tackle the 

problem of sensor placement under a variety of situations, in particular for border 

surveillance and intrusion detection.  

 

6.1. Comparison, Selection, and Modification of Optimization Algorithms to Solve 

the Proof-of-Concept Scenario 

 

6.1.1. Comparison and Selection of Optimization Algorithms 

 

Based on the characteristics of the CBP optimization problem, a table can be created 

to compare the ability of various optimization algorithms to satisfy the selection criteria 

for the optimization problem. These algorithms were identified in the literature on 

optimization problems related to distributed sensor system locations. They include the 

Glowworm Swarm Optimization (GSO) [144], the Ant Colony Optimization (ACO) [145], the 

Particle Swarm Optimization [160],[169],[142],[146],[170], various types of Genetic Algorithms 

[171],[172],[168],[161],[162],[164],[155],[165],[156],[173],[166], the Simulated Annealing [170], Integer Linear 

Programming [148],[163], and Tabu Search [137]. A more exhaustive list of the main 

optimization algorithms used in distributed sensor system studies along with their specific 

application domains and primary objective functions are summarized in Table 13.  
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Table 13: Optimization Algorithms Used in Distributed Sensor Network Placement Problems 

Field Algorithm Primary Objective Reference 

Surveillance Integer Edge Covering Maximize coverage 

Bottino and 

Laurentini (2008) 
[139]

 

Wireless Sensor 

Network Deployment 

Glowworm Swarm 

Optimization 
Maximize coverage 

Liao, Kao, and Li 

(2011) 
[144]

 

Surveillance 
Immune-based two-Phase 

Approach 

Minimize maximal 

failure detection 

probability 

Hsieh et al. (2009) 
[140]

 

Wireless Sensor 

Network Deployment 
Ant Colony Optimization Maximize coverage 

Liao, Kao, and Wu 

(2011) 
[145]

 

Sensor Placement 
Integer-Coded Genetic 

Algorithm 
Maximize Coverage 

Boying and 

Xiankun (2011) 
[171]

 

Sensor Placement Integer Programming Maximize Coverage 
Minjie et al. 

(2011) 
[163]

 

Camera Network Particle Swarm Optimization Maximize Coverage 
Xu et al. (2011) 

[142]
 

Wireless Sensor 

Network Deployment 

Multi-Objective Particle 

Swarm Optimization 

Maximize Coverage 

and Network Lifetime 

Pradhan and Panda 

(2012) 
[146]

 

Security Monitoring 
Maximal Covering Location 

Problem + Visibility Analysis 
Maximize Coverage 

Murray et al. 

(2007) 
[137]

 

Transportation 

Management 
Genetic Algorithm Minimize Travel Time 

Kim et al. (2010) 
[172]

 

Water Distribution 

Network Monitoring 
Multi-Criteria Optimization 

Minimize Detection 

Time and 

Contaminated 

Population 

Krause et al. 

(2008) 
[138]

 

Wireless Sensor 

Network Deployment 
Non-Linear Programming 

Minimize Energy 

Consumption and 

Travel Distance, 

Maximize Coverage 

Guerriero et al. 

(2011) 
[147]

 

Air Pollution 

Monitoring 
Multi-Objective Optimization Maximize Coverage 

Trujillo-Ventura 

and Ellis (1991) 
[159]

 

Directional Sensor 

Network Deployment 

Survey of Various 

Optimization Techniques (cf. 

Table 5 of the reference) 

Maximize Coverage 

and Network Lifetime 

Guvensan and 

Yavuz (2011) 
[151]

 

Damage Detection / 

Structural Health 

Monitoring 

Particle Swarm Optimization Maximize Coverage 

Abdalla and Al-

Khawaldeh (2012) 
[160]

 

Wireless Sensor 

Network Deployment 
Integer Linear Programming 

Minimize Energy 

Consumption and 

Maximize Network 

Lifetime 

Prommak and 

Modhirun (2012) 
[148]
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Table 13: Optimization Algorithms Used in Distributed Sensor Network Placement Problems 

(Continued) 

Large Area 

Surveillance 
Binary Optimization Maximize Visibility 

Erdem and 

Sclaroff (2004) 
[152]

 

Damage 

Characterization 
Genetic Algorithm Maximize Coverage 

Yan et al. (2007) 
[161]

 

Sensor Placement Particle Swarm Optimization Maximize Coverage 

 

Boying and 

Xiankun (2011) 
[169] 

 

Fault Detection Genetic Algorithm Maximize Coverage 

Worden and 

Burrows (2001) 
[162]

 

High-Rise Structural 

Health Monitoring 
Genetic Algorithm 

Improved Information 

Matrix 

Zhan et al. (2012) 
[164]

 

Water Quality 

Monitoring 
Genetic Algorithm 

Maximize Detection 

of Contaminants and 

Minimize 

Contaminated 

Population 

Telci et al. (2009) 
[155]

 

Structural Health 

Monitoring 
Genetic Algorithm 

Modal Assurance 

Criterion 

Yang and Zhang 

(2012) 
[165]

 

Water Distribution 

System Monitoring 

Non-Dominated Sorting 

Genetic Algorithm (NSGA-II) 

Minimize Time Delay 

in Detection of 

Intrusion Events and 

Maximize Sensor 

Detection Redundancy 

Shen and McBean 

(2011) 
[156]

 

Water Distribution 

Systems / Facilities 

Planning and Design 

Multi-Objective Minimax 

Optimization (summary of 

other methods from other 

sources in Table 1 of the 

reference) 

Minimize Volume of 

Contaminated Water 

and Detection Time, 

Maximize Coverage 

Xu et al. (2010) 
[157]

 

Bridge Structural 

Health Monitoring 

Single Parents Genetic 

Algorithm with Different 

Fitness Functions 

Maximize Linear 

Independence, 

Minimize Energy 

Consumption 

Han-bing et al. 

(2011) 
[166]

 

Distributed Sensor 

Network Deployment 
Polynomial-Time Algorithms 

Maximize Coverage 

under Imprecise 

Detections and Terrain 

Properties 

Dhillon and 

Chakrabarty 

(2003) 
[136]

 

Urban Homeland 

Security 
Combinatorial Optimization 

Minimize Energy 

Consumption, 

Maximize Airborne 

Contaminants 

Detection, Minimize 

Affected Population 

Hamel et al. 

(2010) 
[141]
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Table 13: Optimization Algorithms Used in Distributed Sensor Network Placement Problems 

(Continued) 

Diver Detection / 

Sensor Placement 
Stochastic Optimization 

Maximize Detection, 

Minimize Energy 

Consumption 

Molyboha and 

Zabarankin (2012) 
[175]

 

Wireless Sensor 

Network Deployment 

Survey of Various 

Optimization Techniques (cf 

Table 2 of the reference) 

- 
Younis and 

Akkaya (2008) 
[150]

 

Directional Sensor 

Network Deployment 
Polynomial-Time Algorithm 

Maximize Coverage, 

Minimize Energy 

Consumption and 

Total and Maximum 

Rotation Angles of 

Sensors 

Tao et al. (2012) 
[143]

 

Objects Layout 

Optimization 

Simulated Annealing and 

Particle Swarm Optimization 

Minimize Container 

Radius and Mass 

Imbalance 

Xiao et al. (2007) 
[170]

 

 

The results of the comparison and of the selection of optimization algorithms for the 

CBP optimization problem are depicted in Table 14. 
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Table 14: Comparison of Relevant Optimization Algorithms for the CBP Optimization Problem 

Algorithms / 

Criteria 

Glowworm 

Swarm 

Ant 

Colony 

Particle 

Swarm 

Genetic 

Algorithm 

Simulated 

Annealing 

Integer 

Linear 

Programming 

Tabu 

Search 

ABLE TO HANDLE OPTIMIZATION PROBLEMS WITH THE FOLLOWING PROPERTIES 

Mixed 
      

 

Combinatorial 
      

 

Large Search 

Space 
      

 

Multimodal 

Search Space 
      

 

Non-Smooth 

Search Space 
     

  

Multi-Criteria  

/ Conflicting 

Objectives 
     

  

PRESENTING THE FOLLOWING CHARACTERISTICS 

Fast 
      

 

Easy to 

Implement   
  

   

Flexible / 

Adaptive 
     

  

Versatile 
     

  

 

Legend: 

 satisfies property 

    is worse than other options 

 

 

As can be derived from Table 14, Genetic Algorithm and Particle Swarm 

Optimization seem the most appropriate approaches to solve the identified problem. 

These evolutionary algorithms have been modified from their original versions in order to 
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take into account the main characteristics of the optimization problem under study and to 

enhance their performance at finding a proper solution. The modified Genetic Algorithm 

and the modified Particle Swarm Optimization Algorithm developed for the purpose 

of the CBP optimization problem are described in subsequent sections. 

 

6.1.2. Modification of Genetic Algorithm and Particle Swarm Optimization 

 

Evolutionary algorithms are powerful and computationally reasonable optimization 

techniques that mimic natural selection and survival of the fittest to find solutions in an 

unknown search space. The procedure of optimization is based on a population of 

potential candidate solutions that is refined according to a fitness function. The candidate 

solutions are either chromosomes encoded in genes in the Genetic Algorithm or agents 

(birds, fishes, etc) encoded in body parts in the Particle Swarm Optimization Algorithm. 

Chromosomes and agents are commonly called individuals. Genes and body parts are 

called components. Components specify the attributes of the solutions, namely the 

variables of the problem, and determine the fitness of the solution. In a typical 

optimization problem, each individual is composed of a number of components equal to 

the number of variables in the problem. In the case of the CBP optimization problem, this 

means that each individual would represent a single sensor system and would be made out 

of four components characterizing the four variables of the problem: 

 The location of the sensor system (longitude and latitude), which is represented as 

an integer between 1 and 256 

 The state of  the sensor system, either rotating (1) or non-rotating (0) 

 The orientation of the sensor system (direction in which the sensor system is 

looking if it has a fixed field-of-view), which ranges from 0° to 360° and is 

defined from a latitudinal line in the NetLogo world 

 The type of the sensor system, which ranges from 0 to 7 (0 and 7 means that the 

sensor is not active, 1 to 6 represent the LCR, MCR, HCR, LCC, MCC, and HCC 

respectively). The value of 7 is added for encoding purposes (see next subsection) 

 



221 

 

If one were to implement the traditional structure of a chromosome in the GA or of a 

particle in the PSO for the CBP optimization problem, then an individual in the 

population would represent a single detection system, as notionally depicted in Figure 47. 

 

 

Figure 47: Structure of Chromosomes and Particles in Traditional Versions of the Genetic Algorithm 

and Particle Swarm Optimization Algorithm 

 

However, in this research, the goal is to optimize the combination of various types of 

detection systems over large terrains so that they jointly provide a maximum performance 

at the minimum cost. The detection systems composing the resulting detection 

architecture are not working independently but rather interact with each other and 

combine their performance into a global capability. This is the main principle behind the 

emergent behavior of systems-of-systems. In this context, the optimization process 

involves optimizing not only the types and the locations of the sensor systems 

constituting the surveillance architecture but also, and more importantly, the total number 

of systems in the final architecture. This implies that each individual in the optimization 

algorithms should not represent a single detection system but rather the complete 

surveillance architecture.  

The structure of chromosomes and particles in traditional versions of the GA and PSO 

algorithm is thus modified to represent a detection architecture rather than a single sensor 

system, as required in the CBP optimization problem. In the adapted versions of the GA 

and PSO algorithm, each individual is composed of a number of parts equal to the total 

number of systems in the detection architecture, and each part is itself composed of a 

number of sub-parts equal to the number of attributes or variables characterizing the 

corresponding sensor system. In order to implement this complex optimization approach, 
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one may set a threshold on the total number of detection systems in the final detection 

architecture. This maximum number of detection systems allowed in the final detection 

architecture is denoted S_max. Then, each individual is composed of S_max parts, 

themselves composed of four sub-parts, as depicted in Figure 48. In this study, S_max 

may vary from 10 to 200 with a step of 10 according to published literature on the topic 

[462],[463].  

 

 

Figure 48: Structure of Chromosomes and Particles in the Adapted Versions of the Genetic 

Algorithm and Particle Swarm Optimization Algorithm 

Since the number of sensor systems in the final detection architecture is to be 

determined as part of the optimization process, some individuals may have empty parts, 

meaning that the corresponding system is not active and is not included in the calculation 

of the fitness function for the corresponding detection architecture.  

 

6.1.3. Construction of an Objective Function 

 

As mentioned earlier, the fitness function or objective function to be optimized is 

composed of two components:  

 A performance measure: the surface covered by the detection architecture in the 

band of protection, defined in Equation 3 
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 A cost measure: the sum of the design costs of the sensor systems composing the 

detection architecture 

 

However, surface coverage and cost are two conflicting objectives, not only in terms 

of optimization but also in the minds of decision makers. Indeed, different decision 

makers may value surface coverage and cost differently. The relative balance between 

both objectives may also depend on the problem to be solved or on the operational 

context. In any case, the objective function to be optimized needs to capture such 

preferences. This is done through a parametric study. A power law is introduced to create 

an aggregated objective function. In this study, the detection architecture coverage is to 

be maximized with respect to the corresponding cost. Hence, the objective function can 

be described by Equation 5. 

  

 Architecture Coverage  

  Architecture Cost
 

Equation 5 

In order for the objective function to be properly scaled, the architecture coverage and 

the architecture cost need to be of the same order of magnitude. Surface coverage is 

expressed as a percentage and is therefore between 1% 
4
 and 100%. Therefore, the 

architecture cost, which is initially expressed in thousands of dollars, must be scaled back 

to a value between 1 and 100 as well. This is done by scaling the real architecture cost by 

an appropriate factor k, here 10
-2

. The weight factor   may then be varied to sweep across 

a wide range of CBP mission scenarios. Cases for which     are representative of 

situations where coverage is given less weight than cost, while cases where     

correspond to situations where coverage is given more weight than cost. In the subsequent 

analysis,     unless otherwise specified. 

 

                                                 
4
 Cases where the detection coverage is between 0% and 1% are highly improbable. There will always be at 

least one sensor system in the architecture such that its coverage will always be strictly larger than 1% even 

with a low cost camera. 
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The modified versions of Genetic Algorithm and Particle Swarm Optimization 

described in the previous section have been implemented in Matlab. Each optimization 

search starts with an initial random population of detection architectures. At each 

generation, the cost of each individual in the population is calculated. The population of 

detection architectures is sent next to the modeling environment to determine the surface 

coverage of each of its members as per Equation 3, taking into account the potential 

overlap in coverage from neighboring detection systems and terrain obstacles. The 

resulting surface coverage and associated cost are then combined to determine the fitness 

function value for each detection architecture in the population. Finally, a new population 

is generated according to the specific reproduction procedures of each of the optimization 

algorithms considered. 

 

6.1.4. Features Specific to the Modified Genetic Algorithm 

 

In the genetic algorithm, the architectures having the largest fitness, i.e. the largest 

coverage to cost ratio as given by Equation 5, are selected to reproduce. The reproduction 

process is based on a modified proportional representation with elitist approach in which 

one or more of the best architectures in the current population is/are directly passed to the 

intermediate generation without being crossed-over with another architecture. The other 

elements of the intermediate generation are obtained by breeding between pairs of 

architectures in the parent population to create offsprings. A two-point crossover scheme 

is adopted. The architectures in the intermediate population are then uniformly mutated to 

generate the next generation on which the same process described above is successively 

applied until convergence is reached. A uniform mutation scheme in which each bit of 

each detection architecture in the population is flipped according to the mutation 

probability is adopted. The modified genetic algorithm is assumed to have converged 

whenever the objective function has not improved by more than 10
-8

 over a pre-defined 

number of successive generations denoted StopIte. However, in order to avoid stagnation 

of the GA, a maximum number of generations of 300 is specified. If this number is 
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reached, then the GA is stopped and other parameter settings must be determined so that 

the GA can converge to a solution. 

 

Each architecture is encoded in Gray coding and the resolution on the variables is a 

function of their character, discrete or continuous, and of their range of variation. More 

precisely, the location of a sensor which encompasses both its longitudinal and its 

latitudinal locations in an integer ranging discretely from 1 to 256 (number of most 

promising locations chosen) is encoded in eight bits (2
8
 = 256). The discrete rotating/non-

rotating state of the sensor system which can be either 1 (rotating) or 0 (non-rotating) is 

encoded in one bit (2
1
 = 2). The heading of the sensor system which ranges continuously 

from 0° to 360° is discretized in 256 different states and encoded in 8 bits. Finally, the 

type of the sensor system which ranges discretely from 0 to 7 is encoded in 3 bits (2
3
 = 8 

is sufficient).  

 

It is generally understood that GA parameters, including the crossover rate, the 

mutation rate, the population size, and the convergence criterion, are determined mainly 

by trial and error. The population size should be such that it is not too small in order for 

the GA to perform a wide search of the design space but also not too large in order for the 

GA to be computationally efficient. In addition, the mutation rate should not be too large 

to avoid random searches of the design space. On the contrary, large values for the 

crossover rate typically work better for a wide range of applications. In the present CBP 

mission application, the crossover rate is set to 70% based on similar sensor placement 

work, while the population size, the mutation rate and the second convergence criterion 

need to be investigated further as described in subsequent sections. 
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6.1.5. Features Specific to the Modified Particle Swarm Optimization 

 

Similarly to the genetic algorithm, a particle swarm optimization algorithm evolves a 

population of agents or particles to search the design space of the problem. Each particle 

is characterized by a position vector and a velocity vector. The position vector in this case 

represents a potential detection architecture solution to the CBP mission problem, and the 

velocity vector models the distance in the design space traveled by the particle between 

two successive optimization steps. The basic optimization framework consists of three 

operations:  

1. The generation of the particles’ positions and velocities,  

2. The update of the particles’ velocities,  

3. And the update of the particles’ positions. 

 

Each particle in the current population (or swarm) tracks its location in the design 

space by means of a vector that both accelerates the particle in the direction of the best 

position it has visited so far, and in the direction of the overall best position visited by the 

swarm so far defined as the best position among all the best positions of the particles in 

the swarm. The optimization procedure adopted in this study is as follows, where k 

represents the current iteration step: 

1. A population of position vectors       
 
 is randomly generated, each one modeling a 

potential protection architecture solution to the problem: 

a. Each position vector is composed of a number of components equal to the 

maximum number of sensor systems allowed in the architecture (S_max)  

b. Each component is constituted of a number of sub-components equal to the 

number of variables in the problem                                                             

c. Each sub-component has a value randomly defined from the range of variation 

of the variable it is representing 

2. A population of velocity vectors       
 
 is randomly generated, where        

 
  is the 

step length for the update of       
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a. Each velocity vector is composed of a number of components equal to the 

maximum number of sensor systems allowed in the architecture (S_max) 

b. Each component has a number of sub-components equal to the number of 

variables in the problem 

c. Each sub-component has a value bounded in the range between the negative of 

a maximum velocity Vmax and the positive of the same maximum velocity. In 

this study, the maximum velocity Vmax is taken equal to four 

3. The private best position of each particle is initialized to its initial position as 

      
 
       

 
, where       

 
 stores the best position found in the design space by particle 

i during its history. The objective function of the problem provides the best 

position for each particle in the swarm 

4. The global best position of the swarm is initialized to the best position among all 

the local best positions of the particles in the swarm as                
 
  

5. While the stopping criteria is not satisfied, the following procedures are executed: 

a. For each particle in the swarm, the velocity vector is updated by Equation 6: 

      
   

        
 
       

      
 
       

 

  
       

          
 

  
 

Equation 6 

Where w is the inertia factor which typically ranges from 0.4 to 1.4 [464],    is the 

self confidence factor which often ranges from 1.5 to 2 [464],    is the swarm confidence 

factor which generally ranges from 2 to 2.5 [464], and    is the optimization time step. In 

Equation 6,     
      
 
       

 

  
 models the influence of the particle’s ability to remember the 

best location it has visited so far on its next move, while     
           

 

  
 models the 

influence of the best location visited by the swarm so far on the next move of particle i. 

The original PSO algorithm [464] uses the values of 1, 2, and 2 for w,   , and    

respectively. In the modified PSO considered in this paper, the inertia factor w linearly 

decreases from 0.9 to 0.4 to model the decreasing influence of past velocity as the 

optimization progresses, the self confidence factor    is taken equal to 2, while the swarm 

confidence factor    can vary from 2 to 2.5 with a step of 1.  
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b. For each particle in the swarm, the position vector is updated by Equation 7: 

      
   

       
 
       

   
   

Equation 7 

c. For each particle in the swarm, the position vector is reevaluated by the 

objective function and the local best position is set to the current position if it 

is better than the current local best position, as described in Equation 8: 

      
   

  
      
 
            

 
                      

 

      
 
            

 
                      

 
  

Equation 8 

d. The global best position of the swarm vector is set to the best among the local 

best positions of the particles in the swarm as described in Equation 9: 

 

                 
   

  

Equation 9 

6. The final solution to the optimization problem is the detection architecture 

provided by the global best position    at convergence of the PSO algorithm 

 

The PSO algorithm implemented in this CBP mission study is assumed to converge 

whenever  the maximum change in the global best fitness is smaller than 10
-25

 for a pre-

defined number of successive moves IteNb. However, in order to avoid stagnation of the 

PSO, a maximum number of generations of 300 is specified. If this number is reached, 

then the PSO is stopped and other parameter settings must be determined so that the PSO 

can converge to a solution. 

 

Finally, the population size, the swarm confidence factor and the second convergence 

criterion need to be investigated further as described in subsequent sections. 
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6.1.6. Concluding Remarks on the Selection and Modification of Optimization 

Algorithms to Optimize the Customs and Border Protection Scenario 

 

The sections above have addressed the selection and the modification of evolutionary 

optimization algorithms such as genetic algorithm (GA) and particle swarm optimization 

(PSO), to solve the multi-objective, discontinuous and non-linear optimization problem 

considered in this research. The aforementioned optimization algorithms have been 

modified in order to: 

 more efficiently balance the tradeoff between exploration and exploitation,  

 adequately find a number of optimally reliable solutions rather than a single 

solution for the distributed system architectures in specific operational contexts, 

 carefully handle performance and/or cost constraints,  

 thoroughly explore the search space with smaller numbers of objective function 

evaluations.  

 

These sections addressed the optimization method research question, and validated 

the corresponding hypothesis. 
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6.2. Testing of the Modified Genetic Algorithm and Particle Swarm Optimization 

Algorithm 

 

Evolutionary optimization algorithms such as GA or PSO have been shown to present 

convergence issues for highly dimensional, discontinuous, non-linear problems, due to 

the dependence of the algorithm parameters on the nature of the problem to which they 

are applied. The efficiency of a GA or PSO algorithm highly depends on the operators, on 

the parameters settings, and on the particular convergence criterion. Consequently, it is 

important to determine a set of parameters adapted to the CBP optimization problem to 

ensure good convergence properties and realistic solutions.  

In fact, unsuccessful preliminary runs of the modified GA and of the modified PSO 

algorithm on the CBP optimization problem were performed using values of parameters 

reported in similar sensor placement studies published in the literature 

[160],[169],[142],[146],[170],[171],[172],[168],[161],[162],[164],[155],[165],[156],[173],[166]. These runs revealed that both 

algorithms would not converge. In this preliminary study, the mutation rate was varied 

from 0.15% to 15%, the stopping criterion for convergence of the GA was set to thirty 

generations, the particle swarm confidence factor was set to two, the stopping criterion 

for convergence of the PSO was set to two thousand generations, and finally the 

population size was set to a hundred architectures. Besides, the maximum number of 

systems allowed in the detection architecture S_Max was set to fifty to mitigate the 

dimensionality of the problem for this first trial of the modified evolutionary algorithms. 

In this context, it is both meaningful and critical to investigate why the modified GA and 

the modified PSO algorithm would not converge to a solution when using the 

aforementioned settings for the optimization parameters.  

 

 

 

 

 



231 

 

6.2.1. Selection of Testing Functions 

 

In order to determine the most pertinent set of algorithm parameters for the CBP 

optimization problem, the modified GA and PSO algorithm are first applied to simpler 

analytical test problems (to which the analytical solutions are known) presenting similar 

discontinuous, non-linear, and multi-dimensional properties as the original problem. The 

algorithm parameters specific to the GA and to the PSO algorithm may be varied so as to 

provide a way to analyze the sensitivity of the resulting test solutions to their combination 

and their settings. Eventually, the set of parameter values that provides the most accurate 

solution for the test problems can be determined. Then, one can assume that using the 

resulting set of GA and PSO algorithm parameter values on the original CBP 

optimization problem may ensure the convergence of the optimization algorithms to 

adequate solutions. 

 

A set of testing functions has been identified from the literature on genetic algorithms, 

evolutionary strategies, and global optimization [465],[466],[467] to evaluate and compare the 

performance of the modified GA and of the modified PSO algorithm as a function of their 

main optimization parameters. The test functions considered are the first De Jong’s 

function [468], the Schwefel’s function [469], the Rastrigin’s function [470], the Griewangk’s 

function [471], the Ackley Path Function [472], and the Michalewicz’s function [473]. All of the 

above test functions are scalable, meaning that they can be applied to as many dimensions 

as necessary through the adjustment of a single parameter value inside the function.  

 

6.2.1.1. First De Jong’s Function 

 

The first De Jong’s function, also known as the sphere model, is continuous, convex, 

and unimodal. It is defined in Equation 10: 

               
 

 

   

                   

Equation 10 
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The first De Jong’s function has a global minimum located at x* = 0 such that f(x*) = 

0, as depicted in Figure 49 for three variables x1, x2, and x3. 

 

 

Figure 49: Graphical Representation of the First De Jong’s Test Function 

 

6.2.1.2. Schwefel’s Function 

 

The Schwefel’s function is characterized by a parameter space in which the global 

minimum is geometrically distant from the next best local minima. In this case, the 

optimization algorithm may tend to mistakenly converge to a local minimum. The 

Schwefel’s function is defined in Equation 11: 

                           

 

   

                 

Equation 11 

The Schwefel’s function has a global minimum located at x* = 420.9687 such that 

f(x*) = -n*418.9829, as depicted in Figure 50 for three variables x1, x2, and x3. 
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Figure 50: Graphical Representation of the Schwefel’s Test Function 

 

6.2.1.3. Rastrigin’s Function 

 

The Rastrigin’s function is an extension of the first De Jong’s function. It adds a 

cosine modulation to the pure sum of squares to generate a multitude of regularly 

distributed local minima. The Rastrigin’s function is thus highly multimodal. It is defined 

in Equation 12: 

                 
               

 

   

                   

Equation 12 

The Rastrigin’s function has a global minimum located at x* = 0 such that f(x*) = 0, 

as depicted in Figure 51 for three variables x1, x2, and x3. 
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Figure 51: Graphical Representation of the Rastrigin’s Test Function 

 

6.2.1.4. Griewangk’s Function 

 

The Griewangk’s function is similar to the Rastrigin’s function with the exception that 

the local minima are widely spread over the parameter space. Their location is 

nevertheless regularly distributed. The Griewangk’s function is defined in Equation 13: 

               
  
 

    

 

   

      
  

  
 

 

   

                   

Equation 13 

The Griewangk’s function has a global minimum located at x* = 0 such that f(x*) = 0, 

as depicted in Figure 52 for three variables x1, x2, and x3 and three different ranges of the 

parameter space. One can notice that on the full range of definition, the Griewangk’s 

function is very similar to the first De Jong’s function. However, as one zooms in on the 

inner area, several small peaks and valleys appear and become smooth near the global 

optimum value. 
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Figure 52: Graphical Representation of the Griewangk’s Test Function at Increasing Zoom-Levels 

 

6.2.1.5. Ackley Path Function 

 

The Ackley Path function is a multimodal function defined in Equation 14: 

               
   

   
  

   
   

          
 
   

                   

Equation 14 

For a = 20, b = 0.2, and c = 2π,                  . 

The Ackley Path function has a global minimum located at x* = 0 such that f(x*) = 0, 

as depicted in Figure 53 for three variables x1, x2, and x3, and the above values for a, b, 

and c. 
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Figure 53: Graphical Representation of the Ackley Path Test Function at Increasing Zoom-Levels 

 

6.2.1.6. Michalewicz’s Function 

 

The Michalewicz’s function is a multimodal function composed of n-factorial local 

optima and defined in Equation 15: 

                               
    

 

 
  

   

   

             

Equation 15 

The Michalewicz’s function is depicted in Figure 54 for three variables x1, x2, and x3, 

and m   10. In the Michalewicz’s function, m represents the ―steepness‖ of the valleys 

such that larger m values lead to steeper valleys or needles and thus harder search for the 

global optimum, while smaller m values lead to flatter valleys or plateaus and thus easier 

search. The Michalewicz’s function is depicted in Figure 55: Graphical Representation of 

the Michalewicz’s Test Function for Different Values of the Parameter m for three 

variables x1, x2, and x3, and for different values of the parameter m = {1; 5; 10; 50; 100; 

150}. 
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Figure 54: Graphical Representation of the Michalewicz’s Test Function 

 

 

 

m = 1                                                                                    m = 5  

Figure 55: Graphical Representation of the Michalewicz’s Test Function for Different Values of the 

Parameter m 
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m = 10                                                                                 m = 30 

 

 

m = 50                                                                                   m = 100  

Figure 55: Graphical Representation of the Michalewicz’s Test Function for Different Values of the 

Parameter m (Continued) 

 

6.2.1.7. Selection of a Reduced Set of Test Functions 

 

Several empirical and experimental studies have attempted to compare particular 

optimization algorithms and to show their effectiveness at solving a wide variety of 

problems. Nevertheless, attempting to analyze the performance of optimization 

algorithms on empirical test functions may be dangerous in that they are typically 

designed to be robust and general purpose search tools. One obvious drawback to such an 
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approach is that the resulting solutions to the empirical evaluation of optimization 

algorithms depend as much on the testing problems as on the algorithms themselves. This 

can lead to specialized algorithms tuned to perform well on particular test functions but 

not necessarily adapted to the original optimization problem to be solved. Therefore, it is 

of interest to choose a suite of test functions that are not only challenging and diverse as 

per their design space, but also that present similar properties as the original optimization 

problem.  

In the case of the CBP mission scenario, the optimization problem is mixed, non-

smooth, highly dimensional, and has a large and multimodal search space. All of the test 

functions examined in the previous sections can be applied to as many dimensions as 

required and can be modified to feature discrete variables by slicing the corresponding 

design space where necessary. Therefore, the only additional properties they need to have 

to perform a relevant evaluation and comparison of optimization algorithms are their 

multimodality and their ability to handle both continuous and discontinuous variables. 

Table 15 summarizes the selection of the reduced set of test functions. 

Table 15: Comparison and Selection of Relevant Test Functions for the Modified GA and the 

Modified PSO Algorithm 

Test Function / 

Criteria 

First De 

Jong 
Schwefel Rastrigin Griewangk Ackley Michalewicz 

Challenging 
 

   

  

Unusual 
 

  

   

Mixed 
 

     

Highly Dimensional 
      

Multimodal 
      

Large Search Space 
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Legend: 

 satisfies property 

   does not satisfy property 

 

As can be noticed from Table 15, the Schwefel’s function and the Rastrigin’s 

function turn out to be the most appropriate functions to evaluate and compare the 

performance of the modified GA and of the modified PSO algorithm at solving the CBP 

optimization problem.  

The Rastrigin’s function is highly multimodal, composed of many local optima of 

identical shapes and depths, regularly distributed, and encompassed in a bowl-shaped 

design space, at the center of which the global optimum lies.  

The Schwefel’s function is also highly multimodal, composed of a multitude of local 

optima spread over a relatively larger design space, and more distant from the global 

optimum. The optima also have different shapes and depths. This makes it harder for the 

evolutionary algorithms to find the true optimum of the Schwefel’s function lying at the 

bottom of a steeper bowl-shaped envelop.  

In both cases, the optimization algorithms may tend to mistakenly converge to a local 

optimum and that is why the Rastrigin’s function and the Schwefel’s function have been 

identified as challenging and of interest for the analysis of the optimization parameters 

required to solve the CBP optimization problem. 

 

6.2.2. Tuning of the Optimization Algorithm Parameter Settings for the Modified 

Genetic Algorithm and Particle Swarm Optimization Algorithm 

 

The reduced set of test functions selected in the previous section can now be used to 

investigate the optimum parameterization of optimization operators for both the GA and 

the PSO algorithm. For the GA, the algorithm parameters of interest encompass the 

population size, the mutation rate, and the number of successive generations over which 

the objective function has not improved significantly. For the PSO algorithm, they are the 
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population size, the swarm confidence factor, and the number of successive moves over 

which the objective function value has not changed significantly. In addition to the above 

parameters, the maximum number of detection systems allowed in the architecture S_Max 

plays a significant role in the optimization process and is worth investigating as well. 

Indeed, this parameter defines the dimensionality of the optimization problem in that it 

gives the ―length‖ of the chromosomes and of the particles in the GA and the PSO 

respectively. As a reminder, the length of each individual in a population is n*S_Max, 

where n is the number of variables in the problem (n = 4 for the CBP mission scenario).  

Therefore, the modified GA and the modified PSO algorithm can now be applied to 

the Schwefel’s function and the Rastrigin’s function under various combinations of their 

respective optimization parameters in order to analyze the sensitivity of the resulting 

solutions to the values of the aforementioned parameters. The goal is thus to determine 

the appropriate combination of the population size (PopSize), the mutation rate 

(MutRate), the number of successive generations where no improvement in the objective 

function can be observed (StopIte), and S_Max for the modified GA, and of the 

population size (PopSize), the swarm confidence factor (C2), the number of successive 

moves over which the objective function value has not changed significantly (IteNb), and 

S_Max for the modified PSO. Table 16 summarizes the ranges of values of the 

optimization parameters investigated in this sensitivity study. 

Table 16: Ranges of Values for the Optimization Parameters in the Sensitivity Study on the Reduced 

Set of Test Functions 

Parameter Minimum Value Maximum Value Step 

Population Size PopSize 50 200 30 

Mutation Rate MutRate 0.05 0.5 0.05 

StopIte 30 110 20 

Swarm Confidence Factor C2 2 2.5 0.1 

IteNb 1600 2000 100 

S_Max 10 190 20 
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If one were to consider all the possible combinations of the above optimization 

parameters, one would need to run 3000 (6*10*5*10) and 1800 (6*6*5*10) sensitivity 

cases for the modified GA and for the modified PSO respectively. In order to speed up 

the analysis, Designs of Experiment (DoEs) are used.  

 

6.2.2.1. Designs of Experiment 

 

Designs of Experiment were created in the 1920’s for agricultural applications. Since 

then, they have been widely used in the industrial and systems engineering fields. An 

Experimental Design is actually the laying out of a detailed experimental plan in advance 

of conducting an experiment. Well chosen experimental designs maximize the amount of 

―information‖ that can be obtained for a given amount of experimental effort. 

Designs of Experiment are composed of a series of tests in which purposeful changes 

are made to the input variables so that one may observe and identify the reasons for 

change in an output response.  

The advantage of using DoE is that a maximum amount of knowledge can be gained 

with a minimum expenditure of experimental effort. According to the Engineering 

Statistics Handbook [474], a Design of Experiment is ―a systematic, rigorous approach to 

engineering problem solving that applies principles and techniques at the data collection 

stage so as to ensure the generation of valid, defensible and supportable engineering 

conclusions. In addition, all this is carried under the constraint of a minimal expenditure 

of engineering runs, time and money.‖ 

 

There exist four general engineering problem areas in which DoE may be used: 

1. Comparative 

2. Screening/Characterizing 

3. Modeling 

4. Optimizing 

 

In a comparative design, the engineer is interested in assessing whether a change in a 

single factor has resulted in a change/improvement of the process as a whole. 
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In a screening/characterizing design, the engineer is interested in ―understanding‖ the 

process as a whole in the sense that he/she wishes (after design and analysis) to have in 

hand a ranked list of the most significant to the least significant factors that affect the 

process. 

In a modeling design, the engineer is interested in functionally modeling the process 

with the output being a good fitting mathematical function (high predictive power), and to 

have good estimates of the coefficients in that function (maximal accuracy). 

In an optimizing design, the engineer is interested in determining optimal settings of 

the process factors, i.e. to determine for each factor, the level of that factor which 

optimizes the process response. 

 

For instance, the sensitivity analysis of the performance of the modified GA and 

modified PSO algorithm to their parametric settings using test functions is a combination 

of optimizing design and screening design. First, the decision maker is interested in 

determining combinations of optimization operator values that enable the modified 

algorithms to efficiently converge to the true global optima of the Schwefel’s function 

and Rastrigin’s function. In this case, the resulting optimal parameter settings are 

assumed to be optimized for the characteristics of the original problem. Second, the 

decision maker is interested in performing a screening test on the various optimization 

operators and their settings so as to study the sensitivity of the algorithm performance to 

the parameter values. in this case, the goal is to understand the optimization process as a 

whole and to have, in hand, a ranked list of the most significant to the least significant 

optimization factors affecting the convergence of the algorithms. 

 

In this respect, DoEs are typically used for several purposes, namely: 

 Choosing between alternatives: for instance, choosing between different 

combinations of the optimization parameters for each tested algorithm  

 Selecting the key factors affecting the response of interest: for instance, selecting 

the key optimization factors affecting the convergence of the optimization 

algorithms to the test solutions 

 Performing response surface modeling 
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o Hitting a target: for example, converging to the global optimum of 

optimization problems of the same type as the test functions 

o Reducing variability: for example, reducing variability in the performance of 

the optimization algorithms with respect to the optimization problem 

considered 

o Maximizing or minimizing a response: for example, maximizing the ability of 

the optimization algorithms to converge to the solutions of problems 

presenting similar characteristics as the test functions 

o Making a process robust, i.e. insensitive to noise variables that are beyond the 

control of the designer: for example, making the optimization algorithms 

robust to various optimization formulations for a given category of problems 

o Seeking multiple goals: for example, finding the global optimum of the test 

functions while optimizing the combination of optimization operator values to 

obtain the best performance of the optimization algorithms when solving the 

initial CBP mission problem 

 Performing a regression modeling 

 

Furthermore, the choice of an initial DoE is problem-dependent and is based on the 

number of independent variables in the model, the speed (or execution time) of the 

analysis tool(s), the overall accuracy desired, and the behavior of the response.  

 

Typically, six types of designs are used by engineers: 

1. Full Factorial Designs 

2. Latin Hypercube Designs 

3. Box-Behnken Designs 

4. Central Composite Designs, especially Face Centered Central Composite 

Designs 

5. D-Optimal Designs 

6. Custom Designs 
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Figure 56 provides a visual representation of the first four classical designs in three 

dimensions.  

 

 

Figure 56: Visual Representation of Four of the Five Classical Designs Used in Engineering 

 

From Figure 56, one can see that the overlay of a Box-Behnken design with a three-

level Face Centered Central Composite Design results in a complete three-level full 

factorial design.  

Table 17 summarizes the advantages and disadvantages of the designs depicted in 

Figure 56, and gives the corresponding number of runs in the DoE (n is the total number 

of design variables). 
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Table 17: Advantages and Disadvantages of Four of the Five Classical Designs Used in Engineering 

Design Advantages Disadvantages Number of Runs 

Full 

Factorial 

1. Every point is 

considered, which 

reduces error 

2. Orthogonal design 

1. Excessively high number of 

cases to test 

2. Limited to second order or 

less functions 

(Number of levels)
n
 

Latin 

Hypercube 

1. Rich sampling of 

interior of design space 

2. Highly accurate on 

interior 

3. Greater than second 

order polynomial 

functions can be 

considered 

1. Possible high correlation of 

independent variables 

2. Poor accuracy on edges of 

design space 

User Specified 

Central 

Composite 

1. Extremes of the design 

space considered 

2. Extrapolation 

minimized 

3. Orthogonal design 

1. Large design space can result 

in many unconverged solutions 

2. Limited to second order 

functions 

2
n
+2n+1 

Box-

Behnken 

1. Better convergence of 

analysis tools 

2. Fewer executions 

required 

3. Orthogonal design 

1. Extrapolation to extremes of 

design space introduces error for 

non-linear design spaces 

2. Maximum 16 variables 

3. Limited to second order 

functions 

No equation available (3 

variables require 15 runs, 

7 variables require 57 

runs) 

 

A D-optimal design is an n-factor, second order design where a minimum number of 

points, namely  
          

 
 (n being the total number of design variables) is used to 

minimize the variance of the data by maximizing the determinant of |X’X|, X being the 

design matrix of variables involved in the DoE. A D-optimal design is a saturated design 

for two reasons: 

1. It uses the minimum number of points possible, i.e. the number of experiments is 

equal to the number of points considered. 

2. It is characterized by the fact that main effects are not confounded with each 

other, but main effects can be confounded with two-factor interactions. 

 

Due to the second property mentioned above, a D-optimal design is not orthogonal 

since it does not guarantee that the effects of one factor or interaction on the response of 

interest can be estimated independently of any other factor or interaction. In other words, 
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it is not guaranteed that the effects of one factor or interaction on the response of interest, 

is clear of any influence due to any other factor or interaction. 

Finally, a Custom Design is a design where the user personally defines the various 

levels of the design variables and the discretization of the design space based on a-priori 

knowledge about the problem. 

 

To conclude, DoEs are characterized by the richness of the sample space (i.e. the data 

points to be evaluated), the correlation of independent variables (i.e. the closeness of the 

design to an orthogonal design), and the number of data points required to yield a good 

representation of the system under study. For a more detailed description of the 

fundamentals and above properties of Designs of Experiment, the reader may refer to [475] 

and [476], among other references. 

 

In order to study the sensitivity of the performance of the modified GA and of the 

modified PSO to settings of their respective optimization parameters using the Schwefel’s 

function and the Rastrigin’s function, a Space Filling Design (Latin Hypercube Design) 

and a Custom Design have been created. Both designs are based on the ranges of values 

identified in Table 16 for each of the optimization parameters considered. The resulting 

Space Filling Designs are provided in Appendix J for both the modified GA and the 

modified PSO, while the Custom Designs are provided in Appendix K for both the 

modified GA and the modified PSO respectively. 
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6.2.2.2. Optimized Parameter Settings for the Modified Genetic Algorithm 

 

6.2.2.2.1. Test Functions Analysis – Sensitivity of the Modified Genetic Algorithm to the 

Optimization Parameters  

 

Figure 57 graphs the sensitivity of the converged solutions for the Schwefel‟s function 

and the Rastrigin‟s function to the mutation rate, the number of successive generations 

where no improvement in the objective function can be observed, and the population size. 

This sensitivity analysis is performed for both the Custom DoE and the Space Filling DoE 

and for different ranges of values of the maximum number of systems allowed in the 

architecture S_Max. In this study, the Schwefel’s function is scaled so that the global 

optimum value is f(x*) = 0. In Figure 57, each black dot corresponds to a DoE case. For 

each setting or each range of values of S_Max considered, the blue horizontal line further 

represents the fit to the fitness values in the dimension of MutRate, the red horizontal line 

models the fit to the fitness values in the dimension of StopIte, and the green horizontal 

line corresponds to the fit to the fitness values in the dimension of PopSize. 

 

Figure 57 shows that larger values of S_Max result in a smaller sensitivity of the 

solution to the optimization parameter settings and in a reduced spread of the solution 

values around the optimum of 0. Indeed, as S_Max increases from 10 to 200, the spread in 

the solutions decreases significantly, and the mean of the converged solution approaches 

the true optimum of 0 for S_Max as low as 60.  
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 Scaled Schwefel’s Function Rastrigin’s Function 

Custom 
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Space 

Filling 

DoE 

  

Figure 57: Sensitivity of the Convergence of the Modified GA for Different Values of the Optimization Parameters and Different Settings of S_Max 
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6.2.2.2.2. Test Functions Analysis – Mean Value and Spread in the Solutions 

 

The distribution function of the solutions for each bucket of S_Max is investigated 

and does not exhibit any specific shape, which was expected. In order to quantify the 

spread in the solutions, the standard deviation statistics is used. The results are 

summarized and depicted in Figure 58. Larger values of S_Max lead to a more consistent 

convergence of the modified GA which manages to find the true optimum of the test 

functions for S_Max as low as 70 in the case of the custom DoE. In the case of the Space 

Filling DoE, the modified GA manages to find the true optimum test solutions for S_Max 

as low as 40 for the Schwefel’s function and about 110 for the Rastrigin’s function.  

 

As a consequence, the predominant factor for the convergence of the modified GA is 

the value of S_Max which modulates the sensitivity of the algorithm performance to the 

combination of its optimization parameters. For sufficiently large values of S_Max, 

superior to 110, any combination of optimization parameter values may be considered. 

This is depicted in Figure 57 by the blue, red, and green vertical bars pointing at the 

values of the mutation rate, the convergence criterion, and the population size that have 

been selected as the tuned parameter settings for the modified GA. For values of S_Max 

smaller than 40, the convergence of the GA is dependent on the optimization parameter 

values. Therefore, the tuned parameter settings have been chosen to ensure the 

convergence of the modified GA to test solutions close to the true optimum values of zero 

for S_Max smaller than 40. 

 



251 
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Figure 58: Plot of the Means and of the Maximum Distances Fom the True Solutions for Different Settings of S_Max, in the Case of the Modified GA
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6.2.2.2.3. Genetic Algorithm – Tuned Optimization Parameter Settings 

 

From Figure 57 and Figure 58 depicting the convergence characteristics of the 

modified genetic algorithm when applied to both the scaled Schwefel’s function and the 

Rastrigin’s function, one can conclude that larger values of the maximum number of 

systems allowed in the detection architecture (S_Max) lead to a smaller sensitivity of the 

algorithm to the optimization parameter values. Furthermore, as S_Max increases, the 

standard deviation in the solution space decreases. In other words, the convergence of the 

modified GA to a solution for the test functions is enhanced as S_Max increases, 

regardless of the settings of the optimization parameters. As a consequence, the 

predominant factor for the convergence of the modified GA is the value of S_Max which 

modulates the sensitivity of the algorithm performance to the combination of its 

optimization parameters. For sufficiently large values of S_Max, superior to 110, any 

combination of optimization parameter values may be considered. This may be explained 

by the fact that larger populations of chromosomes enhance the exploration capability of 

the modified GA and make it better able to find a solution to the optimization problem.  

 

For the rest of the study, the following values shall be used: 

 Population size = 200 

 Mutation rate = 0.2 (20%) 

 Number of successive generations where no improvement in the objective 

function can be observed = 70 

 S_Max = 200 
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6.2.2.3. Optimized Parameter Settings for the Modified Particle Swarm Algorithm 

 

6.2.2.3.1. Test Functions Analysis – Sensitivity of the Modified Genetic Algorithm to the 

Optimization Parameters  

 

Figure 59 graphs the sensitivity of the converged solutions for the Schwefel‟s function 

and the Rastrigin‟s function to the swarm confidence factor, the number of successive 

moves over which the objective function value has not changed significantly, and the 

population size. This sensitivity analysis is performed for both the Custom DoE and the 

Space Filling DoE and for different ranges of values of the maximum number of systems 

allowed in the architecture S_Max. In this study, the Schwefel’s function is scaled so that 

the global optimum value is f(x*) = 0. In Figure 59, each black dot corresponds to a DoE 

case. For each setting or each range of values of S_Max considered, the blue line 

represents the fit to the fitness value in the dimension of C2, the red line models the fit to 

the fitness value in the dimension of IteNb, and the green line corresponds to the fit to the 

fitness value in the dimension of PopSize. 

 

Figure 59 shows that larger values of S_Max result in a smaller sensitivity of the 

solution to the optimization parameter settings and in a reduced spread of the solution 

values around the optimum of 0. Indeed, as S_Max increases from 10 to 200, the spread in 

the solutions decreases significantly, and the mean of the converged solution approaches 

the true optimum of 0 for S_Max as low as 90.  
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Figure 59: Sensitivity of the Convergence of the Modified PSO for Different Values of the Optimization Parameters and Different Settings of S_Max 
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6.2.2.3.2. Test Functions Analysis – Mean Value and Spread in the Solutions 

 

The distribution function of the solutions for each bucket of S_Max is investigated 

and does not exhibit any specific shape, which was expected. In order to quantify the 

spread in the solutions, the standard deviation statistics is used. The results are 

summarized and depicted in Figure 60. Larger values of S_Max lead to a more consistent 

convergence of the modified PSO algorithm which manages to find the true optimum of 

the test functions for S_Max as low as 150 in the case of the Custom DoE. In the case of 

the Space Filling DoE, the modified PSO converges to the true optimum test solutions for 

S_Max as low as 30 for the Schwefel’s function and about 110 for the Rastrigin’s 

function. 

 

As a consequence, the predominant factor for the convergence of the PSO algorithm 

is the value of S_Max which modulates the sensitivity of the algorithm performance to the 

combination of its optimization parameters. For sufficiently large values of S_Max, 

greater than 150 for the scaled Schwefel’s function and greater than 70 for the Rastrigin’s 

function, any combination of optimization parameter values may be considered. This is 

depicted in Figure 59 by the blue, red, and green vertical bars pointing at the values of the 

swarm confidence factor, the convergence criterion, and the population size that has been 

selected as the tuned parameter settings for the modified PSO.  Similarly to what was 

observed for the modified GA, the convergence of the PSO algorithm is dependent on the 

optimization parameter values for S_Max smaller than 40. Therefore, the tuned parameter 

settings have been chosen to ensure the convergence of the modified PSO algorithm to 

test solutions close to the true optimum values of zero for S_Max smaller than 40. 
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Figure 60: Plot of the Means and of the Maximum Distances From the True Solutions for Different Settings of S_Max, in the Case of the Modified PSO 
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6.2.2.3.3. Particle Swarm Optimization – Tuned Algorithm Parameter Settings 

 

From Figure 59 and Figure 60 depicting the convergence characteristics of the 

modified particle swarm optimization algorithm applied to both the scaled Schwefel’s 

function and the Rastrigin’s function, one may conclude that larger values of the 

maximum number of systems allowed in the detection architecture (S_Max) lead to a 

smaller sensitivity of the algorithm to the optimization parameter values. Furthermore, as 

S_Max increases, the standard deviation in the solution space decreases. In other words, 

the convergence of the modified PSO algorithm to a solution for the test functions is 

enhanced as S_Max increases, regardless of the settings of the optimization parameters. 

As a consequence, the predominant factor for the convergence of the PSO algorithm is 

the value of S_Max which modulates the sensitivity of the algorithm performance to the 

combination of its optimization parameters. For sufficiently large values of S_Max, 

greater than 150 for the scaled Schwefel’s function and greater than 70 for the Rastrigin’s 

function, any combination of optimization parameter values may be considered. This 

rather nice convergence of the modified PSO algorithm may be explained by its ability to 

exploit the cooperative and social aspects of evolution rather than its competitive aspects 

as in traditional evolutionary algorithms. The reason for the high overall performance of 

the modified PSO algorithm in the experiments described above may also be due to the 

wide and random search space involved. This implies that an increase in S_Max has a 

greater probability of reaching the global optimum at an early stage of the search. It may 

also be that the global nature of the search offers insight into various local neighborhoods 

of the search space. This is mainly due to the ability of the particles to communicate with 

each other and to have a knowledge and a memory of both the best location they have 

visited so far and the best position the whole swarm has discovered so far. It may finally 

be that particles moving fast towards the best position visited by the swarm allow the 

modified PSO to perform a detailed search of a good region of the design space at an 

early stage. Such features are absent or not prevalent in the modified GA. 
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For the rest of the study, the following values are used: 

 Population size = 200 

 Swarm Confidence Factor = 2  

 Number of successive moves over which the objective function value has not 

changed significantly = 2000 

 S_Max = 200 
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6.2.2.4. Comparison of the Convergence Times for the Modified GA and the Modified 

PSO 

 

Figure 61 shows the time required for the modified GA and the modified PSO to 

converge to a solution to the test functions, over a series of runs corresponding to 

different ranges of values of S_Max as summarized in Table 18. 

 

Modified Genetic Algorithm 

  

 

Modified Particle Swarm Optimization Algorithm 

  

Figure 61: Time Required for the Modified GA and the Modified PSO to Converge to the Test 

Solutions Over Multiple Runs (Different Values of S_Max) 
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Table 18: Run Indices and Corresponding Value Ranges for S_Max  

Modified Genetic 

Algorithm 

Modified Particle Swarm 

Optimization 

DoE Runs S_Max Value DoE Runs S_Max Value 

0-8 10-30 0-10 10-30 

9-17 31-50 11-21 31-50 

18-26 51-70 22-32 51-70 

26-34 71-90 33-43 71-90 

35-43 91-110 44-54 91-110 

44-52 111-130 55-65 111-130 

53-65 131-150 66-76 131-150 

66-74 151-170 77-87 151-170 

75-83 171-190 88-99 171-190 

 

From Figure 61, one can notice that, as S_Max increases, the times required for the 

modified GA and PSO to converge to the true solutions of the test functions decrease. 

This is consistent with the previous conclusions that the efficiency of the modified 

algorithms is enhanced by longer chromosomes and particles. This indeed translates into 

a more thorough exploration of the design space. 

 

From Figure 61, one can readily notice that for values of S_Max smaller than 40, the 

PSO algorithm tends to converge faster than the GA. However, as S_Max increases, the 

time required for the GA to converge to the true solutions of the test dunctions decreases 

faster than that required for the PSO. The convergence times then seem to have identical 

evolutions for values of S_Max larger than 50.  

 

The distribution function of the convergence times for each bucket of S_Max was 

investigated and did not exhibit any specific shape, which was expected. In order to draw 

more rigorous conclusions about which algorithm converges faster and to quantify the 

spread in the convergence times, the mean and the standard deviation statistics of the 

convergence time are calculated for both the modified GA and the modified PSO 

algorithm. The results of the calculations are summarized in Table 19 and Figure 62. 
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Table 19: Means and Standard Deviations of the Convergence Times for the Modified GA and 

Modified PSO Algorithm for Different Ranges of Values of S_Max 

 
GA PSO 

Maximum Number of 

Systems Allowed 

(S_Max) 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

10-30 23.94 1.45 12.3 0.936 

31-50 18.69 1.7 9.67 0.736 

51-70 13.79 0.78 7.54 0.446 

71-90 9.738 1.1 6.3 0.277 

91-110 7.2 0.45 5.12 0.388 

111-130 4.85 0.84 4.08 0.173 

131-150 2.86 0.61 3.52 0.108 

151-170 1.37 0.14 3.12 0.089 

171-190 8.89 0.086 2.7 0.225 

 

As can be derived from Figure 61, Figure 62 and Table 19, on average, the modified 

particle swarm optimization algorithm seems to converge much faster and in a more 

consistent manner for both the scaled Schwefel’s function and the Rastrigin’s function 

compared to the modified genetic algorithm. Indeed, although the modified GA 

converges faster on average for large values of S_Max, the modified PSO converges more 

consistently from S_Max ~ 100 onward. Therefore, the modified PSO algorithm seems 

more computationally efficient at solving optimization problems like the Schwefel’s 

function and the Rastrigin’s function presenting a mixed, discontinuous, highly 

dimensional, large and multimodal search space. 
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Figure 62: Means and One Sigma Boundaries of the Convergence Times for the Modified GA (Red) and the Modified PSO Algorithm (Blue), for 

Increasing Values of S_Max 
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6.2.2.5. Final Comparison of the Modified GA and of the Modified PSO and Selection 

of an Optimization Approach for the Customs and Border Protection Scenario 

 

The information provided in the previous two sections and summarized in Figure 57 

to Figure 62, shows that for both the modified GA and the modified PSO algorithm, as 

S_Max increases from 10 to 200, the standard deviation in the fitness values decreases 

significantly, and the mean of the converged solution approaches the true optimum of 

both the scaled Schwefel’s function and the Rastrigin’s function. In other words, larger 

values of S_Max lead to a better convergence of the modified algorithms regardless of the 

settings of their specific optimization parameters. In addition, both evolutionary 

algorithms manage to find the true optimum of the test functions for S_Max as low as 70 

or 150 depending on the case considered. Nevertheless, the standard deviations in the 

solutions provided by the modified PSO algorithm for both test functions are smaller than 

those in the solutions provided by the modified GA. Therefore, the modified PSO 

algorithm seems more able to deal with optimization problems that are mixed, 

discontinuous, highly dimensional, and that have a large and multimodal search space. 

This most probably comes from the fact that PSO is based on the principle that each 

individual in the swarm can benefit from the discoveries and previous experiences of all 

the other companions during the search for the optimum. In the PSO algorithm, each 

particle in the swarm population is assumed to ―fly‖ over the search space to find 

promising regions of the landscape. Unlike GA, PSO does not use evolutionary operators 

such as crossover and mutation to manipulate individuals of the swarm. Rather, each 

individual in the swarm flies in the search space with a ―velocity‖ which is dynamically 

adjusted according to its own flying experience and to that of its companions. Hence, 

PSO has the ability to search effectively large spaces. Additionally, the modified PSO 

algorithm does not suffer from the same difficulties as the modified GA in that the 

progress towards the solution is enhanced and not detracted by the interaction between 

the particles (individuals) of the group (swarm population). A particle swarm system also 

has a memory: each particle keeps both the memory of its own best position and of the 

group’s best position. In the modified PSO algorithm, individuals who fly past optima are 
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made to return towards them since knowledge of good solutions is retained by all 

particles. On the contrary, changes in the genetic populations in the modified GA result in 

the destruction of previous knowledge of the problem, except when the best individual or 

the first several best individuals of a given generation is/are automatically passed to the 

next generation through an elitist reproduction approach. In the later case, one or a small 

number of individuals effectively retain their ―identities‖ (or memories) as they are 

passed to the next population. This may further explain why PSO converges faster to the 

test solutions than GA when applied to both the scaled Schwefel’s function and the 

Rastrigin’s function as depicted in Figure 61. Indeed, it was shown that on average, the 

modified PSO algorithm converges one and half times faster for both test functions 

compared to the modified GA, and that the standard deviation in the time required for the 

modified PSO algorithm to converge to the test solutions was about two and a half times 

smaller than that for the modified GA. 

To summarize, PSO has better performance, lower computational cost and is easy to 

implement. Due to its population-based solution mechanisms, PSO is suitable for multi-

disciplinary optimization and is capable of providing several solutions in one execution. 

The reason for the high efficiency of the PSO algorithm in the experiments described 

above may be that the coverage of the search space is random and wide so that an 

increase in the population size and in S_Max has a greater probability of reaching the 

global optimum at an early stage of the search. In addition, the global nature of the search 

in the modified PSO algorithm offers insight into various local neighborhoods of the 

design space. Finally, particles moving fast towards the best position visited by the swarm 

allow the modified PSO algorithm to perform a detailed search of a good region at an 

early stage. Due to all these advantages of PSO over GA, only the modified PSO 

algorithm will be investigated subsequently and applied to the CBP optimization problem. 

Finally, it is of interest to remind the reader about the results from the preliminary 

study where the modified GA and the modified PSO algorithm were applied to the 

original CBP optimization problem using algorithm parameter settings found in the 

literature. In this case, the maximum number of detection systems allowed in the 

architecture solution (S_Max) was set to fifty. It was shown that both the modified GA 

and the modified PSO algorithm could not converge. One can now conclude that this was 
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due to S_Max being too small for the algorithms to be insensitive to the settings of their 

respective optimization parameters. In this context, the actual algorithm parameter values 

were not adapted for the convergence of the algorithms to a solution. This is easily seen 

in Figure 57 for the modified GA, where a mutation rate varying from 0.15% to 15% 

combined with a stopping criterion for convergence of the GA of 30 generations and a 

population size of 100 lead to a large standard deviation in the solutions to both the scaled 

Schwefel’s function and the Rastrigin’s function for S_Max = 50. Similarly, a particle 

swarm confidence factor of 2 combined with a stopping criterion for convergence of the 

PSO of 2000, and a population size of 100 correspond to a large standard deviation in the 

solutions to both the scaled Schwefel’s function and the Rastrigin’s function for S_Max = 

50. This is easily seen in Figure 59 for the modified PSO algorithm.  

 

6.2.3. Concluding Remarks on the Tuning of the Optimization Algorithm 

Parameter Settings 

 

The previous sections have demonstrated the development of a rigorous, structured 

and traceable approach to determine a set of optimization algorithm parameters that 

ensures good convergence properties and the adequacy of the resulting solutions in the 

context of surveillance and protection missions for homeland security. This was done by 

applying the modified GA and the modified PSO algorithms to a set of simpler analytical 

test problems (whose solutions are known) presenting similar discontinuous, non-linear, 

and dimensional properties as the original homeland security application. Then, the 

algorithm parameters specific to each optimization approach were varied so as to analyze 

the sensitivity of the solutions to the optimization parameter settings and combinations, 

and to determine the set of algorithm parameter values that provides the most accurate 

solution for the test problems. Additionally, the performance of the modified evolutionary 

algorithms at solving the test functions was compared and the optimization method which 

globally presented the best performance and the lowest computational cost was selected. 

Finally, it was assumed that the resulting set of algorithm parameter values is able to 
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ensure the convergence of the optimization algorithm to accurate distribution system 

architecture solutions for the homeland security application of interest.  

These sections addressed the optimization parameter settings research question, and 

validated the corresponding hypothesis.  



267 

 

6.3. Heuristic Optimization as a Benchmark for the Evolutionary Optimization 

 

Evolutionary optimization algorithms such as GA and PSO have been shown to yield 

solutions that may not always be reproducible for large dimensions, discontinuous, non-

linear problems such as the CBP optimization problem studied in this research. In such a 

case, it is of the utmost importance to develop an internal verification loop of the 

proposed optimization approach in order to check the accuracy of the solutions provided 

by these evolutionary optimization algorithms. This may be done by developing a 

heuristic recursive optimization scheme based on simple performance, cost and 

geometrical positioning rules, and applying it to the original CBP optimization problem. 

The outcome of the heuristic approach will then serve as a benchmark for the detection 

architectures provided by the modified GA or the modified PSO algorithm. The heuristic 

approach is based on the following: 

 The detection systems are those defined in Table 12. They are represented by an 

index corresponding to their type: 1 for the HCR, 2 for the MCR, 3 for the LCR, 4 

for the HCC, 5 for the MCC, and 6 for the LCC. 

 The maximum number of systems allowed in the final detection architecture 

S_Max is set to 200. 

 A minimum coverage Min_Cov and/or a maximum cost Max_Cost for the final 

detection architecture may be specified (for instance minimum coverage of 70% 

and maximum cost of 50 M$). 

 The detection systems are preferentially located at most promising positions 

provided in Appendix I and depicted in the NetLogo environment in Figure 41. 

 Each type of system located at a particular promising position is associated with a 

relative coverage efficiency defined in Equation 2. The architecture coverage is 

then calculated using Equation 3. Appendix L summarizes the relative coverage 

efficiencies for each type of system when located at each of the most promising 

positions. 
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Two different types of heuristic recursive optimization approaches have been 

developed. The first one generates a detection architecture composed of a single type of 

sensor system, while the second one generates a more realistic detection architecture 

composed of various types of detection systems. Both heuristic recursive optimization 

algorithms involve the following storage variables: 

 Sensor_list: stores the indices associated with the types of detection systems in the 

current detection architecture. It is composed of integers between 1 and 6. 

 Occupied_pos_list: stores the indices of the currently occupied promising 

positions (positions at which systems in the current detection architecture are 

located). 

 Occupied_list: stores the latitudes, longitudes, and indices of the promising 

positions occupied by the systems in the current detection architecture. 

 Available_pos: stores the latitudes, longitudes, and indices of the promising 

positions not currently occupied by the detection systems in the detection 

architecture. It corresponds to the complete table of promising positions provided 

in Appendix I minus the Occupied_list. 

 Candidate_pos: gives the position index at which the new detection system ought 

to be located. It is determined using the NetLogo environment. A pre-determined 

detection system is located at each of the currently available promising positions 

and the coverage of the resulting detection architecture is calculated. Then, the 

detection architecture with the highest coverage provides the next candidate 

promising location at which the detection system will be placed. 

 Current_Architecture_Coverage: gives the coverage of the current detection 

architecture. 

 Current_Architecture_Cost: gives the cost of the current detection architecture. 
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6.3.1. Single Type Systems Recursive Optimization 

 

The single type detection systems recursive optimization approach is composed of the 

following steps: 

1. For each type of detection system considered in this study (HCR, MCR, LCR, 

LCC, MCC, and HCC): 

a. The Sensor_list variable is initialized to the index between 1 and 6 

corresponding to the type of the only detection system that will be 

considered in the optimization (obtained from step 1). 

b. The Available_pos variable is initialized to the complete list of most 

promising positions provided in Appendix I. 

c. Considering all the promising positions in the Available_pos variable, 

the one yielding the highest coverage effectiveness value for the 

detection system considered in step 1 is obtained from Appendix L. 

d. The cost of the current detection architecture 

Current_Architecture_Cost is initialized to the cost of the detection 

system considered in step 1. 

e. The Occupied_pos_list variable is initialized to the index of the 

promising position yielding the highest coverage effectiveness value 

obtained in step c for the detection system considered in step 1. 

f. The coverage of the current detection architecture 

Current_Architecture_Coverage is initialized to the coverage 

effectiveness value obtained in step c for the detection system 

considered in step 1. 

g. The Occupied_pos variable is initialized to the latitude, longitude, and 

index of the promising position obtained in step c for the detection 

system considered in step 1. 

h. The Available_pos variable is updated based on the Occupied_pos 

variable obtained in step g. 

i. While the number of sensor systems in the current detection 

architecture is less than S_Max and/or the coverage of the current 
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detection architecture is less than Min_Cov and/or the cost of the 

current detection architecture is not more than Max_Cost, a new 

detection system of the same type as the one considered in step 1 is 

added to the current detection architecture based on the following 

operations: 

ii. For the type of detection system considered, located at each 

available promising position stored in the Available_pos variable, 

the coverage of the resulting detection architecture is calculated 

using the NetLogo environment. This enables taking into account 

the potential overlap in coverage of detection systems in the 

architecture. 

iii. The resulting detection architecture presenting the highest coverage 

value amongst all the candidate detection architectures obtained 

previously provides the new detection architecture. The promising 

position at which the new detection system will be located 

immediately results. 

iv. The Sensor_list variable is updated with the type of the only 

detection system involved in the optimization and considered in 

step 1. 

v. The cost of the current detection architecture 

Current_Architecture_Cost is updated with the cost of the 

detection system considered in step 1. 

vi. The Occupied_pos_list variable is updated with the index of the 

promising position obtained in step iii, at which the new detection 

system is located. 

vii. The coverage of the current detection architecture 

Current_Architecture_Coverage is updated to the coverage of the 

newly generated detection architecture determined from steps ii 

and iii. 
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viii. The Occupied_pos variable is updated with the latitude, longitude, 

and index of the promising position obtained in step iii, at which 

the new detection system is located. 

ix. The Available_pos variable is updated based on the Occupied_pos 

variable obtained in step viii. 

 

The algorithm described above is applied to each type of detection system (HCR, 

MCR, LCR, HCC, MCC, and LCC) independently. The results of the heuristic recursive 

optimization approach considering only one type of detection system to generate a 

uniform detection architecture presenting the maximum coverage at the minimum cost 

given a constraint on S_Max are provided in Figure 63 for each type of detection system 

considered. In this study, a maximum on the total number of systems in the architecture 

S_Max of 200 and a minimum coverage value Min_Cov of 90% were specified. Finally, 

the constraint on the maximum cost of the final detection architecture Max_Cost was not 

specified. That is why, the total number of systems in the resulting detection architectures 

may be less than S_Max provided that the coverage of the said architectures is more than 

Min_Cov.  

 

 

  
High Cost Radar Detection Architecture:  

109 systems 

Medium Cost Radar Detection Architecture:  

109 systems 
 

Figure 63: Optimized Detection Architectures Provided by the Recursive Optimization Approach for 

Each Type of Detection System 

 

  



272 

 

 
 

 
Low Cost Radar Detection Architecture:  

200 systems 
High Cost Camera Detection Architecture:  

133 systems 
 

 

 

 
Medium Cost Camera Detection Architecture:  

200 systems 
Low Cost Camera Detection Architecture:  

200 systems 

Figure 63: Optimized Detection Architectures Provided by the Recursive Optimization Approach for 

Each Type of Detection System (Continued) 

As may be observed in Figure 63, the optimized detection architectures have very 

similar structures on the terrain independently of the type of detection system considered. 

The detection systems tend to be preferentially located at the same best positions, where 

they have the highest coverage efficiency. 

 

Table 20, Figure 64, Figure 65 and Figure 66 summarize the coverage and the cost of 

the resulting detection architectures for each type of sensor system considered. 
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Table 20: Summary of the Coverage and Cost of the Single Type Systems Detection Architectures  

System Type Coverage (%) Cost (M$) 

HCR 90.6 82.5 

MCR 92.4 64 

LCR 87.2 37.2 

HCC 90.7 22.9 

MCC 80.4 8.6 

LCC 50.7 2.9 

 

 

Figure 64: Summary of the Coverage of the Single Type Systems Detection Architectures 
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Figure 65: Summary of the Cost of the Single Type Systems Detection Architectures 

 

Figure 66: Summary of the Coverage as a Function of the Cost of the Single Type Systems Detection 

Architectures 
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In Figure 63, Table 20, Figure 64, and Figure 65, one can notice that the detection 

architectures composed of the systems with the largest detection ranges reach, and even 

surpass, the minimum coverage threshold of 90% with a final number of systems less 

than the maximum allowed value of 200 (S_Max). This is the case for the high cost radar, 

the medium cost radar, and the high cost camera detection architectures. These are also 

the detection architectures which cost the most given that they are composed of high 

performance sensor systems. On the contrary, the detection architectures featuring the 

low cost radar, the medium cost camera, and the low cost camera fail to satisfy the 

minimum coverage constraint of 90% although they are composed of a final number of 

systems equal to the maximum allowed value of 200 (S_Max). These detection 

architectures also correspond to lower resulting costs.  

The observations above are rather straightforward when considering the dimensions 

of the problem and can be easily visualized in the NetLogo environment. Figure 67 

depicts the actual detection coverage of the detection architectures resulting from the 

single type systems recursive optimization for the six types of detection systems 

considered (HCR, MCR, LCR, HCC, MCC, and LCC). 

 

  
 

High Cost Radar Detection Architecture:  

109 systems 

 

Medium Cost Radar Detection Architecture:  

109 systems 
 

Figure 67: Actual Detection Coverage of the Optimized Detection Architectures Provided by the 

Single Type Systems Recursive Optimization Approach for Each Type of Detection System 

Visualized in the NetLogo Environment 
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Low Cost Radar Detection Architecture:  

200 systems 
High Cost Camera Detection Architecture:  

133 systems 
 

 

 

 
 

Medium Cost Camera Detection Architecture:  

200 systems 

 

Low Cost Camera Detection Architecture:  

200 systems 

Figure 67: Actual Detection Coverage of the Optimized Detection Architectures Provided by the 

Single Type Systems Recursive Optimization Approach for Each Type of Detection System 

Visualized in the NetLogo Environment (Continued) 

In Figure 67, the black dots are detection systems, the blue patches are terrain grids 

inside the detection band that are not covered by the sensor systems, the green patches are 

terrain grids inside the detection band that are within the range and in the line-of-sight of 

the sensor systems, and the yellow patches are terrain grids inside the detection band that 

are within the range of the sensor systems but that are out-of-sight. In this context, the 

detection coverage of the single type systems detection architectures results from the ratio 

of the green patches to the total number of patches inside the band of detection (blue 

patches + yellow patches + green patches). Consequently, the patches that cannot be seen 

by the detection architectures are the yellow patches and the remaining blue patches. 
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In the single type systems recursive optimization approach, the goal is to obtain 

detection architectures with the highest terrain coverage for the minimum cost. In Figure 

66, this condition is obtained for the solution located at the upper left corner of the graph. 

This indeed corresponds to the detection architecture providing the maximum coverage at 

the minimum cost. In the case of the single type systems recursive optimization, this 

condition is obtained for a detection architecture composed entirely of high cost cameras. 

This was somewhat predictable due to their relatively low cost compared to all three radar 

types, and their relatively large range of detection compared to the other types of cameras. 

Nevertheless, a detection architecture composed of only high cost cameras is neither 

realistic nor completely appropriate for the original CBP mission. Therefore, it is 

necessary to mix and match the different types of detection systems and determine an 

architecture of distributed systems of various types that would provide the maximum 

coverage at the minimum cost. 

 

Finally, from Figure 63 and Figure 67, it is possible to identify 29 common promising 

locations at which all six types of detection systems tend to be positioned in the 

corresponding optimized detection architectures provided by the single type systems 

recursive optimization. This set of 29 common positions is depicted in Figure 68 and the 

corresponding latitudes, longitudes, and position indices are summarized in Appendix M. 
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Figure 68: Common set of Promising Locations at Which Detection Systems are Preferentially 

Located in the Single Type Systems Recursive Optimization Approach Across all System Types 

 

6.3.2. Multiple Type Systems Recursive Optimization 

 

The multiple type detection systems recursive optimization approach is composed of 

the following steps: 

1. The Available_pos variable is initialized to the complete list of most promising 

positions provided in Appendix I. 

2. Starting from each of the 256 promising positions in turn, the following steps are 

performed: 

a. For the promising position considered in step 2, the type of the detection 

system associated with the highest coverage effectiveness value is 

determined from Appendix L. This step is notionally depicted in Figure 69 
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Figure 69: Recursive Optimization Approach With Multiple Types of Detection Systems – First Step 

b. The Sensor_list variable is initialized to the index corresponding to the 

type of detection system obtained in step a. 

c. The cost of the current detection architecture Current_Architecture_Cost is 

initialized to the cost of the detection system determined in step a. 

d. The Occupied_pos_list variable is initialized to the index of the promising 

position considered in step 2. 

e. The coverage of the current detection architecture 

Current_Architecture_Coverage is initialized to the coverage effectiveness 

value associated with the detection system determined in step a., at the 

promising position considered in step 2. 

f. The Occupied_pos variable is initialized to the latitude, longitude, and 

index of the promising position considered in step 2. 

g. The Available_pos variable is updated based on the Occupied_pos variable 

obtained in step f. 

h. While the number of sensor systems in the current detection architecture is 

less than S_Max and/or the coverage of the current detection architecture is 

less than Min_Cov and/or the cost of the current detection architecture is 

not more than Max_Cost, a new detection system is added to the current 

detection architecture based on the following operations: 
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ii. For each type of detection system, located at each available 

promising position stored in the Available_pos variable, the 

coverage of the resulting detection architecture is calculated using 

the NetLogo environment. This enables taking into account the 

potential overlap in coverage of detection systems in the 

architecture. 

iii. A set S_candidate of nb_candidate resulting detection architectures 

presenting the highest coverage values amongst all the candidate 

detection architectures obtained in step ii is selected to continue the 

optimization. This is notionally depicted in Figure 70. While the 

number of detection systems in the candidate detection 

architectures is less than S_Max and/or the coverage of the current 

detection architecture is less than Min_Cov and/or the cost of the 

current detection architecture is not more than Max_Cost, a nested 

recursive optimization, identical to the one described in this 

section, is performed on all the candidate architectures in the set 

S_candidate so as to recursively determine detection architectures 

presenting the highest coverage. 

 For each candidate detection architecture in the set 

S_candidate, the index corresponding to the type of the 

newly added detection system in the candidate detection 

architecture and the promising position at which the new 

detection system will be located immediately result. 
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Figure 70: Recursive Optimization Approach With Multiple Types of Detection Systems – Pool of 

Candidate Detection Architectures (for nb_candidate = 3) 

 For each candidate detection architecture in the set 

S_candidate, the Sensor_list variable is updated with the 

type of the detection system added to the corresponding 

detection architecture, obtained from step iii. 

 For each candidate detection architecture in the set 

S_candidate, the cost Current_Architecture_Cost is updated 

with the cost of the detection system added to the 

corresponding detection architecture, obtained in step iii. 

 For each candidate detection architecture in the set 

S_candidate, the Occupied_pos_list variable is updated 

with the index of the promising position obtained in step iii, 

at which the new detection system is located. 

 For each candidate detection architecture in the set 

S_candidate, the coverage Current_Architecture_Coverage 

is updated to the coverage of the corresponding newly 
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generated detection architecture determined from steps ii 

and iii. 

 For each candidate detection architecture in the set 

S_candidate, the Occupied_pos variable is updated with the 

latitude, longitude, and index of the promising position 

obtained in step iii, at which the new detection system is 

located. 

 For each candidate detection architecture in the set 

S_candidate, the Available_pos variable is updated based 

on the Occupied_pos variable obtained in the previous step. 

 Steps ii onward are then applied to each candidate detection 

architecture in the set S_candidate. 

 

The aforementioned algorithm is run at each promising position identified in Figure 

41 and Appendix I to generate a meaningful number of detection architectures to study. In 

this work, a number nb_candidate of 10 candidate detection architectures is carried over 

at each step of the nested optimizations. A maximum number of systems allowed in the 

architecture S_Max of 200 and a minimum coverage value Min_Cov of 70% were also 

specified. In this case, the constraint on the minimum coverage required for the total 

architecture has been relaxed compared to the previous study in order to consider the fact 

that multiple systems will be mixed together and positioned at locations chosen among a 

pre-defined set of promising positions. In this context, it is highly probable that the 

resulting architectures will not meet the 90% minimum coverage constraint contrary to 

single type systems detection architectures obtained in the previous case and composed of 

sensors with the largest detection ranges. Finally, the constraint on the maximum cost 

allowed Max_Cost was not specified. That is why, the total number of systems in the 

resulting detection architectures may be less than S_Max provided that the coverage of 

the said architectures is more than Min_Cov. 

 

Figure 71 and Figure 72 show the graphs of the coverage as a function of the cost, and 

of the number of cameras as a function of the number of radars in the optimized detection 
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architectures provided by the multiple type systems recursive optimization approach 

applied to the CBP optimization problem. In Figure 71, the black line represents the 

Pareto optimal detection architectures which will serve as a benchmark for the detection 

architectures provided by the evolutionary optimization of the original CBP optimization 

problem.  They will be investigated further in a subsequent section.  

 

Figure 71: Graph of the Coverage as a Function of the Cost of the Optimized Detection Architectures 

Obtained From the Multiple Type Systems Recursive Optimization Approach  

 

 

70% 
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Figure 72: Graph of the Number of Cameras as a Function of the Number of Radars in the 

Optimized Detection Architectures Obtained From the Multiple Type Systems Recursive 

Optimization Approach 

From Figure 72, one can notice that the optimized detection architectures do not tend 

to favor one type of detection system over the other. Indeed, the types of detection 

systems in the resulting set of detection architectures seem to be rather well distributed 

amongst radars and cameras.  

 

In Figure 72, the green diamonds represent ten of the Pareto optimal detection 

architectures identified in Figure 71. The surface coverage of each of these ten Pareto 

detection architectures is depicted in the NetLogo environment in Figure 73.   
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Architecture 1 
 

Architecture 2 

 

 

 
 

Architecture 3 Architecture 4 
 

 

 

 
 

Architecture 5 
 

Architecture 6 
 

Figure 73: Actual Detection Coverage of Ten of the Pareto Optimal Detection Architectures Provided 

by the Multiple Type Systems Recursive Optimization Approach Visualized in the NetLogo 

Environment  

  

Regions Lacking 

Detection Coverage 
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Architecture 7 
 

Architecture 8 
 

 

 

 
 

Architecture 9 
 

Architecture 10 

Figure 73: Actual Detection Coverage of Ten of the Pareto Optimal Detection Architectures Provided 

by the Multiple Type Systems Recursive Optimization Approach Visualized in the NetLogo 

Environment (Continued) 

In Figure 73, the black dots are detection systems while the blue patches are terrain 

grids inside the detection band that are not covered by the sensor systems. The green 

patches are terrain grids inside the detection band that are within the range and in the line-

of-sight of the sensor systems, while the yellow patches are terrain grids inside the 

detection band that are within the range of the sensor systems but that are not visible due 

to obstruction of their fields-of-view by terrain obstacles. In this context, the detection 

coverage of the multiple type systems detection architectures results from the ratio of the 

green area to the total area within the band of detection (blue + yellow + green patches). 

Consequently, the region not seen by any system in the detection architectures is 

composed of the yellow and blue areas. In Figure 73, one may notice that the detection 

coverage of the depicted architectures is rather well spread across the band of detection 

along the border. Nevertheless, some yellow and some blue areas where the detection 

Regions Lacking 

Detection Coverage 
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coverage is limited may be identified. These are regions where detection systems 

transported by patrolling CBP agents may potentially be deployed and operated directly 

on mobile platforms to complete and enhance the detection capabilities of the fixed 

detection architectures obtained by the recursive approach. These regions are identified 

by red circles in Figure 73. Additionally, Figure 73 shows that the set of Pareto optimal 

detection architectures considered have very similar structures on the terrain. The 

detection systems tend to be preferentially located at the same best positions, where they 

have the highest coverage efficiency.  

 

Table 21 summarizes the coverage and the cost corresponding to the ten Pareto 

optimal detection architectures considered previously, along with their total number of 

systems, their number of radars and their number of cameras.  

 Table 21: Properties of Ten of the Pareto Optimal Detection Architectures Provided by the Multiple 

Type Systems Recursive Optimization Approach When Applied to the CBP Optimization Problem 

 

Coverage 

(%) 

Cost 

(M$) 

Number of 

Systems 

Number of 

Radars 

Number of 

Cameras 

Architecture 1 82.6 44.7 157 79 78 

Architecture 2 80.8 32.7 164 86 78 

Architecture 3 77.9 22.8 131 57 74 

Architecture 4 76.8 44 119 60 59 

Architecture 5 82.4 42.6 149 84 65 

Architecture 6 87 39.9 157 78 79 

Architecture 7 77.8 20.8 139 66 73 

Architecture 8 82.2 32.2 178 89 89 

Architecture 9 83.2 28 184 90 94 

Architecture 10 84.9 41.4 170 86 84 

  

Finally, the single type systems recursive optimization approach enabled identify a set 

of twenty nine common promising locations at which the six types of detection systems 

were preferentially located in the resulting detection architectures. In the multiple type 

systems recursive optimization approach however, all the two hundred and fifty six 

promising positions have been utilized by the detection systems in one architecture or the 

other. Therefore, it makes no real sense to try to determine a set of mostly used promising 
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positions in this case. What is more relevant is to be able to compare the properties of the 

Pareto optimal solutions obtained with this recursive approach with those of the Pareto 

optimal solutions provided by the evolutionary optimization approach. This will be 

described subsequently. 

 

6.3.3. Concluding Remarks on Benchmarking Detection Architectures Using 

Heuristic Recursive Optimization 

 

The previous sections have detailed the development and the structured analysis of a 

heuristic recursive optimization scheme based on simple performance, cost and 

geometrical positioning rules. The goal of this study was to provide benchmark solutions 

for checking the accuracy of the Pareto optimal detection architectures provided by the 

evolutionary optimization of the original homeland security problem.  
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6.4. Evolutionary Optimization of the Customs and Border Protection Mission 

Scenario 

 

The previous sections have enabled: 

 The definition of a benchmark for the solution to the CBP optimization problem  

 The investigation of appropriate sets of optimization parameters for both the 

modified GA and the modified PSO algorithm 

 The comparison of the efficiency of the modified GA and of the modified PSO 

algorithm in solving test problems presenting similar properties as the original 

CBP optimization problem  

 The selection of the modified PSO algorithm for solving the CBP mission 

scenario 

 

With all the above in mind, the modified PSO algorithm can now be applied to the 

original CBP optimization problem in order to determine a portfolio of distributed 

detection system architectures composed of fixed sensors located at given positions on the 

terrain and providing the maximum coverage of the theater of operations at the minimum 

cost.  

 

6.4.1. Proposed Optimization Approaches 

 

In order to gauge the ability of the modified PSO algorithm to provide an accurate 

solution and to test its convergence efficiency for the CBP optimization problem, four 

different particle swarm optimization approaches are considered.  

 

Full and global approach: in this first case, the detection systems may be placed 

at any positions in the band of detection. This corresponds to the full and global 

optimization approach in which the most promising locations are not 

implemented. This is depicted in Figure 74. 

 



290 

 

 

Figure 74: Full and Global Optimization Approach 

 

Reduced and global approach: in this second case, the detection systems must 

be located at the pre-defined most promising positions in the band of detection. 

This case will be called the reduced and global optimization. In this approach, the 

resulting detection architectures presenting the best performances at the most 

affordable costs will be benchmarked against the solutions provided by the 

multiple type systems heuristic recursive approach. This is depicted in Figure 75. 

 

 

Figure 75: Reduced and Global Optimization Approach 

 

 



291 

 

Nested, full, and local approach: in this third case, the band of detection is 

divided into a number Nb_Boxes of equal sized boxes. The PSO algorithm is then 

used to optimize reduced detection architectures in each box. In this 

implementation, a number S_Max / Nb_Boxes of detection systems may be placed 

at any positions in the box considered and in the band of detection to generate 

reduced detection architectures providing the maximum coverage at the minimum 

cost for that box. The optimization algorithm is therefore successively applied 

locally to each box along the band of detection to determine locally optimized 

detection architectures. Then, it is assumed that the globally optimized detection 

architectures may be obtained by combining the first few ―best‖ locally optimized 

detection architectures. This nevertheless requires some corrections in the 

resulting coverage due to overlap between boundary detection systems (located at 

the boundaries of the boxes). This approach corresponds to a nested optimization 

and will be referred to as the full and local optimization approach in which the 

most promising locations are not implemented. This is depicted in Figure 76. 

 

 

Figure 76: Nested, Full, and Local Optimization Approach 

 

Nested, reduced and local approach: this fourth case is similar to the third case 

except that the detection systems in each box have to be located at the pre-defined 

most promising positions in the band of detection encompassed in the box of 

interest. This case is also a nested optimization and will be referred to as the 
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reduced and local optimization. In this approach, the resulting combined detection 

architectures will be benchmarked against the solutions provided by the multiple 

type systems heuristic recursive optimization approach. 

 

 

Figure 77: Nested, Reduced, and Local Optimization Approach 

 

The aforementioned four variations of the particle swarm optimization algorithm have 

been run multiple times on the CBP optimization problem to compare their computational 

efficiency and their ability to provide reliable solutions. In all cases, the objective 

function is that constructed in Equation 5 with a weight factor α = 1 unless otherwise 

specified. The results of the comparison analysis are provided in the next sections. 

 

In this work, the four optimization approaches described above have been developed 

to analyze the ability of the proposed PSO algorithm to provide consistent solutions 

across multiple variants and to determine the most computationally efficient approach for 

the CBP optimization problem. However, this is not a limitation. Indeed, the four 

evolutionary optimization methods developed as part of this research may be used to 

perform various types of analyses. For instance, they may be employed to devise a 

detection architecture solution for a specific problem when no detection architecture 

presently exists. Starting from an existing detection architecture, the reduced and global 

optimization approach may enable to further enhance the detection capability of the 

detection architecture by appropriately modifying its structure. This may involve adding 
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carefully selected detection systems at appropriate available promising positions, 

removing detection systems that do not provide sufficient coverage, or a combination of 

these two modifications. In the same context, the nested and local optimization methods 

may further optimize locally the various parts of an existing detection architecture to 

enhance its global operational effectiveness. Finally, all the aforementioned optimization 

approaches may be used as a means to design new detection technologies adapted to a 

specific need, that would provide additional coverage when and where required, whether 

it be for an existing or a newly designed detection architecture.  

 

6.4.2. Convergence Analysis of the Proposed Optimization Approaches  

 

The distribution function of the convergence times for the four evolutionary 

optimization approaches was investigated and did not exhibit any specific shape, which 

was expected. In order to draw more rigorous conclusions about which algorithm 

converges faster to a solution for the CBP optimization problem, and to quantify the 

spread in the convergence times, the means and the standard deviations statistics may be 

used. Figure 78 depicts the means and standard deviations of the convergence times for 

the four evolutionary optimization approaches across multiple runs.  
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Figure 78: Plot of the Means and of the One-Sigma Boundaries of the Convergence Times for the 

Four Evolutionary Optimization Approaches Across Multiple Runs 

Figure 78 shows that the reduced and global optimization approach, in which the set 

of promising positions inside the band of detection is pre-specified, converges the most 

rapidly on average. Nevertheless, the one-sigma standard deviation boundaries for this 

case are wider than those for the local optimization approaches, although they are smaller 

than those for the full and global optimization case. This means that, although the local 

optimization approaches tend to take more time to converge on average than the global 

optimization approaches, they are more consistent in terms of computational speed. This 

may be due to the fact that performing many local optimizations ends up being more 

computationally efficient than performing one global optimization.  

When studying the convergence times for the four evolutionary algorithms considered 

in this research, it is assumed that a ―good enough‖, yet global, solution to the original 

CBP optimization problem has been obtained. The solution of interest here is the one that 

covers the whole extent of the border, and not a series of local solutions that locally cover 

successive pieces of the border. In this context, it is obvious that the global optimization 

approaches provide global solutions. This is not the case for the local optimization 
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approaches. Indeed, the solutions provided by the local optimization algorithms after 

convergence are locally optimized detection architectures, and not global detection 

architecture solutions to the original CBP optimization problem. Therefore, in those 

cases, it is necessary to account for the additional post-processing time required to 

recombine the locally optimized detection architectures into complete architectures, and 

to correct the resulting coverage for any overlap. This necessarily increases both the mean 

of the true convergence times and the one-sigma standard deviation boundaries of the 

local optimization cases.  

Finally, it is worth noticing from Figure 78 that the reduced optimization approaches 

(global and local) are computationally more efficient at finding solutions to the 

corresponding optimization problem compared to their respective full approaches. This is 

because in the reduced optimization algorithms, the most promising positions at which 

detection systems must be located in the final detection architectures are already specified 

by the analyst, while in the full optimization approaches, detection systems may be 

located at any feasible positions inside the band of detection. This means that the full 

optimizations have more dimensionality, which translates into more positions to try, and 

thus more time to converge.  

In this context, it is worth comparing more closely the reduced optimization 

approaches. Figure 79 shows the means and standard deviations of the convergence times 

for the reduced evolutionary optimization approaches across multiple runs. 
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Figure 79: Plot of the Means and of the One-Sigma Boundaries of the Convergence Times for the 

Reduced Evolutionary Optimization Approaches Across Multiple Runs 

 

From Figure 79, one may notice that although the reduced and global optimization 

seems to be converging faster on average than the reduced and local optimization, the 

latter seems to converge more consistently to a solution. Indeed, the spread in the 

convergence time is smaller for the reduced and local optimization approach. 

Nevertheless, as mentioned previously, the reduced and global optimization approach 

provides a globally optimized detection architecture. On the contrary, the reduced and 

local optimization approach provides locally optimized detection architectures that need 

to be recombined into a global detection architecture to obtain a solution structurally 

similar to the ones provided by the corresponding global approach. This adds post-

processing time to the actual ―convergence‖ time of the reduced and local optimization. 

Ultimately, when the additional post-processing time required to obtain global solutions is 

taken into account, the reduced and local optimization approach converges much slower 

on average than its global counterpart. This is notionally depicted in Figure 80. 
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Figure 80: Plot of the Means and of the One-Sigma Boundaries of the Convergence Times for the 

Reduced Evolutionary Optimization Approaches Across Multiple Runs, With Added Post-Processing 

Time for the Local Approach 

 

Eventually, the reduced and global optimization approach converges more efficiently 

than the reduced and local optimization approach when considering post-processing time, 

and is thus the most computationally adapted to the CBP problem. The solutions provided 

in this case are analyzed in subsequent sections.  
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6.4.3. Properties of the Solutions Provided by the Proposed Optimization 

Approaches  

 

In this section, the goal is to study the performance of the proposed four particle 

swarm optimization algorithms at providing solutions to the original CBP optimization 

problem. In order to do so, it is interesting to study the properties of a set of detection 

architectures that are obtained over the last few hundreds of generations before 

convergence of the algorithms, and that present the maximum coverage to cost ratios. 

These architectures will be called ―best ratio‖ detection architectures. The results of the 

analysis may be summarized in two types of graphs: 

 One depicting the coverage as a function of the cost of the set of detection 

architectures mentioned above 

 One displaying the number of cameras in the final detection architectures as a 

function of the number of radars 

 

Table 22 provides the resulting graphs for the four types of evolutionary optimization 

approaches described in the previous sections. 
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Table 22: Graphs of the Coverage as a Function of the Cost, and of the Number of Cameras as a 

Function of the Number of Radars in the set of “Best Ratio” Detection Architectures for the Four 

Evolutionary Optimization Approaches Considered 

 

Coverage as a Function of Cost for the 

set of “Best Ratio” Detection 

Architectures 

Number of Cameras as a Function of 

Number of Radars in the set of “Best 

Ratio” Detection Architectures 

Full and 

Global 

Optimization 

  

Reduced and 

Global 

Optimization 

  

Nested, Full, 

and Local 

Optimization 

  

Nested, 

Reduced, and 

Local 

Optimization 

  

 

From Table 22, one may notice that the global and the local reduced optimization 

approaches provide detection architectures with better coverage to cost ratios than the 
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global and the local full optimization approaches. This is most certainly because the 

promising positions at which the detection systems have the highest coverage efficiency 

are specified. This undoubtedly orients the search for the most effective detection 

architectures in the reduced optimization approaches. In the full optimization approaches 

however, the search algorithms have no guidance about the performance of the detection 

systems at all the feasible positions inside the band of detection. Therefore, they must 

perform by trial and error. In this context, the search is not as efficient, and its ability to 

find effective detection architectures is diluted by the combinatorial nature of the 

problem. From Table 22, it is also evident that none of the reduced optimization 

approaches implemented in this study tends to favor one type of detection system over the 

other. Indeed, the types of detection systems in the resulting set of ―best ratio‖ 

architectures seem to be rather well distributed amongst radars and cameras. One can 

notice though that the full evolutionary optimization algorithms (global and local) tend to 

diverge towards one or the other type of detection system as the total number of systems 

in the detection architectures increases. Again, this may come from the fact that the 

search for detection architecture solutions is more random in those cases than in the 

reduced optimization algorithms due to the lack of preliminary knowledge about the most 

promising positions.  

 

Finally, the distribution function of the total number of systems in the set of ―best 

ratio‖ detection architectures provided by the four evolutionary optimization approaches 

was investigated and did not exhibit any specific shape, which was expected. In order to 

compare the properties of the ―best ratio‖ detection architectures, the means and the 

standard deviations statistics may be used. Figure 81 gives the means and one-sigma 

standard deviation boundaries for the total number of systems in the set of ―best ratio‖ 

detection architectures provided by the four evolutionary optimization approaches 

considered in this work.  
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Figure 81: Plot of the Means and of the One-Sigma Boundaries of the Total Number of Systems in the 

set of “Best Ratio” Detection Architectures Provided by the Four Evolutionary Optimization 

Approaches Considered 

Figure 81 shows that, on average, the global and the local reduced optimization 

approaches yield detection architectures with slightly fewer detection systems than the 

global and the local full optimization approaches. Once again, this feature may be 

explained by the fact that the most promising locations are specified in those cases, while 

the full optimization approaches have to explore all the feasible positions inside the band 

of detection as they search for a solution to the problem. This obviously decreases their 

performance. In this context, and using the information provided in Table 22, the reduced 

optimization algorithms are able to find detection architectures presenting better coverage 

and cost characteristics with slightly fewer systems than the full optimization algorithms. 

Furthermore, as demonstrated in the previous section, among the reduced optimization 

approaches, the global one is the most computationally adapted to the CBP problem. The 

solutions provided in this case are subject to further investigations in the next section.    
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6.4.4. Analysis of Pareto Efficient Solutions Provided by the Reduced and Global 

Optimization Approach for the Customs and Border Protection Optimization 

Problem 

 

Consider Figure 82 depicting the set of ―best ratio‖ detection architectures obtained 

from the reduced and global optimization approach applied to the CBP mission scenario. 

 

Figure 82: Plot of the Coverage to the Cost of the set of “Best Ratio” Detection Architectures for the 

Reduced and Global Optimization Algorithm (with Specification of the Most Promising Positions) 

From Figure 82, a Pareto front of detection architectures providing the maximum 

coverage for different resulting costs may be identified, as illustrated by the black line. 

Some of these Pareto detection architectures, corresponding to different customer 

preferences are highlighted in red in Figure 82. This set of ―coverage-to-cost Pareto 

efficient‖ detection architectures would correspond to increasing preference in detection 

coverage and thus decreasing interest in resulting cost. These Pareto detection 

architectures may be visualized in the NetLogo environment. This is depicted in Table 23. 
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Table 23: Illustration of the Coverage and of the Structure of the “Coverage-to-Cost Pareto 

Efficient” Detection Architectures Obtained From the Reduced and Global Evolutionary 

Optimization Approach Applied to the CBP Optimization Problem 

Detection Coverage Structure of the Detection Architecture 

  

  

  

  

Regions Lacking 

Detection Coverage 
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On the rightmost pictures in Table 23, one can notice that the ―coverage-to-cost 

Pareto efficient‖ detection architectures considered have very similar structures on the 

terrain. The detection systems tend to be preferentially located at the same best positions, 

where they have the highest coverage efficiency.  

On the leftmost figures in Table 23, the black dots are detection systems while the 

blue patches are terrain grids inside the detection band that are not covered by the sensor 

systems. The green patches are terrain grids inside the detection band that are within the 

range and in the line-of-sight of the sensor systems, while the yellow patches are terrain 

grids inside the detection band that are within the range of the sensor systems but that are 

not visible due to obstruction of their fields-of-view by terrain obstacles. In this context, 

the detection coverage of the detection architectures results from the ratio of the green 

area to the total area within the band of detection (blue + yellow + green patches). 

Consequently, the region not seen by any system in the detection architectures is 

composed of the yellow and blue areas. In Table 23, one can notice that the detection 

coverage of the depicted Pareto efficient architectures is rather well spread across the 

band of detection along the border. Nevertheless, some yellow and some blue areas where 

the detection coverage is limited may be identified. These are regions where detection 

systems transported by patrolling CBP agents may potentially be deployed and operated 

directly on mobile platforms to complete and enhance the detection capabilities of the 

fixed detection architectures depicted in Table 23. These regions are identified by red 

circles on the leftmost figures of Table 23.  

 

Table 24 summarizes the coverage and the cost corresponding to the ―coverage-to-

cost Pareto efficient‖ detection architectures, along with their total number of systems, 

their number of radars and their number of cameras.  
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Table 24: Properties of the “Coverage-to-Cost Pareto Efficient” Detection Architectures Obtained 

From the Reduced and Global Evolutionary Optimization Approach Applied to the CBP 

Optimization Problem 

 

Coverage 

(%) 

Cost 

(M$) 

Number of 

Systems 

Number of 

Radars 

Number of 

Cameras 

Architecture 1 80 12.5 124 55 69 

Architecture 2 83.2 20.4 184 90 94 

Architecture 3 86.4 36.4 177 87 90 

Architecture 4 88.3 42.2 184 97 87 

 

     

6.4.5. Checking the Accuracy of the Solutions Provided by the Reduced and Global 

Optimization Approach With the Benchmark Solutions Obtained from the 

Heuristic Recursive Approach 

 

Consider the set of ―best ratio‖ detection architectures provided by the evolutionary 

optimization and depicted in Table 22 and Figure 82 for the reduced and global 

optimization approach.  

The distribution function of the total number of systems, the number of radars, the 

number of cameras, the coverage (in %) and the cost (in M$) of the set of ―best ratio‖ 

detection architectures was investigated and did not exhibit any specific shape, which was 

expected. In order to compare the properties of these detection architectures, the means 

and the standard deviations statistics may be used. Table 25 gives the means and the one-

sigma standard deviation boundaries for the total number of systems, the number of 

radars, the number of cameras, the coverage (in %) and the cost (in M$) for this set of 

―best ratio‖ detection architectures. This is illustrated in Figure 83, where the horizontal 

index represents the parameter considered (1 is the total number of systems in the 

architecture, 2 is the number of radars, 3 is the number of cameras, 4 is coverage, and 5 is 

cost), and the vertical axis is either a number (for the number of systems, radars, and 

cameras), or a percentage (for the coverage), or a currency (M$ for the cost). 
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Table 25: Means and Standard Deviations of the Properties of the set of “Best Ratio” Detection 

Architectures Provided by the Reduced and Global Evolutionary Optimization Algorithm 

 
Mean Standard Deviation 

Number of Systems 121.92 40.39 

Number of radars 61.16 21.28 

Number of Cameras 60.76 20.54 

Coverage (%) 73.46 11.15 

Cost (M$) 26.22 15.26 

 

 

 

Figure 83: Plot of the Means and of the One-Sigma Boundaries of the Properties of the set of “Best 

Ratio” Detection Architectures Provided by the Reduced and Global Evolutionary Optimization 

Algorithm 

Consider the set of benchmark detection architectures provided by the multiple type 

systems recursive optimization approach depicted in Figure 71.  

The distribution function of the total number of systems, the number of radars, the 

number of cameras, the coverage (in %) and the cost (in M$) of the set of benchmark 

detection architectures was investigated and did not exhibit any specific shape, which was 

expected. In order to compare the properties of these detection architectures, the means 

and the standard deviations statistics may be used. Table 26 gives the means and the one-

sigma standard deviation boundaries for the total number of systems, the number of 

radars, the number of cameras, the coverage (in %) and the cost (in M$) for the 
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benchmark detection architectures provided by the recursive optimization approach. This 

is illustrated in Figure 84, where the horizontal index represents the parameter considered 

(1 is the total number of systems in the architecture, 2 is the number of radars, 3 is the 

number of cameras, 4 is coverage, and 5 is cost), and the vertical axis is either a number 

(for the number of systems, radars, and cameras), or a percentage (for the coverage), or a 

currency (M$ for the cost). 

Table 26: Means and Standard Deviations of the Properties of the Benchmark Detection 

Architectures Provided by the Multiple Type Systems Recursive Optimization Algorithm 

 
Mean Standard Deviation 

Number of Systems 137.48 40.81 

Number of Radars 69.17 21.58 

Number of Cameras 68.31 20.98 

Coverage (%) 79.61 4.66 

Cost (M$) 34.12 12.1 

 

 

 

Figure 84: Plot of the Means and of the One-Sigma Boundaries of the Properties of the Benchmark 

Detection Architectures Provided by the Multiple Type Systems Recursive Optimization Algorithm 

Figure 85 plots the means and the one-sigma standard deviation boundaries for the 

total number of systems, the number of radars, the number of cameras, the coverage (in 

%) and the cost (in M$) for both the set of ―best ratio‖ detection architectures provided by 
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the reduced and global evolutionary algorithm, and the benchmark detection architectures 

provided by the heuristic recursive optimization algorithm. In Figure 85, the horizontal 

index represents the parameter considered (1 is the total number of systems in the 

architecture, 2 is the number of radars, 3 is the number of cameras, 4 is coverage, and 5 is 

cost), and the vertical axis is either a number (for the number of systems, radars, and 

cameras), or a percentage (for the coverage), or a currency (M$ for the cost). 

 

 

 

Figure 85: Comparison of the Means and of the One-Sigma Boundaries of the Properties of the 

Detection Architectures Provided by the Evolutionary Optimization (E.O.) and the Recursive 

Optimization (R.O.) Algorithms 

Figure 85 shows that, on average, the ―best ratio‖ detection architectures given by the 

evolutionary optimization approach are composed of a smaller number of systems 

compared to the detection architectures resulting from the recursive optimization 

approach. As a consequence, they also contain fewer radars and cameras comparatively. 

However, the standard deviation of the average total number of systems, number of 

radars, and number of cameras are almost identical in both optimization cases. This is 
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rather encouraging and shows the consistency of the results between both types of 

optimization approaches. Additionally, given that the ―best ratio‖ detection architectures 

involve fewer systems than the detection architectures provided by the recursive 

optimization, the cost of the said detection architectures is also lower. A similar causality 

effect between the total number of systems in the architecture and the resulting detection 

coverage is not evident however. Indeed, both the general structure of the detection 

architecture and the topography of the theater of operations come into play in this case. 

Nevertheless, everything else being equal, it may be expected that the detection coverage 

of the ―best ratio‖ detection architectures obtained with the evolutionary optimization will 

also be smaller than that of the detection architectures resulting from the recursive 

optimization. This is confirmed in Figure 85. In addition, the standard deviation in the 

detection coverage of the architectures provided by the particle swarm optimization is 

more than twice that for the detection architectures obtained from the heuristic 

optimization. This comes from the evolutionary nature of the former algorithm which 

makes it less predictable than the entirely recursive heuristic approach. Finally, although 

the standard deviations in the architecture costs are rather similar for both approaches, it 

is relatively larger for the evolutionary optimization where it accounts for a little more 

than half of the corresponding mean value compared to about the third of the associated 

mean value for the recursive optimization. 

 

To conclude, one may confidently say that the reduced and global particle swarm 

optimization algorithm does a good job at finding detection architectures that present 

similar characteristics as the benchmark solutions obtained with the recursive 

optimization algorithm. A detailed study of the Pareto fronts of optimal detection 

architectures provided by both optimization approaches shows that they have very similar 

shapes and locations. This is illustrated in Figure 86. The properties of the Pareto optimal 

detection architectures depicted in red in Figure 86 for both optimization cases are 

summarized in Table 27. 
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Figure 86: Graphs of the Coverage as a Function of the Cost, and of the Pareto Optimal Detection 

Architectures Obtained with the Evolutionary Approach (Top) and with the Recursive Approach 

(Bottom) 
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Table 27: Summary of the Properties of the Pareto Optimal Detection Architectures Obtained with 

the Evolutionary Approach (First) and with Recursive Approach (Next) 

 

Number of 

Systems 

Number of 

Radars 

Number of 

Cameras 

Coverage 

(%) 

Cost 

(M$) 

PARETO OPTIMAL 

DETECTION 

ARCHITECTURES 

FOR THE 

EVOLUTIONARY 

OPTIMIZATION 

APPROACH 

199 103 96 88.3 60 

168 88 80 87.6 47 

180 95 85 87.2 40.6 

157 78 79 87.1 40 

171 91 80 84.9 32.8 

131 61 70 84.7 26.4 

166 73 93 84.6 35.6 

158 76 82 81.1 19.9 

147 72 75 80.6 18.4 

124 55 69 79.9 12.5 

 

Number of 

Systems 

Number of 

Radars 

Number of 

Cameras 

Coverage 

(%) 

Cost 

(M$) 

PARETO OPTIMAL 

DETECTION 

ARCHITECTURES 

FOR THE 

RECURSIVE 

OPTIMIZATION 

APPROACH 

200 98 102 88.5 45.9 

197 101 96 88.3 59.1 

198 95 103 88.2 61.3 

185 95 90 88 40.7 

181 91 90 86.3 34.7 

184 106 78 85.4 17.6 

184 56 128 85.3 18.8 

145 74 71 79.4 16.4 

138 63 75 76.6 13.8 

122 59 63 74 12.4 

 

Thus, it may be assumed that the results provided by the particle swarm optimization 

approach for the original CBP optimization problem are reliable. 
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6.4.6. Concluding Remarks on the Optimization of Detection Architectures for the 

Customs and Border Protection Mission Scenario 

 

The previous sections have detailed the careful and transparent examination of the 

performance and the accuracy of the modified evolutionary optimization algorithm at 

determining reliable detection architectures for the homeland security scenario of interest. 

This step addressed the solutions benchmarking and accuracy checking research question, 

and validated the corresponding hypothesis. Finally, this last step further addressed the 

modeling, simulation, and optimization environment research question. 
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CHAPTER VII 

IMPLEMENTATION – SIMULATION AND ANALYSIS OF A 

DETECTION ARCHITECTURE FOR A PROOF-OF-CONCEPT 

SCENARIO 

 

The previous sections showed that the reduced and global optimization approach does 

a good job at finding accurate detection architecture solutions for the CBP mission 

scenario. With that in mind, one may now study the operational effectiveness of detection 

architectures in the modeling and simulation environment by simulating them under 

operational scenarios of interest. The following sections provide an example of study of 

the operational effectiveness of a ―coverage-to-cost Pareto efficient‖ detection 

architecture provided by the modified particle swarm optimization algorithm. 

 

7.1. Simulation of a Fixed Detection Architecture for the Customs and Border 

Protection Scenario 

 

Consider the ―coverage-to-cost Pareto efficient‖ detection architecture depicted as the 

red circle in Figure 87, and described in Table 28. This detection architecture represents a 

good compromise between coverage and cost according to the author, and might be the 

choice of a decision maker expecting bang for the buck. For now, this detection 

architecture is only composed of fixed detection systems positioned on the terrain at their 

optimized positions. 
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Figure 87: Fixed “Coverage-to-Cost Pareto Efficient” Detection Architecture 

Table 28: Properties of the Fixed “Coverage-to-Cost Pareto Efficient” Detection Architecture 

Property Value 

Total Number of Systems 124 

Total Number of Radars 55 

Total Number of Cameras 69 

Coverage (%) 80 

Cost (M$) 12.5 

Number of High Cost Radars 9 

Number of Medium Cost Radars 25 

Number of Low Cost Radars 30 

Number of High Cost Cameras 31 

Number of Medium Cost Cameras 22 

Number of Low Cost Cameras 7 

 

Figure 88 shows an example simulation of the ―coverage-to-cost Pareto efficient‖ 

detection architecture without the addition of mobile units. The blue persons are the CBP 

agents, the grey icons are the items of interest (pedestrians, cars, and trucks), the blue 

houses are the CBP command centers, the yellow lines model the links between detected 

items of interest and sensor systems that have detected them, the grey lines represent the 

links between sensor systems and items of interest that are within their ranges of detection 

but out of their lines of sight, and the red lines correspond to the links between detected 
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items of interest and CBP agents assigned to their interception. In the simulation, it is 

assumed that the patrol units are traveling over a distance of 10 km, take about 5 minutes 

to install the detection systems on their mobile platforms, observe the surrounding 

environment for about 17 minutes from the closest patrol point, and take about 9 minutes 

to dismount the detection systems from their mobile platforms before moving on to the 

next patrol point. The simulation was performed for a real time period of four days. The 

initial conditions are summarized in Table 29. 

 

 

Figure 88: Simulation of the Fixed “Coverage-to-Cost Pareto Efficient” Detection Architecture, in the 

NetLogo Environment 

Table 29: Initial Conditions for the Simulation of the Fixed Detection Architecture 

 

Parameter Initial Value 

Number of Pedestrians Modeled 400 

Number of Cars Modeled 40 

Number of Trucks Modeled 30 

Number of CBP Agents Modeled 30 

 

 

CBP Patrol Agent 

CBP Command Center 

Item of Interest Detection System 
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7.2. Addition of Mobile Detection Systems to the Fixed Detection Architecture for 

the Customs and Border Protection Scenario 

 

The structure of the fixed ―coverage-to-cost Pareto efficient‖ detection architecture 

may be visualized in the NetLogo environment to identify regions along the border which 

lack detection coverage. This is depicted in Figure 89, where the regions lacking coverage 

are circled. In Figure 89, the black dots are the detection systems, the detection coverage 

of the architecture corresponds to the green areas, and the regions lacking coverage are 

represented by the yellow areas. 

 

 

Figure 89: Visual Representation of the Detection Coverage of the Fixed “Coverage-to-Cost Pareto 

Efficient” Detection Architecture in the NetLogo Environment 

From Figure 89, three regions requiring additional coverage may be identified. The 

eastern region (circled in orange) necessitates an additional coverage of about 20 km, 

while the western region requires an additional coverage of about 50 km that can be 

divided into two regions: one of 28 km radius (circled in red) and the other of 22 km 

radius (circled in blue). In those regions, the detection efficiency of the fixed detection 

architecture may be enhanced by adding mobile detection units transported by CBP 

agents patrolling between specifically determined patrol points. On the one hand, the 

Additional Coverage Required = 28 km 

Additional Coverage Required = 22 km 

Additional Coverage Required = 20 km 
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additional eastern coverage can be provided by a High Cost Camera, whose design 

detection range is about 15 km. On the other hand, the additional detection coverage 

needed in the western region can be provided by a High Cost Radar and a Medium Cost 

Radar, whose design detection ranges are 26 km and 21 km respectively.  The mobile 

detection units and their corresponding patrol points are pictorially represented by the 

blue vehicles and the blue flags respectively in Figure 90. The complete detection 

architecture, consisting of both fixed and mobile detection systems, is described in Table 

30 and compared with the fixed detection architecture. 

 

 

Figure 90: Visual Representation of the Complete “Coverage-to-Cost Pareto Efficient” Detection 

Architecture  in the NetLogo Environment 

 

 

 

 

 

 

High Cost Radar → Range = 26 km 

Medium Cost Radar → Range = 21 km 

High Cost Camera → Range = 15 km 
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Table 30: Properties of the Complete “Coverage-to-Cost Pareto Efficient” Detection Architecture 

Compared to the Corresponding Fixed Detection Architecture  

Property 
FIXED  

ARCHITECTURE 

COMPLETE  

ARCHITECTURE 

Total Number of Systems 124 127 

Total Number of Radars 55 57 

Total Number of Cameras 69 70 

Coverage (%) 80 84.1 

Cost (M$) 12.5 13 

Number of High Cost Radars 9 10 

Number of Medium Cost Radars 25 26 

Number of Low Cost Radars 30 30 

Number of High Cost Cameras 31 32 

Number of Medium Cost Cameras 22 22 

Number of Low Cost Cameras 7 7 

 

Table 30 shows that intelligently adding mobile detection systems to the ―coverage-

to-cost Pareto efficient‖ detection architecture considered in Figure 87 and Table 28 

increases the coverage by 5% while increasing the cost by 4%. The resulting complete 

detection architecture therefore presents a significant advantage in coverage while 

minimally increasing the resulting cost. Its position in the graph depicting detection 

architecture coverage as a function of cost, relative to the corresponding fixed ―coverage-

to-cost Pareto efficient‖ detection architecture, is represented in Figure 91 as the orange 

circle. 
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Figure 91: Complete “Coverage-to-Cost Pareto Efficient” Detection Architecture 

 

Finally, the structure of the detection architecture composed of both fixed and mobile 

detection systems may be visualized in the NetLogo environment as depicted in Figure 

92, alongside the structure of the corresponding fixed detection architecture (cf. Figure 

89). In Figure 92, the black dots are the detection systems, and the detection coverage of 

the architecture corresponds to the green areas. One can readily notice that the coverage 

of the detection architecture is notably enhanced by the addition of mobile detection 

systems.  

Complete Detection  

Architecture 

Fixed Detection  

Architecture 
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Figure 92: Visual Representation of the Detection Coverage of the Complete “Coverage-to-Cost 

Pareto Efficient” Detection Architecture (Top), and of the Corresponding Fixed Detection 

Architecture (Bottom) in the NetLogo Environment 
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7.3. Simulation of the Complete Detection Architecture for the Customs and 

Border Protection Scenario and Comparison with the Fixed Detection 

Architecture 

 

Figure 93 shows an example simulation of the ―coverage-to-cost Pareto efficient‖ 

detection architecture augmented with the mobile patrol units depicted as the blue cars. 

Again, the blue persons are the CBP agents, the grey icons are the items of interest 

(pedestrians, cars, and trucks), the blue houses are the CBP command centers, the yellow 

lines model the links between detected items of interest and sensor systems that have 

detected them, the grey lines represent the links between sensor systems and items of 

interest that are within their ranges of detection but that are out of their lines of sight, and 

the red lines correspond to the links between detected items of interest and CBP agents 

assigned to their interception. In the simulation, it is assumed that the patrol units are 

traveling over a distance of 10 km, take about 5 minutes to install the detection systems 

on their mobile platforms, observe the surrounding environment for about 17 minutes 

from the closest patrol point, and take about 9 minutes to dismount the detection systems 

from their mobile platforms before moving on to the next patrol point. The simulation 

was performed for a real time period of four days. The initial conditions are identical to 

those described in Table 29. 
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Figure 93: Simulation of the Complete “Coverage-to-Cost Pareto Efficient” Detection Architecture in 

the NetLogo Environment 

The fixed detection architecture and the complete detection architecture with mobile 

systems were simulated several times in the modeling and simulation environment 

developed in NetLogo, under the same conditions as those described in Figure 88 and 

Figure 93. The resulting detection and interception performances for the fixed and the 

complete detection architectures were then averaged over the set of simulations 

performed. The average results are summarized in Table 31. 

 

 

 

 

 

 

 

 

 

 

CBP Patrol Agent 

CBP Command Center 

Item of Interest Detection System 

Mobile Unit 

Patrol Point 
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Table 31: Average Detection and Interception Performances of the Fixed and of the Corresponding 

Complete “Coverage-to-Cost Pareto Efficient” Detection Architectures 

Average Performance Tracked During Simulation 
Fixed Detection 

Architecture 

Complete 

Detection 

Architecture 

Number of Items of Interest That Have Crossed the 

Border 
1517 1534 

Number of Items of Interest That Have Been Intercepted 728 986 

Number of Items of Interest That Have Escaped 

Detection and Interception 
550 423 

Number of Items of Interest That Have Been Detected 1673 1897 

 

From Table 31, one can notice that adding mobile detection systems to the fixed 

―coverage-to-cost Pareto efficient‖ detection architecture notably enhances the average 

detection and interception performances. For instance, for about the same number of 

items of interest having crossed the border, the complete detection architecture leads to 

about 35% more interceptions by CBP agents on average, compared to the fixed detection 

architecture. The complete detection architecture also detects about 13% more items of 

interest on average. Finally, on average, about 23% fewer items of interest illegally 

escape detection by the complete detection architecture and interception by CBP agents. 

Disclaimer: the previous results are generated from a sample of stochastic 

simulations. Therefore, one cannot draw general conclusions about the confidence in the 

results. 

 

7.4. Concluding Remarks on the Simulation and Analysis of Detection 

Architectures for the Customs and Border Protection Mission Scenario 

 

The previous sections have demonstrated that the flexible agent-based and physics-

based framework developed in this work could be used to rapidly, quantitatively, and 

efficiently evaluate the operational effectiveness of a portfolio of ―coverage-to-cost 

Pareto efficient‖ distributed system architectures and to identify regions on the theater of 

operations lacking detection capabilities. The aforementioned M&S framework could also 

be employed to complement a fixed detection architecture with mobile detection systems 
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so as to increase its operational effectiveness, and to assess the relative impacts of this 

structural modification on the resulting detection and interception performances. 

Moreover, it was shown that the agent-based and physics-based framework was flexible 

enough for the decision maker to play ―what-if‖ scenarios or reliability analyses, thus 

exploring the impact of varying the structure of the distributed system architecture on the 

performance and the cost metrics. The previous sections finally demonstrated the 

development of a quantitative, transparent, adaptive and practical methodology, while 

ensuring the traceability and the adequacy/validity of the definition of accurate distributed 

system architectures for a specific homeland security mission scenario. This step 

addressed the solutions analysis and ―what-if‖ analysis research questions, and validated 

the corresponding hypotheses. 

With this, the second leg of the ―Vee‖ diagram is complete as depicted in Figure 94. 

 

 

Figure 94: Recomposition of the Problem  
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

 

Through the use of enabling methods and tools such as Functional Decomposition 

from Systems Engineering, Hierarchical Analysis, Morphological Analysis, Interactions 

and Consistency Analysis, Evolutionary Optimization, Comparative Study, the agent-

based modeling and simulation tool NetLogo and the interactive optimization 

environment MATLAB, the objectives set for this Ph.D. research thesis were successfully 

met.  

A seven-step methodology was proposed to facilitate the traceable, structured, and 

reproducible design, modeling, simulation, and optimization of distributed system 

detection architectures (DODA) for surveillance missions in the context of homeland 

security. The proposed methodology considers a set of heterogeneous detection systems 

and distributes them over large areas of interest in order to design detection architectures 

providing the maximum global detection coverage at reasonable costs in specific 

topographic and climatic environments.  Additionally, it enables the decision maker to 

really understand the nature of the detection architectures, to assess their capabilities 

through a number of notional ―what-if‖ scenarios, and to analyze the relative sensitivity 

of trade-offs at each level of the problem.  

After studying the problem of DODA in many details, it is necessary to take a broad 

perspective and recall the main point of this dissertation. This last section steps through 

the five main sets of research questions and hypotheses of this thesis and summarizes the 

major findings associated with each set. 

 

8.1. First Set of Research Questions and Hypotheses – Morphological Analysis 

 

The first set of research questions concerned the ability of the decision maker to 

model various states of the world through a wide range of both existing and notional 

entities composing the homeland security mission of interest. To address this set of 
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research questions, the general problem of DODA was largely studied and decomposed 

into main parameters of importance for two homeland security mission scenarios, namely 

the Critical Assets Protection (CAP) mission scenario and the Customs and Border 

Protection (CBP) mission scenario. It was shown that a structured, yet flexible, 

characterization scheme, built on the concept of parametric representations, provides a 

way to fulfill both the need to characterize a wide range of existing elements, and the 

incentive to generate new notional ones in a single step. In this approach, the homeland 

security problem of interest was progressively decomposed into its main elements, both 

physically and functionally. This enabled the generation of parametric representations by 

adequately regrouping different elements of the problem, eventually revealing sets of 

common parameters. It was also shown that incorporating a multi-level approach to the 

original Morphological Analysis (MA) method and combining it with Hierarchical 

Decomposition methods and with fundamental systems engineering concepts of 

decomposition and synthesis, such as the systems engineering ―Vee‖ diagram, enables the 

creation of a rigorous, structured, and traceable analysis process. It was further 

demonstrated that the proposed process provides a means to determine a set of relevant 

alternatives that best matches all levels of decomposition, and allows accommodating any 

successive decomposition steps that may be required. Finally, it was possible to 

recompose or synthesize the problem so that lower level representations and interactions 

may be revealed. In this scheme, the elements of interest in the DODA problem were 

identified as being the defended asset (critical asset or border area), the detection 

system(s), the topographic environment, the items of interest that could be potential 

―threats‖ to the defended asset, and the climatic conditions under which a scenario may 

be taking place. Then, several alternatives were brainstormed for each parameter and 

regrouped in a High Level Morphological Matrix (HLMM). Subsequently, the problem 

was further decomposed, and relevant attributes for each element of the problem were 

identified. Appropriate representations of attributes (ranges of values, discrete values, and 

qualitative concepts) were also determined for each parameter. This allowed the creation 

of Sub-Level Morphological Matrices (SLMMs).  
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8.2. Second Set of Research Questions and Hypotheses – Cross-Consistency 

Assessments 

 

The second set of research questions concerned the assessment of the nature of the 

relationships between the various elements of the problem identified from its functional 

and physical decomposition so as to ―reduce‖ the number of scenarios that may be played 

to an operationally relevant set. To address this set of research questions, the consistency 

of the information contained in the Morphological Matrices was assessed and 

summarized in a High-Level and several Sub-Level Cross-Consistency Matrices 

(HLCCM and SLCCMs). This paved the way for the modeling and simulation of 

candidate scenarios. In this process, it was demonstrated that the traditional binary scale 

used to study the compatibilities between alternatives in the original morphological 

analysis formulation was neither sufficient nor appropriate. In order to capture complex 

interactions between the various elements of the problem, cross-consistency assessments 

based on probabilistic or likelihood representations were developed. It was shown that 

this probabilistic approach enables resolving the ambiguities resulting from the pairwise 

assessment of element compatibilities and facilitates the encoding of relational data with 

higher resolution scales. It was further demonstrated that such likelihood cross-

consistency assessments provide a way to examine the internal relationships between the 

various elements of the problem and to describe the relative consistencies at each level of 

decomposition identified in the Morphological Matrices. It was finally noticed that they 

enable characterizing the potential coexistence of alternatives in notional scenarios of 

interest, thus facilitating the reduction of the number of scenarios that may be played to 

an operationally relevant set.  

 

8.3. Third Set of Research Questions and Hypotheses – Modeling and Simulation 

Environment 

 

The third set of research questions was twofold. First, it concerned the ability of the 

decision maker to determine a portfolio of architectures of heterogeneous distributed 
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detection systems interacting with each other and with their surrounding operational, 

geographic and climatic environments. Then, it asked for a way to accurately, rapidly and 

efficiently capture the impact of changes in the operational situation on the structure 

(composition and design) of the distributed detection system architecture. To address this 

set of research questions, NetLogo and MATLAB were identified as relevant modeling, 

simulation, and optimization tools for providing a structured, traceable, and reproducible 

framework in which surveillance and detection missions may be analyzed in the context 

of homeland security. It was shown that physics-based models of the main elements of 

the problem need to be created and combined in the agent-based M&S framework 

NetLogo so as to obtain a portfolio of detection architectures optimized for a specific 

homeland security mission. In this context, it was identified that the goal is to 

concurrently optimize the number, the types, the properties, and the positions of 

heterogeneous distributed systems, so as to define detection system architectures adapted 

to a specific operational scenario, according to performance requirements and/or cost 

constraints. Finally, it was demonstrated that the M&S framework further enables the 

identification of key factors driving the structure of the distributed system architecture 

according to changes in the operational conditions.  

 

8.4. Fourth Set of Research Questions and Hypotheses – Optimization 

 

The fourth set of research questions concerned the selection, tuning, and testing of an 

optimization method to find coverage- and cost-efficient surveillance architecture 

solutions for the homeland security mission of interest. To address this set of research 

questions, two candidate evolutionary optimization approaches (genetic algorithm and 

particle swarm optimization) were identified to potentially solve the homeland security 

optimization problem. It was shown that evolutionary optimization provides a means to 

solve multi-objective, discontinuous and non-linear optimization problems, to balance the 

tradeoff between exploration and exploitation, to find a number of reliable solutions 

rather than a single solution for the distributed system architectures in specific operational 

contexts, to handle performance and/or cost constraints, and to explore the search space 
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more thoroughly with smaller numbers of objective function evaluations. The genetic 

algorithm and particle swarm optimization algorithm were then adapted and refined from 

their original versions in order to account for the peculiar characteristics of the homeland 

security application.  

Next, it was demonstrated that appropriate sets of algorithm parameters adapted to the 

homeland security mission of interest may be obtained by applying the modified 

optimization algorithms to simpler analytical test problems (whose solutions are known) 

presenting similar discontinuous, non-linear, and dimensional properties as the original 

problem. The optimization parameters were varied and the sensitivity of the resulting 

solutions to the parameter settings and combinations were analyzed. Finally, it was shown 

that the sets of algorithm parameter values that provided the most accurate solutions for 

the test problems, that ensured good convergence properties of the modified optimization 

algorithms and the adequacy of the resulting solutions highly depends on the maximum 

size of the detection architecture. Lastly, it was assumed that the resulting set of algorithm 

parameter values was able to ensure the convergence of the optimization algorithm to 

accurate distributed system architecture solutions for the homeland security application of 

interest.  

In addition to the aforementioned sensitivity analysis, the convergence properties of 

the candidate evolutionary optimization algorithms were studied and compared to 

determine the optimization method which globally presented the best performance and 

the lowest computational cost. It was demonstrated that the particle swarm optimization 

approach presents better performance, lower computational cost and is more suitable for 

finding solutions to the original optimization problem than the genetic algorithm. 

Subsequently, a heuristic recursive optimization scheme was developed in order to 

check the accuracy of the solutions provided by the modified particle swarm optimization 

algorithm when applied to the original homeland security application. The recursive 

approach was based on simple performance, cost and geometrical positioning rules. It 

enabled the construction of benchmark detection architectures against which the 

properties of the Pareto efficient detection architectures provided by the modified 

optimization algorithm could be compared. It was shown that the modified evolutionary 

algorithm is successful at finding reliable detection architectures able to satisfy the 
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constraints of the homeland security mission scenario. In other words, the adapted particle 

swarm optimization method is able to efficiently optimize concurrently the number, the 

types, the properties, and the positions of a set of heterogeneous detection systems over a 

large area of operations for a specific homeland security mission, given performance 

requirements and/or cost constraints.  

 

8.5. Fifth Set of Research Questions and Hypotheses – Solutions Analysis and 

“What-if” Analysis 

 

The fifth set of research questions concerned the rapid, quantitative, and efficient 

assessment of the operational effectiveness of the portfolio of coverage- and cost-efficient 

distributed system architectures, and the analysis of the sensitivities of the distributed 

system architecture performance and cost to changes in its structure. 

It was shown that the flexible agent-based and physics-based framework developed in 

this work allows the rapid, quantitative, and efficient evaluation of the operational 

effectiveness of a portfolio of Pareto efficient detection architectures obtained with the 

modified particle swarm optimization algorithm. The aforementioned detection 

architectures were initially composed of fixed detection systems distributed over the area 

of interest and had limited coverage performance in some identified regions of the theater 

of operations. Using the M&S framework created as part of this research, it was 

demonstrated that the fixed detection architectures may be complemented, and their 

global operational performance may be enhanced, by adding mobile sensor systems 

transported by patrolling agents on mobile platforms and deployed and operated in areas 

lacking coverage capabilities.  

In a last step, it was shown that the aforementioned M&S environment allows the 

decision maker to play ―what-if‖ scenarios, thus exploring the effects of varying the 

structure of the distributed system architectures on the performance and the cost metrics.  
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8.6. Summary and Future Research Directions 

 

Ultimately, a quantitative, transparent, adaptive and practical methodology was 

developed to ensure the traceability and the adequacy/validity of the definition of 

coverage- and cost-efficient distributed system architecture solutions for a specific 

homeland security mission.  

 

The results derived from the modeling, simulation, and optimization (MS&O) of 

detection architectures in the context of a particular CBP homeland security mission 

scenario helped gain insight into the characteristics of the global problem of DODA for 

homeland security applications, so as to effectively and efficiently detect items of interest 

in specific operational environments. They further enabled the identification of future 

tasks.  

This research is primarily focused on ground items of interest. However, the MS&O 

environment has been developed to accommodate any other type of items of interest such 

as air and marine vehicles that might be relevant to other homeland security applications. 

Similarly, this research is based on a reduced number of detection system types that are 

limited to ground applications. However, the MS&O environment has the additional 

feature that the user can add any type of sensor systems that might be relevant to the 

multispectral optimization of detection architectures satisfying any kind of homeland 

security mission. In the same line of thought, airborne platforms may be modeled so as to 

provide more flexibility and mobility to the detection architectures. Such platforms are 

indeed able to carry around various detection systems and thus are potentially able to 

enhance the detection capabilities of the global detection architectures.  

This research is focused on detection of items of interest near a border region. The 

interception aspect of the problem has been touched upon through the modeling of CBP 

agents behaving according to simple rules of motion. In the future, the interception of 

potentially suspicious items of interest may be accounted for more accurately. For 

instance, this may be implemented by taking into account the ability of the items of 

interest to learn from past experience and to adapt to the surveillance architecture. 
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In this context, it may also be of interest to study the dynamic reconfiguration of the 

detection architecture as the external operational situation evolves and as items of interest 

learn and diversify their behaviors. As part of the methodology itself, the analysis of the 

sensitivities to changes in the structures of the distributed system architectures on their 

performance and cost using the flexible agent-based and physics-based framework 

developed as part of this research has only been brushed upon and has mostly been left to 

the user. The investigation of such sensitivities may be the topic of a prospective 

reliability study to determine robust detection architectures under a variety of operational 

conditions.  

The present work focused on the determination of detection architectures for 

homeland security missions in which the interest of the decision maker is equally spread 

between coverage performance and cost. This was implied in the choice of the weight 

factor α representing the relative importance of the coverage and cost metrics in the 

objective function used in the optimization. In this study, it was assumed that α = 1. 

Nevertheless, in order to capture various decision maker preferences for a given 

homeland security mission, it might be of interest to perform a parametric analysis on the 

weight factor α, and to investigate the relative changes in the structure, properties, and 

operational performance of the resulting detection architectures. 

In this research, the sensitivity of the performance of the candidate genetic and 

particle swarm optimization algorithms to the optimization parameter settings has been 

studied on test functions presenting similar characteristics as the original homeland 

security application. However, it might be interesting to perform this sensitivity analysis 

on the original homeland security problem in order to fine-tune even more the algorithm 

parameter values for applications similar to the particular CBP optimization problem 

considered in this research. 

Finally, a ―coverage-to-cost Pareto efficient‖ fixed detection architecture and the 

corresponding complete detection architecture with mobile systems were simulated 

several times in the modeling and simulation environment developed in NetLogo, under 

the same operational conditions. The resulting detection and interception performances 

were then averaged over the set of simulations performed for both detection architectures. 

In this case, no general conclusions could be drawn about the confidence in the results. It 
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might therefore be interesting to study the confidence in the aforementioned detection and 

interception performances by considering a more complete set of operational scenarios 

and associated simulations. 

 

8.7. Research Contributions 

 

Last but not least, the main contributions of the present work are: 

1. The development of a structured, traceable, and reproducible methodology for the 

design and optimization of customized detection architecture solutions in the 

context of homeland security applications. More precisely, the proposed 

methodology addresses the appropriate distribution of heterogeneous systems over 

large areas to provide adequate global coverage of a specific critical asset of 

interest at a reasonable cost. It further enables the decision maker to truly 

understand the nature of the distributed systems architectures, to assess their 

capabilities, and to capture key trade-offs between various elements of the 

problem by playing ―what-if‖ scenarios in a specially developed modeling and 

simulation environment. 

2. The incorporation of a multi-level approach to the original morphological analysis 

process to structure the functional and physical decomposition of the DODA 

problem and to provide a set of alternatives that is neither unmanageable nor 

incomplete. This hierarchical decomposition method enables the determination of 

a set of alternatives that best matches all levels of decomposition, and 

accommodates any successive decomposition steps that may be required, thus 

more closely following the conceptual formulation of the systems engineering 

―Vee.‖ 

3. The introduction of cross-consistency assessment methods based on probabilistic 

or likelihood representations to provide a way to describe the relative 

consistencies at each level of decomposition identified in the morphological 

analysis, as well as the coexistence of alternatives in various operational scenarios 

depending on their characteristics. Such cross-consistency assessment schemes 
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enables encoding relational data with higher resolution scales to capture more 

complex interactions, thus establishing the combinatorial logic that drives the 

problem synthesis into a number of internally consistent operational 

configurations. 

4. The adaptation of the structure of chromosomes and particles as traditionally used 

in popular versions of genetic algorithm and particle swarm optimization to 

account for the peculiar characteristics of the homeland security application. 

5. The definition of a rigorous methodology for the careful determination of 

appropriate optimization parameters for the problem under study using relevant 

test functions, and for the traceable down-selection of an optimization algorithm 

that will prove successful at solving the original optimization problem. 

6. The development of a heuristic recursive optimization approach to provide 

benchmark solutions for the evolutionary optimization. 

7. The development of a MS&O framework for subsequent ―what-if‖ games on, and 

sensitivity analysis of, the Pareto optimal solutions provided by the evolutionary 

optimization in the context of homeland security.  

 

With the proposed methodology and the design, modeling, simulation, and 

optimization (MS&O) framework developed as part of this research, decision makers in 

the field of homeland security now have at their disposal a means to: 

 Fully understand the nature of the homeland security mission of interest 

 Determine accurate solutions to the homeland security problem considered 

according to specific performance requirements and cost constraints  

 Design new solutions adapted to specific operational situations 

 Model and simulate a wide range of real-life agents and topographic, climatic, and 

operational situations 

 Model the adaptive behavior of items of interest 

 Analyze the internal relationships and compatibilities between the various agents 

modeled, and between the agents and the operational conditions 

 Select relevant scenarios representative of the operational situation of interest 

 Gain insight into an operational situation 
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 Assess the performance of architecture solutions to a homeland security mission 

in relevant operational scenarios 

 Demonstrate the capabilities of systems-of-systems solutions to a homeland 

security mission of interest to potential customers 

 Adapt existing solutions to changing operational conditions 

 Enhance the operational effectiveness of existing solutions according to 

performance results when simulated under relevant operational scenarios 

 Analyze the response of solutions to a homeland security problem to extreme 

operational situations  

 Generate a vulnerability profile of architecture solutions to a homeland security 

mission 

 Capture the key trade-offs at each level of decomposition of the problem 

 Perform sensitivity analyzes, comparative studies, reliability analyzes, efficiency 

studies, etc 

 Perform any kind of ―what-if’ analyzes on the solutions to the homeland security 

problem by modifying the structure of the solutions, their composition, the 

operational conditions, or any combinations of the above 
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Appendix A – More on Linear Programming (LP) 

 

Duality Theory 

 

Every linear program, called primal problem, can be converted into a dual problem, 

the solution of which provides an upper bound on the primal optimal solution [185]. 

For instance, if the primal problem is expressed in standard form as follows: 

maximize x0  c
Tx  cixi

n

i 1

 

subject to Ax  b or  aijxi

n

i 1

 bj for j 1,…,m 

with xi 0 for i 1,…,n  

Then, the symmetric dual problem can be specified as: 

          
 
  
 
  

            
 
    

      
 
               

If the constraint     in the standard form of the primal problem is relaxed, then the 

corresponding dual problem can be written in an asymmetric form as: 

minimize y
0
 b

T
y 

subject to A
T
y  c 

with y
j
 0 for j 1,…,m 

Duality theory is characterized by two fundamental ideas. On the one hand, the dual 

of a dual linear program is the original primal linear program. On the other hand, every 
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feasible solution of a dual linear program provides a bound on the optimal value of the 

primal objective function and vice versa. In this context, the weak duality theorem states 

that any feasible solution to the dual problem gives a dual objective function value which 

is always greater than or equal to the value of the primal objective function at any feasible 

solution. As for the strong duality theorem, it states that, if an optimal solution x* to the 

primal problem exists, then the dual problem also has an optimal solution y* defined by: 

         . Furthermore, duality theory provides a means to determine whether a linear 

program is unbounded or infeasible. Indeed, if the primal problem is unbounded, then the 

dual problem has no feasible solution by the weak duality theorem. Likewise, if the dual 

problem is unbounded, then the primal must not have any feasible solution [186],[187]. 

Nevertheless, the Farkas’ lemma states that both primal and dual problems may be 

unsolvable and have no feasible solution [188],[189].  

 

Covering and Packing Problems 

 

Linear programs are also characterized by covering-packing dualities. Covering 

problems are minimization, usually linear, programming problems encountered in 

combinatorics and computer science [190]. They characterize the ―covering‖ property of a 

combinatorial structure with respect to another structure, depending on its size. Examples 

of covering problems are the set cover problem or hitting set problem, the vertex cover 

problem and the edge cover problem. A covering linear program may be defined as 

follows: 

minimize y
0
 b

T
y 

subject to A
T
y  c 

with y
j
 0 for j 1,…,m 

where the matrix A has positive coefficients, and the vectors b and c have non-negative 

components. The dual of a covering problem is called a packing linear program, 

expressed in the following form: 
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maximize x0  c
Tx  cixi

n

i 1

 

subject to Ax  b or  aijxi

n

i 1

 bj for j 1,..,m 

with xi 0 for i 1,…,n 

where the matrix A has positive coefficients, and the vectors b and c have non-negative 

components. Packing problems are a class of maximization optimization problems 

encountered in mathematics. They attempt to pack identical objects together in a single 

two- or three-dimensional convex region or in an infinite space, as densely as possible 

without overlaps between objects or with the walls of the packing space. They are often 

related to real life packaging, storage and transportation problems, where the goal is to 

determine the configuration of objects which yields the maximum packing density. 

Examples of packing problems are the set packing problem, the matching problem, and 

the independent set problem, which are the respective dual problems to the set cover 

problem, the vertex cover problem and the edge cover problem. Other examples of 

packing problems include hexagonal packing of circles, packing of ellipsoids [191], three-

dimensional sphere packing [192] in a face-centered cubic lattice, in a Euclidian ball, or in a 

cuboid, three-dimensional packing of Platonic solids [193],[194], such as cubes, tetrahedra 

[194],[195],[196], and octahedra, two-dimensional packing circles in a circle, a square [197],[198], an 

isosceles right triangle [199], or an equilateral triangle [200], two-dimensional packing squares 

in a square [201],[202], or a circle, and two-dimensional packing identical or different 

rectangles in a rectangle [203].  

 

Covering and packing problems are important in the study of approximation 

algorithms [190]. Indeed, they are commonly considered linear programming relaxations, or 

approximations, of a pure linear program in which the variables are restricted to the two 

integer values 0 and 1. In this relaxation scheme, the constraint that each variable must be 

0 or 1 is replaced by the weaker constraint that each variable has to belong to the interval 
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[0,1], namely          becomes       . The resulting linear program is solvable in 

polynomial time and the solution to the relaxed linear program provides clues about the 

solution to the original integer program.  

Another property of dual problems is that an optimal solution to the dual can be 

obtained when an optimal solution to the primal exist using the complementary slackness 

theorem [204]. The theorem states that, if                 is a feasible solution to the 

primal,              are the corresponding primal slack variables,                 

is a feasible solution to the dual, and              are the corresponding dual slack 

variables, then    and    are optimal solutions to their respective problems if and only if 

                     and                     . In other words, if the i-th 

slack variable of the primal is different from zero, then the i-th variable of the dual has to 

be equal to zero. Similarly, if the j-th slack variable of the dual is different from zero, then 

the j-th variable of the primal has to be equal to zero. Economically, this means that if 

there are some leftovers in a constrained primal resource, then any additional quantities of 

that resource must have a zero value. Similarly, if some additional quantities of a 

constrained primal resource have a non-zero value, then there must not be some leftovers 

in the primal supplies.  

 

Solutions to Linear Programming Problems 

 

The linear constraints in a linear programming problem define the convex polyhedron 

space over which the linear objective function is defined. Since a linear function is both a 

convex and a concave function, every local minimum is also a global minimum for 

minimization problems, and every local maximum is also a global maximum for 

maximization problems [183]. However, an optimal solution to a linear programming 

problem may not exist, for example when two or more constraints are contradictory or 

inconsistent, or when the convex polytope is unbounded in the direction of the gradient of 

the objective function. In this case, the linear optimization problem is said to be 

infeasible. When the constraints are consistent, the linear objective function is bounded, 

and a feasible solution exists, the optimal solution is always located at a vertex of the 

convex polytope [205],[206]. The vertices of the convex space are called basic feasible 
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solutions and are at the root of the simplex algorithm for solving liner programs. Some 

linear programming problems may have multiple optimal solutions, for example when the 

objective function is the zero function. In this case, the linear optimization problem has 

two optimal solutions and any convex combination of these two solutions is also a 

solution. 

 

Methods for Solving Linear Programming Problems 

 

The linear programming problem was first shown to be solvable in polynomial time 

by Khachivan in 1979 [207]. In this case, the algorithm ―rapidly‖ converges after a number 

of steps of O(n
k
) for a given input and some non-negative integer k, where n is the 

complexity of the input. In 1984, Karmarkar introduced an interior-point method for 

solving linear programming problems which turned out to be more practical than 

polynomial-time algorithms and which revolutionized the field of linear programming 

[208]. Basic ideas from linear programming have also inspired most of the central concepts 

of optimization theory, mainly the notions of duality, convexity, and problem 

decomposition. There exist a wide range of algorithms for solving linear optimization 

problems, including, but not limited to, the following: 

 Basic exchange algorithms 

o Dantzig’s Simplex algorithm [183],[209],[210],[211] 

o Serang’s Conic sampling algorithm [212] 

o Criss-cross algorithm [213],[214],[215][216] 

 Interior-point algorithms 

o Khachiyan’s Ellipsoid algorithm [217],[218] 

o Karmarkar’s Projective algorithm [219] 

o Path-following algorithms [217],[183] 

 

In the case where x is a vector of integers, the problem is an integer linear 

programming problem (ILP). If only some components of the unknown vector x are 

integers, the problem is a mixed integer programming problem (MILP) [220],[221]. Contrary 

to linear programs which can be solved efficiently, commonly encountered integer and 
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mixed integer linear programs are often NP-hard [222]. For instance, 0-1 pure integer 

programming or binary integer programming belongs to this category of Karp’s 21 NP-

complete problems [223]. Nevertheless, there exist some special categories of ILP and 

MILP problems that can be solved efficiently. It is the case for problems satisfying the 

total dual integrality property [224], which states that, for a linear system Ax   where A 

and b are rational, if there exists a feasible, bounded solution to the standard linear 

maximization problem for any vector c, then there exists an integer optimal solution to 

the dual problem. Some specialized algorithms used to solve the above class of IP and 

MILP problems include, but are not limited to: 

 Cutting-plane method [225] 

 Branch and bound method [226] 

 Branch and cut method [227] 

 Branch and price method [228],[229] 
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Appendix B – More on Genetic Algorithm (GA) 

 

Simple Genetic Algorithm 
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are exact copies of their 

respective parents 

Crossover does 

not take place 

Select the fittest pair of parent 

chromosomes from the current population 

Given a problem and a bit string representation for candidate solutions 

Generate a random population of n chromosomes (candidate solutions to 

the problem) composed of p bits (binary encoding) 

Calculate the fitness of each chromosome x in the population, according to 

the provided fitness function f(x) 

Given a crossover probability or crossover 

rate pc, cross over the pair of parents at a 

randomly chosen location in their 

chromosome strings to form two offsprings 

Mutate the two offsprings at each bit 

selected according to a mutation 

probability or mutation rate pm 

Replace parents in the current population 

Discard one new 

population member 

at random 
N is even 

Yes 

N offsprings have been created 

No 

Yes 

Replace current population with new population of offsprings 

Optimum solution is obtained or maximum 

number of generations is reached  

Optimum 

Solution 

No 

No 
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Reproduction Methods 

In its basic form, the ―roulette wheel‖ is one of the most common techniques used for 

proportionate selection. The selection procedure is as follows [267]: 

 

1. Sum the fitness of all the population members to get the total fitness Fsum 

2. Generate a random number n between 0 and the total fitness Fsum 

3. Return the first population member whose fitness, added to the fitness of 

the preceding population member, is greater than or equal to n 

 

The ―roulette wheel‖ usually has some problems when the fitness functions of 

individuals are very different from one another. For instance, if the fitness of a 

chromosome occupies 90% of the area of the roulette wheel, then the other chromosomes 

have very few chances of being selected. 

 

The ―rank selection‖ method is a modification of the ―roulette wheel‖ method. It first 

ranks the population of chromosomes, and then allocates a fitness value to every 

chromosome from this ranking. In this scheme, the worst chromosome has fitness 1, the 

second worst has fitness 2, and so on, such that the best chromosome has fitness N, which 

is the number of chromosomes in the population. After this modification of the roulette 

wheel, the least fit chromosomes have a lower chance of being selected. Nevertheless, the 

―rank selection‖ method can lead to slower convergence due to the fact that, after ranking 

of the population, the fittest chromosome is not so much different from the other ones. 

 

The basic ―proportional representation‖ method of selection of individuals for 

reproduction can be modified so that the best design is always passed to the next 

generation. In this scheme, the best design of the current generation is passed to the 

intermediate generation before crossover and mutation, and can thus be subject to 

changes due to crossover and mutation. This is called the ―elitist approach.‖ The process 

used in the modified ―proportional representation‖ with ―elitist approach‖ is the 

following: 
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The best individual is therefore passed to the intermediate generation before crossover 

and mutation, and not after, which would be another way to implement the elitist 

approach.  

 

In the ―tournament selection‖ method, the chromosomes in the population are 

ranked according to their fitness such that the first individual of the intermediate 

population is the ―best‖ member of the current generation (to ensure the compliance with 

the ―elitist‖ approach). Then, two individuals are randomly selected in the current 

population. Among these two individuals, the one that corresponds to the highest fitness 

is passed to the intermediate generation. This process is repeated until a complete 

intermediate population is obtained. 

Properties of Genetic Algorithms 

Genetic algorithms have proved to be successful in a wide range of applications, 

especially in cases of optimization. However, one of the major difficulties in practice is 

the premature convergence of the algorithm which converges before the expected 

evolutionary target is reached. During the evolution, the genetic features of an elitist 

individual in the population may dominate the whole population and make the evolution 

stuck in a local optimum due to some loss of diversity in the population. Various 

solutions can nevertheless be brought forth [271], such as centralized methods (Incest 

Prevention and Pygmy Algorithm [272]), and distributed methods (Island Model [272]). For 

instance, the Genetic Algorithm with Varying Population Size or GAVaPS is a hybrid 

algorithm which exploits the merits of both of the two classes of techniques described 

above [273].  

 

Current 

Generation 

Intermediate 

Generation 

Final 

Generation 

Proportional 

representation  

+  

Elitist approach 

1. Cross-over 

2. Mutation 

Best Individual 

 

Reproduction 
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The size of the populations can also be critical in many applications of genetic 

algorithms due to its strong influence on the computational time. If the population size is 

too small, the genetic algorithm may converge too quickly. However, if it is too large, the 

genetic algorithm may waste computational resources: the waiting time for an 

improvement might be too long, and convergence of the algorithm may be strongly 

delayed. A solution to this problem might be to use an adaptive method for maintaining a 

variable population size, which grows and shrinks together according to some 

characteristics of the search [273].  

 

Finally, traditional GAs have been enhanced and classified according to their 

properties and their applications. Some classes include [272]: 

 Simple Genetic Algorithm (SGA) 

 Parallel and Distributed Genetic Algorithm (PGA and DGA) such as Master-Slave 

Parallelization, Fine Grained Parallel GAs (cellular GAs), Multiple-Deme Parallel 

GAs (Distributed GAs or Coarse Grained GAs), and Hierarchical Parallel 

Algorithms 

 Hybrid Genetic Algorithm (HGA) 

 Adaptive Genetic Algorithm (AGA) 

 Fast Messy Genetic Algorithm (FmGA) 

 Independent Sampling Genetic Algorithm (ISGA) 

 Hybrid GAs (some will be described in subsequent sections) 
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Appendix C – More on Simulated Annealing (SA) 

 

Simulated Annealing works by analogy with the annealing process used in 

metallurgy: 

1. A material is heated until its atoms are freed from their initial configuration 

corresponding to a local minimum of its internal energy.  

2. The free atoms can then wander randomly through states of higher energy before 

being slowly cooled down.  

3. Controlled cooling of the material increases the chance of freezing its atoms in a 

configuration of lower internal energy than the initial one.  

 

Based on the previous concepts, the SA approach to combinatorial problems is 

straightforward:  

1. The current thermodynamic state of the system is equivalent to the current 

solution to the combinatorial problem. 

2. The energy equation for the thermodynamic system is similar to the objective 

function of the combinatorial problem. 

3. The ground state of the thermodynamic system is analogous to the global 

minimum of the objective function.  

 

Similarly to the metallurgic process, SA features a parameter T, called temperature 

that is gradually decreased during the optimization to simulate the cooling process. At 

each step of SA, the temperature parameter is used to replace the current solution by a 

random nearby solution, chosen according to a probability dependent on the difference 

between the corresponding function values. In this scheme, the current solution changes 

somehow randomly at the beginning, when T is large, but increasingly ―downhill‖ as the 

optimization progresses, i.e. as T decreases to zero.  In other words, as cooling proceeds, 

the material becomes more and more ordered, and approaches a frozen ground state at T = 

0. Nevertheless, the probabilistic allowance for ―uphill‖ moves saves the algorithm from 

being stuck at local optima: the process of SA can be thought of as an adiabatic approach 

to the lowest energy state, such that if the initial temperature is too low or if the cooling is 
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done not slowly enough, the material may freeze in a metastable state, i.e. may be trapped 

in a local minimum energy state [277]. However, the major difficulty in implementing SA 

resides in the fact that the temperature T of the thermodynamic system cannot be 

represented as a free parameter in the combinatorial problem. Besides, the ability of the 

SA algorithm to not be stuck at a local minimum depends on the “annealing schedule” 

[277], the choice of the initial temperature T, the number of iterations performed at each 

temperature, and the rate at which the temperature is decreased as the cooling process 

progresses.  

In short, given a neighborhood structure, the SA algorithm features a procedure that 

continuously attempts to transform the current configuration into one of its neighbors as 

follows [277]: 

1. Initialization: an initial ―state‖ is randomly selected in the search space, and the 

temperature T is set to a very high value (or to infinity) 

2. Motion: the current ―state‖ is perturbed according to a defined move (or 

transition) depending on a transition probability 

3. Evaluation: the change C in the objective (or cost, or energy) function between 

the current ―state‖ and the new ―state‖ is calculated 

4. Choice: the previous ―transition‖ is accepted or rejected, depending on the change 

in the objective function: if C is negative, the move is accepted, otherwise, it is 

accepted according to a probability given by the Boltzmann factor   
  

 , called the 

acceptance probability 

5. Update: the temperature is updated according to an “annealing schedule” (cooling 

schedule) which gives the rate of decrease of the temperature with time (or with 

the number of iterations) 

6. Repeat: starting back at step 2, the process is repeated until a “freezing point,” or 

a specific time allotted for computations, is reached 
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Appendix D – More on Tabu Search 

 

Tabu search is composed of three steps [257],[312]: 

 A preliminary search in which all the neighbors to the current potential solution x 

are evaluated and the one with the highest fitness is kept as the new potential 

solution x‟. This does not imply that x‟ is better than x, but rather that it is the best 

of all the neighbors of x. Therefore, this step does not necessarily lead to an 

improved solution. However, this enables the algorithm to escape an eventual 

local optimum and to continue the search even when a move does not improve the 

solution. In such a case, the neighbor that least degrades the objective function is 

the one that is chosen to proceed with the optimization. In order to avoid going 

back and forth neighboring solutions x and x‟, tabu search uses the memory 

structures discussed above to avoid re-visiting solutions recently encountered, 

over a specific number of subsequent moves. Memory structures thus work line 

circular lists which are empty when they are created and which regenerate based 

on a first-in-first-out procedure. However, because tabu lists may ban interesting 

moves leading to a better solution than the best one found so far, an aspiration 

criterion is used to allow such moves. 

 An intensification phase which starts with the best solution encountered so far, 

then clears the tabu list, and finally applies the same steps as in the preliminary 

search for a given number of iterations. This phase enables the optimization 

algorithm to intensify the search in the most promising regions of the design space 

discovered during the preliminary search. 

 A diversification phase in which the tabu list is cleared, a certain number of most 

frequent moves are set to be tabu, a random solution x is chosen, and the same 

steps as in the preliminary search are applied for a given number of moves. This 

phase forces the optimization algorithm to explore regions of the search space that 

have not been visited enough. 

 

The description of tabu search above shows that a certain number of parameters are of 

potentially critical importance to the efficiency of the algorithm. These include the sizes 
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of the neighborhoods, the types of moves, the characteristics of the memory structures, 

the aspiration criteria, and the definition of a variety of inputs such as the maximum 

number of moves, the number of iterations chosen, etc. Fouskakis [313] summarizes 

findings on how to make decisions about the above parameters.   
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Appendix E – More on Ant Colony Optimization (ACO) 

 

Ant Colony Optimization Algorithm 

 

The ACO algorithm works as follow [328],[329]: 

1. The first ant leaves the colony in search for food, following a more or less random 

path until it finds a food source. The ant then returns more or less directly to the 

nest, laying down a trail of pheromones behind it. 

2.  The nearby ants are attracted by the pheromones and are likely to follow more or 

less directly the path found by the first ant. Upon returning to the colony, these 

ants also leave a trail of pheromones along the path, strengthening the initial route 

to the food source.  

3. Over time, the pheromone trail tends to evaporate which reduces the attractive 

strength of the route. In this context, a short path gets explored more frequently 

than a long path, and thus the pheromone density increases more rapidly on 

shorter paths than on longer ones.   

4. As a consequence, if any two different routes end up reaching the same source of 

food, then ants tend to use the shorter one more often than the longer one. As 

such, the pheromone signature of the shortest path is increasingly enhanced so that 

the short route becomes more and more attractive to the ants, while the 

pheromones along the longest path evaporates over time and the long route 

becomes less and less attractive. 

5. Eventually, the ants figure out and choose the shortest route to a given source of 

food. 

 

The original ACO algorithm involves the following main principles [337],[339]: 

 A colony of ants moves through the various states of a problem according to local 

decision rules based on trail attractiveness. Through this process, each ant 

incrementally constructs a solution to the problem. Intermediate solutions are 

called solution states. At each step of the algorithm, each ant computes a set of 

feasible moves leading to a more complete solution. The probability of an ant to 
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move from its current state to a feasible state is a function of the attractiveness of 

the move and of the trail level. The attractiveness of the move is a heuristic giving 

the a priori desirability of that particular move, while the trail level indicates the a 

posteriori desirability of that move.   

 As an ant constructs or completes a solution, it evaluates the solution and modifies 

the trail value by depositing pheromones which are used to direct the search of the 

future ants. Trail levels are updated when all ants have completed their solution: 

they increase if the corresponding moves lead to a ―good‖ solution, and decrease 

in the opposite case.  

 As the pheromones spread along a route evaporate over time, the trail value 

decreases. This prevents the algorithm from getting stuck at local optima. 

 The algorithm can also be biased by ―daemon actions‖ to enhance the exploration 

capability of the ant colony and to avoid constraining the search to local regions. 

 

In order to find the shortest route to a food source, ants communicate with each other 

by depositing pheromones that store the memory of their search and detail the status of 

their behavior. However, the reach of pheromones is limited and only those ants located 

near the pheromone trail benefit from the information it contains. This mechanism was 

termed ―Stigmergy‖ by the French biologist Pierre-Paul Grassé in 1939 [331] as he was 

studying the behavior of termites. He defined the word as a ―Stimulation of workers by 

the performance they have achieved.‖ Its meaning captures the self-organization 

mechanism through which agents and actions are indirectly coordinated as they leave 

signs in the environment [332]. The process lies in the fact that any trace left in the 

environment by the action of a given agent influences the next action performed by either 

the same or a different agent. Successive actions therefore build on each other and 

support the emergence of efficient collaboration, coherent activity and complex 

intelligent structures of simple agents lacking memory, intelligence and awareness of 

each other, without the need for any direct communication or control between them 

[333],[334]. Complex problems are typical examples of self-organized systems which are 

based on [335],[336]: 
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 A positive feedback where ants deposit pheromones along the paths they explore 

and attract other ants that strengthen the path by spreading pheromones 

themselves 

 A negative feedback where the pheromones evaporate over time to prevent the 

system from getting stuck in suboptimal regions and to amplify short routes with 

strong pheromone signatures  

 

Variations of the Ant Colony Optimization Algorithm and Applications 

 

The first ACO algorithm, called the Ant system 
[338]

, was developed to solve the 

travelling salesman problem, where the goal is to find the shortest round-trip to near-

optimally visit a set of cities only once. In this context, each ant moving in the search 

space represents a solution to the problem. Ants consider previous knowledge about paths 

explored by other ants to construct their solution and mark the best possible paths. ACO 

algorithms have then extended 
[339]

 and have been applied to a wide variety of 

combinatorial optimization problems 
[340]

, such as scheduling problems 
[341]

, vehicle 

routing problems 
[342]

, assignment problems, set problems, network problems, stochastic, 

continuous, and mixed-variable optimization problems 
[343]

, multi-target problems, and a 

lot of other dynamic problems in real variables. Many papers reporting on current 

research on ACO algorithms can be found in the proceedings of the ANTS conference 

[344]
 or in the Swarm Intelligence journal 

[345]
. Some common variations of ACO include, 

but are not limited to, the Elitist Ant System 
[346],[347]

, the Max-Min Ant System (MMAS) 

[348]
, the Ant Colony System 

[349]
, the Rank-Based Ant System (ASrank), the Continuous 

Orthogonal Ant Colony (COAC) 
[350]

, and the Ant Colony Optimization with Fuzzy Logic 

[351]
. 
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Appendix F – More on Particle Swarm Optimization (PSO) 

 

In the procedure of the Particle Swarm Optimization algorithm described in the main 

text, the particle’s velocity is updated according to the global model: it takes into account 

the experience of the particle itself through the particle best, but also the experience of the 

whole swarm, including the particle, through the global best. There exist three subsets of 

this model:  

1. The cognition-only model which updates the velocity of the particle according to 

the particle’s best only.        

2. The social-only model which updates the velocity of the particle according to the 

global best only. 

3. The selfless model which is identical to the social-only model, with the exception 

that the performance of the swarm does not contain the individual’s own previous 

performance. 

 

Incidentally, Kennedy showed that the social-only model performs better than the 

selfless model, which performs better than the full model, which performs better than the 

cognition-only model [369]. There also exist several alternatives to the global model of PSO 

as initially created by Eberhart and Kennedy. For instance, in the local model, the 

particles receive information of their own best and their nearest neighbors’ bests only, 

rather than that of the entire group [361]. However, the neighborhood of a given particle can 

be composed of a variable number of individuals. Eberhart and Kennedy showed that for 

a neighborhood of two individuals, this version of the PSO is quasi invulnerable to local 

optima. This might results from the fact that a number of ―groups‖ of particles 

spontaneously separate and explore different regions. As such, the local model seems to 

be a more flexible approach than the global best model. Another example is the fully 

informed PSO, developed by Mendes [370]. In the fully informed PSO, a particle is 

attracted by every other particle in its neighborhood, i.e. is influenced by its neighbors’ 

best positions, but not by the global best. Some other variants of PSO include PSO with 

dynamic neighborhood topologies [371], [372], PSO with enhanced diversity [373], [374], PSO with 
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different velocity update rules [375], [376], PSO with components from other evolutionary 

approaches [367], [377], PSO for discrete optimization problems [378], [379], and so on.  
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Appendix G – More on Pareto Optimization 

 

Definition of Pareto Optimality 

 

Let n be the number of design parameters in a given design space, and m be the 

number of criteria used to assess each of the design points. Let f be the function which 

assigns a criteria vector to each point in the design space, thus providing a way to value 

each design point. Some designs may be infeasible. Let X be the compact set of feasible 

designs, and Y be the set of feasible criterion points, image of X under the action of f. In 

engineering problems, it is often assumed that the criteria used to assess each design 

option have to be minimized. Then, each dimension of the criterion vector Y has to be 

minimized as well. In this context, the Pareto frontier is defined as a subset of Y of the 

feasible criterion points which are not strictly dominated. In other words, a criterion 

vector y is preferred to another vector y* if at least one parameter of y is strictly less than 

the corresponding parameter of y*, and none other parameter of y is strictly greater. This 

is denoted as      
  for each i and      

  for some i.      means that y* is strictly 

dominated by y. Then, the Pareto frontier is the ensemble of points y in Y which strictly 

dominate any other point in Y. Assume that the criteria vector is composed of two 

objective functions f1 and f2, then Figure 95 illustrates the Pareto optimal frontier as a 

solid line in the case where the two criteria need to be minimized.  

 

 

 

 

 

 

 

 

Figure 95: Illustration of a Pareto Frontier for a Two-Criteria Minimization Problem 

f1 

f2 
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Several algorithms have been developed to compute the Pareto frontier of a finite 

number of alternatives in maximum vector or skyline query problems, such as those 

described in Kung et al. [401] and in Parke et al. [402]  

 

Pareto-Based Multi-Objective Optimization Algorithms 

 

Several modified and hybrid algorithms have been proposed to overcome some of the 

shortcomings of traditional evolutionary algorithms, such as GA and PSO, or to combine 

their strengths, so as to efficiently obtain Pareto optimal solutions. Some of the most 

common enhanced algorithms are the following. 

 Interactive Particle Swarm Optimization [365] 

 Unified Particle Swarm Optimization (UPSO) [410],[411]. 

 Multiple objective PSO (MOPSO) [412] 

 Pareto Archived Evolutionary Strategy (PAES) [413]  

 Strength Pareto Evolutionary Algorithm (SPEA) and SPEA2 [414],[415], [416] 

 Non-dominated Sorting Genetic Algorithm I and II (NSGA-I and NSGA-II) 

[417]  

 Genetical Swarm Optimization (GSO) [418]  

 Clonal Selection Algorithm (CLONALG) [419],[261],[420],[421], [422] 

 Hybrid Algorithm of Clonal Selection Principle (CLONALG) and Particle 

Swarm Intelligence [423] 

 Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) [424]  

 Comparison of Multi-Objective GAs (MOGAs)  

 

Table 32 highlights some of the most well-known multi-objective genetic algorithms, 

and compares their major advantages and disadvantages.  

Table 32 is directly extracted from the work of Konak et al. on MOGAs [425]. 

In Table 32, the following acronyms are used: 

 VEGA: Vector Evaluated Genetic Algorithm 

 MOGA: Multi-Objective Genetic Algorithm 

 WBGA: Weight-Based Genetic Algorithm 
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 NPGA: Niched Pareto Genetic Algorithm 

 RWGA: Random Weight Genetic Algorithm 

 PESA: Pareto Envelop Selection Algorithm 

 PAES: Pareto Archived Evolution Strategy 

 NSGA: Non-dominated Sorting Genetic Algorithm 

 SPEA: Strength Pareto Evolutionary Algorithm 

 RDGA: Rank-Density Genetic Algorithm 

 DMOEA: Dynamic Multi-Objective Evolutionary Algorithm 

 

Table 32: Comparison of Multi-Objective Genetic Algorithms 

 

Algorithm 
Fitness 

Assignment 

Diversity 

Mechanism 
Elitism 

External 

Population 
Advantages Disadvantages 

VEGA 

Each 

subpopulation 

is evaluated 

with respect 

to a different 

objective 

No No No 

First MOGA 

developed 

Straightforward 

implementation 

Tends to 

converge to the 

extreme of each 

objective 

MOGA 
Pareto 

ranking 

Fitness 

sharing by 

niching 

No No 

Simple extension 

of single 

objective GA 

Usually slow 

convergence 

Problems 

related to niche 

size parameter 

WBGA 

Weighted 

average of 

normalized 

objectives 

Niching 

Predefined 

weights 

No No 

Simple extension 

of single 

objective GA 

Difficulties in 

non-convex 

objective 

function space 

NPGA 

No fitness 

assignment, 

tournament 

selection 

Niche count 

as tie-

breaker in 

tournament 

selection 

No No 

Very simple 

selection process 

with tournament 

selection 

Problems 

related to niche 

size parameter 

Extra parameter 

for tournament 

selection 

RWGA 

Weighted 

average of 

normalized 

objectives 

Randomly 

assigned 

weights 

Yes Yes 
Efficient and easy 

to implement 

Difficulties in 

non-convex 

objective 

function space 
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Table 32: Comparison of Multi-Objective Genetic Algorithms (Continued) 

 

PESA 
No fitness 

assignment 

Cell-based 

density 

Pure 

elitism 
Yes 

Easy to 

implement 

Computationally 

efficient 

Performance 

depends on cell 

sizes 

Prior 

information 

needed about 

objective space 

PAES 

Pareto 

dominance is 

used to 

replace a 

parent if 

offspring 

dominates 

Cell-based 

density as 

tie-breaker 

between 

offspring 

and parent 

Yes Yes 

Random mutation 

hill-climbing 

strategy 

Easy to 

implement 

Not a 

population-

based approach 

Performance 

depends on cell 

sizes 

NSGA 

Ranking 

based on non-

domination 

sorting 

Fitness 

sharing by 

niching 

No No Fast convergence 

Problems 

related to niche 

size parameter 

NSGA-II 

Ranking 

based on non-

domination 

sorting 

Crowding 

distance 
Yes No 

Single parameter 

Well tested 

Efficient 

Crowding 

distance works 

in objective 

space only 

SPEA 

Ranking 

based on the 

external 

archive of 

non-

dominated 

solutions 

Clustering 

to truncate 

external 

population 

Yes Yes 

Well tested 

No parameter for 

clustering 

Complex 

clustering 

algorithm 

SPEA-2 
Strength of 

dominators 

Density 

based on 

the k-th 

nearest 

neighbor 

Yes Yes 

Improved SPEA 

Makes sure 

extreme points are 

preserved 

Computationally 

expensive 

fitness and 

density 

calculations 
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Table 32: Comparison of Multi-Objective Genetic Algorithms (Continued) 

 

RDGA 

The problem 

is reduced to 

a bi-objective  

problem, with 

solution rank 

and density 

as objectives 

Forbidden 

region cell-

based 

density 

Yes Yes 

Dynamic cell 

update 

Robust with 

respect to the 

number of 

objectives 

More difficult to 

implement than 

other MOGAs 

DMOEA 
Cell-based 

ranking 

Adaptive 

cell-based 

density 

Yes - 

implicitly 
No 

Includes efficient 

techniques to 

update cell 

densities 

Adaptive 

approaches to GA 

parameters 

More difficult to 

implement than 

other MOGAs 
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Appendix H – Agent-Based Modeling and Simulation Tools and Optimization 

Frameworks 

 

SWARM 

 

The Swarm project was developed in 1994 by Chris Langton, then at the Santa Fe 

Institute (SFI) in New Mexico [445] and is currently based at the non-for-profit 

organization, Swarm Development Group also based in Santa Fe, New Mexico. Swarm is 

a platform for agent-based models (ABMs) and a collection of software libraries which 

provide support for simulation programming. The libraries are written either in objective 

C or in Java. The main features of Swarm are the following [446]: 

 Modeling software that: 

o Is accessible 

o Can accommodate arbitrarily large experiments (given the computing 

resources) 

o Integrates well with other modeling techniques and technologies 

o Helps reducing error 

 Agent-based modeling language that: 

o Allows the modeler to describe, combine and reuse compartments of 

behavior 

o Has precise and exploitable concurrency semantics 

o Is based on a few simple but flexible building blocks (messages, objects, 

groups and schedules) 

 Support tools: 

o Space library with visualization 

o Analysis tools, graphing, etc 

o Random number generators and distributors 

o Library of GUI widgets 

o Portability and Integration: 

o Models can be written using Objective C or Java 

o Zero dependence on proprietary infrastructure 
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Moreover, Swarm was designed to help researchers build models of complex systems 

in which low-level actors interact, and to discern overall patterns that emerge from 

detailed behaviors at the individual level. The main drawback is that learning to program 

with Swarm requires reading example applications, studying the technical reference 

material and sometimes even getting down to the level of reviewing the header files in the 

libraries. It also currently requires a good hands-on knowledge of object-oriented 

programming and software development processes in general. 

Furthermore, “Swarm is not yet a „shrink-wrapped‟ simulation toolkit. There are 

many of those kinds of products on the market. However, with these packages, the ease of 

use comes at a price – you are locked into that vendor's particular modeling paradigm. 

Swarm was intended to embrace many different types of modeling - consequently, it can 

be more difficult for a novice user – but more powerful in the long-run” [447]. 

 

RePast (Recursive Porous Agent Simulation Toolkit) 

 

Repast is a free and open source agent-based modeling toolkit originally developed by 

Sallach, Collier, Howe, North and others [448]. It was created at the University of Chicago 

and has subsequently been maintained by organizations such as the Argonne National 

Laboratory. Repast borrows many concepts from the Swarm agent-based modeling 

toolkit. However, contrary to Swarm, Repast has multiple implementations in several 

languages and has built-in adaptive features such as genetic algorithms and regression.  

Besides, Repast is meant to support the development of extremely flexible models of 

living social agents, but is not limited to modeling living social entities alone. 

A list of the main features of the last version of Repast (Repast 3), taken from the 

Repast website [449], is provided below: 

 Variety of agent templates and examples, but the users still have complete 

flexibility as to how they specify the properties and behaviors of agents  

 Fully object-oriented 

 Fully concurrent discrete event scheduler supporting both sequential and 

parallel discrete event operations  
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 Built-in simulation results logging and graphing tools  

 Automated Monte Carlo simulation framework  

 Variety of two-dimensional agent environments and visualizations  

 Dynamical access and modification of agent properties, agent behavioral 

equations, and model properties at run time  

 Libraries for genetic algorithms, neural networks, random number generation, 

and specialized mathematics 

 Built-in systems dynamics modeling 

 Social network modeling support tools  

 Integrated geographical information systems (GIS) support  

 Repast models can be developed in many languages including Java, C#, 

Managed C++, Visual Basic.Net, Managed Lisp, Managed Prolog, and Python 

scripting  

 

Despite and because of its numerous interesting features, Repast is a lot more difficult 

to learn than for instance NetLogo. 

 

MASON 

  

“MASON is a single-process discrete-event simulation core and visualization library 

aimed at multi-agent simulations with large numbers of agents” [450]. It was developed as 

a joint effort between George Mason University Evolutionary Computation Laboratory 

(ECLab) and the GMU Center for Social complexity. It stands for Multi-Agent Simulator 

Of Neighborhoods... or Networks. 

“MASON was designed to be the foundation for large custom-purpose Java 

simulations, and also to provide more than enough functionality for many lightweight 

simulation needs” [451]. However, the system is written in pure Java and is intended for 

experienced Java coders who want something general and easily manageable to start with, 

rather than a domain-specific simulation environment. Although coding in Java is not a 

problem for the author, the learning curve of the tool is too steep. As such, MASON is not 

really suitable for the problem under consideration. 
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Nonetheless, a list of the main features of MASON, taken from the Center of Social 

Complexity GMU website [451], is provided below: 

 100% Java 

 Fast, portable and fairly small 

 Models are completely independent from visualization. They can be added, 

removed, or changed at any time 

 Models may be check-pointed and recovered but also dynamically migrated 

across platforms 

 Can produce reproducible results regardless of the platform 

 Models are self-contained and can run inside other Java frameworks and 

applications 

 2D and 3D visualization 

 Can generate PNG snapshots, Quicktime movies, charts and graphs, and 

output data streams 

 

NetLogo 

 

 “NetLogo is a cross-platform multi-agent programmable modeling environment” 

developed in 1999 by Uri Wilensky in order to simulate natural and social phenomena 

[452]. Since then, it has been successfully and widely used for the modeling of complex 

systems. As for the name of the tool, the ―Logo‖ part is because NetLogo is a dialect of 

the Logo language, and the ―Net‖ part is meant to evoke the decentralized, interconnected 

nature of the phenomena that can be modeled with NetLogo, including network 

phenomena.  

What is interesting with NetLogo is its agent-based nature making possible the 

exploration of the connection between individual behaviors of hundreds or thousands of 

agents operating independently, and of the world patterns that emerge from their 

interaction. NetLogo is not only simple enough so that models can be rapidly built and 

simulated by novices, but also “advanced enough to serve as a powerful tool for 

researchers in many fields” [453]. It is also publicly available. NetLogo comes with an 



364 

 

extensive documentation and with tutorials as well as with a collection of example 

models and simulations that can be used and modified and that really facilitate the 

learning of the tool. Last but not least, “NetLogo is the next generation of the series of 

multi-agent modeling languages that started with StarLogo” [453]. As such, it adds 

significant new features to the functionality of StartLogoT, such as a redesigned language 

and user interface facilitating the ease of use for the untrained person. NetLogo is written 

in Java which makes it suitable for all major platforms (Mac, Windows, Linux, et al) and 

is in continuous development at the Center for Connected Learning and Computer-Based 

Modeling. 

A list of the main features of NetLogo, taken directly from the NetLogo website [453], 

is provided below: 

 Language:  

o Fully programmable  

o Simple language structure  

o Language is Logo dialect extended to support agents  

o Mobile agents (turtles) move over a grid of stationary agents (patches)  

o Create links between turtles to make aggregates, networks, and graphs  

o Large vocabulary of built-in language primitives  

o Double precision floating point math  

o Runs are exactly reproducible across platforms  

 Environment:  

o View model in either 2D or 3D  

o Scalable and rotatable vector shapes  

o Command center for on-the-fly interaction  

o Interface builder with buttons, sliders, switches, choosers, monitors, text 

boxes, notes, output area  

o Speed slider lets fast forward the model or see it in slow motion  

o Powerful and flexible plotting system  

o Info tab for annotating the model  

o Agent monitors for inspecting and controlling agents  
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o Export and import functions (export data, save and restore state of model, 

make a movie)  

o BehaviorSpace tool used to collect data from multiple runs of a model  

 

Eclipse 

 

Eclipse was developed in the 1990’s by a subsidiary of IBM, called Object 

Technology International (OIT), to provide a Java-based replacement for the Smalltalk 

language created in the 1970’s as part of the VisualAge family of integrated development 

products. It was released in January 2004 as an open-source Project by the Eclipse 

Foundation [454]. Eclipse is a software development platform composed of an integrated 

development environment (IDE) and an extensible plug-in system. By default, Eclipse is 

directed towards the development of applications in Java [455]. Nevertheless, the 

capabilities of Eclipse can be extended to handle other programming languages such as C, 

C++, COBOL, Python, Perl, PHP, Scala, and Ruby. Eclipse is also highly flexible, 

allowing users to write their own plug-in modules. As such, Eclipse can be perceived as 

everything from a Java IDE to a full-fledged stand-alone software development 

framework. More realistically, Eclipse is an open environment where any kind of 

software tools can plug in, thus providing the building blocks and infrastructure to create 

any user defined environment. It is thus widely used as a platform for doing native 

development, web design, service-oriented-architecture design, and embedded-software 

design. Eclipse offers a wide variety of examples of plug-in tools and environments that 

can be used as building blocks and integration points.  

A list of the main features of the Eclipse software development environment is 

provided below: 

 Multi-language programming functionalities on top of (and including) the 

runtime system  

 Runtime system based on Equinox (OSGi standard compliant implementation 

[456]) 

 Use of plug-ins (functionality is not hard coded) 
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 Wide variety of plug-ins: UML plug-in for Sequence and other UML 

applications, DB Explorer plug-in 

 Compatibility with typesetting languages like LaTeX 

 Networking applications such as telnet, and database management systems 

 Built-in incremental Java compiler and full model of the Java source files 

 Advanced refactoring techniques and code analysis 

 Use of a workspace, allowing external file modifications  

 Possible implementation of widgets through the widget toolkit for Java SWT 

 Possible translations into over a dozen natural languages [457] 

 

MATLAB 

 

MATLAB is a high-level language and interactive environment created in the late 

1970’s by Cleve Moler at the University of New Mexico [458]. Originally, Cleve Moler 

designed MATLAB for his students, in order to give them access to software libraries for 

numerical linear algebra, such as LINPACK and EISPACK, without having them learn to 

program in FORTRAN. But MATLAB soon spread to other universities and became 

popular in the applied mathematics community. As a consequence of this success, and 

with the help of Jack Little from the Stanford University and Steve Bangert, Cleve Moler 

founded MathWorks in 1984 to continue the development of MATLAB. MATLAB is 

now widely used in several domains of studies and in education, particularly for teaching 

linear algebra, numerical analysis and image processing. 

In MATLAB, it is not necessary to declare variables, specify data types, and allocate 

memory. As such, MATLAB enables users to perform computationally intensive tasks 

faster than traditional programming languages such as C, C++, and Fortran. That is why it 

is widely used in applications such as signal and image processing, communications, 

control design, test and measurement, financial modeling and analysis, aerospace 

engineering, and computational biology.  

A list of the key features of MATLAB, taken directly from the MathWorks website 

[459], is provided below: 
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 High-level language for technical computing 

 Interactive development environment for managing code, files, and data 

 Interactive tools for iterative exploration, design, and problem solving 

 Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, 

optimization, and numerical integration 

 Arithmetic operators, data structures, data types, debugging features, and 

object-oriented programming 

 Support for entire data analysis process, from acquiring data, through 

preprocessing, visualization, and numerical analysis, to producing quality 

output 

 Graphics features required to visualize engineering and scientific data, such as 

2D and 3D plotting functions, 3D volume visualization functions, tools for 

interactively creating plots 

 Ability to export results to all popular graphics formats 

 Mathematical, statistical, and engineering functions to support all common 

engineering and science operations  

 Functions for documenting and sharing work among users 

 Functions for integrating MATLAB based algorithms with external 

applications and languages (C, C++, Fortran, Java, COM, and Microsoft 

Excel)  

 Functions for distributing MATLAB algorithms and applications among 

several computer platforms 

 Functions for deploying custom MATLAB algorithms and applications as 

stand-alone programs or software modules 
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Appendix I – Latitudes and Longitudes of the 256 Most Promising Positions 

 

Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

1 32.474 114.800 0 201 129 31.737 112.442 223 119 

2 32.465 114.789 1 200 130 31.755 112.431 224 121 

3 32.456 114.768 3 199 131 31.755 112.420 225 121 

4 32.393 114.757 4 192 132 31.746 112.399 227 120 

5 32.483 114.757 4 202 133 31.845 112.376 229 131 

6 32.411 114.747 5 194 134 31.782 112.367 230 124 

7 32.465 114.747 5 200 135 31.791 112.356 231 125 

8 32.411 114.736 6 194 136 31.809 112.345 232 127 

9 32.474 114.736 6 201 137 31.710 112.337 233 116 

10 32.375 114.683 11 190 138 31.710 112.326 234 116 

11 32.384 114.683 11 191 139 31.764 112.304 236 122 

12 32.375 114.672 12 190 140 31.764 112.283 238 122 

13 32.357 114.640 15 188 141 31.683 112.253 241 113 

14 32.357 114.630 16 188 142 31.710 112.242 242 116 

15 32.393 114.619 17 192 143 31.737 112.230 243 119 

16 32.348 114.608 18 187 144 31.764 112.187 247 122 

17 32.402 114.608 18 193 145 31.737 112.178 248 119 

18 32.420 114.608 18 195 146 31.692 112.168 249 114 

19 32.384 114.587 20 191 147 31.674 112.148 251 112 

20 32.429 114.576 21 196 148 31.656 112.116 254 110 

21 32.402 114.544 24 193 149 31.647 112.106 255 111 

22 32.366 114.491 29 189 150 31.620 112.065 259 106 

23 32.357 114.481 30 188 151 31.620 112.054 259 106 

24 32.312 114.449 33 183 152 31.620 112.033 262 106 

25 32.294 114.417 36 181 153 31.611 112.002 265 105 

26 32.366 114.385 39 189 154 31.719 111.967 268 117 

27 32.366 114.374 40 189 155 31.737 111.966 268 117 

28 32.312 114.364 41 183 156 31.629 111.948 268 119 

29 32.276 114.343 43 179 157 31.629 111.906 270 107 

30 32.276 114.300 47 179 158 31.575 111.897 275 101 

31 32.285 114.289 48 180 159 31.620 111.875 275 101 

32 32.366 114.268 50 189 160 31.593 111.865 278 103 

33 32.357 114.257 51 188 161 31.629 111.853 279 107 

34 32.249 114.236 53 176 162 31.593 111.844 280 103 

35 32.294 114.215 55 181 163 31.629 111.843 280 103 

36 32.294 114.204 56 181 164 31.575 111.823 280 103 

37 32.231 114.183 58 174 165 31.557 111.782 286 99 

38 32.240 114.173 59 175 166 31.539 111.740 282 101 

39 32.294 114.140 62 181 167 31.584 111.728 291 102 

40 32.312 114.140 62 183 168 31.566 111.707 293 100 
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Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

41 32.303 114.130 63 182 169 31.539 111.687 291 102 

42 32.303 114.119 64 182 170 31.539 111.677 296 97 

43 32.276 114.077 68 179 171 31.557 111.644 295 97 

44 32.231 114.066 69 174 172 31.584 111.622 301 102 

45 32.231 114.056 70 174 173 31.539 111.592 299 99 

46 32.205 114.045 71 171 174 31.557 111.581 301 102 

47 32.205 114.035 72 171 175 31.485 111.552 308 91 

48 32.196 114.024 73 170 176 31.494 111.541 309 92 

49 32.240 114.003 75 175 177 31.494 111.509 308 91 

50 32.169 113.971 78 167 178 31.458 111.458 317 88 

51 32.169 113.961 79 167 179 31.449 111.437 319 87 

52 32.169 113.950 80 167 180 31.530 111.403 317 88 

53 32.160 113.940 81 166 181 31.494 111.393 323 92 

54 32.205 113.907 84 171 182 31.440 111.364 326 86 

55 32.205 113.875 87 171 183 31.521 111.350 327 95 

56 32.196 113.865 88 170 184 31.440 111.343 326 86 

57 32.142 113.844 90 164 185 31.440 111.300 327 95 

58 32.169 113.833 91 167 186 31.503 111.266 335 93 

59 32.133 113.791 95 163 187 31.494 111.256 336 92 

60 32.133 113.770 97 163 188 31.395 111.249 335 93 

61 32.115 113.749 99 161 189 31.404 111.218 336 92 

62 32.196 113.748 99 170 190 31.476 111.194 342 90 

63 32.097 113.728 101 159 191 31.359 111.156 340 82 

64 32.124 113.706 103 162 192 31.422 111.133 348 84 

65 32.088 113.696 104 158 193 31.467 111.120 349 89 

66 32.169 113.663 107 167 194 31.467 111.120 349 89 

67 32.169 113.653 108 167 195 31.386 111.092 349 89 

68 32.079 113.643 109 157 196 31.341 111.051 356 75 

69 32.142 113.610 112 164 197 31.359 111.030 358 77 

70 32.061 113.590 114 155 198 31.368 111.019 358 77 

71 32.070 113.580 115 156 199 31.368 111.008 360 78 

72 32.061 113.569 116 155 200 31.368 110.977 360 78 

73 32.115 113.558 117 161 201 31.386 110.965 364 80 

74 32.070 113.516 121 156 202 31.431 110.942 364 80 

75 32.088 113.473 125 158 203 31.395 110.912 366 85 

76 32.133 113.462 126 163 204 31.386 110.902 370 80 

77 32.133 113.451 127 163 205 31.341 110.894 371 75 

78 32.025 113.432 129 151 206 31.359 110.882 371 75 

79 32.106 113.420 130 160 207 31.422 110.848 372 77 

80 32.016 113.389 133 150 208 31.341 110.841 375 84 

81 32.007 113.379 134 149 209 31.431 110.795 380 85 

82 32.052 113.346 137 154 210 31.431 110.784 380 85 
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Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

83 32.007 113.326 139 149 211 31.377 110.745 385 79 

84 32.034 113.283 143 152 212 31.404 110.722 387 82 

85 32.016 113.262 145 150 213 31.422 110.700 387 82 

86 32.052 113.240 147 154 214 31.440 110.679 391 86 

87 32.007 113.220 149 149 215 31.368 110.671 391 86 

88 32.016 113.198 151 150 216 31.368 110.661 392 78 

89 32.025 113.177 153 151 217 31.377 110.639 395 79 

90 31.998 113.167 154 148 218 31.386 110.607 398 80 

91 31.998 113.156 155 148 219 31.359 110.598 399 77 

92 31.998 113.135 157 148 220 31.341 110.557 399 77 

93 31.998 113.114 159 148 221 31.377 110.513 407 79 

94 31.989 113.093 161 147 222 32.142 113.462 126 164 

95 31.989 113.082 162 147 223 31.710 112.242 242 116 

96 31.917 113.041 166 139 224 31.404 110.733 242 116 

97 31.962 113.030 167 144 225 31.377 110.629 396 79 

98 31.971 113.019 168 145 226 32.330 114.278 396 79 

99 31.935 113.009 169 141 227 31.494 111.256 49 185 

100 31.998 112.987 171 148 228 32.339 114.310 46 186 

101 31.998 112.976 172 148 229 31.890 112.735 46 186 

102 31.917 112.956 174 139 230 31.872 112.693 195 136 

103 31.980 112.934 176 146 231 31.836 112.312 235 130 

104 31.908 112.925 177 138 232 32.097 113.399 235 130 

105 31.917 112.893 180 139 233 31.935 112.914 132 159 

106 31.962 112.860 183 144 234 31.710 112.221 178 141 

107 31.908 112.840 185 138 235 31.593 111.643 244 116 

108 31.881 112.830 186 135 236 31.440 111.353 327 86 

109 31.854 112.788 190 132 237 31.737 112.463 327 86 

110 31.836 112.768 192 130 238 31.944 112.808 188 142 

111 31.872 112.735 195 134 239 31.431 111.143 188 142 

112 31.863 112.714 197 133 240 31.368 110.629 347 85 

113 31.854 112.682 200 132 241 31.341 110.894 371 75 

114 31.845 112.651 203 131 242 32.375 114.193 371 75 

115 31.845 112.640 204 131 243 31.944 112.882 181 142 

116 31.791 112.610 207 125 244 31.926 112.638 181 142 

117 31.800 112.610 207 126 245 31.557 111.697 294 99 

118 31.800 112.599 208 126 246 31.935 112.797 189 141 

119 31.818 112.577 210 128 247 32.393 114.278 189 141 

120 31.773 112.568 211 123 248 31.980 112.839 185 146 

121 31.773 112.557 212 123 249 31.935 112.903 179 141 

122 31.755 112.526 215 121 250 31.620 111.906 179 141 

123 31.809 112.514 216 127 251 32.375 114.374 274 106 

124 31.782 112.504 217 124 252 32.142 113.451 40 190 
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Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

Position 

Index 

Latitude 

(° North) 

Longitude 

(° West) 
X Y 

125 31.809 112.472 220 127 253 31.899 112.703 198 137 

126 31.737 112.463 221 119 254 32.187 113.535 198 137 

127 31.755 112.452 222 121 255 31.845 112.376 119 169 

128 31.764 112.452 222 122 256 32.339 114.332 44 186 
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Appendix J – Space Filling DoE for the Modified GA (Left) and for the Modified 

PSO (Right) 

 

Modified Genetic Algorithm Modified Particle Swarm Optimization Algorithm 

S_Max MutRate StopIte PopSize S_Max C2 IteNb PopSize 

10 17.27 41 133 10 2.4 1705 71 

12 36.82 71 83 12 2.1 1648 85 

14 14.55 87 82 14 2.1 1770 182 

16 25 100 142 16 2.4 1717 129 

18 23.18 58 95 18 2.1 1952 176 

20 28.64 63 145 20 2.2 1838 156 

22 40 86 186 22 2.3 1790 108 

23 44.55 42 177 23 2.4 1891 53 

25 40.45 89 124 25 2.3 1927 92 

27 16.36 72 179 27 2.3 1956 145 

29 25.45 82 112 29 2.1 1786 70 

31 26.36 36 64 31 2.1 1968 121 

33 45.45 66 144 33 2.2 1640 126 

35 29.09 41 168 35 2.4 1774 174 

37 47.73 83 58 37 2.4 1851 130 

39 9.09 47 180 39 2.3 1636 188 

41 31.82 94 74 41 2.1 1624 173 

43 40.91 43 127 43 2 1879 150 

45 7.27 48 103 45 2.4 1915 179 

46 11.82 92 130 46 2.2 1822 61 

48 48.64 59 88 48 2.5 1818 82 

50 13.18 55 55 50 2.5 1657 98 

52 21.36 77 52 52 2.1 1737 139 

54 37.73 60 192 54 2.1 1947 67 

56 30.45 84 156 56 2.2 1689 58 

58 13.64 70 105 58 2 1616 124 

60 35 55 53 60 2.2 1749 189 

62 45 33 71 62 2 1842 100 

64 18.64 98 189 64 2.3 1600 74 

66 33.64 61 106 66 2.4 1632 142 

68 5.91 84 70 68 2.2 1855 115 

69 27.27 38 109 69 2.5 1972 132 

71 42.73 99 164 71 2.4 1976 77 

73 5 70 152 73 2.3 1725 103 

75 49.55 81 108 75 2.1 1863 191 
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77 23.64 53 197 77 2.4 1733 52 

79 17.73 53 138 79 2.3 1919 180 

81 33.18 99 115 81 2.3 1939 62 

83 20.45 91 91 83 2.1 1988 167 

85 36.36 82 200 85 2.3 1810 148 

87 20 34 167 87 2 1669 76 

89 47.27 46 165 89 2.4 1826 198 

91 6.82 35 136 91 2.5 1612 194 

93 43.64 76 155 93 2.5 1778 123 

94 43.18 96 67 94 2.1 1794 56 

96 30.91 75 73 96 2.1 1943 118 

98 16.82 72 183 98 2.2 2000 133 

100 28.18 67 148 100 2.2 1677 141 

102 8.64 38 79 102 2.1 1681 168 

104 19.09 87 139 104 2.2 1620 86 

106 46.82 58 118 106 2.3 1653 192 

108 22.27 51 56 108 2.4 1729 164 

110 39.55 32 126 110 2.4 1871 159 

112 7.73 65 76 112 2.4 1846 80 

114 35.45 48 86 114 2 1814 136 

116 21.82 63 100 116 2.2 1996 83 

117 34.09 37 174 117 2.1 1741 106 

119 37.27 80 114 119 2 1887 73 

121 39.09 60 188 121 2.4 1665 89 

123 32.27 93 158 123 2.3 1745 68 

125 9.55 52 171 125 2.2 1867 94 

127 11.36 31 198 127 2.4 1984 177 

129 6.36 90 89 129 2.2 1907 152 

131 49.09 75 77 131 2.3 1980 91 

133 24.09 31 98 133 2.3 1895 135 

135 8.18 92 176 135 2.3 1766 120 

137 30 49 132 137 2.5 1923 117 

139 19.55 79 62 139 2.2 1762 158 

141 10.91 50 120 141 2.2 1903 200 

142 10 73 135 142 2.3 1899 50 

144 24.55 54 182 144 2.1 1697 55 

146 48.18 95 147 146 2.3 1806 183 

148 27.73 94 94 148 2.2 1604 147 

150 18.18 36 153 150 2.1 1608 97 

152 50 69 162 152 2.1 1673 197 

154 26.82 79 194 154 2.3 1628 114 

156 38.64 88 50 156 2.5 1685 138 
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158 32.73 68 85 158 2.4 1758 59 

160 34.55 74 150 160 2.5 1721 195 

162 35.91 30 65 162 2.1 1834 185 

164 46.36 44 173 164 2 1754 88 

165 15.91 39 61 165 2.3 1661 170 

167 14.09 97 129 167 2 1701 153 

169 41.36 85 191 169 2.5 1883 186 

171 45.91 51 68 171 2.5 1802 109 

173 41.82 40 121 173 2 1960 102 

175 5.45 57 80 175 2.2 1992 171 

177 22.73 67 123 177 2.1 1875 64 

179 42.27 89 102 179 2 1964 161 

181 44.09 65 117 181 2.1 1830 127 

183 12.27 78 92 183 2.2 1709 112 

185 20.91 62 59 185 2.2 1931 111 

187 25.91 46 97 187 2.4 1911 79 

188 15 77 170 188 2.3 1693 65 

190 12.73 34 111 190 2.4 1644 95 

192 31.36 43 161 192 2.2 1859 162 

194 15.45 45 195 194 2.4 1782 155 

196 29.55 96 159 196 2.4 1935 144 

198 10.45 56 141 198 2.3 1798 105 

200 38.18 64 185 200 2.2 1713 165 
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Appendix K – Custom DoE for the Modified GA (Left) and for the Modified PSO 

(Right) 

 

Modified Genetic Algorithm Modified Particle Swarm Optimization Algorithm 

S_Max MutRate StopIte PopSize S_Max C2 IteNb PopSize 

10 5 90 50 10 2.5 2000 110 

10 10 30 200 10 2.4 2000 200 

10 15 90 80 10 2 1700 200 

10 20 50 200 10 2.1 1800 170 

10 25 110 50 10 2.2 1900 50 

10 30 50 80 10 2.4 1900 80 

10 35 70 170 10 2.3 1700 80 

10 40 110 110 10 2 1800 170 

10 45 70 170 10 2.2 1600 140 

10 50 30 140 10 2.3 1600 50 

30 5 110 80 30 2.3 1700 200 

30 10 70 110 30 2 2000 200 

30 15 90 200 30 2.1 2000 50 

30 20 30 50 30 2.3 1600 170 

30 25 70 200 30 2.2 1800 80 

30 30 50 170 30 2.4 1700 110 

30 35 30 170 30 2.5 1800 80 

30 40 50 140 30 2.2 1600 110 

30 45 90 140 30 2 1900 170 

30 50 110 80 30 2.4 1900 140 

50 5 30 110 50 2.2 1900 80 

50 10 90 170 50 2.4 2000 170 

50 15 50 140 50 2.5 1900 140 

50 20 110 50 50 2.3 1800 110 

50 25 50 170 50 2.3 1700 200 

50 30 30 140 50 2.5 1800 50 

50 35 70 50 50 2.1 1600 80 

50 40 70 80 50 2.1 1700 140 

50 45 110 200 50 2.4 2000 170 

50 50 90 110 50 2 1600 110 

70 5 110 140 70 2 1900 110 

70 10 90 80 70 2.1 1900 200 

70 15 70 110 70 2.3 1800 200 

70 20 50 140 70 2.5 1700 170 
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70 25 30 50 70 2.5 2000 50 

70 30 90 170 70 2.1 1800 140 

70 35 110 80 70 2.4 1600 110 

70 40 30 200 70 2.2 2000 140 

70 45 70 50 70 2 1700 80 

70 50 50 170 70 2.4 1600 50 

90 5 90 140 90 2.5 1700 140 

90 10 30 80 90 2.1 2000 170 

90 15 110 170 90 2.2 1700 50 

90 20 70 110 90 2.2 1900 200 

90 25 110 140 90 2.5 1900 110 

90 30 70 110 90 2.4 1800 200 

90 35 50 50 90 2 1600 50 

90 40 70 80 90 2 1800 80 

90 45 90 50 90 2.3 2000 80 

90 50 30 200 90 2.1 1600 140 

110 5 50 170 110 2.1 1700 110 

110 10 110 110 110 2.4 1900 200 

110 15 30 80 110 2 1900 170 

110 20 90 200 110 2.2 1600 80 

110 25 70 140 110 2.1 1600 50 

110 30 30 110 110 2.5 1800 110 

110 35 90 140 110 2.2 2000 200 

110 40 110 200 110 2.3 1700 140 

110 45 50 80 110 2.3 1800 170 

110 50 70 50 110 2.5 2000 50 

130 5 30 200 130 2.3 1800 140 

130 10 50 50 130 2 2000 140 

130 15 110 170 130 2.1 1900 50 

130 20 70 140 130 2 1600 200 

130 25 30 80 130 2.4 1700 80 

130 30 70 80 130 2.1 1900 110 

130 35 90 110 130 2.3 1600 170 

130 40 90 50 130 2.2 1800 200 

130 45 50 200 130 2.4 2000 80 

130 50 110 110 130 2.5 1700 170 

150 5 70 80 150 2.5 1600 200 

150 10 70 200 150 2.3 1900 80 

150 15 50 110 150 2.1 2000 200 

150 20 30 170 150 2.4 1600 140 

150 25 90 110 150 2 1700 50 

150 30 110 140 150 2.4 1800 110 
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150 35 110 200 150 2.1 1900 170 

150 40 50 50 150 2.2 1700 170 

150 45 30 140 150 2.3 2000 110 

150 50 90 170 150 2 1800 140 

170 5 70 170 170 2 2000 140 

170 10 70 140 170 2.2 1700 110 

170 15 30 50 170 2.2 1800 50 

170 20 90 80 170 2.5 1600 200 

170 25 50 110 170 2.5 1600 80 

170 30 110 50 170 2.3 1900 50 

170 35 30 140 170 2.4 1700 170 

170 40 90 110 170 2.1 1800 110 

170 45 110 170 170 2.3 1900 140 

170 50 50 200 170 2 2000 80 

190 5 50 110 190 2.4 1800 50 

190 10 110 140 190 2.1 1700 80 

190 15 70 200 190 2.5 1600 140 

190 20 110 80 190 2.2 2000 110 

190 25 90 170 190 2.2 1600 170 

190 30 90 200 190 2.1 1800 200 

190 35 50 80 190 2.5 1900 80 

190 40 30 170 190 2.3 2000 110 

190 45 30 110 190 2 1700 50 

190 50 70 50 190 2.4 1900 140 
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Appendix L – Relative Coverage Effectiveness of Each Type of Sensor System at 

Each Promising Position (Expressed in %) 

 

Position 

Index 
HCR MCR LCR HCC MCC LCC 

Position 

Index 
HCR MCR LCR HCC MCC LCC 

1 1.43 1.73 2.37 0.7 2.05 2.18 129 1.47 1.63 1.66 0.42 1.31 1.78 

2 1.36 1.62 2.16 0.71 1.92 2 130 3.1 2.99 1.73 0.44 1.24 2.33 

3 1.22 1.43 1.8 0.71 1.63 1.71 131 3.05 3.23 2.23 0.42 1.57 2.93 

4 1.24 1.44 1.78 0.7 1.59 1.71 132 2.8 3.05 2.48 0.63 1.9 2.86 

5 2.24 2.55 2.48 0.56 1.89 2.84 133 1.2 1.2 1.17 0.52 0.94 1.29 

6 1.16 1.34 1.62 0.69 1.47 1.56 134 0.66 0.72 0.83 0.41 0.76 0.79 

7 2.08 2.39 2.61 0.67 2 2.76 135 0.88 0.98 1.08 0.44 0.96 1.06 

8 1.12 1.28 1.53 0.68 1.35 1.49 136 0.88 0.94 1.19 0.47 1.05 1.11 

9 2.4 2.68 2.67 0.63 2 2.95 137 0.84 0.97 1.22 0.44 1.05 1.2 

10 2.58 2.85 2.56 0.7 1.98 2.89 138 1.1 1.31 1.43 0.45 1.18 1.48 

11 2.42 2.69 2.57 0.67 2.03 2.8 139 1.32 1.57 1.59 0.44 1.28 1.69 

12 2.22 2.48 2.53 0.7 2.03 2.68 140 1.32 1.47 1.46 0.46 1.24 1.59 

13 1.44 1.62 1.94 0.64 1.6 1.86 141 2.9 3.11 2.5 0.45 1.85 3.01 

14 1.42 1.6 1.92 0.62 1.55 1.85 142 3.65 3.87 2.87 0.5 1.95 3.66 

15 2.24 2.49 2.2 0.44 1.65 2.64 143 4.25 4.47 3 0.52 2.03 4.12 

16 1.31 1.48 1.85 0.53 1.57 1.78 144 4.28 4.43 2.95 0.49 2.02 3.96 

17 2.92 3.25 2.33 0.37 1.78 2.84 145 4.3 4.39 2.85 0.46 2.02 3.85 

18 3.28 3.64 2.27 0.52 1.8 2.96 146 3.15 3.08 2.67 0.58 1.96 3.06 

19 2.3 2.58 2.1 0.37 1.48 2.67 147 2.79 2.77 2.2 0.57 1.67 2.66 

20 3.1 3.23 1.83 0.52 1.44 2.3 148 1.49 1.65 1.46 0.44 1.16 1.7 

21 2.84 2.83 1.82 0.54 1.38 2.35 149 3.66 3.63 2.52 0.6 1.95 3.11 

22 2.88 2.99 2.34 0.58 1.85 2.7 150 5.91 5.42 3.32 0.47 2.2 4.46 

23 2.82 2.87 2.21 0.56 1.7 2.62 151 2.64 2.67 1.43 0.46 1.1 1.79 

24 2.79 2.8 2.19 0.5 1.66 0.26 152 5.11 4.82 2.93 0.44 2.01 4 

25 2.79 2.79 2.17 0.49 1.61 2.58 153 4.91 4.86 2.91 0.34 1.81 4.08 

26 2.49 2.47 1.95 0.57 1.48 2.27 154 4.71 4.51 2.81 0.46 1.87 3.76 

27 1.16 1.31 1.54 0.46 1.37 1.44 155 4.25 4.38 2.95 0.45 1.93 3.86 

28 1.23 1.4 1.63 0.42 1.42 1.55 156 3.85 4.28 3.04 0.44 2.12 4 

29 1.02 1.12 1.25 0.43 1 1.31 157 2.94 3.45 2.8 0.39 1.98 3.58 

30 1.41 1.57 1.27 0.42 0.93 1.47 158 2.43 2.7 2.73 0.47 1.91 3.04 

31 1.61 1.7 1.49 0.42 1.14 1.69 159 0.77 0.84 1 0.5 0.93 0.98 

32 1.76 1.89 1.61 0.43 1.19 1.87 160 3.94 3.62 2.11 0.4 1.51 2.73 

33 5.01 4.4 2.3 0.49 1.66 3.18 161 0.81 0.95 1.08 0.54 0.94 1.06 

34 4.58 4.17 2.11 0.41 1.45 2.95 162 0.91 1.1 1.27 0.54 1.13 1.24 

35 1.58 1.75 1.8 0.44 1.37 1.95 163 1.23 1.45 1.51 0.53 1.25 1.55 

36 2.6 2.7 1.94 0.55 1.45 2.48 164 1.5 1.79 1.91 0.48 1.54 2.13 
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Position 

Index 
HCR MCR LCR HCC MCC LCC 

Position 

Index 
HCR MCR LCR HCC MCC LCC 

37 0.26 2.78 0.2 0.54 1.46 2.48 165 1.61 1.88 1.97 0.49 1.51 2.17 

38 2.65 2.78 1.95 0.52 1.47 2.49 166 1.21 1.37 1.53 0.51 1.2 1.58 

39 1.69 1.89 2.01 0.42 1.54 2.11 167 1.64 1.84 1.76 0.56 1.38 2.06 

40 1.75 1.95 2.01 0.43 1.47 2.24 168 2.56 2.7 1.77 0.48 1.33 2.25 

41 1.84 2.08 2.01 0.44 1.45 2.25 169 2.48 2.63 1.93 0.46 1.47 2.31 

42 4.2 3.95 2.1 0.47 1.52 2.81 170 2.23 2.39 1.7 0.44 1.32 2.02 

43 3 3.2 2.02 0.48 1.48 2.44 171 3.51 3.25 1.96 0.55 1.48 2.5 

44 3.65 3.75 2.25 0.49 1.59 2.75 172 4.27 4.22 2.76 0.62 2.05 3.47 

45 4.15 4.25 2.37 0.52 1.63 3.25 173 4.04 3.98 2.66 0.43 1.85 3.54 

46 4.98 4.66 2.6 0.53 1.84 3.48 174 5.87 5.65 3.88 0.61 2.67 5 

47 4.82 4.55 2.52 0.56 1.81 3.37 175 2.89 3.06 2.16 0.47 1.59 2.76 

48 3.59 3.72 2.32 0.58 1.75 3.01 176 2.89 3.09 2.37 0.47 1.75 2.95 

49 3.73 4.14 2.58 0.55 1.85 3.42 177 2.89 3.15 2.55 0.46 1.83 3.09 

50 4.4 4.41 2.8 0.52 2 3.66 178 2.26 2.59 2 0.44 1.43 2.63 

51 4.86 4.79 3.09 0.48 2.18 4.08 179 2.4 2.32 1.66 0.42 1.15 2.13 

52 4.9 0.48 0.31 0.47 0.22 4.25 180 3.39 3.6 2.29 0.48 1.54 3.21 

53 4.98 4.96 3.24 0.46 2.16 4.35 181 2.66 3.13 2.62 0.46 1.87 3.33 

54 4.71 4.73 3.2 0.51 2.15 4.19 182 1.57 1.74 1.48 0.44 1.13 1.78 

55 3.95 4.02 2.76 0.55 1.89 3.7 183 3.23 3.52 1.98 0.3 1.35 2.84 

56 0.83 0.95 1.25 0.48 1.15 1.14 184 1.62 1.81 1.47 0.4 1.15 1.7 

57 2.59 2.88 2.6 0.58 1.91 3.12 185 1.31 1.38 1.25 0.36 1.01 1.33 

58 2.75 3.09 2.75 0.56 1.95 3.39 186 2.1 1.99 1.62 0.36 1.21 1.84 

59 3.1 3.25 2.85 0.56 2.09 3.52 187 1.52 1.23 1.32 0.41 1 1.35 

60 3.27 3.56 2.96 0.54 2.17 3.61 188 3.59 3.28 2.24 0.47 1.65 2.89 

61 2.75 2.95 2.65 0.53 2.05 3.1 189 4.12 3.99 2.3 0.46 1.54 3.1 

62 2.42 2.73 2.48 0.51 1.91 2.83 190 5.01 4.9 2.92 0.58 2.13 3.92 

63 1.83 2.04 1.98 0.49 1.54 2.13 191 4.86 4.58 2.76 0.54 1.97 3.55 

64 1.14 1.32 1.28 0.44 1.02 1.31 192 4.28 4.04 2.14 0.47 1.64 2.83 

65 2 2.28 2.03 0.55 1.61 2.32 193 4.36 4.28 2.47 0.47 1.75 3.48 

66 2.38 2.59 2.34 0.59 1.84 2.44 194 4.47 4.65 2.73 0.46 1.83 3.84 

67 2.43 2.73 2.46 0.63 1.95 2.7 195 2.68 3.13 2.59 0.45 1.86 3.23 

68 1.6 1.81 1.84 0.57 1.51 1.95 196 0.71 0.82 0.96 0.44 0.81 0.95 

69 2.08 2.28 2.13 0.51 1.61 2.38 197 0.78 0.91 0.97 0.41 0.74 1.08 

70 1.95 2.22 2.52 0.66 1.97 2.71 198 0.76 0.9 1.08 0.38 0.97 1.05 

71 1.48 1.72 1.83 0.49 1.41 1.97 199 1.21 1.45 1.73 0.35 1.39 1.79 

72 2.01 1.96 1.58 0.52 1.37 1.61 200 1.48 1.75 1.56 0.37 1.15 1.91 

73 3.19 2.58 1.94 0.5 1.56 2.65 201 1.68 1.97 1.55 0.4 1.18 1.98 

74 3.31 3.31 2.59 0.49 1.94 3.07 202 2.69 2.89 1.69 0.4 1.18 2.35 

75 2.99 3.09 2.25 0.41 1.51 2.82 203 3.57 3.47 1.95 0.43 1.38 2.59 
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Position 

Index 
HCR MCR LCR HCC MCC LCC 

Position 

Index 
HCR MCR LCR HCC MCC LCC 

76 3.22 2.95 2.12 0.49 1.64 2.53 204 4.29 4.08 2.14 0.46 1.54 2.89 

77 3.53 3.43 2.19 0.49 1.63 2.74 205 4.5 4.25 2.25 0.48 1.64 3.15 

78 3.84 3.65 2.25 0.5 1.61 2.95 206 3.96 3.87 2.59 0.5 1.76 3.19 

79 2.77 2.63 2.15 0.56 1.66 2.46 207 3.38 3.33 2.73 0.51 1.91 3.2 

80 2.79 2.66 2.22 0.64 1.79 2.6 208 4.35 4.52 3.32 0.53 2.24 4.3 

81 3.15 2.95 2.31 0.6 1.69 0.29 209 2.38 2.75 2.72 0.62 2.11 3.11 

82 3.43 3.54 2.32 0.47 1.62 3.11 210 2.04 2.18 2.08 0.54 1.59 2.32 

83 1.66 1.66 1.54 0.49 1.24 1.74 211 2.43 2.58 2.17 0.54 1.66 2.6 

84 2.35 2.1 1.85 0.52 1.57 2.42 212 3.02 3.01 2.12 0.62 1.58 2.64 

85 2.58 2.85 2.38 0.54 1.75 2.97 213 3.78 3.86 2.65 0.59 1.97 3.33 

86 2.38 2.62 2.46 0.62 1.81 2.81 214 3.19 3.24 2.25 0.53 1.77 3.06 

87 1.77 1.87 2.1 0.52 1.56 2.07 215 2.78 2.69 1.97 0.48 1.52 2.41 

88 1.26 1.27 1.21 0.46 1.07 1.26 216 1.94 1.83 1.33 0.52 1.08 1.41 

89 1.99 2.3 2.29 0.6 1.88 2.45 217 1.56 1.75 1.43 0.53 1.04 1.8 

90 1.32 1.57 1.63 0.54 1.38 1.78 218 1.95 2.4 1.87 0.56 1.59 2.37 

91 2.57 2.66 1.95 0.48 1.49 2.65 219 2.16 2.5 2.46 0.59 1.9 2.71 

92 3.24 3.45 2.12 0.41 1.52 2.84 220 2.81 2.72 1.74 0.4 1.27 2.19 

93 4.56 4.16 2.07 0.44 1.45 2.91 221 2.74 2.89 1.92 0.35 1.35 2.28 

94 1.08 1.27 1.45 0.52 1.26 1.46 222 1 1.19 1.26 0.4 0.95 1.43 

95 2.85 2.85 1.75 0.48 1.36 1.89 223 1.29 1.51 1.12 0.36 0.89 1.42 

96 3.26 3.76 1.95 0.47 1.44 2.76 224 1.77 1.75 1.25 0.46 0.98 1.38 

97 4.32 4.26 2.16 0.44 1.49 3.13 225 2.44 2.39 1.65 0.44 1.37 1.96 

98 3.46 3.67 3.05 0.62 2.33 3.54 226 3.06 2.95 2.03 0.42 1.51 2.65 

99 2.6 2.93 2.61 0.67 2.04 3.02 227 2.76 2.45 1.76 0.43 1.34 0.21 

100 2.43 2.6 2.21 0.63 1.73 2.5 228 2.44 1.95 1.36 0.44 1.04 1.64 

101 2.48 2.69 2.28 0.63 1.79 2.76 229 3.03 2.85 1.8 0.48 1.3 2.19 

102 2.5 2.74 2.35 0.63 1.82 2.39 230 1.08 1.24 1.31 0.48 1.09 1.4 

103 2.53 2.79 2.43 0.63 1.81 2.87 231 1.25 1.49 1.45 0.41 1.07 1.67 

104 3.49 3.72 2.38 0.52 1.69 3.13 232 2.32 2.44 2.09 0.4 1.44 2.61 

105 3.47 3.65 2.38 0.56 1.71 3.12 233 2.86 2.96 2.49 0.5 1.57 3.18 

106 4.42 4.21 2.43 0.65 1.79 3.26 234 3.13 3.29 2.85 0.52 1.99 3.48 

107 3.25 3.21 2 0.5 1.49 2.53 235 3.05 3.21 2.87 0.57 2.11 3.29 

108 3.86 3.57 2 0.48 1.5 2.49 236 1.58 1.72 1.65 0.46 1.43 1.68 

109 4.26 3.95 2.05 0.46 1.52 2.72 237 0.69 0.64 0.65 0.36 0.53 0.69 

110 4.34 3.98 2.2 0.5 1.64 2.88 238 1.36 1.54 1.39 0.54 1.16 1.64 

111 4.77 4.4 2.35 0.48 1.7 3.45 239 1.71 1.98 1.75 0.47 1.34 2.11 

112 5.16 4.69 2.5 0.43 1.72 3.55 240 2.27 2.56 1.81 0.46 1.39 2.35 

113 5.22 4.69 2.5 0.44 1.76 3.53 241 1.57 1.8 1.49 0.36 1.14 1.94 

114 5.28 4.71 2.51 0.45 1.77 3.48 242 0.86 1.02 1.06 0.37 0.94 1.11 
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Position 

Index 
HCR MCR LCR HCC MCC LCC 

Position 

Index 
HCR MCR LCR HCC MCC LCC 

115 5.86 5.4 2.98 0.54 2.07 4.1 243 3.01 3.37 2.4 0.58 1.72 3.23 

116 4.02 3.89 2.55 0.53 1.93 3.11 244 0.5 0.58 0.75 0.36 0.67 0.71 

117 3.08 3.11 2.04 0.53 1.68 2.44 245 0.66 0.72 0.96 0.41 0.86 0.87 

118 2.03 2.18 1.82 0.49 1.48 2.19 246 0.99 1.08 1.16 0.43 0.94 1.17 

119 1.5 1.62 1.84 0.6 1.53 1.9 247 2.92 2.89 2.11 0.44 1.52 2.67 

120 2.23 2.54 2.43 0.46 1.81 2.68 248 4.94 4.89 2.75 0.52 1.98 3.67 

121 2.42 2.75 2.2 0.36 1.54 2.74 249 3.01 2.78 1.56 0.48 1.22 1.93 

122 0.91 1.08 1.32 0.44 1.1 1.31 250 4.18 4.31 2.65 0.45 1.73 3.75 

123 4.07 4.18 2.42 0.51 1.7 3.3 251 5.34 5.43 3.67 0.62 2.56 4.88 

124 4.22 4.28 2.49 0.51 1.74 3.39 252 2.38 2.59 1.82 0.44 1.37 2.41 

125 4.4 4.4 2.55 0.52 1.79 3.46 253 1.27 1.28 1.24 0.43 1.09 1.3 

126 0.69 0.82 0.88 0.44 0.78 0.87 254 1.04 1.12 1.1 0.4 0.91 1.14 

127 2.5 2.67 1.5 0.44 1.2 1.9 255 1 1.11 1.16 0.38 0.92 1.16 

128 0.73 0.85 0.96 0.42 0.8 0.92 256 1.81 2.14 2.45 0.54 1.87 2.56 
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Appendix M – Latitudes and Longitudes of the Common Promising Locations at 

Which Detection Systems are Preferentially Located in the Single Type Systems 

Recursive Optimization Approach Across all System Types 

 

Position Index Latitude (° North) Longitude (° West) 

1 32.474 114.8 

3 32.456 114.768 

8 32.474 114.736 

9 32.411 114.736 

28 32.366 114.374 

40 32.24 114.173 

42 32.312 114.14 

43 32.294 114.14 

44 32.303 114.13 

49 32.231 114.066 

52 32.205 114.045 

58 32.169 113.961 

61 32.169 113.95 

63 32.16 113.94 

77 32.088 113.696 

81 32.079 113.643 

90 32.088 113.473 

95 32.106 113.42 

101 32.007 113.326 

106 32.052 113.24 

111 31.998 113.167 

113 31.998 113.156 

123 31.998 112.987 

132 31.881 112.83 

149 31.809 112.514 

150 31.782 112.504 

157 31.755 112.431 

176 31.665 112.116 

209 31.494 111.509 
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