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SUMMARY 

Statistical analysis of hydrologic data is an important part of 

the solution of hydrologic problems. While standard statistical 

techniques are very useful to the practicing hydrologist, certain 

differences between the requirements of hydrologic analysis and the 

assumptions of classical statistics often require the hydrologist to 

seek new methods of statistical analysis more suited to the problems 

with which he must contend. This research was concerned with the 

exploration of the method of nonlinear least squares as a means of 

estimating statistical parameters, with particular attention being 

given to the utility of the method when applied to problems of fre­

quency analysis of hydrologic data. 

The use of least squares to estimate statistical parameters 

involves fitting, in the least squares sense, a theoretical frequency 

distribution function to a data histogram by adjusting the parameters 

of the distribution function. The difference between the number of 

observations in a given histogram class interval and the expected 

number of observations for the same class (obtained from the density 

function) is called the class error. When these errors are normally 

distributed with zero mean and constant variance, then the method 

of least squares is an application of the method of maximum likelihood. 

Specific techniques were developed and collected from the litera­

ture which are of use in the application of the method of least squares 
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to a wide variety of problems. In addition, methods are presented by 

which confidence regions for estimated parameters may be computed for 

various levels of confidence. A method is described by which such a 

confidence region may be used to calculate statistical tolerance limits. 

Numerical experiments were conducted to determine the properties 

of the least squares estimators of the parameters of a two parameter 

gamma distribution. By forming data histograms of different class 

widths from the same samples and estimating by least squares the popu­

lation parameters from each histogram, it was found that the properties 

of the estimators are not highly dependent upon the width of the class 

interval used to construct the histogram. By progressively adding 

empty classes to the right end of histograms and then estimating the 

population parameters, it was shown that it is sufficient to use the 

range of the sample as the range of optimization. Consideration of 

samples of different sizes revealed that the variance of an estimator 

multiplied by the sample size is approximately a constant. By con­

sidering sums of weighted squares of error terms, it was found that 

the properties of the least squares estimators were dependent upon 

the weights, and that by adjusting the weights, the properties of 

the estimators may be adjusted to suit the requirements of the problem 

at hand. These experiments showed that the least squares estimators 

were less efficient than likelihood estimators in the sense that the 

variance of the least squares estimator of a parameter will in general 

be larger than that of the corresponding likelihood estimator. It was 

found that by a proper choice of weights this inefficiency could be 



practically eliminated. 

The two parameter gamma distribution was fit to annual flood data 

and annual rainfall data. In the course of these fittings, it was shown 

that the least squares estimators are quite insensitive to outliers 

which may occur in the sample. That is, the parameter estimates obtained 

from a given sample containing outliers are not substantially different 

from the estimates obtained from the same sample with the outliers re­

moved. This fact is of importance in the statistical analysis of samples 

which may contain outliers, since if the analysis be done by least 

squares, then the results will not depend upon the identification and 

removal of the outliers. 

The method of least squares has been shown to yield results close 

to those of maximum likelihood under most conditions, and to yield better 

results when the sample being analysed contains one or more outliers. 

Therefore, the method of least squares should be considered a useful 

method of statistical analysis of hydrologic data. 
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CHAPTER I 

INTRODUCTION 

Hydrologic data such as streamflow and precipitation measurements 

are important in the design, construction, and management of hydraulic 

structures. In the form in which such data are originally acquired, 

they are scarcely more than a collection of numbers conveying little 

meaning and less understanding of the phenomenon under observation. It 

Is the duty of the hydrologist to attempt to bring order out of this 

chaos, to judiciously expand and contract the original collection of 

data in such a way as to eliminate or classify those characteristics 

of the data due to chance, and to so condense and order the data as to 

allow rational interpretations of those events represented by the 

existing data and the logical extrapolation of the data to include 

events not represented in the original data but of significance to the 

problem at hand. 

As a matter of practicality, if not of necessity, the reduction 

of data is universally accomplished by the expedient of making a_ priori 

some statement regarding the behavior or order of the world, and then 

utilizing the available data to adjust the statement to allow the fullest 

possible accommodation by the hypothesized world to the available dc.ta, 

which presumably are a consequence of the functioning of the real world. 

Such hypothetical statements regarding the workings of the world are 
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generally called "models", and the use of observations of past events to 

adjust the model is called" fitting" the model to the data. The appro­

priateness of a model is judged by its ability to explain the salient 

portions of the data, to ignore the trival portions of the data, and to 

accurately predict or describe events post-dating the fitting of the 

model. 

Models are typically described as deterministic or probabilistic, 

or as a combination of these two types. A deterministic model is one 

which, from a given initial state, may and must arrive at a unique sub­

sequent state which is dependent solely upon the initial state. A pro­

babilistic model is one which, from a given initial state may arrive at 

more than one subsequent state, and thus whose future behavior can be 

inferred only generally, and not for a particular instance. It is 

customary to regard a probabilistic model as an expression of incomplete 

understanding of the phenomenon being studied, and one expects, with 

Democritus, that as knowledge of the physical processes governing a 

particular phenemenon increases, then the attributes of the phenomenon 

which must be regarded as indeterminant will decrease, until at last 

the totality of the event may be understood, and thus predicted. 

The physical processes forming the subject matter of hydrology 

range from large scale atmospheric phenomena to the microscopic details 

of soil-water interactions and movements occuring in spaces and channels 

which may be only a few microns in diameter. Inasmuch as the typical 

problem in hydrology will encompass or be affected by processes of such 

large and small scales, it is not surprising that much of the science 

of hydrology is based upon probabalistic models, and that little in 
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the way of deterministic information is available. Thus, it is seen 

that, at least at the present state of hydrologic art, hydrologic 

phenomena must as a practical matter be regarded largely as the result 

of random processes and must be analyzed and studied as such. Methods 

of statistical analysis have been developed for the study of such random 

phenomena, and the past few decades have witnessed a growing awareness 

by hydrologists of the power and utility of statistical methods as 

tools to aid in the solution of hydrologic problems. 

In spite of the proven usefulness of traditional statistical 

methods in hydrology, the practicing hydrologist is often plagued by 

the subtle differences between his situation and the assumptions under­

lying classical statistics. For example, most hydrologic problems begin 

with small amounts of data, and hope to end with statements concerning 

the characteristics of large amounts of data; in other words, the 

hydrologist must work beyond the range of his data. A practicing 

hydrologist rarely has the opportunity to design or supervise the 

collection of his data in such a way as to adapt the collection scheme 

to facilitate the solution of a particular problem. Because of the 

large amount of time required for the collection of much hydrologic 

data (for example, annual flood peaks), the hydrologist is denied the 

opportunity to examine multiple samples, and must content himself with 

one sample, be it representative or no, which grows by the addition 

of new observations which may very well be influenced by changes in 

the environment over which he has no control, and quite often no know­

ledge. Upon such a data base, the hydrologist is required to make 

estimates which may be used as a basis of design for very expensive 
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structures whose failure could have serious physical and economic con­

sequences. Not surprisingly then, the requirements of the hydrologist 

are somewhat different from the assumptions of classical statistics. 

Whereas the latter is primarily concerned with the most efficient 

estimation in the sense of minimizing the variance of the estimators, 

the hydrologist is properly willing to sacrifice some efficiency in 

his estimators in order to gain some protection against making unusually 

bad estimates based upon samples which may contain one or more records 

of rare or extreme events. The hydrologist, in other words, must 

follow the time-honored engineering adage "to err is human; to err on 

the side of safety is divine". 

In this spirit of seeking statistical methods with particular 

advantages in dealing with the problems of hydrology, Snyder [1] in 

1972 proposed that population parameters of probability density func­

tions might be estimated by the technique of least squares. As 

envisioned by Snyder, the essence of this method would consist of 

grouping a given set of data into a frequency histogram, and then 

fitting by non-linear least squares the selected probability density 

function to this histogram. Several advantages apparently would accrue 

from this method of parameter estimation. First, the least squares 

estimates would not be unduly influenced by the presence of data 

representing rare events in a small sample (i.e., outliers). This 

question of the proper identification and treatment of outliers has 

traditionally been a bane to hydrologists, and the method proposed by 

Snyder promised at least a partial solution to the problem. Second, 

the least squares technique offered a convenient method to choose 
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simultaneously the parameters of a transformation of data and the 

statistical fit of a given density function to the transformed 

data. Hydrologists frequently find it necessary to transform 

data for one reason or another; they take the logarithm of annual 

flood data in an attempt to eliminate skewness; they take fractional 

powers of data for the same reason; in fact, Chow [2] gives a 

list of over one hundred references dealing with various data 

transformations which have been used by hydrologists. Thus it 

is apparent that the ability to specify the parameters of a data 

transformation while at the same time specifying the statistical 

parameters of the transformed data is a decided advantage. Again, 

while the computations involved in the least squares estimation 

of parameters are laborious, the nature of the computations is 

such that they are readily adapted to solution by digital computers, 

and furthermore the computations are for the most part identical 

for any distribution, and so once a computer program were developed, 

it would suffice with only minor modifications to fit any data 

to any distribution. 

This study was undertaken to develop upon and to extend these 

initial concepts of Snyder by a systematic investigation of the tech­

niques of least squares estimation of parameters and of the statistical 

properties of the estimates so obtained. The plan of the study was 

to attempt first to understand the theoretical basis and implications 

of parameter estimation by least squares, and from this knowledge to 

attempt to develop specific techniques necessary to apply the least 
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squares method In a more or less optimum manner. Using these techniques, 

a systematic study of the statistical properties of the least squares 

estimators for a two parameter gamma density function was made, wherein 

the strengths and weaknesses of the method were identified. A second 

study was then made in which the basic method was modified in an attempt 

to overcome certain weaknesses of the method of least squares which 

were uncovered in the earlier investigation. 

The presentation of the results of this study follows closely 

the above outline. In Chapter II are presented the necessary theoretical 

aspects of least squares estimation in general and least squares esti­

mation of statistical parameters in particular. Chapter III provides a 

specialization of the ideas of Chapter II to the two parameter gamma 

probability density function, deals with certain problems implicit in 

least squares estimation of statistical parameters, such as the grouping 

of the sample into a histogram, and provides an outline of the numerical 

experimentation undertaken to examine the properties of the least squares 

parameter estimates. Chapter IV gives detailed accounts of the various 

numericc-L experiments and analyses of the results of these experiments. 

Chapter V gives a brief account of the results obtained from the fitting 

of the two parameter gamma distribution to real hydrologic data by the 

method of least squares. Chapter VI summarizes the results of this 

study and provides an analysis of these results along with certain 

conclusions to which these results appear to lead. 
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CHAPTER II 

SOME THEORETICAL CONCEPTS 

In this chapter certain theoretical concepts upon which the work 

in later chapters is based are collected and explained. Since many 

of the techniques presented in this chapter are applicable to any 

problem involving least squares estimation of parameters, an attempt 

has been made to state these techniques in a rather general form. 

In most cases the application of these techniques to the problems 

considered in the later chapters is immediate and obvious. Where 

the application of a technique to these problems is not obvious, or 

requires the technique to be reformulated, then the specialization 

is deferred to the chapter in which the technique is required. 

The following definition is central to the proper interpretation 

of the remainder of this chapter, and all statements are made with 

tacit assumption of the terminology of this definition being made. 

DEFINITION: By an observation is meant a set of two N-tuples of knovm 

data (x , x„,....,x^) and (y.. , . ,.,y ). It is assumed that the 

N-tuple yN is related to the N-tuple x ̂ in the following manner 

Y. = f (x., &) 2.1(a) 
1 1 ~ 

w ±
1 / 2 (y - Y ) £ N(0,<T2) 2.1(b) 



s 

1/2 
where the form of f is known, 9 is some m-tuple of parameters, w, is 

a positive weighting function which may depend on x., 8 , or both. 

1/2 
Equation 2.1(b) says that the product w (y - Y.) is normally dis-

2 
tributed with zero mean and variance qr which does not depend upon x. 

The Method of Least Squares 

Let the observation x^, £ be given, and suppose it is required 

to utilize this observation to deduce a "reasonable" value for the 

parameter vector 0 . The method of least squares defines the "best" 

value of Q to be that value for which the sum of the squares of the 

weighted residuals is a minimum. In the notation of Equation 2.1, 
SI 

the least squares estimate 0 of 0 is chosen so that 

E2 = 2 1 V y i - V 2 2-2 

i = 1 

is a minimum. As an alternative to the least squares procedure, it 

may be desired to estimate 9 in such a way as to maximize the pro-

1/2 
bability of observing the residuals w. (y, - Y.). This may be 

accomplished by utilizing the following argument. Let 

e =„.1/2 ( y t - V 

Then by Relation 2.1(b), e is normally distributed with zero mean and 

2 
constant variance <T • The probability of observing a particular N-tuple 
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L=TT ^ exp (-ijjl 2.3 
i=i ^V27 z ^ z 

N 
where the symbolTT" [•••] indicates the product of the N quantities 

i = 1 

within the brackets. To maximize L, it is sufficient to maximize the 

logarithm of L, since L is a positive quantity and the logarithm is a 

monotonically increasing function of its argument. Thus, 

1 
In L = -N In ( /3ffo) - j - ? ] £ e±

z 2.4 
1=1 

N 
2 An examination of Equation 2.4 shows that ln(L) is a maximum when ̂ ^ e-

i=l 
is a minimum. But, 

N N 

2 e i2 = Z wi (y± - V 2 = E2 2-5 

i=l i=l 

Equation 2.5 shows that the principle of maximum likelihood is equivalent 

to the principle of least squares. 

The equivalence of maximum likelihood and least squares demon­

strated above is of great importance because there exists a large body 

of knowledge regarding the statistical properties of maximum likelihood 

estimators Bo£ the parameter 0 (Kendall [3], and Cramer [4]), and these 

estimators are known to have very desirable statistical properties 

(Kendall [3]). In particular, maximim likelihood (and thus, least 
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squares) estimators are consistent (although they may be biased), they 

tend to a normal distribution for large N, they have minimum variance 

in the limit as N increases, and the form of the covariance matrix of the 

multivariate normal distribution of the estimators is known for large N. 

The following expression for the covariance matrix of the esti­

mators is derived in Kendall [3]. Let g(e,0) be the frequency function 

of the weighted residuals e, Then by virtue of Relation 2.1(b), 

t'&'mr^-i*^ 2.6 

Then if Q be estimated using Equation 2.2 (or equivalently, Equation 

2.A), 

A j k 
N cov(e , ek) = 2 .7 (a ) 

where 

A -

vO 

2 In & , 2 In c-^> ( h gCe,e») de 2.7(b) 

and A.. is the minor of the jth row and the kth column of A, and Q0:s 

the "true" value of the parameter vector. As N approaches infinity, 

the joint probability function of the maximum likelihood estimators 

of & tends to the form 
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,z, Ul1 /2
 - ( 9 - Q ^ T A<a-s^ 

P ( §) = ^77 e x P — ^ 9 — 
( 2 T T ) n / / ^ 

2 . 8 ( a ) 

where 

A«= I~-rf\. ( T f > t •<••*> -

and Q denotes the transpose of 0. Possible uses of Equations 2.8 

will be discussed later in this chapter. 

Finally, it should be noted that the minimization of Equation 2.2 

provides a viable method of estimating & even if the assumption of 

normality of the weighted errors expressed by Relation 2.1(b) is net 

appropriate. In this case, however, such use of Equation 2.2 must be 

motivated by intuition or other considerations rather than by an appeal 

to the properties of maximum likelihood. Thus, failing the appropriate­

ness of Relation 2.1(b), the properties of the least squares estimator 

of c? will, at least in the general case, be unknown. 

Confidence Regions in Least Squares 

If an estimate 0 of the parameter ©_ is made from an observation x^, 

A 

y j then 0 is dependent upon the random characteristics of the observa-
A 

tion, and so it is unlikely that the estimate 9 will agree exactly with 
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the true, but unknown, value of 0. Thus, one is often interested in 

>* 
estimating the probable magnitude of the difference between 0 and 6. 

2 A 

More specifically, one seeks a 2m-dimensional region R^ in Gx& space 
ss. 

for which the probability of a given point (0,0) falling within this 

region is equal to -5L (recall that m is the number of components in 

the parameter vector ©). If p1 (©!©) is the probability density of 

observing Q given a particular value of & , and if p (£) is the 

probability density of 9, then the probability of a point (0,©) being 

in the region R . is given by 

P(R2) = \ P ( e | G ) P(0) d? de = ~ 2.9(a) 

JR2 X 2 

Let the probability space of ( 0 S 0 ) be denoted by E x E . If one fixes 

the value of B at some value (say) 0o, then 

) 
p c e l e . ) d | = i 2.9(b) 

E2 

and hence a region £_ CL E_ may be found for which 

^ ) 4 - f e 
E 2 ^ 

The region E_ represeix:.s a cross-section in E x E corresponding to 
c&o -L 2 

the fixed point 0 O in E- . If such a set E- be chosen for each point 
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9, in E.| , the union of these sets will be a 2m-dimensional subregion 

in E x E . If one now considers cross-sections R̂  of this subregion 

A 

formed by the intersection of the plane B = constant with the sub-

region U E H , then these cross-sections Rw represent the d percent 

iXT ^ •*> * 
A 

confidence regions for & corresponding to the fixed value B = con­

stant. It should be noted that no claim is made that the probability 

that R^ contains 0 is equal to o(, but instead it is claimed that if 

a large number of Q be computed from different observations xN,yH, 

and if for each such©, the corresponding region Rtf be computed, then 

the statement 0-eR^may be expected to be true in oC percent of these 

cases, (von Mises [5]). If the Relation 2.1(b) is valid, and if N 

Is large enough for Equation 2.8 to apply, then the confidence region 

Rw may be found approximately by using Equation 2.8 to construct the 

region U E _ , and then finding the particular cross-section of this 
hCY Z*-fc 

,A 

region corresponding to the estimate 8 based upon the observation 

xM,y^ of interest. Such a procedure is actually not very difficult 

in the case m = 1. In the case m = 2, the procedure is apt to 

be very difficult, and in the cases m /• 2, only the faintest hope for 

success may be extended. 

For small N, and as an alternative to the above procedure for 

large N, Halperin [6] and Hartley [7] have devised a method by which 

the confidence region R^ may be constructed. The method is based 

upon known results from linear regression theory, where m 
y,- = S ***©.. + e , 2-io 
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2 
and the e. are a set of N independent errors from N(0,<T ) with €~ 

unknown. Equation 2.10 may be rewritten in the form 

y = X& + e 2.11 

where it is assumed that the matrix X is of rank m. The least squares 

estimate of & is then 

G = (XTX) 1 XTy 2.12 

A frequently used method of constructing confidence regions in this 

linear case is to decompose the sum of the squares of the errors e. 

into two components, namely 

T 
e e = reg(e) + res(e) 2.13(a) 

where 

reg(e) = (XTe)T (XTX) l (XTe) 2.13(b) 

and 

T 
res(e) = e e - reg(e) 2.13(c) 
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The first component of Equation 2.13(a) has rank m, the second component 

has rank N-m and is independent of the first. Thus, the ratio of the two 

components reg (e)/res (e) is distributed as Snedecor's "F" statistic with 

m and N-m degrees of freedom. The ck percent confidence region for B is 

then given by 

R = \ Q . imS&L < _ E _ F ( _ « L . m N_ ra)] 
K* [ <? • res(e) - N-m ^100' m' ;J 

2.14 

For the more general relation 

y± = f ( x ± , e ) + e± 2.15 

Equation 2.14 may still be used to determine the ^-percent confidence 

region for 0. However in this case the form of the decomposition o:f 

T 
e e into the components reg(e) and res(e) is no longer obvious. Hartley 

[7] has proposed a decomposition, based upon the use of Lagrange's inter­

polation formulae, to obtain a quasi-linearization of the regression 

function f. Halperin [6] has proposed a decomposition of the form 

reg(e) = (FTe)T (FTF) 1 (FTe) 2.16(a) 

where 



lb 

Df(x1,9) 
F = ( f- ) = (F ) 2.16(b) 

J 9 A i J 

These results are immediately applicable to regression of the system 

defined by Equation 2.1, for Equation 2.1 may be written in the form 

1/2 1/2 1/2 
w, y. = z. - w / / Z f ( x . , 0 ) + w / / e, - G ( x . , 6 ) + E. 2 .17(a) 

l i i l 1 " 1 1 l *• 1 

E . £ N ( 0 , ( T 2 ) 2 . 1 7 ( b ) 

In this case, Equations 2.16 may become quite complicated, especially if 

the weights w depend upon 0. 

Tolerance Limits 

In the case where the function f is a probability density func­

tion, then instead of seeking information about the probable range of 

values of the population parameters, one is often interested in the 

probable values of a given percentile of the population. If some "best" 

estimate 0 of 6 be deduced from an observation x , y , then by defini­

tion the "best" estimate of the Y percentile of the population based 

upon x^,y is that number v for which 

p(v; g ) dv = V 2.18 
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However, in the same way that the estimate © of the population para­

meters is dependent upon the vagaries of the observation from which it 

was estimated, so also is the estimate vy of the Y percentile of the 

population dependent upon the observation, and the number Vy computed 

from Equation 2.18 may be expected to vary from observation to observa­

tion. Thus, one is led to the concept of tolerance limits as a means 

of making a statement about the probable range of Vy. Since, at least 

as defined above, the quantity Vy is a random variable, then v y itself 

has a distribution, although in general this distribution is unknown. 

Thus, there exists a number v, such that for v^ based upon a large 
»# Y 

number of observations, o( percent of these Vy may be expected to be 

less than v, . This number vy cannot, of course, be computed unless 
f/x {& 

the distribution of Vy be known. 

Motivated by the above discussion, one may define a tolerance 

limit as a random variable v v », which is a function of the observa-
* A 

tion x ,y , the percentile point Y", and the confidence level o(, which 

has the property that for large number of observations the inequality 

(vv) < v . 2,19 
i true — /,<* 

wnere (vY) t is the actual but unknown Ypercent:ile point of the 

population, may be expected to be true for at least o( percent of the 

observations. (Note that this definition is actually a definition 

of an upper one sided tolerance limit. Similar definitions can be 

made for lower one sided and for two sided tolerance limits. See, 



for example, Bowker and Lieberman [8].) 

The following important points of the above definition should 

be noted: 

a) The tolerance limit Vy, ̂  is a function of the observation 

upon which it is based. 

b) There is no reason to expect that the definition of the rand 

variable Vy** should be unique, and thus there may be many 

tolerance limits Vy,. based upon the same observation. 

c) The difference between the random variable "vy,̂  and the 

quantity Vy,^ defined above is emphasized. In particular, 

it should be noted that ^v*^ is a constant independent of 

any particular observation, while v^,^ is a function of 

the observation from which it is computed. 

In view of the above discussion, it is obvious that if one has 

a means of constructing a confidence region R^ for the population 

parameters 6 for any observation, then one may immediately define a 

(upper one sided) tolerance limit vy,^ to be the random variable 

v = _max 
* '* Qe R 

v: I p(r; ©) dr = \ i 2.20 

where 0 is any point in R^. In words, Equation 2.20 says that Vy,^ 

is the largest v such that 

J dr = Y 
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as 0 varies over all values in R^. It is clear that Equation 2.20 

defines a tolerance limit, since by the definition of R^, & is 

included in << percent of the R^ computed from a large number of 

samples, and thus, for at least these o( percent of observations, 

C vV 5 true : % " > * 2.21 

which is the definition of an upper one-sided tolerance limit 

Estimation of Parameters in Non-Linear Regression 

The solution of the least squares equation 

2 
E = minimum 

is based upon the necessary conditions for a minimum in the form 

3E2 

= 0 , j = 1, ..., m 2.22 ie 

If the regression function f(x., 6) be linear in the parameters 9 , 

2 
then E is a quadratic form in 0: , and the solution to Equations 2.22 

usually offers little in the way of serious difficulty, leading rather 

routinely to the so-called normal equations given by Equations 2.12. 

Furthermore, since E is a quadratic form in 9* , there will be at 
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most one solution to Equations 2.22 and so any solution to these 

equations which is found is known to be unique. The estimates Q* 

obtained as a solution to Equations 2.22 in the linear case are known 

to be the "best linear unbiased estimators" of the parameters (Hartley 

and Booker [9]). 

In the more general case in which f(x,,d) is non-linear in the 

parameter 0, the routine nature of the problem of solving Equations 

2.22 disappears. Apart from the often arduous task of finding any solu­

tion to Equations 2.22, one is faced with the possibility that a solu-

2 
tion, once found, may not yield an absolute minimum of E over the 

allowable region of B. Problems associated with finding solutions to 

Equations 2.22 have been discussed by Levenburg [10], Snyder [11], 

Hartley [12], Marquardt [13], Anderssen and Osborne [14], and Decoursey 

and Snyder [15], among others. Problems associated with the possi­

bility of multiple solutions to Equations 2.22 have been treated by 

Hartley and Booker [9J. 

The favored approaches to solving Equations 2.22 begin with a 

Newton-Raphson iteration scheme. 

Write 

H 
E 2 = 2 w.(y.-f(xi)?))

2
 223 

1=1 

In the development that follows, the weighting factors w. are omittad 

since they add essentially nothing to the discussion and their retention 
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would introduce a great deal of unnecessary confusion to the desired 

results. 

Assuming independence of the parameters oL 

N 
2E 

-= 2 S <y± -
 f(V§>(- ^ f ( Xi ? - Y j = 1, ..., m 2.24 ^ - 'i i ^ - - ^ — 

Thus 

N N 

^<9j i=i i *>0j i=i x P<9j 

In Equations 2.25, let f (x-̂  0 ) be approximated by the first order 

terms in d0, in the Taylor series expansion of f, where 

9 = & + dO 2.26 

and C70 i s some p r e - s e l e c t e d poin t i n 0 - s p a c e . 

Thus 

^r ^>f<v&> 
f(x , 9 ) ^ f ( x ,gp + 2 ^ ~ dB, 2.Z7 k = l Jek " ' k 

and so 



N ^ f ( x , g 0 ) N i f ( x . , 9 D ) 

i = i < ) S j J > I < ) 9 j 

A m } f ( x e 0 ) ^ f ( x fi0) 

i = l k=l e ) 6 j <j)9k k 

Simplifying, one ob ta ins 

m N 3 f ( x . , 0 o ) J f ( x , 0 J N } f ( * , , & ) 

§ (S - 5 * 7 — ^ r de* • S <v<v*> ~ i i r • 
j = 1 , . . . , m 2 28 

Equations 2.28 are a set of m linear equations in the m unknowns d0.,, 

and are solved recursively to obtain the solution to Equations 2.25. 

Thus, starting from an initial parameter estimate 0Q) one computes 

from Equations 2.28 initial values of d Q , and sets 
* • 

BL1- a+d©1 
xe> xo 

Q is then used as the new value of Q0in Equations 2.28, and the pro­

cedure is repeated. After n cycles of the above procedure, one obtains 

n _ 1 J J A " 2.29 9o = %T + d§ n 

The procedure is terminated when the length of the vector dQ falls 
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below some preselected value. 

The above scheme has a particularly elucidating geometric inter­

pretation if the parameter Bis considered to be a real variable. The 

Newton-Raphson iteration scheme in this case consists of approximating 

the function f by the line tangent to f at the point B# The inter­

section of the tangent line and the #-axis is then computed, and the 

value of By is used as a new approximation of the desired root. (See 

Figure 2.1.) 

An inspection of Figure 2.2 reveals that the choice of the initial 

point G0 may be non-trivial, since an improper choice of this value could 

cause the algorithm either to diverge or to converge to the "wrong root." 

While existence and convergence theorems exist which in theory allow one 

at least to select an initial estimate 90 which will guarantee conver­

gence of the iterative scheme (Saaty and Bram [17]), the forms of the 

function f encountered in practical application are often so complicated 

as to make the theorems very difficult to apply. In addition, since 

the Newton-Raphson method provides only a solution or solutions to 

Equations 2.22, such theorems cannot indicate whether a given solution 

2 
minimizes E . Thus, in cases where one has little or no previous 

experience, it may be necessary to scan the parameter space, find all 

solutions to Equation 2.22, and choose from among these solutions that 

2 
value for which E is a minimum. 

It is important to realize at this point that information from 

other sources, notably the understanding of the investigator, may be 
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Figure 2.1 The Newton Raphson Method in One Dimension 
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profitably used to limit the extent of this search. Thus, if it is 

known that the value of a certain parameter must, because of physical 

considerations, lie between 0 and 10, then only this range need be 

scanned for minima. In this way an understanding of the physical 

situation can be utilized to reduce the amount of work necessary to 

obtain a solution in a given situation. 

Hartley and Booker [9] have addressed the problem of local minima 

and have developed an alternative procedure which avoids the exhaustive 

scan of the parameter space. Their method yields estimates B which are 

asymptotically 100 percent efficient as the size of the sample becomes 

large. An outline of this procedure may be given as follows: 

i) Let it be assumed that the sample size N is an integral 

multiple of the dimension of the parameter space, say 

N = km, 

and that the observation x^, y„ may be partitioned into k subsets Xiy> yw ; 

h = l,..,m,V= 1,.., k , where the convex closures of the x are dis­

joint. 

ii) Write 

1 k 
Yh = k 2" yhy 2.30(a) 

and 
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1 k 

f ( V $ > = k ? f ( x h y , § ) 2 , 3 ° C b ) 

and find the s o l u t i o n 0* for which 

Yh = f ( x h , 0 ) , h = 1, . . . , m 2.31 

(This solution, for example, may be found by using the Newton-Raphson 

method to find a solution to Y,-f(x, ,0)= 0 as was previously discussed) 

iii) Using §* as an initial estimate, perform one step of the 

standard Newton-Raphson iteration to find 0, or alternatively using 

0* as an initial estimate, carry the standard Newton-Raphson method 

to convergence to find 0 . 

It can then be shown under rather general conditions on f that 

both Q and C7 are asymptotically 100 percent efficient estimators of 

Q as N becomes large. 

It is informative to illustrate the above procedure with the 

simple cases of linear regression with one and two unknown parameters. 

For the first case, Equations 2.30 and 2.31 apply in the following 

form. The observations y. are averaged to yield y, and the function 

it — 

f(x.,8 )=0x. is averaged to yield x .0 is then computed as "y/x. In 

the case of two unknown parameters (say Q and 0 , where y= Q x + 8 ), 

the observations are partitioned into two groups (x y ,y ) and 

(x_ y ) } y sa i} ...t k, where there is some value x such that 
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X1Y * xc * X2Y 

for all Y . As in the first example, averages of the dependent and 

independent variables are computed for each group, and one then writes, 

from Equation 2.31, 

5, - BX*\ + e2* 

Y2 = B^2 + &,* 

A * 

from which values of & and & may be computed. 

It should be noted that the thrust of this procedure is to 

replace a complicated optimization problem by a simpler set of m 

equations in m unknowns. This set of equations is solved to obtain 

initial values of the parameters for use in the iterative solution 

of the more complicated optimization problem. 

In addition to the problems associated with finding from among 

2 
all solutions of Equations 2.22 that solution which minimizes E , 

numerical problems associated with the linear approximation of f and 

with an interdependence of the components &*of & often induce a 

tendency for the iterative procedure of the Newton-Raphson method to 

diverge. An examination of Figure 2.3 shows (in 1-space) how the 

parameter corrections dQ computed by the Newton-Raphson method can be 

so large as to be outside the range of the linear approximation of f, 

and thus lead to divergence of the algorithm. This problem has been 



29 

f (0 ) 

f NOT WELL APPROXIMATED BY LINEAR 
.FUNCTION 

f WELL APPROXIMATED BY LINEAR 
FUNCTION 

REGION OF 
CONVERGENCE 

Figure 2.3 Invalidation of a Linear Approximation 



rather well-studied, and algorithms for overcoming this tendency to 

diverge have been proposed by Hartley [12], Marquardt [13], and 

Levenberg [10], among others. 

The essence of the method of Hartley lies in the use of the 

Newton-Raphson method as described above to compute parameter 

corrections d & . The function of the real variable V, 

E2(1^) = E 2(^ 1" 1 + y(n)d0n) , 0 < ^ ( n )
1 l 2.32 

9 n 

is then examined to determine the value yj0 for which E ( # ) is a 

minimum for >7 in the interval (0,1). The n approximation 90 is 

then defined as 

ft11 = 0 r 1 + 7in )dSn 2.33 

and the process continues. 

Levenberg has considered the problem from a rather different view 

point. Realizing that the problem exists because of a tendency of the 

2 
normal equations arising from minimizing E as defined in Equation 2.23 

to yield values of d& which are "too large", Levenberg replaces the 

linearized version of 2.23, i.e. , 
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o JL' r m 2>f (x-r>&>) ~1 2 

by the related objective function 

m H = wS + S a.(dB±)
 2-35 

i=l 

where w and a., i = 1, ...-., m are non-negative weighting factors. Thus 

Levenberg at once introduces in a natural way a damping effect into the 

normal equations, and so tends to correct the tendency to compute values 

of dB which are "too large". While the values of the weights w and a. 

are arbitary and may be adapted to the requirements of the problem at 

hand, a particularly effective set of values for a large class of pro­

blems has been found to be given by 

df(x,,a,)l2 

~M ^k J a k 

where w is completely aribtrary, and may be varied from iteration cycle 

to iteration cycle. This device was used to improve convergence on 

the examples computed in this work, with w being initially set equal-

to 5 and doubled after each iteration (it should be noted that the 

2 2 
objective function H degenerates to S as w-»<*») . Using a,, and w as 

above, no tendency for the parameter corrections to become abnormally 

large was noticed. 
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The method of Marquardt is a refinement of the method of 

Levenburg. Based upon a consideration of the properties of the 

Newton-Raphson method and the steepest descent method, Marquardt has 

developed an algorithm for determining an appropriate value of w at 

each iteration to give rapid convergence of the iterative procedure. 

The method of steepest descent is a method of finding the minimum 

of a nonlinear function by choosing values of d9 in Equation 2.29 

proportional to (and often equal to) the negative of the gradient 

of E at the point QQ . The steepest descent method generally 

performs better than the Newton-Raphson method when the point 90 

is "far away" from the desired root, but the rate of convergence 

becomes very slow when the point Qa is in a near neighborhood of 

the desired root. Marquardt*s algorithm selects w so that the 

resulting correction vector d£? is an optimum interpolation between 

the correction vector obtained by the Newton-Raphson method and the 

correction vector obtained by the steepest descent method. Because 

of the success of the more simple method of Levenburg in the problems 

considered in this work, the method of Marquardt was not used. How­

ever, Marquardt's algorithm will often converge in cases where the 

more simple methods will not. 

A strong interdependence between the components of d& can cause 

the computed values of the parameter corrections to oscillate. This 

situation arises when the corrections to two dependent components 

alternate between positive - negative and negative-positive. Such 

situations can arise, for example, when the objective function is 
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such that an increase in B-^ has approximately the same effect on the 

objective function as a decrease in B • While it is not likely in a 
J 

well-conceived model that two components would have exactly opposite 

effects upon the objective function, it is possible, and indeed quite 

commonplace (Snyder [11]), for component pairs to possess this property 

to some degree. In these cases, errors introduced into the system 

either through inaccuracies in measurement of y_T or through inaccuracies 

in the computation of values of f may cause a loss in distinction 

between the interdependent parameter components. 

Motivated by the methods of principal component analysis in multi­

variate statistics, Snyder [11] has proposed an ingenious method to 

overcome convergence difficulties cause by interdependence of parameter 

components. An outline of a slightly modified version of Snyder's 

method is given in the following paragraphs. 

Equations 2.28 may be rewritten in the form 

A • b = c 2.37 

where 

N )f(x e ) 2 f ( x . , e ) 
A = (A.,) = (22 ^^ — — ) 

b = (bk) = Cd9k) = d& 

and 

N 2 > f ( x . , e ) 
c = (c.) = (£. (y.-f(x.,0)) ( i-1-)) 

J i=l X X ~ J 6. 
J 



Noting that A is a symmetric matrix, it follows (Hildebrand [18]) that 

there exists a matrix M such that 

T 
M' 

* A • M * ( \ $ ) . 2.38 

Now, letting 

b = M • Z 2.39 

and substituting into 2.37, there follows 

A • M • Z = c 

T 
or, upon left multiplication by M , 

MT • A • M • Z = M^c 2.40 

T 
But the matrix M-A*M is diagonal, and so the solution to 2.40 may be 

written immediately in the form 

Z. - P & l i 2.41 
-L 

* i 

provided that none of the ̂  are zero. It should be noted at this point 

that ̂ . will be zero if Z. may be expressed as a linear combination of 
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theZ^j k-̂j . (That is, if the parameter corrections are interdependent.) 

Snyder reasoned that even if none of the \ are zero, some subset of 
i 

the ̂ 's (say ̂ ., where j is fixed) may be very nearly zero. In this 

circumstance, while it would be possible to compute Z. from equation 
2.40, the small value of A- would tend to magnify any errors in the 

T 
value of [M c]., and in addition, fixed errors such as roundoff in the 

T 
computation of A. and [M c]. may have a significant influence upon the 

value of ~Z • Thus, for all values of A- smaller than some pre-selected 

value, Snyder abandons Equation 2.41 , and leaving Z. arbitrary, trans-

2 
forms the original m-dimensional problem of minimizing E into a lower 

2 
dimensional (usually one dimensional) problem of minimizing E (Z.). 

This transformation is made by computing Z-j by Equation 2.41 for al.l 

i such that ?l̂  is large enough, using 2.39 to compute the parameter 

corrections in terms of the known and arbitrary Z-^, and then substituting 

the as yet incompletely determined new value of Q0 into the expression 

for E 

In those examples examined by Snyder, this technique has succeeded 

in reducing the dimensionality of the problem to one, in which case 

the required value of Z needed to completely determine the n approxi-
k 

mation may be found by, for example, a linear search or some other rather 

insensitive procedure. The striking resemblance between the method 

proposed by Snyder and that of Hartley should be noted. In fact, 

Snyder's method seems to be a rather better m-dimensional generalization 

of the one-dimensional case which undoubtedly motivated Hartley, since 

Snyder has avoided the temptation to ignore the fact that in multi-
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dimensional problems an uncertainty in the proper direction of the 

parameter corrections exists as surely as does an uncertainty in the 

magnitude of the corrections. Wilson [16] in a private communication 

pointed out that there is no reason why either the methods of Hartley 

or Snyder cannot be combined with the method of Levenberg if required. 

One would expect a very stable iteration procedure to result from this 

combination. 

In his work, Snyder has often arbitrarly chosen the value of Zjj. 

to be zero, and dispensed altogether with the one-dimensional problem 

with apparent success. The modified method outlined above, however, 

is felt to be more general, and thus applicable to a wider class of 

problems. 



CHAPTER III 

STATISTICAL PARAMETER ESTIMATION BY THE METHOD OF LEAST SQUARES 

Snyder [1] has proposed that the parameters of probability densi 

functions may be evaluated by fitting the distribution function to a 

data sample histogram by the method of least squares. To accomplish 

this fitting, a data sample is organized into a frequency histogram 

of an appropriate number of class intervals, and the distribution 

function is expressed in the frequency form for the same grouping 

(see Figure 3.1). The difference between the observed frequency of 

a given class and the frequency indicated by the distribution function 

for the same class is defined as the class error (see Figure 3.2). 

The least squares procedures of Chapter II are used to estimate the 

parameters (o( >£>) of the distribution function so that the sum of the 

squares of the class errors Is a minimum. 

Such an idea is not entirely without precedent. Kendall [19] 

discusses the fitting of Gram-Charlier series to data histograms, 

although the method of least squares is not exclusively used in this 

reference. Reference [21] contains a computer program designed to 

fit an Arne Fisher Series to a data histogram by the method of least: 

squares. The primary feature of the techniques expounded in these 

two methods lies in the expansion of the distribution function in 

terms of a series of the products of the derivatives of the normal 
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Figure 3.1 The Finite Form of a Probability Density Function 
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distribution function and Hermite ploynomials. Leaving aside the 

question of the completeness of such a set of functions, such an 

expansion would in general require an infinite number of terms for a 

complete representation of an arbitrary distribution function, while 

only a finite number of such terms could be retained for purposes of 

computation. By accepting the added complications arising from the 

non-linearity of the model, Snyder avoids the necessity of approxi­

mating the distribution function while retaining the conceptually 

simple method of least squares fitting to the sample histogram, 

Before the method of least squares as proposed by Snyder can be 

accepted as a useful method for evaluating distribution parameters, 

however, it is necessary to examine the statistical and mathematical 

consequences of the least squares procedure. Initial work by Snyder [1] 

and Snyder and Wallace [27] has shown that the procedure is mathemati­

cally tractable. From results of Chapter II, it is known that, assum­

ing that the error terms arising in the expression 

h.=f(x.,B)+e. 3.1 
l x ~ l 

are normally distributed with zero mean and variance independent of x., 

the parameter estimates obtained by least squares will be equivalent to 

maximum likelihood estimates. Nevertheless, intuitively on would feel 

that these estimates may differ from those obtained from a conventional 

application of the method of maximum likelihood. In particular, it 
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appears that the method of least squares may be somewhat inefficient 

since the procedure requires that the data sample be grouped into a 

histogram before the distribution parameters can be estimated. It 

would seem that some portion of the information content of the sample 

may be lost when the sample is so grouped. For the small samples 

usual in hydrology, such a loss of information could be so serious as to 

make the method of least squares useless. Also, it would appear that 

the least squares estimates might be a function of the manner in which 

the sample is grouped, so that different groupings of the same sample 

might lead to radically different parameter estimates. 

In spite of the intuitive misgivings which the above observations 

may prompt, the method of least squares as a technique for estimating 

statistical parameters is not without appeal. Although the method is 

apt to be numerically laborious, the nature of the computations are 

quite routine and easily programable on digital computers. The nature 

of the computations are identical regardless of the type of distribution 

function being fitted, and so once a program has been developed, it 

would, with only minor modifications, be able to fit any function 

desired. The method of constructing confidence regions outlined in 

Chapter II allows the (relatively) easy construction of tolerance 

limits for any distribution function based upon any sample. In fact, 

the actual least squares fitting process may be avoided by using the 

confidence region to estimate the parameter values. Also, the method 

of least squares is easily visualized, and by employing an analysis 

of sensitivity coefficients (that is, the values of the derviatives 
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of the distribution function), the effects of the shape of the sample 

histogram upon the estimated values of the parameters may be evaluated 

(Snyder [1]). Finally, the inclusion of the arbitrary weighting func­

tion as a part of the sum of the squares of the errors makes the method 

of least squares extremely versatile and capable of emulating other 

standard techniques (for example, if w. = [f( X,,B)] > then the method 

of least squares becomes the method of minimum chi-squares) or being 

adapted to the contingencies of the problem at hand (for example, later 

in this work a weighting function is sought for which the least 

squares parameter estimates are unbiased). 

Selection of the Density Function for Numerical Experimentation 

In order to test the feasibility of the method of least squares 

as a means of the fitting of distribution functions, a systematic 

study was made of the statistical properties of least squares estimators 

of population parameters. The probability density function chosen for 

study was the two parameter gamma distribution. This choice was 

motivated by a study by Markovic [22], which indicated that this 

relatively simple distribution function fits most hydrologic data of an 

"annual" nature at least as well as any other commonly used distribution, 

and thus the results of this investigation would have immediate practical 

applications. In addition, the two parameter gamma distribution was 

preferred because it seemed on the one hand to offer enough computa­

tional difficulty to illustrate the power of the least squares methcd 



of fitting, while on the other hand the small number of parameters 

prevented an undue amount of difficulty in establishing trends in the 

characteristics of the estimators as they might occur during the study. 

The use of the two-parameter model also avoided serious numerical 

difficulties which often arise when a model includes a so-called 

"shifting parameter", or lower bound such as occurs, for example, in 

the three-parameter gamma or the Pearson Type III distribution (Matalas 

and Wallis [23]). The use of the two-parameter model is also philo­

sophically more satisfactory when dealing with hydrologic variates 

such as rainfall or runoff, since this model imposes no bounds on the 

possible range of the variate other than bounds already implicit in the 

definition of the variate. Thus, in this sense, the two-parameter model 

provides a more symmetric treatment of large and small values than do 

models which include shifting parameters. 

The essential properties of the two parameter gamma distribution 

(henceforth referred to simply as the gamma distribution) are summarized 

in Appendix A. Appendix B develops the mathematical framework necessary 

for the specialization of the methods of Chapter II to the problem of 

fitting the gamma distribution to a given histogram. 

Properties of the discrete form of the gamma distribution may be 

obtained from the following equivalent forms of the distribution. 

Using the results as given in Appendices A and B, the gamma distribu­

tion in its continuous form may be written as 
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/ N Of 4 - 1 - 0< V 

P(v) = p ( ^ ) v e , 0 £ v < o o 3 .2(a) 

and in i t s d i s c r e t e form as 

r o 
— / a.\ \ « 0 - 1 -O^V 
P i ) r ( 0 ) V e d V ' V i - l - V i * 1 V i 3 .2(b) 

But if w = v. - v. - , then by the mean value theorem for integrals 
x x-1 J b 

(Taylor [24]), there exists a number v* in the interval [v. v.] 

such that 

p(v±*) = p(v±*) • w 3.3(a) 

or, if it be necessary to emphasize the dependence of p on o<and {3, 

F(v±*; «,(3) = p ^ * ; «,(3) • w 3.3(b) 

From Equations 3.3, it is seen that for fixed o( and B , p is a step 

function of v with finite discontinuties at the right end-points of the 

intervals [v. „ % v.]. For fixed v. p is a continuous function of the 
l-l* I 

parameters o( and & , and for positive values of the parameters, 

possesses all orders of derivatives. Figure 3.1 graphically depicts 
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the quantities described above. 

From Equation 3.2(a), the derivatives of p with respect to c( 

and & may be written as 

and 

l £ - = {£• - V) p(V; a , a ) 3.4(a) 
P * <* r 

4%-* ( " r ( A ) + l n 0 < + I n v ) p ( v s d , p > . 3 . 4 ( b ) >(» v r cp> 

By E q u a t i o n s 3 .3 and 3 .4 t h e d e r i v a t i v e s of p w i t h r e s p e c t t o ct and (S 

a r e t h u s 

<L2- = (— - v*) p ( v * ; <X ,(3 )-w 3 . 5 ( a ) 

and 

Y ^ - = C- £ T ~ Y + l n 0 < + I n v ) p ( v * ; f l < , p ) . w 3 . 5 ( b ) 

Where 

V . .. < V < V . 
1 - 1 — — 1 
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The values of p and its derviatives were numerically estimated in 

this work by partitioning the interval [v v ] into sixteen sub-

intervals and using the trapezoidal rule to approximate the integrals in 

Equation 3.2(b). An examination of the results of this approximation 

indicated it to be of sufficient accuracy for the purpose at hand. 

No serious investigation was made to determine the smallest number of 

intervals required for an adequate estimation, although it should be 

noted that in most cases no discernable difference in the results of 

fitting could be detected when only four intervals were used. Where 

differences arose, they were invariably of the form of improved 

convergence where the finer mesh was used, and not in a difference 

in the estimated values of the parameters in those cases where con­

vergence occurred for both mesh sizes. 

Using the above formulation, a computer program was prepared to 

generate random numbers from a gamma population with given parameters 

of and (3 (subject to the condition that 3 be integral) and to fit these 

samples by least squares. Included in this program were provisions to 

compute for each sample the parameter estimates obtained by the method 

of moments and by maximum likelihood. Real hydrologic data (see Chapter 

V) was then fit by the program in an effort to determine values of the 

parameters which might correspond to situations of interest in hydrology. 

(In this fitting, the technique obtained from Markovic [22] of dividing 

the real sample by its average value was used. This scaling accomplished 

the purpose of always making the maximum likelihood estimators of 0{ 

and B equal. Thus, in the later simulation work, only those populations 
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for which o< and 3 were equal were investigated, resulting in a vastly 

more efficient study without, it was felt, sacrificing any generality 

of importance in the analysis of real data.) 

The results of these initial fittings of real data indicated 

that, at least for the types of data examined in this study, one should 

expect values of population parameters ranging, say, between one and 

eleven. This parameter range was utilized in developing the simulation 

runs. 

A Description of the Numerical Experiments 

Simulation runs were designed to provide empirical indications 

of answers to the questions raised earlier in this chapter regarding 

the appropriateness of least squares as a technique for fitting distri­

bution functions. In particular, the questions addressed were as 

follows: 

1. To what extent are the least squares estimates of the 

population parameters influenced by the manner in which the 

sample is grouped into a histogram? 

2. Is there a rule according to which the class width and number 

of classes may be selected so that the data may be grouped in a 

manner which will yield optimal or near-optimal effectiveness 

of the least squares fit? 

3. Is the assumption of normality of the errors defined by 

Equation 3.1 (or, more generally, by 2.1) appropriate? 
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4. What is the efficiency of least squares fitting when com­

pared to fitting by maximum likelihood or moments? 

5. Does the method of least squares provide an advantage when 

one encounters a sample which appears abnormal (for instance, 

a sample which appears to contain one or more outliers)? 

6. Does the method of least squares provide any advantages 

when dealing with problems of particular interest in hydrology, 

for example, is the method of least squares more or less stable 

with a growing sample of small initial size? 

7. Is the inclusion of the weighting factors introduced in 

Chapter II necessary for a satisfactory fit by least squares, 

and if so, can any guidance as to likely appropriate forms 

of the weighting factors be given? 

To attempt to obtain answers to the above questions, one hundred 

and two runs of one hundred random samples per run were made using the 

computer program developed for this purpose. These runs were based 

apon three thousand random samples varying in size from twenty five 

to one hundred, a range typical of many common problems in hydrology. 

These runs were made over a range in parameters varying integrally 

from two to eleven. For each run of one hundred samples, the parameter 

estimates for each sample obtained by least squares, by maximum likeli­

hood, and by moments were computed, as were the sample mean and variance 

of the estimates obtained by each method of fitting. In addition, a 

chi-square goodness of fit and a Kolmogorov-Simirnov goodness of fit 

were performed on the errors as defined by Equation 3.1, in an attempt 
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to ascertain if the assumption of normality of the error terms was 

justified. 

Appendix E gives a summary description of each run in which the 

appropriate parameters, size, grouping, and random samples are identified 

Briefly, the purposes of the various subsets of these runs were as 

follows: 

1. Runs 1 through 10 were made primarily to determine to what 

extent the manner of grouping the data into histograms affected the 

efficiency of the fitting process. Runs 1 through 3 and 5,6, 7 and 10 

were made using three different groupings for each run, and runs 4, 8 

and 9 were using two different groupings for each run. All groupings 

were based upon a variation of a method for selecting a class interval 

proposed by Sturges [25]. Sturges suggests that a reasonable choice 

of a class interval to use in constructing a histogram from a set of 

N data points is given by the formula 

1 +3.322 log N 

where R is the range of the sample, and log means the logrithm to the 

base 10. For purposes of this study, Equation 3.6 was modified by 

scaling the value of C obtained from Equation 3.6 by some positive 

constant, that is 

Cr = — 3 7 
1 + 3.322 log N 
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The effect of the value of r upon the efficiency of the least squares 

procedure was investigated for values of r equal to 0.5, 0.75 and 1.0. 

For a given value of Cr, the histogram was constructed by selecting 

the centerpoint of the first group by the relation 

X% = Cr. [
X n t n £ 1/2 C r] 3.8 

where [a] indicates the integral portion of a. 

The centerpoints of subsequent groups were calculated from the relation 

X. = X, , + Cr . 3.9 
l i-1 

The frequency histogram was constructed by determing the number of 

observations falling into each interval (X. - 0.5 Cr, X. + 0.5 Cr], 

and then by adding to the lower portion of the histogram the smallest 

number of empty classes required to contain the point X = 0 (see 

Figure 3.1). 

2. Runs 5,6,9 and 10 were then repeated using a value of 

r selected from the initial runs, and adding to the right end of 

the histogram 1, 2, 4 and 8 empty classes (not all combinations were 

used with each run, see Appendix E). The motivation behind this 

series of runs was to test a hypothesis by Snyder [1] that the effi­

ciency of the fitting process could be improved by considering empty 

classes beyond the range of the observed sample in the fitting process. 
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3. Runs 5R, 7R, 9R, and 10R were then made utilizing sample 

sizes of 75 to 100 to determine what effect, if any, the sample size 

had on the trends observed in the previous two sets of runs which were 

made with sample sizes of 50. 

4. The above runs were made using a weighting function of unity 

in all cases. In order to explore the possibility of utilizing the 

weighting factors to improve the efficiency of the least squares 

fitting procedures, a particular set of weights 

w± = [f(p±; <*,(*)] 3.10 

were chosen, where i was assumed to lie between 0 and 1. (Note that 

if l - 0, w. = 1 , and the method collapses to the case investigated 

above. If ^ = 1 , the fitting is by the method of minimum chi squares 

as discussed in Kendall[3]. For 0 < Y < 1, it would appear that the 

method of least squares might be made to assume characteristics ranging 

between these two extremes.) Runs 4,6,8 and 9 were repeated with a 

sample size of 50, and for values of Y equal to 0.25, 0.50, 0.75, and 

1.0. Runs 4R and 8R were repeated for sample sizes of 75 and 100 and 

the above values of Y • Runs 6 and 9 were repeated for values of 

of 0.75 and 1.0 and adding four and eight empty classes to the right edge 

of the histogram. Finally, Runs 14A, 16A, 19A; Runs 14B, 16B, 19B; and 

Runs 14C, 16C, 19C were made for sample sizes of 50, 75, and 100 res­

pectively and for values of / of 0.50 and 0.75. The purpose of these 
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runs was to provide a larger base of data upon which the conclusions 

which would be drawn in this study could be based. A presentation 

and analysis of the results obtained from the various runs and examples 

discussed in this chapter are given in Chapter IV. 

The normal equations for use in the method of weighted least 

squares were developed in the following manner. 

Let 

w± = [ fCx^ tf, ^ ) ] * 3.11 

and wr i t e 

2 4 ^ 2 
Ê  - 2L ( \ - f ( \ ; 0)) wk 3.12 

Then 

*-2 S v \ - f ( v § » — ^ — • 3-13 
c>Oj SI k * * " JBj 

Pwk 

where the terms involving <\_" have been ignored (see for example, 

Kendall [3], or Yevjevich [26] for justification). Then by the same 

technique of approximating f by the linear terms in the Taylor series 

expansion for f about some initial estimate &Q as was used in Chapter 

II, one obtains from Equations 2.22, 
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N y 2f(x,;0o) 

2[f(\;e,)l Ch. - f(v?«) - Vf(\;&) • a&) — — - : = ° , 3 . i 4 
k=l * & j 

or, after simplifying 

m Y }f(x, ;0ft) ^f(x,;0o) 

2 <z [ « v i » — ^ ^ - ) d©r -
r=l k=l ^^j 0 0 r 

N 

* r c ^ . * M-J ^ r u^;<v 
(ty-fC^;^) , j = 1, ..., m . 3.15 

iif^nir'i!^ 
k = 1 ^0i 

As in the case of unitary weights, Equations 3..15 are solved iteratively 

until the length of the correction vector d0 falls below a predeter­

mined value. 

As an attempt to complete the discussion of non-linear least 

squares as a method for determining statistical parameters, a confidence 

region and a tolerance limit were constructed for sample 100 of run 10R3, 

The partitioning of the sum of squares of the errors was accomplished 

using the method of Halperin as given by Equations 2.16. The confidence 

region was constructed both for weights of unity and weights equal to 

[f (*3(, , £?)] ' in order to determine what influence the weighting 

factors may have on the confidence region. 

Due to the highly complex nature of the expression for the confi­

dence region as given by Equation 2.14, no attempt to solve explicitly 

for the boundaries of the various regions was made. Instead, values of 

reg ( e ) r\ 
— ° - ;—r- were computed at pre-established points in the C7 plane, 
res ( e) r r ~ 

N-m reg( e ) 
m 
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and the probability Yl corresponding to each value was computed. 

These probabilities were then plotted and contours of equal pro­

bability were sketched. While this procedure is a crude approximation 

to a very complex process, a careful inspection of the results indicate 

that this procedure is quite adequate for the applications in which 

it would ordinarily be used in hydrology. 

Since it would be of interest to compare tolerance limits 

determined by least squares with those determined by maximim likeli­

hood, and since the tolerance limits as determined by maximum likelihood 

are very difficult to determine for this gamma distributed sample, a 

normally distributed sample was constructed and fit by maximum likeli­

hood and by least squares, and the tolerance limits for a one hundred 

year event as determined by the two methods were computed. 

Confidence regions, and a discussion of their more interesting 

properties and their use in constructing tolerance limits for specified 

values of probability of occurence are given in Chapter IV. 
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CHAPTER IV 

ANALYSIS OF RESULTS OF NUMERICAL EXPERIMENTS 

In this chapter, a detailed presentation and analysis of the 

results of the computer runs comprising the numerical experiments 

conducted as a portion of this study are made. In each of these 

simulation runs, one hundred samples of numbers assumed to be 

randomly drawn from a population distributed as a two parameter 

gamma distribution with fixed parameters <X and G> were generated 

( see Appendix E). Each such random sample defined a case of the 

particular run in which it was considered. An estimate a, b of d , 

£ was made for each such sample by the method of least squares, 

by the method of maximum likelihood, and by the method of moments. 

Altogether, one hundred such estimates were made for each run (a given 

run would, of course, be based upon the same population parameters and 

the same sample size), and at the end of each run, the sample mean and 

sample variance for each type of estimate were computed for both a and 

b. In addition, for each case the error terms defined by Equation 3.1 

were tested by a chi-square and a Kolmogorov-Smirnov goodness of fit 

test to determine if the assumption of normality of the error terms 

is justified. 
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Results for Unweighted Least Squares 

The Choice of a Class Interval 

Runs 1 through 10 were made primarily to determine the effects, 

if any, of the manner of grouping a sample upon the least squares 

estimates of the population parameters. Intuitively it was believed 

at the beginning of these runs that there might be an optimum 

number of groups for a sample of a given size, and in addition 

that a good grouping should be one for which the resulting histo­

gram assumed a relatively smooth or recognizable shape. 

Runs 1 through 3 were thus made using class intervals which were 

0.5, 0.75, and 1.0 times the length recommended by Sturges [25]. All 

three runs used sample sizes of 50. Runs 1 and 2 sample a population 

with parameters o( = £3 = 4 . Run 3 was based upon a population with 

parameters o( = {3 = 8 . The optimum class interval for each of thase 

runs was selected as that interval for which the sample variance 

of the parameters was a minimum. For run 1 this multiple was 0.5, 

for run 2 it was 0.75, while for run 3 it was 1.0. Unenlightened 

by these results, runs 4,8, and 9 were made for multiples equal 

to 0„5 and 0.75, and runs 5 and 10 were made for multiples of 

0.5, 0.75, and 1.0. These runs were based upon sample sizes of 50, 

and on population parameters ranging from 2 to 11. In this series 

of runs, a multipler of 0.5 gave best results in two cases, a 

multiplier of 0.75 gave best results in one case, and a multiplier of 
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1.0 gave best results in one case. Run 8 was a draw, there being r.o 

essential difference in the results in this case. 

Convergence of the iterative procedure was found in these runs 

to be something of a problem, especially for the higher values of the 

population parameters. Thus the above runs were examined to determine 

if any multiplier exhibited a markedly better convergence record than 

the others. It was found that there was no difference in convergence 

in 4 cases, the multiplier 0.5 was superior in two runs (in each 

instance by a margin of one case), the multiplier 0.75 was superior 

in one run (by a margin of three cases), and the multiplier 1.0 was 

superior in one case (by a margin of one case). These results are 

summarized in Table 4.1. It should be mentioned at this point that 

the cases which failed to converge in the above runs were not always 

the same cases for each multiplier. Thus, the least squares procedure 

could converge for a sample grouped in one way, and fail to converge 

when the sample was grouped in another way. 

The histograms for each case of run described above were 

examined rather closely to determine if any functional trend between 

the shape of the histogram and the performance of the method of least 

squares could be detected. Since the true values of the population 

parameters were known, it was possible to compared the least squares 

parameter estimates with the likelihood and moments estimates and 

In the light of this knowledge to arrive at a subjective description 

of the quality of the least squares estimates. Thus, least squares 

estimates which were substantially closer to the true parameter values 



5o 

5R1 

5R2 

#J 

7R) 

7R2 

7R3 

9R1 

9R2 

9R3 

IORI 

1QR2 

10R3 

Table 4 .1 Resul t s of Runs for Various Class Widths, y = 0 

Ptrimattr Me»ni 

1.0 4.37 4.25 4.31 4.35 4.25 4.32 2.04 0.97 1.20 1.70 0.82 0.99 100 

0.75 4.33 4.25 4.31 4.32 4.25 4.32 1.83 0.97 1.20 1.60 0.82 0.99 100 

0.50 4.31 4.25 4.31 4.29 4.25 4.32 1.45 0.97 1.20 1.26 0.8'2 0.99 100 

1.0 4.38 4.21 4.31 4.38 4.24 4.34 1.70 0.66 0.91 1.42 0.52 0.72 100 

0.75 4.18 4.21 4.31 4.22 4.24 4.34 1.16 0.66 0.91 1.04 0.52 0.72 100 

0.50 4.24 4.21 4.31 4.25 4.24 4.34 1.41 0.66 0.91 1.12 0.52 0.72 100 

1.0 8.93 8.53 8.72 9.01 8.61 8.79 5.35 2.27 3.14 5.28 2.29 3.19 100 

0.75 9.36 8.53 8.72 9.47 8.61 8.79 7.43 2.27 3.14 7.73 2.29 3.19 100 

0.50 9.07 8.53 8.72 9.14 8.61 8.79 6.41 2.27 3.14 6.42 2.29 3.19 100 

0.75 3.36 3.20 3.27 3.27 3.16 3.23 1.50 0.49 0.60 1.11 0.44 0.55 100 

0.50 3.36 3.20 3.2 7 3.27 3.16 3.23 1.29 0.49 0.60 0.89 0.44 0.55 100 

1.0 2.34 2.16 2.17 2.26 2.16 2.17 0.61 0.25 0.32 0.44 0.19 0.26 100 

0.75 2.34 2.16 2.17 2.29 2.16 2.17 0.65 0.25 0.32 0.50 0.19 0.26 100 

0.50 2.39 2.16 2.17 2.29 2.16 2.17 1.00 0.25 0.32 0.52 0.19 0.26 100 

0.5 5.43 5.25 5.36 5.40 5.23 5.34 2.65 1.63 1.89 2.16 1.45 1.67 100 

0.5 6.31 6.25 6.36 6.22 6.19 6.30 3.47 1.68 1.97 3.21 1. 72 L.95 100 

0.75 7.72 7.39 7.52 7.73 7.42 7.57 5.44 1.87 2.45 4.76 1.74 2.40 97 

0.50 7.80 7.39 7.52 7.84 7.42 7.57 5.41 1.87 2.45 4.90 1.74 2.40 98 

0.75 9.52 9.42 9.73 9.53 9.37 9.68 6.19 2.97 3.77 5.47 2.63 3.30 95 

0.50 9.39 9.42 9.73 9.41 9.37 9.68 5.37 2.97 3.77 4.80 2.63 3. 30 92 

1.0 11.49 11.35 11.89 11.44 11.34 11,89 6.39 3.63 6.21 6.02 3.63 6.31 86 

0.75 11.31 11.35 11.89 11.31 11.34 11.89 5.85 3.63 6.21 5.83 3.63 6.31 85 

0.50 11.23 11.35 11.89 11.22 11.34 11.89 6.20 3.63 6.21 5.78 3.63 6.31 85 

0.50 Run was numeric • lly unstable 

0.50 2.23 2.11 2.13 2.19 2.11 2.13 0.36 0.13 0.19 0.24 0. 10 0.15 100 

0.50 2.16 2.07 2.08 2.14 2.08 2.09 0.20 0.10 0.14 0.15 0.08 0.11 100 

0.50 6.77 6.58 6.71 6.62 6.51 6.63 8.14 3.95 4.77 5.52 3.60 4.35 94 

0.50 6.20 6.20 6.33 6.12 6.11 6.23 1.87 1.06 1.27 1.51 0.92 1.10 100 

0.50 6.32 6.15 6.23 6.25 6.09 6.17 1.79 0.77 0.92 1.55 0.73 0.86 100 

0.50 8.92 9.68 10.21 9.03 9.66 10.20 8.88 7.48 10.86 7.93 6.67 10.13 81 

0.50 9.23 9.25 9.52 9.25 9.21 9.48 3.44 1.86 2.26 3.19 1.73 2.01 94 

0.50 9.24 9.14 9.38 9.25 9.11 9.35 3.58 1.41 1.65 3.30 1.30 1.52 9a 

0.50 L0.34 11.4(3 13.13 10.2 7 11.86 13.14 12.01 8.93 20.10 10.16 9.62 21.49 69 

0.50 11.49 11.12 11.49 11.46 11.15 11.51 5.14 2.68 4.26 4.99 2.74 4.39 91 

0.50 11.68 11.15 11.49 11.65 11.15 11.49 4.49 1.55 2.31 4.34 1.59 2.4' 95 

sf Convergences Is 100. 
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than were the corresponding likelihood and moments estimates were 

described as good, while those which were substantially further from 

the true values were described as poor. Comparisons between different 

least squares estimates obtained by different groupings of the same 

sample were judged according to their respective closeness to the 

true parameter values. As has been mentioned before, it was felt that 

a histogram which "looked like" the graph of a probability density 

function should yield better performance from the method of least 

squares than a histogram which was without form. Surprisingly, the 

results of this examination proved this conjecture false. While 

excellent results could be obtained from the fitting of histograms 

which "looked good", results quite as good could be obtained by fitting 

histograms which appeared to be almost without form. Sad to say, poor 

results could also be obtained for each type of histogram. 

The parallel results from each run for each choice of class 

interval were examined to determine if the parameter estimates for 

the same sample under different groupings were the same. It was found 

that, while rarely were the estimates the same, they were in almost 

every case consistent in that they exhibited the same tendencies (that 

is, the parallel estimates tended to cluster about the same value for 

different groupings, and the difference between these estimates was 

small compared to the difference between these estimates obtained 

from different samples), and that there was no reason, other than 

the trivial reason of having prior knowledge of the population para­

meters, for prefering one estimate to another. 
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Based upon the above results, is was postulated that for the 

groupings considered in these runs, there was no reason to prefer one 

grouping to another. Thus, all runs made beyond this point were all 

made using a multiplier arbitrarily chosen equal to 0.5. 

At this point it was surmised that perhaps instead of grouping 

data according to a fixed class width, a more natural method of group­

ing the sample might be to group by varying class widths so selected 

as to contain an equal number of observed points in each interval. 

Groupings of this type were tried for several of the above runs and for 

from one to four points in each interval for each run. The results 

obtained from this method of grouping were consistently inferior to 

those obtained by grouping according to a fixed class width. Thus 

this approach was abandoned and the study continued with groupings 

based upon class widths equal to one-half the width recommended by 

Sturges. 

Extension of the Range of Optimization beyond the Sample Range 

Runs 5,6,9, and 10 were then repeated with one, two, and four 

empty classes added to the end of each histogram. These runs were 

made in order to test the hypothesis by Snyder [1J that by including 

empty classes in histograms one may obtain a better fit of the 

density function to the histogram, especially when the sample under 

study appears to contain only records of frequent events. The results 

of this set of runs are inconclusive as to the validity of this hypo­

thesis. There is some evidence in these runs that the inclusion of 
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a few empty classes in some cases actually does improve the estimates 

of the population parameters. Also, in a few cases this procedure 

caused the iteration process to converge where without the empty 

classes it had failed to converge. In a few cases the estimates 

were worsened by the inclusion of the empty classes. In the large 

majority of cases, however, the inclusion of empty classes simply 

had no appreciable effect upon the outcome of the fitting process. 

This is especially true when the sample already contains one or more 

points which represent rare events (rare, of course, is relative to 

the size of the sample). 

As an example of an instance in which the inclusion of empty 

classes was of benefit, case 44 of run 10 ( oi = (3 = 11) with 

no empty classes added yielded parameter estimates a = 8.85 

and b = 8.50. The sample was such that for these values of a and 

b, the cumulative distribution function at the end of the final 

classes ( v- 1.3421) was equal to 0.8732. With the addition of four 

empty classes to the right end of the histogram, the parameter es­

timates were changed to a = 9.77, and b = 9.07. The value of the 

cumulative distribution function at the end of the final empty class 

(v = 1.617) for these parameters was 0-974. 

On the other hand case 46 of the same run yielded parameter 

estimates of a = 9.49 and b = 9.04 with no empty classes and a = 9.50 

and b = 9.04 with the addition of four empty classes. In this case, 

the value of the cumulative distribution function at the end of the 

last occupied class (v = 2.066) was equal to 0.997. 



52 

Lest the preceeding two examples be misleading, attention should 

also be given to case 57 of the same run (again, 0( = (3 = 11). In this 

case, fitting with no empty classes yielded parameter estimates of 

a= 16.27 and b = 15.76. The value of the cumulative distribution 

function at the end of the last occupied class was, for these estimates, 

equal to 0.969. Upon the addition of four empty classes to the right 

end of the histogram, the estimates a = 16.92 and b = 16.32 were obtained. 

Thus, the inclusion of empty classes with the histogram actually worsened 

the parameter estimates in this case. 

A summary of the results of these runs is given in Table 4.2. 

In analysing these results, care must be taken to avoid choosing one 

run as superior to another when the number of convergent cases is not 

the same in each instance. 

It may be noticed that the three cases examined above all have the 

property that the parameter estimates with empty classes are greater 

than the estimates obtained from the sample histogram itself. This 

is not an accident, and in fact every case in every run which was made 

using empty classes exhibited this phenomenon. The reason for this 

occurence may be discovered by examining the two parameter gamma pro­

bability density function and by noting that there exists a positive 

correlation between the estimates a and b. Since higher values of <% 

and f3 lead to a more slender tail of the distribution function, the 

inclusion of empty classes, and the consequent class errors occasioned 

by their inclusion, tends to cause the least squares procedure to raise 

the values of the estimates a and b in an effort to minimize these errors 
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Table 4.2 Results 

No. of 
Empty 

Run Classes ex 

5N1 1 2 

5N2 2 2 

5N4 4 2 

6N1 1 5 

6N2 2 5 

6N4 4 5 

9N1 1 9 

9N2 2 9 

9N4 4 9 

10N1 1 11 

10N2 2 11 

10N4 4 11 

of Runs with Empty Right -

Mean of Mean of 
B1 a b 

2 2.39 2.29 

2 2.39 2.30 

2 2.40 2.30 

5 5.46 5.42 

£ 5.47 5.44 

5 5.48 5.44 

S 9.59 9.57 

9 9.36 9.36 

9 9.46 9.47 

ii 11.31 11.27 

11 11.46 11.44 

11 11.62 11.60 

Hand Classes, Y = 0 

Number 
Variance Variance of Conve::-

of a of b gences 

1.00 0.52 100 

1.00 0.52 100 

0.99 0.52 100 

2.63 2.16 100 

2.62 2.15 100 

2.61 2.15 100 

6.52 5.69 93 

4.55 4.10 90 

4.94 4.58 91 

5.90 5.48 86 

6.02 5.88 88 

6.60 6.42 91 
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by further thinning of the tail of the distribution function. Thus, 

the inclusion of empty classes tends to introduce a positive bias to the 

least squares estimators. This is an unfortunate consequence, since the 

results of the runs made in this study indicate that unweighted least 

squares estimators are positively biased (as are the maximum likelihood 

estimators) even without the inclusion of empty classes. 

The Effects of Sample Size 

To investigate the behavior of least squares estimators for various 

sample sizes, runs 5R1, 7R1, 9R1, and 10R1 were made for a sample size 

of 25; 5R2, 7R2, 9R2, and 10R2 were made for a sample size of 75, and 

runs 5R3, 7R3, 9R3, and 10R3 were made using a sample size of 100. These 

runs utilized parameter values ranging from 2 to 11. The primary 

motivation behind these runs was to determine the behavior of the 

sampling mean and variance of the least squares estimates with increas­

ing sample size, as well as to test the effectiveness of the least 

squares procedure over a range of sample sizes and determine if any 

practical lower bound on the size of a sample exists below which the 

least squares procedure should not be used. 

The results of these runs were first examined to determine any 

trends which might appear in the sample variances of the parameter esti­

mates obtained from the various runs. According to the theory as de­

veloped in Chapter II, one would expect that these variances should be 

have according to a relation of the form a function of a, g and N. That 

is, 
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s2^fSjusl . 4 a 

Since the square root of the variance represents in some fashion an 

amount of departure from the central value of the estimates, the 

assumption that the method of least squares is no more efficient for 

one set of values of parameters than for another would imply that 

f(cl,A)/cCG is nearly constant for fixed N. Thus, one is lead to 

expect that the sample variance of the parameter estimates may be 

expressible in the form 

£ = ^ 4 2 
2 N 

P 

where p represents either c< or A , and c is a constant which may have 

different values depending upon whether p represents (X or ^ . Table 

4.3 shows an attempt to represent the sampling variance of a in this 

form. Figure 4.1 shows the results of Table 4.3 in graphical form. 

Also shown in Table 4.3 and Figure 4.1 is an equivalent attempt to re­

present the sampling variance of the maximum likelihood estimates in 

the same form. In each case, the results indicate that the "constant" 

c^ actually is function of <X . Figure 4.1 shows also that the maximum 

likelihood estimates are much more stable under the analysis than are 

the least squares estimates. Figure 4.2 shows an attempt to represent 

sample variances of the least squares estimates of <£ in the form 
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Table 4.3 Characteristics of Parameter Variances, y = 0 

XT 2 LS M 2 °ML XT
 CLS LS r^ 

LS a
2 ML a

2
 a

2
 a

2 f 

ML 
25 2 run was numerica lly uns table 

50 2 1.00 12.5 0.25 3.00 4.00 1.80 

75 2 0.36 6.75 0.13 2.25 2.75 0.78 

100 2 0.20 5.0 0.10 2.50 2.0 0.50 

25 6 8.14 3.95 

50 6 3.47 4.4 1.68 2.35 2.07 0.62 

75 6 1.87 3.9 1.06 2.25 1.76 0.45 

100 6 1.79 5.0 0.7-7 2.14 2.32 0.5 

25 9 8.88 7.48 

50 9 5.37 3.3 2.97 1.85 1.80 0.47 

7 5 9 3.44 3.2 1.86 1.72 1.84 0.37 

100 9 3.58 4.4 1.41 1.74 2.54 0.44 

25 11 12.01 8.93 

50 11 6.20 2.75 3.63 1.5 1.70 0.39 

75 11 5.14 3.20 2.68 1.65 1.91 0.37 

100 11 4.49 4.10 1.55 1.28 2.90 0.41 
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!rv = — 4-3 

0(2 VF 

Representation in this form is seen to be more stable than representation 

by Equation 4.2; however, the data available is insufficient to warrant 

a preference for Equation 4.3. It should be noted that the plausibility 

of Equation 4.2 rests upon the form of the asymptotic expressions for 

sampling variance of the parameter estimates which were derived assuming 

an equivalence between least squares and maximum likelihood. This 

equivalence in turn depends primarily upon the appropriateness of 

the assumption of normality and constant variance of the errors. An 

examination of the errors resulting in the fittings in runs 4 through 

10 indicates that the assumption of normality is probably appropriate 

in this case, and thus there may be no strong theoretical reason to 

favor Equation 4.3 over Equation 4.2. The question of normality of 

errors and its effect upon the method of least squares will be dis­

cussed in detail later in this chapter. 

In any case, Figures 4.1 and 4.2 indicate that the sampling 

variance of the parameter estimates will decrease with increasing 

sample size, and hence that the method of least squares is consistent. 

This happy result is in accord with the intuitive and theoretical 

concepts of fitting by least squares, and says in effect that the sample 

histogram may be expected to approach in shape the population density 

function as the sample size increases, and that the least squares pro­

cedure will select the proper parameter values when fitting a histogram 
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which is representative of the distribution of the parent population. 

This result is not unexpected, since Synder and Wallace [27] have 

already shown that the method of least squares will correctly predict 

the parameters of a histogram constructed from a given probability 

density function. 

Table 4.3 also shows that the method of least squares should 

not be used for sample sizes as small as 25 (actually, Table 4.3 

indicates that samples of this size are too small to support a mean­

ingful statistical analysis by any method considered in this work, 

since the sampling variance is quite large for these samples). A 

careful inspection of the variances given in this table along with 

an evaluation of the convergence difficulties encountered for some 

cases for samples of fifty items indicates that the size of fifty items 

represents a working lower bound for the method. Studies of growing 

samples performed on real data and discussed in the next chapter did 

involve fittings of samples with fewer than fifty items, and the 

results in these instances were acceptable. Thus, the lower bound 

of fifty items should not be taken as absolute, but rather as a 

limit below which the method of least squares may encounter convergence 

difficulities, and below which the resolution of the method may be so 

insufficient as to render the applicability of the method suspect. 

Finally, the ratios of the parameter variances obtained by least 

squares to those obtained by maximum likelihood are most illuminating. 

Since it is known (Kendall [3]) that maximum likelihood estimators have 

minimum variance, at least in the limit, as the sample size increases, 
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then one would expect that the variance of any other estimator would 

exceed that of the likelihood estimator. Table 4.3 shows that this is 

indeed the case, and in fact the variance of the least squares estimator 

is on the average more than two times as great as that of the likelihood 

estimator. Thus in using the method of least squares to estimate pop­

ulation parameters, one must expect a less sharp estimate than could 

be obtained by using maximum likelihood. 

As can be seen by an examination of Table 4.4, both the methods 

of least squares and maximum likelihood appear to be positively 

biased when applied to the gamma distribution. Although no clear 

indication exists in Table 4.4, it is assumed that this bias is a 

function of sample size and that it decreases as the size of the 

sample increases. The amount of this bias is seen to be relatively 

small, especially in comparison with the standard deviation of 

the samples from which the means in the table were computed. Neverthe­

less, the regularity of the deviation of the mean from the population 

parameter indicates that this bias is real, and not merely a manifesta­

tion of pecularities of the random samples upon which the estimates 

were based. Table 4.1 indicates that the method of moments also 

yields biased parameter estimates. The bias of maximum likelihood 

of estimators of the parameters of a gamma distribution has been 

investigated experimentally by Choir and Wette [38] and theoretically 

by Box [39]. The bias reported in both of these studies agrees closely 

with that shown in Table 4.4. These favorable comparisons give some 

confidence in the randomness of the gamma distributed samples used as 
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Table 4.4." Bias of Parameter Estimates, y = 0 

By least squares By maximum like! lih 

N a ^a Va/'a % bias Pa Pa/a i b 

50 2 2.39 1.19 20 2.16 1.08 8 

75 2 2.23 1.11 11 2.11 1.05 5 

100 2 2.16 1.08 8 2.07 1.03 3 

50 6 6.31 1.05 5 6.25 1.04 4 

75 6 6.20 1.03 3 6.20 1.03 3 

100 6 6.32 1.05 5 6.15 1.03 3 

50 9 9.39 1.04 4 9.42 1.05 5 

75 9 9.23 1.03 3 9.25 1.03 3 

100 9 9.24 1.03 3 9.14 1.02 2 

50 11 11.23 1.02 2 11.35 1.03 3 

75 11 11.49 1.04 4 11.12 1.01 1 

100 11 11.68 1.06 6 11.15 1.01 1 
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a basis for this investigation. 

Distribution of Class Errors in Least Squares Fitting 

To test the assumption that the error terms as defined by Equation 

3.1 are normally distributed with zero mean, a chi-square test for 

normality was made on the error terms arising in the fitting of each 

sample examined in the course of this study. The test was made by 

lumping the error terms into groups so chosen that if the errors were 

indeed normal with zero means then the minimum number of errors ex­

pected in each group would be at least three. The chi-square coefficient 

2 
2 f. (fl - kPj> 

was then computed along with the probability of exceeding the observed 

coefficient 1( ; that is, the probability fl defined by 

p. ,2 
<Vi V > - \ 

was computed. As defined above, a large value of °7 indicates that the 

set of errors being tested is in fact distributed approximately in a 

normal fashion, while a small value of 7̂ indicates that the particular 

sample is not distributed normally. These computations yielded values 

of the T coefficient ranging from very small to very large, and 



associated values of 7̂_ ranging from near unity to near zero. Thus, 

some of the groups of errors were distributed (nearly) normally, and 

some were not. Table 4,5 summarizes the results of the chi-square 

tests. 

It may be argued, however, that the chi-square test, being a 

large sample test, is not appropiate in this instance since the 

sets of errors tested were not large sets. To attempt to verify 

or disprove the above results, a Kolmogorov-Smirnov goodness of fit 

test was made on each set of errors as described above. This test 

was made in accordance with the description given in Lindgren and 

McElrath [28], and is based upon the sample distribution function 

F (x) = • { number of observations < x } 
N + 1 -

which is tested aginst a population distribution function F (x) (in thi 

case the normal cumulative distribution function). In this test, as 

in the chi-square test, the population mean was assumed to be zero, and 

the population variance was estimated from the sample itself. 

The Kolmogrov-Smirnov test is based upon the statistic D defined 

by 

D = max N 
- oO < X < oo 

FN(x) - Fo(x) 
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Table 4.5 Distribution of Pty.2^Y|) f o r E r r o r Terms, y = 0 

&i1>zZ!fg) Number of occurences 

0 - 0 .05 65 

0 . 0 5 - 0 . 1 44 

0 . 1 - .2 81 

0 .2 - 0 .3 65 

0 . 3 - 0 .4 73 

0 .4 - 0 .5 32 

0 .5 - 0 .6 68 

0.6 - 0 .7 .57 

0 .7 - 0 .8 23 

0 .8 - 0 .9 92 

0 .9 - 1.0 24 

Total number of occurences = 675 

Mean of P(^.2^2) =0.43 



76 

Tables giving limits of rejection of the null hypothesis that the popula­

tion cumulative distribution is F are given in Lindgren and McElrath 

[28]. In evaluating this test, the null hypothesis is rejected at the 

significance level o( if the computed value of D is larger than the 

tabulated limits [as is usual in this sort of test, c< is the pro­

bability of rejecting the null hypothesis when it is true, that is., 

a = P (reject Ho/Ho is true)]. The results of these tests are sum­

marized in Table 4.6, and indicate that the null hypothesis can be 

rejected with <* = 0.20 thirty-two out of 675 times, or in about 4,75% 

of the cases. With cX - 0.1, eight rej-ections, or about 1.2% of the 

cases, must be made, while with <X = 0.05, only two cases, or about 

0.3%, must be rejected. 

When subjected to the same sort of reasoning, the chi-square 

test would require rejection of 190 cases, or about 28%, with oi = 0.20, 

109 cases, or about 16%, with o< =0.1, and 65 cases, or about 10% with 

CX = 0.05. Thus, the Kolmogorov-Smirnov test is considerably more 

favorable to the null hypothesis (that the errors are normal with zero 

mean) than is the chi-square test. Since the Kolmogorov-Smirnov test 

is more properly applied to the small samples encountered in this work, 

preference to the conculsions drawn from it must be given. On the 

other hand, the chi-square test is commonly used as a guide in making 

this sort of decision, with apparent success, and so some weight 

must be given to the fact that this test indicates that the null 

hypothesis should be rejected. Also, it should be emphasized that 

each test on the errors was made using a (presumably) different value 
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Table 4.6 Results of Kolmogorov-Smirnov Test for 

Normality of Errors, y = 0 

Results are for 675 samples 

Rejection Level Number of Rejections Percent of Samples 
Rejected 

0.2 32 4.7 

0.1 8 1.2 

0.05 2 0.3 
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for the population variance, namely the value computed from the sample 

itself. Thus these tests say nothing about the constancy of the 

variance, a requirement collateral with the requirement of normality 

of the errors. The proper conclusion to be drawn from the above work 

thus seems to be that the hypothesis of Relation 3.1(b) cannot be re­

jected based upon the results obtained in this study. 

Results for Weighted Least Squares 

Indications of the Need for Non-Unit Weights 

The above work has been based upon fitting by least squares 

using unit weights for the error terms. As originally envisioned 

by Snyder [1], one of the more attractive features of fitting by 

least squares was the possibility of determining population parameters 

by a method which was rather insensitive to the presence of outliers 

in the sample. This insensitivity is due to the fact that the deriva­

tives of the probability density function decrease rapidly as the 

value of the variate v increases. Thus, since the fitting process 

is controlled by the values of the derivatives and by the size of 

the error terms (See Equation 2.28) the presence of an outlier in 

a sample will have but little influence upon the optimized values 

of the estimates of the population parameters obtained by the method 

of least squares. Through the course of the above investigation, 

it became increasingly apparent that the method of least squares 

with unit weighting factors was so insensitive to observations in 
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the higher ranges of the variate that the procedure was not only 

ignoring misleading information occasioned by the appearance of 

an outlier in the sample, but was also ignoring legitimate information 

contained in observations which lay toward the tails of the distribution. 

As a consequence, then, the least squares fitting method was 

attempting to match the sample histogram in the midrange of the sample, 

and rather ignored the fitting of the tails of the distribution, 

especially the right-hand tail. This emphasis on the mid-range of 

the sample is seen, for example, as the explanation for the decrease 

in the number of convergent cases as the values of the population para­

meters were increased. In fact, since the variance of the gamma distri­

bution is given by the formula 

2 P 
q = ^ 

and in these simulations, 

c* = (3 

then 

r-2 - l 

Thus samples drawn from populations with high values of (X and |3 may be 

expected to be rather clustered about the mean value, and so the random-
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ness of the sample would be expected to manifest itself primarily in 

this range. 

The Choice of a Weighting Function 

In an effort to counteract this tendency, and to make more of the 

information contained in the data sample available to the procedure, it 

was decided to devise a set of weights which would increase the effect 

of data points more removed from the mid-range of the sample. While many 

weighting functions could be chosen which would perform this function, a 

rather natural choice, motivated by the method of minimum chi-square, 

appeared to be the reciprocal of the density function itself raised to 

some power. That is, 

w i = [ f ( x ± ; <x , p )] 

where ^ was considered an arbitrary positive number whose value might 

be chosen in such a manner as to lend to the method whatever particular 

characteristics were possible and desirable. It should be stressed that 

the weights chosen above are simply a particular choice made from among 

a practically limitless set of weight functions which are available, and 

that for a particular objective some different choice may be more pro­

pitious . 
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Effects of the Weight Function 

The inclusion of the above weights into the least squares 

procedure was expected to have the following consequences. For 

non-zero values of Y", the effect of error terms occuring away from 

the sample mean is increased, and so the incidence of convergence 

should be increased and the resolving power of the method of least 

squares should be improved. Furthermore, because of the increased 

influence of these "remote" error terms, and since the tail of the 

gamma distribution becomes thinner with increasing values of 0( , an 

increase in the value of V should in general bring about a decrease 

in the values of the estimated parameters. In other words, it should 

be possible to eliminate, at least approximately, the positive bias 

of the least squares estimators by a judicious choice of the value 

of Y- Since for Y equal to zero the weights w. become equal to 

unity, the weighted least squares procedure can be collapsed to the 

unweighted procedure. For increasing values of Y , the procedure 

becomes more sensitive to the presence of outliers in the sample, 

and so some of the power of the least squares method to ignore the 

presence of outliers in the sample is lost by the inclusion of the 

weighting factors. Finally, the inclusion of weights which are a 

function of the random variable may invalidate the assumption that 

the variance of the errors is independent of the value of the random 

variable at which the errors may be measured. 

To test the appropriateness of the above reasoning, and to attempt 
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to judge the effect upon the normality and constancy of the variance 

of the error terms which the inclusion of the weights might have, runs 

4,6,8 and 9 were repeated for values of Y equal to 0.25, 0.50, 0.75, 

and 1.0. Since these runs were initially made with unit weights, 

their repetition allowed a direct examination of the effects of the 

value of Y upon the fitting procedure for values of Y varying between 

zero and one. A summary of the results of these runs as well as the 

runs 14, 16 and 19, is presented in Table 4.7 for sample sizes of 50, 

75, and 100. As was anticipated, the positive bias of the unweighted 

estimators becomes less evident as Y increases, disappears at a value 

of Y equal to about 0.75, and becomes a negative bias for Y equal 

to 1.0. The efficiency of the fitting procedure as measured by the 

smallness of the sample variance of the parameter estimates also in­

creases as Y increases. For V equal to 1.0, the variance of the 

least squares estimators is of the same order of magnitude as the 

variance of the maximum likelihood estimators. This last result is not 

wholly unexpected, since in the case Y = 1, the method of least 

squares is equivalent to the method of minimum chi—square, which in 

turn is known to be asymptotically equivalent to the method of maximum 

likelihood (Kendall [3]). Table 4.7 also confirms the expected result 

that the incidence of convergence would increase as Y increased. For 

y=0.75, only one convergence failure occured among the 400 cases 

comprising the four runs for a sample size of 50, while no failures 

occured for this sample size for Y equal to 1.0. By contrast, the 

same four runs experienced ten failures for Y equal to zero. 
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4G.25 

4 C . 5 0 

4G.75 

4GI 

6 G . 2 5 

6G.50 

6 C . 7 5 

6C1 

BC.25 

8 C . 5 0 

8 C . 7 5 

8G1 

0 . 2 5 

0 . 5 0 

0 . 7 5 

l.OO 

0 . 2 5 

0 . 5 0 

0 . 7 5 

L.O 

9 C . 2 5 50 0 . 2 5 9 

9G.50 5C 0 . 5 0 9 

9 C . 7 5 50 0 . 7 5 9 

9C1 50 1.0 9 

4C.25R2 75 0 . 2 5 

4C.50R2 75 0 . 5 0 

4C.75R2 75 0 . 7 5 

4C1R2 75 1 .00 

8G.25K2 75 0 . 2 5 

BC.50R2 75 0 .5C 

8C. 75R2 75 0 . 7 5 

8G1R2 75 1.0 

4 G . Z 5 S 3 100 0 . 2 5 

4C .50R3 LOO 0 .5C 

4 C . 7 5 R 3 100 0 . 7 5 

4C1R3 100 1.0 

BC.25R3 100 0 . 2 5 

8C .50R3 100 0 .5C 

BC.75R3 100 0 . 7 5 

8C1R3 100 1.0 

14G.50A 50 0 . 5 0 

14C.75A 50 0 . 7 5 

16C.50A 50 0 , 5 0 6 

16C.75A 50 0 . 7 5 6 

19C.50A 50 0 . 5 0 9 

19C.75A 50 0 . 7 5 9 

14C.50B 75 0 . 5 0 3 

14C.75B 75 0 . 7 5 3 

16G.50B 75 0 . 5 0 6 

16G.75B 75 0 . 75 6 

19C.50B 75 0 . 5 0 9 

19G.75B 75 0 . 7 5 9 

14C.50C 100 0 . 5 0 3 

14G.75C 100 0 . 7 5 3 

16C.50C 100 0 . 5 0 6 

16C.75C 100 0 . 7 5 6 

19C.50C 100 0 . 5 0 9 

19G.75C 100 0 . 7 5 9 

3 . 2 8 3 . 2 0 

3 . 1 6 3 . 2 0 

3 . 0 1 3 . 2 0 

2 . 8 5 3 . 2 0 

5 . 3 1 5 . 2 5 

5 . 1 5 5 . 2 5 

4 . 9 4 5 . 2 5 

4 . 7 1 5 . 2 5 

7 . 5 0 7 .39 

7 . 3 1 7 . 3 9 

6 . 9 6 7 .39 

6 . 6 6 7 . 3 9 

9 . 4 6 9 . 4 2 

9 . 1 6 9 . 4 2 

8 . 9 8 9 . 4 2 

8 . 6 8 9 . 4 2 

3 . 1 1 3 . 0 6 

3 .04 3 . 0 6 

2 . 9 4 3 .06 

2 . 8 1 3 . 0 6 

7 . 3 1 7 . 1 0 

7 .12 7 . 1 0 

6 . 8 7 7 . 1 0 

6 . 6 5 7 .10 

3 .16 3 .12 

3 . 1 1 3 . 1 2 

3 . 0 4 3 .12 

2 . 9 4 3 . 1 2 

7 . 1 7 7 . 0 9 

7 . 0 3 7 . 0 9 

6 . 8 7 7 .09 

6 . 7 1 7 . 0 9 

3 . 3 1 3 . 2 9 

3 . 1 5 3 . 2 9 

S .34 6 . 4 1 

6 . 0 9 6 . 4 1 

8 . 7 2 9 . 0 4 

8 . 5 6 9 . 0 4 

3 . 1 3 3 . 1 0 

3 . 0 0 3 . 1 0 

6 . 0 3 6 . 1 9 

5 . 8 6 6 . 1 9 

9 . 3 6 9 . 3 1 

9 . 1 4 9 . 3 1 

3 . 0 8 3 . 1 1 

3 . 0 0 3 . 1 1 

6 . 0 4 6 . 1 8 

5 . 9 3 6 . 1 8 

9 . 2 9 9 . 1 6 

9 . 0 4 9 . 1 6 

3 . 2 0 3 . 1 6 3 . 2 3 1 .15 0 . 4 9 0 . 6 0 0 . 7 9 0 . 4 4 0 . 5 5 100 

3 . 1 2 3 . 1 6 3 . 2 3 0 . 9 7 0 . 4 9 0 . 6 0 0 . 6 9 0 . 4 4 0 . 5 5 100 

3 . 0 2 3 . 1 6 3 . 2 3 0 . 7 4 0 . 4 9 0 . 6 0 0 . 5 7 0 . 4 4 0 . 5 5 100 

2 . 9 1 3 . 1 6 3 . 2 3 0 . 5 5 0 . 4 9 0 . 6 0 0 . 4 6 0 . 4 4 0 . 5 5 100 

5 . 3 1 5 . 2 3 5 . 3 4 2 . 3 4 1 .63 1 .89 1 .92 1 .45 1.67 100 

5 . 1 8 5 . 2 3 5 . 3 4 1 .94 1 .63 1.89 1 .62 1 .45 1 .67 100 

5 . 0 0 5 . 2 3 5 .34 1.59 1 . 6 3 1.89 1 .35 1 .45 1.67 100 

4 . 8 2 5 . 2 3 5 . 3 4 1 .47 1 .63 1.89 1 .29 1 .45 1 .67 10C 

7 . 5 6 7 . 4 2 7 . 5 7 3 . 8 7 1.87 2 . 4 5 3 . 4 5 1 .74 2 . 4 0 98 

7 . 3 9 7 . 4 2 7 . 5 7 3 . 6 1 1.87 2 . 4 5 3 . 0 3 1.74 2 . 4 0 100 

7 . 1 0 7 . 4 2 7 . 5 7 2 . 5 4 1.87 2 . 4 5 2 . 1 6 1.74 2 . 4 0 100 

6 . 8 6 7 . 4 2 7 . 5 7 1 . 9 8 1.87 2 . 4 5 1 . 7 8 1.74 2 . 4 0 100 

9 . 4 7 9 . 3 7 9 . 6 8 6 . 2 3 2 . 9 7 3 . 7 7 5 . 4 9 2 . 6 3 3 . 3 0 97 

9 . 2 0 9 . 3 7 9 . 6 8 5 . 0 9 2 . 9 7 3 . 7 7 4 . 4 3 2 . 6 3 3 . 3 0 97 

9 . 0 6 9 . 3 7 9 . 6 8 4 . 9 1 2 . 9 7 3 . 7 7 4 . 3 4 2 . 6 3 3 . 3 0 99 

8 . 8 1 9 . 3 7 9 . 6 8 4 . 2 1 2 . 9 7 3 . 7 7 3 . 7 1 2 . 6 3 3 . 3 0 100 

3 . 0 8 3 . 0 4 3 . 1 2 0 . 5 8 0 . 2 0 0 . 3 0 0 . 3 9 0 . 1 8 0 . 2 9 100 

3 . 0 3 3 . 0 4 3 . 1 2 0 . 4 7 0 . 2 0 0 . 3 0 0 . 3 2 0 . 1 8 0 . 2 9 100 

2 . 9 6 3 . 0 4 3 . 1 2 0 . 3 4 0 . 2 0 0 . 3 0 0 . 2 4 0 . 1 8 0 . 2 9 100 

2 . 8 7 3 . 0 4 3 . 1 2 0 . 2 5 0 . 2 0 0 . 3 0 0 . 1 9 0 . 1 8 0 . 2 9 100 

7 . 2 8 7 . 1 0 7 . 1 9 3 . 0 4 1 .14 1 . 6 1 2 . 4 5 l . H 1 .65 100 

7 . 1 3 7 . 1 0 7 .19 2 . 1 3 1 .14 1 .61 1 .77 1 . 1 1 1 .65 100 

6 . 9 3 7 . 1 0 7 . 1 9 1.44 1 .14 1 . 6 1 1 .24 1 .11 1 .65 100 

6 . 7 6 7 . 1 0 7 . 1 9 1 .15 1 .14 1 .61 1 .06 1 . 1 1 1.65 100 

3 . 1 3 3 . 0 8 3 . 1 2 0 . 4 7 0 . 2 2 0 . 2 9 0 . 3 6 0 . 2 1 0 . 2 7 100 

3 . 0 8 3 . 0 8 3 . 1 2 0 . 4 0 0 . 2 2 0 . 2 9 0 . 3 1 0 . 2 1 0 . 2 7 100 

3 . 0 3 3 . 0 8 3 . 1 2 0 . 3 1 0 . 2 2 0 . 2 9 0 . 2 5 0 . 2 1 0 . 2 7 100 

2 . 9 6 3 . 0 8 3 . 1 2 0 . 2 2 0 . 2 2 0 . 2 9 0 . 2 0 0 . 2 1 0 . 2 7 too 

7 . 1 5 7 . 1 0 7 . 1 5 2 . 0 9 0 . 9 8 1.16 1 .95 0 . 9 8 1 .20 100 

7 .04 7 . 1 0 7 . 1 5 1 .58 0 . 9 8 1.16 1 .51 0 . 9 8 1 .20 100 

6 . 9 2 7 . 1 0 7 . 1 5 1 .21 0 . 9 8 1.16 1 .19 0 . 9 8 1 .20 100 

6 . 8 0 7 . 1 0 7 . 1 5 1 .05 0 . 9 8 1.16 1.06 0 . 9 8 1.2C 100 

3 . 2 8 3 . 2 5 3 . 3 3 1.17 0 . 6 5 0 . 7 1 0 . 8 2 0 . 5 3 0 . 6 3 100 

3 . 1 6 3 . 2 5 3 . 3 3 0 . 9 0 0 . 6 5 0 . 7 1 0 . 6 4 0 . 5 3 0 . 6 3 100 

6 . 3 5 6 . 4 1 6 . 4 7 3 . 6 1 1.99 2 . 2 0 3 . 0 2 1 .77 1.99 100 

6 . 1 6 6 . 4 1 6 . 4 7 2 . 7 7 1 .99 2 . 2 0 2 . 3 6 1 ,77 1.99 100 

8 . 7 7 9 . 0 4 9 . 2 2 3 . 8 7 2 . 9 6 3 . 6 9 3 . 9 4 2 . 9 3 3 . 7 0 99 

8 . 6 4 9 . 0 4 9 . 2 2 3 . 7 1 2 . 9 6 3 . 6 9 3 . 6 9 2 . 9 3 3 . 7 0 99 

3 . . 2 3 . 0 8 3 . 1 6 0 . 6 0 0 . 3 1 0 . 3 3 0 . 4 2 0 . 2 6 0 . 3 1 100 

3 . 0 3 3 . 0 8 3 . 1 6 0 . 4 5 0 . 3 1 0 . 3 3 0 . 3 3 0 . 2 6 0 . 3 1 10 0 

6 . 0 5 6 . 1 7 6 . 2 5 1 . 5 2 1 .03 1 .33 1 .39 0 . 9 6 1 .21 100 

5 . 9 1 6 . 1 7 6 . 2 5 1 . 2 1 1 .03 1 .33 1 .10 0 . 9 6 1 .21 100 

9 . 4 4 9 . 3 8 9 . 5 6 3 . 9 0 2 . 7 7 3 . 9 6 3 . 7 7 2 . 6 6 3 . 7 7 99 

9 . 2 6 9 . 3 8 9 . 5 6 3 . 2 7 2 . 7 7 3 . 9 6 3 . 1 8 2 . 6 6 3 . 7 7 99 

3 . 0 6 3 . 1 0 3 07 0 . 3 ] 0 . 2 0 0 . 2 8 0 . 2 2 0 . 1 6 0 . 2 3 100 

3 . 0 1 3 . 1 0 3 . 0 7 0 . 2 6 0 . 2 0 0 . 2 8 0 . 1 9 0 . 1 6 0 . 2 3 100 

6 . 0 6 6 . 1 8 6 . 2 5 1 .40 0 . 8 1 0 . 8 9 1 .28 0 . 8 0 0 . 8 7 100 

5 . 9 7 6 . 1 8 6 . 2 5 1.10 0 . 8 1 0 . 8 9 1.02 0 . 8 0 0 . 8 7 100 

9 . 2 6 9 . 1 1 9 . 2 7 3 . 1 9 1 .43 1.82 3 . 0 3 1 .38 1 .77 100 

9 . 0 4 9 . 1 1 9 . 2 7 2 . 3 5 1 .43 1 .82 2 . 2 2 1 .38 1 .77 100 

Maximum Number o f C o n v e r g e n c e s i s 1 0 0 , 
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Extension of the Range of Optimization beyond the Sample Range 

Runs 6 and 9 were also repeated with empty classes to assess the 

effect of adding empty classes when non-unit weights are used. A 

summary of the results of these runs is presented in Table 4.8, and 

indicates that the inclusion of empty classes in weighted least squares 

introduces a rather stubborn positive bias into the estimators. A 

detailed study of the individual cases of these runs indicated that 

while as a rule empty classes should not arbitrarly be added to a histo­

gram, in those cases where the sample is highly truncated the addition 

of empty classes can be of benefit. These cases are distinguishable by 

the characteristics that an initial fit with no empty classes indicates 

that the cumulative probability through the largest sample point is 

much less than would normally be expected based upon the sample size. 

Such samples are easily recognised as well by the "blocky" appearance 

of the sample histogram. As an example of a case where parameter esti­

mates can be improved by the addition of empty classes, case 23 of run 

9G.75 produced the histogram shown in Figure 4.3. The inital fitting 

with no empty classes produced paramter estimates a = 7.58 and b = 8.06 

(the true values were o( = 9 and ^3 = 9). The value of the cumulative 

distribution function at the end of the last class in this histogram 

was 0.9123. With the addition of four empty classes to the histogram, 

another fit produced parameter estimates a = 9.28 and b = 9.44, which 

is a substantial improvement in the quality of the parameter estimates. 

The above example notwithstanding, however, it is felt that the addition 
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Table 4.8 Results of Runs with Empty Right-Hand Classes, y t Q 

Mean of Mean of Variance Variance Number of 
a b of a of b Convergence: 

1.59 1.39 100 

1.59 1.42 100 

1.58 1.38 100 

4.98 4.54 100 

3.97 3.58 100 

Run 

No. of 
Empty 
Classes a 8 

6G.75N4 4 5 5 

6G1N4 4 5 5 

6G.75N8 8 5 5 

9G.75N4 4 9 9 

9G1N4 H 9 9 

5.21 5.21 

5.14 5.15 

5.26 5.24 

9.59 9.57 

9.50 9.48 
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of empty classes to a sample histogram is a step which should be taken 

only when it is certain that the sample being analysed is highly trun­

cated, and then only with the realization that by adding these empty 

classes one is introducing a bias into the estimators. 

Characteristics of Weighted Least Squares Estimators 

Table 4.7 indicates that for Y = 0.75, the least squares esti­

mators are unbiased. Confidence in this inference is strengthened 

by an examination of Table 4.9. In Table 4.9, the mean and variance 

of the sample means of the ratio a/o( are computed for the aggregate 

of all samples sizes, and the means of these ratios are computed 

according to sample size. These results indicate that indeed the 

least squares estimator of oi is unbiased if Y be chosen equal to 0.75. 

Table 4.10 presents an analysis of the variance of the least 

squares estimator of ô  for V = 0.75. These data, also presented 

graphically in Figure 4.4, indicate that an attempt to express the para­

meter variance in the form of Equation 4.2 is fairly appropriate. As 

was the case for / = 0, the "constant" c^ is seen to be in actuality a 

function of the population parameters. Also included in Table 4.10 are 

the ratios of the variance of the least squares estimates of ĉ  to the 

variance of the maximum likelihood estimates of o< for the various 

runs. This ratio is seen to have a mean value of 1.36, and a standard 

deviation of about 0.2. Thus if one defines the efficiency of the 

least squares estimator relative to the maximum likelihood estimator 

to be the inverse of the ratios of the sample variances, then 

the efficiency of the least squares estimator is seen to be approxi-
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Table 4.9 Bias of Least Squares Estimates for Parameter a, y = 0.75 

N = 50 N = 75 N = 100 

1.003 0.9880 1.013 

0.988 0.981 0.981 

0.944 1.000 1.000 

0.998 0.977 0.988 

1.103 1.016 1.004 

1.015 

0.951 

Means 1.007 0.991 0.997 

Mean of all samples = 1.000 

Variance of all samples = 0.00088 
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Table 4.10 Characteristics of Parameter Variances, y = 0.75 

N a °LS a* N °ML 2 N 

a 
°ML 

50 3 0.74 4.10 0.49 2.72 1.51 

75 3 0.34 2.85 0.20 1.67 1.70 

100 3 0.31 3.40 0.22 2.40 1.41 

50 3 0.90 5.00 0.65 3.60 1.38 

75 3 0.45 3.75 0.31 2.58 1.45 

100 3 0.26 2.90 0.20 2.22 1.30 

50 5 1.59 3 . 1 8 1.63 3 .26 0 .98 

50 6 2.77 3.85 2.20 3.06 1.26 

75 6 1.21 2.55 1.03 2.15 1.17 

100 6 1.10 3.10 0.81 2.25 1.36 

50 7 2.54 2.60 1.87 1.90 1.38 

75 7 1.44 2.18 1.14 1.74 1.26 

100 7 1.21 2.50 0.98 2.00 1.23 

50 9 4 . 9 1 3 .03 2 .97 1.83 1.65 

50 9 3.71 2.30 2.96 1.83 1.25 

75 9 3.27 3.00 2.77 2.56 1.18 

100 9 2.35 2.90 1.43 1.77 1.64 

Mean of a* = 1.36 
I/O 

°j£ 
V a r i a n c e of a* = 0 . 1 9 
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mately equal to 1/1.36, or about 75%. Thus, the method of least 

squares is seen to offer an acceptable alternative method of esti­

mating population parameters. 

Distribution of Errors in Weighted Least Squares Fitting 

The error terms arising in the least squares fittings for four 

cases with Y= 0.75 were subjected to the same tests as were the un­

weighted errors in an effort to determine if the inclusion of the 

weights which were functions of the random variate would adversely 

affect the validity of Relation 2.1(b). The results of these tests 

are summarized in Tables 4.11 and 4.12, and indicate that the in­

clusion of the weights does not invalidate 2.1(b), and in fact seems 

to improve the reasonableness of the assumption of this relation. 

The use of these particular weights also tends to scale the errors 

and make them more nearly independent of the value of the random 

variate at which they are measured, lending credence to the col-

laterial assumption of the independence of the variance of the errors 

of the value of the random variate. Thus, these results cannot con­

tradict the assumptions of normality and independence of the error 

terms, and in fact, in the case of weighted least squares, tend to 

indicate that these assumptions are appropriate. 

Confidence Regions and Tolerance Limits 

As a compliment of the above study of the properties of the 

method of least squares as a tool by which population parameters may 
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Table 4.11 Distribution of P(^ 2^|) f o r Error Terms, y = 0.75 

P(y 2^g) Number of occurences 

0 - 0.05 30 

0.05 - 0.10 32 

0.10 - 0.20 45 

0.20 - 0.30 35 

0.30 - 0.40 47 

0.40 - 0.50 48 

0.50 - 0.60 43 

0.60 - 0.70 35 

0.70 - 0.80 18 

0.80 - 0.90 41 

0.90 - 1.00 26 

Total number of occurences = 400 

Mean of P (*f z>$%) = 0.44 
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Table 4.12 Results of Kolmogorov-Smirnov Test 

for Normality of Errors, y = 0.75 

Results are for 400 samples 

Rejection Level Number of Rejections Percent of 
Samples Rejected 

0.20 6 1.5 

0.15 4 1.0 

0.10 3 0.75 

0.05 1 0.25 
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be estimated, confidence regions were constructed for the parameter 

estimates obtained for case 100 of run 10R3. These regions were 

constructed by a simple adaptation of the method proposed by Halperin 

[6] and discussed in Chapter II. Because of the complexity of the non­

linear analogue to Equation 2.14, a direct solution of this equation 

was not attempted. Instead, using the least squares estimate of ^ 

and J3 as a beginning point, values of the statistic 

F =
 N " m r e§ (§.) 

m res(e) 

were computed at fixed points of a grid surrounding the least squares 

estimates of c( and & . This statistic is, as was discussed in 

Chapter II, distributed as Snedecor's "F" with m and N-m degrees 

of freedom. Thus, it was possible to compute the cumulative pro­

bability at the point F, that is, 

V i F d F 

for each value of F. These values of 17 were then plotted in the o(-(3 

plane at locations corresponding to the values of <* and & from 

which each was derived. The various confidence regions were then 

constructed by sketching a closed curve (using interpolation where 
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necessary) passing through the value of Y) for which the confidence 

region was desired. For example, the 90% confidence region was 

constructed by joining those points in the <k~ Q> plane for which •Vf 

=0.90. It is clear that this procedure can be made as accurate 

as desired by choosing a sufficiently fine grid. When the number 

of unknown parameters exceeds two a graphical construction of con­

fidence regions becomes impractical, and one would be compelled to 

estimate the confidence regions by repeated computations of F values 

over the ranges of the various parameters. Of course, two dimen­

sional cross-sections of the confidence regions could be plotted, 

and in some instances would aid in the visualization of the shape 

and extent of the regions. 

The confidence regions obtained for weights of unity are 

depicted in Figure 4.5. The most striking feature of these regions 

is the elongation of the ellipse along the line 0{= 3 , indicating 

the high degree of correlation between the two parameters. Also 

evident is the wide range of values which the parameter estimates 

may assume and still remain within the various confidence regions. 

This is an indication that the method of least squares in the case 

does not provide very confining limits upon the probable values of 

the population parameters. 

To use such a region to construct an upper tolerance limit, 

it is necessary to determine the value v y, „ such that 
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v 
p (v; <* , a ) dv = Y 

* ' n *>(& £ a. o 

Again, while the exact determination of this value is apt to be a formid­

able task, the calculation of v at a few critical points of the region R̂ j 

will give an estimate of Vy,*. sufficient for most practical purposes. 

Thus, to estimate v _, one might first calculate 
.yy,.yu 

— f ̂  99 90 
V.99,.90 : \ ' " P(v,8,8.25) dv=0.99 

which yields 

V.99,.90 = 2-° 5 

To check this approximation, values of v for different values of v qq __ 

within Rn Q„ might also be computed, and the final estimate chosen as u. yu 

the largest of these values. Thus, in this way the following values 

may be obtained. 
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c* f3 

8.25 

V . 9 9 , . 9 0 

8 .0 

f3 

8.25 2 .05 

8 . 1 8.50 2 .06 

8 .28 8 .80 2 . 0 8 

8 .40 9 . 0 0 2 .075 

From the above set of values, it is seen that an appropriate value for 

v is approximately 2.08. The true value of the one hundred year 

event is 1.839 (since (\ • 11 and ft = 11). Thus, the 90% tolerance 

limit for the one hundred year event in this case is only about 13% 

larger than the event itself. The cumulative probability corresponding 

to the event represented by the tolerance limit is found to be about 

0.9979. 

Figure 4.6 shows the 90% confidence region for the same observa­

tion computed with j = 0.75. Surprisingly, the size of this region is 

very nearly the same as the region obtained with J = 0. It is signifi­

cant, however, that the differences in the two regions occur in the 

lower ranges of the parameters, a fact which in this instance means that 

tolerance limits computed from the weighted regions will be somewhat 

smaller than the corresponding limits computed from unweighted regions. 

The shape of the weighted confidence region is in all respects similar 

to the shape of the unweighted regions; both being highly elongated 

ellipses (the term ellipse is used here in a generic rather than a 

mathematical sense, and the description of confidence regions as 
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elliptical is intended to convey only a general notion of the shape 

of the region and not to imply that the boundary of the region is a 

true ellipse) with major axis lying along the line (A = ^> . 

A question which naturally arises at this point is how do 

tolerance limits obtained from the theory of least squares compare 

with tolerance limits computed by other methods. For normal samples, 

when the mean and standard deviation are estimated by the method 

of maximum likelihood, then tolerance limits for various percentile 

points of the population may by computed from these estimates. 

For any sample, normal or otherwise, tolerance limits on at least 

selected percentile points of the population may be estimated by 

the so-called distribution free methods. Distribution-free tolerance 

limits are notoriously unconfining unless the sample size is large, 

and for moderate or small samples are scarely useful. Tolerance 

limits on normal populations are rather strict, and usually provide 

useful information as to the probable range of a population percentile; 

unfortunately, one often must deal with populations other than normal, 

and of course in these instances tolerance limits based upon normal 

populations are not applicable. 

The above sample from which were computed the confidence regions 

shown in Figures 4.5 and 4.6 is so small (100 points) that the distribu­

tion-free upper tolerance limits cannot be determined for any percentile 

apt to be of interest in a hydrologic application. 

The 90% tolerance limit for the one hundred year event for this 

sample may be computed by using the empirical factors developed by 



Fontaine [34j. The use of Fontaine's results yields a value of 1.98 for 

for v _ . This value is seen to be somewhat smaller than the value 

2.08 computed above. To compare tolerance limits obtained from least 

squares techniques to those available for normal distributions, a 

normally distributed random sample of fifty points was constructed 

from Table A-37 in Natrella [29] with zero mean and standard deviation 

equal to ten. Using the least squares technique, a 90% confidence 

region for the parameters U and (T was constructed and is presented 

in Figure 4.7. Table 4.13 shows the data from which this region was 

constructed and Table 4.14 shows the sample grouped to form the histo­

gram used to construct the confidence region. It is not necessary to 

comment upon this region, except perhaps to note the relative indepen­

dence of the parameters jj and ~̂ as evidenced by the near-circular 

shape of the region. No explanation for the rather peculiar elongation 

of this region near the values P - -2 and f~ = 6 can be given other 

than a rather weak incantation invoking some unknown pecularity of 

the sample from which this region was constructed. 

The 90% tolerance limit for the one hundred year event is deter­

mined by maximizing CTt-j rjr)+/̂ > where t-i_,_ is the value of the standard 

normal variate ( K) =0, ^f =1) corresponding to a cumulative probability 

of 0.99, and has the value 2.326 (Natrella [29]). This maximum occurs 

(approximately) at the point JJ =3, Q~ = 15 (since if 

v = <rt+ O , 
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Table 4.13 Random Normal Sample, y = 0, a = 10 

Number Entry 

1 0.48 

2 10.40 

3 - 1.11 

4 - 1.20 

5 13.96 

- 3.93 

7 - 2.20 

4.22 

9 2.33 

10 1.97 

11 - 5.21 

12 - 5.63 

13 - 1.16 

14 - 5.12 

15 - 5.18 

16 -21.94 

17 22.61 

18 4.61 

19 -15.33 

20 -18.36 

21 -14.07 

22 - 2.13 

23 9.48 

24 - 0.73 

25 -14.74 

Mean of sample = 0.96 

Number Entry 

26 - 2.36 

27 6.49 

28 15.55 

29 12.85 

30 - 7.47 

31 18.22 

32 8.98 

33 - 6.91 

34 9.72 

35 - 0.11 

36 5.17 

37 8.08 

38 26.51 

39 - 6.50 

40 5.92 

41 13.46 

42 - 1.37 

43 9.52 

44 14.67 

45 - 3.52 

46 3.09 

47 5.78 

43 -18.81 

49 - 4.88 

50 - 3.29 

Sample variance = 10.38 
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Table 4.14 Histogram of Normal Sample of Table 4.13 

Range of sample = 48.45 

Class width = 3.7269 

Number of groups = 14 

Center of first group =-22.361 

Center of last group = 26.088 

Group Frequency Normalized 
Histogram Histogram 

1 1 0 . 0 2 

2 2 0 . 0 4 

2 3 0 . 0 6 

4 0 0 . 0 0 

5 5 0 . 1 0 

6 10 0 . 2 0 

7 7 0 . 1 4 

8 6 0 . 1 2 

9 4 0 . 0 8 

10 5 0 . 1 0 

11 4 0 . 0 8 

12 1 0 . 0 2 

13 1 0 . 0 2 

14 1 0 . 0 2 



then 

*L 0mdrt + 1 
d|) di^ 

and so 

df_ 1 
d/J t 

which occurs on the particular curve in Figure 4.7 at the points 

OJ = 3, <J~ = 15). From these values, one obtains 

V.99,.90 = 3 8 

From Natrella [29], one finds the 100 year, 90% tolerance factor (for 

a normal distribution) to have the value K = 2.735. From the sample 
u 

one obtains x = 0.96 and s = 10.38. Thus 

N = x + K S = 29.3 
u u 

is the value of the normal-based 100 year, 90% upper tolerance limit. 

(The actual value of the 100 year event is 23.3.) Thus, it is apparent 



that the least squares tolerance limit is somewhat larger than that same 

limit based upon the more conventional tolerance factors. In terms of 

the actual value of the 100 year event one has 

N 
-± - 1.26 
V.99 

and 

.99 .90 
''^ = 1.63 

.99 

In other words, the least squares tolerance limit v is about 30% 

larger than the same limit obtained from more standard techniques. Thus 

it would appear that tolerance limits obtained from least squares tech­

niques may very well be of value in some instances, although predictably 

these limits will usually be less confining than limits developed for 

a specific distribution. While the least squares tolerance limits are 

computable according to the same rule regardless of the underlying dis­

tribution, and thus In a sense are distribution-free, they are in fact 

based upon the particular distribution by which they are computed. For 

small samples, least squares methods will yield tolerance limits when 

distribution-free limits cannot be defined. 

In should be noted that the above procedure is not infallable, at 



least in theory. The existence of multiple roots of the least squares 

normal equations may induce such oddities as confidence regions com­

posed of disjoint or open (unbounded) sets. It is not known whether or 

not such cases can arise in the fitting of density functions such as have 

been discussed herein, and lacking assurance to the contrary one must 

assume that such pathological cases can and may occur. It is permissible 

is such cases to resort to such subterfuges as changing weights, chang­

ing the manner in which the sample is grouped, or any other device which 

may avoid the problem of pathological parameter confidence regions. 

Finally, continuing with the above line of thinking, the concept 

of confidence regions and tolerance limits may offer an objective method 

of judging the propriety of the particular grouping of a sample into a 

histogram as compared to some other proposed grouping. The idea here 

would be to define a task-oriented criterion of judging the effectiveness 

of the grouping. For example, If one were making a frequency analysis 

for the purpose of determining, say, the one hundred year flood at a 

particular location, then the superior grouping might be chosen as that 

grouping which yields the smallest value of a particular tolerance limit 

for this flood. Such practice, while not in the spirit of the concepts 

of confidence regions and tolerance limits, may indeed be of value in 

the grouping of rather odd samples which may be encountered in practice. 

For most samples, the simulation work described in this chapter indicates 

that there will be little difference in the results obtained from 

differetn groupings. Nonetheless, this statement is an expression of 

an average trend, and may not be true of a given sample. 
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CHAPTER V 

THE METHOD OF LEAST SQUARES APPLIED TO REAL DATA 

In this chapter, some results obtained by the fitting of real 

data with the two-parameter gamma distribution by the method of least 

squares are presented. These data were initially fit in order to obtain 

an idea of the probable range of population parameters corresponding 

to typical data of an annual nature for us in the simulations described 

in the preceding chapters. It is not the intention in this chapter to 

enter into a detailed discussion of frequency analysis either by the 

method of least squares or by any other method, nor are the results of 

this chapter intented to justify or suggest the use of the gamma dis­

tribution as a suitable distribution for the analysis of annual data, 

since the suitability of the gamma distribution has already been discussed 

at length in the study by Markovic [22]. 

With these objectives in mind, the discussion of the results of the 

analysis of real data is limited to those areas in which the use of the 

method of least squares as a particular method of parameter estimation 

is thought to have a measurable effect, and little attention is paid 

to those questions, such as the adequacy of the assumed distribution to 

fit the data, which are of primary importance in a frequency analysis. 



Source of Data 

The data analysed by the method of least squares consisted of 

stream flow records gathered from streams throughout the United States, 

and of maximum precipitation data for the U.S. Weather Bureau, Atlanta, 

Georgia, station for the years 1889 through 1972. The stream flow 

records were comprised of annual flood peaks for the various streams 

and were obtained from the appropriate U.S. Geological Survey Water 

Supply Papers. As originally compiled by Robey and Wallace [30], 

the stream flow records were accepted if the record through 1960 

was at least 49 years in length, the location of the gage had not 

changed appreciably within the period of record, the stream was 

unregulated, and the record had no gap of more than three years 

within the period of record. Prior to use in this study, the stream 

flow records were updated to include the period from 1961 through 

1970. The rainfall records were compiled in the form of maximum 

annual precipitation for durations of 5 minutes, 10 minutes, 15 

minutes, 1 hour, 2 hours and 24 hours for each year. Not all records 

for each duration were available and the lengths of the records for the 

various durations were 77, 77, 70, 70, 81, 70 and 72 years respectively. 

These data are listed in Appendix F, along with a partial listing 

of the stream flow records and a complete list of the stations for 

which stream flow records were obtained. 

One of the most outstanding characteristics of the annual flood 



data examined in this work was the almost predictable presence of flow 

values of a magnitude of three or four to as much as six times the 

average value of the flows. An examination of the synthetic samples 

generated in the course of this work had indicated that such "outliers" 

should be considered a rarity; however, approximately fifty percent of 

the flood records examined contained such outliers. It was also not 

uncommon in these records to find these outlier points in groups of two, 

three, or even four. Such samples produce obvious difficulties when 

analysed, since if the analysis is made with the outliers retained, :hen 

their presence will strongly affect the parameter estimates. On the 

other hand, the removal of such points is always occasioned by some mis­

givings as to the selection of those points to be removed. The method 

of least squares, by virtue of the emphasis of the method upon the shape 

of the histogram rather than the values of the individual observations, 

is far better suited as a means of estimating population parameters from 

samples containing outliers than is, for example, the method of maximum 

likelihood. 

Results of Fitting 

Table 5.1 shows parameter estimates from six samples of annual 

flood data. These estimates were obtained by maximum likelihood 

and by least squares with and without outliers contained in the 

samples (these outliers were in all cases actual flow values contained 

in the various records). The actual values of these parameters are 



Table 5.1 Parameter Estimates for Samples of Annual Flood Data 

Least Squares (y = 0.75) Maximum Likelihood 

Sample With Without Percent* With Without Percent 
number outliers outl iers chan ige outliers outl iers change 

a 0 a 0 a & a=0 a 0 a 0 

315 5.07 4.97 5.19 4.49 - 2.4 0.6 4.67 5.65 5.40 - 21.0 - 15.6 

450 7.62 7.69 6.48 6.64 15.0 13,6 7.39 7.97 7.84 - 7.8 - 6.1 

940 5.84 5.28 5.67 5.23 2.9 0.9 3.89 5.26 4.97 - 35.2 - 27.8 

1805 2.42 2.15 3.26 2.67 -34.7 -24.2 1.84 2.99 2.56 - 62.5 - 39.1 

3210 7.86 7.74 9.23 8.83 -17.4 -14.1 7.71 10.36 9.88 - 34.4 - 28.1 

3345 13.85 11.48 13.43 11.06 3.0 3.7 3.83 1384 11.41 -261.0 197.9 

Average absolute change 12.6 9.5 70.3 52.4 

*Percent change = (with-without) 
with 
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unimportant, but it should be noted that the least squares estimates 

are closer to the maximum likelihood estimates based upon the reduced 

sample (that is, the sample from which the outliers have been removed), 

and that least squares is far more stable in the presence of outliers 

than is maximum likelihood. Thus, the method of least squares may 

be said to provide better estimates of the population parameters 

in these cases than does the method of maximum likelihood. 

For those samples which did not appear to contain outliers, 

there appeared to be little to support any choice between the least 

squares and likelihood estimates. This result was expected, since 

the work of Chapter IV had showns that, for "normal" samples at least, 

the two methods give results which are for practical purposes indistin­

guishable. There was a noticable tendency for return periods computed 

from the least squares parameters to be larger than the same return 

periods computed from the maximum likelihood parameters. This result 

was not anticipated, since the indications of the simulation runs 

were that the least squares parameters estimates would yield smaller 

return periods than the likelihood estimates (it should be recalled 

that the likelihood estimates were positively biased). An explanation 

for this observed anomaly may be based in part on the large number 

of outliers which these samples were found to contain. The fact 

that this trend was noticed even when the sample did not appear 

unusual may very well be an indication that the various flood recorcs 

are not random samples from a two-parameter gamma population. 



Table 5.2 shows the results of fitting the rainfall data 

of Appendix F with the two-parameter gamma distribution. For this 

data, little difference in the parameter values obtained by the 

two methods was found. Table 5.3 shows the return period for the 

event represented by the right edge of the last class in the histogram 

computed from the parameter estimates in Table 5.2. The tendency 

of the method of least squares to predict smaller return periods 

than maximum likelihood, a tendency which was noted in the analysis 

of synthetic data and disappeared in the analysis of the flood data, 

is seen in Table 5.3 to have reappeared. It should be remembered 

In the study of Table 5.3 that these estimates were based upon sample 

sizes of between 70 and 80 points, and thus the differences in the 

predicted return periods of the two methods which are seen in Table 

5.3 have little actual significance. 

Figure 5.1 shows graphically the results obtained by fitting 

the rainfall data with an extreme value distribution both by the 

methods of moments and by the method of Gumbel. Also shown on Figure 

5.1 are the frequency curves obtained from the least squares fit 

of the two-parameter gamma distribution. Again, these frequency 

curves indicate that the gamma distribution yields frequency estimates 

quite as reasonable as those estimates obtained from the extreme 

value distribution, at least for the particular sets of data represented 

In this figure. 

Table 5.4 shows the results of successive fittings of five 

flood records. Each record was fit ten times, and on each fitting, 



Table 5.2 Parameter Estimates for Maximum Annual Rainfall 

Data at Atlanta, Georgia 

Maximum annual 
11 by duration Least squares (Y = 0.75) Maximum Likelihood 

a 3 a = 6 

5 minutes 13.27 13.12 13.43 

10 minutes 13.01 12.98 12.95 

15 minutes 10.13 10.30 10.60 

30 minutes 7.90 7.91 8.76 

1 hour 8.83 8.75 9.02 

2 hours 8.71 8.73 9.97 

24 hours 16.77 16.76 15.88 



EXTREME VALUE BY GUMBEL METHOD 
LEGEND EXTREME VALUE BY MOMENTS 

GAMMA BY LEAST SQUARES 

I.I 1.2 14 2J0 3 0 40 60 6.0 10.0 33 0 300 40.0 50.0 I0Q.0 2O0O 

RETURN PERIOD { YEARS) 

Figure 5.1 Ra in fa l l -F requency Curves for A t l a n t a , Georgia 



Table 5.3 Return Period of Right Edge of Most Extreme Class 

Atlanta Rainfall Data 

Duration x/x Return by least squares Return by maximum likelihood 

5 minutes 1.97 543 508 

10 minutes 1. 80 137 131 

15 minutes 1.78 52 66 

30 minutes 1. 92 66 88 

1 hour 2. 14 293 298 

2 hours 1.88 70 102 

24 hours 1. 63 82 70 



the size of the record was reduced by one. The purpose of this 

work was to determine the effect of a "growing" sample upon a frequency 

analysis. Table 5.4 indicates that sample growth by the acquisition 

of "normal" points has little effect upon the results of the analysis, 

since the changes of the parameter estimates are far less than changes 

expected for different samples of the same population. This table 

is complementary to Table 5.1, for together the two tables indicate 

that a least squares analysis is quite stable under a growing sample 

whether the newly acquired points represent frequent or rare events. 
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Table 5.4 Stability of Parameter Estimates with a Growing Sample 

Annual Flood Data 

S t a t i o n L e a s t S q u a r e s 

a V a r i a n c e o f a 

315 4 .98 0 .0063 

450 7 . 6 1 0 .2708 

940 6 .06 0 .1546 

1805 3 . 0 3 0 . 2 0 7 1 

3210 8 .38 0 .2666 

Maximum L i k e l i h o o d 

a V a r i a n c e of a 

4 . 7 5 0. 0200 

7 . 6 1 0 . 1 6 8 5 

3 .88 0 .0118 

2 . 1 1 0 .0408 

7 . 9 5 0 . 0 3 9 5 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Summary of Results 

In the preceding chapters, the method of least squares has been 

examined as a pobbible method of estimating statistical parameters 

from a given set of data. The major thrusts of this investigation 

have been attempts to determine the theoretical basis of the method 

of least squares, to estimate the efficiency of the least squares 

estimators when compared to other commonly used estimators, and to 

identify the strengths and weaknesses of the least squares method as 

a tool for statistical analysis, with particular emphasis upon fre­

quently-occurring problems in hydrology. 

In Chapter II it was recognized that the method of least squares 

is a form of the method of maximum likelihood if it may be assumed that 

the errors arising in the fitting process are normal variates of 

zero mean and constant standard deviation. In Chapter IV the validity 

of this assumption was examined experimentally and it was found that 

there is justification for the adoption of this assumption. Certainly 

it appears that this assumption is no less justified in this instance 

than in other unrelated applications where the method of least squares is 

used with the assumption of normality made tacitly. Thus is have been 



indicated at least that the use of the method of least squares as a 

method for estimating statistical parameters is theoretically sound 

and may be justified as an application of the method of maximum likeli­

hood . 

Also presented in Chapter II is a powerful method due to Halpsrin 

and Hartley by which confidence regions for the various parameters being 

estimated may be constructed. The method discussed gives an explicit 

construction of these regions, and is available in the same form regard­

less of the particular distribution function being fitted. It has been 

shown how such regions may be used to construct tolerance limits for 

various percentiles of a population. Confidence regions and some 

tolerance limits were computed in Chapter IV to illustrate the use 01: 

the method. The results of these computations indicated that tolerance 

limits computed from least squares criteria are not as confining as 

those obtained by some other means. In spite of this fact, the ease 

with which such limits may be computed indicates that least squares 

tolerance limits can be of value in many instances. 

Chapter II concludes with a summary of the more common diffi­

culties encountered in non-linear regression and a brief exposition of 

methods by which these problems may be overcome. While no effort at 

completeness has been attempted in this discussion, it is felt that the 

above exposition is of sufficient scope and detail to be applicable to 

difficulities which might be encountered in a wide variety of applica­

tions. 



As a compliment to the theoretical investigations into the method 

of least squares, rather extensive numerical experiments were made to 

determine the properties of the method when applied to a two-parameter 

gamma distribution. This investigation was concerned with such details 

as methods by which a sample can efficiently be grouped to form a his­

togram, the statistical properties of the estimators, and the question 

of whether or not these properties can be altered (and thus hopefully 

improved) by the proper chice of weighting functions or by the extension 

of the range of optimization beyond the range of the sample. The 

results of these experiments indicated that the method of least 

squares is most efficient when samples are grouped into histograms 

using a constant class width over the entire range of the sample, 

and that the choice of the class width had no appreciable effect 

upon the results of the fitting, so long as the choice was made 

according to rather flexible and reasonable criteria. It was also 

found that the least squares estimates are statistically inferior 

to likelihood estimators in that their use leads to estimates with 

more scatter (larger variance) than the likelihood estimates evince. 

By a judicious choice of weights, it is possible to reduce this 

difference between the two methods to the point at which the difference 

between the two methods becomes of no practical consequence. At 

the same time, the weights may be used to render the least squares 

estimators unbiased, and thus least squares may be made quite attractive 

as a method of estimating statistical parameters. The results of 

this inquiry indicated that the extension of the range of optimization 
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beyond the range of the sample is at best a questionable practice, 

and should be used only when it is certain the sample being analysed 

is highly truncated, if indeed it should be used at all. 

By fitting the two-parameter gamma distribution to annual 

flood data and annual maximum precipitation data, it was shown that 

the least squares estimators are remarkably stable when applied 

to samples containing records of rare events. When applied to real 

samples containing no such records, the least squares estimates 

were not substantially different from the likelihood estimates, 

thus verifying the results of the earlier numerical experimentation. 

Conclusions 

In summary, the results of this study appear to substantiate 

the following observations and conclusions: 

a) The use of least squares is theoretically sound, and may be 

regarded as an application of the concepts of maximum likelihood. 

b) Confidence regions and tolerance limits may be obtained 

squares methods for a wide variety of problems. 

c) The statistical properties of least squares estimators will in 

general be inferior to likelihood estimators, although by the proper 

choice of weighting functions this inferiority can probably be reduced 

to the point to which it is of no practical consequence. 

d) Judicious choices of weighting functions may allow the modi­

fication of the properties of least squares estimators to accomodate 

peculiarities of the problem at hand. 



e) For the two-parameter gamma distribution function, the 

particular choice of weights 

w(x; 4 ,|3) = [f (x; c< , p ) ] 

where f (x;o(,Q) represents the gamma distribution function, has many 

advantages, among which are included the facts that these weights vastly 

improve the convergence characteristics of the method and render the 

estimators unbiased. It is anticipated that different distributions 

would require different weights to produce desirable estimators. 

f) The method of least squares is quite stable, and may be applied 

to samples containing records of rare events with good results. 

g) The range of optimization should be limited to the range of the 

data sample, except perhaps for samples known to be highly truncated. 

Recommendations 

Upon the strength of the above conclusions and observations, the 

use of the method of least squares to estimate statistical parameters 

can be recommended to hydrologists as a means by which some of the pro­

blems more or less particular to hydrologic analysis may be at least 

partially overcome. It is seen that, as a method of parameter esti­

mation, least squares can be almost as efficient as more standard 

methods. It would be a mistake, however, to judge the utility of 

the method of least squares solely by comparison with other methods 
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because the potential of least squares extends far beyond traditional 

statistical analysis. For example, an examination of the annual 

flood data discussed in Chapter V is sufficient in itself to suggest 

the possibility of an underlying distribution with more than one 

"hump". Indeed, if one considers that floods may arise from precipitation 

brought about by more than one type of mechanism then the idea that 

such data should exhibit multiple peaks in its frequency distribution 

becomes most compelling. Such distributions might be approximated 

very simply as the sum of two distrbution functions. That is 

g(x; fr y2) = \ (f1(x; yf) + f2(x; y2) . 

Such distributions could easily be fit by least squares techniques, and, 

perhaps more importantly, the easily visualizable nature of the least 

squares algorithm is conducive, to a ready appraisal of the properties of 

such fittings. Thus, the method of least squares, in this and in other 

ways, can be of benefit in the study of the physical and statistical pro­

cesses underlying hydrologic phenomena. 

Most important of all, the techniques for the application of the 

method of least squares have not been exhausted in this study. For 

example, in Chapter IV was discussed the possibility of optimizing class 

widths based upon a criterion of minimizing in some sense a particular 

confidence region or tolerance limit. Certainly this and other tech­

niques for improving the performance of least squares for a given appli­

cation remain to be explored, and surely further improvement may be 
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expected to result from such investigations. One point is clear; 

at least in the fitting of the twoparameter gamma distribution 

function, the method of maximum likelihood can do no better than 

the results reported in this study. On the other hand, the method 

of least squares can do no worse, and perhaps awaits only a more 

perceptive investigator to further enhance the properties of the 

method. 
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APPENDIX A 

PROPERTIES OF THE TWO-PARAMETER GAMMA DISTRIBUTION 

The two-parameter gamma distribution is defined by the relation 

f (3-1 -Of x 

t . „ N o{ x x e . _ 
p(x;o(,p)=-^ r(&)— 

where P ( 6 ) i s t h e gamma f u n c t i o n d e f i n e d by 

p((3) = C xf5"1e"Xdx 
•'o 

f °° 
0 \ 0-1 - « 

= (X* ) x l e 
^ o 

From Equation A.2 one readily finds that 

dx 

dx 

A.2 

r ((3+1) = ( x^e Xdx = /3 ( x ^ Xe X 

•'o o 

= pV ((*) 

where the second step is obtained by an integration by parts with 

A. 3 

-x u ^ x and dv = e . By direct integration, one finds 

fill = \ x°e Xdx = 1 A.k 
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and 

P (2) = \ xe"Xdx = 1 . A.5 

Using Equations A.3 and A.5 inductively, one finds, for integral values 

of (*, 

r(/3+D = |6! = fi* C/3-1) ' (/5-2) . . . • / # • 1 . A.6 

Now, suppose that the random variable x has a gamma distribution by 

Equation A.l. Then 

•° „r cP 

f oT f 
fj = E(x) = \ x p ( x ; q r , ^3 )dx = ^ . r J x J e Xdx 

f3 ^r A ' 7 

a1 r(g+i) _ f 

where the intermediate steps follow by Equations A.2 and A.3. Also, 

E(x ) = J x p(x; <* ,(3 ) = P ( 3 ) J x e Xdx 

f9
 rt

 A'8 

<*' P(p+2) /3{6+l) 

and so 

rr 2 = V(x) = E(x
2) - [E(x)]2 = £ + f - J*- = JL . A.9 



Likewise, one may obtain expressions for higher moments about the mean. 

For example, the third moment of x about jj is found to be 

Jj3 = E[(x-yU)3] = ̂ £ A.10 

Thus, the skewness coefficient (Yevjevich [26]) is given by the relation 

Hz 2 P/&3 2 Y / J _ £_TV_CA _ _ I. 

^ <r3= £i%i«}" S? 
A.11 

and so it follows that the gamma distribution is positively skewed for 

all positive values of cK and /3 , the skewness decreasing as 0 in­

creases. To express the gamma distribution function in finite form, 

one writes 

-/ „ x °( f V i ^ - 1 -o<vJ . ._ 
p(v; c(,p) = p (g > ) ^ vT e dv , v i _ 1 ^ v £ v i . A.12 

' Vi-1 

By the mean value theorem for integrals (Taylor [24]), there exists a 

number v* in [v._,, v ] such that 

p(v;^,(3) = p(v*;(X,j3) A v i , A.13 

where 

A v , = v. - v. . 
i I l-l 
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Equation A.13 is often written in the more informal form 

P(v; (*,(3 ) = p(v; c{ , p ) A v± , A. 14 

where Equation A.14 is to be understood in the sense of Equation A.13. 



APPENDIX B 

MATHEMATICAL TECHNIQUES FOR THE LEAST SQUARES FITTING 

OF THE TWO-PARAMETER GAMMA DISTRIBUTION FUNCTION 

In this appendix are developed or collected specific numerical 

techniques of use in applying the method of least squares to the problem 

of fitting a two parameter gamma distribution function to a sample his­

togram. 

The Equations of Least Squares 
N 

Let the sample histogram be denoted by the sequence }h.\ ._.. and W« 
let it be assumed that the histogram has been normalized so that 

N 

Z \ = l B.l 
i=l 

In the notation of Appendix A, the distribution function is denoted by 

p (v ; « , p ) where 

P < V « ' P > = T O T v i / 6 " V ° < V i B*2 

and v is understood in the sense of Equation A.13. Then in analogy 

2 
to Equation 2.23, the weighted sum of the residuals E which it is 

desired to minimize becomes 
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2 ^r - 2 
E = 2s (h± - P(vi;c< ,(3)) w B.3 

1=1 

and so, 

IJ-- ^ [ 4 ? fti-p(V«fI^)}
2-2(h1-p(v1,«,p» -**- (v.;«>P)] B.4 

and 

2 N T ̂ w, 

•^ - i : [4J- ( v ? ( v « -P »2-2(vp(vi' «•<»» i f - <v«^ B-

For the particular choice of weights 

- t f 
Wi = [p(vi;C<o'Po)] B'6 

Equation B.4 and B.5 may be written in the form 

^ - -2 £ ?(v. ; t < o > ( 3 o)^ (h. - p(vi;« ((3) -|£- (v.; „ o, ? o) B.7 

and 

^ E 2 „ ^ - , , - r 

iP 
' - ^ S P ^ V ^ Oti-pCv^cc.pj-^-Cv^oc,,,^) B. 
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3 wi 2 wi 
where it has been assumed that the terms involving — and — are 

}o{ ^j3 

negligible in comparison to the terms retained in Equations B.7 and B.8 

With the usual Taylor approximation of p about the point <x , A , one 

obtains the normal equations 

s«w*« + sc(ft A ? = ** B ' 9 

S4« Ao( + sf»(* A P = R p B - 1 0 

where 

= § l ~ T S J Lp(V"°'Po>J s c < « 

Spf3 - g [ J ̂ c gay 2 [?<v <0, Po)J -' 

s«e = gL ^T" ~ * j t ^ V o - M B-13 

R« " Z (h. - P(v.;<,o> po» ^ (vlS V P o ) I p ( v i ^ o ' P o » " Y u 4 

and 

V " Z ( \ - P O ^ ; ^ , ^ ) ) - ^ - Cvt; «Q) f30)[P(v.; *Q > (Solj-
rB.15 
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The derivatives appearing in Equations B.9 and B.10 may be calculated 

from Equation B.2 as follows 

|* (viS <* ,f) = if/* - v±) p (v ±^ s(5) B..16 

and 

5j<V«>f> - r - p $ - + l n " + I ° O P C»t;«.p) B.17 

While this form of the derivatives is best suited for discussion, a 

more convenient form for computation.'may be obtained by differentiat­

ing the integral form of p as given by Equation A.12 

fVi oT P-l -<Xv 
P (v;«,(3) = ^ ^ v( dv A.12 

One thus obtains 

4 £ Cv; «»f3) - \ ( P / ^ - x) p < x ; « , p ) d: 
' J v i - 1 

B.18 

and 

r v i n r e > 
(v; o^,p> = i c - J p F f ^ ) + l n 0 < + l n x)- p C x ; « > ^ ) d x B-19 

^ 
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Equations A.12, B.18 and B.19 are then easily evaluated by using a 

numerical integration technique. In this work, the technique used 

was a simple trapezoidal rule with 16 subintervals on [v. ., , v.], 
l-l l 

The method of Levenburg is simply applied to Equations B.9 

and B.10 by replacing S^^ and $&& by the quantities 

S ^ = (1 +7[) S#p . B.21 

Appropriate va lues of 'ft were found by t r i a l to be 

fl = 0.2 B.22 

In - t-l /2 B-23 

Using the above relations, one seeks the least squares estimates a and 

b of c( and (2> by repeated solution of 

S**** + S^A(3 = R< B.24 

S^MX + Spp A£ = R^ B.25 

2 2 1/2 
This iteration is continued until (̂od + A (3 ) is less than some 

-4 
preassigned quantity (the value used in this study was 10 ). 
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The initial estimates a^ and b_ necessary to begin the least 

squares solution were obtained by taking these estimates to be the 

estimates of <* and ^ obtained'by the method of moments. Thus, if x 

2 
and S are the sample mean and variance respectively, then 

2 
a. = x/S B.26 
o 

and 

b = a x . B.27 
O o 

In order to evaluate numerically the expressions for p and its 

derivatives as given by Equations A.12, B.18 and B.19, it is necessary 

to evaluate several transcendental functions. Schemes for the evaluation 

of the logarithms and antilogrithm terms are so usual as to require no 

comment; however, the evaluation of the gamma function and its deriva­

tives is not so commonplace. A rather slick method for evaluating 

these terms is given in the following paragraphs, 

The gamma function 

V (l + y) = I tye tdt B.28 

may be approximated by the polynomial 

P (1 + y) = 1 + bxy + b2y
2 + ... + b8y

8 + 6(y) B.29 
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in the range 0 £ y £ 1, where the error term £ (y) obeys the inequality 

\e (y)| < 3 x 10~7 B.30 

The values of the constants in Equation B.29 are 

b1 = -0.5771965 t>5 = -0.75670408 

b0 = 0.98820589 b, = 0.48219939 
2 6 

b3 = -0.89705694 by = -0.19352782 

b4 = 0.91820686 bg = 0.03586834 

If x = N + y, where N = 1,2,...,32, and 0 < y < 1 

P (1 + x) = (N + y) (N + y-1) ... (1 + y) P (1 + y) B.31 

If x = N + y, where N = -1,-2,... and 0 < y < 1, then 

B.32 p a + X) - P d + y)  
' U + XJ (N + y 4- 1) (N + y) ... (y-l)y 

If x = N + y , where N = 3 3 , 3 4 , . . . and 0 < y < 1, then 

P ( x ) ^ e X x X 1 / 2 V T i t d + ZTJ-+ — ^ - y ^ % - - . . . ) B.33 
288x*" 51840xJ 

Formulas B.29, B.31, B.32 and B.33 provide a method of computing 

P(x). The accuracy of these estimates will generally be between 

6 and 7 places. (Reference [20] and Reference [31]). 
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To compute the derivative of the gamma function, one first 

notes that 

fj fin T (*) ] - - £ # B.34 
ax p (x) 

P (x) 
The function • • •,- \ is known as the Psi function, and is discussed in P (x) 
Abramowitz and Stegun [31], where is given the series expansion 

+ (1 + z) = 7 ^ r H y = - * + £ ^ r ^ y ; ^ - i . - 2 , ...B.35 
1 n=l 

where V is Eulers number (=0.5772156649...). Equation B.35 thus gives 

a method whereby the value of yS (1 + Z) can be computed; however, the 

-2 
infinite series, having terms of the order of N , converges with 

order N . Thus, to obtain accuracy of six places would require the 

summation of on the order of a million terms, an obvious impracticality, 

By termwise division (Kantorvich and Krylov [32]) of the series in 

Equation B.35, one obtains 

1 2 + 4 - 3
3 ^ B.36 

n(n + 2) 2 3 4 4, 
n n n n (n + Z) 

Upon noting that the series is absolutely convergent, there follows 

oO D O 

£* n/„ z zv - zl ^ ~̂ r - a ^ -̂ r + 2 *—' -7- - 2 . n(n + &) V i 2 *-* 3 T " , 4 " , 4 , ̂ . < 
n=l * n=l n n=l n n=l n n=l n (ji + Z) 

B.37 



But all except the last sum in Equation B.37 is independent of Z, 

and thus may be evaluated once and for all, giving 

ot> 

y , / f ^ = Z (1.644934 - 1.2020513 + 1.082323Z2 - Z3 *T -—^ J 
^ Y n (n + Z) *-* 4, . / 
n=l n=l n (n + Z) 

B.38 

The terms of the series appearing in Equation B.38 are of the order 

of N , and thus a substantial improvement in convergence has been 

effected. 

A similar massage of the terms of the expression (Abramowitz 

and Stegun [31]) for \\) , 

oo 

V̂ 'tf) = 2L ^ (& # 0, -1, -2, ...) 
k=0 (Z + k) 

B.39 

yields the equivalent series expression 

^/(Z) = -| + 1.644934 - 2.404102Z + 3.2469699Z2 B.40 

aO 

-z 3 y (4k + 3Z) 
k=l k4(k + Z)2 

The terms of the series appearing in Equation B.40 are of the order of 

-5 -4 
N , and thus convergence is of the order of N . Equations B.37 and 

B-40 were used to compute the values of yand ^ in this study. 
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APPENDIX C 

GENERATION OF PSEUDORANDOM NUMBERS 

In this appendix are discussed certain methods by which sequences 

of numbers having properties loosely described as "random" may be 

generated on a digital computer. Among the difficulities associated 

which the generation of random numbers on a digital computer, perhaps 

the two most striking are the inability to produce a precise definition 

of what is meant by the term "random number", and the philosophical 

uneasiness which arises from the use of a finite number of arithmetical 

operations to produce a number supposedly independent of any particular 

process and unpredictable from the knowledge of any previous state 

of nature. It was undoubtedly such considerations which prompted 

Von Newmann (Ralston and Wilf [33]) to state that "anyone who considers 

arithmetical methods for producing random digits is, of course, in 

a state of sin". 

Given the above described and rather deplorable state of 

affairs, and faced nevertheless with the necessity of producing 

by arithmetic means sequences of random digits, statisticians have, with 

characteristic piety, avoided the issue by inventing the concept 

of pseudorandom sequences. D. H. Lehmer (Ralston and Wilf [33]) has 

defined a pseudorandom sequence as "a vague notion embodying the 

idea of a sequence in which each term is unpredictable to the 
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uninitiated and whose digits pass a certain number of tests, traditional 

with statisticians and depending somewhat upon the uses to which 

the sequence is to be put." 

Methods discussed in this appendix for generating pseudorandom 

sequences from various distributions are based upon numerical operations 

performed on sequences of uniformly distributed pseudorandom numbers. 

By a uniformly distributed pseudorandom sequence is meant a pseudorandom 

sequence of numbers, all of whose terms fall within a given interval 

[a,b], which have the property that the probability that any term 

of the sequence lies in a given subinterval of fa,b] is a linear 

function of the width of the sub-interval and is independent of 

any other consideration. Sequences possessing the above properties 

are said to be pseudorandom sequences uniformly distributed on [a,b]. 

For use on binary computers, the favored algorithms for producing 

uniformly distrubted pseudorandom numbers on (0,2 -1), where p indicates 

the word length of the machine in question, are the mixed muliplicative 

congruential procedures of the form 

R _ = (o(R +(3) mod (2P ) C.l 
n + i n I 

p 
where (-)mod (2 ) indicates the remainder obtained as the result of 

division by 2 . (_For example, 3 mod (2) = 1, and 8 mod (2)= 0). Choices 

of o( and & are suggested by considerations of periodicity and serial 

correlation of the sequences generated by Equation C.l (Ralston and Wilf 

[33]). 



A modification of the above conguential method was used to 

generate the pseudorandom numbers utilized in this work. This modifica­

tion makes use of two conguential generators of the form given in 

C.l, and a table of preselected length r. Prior to the beginning 

of the computation, the table is filled with r numbers computed 

from the first generator (call this generator Gl). The computation 

of a pseudorandom number is then made, based upon two given numbers 

Nl and N2 in the following manner. Using the number N2 and the 

second generator (say G2), a pseudorandom integer N2T on [l,r] is 

computed. Using the number Nl and the generator Gl, a pseudorandom 

number Nl' on [0,2 -1] is computed. Using N2' as an index into the 

table, the desired number x is chosen as the existing entry in the 

N2' position of the table. The process is completed by the replacment 

of x at the N2f position of the table by N1T. In practice, the numbers 

Nl' and N2' are used in place of Nl and N2 for the next computation. 

Thus, the modified method in essence consists of the random selection 

of numbers from a table of random numbers. 

The complexity of the above procedure is such that it almost 

defies the imagination, and one might expect that sequences selected 

by such a procedure would exhibit many properties ascribed to random 

numbers. Such is the case. An account of various tests performed 

on sequences generated by this procedure is given in Reference [21], 

In addition to these tests, eight sequences of length 1000 were 

tested for a tendency of the procedure to repeat. No repeated numbers 
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were found in any of these sequences. 

Values of c( and (3 in the generators used in this study were 

and 

Gl: C\ = 139, (3. = 7261067085 

G2: <X = 29 \ (S = 7261067Q85. : 0< = 297, (3 = 

In addition, use was made of an auxiliary generator for which 

<X = 515, (3 = 7261067085 

In all cases, p = 35. 

Once there is available a sequence of pseudorandom numbers uniform 

on (0,1), then a sequence of pseudorandom numbers non-uniformly dis­

tributed may be generated by the following method. Let F denote the 

cumulative distribution function of the desired distribution. Then 

the sequence 

S = F 1(R ) C.2 
n n 

is distributed according to F (here F denotes the inverse of F). Since 

the sequence (R ) is random, then so also is the sequence (S ). Un­

fortunately, for many important distributions, the inverse of the 



cumulative distribution function cannot be expressed in closed form. 

One is then faced with a task of providing a rational approximation to 

F , or abandoning equation C.2 in favor of more simple methods of 

generating the required sequence (S ). For example, random numbers from 

a normal population with parameters U and <T may be generated by the 

formulae 

S = <f (-2.In R ) 1 / 2 cos 2 Tt R , + fJ 
n n n + 1 ' 

C.3 
i In 

Sfl + j - <T (-2.1B Rn) sin2TrRn + 1 + / J 

(Ralston and Wilf [33]). Random numbers from a gamma population with 

parameters <* and (3 (with & integral) may be generated by the formula 

i t 
S = - - (In || R .) C.4 
n o{ m 

1 = 1 

where the R . form a double sequence of numbers uniform and random on 

(0,1) (Fontane [34]), Equation C.4 was used in this study to generate 

pseudorandom gamma variates. 



APPENDIX D 

A DESCRIPTION OF THE COMPUTER PROGRAM 

In this appendix is given a user oriented description of the 

computer program developed for the least squares fitting of the two 

parameter gamma distribution function to given or synthetic data, or 

to a given histogram. 

Purpose of the Program 

This program is designed to accept or generate data samples and 

to fit the data with a two-parameter gamma distribution by a least 

squares optimization of the distribution parameters. The program 

also estimates the distribution parameters by the methods of moments 

and maximum likelihood, and performs certain statistical tests on the 

least squares error terms and on the parameter estimates. 

Language and Computer Requirements 

This program is coded in Fortran V and was designed for operation 

on the UNIVAC 1108 under EXEC 8 monitor. The program requires 8200 

decimal locations in the instruction bank and 7250 decimal locations in 

the data bank. I/O is by the standard input and output devices only. 

No temporary or permanent files or storage are required for operation 

of the program. Use is made in the program of elements of the UNIVAC 
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large scale systems MATH-PACK/STAT-PACK program group. 

Data Input Format 

A single run is defined as a logical set of cases of synthetic 

data from a given gamma population, or a single fitting of a given 

set of input data. Input in all cases is according to the following 

format J 

Card Field Variable Type 

: 1-5 IREAL Integer 

2 1-72 TITLE Alphanumeric 

3 1-5 NX Integer 

3 6-10 ITER Integer 

3 11-15 NCYCLE Integer 

3 21-25 NEMPT Integer 

4 1-10 PAR(l) Real 

4 11-20 PAR(2) Real 

4 21-30 TEST Real 

4 31-40 EXPON Real 

5 1-10 IRN1 Integer 

5 11-20 WSCALE Real 

Card 6 only if IREAL = 1 
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Card Field Variable Type 

6 1-10 VT(I) Real 

11-20 

etc 

Card 7 and 8 only if IREAL = 3 

7 1-10 W Real 

7 11-20 VB Real 

7 21-25 NH Integer 

8 1-10 H(I) Real 

11-20 

etc 

The above variables have the following meanings: 

IREAL - a control variable 

IREAL = 0 Signifies the program is to generate synthetic data 

= 1 Signifies real data is to be input 

= 3 Signifies a histogram is to be input 

= -1 Signifies no more runs are to be made. 

TITLE - title of the run 

NX - the number of data points per cycle to be generated or input 

( <_ 500), or, if IREAL = 3, the number of data points used to 

construct the histogram. 

ITER - the maximum number of iterations per cycle for the iteration 

scheme to be carried. If convergence of the least squares pro­

cedure is not obtained within ITER iterations, the case is 
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abandoned and computation begun on the following case. 

NCYCLE - the number of separate cases to be considered for the currant 

run (NCYCLE = 1 unless IREAL = 0. NCYCLE £ 100) 

NEMPT - the number of empty classes to be added to the data histogram 

before fitting. 

PAR(l) - cK value of the gamma population (required only if IREAL = 0) 

PAR(2) - Rvalue of the gamma population (required only if IREAL = 0). 

TEST - the limiting value of the parameter corrections. If 

2 2 1/2 
( A<* + A {3 ) ± TEST, convergence is declared. 

EXPON - the exponent of the weight factor in the expression 

Y 

[P (v . ; o< , (3 ) ] (Note EXPON) must be negative or zero). 

IRN1 - the initial number from which the synthetic data are generated 

(required only if IREAL = 0) 

WSCALE - the correction factor by which Sturges' class interval is 

to be multiplied. (See Chapter III) 

VT(I) - values of the real data to be analysed (only if IREAL - 1). 

W - the class interval for the input histogram (only if IREAL = 3). 

VB - the value of data variate corresponding to the left edge of 

the first class of the input histogram (only if IREAL = 3). 

NH - the number of classes in the input histogram (only if IREAL = 

3). 

H(I) - the input histogram (only if IREAL = 3). 
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Programming Methods 

The method of analysis used by this program is the method of 

least squares as developed in this report. Flow charts of the main 

program, which directs the logical flow of the program, and of sub­

routine GPARTL, which performs the least squares fitting of the density 

function to the histogram, are given in Figures D-l and D-2 respec­

tively. A list of other subroutines required (exclusive of those 

subroutines in the standard FORTRAN library) and a brief description 

of their methods and functions is given in Table D-l. 

Operating Considerations 

The program will accept multiple runs and will provide a 

summary of the results of each run. Output and run time vary with 

the size of samples being analyzed. Output should average between 

two to three seconds of computer CPU time per case for normal samples 

of size 100 or less. 
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Table D-l. Description of Computer Subroutines 

Subroutine Calling Program Function and Methods 

NRAND* 

RANDUJ 

RANGE* 

HIST* 

PSI 

PS'« 

d ..IN* 

CINORM 

KDLN 

Gprr 

MAIN 

MAIN 

MAIN 

MAIN 

MAIN 

MAIN 

MAIN 

MAIN 

MAIN 

GPARTL 

The auxilary random number 

generator (see Appendix C). 

Generates uniform random 

numbers on (0,1) by the use 

of the methods of Appendix C. 

Computes the range of a sample. 

Groups a given set of data 

into a histogram and prints 

the histogram on the printer. 

Computes — ( In P (x) ) 

(see Appendix B). 

d2 / \ 
Computes — ? ^ In P (x) J 

dx 

(see Appendix B). 

Evaluates the incomplete gamma 

function. 

Performs a chi-square test for 

normality (see Chapter IV). 

Performs a Kolmogorov-Smirnov 

test for normality (see Chapter IV) 

Evaluates the gamma distribution 

function and its derivatives 

(see Appendix B). 
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Subroutine 

IKVER2 

GAMMA* 

GROUP* 

PLOT1* 

RNORM* 

MRAND* 

TINORM* 

CHI* 

Calling Program 

GPATL 

GPDF 

HIST 

HIST 

KOLN 

RANDUJ 

CINORM 

CINORM 

Function and Methods 

Inverts a 2X2 matrix. 

Evaluates the complete gamma 

function (see Appendix B) 

Groups data Into a histogram 

Plots a line of symbols on the 

printer. 

Evaluates the cumulative dis­

tribution function of the 

normal distribution. 

Generates integers random on 

(0, 235-l) 

Evaluates the inverse of the 

cumulative distribution function 

of a normal distribution. 

Evaluates the cumulative dis­

tribution function of the chi-

square distribution. 

* denotes subroutines included in the Univac large scale systems MATH-PACK/ 
STAT-PACK group. 
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S E Q U E N C E S , S Y N T H E T I C 
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Figure D-l Flow Chart of Main Program 
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Figure D-2 Flow Chart of Subroutine GPARTL 



APPENDIX E 

DESCRIPTION OF COMPUTER RUNS 

In this appendix is given a list of the various simulation 

runs made during the course of this study. The parameters of the 

runs consisted of the population parameters A and B, the sample 

size Nx, the value of Y , the value of r, the number of empty 

classes NE, and the initial number IRN1 from which the random 

samples were generated. Table E-l summarizes these runs. 

In aggregate Table E-l lists 102 runs based upon 30 different 

random samples. 
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Table E-l. Parameters of the Simulation Runs 

Run No. A,B Nx r NE IKN1 

1 4 5C 1 0 779 0 
1A 4 50 0.75 0 779 0 
li: 4 50 0.5 0 779 0 
2 4 50 1.0 0 339 0 
2A 4 50 0.75 c 339 G 
2B 4 50 0.5 o 339 0 
3 8 50 1.0 0 339 0 
3A c 50 0.75 0 339 0 
3B 8 50 0.50 0 339 0 
4 3 50 0.5 0 1393997 0 
4A 3 50 0.75 0 1393997 0 
5 2 50 0.5 0 15011 0 
5A 2 50 0.75 c 15011 0 
5B 2 50 1.0 0 15011 0 
6 5 50 0.5 G 1536 c 
7 6 50 0.5 0 2011 0 
8 7 50 0.5 0 81647 0 
5 A 7 50 0.75 c 81647 0 
9 9 50 0.5 0 91646 c 
9A 9 50 0.75 0 91646 0 
10 11 50 0.5 0 69179 0 
10A ±1 50 0.75 0 69179 0 
IOC 11 50 1.0 0 69179 c 
5R1 2 25 0.5 0 15011 c 
5R2 2 75 0.5 0 15011 0 
5R3 2 100 0.5 0 15011 0 
7R1 6 25 0.5 c 2011 0 
7R2 6 75 0.5 0 2011 0 
7R3 6 100 0.5 0 2011 G 
9R1 9 25 0.5 z 91646 0 
9R2 9 75 0.5 0 91646 0 
9R3 9 100 0.5 0 91646 0 
10R1 11 25 0.5 0 69179 J 

10R2 11 75 0.5 0 69179 0 
10R3 11 100 0.5 0 69179 0 
5-N1 2 50 0.5 1 15011 0 
5-N2 2 50 0.5 2 15011 c 
5-N4 2 50 0.5 4 15011 Q 
6-N1 5 50 0.5 1 1536 0 
6-N2 5 50 0.5 2 1536 0 
6-N4 5 50 0.5 4 1536 0 
9-N1 9 50 0.5 1 91646 0 
9-N2 9 50 0.5 2 91646 0 
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Tah le E - l . P a r a m e t e r s of t h e 

Run No. A.B Nx r 

10-N1 11 50 0.5 
10-N2 11 50 0.5 
10-N4 11 50 0.5 
4G.25 3 50 0.5 
4G.50 3 50 0.5 
4G.75 3 50 0.5 
4G1 3 50 0.5 
6G.25 5 50 0.5 
6G.50 5 50 0.5 
6G.75 5 50 0.5 
6G1 5 50 0.5 
8G.25 7 50 0.5 
8G.50 7 50 0.5 
8G.75 7 50 0.5 
8G1 7 50 0.5 
9G.25 9 50 0.5 
9G.50 9 50 0.5 
9G.75 9 50 0.5 
9G1 9 50 0.5 
4G.25R2 3 75 0.5 
4G.50R2 3 75 0.5 
4G.75R2 3 75 0.5 
4G1R2 3 75 0.5 
8G.25R2 7 75 0.5 
8G.50R2 7 75 0.5 
8G.75R2 7 75 0.5 
8G1R2 7 75 0.5 
4G.25R3 3 100 0.5 
4G.50R3 2 100 0.5 
4G.75R3 3 100 0.5 
4G1R3 3 100 0.5 
8G.25R3 7 100 0.5 
8G.50R3 7 100 0.5 
8G.75R3 7 100 0.5 
8G1R3 7 100 0.5 
6G.75N4 5 50 0.5 
6G.75N8 5 50 0.5 
6G1N4 5 50 0.5 
9G.75N4 9 5. 0.5 
9G1N4 9 DO 0.5 
14G.50A 3 50 0.5 
14G.75A 3 50 0.5 
16G.50A 6 50 0.5 

t i on Runs (Continued) 

2L IRN1 

69179 

Y 

l 

IRN1 

69179 0 
2 69179 0 
4 69179 0 
0 1393997 0.25 
0 1393997 0.50 
0 1393997 0.75 
0 1393997 1.0 
0 1536 0.25 
0 1536 0.50 
0 1536 0.75 

c 1536 1.0 
0 81647 0.25 
0 81647 0.50 
0 81647 0.75 
0 81647 1.0 
0 91646 0.25 
0 91646 0.50 
0 91646 0.75 
0 91646 1.0 
G 1393997 0.25 
0 1393997 0.50 
0 1393997 0.75 
0 1393997 1.0 
0 81647 0.25 
0 81647 0.50 
0 81647 0.75 
0 81547 1.0 
0 1393997 0.25 
0 1393997 0.50 
0 1393997 0.75 
0 1393997 1.0 
0 81647 0.25 
0 81647 0.50 
0 81647 0.75 
0 81647 1.0 
4 1536 0.75 
8 1536 0.75 
4 1536 1.0 
4 91646 0.75 
4 91646 1.0 
C 329901221 0.5 
0 329901221 0.75 
0 8636721216 0.50 
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Table E-l. Parameters of the Simulation Runs (Continued) 

Run No. A,B Nx r NE IRN1 _x 

16G.75A 6 50 0.5 0 8636721216 0.75 
19G.50A 9 50 0.5 0 7592879626 0.50 
19G.75A 9 50 0.5 0 7592879626 0.75 
14F.50B 3 75 0.5 0 3898255758 0.5 
14G.75B 3 75 0.5 0 3898255758 0.75 
16G.50B 6 75 0.5 0 9844208303 0.5 
16G.75B 6 75 0.5 0 9844208303 0.75 
19G.50B 9 75 0.5 0 648603574 0.5 
19G.75B 9 75 0.5 0 648603574 0.75 
14G.50C 3 100 0.5 G 9223726759 0.5 
14G.75C 3 100 0.5 G 9223726759 0.75 
16G.50C 6 100 0.5 0 5661391511 0.50 
16G.75C 6 100 0.5 0 5661391511 0.75 
19G.50C 9 100 0.5 0 1766807785 0.5 
19G.75C 9 100 0.5 0 1766807785 0.75 



Appendix F 

Summary of Real Data 

In this appendix is given a summary of the real data used in this 

study for various purposes. The annual flood data were taken from U.S. 

Geological Survey Water Supply Papers Numbers 1671 through 1689. The 

station part numbers and station numbers shown in Table F.l are the 

inventory numbers used by the Geological Survey. Table F.2 gives 

the actual peak flow records for the six stations discussed in detail 

in Chapter 5. Table F.3 gives the rainfall data whose analysis is 

discussed in Chapter 5. These data were obtained from U.S. Weather 

Bureau Records for the Atlanta, Georgia, gage and represent the period 

from January 1889 through December 1972. 



Table F.l List of Streamgauge Station Inventory Numbers 

Part number Station number Part number Station Number 

u 315 5A 155 

LA 450 3A 205 

LA 940 3A 215 

LA 1805 3A 325 

IB 3210 5A 510 

lb 3345 3A 1835 

IB 3615 4 735 

IB 4340 4 770 

IB 5405 4 1130 

.3 5480 4 1560 

13 6385 4 2165 

LB 6680 4 2525 

2A 195 5 145 

2A 550 5 3310 

2A 835 5 4645 

2B 2185 5 4815 

2b 2235 6A 375 

25 3350 6A 625 

2B 3495 6B 7070 

2^ 3920 7 725 

Zz 4415 3 335 

2B 4770 8 660 

25 4790 9 470 

2B 4820 ; 850 

3A 115 9 2395 



Table F . l CContltiued) 

P a r t Number S t a t i o n Number 

9 4060 

i: 1285 

10 1685 

10 1700 

10 1720 

11 980 

11 1520 

11 2035 

. 1 2665 

11 2750 

11 2820 

11 4095 

11 5025 

13 3190 

14 2100 

14 3210 

14 3590 



Table F.2 Annual Flood Data 

1A-315 Piscataquis River Near Dover-Foxcraft, Maine 

DA - 297 square miles, 1903-1971 

5140 7420 2410 10400 8040 10100 17400 4010 4110 

7380 7130 6930 6100 6200 14600 5960 4710 8650 

7600 8350 21500 8690 4570 8040 7780 10400 9600 

8040 6870 12900 6350 8040 5590 19300 6750 8110 

6240 13700 4010 6970 4680 13500 7190 5300 11600 

9640 3100 11100 17400 9310 15200 13200 9560 5150 

2990 13300 5250 7190 4920 5420 6810 14000 5250 

5050 22800 8990 7460 12800 13400 

1A-450 Dead River at the Forks, Maine 

DA = 872 square miles, 1903-1971 

10700 24600 21300 23000 22000 16400 24700 20600 17600 

8940 10300 22600 10600 9510 13700 23800 15500 16600 

12800 12800 16000 17600 12800 15700 16000 18200 14700 

13000 28700 16900 11700 14400 14400 10200 16900 14400 

14400 15200 12000 18200 14800 13000 7140 12200 8860 

10500 16600 13400 8640 4790 10600 11400 9490 11900 

5200 8450 11600 4790 7820 7790 11400 19500 17100 

9590 



Table F.2 (Continued) 

1B-3210 Sacandaga River Near Hope, N. Y. 

DA = 491 square miles, 1912-1967 

11000 32000 16500 11400 16000 18600 8490 10300 7230 

20400 20400 10300 11000 12500 18600 9320 14400 11700 

11800 8640 7790 16500 10600 11200 23900 9180 16600 

11700 10600 11000 14500 10500 10500 20000 16700 16600 

16700 31400 11100 17600 16200 22900 12600 10700 14200 

7820 21300 9340 17800 10200 14700 12200 17000 8370 

6060 9910 

1B-3345 Hoosic River Near Eagle Bridge, N. Y. 

DA = 510 square miles, 1911-1967 

8300 6860 10600 8300 16500 13000 8040 13000 7920 

9739 12100 13600 11700 11200 7350 7350 41500 10100 

5380 6920 9640 11900 11600 13000 31500 7920 35300 

11300 13800 6750 7810 10900 10900 9750 9840 9500 

12200 55400 13100 19100 15900 9220 10000 7640 10900 

7190 8560 14400 15900 8320 12100 9300 9240 3970 

5760 9370 



Table F.2 (Continued) 

1A-940 Souhegan River at Merrimack, N. H 

DA = 171 square miles, 1910-1970 

4500 2810 2250 3250 3680 6000 4750 3290 1820 

3200 2930 5410 3980 3450 9260 2050 2590 2870 

6180 2290 2530 3490 3520 3210 7500 3260 16900 

3450 10800 2280 4250 2370 3880 1730 7830 2430 

2750 1680 3990 2100 2180 3200 4300 4650 4410 

2710 6760 1830 2970 4180 6000 2370 4730 3500 

1800 1220 1540 2770 4400 2550 4400 

1A-1805 Middle Branch, Westfield River at Gross Heights, Mass. 

DA » 53 square miles, 1911-1970 

2420 2330 2600 2560 4500 2900 1330 1220 3350 

4230 3650 2650 2010 2270 4250 1660 1540 5860 

1950 990 2340 2000 8020 2850 5420 8400 3250 

19900 2250 2310 1600 2710 3150 3670 3790 1870 

2250 3400 9600 1700 8320 4980 4420 3560 16500 

6460 1850 2320 2000 4700 1800 2370 1820 1300 

515 423 597 893 1170 760 



Table F.3 Maximum Precipitation - Atlanta, Georgia 

U. S. Weather Bureau Records 

Jan. 18 89 to Jan. 19 73 

O r d e r 5 Min. 10 Min. 15 Min . 30 Min. 1 H r . 2 I l r s . 24 I l r s . 
Number I n . I n . / h r . I n . I n . / h r . I n . I n . / h r , I n . I n . / h r . I n . I n . / h r . I n . I n . / h r . I n , I n . / h r . 

1 . . 8 8 1 0 . 5 6 1.27 7 . 6 2 1 .57 6 . 2 8 2 . 4 3 4 . 8 6 3 . 2 3 3 . 2 3 3 . 4 5 1 1 .73 5 . 5 6 . 2 3 

2 . 7 8 9 .36 1.24 7 .44 . 1 5 5 6 .20 2 . 3 0 4 . 6 0 2 . 9 3 2 . 9 3 3 . 2 7 1.64 5 . 5 2 . 2 3 

3 . 7 3 8 .76 1.12 6 . 7 2 1 .53 6 . 1 2 2 . 2 0 4 . 4 0 2 . 5 3 2 . 5 3 3 . 2 6 1 .63 5 . 4 4 . 2 3 

4 . 7 2 8 .64 1 .11 6 . 6 6 1 . 4 1 5 .64 2 . 1 0 4 . 2 0 2 .42 2 . 4 2 3 . 1 7 1 .59 5.*12 . 2 1 

5 . 6 9 8 .28 1 .06 6 . 3 6 1 .38 5 . 5 2 2 . 0 9 4 . 1 8 2 . 4 0 2 . 4 0 3 . 0 6 1 .53 5 . 0 4 . 2 1 

6 . 6 7 8.04 1.04 6 . 2 4 1 .37 5 , 4 8 2 . 0 3 4 . 0 6 2 .34 2 . 3 2 2 . 9 3 1 .47 4 . 8 6 . 2 0 

7 . 6 6 7 . 9 2 1 .00 6 .00 1 .31 5 . 2 4 2 . 0 2 4 . 0 4 2 .32 2 . 3 2 2 . 7 7 1 .39 4 . 8 2 . 2 0 

8 . 6 5 7 . 8 0 1.00 6 . 0 0 1 .29 5 . 1 6 1 .93 3 . 8 6 2 . 3 2 2 . 3 2 2 . 7 1 1 .35 4 . 7 0 . 2 0 

9 . 6 5 7 . 8 0 . 9 8 5 . 8 8 1 .25 5 . 0 0 1 .91 3 . 8 2 2 .29 2 . 2 9 2 . 6 0 1 .30 4 . 6 4 . 1 9 

10 . 6 5 7 . 8 0 . 9 7 5 . 8 2 1.24 4 . 9 6 1 .83 3 . 6 6 2 . 2 5 2 . 2 5 2 . 5 4 1 .27 4 . 5 9 . 1 9 

1 1 . 6 3 7 . 5 6 1 . 9 7 5 . 8 2 1 .22 4 . 8 8 1 .81 3 .62 2 .22 2 . 2 2 2 . 5 2 1 .26 4 . 5 1 . 1 9 

12 . 6 3 7 . 5 6 . 9 6 5 . 7 6 1 .22 4 . 8 8 1.80 3 . 6 0 2 .20 2 . 2 0 2 . 4 4 1 .22 4 . 1 3 . 1 7 

n . 6 0 7 . 2 0 . 9 6 5 . 7 6 1 .20 4 . 8 0 1 .78 3 .56 2 ,18 2 . 1 8 2?40 1 .20 4 . 1 1 . 1 7 

14 . 6 0 7 . 2 0 . 9 5 5 . 7 0 1 .19 4 . 7 6 1 .76 3 . 5 2 2 . 1 3 2 . 1 3 2 . 3 6 1 .18 4 . 0 5 . 1 7 

1 5 . 6 0 7 , 2 0 . 9 5 5 . 7 0 1 .16 4 . 6 4 1.69 3 . 3 8 2 . 1 2 2 . 1 2 2 . 3 4 1 .17 4 . 0 4 . 1 7 

16 . 5 9 7 . 0 8 . 9 3 5 . 5 8 1 .16 4 . 6 4 1 .63 3 . 2 6 2 .12 2 . 1 2 2 . 3 4 1 .17 3 . 9 9 . 1 7 

17 . 5 9 7.08, . 9 1 5 . 4 6 1 . 1 5 4 . 6 0 1.60 3 . 2 0 2 . 1 1 2 . 1 1 2 . 3 2 1 .16 3 . 9 0 . 1 6 

18 . 5 8 6 . 9 6 • 9 1 5 . 4 6 1 .13 4 . 5 2 1 .59 3 . 1 8 2 . 1 1 2 . 1 1 2 . 3 2 1 .16 3 . 8 5 . 1 6 

19 . 5 7 6 . 8 4 . 9 0 5 . 4 0 1 .12 4 . 4 8 1 .56 3 . 1 2 2 . 0 4 2 . 0 4 2 . 3 0 1 .15 3 . 8 2 . 1 6 



Order 
Number 

1 5 iMin. 
, In, •In./hr^. 

10 
In 

Min. 
•Tn./hr. 

15 
•Tn. 

Min. 
Tn./hr. 

20 .56 [6.72 .90 5.40 1.10 4.40 

21 .55 6.60 .88 5.28 1.09 4.36 

22 .54 6.48 .82 4.92 1.07 4.29 

23 .51 6.12 .82 4.92 1.03 4.12 

24 .51 6.12 .81 4.86 1.01 4.04 

25 .50 ' 6.00 .80 4.80 1.00 4.00 

26 .50 6.00 .77 4.62 .99 3.96 

27 .50 6.00 .77 4.62 .98 3.92 

28 .48 5.76 .74 4.44 .96 3.84 

29 .48 5.76 .73 4.38 .94 3.76 

30 .48 5.76 .73 4.38 .93 3.72 

31 .47 5.64 '.73 4.38 .92 3.68 

32 .47 5.64 .72 4.32 .92 3.68 

33 .47 5.64 .72 4.32 .91 3.64 

34 .46 j 5.52 .72 4.32 .90 3.60 

35 .46 5.52 .72 4.32 .88 3.52 

36 .46. 5.52 .72 4.32 .88 1 3.52 

37 .45 ' 5.40 .70 4.20 .87 3.48 

38 .45 5.40 .70 4.20 .87 3.48 

39 .44 5.28 .69 4.14 .87 3.48 

T~ 30 
• T n 

Min. 1 
In./hr. 

1 Hr. 
In. In./hr. 

2 H 
In. 

-' 
rs. 
In./hr. 

24 Hrs. 
In. In./hr. 

1.56 3.12 1,95 1.95 2.30 1.15 3.79 .16 

1.52 3.04 1.93 1.93 2.29 1.15 3.72 .15 

1 1.46 2.92 1.89 1.89 2.28 1.14 3.70 .15 

1.42 2.84 1.87 1.87 2.27 1.14 3.70 .15 

1.41 2.81 1.82 1.82 2.25 1.13 3.66 .15 

1.37 2.74 1.80 1.80 2.25 1.13 3.64 .15 

1.34 2.68 1.80 1.80 2.23 1.12 3.63 . .15 

1.30 2.60 1.79 1.79 2.20 1.10 3.63 .15 

1.30 2.60 1.79 1.79 2.20 1.10 3.51 .15 

1.29 2.58 1.76 1.76 2.13 1.07 3.49 .15 

1.28 " 2.56 1.75 1.75 2.09 1.05 3.46 .14 

1.27 2.54 1.75 1.75 2.05 1.03 3.43 .14 

1.26 2.52 1.70 1.70 1.91 .96 3.41 .14 

1.25 2.50 1.65 ; 1.65 1.88 .94 3.39 .14 

1.25 2.50 1.60 1.60 1.82 .91 3.34 .14 

1.23 2.46 1.59 1.59 1.81 i .91 3.34 .14 

1.23 2.46 1.5.4 1.54 1.^0 .90 3.32 1 .14 

1.22 2.44 1.51 1.51 1.74 .87 3.28 .14 

1.21 2.42 1.48 1.48 1.73 .87 3.28 .14 

1.20 2.40 1.47 1.47 1.69 .85 3.27 -14 



O r d e r 
dumber 

| 5 Min, 
I n . I n . / h r . 

10 
• I n 

Min . 
• I n . / h r . 

15 
• T n . 

Min. 1 
T n . / h r . 

30 
Tn 

40 . 4 2 5 .04 . 6 9 4 . 1 4 . 8 3 3 . 3 2 1.19 

4 1 . 4 2 5 .04 . 6 8 4 . 0 8 i 8 2 3 . 2 8 • 1 .17 

1? . 4 2 5 .04 . 6 7 4 . 0 2 . 8 l ' 3 . 2 4 1.14 

43 . 4 2 5 .04 . 6 5 3 . 9 0 .791 3 . 1 6 1.14 

44 . 4 1 4 . 9 2 . 6 5 3 . 9 0 . 7 8 3 . 1 2 1 .13 

4 5 . 4 1 4 . 9 2 . 6 4 3 . 8 4 . 7 8 3.12 1.13 

4 6 . 4 0 1 4 . 8 0 . 6 4 3 . 8 4 . 7 7 3 . 0 8 1 .08 

47 . 4 0 4 . 8 0 . 6 4 3 .84 . 7 7 3 . 0 8 1 .03 

48 . 4 0 4 . 8 0 . 6 3 3 . 7 8 . 7 7 3 . 0 8 1 .01 

4 9 . 4 0 4 . 8 0 . 6 3 3 . 7 8 . 7 5 3 . 0 0 1.00 

50 . 4 0 4 . 8 0 . 6 3 3 . 7 8 . 7 5 3 . 0 0 , 9 8 

5 1 . 3 9 4 . 6 8 . 6 2 3 . 7 2 . 7 3 2 . 9 2 . 9 7 

5 2 . 3 9 4 . 6 8 . 6 2 3 . 7 2 . 7 2 2 . 8 8 . 9 5 

53 . 3 9 4 . 6 8 . 6 1 3 . 6 6 . 7 2 2 . 8 8 . 9 4 

54 .39 i 4 . 6 8 . 6 0 3 .60 . 7 2 2 . 8 8 y 
. 9 3 

5 5 . 3 8 | 4 . 5 6 . 5 8 3 . 4 8 . 7 0 2 . 8 0 . 9 2 

56 . 3 8 4 . 5 6 . 5 8 3 . 4 8 ; 6 9 2 . 7 6 1 .92 

57 . 3 8 4 . 5 6 . 5 8 3 . 4 8 . 6 9 2 . 7 6 . 8 7 

58 • . 3 8 4 . 5 6 . 5 8 3 . 4 8 . 6 9 2 . 7 6 . 8 4 

59 . 3 8 4 . 5 6 . 5 7 3 . 4 2 . 6 8 2 . 7 2 . 8 3 

Min. 
I n . / h r . 

1 H r . 
I n . I n . / h r . 

2 H r s . 
I n . I n . / h r . 

24 H r s . 
I n . I n . / h r . 

1 2 . 3 8 1.46 1 .46 1.64 . 8 2 3 . 2 . I . 1 4 

2 . 3 4 1.45 1 .45 1 .62 . 8 1 3 .24 . 1 3 

2 . 2 8 1.41 1 . 4 1 1 .61 . 8 1 3 . 2 4 . 1 3 

2 . 2 8 1 .41 1 ,41 1.60 . 8 0 3 . 2 2 . 1 3 

2.. 26 1.40 1 .40 1 .55 . 7 8 ' 3.1*6 . 1 3 

2 . 2 6 1.39 1.39 1 .54 . 7 7 3 . 1 5 . 1 3 

2 . 1 6 1.37 1 .37 1 .53 . 7 7 3 , 1 2 . 1 3 

2 . 0 6 1.36 1.36 1 .52 . 7 6 3 . 1 1 . 1 3 

2 . 0 2 1.36 1 .36 1.49 . 7 5 3 . 1 1 . 1 3 

2 . 0 0 1.35 1 .35 1 .48 . 7 4 3 . 0 6 . 1 3 

1.96 1.32 1 .32 1.46 . 7 3 2 . 9 8 . 1 2 

1.94 1.30 1 .30 1 .45 . 7 3 2 . 9 7 . 1 2 

1 .90 1.30 1 .30 1 .43 | . 72 2 . 9 7 . 1 2 

1.88 1 .28 1 1 .28 1 .43 . 7 2 2 . 8 8 . 1 2 

1.86 1 .28 1 1 .28 1 .38 . 6 9 2 . 8 7 . 1 2 

1.84 1.27 1 .27 1 .35 . 6 8 2 . 8 7 2 1 . - 1 2 

1.84 • 1.26 1 .26 l.*33 . 6 7 2 . 8 2 . 1 2 

1.74 1 .25 1 .25 1 .32 . 6 6 2 . 7 7 . 1 2 

1.68 1 .25 1 .25 1.32 . 6 6 1 2 . 7 2 .13 

1.66 1 . 2 1 1 . 2 1 1.30 1 .65 2 . 6 2 1 .11 



Order 
dumber 

5 Min. 
In. -In._/lir_̂  

10 
• In 

Min. 
•Ir). /hr. 

15 
•Tn. 

Min. 
Tn./hr. 

30 
Tn 

Min. 
In./hr. 

1 H 
•In. 

r. 
In./hr. 

2 Hrs. 
In. In./hr. 

24 Hrs. 
in. In./hr. 

60 .36 4.32 .57 3.42 • 64 2.56 .81 1.62 1.21 1.21 1.29 .65 2.62 .11 

61 .36 4.32 .57 3.42 .64 2.56 .79 1.58 1.17 1.17 1.26 .63 2.62 .11 

62 .36 4.32 .56 3.36 • 61 2.4 4 .79 1.58 1.17 1.17 1..2 5 .63 2.61 .11 

63 .36 ' 4.32 .56 3.36 • 57 2.28 .78 1.56 1.16 1.16 1.25 .63 2.56 .11 

64 .35 4.20 .56 3.36 •56 2.24 .75 1.50 1.16 1,16 1.25 .63 2.5"0 .10 

6:> .35 4.20 .55 3.30 • 55 2.20 .73 1.46 1.15 1.15 1.19 .60 2.49 .10 

t, 6 .35 4.20 .55 3.30 • 52 2.08 .72 1.44 1.15 1.15 1.15 .57 2.43 .10 

67 .34 4.08 .53 3.18 .47 1.88 .70 1.40 1.12 1.12 1.14 .57 2.35 .10 

68 .34 4.08 .52 3.12 .44 1.76 .68 1.36 1.08 1.08 .98 .49 2.34 .10 

69 .33 3.96 .52 3.12 .44 1.76 .66 1.32 1.05 1.05 .98 .49 2.32 .10 

70 .33 3.96 .50 3.00 .44 1.76 .62 • 1.24 .98 .98 .96 .48 2.13 .09 

71 .31 3.72 * .49 2.94 .97 • 97 2.09 .09 

72 .31 3.72 .46 2.76 .94 .94 2.01 .08 

73 .31 3.72 .44 2.64 .92 .92 

74 .30 3.60 .44 2.64 .90 .90 

75 .29 3.48 .43 2.58 .90 .90 

76 .29 3.48 .39 2.32 .86 .86 « 

77 .26 3.12 .35 2.10 .85 .85 

78 ' .81 .81 

79 .80 .80 



3rder 5 Min. 
uruber I n . - I n . / h r . 

80 

81 

10 Min. 
In . • I n . / h r . 

•15 Min. 
T n . J Tn./hr. 

30 Min. 
tn I n . / h r , 

1 Hr. 
In . I n . / h r 
.76 

.72 

.76 

.72 

2 H r s . 
I n . I n . / h r . 

24 H r s . 
ITL, , In . /hr . 

I- • 
J -



APPENDIX G 

SOME FUNDAMENTAL DEFINITIONS 

In this appendix are collected and explained certain mathe­

matical concepts and notational conventions used in this work. 

Some Definitions 

By a vector is meant a m-tuple of scalars (x., . .., x ). The 
1 m 

x. whicn comprise the vector are called components, and may be scalars, 

in which case the vector is a constant vector, or functions, in which 

case the vector is a vector function. The dimension of the vector is 

by definition m. 

A space is a collection of vectors of comparable dimension. 

The dimension of the space is defined to be the common dimension of 

the vectors which comprise the space. 

The cartesian product of two spaces E1 and E_, written as 

E x E , is the space comprised of vectors obtainable by adjoining 

vectors from the first space with those from the second. Thus, if 

9 = (x., ..., x ) is an element of E,, and if B„ = (y., ..., y,) 
is an element of E_ , then i? = (x. , . . ., x , y., . . . , v, ) is an 

2 .~ l m - x " k 

element of E x E . It is apparent that the dimension of E x E„ is 

equal to the dimension of E.. plus the dimension of E„. 
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A region of a space is a set of vectors where components satisfy 

a given set of constraints. The dimension of a region is equal to 

the number of non-constant components of the points which comprise the 

region. This dimension cannot exceed the dimension of the space to 

which the region belongs, but may be less. 

A cross-section of a space (or of a region) is a region of 

the space (or region) whose dimension is smaller than that of the space 

(or region) of which it is a part. 

A quadratic form of a vector b is a function of the form 

m m 

i c y - £ Z a i j b i b j • 
i - 1 j - 1 

where the a.. are constants. A quadratic form is said to be positive 

definite if 

Q(b) P> o, and 

Q(b) = 0 if and only if b = (0 , ..., 0). 

The rank of a quadratic form is the order of the largest submatrix 

of (a ) whose determinant is non-zero. 
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Some Notational Conventions 

The symbol £ as it appears in statements such as 

e ± £ N(0,T 2) 

or 

x £ S 

is read as "e. is normally distributed with zero mean and variance 

2 
$" in the first case, and "x is an element of S" in the second. 

Notice that in each case the symbol £. indicates a set or population 

to which an element belongs. 

The notation 

jjv: G(v)J 

means the set of all v such that G(v) is a true statement. For 

example, the set x: -1 5. x ̂ _ Oj is comprised of all real numbers 

between -1 and 0 inclusive. 

The notation 

a = max f (0 ) 

&e s 
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means that a is equal to the maximum of f(&) as Q ranges over S. 

Thus, for any Q £ S, 

f (©) ̂  a, 

and if b is any number such that 

f ( e ) ^ b, 

then 

a < b. 
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