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A Shape-Based Approach to the Segmentation of
Medical Imagery Using Level Sets
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and Alan Willsky

Abstract—We propose a shape-based approach to curve evo-missing (due to low SNR of the acquisition apparatus), or
lution for the segmentation of medical images containing known ngnexistence (when blended with similar surrounding tissues).
object types. In particular, motivated by the work of Leventon, ynqer sych conditions, without a prior model to constrain

Grimson, and Faugeras [15], we derive a parametric model for th tati t alqorith includi intensit d
an implicit representation of the segmenting curve by applying th€ Segmentation, most algorithms (including intensity- an

principal component analysis to a collection of signed distance Curve-based techniques) fail-mostly due to the under-deter-
representations of the training data. The parameters of this mined nature of the segmentation process. Similar problems

representation are then manipulated to minimize an objective arise in other imaging applications as well and they also hinder
function for segmentation. The resulting algorithm is able to the segmentation of the image. These image segmentation

handle multidimensional data, can deal with topological changes bl d dthe i fi f h orior inf
of the curve, is robust to noise and initial contour placements, and probiems deman € Incorporation or as much prior informa-

is computationally efficient. At the same time, it avoids the need for tion as possible to help the segmentation algorithms extract the
point correspondences during the training phase of the algorithm. tissue of interest. We propose such an algorithm in this paper.

We demonstrate this technique by applying it to two medical |n particular, we derive a model-based, implicit parametric

applications; two-dimensional segmentation of cardiac magnetic yonrasentation of the segmenting curve and calculate the pa-

resonance imaging (MRI) and three-dimensional segmentation of . . . . S
rameters of this representation via gradient descent to minimize

prostate MRI. . s : i
: : : . . an energy functional for medical image segmentation.
Index Terms—Active contours, binary image alignment, cardiac

MRI segmentation, curve evolution, deformable model, distance ) ] ]
transforms, eigenshapes, implicit shape representation, medical A. Relationship to Prior Work

Image Seamentaln, et shape model i SO our work shares common aspecs ith arumber of model
model. based image segmentation algorithms in the literature. Chen
et al. [6] employed an “average shape” to serve as the shape

prior term in their geometric active contour model. Coattal.

. INTRODUCTION [10] developed a parametric point distribution model for de-

EDICAL image segmentation algorithms often face difscribing the segmenting curve by using linear combinations of
ficult challenges such as poor image contrast, noise, ai@ eigenvectors that reflect variations from the mean shape.
missing or diffuse boundaries. For example, tissue boundarifise shape and pose parameters of this point distribution model
in medical images may be smeared (due to patient movemenésg determined to match the points to strong image gradients.
Pentland and Sclaroff [21] later described a variant of this ap-
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derived by performing PCA on a collection of signed distancg@mplifies the alignment task, which we approach from a varia-

maps of the training shape. The segmenting curve then evoltiesal perspective.

according to two competing forces: 1) the gradient force of the

image, and 2) the force exerted by the estimated shape whareAlignment Model

the parameters of the shape are calculated based on the imagey ihe training sel” consist of a set of. binary images

gradients and the current position of the curve. _ {1',12,... 1"}, each with values of one inside and zero out-
Our work is also closely related to region-based active cogye the object. The goal is to calculate the set of pose param-

tour models [5], [20], [22], [34]. In general, these reg|on-base&ers{p17p27 ...,p"} used to jointly align the: binary im-

models enjoy a number of attractive properties over gradiegises and hence remove any variations in shape due to pose dif-

based techniques for segmentation, including greater robustngsgnces. We focus on using similarity transformations to align

to noise (by avoiding derivatives of the image intensity) and injnese binary images to each other. That is, in two dimensions,

tial contour placement (by being less local than most edge-baipg [a b h 6]T witha, b, h, andd corresponding ta, y-trans-

approaches). lation, scale, and rotation, respectively. The transformed image
of I, based on the pose paramagpeis denoted by, and is de-
B. Contributions of Our Work fined as

In our algorithm, we adopt the implicit representation of the .
segmenting curve proposed in [15] and calculate the parameters I(@,9) = I(z,y)
of this implicit model to minimize the region-based energy func-
tionals proposed in [5] and [34] for image segmentation. THENEre
resulting algorithm is found to be computationally efficient and 7

T
robust to noise (since the evolving curve has limited degrees of 7| =T[p] | v
freedom), has an extended capture range (because the segmenta- 1 1
tion functional is region-based instead of edge-based), and does 10 a Lo 0
not require point correspondences (due to an Eulerian represen- —lo 1 b 0 h 0
tation of the curve). Though in this paper, we only show the de- 00 1 00 1
velopment of our technique for two-dimensional (2-D) data, this - N -~
algorithm can easily be generalized to handle multidimensional M (a,b) H(h)
data. We demonstrate a three—dimensional (3-D) application of cos(f) —sin(d) 0] [z
our technique in Section VI. Also, in this paper, we focus on x | sin(f) cos(f) O [y|. (1)
using the region-based models presented in [5] and [34] . How- 0 0 1 1
ever, it is important to point out that other region-based models > 20 d

are equally applicable in this framework.

The rest of the paper is organized as follows. Section Il dghe transformation matriX[p] is the product of three matrices:
scribes a gradient-based approach to align all the training shagaganslation matrix\/ (a,b), a scaling matrixH(h), and an
in the database to eliminate variations in pose. Based on tfisplane rotation matriXz(6). This transformation matri[p]
aligned training set, we show in Section Ill the development @fiaps the coordinatds, y) € R? into coordinate$z, i) € R2.
an implicit parametric representation of the segmenting curve.An effective strategy to jointly align the binary images

Section IV describes the use of this |mp|ICIt curve representg-to use gradient descent to minimize the f0||owing energy
tion in various region-based models for image segmentatiggnctional:

Section V provides a brief overview to illustrate how the var-

ious components mentioned above fit within the scope of our B = 2": z”: fo(fi — 17)%dA @
algorithmic framework. In Section VI, we show the application align P fo(f"" + fj)2dA
of this technique to two medical applications; the segmentation i

of the left ventricle from 2-D cardiac MRI and prostate glangereq) denotes the image domain. Minimizing (2) is equiva-
segmentation from 3-D pelvic MRI. We conclude in Section Vijgpt 15 simultaneously minimizing the difference between any

with a summary and some possible future research direction$,gfy of pinary images in the training database. The area normal-
this work. ization term in the denominator of (2) is employed to prevent all

the images from shrinking to improve the cost function.
Il. SHAPE ALIGNMENT The gradient oft,,;; .., taken with respect tp' for anys, is

We begin our shape modeling process with the alignment @ven by

training shapes. There have been a number of works dealing n {2” (' — )V, 1A
o\ p’

[fo (I + 17)2dA

with the alignment of images [6], [8], [11], [17], [28], [29]. Vi Ealign = Z

For our application, we are interested in aligning binary images i

since that is how we encode the training shapes. This greatly %
Fi _ 79\2 Ti o i Ti

20ur method can take advantage of any alignment technique. We need to _ 2 fo(I I ) dA fo (I + 1 )VpJ dA

employ an alignment technique as a preprocessing step to allow us to capture 2 Fivg 2

shape variations in our database without interference from pose variations. (fo(I + I]) dA)

®3)
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Fig. 1. Training data: 12 2-D binary shape models of the fighter jet.

4444144141410 444

Fig. 2. Alignment results of the above 12 2-D shape models of the fighter jet.

whereV . I is the gradient of the transformed imaffetaken
with respect to the pose paramepér Using the chain rule, the
[th component onJi is given by

5g)  OI'(E4) 0]8T[Pz]
T oy ap;

OTlp'] _OTlo'] _ OM(a V) pryis pigiy  (aa)

opt Oat dat (a) (b)
8T[Pi] 8T[pi] 8M(ai, bi) i i Fig. 3. Comparison of the amount of shape overlap in the “fighter” database
op} T on obi H(h")R(6") (4b) (a) before alignment and (b) after alignment.
8T[Pi] aT[Pi] i 7 8H(hi) i
opi, T on M(a',b") Ohi R(9") (4€) " in the amount of overlap between the shapes after the alignment
oT[p’]  OT[p'] OR(6') process suggesting that this method is an effective alignment

= M(d',b")H(h")

50 (4d) technique.

op, 0

The matrix derivatives in (4) are taken componentwise. Sinfe Multiresolution Alignment
the solution of this alignment problem is under-determined, we The nature of the gradient descent approach we just described
regularize the problem by keeping the initial pose of one aflows for only infinitesimal updates of the pose parameters,
the shapes fixed and calculating the pose parameters for theties giving rise to slow convergence properties and increased
maining shapes using the above approach. The initial posesehsitivity to local minima. These unattractive features are es-
the training shapes ifi are employed as the starting point fopecially evident when trying to align large and complicated ob-
the alignment process and gradient descent is performed ujgtits. One standard extension to enhance alignment algorithms
convergence. is to utilize a multiresolution approach. The basic idea behind

To illustrate this alignment process, a training set, consistitigis approach is to employ a coarsened representation of the
of 12 binary representations of fighter jets, is shown in Fig. 1. lnaining set to obtain a good initial estimate of the pose param-
this example, the pose parameter of the fighter jet at the far lefers. We then progressively refine these pose estimates as the
side of the figure is chosen to be fixed, i.p.= [0 0 1 0]7. resolution of the objects is increased.
The aligned version of this data set is shown in Fig. 2. Note Specifically, given a set of training objects, we repeatedly
that all the aligned fighter jets share roughly the same centeubsample all the objects within the training set by a factor of
are pointing in the same direction, and are approximately eqisab in each axis direction to obtain a collection of training sets
in size. One way to judge the effectiveness of this alignmewith varying resolutions. Initial alignment is performed on the
process is to assess the amount of overlap between the shapessest resolution set of objects to obtain a good initial esti-
within the database before and after the alignment process. Thate of the pose parameters. Operating at such a coarse scale,
prealignment overlap image, shown in Fig. 3(a), is generatee reduce the number of updates required for alignment (since
by stacking together all the binary fighter jets within the datdhe domain of the image is reduced) and the sensitivity of the
base prior to alignment (i.e., the fighter jets shown in Fig. 1algorithm to local minima (by allowing the parameter search
and adding them together in a pixelwise fashion. The postaligio-be less local). More importantly though, the computational
ment overlap image, shown in Fig. 3(b), is generated in a sifdrden of alignment at each gradient step is substantially re-
ilar fashion except that the binary fighter jets used to calculatieiced, mostly due to the decreased computational cost associ-
the overlap image have already been aligned. Specifically, thed with calculating (3) on a coarser grid. The pose parameters
fighter jets used in this case are the ones shown in Fig. 2. Bgtimated on this coarsened set of training objects are appropri-
comparing the two overlap images, there is a dramatic increagely scaled to serve as the starting pose estimates for the next
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Fig. 4. Training data: 12 2-D binary shape models of the number four with size ok 200 pixels.

414141414 44l 144]8

Fig. 5. Lowest resolution representation of the above training data with sizexoBB0pixels.

414.41414.4/4(u14.444

Fig. 6. Alignment results of the above 5050 shape models of the number four.

41444144 4uldi444

Fig. 7. Coarse-to-fine multiresolution refinement results of the @0 shape models of the number four.

higher resolution set of objectsBy providing a good starting
estimate of the pose parameters at this new scale, only a s
number of updates are required for convergence. This proc
of using the pose estimate at one resolution as the starting p
for the next finer resolution is repeated until the finest resol
tion set of objects is reached. To illustrate this multiresolutid
approach, we show in Fig. 4 a set of 12 binary representatid
of the number four. The fours are difficult objects to align du
to the complicated structure of these objects. Fig. 5 shows ¢
same data set with each shape down sampled by a factor of {
in each direction. Initially, we align the fours in this reduced
image domain. The results of this alignment are shown in Fig. 6. @ (b)
Next, we appropriately scale the pose parameters to serve adiyed. Comparison of the amount of shape overlap in the “four” database
starting pose for the next higher resolution. We continue th(@ before alignment and (b) after alignment.
process until the finest resolution training set is reached. TRe
final alignment results are shown in Fig. 7. Fig. 8 shows the
prealignment and postalignment overlap images of the numbefollowing the lead of [15] and [19], we choose the signed
four to visually demonstrate the effectiveness of this alignme@istance functiohas our representation for shape. In particular,
process. the boundaries of each of thealigned shapes in the database
are embedded as the zero level set skparate signed distance
functions{V¥y, U, ..., ¥, } with negative distances assigned
] ) to the inside and positive distances assigned to the outside of
As mentioned earlier, a popular and natural approach to rgRe gpject. Using the technique developed in [15], we compute

resent shapes is via point models where a set of marker pointgishe mean level set function of the shape database, as the av-
used to describe the boundaries of the shape. This approach §|;gge of these signed distance function®,= (1/n) 3" ;. To
fers from problems such as numerical instability, inability to agsytract the shape variabilitie®, is subtracted from each of the
curately capture high curvature locations, difficulty in handling signed distance functions to createmean-offset functions
topological changes, and the need for point correspondenc@L Py, ..., \i,n}_ These mean-offset functions are then used
To overcome these problem, we utilize an Eulerian approachfcapture the variabilities of the training shapes.
shape representation based on the level set methods of Osher
and Sethian [19]_ _ 4The_signed distanc& (p) from an arbitra_ry _poinp toa kr_10wn surfaceZ

is the distance betwegnand the closest point in Z, multiplied by 1 or—1,

depending on which side of the surfgedies in [1].

30nly the translational components of the pose are scaled up. The scaling arthe shapes in the database are aligned by employing the method presented
rotational components of the pose remain fixed. in Section II.

Shape Parameters

Ill. I MPLICIT PARAMETRIC SHAPE MODEL
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(d) (e)

Fig. 9. Three-dimensional visualization of the fighter jet shape variability. (a) The mean level set fubclonThree-dimensional illustration ef1o,®, .
(c) Level set oft-1¢ variation of the first principal mode. (d) Three-dimensional illustratior-@t, @, . () Level set of-1¢ variation of the first principal mode.

Specifically, we formn column vectorsy);, consisting ofV  vectors and eigenvalues of this matrix is computationally
samples of eacl; (using identical sample locations for eactexpensive. In practice, the eigenvectors and eigenvalues of
function). The most natural sampling strategy is to utilize the /n)SST can be efficiently computed from a much smaller
N x N, rectangular grid of the training images to generatexn matrix YV given by
N = N; x Ny lexicographically ordered samples (where the 1,
columns of the image grid are sequentially stacked on top of one W= ;S S.

other to form one large column). Next, define the shape-vajis straightforward to show that ifl is an eigenvector ofV
ability matrix S as with corresponding eigenvalue thenSd is an eigenvector of

S=[Y1 % ... Pl (1/n)SST with eigenvalue\ (see [14] for a proof).
An eigenvalue decomposition is employed to factotn)SST Let k£ <n, which is sel_ected prior_to segmentatic_>_n, be the
as number of modes to consider. Choosing the appropkiateur
1 model is difficult and beyond the scope of this paper. Sufficeitto
-8sT =vuxu” (5) say thatk should be chosen large enough to be able to capture
n

the prominent shape variations present in the training set, but
where U is an Nxn matrix whose columns represent theiot too large that the model begins to capture intricate details
n orthogonal modes of variation in the shape aids an particular to a certain training shapén all of our examples, we
n x ndiagonal matrix whose diagonal elements represegtiosek: empirically. We now introduce a new level set function
the corresponding nonzero eigenvalues. THieelements of &
the ith column ofU, denoted byU;, are arranged back into dlw] = b + Zwi‘l%' (6)
the structure of theN; x N> rectangular image grid (by P}
undoing the earlier lexicographical concatenation of the grid, - .

One way to choose the valuelofs by examining the eigenvalues of the cor-

COIumnS) to_ y|e|dq)i’ the ith prl_nC|paI n_]Ode or _e'genShape'responding eigenvectors. In some sense, the size of each eigenvalue indicates the
Based on this approach, a maximumaddifferent eigenshapes amount of influence or importance its corresponding eigenvector has in deter-
{(I)l by ... D } are generated. mining the shape. Perhapes by looking at a historgram of the eigenvalues, one
T o . . can determine the threshold for determining the valuk.dflowever, this ap-
Note that in most cases, the dimension of the matrfoach would be difficult to implement as the threshold valuetfogries for
(1/n)SST is large(N x N) so the calculation of the eigen-each application. In any case, there is no univelshiat can be set.
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wherew = {w;,ws,...,w;} are the weights for thé eigen- addition, the implicit description of shape is given by the zero
shapes with the variances of these weight§,03,...,07} level set of the following function:
given by the eigenvalues calculated earlier. We propose to use k
this newly constructed level set functignas our implicit rep- dlw — &(7. 7 B, (%7

. e PN, Y) = z,Y)+ w; P (2,7 (7)
resentation of shape. Specifically, the zero level seb afe- : I(z.9) (&) ; (&)

scribes the shape with the shape’s variability directly linked to
the variability of the level set function. Therefore, by varying
w, we vary® which indirectly varies the shape. Note that the

shape variability we allow in this representation is restricted to 7| =Tlp] | v
the variability given by the& eigenshapes. 1 1

Fig. 9 provides some intuition as to how the level set repre-
sentation of (6) captures shape variability. The set of 12 fightesth T[p] defined earlier in (1). The addition @f to our para-
jets shown in Fig. 2 is used as the shape training set to obtaietric shape model enables us to accomodate a larger class of
{®,®1,®y,...,P15} and {0?,02,...,0%}. Fig. 9(a) shows objects. In particular, the model can now handle object shapes
the mean level set functioh with the red curve outlining the that may differ from each other in terms of scale, orientation,
zero level set ofb. Fig. 9(b) shows the function10,®, with  or center location. In Section IV, we describe hamandp are
the magenta curve outlining the zero crossings of this functiomptimized, via coordinate descent, for image segmentation.
Notice that most of the spatial variations associated with this
function lie in the area corresponding to the wings of the fighter IV. REGION-BASED MODELS FORSEGMENTATION
jet. Specifically, alarge rising “hump” can be seeninthose areas. , .
When this function is added t®, a new level set representa- In region-based segmentation models [5], [20], [22], [34],

tion of the fighter jet is obtained. This new level set function i§1€ évolution of the segmenting curve depends upon the pixel
shown in Fig. 9(c) with the blue curve outlining the zero leveltensities within entire regions. That is, region-based models
set. As expected, addinglo;®; to ® causes the wing size to regard an image as the composition of a finite number of re-
shrink, thus yielding a new fighter jet with a much smallerwin@ions and rely on regional statistics for segmentation. The sta-
span. In Fig. 9(d), we show the functienlo; ®; with the ma- tistics of entire regions (such as sample mean and variance) are
genta curve outlining the zero crossings of this function. This#sed to direct the movement of the curve toward the bound-
simply the negative of Fig. 9(b) and hence adding this functigiies of the image. This is in sharp contrast to edge-based seg-
to ® causes the wing span of the fighter jet to increase. THigentation models [2], [3], [9], [12], [13], [16], [24], [25], [32]
resulting level set function is illustrated in Fig. 9(e) with thevhere the evolution of the curve depends strictly on nearby
blue curve outlining the zero level set. To further illustrate thgixel intensities (i.e., gradient information). As a result, region-
parametric shape encoding scheme of (6), we show in Fig. Ased models are more global than edge-based models. Fur-
the mean shape of the fighter jet as well as its shape variaermore, because of the global nature of region-based models,
tions based on varying its first three principal modesthlyr.  these models do not require the use of inflationary terms com-
As another demonstration, we employ the set of training shapasnly employed by edge-based techniques to drive the curve to-
shown in Fig. 7 to obtain an implicit parametric representatiaRard image boundaries. Region-based models are also more ro-
of the number four. Fig. 11 shows the mean shape of the numbggt to noise since they do not employ gradient operators, which
four as well as its shape variations based on varying its first thrgges inherently sensitive to noise, to explicitly detect the loca-
principal modes byt1o. Notice that by varying the first two tion of edges. In this section, we present three recently devel-
principal modes, the shape of the number four changes topolQgyeq region-hased models for segmentation and describe how
going from two curves to one curve. This is an additional advaflese models fit within the scope of our shape-based curve evo-

tage of using the Eulerian framework for shape representatipf, framework. Specifically, in this section, we present the
as it can handle topological changes in a seamless fash|on_. T(lf'llrean-Vese model, the binary mean model, and the binary vari-
%nce model for image segmentation. However, instead of de-

tion'is the trackmg of changes n r_nult_lple sclerosis lesions OVﬁ\r/mg the evolution equation for the curves used to segment the
time (as they shrink, migrate, split, disappear, etc.). Another.is L - . ,
. . ) image (which is the original design of these models), we derive
in the segmentation of the pancreas which often presents as one

solid organ. But at times, the pancreas does not fuse in utél dient descent equations used to optimize the shape and pose

and hence presents as two separate lobes which may reqﬁﬁre"]‘me'[ers that indirectly describe the segmenting curve.

segmentation algorithms that can deal with topology changes
Another application might be in segmenting skin lesions. So
skin pathologies can present both as one confluent lesion or a8Ve begin with a simple synthetic example to present how

" Description of the Models

an island of lesions. region-based segmentation models are incorporated into
our model-based algorithm. Assume that the domain of the
B. Pose Parameters observed imagd is formed by two regions distinguishable

by some region statistic (e.g., sample mean or variance). We

At this point, our implicit representation of shape cannot ag;o,1d like to segment this image via the cuewhich in our
commodate shape variabilities due to differences in pose. g9 ework. is represented by the zero level sebpfe.
have the flexibility of handling pose variations,is added as ’ '

another parameter to the level set function of (6). With this new C= {(x,y) €ER?: ®(z,y) = 0} .
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Moreover, as a result of this implicit parametric representationenting curve. The gradients &f.,, taken with respect tev
of C, the regions inside and outside the curve, denoted, respandp, are given by

tively, by R* and R”, are given by VwEew = — 2(1Vw Sy + vV Sy)
R ={(z,y) € R*: &(,y) < 0} + (VA + 17V A,) (9a)
R ={(z,y) € R*: D(z,y) > 0}. VpEew = — 2(1Vp Sy + 1V pSy)

In our algorithmic framework, we calculate the parameters of + (,ﬁvau + V2VpAu)- (9b)

d[w, p|to varyC and hence segment the imalg& hese param-
eters,w andp, are obtained by minimizing region-based ener
functionals that are constructed using various image statisti
Some useful image statistics, written in term®@# , p], are

2) The Binary Mean ModelA different strategy was pro-
osed by Yezzet al. in [34] to segment/. They propose to
Volve O so as to maximize the distance betwgeandv. A

natural cost functional they employed is to minimize the fol-

area inR": Au:// H(—®[w, p])dA lowing:
Q 2
l(u -v)t= 1L <S" — i) . (20)

areainR": A, :// H(®[w, p])dA Epinary = D) 2\ A, A,
Q@ The authors in [34] called this thieinary model(since it is
sum intensity inkR": S, :// I'H(—®[w,p])dA initially designed to segment images consisting of two distinct
J I but constant intensity regions). Once again, gradient descent is
sum intensity inR?: S, :// I'H(®[w, p])dA employed to calculate the parametersand p that minimize
Ja Ehpinary to implicitly determine the segmenting curve. The gra-

sum of squared intensity " : :// PH(—B[w, p])d4  dients of Buinary, taken with respect ter andp, are given by
Q Vwlz’luinary :(V - M)

sum of squared intensity iR": Q, :// I*H(®[w, p])dA VwSu — tVwA, VS, — VA,
e : ( 4 A )
average intensity i®" : u= A“’ (11a)
. o s, Vp Ebinary =(v — 1)
average intensity iR" : V:A_q- y (VpSu — uVpA, VS, — VVpAv>
. w9 Qu 9 A, A, )
sample variance iR" : o, =1 ,lL (11b)
sample variance il®" : o2 :Qu _ 2 3) The Binary Varian_ce ModeIS_o far, we have foc_used on
A, using the mean as the image statistic in differentiating the two
where the Heaviside functioH is given by regions inl. Other image statistics can also be used in a re-
1, if ®[w,p] >0 gion-based segmentation model. For example, Yetal. in
H(®[w,p]) = { 0, if ®[w,p]<O0. [34] proposed a segmentation model based on image variances.

Chan and Vese in [5], and Yezei al. in [34] proposed pure re- Consider the following energy functional for segmentation:

gion-based models to segmehusing these region statistics. Foariance = — — (03 _ 03)2

Below, we provide descriptions of their models, describe the 200 )

role of w andp in these models, and detail the optimization of _ 1 <<Qu _ Q'U) . V2)> (12)
these models with respect to andp (instead of@) for image 2 A, A, a '

segmentation. As detailed in Section 1ll, by calculating the p&@he design of this model is to partition an image into two re-
rametersw andp that optimize the segmentation energyjunogions, one of low variance and one of high variance, by max-
tionals, we have implicitly determined the segmenting cdive imally separating the sample variances inside and outside the
Thus, our segmentation approach can be considered as a patamse. The gradients af..ianc., taken with respect tev and

eter optimization technique. p, are given by
" 1)]c Ihe.Chan-Vesef MothC?}an and Vest(_a[ﬂin [5] proposed Vo Foarinnce = ( o2 — 03) (Vw 02— Vy U%) (13a)
e following energy functional for segmenti
g energy 9 J Vp Fyarianee = (02 — 02) (Vpo? — Vpo?)  (13b)
Bo= [ (1-ppaas [ (1-vpis where
R JRY 2 2
which is equivalent, (up to a term which does not depend upon Vwo? = (“ _ Ou) VwAu = 2pVwSu + VwQu
the evolving curve), to the energy functional below ' Ay
, , g2 2 —_— (V2 = 02) VWA, — 20V S, + Vi Qs
E(‘v = - Au Aq: = - = 1. w0y =
=A== (24 E). @ A
The Chan-Vese energy functionfl, can be viewed as a piece- Voo (1* = 0%) VpAu = 2uVpSu + VpQu
wise constant generalization of the Mumford-Shah functional P A,
[18]. Gradient descent is employed to search for the parame- s (VP =02)Vpd, — 20V, S8, + VpQ,
tersw andp that minimizeE.. to implicitly determine the seg- Py = A, )
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B. Gradients of Region Statistics seven termse, y, andz translation; pitch; yaw; roll; and mag-

As shown in (9), (11), and (13), to update the shape and pdg'gcation. The shape alignment strategy is to jointly align the

parameters via gradient descent, the gradients of region stfiinary volumetric data via gradient descent. Signed distance
tics Ay, Au, Sy S, Qu, andQ,, taken with respect tew and function is similarily employed to represent the 3-D shapes. In

p, are required. Defining the one-dimensional Dirac measurdarticular, the bounding surfaces of each shape is embedded as
concentrated at zero by the zero level set of a signed distance function with negative

distances assigned to the inside and positive distances assigned
5(2) = iH(z) to the outside of the 3-D object. The 3-D shape parameters are
dz derived in a similar fashion as the 2-D shape parameters. How-
we can now express theh component of each of the gradienfVe", these 3-D shape parameters implicitly describe a 3-D seg-
terms in (9), (11), and (13) as line integrals alafﬁg menting surfacc_e rather th_an a 2-D segmenting curve. The region
statistics used in the region-based models for segmentation are

VoA ——Vo A = — & ®.ds now calculated over an entire volume rather than over an entire
it e Ja region.
VpiAu ==V, Ay = — 7{ Vp, ®ds E. lllustration of the Models Using Synthetic Data
J&
Figs. 12—-14 show the use 6k, Fyinary, aNd Eyariance fOr
Vi, Sy ==V, 5 = = 746[@,-(13 segmentation. We show in Fig. 12(a) a fighter jet (that is not part
o of the fighter jet database of Fig. 1). Fig. 12(b) shows the same
Vp,Su=—Vp, Sy =— ﬁ IV, ®ds fighter jet surrounded by horizontal and vertical line clutter. The
c presence of these lines creates missing edges in the fighter jet
Vi;Qu=—Vu,Qp = _?{ 1?®,ds which can cause problems in conventional segmentation algo-
c rithms that do not rely on prior shape information. Fig. 12(c)
V., Qu=-Y,0,=— ¢ I’V, &d shpws this Ime-clu_ttered f|ghter_jet image contam!nated_ by ad-
»Q »Q ?{@ pe =0 ditive Gaussian noise. The goal is to segment the fighter jet from

this noisy test image. Knowing priori that the object in the

where image is a fighter jet, we employ the database shown in Fig. 2 to
o - oT[pi] T derive an implicit parametric curve model for the fighter jet [in
Vp,® =V, ®,79) = | N’égy) M’(%"") 0] : the form of (7)]. In this example, we uge= 6. The zero level
Opi 1 set of® is employed as the starting curve which is illustrated in
" . ) ) . Fig. 12(d). The parameters of the segmenting cuweandp,
with 0T'[p;]/Op; previously defined in (4). are calculated to minimize&... Fig. 12(e) shows the final shape

and position of the segmenting curve. Notice that we are able to
successfully find the boundaries of the fighter jet without being
The gradients of the various energy functionals taken wittistracted by the line clutter. In Fig. 13, we show a slight variant
respect tov andp are given by (9), (11), and (13). For conciseef the experiment just described. Specifically, a new fighter jet
ness of notation, denoté,, £ andV, F as the gradients of any (which is also not part of the database of Fig. 1) is employed
of the above energy functionals taken with respeattandp, as the object in the test image, aBg;..., is employed as the
respectively. With this introduction, the update equations for tisegmentation functional. Using the safie, &, ®,, ..., ®g}
shape and pose parameters in our gradient descent approachsibfore, we are able to successfully segment this new object.
given by Fig. 14 shows a different experiment. The object in this ex-
(1) _o (®) periment is the number four which is shown in Fig. 14(a). Ver-
w =W —awVwh tical and horizontal lines are again added to this image to create
pt*Y =p® _ o VpE missing edges in the object. The resulting line-cluttered image is
. i avid) shown in Fig. 14(b). This binary mask is used to create the vari-
w(t:)ereaw anday, are positive step-size paramters, and  ance image shown in Fig. 14(c) which consists of two regions,
p'” denote the values ok andp at thetth iteration, respec- g4ch of identical means but of different variances. The goal is to
tively. The updated shape and pose parameters are then lé%’gqnent the object from this noisy testimage. Knovémgiori
to implicitly determine the updated location of the segmenting; the objectin the image is a handwritten four, we employ the
curve. , , _ database of fours, shown in Fig. 7, to obtain the mean shape and
~ Itisimportant to note that no special numerics were requirgde eigenshapes for our implicit representation of the object. As
in our_propose_d technlque as it c_ioes not qulve any partial dﬁ‘efore, we usé = 6. The zero level set 6b is employed as the
ferential equations. This results in fast and simple implemenigz ting curves as illustrated in Fig. 14(d). Notice in this figure
tion of our methodology. In fact, this is one of the main departugga; two curves are used to describe the starting shape. Because

between our model and the earlier one put forth by Leventgfe image statistic that characterizes the two regions in this test
et al. [15] image is variance, the parameters of the segmenting curve,

andp, are calculated to minimizE, a iance. Fig. 14(e) shows the
successful segmentation of the number four image. Notice that

The generalization of this algorithm to three dimensions githout any additional effort, the two starting curves merged to
straightforward. The pose parameter is expanded to consisfain one single segmenting curve at the end.

C. Parameter Optimization Via Gradient Descent

D. Extension to Three Dimensions
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(9)

()

(e)

(d)

(b) (e
Fig. 10. Shape variability of the fighter jet. (a) The mean shape+(by variation of the first principal mode. (¢} 1o variation of the first principal mode.
(d) 410 variation of the second principal mode. (e} ¢ variation of the second principal mode. 4l o variation of the third principal mode. (g} 1o variation

(a)
of the third principal mode. Grossly, the first three principal modes vary the shape and size of the wings as well as the length of the fighter jets.

r/ l/\-
~ |
i I B /
f "x_ ~/

% ) )

N
(b) (c) (d) (e)

()
Fig. 11. Shape variability of the number four. (a) The mean shape-1b) variation of the first principal mode. (¢} 1o variation of the first principal mode
(d) 410 variation of the second principal mode. (e) ¢ variation of the second principal mode. 4l o variation of the third principal mode. (g}10 variation

of the third principal mode.

(a) (b)

Fig. 12. Segmentation of a noisy fighter jet with missing edges uging (a) Original binary image. (b) Original binary image surrounded by line clutter.
(c) Image in (b) with additive Gaussian noise. (d) Blue curve shows the initializing contour. (€) Red curve shows the final contour.

(a) (b)

Fig. 13. Segmentation of a noisy fighter jet with missing edges uBing.., . (&) Original binary image. (b) Original binary image surrounded by line clutter.
(c) Image in (b) with additive Gaussian noise. (d) Blue curve shows the initializing contour. () Red curve shows the final contour.

(a) (b)

Fig. 14. Segmentation of a noisy number four with missing edges #sing.....- (&) Original binary image. (b) Original binary image surrounded by line clutter.
(c) Image in (b) with additive Gaussian noise. (d) Blue curve shows the initializing contour. (e) Red curve shows the final contour.
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Fig. 15. A conceptual representation of our algorithmic framework. The top frame summarizes the training phase of our approach (SectionsThand lil).
bottom frame illustrates the segmentation phase of our algorithm (Section 1V).

These figures demonstrate that our segmentation methodhis different components described throughout this paper fit
robust to the presence of clutter pixel-something that can notwéhin the scope of our algorithmic framework. As illustrated
said of many other segmentation algorithms. The reason for thisthis diagram, our segmentation algorithm can be divided
is that our use of a finitely parameterized shape model makes th® two phases—a training phase and a segmentation phase.
impact of such anomalous pixels much less significant thanTie training phase consists of shape alignment (described
other curve evolution or other segmentation methods. in Section Il) and parametric shape modeling (described in
Section IIl). Given a set of training shapes, gradient descent is
employed to minimize the alignment model of (2) to jointly
align them. Signed distance maps are generated to represent

In this section, we provide a brief overview of our algorithmieach of the shapes in the aligned database. By applying PCA
framework. Fig. 15 shows a block diagram to illustrate hoto this collection of distance maps, we extract the mean shape

V. OUTLINE OF THE ALGORITHMIC FRAMEWORK
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Fig. 16. Training data: 2-D binary shape models of the left ventricle based on human interactive segmentations of different spatial and tesmdral slic
patient’s cardiac MRI.

Fig. 17. Alignment results of the 50 2-D binary shape models of the left ventricle.

and the eigenshapes particular to this shape database. Jtatistics are used in the segmentation functional to determine
mean shape and the eigenshapes are used to form the impli@tupdate rules fow andp. We continue this iterative scheme
parametric shape representation described in (7). The nartil convergence is reached for segmentation.

part of our algorithm, the segmentation phase (described in

Section 1V), involves calculatingv and p, the parameters of

our implicit shape representation, to minimize a segmentation VI. APPLICATIONS TOMEDICAL IMAGERY

functional. This minimization is performed as an iterative

process using gradient descent. At each gradient stegmdp We now apply the model-based curve evolution technigue de-
are updated to generate a new levelet, p]. The segmenting rived in this paper to two medical applications. Section VI-A
curve C is implicitly determined by this new level set. Basedllustrates a 2-D example (cardiac MRI segmentation), while
on the new position and shape ©f we recalculate the image Section VI-B illustrates a 3-D example (prostate gland segmen-
statistic inside and outside the curve. These newly computedion from pelvic MRI).
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B. A 3-D Example: Prostate Segmentation of Pelvic MRI
Taken With Endorectal Coil

Pelvic MRI, when taken in conjunction with an endorectal
coil (ERC) (a receive-only surface coil placed within the
rectum) using T1 and T2 weighting, provides high-resolution
images of the prostate with smaller field of view and thinner
slice thickness than previously attainable. Because of the
high-quality anatomical images obtainable by this technique,
it may become the imaging modality of choice in the future
for detection and staging of prostate cancer [7], [31]. For

@ (®) assignment of appropriate radiation therapy after cancer
Fig. 18. Comparison of the amount of shape overlap in the cardiac databgtection, the segmentation of the prostate gland from these
(a) before alignment and (b) after alignment. pelvic MRI images is required. Manual outlining of sequential

cross-sectional slices of the prostate images is currently used to
A. A 2-D Example: Left Ventricle Segmentation of Cardiac identify the prostate gland and its substructures, but this process
MRI is difficult, time-consuming, and tedious. The idea of being

Cardiac MRI is an important clinical tool used to provid(?ble to automatically segment the prostate is very attractive.

four—dimensional (4-D) (temporal as well as spatial) informa- Automatic segmentation of the prostate is difficult because
tion about the heart. Typically, one study generates 80—120 Alg prostate is a small glandular structure buried deep within
images of a patient’s heart. In a variety of clinical scenaridge Pelvic region and surrounded by a variety of different tis-
(such as assessing cardiac function and diagnosing cardiac 8gs Which show up as varying intensity levels on the MRI.
eases), it is important to extract the boundaries of the left veRPis segmentation problem is further complicated by an arti-
tricle from this data set. For example, the segmentation of tfct called the near-field effect which is caused by the use of
left ventricle is a prerequisite in calculating important physidhe ERC. The near-field effect causes an intensity artifact to ap-
logical parameters such as ejection fraction and stroke volurR€2r in the tissues surrounding the ERC. This can be seen as a
Manual tracing of the left ventricle from such a large data set\¥¢hite circular halo surrounding the rectum in each image slice
both tedious and time-consuming. A robust automated SegmgﬁFigs. 27 and 30. The intensity artifact can bleach out the bor-
tation algorithm of the left ventricle would be preferred. ders of the prostate near the rectum, making the prostate seg-
Conventional automated segmentation techniques usudlgntation problem even more difficult.
encounter difficulties in segmenting the left ventricle because We employ a 3-D version of our shape-based curve evolution
1) the intensity contrast between the ventricle and the myi®chnique to segment the prostate gland. By utilizing a surface
cardium is low (due to the smearing of the blood pool in th@nstead of a curve), the segmentation algorithm is able to utilize
ventricle into the myocardium), and 2) the boundaries of titge full 3-D spatial information to extract the boundaries of the
left ventricle are missing at certain locations due to the preserf@state gland. Fig. 21 shows the prostate training data we use
of protruding papillary muscles which have the same intensityhich consists of eight 3-D binary shape models of the prostate
profile as the myocardium. gland-obtained by stacking together 2-D expert hand segmen-
In the experiment to illustrate our technique, we equally diations of eight patients’ pelvic MRIs taken with an ERC. The
vided the 100 2-D images from a single patient’s cardiac MRIignment results of these 3-D models are shown in Fig. 21. To
into two sets: a training set and a test set. Fifty 4-D interacti@aluate the alignment process, Fig. 23 shows 12 consecutive
segmentations of the left ventricle from the training set form trxial slice overlap images of the eight 3-D prostate gland models
2-D shape database shown in Fig. 16. This particular datab@s@r to alignment. And Fig. 24 shows the same 12 overlap im-
is employed to allow our model to capture both the spatial agges after alignment for comparison. Prior to shape training,
the temporal variations of the left ventricle. Fig. 17 shows tH&ese 3-D shape models are smoothed to remove the “step-like”
aligned version of this database. Fig. 18 compares the overgigifact along the axial direction of the prostate. Based on these
images of the left ventricle database before and after alignme#i? models, we derived the mean level set and the eigenshapes
Using the aligned database, we derived the mean level set &dorm the implicit shape model of the prostate gland using
the eigenshapes to form the implicit shape model of the left veh= 5. Fig. 25 shows the mean shape of the prostate gland as
tricle usingk = 25. Fig. 19 shows the mean shape of the lefivell as its shape variations based on varying the first three eigen-
ventricle as well as its shape variations by varying the first thréapes by-1o.
eigenshapes hyt10. The parameters of this implicit parametric In this particular application, it is important to realize that
representation are calculated to minimiZg, using statistics despite the fact that the prostate gland is mostly deformed by
calculated in the entire region both inside and outside the curits. neighboring structures, the prostate shape parameters are
Fig. 20 shows the segmentation result of the testing set by ourstill very important in describing its shape. In our method, by
gorithm (red curves). These results are comparable with the oeapturing how its surrounding structures deform the prostate
given by a 4-D interactive cardiac MRI segmenter [33] (greegland, we obtain shape parameters that can effectively describe
curves) which utilizes a 4-D conformal surface shrinking teclthe deformations of the prostate gland. Specifically, we looked
ngiue based upon the models outlined in [32]. at a population of patients and learned the total net resultant
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O & 80| 0| C

(@) (b) (c) (d) (e) ® (9)

Fig. 19. Shape variability of the left ventricle. (a) The mean shapet{lo) variation of the first principal mode. (¢} 1o variation of the first principal mode.
(d) 4+ 1o variation of the second principal mode. (e} o variation of the second principal mode. 4}l o variation of the third principal mode. (g}1¢ variation
of the third principal mode.

|

|

|

‘

Fig. 20. Left ventricle segmentation of cardiac MRI. The segmentation by our algorithm (red curves) is compared to the segmentation by an4riieractive
cardiac MRI segmenter (green curves).

Fig. 21. Training data: eight 3-D shape models of the prostate gland obtained based on axially stacking together 2-D expert hand segmentatistatef the p

effect of the surrounding structures in deforming the prostateunt how the prostate defornis vivo by the surrounding
gland, and incorporated this information within the prostasructures.

shape parameters. Thus, instead of looking at how the prostat&o accentuate the boundaries of the prostate gland as well as
gland deforms in a vacuum by itself, we have taken into ats minimize the intensity artifact caused by the ERC, the pelvic

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 19:7 from IEEE Xplore. Restrictions apply.



150 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 2, FEBRUARY 2003

Fig. 22. Alignment results of the eight 3-D shape models of the prostate gland.

Fig. 23. Overlap images of consecutive axial slices of the eight 3-D prostate models prior to alignment.

MRI data setl\g; is transformed to a bimodal data deby whereV here denotes a 3-D gradient operator. This mapping

applying the following map: was employed because: 1) the interior of the prostate is homo-
geneous in intensity, so with this mapping, the interior regions
I =||VIyri|? of the prostate are mapped to low values while the boundaries
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Fig. 24. Overlap images of consecutive axial slices of the eight 3-D prostate models after alignment.

DUIORIO

(@) (M) (@

Fig. 25. Shape variability of the prostate. (a) The mean shapé-1(b)variation of the first principal mode. (€} 1o variation of the first principal mode. (d} 1o
variation of the second principal mode. (el o variation of the second principal mode. {f1¢ variation of the third principal mode. (g} 1o variation of the
third principal mode.

of the prostate are mapped to high values; and 2) this mapplog-valued region in the transformed data (which corresponds
is robust to the smooth spatially varying intensity artifact cause the prostate gland). Eventually, the segmenting surface con-
by the ERC. We segment the prostate gland by minimiZipg verges to a local minimum near the boundaries of the prostate
using the transformed data detThe statistics used iR, are (corresponding to high values in the transformed data).
calculated in the entire volumetric data both inside and outsideTwelve contiguous axial slices of patient A's and B's MRI
the segmenting surface. The energy functiohgal was em- data set containing the prostate gland are displayed in Figs. 26
ployed in this application because we found it to be more robwstd 29, respectively. These two data sets are not part of the
empirically. We start by initializing the segmenting surface ttraining database of Fig. 21. We show in Figs. 27 and 30 the
be within the interior of the prostate gland so that the evolvinostate segmentation results of patient A's and B's MRI data
surface does not get distracted by various other high gradieet, respectively. In each of these figures, the MRI data set con-
features surrounding the prostate (such as interfaces betwtsning the prostate gland are displayed along with the segmen-
various hard and soft tissue types). With each iteration, the ségtion by our algorithm (outlined in red), and the segmentation
menting surface moves outward to capture more and more of thea radiologist from Brigham and Women’s Hospital (outlined
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Fig. 26. Prostate images of patient A. These images represent consecutive axial slices of the prostate. Segmenting curves were not supernipased on th
for better visualization of the prostate organ.

Fig. 27. Prostate segmentation of patient A. The segmentation by the radiologist (green curves) is compared to the segmentation by our algonitbsh. (red

in green). Another radiologist, also from Brigham and Women
Hospital, rated the first radiologist’'s segmentation of dataset ~ : --.
to be slightly better than our algorithm’s, and rated our algy,. " #
rithm’s segmentation of data set B to be slightly better than t|f -
radiologist’s. For visual comparison, Figs. 28 and 31 show tl}.- %"
3-D models of the prostate gland generated by our algoritré“f:
and by stacking together 2-D expert hand segmentations. P

tice that by employing a surface to capture the prostate glag : .-*-
our 3-D model does not display any of the “step-like” artifactés_
that mar the radiologist’s 3-D rendition of the prostate gland. |
addition, working in 3-D space allows our algorithm to utilize
the full 3-D structural information of the prostate for segmen-

tation (instead of just the information from neighboring slices

. . . . Fig. 28. Three-dimensional models of patient A's prostate gland. (a) Based on
which are typ|caIIy used by the radIOIOQIStS)' our segmentation algorithm. (b) Based on the radiologist's segmentation.

(@) (b)

segmenting curve in a seamless fashion. This algorithmic frame-
VIl. CONCLUSION AND FUTURE RESEARCHDIRECTIONS work is capable of segmenting images contaminated by heavy
noise and delineate structures complicated by missing or diffuse
We have outlined a statistically robust and computationaldges. In addition, this framework is flexible, both in terms of
efficient model-based segmentation algorithm using an impliéfs ability to model and segment complicated shapes (as long
representation of the segmenting curve. Because this implia#t the shape variations are consistent with the training data), as
representation is set in an Eulerian framework, it does not ngell as its ability to accommodate the segmentation of multidi-
quire point correspondences during the training phase of the mlensional data sets. Furthermore, by employing a region-based
gorithm and can be used to handle topological changes of gegmentation functional, our algorithm is more global, exhibits
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Fig. 29. Prostate images of patient B. These images represent consecutive axial slices of the prostate. Segmenting curves were not supegritpaged on th
for better visualization of the prostate organ.

Fig. 30. Prostate segmentation of patient B. The segmentation by the radiologist (green curves) is compared to the segmentation by our alganigsh (red

our method by constructing different segmentation functionals
based on first (and maybe higher) order statistics such as skew-
ness, kurtosis, and entropy.

In this paper, we discussed the use of signed distance func-
tions as a way to represent shapes. However, because distance
functions are not closed under linear operations, the level set
representation of our segmenting curve, based on the PCA ap-
proach described in Section Ill, is not a distance function. This
givesrise to an inconsistent framework for shape modeling. This
intellectual issue remains an important and challenging problem
(indeed one on which we are now working ourselves), but the
@) (b) method developed in this paper stands on its performance in
[jactice.

Fig. 31. Three—dimensional models of patient B’s prostate gland. (a) Baye
on our segmentation algorithm. (b) Based on the radiologist's segmentation.
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