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Stochastic Modeling and Analysis of Crime 

April 1, 1976 - June 30, 1976 

(Project Director/Principal Investigator: Dr. Stuart Jay Deutsch) 

This report summarizes the progress on the Stochastic Modeling and Analysis 

of Crime Grant through the fourth quarter of this effort. 

Technical Note #14, "Estimation of Shifts in Stochastic Models of Crime 

Occurrence", describes the methodological procedures for detecting a shift in 

reported crime occurrences from time series or empirical-stochastic models of 

crime occurrence. Here a shift parameter is embedded into the multiplicative 

autoregressive moving average model forms previously used to describe crime 

occurrence for each of the seven FBI index crimes. Examples of the application 

of these statistical methods to forcible rape data in Los Angeles and Atlanta 

are also presented. 

In earlier technical notes a network flow model was constructed to predict 

criminal displacement and deterrence. A fundamental data set used in this model 

is the observed flow patterns in prior time periods between all pairs of geo-

graphic zones or precincts. In a metropolitan area, then, which would typically 

have in excess of one hundred zones or precincts would result in a flow matrix 

in excess of one hundred by one hundred. The larger the dimensions of the matrix, 

the longer the model computation time. Further, the flow matrix could often be 

substantially sparse. That is, there has been a zero flow between many pairings. 

To reduce model execution time and computational difficulties due to 

sparseness, a data aggregation procedure has been developed. Technical Note #15 

describes this data aggregatidn procedure which reduces the dimensionality of the 
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flow matrix and eliminates matrix sparseness while maintaining information con-

tent. 

Technical Note #16 contains the full documentation of software developed 

for the network flow models, both linear and nonlinear, for modeling and fore-

casting crime displacement. Included is a brief description of each program, 

its required inputs, its outputs,- and how to execute it as well as sample runs. 

A multivariate time series model for Robbery is documented in Technical 

Note #17. In previous technical notes univariate time series models were de-

veloped for each index crime occurrence in ten major cities. These models 

were built using only the information contained in the time series data for 

a given index crime within a given city. The purpose of this preliminary mul-

tivariate effort is to allow the modeling procedure to utilize not only the 

information contained within, but also, the information in these crime statis-

tics contained between cities for a given index crime. That is, the multi-

variate approach allows for the description of potential similarities in crime 

occurrence between cities, namely the dynamics of delays. Thus, information 

of a leading indicator nature between all pairs of "n" cities are utilized. 

This note presents the methodological modeling procedures and an example util-

izing robbery data for the cities of St. Louis, Portland, Los Angeles, Kansas 

City, Atlanta, Boston, and Denver. Forecasts of future robbery occurrences 

are also developed from the multivariate time series model. 

Technical Note #18 introduces modeling aspects for an extension of the 

basic network flow model for predicting criminal displacement. The specific 

extensions discussed deal with multiple offenses, that is, in previous notes, 

it was explicitly assumed that all displacement involved only the commission 

of a single crime type. The issue of multiple offenses during the same time 

period are discussed in this note. 
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An example of building and forecasting the linear and nonlinear objective 

function (in the flow) displacement models is presented in Technical Note #19. 

Here a sample set of data for the City of Atlanta is used. The data aggregation 

procedure developed in Technical Note #15 is applied with the resulting flow 

matrix utilized in developing the displacement models. Forecast for both models 

are presented. 

Technical Note #20 contains an initial evaluation of the effect of the 

Massachusetts' Gun Control Law on gun-related crimes in the City of Boston. Util-

izing the methodology described in Technical Note #14, a statistical analysis of 

shifts in homicide, gun assault and armed robbery is conducted. The evaluation 

covers the period prior to enactment of the Law in April, 1975 through October, 

1975. Suggestions for further evaluation of the impact of the Law on the police 

component are described. 



TECHNICAL NOTE #14 

Estimation of Shifts in Stochastic Models of Crime Occurrence 

Introduction  

In recent years, there has been an increasing usage of statistical methodology 

to analyze law enforcement problems. One of these techniques has met with consid-

erable success in modeling the monthly crime occurrences as tabulated in the Uniform 

Crime Reports[2,3,4]. Here, multiplicative empirical-stochastic models of order 

(p,d,q) x (P,D,Q) S , as proposed by Box and Jenkins[1], were employed. In this work, 

each of the seven index crimes across ten different cities was shown to be repre-

sented by the same form of model. These models by themselves are useful in future 

planning via their forecasting. In addition, they form a starting point for a 

quantitative evaluation mechanism. It is the purpose of this paper to explore their 

role in an evaluation framework. 

In monitoring industrial processes for changes in level, the industrial decision 

maker has available the control chart, which gives a pictorial representation of the 

past history and current status of the process level. When changes in the underlying 

process occur, the control chart illustrates this. The need for the adaptation of 

the control chart concept to the law enforcement scenario is easily visualized. 

When policy makers commence a program that may alter the level of different types of 

crime, they need to have an on going means of evaluating the merits and demermits 

of these programs. However, the statistical methodology underlying control charts 

is not directly applicable to detecting shifts in time series data since the monthly 

occurrences of a particular type of crime have been shown to be correlated[2,3,4]. 

In the first section of the paper, salient aspects of the methodological con-

siderations for including a shift parameter in the multiplicative empirical-stochastic 

model forms and its statistical estimation are reviewed from Technical Note #10. In 



order to make the methodology viable, the second section of this paper describes 

the computer inplementation of this procedure. Since it is desirable for the 

policy maker to receive information regarding program effectiveness as quickly as 

possible after the commencement of such a program, the sensitivity of the under-

lying statistical methodology for various data structures is analyzed in the third 

section. In the last section of the paper, two actual data bases, one representing 

Los Angeles rape and a second representing the corresponding series for Atlanta, 

are employed as examples. 

Theoretical Framework  

For a temporal sequence of crime occurrences (Zr)  for a given index crime, 

the general form of the multiplicative model of order (p,d,q) x (P,D,Q) s  is given 

by 
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where cp (B) and op (B S )are the nonseasonal and seasonal autoregressive operators, 
P 	P 

0 
q
(B) and 0

Q
(BS  ) are the nonseasonal and seasonal moving average operators, V d 
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D 

are nonstationary and seasonal differencing operators and S is the seasonal 
S 

lag. For example, the multiplicative model of order (0,1,1) x (0,1,1) 12  is explicitly  

written as 
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When there is no seasonal component (P=0, D=0, and Q=0), the multiplicative model 

reduces to the ARIMA model of order (p,d,q), which is given by 
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Thus, (0,1,1) models are of the form 

	

Z
t 
= Z

t-1
- 0 

 at-1+ 
 a

t
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In the previously cited modeling of the seven index crimes, each crime was 

shown to be represented by a (0,1,1) x (P,D,Q) S  form. When evaluating a change 

in the process level, a policy maker would like his procedures to give minimal 

real time delay between the time frame in which the process shifted to the-time 

frame of shift detection, assuming a shift occurred. Therefore, the within com- 

ponent (the (0,1,1) segment) of these models are of primary focus in our analysis. 

If P,D, and Q are not zero, then this seasonal component will be used to transform 

the original crime data Z
t 
to W. That is, 

(I)
p
(BS ) VS 

Z
t 
= W

t 
0 (B

S
) 

where 

(1-eB)  W
t
= 

(1-B)  at
, 

since p=0, d=1, and q=1. This transformation ensures early detection from the 

(0,1,1) within component structure. Box and Tiao [1] have developed the methodology 

for this specific model form. Glass et ali [5] have recently presented the metho-

dology for other model forms. 

In our current problem setting, decision makers are presented with a total 

of N=n1
+ n

2 observations, where the first n 1 observations occur prior to an inter-

vention effect, A, while the second set of n
2 observations occur after A. These 

n1  + n2  observations are denoted by Z 	Z
nl

, Z
n +1'...' 

Z
n 

. It is assumed 
1 	 1 2 

that all N observations emanate from an ARIMA (0,1,1) model, which can be expressed 

in random shock form as : 

Z1= L + al 
(6) 

t-1 
z
t
= L + (1-01 ) 	at_j 	at' t  = 2 " . " nl j =1 



while 

t-1 
Z
t
= L + 6 + (1-0 ) X at- . + a t , t = n1+ 1,..., n1  + n2 , 

1 j=1 
	 (7) 

where the parameter 0 1 
is known to a sufficient approximation. This is not 

an unreasonable assumption when the data base if fairly large. In Technical 

Note #10, a parameter y
0 
 was used in place of 0

1, 
where y

0 
 =1-0

1. 
The only_unknown 

parameters in equations (6) and (7) are L, the true level of the process at t=1, 

and 6, the shift accompanying the intervention effect. 

In order to make statistical inferences about L and (5, one must first trans-

form the original observations, Z t , into Yt 's. This is accomplished by the following 

transformation: 

Y
1
= Z

1 

t-2 
Y
t
= z

t
— (1-0 ) 	z 	t = 2,... , n + n 

1 	1 t-l-j 	 ' 1 
	n2. 

j =0 	
, 

 

Equivalently, one could also use the following recursive relationship: 

Y
1
= Z

1 

Y 
t 
= (Z

t 	
Z
t-1 

 ) +
1 Yt-1, 

 t = 	n1  + n2 . 

One then employs the concepts of statistical linear models to obtain the following 

estimates of L and 6: 
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In order to make additional statistical inferences, one must assume that the 

a
t
's of equations (6) and (7) are NID(0,a

a
2 
 ), where a

a
2 
 is an unknown. parameter 

2 

representing the variation of the residual a
t

T s. An estimate of a
2 

is provided by 

n
1 	 2 	

n
1
+n

2 
 a = 	 FY.- L e' 	+ 	FY.- L̂  el-1  — 	e 1  j-111  - 2 	1 	 ^ 	• 

a n1+n 	
—1

2
-2 

j=1 L 	
j=n1+1

L 3 

Although the point estimate of 6, given by equation (11), provides some 

indication of the magnitude of 6, additional flexibility above and beyond the 

point estimate is needed to allow the decision maker to test H
0 
 :6=0 vs. H :6i0. 

If the null hypothesis of no shift is true, then 

/ V 	12 
t fkP 

	

c22 a 	n1+n2  -2' (13) 

where 
2(n i +n2 ).]  

1  
(1-0 ) (1+0

1
) [1-0 1 

c 
22 	 2n1 	 [1_e  2n1 

1 	 1 

Our decision rule is to reject H 0 :6=0 whenever 

	

;2 	t  

	

c22 a 	a/2,n
1 
 + n2 -2. 

(14) 

By making use of the distributional property of 6, a confidence interval estimate 

for 6 can also be provided: 

6 	 ±t a/2,n
1
+ n

2- 2 
a
s 

2(n1+ n,)] 
[i—e 	1 	(1-0 1 ) (1+01 ) 

2n 	2n 

L 
e 
 1 J [1-e 1  J 

This confidence interval estimate of 6 is extremely useful when one rejects 

(15) 

the null hypothesis of no shift. The confidence interval is of the form (c 1, c 2 )
, 



10 

where cl  < c 2 . If both c l  and c2  are positive, then the decision maker can be 

quite sure that there has been a positive shift in the level of the series such 

as would accompany a change in reporting attitude. The commencement of a crime 

reduction program should be reflected by a confidence interval where both c
1 
 and 

c
2 
are negative. A confidence interval in which c

1
< 0 while c2> 0 is indicative 

of no shift in the series level- That is, even if there was a shift in the level 

of the series, it was not enough to be statistically significant at the a level. 

Furthermore, an interval from a large negative value of c
1 
to a small  positive 

one for c
2 
indicates that if the shift is positive, its magnitude is probably small. 

Computer Implementation  

In order to make this methodology viable, the computer program SHIFT was 

written to perform the needed calculations for making inferences about L and 6. 

As a first step, one must establish a data file which contains N observations and 

specify both nl  and n2 . One must also read in 0 1 , the value of the moving average 

parameter. SHIFT then makes use of equation (9) and transforms the original Z
t
's 

into Y
t

v s. Because the Y
t
's have no intrinsic value, the program does not print 

them out. However, these values are stored. The program then calculates and 

prints out L and 6, using equations (10) and (11). The actual output format used 

is "L HAT =" and "DELTA HAT =". It should be pointed out that one is primarily 

interested in 6, the estimated shift, with only secondary interest in L, the esti-

mated level of the series at the first observation. Another preliminary step 

involves obtaining the estimate of o 2 , which is performed using equation (12). The 

output reads "SIGMA HAT SQ=". A test of the null hypothesis that 6=0 is performed 

using equation (13), where the output format reads "T=". Because the choice of a, 

the probability of Type I error, depends upon the decision maker, program SHIFT 

was designed to print out the significance level of the test. Recall that the 
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significance level is the probability of obtaining a result as extreme as or 

more extreme than the observed result under the given hypothesis of no shift. 

An extreme result implies disagreement with the null hypothesis. Thus, larger 

significance levels indicate agreement of the data with the hypothesis. The 

calculation of the significance level is accomplished by using the MDTD program, 

of the International Mathematics and Statistics Library (IMSL). The input to 

this program merely consists of the t value determined from equation (13) to- 

gether with its n
1 
+ n

2
-2 degrees of freedom. The output format is "SIG LEVEL =". 

When presented with the value of the significance level, the decision maker 

then determines whether the data support the hypothesis. The confidence interval 

estimate of ,S is obtained using equation (15). The print out reads "CONF INT = 

( , )". To calculate the confidence interval, the MDSTI program of the IMSL 

library was called upon to determine 
to/2,n 

+II 
 -2 

once the confidence coeff i- 
1 2 

cient of 1-a has been selected by the decision maker. Currently, a confidence 

coefficient of 0.95 is being used. 

Table 1 provides a summary of the required input, calculations performed, 

and output format to program SHIFT. The decision maker would focus his attention 

on "DELTA HAT =", "SIG LEVEL =" and "CONF INT = ( , )". First, "DELTA HAT =" 

provides some indication about the magnitude of the true process shift S. Second, 

"SIG LEVEL =" determines whether a non-zero point estimate of S was primarily due 

to statistical variation or could have indeed been caused by a true process shift. 

Small significance levels reflect that there is strong reason to believe a shift 

has occurred, where small is usally taken to be 0.05 or less. Finally, the "CONF 

INT = ( , )" statement provides the decision maker with information about the 

direction of the shift. 

Although the interpretation of the computer output from program SHIFT is a 

prerequisite for evaluation phrposes, the decision maker also needs some reassurance 



Table 1. Summary of Computer Program SHIFT 

Input Calculations Performed Output 

Data Base Obtain Y
t
's (Equation (9) 	) 

0 1  Obtain L (Equation (10) ) L HAT = 

Obtain S (Equation (11) ) DELTA HAT = 

Obtain a
a
2 

  
(Equation (12) ) SIGMA HAT SQ = 

Test H
0 

: 8=0 (Equation (13) ) T = 

Significance level for above Ho  SIG LEVEL= 

a Confidence interval for S (Equation (15) ) CONF INT = ( 	, ) 

12 
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that the underlying statistical procedures are reliable. That is, suppose there 

has been only a small shift in the series level and a relatively small number of 

data points after its occurrence. Can the statistical procedure pick up this shift? 

What effect does the value of 0 1 
have on the estimation procedure? The next 

section explores this and other questions. 

Sensitivity Analysis  

To determine the methodological sensitivity on which program SHIFT is based 

to changes in the underlying process parameters, 131 values of white noise or a
t
's 

were generated. In turn, these were used to generate 131 observations, Z 1 ,.... Zul, 

 from a ARIMA (0,1,1) process. The first 120 observations were generated in 

accordance with equation (6) while the last 11 observations were obtained using 

equation (7), which takes into account that there is a shift in the process after 

120th the 120-- observation. The Z
t
's were then transformed into Y 's using equation (9). 

Since we are primarily concerned with the estimation of the shift and not with 

estimating the level of the series at the first observation, L was arbitrarily 

chosen to be 100 and L retained this value throughout the entire sensitivity analysis. 

It was felt that the value of L does play a role in the estimation of 8, but only 

indirectly, viz., the size of d relative to L. 

In the cited modeling effort [2,3,4], it was found that all internal crime 

analysis units maintained five to ten years of monthly crime occurrence data. To 

conform to this, n 1  was chosen to equal 60 and 120. This represents five and ten 

years of monthly data, respectively. These two values of n
1  also permit us to 

measure the effect of n1 on the estimation procedure. The first 120 observations 

were segmented into two blocks. Block 1 consisted of observation 	Z
60 

while observations 
Z61 ,..., 

 2120 comprised block 2. Whenever n l  = 120, both blocks 

1 and 2 were used, while only block 2 was used for n
1 

= 60. 



14 

Examination of the estimation formulas used in computer program SHIFT suggests 

that the estimation procedure is also dependent upon n
2
, the number of observations 

after the shift. However, since one is interested in detecting a shift as soon as 

it occurs, the magnitude of n2  was kept relatively small by letting a 2=1,3,5,7,9, 

and 11. To gain further insight into the estimation procedure for small n 2, let 

us examine the estimation equations when n
2
=1. We see that the estimate of L, given 

by equation (10), does not change since L is determined solely from the first n
1 

observations. However, the estimate of d, as given by equation (11), reduces to 

the following: 

1-0 
	

n -j n nl. 
a = z 	 e 1 	z. + 6

1 
1 7 el 3-1 zi  	- 	 j  n1+1 	2n 

1 j =1 	 j =1 1-8 1  

(16) 

which is merely the first observation after the shift less a weighted average of 

the first n
1 
observations. Furthermore, the estimate of 

2 
is based solely on the 

a 

first n
1 
observations since equation (12) reduces to 

n
1 4 1 2  

Cs 2   = 	[Y. - 	8 1 1 	(n
1
+ n

2-2). a 	j 
j=1 

Another parameter that was altered in the sensitivity analysis was 8 1 , the 

moving average parameter. The ARIMA (0,1,1) model can be written in difference 

equation form as 

Z
t
- 

Zt-1= 
 -0

1 
a
t-1

+ a
t

. 

If we substitute S
t 

for (Zt-Zt-1),  which is equivalent to taking the first differ-

ence, the above equation reduces to the familiar first-order moving average process: 

S t= -0
1 

a
t-1

+ a
t

. 



15 

Recall that for this differenced model, the first-order auto-correlation between 

S
t 
and S

t-1 
is easily shown to be 

p1
= _e

1 
/ (1+0

2
), 

while for all higher-order auto-correlations 

p j = 0, j > 1. 

Thus, its memory is only one period long or the persistence of the process on one 

or the other side of the mean is short-lived. However, the appearance of the series 

is also determined by the sign of e l . If e l  is negative, then p 1  is positive and 

the series is relatively smooth with a tendency for low observations to be immedi-

ately followed by low observations and high observations by high observations. If 

1 
is positive however, then p

1 
is negative and the series has a choppy appearance. 

In this instance, it is expected that the estimation of 6 is less sensitive since 

the inherent variation of the series obscures any shifts that may have occurred. 

To investigate the sensitivity of the statistical procedures to changes in 0 1 , 01 

 was allowed to equal -0.8, -0.3, +0.3, and +0.8. The corresponding values of p1 

 are 0.49, 0.28, -0.28, and -0.49. Thus, we would expect that when GI= +0.8 the 

estimation procedure would not perform as well as for the other three values of 0 1 . 

The final parameter that was investigated in the estimation procedure was the 

magnitude of the true shift itself. Of course, the magnitude of the shift must 

take into account the true level of the series at the first observation. Since 

L=100, it was decided to let S=2,8,16, and 50. Thus, S ranged from 2% to 50% of 

the initial level of the series. It was expected that the estimation procedure 

would be more precise for the larger values of 6. 

A summary of the parameters to be varied in the sensitivity analysis is shown 

in Table 2. There were 192 different combinations of parameter values that were 

investigated. For each of these runs computer ouput similar to that of Table 1 was 

obtained with one minor exception. Namely, the T-value and significance level were 



Table 2. Parameter Values Used in the Sensitivity Analysis 

PARAMETER VALUES 

0
1  

-0.8, 	-0.3, +0.3, +0.8 

(5 2,8,16,50 

n
1 

60, 	120 

n2  1,3,5,7,9,11 

16 
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also obtained for testing H 0 :6=6 0  vs. H1 :6#6 0 , where 6 0=2,8,16, and 50. Because 

of space limitations, not all runs are listed in Table 3. The table does Contain 

the most critical cases in which 6 is small. 

All of the output shown in Table 3 is for 6=2. The first tabeled case con-

sidered 8
1
= -0.8, in which case the series is relatively smooth. In this instance, 

the significance level of the T-test always differed by less than 0.02 for any 

pair where n
1
=60 and n

2
=120. Thus, the policy maker can .be reasonably sure of the 

procedure when he has at least five years of monthly data. Another point to be 

drawn from Table 3 is that, even though the significance level is relatively high 

(0.682) for n 2=1, it increases to 0.977 for n 2=11. For the next segment of cases 

(8
1
= -0.3) where the autocorrelation between successive differenced observations 

is still positive (0.28), we see that this increase in 0 1  results in an overall 

lessening of the significance level for the larger values of n
2 
as compared to 

8i= -0.8. 

Because of the roughening of the series for positive 8 1 , the significance 

levels were smaller here. The surprising result, however, is that for both of 

these values, the significance levels were much higher for the smaller values of 

n2 than for the larger values. An explanation of this is that, for the larger 

values of n 2, the choppy behavior of the series after the shift actually tends to 

obscure the shift. It is easier to detect the shift when the data base after pro-

gram commencement is 3 or less which matches the desire to evaluate the occurrence 

of a real shift with minimal time delay. 

Although Table 3 does not contain information about L, the computer output 

revealed that, regardless of the other parameter values, L ranged from 99.398 to 

101.391, which closely agrees with the true value of 100. Furthermore, in testing 

H0 :6=0, the maximum value of the significance level for all 192 runs was 0.034 

with most of the significance levels being less than 0.001. Thus, the procedure 

is capable of detecting even gmall shifts with a high degree of accuracy. 



Table 3. Summary of Sensitivity Analysis Output 

I nl 
n2  6 S T SIG. LEVEL 

• 60 

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
E
N

N
N

N
N

N
N

N
N
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2.452 0.412 0.682 
-0.8 120 2.452 0.430 0.668 
-0.8 60 2.289 0.377 0.708 
-0.8 120 2.289 0.393 0.695 
-0.8 60 2.240 0.346 0.730 
-0.8 120 2.240 0.360 0.719 
-0.8 60 2.075 0.112 0.911 
-0.8 120 2.075 0.116 0.908 
-0.8 60 2.111 0.168 	0.867 
-0.8 120 2.111 0.174 	0.862 
-0.8 60 2.019 0.029 	0.977 
-0.8 120 2.019 0.030 	0.976 
-0.3 60 2.452 0.41 2 	0.682 
-0.3 120 2.452 0.430 	0.668 
-0.3 60 2.280 0.267 	0.790 
-0.3 120 2.280 0.279 	0.781 
-0.3 60 2.268 0.257 	0.798 
-0.3 120 2.268 0.268 	0.789 
-0.3 60 2.267 0.257 	0.798 
-0.3 120 2.267 0.267 	0.790 
-0.3 60 2.267 0.257 	0.798 
-0.3 120 2.267 0.267 	0.790 
-0.3 60 2.267 0.255 	0.800 
-0.3 120 2.267 0.265 	0.791 
+0.3 60 2.452 0.412 	0.682 
H 120 2.452 0.431 	0.667 
H 60 2.758 0.725 	0.471 
H 120 2.758 0.759 	0.449 
H 60 2.783 0.754 	0.453 
-I 120 2.783 0.787 	0.433 
-' 60 2.783 0.758 	0.451 
H 120 2.783 0.788 	0.432 
H 60 2.783 0.758 	0.451 
H 120 2.783 0.788 	0.432 
-1 60 2.783 0.751 	0.455 
-I 120 2.783 0.783 	0.435 
+0.8 60 2.452 0.414 	0.680 
+0.8 120 2.452 0.439 	0.662 
-1 60 2.971 1.290 	0.202 
-1 120 2.971 1.358 	0.177 
+0.8 60 3.121 1.660 	0.102 
+0.8 120 3.121 1.736 0.085 
+0.8 60 2.958 1.469 0.147 
+0.8 120 2.958 1.534 0.127 
+0.8 60 3.070 1.668 0.100 
+0.8 120 3.070 1.739 0.084 
+0.8 60 2.996 1.541 0.128 
+0.8 120 2.996 1.614 0.109 

A 
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It now remains to implement the methodology and the accompanying computer 

program in a real world scenario. 

Analysis of Forcible Rape  

In this section, two examples are presented of the earlier discussed methods 

for determining a statistically significant process shift. The example data 

represent the monthly occurrences of forcible rape in both Los Angeles and Atlanta 

from January of 1966 to March of 1973. Figures 1 and 2 display a segment of these 

time series. For each of these series, a (0,1,1) model was shown to be an adequate 

representation with 8=0.719 for Los Angeles while 8=0.640 for Atlanta [4]. 

For our problem setting, we are standing at March of 1973 with 87 months of 

past information about the process. In each of these analyses, we will compute the 

T value and significance level for testing H 0 :6=0 since we currently have no infor-

mation to discredit this null hypothesis. That is, we will test that the process 

level will be unchanged in the future from what we have observed in the past. 

Table 4 summarizes the analysis for Los Angeles and Atlanta. We see from the 

table that, when information of April's occurrence of forcible rape is available 

for both cities, neither shift was statistically different from zero at the 95% 

level since zero is contained in the corresponding confidence intervals,, although 

d was estimated to be nonzero for both cities. Further, we see that the estimated 

value of the shift for Los Angeles and Atlanta would be significant for type I 

values of 0.400 and 0.231, respectively. However, if we are standing at March of 

1973 and we have information for the months of April and May (n
2
=2), we see that a 

statistically significant shift has occurred in the forcible rape incidence for 

Type I error values less than 0.054 and 0.001 for Los Angeles and Atlanta, respectively. 

If this procedure were implemented in the field, a Type I error would be set 

prior to analysis. With each verification of the lack of occurrence of a statis-

tically significant shift, the data element contained in n
2 
consistent with the 
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Figure 1. Forcible Rape for Atlanta 

Figure 2. Forcible Rape for Los Angeles 



Table 4. Results for Los Angeles and Atlanta 

Los Angeles 8=0.719 

n1  n2  d T SIG. LEVEL 95% CONF. INT. 

87 1 -15.593 -0.843 0.401 (-52.345,21.159) 

87 2 -29.338 -1.948 0.054 (-59.279, 	0.603) 

88 1 -40.212 -2.179 0.032 (-76.896,-3.523) 

Atlanta 0=0.640 

87 1 7.151 1.203 0.232 (-4.663,18.966) 

87 2 18.048 3.405 0.001 ( 	7.511,28.584) 

88 1 28.577 4.796 0.000 (16.734,40.420) 

21 
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past process data elements contained in n
1 
would be added to those contained in 

n
1 
and the analysis repeated. This analysis is also contained in Table 4. If the 

Type I error were fixed initially to a value of 0.05, the analysis in March for 

both cities would not indicate a significant shift. However, if we move to - April 

(n
1
=88) and have information on May's incidence, both Los Angeles and Atlanta are 

seen to have a significant shift, viz., an undesirable increase for Atlanta and a 

desirable decrease for Los Angeles. Lastly, it should be noted that when n
I
=87 and 

n2=2, the significance levels are larger than indicated for the parallel cases 

when n
1
=88 and n

2
=1. This occurs because in the former cases one observation is in 

control and one observation is out of control in the sets where n
2
=2. 

Conclusions  

A quantitative evaluation procedure for analysis of crime occurrence has been 

specified. Multiplicative autoregressive moving average models with an imbedded 

shift parameter, to capture potential changes in future crime occurrence, are util-

ized after being transformed to a linear model representation. A sensitivity 

analysis of the procedure was exhibited, which illustrates the ability of the pro-

cedure to efficiently detect small shifts. Two examples of the evaluation procedure 

applied to uniform crime report data of forcible rape in Los Angeles and Atlanta were 

analyzed. 
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TECHNICAL NOTE #15 

A Data Aggregation Procedure for the 

Network Flow Model of Displacement 

Introduction  

In previous Technical Notes [2 , 3], a network flow model was constructed 

and demonstrated in order that criminal displacement and deterrence be predicted. 

Specifically, the model requires historical information regarding criminal (crime) 

movement in a pre-specified region relative to a chain of discrete time periods. 

The essense of the model is a tuning scheme which considers successive transpor-

tation models the solutions to which agree closely with the observed flow 

(displacement) in the periods. When the model is "tuned", point forecasts can 

be made relative to future displacement and deterrence in the region. 

A fundamental data set required in the tuning algorithm [1], is the observed 

flow pattern in prior time periods. Given by matrices F
t
, particular flow 

valuesf specify the level of observed flow in time period t between zones i ij  

and j where i and j may be identical. Morever, it may be that the data base 

around which Ft are constructed, involves a large number of zones the result of 

which is a series of large arrays. A size for each array of 100 x 100 would 

not be atypical for a region the size say of Atlanta, Georgia where each zone, 

might represent a police precinct. Additionally, many values fij would be zero. 

creating substantive sparseness in matrices F
t
. This leads directly to a computa-

tional issue and is the subject of the current technical note. Accordingly, we 

develop and demonstrate a data aggregation procedure which in effect reduces the 

size of arrays F t  by consolidating zones. 

The composition of this technical note involves a discussion of the concept 

and basic notions of an aggregation procedure followed by a computational state- 
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ment of the scheme. The algorithm is demonstrated by considering a small 

hypothetical problem; however, the application of the procedure is reported 

relative to a real data set. In addition, some relevant properties and modif-

ications of the procedure are considered. 

The Development of an Aggregation Algorithm 

The basic notion upon which the aggregation procedure is developed is that 

if there is no flow between two contiguous zones then the two zones can be con-

solidated creating a "new" zone without loss of the displacement or deterrence 

information into or out of the original zones. Of course such flow will be 

defined over a new zone of less resolution relative to the entire region. This 

is obvious if one examines the extremes of any aggregation attempt. Suppose there 

is some non-zero flow into or out of every zone. Under such a case, no aggrega-

tion is made which is rational since displacement (and/or deterrence) from or to 

any zone is occurring and any aggregation or consolidation would destroy at 

least a portion of such displacement. On the other hand, suppose there is no 

criminal displacement at all. Given by fij = O;Vi,j,t, the final aggregation 

would result with a single zone which corresponds to the entire region. The 

loss of zone to - zone resolution is irrelevant since there is no displacement 

anyway. Of course in practice it would be rare for either of these extreme views 

to be representative. 

In determining a final aggregation relative to a set of time periods in which 

historical (observed displacement) data is collected, it is evident that data in 

all periods must be considered simultaneously. That is, one must construct from 

the arrays F t , t=1,2,...,T a new matrix F such that: 

t 

	

f ij f. j 	Vi,j ij 	l 

This is done in order to avoid an occurrence of zone consolidation suitable in 

some periods but not suitable in others where there is displacement between pre- 
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viously consolidated zones. Clearly, an aggregation constructed F is 

sufficient since array f .. = f.. = 0 implies f
t 

= f t . 	0 for all 
ij 

The process of the aggregation scheme is an ituitive one where a given 

zone is considered for possible consolidation with another, adjacent zone 

creating a new zone which is the composite of the two. Clearly, each time a 

pair of zones are combined, the-dimension of F is reduced by one. Note that 

two regions are considered adjacent if any portion of the boundary of one zone 

is shared by the other. Zones sharing only a point are not considered to be 

adjacent however. For completeness, all zones are adjacent to themselves. The 

information concerning adjacency of zones is given in an adjacency matrix A such 

that .a.
j 
 is one of i and j are adjacent zones and zero otherwise. Note that A 

i 

is symmetric. 

Once two zones are found which can be consolidated, the aggregation should 

be made immediately relative to the update of F as well as to A. If such an 

update is not made, the nature of certain displacement patterns may be destroyed. 

For example, consider adjacent zones a,b, and c. Let fab=fba=fac=fc=0.  If one 

attempts to consolidate a and b and the matrix F is not updated accordingly, then 

it is logical that one would attempt to consolidate a and c yet if f
bc 
 0 the 

consolidated, new zone consisting of original zones a,b, and c would not show 

the zone to zone displacement between c and b. Caused by the non-transitive 

nature of inter-zone displacement, such a phenomena would not occur if the updated 

flow matrix were constructed after consolidation of a and b (or a and c). 

An obvious result of the manner in which successive F are updated is that 

total displacement is conserved throughout the aggregation process. That is, 

for any array F, y y f..is constant. In addition, it should be clear that the 
i j ij  

final aggregation is not unique both in terms of the number of zones in a final 
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aggregation as well as in terms of the composition of such zones. This is 

demonstrated in the subsequent sample problem. Following however, we present a 

step-by-step computational procedure for the aggregation process. 

Step 1. Initialization 

	

1.1 	Construct the adjacency matrix A such that; 

1, if zone i is adjacent to zone j 

a.. 

0, otherwise 

	

1.2 	Initialize the flow matrix F such that 

f.. = 	f 	Vi9i 
t=1 .  

Step 2. Attempt to combine adjacent zones 

	

2.1 	Foragivenzonei*searchf—for all j until f i*j*  

isreachedsuchthatf.„..„=f
j*i

.,=0. If a. ._=1 proceed 
^ 	i*j^ 

to Step 3. If a . . =0 continue the search in row i*. i** 

	

2.2 	If no zone can be combined with the current zone i* seIPPt 

a new zone, call it i* and return to 2.1. If all zones have 

been considered and no further aggregation is possible, term-

inate the process. 

Step 3. Update the flow and adjacency matrices relative to the current 
aggregation. 

	

3.1 	For given zones i* and j* chosen in Step 2, create a new zone 

and lable it 0 where $=min (i*,j*). Update F such that 

f.14 = fik 	
f. + f ;Vi such that k=i* and 1=j* z ' 

and 

f
0j 

= f
kj 

+ 
f72,,j;Vj 

 such that k=i* and t=j*. 
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Delete row and column j* in F, where zone * was just 

combined with cl>. 

3.2 	Update the adjacency matrix such that 

aid  = max (aik , a. 9 ); Vi where k=i* and 9,=j* 

and delete all aw  where j* is combined with S. Recall 

amn=a
nm 

for all m and n. Return to Step 2. 

Sample Problem  

Suppose we consider a small hypothetical problem involving six zones. 

Further, let the zones be oriented relative to each other and the entire 

region by the schematic in Figure 1. In order to facilitate the discussion 

let observed displacement between zones be depicted by the arrows on the 

diagram. The numerical flow values are given in Table la where we assume 

that the values are already initialized in F. For example, the total dis-

placement in all time periods, from zone 1 to zone 5 is two. 

If we begin arbitrarily with zone 1 and attempt to consolidate, the first 

candidate for such consolidation is zone 3 since f13=f31=0.  It can be seen 

however that zones 1 and 3 are not adjacent since a
13
=0. Note that A is given 

initially in Table lb. The next candidate is zone 4 which is adjacent to zone 

1 and the two can be combined. A new zone is constructed and labeled zone 1. 

The flow matrix is updated and given in Table lc along with the corresponding 

adjacency matrix in ld. The procedure continues such that the only remaining 

consolidation involves zones 5 and 6. The new, final flow matrix is con-

structed and given in Table le along with the final adjacency matrix in lf. 

It can easily be verified that no further aggregration can be made. The final 

regional layout would appear as in Figure 2 as a result of the aggregation. 

It is of interest to note that if one begins the aggregation process 

with zone 2 as the initial zone, a different final aggregation results as 
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Figure 1. Original Layout of Region for Sample Problem 
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Table 1. 	Flow 
Sample 

and adjacency 
Problem 

2 	3 	4 	5 

Matrices Relative to Successive Aggregations for 

0 3 0 0 2 0 A = 2 1 

2 2 0 4 0 0 0 3 0 1 

F= 3 0 0 0 0 0 4 4 1 1 1 

4 0 0 2 0 0 0 5 1 0 0 1 

5 0 0 0 3 0 0 6 0 0 1 1 1 

6 0 0 0 0 0 0 1 2 3 4 5 

(b) 

(a) 

2 1 
1 2 3 5 6 

3 1 1 
1 3 2 2 0 

1 0 0 
2 2 0 4 0 0 

6 1 0 1 1 
3 0 0 0 0 4 

1 2 3 5 
5 3 0 0 0 0 

(d) 
6 0 0 0 0 0 

(c) 
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Figure 2. Final Aggregation Relative to Starting Point Zone 1. 
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shown in Figure 3. Note the conservation of displacement flow in both 

aggregations. 

Modifications to the Procedure and Experience with a Real Example  

Relative to the form just presented and demonstrated, the aggregation 

algorithm will converge to some final arrangement of zones given a set of 

flows and adjacency indices. It can occur however, that the final layout 

possesses characteristics while "correct" in the algorithmic sense, are not 

geographically appealing or even administratively functional. Consider a five 

zone initial layout given in Figure 4(a). Suppose a final aggregation results 

as in 4(b). The resulting three zone aggregation may not be a workable 

geographical layout yet as long as a
51 

and a
53 

exist at non-zero values, 

such a final configuration could arise (depending upon f
5j 

and/or f35) . 

prevent such an occurrence, we seperate the notion of adjacency into two 

classes: strong and weak. 

Two zones are said to be adjacent in the strong sense if a substantial 

portion of their joint boundary is contiguous. The zones would be only weakly 

adjacent otherwise. The measure of "substantial" relative to contiguity is 

system or user-dependent and one would specify some rule (eg. ratio of contig-

uity to entire boundary length) for such a measurement. Zones which are adjacent 

in the weak sense are given a.. values of zero. Relative to the illustration 

in Figure 4, zones one and three exhibit weak adjacency and the layout in Figure 

4(b) would not arise. 

Another issue that may be of concern relative to a final aggregation, occurs 

when an "island" zone is formed. Caused by a particular mix of a
ij and fij 

values, 

an aggregation may arise such as that in Figure 5 where one zone in the aggregation 

is completely surrounded by another. Relative to a real data set upon which the 
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Figure 3. Final Aggregation Relative to Starting Point Zone 2. 



(a) Original Layout 

(b) Final Aggregation 

Figure 4. Example of the Effect of Weak Adjacency 
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Figure 5 Creation of an Island Zone (Zone 6) in a 
Final Aggregation 
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aggregation algorithm was tested, such an aggregation occurred. Assuming that 

under certain conditions, an island zone is not admissable, a manual updating 

is probably most expedient for "modifying" a final aggregation. 

The aggregation procedure along with the weak and strong adjacency as-well 

as the manual updating capability, was used on a sample set of real data. The 

data were collected relative to seven crime indices for 1974 in Fulton County, 

Atlanta, Georgia. In Figure 6, a layout of Fulton County is given showing police 

precinct sub-divisions. An aggregation was determined which resulted in a 

consolidation to fourteen zones. The final aggregation is depicted in Figure 7. 

It is of interest to note that in arriving at the final layout in Figure 7, a 

number of different starting points (zones) were attempted. In addition, weak 

adjacency was created for a few zones and manual updates were affected in order 

to remove island zone formations. Moreover, the final, fourteen-zone aggrega 

tion was used in the network flow model [2] and the results are reported in a 

subsequent technical note. 
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Figure 6. Layout of Fulton County 
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Figure 7. Final Aggregation, 
Fulton County. 



39 

References  

1. Deutsch, S.J., J.J. Jarvis, and R.G. Parker, "Aspects of the Single Period 
Structure and a Tuning Procedure for the Overall Network Model," Technical 
Note #7, Dept. of Justice - L.E.A.A., Grant #75N1-99-0091, 1976. 

2. Deutsch, S.J., J.J. Jarvis, and R.G. Parker, "Predicting Criminal Displace-
ment Using a Linear Transportation Model: Documentation and Discussion," 
Technical Note #12, Dept. of Justice - L.E.A.A., Grant #75N1-99-009/, 1976. 

3. Deutsch, S.J., J.J. Jarvis, and R.G. Parker, "A Nonlinear Transportation 
Model for Predicting Displacement," Technical Note #13, Dept. of Justice 
L.E A.A., Grant #75N1-99-0091, 1976. 



40 

TECHNICAL NOTE #16 

Documentation of Software for Network Flow Models 

in Crime Displacement 

Introduction  

Several computer programs - have been developed as part of the crime displacement 

task. Each program is available on the CDC Cyber 74 in both symbolic (with a prefix 

of "S") and executable (with a prefix of "X") form. 

In this technical note we document each of those programs. We include a brief 

description of each program, its required inputs, its outputs, how to execute it as 

well as sample runs. We also document each data set available. 

Programs Available  

A. AGGRE (XAGGRE, SAGGRE) 

This program aggregates a 115 by 115 matrix of flows randomly into a minimum 

size matrix without losing any off diagonal flow. The program orders the districts 

randomly, and then aggregates them starting from the first district and comparing it 

115 th with second, third, etc., until the 115-- district is compared with the first district. 

Anytime an aggregation takes place, the aggregated district is compared to all the 

other districts including the ones that are checked before. This is necessary since 

every time an aggregation occurs, the adjacency matrix of this new aggregated district 

will also change. 

The criteria for aggregating district i into district j is 

a. There must be no flow from i to j or j to i. 

b. Districts i and j must be adjacent to each other. 
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Adjacency is given by a 115 X 115 matrix that contains a 1 in the (i,j) lo-

cation if districts i and j are adjacent, and 0 otherwise. Every time an aggregation 

takes place, the adjacency matrix is aggregated as well. 

Since the initial ordering of the districts are random, the aggregation is also 

random. 

B. AGGFLO (XAGGFLO, SAGGFLO) 

This program is capable of producing the data that will be used in the linear 

and nonlinear transportation models. After the original map with 115 districts is re-

duced to 14 aggregated districts. This program takes the numbers of the districts in 

each aggregated zone and computes the actual flow between those aggregated districts 

for any specified amount of time. As an example, in our later analyses we used the 9 

Months data and the last 3 months data so that the optimal parameters to be obtained 

from the 9 month data could be used for the forecasting of the last 3 months flow. 

This program is also capable of producing the aggregated flows for amy month or any 

combination of months. 

C. LINEAR (XLINEAR, SLINEAR) 

This is the linear transportation model. The total cost is given by 

14 
Total Cost = y c..x.. 

i,j 
13  13  

The cost coefficients c.. are obtained from 

N  c
ij 	 j 	 1 

= exP(a * (P - P.) ) + exp($ * d.
2 
 .) + exp(Y * (P. - 13./

-.s. 
 d..) .3 	 J 	 XI 

where a, $ and y are the unknown parameters to be determined,is tha ratio of Pi  

policeunitsperunitareaatidistrictjandd ij is the distance between district 

i and district j. 

The search routine operates as follows: For initial starting parameters a, $ 

and y, c..'s are calculated. For given values of supply and demand at each district, 
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and cost per unit flow c
ij

, the transportation problem is solved. The sum of squares 

is obtained from 

14 

	

SSQ = 	(x 	- f )
2 

i,j 	
. 	

ij 
 

where x
ij 

is the solution of the transportation problem corresponding to the current 

set of c
ij

's, and the fij's  are.-the actual flows obtained from the program AGM°. 

Starting from any parameter, say 5, the new cost coefficients c_ v s are obtained 

by replacing 5 by 5 + A . Again the transportation problem is solved and a new sum of 

squares is obtained. This sum of squares is compared with the current best sum of 

squares so far. Depending upon the comparison, either the 5 is increased again by A 

(if the new solution is better) or a is reduced by 0/2 (if the new solution is not bet-

ter). After a parameter is completely searched, the next parameter is searched for as 

improvement in the sum of squares. This iterative procedure continues until no better 

sum of squares can be obtained within the specified limits of a, a, y and c (the mini-

mum step size). At this point the best solution is printed out with the optimum para-

meters a, B and y. 

D. NONLIN (XNONLIN, SNONLIN) 

The searching routine of this program is similar to LINEAR but the problem solved 

at every iteration is a nonlinear transportation problem compared to the linear trans-

portation algorithm. It uses three subroutines for calculating the optimal solution 

for the nonlinear transportation problem with the objective function being given by 

14 
Total Cost = >2 c..x.

2  
.. 

ij 

The cost coefficients are given by 

	

P i 	 P. 	2 
C
ij 

= 	+ d2  + ij 	Pi 	1.] Pi  

where pi , pi , dij , ct,i3 and y are as defined in the previous section. 
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The three subroutines are based on T.C. Hu's nonlinear transportation algorithm 

for convex costs. Each single flow is assigned to a certain arc from the solution of 

a shortest path problem. Every time a single flow is assigned the costs on the arcs 

are updated as well as the upper and lower capacities of the arcs. Therefore, for a 

transportation problem of 450 flows, 450 shortest path problems are solved for every 

change in the parameters a,0 and y. 

A. AGGRE 

This program does not need any input from the teletype. It utilizes Tape 40 

thru Tape 45 and Tape 51 to generate the aggregation. As explained before Tapes 40 

through 45 contain the actual Atlanta crime data. Tape 51 contains the adjacency 

data for Atlanta. 

B. AGGFLO 

This program must be supplied externally (from the teletype) the parameter 

IBULL. The actual data between the months 1 thru IBULL will be obtained for the 

aggregated map. For example, IBULL = 9 will produce the flow matrix of the first 

nine months for the aggregated map. 

The other data is supplied to this program from the actual Atlanta crime data 

(Tape 40,...Tape 45). 

C. LINEAR 

This program requires the following external input in the given order. 

Card 1 

IMAXT,M,N 

Where IMAXT: Number of periods in the model. (It was one for 

most of our examples). 

M: Numbers of districts (demand points) 

N: Numbers of districts (Supply points) 
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Card 2 

a,a,y, and A 

where a is the first parameter being searched. 

a is the second parameter being searched. 

y is the third parameter being searched. 

A is the step size. 

Card 3 

INDEX, IFLAG, ISEARC, KFLAG, DEPS 

where 

INDEX: parameter indicator. 

1 parameter a is under consideration. 

2 parameter a is under consideration. 

3 parameter y is under consideration. 

IFLAG: In which direction of a given parameter we am searching. 

1 we are searching in the direction of the positive side. 

2 we are searching in the direction of the negative side. 

KFLAG: Are we in the expansion or contraction stage? 

1 Expansion by size of A. 

2 Contraction by size of A/2. 

'SEARCH: Sides of the parameter being searched. 

1 Only one side is searched. 

2 Both sides are being searched. 

DEPS: Criteria for terminating the search in that given direction 

for the given parameter. If t/2 < DEPS the other direction 

of that parameter will be searched. If both directions are 

searched, then the next parameter will be searched. 
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D. NONLIN 

The following information should be supplied to this program externally. 

Card 1: IMAXT, MZM, M, N, KWRI, LMKO 

where IMAXT the same as in LINEAR. 

MZM: Number of nodes in the network created from the M X N 

transportation problem. 

M: Number of supply points in the transportation problem. 

N: Number of demand points in the transportation problem. 

KWRI: Initial node in the network obtained from the transpor-

tation problem. 

LMKO: Final node in the network obtained from the transporta-

tion problem. 

Card 2: a,8,Y,A 

Explanation: Same as in LINEAR. 

Card 3: INDEX, IFLAG, ISEARC, KFLAG, DEPS 

Explanation: Same as in LINEAR. 

As in LINEAR, after the optimal a,8, and y are determined, the following card 

should be inputed to either terminate or rerun the program. 

Card 4: MORER 

Explanation: Same as in LINEAR. 

After the above information is given externally to the program, it will read Tape 28 

and Tape 29, compute the c..'s and perform the search for all the parameters until the 

optimal a, 8 and y are obtained. After the final iteration and output is obtained the 

following parameters must be inputed externally: 

Card 4: MORER 

MORER: Do we need another run with different initial points or not? 

1 = yes 

0 = no 
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MORER = 1 will take the control to the very beginning of the program to 

the first read. Therefore the following are the order of cards to be read in by the 

program. 

1 IMAXT, M, N 

2 a03 ,Y,A 

3 INDEX, IFLAG, ISEARC, KFLAG, DEPS 

A. AGGRE 

The output will contain the list of the random ordering of the districts. It 

will also print the number of diagonal and off diagonal flows. The next output is 

. the complete list of the aggregation produced in the format. 

(District no.) into (District no.) 

After the final aggregation, the heading FINAL REDUCED TABLEAU and the flow in 

this aggregated matrix are printed. Every run of this program produced 25 such random 

aggregations. 

B. AGGFLO 

This program first prints the wild data cards, if there are any, and then prints 

the aggregated flow matrix depending upon the input IBULL as described in section 2. 

C. LINEAR 

The program prints the heading, ITERATION, ALPHA, BETA, GAMMA, SUMSQR and then 

prints the iteration number, the current values of the parameters and sum of squares 

at each iteration. After the search is complete the optimal vlues of the parameters 

and corresponding flow matrix are printed after the heading OPTIMAL SOLUTION. 

D. NONLIN 

The format of the output is exactly the same as LINEAR. 

Sample Runs of Each Program 



NTSS 

HI C 

5 
8 

50 
69 

0 
- 	7. 72, ROR= 

HASI C 

SOLUTI ON 

4 

0 
0 
0 

26 
Q414 

SOLUTION 

25 
0 
0 
0 
0 

0 
29 

0 
0 
0 

0 
0 
0 
0 

25 

4  25 0 0 
8 0 0 29 0 
0 25 0 0 25 

F,Q 0 0 0 0 
51 0 0 0 0 

MSS - 	FPRoR= 15182 

1-;IS I C SOLTITI - 

.4 30 0 n 0 
8 0 0 ‘..79 0 
0 0 95 0 25 

.sc_) 0 0 . 0 0 
51 0 0 0 0 

MSS ERROR= 16032 
C SOLUTI ON 

1 8 25 0 0 
12 0 0 0 25 
50 0 0 0 0 
69 0 0 0 0 

0 22 0 29 0 
MSS - ERROR= 9044 

EASI C SOLUTI ON 

1 30 3 0 0 
12 0 0 0 25 
50 0 0 0 0 
69 0 0 0 0 

0 0 22 29 0 
MSS - ERROR= 9264 

FiASI C SOLuTI ON 

0 9 25 0 0 
12 0 0 0 2 5  

0 21 0 29 0 
69 0 0 0 0 

51 0 0 0 0 

MSS - ERROR= 15604 

• • 
• 
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A. AGGRE 

690 
980 
850 
220 
821 
2050 
280 
170 
334 

640 
520 
500 

2090 
310 
300 
160 
150 

10 
140 
130 
180 
320 
280 

20 
680 
700 
750 
661 
740 
670 
530 
650 
630 
580 
420 
410 
400 
812 
831 
832 
8 1 1 
430 
370 
662 
40 

560 
460 
4 70 
920 
910 
900 
980 
940 
9 70 
930 

380 661 	900 	790 500 800 250 2030 831 80 420 	60 762 872 
761 	640 2020 	630 	1 50 950 300 9 10 9 0 	750 	10 	740 610 880 

	

2080 	140 440 	160 812 400 832 940 	700 360 580 620 2070 
771 	871 	670 2090 460 	1 1 0 	70 840 890 	190 50 	2040 	781 
180 520 990 	570 	130 	100 	772 	2060 861 	8 1 1 	310  4 70 200 

	

1000 	410 730 390 970 330 370 600 320 	120 430 930 862 
350 20 551 450 9 60 782 	680 530 	650 	662 230 552 210 590 
260 40 	710 560 822 480 920 490 720 270 240 290 2010 
172 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	69 0 

	

INTO 	690 

	

INTO 	600 

	

INTO 	690 

	

INTO 	690 

	

INTO 	69 0 

	

INTO 	690 

	

INTO 	690 

	

 INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 

	

INTO 	690 
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3 60 
390 
350 
330 
2 60 
49 0 
49 0 
290 

00 
762 
761 
61 0 
620 
230 

80 
90 
60 
70 

871 
50 

100 
1 1 0 
200 
190 
120 
2 70 

2020 
2080 
2070 
2040 
2060 

88 0 
850 
840 
890 
8 62 
821 
822 
240 
990 

1 000 
9 60 
570 
450 
210  
772 
792 
720 

INTO 
I NTO 
INTO 
I Ns TO 
INTO 
I NTO 
INTO 
I NTO 
I NTO 
INTO 
INTO 
INTO 
I NTO 
I NTO 
INTO  
INTO 
INTO 
INTO 
I NJTO 
INTO TO 
INTO 
INTO 
INTO 
INTO 
INTO 

NTO 
INTO 
I NTO 
INTO  
INTO 
I N TO  
I NTO 
I NTO 
I NTO 
INTO 
I NTO 
INTO 
INTO 
INTO 
INTO 
I NTO 
INTO 
I NTO• 
I NTO 
INTO 
I NTO 
I N T 0 
I NTO 

39 0 
38 0 
39 0 
390 
39 0 
38 0 
38 0 
38 0 
79 0 
790 
79 0 
790 
790 
250 
250 
250 
250 
250 
250 
250 
250 
250 
250 
250 
250 
250 

2030 
2030 
2030 
2030 
2030 
8 72 
8 72 
8 72 
8 72 
8 72 
8 72 
8 72 
8 72 
9 50 
950 
9 50 
440 
440 
220 
771 
771 
730 
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FINAL J1 FOLIC ED TABLEAU 

52 1 3 4 7 0 5 2 6 1 0 0 2 0 0 1 20 1 0 0 1 
5 1.5 0 1 2 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 o 
6 1 6 4 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 
5 4 0 14 0 6 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 
4 `f,. 0 1 1 5 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 
4 1 0 3 0 1 5 0 0 0 1 1 0 0 0 0 1 00 0 0 0 
1 0 1 0 0 0 0 0 0 0 0 0 0 G 0 0 00 0 0 0 
1 1 0 0 0 0 0 6 0 0 0 0 0 0 0 0 00 0 0 0 
1 1 0 2 0 1 0 0 12 0 0 0 0 0 0 0 00 0 0 0 
O 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 000 0 0 
1 0 0 0 0 1 0 1 1 1 0 6 0 0 0 0 20 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 000 0 0 
3 0 1 0 0 1 0 0 0 0 0 0 0 6 0 0 00 0 0 0 
O 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 00 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 013 0 0 0 
2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 00 5 0 0 
3 0 0 1 0 0 0 0 0 0 0 0 0 0 (1 0 0 0 0 3 0 
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 



B. AGGFLO 	 50 

? 9 
350 
R77 
2 08 
771 

3 203 
7 871 
6 2 08 0 
3 	1030 

7601 11; 	761 
850 10 8 321 
460 10 	3101 
920 5  2 
350 R 	238 1 
661 3 	660 

1 1 	0 0 	2 0 	0 0 	2 0 1 0 2 0 
0 19 	1 3 	1 1 	1 0 	1 1 0 1 0 1 
0 1 	2 2 	1 0 	0 0 	1 1 0 0 0 0 
1 1 	1 9 	2 1 	0 0 	0 2 0 1 0 1 
1 1 	1 3 	34 3 	1 0 	0 0 1 0 0 1 
0 3 	I  1 	0 23 	2 1 	0 0 0 4 1 0 
0 0 1 	0 25 0 	0 0 1 1 0 0 
0 0 	0 1 	0 2 	0 2 	2 0 0 0 0 0 
1 1 	• 	2 5 	.0 1 	0 0 	1 1 0 0 0 1 2 
0 0 	0 1 	1 0 	0 0 • 	0 2 0 1 1 0 
0 2 	00 2 1 	2 0 	0 0 13 1 1 1 
0 0 	0 2 	4 0 	2 1 	3 1 6 1 5 2 1 

0 0 	1 1 	0 1 	1 0 	0 0 0 1 6 1 
0 1 	0 2 	0 0 	1 0 	2 1 0 0 0 13 

2. 75 7 CP SECONDS  EX ECI1TI TI ME 



C. LINEAR 

Ff\3 1- !-P I mgxT, m,n1 

? 	1, 14, 14 

FN0TFP 	 Tg, 0AmmA, DFLIA 
? 	 15,.3 

1-nrFP IN)0EY, I FLA(. 4 , I cFPPC,KFLPh, 1;FPC 
? 	3, 1, 1,2, 

I 7- F•PpTIONI 
.1 

ALPHA r(F TA (;ANN A 	SUM OF 	SOP S 

1 .5500 . 7000 -. 1500 1712.- 

2 .5500 . 7000 .1500 950. 

3 .5500 . 7000 .4500 1320. 

4 .5500 . 7000 .3000 950. 

5 .5500 .7000 .2250 9th. 

e. .5500 . 7000 -.1500 1712. 
7 . 5500 . 70012 0.0000 950. 
8 .5500 . 7000 .0750 942. 

9 .5500 . 7000 .3750 1 2 28 . 

10 . 5 500 . 7000 .2250 968. 

11 .550() . 7000 . 1500 950. 

12 .5 , P0 . 7100 -• 2f)50 1362. 
13 .5500 . 7000 0750 950. 
14 .5500 . 7000 .0000 950. 
15 .8500 . 7000 .0750 1228. 
1 	f•-• ,. 7000 . 7000 .0750 1228. 

17 . 6250 . 7000 . 0750 1228. 
tc< .2500 . 7000 .0750 90e, 

19 .5500 . 7000 .07,50 942. 
.20 . 4000 . 7000 .0750 1E-44. 

21 . 3250 . 7000 .0750 	, 15th. 
22 -.0500 . 7000 .0750 I9064. 	. 

21 .100o . 7000 .0750 1174. 

24 .1750 . 7000 .0750 1204. 

25 .':,, F,on 1. 0000 . 0750 1344. 

2& .2500 .)-5500 .0750 946. 

27 .2500 .7750 .0750 946. 

PR .25C0 .4000 .070 1264. 

2(4 .250;0 . 5500 .0750 1576. 
30 - 25 00 . (---250 .0750 15th. 

31 .2500 . 7000 .3750 1392. 
32 .2500 . 7000 .2250 1404.. 

33 .2500 .7000 . 1500  15th. 
34 .2500 . 7000 -.2250 1416. 
35 .2 5 00 . 7000 -.0756 978. 
3F- .2500 . 7001,  .0000 972. 

.c,,,rin . 'foci .0750 942. 

38 .4000 . 7000 .0750.  1644. 

39 .3250 . 7000 .0750 15th. 
40 -.0500 .7000 .0750 190M. 
41 .1000 . 7000 .0750 11 74. 
42 .1750 . 7000 .0750 1208. 
43 .2500 1. 0000 .0750 1344. 
44 .2500 .R500 .0750 946. 

45 .2500 . 7750 .0750 946. 
146 .2500 .4000 .0750 .1264. 
47 .2500 . 5500 .0750 1576. 
4c5 .2500 . 6250 .0750 15th. 
49 .2500 .7000 .3750. 1392. 
50 .2500 . 7000 .2250 1 4 04 . 

51 .2500 . 7000 .1500 1568. 
52 - 	.2500' . 7000 -.2250 1416. 

53 .2500 . 7000 -.0750 978. 
54 . 2500 . 7000 .0000 972. 



OFT1mPL cOLUTION 

ALPliol= 	.290000.0 

FiFTP= .7000000 

0Amma= .0750000 

90M OF SOP= 	906. 

COST 	mickTylY 

3. 	547. 	1. 9 71034259E+9 	73149. 	1.971034269E+9 

73320. 	300846. 	21. 	74. 	6019. 	213221. 	28366. 

480. 	2749. 

949. 	3. 	114. 	14. 	148888. 	73196. 	72 3 0019. 

1636. 	34. 	49. 	1203. 	1394. 	676. 	283. 

1.71034257F+9 	116. 	3. 	20. 	5303. 	3746933. 

1.12 9 1306337F+10 80762908. 	20605. 	772. 

86006. 	1031989. 	402723. 	3192490. 

73131. 	13. 	17. 	3. 	35. 	203. 	24540. 	1164. 

17. 	P. 	22. 	34. 	9. 	39. 

1.971034294+0 	148887. 	52 448. 	37. 	3. 	35. 

1301. 	7319C. 	901. 	69 . 	40. 	107. 	366. 	2517. 

73130. 	731 30. 	374431 8 . 	200. 	30. 	3. 	J. 
Q. 	27. 	24. 	10. 	10. 	7. 	27. 

100821. 	723C003. 	1.129130 5 463E+10 	24540. 

1298. 	9 . 	3. 	32. 	213. 	488. 	67. 	37. 	17. 

312. 

17. 	1626. 	80760618. 	1161. 	73131. 	30. 	30. 

3. 	7. 	58. 	541 . 	23. 	7. 	20. 

52. 	23. 	18840. 	12. 	930. 	24. 	199. 	4. 	3. 
5. 9. 	7. 	4. 	8. 

2902. 	23. 	129. 	2. 	34. 	16. 	391. 	43. 	3. 

3. 	4. 	5. 	5. 	5. 

18•40. 	360. 	6780. 	6. 	11. 	3. 	29. 	29. 	4. 

3 . 	3. 	3. 	3. 	4. 

29 02. 	360. 	36714. 	11. 	34. 	2. 	13. 	8. 	3. 

3. 	3. 	3. 	2. 	4 . 

325. 	544. 	309821. 	3. 	204. 	4. 	9. 	3. 	3. 
6. 5. 	4. 	3. 	7. 
199. 	117. 	18840. 	FS. 	294. 	R. 	70. 	4. 	2. 	2. 

3 . 	3. 	2. 	3. 

COMPUTFID FLOW MPTPIX 

4 	0 	0 	0 	0 	0 	0 	1 	0 	0 0 0 0 0 
28 	0 	0 	0 	0 	0 	0 	0 	0 0 0 0 0 

0 	0 	0 	0 	0 	0 	0 	0 	C 	0 0 -0 0 -  0 
1 	1 	17 	0 	0 	0 	0 	0 	0 0 0 0 0 

0 	000 	40 	0 	0 	0000000 
0 	0 	0 	0 	0 	18 	8 	0 	0 	0 0 0 0 0 
0 	0 	0 	0 	0 	0 	17 	0 	0 	0 0 0 0 0 
0 	0 	1 	0 	0 	G 	0 	3 	0 	0. 0 0 3 0 
0 	0 	- 	0 	0 	0 	0 	0 	 4 0 •0 0 0 
o 	0 	0 	7 	0 	0 	0000000o 
0 	0 	0 	0 	1 	0 	0 	00 	0 16 0 0 4 

000.006000011B - 8 0 
- 	C) 	G 	(- 	0 	0 	0 	0 	0 	0 0 4 0 0 

0coc0con03 0 0 0 12 
m v0P 	IcANT 	A NEI: 	PUN 	1 	YES:0 NO 

? 0 

16.0%98 CP 9F- CONDS EXECUTION TIME 



D. NONLIN 

ENTER IMAKTRWM,M.N.KRI,LMKO 
? 1,30,14,14,1,30 

ENTER ALPHA,BETA,GA4MA,DELTA 
? 7.,3.,5.,4. 

E\ITER IgLEK,IFLAG,ISEARC,KFLAG,DEPS 
? 	1,1,1,2,1. 

ITERATION ALPHA BETA GAMMA SUM OF SORS 

1 7.0000 3.0.000 5.0000 328. 
2 11.0000 ,3.0000 5.0000 830. 
3 9.0000 3.0000 5.0000 328. 
4 3.0000 3.0000 5.0000 328. 
5 7.5000 3.0000 5.0000 528. 
6 3.0000 3.0000 5.0000 328. 
7 5.0000 3.0000 5.0000 328. 
8 6.0000 3.0000 5.0000 328. 
9 6.5000 3.0000 5.0000 328. 

10 7.0000 7.0000 5.0000 302. 
11 7.0000 11.0000 5.0000 792. 
12 7.0000 15.0000 5.0000 308. 
13 7.0000 13.0000 5.0000 310. 
14 7.0000 12.0000 5.0000 310. 
15 7.0000 11.5000 5.0000 792. 
16 7.0000 7.0000 5.0000 302. 
17 7.0000 9.0000 5.0000 792. 
18 7.0000 10.0000 5.0000 792. 
19 7.0000 10.5000 5.0000 810. 
20 7.0000 11.0000 9.0000 820. 
21 7.0000 11.0000 7.0000 808. 
22 7.0000 11.0000 6.0000 310. 
23 7.0000 11.0000 5.5000 792. 
24 7.0000 11.0000 1.0000 792. 
25 7.0000 11.0000 3.0000 792. 
26 7.0000 11.0000 4.0000 792. 
27 7.0000 11.0000 4.5000 792. 
28 11.0000 11.0000 5.0000 792. 
29 9.0000 11.0000 5.0000 792. 
30 3.0000 11.0000 5.0000 792. 
31 7.5000 11.0000 5.0000 808. 
32 3.0000 11.0000 5.0000 310. 
33 5.0000 11.0000 5.0000 310. 
34 6.0000 11.0000 5.0000 308. 
35 6.5000 11.0000 5.0000 792. 

OPTIMAL SOLUTION 

ALPHA= 7.00000000 
PETA=11.0000000 
GP01MA= 5.0000000 
SUM OF SQRS= 	792. 
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COMPUTED FLOW MATRIX 

4 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 28 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 9 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 19 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 40 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 23 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 17 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 4 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 18 1 0 0 1 1 
0 0 1 3 0 0 0 0 0 3 0 0 0 0 
0 0 0 2 0 0 1 0 0 1 16 0 0 1 
0 0 0 1 1 1 1 0 1 2 1 22 2 I 
0 0 0 2 0 0 1 , 0 0 0 0 0 7 0 
0 0 0 1 0 0 1 0 0 0 0 0 0 13 

54 



APPENDIX A 

55 

Listing of Each Program 



A. ACCRE 
	

56 

PPO GRAM MAIN( INFI17,01.1TPUT,TAPE5=INPUT, TAPE6=OUTRI1T, 
*TAPE4 0, T APE41, TAPE42, TAPE43, TA PE44, TAT-E45, TAFE.-.51) 

DIMENSION IX( 18 00, 3), I CODE( 115), I TAM 115, 115) 
DIMENSION ?RED( 115, 115) 
DIMENSION I I CODE( 115), ILI ST( 115) 
}DIMENSION KKPOW 115) KKCOL( 115), LLRO ti( 115),LLCOL( 115) 
DIMENSION KINCOL( 115),LINCOL( 115), INCIDC 115,1.15) 
D1 MEN SION LINPO 4q( 115),KINROV( 115), INULL( PO) 
DATA I CO DE/ I s 2, 4, 5, 6, 7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18., 

*19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 3 6, 
*37,38, 39,40,41, 42, 43,44, 45, 4 6,47, 48, 49, 50, 52,53, 551, 
*552, 5 6, 57, 58, 59, 60, 61, 62, 63., 64, 65, 661, 662, 67, 68, 69, 
*70, 71, 72, 73, 74, 75, 761, 762, 771, 772, 78 1, 78 2, 79,8 0, 
*811,812,421,822,831,832,84,85, 44 61,8 62,4 71,872, 
*88,89,90,91,92,93,94,95,9 Et, 97,98,99,100, 201,202,203, 
*204, 205, 206, 207, 208, 209/ 

YZZ=TI ME( AAAAA) 	• 
I SF.ED=Y7..Z.*100000 
CALL RAN SET( I SEED) 
DO 5643 I =1, 115 

5 643 	I I CODE( I ) =1 CODE( I ) 
REWIND 40 

zA  1 

I PTY=1 15 
I S=0 

Prilq ND 42 
PEVIND 51 
PF. 1.,j ND 43 
REI,IINI.; 44 

ND 45 
?FAD( 40,*)KQP 
DO 56 JK1=1,KOP 
READ( 40, 7)( I X (.JK 1, M), M=1, 3) 
GO TO 56 

1 24 	FORMAT( 12H CRIME' TYPE=, I 2// ) 
123 VRITE( 6, 709)( IX(K,J),,1=1, 3) 

7 09 	FORMAT( 18X, 1 2, 7X, 14, 11X, I 4) 
7 	FOPMPT( I 2, 6X, ILL, 30X, 14) 
56 	CONTINUE' 

PFADC4I,*)KOP1 
DO 446 ,1K2= 1, KO P1 

71=41-C2+KAP 
?EAU( 41, 7)( IX( T1, M), M=1, 3) 

411 6 	CONTI NUFF 
READ( 112,*)K01,2 
DO !!4 7 .1K3= 1, KOF:'2 
I 72=I 714-fK3 
RF.AD( 42, 7) ( IX( I 72, !',)) ,M=1, 3) 

LI 47 	 NIP 

P F AD( LC-4, )'4.1)P 
!3) 448 .1K4=1,KOP 
173=1 T2+.1K1t 

FP r( 43, 7) (IX( I T3, M),M=I, 3) 
z1 -4 	(". ■, ) 	 ^I r 

pr;A.D( 1l/l, );(0 p 

DO 449 .1K 5=1, KO I-' 
T4=1T3+.FK5 

D EAD( 44, 7) ( IX( I T4, M),M= 1, 3) 



ii d9 	CONiTI 
P FPI-2( 45, ,4( )KOP 
D.") 4 4 0 	.(= 1, KO 
I T5=1 T4+JK 
PEPC( 	771)II'7 5, 1), IX( I T5, c) ), IX( 	3) 

7 71 	F-3 7 f‘,7A -r( 6X, I 2,14, 19X, I 4, 12X, 3X ) 
7 72 	FORMAT( I 2, 6X, I 4, 23X, I 4) 
4 50 	CONTI NILE 
5 684 DO 568 5 I =1, 115 
5 68 5 I CODE( I ) =1 I 00 DF( I ) 

KOP=I T5 
DO 777 JKL.= 1, 115 	- 
I FC I CODE(JKL) .LT. 220) I CO DE(,IKL. )=I CODE(JKL)* 10 

777 	CONTI NUF 
GO TO 13377 

1 3378 DO 40 1=1, 115 
KINP0 1,1( )=I CODE( I LI ST( I ) ) 
DO 40 KL=l, 115 
INC D( I ,KL)=0 

40 	ITARCI,KL)=0 
DO 	00 I = 1, 115 

8800 	I CODE( 1)=K INPC)1/1( I ) 
DO 1 I =1, KOP 
I COL=0 
I PO lAi= 0 
DO 5 K=1,115 
IFCIX(I, 2).NE.ICODE(K))GO TO 
I COL=K 
I FC IXCI, 3).NE.ICODE.(K)) GO TO 5 
I 	K 

5 	CONTI NUE 
I F( I COL • E0. 0.0P. I PO W. FO. 0) GO TO 1. 
I TAP( I POV, I COL ) =I TAP( I PO I COL )+ 1 

1 	CONTINUE 
ICSI5MK=0 
KKSUN1K=0 
GO TO 13379 

1 33 77 DO 13349 I=1, 115 
1 351 R=RANF( I SEED) 

M=I-1 
K=115*P+ 1 
I F( I . FO. 1) GO TO 1362 
DO 13350 L=1, NI 
I F(K. FO. ILI ST(L) ) GO TO 1351 

1 3350 	CONTINUE 
1 362 	ILI ST( I )=K 
1 3349 CONTI NUE 

GO TO 13378 
1 3379 DO 7216 1=1, 115 

READ( 51, *)N, INULLCK 	1, N ) 
DO 7217 L=1, N 

DO 7218 .1= 1, 115 
I FC I NUL L. (L).NE. ILI ST(d) ) 	TO 7218 
K01-<=.1 
DO 72 19 	 115 

I EC ILI ST( LLM) .N E. I) GO TO 7219 
INCI D(LL.N),Kwo = 

7219 	CONTINUEE 
7 218 	CONTINUE 
7217 	CONTINUE 
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721 6 CONTINUE 
T.:1R I TT: ( 6, >ic )( ICODE( I ), I -= 1 , 1 1 5 ) 
DO 678 I H= 1, 1 15 
KK CUNK=KK SUNK+ I TAB( I H, IH)  

DO 678 IT.1=1, 1 15 
KSUM1K=K SUMK-FI TAP( IH, IU) 

I RED( IH, I U)=I TAB( IH, IU) 
6 78 	CONTI NUE 

WRITE( 6, )K SUMK, K SIMI< 
I CI,JF- R.= 1 1 5 

C UR P= I CU RR— 1 
KMAX= 2 	• 

693 	DO 679 K= 1, I CURB. 
DO 679 L= 1, I CUF?.P 
IF(K.E0.L)GO TO 679 
IF( I RED(K,L).NE. 0.0P. I RID(L,K )•NE. 0) GO TO 679 
I DD= 0 
DO 4251 JHG= 1, I CUPP 
I F( I FED( L,,JHG). EO. 0) GO TO 4251 
I DD=I DE+ 1 

Li 251 	CONTINUE 
I F( I DD. GT. I PTY ) GO TO 679 
I FC INCI D( K, L) N E. 1 ) CO TO 679 
KK=K 

LL=L 
GO TO 69 4 

679 	CONTINUE 
GO TO 697 

694- 	I'PI TEC 6, 1 1 6) I CODE(LL), I CODE(KK) 
1 1 6 	FORMAT( 1H 	I4, 5H INTO, I 5) 

DO 68 0 MM= I, I CORR 
KKR° 4. C MM ) =I RED( KK, MM) 
KKCOI. ( MM ) =I RED( MM,KK) 
LLP.01.0( MM ) = I PED(LL,MM) 

MM)=INCI D(CK, MM) 
KINCOLCMM)=INCID(MM,KK) 
LINPOIA1(MM)=INCID(LL,MM) 
LINCOL(MM)=INCI DC MM,LL) 
LL COL ( MM)=I RED( MM,LL) 

680 	CONTINUE 
DO 1 3 149 MM=-1, I CURR 
I RED( KK, MM)=KKPOI.'( MM)  +LL POW( MN) 
INC I DC KK, MM)=.0 
IFEKINPOW(MM).E0. 1.0F. LINT-?0V(MM) E0. 1) INCI D(KK,MM)= 1 

INCID(MM,KK)=0 
I FCKINCOL(MM).E0. 1.0R.LINCOL(MM) .F(J. 1) INCI D(MM..KK)=1 

1 349 	I 1::ED( MM,KK ) =KKCOL(MM) +LLCM.. ( MM ) 
INCID(KK,KK)=0 
I PED( KK,KK )=KKRO .U(KK)+LLRO 	) 

CUP P=I CUP.R— 1 
DO 68 1 MM=LL.,,JCUF?R 
I CODE( MM) =1 CO DE( MM+ 1) 
DO 6.FS 1 J T= 1, I CURP 
I PED(MM,4T)=I PED(MM+ 1,,JT) 
INCIDCMM,,JT)=INCID(MM+1,JT) 

68 1 	CONTI NUE 
DO 668 1 VIM ,--- LL, JUMP 
DO 668 1 ,JT= 1, •JCUFR 
INGI DC , IT,MM)=INCI D(dT,MM+ 1) 

6 651 	I PED( 4T, 	) = I RED( JT, MM+ 1) 



1 99 	FOPMA 'I"( 18H REMOVED DI STRICT=, I 3, 5H INTO, I 3) 
I CHF-'9= I CUPP— 1 
I ZCUR R=I CURR— 1. 
GO TO 693 

697 	WPI TEC 6, 198) 
198 	FORMAT( 22.H FINAL REDUCED TAHLEAU/ / ) 

DO 942 MML= 1, I CURS. 
biRI TEC 6, * ) I RED( MML, LS) L S= I, I CURR) 

9 42 	CONTI NUE 
2 	CONTINUE 

I SEED= 1 0000.000*PAN F( I SEED) 
REWIND 51 
I 5=I 5+ 1 
CALL RAN SET( I SEED) 
I F( I S. NE. 25) GO TO 5(x;4 
STO P 
END 
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B. AGGFLO 

PPO“FiAM MAIN( INPUT, OUTPUT, TPPE5=INPUT, TAPE6=OUTEUT, TAPE40, 	60 

*TAPC.41, TAPE42,TAPE4:3, TAPE44,TAPE45) • 
DI MEN SI OiN,; I 1( 13) , I2( ), 3( 5), I4( 11), I 5( 13), I 6( 15), I 7( 5), 

*I8(8), I9( 10),II0(4),I11( 7),I12(8),I 13( 4),I14(4), 
*IX( 1800, 3), I FLOilj( 14, 14) 

DATA I 1/88 0,89 0,9 00,910,9 20,930,940,9 50,9 60,9 70,98 0, 
*990, 1000/ 

DATA 12/8 21,822,831,8 50,8 61,8 62, 8 71,8 72/ 
DATA 13/ 771, 772, 78 1, 782, 79 0/ 
DATA I4/400,410, 600, 610, 620, 762,8 00,8 11,8 12,8 32,84 0/ 

• DATA I 5/ 570, 580, 630, 650, 661, 662, 670, 700, 720, 730, 740, 750, 
*761/ 

DATA I6/160, 300, 310, 320, 500, 520, 530, 552, 640, 68 0, 69 0, 
*710, 2020, 2030, 2040/ 

DATA I 7/ 2050,.2060,   2070, 2080, 2090/ 
DATA I8/ 10, 20,40, 50, 130, 140, 150, 2010/ 
DATA 19/60, 70,8 0,9 0, 100, 110, 120, 19 0, 230, 250/ 
DATA I 10/240, 390, 420, 590/ 
np•rp, 	ii/ 3 70, 430, 4,4 0, 4 50, 4 60, 551, 560/ 

DATA I 12/29 0, 330, 350, 360, 38 0, 4 70, 48 0, 49 (V 
DATA I 13/170, 18 0, 2 70, 28 0/ 
DATA I 14/ 200, 210, 220, 260/ 
PE ND 46 
RETAIND 41 
RE VI ND 42 
REWI ND 43 
R -"T,o;I ND 44 
PEA D( 6, * ) I BULL 
PE' IND 45 

7 	FOFMAT( 8X, I 4, E.,x, 12, 22X, I 4 ) 
DO 19 1=1, 14 
DO 19 4=1, 14 

I 9 	I FLr_M''( Ist.1)=0 
KOP=1 
READ( 40,*)KOPEK 
DO 56 ,..TK 1= 1,KOPEK 
READ( 40, 7) ( I)<(KOP, ), M= I, 3) 
I F( I X ( KO P, 2). EP., I FULL) GO TO 56 
KOP=K0P+ 1 

56 	CONTINUE 
IT1=K0P+1 
READ( 41,*)KOP1 
DO 446 JK2=1,KOP1 
READ(41, 7)( 	ITI,M),M=1, 3) 
I BC IX( I T1, 2) • EO• I PULL) CO TO 446 
I T1=I T 1+1 

446 	CONTINUE 
I T2=I 71+1 

FAD( 42, k )K0 P2 
DO 447 JK:3=1,KOP2 
READ( 42, 7) ( IX ( I T2, t,1) M= 1, 3) 
I E( IX( I 72, 2) • vO• I FULL) GO TO 447 
I TP=I T2+1 

4 4 7 	. CCY\1TI NUE 
I T3=I 72+1 
PEPE( 43,*)Kovr; 

DO 448 •1K4= 1,K01--,  
READ( 43, 7) ( IX( IT3,M),M=1, 3) 
I F( I `.\"( 173, '2). EO• I HULL.) GO TO 448 
I T3=1.T3+1 

4 48 	CONTINUE 



7 71 	FORMAT( HX, 14, 19X, 14, 12X, 12) 
I 74=I 73+1 

EC! D( 44,*)KOP 

DO 449 ,JK5=-1,K0F 
PEA D( 44, 7) ( IX( IT4,N1),M=1, 3) 
I FE I X ( 	2) . E0. I BULL) GO TO 449 
IT4=I T4+ 1 

449 CONTINUE 
I T5=I T4+1 
READ( 45, *)KOP 
DO 450 JK6=1,KOP 
PEAD(45, 771)IX(IT5, 1), IX(IT5, 3), IX(IT5, 2) 
IF( IX( I 75, 2). E0. I BULL) GO TO 450 
I T5=I T5+1 

4 50 	CONTI NUE 
K=1 
DO 1 I = 1, I T5 
IF( IX( I, 1). E0. 0.0P. IX( I, 3). E0. 0) GO TO • 1 
IF( IX(I, 3).E0.9999.0P. IX( I, 1).E0.9999) GO TO 1 

1 02 	DO 2 J=1, 13 
I FEIX( I,K).NE.I 1(.1)) GO TO 2 

Vi= 1 
GO TO 100 

2 	CONTI N117 
DO 3 ,1= 1,8 
I F( I X ( I , ) 	E. IP ( ) ) GO TO 3 
IRO To= 2 
GO TO 100 

3 	CONTI 
DO 4 ,.1=1, 5 
IF( IX( I, K ) .NE. 13(4 ) ) GO TO 4 
I PO V=3 
GO TO 100 
CONTINUE 
DO 5 J=1, 11 
IF(IX(I,K).NE.I4(J))G0 TO 5 
I PO b.= 4 	- 

G0 TO 100 
5 	CONTINUE 

DO 6 t.1= I, 13 
I F( IX( I, K ) .NE. I 5(4 ) ) GO TO 6 
I PO V= 5 
GO TO 100 
CONTI N LIE 
DO 8 ,J=1, 15 
I FE IX( 	 6(d) ) GO TO 
I PO Id= 6 
GO TO 100 
CONTI 

DO 9 ,1=1., 5 
1F(IX(I,K).NE.I 7(d))G0 TO 9 
I POI■j= 7 
GO TO 100 

9 	CONTI NuF 
DO 10 pi= 1, 8 
I FE IX( I.,K).NE. P“,J) ) GO TO 10 
I PO v=8 
GO TO 100 

1 0 	CONTINUE 
DO 11 .1=1, 10 
I FE IX( I,K).NE. I9(J))03 TO 11 
IF() (,;= 9 

GO Ti) 100 



1 	1 

1 2 

CONTI NUE 
GO 	12 J =1, 4 
IF( IX( I,I.K).NE. I IC.(.J ).) GO 
IR04i=10 
GO TO 	100 
CONTI NUE 

TO 

DO 	'13 	,J= 1, 7 
I F( 	I,K).NE.I11(,J) ) GO TO 13 
I PO to= I 1 
GO TO 	100 

1 3 CONTINUE 
DO 	14 4=1,8 
I F(IX(I,K).NE. I 12(J)) G0 TO 14 
IRO TAT= 12 
GO TO 	100 

1 	4 	• CONTI NUE 
DO 	15 J=1,4 
IF"( IX( I,K).NE. I 13(J) ) GO TO 15 
I RO V= 13 
GO TO 	100 

1 5 CONTINUE 
DO 	16 ,J= 1, 4 
I F( IX( I,K) . N F. I 14( 	) ) GO TO 16 
I PO V= 14 
GO TO 	100 

1 6 CONTINUE 
TE( 6, DK )(IX( 	NI) JM= I) 3) 

K=1 
GO TO 1 

1 00 	I F( K EP. 3) GO TO 101 
K=3 
I I RO V= I RO 
GO TO 102 

1 01 	I I COL=I 90 
I FLO Ik, ( I I P.0 bf, I I COL ) = I FLO!../( I I R01,, , I I COL ) 1 
K=1 
CONTINUE 
1.M I TE( 6, 29 ) ( ( FLO V( ,,T ), J=1, 14), I =1, 14) 

2 9 	FOPMAT( 1414) 
'1•0P 

END 
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C • LINEAR 

GIL. AM MAIN( INPUT, OUTPUT, TAPE5= I NPUT, TAT-)E6=OUTPUT, 
*TAPE28,TAPE29 ) 

DI MEN SION PARAM( 3), ASUM( 500), DID( 20), EE( 50), FF(20., 20), 
*CT( 20, 50), CP( 20), R( 50)., 1,03 ( 20, 50), COST( 20, 20) 

DIMENSION I GEZ( 14, 14) 
INTEGER COST, CP, R, 

-DOUBLE PRECISION CT 
EEPS=-50. 
1.+IP. I TE ( 6, 501) 

501 	FORMAT( 16H ENTER I MAXT,M,N ) 
4 13 	READ( 5,*)IMAXT,m,N1 

WRITE( 6, 502) 
502 	FORMAT( 29H ENTER ALPHA, BETA, GAMMA, DELTA.) 

READ( 5,*)( PARAM( I ), I =1,3), ADELTA 
TAP I T E( 6, 503 ) 

5 03 	FORMAT( 361-1 ENTER IN DEX, I FLAG, I SEARC, K FL A G, DEFS) 
READ( 5,*) INDEX, I FLP.G, I SEARC, K FLAG, DEPS 
DELTA=ADELTA 
I FiN=0 
KINDEX=INDEX 
AMI N=9999999999999. 
EPS =10 
AAAP=P-APAM( 1) 
WRI TE( 6,9333) 

9 333 	FORMAT( 10H ITERATION, 10H 	ALPH A, 1 OH 	BETA, 
*10H 	GAMMA, 15H 	SUM OF SOPS/ ) 

FIBBB=PARAM( 2) 
CCCC=PARAM( 3) 
I TER=1 

9 8 	PAA=PARAMC 1) 
BBB=P ARAM ( 2) 
CCC=PARAM( 3) 

99 P.A=PARPM( 1) 
BB=PARAM( 2) 
CC=PARAM( 3) 
PEVIND 28 
PET 1 I N D 29 
I TI ME=1 
SUM= O. 

1 03 	BEAD( 28,*)( CP( I ) I =1,N) 
READ( 28,*) ( R(J),,J= 1,M) 
READ( 28,*) ( (COST( I 	),J= 1, N) 1=1, i`d) 
READ( 29,*) ( DD( I ), I =1,N) 
READ( 29,*) ( EEC,' ),J= 1, II) 
PFAD( 29,4c) ( ( FF( I,J ),J=1,N), I =1, VI) 

481 	DO 10011 I =1,N 	. 	 • 
DO 10011 .1= 1, 	• 
BOK I=PA*( EE(•1)-EE( I ) ) 

HOT; 2= -A,H*1--- F( I 	)**2 
HOF< 3=CC*( EF(0 )-EF7( I ))*FF(1,.J)**2 
FEEP5= 63 
I F( FOK. 1. GE. EEEPS.OR. HOK2. GE. EFEPS.OR. HOK3. GE.EEEPS) 	• 

*GO TO 443 
I F( HOK 1.LE. EEPS.OH. BOK2. 1-E. EEPS.0 	1jOK2.LE. EEPS) 

• * GO TO 
GO TO 44 • 

443 	CIT( I ,,J)= 1. F+12 
C • 	I F( COST( 1,4). EQ. 0) CT( I,J)=1.E+ 10 

GO TO 10011 

63 



4 45 	CT( I 	) =O. 
I Fl HOK I. GT. EEPS) CT( I,J)=EXPC EOK 1) 
I F( PM< 2. GT. EEPS) CT( 	) =CT( I ,,J)+Exp( bOK2) 
I El /-tWl.3. GT. EEPS)CT( 	,..1)=C7( I 	) +EX1:-1 HOK 3) 
I Fl CT( 	 ) . 	1. E+ 12) CT( 1,4 ) = 1.E+ 12  
KE 1A'=C7(  
CT( I., ) 

Fl COST(I,J). EQ. 0) CTC I'd )7--  I. E+ 10 
GO TO 10011 .  

446 	C7( I ,,J)=-EXP( A.A*1 EE:(,J)-EE( I ) ) ) + EXP( E4:* FFC I,J)**2) 
*:+E ,(P<CC*(EE(J)-EF(I ))*F - F( I,J)>(2) 

I F/ CT(' I 	) GE. 1. E.+ 12) CT( I 	=l• E.+ 12 
1,<EY1)=C7( I ,,J) 
CT( 1.4 ) =K E 1,01) 

C 	I FCCOST1 	 0)C7( Is,J)=1. E+ 10 
1 0011 CONTINUE 
4 89 	I El I FN E0. 1) GO TO 407 
1 111 	CONTINUE 
49 	CONTINUE 

CALL A001-i( CT, CP, P-,M,N,1 ■1P) 
DO 2 I = N 
1.-)C) 2 J= I 

C 	I F1 CO F.; 7 ( I 	) P.). 0) GO TO 2 
cUM-= SUM+ ( WPC I 	) - CO S71 I 	)** 2 

2 	CON 7. INVE 
I TIME=I TIME+ 1 
I Fl I TI ME. L. E. I NiAXT ) 	TO 103 
ASI.TM( I TEP) =SUM 

	

FI TE ( 6, 9 33)1 TEP, (-PAFiAill I 	1=1, 3), SUM 
9 33 	FO E MAT(I 10, 3F10. 4, E IS. 0) 
73 	FOPMPT( 15-f SUM 0 F 	OU AP E=... F 1 6. 7) 

I Fl A EL , Ni( I 7 EP) . 	AM I M )130 TO 104 
I Fl DEL 7A.. LF. I%FPS-) GO TO 744 
I F(KEL G.NE. 2)00 TO 730 

745 	I Eli FLAG. E0. 2 ) 	70 731 
DELTA=DEI,TA/ 2. 
PP‘Po-)1( KINDEX)=PAPPM( I MUD( ) -DELTA 
I FL A C=1 I 
I TER=I TEP+ I 

F A G= 1 
GO TO 99 

731 	DELTA=WELTA/2. 
FAPAM1 K 	=P.nFAM(K I N LEX)+DELTA 
I TEP=I 7E8+1 
I FLAG= 2 
KFLAG= I 
GO TO 99 

730 KFL.AG= I 
CO To 7748 

744. 	I Fl I F. F.APC. E0. 1) GO TO 1288 
K INDEX 	I N DEX + 1 
FAF'AM( 7,<INDEX- 1 )=PAAA 
I Fl W I M DEX - 1) . El). 2) P'.P.PAM ( K I N DEX- I) =1-EHbH 
I FC C INDEX-1). E(.). 3) PPPAM(KINDEX- I )=CCCC 
I ECK I N 	EP. ) CC) TO 4444 
I SEAPC= I 
DEL 7A=P DELTA 
K FL A (3= 2 
I NDEX =K.  INDEX  
I TER= I TEP+ I 
I FLAG= 1 
PAPAM(KINDEX ) =PAPAM (KIN DE); )+1)ELTA 
GO TO 99 



65 77L 	SE. APO. 	2) GO TO 7745 
GO TO 745 

7 745 	CONTINUE 
DELTP=DELTP/ 2. 
PPPAM( KIN DEX ) =PAPAM( KI N DEX )+ DELTA 
I 7 ER= I 7 E P.+ 1 
I FLA G= 2 
K FL P 0= 1 
GO TO 99 

1 04 	PM! 	Slim( TER) 
I F( K INDEX. FO. 1) GO TO 8 768 
I F(K INDEX • En. 2) GO TO 88 68 
CGCC=PAPANI( K INDEX ) 
GO. TO 88 69 

8 768 .A.AAA=P.P.F AM( K INDEX ) 
GO TO 88 69 

88 68 	13P13P=PAPP.M( KIN DT-17 ) 
8869 	CONTI NUE 

I SEP_PC= 1 
DELTA=ADELTA 
ITEP= I TFP+ 1 
PAPAW K INDEX )=PAPPM( I.< INDEX )+ DELTA 
I FL G= 1 
KFL 0=2 
GO TO 99 

1 2B.ri 	I F(K FL. AG. E0. 1. AN D. I FLAG. EP. 1 ) GO TO 1 2B9 
I F( K I N EX. . En. 2 ) GO TO 1291  
I F(r< I NDEX. E,g). 1) GO TO 1290 
PAPAW K I N DEX )=CCCC 
GO TO 1292  

1 290 PAPPN ( K DEX ) =PAPP 
GO TO 1292 

1 29 1 	PPRPM( K INDEX )=F.'.HE.3F' 
1 292 	DELTA=PDELTA 

PAPS:M(I:INDEX ) =PAPAW K INDEX )+DELTR 
K FL P G=2 
I FLAG= 1 
I TER= I TEF+ 1 
I SEPPC=2 
GO TO 99 

1 289 I F(K INDEX. FO. 1 ) GO TO 1294 
I F(K I NCEX. E0. 2) GO TO 1295 
PAPAN1( K I N DEX ) =CCCC 
GO TO 129 6 

1 294 PAPPM(KINDEK)=PAPP 
GO TO 129 6 

1 295 PAPAW 	DEx)=BEBp 

1296  DELTA=ADELTA 
FAR PM K I !\3 5EX" = FicP AM (KIND EX ) — D FL. TA 
KFLAG=2  
I FL P O= 2 
ITER=ITEP+I  

SEP.PC=2 
GO TO 99 

7/!f7. 	PpPArl(Mr,,ir"Ex)=-.PAPANI(KINDEX)-12ELTA 
I FLPG=2  
KFLA 0= 2 
I 
GO TO 99 



5 555 INDEX= I 
DELTA=ADELTA 

AAA=PARAM(1) 

F PPP AM ( ) 

CCC=PAFAM( 3) 
PAPAM( 1 ) =PAPAM( 1) +1DEL:TP 

K INDEX= I 

I TEF=I TF7+ 1 

I FLAG= 1 

IK FLA G=2 

I SEAPC= 1 

GO TO 99 

4 444 CONTI N T.1E 
I F. ( ABS( PAPAM( 1 ) —AAA). GT.. 000001 ) GO TO 5555 

I F( ABS( PAPAM ( 2) — BRA) . GT.. 000001) GO TO 5555 

I F( ARS( PPPAM( 3)- GCC) . GT.. 000001 ) GO TO 5555 

3 333 	CONTINUE 
5 5 	FOPMAT( 4H END) 
4 04 	FORMAT( 1414) 

402 	FORMAT( 10X, 18H AC_,T AI— FLOGS MP TRI / ) 

AA=A AP 

PH=P PR 
CC=C CC 

UPI TE ( 6, 401 ) AAA, E47.1=i, GC,C, AMIN 

401 	FORMAT( 10X, I 6H0 PT 'MAL SOLUTION/7H ALPHA=, F1. O. 7/ 

'I< 6H HET A=, FI O. 7/ 7H GAMMP=, F10. 7/ 12H SUM OF SPR=, F 10.-0/f) 

YRI TE( 6, 406) 
14 06 	FoPmA•r( 1 ox, 1 1HCO ST MATRIX/ ) 

F N F.; 28 

R TA NI. 29 

PEA D( re? 	) ( CP( I ) I=IAN) 
READ( 28, * ) ( 	),,J= 1 , N ) 
READ( 29, ) ( DD( I ) I = I , M ) 

READ( 29,*)( FEC,J ),,J= I, NI) 

P.EAN 29,*)( (FF( I,<J),,J=1,M),I=1,N) 

I FN= I 

GO TO 481 

• 407 	CONTINUE 
DO 409 I= I, N 
GIP.I TEC 	* )C CT( I 	) 	= 1 .1 M 

409 	CONTINUE 

CALL A001-(( CT, CP, R, M, N, 

LI 00 	FORMAT( 14E4. 0) 

GRI TE 6, 403) 

4 03 	FORMAT(/ 	 POHCOMPUTED FLOG! MATRIX/) 
TE ( 6, 404) ( ( 11.iP( I ,<_1' ),J= 1,N), I=1,N) 

I FN=0 

ITE( 6, 51 0) 

510  FO RMPT( 33H DO YOU TATANT A NEW FUN 1 YES, 0 NO) 

D( 5, )`TOPER 

I F ( 1.10 	E . 0 ) GO TO 4 1 3 

S .7)F 

F, UH7-'.OUT I N E AOOK ( CT, CP, P, MMH, 	1.4!P) 

DIMENSION 	20, 50),CP( 2C), P( 5 ,.), VP( 20, 5D) 

COMMON /P./ I 0( 320) , 10( 320), I PC 320), I PC 320), I G(.1000) 

1,11) 14 (320) 

DIMENSION LX( 25920), I AL( 320) , I 	320) 171,( 320) ITF-'( 320) 

DIM EN SI Or LP( 320) 
I NTEGFP CP, P., T.,7p 

UOURLE - FPFCI SION CT 

PEAL I C, I P, MCN, I CB., I PD, JEFF' 

M Es I G----9-999999999 



ND=NNN 
NS=MNIM 
N=NS*ND 
Nipp=N+,\IS 
NO=N+ 1 
N00=N+NS+ND 
NP=NS+ND 
NT=NE4+ 1 
DO 600 I = 1,N00 

600 LX( I ) =0 
DO 731 I=1,NS 

731 Lx(v+ )=cp( ) 
DO 732 I= 1,N13 

732 LX( NPP+ I )=R( I ) 
DO 733 I=NT,N00 

733 IC(I )=0. 
DO 4526 I=1.,N5 	 _- 
DO 4527 J=1,ND 

i527 I C( ( I - 1 )*N D+ti ) = CT( I'd) 
4526 CONTINUE 

K=0 
DO 3 I=1,NE 
I DP( I )=N+I 
I D( I ) =0 
11)(1 ) =0 

3 IP( I ) =0 
DO 4 /=1,NS 
K=N+ 1 

4 IP( I )=IC(K) 
DO 5 I =1,ND 
K=N PP+ I 
J=I +NS 

5 IP(J)=-IC(K) 
I TER=0 
K=0 
I FSG=1 

500 I F(K. FO.NS) K=0 
I F1=0 
DO 504 KC=1,NS 
K=K+ 1 
I Pi LX ( N+K ) F_O. 0) GO TO 505 
J=(K-1)*ND 
DO 501 L=1,ND 
,1=J+ 1 
I F(LX(NPP+L). FO. 0) GO TO 501 
I EC I F I. En. i) GO TO 502 

506 MeN=I C(J) 
I F1=1 
L ST=1., 
JST=.1 
GO TO 501 

50'-; I F( I CC,I) • GE. CN ) GO TO 501 
GO TO 506 

501 CONTI NUE.7  

F( I F 1. E. O. 0) GO TO 507 
GO TO 503 

505 IF(K• En•NS) K=0 
5rtzt CONTINUE 
507 I FSG=2 

K=N S 
GO TO 22 

503 L=LST+NS 
,J=.1 ST 
GO TO 55  

22 IFIK.F(J.N.S.) K=0 
J=N b*K 
I F1=0 

67 
TFP=T_ TF7-4+ 

DO 190 KC= 1,N S. 
K=K+ 1 
DO 191 I= I,ND 
L =NS+ I 
,J=.1+ 1 
ICE=IC(J)-IP(K)+IP(L) 
I F( I CB. GE. 0) GO TO 19 1 
I F( I F 1 . EP. 1) (30 TO 	192 

193 MCN=I CB 
I F1=1 
1.-ST=L 
JST=d 
GO TO 19. 1 

192 I Fl I CE-i.LT.NICN) GO TO 193 
191 CONTINUE 

I FC I F I .F.P. 1) GO TO 194 
I F(K.LT.MS) (=O TO 190 
K=C: 
.1=0 

190  CONTINUE 
K=N 5 
00 195 I= 1, N 5 
t1=N+I 
I CB=I C(.1)-IT-3( I ) 
I F( I CB. GE.. 0) GO TO 19 5 
K0=I 
GO TO 60 

195 CONTINUE 
GO TO 34 

194 1.,=LST 
,J=.1ST 

55 .  CONTINUE 
1=0 
KX=K 

7 I =I +1 
I TL ( I ) =KX 
KX=I D(KX) 
I F(KX.NE. 0) GO TO 7 
KX=1, 
M=0 
M=M+ 1 
I TP C M )=KX 
KX=I 00(X) 
I E(KX.I\IE. 0) GO TO g 
I FP=M. BIG 
1 F( 	( I ).E0. I TR(r4) ) GO TO 9 
1=0 
KX=K 
I B:=-- I 

10 (Y=KX 
KX=I LCICX ) 

B 
1=1+1 
I F(K.K. E0. 0) GO TO I I 
.ftl=I DACKY) 
I(-C I )=.IM 
I F( I P.LT• 0) GO TO 

n7=1,.X(JNO 



I F(1 DT. (T. ! FP) GO TO 10 
I FP=I PT 
I F4-= 1 
KCN=1-;Y: 
LV=.1M 
( - C) TO 10 

Ii I AL( I )=N+KY 
I F- c KY. 	S ) GO. TO 12 
I DT=I,X(M+KY) 
I F ( I IT. GT. I EP) GO Ti) 12 
I FP=TDT 

I FG=2, 
12 M=0 

I 1:1=-1 
13 KY=KX 

KX= I ( KY) 
I I-=-- I I- 
Ni=m+ 
I F( ("„ 	) (10 	:) 	zi 
.Jr17.-- I DA( Kv ) 
I AP( ) 
I F( I H. T. CI) GO TO 17 

I F.:T=1,X ( •IN1) 
I F(ITYr. (.27. I FP) (40 Ti') 13 
T P=I DT 

14 

F6=3 

LV=JM 
GO 	TO 	13 
I ARC 	)=N+KY 
I F(KY. 	E. N :-•) 	GO 	TO 	16 
I DT=LXC N+KY) 
I F( I DT• GT. I EP) 	GO TO 	16 
I EP= I DT 
KCN=KY 
LV=N+ KY 
I FG=4 

16 LX(J)=LX(J)+IEF 
I B=1 
DO 	17 	I G=1, I 
I B=- I H 
JB=I ALC I G) 

17 LX(4B)=LX. (JB)+IEP*IB 
IB=1 
DO 	18 	I G=1, M 
I B=- I B 
.JB=I ARC I Ci) 

1< 1_,X(JR)=LX(413)+ I E P* I B 
T=J 

I F( I FG. E0. 1.0F?. I FG. E0. 2) GO TO 19 
I F( I FG. En. 3.0P. I FG. EC.). 4) GO TO 20 

19 CALI, 	GRFT( I TR C 1 	I TLC 1 ) KCN1, KYZ ,JT) 
I Ivr= I TL 	1) 
IZ=I TR( 1) 
I FC I FG. EC). 1) 	GO 	TO 	21 
I F( I • EO. 1) 	GO 	TO 	21 
JX=KCN 
.1Y=I TL ( I -1) 
KU=I U(JY) 



I D(JX) =JY 
I DA (tiX )=JT 
I Li(JY )=.1X 
IP(dX)=KU 
GO TO 21 

IPR(M)=JM 
I F(I H.LT. 0) CI TO 26 	69  

• ILT=LX(JM ) 

IF( I DT. GT.I FF' ) (Al TO 26 
I I.7 P=I DT 

20 CALL GPFT( I TL( 1). I TP( 1 ) ,KCM,KYZ ...J7) 	I EG=2 
IM=ITR( 1) 
IZ=ITL( 1) 
I F( I FG. E0. 3) GO TO 21 
I F( M. EP.. 1) GO TO 21 
JX=KCN1 
t.IY=I TR( VI+ 1) 
KU=I U( 'Pt') 
I D(JX)=JY 
I DA(.1)()=,JT 
I LICJY)=,1X 
I R(t1X) =KU 

21 IF( IM.GT.NS) GO TO 80 
IPD=+I P(IM)+IC(J)+IP(I?,) 
GO TO 81 

80 IPE)=-I P( IM)+IP( IZ)-I 0(d) 
81 IP( IM)=IP(IM)+IPD 

CALL P1 1--,'T( 	I PD) 
I F( I FS G. E(. 1) GO TO 500 
IF( I FSG• F0.2) GO TO 22 

9 I 1=1 
m1=M 

23 11=11-i 
m1=m1- 1 
IF(Il.E1).0.0R.M1.F0.0) GO TO 40 
I F( I TL ( I 1) . E0. I TR( M 1 ) ) GO TO 23 

40 KJN=I TL( I 1+1) 
1=0 
KX=K 

• I B=- 1 
IF( I D(KX ) FO. 0) GO TO 25 

24 KY=KX 
KX= I D(KY) 
I B=+1B 
I F(KY. EP.KJN ) GO TO 25 
I=I +1 
JM=I DA(KY) 
I AL( I )=JM 
I F( I B.LT. 0) GO TO 24 
I DT=LX(JM) 
I F( I DT. GT. I EP) GO TO 24 
I EP=I DT 
I FG=1 
K0N=KX 
LU=Jfil 
GO TO 24 

25 M=0 
KX=1 
I8=-1 
IF(I D(KX).ED'. 0) GO TO 27 
KY=K 
KX= I D( KY ) 
18=-1 

F(KY. EO.K,JM ) GO TO 27 
M=M+ 1 
,1M=I DA( KY)  

KCM=KX 
1, 1 )=<JM 
00 TO 26 

27 LX(,J )=LX(.1)+ FP 
IB=1 
I F( 1. EP. 0) GO TO 42 
DO 28 I G=1, I 
I 8=-- B 
d 8=1 AL( 1. 0) 

28 LX(41--.0 =LX(4H)+ T EP *I 
42 I8=1 

I F(M. EQ. 0) 00 0 43 
0() 29 	0=1: 
I 8=-I FS 
•JF:3=I AR( I G) 

29 LX(,,T1-.1i)=LX(.Th)÷ I 
43 .3 T=,/ 

I ( I FG. E(;'. 1 ) CI) TO 31 
I F( I FG. FP. 2) (4' 70 32 

31 CALL GRFIC IT7( I), 'TLC 1 ) ::(CM, KY? 
I M= 'FL ( 1 ) 
IZ=ITP( 1) 
GO 70 33 

32 CALL GRFT( I 71.( ),ET1-1( 1 ) 	KYZ 
IM=ITR( 1) 
IZ=ITL( 1) 

33 I F( I M. GT.NS) GO Ti 82 
IPD=-IP( IM)+IC(j)+rp( 17 ) 
GO TO 83 

82 I PD=-- I PC 	)- I CC )4-11P( I?. 
83 IP( IM)=IP( IM)+I PD 

CALL PI R.T( I NI, r pD) 
I F( I FS G. FO. I ) GO TO 500 
I F( I FS G. F0. 2) GO TO 22 

60 1=0 
I FP=N1 I 0 
KX=K 
IB=- 1 

61 I =I +1 
KY=KX 
I TL ( I ) =KY 
KX=I D(KX ) 
18=-1 
I F( XX • En. 0) GO TI) (2 
,1C,I= I DA( KY ) 
I AL ( I ) =LiM 
I F(I P.LT. ()) -;1 .) TO 6! 
I DT=LX ( t1M) 
I F(` I DT. GT. I1.1: 1 ) 	:*() 
I FP= I OT 
I FG= 1 
KCN=KX 
Lli=d tvl 
00 TO 61 



62 I AL C I ) =- N -1-KY 
I F( 	N 5) GO TO 63 

	
70 

I DT=LY CN+KY ) 
• I F( I DT. GT. I EP) GO TO 63 
I EP=I DT 
KCM=KY 
LV=N+KY 
I FG=2 

63 LX(J)=LX(J)+IEp 
I Fi= 1 
DO 64 L= 1, I 
1E1=-1 B 
I G=I ALCL) 

64 LXCI G)=LXCIG)+IEP*IB 
KX=K 
KD=I D(KX) 
KDA=I DAC KX ) 
I DA(KX)=N+KX 
ID(KX)= 0 
KR=I P(KX) 
IP( KX ) 0 
I Ft I I.J( KID) . EC). KX (40 TO 65 
K b= I U(Ki))  

67 I FC I PCKT-7) EO.KX) 00 TO 66 
KE=I RCKR) 
GO TO 67 

65 I UCKD)=KR. 
GO TO 611 

66 I PC KE‘) =i-CP 
EC1 JT=KDA 

I F<KCN. Efl.KI)) GO TO 70 
CALL GRFTCKX,Ka, KCN, KYZ,JT) 

70 I M=KX 
I PD=- I PC I ) + I CC ti ) 
IP( IM)=IP( IM)+IPD 
I F( I FO. El). 1) GO TO 69 
JX=K ON 
JY= I TLC I- I ) 
KU= I UC 	) 
I DCJX) 
I DACOX)=JT -
I LI(JY) =JX 
I R(JX) =KU 

69 CALL PI RTC IM, I PD) 
F( I FS G. E0. 1) GO TO 500 

I F.< I FSG• EO. 2) GO TO 22 
34 CONTINUE 

J EFF= 0 
IX) 150 I= I,NO(,) 

15) ,1 	F=,J EF F+1,X ( )*IC( I ) 
DO 734 I= 1,NS 
DO 735 .3= I.,ND 

735 T...1 P( I ,,I)=LX((I-1)*ND+J) 
73/-1 CONTINUE 

RETURN 
END 
STIPP.° UTINE GRFT(N, I S,NC, K,JT) 
COMMON /A/ I D( 320), lilt 320), I RC 320), I FC 320), I CC 1000) 

	
N D 

1, I DP( 320) 
REAL I G.1 IP, MON, 1 CE4, Pll, EFF 
K=1 



L=N 
M=I S 
M I P ( m ) 
LU=IU(L) 
KD=I D(m) 
KDA=I DA( m ) 
I DA (iv)) =,JT 
I D(M) =L 
IU(L)=M 
I F(m)=Lu 
I E( M. EO.NC) GO TO 7 

I L=M 
M=KD 

F( M. En. 0) GO TO 7 
I E( I U( 	EO.L) 00 TO 2 
M.Z=I U( m) 

3 I F( I R(m?,) • E0. L.) GO TO 4 
M7 =IE-, (MZ) 
GO TO 3 

2 / M) =MR 
GO TO 5 

4 I RCM?. 
5 I E(M. EO.NC) GO TO 7 

MR=I P.( m ) 
KD=I D(t.4) 
cIT=I DA(M) M ) 
I DA C =KDA 
KDA=t1T 

• I D(M)=L 
IZ=IU(L) 
I !JCL) =m 
I P(M)=IZ 
K=K+ 1 
GO TO I 

7 JT=K DA 
RETURN 
END 
SUBROUTINE PI RT( Is I PD) 
COMMON /A/ It( 320)0 I I1( 320), I FC 320), I PC 320), I CC 1000) 	NS,ND 

1, I DA( 320) 
REAL 	I C, I PIMCN, I CR, I PD,ti EFF - 
J=I 

F( I TY 	) 	FC). 0) 	GO TO I 
2 L=I U(..1) 

10 IR(L)=IP(L)+IPD 
4 I F(I1J(L).E0.0) 	GO TO 7 

.J=L 
GO TO 	2 

7 I F( IP(L).EO.C;) 	(30 TO 8 

GO 	TO 	10 
8 I F(.j. E0.I) 	GO 	TO 

I Iv( I P(..1. ) • 	0) 	(=O TO 9 
1.=1 R(J) 
,J=I D(• ) 
GO TO 10 
..1=1 ) 
GO TO 8 

1 RETURN 
END .  
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D. NONL IN 

PRO ( , PAM 1.!AIN(INPUT,OUTPUT,TAPE5=INPUT,TAFE6=OUTPUT, 

.47APE28,TAPE2Q) 
DIMENSION T-.)PAM(3),ASPM(500),LL(30),EE(50),FE(30,30), 

*CT(30,30),CP(30),P(50),P(30,30),COST(30,30) 

DIMENSION U(30,30) 

INTEGER CT,T1,00ST,0P,R, 

4 13 	GOWN ‘NpiE 

tr^ I "FE 	500 ) 

S on 	FOP 1'.1AT( 30q ENTER IMAX',MZM,M,N,Kt,'RI,LMKO )  

PFAD( 5, ) I MAXT, MZM, 

7,dPI 'TT( 6, 501) 

5 01 	FORMAT( 2'014 ENTER ALPHA, BETA, GWilMA, DELTA) 

PEAL:( 5,*) ( PAPAW I ), I = 1, 3), ADELTA 

IPP TE ( 6, 502) 
502 	I-C19MAT( 3H-i ENTER INDEX, I FDA G, I 5EARC, KELP G, DEPS) 

PEAD( 5, *) 	CEX, I FLAG, I SEPPC,K1-1.PG, DEPS 

DELTA=ADELTA 

I Fr 1=0 

I 'NI 17 ,  Fi = r\IDFX 

AMIN=W-1)0 0 Q 0 Q9900 0 0. 

FPS= 1 0 

AAAA=PAEAm( 1) 

TF:( 6, Q 333) 
313 	FORMAT( t O1 I TEPATI ON, 10T-I 	AL PH A, 10+1 	F-1 ET A, 

=k 101-E 	 f•'1 	15H 	SUM OF 	C-1 7;;/) 
H H=F 	( 2)  
17CGC=I) 4E' w. ,1( 3) 

I TEP.=1 
ysz 	APP=PPRPm(1) 

HHP.=PAPPm(c?) 

(;1;f:=PARAM(3) 

99 AA=PARAMC 1 ) 

LAB=PARAM( 2) 
 CC=PARAMC 3) 
 PEVI ND 29 

R POIND 29 

I TI ME=1 
SUM=0. 

1 03 	READ( 28,*) ( CP( I ), I =1, N ) 

READ( 28,*) ( 	),J=1,M) 

READ( 28,*)( (COST( I Jo t.1),e.1=1,N), I=1,M) 

READ( 29,*) ( DD( I ), I= 1,1■1) 
FEADC 29,A0( EE(J),J=1,M) 

PEAD( 29,*) ( ( FF( I,J ),,J= 1, N), I =1, NI) 

NKL=M7.,(1/ 2 
451 	DO 447 I=1,MZN1 

DO 447 J=1,MZ M 
 II( ,0 ) =0 

4 4 7 	CT( 1,4 )=99999 

DO 10011 I =2, NKI, 
CT( 1, I ) =0 

CT( NKL— 1+1, MZM)=0 
1_1( 1, I )=CP( I-1) 

1i(NKL.-1+ I ,M7.M)=R( I —1) 
1 0011 CONTINUE 

-i\JK11— =NZ 1'.1— 1 

NKL.L.L=NIK1,+ 1 

DO 445 I=2,NK L  

CO 445 , J=NYKI,I,L, NIKLT 
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1.7( 1,1)=999 	 73 
CT( , , 1)=AA*EF(J—NKL) /EE( —1)+F:H* FF( I —1,..T—NKL)**f- - !: 

*+O(;*( FF( I —1.,,J—NKL )**2)*EE(J—NKL )/EE( —1) 
I F( ( I —1). E0. (J—NKL) ) GT( I, ) =0 

445 	CONTINUE 
11( 1, MZM)=0 
CT( 1, MZM)=99999 

459 	I F( I FN. E(0. 1) GO TO 407 
1 0012 FORMAT( 14110) 

CALL AOOK( CT, U, VP,MZM,KVRI,LMKO ) 
482 	CONTINUE 
9 3 	FORMAT( 3F10. 4) 
4 0004 FORMAT( 1414) 
705 	FORMAT( 12H FLO 1st MATRIX//) 
7 79 	FORMAT( 3X, 5I 5) 

DO 2 I =1,N 
DO 2 ,J=1,M 

C 	IF( COST( I'd. ). E0. 0) GO TO 2 
SUM=SUM+( WP( 1+ 1,J+NKL)—COST( 	)**2 

2 	CONTINUE 
4 83 	CONTINUE 

377 CONTINUE 
I TI ME=I TI ME+ 1 
IF( I TIME.LE. IMAXT) GO TO 103 
A SUM ( 1 TER ) =SUM 

TE( 6,933) I TER, (PAPAW I ), I= 1, 3), SUM 
• 9 33 	FORMAT( I 10, 3F10. 4, F15. 0) 

73 	FORMAT( 15H SUM OF SOUAPE=, F16. 7) 
I F( ASUM( ITER). LT. AMI N ) GO TO 104 
I F( DELTA. LE. DEPS) GO TO 744 
I F(KFLAG.NE. 2) GO TO 730 

745 	I F( I FLAG. E(:). 2) GO TO 731 
DELTA=DELTA/2. 
PARAM(K INDEX)=PARAM(K INDEX) —DELTA 
I FL, A G=1 
I TER=I TER+ 1 
K FL A G=1 
GO TO 99 

731 	DELTA=DELTA/ 2. 
PARArvi(K I NDEX,) =PARAM( K IN DEX )+ DELTA 
I TER=I TEP.+ 1 
I FLP.G=2 
K FL A (3= 1 
GO TO 99 

730 KFLAG= 1 
GO TO 7748 

744 	1 F( I SEARC. E0. 1) GO TO 1288 
K INDEX=KIND'EX+ 1 
PAR.A.M( KINDFX— 1) =PAPA 
I F( (K. INDX— 1) . Ell. 2) PAPAM( KI NDF_Y— 1) =E+E3E+F 

F( . (K INDEX— I) . EP. 3)FARAM(KINDFX— 1) =CCCC 
I F(7,< I D EY . FO. ) GO TO 4444 
I SEARC=1 
DEL TA=ADELT A 
K EL A 0= 2 
INDEX=K INDEX 

TEP+ 1 
I FL A G= 
PAPAW K INDEX )=PARAM (K INDEX)+ DELTA 
GO TO 99 



7 748 	I F( I SFAPC. fl. 2) GO TO 7745 
	

74 
GO TO 74 5 

7 745 	CONTI NI.IF 
DEJ TA=DFLTA/ 2. 
PAPANICK IN DFX )=PAPAM(K I N DEX ) PFLTA 
I TER=I TE9+ 1 
I FLA G=.2 
K FL P. G= 1 
GO TO 99 

1 04 	AMIN=ASLIN( ITER) 
I F( K I NJ DFX EV. 1 ) GO TO 8 768 
I F( K INDEX. E0. 2) GO 70 88 68 
CCGC=PARANI(K INDEX ) 
GO TO 88 69 

8 768 AAAA=FAPAtv1( K INDEX ) 
GO TO 88 69 

	

8 68 	BBF>B= PARAM ( K I NI DFX ) 
8 8 69 	CON TI 

I SEAP(7.= 1 
DELTA=ADEL TA 
I TER= I TER+ 1 
PAPAM (K IN DEX ) =PARAM( K I N DEX)+ DELTA 
I FLAG= 1 
K FLA 6=2 
GO TO 99 

	

• 1 288 	I F. ( K FL A G. E0. 1. AM D. I FLAG. FO. 1 ) GO TO 1 289 
I F( K I NDFX 	2) GO TO 1291 
I F(KINDEX. FP. 1) GO TO 1290 
FARANI(KINDFX )=CCCC 
GO TO 1292 

1.290 PAPANI(K.P\IDEX ) =AAAA. 
GO TO 1 292 

1 29 1 PARAM(KINDEX )=BE3BP 

1 292 	DELTA=ADELTA 
PAPAW KIN  DFX )=PAF AM( K I N DEX )+ DELTA .  
K FLA 6=2 
I FLAG= 1 
I TER=I TER+ 1 
I SEA 90=2  
GO TO 99 

1 289 	I F( K 	E0. 1) GO TO 1294 
I F(T< INDEX. FO. 2) GO TO 129 5 
PARAM(KINDFX)=CCCC 
GO TO 129 6 

1 294 PAPAM(KINDFX)=AAAA 
GO TO 129 6 

1 295 PAFAN1( K IN DEX )=B13HH 
1 29 6 DELTA=ADELTA• 

PAFAM(K 	) =PAP AM( K IN DEX ) -DELTA 
KFLAG=2 
I FLA G=2. 
I 7.'FP= I 	1 
I SEA PC=2 
GO TO 99 

746 	PAPANICK I NIDFX )=PAPANICK IN DFX ) -DELTA 
I FLAG=2 
KFLAG=2  

I SFARC=2 
GO TO PP 

5 555 	INI:FX=1 



DELTA=ADELTA 
AAA=PARANC 1) 
	

75 
B11111=PARAMC 2) 
OCC=PAPAM( 3) 
RARAMC 1 ) =PAPAW 1 ) + DELTA 
l<INDEX=1 
I TER=I TER+ 1 

I FLAG= 1 
K FL A G=2 
I SEARC=1 
GO TO 99 

4 444 CONTINUE 

I FC ABS( PAPAW 1)—AAA). GT.. 000001) GO TO 5555 
I F( ABSC PAPAW 2)—BBB). GT.. 000001) GO TO 5555 
I F( ABS( PAPAW 3)—CCC). GT.. 000001) GO TO 5555 

3 333 	CONTINUE 
55 	FORMAT( 4H END) 

4 C4 	FORMAT( 1414) 
402 	FORMAT( 10X, 188 ACTUAL FLOG" MATRI / ) 

AA=AAA 
F?P= .b 
CC= C.; CC 
1.ijPI TEC 6, 401) AAA, aEy4., CCC, AMIN 

4 01 	FOPm A T( 10X, 1 680 PTI NI AL SOLUTION/ 71-1 ALPHA=, F10. 7/ 
* 6H RETA=, F10. 7/ 78 GAMMA=, 14- 1 O. 7/ 128 SUM OF SOF=, F. ie. o/i) 

TATF-.1 E ( 6,406) 
4 06 	FOPMAT( 10X, IHCO ST MATRIX/) 

P EIJI ND 28 
REI■ I ND 29 
PEAD( 28,*)(CPC I), I= 1, N) 
READ( 28,0c)(P(J),,J=1,N) -
READ( 29,*)( DD( I ), I =1,M) 
READ( 29,1) ( EE(J),,J=1,N) 
READ( 29,*) ( FFC I ), J=1, M), I =1, N ) 
I FN=1 
GO TO 48 1 

4 07 	CONTINUE 
DO 1409 1=2, 15 
WRITE( 6, ) ( CT( I , 	16, 29) 

4 09 	CONTINUE 
CALL AOOK( OT,U, 	M, K 	LMKO ) 

4 00 	FORMAT( 14F'4. 0) 
1.TRI TE( 6,403) 

4 03 	FORMAT( /8X, 20I-{COMPUTED FLOG' MATRIX/ ) 
TAIRI TEC 6.,404) (1."R( I 	),J=NKLLL,NKLL), I =2,NKL) 
I FN =0 
T,./ RI TET ( 6, 508) 

508 	FORMAT( 35f-T DO YOU ,NFED ANOTHER PUN 1 YES ti NO) 

PEA D( 48, AO MO REP 
I FC NIO PER. N E. 0) GO TO 413 
STOP 
END 

SUP POUT IN E POOK ( I DI ST, U,X,N, I SOUR', I SINK) 
DIMENSION I PC 30, 2) 
DIMENSION fiC 30, 30),X( 30, 30), I DI ST( 30, 30), DUMMY(:30, :30) 
I NTF.GEF,: 	Dummy 

I COUN 7= 0 
I SUM= 0 
DO 2 I = 1, N 

2 	I SUM=I SUm+u( 1,1) 

6876 FOPmATC 5X, I 5) 



DO 1 I =1,N 
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DO 1 J= 1, N 
DUmmY( I ,,J)=I DI ST( I ,J ) 

1 	X( I ,,I ) = 0 
4 4 	CONTINUE 

CALL SPATH( I DI ST, 	N) 

CALL CO STT( I SINK, I SO UR, Ij, N, DUMMY, X,- I 	I DI ST) 
I COLN T= I COUNT+ 1 
I F( I COUNT. EP. I SUM) GO TO 6 
GO TO 44 

6 	SUM=O. 
DO 7 I= 1,N 
DO . 7 J= 1, N 

7 	SUM=SUm+1.311mmY( I ,J )*X( I ,J )**2 	 100 	I F(JNODE. Err:,  • I SOUP) C-;0 TO 6 
RETURN 	 KKK=.INO DE 
END 	 GO TO 3 
SUE4F0 UT I N E SPATH( I DI ST, I to, (.1) 	 6 	CONTINUE 
DIMENSION I DI ST( 30, 30), IV( 30, 2) 	676 	FORMAT( 311 OK) 
I 1. 1 ( 1, 1)=0 	 RETuF.N 

I IA 1, 2)=9 ,)909 	 END 
DO FS I = 2, 
I IA1 ( I , 2 ) = 1 
I T)(  I, 1) =99999 

7 	DO 1 I = 1, M 
DO 2 J=1, M 
I F( I DI ST( I 	) EO. 99999 ) GO TO 2 
I F( ( I T (J, 1 ) — I t..( I, 1) ) — I DI ST( I 	) )2, 2, 6 

6 	I V( J, 1)=1 	I, 1)+1 DI ST( 
I 14( , 2) = I 
GO TO 7 

2 	CONTINUE- 
' 	CONTINUE 

ETU EN 

END - 
SUBROUTINE CO STT( I SINK, I SOUR, U, N, DUMMY,X, I Tat, I DI ST) 
DI MENSIO DUMMY( 30, 30), I ti( 30, 2) 
DIMENSION DC 30, 30), x( 30, 30), I DI ST( 30, 30) 
INTEGER U,X, DUMMY 
KKK=I SINK 	.• 

3 ,INO DE= I WC KKK, 2) 
I F( rJNO DE. LT. KKK ) GO TO 99 
X(KKK, JNO DE)=X( KKK,,INO DEO— 1 
u(.TNO DE, KKK ) =1)(JNO DE, KKK ) —1 
U( KKK,,JNO OE) =I1( KKK,,JNO DF)+ 1 
I LI ST( KKK,,INODE) =DUmmY(KKK.,,JNODE)*( ( X ( KKK,INODE)+ 1)**2 
—X (KKK,•Ov0 DE )**2) 
15/ 57( .J\;orF ., KKK) z_.-nummy( KKK, ,JNo L, )*( (X( 	 )— I )** 2 

F 	,< ,!4. 	) 

	

F ( [1 ( -J19 ) 	 F . 	) 	DI ST( , 1 ,-,A0 1. E, KKK ) 
(-I) TO 	1 0. - 

c, 	r(,von 	) -zIJ(ONJODF,KKK) —1 
X (4 	11E.,;-((( ) 	( ORIODEs KKK ) 4' I 
1 r(KKK,e1NODE)=U(KKK,JNODE)+ 1 
ILI ST( KKX,•1NODE ) =DUmMY (4NODE, KKK )*( (X(•JNODE,KKK).— 1)**2 
—x(•INODE,-CKK)**2) 
I DI ST. ( , TNODE, KKK )=DUMMY (,JNODE, KKK )*( ( X( „NODE, KKK ) + 1)**2 

*—x ( ,JNO E, KKK )**2) 
I FC 	.Jr,Y) 	KKK 	. 0) ILI STC,JNODE,KKK )=99999 
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TECHNICAL NOTE #17 

Multivariate Time Series Model for Robbery 

Introduction  

In previous technical notes we have described and built univariate time series 

models for each index crime in ten major cities [1]. These models were then used to 

predict future occurrences of an index crime for a city of interest. The univariate 

nature of these models necessitates that forecasts of an index crime for a city be 

a function of previous observations of the crime within that city. In other words, 

the information used in this univariate forecasting system comes entirely from the 

series itself. For instance, the possible information that burglary in Los Angeles 

might provide towards describing burglary in Portland is not considered here. 

This univariate forecasting system then, behaves as if crime in each city acts 

independently of crime in every other city. On an individual city level, where in-

terest in crime intensities is focused entirely on the situation within the city, 

this univariate forecasting system is quite appropriate. If more information is 

desired by a city on the nature of its crime intensity relative to other compara-

ble cities, the normative forecasting scheme described in [ 

On the national level, however, there is interest in a forecasting system that 

recognizes the interdependencies between crimes in various cities in the nation. It 

seems quite probable that relationships do exist between the level of an index crime 

in a given city and the level of that crime in other cities. Not only is the spec-

ific nature of these relationships of importance to national decision makers, but 

also the resulting forecasting system will provide better forecasts since the model 

makes use of any between cities multivariate information. 

The purpose of this technical note is to describe a multivariate forecasting 

2] can be used. 
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system. First we will explain the specific nature of interrelationships between 

time series. With that as a basis we will introduce the model specification and 

the model building procedure for the triangular two-sided moving average multi-

variate time series model. As an example, a multivariate forecasting system for 

robbery is constructed for the following cities: St. Louis, Portland, Los Angeles, 

Kansas City, Atlanta, Boston, and Denver. The forecasts from this multivariate 

forecasting system is then compared to the forecasts from the univariate models 

for robbery in the same cities. 

Structure of the "Forecasting System" 

Before we present the mechanics of the multivariate time series modeling 

procedure, it will be instructive to elaborate on the nature of the possible re-

lationships between two (or more) time series. Consider two distinct time series 

Y
1
(T) and Y

2
(T), where T runs from 1 to N. The only restrictions we must place 

upon these two series are that they share the same time axis, i.e., !1 (T1 ) and 

Y
2
(T

2
) are observed simultaneously whenever T

1 
= T

2 
and that they represent devi-

ations from appropriate mean values. Furthermore, assume we are interested in 

modeling and subsequently forecasting the Y
2
(T) series. 

Fig. 1 represents the univariate forecasting system. Here we have used the 

model form expressing an observation as a linear combination of all previous ran-

dom errors. 

Y(T) = 1y (B) A(T) 

where 

Ip(B) = 1 + 11) 1 B + tp 2B
2 
+ . . 

and A(T) is white noise. Now suppose that there is interdependency between Y
1 

and Y2, that is, knowledge of the Y
1
(T) series can help us predict or explain the 

Y
2 series. Figure 2 shows a bivariate system where Y 1

(T) is a linear function of 

Y
2
(T). 

• 
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• 

Y
2
(T) = V(B) Y

1
(T) + ‘p(B) A(T) 

where 

V(B) = v 0 
+ v

1
B + v2B

2 
+ . . 

More simply in this model, Y 1 (T) can be expressed as a linear combination of 

past pure error terms plus a linear combination of past and concurrent obser-

vations of the Y
1
(T) series. 

We call V(B) a transfer function because it describes how the input series, 

Yi (T), is transfered into a component of the output, Y 2 (T) series. Note that 

as a special case if vo  = v
1 
= v

2 
= , . = 0, then this model collapses to the 

model of Figure 1, the general univariate time series model. Note also that in 

predicting the Y
2 

series, only past observation of Y
1
(T) can be employed. Hence 

for Y1 (T) to be useful in modeling Y
2
(T), observations of the Y

1 
series must be 

related to future observations of the Y
2 
series. We say that Y

1 
must be a lead-

ing indicator of the Y 2  series. If the relationship extended the other way, 

that is, if observations of the Y
1 

series were related to past  observations of 

the Y2  series, we would say that Y 1  lags Y 2 . In this case Yi  would not be use-

ful in predicting Y 2 . However if Y1  lags Y2 , then Y2  necessarily leads Y1  and 

Y
2 could be used to model Y 1. 

Suppose that instead of centering our interest on one particular series, 

we have "n" series of concern, and we wish to develop a forecasting system for 

each and every one of them. This brings us to the question of modeling "n" 

series simultaneously. Figure 3 shows the natural extension of our transfer 

function model to "n" series. This type of model could be built "n" times, each 

time changing the position of the output series and an input series. This ap-

proach is a natural one but not very efficient. A much better approach is repre-

sented in Figure 4. This model form simultaneously explains all interrelationships 

between variables and produces forecasts for each of the "n" series. The specif-

ics of this model will be given in the next sections. 
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Specification of Interrelationships Between Time Series - Cross  Correlation Function  

Let us return to the model of Figure 2, Y
2
(T) modeled as a function of Y

1
(T). 

As was mentioned before, this is a useful model if and only if Y, is a leading 

indicator of Y
2
(T). The cross-correlation function between Y

1
(T) and Y

2
(T) is 

used to determine the nature of the relationship of Y l  to Y2  and furthermore to 

specify the form of the impulse response function, V(B). 

The cross-covariance function between Y
1 

and Y
2 
at lag L is defined as 

yy  y (L) = E 1 (Y1 (T) - EY1 )• (Y2 (T+L) - EY2 )} 
1 2 

or since EY
1 
= EY

2 
= 0 

y
Y1Y2

(L) = E('Y
1 
 (T) • Y

2
(T+L)) 

The sample cross-covariance function is usually calculated as 

N-L 
y
YY2

(L) = y (Y
1
(t) - Y1 ) (Y

2
(t+L) - 

1 
 

t=1 
(N-L) 

Now what is the connection between the cross-covariance function and the form of 

V(B). Recall, 

Y
2
(T) = (v

0 
 + v1B + v

2
B
2 
+ ,...) Y

1
(T) + 4(B) A(T) 

multiplying both sides by Yi (T-K) we get 

Y
1
(T-K) Y

2
(T) = v

0 
Y
1 

(T-K) Y1 (T) + v
1
Y
1 

T-K) Y
1
(T-1) 

+, 	 + ip(B)Y1 (T-K)A(T) 

Now if we further assume Y
1
(T-K) is uncorrelated with A(T) for all K we get upon 

taking expected values, 

yY1Y2(K) = v
0 

y
Y1Y1(K) 

 + v1yY1Y1(K-1)  + 	+ v 	y 	(1) 
K-1 Y

1
Y
1 

+ vKyYY
(0) + vK

+1
yY Y 

(1) + . . 
1 1 

 
1 1 



Now if the Y
1 

series happens to be white noise then, 

y 	(K) = 0 
Y
1 
 Y

1 

for K 3& 0 

and thus, 

y
Y1Y2

(K) = v
K
y
Y1Y1

(0) 

Or 

y
Y1Y2

(K) 	y
Y1Y2  

v
K 	

(K) 

- 2 
yYY (0) 	a Y 

1 1 	 l 

Now defining the auto-correlation of Y l  to Y2  at lag L as 

y
Y
1
Y
2
(L) 

Py 	(K) = 
1 2 	

ay
l
ay

2 

we get vKa 
- 	  p

YY 
 (K) . 

Y
1 
 1 2 

Hence the sample cross-correlation function directly measures the relationships 

between 2 series. If py  y (L) is large in magnitude for some positive L this 
1 2 

implies Y
1 
 leads Y

2 
at lag L, that is, Y

1 
 (T) can help predict Y

2
(T+I). Altern- 

atively if p 	(L) is large in magnitude for an L less than zero then Y1  lags 
Y1Y2 	 1 

Y
2 
and is of no use in predicting Y 2, but consequently Y

2 
leads Y

1 
 and Y

2 
should 

be used in a model for Y
1
. On the other hand, if p

YY (L) is zero for all L (or 
1 1 

 

small in a statistical sense) then v K 
is zero for all K and series Y is unrelated 

to 	In In this case Y l  and Y 2  are said to be independent and a model for Y 2  will 

not contain terms involving Y1 . 

To illustrate the use of'the sample cross-correlation function to quantify 

84 
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the relationships between 2 series, consider Z
1
(T), Robbery in Dallas and Z

2
(T), 

Robbery in St. Louis. Because these series are known to be nonstationary, the 

transformations Y
1
(T) = (1-B)(1-B12 ) Z1 (T)and 

Y2
(T) = (1-B)(1-B

12
) Z

2
(T) were 

undertaken. The sample cross-correlation function between Y
1
(T) and Y

2
(T) is 

given in Table 1. 

From Table 1 we can conclude that Robbery in Dallas is a leading indicator 

of Robbery in St. Louis, and the lag is approximatly 6 months. We may now safely 

say that a model for forecasting robbery in St. Louis that makes use of the infor-

mation between the Dallas and St. Louis Series will provide better forecasts than 

a univariate model of St. Louis alone. 

Methodology of the TTSMA Model  

The triangular two-sided moving average (TTSMA) model is designed to facili-

tate the modeling of "n" separate but statistically linked time series. If one 

were to attempt to specify the model form of Figure 3 directly for all "n" series, 

one would find the task complicated and lengthy. The TTSMA model provides the 

following advantages: 

1. It facilitates model specification by concentrating on one auto-correl-

ation or one cross-correlation function at a time. 

2. Efficient parameter estimates can be obtained by successive least squares 

estimation. 

3. Diagnostic checking is simple and model inadequacies lead to a usually 

better updated model. 

4. The TTSMA model is incremental, that is, adding another time series to 

the model does not change the model form of those already in the model. 

The disadvantage of the TTSMA model is that it can not be directly used to 

provide forecasts. The model must first be transformed to canonical form before 

forecasts can be derived. 



L PY 
1Y2 

(L) 
p
Y1Y2

(L) 
---,---- L PY Y (L) 12

(L) 
P 	(L) Y Y 

1 2 
a^ 
0 a 0 

-15 .074 .272 1 -.078 .288 

-14 -.127 -.497 2 .068 .245 

-13 .179 .695 3 -.152 -.579 

-12 -.183 -.703 4 .273 1.283 

-11 .087 .346 5 -.445 -3.246 

-10 .012 .049 6 .546 4.881 

- 9 -.010 -.041 7 -.502 -3.867 

- 8 -.057 -.262 8 .271 1.963 

- 7 .146 .868 9 -.057 -.262 

- 6 -.111 -.685 10 -.146 -.702 

- 5 .066 .339 11 .358 2.045 

- 4 -.008 -.039 12 -.169 -1.595 

- 3 -.056 -.281 13 -.064 -.333 

- 2 .128 .620 14 .051 +.185 

- 1 -.225 -.940 15 .049 .162 

0 .190 .729 

Table 1. Sample Cross-correlation Between 

Y
1
(T) and Y

2
(T) 

86 
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The general form of the TTSMA model is as follows: 

Y
1
(T) 4)11 (B) 0 • 	. . 	0 el (T)1 

Y
2
(T) 

4121 (B)  *22
(B) 0 	. . 	0 e2 (T) 

e
3
(T) 

0 

Y
n
(T) 

B)  Ilin2 (B)  q)nn (B)  
e
n
(T) 

where : Y(T) is a stationary time series with mean zero 

..(B) = 	..(-2)B-2  + 1P..(-1)B-1  + 	+ 11)..(1)B1  + 

41..
ij

(K)1 < 1 

and e(T) is uncorrelated white noise with e . (T) and e (T) being uncross-correlated 

at all lags. Thus, triangular refers to the lower triangular form of the IP matrix. 

Two-sidedreferstotheformof..(B), which includes backshift operators with 

both positive and negative exponents. Here negative lags imply a shift forward in 

time, and hence a model in this form is not directly usable for prediction. Moving 

average refers to the general moving average form taken by the model. Because the 

model only allows for moving average representations, an autoregressive type sys-

tem must be approximated by a finite number of terms in a TTSMA model. 

The specific steps involved in constructing a TTSMA model involves the three 

interactive phases; model specification, parameter estimation and diagnostic check-

ing, that are used in constructing a Box-Jenkins univariate time series model. 

The key to the TTSMA procedure however, is that these three phases are undertaken 

each time a time series is added to the model. So for an "n" time series model, 

the 3 phase procedure will be inacted "n" times. Figure 5 shows a flow diagram 

for the general TTSMA procedure. 

A second important aspect of the TTSMA procedure is that at any stage of the 



!model specification 

parameter estimation 

inadequacies  
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Figure 5. Flow Diagram for TTSMA Modeling 
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modeling procedure, i.e., after any time series has been successfully added to 

the model, the TTSMA model can stand by itself. For example a TTSMA model for 

3 time series also necessarily includes a model for 2 time series, which in turn 

includes a univariate time series model. As we shall see when the specifics of 

the methodology are given, the order of entering the time series determines what 

specific models are included in the total "n" series model. 

Step-by-Step Procedure for Building a TTSMA Model  

The flow diagram of Figure 5 gives only the most basic structure of the 

TTSMA modeling procedure. To illustrate the details of this model-building 

th 
methodology, the step-by-step procedure for adding the first and I— series 

is presented. 

Adding the First Series to the Model  

From the 4  matrix previously described, we see that the model for the 

first time series is 

Y1(T) = I'll (B) e
l (T) . 

In this case there is nd need for IP
11

(B) to contain terms with negative lags and 

ll
(0) '= 1, exactly parrelleling a general univariate time series model. We have 

Y
1
(T) = e(T) +

11
(1) e(T-1) + 1p (2) e(T-2) + 	. 

Model Specification 

From the Box-Jenkins univariate modeling approach the specification of a 

moving-average model involves examining the sample auto-correlation function and 

adding terms to the model to explain each significant auto-correlation. It can 

be shown that there is a one to one relationship between terms in a moving average 

model and the resulting auto-correlation function. If all sample auto-correlations 
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are insignificant, we set all 4)11(L) = 0 L = 1,2,... and our model becomes; 

Y1 (T) = el (T), 

the model for white noise. If one or more auto-correlations are significant our 

model is of the form, 

Y
1
(T) = e

1 (T) + i 11 (L1 ) 
e(T-L1)  +11(L2)  e(T-L

2
), 

in order to explain two significant auto-correlations at lags L1 
 and L

2 
respectively. 

Parameter Estimation  

The maximum likelihood estimates for the parameters included in * 11 (B) are 

those parameter values that minimize 

r 	's  L e (T)
2 

 . 
T=1 1 

Where the e(T) series is calculated recursively as 

e
1 
 (T) = Y

1
(T) - 7 tp11  (L) e1 (T-L), T = 1,2,. . . L=1 

It is understood that if a parameter is not included in the model, then it is 

defined to be zero. For an MA(2) model then, 

el (T) 
 = Y1(T) - 
	(1) e

1
(T-1) 

- 11
(2) e

1
(T-2) 

and4)
11 (1), 

 4)11(2) are the values that minimize 

T=1 e1 
 (T)

2 
' 

Since the estimation of the parameters in a moving average model is a non-

linear estimation problem, there is no closed form expression for 11)..(L). 
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Diagnostic Checking  

For the TTSMA model for the first series, the only assumption one must in-

vestigate is that the e
1
(T) series is a realization of an idealized white noise 

■•■ 

series. To check this, the sample auto-correlation function of the e l (T) series 

is used in order to test the hypothesis that all 

p" ^ (L) = 0 L = 1,2, 
e
l
e
l 

• 

If there exists a significant auto-correlation at any lag, a term for that lag 

is added to the model and we reestimate the parameters. This process continues 

until all sample auto-correlations can be considered to be zero, while at the 

same time each parameter added to the model must significantly reduce the resi-

dual sum of squares. 

Once we have finished the three phase procedure for the first series in our 

TTSMA model, we are left with a completed univariate time series model. The 

model form and parameter values of th il (B) are specified and will not change as 

we add more series to the model. Also the e
1 (T) stream is estimated by the e 1 

 (T) 

series and it also is determined for the remainder of the total model building 

scheme. 

th 
Adding the I-- Time Series  

Now we shall describe the procedures involved in adding time series I to a 

TTSMA model already constructed for the first I-I series. Because I-I series 

are in the model we have th„(B) th () th ( ) 	 (B) ip li '' '21 B  
' '' '22' B'' • • • 1/) I-1,1 	' 	I-1,2 (B) ' • 

IP I-1,I-1(B)' and e 1 
 (T), e

2 
 (T), . . . e

1-1 
 (T) resulting from an I-1 dimensional 

TTSMA model. The TTSMA assumptions and the modeling procedures ensure that the 

parameters already included in the model are statistically significant and that 

e1 (T)
, 

. . . e 1-1 (T) are realizations of uncross-correlated white noise series. 

Model Specification  

From the i  matrix previously described, we see the model for Y
I
(T) is 
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e2 (T) + . . . 
YI (T)  = 1/1 I1 (B) e l (T) 	bI2(B) 	

+ 
 

To determine which terms to include in this stage of the TTSMA model we follow 

a generalized version of the model specification procedure for a univariate time 

series model.  The 1.-1  sample cross-correlations are calculated between e..(T) 

j = 1, 2, . . . I-1 and Y
I
(T). These cross-correlation functions are examined 

for significant terms. For each 	
Y 

p"
e 	

(L) that is significant, the term *Ij (L) 
J I 

is added to the model. Once this is done for all I-1 cross-correlation functions, 

the following transformation is made: 

W(T) = Y1 (T) -(B) e1  (T) - I2
(B) e (T 

2 ) 	41I,I-1
(B)  

where IP
IJ

(B) contains the terms and initial parameter estimates just obtained. 

From the TTSMA model we know 

W(T) = 
	

(T) . 

Thus, the last part of the model specification phase involves examining the sample 

auto-correlation function for the W(T) series and from it specifying the form and 

initial parameter estimates of 4)II(B). 

Parameter Estimation  

With the form of 11), J (B) J=1, 2, . . . I specified we proceded to estimate the 

paramters in this stage of the model. It can be shown that parameter values in 

Ip ij (B) J = 1, 2, . . . I that minimize 

 
e 2 (T) 

T=1 

are maximum likelihood estimates. 

Diagnostic Checking  

The TTSMA assumptions are that e (T) is white noise and that e
I
(T) and e.(T) 

j = 1, 2, . . . 1,1 are uncross-correlated. Our diagnostic checking procedure 
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starts by examining the sample cross-correlations between e
1-1

(T)-2(T) , 	. 	• 

e
1
(T) and e

I
(T) and the sample auto-correlation function for e

I
(T). If any sig-

nificant correlations exist, a term is added to the model to account for it, and 

if any parameters already included in the model prove statistically insignificant 

they are removed. If changes have been made in the model form, parameters are 

reestimated, if not the I- kl series has been successfully included in the model. 

A step-by-step summary of the TTSMA procedure follows: 

th 
Adding the I--- Time Series  

A. Model Specification 

1. Calculate p" 	(L) J = 1, 2, . . . I-1 
eJ I I 

2. Add the term tj) IJ
(L) for each significant p" 	(L). Initially estimate 

e
J
Y
I 

a
Y  

A ^ 	(L) 
a^ eJYI 
e
J  

I-1 , 
3. Construct W(T) = Y i (T) - X

IJ
(B) e (T) 

J=1 

4. Calculate 
	

(L) 

5. Add the term IP II (L) for each significant p ww(L) initially estimate 

4)I I ( L )  = 
	

(L ) 

B. Parameter Estimation - Find parameter values of those parameters in the model 

that minimize 

y 	2 (T) where e
I
(T) = W(T) -

II
(L) e (T-L) 

T=1 	 L=1 

C. Diagnostic Checking 

1. Construct p^ ^ (L) the sample cross-correlation function for e
J
e
I J = 1, e

J
e
I 

2, . . . I-1. 
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2. Construct p" ^ (L) the sample auto-correlation function for e
I
(T). 

e
I
e
I 

3. Add the terms IP
IJ

(L) to explain significant cross or auto-correlations' 

p ; 	(L) J = 1, 2, . . . I. 
J I 

4. Delete any ip ij (L) from the model if the hypothesis Ĵ 1 (L) =.0 can not 

' be rejected. 

5. If the model has been updated, reestimate parameters, otherwise stop. 

Data Base  

As an example of a multivariate time series forecasting system we will 

build a TTSMA model for robbery occurrence in 7 cities. The cities are: St. 

Louis, Portland, Los Angeles, Kansas City, Atlanta, Boston and Denvet. A 

fuller description of these time series is contained in [3]. The univariate 

modeling of these robbery series is contained in W. The univariate model 

best describing robbery is a (0,1,1) x (0,1,1 12 ) or 

(1-B) (1-B
12

) Y(T) = (1-0
1
B) (1-0

12
B 
	

ACT) 

From our example we wish to draw some conclusions about the relative strength of 

7 univariate models compared to the 7-variate TTSMA model. In other words, is 

there enough between cities information to make the multivariate model a better 

predictor of robbery in a given city. 

Building a TTSMA Model for Forecasting Robbery  

To gain additional insight into the TTSMA model and how it is built, the 

step-by-step procedure as previously described, will be presented in detail for 

the first 3 data series; St. Louis, Portland, and Los Angeles. 

The model for St. Louis Robbery, the first series entered into the model 

has the general form 

yi (T) = el (T) + 	1 (1) el(T-1) 	
1P11(2)  e

l (T-2) + . . 
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The first step in the model specification phase is to calculate the sample 

auto-correlation function for the transformed series. Because Robbery is a 

nonstationary series, a transformation from Z(T), the original series to a 

stationary representation Y(T) was made, 

Y(T) = (1-B) (1-B12 ) Z(T) - p . 

The original series runs from Jan., 1966 to October, 1974 and contains 118 

observations. Due to starting value considerations with this transformation, 

after differencing we are left with 105 observations to model. 

In this step, the model for St. Louis is to be constructed from the general 

moving average model form. Since we already know that this univariate series 

can be best described by the seasonal (0,1,1) X (0,1,1 ) 12  model, we can use 

this information to save some identification work in constructing this first 

stage of the TTSMA model. The univariate seasonal model form is: 

(1-B) (1-B
12

) Z
1 
 (T) = (1-01B) (1-0

12
B
12

) A(T). 

But since 

Y
1 
 (T) = (1-B) (1-B

12
) Z (T) - p 

we get 

Y
1 
 (T) + p = (1-0

1
B 	0

12
B
12 

+ 1 012 B
13

) A(T), 

as a representation of the seasonal univariate model. To duplicate this model 

form with a TTSMA model representation we have, TTSMA 

Y
1 
 (T) = (1 + 11

(1) B +
11

(12) B12 +
11

(13) B13) A(T). 

Here we note some differences between the two models. First, the TTSMA 

procedure always works with centered data, i.e. data that has mean zero. Box-

Jenkins univariate models for nonstationary series are built directly with the 

differenced data. The effect, of the parameter p is usually small, It will, 

however, prohibit direct numerical comparison of the two models. A second dif- 



173190.2 	
•9542  
105 

(105 - 3) 

2 

2 
a 
el  
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ference in the two models is that the Box-Jenkins univariate model has explicit 

terms to model seasonal components, whereas TTSMA must handle seasonal relation-

ships with individual * parameters at large lags. For the models at hand to be 

exactly equivalent one would have to have: 

u = 0 

1
(B) = 

*11 (12) = - 012 

4
11 (13)  = 61°12' 

The Box-Jenkins seasonal model is a two parameter model that contains an 

implicit parameter at lag 13. To duplicate the effect of this seasonal model, 

three TTSMA parameters must be used. It is a disadvantage of the TTSMA model 

that it needs three parameters instead of two, but it has the advantage that 

IP
11

(13) is not constrained to equal tp
11

(1) times *
11

(12). 

Parameter estimation using Marquardts' compromise algorithm gave the fol-

lowing least squares estimates: 

TTSMA 	 Box-Jenkins  

1 (1) = -0.5256 1 
= 0.5568 

4)11(12) = -0.7558 
	

0
12 

= 0.7133 

4)11 (13) 
 = 0.4132 

2 (Tel (T) )
2 

105. 1 ^2 T el (T)  105  

T=1 
y ;1`(T)= 173190.2 	a

el 
- 

103 - 1683.9 

- 1697.9 . 

Note that the Box-Jenkins univariate model has a lower mean square for error. 

This is because the extra TTSMA parameter, 
4)11 (13) 

 = 0.4132, is sufficiently 

close to the product of 
i11(1)  and *12(12), 



a
y2 31.9  

Pe 
	(13) = 	(0.288) = 0.225 
e
12 	

40.8 
ae 

1'21 (1 ' )  - 

1 
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(-0.5256) (-0.7558) = 0.3972 	0.4132 

Adding the Portland Series  

From the sample cross-correlation function between e
1
(T) and Y

2
(T) in Table 

2, a significant correlation is noted at lag 13. The W series is then calculated 

as 

W(T)  = Y2(T) - 1P 21 (13) el (T-13)  

where 

The sample auto-correlation function for the W series exhibits significant cor-

relations at lags 1 and 12. This ends the model specification phase of the 

Portland stage of the TTSMA model building procedure. The proposed model is 

Y2 (T)  = 4)21(13) e
1 (T-13) + e2(T) 	

122(1)  e
2 (T-1) + 11)22 (12) e2(T-12). 

Parameter estimation yields the following results: 

)21(13) = 0.08 
	

4) 22 (1)  = 
-0.53 

105 " 2 
4)
22

(12) = -0.48 	 e2 (T) = 72079.26 
T=1 

In proceeding to the diagnostic checking phase, we note that all three 

parameters are significant. Exmaining the sample correlation functions be-

tween e
1
(T) and e

2
(T) and between e

2
(T) and e

2
(T), however points out a sig-

nificant auto-correlation at lag 3 in the e
2
(T) series. This leads us to the 

updated model, 

Y
2
(T) = 4P

21
(13) e1

(T-13) + e
2
(T) + *

11
(1) 
	

(T-1) + 

4'11(3) 2 (T- 3) + IP 1i (12) e 2 (T-12). 
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L p" 	(L) 
e
1
Y
2 

P " , 	(L) 
e1 I 2 p" 	(L) 

e
1
Y
2 

p- 	(L) 
e
1
Y
2 

er,. 
P 

a.. 
P 

-15 .112 1.063 1 -.093 -.952 

-14 .053 .507 2 -.031 -.311 

-13 -.044 -.470 3 .150 1.518 

-12 .030 .292 4 -.083 -.838 

-11 .120 1.160 5 -.015 -.155 

-10 .034 .331 6 .007 .067 

- 9 -.140 -1.368 7 .077 .764 

- 8 .119 1.175 8 -.030 -.294 

- 7 -.044 -.433 9 -.018 -.172 

- 6 .039 .388 10 - .068 -.662 

- 5 -.090 -.901 11 -.055 -.529 

- 4 .118 1.181 12 .088 .850 

- 3 -.054 -.543 13 .288 2.762 

- 2 -.042 -.427 14 -.165 -1.577 

- 1 .062 .634 15 .065 .619 

0 -.115 -1.115 

Table 2. Sample Cross-correlation Between e (T) and Y2(T) 
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Estimating the parameters in this model yields; 

I'21 (12)  = 
-0.054 

4)22 (1) = -0.4159 

ip 2  ( 3 ) = -0.3178 

/P22(12) = -0.7608 . 

The ip
21
(12) parameter proved insignificant as its approximate 95% confidence 

interval on a linear hypothesis is (-0.129, 0.021). Dropping the insignif-

icant parameter we fit the remaining three parameter model and obtain; 

1P22 (  1 
) = -0.3663 

= -0.2615 
4)22 (3)  

)22(12) = -0.6123 

 
e2

2 
 (T) = 66862.43 . 

For this fit, all parameters are significant and the sample residua/ correl-

ations are acceptable. 

Adding the Los Angeles Series  

The sample cross-correlation function between e
1
(T) and Y

3
(T) and between 

e
2
(T) any Y

3
(T) exhibit significant correlations; 

p" 	(11) = .268 
e
1
Y
3 

p" 	(-5) = -.230 
e2Y 3 

p" , 	(7) = .222 
e2'3 

p" 	(9) = -.231 
e 2Y 3 

o 	= 40.8 
e l 

= 25.3 
e 2 

 



Initial parameter estimates for the * parameters are, 

a 
98.8 

31
(11) = 

a 
p" 	(11) 
el i 3 = 40.8 

(0.268)= 0.649 

el 

98.8 
-0.898 *32 (-5) = 25.3  (-0.23) = 

(7) = 
98.8 

(+0.222) = 0.867 25.3  

98.8 
4) 32( 9) = (-0.231) = -0.902 

25.3 

The W(T) series is calculated as 

W(T) = Y 3 (T) - *31 (11) e1 (T-11) - * 32 (-5) e2 (T + 5) - 

*32 (7) 
	

(T-7) - 4, 32  (9) 	(T-9) 

The sample auto-correlation function for the W(T) series shows significant 

values at lags 1,7 and 12. The model containing terms, * 31 (11), *32(-5), 

*32 (7), *32 (11), * 33 (1), *33 (7), and *33 (12) proved to contain an over-supply 

of parameters. Only two parameters, *
31

(11) and *33 (12) proved significant. 

Parameter estimates obtained for the two parameter model are; 

(11) = 0.509 

*33 (12) =-0.7105 

 
Ee

3
(T)

2 
 = 642202.9 . 

As expected both parameters proved significant, however, a significant 

auto-correlations, p (2) = -0.250, appeared which dictates the three para-

meter model, 
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Y ( ) = *3 1 (11) el (T-11)+ e3 (T) + *33 (2) e 3 (T -2) + *33 (12) e3 (T-12). 



Parameter estimates for this model are; 

31 (11) = .5606 

*
33

(2) = -.1105 

*33 (12) = -.6984 

 Ee
3 
 (T)

2 
 = 622710.2 

We now note a significant correlation p 31 (2) = 0.225. Thus, the parameter, 

31 (2) was added to the model and all parameters simultaneously estimated: 

*
31

(2) = .3026 

1' 31
(11)= .5642 

11)
33

(2 )= -.0855 

33 (12)= -.7421 

Ee3
(T )= 595215.8 

The sample auto-correlation function for this fitted model looks adequate. 

Further, the marginal significance of the 161 (2) parameter was calculated 

and proved significant at the 95% level. 

The remaining 4 series were entered into the TTSMA model in a limner 

paralleling that just illustrated. At each stage, the 3 phases of time 

series model building were repeated until an adequate model was de cided 

upon. The final 7 stage model follows: 

1 1 0 1.0000 

1 1 1 -0.5258 

1 1 12 -0.7558 

1 1 13 0.4133 

2 2 0 1.0000 
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2 2 1 -0.3663 

2 2 3 -0.2615 

2 2 12 -0.6123 

3 1 2 0.3026 

3 1 11 0.5642 

3 3 0 1.0000 

3 3 2 -0.0855 

3 3 12 -0.7421 

4 1 14 0.1517 

4 2 2 -0.2311 

4 3 12 -0.0909 

4 4 0 1.0000 

4 4 1 -0.4367 

4 4 12 -0.6474 

5 3 -2 0.1275 

5 3 0 0.1299 

5 3 8 -0.1477 

5 5 0 1.0000 

5 5 1 -0.2984 

5 5 7 0.2890 

6 5 7 0.5023 

6 6 0 1.0000 

6 6 1 -0.5679 

6 6 7 -0.2055 

6 6 10 -0.2938 

7 2 0 0.2639 

7 6 . 	-4 0.0844 

7 6 13 0.1605 

102 
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I J L 
*IJ(L) 

7 7 0 1.0000 

7 7 1 -0.3001 

7 7 12 -0.8526 

Canonical Representation of the TTSMA Model  

Before we can proceed to develop the forecasting function for the TTSMA 

model of robbery, we must first transform the 11) matrix into canonical form. 

The Canonical model is an equivalent representation of the TTSMA model in that 

the correlative structure of the TTSMA model is duplicated exactly by the Can- 

onical model. The two models then, express the same mathematical relationships. 

The TTSMA form was seen to have advantages during the model building procedure, 

and the Canonical form has special application towards developing the forecast-

ing function. 

The nature of the transformation of the TTSMA model to canonical form is 

rather complicated. The procedure consists of 1) Removal of the poles inside 

the unit circle and 2) removal of the zeros inside the unit circle. When there 

are no poles of i(B) inside the unit circle indicates "stationarity" and when 

there are no zeros of det[i(B)] indicates invertibility. Details of the trans-

formation can be found in [4]. The model in canonical form will have the prop- 

erty that all terms ..(B) will have positive exponents. Hence 	is expressed 

as a function of current and previous random shocks, random shocks not only from 

series i, but from all series in the model. The 1p matrix then, will no longer be 

triangular. 

For our example, the canonical representation of the TTSMA model follows: 

I 	 J 	 L 	
4)IJ(L) 

1 

1 

1 

1 

0 

1 

1.0000 

-0.5258 



I J L tp
1J

(L) 

1 1 12 -0.7558 

1 1 13 0.4133 

2 2 0 1.0000 

2 2 1 -0.3663 

2 2 3 -0.2615 

2 2 12 -0.6123 

3 1 2 0.3026 

3 1 11 0.5642 

3 3 0 1.0000 

3 3 2 -0.1589 

3 3 12 -0.7421 

3 5 1 0.1455 

3 5 2 0.5228 

3 5 13 -0.1080 

3 5 14 -0.3879 

4 1 14 0.1517 

4 2 2 -0.2311 

4 4 0 1.0000 

4 4 1 -0.4367 

4 4 12 -0.6474 

5 3 8 -0.1477 

5 5 0 1.0000 

5 5 1 -0.2580 

5 5 7 0.2681 

6 5 7 0.4660 

6 6 0 1.0000 

6 6 1 -0.5758 

6 6 7 -0.2055 

6 6 10 -0.2937 

6 7 4 0.2380 

6 7 5 -0.1621 

7 2 12 0.2191 

7 6 13 0.1605 

7 7 • 0 1.0000 

7 7 1 -0.2922 

7 7 12 -0.8301 
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Development of the Minimum Mean Square Error Forecasts  

The derivation of the forecasting function for the canonical representation 

of the TTSMA model follows closely the univariate forecasts derivation contained 

in [5]. It again will be shown that the minimum means square error forecast for 

theobservationofY.at time T + 9., where T is the present is simply the codit-

ional expectation of Y i (T + 0-and time T. 

Let the canonical model for Y(T) be represented as 

* 
Y(T) = i (B) b(T). 

Also let e(B) have the convergent Taylor series representation, 

	

r 	* 

	

(B) = G 	(K) B
K 

 
K= 0 

Now suppose at origin T, we wish to forecast Y(T + 0, and furthermore we wish 

our forecast to be a linear function of current and previous observations Y(T), 

Y(T - 1), Y(T - 2), . . . It follows that our forecast YT (i)  can also be ex-

pressed as a linear function of current and previous innovations b(T), b(T - 1), 

• 	• 	• 	• 

Suppose then, that the best forecast is given by, 

YT  (Q) =
2
(0) b(T) +

2,
(1) b(T-1) + ip

2,
(2) b(T-2) + . . . = 	V(K) b(T-K), 

K=0 

where the IQ  (K) matrices are to be determined. The 2, step-ahead forecast error 

is then 

2-1 
eT (Z) = Y(T+2) - YT (k) = y 	11) (K) b(T+9,-K) + y (p (51,+K) - 11, co.) b(T-K) 

K=0 	 K=0 

and its variance covariance matrix is 

(2) e
T
(2) ] = A

l 
+ A

2 
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where 

* 	 * 
Al  = V (0) Eb 

V (0) + V (1) E
b 
V (1) + . . . + 	(k-1)

b 
V (I-1) .  

L 
	* = L [V (k+K) - V9., (K) ] E

b 
[V* (k+K) - 	(K) ] 

K=0 

Here Eb 
is the variance covariance matrix for the b(T) series. 

Note that A
l 

is not a function of V and that the variance of any linear function 
• 

of forecast errors h e
t
(k) is minimized if A

2 
E 0. Therefore our minimum mean 

square error forecasts must have 

Vt (K) = V (k+K) . 

Hence, the forecasting function for Y
T
(k) in terms of innovations is given by, 

Y
T
(k) = = V

* 
 (K) b(T+k-K) = E[Y(T+2.) I Y(T), Y(T-1), 	. 

K=k 

Thus, the minimum mean square error forecasts at time T is simply the conditional 

expectations of Y(T+k) at time T. 

The k-step ahead forecast error is given by 

* 
e (k) = 	V (K) b(T+k-K) 

K=0 

and since E[eT (k) = 0], i.e. the forecast is unbiased, we have 

k-1 * 	* 
Var [eT (9„)] = Al 

 = 	V (K)
bV (K)  K=0  

As in the univariate case, the k-step ahead forecasts can be expressed as 

a function of previous observations. By inverting the cononical representation 

we get 

b(T) = [V*  (B) ]-1  Y(T) . 

If we let II
*
(B) =

*
(B)]

-1 
and take the Taylor Series expansion, 
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co 

L 
*
(B) = L 	* (K)BK 

K=0 

* 
since II (0) = I we get 

* 	 * 
Y(T) =II (1) Y(T-1) + II (2) Y(T-2) + . . 	+ b(T) . 

Now using the conditional expectation concept we obtain an expression for the 

k-step ahead forecast of Y(T+k) in terms of previous observations and forecasts 

YT (Z) = II (1) YT
(k-1) + II (2) Y

T
(Z-2) + . . . + II (Z-1) Y

T
(1) +II (k) Y(T) +

II 
* 
(k+1) Y(T-1) +

* 
II (Z+2) Y(T-2) + . . 

Robbery Forecasts from the TTSMA Model  

Forecasts from the multivariate model are presented in Table 3. Included 

are the corresponding forecasts from the univariate model and the actual obser-

vations. The base point for these forecasts is October, 1975, and hence the 

forecasts at lag 1 is for November, 1975. Table 4 gives the estimated fore-

casting variance of the one-step ahead forecast errors. The variance of the 

one-step ahead forecast errors directly measures how well the model under con-

sideration has fit the data. A smaller error variance implies that more of 

original series variation has been explained, and hence the forecasted values 

can be expected to be closer to the actual realizations. Examination of Table 

4 will tell if between cities information, as utilized by the TTSMA model, can 

help predict robbery in the seven cities. 

The values of Table 4 seem to indicate very little difference between the 

7 univariate models and the 7-variate TTSMA model in their respective ability 

to model robbery. Indeed, F tests for equality of variances fail to reject the 

hypothesis that the variances of the fOrecast errors are equal. 

The differences that do exist can be related to the canonical * matrix. 

Examination of the Canonically reduced 4) matrix reveals that both St. Louis and 

Portland are represented as univariate models. This means that knowledge of 
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City 	Lag Univariate TTSMA Actual 

St. 	Louis 	1 571.7 570.8 572 

2 603.2 599.9 608 

3 532.4 535.8 445 

4 464.9 470.4 436 

5 480.7 486.2 433 

Portland 	1 162.9 144.7 157 

2 156.3 147.3 196 

3 134.0 116.5 172 

4 141.6 122.3 152 

5 149.6 124.3 169 

6 121.3 95.9 120 

Los Angeles 1 1270.2 1280.9 1267 

2 1388.2 1331.6 1333 

3 1309.8 1206.5 1327 

4 1226.6 1145.2 1279 

5 1283.9 1100.6 1222 

6 1217.0 1059.2 1145 

Kansas City 1 255.8 298.3 251 

2 262.8 284.0 280 

3 242.8 270.8 221 

4 233.6 263.9 191 

5 248.2 282.9 * 

Atlanta 	1 327.4 399.9 292 

2 380.7 486.1 * 

3 349.0 343.8 * 

4 267.4 281.3 * 

5 283.3 315.0 * 

Boston 	1 716.6 670.4 722 

2 721.2 608.6 658 

3 732.3 760.1 608 

4 674.2 633.7 546 

5 677.7 631.4 459 
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City 	Lag 	Univariate 	TTSMA 	Actual 

Denver 	1 	230.2 	237.3 	198 

2 	248.6 	247.9 	218 

3 	232.9 	214.3 	170 

4 	220.9 	249.5 	144 

5 	222.7 	244.2 	153 

6 	206.6 	231.3 	142 

* not available 

Table 3. Robbery Forecasts and Realizations 
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City 	 Univariate 	TTSMA 

St. Louis 1683.9 1697.9 

Portland 717.4 655.5 

Los Angeles 6085.1 5467.8 

Kansas City 1129.8 1160.5 

Atlanta 1453.6 1545.3 

Boston 2839.6 2466.2 

Denver 764.0 794.8 

Table 4. Estimated Variance of 1-step Ahead 

Forecast Errors 
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robbery in other cities did not help in predicting robbery in these two cities. 

The error variance for these two cities are then approximately equal for the 

TTSMA model and the univariate Box-Jenkins model. The numerical differences 

between the two results from the inability of a TTSMA model to exactly dupli-

cate a Box-Jenkins seasonal model. 

The Canonical model for Los Angeles on the other hand, has 9 parameters 

and cross-terms both with St. Louis and Atlanta. From this it is concluded 

that between cities information is important in the modeling of Los Angeles 

robbery and hence the forecast error variance for the TTSMA model is smaller 

than the univariate model's variance. The same observations can be made re-

garding the Boston series. Seven parameters and cross-terms with both Atlanta 

and Denver lead to a smaller error variance. 

It should be noted that the Canonical tp matrix, the forecast error vari-

ances and the forecasts themselves are all extremely sensitive to the decisions 

made during the TTSMA model building procedure. The order of entry of the time 

series into the model, although theoretically of no importance, in practice 

turns out to be a significant factor in the final form of the original IP matrix. 

The experience gained while building the multivariate robbery model has pointed 

out that decisions that often at the time seem somewhat insignificant,have pro-

found effects on the resulting form of the model. The decision to include a 

marginal parameter in an early stage of the modeling procedure, for instance,can 

lead to a vastly different model. Combinations of parameters that have only 

minimal effect individually can cause extremely significant reductions in Ee 2 (T) 

at some stage in the model. This reduction in sum of squares is somewhat arti-

ficial in that the parameters are not describing a correlative relationship, but 

are often creating  significant correlations in the e(T) streams. In this instance 

the estimated parameter values often approach unity in absolute value, a condi- 

tion for stationarity of the model. The calculated e(T) streams and the resulting 
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forecasts in this case can "explode" and produce nonsensical results. 

Conclusions  

In this technical note, the concept of a multivariate forecasting system 

was presented. The basis for a multivariate system is the incorporation of 

information that exists between pairs of series into a model that will provide 

forecasts better than those that ignore this information. The methodology for 

a particular multivariate time series model was presented and applied to rob-

bery data for seven cities. It was seen that some between cities informations 

did exist, and upon comparing forecast error variances from the TTSMA model 

with those of the Box-Jenkins univariate models, it was seen that the multi-

variate model led to improved estimation for those cities which exhibited sig-

nificant between series relationships. 

This technical note has also pointed out some of the difficulties involved 

in applying the TTSMA model. Start-up problems, round off errors, amd certain 

inadaquacies of the procedure itself have made it difficult to effectively eval-

uate the multivariate modeling of robbery. 
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TECHNICAL NOTE #18 

Aspects of a Multiple Offense Model 

Introduction  

The purpose of this technical note is to document potential modeling aspects 

for an extension to the basic network flow model for predicting of criminal displace-

ment. The latter model has been developed, analyzed, and reported in numerous, prior 

technical notes, e.g. [2, 3, 4]. Fundamentally, the extension to which we refer in-

volves the notion of multiple offenses or multiple crime type occurrences.. Following, 

we address this problem from a modeling standpoint and discuss the motivation for 

particular constructions. In addition, the effect of cost functions and problem 

solution relative to contemporary methodologies is briefly discussed. 

Recall that in previous technical notes, the phenomena of criminal (crime) 

displacement was modeled using some classic notions from network floe theory. A 

series of transportation problems were solved successively such that a solution 

(feasible flow pattern) provided a set of crime displacement patterns in a given 

time period. Throughout the previous work, it was explicitly assumed that, all 

displacement involved only the commission of a single crime type. The issue of 

multiple commissions (e.g. assault and homicide) during the same time period was 

not addressed. Independence of crime types was assumed in which case, a segrega-

tion of the crime-type displacement analyses can be justified. Suppose, however, 

that some crime types are not independent. One can easily comprehend situations 

where the commission of one crime (of a given index) might foster the simultaneous 

commission of another crime type. If displacement occurred relative to the former 

crime, it must also occur relative to the coincident, latter crime. 

Using the same ideas developed previously, let us denote the displacement of 

crime type k from zone i to zone j in time periodt to bexik. Recall that the network j 



115 

flow structure developed earlier is dynamic, hence the superscript denoting dis-

crete time. Just as in the single crime-type model where one can depict the dis-

placement from i to j by a directed arc between points i and j, we can create a 

similar depiction for the multiple offense model. In Figure la the single crime 

flow depiction is given while in Figure lb that for the possible commission of K 

crime types is depicted. Clearly, the structure in (lb) is a generalization of 

that in (la) where K is one. Note also that we choose to depict the multiple 

crime "flow" by K distinct edges. There is no requirement in doing this since 

all crimes would displace or "flow" along the arc given uniquely by the pair (i,j). 

As mentioned at the outset, the original network model for displacement con-

sidered a series of transportation models. Although not referred to as such, the 

transportation problems could have been described as single commodity problems. 

Such a descriptor would obviously arise from the single crime (commodity) aspect 

of the system for which the structure is a model. The natural extension then, 

when multiple offenses are examined would result in a structure similar to a so-

called multi-commodity transportation problem. We hasten to point out that our 

problem is not, strictly speaking, equivalent to the classic multi-commodity flow 

problem. This should be made clear subsequently. 

A Model for the Case of Multiple Offenses  

For convenience, let us disregard the multi-period nature of the general 

model of displacement. As such, we can specify the classic least cost, multi-

commodity transportation problem as follows: 

k n m 
minlyi , 

k=1 j=1 i=1 -ijkxijk  
n
C  

s. . 	x. 	= a. 	V. 
1 j=1 ijk 	ik ' 	,k 

i
y 
1 i 

x 	= b 	V
jk 	jk 'j k = 



x
t 
ij. 

116 

  

(a) 

(b) 

Figure 1. Depiction of Single and Multi-Crime Displacement 

(and/or Deterrence) Variables 
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k 
.. 	< 11.. 

k=1 
x 
1Jk  — 13  ' 

x. 	0 ;v. 
1 ijk — 	,j ,k 

Note that c
ijki ,ak' 

and  b
jk 

are the per unit cost of flow of commodity k from i to j, 

the "availability" of commodity k at zone i and the "demand" of k at j respectively. 

The parameter u., expresses a capacity restriction or upper bound on flow along the 

directed arc (i,j). Generally, we are not concerned with such a restriction in our 

problem. 

Assuming the applicability of the above model to the multiple offense problem, 

the entire network tuning algorithm [ 2] developed earlier would proceed in the usual 

manner. We do not re-specify that process since its documentation is complete in 

prior notes. Rather, we proceed with some thoughts as to how our problem departs from 

the class multi-commodity problem as modeled above. 

In the usual multi-commodity transportation problem (itself a special version of 

the general multi-commodity flow problem) it is generally assumed that a set of least 

cost flows for K commodities be determined subject only to the constraint of capacity 

restrictions and availability and demand levels. If the flow patterns are feasible, 

it is of little consequence that commodities k' and k" say, flow coincidently be-

tween points i and j. The correspondingxijk , and 
xijk"  are independent in the sense 

that some perturbation to one of the variables would not necessarily affect the other. 

This is not the case when we let k' and k" be crime types which are committed simul-

taneously. 

Suppose f
ijk 

 is the observed displacement between i and j of crime type (index) 

k'. Further, let fijk" be the observed flow for crime type k". Suppose that the crim -

inals commiting k' also commit a subset of the crimes of type k". Relative to the tun- 

ing algorithm, the objective would be to find those computed flows, say x 	and xi 
'k"  ijk" 

which are in close agreement with fijk , and fijk,. The difficulty however, is that 
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determination of certain flows of type k' is related to concommittant changes'in flow 

for type k". Solution of the model given above makes no such demand. The outcome may 

be that a tuned model results which is correct in the mathematical sense as defined 

in previous developments [2] yet which does not allow predictions of displacement 

that make sense in terms of multiple crime commission. 

Consider a relaxation of the above aspect in which we assume an accurate mat-

ching of the classic model with the multi-crime system. Even then, it is likely that 

the use of contemporary multi-commodity flow algorithms will not hold much prospect 

for efficient analyses of problems the magnitude of which we counter. The lack of 

analagous structural properties relative to the single commodity case (unimodularity, 

etc.) make the multi-commodity problem computationally untenable. 

Another aspect which may contribute to the complexity of a multi-commodity model 

of displacement would be the cost function construction. While the costs c
ijk 

are, as 

in the single commodity case, only driving mechanisms in the tuning process their func-

tional representation should be based upon some rational system relationships, e.g. pol-

ice concentration, socio-economic levels and so forth. This is not a simple resolution 

in the single crime version and may be compounded in the multi.-commodity extension es-

pecially in light of the notion of hypothesized crime type dependence. An optimistic 

view however might conjecture that if there is a multiple crime commission, then the 

conditions contributing to the occurrence of one crime type might be similar to that of 

another (committed simultaneously). Otherwise, there commission would not likely have 

been simultaneous. 

A Generalization and Summary  

The notion of multiple crime commission as discussed above was based upon the as-

pect of commission simultaneity. That is, it was assumed that the perpetuation of one 

crime fostured the coincident commission of another. Certainly, one can visulize those 
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circumstances where such a pattern is relevant. It may be however, that simultaneity 

of commission in this sense does not hold, yet there is a multiple commission due to 

one crime's influence upon another, the latter taking place in the same time period b ut 

not explicitly coincident with the former incident. Clearly, if there is no such in-

fluence then the crimes would be independent and their analyses would take the form o f 

the single commodity modeling. Otherwise, a multi-commodity like condition would ari se. 

The notion of non-simultaneous, yet related multiple commissions gains credence 

in light of results such as those regarding crime switch analyses discussed in [1 I. 

Suggested are estimates of the likelihoods of certain crime types being committed giv en 

that they are preceded by a particular, other crime type. Regardless, the relaxation 

of the coincident crime commission assumption would appear to pose no difficulty in i t-

self relative to the multi-commodity construction discussed in this note. 

Conclusion  

Summarizing, it was the purpose of this technical note to expose the existence 

of multiple crime type commissions and the necessity to model such occurrences with 

alternative structures than those developed earlier. Fundamentally, the difference 

lies in the transportation structures which are used to model potential displacement 

The analysis and solution of such models for the multi-commodity case are substan-

tially more difficult if not computationally untenable relative to the single com-

modity models considered thus far. Substantial investigation would be required in 

order to treat effectively, in a multi-commodity framework, the multiple commission 

problem. Such an appraisal is made from the view of the inherent problem size create 

in the real displacement model. Further, various properties of the multi-commodity 

problem create a condition whereby methodological capabilities are largely theoretics 
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TECHNICAL NOTE #19 

Application of the Linear and Nonlinear Models to 

Predict Criminal Displacement From a Sample Set of 

Data for the City of Atlanta 

Introduction  

In Technical Note #2 we developed a network flow model for predicting crim-

inal displacement and deterrence. In Technical Note #12 this general model was 

specialized to the case of a linear objective function (in the flows). In Tech-

nical Note #13 an algorithm was presented for the case of a nonlinear objective 

function (in the flows). In these technical notes we also presented an example 

of the application of each procedure to find the "optimal" set of parameters in 

each respective model to obtain the "best" least squares fit to historical data. 

In the current technical note we shall present examples of the application 

of each of the fitted models in the prediction of criminal displacement for a 

sample set of data for the city of Atlanta. We shall also raise certain issues 

relative to the confidence that one might expect in the results of the predic-

tions. 

Developing the Input Data for the Models  

The predicting models require three types of input information; 

1. Historical flows representing criminal displacement by 

aggregated district, 

2. Demographic, law enforcement and other relevant data 

associated with the historical flows, and 

3. Future projections of supply (criminals residing in each 

district) and demand (crimes committed in each district) 

information. ' 

The city of Atlanta, because of its proximity, was selected as a test site 
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for the displacement prediction methods. The Crime Analysis Team of the city 

made available sample data for the seven crime types for the twelvemonths of 

1974. While this data set did not represent the complete enumeration of all 

crimes occuring during that year it did provide a basis for testing the model. 

The CAT also supplied estimates of average manpower allocation by district dur-

ing that period. 

To test the predicting models it was decided to use the data for the first 

nine months of 1974 to "tune" each model. Each "tuned" model was then employed 

to predict criminal displacement during the last three months of 1974. In this 

manner comparisons between actual and predicted three month displacement data 

could indicate how well the predicting models had done. 

Combined twelve month data for crime types 1 through 6 were supplied to the 

aggregation procedure described in Technical Note #14. The resulting aggrega-

tions resulted in fourteen districts and is presented in Figure 1. 

An aggregated nine month flow matrix was developed from the original data 

and the map of Figure 1. This matrix is presented in Table 1. Interpreting that 

table we see that 29 crimes were committed in district 5 during the first nine 

months of 1974 by criminals whose residences were listed in district 5. Also, 3 

crimes were committed in district 12 by criminals with residences in district 6. 

Using the aggregated map of Figure 1, a three month flow matrix was also de-

veloped from the original data. This matrix is presented in Table Z. Only the 

row and column totals for the three month matrix were supplied to the predicting 

procedures. 

A distance matrix was computed from the aggregated map of Figure 1. This 

distance matrix is presented in Table 3. The numbers in that table are measured 

in terms of transformed units but are reasonably measured to scale. No entries 

are given below the main diagonal as the matrix is assumed to be symmetric. 

Finally, manpower estimates by original district, were supplied by the CAT 

for 1974. These estimates were aggregated according to the map of Figure 1. Next 
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I 

3 

Figure 1. Final Aggregation 



Table 1. Sample Data, f..'s, for Crime Types 

1 Through 6 for the First Nine Months of 1974 

Row 
1 2 	3 4 5 6 	7 
	

9 10 11 12 13 14 Totals 
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1 1 1 1 1 . 5 

28 

9 

19 

40 

26 

17 

6 

23 

7 

21 

33 

10 

15 

18 1 2 1 3 1 1 1 

2 3 2 1 1 

1 2 1 8 1 2 2 1 1 

1 1 4 29 2 1 1 1 

3 1 17 1 3 1 

1 14 1 1 

1 2 2 1 

1 1 2 5 
, 

1 1 
. 

11 
. . 

1 

2 1 1 2 1 

1 3 2 12 1 1 1 

2. 4 2 1 2 1 4 13 3 1 

1 1 1 5 1 

1 2 1 1 1 9 

4 	29 	10 	30 	41 	24 25 	4 	19 	7 	17 	22 	11 	16 259 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
Column 
Totals 

TOTAL Sum of Squares = 2503 



Table 2. Sample Data, f..'s, for Crime Types 

1 Through 6 for the Last Three Months of 1974 

Row 
1 2 	3 	4 5 	6 	7 -8 9 	10 11 12 	13 14 	Totals 
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1 

2 

3 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
Column  
Totals 

1 1 1 1 1 5 

5 1 1 1 1 9 

1 

4 

10 

1 2  1 

1 7 1 1 

1 7 1 1 1 11 

12 

1 

7 

1 

5 

9 

4 

8 

12 

1 

3 1 1 1 1 

1 

1 1 • 

. 	 . , 

1 3 5 

1 3 

1 1 6 

1 	7 	1 	6 	11 	11 	14 	1 	5 	2 	8 	6 	6 	8 . 87 

TOTAL Sum of Squares = 399 



13 14 2 
	

3 
	

4 
	

5 
	

6 
	

7 
	

8 	9 	10 	11 	12 

Table 3. The Distance Matrix 

0. 3. 5.5 4. 5.5 4. 4.25 2. 2.375 3.375 3.75 3.375 2.875 2.75 

0. 2.6  1.875 4.125 4. 4.75 3.25 2.1252.125 2.9 2.9  3.  2.35 

0. 2. 3.5 4.65 5.75 5.1 3.75 2.875 3.55 3.875 4.25 3.75 

0. 2.25 2.75 3.8 3.175 1.875. .9 1.625 1.8751.25 1.75 

0. 2.2 3.2 4. 3.125 2.25 1.87 2.25 2.85 2.85 

0. 1.125 2.18 2.125 2. 1.125 1.05 1.25 1.75 

0. 2.2 2.75 2.92 2.2 1.92 1.79 2.5 

0. 1.375 2.32 2.2 1.75 1.2 1.375 

0. 1.05 1.375 1.125 .92 .375 

0. .875 1. 1.375 .875 

0. .5 1. 1. 

0. .56 .74 

0. .92 

0. 

1 

3 

4 

5 

6 

7 

8 

9 

1 0 

11 

12 

13 

14 
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an estimate of the area of each district was computed for the map of Figure 1. 

These areas were used to normalize the manpower estimates supplied by the CAT. 

Table 4 presents the resulting values of manpower per unit area measured in trans-

formed units. 

"Tuning" the Linear Model  

The data of Tables 1, 3 and 4 were subjected to the linear model to obtain the 

best choice of parameters. The objective was 

y c. 	x.. 
i j 

1J 
 1J 

where 

2 	 2 
a(p. -p•) 	 Y(P. -P.)d.. 

J 1 	 j 
e 	+ e 	+ e 

ij 

Table 5 summarizes the one-at-a-time search for the optimal choice of the parameters 

a, R and y. An optimal set of parameters for the linear model Is given by 

a = .25 

0 = .70 

y = .075 

with a total error sum of squares of 

(x.. - p ii )
2 
= 906. 

i j 

Table 6 presents the predicted nine month flows based on the above parameters. 

"Tuning" the Nonlinear Model  

The same input data of tables 1, 3 and 4 were supplied to the nonlinear model_ 

Theobjective for that model was selected to be 

y y c. x 
2 

where 

2 	Pi 2 
cij 

=a-1  + 0d. +y--' d 
pi 	j 	P. ii .  P 	l 1 	 1 



Table 4. 

District 

Manpower Allocations per Unit Area 

Manpower/Unit Area 

1 1.25395 

2 2.14675 

3 .86486 

4 3.61026 

5 2.42562 

6 5.61404 

7 3.59552 

8 4.83019 

9 7.95032 

10 10.66666 

11 12.80001 

12 13.12831 

13 9.30903 

14 15.05900 
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Table 5. Results of an Application of the Linear Model on the sine Month 

Data of Table 1. 

Iteration 	Alpha 	Beta 	Gamma 
	

Error Sum of Squares  

1 .5500 .7000 -.1500 1712. 

2 .5500 .7000 .1500 950. 

3 .5500 .7000 .4500 1320. 

4 .5500 .7000 .3000 950. 

5 .5500 .7000 .2250 968. 

6 .5500 .7000 -.1500 1712. 

7 .5500 .7000 0.0000 950. 

8 .5500 .7000 .0750 942. 

9 .5500 .7000 .3750 1228. 

10 .5500 .7000 .2250 968. 

11 .5500 .7000 .1500 950. 

12 .5500 .7000 -.2250 1362. 

13 .5500 .7000 -.0750 950. 

14 .5500 .7000 .0000 950. 

15 .8500 .7000 .0750 1228. 

16 .7000 .7000 .0750 1228. 

17 .6250 .7000 .0750 1228. 

18 .2500 .7000 .0750 906. < Optimal  

19 .5500 .7000 .0750 942. 

20 .4000 .7000 .0750 1644. 

21 .3250 .7000 .0750 1568. 

22 -.0500 .7000 .0750 1908. 

23 .1000 .7000 .0750 1174. 

24 .1750 .7000 .0750 1208. 

25 .2500 1.0000 .0750 1344. 

26 .2500 .8500 .0750 946. 

27 .2500 .7750 .0750 946. 

28 .2500 .4000 .0750 1264. 

29 .2500 .5500 .0750 1576. 

30 .2500 .6250 .0750 1568. 

31 .2500 .7000 .3750 1392. 

32 .2500 .7000 .2250 1404. 

33 .2500 .7000 .1500 1568. 

34 .2500 .7000. -.2250 1416. 

35 .2500 .7000 -.0750 978. 

36 .2500 .7000 .0000 972. 
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Iteration Alpha 

Table 5. 	(Continued) 

Beta 	Gamma 	Error Sum of Squares 

37 .5500 .7000 .0750 942. 

38 .4000 .7000 .0750 1644. 

39 .3250 .7000 .0750 1568. 

40 -.0500 .7000 .0750 1908. 

41 .1000 .7000 .0750 1174. 

42 .1750 .7000 .0750 1208. 

43 .2500 1.0000 .0750 1344. 

44 .2500 .8500 .0750 946. 

45 .2500 .7750 .0750 946. 

46 .2500 .4000 .0750 1264. 

47 .2500 .5500 .0750 1576. 

48 .2500 .6250 .0750 1568. 

49 .2500 .7000 .3750 1392. 

50 .2500 .7000 .2250 1404. 

51 .2500 .7000 .1500 1568. 

52 .2500 .7000 -.2250 1416. 

53 .2500 .7000 -.0750 978. 

54 .2500 .7000 .0000 972. 

Optimal Solution 

Alpha = .2500000 

Beta 	= .7000000 

Gamma = .0750000 
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Table 6. Predicted Flows, x..'s, from the Linear Model 

for the Nine Month Data of Table 1. 

Row 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Totals 

4 1 5 

28 

9 

19 

40 

26 

17 

6 

28 

9 

1 1 17 

40 

18 8 

17 

3 

19 4 23 

7 

21 

33 

10 

15 

7 

1 16 4 

6 1 18 8 

6 4 

3 	. 12 

4 	29 	10 	30 	41 	24 	25 	4 	19 	7 	17 	22 	11 	16 259 

a = 0.25 

8 = 0.70 

y = 0.075 

Error Sum of Squares = 906 
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12 

13 

14 
Column 
Totals 
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The results of the one-at-a-time search on the parameters of the nonlinear model are 

given in Table 7. An optimal set of parameters is given by 

a = 7 

= 11 

Y = 5 

with a total error sum of squares of 

I (x.. - f..)
2 

= 792. 
i j 

The nine month predicted flows of the nonlinear model for the above parameters are 

given in Table 8. 

Comparing Tables 1, 6 and 8 we see that both models did a reasonable job of 

predicting the intra-district flows while the nonlinear model appeared to do a 

slightly better job of predicting the observed displacement. 

Employing the "Tuned" Models to Predict the Three Month Flow Matrix 

Both models were utilized, with their respective optimal set of parameters, to 

predict the three month flow matrix corresponding to the last quarter of 1974. The 

input to the models were only the row and column totals of Table 2, together with 

the data of Tables 3 and 4. 

The information indicated by the row and column totals of Table 2 would nor-

mally be derived from other forecast models for the total crimes expected to be 

committed in a district and from projections of criminal residence data..  

The optimal predictions based on the linear model are given in Table 9 while 

those based on the nonlinear model are given in Table 10. Total error sum of squares 

are computed in each table based on the actual three month data. Again we see that 

while the linear model performed a reasonably good job of prediction, the nonlinear 

model seemed to perform a slightly better job of predicting displacement (i.e. the 

off-diagonal flows). 
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Table 7. Results of an Application of the Nonlinear Model on 

Iteration 

the Nine Month Data of Table 1. 

Alpha 	Beta 	Gamma Error Sum of Squares 

1 7.0000 3.0000 5.0000 828. 

2 11.0000 3.0000 5.0000 830. 

3 9.0000 3.0000 5.0000 828. 

4 8.0000 3.0000 5.0000 828. 

5 7.5000 '3.0000 5.0000 828. 

6 3.0000 3.0000 5.0000 828. 

7 5.0000 3.0000 5.0000 828. 

8 6.0000 3.0000 5.0000 828. 

9 6.5000 3.0000 5.0000 828. 

10 7.0000 7.0000 5.0000 802. 

11 7.0000 11.0000 5.0000 792. c  Optimal 

12 7.0000 15.0000 5.0000 808. 

13 7.0000 13.0000 5.0000 810. 

14 7.0000 12.0000 5.0000 810. 

15 7.0000 11.5000 5.0000 792. 

16 7.0000 7.0000 5.0000 802. 

17 7.0000 9.0000 5.0000 792. 

18 7.0000 10.0000 5.0000 792. 

19 7.0000 10.5000 5.0000 810. 

20 7.0000 11.0000 9.0000 820. 

21 7.0000 11.0000 7.0000 808. 

22 7.0000 11.0000 6.0000 810. 

23 7.0000 11.0000 5.5000 792. 

24 7.0000 11.0000 1.0000 792. 

25 7.0000 11.0000 3.0000 792. 

26 7.0000 11.0000 4.0000 792. 

27 7.0000 11.0000 4.5000 792. 

28 11.0000 11.0000 5.0000 792. 

29 9.0000 11.0000 5.0000 792. 

30 8.0000 11.0000 5.0000 792. 

31 7.5000 11.0000 5.0000 808. 

32 3.0000 11.0000 5.0000 810. 

33 6.0000 11.0000 5.0000 810. 

34 6.0000 11.0000 5.0000 808. 

35 6.5000 11.0000 5.0000 792. 



Table 7. (Continued) 

Optimal Solution 

Alpha = 7.00000000 

Beta = 11.0000000 

Gamma = 5.0000000 
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Table&FirecuctedFlows,x.'s, from the Nonlinear Model for 
1.1 

the Nine Month Data of Table 1. 

Row 
1 2 	3 4 5 	6 7 	8 9 	10 	11 	12 	13 	14 Totals 
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1 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
Column 
Totals 

4 1 5 

28 28 

9 9 

19 

40 

26 

17 

6 

23 

19 

40 

1 23 2 

17 

1 4 1 

1 18 1 1 1 

1 3 3 7 

21 

33 

10 

15 

2 1 1 16 1 

1 1 1 1 1 2 1 22 2 1 

2 1 7 

1 1 13 

4 	29 	10 	30 	41 	24 	25 	4 	19 	7 	17 	22 	11 	16 259 

a = 7 

= 11 

Y = 5  

Error Sum of Squares = 792 



Tabl e 9.13redic t eciFlows, x. 's, from the Linear Model for the 
ij 

Three Month Data of Table 6. 

Row 
1 2 3 
	

5 6 	7 8 9 10 11 12 13 14 Totals 
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1 1 3 5 

9 

1 

4 

la 

7 2 I 

1 

4 

10 

9 2 , 11 

12 

1 

7 

1 

5 

9 

4 

8 

12 

1 

2 1 4 

1 

1 4 

2 4 2 1 

4 

8 

1 	7 	1 	6 	11 	11 	14 	1 	5 	2 	8 	6 	6 	8 87 

= 0.25 

= 0.70 

i = 0.075 

Error Sum of Squares = 130 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0 

11 

12 

13 

14 
Colum 
Total 



Table10.PredictedFlows,x.:s, from the Nonlinear 

Model for the Three Month Data of Table 6. 

Row 
1 	2 3 4 5 
	

7 
	

9 10 11 12 	13 14 Totals 
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1 1 1 1 1 5 

9 
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11 
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3 1 1 1 1 
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1 1 6 1 
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1 1 7 

1 	7 	1 	6 	11 	11 	14 	1 	5 	2 	8 	6 	6 	8 87 
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10 

11 

12 

13 

14 
Column 
Totals 

a = 7 

= 11 

--- 5 

Error Sum of Squares = 90 
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Issues Relative to Accuracy of the Models  

We have indicated that both models seem to perform a good job in predicting 

actual displacement, with the nonlinear model performing a slightly better job than 

the linear model. The question arises as to how good a job is each model. actually 

doing? Specifically, what level of confidence do we have in the predictions obtain-

ed from the two models? 

Currently no satisfactory method is available for establishing confidence inter-

vals for the forecasts obtained through the models. This aspect is being pursued by 

the project team with the hope of a successful resolution of the question in the near 

future. 

Confounding the question of confidence in the projections is the concept of ef-

fect of resolution in the district size. If we examine closely Tables 2 and 10 we 

see that those locations in the respective matrices where the off-diagonal entries 

are radically different the associated, districts are also adjacent. For example, this 

is the case with the (9,4) cell and the (12,11) cell. If we had decreased the reso-

lution in the aggregated district map or produced another, possibly more natural agg- 

regation the strength of the prediction might well have substantially increased. This 

additional aspect is also currently under consideration. 

Conclusion  

This technical note has demonstrated that both the linear model_ and the nonlinear 

model can be successfully employed in predicting criminal displacement. 

Beyond goodness-of-fit issues the next major efforts include more comprehensive 

application to other real data sets, possibly from some other selected cities. Also 

significant effort should be devoted to including the decision making aspect into the 

models premitting law enforcement agencies to utilize the models in manpower and other 

resource allocation considerations. 
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TECHNICAL NOTE #20 

The Effect of Massachusetts' Gun Control Law on Gun-Related 

Crimes in the City of Boston 

Introduction  

Since eighty-seven percent of the firearms used in crimes committed in 

Massachusetts are purchased outside of the state, the legislature of this 

state has made a serious effort to curb violent crimes involving firearms by 

imposing a mandatory one year minimum sentence for anyone convicted of carry-

ing a firearm without an appropriate license. The purpose of this technical 

note is to measure the deterrent effect of this law. Thus, the gun-related 

offenses of homicide, assault with a gun, and armed robbery for the city of 

Boston will be examined for shifts or changes in their levels in tine periods 

prior to, concurrent with and after the enactment of this law. 

To provide the necessary background for this evaluation study, the first 

three sections of this technical note describe the Massachusetts' Gun Law, 

the accumulation of the data base for the gun-related crimes of homicide, armed 

robbery, and assault with a gun, and the postulated impact of the new law on 

these three crimes. In the next section, the methodological considerations of 

employing multiplicative empirical-stochastic models [1,2,3] with an embedded 

shift parameter are briefly described. The last section contains the complete 

statistical analysis of changes in the occurrence of gun-related crime indices. 

Here, the deterrent impact of the law is measured by evaluating the changes in 

the occurrence of homicide, assault with a gun, and armed robbery. 

•Summary of Massachusetts' Gun Control Law  

In April of 1975, the State of Massachusetts formally put into operation 
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a gun control law which mandates a one year minimum sentence upon conviction 

of carrying a firearm without a special license. The consequences of this 

law merit serious study for at least two reasons. First, this state-level 

attempt to curb firearm violence represents a substantial variation from pre-

sent and prior policy not only in Massachusetts but in the entire United 

States. Does this altered policy have a deterrent effect? Secondly, prior 

to the commencement of this law, there was virtually no limit on judicial 

discretion in providing minimum sentences. What is the effect of this in-

creased pressure on the prosecuting and judicial elements of the criminal 

justice system? 

Although Massachusetts' law on the carrying and ownership of firearms 

is multifaceted, it can be summarized as follows: 

A. A Firearms Owner Identification (F.O.I.) card is required is order 

to own or possess either a firearm or ammunition. This card can only be is-

sued to non-aliens over eighteen years old who have never been convicted of 

a felony or hospitalized for drug addiction, drunkeness, or mental iliness. 

The unusual aspect of this facet of the law is that only about 40% of the 

states require prospective firearms purchasers to prove in advance of acquir-

ing a gun that they have not been excluded according to the above criteria. 

B. In addition to satisfying the criteria mentioned in part (A), a pros-

pective handgun purchaser in Massachusetts must also satisfy police of their 

need to own the handgun, whereupon the police may issue a special license if 

they are satisfied that such a need exists. However, the police are not re-

quired to issue the license even if need of ownership has been established. 

Although these two facets of the law attempt to curb the availability of fire-

arms, they do not prohibit the importation of firearms from contiguous states 

and their illegal possession. 
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C. While the first two facets of the law are directed towards curbing 

the availability of firearms (including handguns), the third facet is concerned 

with the carrying of firearms. Although carrying a firearm in most other states 

is also a criminal offense, the unique feature of Massachusetts' law is the man-

datory one-year minimum sentence upon conviction of carrying a handgun without 

a license to carry or purchase or carrying a rifle or shotgun without a 

card. Prior to the enactment of the new law, there was virtually no limit on 

judicial discretion in providing minimum sentences. Under the new law, sentences 

cannot be suspended and parole cannot be granted until at least one year has been 

served in jail. 

Although the mandatory jail sentencing does remove most judicial leeway in 

sentencing a defendant, the defendant can still escape the mandatory one-year 

sentence via three avenues. First, if a person is apprehended with a, firearm on 

his person, the police can file a charge of merely possessing an unlicensed gun 

in contrast to carrying an unlicensed gun. The possession violation does not 

carry a mandatory minimum penalty. Secondly, the prosecutor can also press for 

the lesser violation of possession, regardless of the initial police charge. 

Thus, the prosecutor still retains the plea bargain option and all its ramifi-

cations. Finally, the judge or jury can always find the defendant guilty of the 

lesser charge. To quote Zimring [4 ],"the one-year minimum will only invoke man-

datory one-year jail terms for carrying firearms without a license to the extent 

that police, prosecutors, and judges want it to produce such results. If there 

is strong resistance from any single link in this chain, the mandataryminimum 

can be avoided". 

Although the impact of the new law on the prosecuting and judicial elements 

of the criminal justice system is uncertain, Zimring hypothesizes that, while 

the number of jury trials for'carrying violations will increase, the number of 

prosecutions and convictions will decrease. The type of defendant will also 
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change in that he will have a prior criminal record involving violent crimes 

committed with a gun. Furthermore, the new law may lead to more jail sentences 

of duration less than one year since more defendants will be charged with the 

lesser possession violation. This aspect of the new law should also influence 

the crime reports by increasing the number of possession violations and simul-

taneously decreasing the number of carrying violations. Although these facets 

of the law's impact merit investigation, this research is specifically concerned 

with the deterrence properties, if any, that the new law may have on the com-

mission of certain gun-related crimes. 

To measure the effectiveness of the new law as a deterrent to carrying guns 

and the commission of gun-related crimes, the offenses of homicide, assault with 

a gun, and armed robbery will be examined for a change in their occurrence levels 

prior to an after the enactment of the law. Also, because of the localized na-

ture of crime and the criminal justice system and the concentration of crime in 

bigger cities, the City of Boston will be used as the evaluation site. The data 

base describing the offenses of homicide, assault with a gun, and armed. robbery 

for the city of Boston is presented in the next section. 

Data Base Description  

As mentioned in the previous section, the impact of the gun control law 

was to be examined by investigating three particular types of crime, viz., as-

sault with a gun, armed robbery, and homicide. The purpose of this section is 

to describe the data base used in the analysis. 

The City of Boston forwards to the Uniform Crime Reporting Section of the 

Federal Bureau of Investigation a form listing the monthly offenses known to 

police of seven particular types of crime. Certain of these offenses, such as 

homicide, armed robbery, and assault with a gun, involve the use of firearms. 

Thus, it is the information concerning these crimes that will be extracted from 



145 

the reporting forms. However, these reporting forms have undergone some mod-

ification over the past ten years, and, as a result, adjustments will have to 

be made to maintain some type of constancy for the three crimes under study. 

The time period of interest is from January, 1966 to October, 1975. Although 

it would be deSirable to have months subsequent to October available for anal-

ysis, the information for these-months is not readily available at this time. 

Thus, this report is a preliminary one with a six month horizon date since the 

April, 1975 official enactment of the gun control law. However, this six-month 

period should be sufficient to detect any immediate or short-term effects of 

the law as well as to lay a foundation for detecting long-term effects. 

In investigating the monthly offense reports from January, 1966 through 

October, 1975, one sees that there has always been a separate classification 

for assault with a gun. Thus, no adjustment is needed in the data base listing 

this particular type of crime. However, it should be noted that commencing 

with January, 1974 the classification was changed to read "assault with a fire-

arm". A listing of the month offenses for assault with a gun is given in Table 

1. The acronym for this data base will be BAG (Boston Assault with a Gun).. 

In the period of interest, the monthly offense reports have listed murder 

and nonnegligent manslaughter as a seperate classification. Thus, again no ad-

justment is needed in the data base describing this type of crime. However, it 

should be recognized that the murder and nonnegligent manslaughter classification 

also includes those homicides that resulted from knives or cutting instruments 

as well as other dangerous weapons. Since the criminal homicides resulting from 

these other means usually represent a proportionately small amount of the total 

as compared to homicides with firearms, no attempt was made to adjust for non-

firearm homicides. Furthermore, such an adjustment would have been impossible 

using the current reporting fOrms. Table 2 is a listing of the monthly offenses 



Table 1. Monthly.  Offenses of Assault with a Gun for Boston (BAG) 

'66 '67 '68 '69 '70 '71 '72 '73 '74 '-75 

13 21 29 21 26 33 42 29 45 53 

3 16 22 28 - 28 39 38 . 	40 40 53 

16 12 24 28 37 35 34 55 47 29 

16 15 29 21 32 27 32 43 48 33 

12 28 33 23 34 36 38 38 61 51 

7 10 33 27 17 33 48 55 52 40 

21 21 27 31 40 49 41 37 46 50 

20 21 30 25 36 50 48 54 53 40 

20 23 28 40 26 63 61 61 53 47 

16 33 24 31 37 53 34 47 68 52 

27 33 31 33 38 34 43 55 56 

17 31 19 23 36 53 21 41 57 
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Table 2. Monthly Offenses of Homicide for Boston (BOH) 

'66 '67 '68 '69 '70 '71 '72 '73 '74 '75 

1 6 5 8 3 8 12 12 11 12 

2 9 4 4 2 9 4 7. 11 6 

3 6 7 10 2 10 5 9 12 12 

2 4 6 4 10 7  6 . 	6 12 10 

3 5 8 11 10 8 16 9 11 7 

4 6. 12 9 5 4 3 17 4 10 

6 7 6 7 11 10 8  10  15 12 

5 6 7 14 14 10 10 12 11 11 

11 5 4 7 21 11 9 9 6 11 

7 3 12 5 12 11 11 14 11 8 

8 7 17 5 9 16 13 14 14 

6 7 14 7 15 12 7 16 16 

147 

J 

J 

S 

0 



148 

for murder and nonnegligent manslaughter. For conciseness, this type of crime 

will be designated homicide. The acronym for this data base will be BOH (Boston 

Homicide). 

The one type of crime that did require an adjustment was armed robbery. 

From January, 1966 through December, 1973, the monthly forms contained an arm-

ed robbery classification. It,should be noted that this classification was 

used when the robber was armed with any weapon, not merely a firearm Commen-

cing with January, 1974, the reporting form was altered by dividing the armed 

robbery classification into three components; robbery with a firearm, robbery 

with a knife or cutting instrument, and robbery with some other dangerous wea-

pon. To maintain some constancy in the data base for this time period, it was 

necessary to combine the three seperate armed robbery classifications and to 

let them be considered as a single entity designated as armed robbery. This 

approach was adopted since it was impossible to extract those armed robbery 

offenses prior to January, 1974 which were committed exclusively with a firearm 

from other types of armed robbery. A listing of armed robbery since January, 

1966 is presented in Table 3. This data base will henceforth be referred to 

as BAR (Boston Armed Robbery). 

Thus, in order to analyze the impact of BostorOs gun control law, which 

officially became effective in April, 1975, there are available 118 months of 

data for each of three types of crime (assault with a gun, homicide, and armed 

robbery) where six of these data points have been recorded after April, 1975. 

Although the official enactment date of the gun control law was April, 1975, it 

should be noted that several of the associated intervention programs commenced 

several months prior to April. For example, the news media continually publi-

cized the impending laW with increasing dosage as April drew near. Thus, if 

the gun control law did have an impact, it may have started showing up prior to 

April. 
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Table 3. Monthly Offenses of Armed Robbery for Boston (BAR) 

'66 '67 '68 '69 	- '70 '71 '72 '73 '74 '75 

41 50 74 158 99 136 238 298 327 500 

39 59 62 124 107 161 213 273 324 451 

50 63 55 140 112 171 257 312 285 375 

40 .32 84 109 90 149 293 249 243 372 

43 39 94 114 98 184 212 286 241 302 

38 47 70 77 125 155 246 279 287 316 

44 53 108 120 155 276 353 309 355 398 

35 60 139 133 190 224 339 401 460 394 

39 57 120 110 236 213 308 309 364 431 

35 52 97 92 189 279 247 328 487 431 

29 70 126 97 174 268 257 353 452 

49 90 149 78 178 287 322 354 391 
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Postulated Impact of the Law  

Broadly speaking, the Massachusetts' Gun Control Law, would a priori be 

expected to make an impact upon two major components of the Criminal Justice System: 

the police and the courts. It is with respect to the police component alone 

that this technical note is addressed, in particular, the reported incidence 

occurrence of homicide, assault with a gun, and armed robbery. If the law has a 

desirable impact in the police component, one would anticipate the levels 

for these gun related crimes to decrease because of its general deterrence pro-

perty. 

The manifestations of such changes in reported crimes in these categor-

ies are not expected to be identical. That is, changes in the reported rates 

after "implementation" of the Law, are expected to occur not only In terms of 

absolute shifts, but also with regards to differring dynamics and delays. Let 

us consider the "implementation" of the law to start at some time point prior 

to formal enactment (for example to include preliminary publicity) to be con-

sidered as a change in the environment in which crimes are committed. The 

patterns of potential incremental changes in reported rates in sequential mon-

ths will encompass the dynamics or transmittal of the effect of the change in 

the environment on the future reported rate. Lastly, any potential change in 

future reported rates need not be necessarily observed on the future observed 

rates instantaneously, but rather after a period of time or delay ( a delay in 

general being greater than or equal to zero, with a delay of zero corresponding 

to instantaneous impact). 

For the three gun related crime categories we would a priori expect differ-

ent types of measurable impact with respect to the dynamics and delays of a 

change or shift. That is, with respect to homicide (particularly residential hom-

icide)one would expect a long delay perhaps of the order of magnitude of years 
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before any measurable shift would occur, if, in fact, a decrease in this inci-

dence would occur at all. For example, there is already within Massachusetts 

a pool of guns owned by residents each representing a potential weapon for a 

future homicide. With tighter restrictions on licensing, the future pool of 

such guns would decrease. This in turn might manifest itself in terms of an 

observable decrease in future homicide occurrences. 

On the other hand a shift over a shorter horizon or smaller delay might 

be expected for the cases of assault with a gun and armed robbery, particularly 

with respect to the former. One reasonable scenario here would revolve not 

only around gun availability but also around the minimum jail sentence. Given 

that the criminal is a rational decision-maker, he perhaps would vie for other 

weapons in lieu of guns. 

The following analysis looks at the crime related data for homicide, gun 

assault, and armed robbery. It should be noted that this analysis does not 

address the latter point. That is, it does not look at all assaults versus 

gun assaults to see if the law merely deters gun assaults by effecting an increase 

in other assaults. 

Methodology Overview  

Previous Technical Notes [ 2, 3 ] have pointed out the success of the multi-

plicative empirical-stochastic models of order (p,d,q) x (P,D,Q) s  in modeling 

the monthly crime occurrences as tabulated in the Uniform Crime Reports. This 

section commences with a brief overview of these model forms. In this section, 

we will also review the highlights of Technical Notes #10 and #14 which addres-

sed the methodological approach needed to detect shifts in a (0,1,1) model form. 

For a temporal sequence of crime occurrences (Z t ) for a given index crime, 

the general form of the multiplicative model of order (p,d,q) x (P,D,Q) 5  is giv-

en by 
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where cp (B) and 	(B) are the nonseasonal and seasonal autoregressive operators, 

e (B) and 0
Q
(B ) are the nonseasonal and seasonal moving average operators, V

d 

and V
D 

are nonstationary and seasonal differencing operators and S is the sea-

sonal lag. For example, the multiplicative model of order (0,1,1) x (0,1 '1)12 

is explicitly written as 

Z
t
- Z

t-1
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When there is no seasonal component, (P=0, D=0, and Q=0), the multiplicative 

model reduces to the ARIMA model of order (p,d,q), which is given by 

$p  (B)V
d 

Z
t 

= 0q  (B)at 
	 (3) 

Thus, (0,1,1) models are of the form 

Z
t 
= Z

t-1
- 0  at-1+  a

t 
. 	 (4) 

In the previously cited modeling of the seven index crimes, each crime was 

shown to be represented by a (0,1,1) x (0,1,1) 12  form. Since P,D, and Q are 

not zero, then this seasonal component will be used to transform the original 

crime data Z
t 

to W
t 
where W

t 
is described by a (0,1,1) integrated moving av-

erage model. That is, 

where 

P
(BS ) OD 
 w  

OQ (Bs ) t  

(1-8 B)  wt- (1-B) a
t 

For a (0,1,1) x (0,1,1) 12  model, equation (5) becomes 
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where W
t 
= [(1- 0

1
B) / (1-B)] a

t 
. By using long-division, we see that equation 

(6) can be written 

	

Wt 
	+0Z 	-0Z 	+ 0Z 	- 0

2
Z 	+ 0Z 	. . 	, 	(7) 
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which is an infinite series. Because W depends on infinitely many Z t ' i s this 

poses several startup problems in applying the transformation. For example, 

W1 
= Z1- 

 Z-11

+  0
1
Z
-11

- 0
1
Z 	. . 2 

yet we do not have any observations prior to Z 1 . There are several viable al-

ternatives to overcome this difficulty, of which we shall consider two. In both 

alternatives, we let Z t  = 0 for t < 0. Thus, from equation (7), we have that 

W
1 

= Z
1 , 

. 	. , W12  = Z12  , W13 =Z13-Z1+O1Z1 = Z13  -Z1+ 011i1 
 , 
	. , W

24 
 

Z24- 
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+ 0  Z

12 
= Z

24
- Z

12
+  0

1
W
12 , 

etc. In general, 

W
t 
= Z - Z

t-12+ 1
W
t-12 

In the first alternative, we let W
1 
 = Z1 , . . . , W12 

= Z12 and then obtain 

successive values of W
t 
by making use of the above equation. Thus, V1  = Zi  , . 

' W12 	Z12 ' W13 	Z13- Z14. elW1 
, etc. The W 's obtained in this fashion = 	 =  

will be denoted Transformation 1. In the second alternative, we let W
1 
through 

W
12 inclusive equal to zero. In this case, W13 

= Z
13

- Z
1 ' 
	

' W24 = Z24-  

Z12, W
25 	Z25  Z13+ 01W13  , etc. These W

t
's will be denoted Transformation 2. =  - 

In both transformations one discards W
1 

through W
12 ' inclusive, since a twelfth 

order difference was used. 
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When evaluating a change in the process level, a policy maker would like 

his procedures to yield minimal real time delay between the time frame in which 

the process shifted to the time frame of shift detection, assuming a shift oc-

curred. The transformation, presented in equation (6), ensures early detection 

from the (0,1,1) within component structure. Therefore, the within component 

(the (0,1,1) segment) of these-models is of primary focus in our analysis. Let 

us now review the methodology needed for detecting a shift in a (0,1,1) model. 

In our current problem setting, decision makers are presented with a total 

of N = n
1 
 + n

2 
observations, where the first n

1 
observations occur prior to an 

intervention effect, A, while the second set of n
2 
observations occur after A. 

These nl  + n2  observations are denoted by Z1  , . . . , Zn , Znl4.1 , ' 
i  

Z
n +n 

. It is assumed that all N observations emanate from an ARIMA (0,1,1) 
1 2 

model, which can be expressed in random shock form as: 

Z = L + a 
1 	1 

t-1 
Z
t 
 = L + (1-0 ) y at_ +a,t= 2 , . • • , n 

1 	t-j 	t 	 1 
j=1 

while 
t-1 

Z
t 
= L + & + (1-0 1 ) y at-j  . +at  , t = n1  +1, . 	

' n1 + n2 ' 	(9) 
=1 

where the parameter 0
1 
is known to a sufficient approximation. This is not an 

unreasonable assumption when the data base is fairly large. The only unknown 

parameters in equations (8) and (9) are L, the true level of the process at t = 1, 

and 6, the shift accompanying the intervention effect. 

In Technical Note #10, it was shown that point estimates of L and 6 are 

given by: 

(8) 
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In order to make additional statistical inferences, one must assume that 

the a
t
's of equations (8) and (9) are NID(O,a2), where a

2 
is an unknown para- 
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meter representing the variation of the residual at 's. An estimate of a
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is 

provided by 
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Although the point estimate of 6, given by equation (11), provides some 

indication of the magnitude of 6, additional flexibility above and beyond the 

point estimate is needed to allow the decision maker to test H :6=0 vs. H
1
:6i0. 

If the null hypothesis of no shift is true, then 
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By making use of the distributional property of '5, a confidence interval esti- 

mate for (5 can also be provided: 

r 	2(n + 
4  

	

[1-8
1 	

1 	(1-0 ) (1+81 ) 
+ t 	 1 	1  — a/2,111+ n2-2 a 	 

	

r 	2nii fl_  2no 

Li  81 J L 81 J 

(15) 

This confidence interval estimate of 45 is extremely useful when one rejects 

the null hypothesis of no shift. The confidence interval is of the form (c 1 ,c2 ), 

where cl  < c2 . If both c l  and c 2  are positive, then the decision maker can be 

quite sure that there has been a positive shift in the level of the series such 

as would accompany a change in reporting attitude. The commencement of a crime 

reduction program should be reflected by a confidence interval where both c l  and 

c
2 
are negative. A confidence interval in which c

1 
< 0 while c

2 
> 0 is indica-

tive of no shift in the series level. That is, even if there was a shift in the 

level of the series, it was not enough to be statistically significant at the a 

level. Furthermore, an interval from a large negative value of c
1 

to a small 

positive one for c
2 indicates that if the shift is positive, its magnitude is 

probably small.' 

In order to make this methodology viable, the computer program SHIFT was 

written to perform the calculations needed for making inferences about L and 6. 

The details of this are presented in Technical Note #14. 

In summary, the methodology consists of transforming out the (P,D,Q) 3 

 component of the multiplicative model, leaving only the (p,d,q) component. 

The methodology presented in Technical Note #10 is then used for detecting 

a shift in this (p,d,q) component. The next section focuses on the imple-

mentation of this methodology by analyzing homicide (BOH), assault with a 

gun (BAG), and armed robbery (BAR) for the City of Boston. 



157 

Analysis  

In this section, three examples are presented of the earlier discussed 

methods for determining a statistically significant process shift. The ex-

ample data represents the monthly occurrences of homicide, assault with a 

gun, and armed robbery for the City of Boston from January, 1966 through 

October, 1975. Figures 1, 2, and 3 display a segment of these series.. 

As a first step in analyzing these three crimes for a shift in their 

levels of occurrence, it was necessary to identify the models of the under-

lying processes and to estimate the models' parameters. This was accomp-

lished by using identification and estimation procedures cited in previous 

technical notes. The results are shown in Table 4. 

To explore the results presented in Table 4 in more detail, let us 

specifically consider the BAG data file presented in Table 1. The identifi-

cation procedure suggested that a (0,1,1) x (0,1,1) 12  model was appropriate 

in describing Boston's monthly occurrences of assault with a gun, while the 

estimation procedure revealed that 0 1  = 0.7751 and 81  = 0.8267. Since neither 

confidence interval for each of these parameters contains the value zero, both 

of these parameters are retained in the model. These results agree with the 

results presented in Technical Note #9 for the more general crime of assault 

in that a (0,1,1) x (0,1,1)
12 

model was also appropriate there. By using the 

value of 0
1 
 = 0.7751, one then obtains two new data files: BAGSI and BAGS2. 

Both of these data files contain only 106 data points (as opposed to the orig-

inal 118 data points) and were obtained by using the following recursive re-

lationship: 

Wt 	zt - zt-12 	olWt-12' 
	 (16) 



158 

70 

60 

50 

40 

1/73 	 1/74 	 1/75 	4/75 

Figure 1. Boston's monthly occurrences of assault with a gun (series A) and 

the seasonally adjusted data (series B). 



Figure 2. Boston's monthly occurrences of armed robberies (series A) and the 

seasonally adjusted data (series B). 
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Figure 3. Boston's monthly occurrences of homicide 

(no seasonal component). 



Table 4. Properties of. Data Bases Used in the Analysis 

Code 

Name 

-Parameter Values Residual 

Variance 8 1 	
01 

ASSAULT* 0.56 	0.63 

BAG 0.8267 	0.7751 79.79 

BAGS1 0.8065 	- 73.02 

BAGS2 0.8357 	- 79.68 

ROBBERY* 0.46 	0.73 

BAR 0.5128 	0.7905 1439 

BARS1 0.4996 	- 1469 

BARS2 0.4986 	- 1474 

HOMICIDE* 0.81 	 - 

161 

* Values obtained from Technical Note #9. 



162 

where 0
1 
= 0.7751. The 106 values of W

t 
contained in BAGS1 were obtained using 

Transformation 1 while those in BAGS2 were obtained using Transformation 2 (re-

fer to section on methodology overview). Since the W
t

I s represent the (0,1,1) 

within component structure of the process, it is these data points to which the 

shift detection methodology of Technical Note #10 will be applied. Because of 

the startup problems mentioned'earlier, the estimation procedure was used to es-

timate the first-order moving average parameter of both BAGS1 and BAGS2. For 

BAGS1, 0 1  = 0.8065 while for BAGS2, 0 1  = 0.8357. Thus, even though the Wt 's 

differ for BAGS1 and BAGS2, the values of their moving average parameters are 

nearly identical. We also see from Table 4 that Var(a
t
), the residual variance, 

are all in the same neighborhood. For these reasons, the shift detection meth-

odology will be directed solely to BAGS1. Since similar statements are appli-

cable to the BAR data base only the BARS1 data base will be used to detect a 

shift in armed robbery. Because the occurrence of homicide does not follow a 

seasonal pattern, we need an estimate only of the moving average parameter, and 

this was equal to 0.81 (refer to Technical Note #9). 

We will first consider the crimes of assault with a gun and armed robbery. 

For our problem setting, we originally had 118 data points for each of these 

crimes, and this covers the period from January, 1966 through October, 1975. 

The segment from January, 1973 through October, 1975 is presented in Figures 1 

and 2. Since a seasonal differencing operator was applied to the original data 

(Zt ), this leaves us with 106 data points (W
t
) comprising the nonseasonal com-

ponent. If we can assume that the W
t
's correspond to the Z

t
i s, then this data 

extends from January, 1967 through October, 1975. The latter thirty-four months 

of these nonseasonal components is depicted in the lower portions of Figures 1 

and 2. It is these nonseasonal components that will be examined for a statis-

tically significant process shift. We will be testing H 0 :6 = 0 since we have no 

prior information regarding the magnitude of 6. That is, we wish to test that 
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the process level will be unchanged in the future from what we have observed 

in the past. 

Table 5 summarizes the analysis for assault with a gun. We will see that 

the analysis and subsequent conclusions are contingent upon our reference point. 

If we are standing at October, 1974 (n
1 
= 94) and have information regarding 

only November, 1974 (n 2  = 1), we have strong reason to believe that no 

shift has occurred because the significance level is approximately one. If we 

continue to remain at October and look forward two, three, even four months, 

we still must conclude that the shift, if any, was not statistically different 

than zero. The conclusion remains unchanged even when we look forward through 

October, 1975 (n2  = 12). However, the estimates of d as well as the signifi-

cance levels for this reference point of n l  = 94 decrease as the number of 

months we look ahead increases. This phenomenon occurs because even though the 

process does remain relatively stable through February, 1975 (n
2 
= 4), gun as-

saults decreased dramatically commencing March, 1975 and remained at a lower 

level. Thus, for n 1  = 94 and n2  = 5 , . . . , 12, we conclude that the process 

level has not shifted because we are mixing the pre-and post-shift observations. 

However, this is not the manner in which we advocate using the shift methodology. 

The larger values of n
2 
were used only to indicate the long-term behavior of any shift. 

Since we did not reject H 0 :6=0 for nl  = 94 and n 2  = 1, the data element in n2 

 consistent with the past process data elements contained in n
1 
would be added to 

those contained in n
1 
 and the analysis repeated. For both n

1 
= 95, a2  = 1 and 

nl  = 96, n 2  = 1, we again conclude that there has been no change in the process 

level. Note that for the n l  = 96 reference point, we again experience the phen-

omenon of decreasing estimates of 6 and decreasing significance levels as n
2 

in-

creases. This is especially evident as n
2 increases from 2 to 3. Again, this 

suggests that the process level may be changing between February and March of 1975. 

This is substantiated when n
1 
= 97 and n

2 
= 2. Since we conclude that there has 



Table 5. Shift Detection Results for Assault with a Gun. 

T 	SIG. LEVEL 	95% CONY. INT. 

94 1 0.04 	0.00 0.997 (-16.13, 17.10) 

2 3.79 0.60 0.550 (- 8.74, 16.31) 

3 3.30 0.59 0.557 (- 7.80, 14.40) 

4 2.93 0.57 0.576 (- 7.44, 13.29) 

. . 

. . 

. . 

12 -5.13 -1.03 0.307 (-15.05, 	4.79) 

96 1 0.94 0.12 0.903 (-15.13, 17.00) 

2 0.61 0.10 0.922 (-11.80, 13.03) 

3 -8.38 -1.44 0.153 (-19.95, 	3.18) 

4 -10.84 -1.93 0.051 (-21.71, 	0.04) 

5 -9.90 -1.83 0.063 (-20.34, 	0.54) 

6 -10.79 -2.10 0.038 (20.98, -0.61) 

. . 
• • 

. . . 

10 -11.23 -2.28 0.025 (-21.00, -1.45) 

97 1 0.10 0.01 0.990 (-15.88, 16.08) 

2 -13.74 -2.13 0.036 (-26.56, -0.92) 

98 1 -28.21 -3.52 0.001 (-44.11,-12.31) 

2 -24.56 -3.96 0.000 (-36.88,-12.24) 

. . . . 

' 
. 

. 

. . . 

8 -18.01 	-3.76 0.000 (-27.50, -8.52) 

164 
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been no shift in the process for n1 
= 97, n

2 
= 1, we update n

1 
by one. When we 

are standing at February, 1975 (n1  = 98) and have information regarding March 

(n
2 
= 1), we see that a statistically significant shift has occurred. The small 

significance level (0.001) strongly supports this conlusion. Furthermore, when 

we continue to remain at February and sequentially update n 2, we see that the 

significance level remains at exceptionally small values (0.001 or less). Thus, 

commencing in March of 1975, the process level shifted dramatically and it con-

tinued to remain at this level, at least through October, 1975. That the level 

of gun assaults significantly decreased one month prior to April (the official 

enactment date of the law) is not too surprising in view of the early publicity 

provided by the news media. 

Let us now turn our attention to armed robbery and again use October, 1974 

(n
1 
= 94) as our first reference point. Table 6 summarizes the shift detection 

results for this crime. If we have information regarding only November, 1974, 

(n
2 
= 1), we would conclude that the process level has not changed. As a matter 

of fact, we would cling to this conclusion at least for five additional months, 

i.e., n2  = 5. Although this suggests relative stability within the October, 1974 

through March, 1975 time frame, subsequent analysis obtained by updating n
1 

re-

vealed that a statistically significant decrease occurred at the 0.061 level when 

n
1 
= 95, n

2 
= 1, while a statistically significant increase occurred at the 0.012 

level when n
1 
= 96 and n 2  = 1 . Another statistically significant decrease occur-

ed when n1  = 98, n2  = 1. However, because the data element contained in n 2  is 

not consistent with the n
1 

data elements for this time frame, one may retain the 

relative stability conclusion that was proposed when n
1 
= 94, n

2 
= 5. Let us 

now update our reference point to February, 1975 (n1  = 98) and look one month 

ahead. We conclude there has been a process shift at the 0.033 significance lev-

el; viz., a desirable decrease. By incrementing n
2 

for this reference point, we 

see the decreasing significance levels and continued, relatively large negative 



Table 6. Shift Detection Results for Armed Robbery 

n1 
n
2 

(S T SIG. LEVEL 95% CONF. INT. 

94 17-.71 0.49 0.622 (-53.48, 88.90) 

-12.95 -0.40 0.691 (-77.50, 51.61) 

C
r) 5.32 0.16 0.871 (-59.51, 	70.15) 

5.70 0.18 0.860 (-58.41, 	69.80) 

1.91 0.06 0.954 (-63.30, 	67.12) 

98 -80.36 -2.17 0.033 (-153.86, 	-6.86) 

-73.28 -2.22 0.029 (-138.74, -7.82) 

-85.38 -2.63 0.010 (-149.84,-20.92) 

s
t
  -87.73 -2.72 0.008 (-151.62,-23.83) 

-86.96 -2.72 0.008 (-150.50,-23.42) 

-87.69 -2.74 0.007 (-151.10,-24.28) 

-86.98 -2.70 0.008 (-150.90,-23.06) 

-86.93 -2.71 0.008 (-150.55,-23.30) 

99 

r
4

 -22.49 -0.60 0.553 (-97.36, 52.38) 

-50.73 -1.49 0.140 (-118.29, 16.84) 

100 -81.83 -2.18 0.032 (-156.45, -7.22) 

-79.71 -2.38 0.019 (-146.11,-13.31) 
. . 
. . . 
. . . 

-72.91 -2.25 0.027 (-137.20, -8.62) 

101 

1--1 	
C

A
 	

M
...1- 	

L
r) 

-35.60 -0.93 0.355 (-111.59, 	40.39) 

-24.14 -0.71 0.481 (-91.91, 43.63) 

-29.44 -0.89 0.378 (-95.41, 	36.52) 

-23.52 -0.71 0.482 (-89.63, 	42.59) 

-23.05! 	-0.70 0.488  (-88.76, 	42.65) 

166 
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estimates of the process shift. This suggests a significant decrease in the 

level of the process and its maintenance at this reduced level. When we change 

our reference point to April, 1975 (n1  = 100), we again see that all the sig-

nificance levels are less than 0.05 for every possible value of n 2. The results 

for the February and April reference points indicate a substantial decrease in 

the number of armed robberies commencing with February, 1975 and continuing with 

April, 1975 through October, 1975. Again, the gun control law has left its im-

pact. 

A plot of the monthly occurrences of homicide from January, 1973 through 

October, 1974 is shown in Figure 3. Since there is no seasonal component in 

homicidal occurrences, we retain the 118 observations given in Table 2 and note 

that April, 1975 corresponds to n 1  = 112. Table 7 summarizes the results of de-

tecting a shift for homicide. 

When we are standing at December of 1974 with 108 months of past informa-

tion about the process and information for any subsequent month(s) up to n
2 

= 10, 

the analysis revealed that at no time was the significance level below the 0.460 

level. As a matter of fact, for all subsequent values of n
1 

(up to 117), there 

were only two instances in which the significance level was less than 0.30. For 

n
1 
= 109, n

2 
= 1, the significance level was 0.125; for n

1 
= 109, n

2 
= 4, the 

significance level was 0.203. Thus, it is reasonable to conclude that there has 

not been a shift in the monthly occurrences of homicide from at least December, 

1974 through October, 1975. If the new law has had an impact on homicide, the 

results are not statistically significant at the usual levels of significance. 

Thus, the gun control law has affected armed robbery and gun assault while 

any effect it may have on homicide has not become apparent. Because of the large 

proportion of residential homicides, any future impact of gun control on homi-

cide in general may not show up for several years, if ever. 



Table 7. Shift Detection Results for Homicide 

n1 n2 

... 
6 T SIG. LEVEL 95% CONF. INT. 

108 

r-i  
C

- 4
 
0

1
  

.1
-  
I
n

 .
.
o
 r-..
 c
o

 cs ,
 
0

 
r-I 

1.50 0.40 0.690 (-5.93, 8.94) 

-1.92 -0.66 0.513 (-7.73, 	3.89) 

-1.11 -0.43 0.670 (-6.27, 	4.05) 

-1.19 -0.49 0.626 (-6.01, 	3.63) 

-1.73 -0.74 0.460 (-6.37, 	2.90) 

-1.53 -0.67 0.502 (-6.04, 	2.98) 

-1.20 -0.53 0.592 (-5.64, 3.23) 

-1.16 -0.53 0.601 (-5.54, 3.22) 

-1.13 -0.52 0.605 (-5.46, 	3.20) 

-1.27 -0.59 0.559 (-5.58, 	3.03) 

109 1 -5.78 -1.55 0.125 (-13.19, 	1.62) 

110 1 1.32 0.35 0.727 (-6.14, 	8.77) 

111 1 -0.93 -0.25 0.804 (-8.36, 	6.49) 

112 1 -3.76 -1.01 0.316 (-11.15, 	3.63) 

113 1 0.96 0.26 0.798 (-6.43, 	8.35) 

114 1 2.78 0.75 0.456 (-4.58,10.13) 

115 1 0.25 0.07 0.947 (-7.09, 	7.59) 

116 1 0.20 0.05 0.957 (-7.11, 	7.51) 

117 1 -2.84 -0.77 0.442 (-10.12, 	4.44) 
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Conclusions  

A statistical evaluation of the Massachusetts' Gun Control Law has been 

conducted. The evaluation covered the time period prior to enactment of the 

law and included a six month horizon after enactment of the law. This eval-

uation centered on the laws' potential impact on the police component of the 

Massachusetts' Criminal Justice System, in particular, the occurrences of hom-

icide, assault with a gun, and armed robbery in Boston. 

The analysis, which employed empirical-stochastic models with an embedded 

shift parameter, has indicated a statistically significant decrease in both 

armed robbery and assault with a gun in this time period. No statistically 

significant changes in the homicide rate, however, were observed. Further, 

the specific time points in which these decreases were noted strongly suggests 

their probable direct association with the introduction and enactment of this 

law. 

It should be noted that this work is not intended to be the total evalu-

ation of the Gun Control Law. The methods and results, however, of this ini-

tial evaluation would suggest its use in continual monitoring. For example, 

in monitoring over longer horizons, any real changes observed here in armed 

robbery and assault with a gun might dissipate with the occurrence level re-

turning to the pre-gun law level or might, in fact, more desirably perpetrate 

at its newly observed lower level. In addition, it is expected that, even 

though the homicide rate is not now effected by the law, a longer horizon is 

needed to allow for observation of any potential real-time delayed impact. 

Further, this initial evaluation should be expanded to address non-gun rela-

ted crimes to assess whether the law is, in addition to deterring gun-related 

crimes, displacing previously potential gun related incidences to comparable 

non-gun related incidences. 
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The initial evaluation, nonetheless, has illustrated, with real data, the 

feasibility of statistically quantifying in an evaluation setting changes in 

the overall criminal justice environment. 
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Stochastic Modeling and Analysis of Crime 

July 1, 1976 - September 30, 1976 

(Project Director/Principal Investigator: Dr. Stuart Jay Deutsch) 

This quarterly report is intended to summarize the progress and events 

that have occurred during the fifth quarter of Grant 75NI-99-0091. 

Technical Note #21, "Preliminary Between Cities Comparison of Crime Models", 

describes the procedures for comparing the univariate time series models devel-

oped earlier for each of the index crimes. Joint confidence intervals are 

developed for six of the eight index crime rates which resulted in three parameter 

models. 	Pictorial representation of the joint confidence intervals are pre- 

sented for Atlanta, Boston, Cleveland, Kansas City, Los Angeles, Portland, and 

St. Louis for the following crime rate models; all crime, vehicle theft, assault, 

larceny, robbery, and burglary. Univariate confidence intervals are also summ-

arized for the crime rate models of homicide and forcible rape for all cities 

understudy. 

This note represents the first report on our ongoing effort of identifying 

differences between crime rates in cities. Currently, we are reviewing previously 

reported literature on socio-economic and demographic variables and their impact 

on crime rates. Simultaneously we are accumulating this type of data for subse-

quent statistical analysis and correspondence to the observed differences in the 

parameter values of our crime models. 

In the next Technical Note #22 titled, "A Negative Cycle Approach for the 

Non-linear Transportation Model of Criminal Displacement and Deterrence", the 

computational efficiency of the displacement and deterrence model is addressed. 

A refinement which results in an order of magnitude saving in the computational 
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time is presented here. In previous technical notes using the displacement 

and deterrence model on sample data the computational times observed necess-

itated modification to the algorithm prior to using the model on a full set 

of data. With this modification using a negative cycle approach we are now 

in a reasonable position to apply the model to a full data set. 

During this quarter we have expanded further effort in accumulating a 

data base for this model. We have identified the availability of the needed 

data in Kansas City. However, "constraints" on manpower in the data section 

in Kansas City does not allow transfer until next spring. In addition, we 

have received approximately 150,000 records from Atlanta for one calender 

year. We are currently encoding this information to assess its applicabil-

ity. We feel however, that this full data set will be useful, particularly 

in addressing the displacement capabilities of our current model. 

Technical Note #23 titled, "An Overview of the Development of a Criminal 

Displacement and Deterrence Model", summarizes the progress to date, future 

considerations, and work to be done on the displacement and deterrence model. 

On August 24, 1976, a site visit was conducted. Here, we presented the 

work completed during the current quarter and the previous four quarters of 

our effort. The full site evaluation is contained in TA#184, "Stochastic 

Modeling and Analysis of Crime", prepared by J. Thomas McEwen, Ph.D., PRC Pub-

lic Management Services, Inc. 
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TECHNICAL NOTE #21 

Preliminary Between. Cities Comparison of Crime Models 

Introduction  

In earlier notes, univariate time series models were developed for the 

part I, F.B.I. Index crimes [1,2,3]. One result of these modeling efforts was 

that each index crime was described by a single model form. Therefore, any 

differences in the characteristics of the j
th 

crime type between cities is des-

cribed by differences in the parameter value(s) associated with the models. 

In six of the eight crime types; all crime, vehicle theft, assault, larceny, 

robbery, and burglary, resulted in a three parameter model. For homicide and 

forcible rape the resulting models were two parameter models. In each of these 

eight categories, either the variance of the observations or the variance of 

the model's residuals must be specified along with the remaining (p-1) autore-

gressive or moving average parameters. 

Inference about similarities or differences in city crime rates are depen- 

.th dent upon the joint confidence interval of the parameters within the J-- - crime 

category. The purpose of this technical note is to develop joint confidence 

intervals for the crime rate models so that preliminary comparative analysis can 

be made. In the first section, the methodological procedure for developing joint 

confidence intervals is briefly described. Following this development, the joint 

intervals for the six crime types listed earlier for the cities of Atlanta, Boston, 

Cleveland, Kansas City, Los Angeles, Portland, and St. Louis are constructed. A 

similar comparison for the crime types of homicide and forcible rape based upon 

marginal confidence intervals is then presented. Lastly, a discussion of these 

preliminary results and further consideration and future tasks are summarized. 
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Joint Confidence Intervals  

In this section we proceed to develop the joint confidence interval 

specification via the likelihood function. To start, recall that our basic 

assumption regarding the residuals of the univariate models is that a
t 

NID 

(0,a
2
). Since a set of at

's, t=1,2,...N are independent, and each is nor-

mally distributed, then for any of our models; 

1 -1/13-.
2 
 /a

2  
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1, 2 	 1 2 
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n
11,2,,p,c) —(   	 or 

-‘12 .rr a 

From a tentative model form, the a
t'
s are related to the observations Z

t
, 

a
t 
= Z

t 
- 	 ,1 0 6 0). 

LThus, we can replace L a2  by, 
t=1 t  

2 

t 
- f(Zt,"  0 6,0)) . _ 

t=1 

The likelihood function for the joint distribution of the residuals is 

then, 

1 
-n 2 ,7s2  

k(cP, 1) , 0 , 0 14 	 S0, 4) , 8 ,°), 

where s(0,o,e,o) is called the sum of squares function. It should be noted 

that given the observations , 	 this functions value is only dependent upon 

the choice of numerical values of cp,0,6, and 0. The problem of estimation 

is that of selecting the appropriate combination of these parameter values 

to maximize the likelihood function. Further, it should be noted that the 
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estimate of a
2 
is also determined from the choice of these autoregressive and 

moving average parameters, since it is the variance of the models residuals. 

Thus, upon taking natural logs, 

L(4),(1),(3,0 Z.It C  Sq,(1),B4O). 

The sum of squares function can be broken down to two components. For 

notational convenience, let us simply denote all parameters by s and f(Z 
t
4,4), 

e,e) by X R. Then, 

s(s) = (z t—x s) (z t—x s) = (z t—zt ) (z t—zt ) + (zt—x s) 1 (it—x s). 

The first term is the sum of squares due to the error and the second term, the 

sum of squares due to regression. It can be shown that given a set of N obser-

vations, S(s) has a Chi-Square distribution with N degrees of freedom, 

2 

	

S(s) 	a2 XN- 

Furthermore, the two components on the right hand side can be expressed as, 

2 2 
(Z -X 0 	-X 0q, a XK —t— 	t— 

2 2 
(Z —Z ) (Z —Z ) 	cr X N—K, -t -t -t -t 

where K is the number of parameters in 0 and where these two Chi-Squares are 

independent. 

Rewriting S(0) in more convenient terms, we have 

^ 	 - 

	

5(s) = S(s) + 	
1 
x x 

" 1  
Note, S(0 is quadratic in S, S(0) is a constant and (0-0 X1 X(13-0) is also 

quadratic. This last term, we will for simplicity, label Q(0). Thus, Q(0) 



defines the equation of an ellipse if K=2, an ellipsoid if K=3, and an hyper- 
, 

ellipsoid if K>3. The ratio of Q(0) to S(0) each standardized by their asso-

ciated degrees of freedom is distributed F, 

QOM( 
F 

S(0)/N-K 	
K,N-K . 

 

Pictorially the sum of squares function can be easily described by contours 

of constant sum of squares. The entire surface of this function for a two par-

ameter model is contained in Figure 1. Here we see that the minimum value of 

this function S(0) occurs at the least squares values of the parameters
1 

and 

0 2 . Further, if we move in any direction on the 0 1 , 02  plane away from the point 

01 , 0 2  the value of the sum of squares function is greater than S(0). The in- 
, 

crease in the value above the minimum value S(R) is dependent upon the distance 

of (0-0) as contained in the Q(0) expression. 

For each value of S(0) > S(0) a plane parallel to the 0 1 , 0 2  plane through 

the sum of square function produces a contour in the form of an ellipse or an 

approximate ellipse. This contour will be perfectly elliptical when the model 

is linear in the parameters and approximately elliptical when the model is non- 

linear in the parameters. The degree of elliptical approximation being dependent 

on the degree of nonlinearity. 

The larger the difference between R and 0, the larger the area of the contour 

and therefore, the larger the confidence that the values B will be contained in 

the contour. The exact association of this degree of confidence to a value of 

the sum of squares function which results in a given size contour is determined 

by fixing the type I or a error in the selection of a value of F, F
K,N-K,1-a. 

Thus, 

K 
= 

 Scritical 
 S(S) 	N_K 
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Figure 1. Sum of Squares Function for Two Parameter Model 
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gives the value of the sum of squares function that corresponds to the area 

in which our faith is (1-a) 100% that the parameters S are contained within. 

Construction of Joint Confidence Intervals  

The previously described method of developing joint confidence intervals 

was employed for the following crime types; all crime, vehicle theft, assault, 

larceny, robbery, and burglary. It should be noted that in each of these 

crime types the models contain three independent parameters, one of which is 

the residual variance (or alternately, the variance of the observations). As 

seen in the development of the joint confidence intervals through the sum of 

squares function, the entire surface is generated by different combinations of 

th 
the (p-1) autoregressive and moving average parameters alone, with the R-- para-

meter, a
2 , being fixed by the choice of the estimates of the previous (p-1) para-

meters. 

Thus, all three parameter crime models give rise to a sum of squares func-

tion of the same dimension as illustrated in Figure 1. For each of these surfaces 

the sum of square value corresponding to the ninety-five percent confidence 

interval was computed. Figures 2 through 7 contain the ninety-five percent con-

fidence intervals for all crime, vehicle theft, assault, larceny, robbery, and 

burglary, respectively. In these figures, each associated with a given crime 

type are overlays of the comparable confidence intervals for the cities of Atlanta, 

Boston, Cleveland, Kansas City, Los Angeles, Portland, and St. Louis. 

Marginal Intervals of Homicide and Forcible Rape  

For the crime types of homicide and forcible rape, the resulting models con-

tained two parameters. As in the case of three parameter models, the confidence 

interval of the parameters is reduced since a
2 
is fixed by the estimate of the 

moving average parameter. The confidence intervals for the moving average para-

meter for the crime types of homicide and forcible rape are contained in Figures 

8 and 9, respectively. 
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Preliminary Discussion of Results  

With the joint confidence intervals, direct comparison of the crime rate 

characteristics between cities for a given crime type can be made. That is, 

for a given crime type if the point estimates of the jlicity does not fall 

th. 
in the (1-a) 100% confidence interval for the 	city, ij, j=1,2,...n, i=1, 

2,...,n where n is the number of cities in the comparison set then the char-

acteristics of the crime rates are statistically different. 

For example, let us look at Robbery in the seven city set illustrated in 

Figure 6. The pairwise comparisons indicate that, at the 95% level of sig-

nificance; 

- Boston is Different from Atlanta 

- Kansas City is different than Atlanta 

- Portland is different than Atlanta 

- Kansas City is different than Cleveland 

- Kansas City is different than Los Angeles, 

with all other paired comparisons being statistically identical. 

Similar comparisons of the joint intervals for larceny from Figure 5 indi- 

cate that at the 95% level of significance; 

- Boston is different than Atlanta 

- Portland is different than Atlanta 

- St. Louis is different than Atlanta 

- Portland is different than Boston 

- St. Louis is different than Boston 

- Portland is different than Cleveland 

- St. Louis is different than Cleveland 

- Portland is different than Kansas City 

- Portland is different than Los Angeles 

- St. Louis is different than Portland. 

The cross tabulation between the above sets of statistically significant 

differences within Robbery and Larceny raises several interesting questions. 



19 

Note that of the five statistically significant paired comparisons within the 

crime type of robbery, two elements; Boston vs. Atlanta and Portland vs. Atlanta 

are also statistically different in the larceny comparison. Yet the statis-

tically significant difference in robbery noted for Kansas City vs. Atlanta or 

Cleveland or Los Angeles is statistically identical for the crime type of lar-

ceny. Also to be noted, is that several cross-comparisons that are statistically 

significant within the larceny comparisons are statistically identical within 

the robbery comparisons. 

As stated in the introduction, this note is a preliminary step in the iden-

tification and reconciliation of differences in crime rates. Our hypothesis is 

that different levels of select socio-economic and demographic variables will 

influence the crime rate. Currently, we are doing a more substantive statistical 

analysis while reviewing previously reported studies and results in this area. 

We plan to accumulate potential socio-economic/demographic data sets to relate 

such variables to the parameters of the time series models so that the models will 

have the self-contained capabilities of discrimination between crime rates. These 

studies will be reported in subsequent technical notes. 
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A Negative Cycle Approach for the Nonlinear Transportation 

Model of Criminal Displacement and Deterrence 

Introduction  

In Technical Notes [1,2,3] we have discussed linear and nonlinear trans-

, portation models for describing the flows in the criminal displacement model. 

Sample computational experience has indicated that the shortest path approach 

described by T.C. Hu [5] may prove to be time consuming for reasonable sized 

problems. 

In this technical note we briefly discuss another method due to Klein [6] 

for solving nonlinear (convex) transportation problems associated with the dis-

placement model. The approach described herein has the advantage of utilizing 

the (very fast) linear cost transportation method to obtain a "good" starting 

solution; thereby, reducing the total computational effort. 

The present approach requires the location of "negative cycles" in a net-

work. A "negative cycle" is a cycle (closed loop) around which the sum of costs 

is negative. We shall, later in this technical memo, discuss various methods 

for locating negative cycles. 

For clarity of presentation we shall assume that the nonlinear transporta-

tion problem is of the form: 

m m 
Minimize 	X 	X k..(x..) 

1=1 j=1 13 13  

subject to 

	

y x.. = a. 	i=1, . 
j=1 	1 

	

y x.. = b. 	j=1, . 
1=1   

	

x.. > 0 	i,j = 1, . 
— 

m 

(1) 
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where k..(x.,) is a convex function of the single variable x... Note that 
13 13 

if k..(x..) is convex then, 
1] 13 

kij ij l 
(x +1) - k.

j 
 (x..) > k. (x..) 	ij ij 

k (x -1) . 
— 	13  

We shall refer to the left-hand side of the above inequality as the up-cost, 

u. (x. ), and the right-hand side as the down-cost, d (x. ) associated with 
lj ij 	 ij 1] 

displacement flow x... 
1j 

The Nonlinear Transportation Procedure  

In the negative cycle approach to solving the nonlinear cost displace-

ment models we begin with any feasible displacement pattern satisfying the 

zone (node) labels. There are simple procedures for accomplishing this, as 

we shall see later in this note. 

Once a feasible displacement pattern is obtained, up-costs and down-costs 

are computed as follows: 

3 3 33 u.. (x..13 ) = k3... (x3...+1) - k1
..(x3...) 13  

d..(x..) = 1] 

if x. = 0 
1j 

k..(x..-1) - k..(x.) 	if x.. > O. 1J 	1] 	.  

Here, u..(x..) represents the incremental cost of increasing the displacement 
ij 13 

(flow) from zone i to zone j by one unit; d
ij 

 (x.
j 
 ) represents the incremental 

cost of decreasing x. by one unit. 

With the up-costs and down-costs defined, we look for a set of flows to 

change so that a new feasible displacement pattern results and the total cost 

(disutility) is reduced). This requires changing flows around a negative cy-

cle by the same amount. Unless special knowledge (in addition to convexity) 

of the cost function is at hand, it is best to change flows around the cycle 
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by a single unit; some flows go up and others go down in such a way that the 

constraint equations (1) remain satisfied. Given the cycle, this is very easy 

to accomplish. 

Once a negative cycle has been located and flows changed we are ready to 

repeat the procedure with a recomputation of up-costs and down-costs. The pro-

cedure is continued until such time as no more negative (improving) cycles 

exist in the network. 

An Improved Starting Solution Based on the Linear Cost Transportation Method  

Obviously, the "better" the starting solution, the more rapidly the nega-

tive cycles approach will converge to the optimal solution, as it must for 

convex cost functions. Since the linear cost transportation method is so fast, 

we may utilize it to obtain a reasonably good starting solution for the nega-

tive cycles, nonlinear method. It is best to utilize a cost function designed 

especially for the linear model when obtaining the initial solution. 

Once the linear transportation method has been applied to obtain an initial 

feasible displacement pattern we simply apply the nonlinear transportation meth-

od from this point utilizing its corresponding up-costs and down-costs until 

optimality is achieved. Experience indicates that, using the starting displace-

ment pattern specified by the linear transportation method, we proceed more 

rapidly to the (optimal) nonlinear displacement pattern specified by the non-

linear transportation method. 

The Comparison of Running Times for Various Negative Cycle Location Algorithms  

The nonlinear criminal displacement model involves examining a network for 

the existence of negative cycles. Numerous techniques are available for the 

search including a direct search method and various shortest path algorithms. 

It should be noted that our test problems were run on a 30 node network. 

Our first attempt was a method which terminated after locating 26 negative 
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cycles in 320 sec. The 26 cycles were inadequate to complete the evaluation 

of a single set of weighting values (a,S,y). 

The negative cycle location routine was reprogrammed using Florian's Di-

rect Search Method (DSM) [4]. Florian's algorithm completed 11 iterations in 

512 sec. which involved the evaluation of 11 sets of weighting factors and the 

discovery and subsequent tracing of 158 negative cycles. The 11 iterations did 

not provide a complete solution to the problem. The difficulty with Florian's 

algorithm as noted by Yen [7] is the upper bound on the number of additions and 

comparisons required to detect the existence of a negative cycle. Yen illus- 

trates that the DSM may require as many as E
N-1 

i 
(-1

).i! Additions and compari- i=1 

sons to locate a negative cycle (where N - number of nodes in the network). 

Yen suggests a dynamic programming algorithm for the shortest path problem 

which can be employed to locate negative cycles [8]. This shortest path algor-

ithm has an upper bound of N
3
/2. If the algorithm does not cover in N iterations 

it is because there exists at least a shortest route from some (i) to (N) that 

has more than N-1 arcs (i.e., a negative cycle). The cycle can be located by 

tracing the optimal paths at the Nth iteration. 

Yen's algorithm solved the example problem for the criminal displacement 

model in 42 sec. The linear model was solved in 5 sec. with an objective func-

tion value of 1218. The nonlinear model required 37 sec. for solution and had 

an objective function of 792. The complete solution to the nonlinear model re-

quired 39 iterations (.95 sec/iter.) and the location of 50 negative cycles. 

The efficiency of Yen's algorithm can be seen in that cycles of "large" negative 

value are located first. Whereas, Yen's algorithm solved the nonlinear model 

(39 iterations) by locating 50 negative cycles, Florian's DSM performed only 11 

iterations while locating 158 negative cycles. 

A worst case example problem for the nonlinear model was formulated and 

solved using Yen's algorithm in 72 sec. This problem involved 49 iterations 
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(1.47 sec/iter.) and the location of 117 negative cycles. A summary of the 

3 methods employed on the original 30 node network problem is shown in Table 

1. 

TABLE 1 

Algorithm Time (Sec.) Iterations Time/iter. #Cycles 

Simple 320 0 ... 26 

Florian DSM 512 11 46.54 158 

Yen 37 39 .95 50 
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TECHNICAL NOTE #23 

An Overview of the Development of a 

Criminal Displacement and Deterrence Model 

I - Introduction  

Over the past year a number of Technical reports [ 1, 3, 4, 5, 6, 7, 8 

have been developed which describe a displacement and deterrence model based 

on optimization methodology. In this memorandum we shall review the current 

state of development of that model. Through the memorandum we hope to bring 

into sharper focus the role of the displacement model in the evaluation of 

criminal justice projects and programs. 

In addition to reviewing the development of the displacement model and 

how it may be used, we shall also discuss how data may be obtained for the 

model and also what near term, future efforts remain for extension and re-

finement of the capabilities of the displacement model. 

What Do We Mean By Displacement? 

The current public perception is that crime is moving from the inner 

city out into the suburbs. Just what, exactly, does this mean? At one level 

this statement may simply mean that crime is increasing in the surburbs at a 

faster rate than in the inner city. It is, however, likely that a deeper 

sense of public perception exists: that increasing numbers of criminals are 

moving out of the inner city into the suburbs to commit their crimes. It 

is to this second level of concern that the current displacement model is 

directed. 

To better understand the displacement model, consider a metropolitan 

area. Suppose we consider the metropolitan area to be divided into a number 

of zones. The zones may be defined by natural boundries, economic conditions 

or any community cohesiveness factors. 
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If a criminal who resides in zone i also commits a crime in zone i we 

shall not regard this as displacement. However, if a criminal who resides 

in zone i travels to zone j to commit a crime that we shall regard this as 

displacement. Thus, the current model adopts a physical view of displace-

ment. 

Obviously, due to our point of reference, the individual zone, the con-

cept of displacement is a relative term. Clearly, if our definition of "zone" 

is small enough then displacement would always take place when crimes are 

committed; whereas if our definition of "zone" is large enough then no dis-

placement ever occurs. Much care must be placed on a proper definition of 

"zone" in order that reasonable conclusions regarding displacement can be made. 

What Is The Distinction Between Displacement And Deterrence? 

As we have indicated, displacement is a term used. to classify a specific 

action of a criminal, viz. the traveling from one zone to another to commit a 

crime. Deterrence represents the action of some outside force, the police, 

community, etc., which causes a criminal to not commit a crime which, in the 

absence of that force, he would most surely have committed. 

With this view, a clearly identifiable community goal would be the proper 

application of its total resources in much a way as to maximize deterrence, i.e., 

reduce crimes committed. A natural question is how does the concept of displace-

ment integrate into the concept of deterrence. 

A Potential Community Goal: Minimize Displacement  

It is often said that in order to effectively reduce crime it must first be 

contained. Applying this concept of containment to displacement, programs and 

projects might be evaluated on the basis of their ability to affect reductions 
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in crime displacement. Minimizing displacement is equivalent to containing 

the criminal. 

In subsequent sections of this memorandum we shall detail the displace-

ment model as well as its use and data requirements. Emphasis will also be 

directed toward the important relationship between the displacement model and 

the univariate models which have been utilized in other tasks of the contract. 
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II - Comparison with Regression  

In a forecasting mode the displacement model performs in essentially the 

same manner as a regression model. The fundamental difference is that regress-

ion models require a fundamental set of closed form equations which relate the 

forecasted values over each time period; whereas, the displacement model devel-

oped to date utilizes an optimization process to establish the forecasts. We 

shall briefly review the steps in the application of each method to provide a 

more direct comparison of the two. 

The fundamental steps in the application of a regression technique to ob-

tain forecasts of criminal displacement are as follows: 

la. Obtain historical data on criminal displacement (this requires 

crimes reported and cleared by arrests). This will become the 

dependent variable in the regression models. 

b. Obtain historical data on socio-economic, demographic and po-

lice resource data to be used as independent variables in the 

regression models. 

2. Establish appropriate forms for the regression models, re-

lating the independent variables to the dependent variables. 

Specifically, determine the form of the regression equations. 

3. Apply a least squares method to fit the regression models to 

the historical data. The results will be the attainment of 

the regression coefficients. 

4. Apply future forecasts of the independent variables to the 

regression models to obtain the future forecasts. This step 

corresponds to using the future values of the independent 

variables in the regression equations to obtain the required 

estimates. 



The steps in the application of the displacement model in a forecasting 

mode are similar. 

la. Obtain historical data on criminal displacement. 

b. Obtain historical data on socio-economic; demographic and 

police resource data. 

This step is identical to that of the regression model. 

2. Establish appropriate forms of the criterion function in the 

displacement model. Unlike the regression models, equations for 

direct relationships between displacement and the independent 

variables are not established. Rather, equations relating the 

attractiveness values to the independent variables are estab-

lished. 

3. Apply a search procedure to determine the values of the par-

ameters of the criterion function which provides the "best" 

(in a least squares sense) fit to the historical data. This 

step is similar, although the exact execution of the step is 

different from the corresponding step in the regression model. 

4a. Apply the univariate models to obtain crime occurrence and 

criminal activity projections. 

b. Apply future forecasts of the independent variables and the 

forecasts from step 4( ) to the displacement model to obtain 

the future forecasts of displacement. 

The fundamental difference in this step is that instead of using equations in 

a closed form manner, the displacement model utilizes an optimization proce-

dure. 

As can be seen, the regression method and the displacement procedure used 

in a forecasting mode are very similar in their application. Two important 



differences should be discussed. First, the displacement model includes the 

effect of interactions and interrelationships in the displacement data. In-

dividual regression models preclude any capability of handling interaction 

effects. Second, the regression equations attempt to relate displacement di-

rectly to the independent variables. These relationships are complex and as 

such, are difficult to understand. On the other hand, the displacement model 

attempts to relate the relative attractiveness of zones to the independent 

variables. While this relationship is also difficult to understand it is one 

step less removed than that of regression. Also, displacement projections are 

more readily interpretible when accompanied by attractiveness values. 
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III - The Displacement and Deterrence Model  

r 	 In this section of the memorandum, we address the fundamental structure 

of a quantitative model for displacement and deterrence. Further, the organ-

ization of this section is such that we will consider displacement appart from 

deterrence. We create such a format in order to make clear a basic differ-

ence which exists in the way the two aspects are analyzed. 

The notion of mathematical modeling, in general, is an important one in 

quantitative evaluation. Generally speaking, a given system (marketing, inven-

tory, criminal displacement, etc.) is represented symbolically such that variables 

and parameters are combined into appropriate mathematical functions which re-

flect, analytically, the specific system's attributes. The model, in essense, 

mimics the system and a specific outcome relative to the "real" system can be 

analyzed in the form of solutions to its mathematical representation. Obviously, 

the decision making power of a model is only as good as its construction. Fol-

lowing, we consider a model for criminal displacement and look specifically as 

what its manipulation involves and what its solution means. 

Network Flows and the Basic Model of Crime Displacement  

Earlier, a definition for displacement was suggested which referred to the 

physical transport of a crime from one "zone" to another "zone" in some metropol-

itan region. That is, if a crime is committed in a given zone by a perpetrator 

who resides in another zone, then displacement of that crime has resulted. If the 

offender resides in the zone of commission, no displacement has taken place. Let 

II 

	

	us symbolize such a displacement system by using some elementary aspects of net- 

work models. 

Given a metropolitan region and some specification of zones, suppose we let 

each zone be a node or point. Further, let us assume that each criminal (or po 

tential, crime perpetrator) in any zone can move to any other zone to commit a crime. 
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Obviously, some zone to zone movement may be more intuitive than other, but 

we make no subjective specifications at this point. Then, in order to depict 

the movement from zone of residence to zone of crime connission, we can connect 

every pair of nodes (zones) by an arc (arrow). Each arc is directed or stated 

alternately, is pointing from one node to another node, in order to depict that 

movement of a crime is "from" some point "to" another. Consider Figure 1, where 

a four zone (4 node) metropolitan area is characterized. Note in the figure 

that every node has an arc directed from itself to itself. This depiction takes 

into account the instance where a crime is committed in the same zone as that 

of residence. Recall that such a depiction implies that no displacement has oc-

curred. 

The structure given in Figure 1 is, at least structurally, feasible. How-

ever, we can create a more manageable representation by transforming the informa-

tion in the figure to that of Figure 2 where a different network structure appears. 

In the network model in Figure 2, we create two columns of nodes, one depicting 

residence zones and another for crime location zones. Note that the residence 

nodes have arcs depicted away from them and the crime location nodes, arcs directed 

into them. Every arc in Figure 1 and hence, every displacement (or lack thereof) 

possibility is depicted in Figure 2. Although we make some modifications shortly, 

it is this new structure in Figure 2 that we adopt as the underlying network model 

for displacement. 

The structure in Figure 2 is nothing more than a schematic for crime displace-

ment. At this point, it may not be evident how the structure can be used in an 

analysis mode. Presently, we develop the notion of such a capability. The network 

depicted in Figure 2 is representative of a rather general and well-known class of 

network structures referred to as transportation problems. Briefly, the transpor-

tation problem specifies that quantities of some type of good be shipped (transported) 



Figure 1. Simple Network Depiction of a Structure for 

Modeling Displacement 

35 



residence 	 crime location 
zone nodes 	 zone nodes 

Figure 2. A Transportation Format for the Basic 

Network Model of Displacement 
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from some known destinations to a set of known demand points. A typical example 

would be the shipment of a commodity from a group of seaports to a group of inland 

bases. It is assumed that there is a unit cost of travel between every port and 

every base and that the objective is to satisfy the base demands with least cost 

shipping patterns. Alternately, we are seeking a set of "flow" patterns from ports 

to bases which minimize total cost. Our crime displacement problem can be consid-

ered a form of transportation model. 

Suppose we consider every node of criminal residence to be a seaport in the 

illustration above. Further, let every zone of crime commission be an inland base. 

Note that while the earlier example suggested distinct supply (ports) and destination 

(bases) nodes, our displacement model does not. That is, a residence node is also 

a potential crime commission node. This creates no difficulty in the ensuing ana-

lytical model. In any event, we are seeking a flow pattern from zone to zone 

where our "commodity" is a crime. 

Given that the displacement model takes on the characteristics of the classic 

transportation model, it remains that two items be considered before the direct 

analogy is complete. First, it is obvious that in a transportation problem there 

must be some specified level of availability of commodity at each of the shipment 

nodes. Similarly, every demand node must possess some requirement level. In our 

problem of crime displacement these requirement and demand specifications (which 

we will call node lables) take the form of potential crimes in a given zone i and 

forecasted crime occurrences in a zone j. These labels are considered input to 

the displacement model and are generated from the univariate time-series models. 

The second point that we must consider is the notion of the cost of crimin-

al (or crime) flow from zone to zone. Recall that in the literal transportation 

system, there exists a unit transportation cost say c. j  for all pairs of nodes i 

and j. Such a parameter was, in fact, a cost which would be assessed each unit 
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transported (fuel cost, labor cost, etc.) - Does such a cost make sense in the 

displacement model? In the literal sense, the answer would be negative yet there 

would be some measure of taxation or retardation (or its opposite::attraction) 

relative to a criminal's ability to move from i to j. If we view "cost" in a 

general sense then one might refer to c ij  values in the displacement model as 

resistence coefficients. For the present, we adopt such a convention. It is 

noted however, that the formulation of these cost indice or measures is a cru-

cial step in the construction and manipulation of our model. Consequently, we 

return to this point later in the memo. 

Using the Basic Network Flow Model  

In the current section, we consider how the classic transportation model 

can be used in the displacement format. Recall that we specify particular in- 

put data in the form of crime commission numbers: potential crimes to be committed 

by residents of each zone and committed crimes at each zone. Further, assume 

that the resistant costs between each pair of zones i and j are given by 

parameters,,c...The idea then is to "solve" the corresponding transportation 

model and in such a solution, interpret the corresponding implications relative 

to displacement. We know we can easily solve transportation like-problems in 

that numerous well defined and efficient mathematical techniques exist. 

In order to illustrate the use of the transportation model as a vehicle in 

displacement analysis, consider a simple problem. Suppose we let a metro area 

be divided into three zones. Suppose the zones are created subject to natural 

boundaries and let the corresponding transportation depiction be given by the 

structure in Figure 3. Further, suppose the specified crime lables for both 

residence zones and crime commission zones, be given next to the respective nodes 

in the figure. For example, it is forecast that ten crimes will be committed by 

residents of zone 1 and that zone 3 will be the location of 15 crime commissions. 
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Figure 3. Sample Problem Transportation Formulation 
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The resistance costs are given on each arc. We accept these cost numbers for 

now, but realize that they are representative of, indeed calculated from, some 

relevant socio-economic/demographic factors pertinent to the system or region 

under investigation. 

Suppose we seek .a displacement flow pattern that minimizes displacement cost 

xij 	unknown value of crime movement from i to j. That 

is,x.yeareaftervaluesofx
ij  

for all pairs i and j which minimize (generally, 

optimize) the displacethent cost. It can be easily verified (using a well known 

technique) that the best (optimal) set of values for x , are those given in Table 
13 

1. Relative to the network depiction, these flow values can be depicted in 

network form as in Figure 4. Note that all criminal residents of zone 1 commit 

their crimes in zone 3. Similarly, all potential crime perpetrators in zone 2 

commit their crimes in zone 2. Finally, perpetrators in residence zone 3 commit 

a portion of the crimes in zone 1 and a portion in zone 3. Note that the flow 

patterns are feasible in the example in that no more crimes are committed by res-

idents than were forecasted and that no more were recorded in any zone than were 

predicted. 

So then, what does a set of computed crime displacement patterns really mean? 

Without much analysis, it is clear that, alone, the solution of a given crime dis-

placement-type transportation problem provides little in the way of useful infor-

mation regarding current displacement and in particular, future displacement. 

Note in the above illustration a given set of flows were determined based upon a 

set of c1  values. Given an alternate set of such values, a new and possibly 

very different set of flows might result. What then is the value of solving the 

transportation problem in the first instance? In order to answer this question, 

we introduce the notion of tuning relative to the successive solution of iteratively 

created transportation problems and historical data. It is this tuning process 

that provides the key to the actual "model" of crime displacement. 
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Figure 4. Network Depiction of Computed Flows From Sample 

Problems. 



43 

Consider that we have a transportation model like that in the earlier 

illustration. Moreover, suppose we have arrest information relative to zone 

of residence and zone of crime commission. Let these historical data values 

begivenbyf.for all pairs i and j. Again considering the simple illustra- 
ij 

tion, suppose f 13  is 10, 
f22 is 15, 

recorded as zero. Given such a set of observed flow data, we would see that 

thecomputedflwsx.agree exactly with the historical values of f.. We 
ij 	 1j 

would then say that the transportation model was tuned exactly in that its sol-

ution matched precisely the values of real occurrence. Obviously, this sort 

of exact match is rare such that in the real application of the model we must 

affect an updating scheme which iteratively improves the match between x.. and 
3.j 

f. . . 
13 

Holicanarlatchorcomparisoribetweenvaluesx
ij 
 and f

ij 
 be improved? In 

fact,howcan itbealtered at alvF" agivenset off
ij  

values, the only way 

thematchbetweenxij 
	ij 
andfcan be improved is to change values x.

j 
 . This im- 

.. 
xi j . 

 the solution to new transportation problems and further, that new costs-- 

c.. need to be obtained. That is, the only way a new set of computed flows can 

be acheived is to alter the driving mechanism of the transportation model, namely 

the cost or resistance coefficients. A procedure is suggested whereby, this al- 

teration or perturbation can be made in an orderly manner until a point is reached 

whereparticularcostssayc.j 
	 ij 
resultwhichinturn,createvaluesxTahich match 

i  

closelythosevalues,f...we suggest that a match is "close" when the value of 

y 1(.ij
-f

ij
)
2 
is within some tolerable range. The result is a set of computed 

i j 
flows or to be precise, a set of costs, c

ij 
(which create flows) which are "tuned" 

to the historical data. 

f31  is 15 and f 33  is 5. All other f ij  are 
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Cost Coefficient.  Considerations  

It is a simple matter to remark that the tuning process involves the itera-

tive determination of successive values of c ij . It turns out that a non-trivial 

computational effort accompanies such attainment. More importantly, the func- 

ticalalconstructionforc.values can be an elusive consideration in itself. By 
ij 

functional generation, we refer to the mechanism by which costs of crime move-

ment are created. Specifically, we must assume the existence of some function 

for cif  which combines various system ingredients and considerations. In addi- 

tion we must determine the form in which those parametric attributes are combined. 

It is obvious that the construction of any function of crime movement cost 

is a complex issue. For example, what parameters are important as reflectors 

of crime transport? Clearly, a list could be created the length of which would 

be substantial. It is sufficient to remark that in subsequent work we address 

the problem of investigating those parameters relative to displacement and/or 

deterrence. To the extent that interfaces exist with the current research to 

date, care will be taken to make use of previous studies in the area. 

While the problem of cost function composition is important, the task of 

determining the form of the function, in general, may be even more crucial. Re-

call that the ultimate analysis with the displacement model is to achieve a set 

of displacement patterns which are affected by alternatives in cost coefficients. 

In short, successive values of these coefficients are calculated until a tuned 

model is achieved. To a degree, the ease of generation of values c. •  depends on 
1.3 

thestructureofthegeneratingfunction foreachc...Por example, given a 

set of system parameters say A, B, and C how do they combine mathematically such 

that successive creations of cif are achieved expediently and in a meaningful 

way? Is the general function of the form ABC? Is it AB/C? Perhaps Be A+C or 

even C [log (A/B)]? This is an important point for as we shall discuss subsequently, 
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if such a functional form is not constructed properly, the application of the 

displacement model can be weakened if not made entirely insensitive. 

Temporal Aspects of the Model  

To this point, our concern has been limited to spatial constructions; how-

ever, the final point to be covered in the basic displacement model description 

is that regarding temporal or time related aspects. 

Since the overall objective of the model is its use in a forecasting or 

predictive mode, it follows that substantial care must be taken to assure that 

an appropriate amount of historical data be considered. We recall that the ov-

erall process is one of tuning a given model to past occurrence in the real 

system around which the model is constructed. We have neglected, for the most 

part, any notion of time variance in the system. Earlier discussion about the 

residence zone, crime commission zone construction was taken in something of a 

static sense in that a single period (month, quarter, year, etc.) was assumed. 

Certainly, any procedure which is aimed ultimately at the creation of a fore-

casting capability would necessitate a dynamic construction or one where multi-

ple period aspects of historical occurrence were considered. Hence, if we allow 

that developments up to this point have involved a single period structure, then 

we must generalize to the point of creating a multi-period model of displacement. 

Consider Figure 5 such that multiples of the single period model of Figure 

2 are simply combined. Certainly, it may occur that the gain in forecasting ac-

curacy created by the multi-period structure maybe offset by the manipulative 

burden created by the larger network structure. Consider the following compu-

tational refinement to the multi-period model. 

Suppose we consider the existence of a so-called "population" of criminal 

or potential crime-committing elements. Further, suppose at the beginning of 

every period this population is decomposed or "sorted" out into residence zones 



Figure 5. Basic, Multi-Period Displacement Model 
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(residence zone lables). Also, consider that all crimes that are committed 

in each zone are re-consolidated into the population node at the conclusion 

of the period after which they are re-sorted into the residence zones for the 

subsequent period and so forth. Augumenting the structure in Figure 5 with 

a population node would result in a network like that depicted in Figure 6. 

While it may appear that the simple change in the structure of Figure 5 

is only a cosmetic one, it results that the new structure in Figure 6 can be 

decomposed into a set of single period structures (transportation problems) 

which can be analyzed individually yet which can be re-combined to take advan-

tage of the necessitated, multi-period aspects of the model for forecasting 

purposes. The result is a substantial reduction in the required effort by the 

mathematical technique used in the computation of displacement flow patterns. 

In effect, we simply solve a series of single period problems which is substan-

tially easier than solving a single, multi-period problem. The details of the 

decomposition property and proof of its validity appears in a prior Technical 

Note [ 2]. 

The notion of tuning in the multi-period context is a simple extension of 

the single period version. If the system involves T periods each given by in-

dex t where t = 1, 2, . . . , T, then we are interested in finding those flow 

patternsx.
j 
 which match closely, the observed flows ft., where all periods are 

considered simultaneously. Hence, we generalize the function specified earlier 

suctithatvienowseektominimizeyil(xi..-f
ij  
) . At its minimum (or tol- 

t i j erablevalue,thosec tii yieldingxli are usecincomputevalues4V- vlich pro-

vide forecasts of displacement. 

Aspects of Modeling for Deterrence  

As suggested at the beginning of this section, we have separated the notion 

of crime deterrence from that of displacement. The motivation for such organization 

2 
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Figure 6. Complete ,, Multi-Period Network Model (for two periods). 
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lies primarily in the ease with which displacement can be modeled and facili-

tated using existing data bases. A similar facilitation does not seem to exist 

for deterrence. Following, we consider the structural augmentations involved 

in including deterrence aspects in our model. In subsequent section, we con-

sider the question of data requirements surrounding deterrence analysis. 

Consider again Figure 6. The arcs from residence zone i to crime lo-

cation zone j depict displacement when i j and no displacement if i = j. 

In a sense, one might submit that flow from some zone i to j where i = j 

(flow from a node to itself) is deterrence in that criminals are "deterred" 

or prohibited from flowing out of the zone. In truth, there is no deterr-

ence in the sense of crime reduction or abatement but rather containment in 

that crime is not moving from zone to zone. While such containment is, in 

itself desirable, it should not be confused with deterrence. 

In order for deterrence to be detected, there must be a measure of crime 

reduction or in the sense of the model depicted in Figure 6, a flow from res-

idence node back to the population. In other words, from some number of po-

tential crimes at zone i, only a portion occur while the remainder do not 

(are deterred) and as such return to the population node to be re-sorted for 

the subsequent time period. We can augment the structure in Figure 6 such 

that Figure 7 results. Note that a dummy crime location zone is added such 

that any flow into the node, in essence, reflects no crime occurrence during 

the specific time period. A similar modeling augmentation could as easily 

have been to create an additional arc directed from every location node di-

rectly to the population node. The above update to the displacement model 

provides an obvious structural characterization of the added aspect of deterr-

ence. The tuning process would then proceed as before such that a set of dis-

placement and deterrence flows would be sought which matched historical values. 

There is a difficulty however. Recall that in the displacement model, histor- 



Figure 7. The Basic Model Augmented with Deterrence Arcs (Node D is a 

dummy node). 
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ical values of displacement could be readily obtained - generally from police 

arrest records. There is no such method of obtaining a deterrence record by 

definition such information would not be in "arrest" records. In fact, there 

is no way, analogous to the case of displacement, to tune a model of deterrence. 

At present, questions of pure deterrence modeling in the context of the 

displacement model structure is not resolved. To the extent, however, that 

such issues as containment and displacement pattern changes provide a link with 

real deterrence, the current model is a viable vehicle. These avenues are be-

ing pursued presently. 



IV - Developing the Data for the Model  

Displacement Model in a Predictive Mode  

In order to establish the values of the parameters of the displacement model 

it will be necessary to obtain zone of criminal residence corresponding to each 

reported crime. Obviously, this reduces the available data from reported crimes 

to crimes cleared by arrest. This information, as well as period of occurrence, 

appears on the criminal arrest record and is, therefore, obtainable. 

If the model is validated at the level of reported crimes cleared by arrest 

then how can the model be used to portray criminal patterns at the level of re-

ported crimes data (which will be more abundent)? Suppose we make the assumption 

that the probability of arrest associated with a particular crime does not vary 

with zone of criminal residence. Then we may conclude that the same proportions 

of displacement will occur at the level of reported crimes as will occur at the level 

of reported crimes cleared by arrest. Thus, the model can be validated using 

arrest data and subsequently factored up to the level of reported crimes. 

There is no current method of validating the foregoing assumption. However, 

it appears to be the only reasonable assumption which can be made in this respect. 

We shall be employing this assumption in the displacement model. 

The basic data for the displacement model will be arrest records. From these 

records we will be able to obtain, for each period and crime type or combination 

of types, the number of crimes committed in zone j by criminals residing in zone 

i. This data constitutes the basic flow, f.., or dependent variable matrix. In 
13 

addition, the displacement model requires socio-economic, demographic and police 

resource data as independent variables for the criterion function. 

52 
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Clearly, careful attention is required to establish the set of essential 

independent variables for the displacement model. As with any regression model 

the greater the number of independent variables used in the displacement the 

more accurate the model will be in predicting actual displacement. However, 

as with regression models, the increased number of independent variables brings 

with it a very rapid increase in the computational complexity of establishing 

the parameter values of the criterion function. 

It is anticipated that the displacement model will utilize much of the 

same socio-economic/demographic data, albeit at a more detailed level, as the 

univariate models. Thus, during the execution of the overall contract task of 

establishing the needs of socio economic/demographic data for the time series 

models, consideration will be given to similar needs of the displacement model. 

On the surface, it would appear that the data requirements for deterrence 

modeling would be similar to those for displacement. Indeed, there is much 

similarity in terms of such aspects as the identification of independent vari-

ables and the ascertainment of relevant socio-economic/demographic parameters. 

There is a major difference however, and unfortunately, one which leaves explicit 

deterrence modeling unrefined at this stage. Recall, from the previous section 

that the basis of the network tuning model requires the existence of historical 

data. Arising from arrest records such data is easy to obtain in the case of 

displacement. For crimes "deterred", there is no such record and hence, no anal-

ogous method for "tuning" for deterrence. We return to this point in a later 

section dealing with future work. 
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V - Applying the Model to the Data - In a Predictive Mode  

Specifying the Form of the Criterion Function  

The first step in the application of the model to the data is the devel-

opment of an appropriate form of the criterion function. The function may be 

linear or non-linear and should reflect, in a reasonable way, the nature of 

the association of the particular dependent variable (or combination of depen-

dent variables) flow. 

As with regression models there are no set rules for specifying the form 

of the criterion function. However, unlike regression, the presence of non-

linear functions in the displacement model provides no serious difficulty in 

the computation of the parameter values. For clarity of discussion in this 

section we shall assume that a reasonable number of different types of inde-

pendent variables, X1 , X2 , . . . Xm, have been collected and are utilized in 

a specified functional form to produce the attractiveness coefficients, c.., 

of the criterion function. That is, 

cif  = f(X
t 	

• .2 Xm; P1 2 • • • 2 Pn ) 
	

(1) 

where Xi , . . 	, X
t 
are the independent variables and p

1
, • • . , p

n 
are the 

parameters. Each variable may give the condition of a particular zone (such 

as income per capita), or it may relate conditions between two zones (degree 

of difficulty of crossing a natural boundary or distance). 

Developing the Parameter Values of the Criterion Function  

Once the functional form of the criterion function has been selected we 

may proceed to develop the values of the parameters in the function. This 
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is accomplished through the use of optimization methods. 

A search is conducted in the parameter space for the choice of parameters 

that minimizes the sum of squared deviation between actual and predicted dis-

placement over all periods using the available actual data. .Recall that func-

tionally, we may write the following: 

Minimize 
p1n 

T 
X X 

t=1 i,j 

	

(xt. 	ft  ) 2  

	

13 	13 
(2) 

where x
i j 

is given by the solution of 

Minimize 

Subject to 

t 	t 
k. .
" 

(x..) 
i,j 

t 	t 
x.. = a. 

(3) 

r  L xt  =b. ij 	1 

t 
x. >0 
13 — 

Here, b.
t  
 are the number of crimes committed in zone j during period t and 
ij 

are the number of crimes which will be committed by criminals residing in 

zone i. 

To accomplish the above search we proceed as follows. Select an initial 

set of reasonable parameter values to begin the search. Utilizing these val-

ues and the given values of the independent variable, determine the criterion 

coefficients from (1). Using the coefficients determined in (1) solve the 

transportation problem defined b 	 t  y (3). Utilizing the xij  's determined in (3) 

we evaluate the functional specified by (2). If the value of the functional 
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just determined is the smallest so far obtained we retain the current set of 

parameter values; otherwise, the current set of parameter values is discarded. 

The entire process is repeated using a different set of parameter values until a 

point is reached where we are reasonably certain that no further improvement can 

be obtained. 

There are a number of systematic search procedures including one-at-a-time 

search, simplex search, gradient search and others. Depending on the nature of 

the criterion function some of these search procedures will be more appropriate 

than others. 

Also, different methods will be appropriate for solving the transportation 

problems depending on the nature of the transportation functional k.t j (Kij ). Note i  

that this function is completely different from the basic criterion function. 

The general form of the transportation function is 

t 	tt 	t 	t 

	

k. (x.. 	
13 

) = k..(x.. ; c..) 
lj 1] 	13 	2.3 

where
3  

c., are considered parameters. It is invisioned that this function will 
1 

probably take one of several simplified forms. Two possibilities are 

t 	t 	t t 
1. k. (x..) = c.. x. ij 13 	ij ij 

and 

	

t 	. 
2. k.

t 
 .(x.) = c.

t 
 . 	(x

t
3
..)

2 
 . 

ij 13 	13 	2. 

Both of these forms have provided reasonable estimates on sample data. 

Obtaining the Projections from the Univariate Models: The Node Labels  

As has been indicated before, the displacement model is designed to disa-

ggregiate zonal projections of reported crimes into crimes committed by zone 

of commission and zone of offender. As such, the displacement model, in a pre-

diction mode, requires forecasts of reported crimes by zone. This can be accom-

plished by use of the univariate time series models developed in earlier tasks. 
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The same data used to establish the parameters of the displacement model 

would also be utilized to develop the parameters for the univariate time series 

models. Once the univariate models are "tuned" they can be used to develop the 

forecasts of crime occurrence by zone. In order to employ the displacement 

model for projections there remains only the determination of estimates of crim-

inal activity by zone of residence. Again, the univariate time series models 

can be used for this purpose. However, since only crimes cleared by arrest con-

stitute the data base for criminal activity by residence, the univariate models 

will be forecasting lower totals than criminal activity corresponding to reported 

crimes. Fortunately, the basic assumption made earlier in this report can be 

used to facilitate the factoring up of projected criminal activity data by zone 

of residence. 

Applying the Model to the Projections  

Once the univariate models have been used to project reported crimes by zone 

of occurrence and criminal activity by zone of residence the displacement model 

may be employed to obtain the projected levels of displacement. 

Future forecasts of the independent variables are used to obtain the coe-

fficients in the criterion function for each future time period. Given these 

coefficients and the projections from the univariate time series models each 

future period's forecasts are obtained by applying the transportation model. 

This process is repeated for each future time period until all projections have 

been obtained. 

Confidence Intervals  

A natural question, and one which still essentially remains unanswered, is 

the question regarding the establishment of confidence intervals for the forecasts 

from the displacement models. To date no definitive answers to this question 

have been obtained. Not surprisingly though, the difficulty lies in being unable 
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to establish variances for the forecast values. 

There is an empirical approach which can be used to establish confidence 

intervals. This approach builds up the distributions of forecasts through 

Monte-Carlo simulation. Since the univariate models were used to establish 

levels of crime occurrence and criminal activity, variances of these estimates 

are available. Making some distribution assumption (normal, for example) it 

would be possible to draw sample forecasts of crime occurrences and criminal 

activity levels. These sample values would be used to obtain estimates from 

the displacement model. Repeating the process many times, we would produce 

distributions of criminal displacement between zones. Utilizing these dis-

tributions we could obtain confidence interval estimates. 

It also may be possible to establish variances of the displacement fore-

casts directly from the variances of the crime occurrence and criminal activity 

forecasts by examining the structure of the transportation model. However, 

this has not been pursued and success in this regard is uncertain due to the 

complicating mechanism of the objective function. 
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VI - Computational Experience  

In this section, we briefly document the computational experience gained 

to date relative to the displacement model. Of particular interest is the 

computational experience on the non-linear model since its characteristics 

necessarily, suggest greater solution effort than for its linear counterpart. 

The following experience is based on sample data. Specifically, a set 

of data was used which was a sample from an actual crime data base recorded 

in Atlanta, Georgia. The data was compressed into a single period and further, 

was aggregated into fourteen zones. The resultant transportation model was 

theriof size lA x vi .Thecost coefficients in themodeL c../..rere  functions 

of three hypothesized independent variables each weighted by a parameter a, a, 

and y. This cost function was discussed earlier. 

Relative to the non-linear model, complete solution required 37 seconds 

on a Cyber 74 facility. The value of the sum of squares of differences between 

computed flows and historical flows was 792. Using the linear model, the com-

putational requirement was only 5 seconds, but, the final sum of squares value 

was 1218. In both cases, the search process employed was a simple one-at-a-time 

or successive variable variation technique. To date, no other search procedure 

has been considered. 

It should also be remarked that other algorithms for solving the models 

(both non-linear and linear) have been investigated. The results for the algor-

ithm yielding the results suggested above [9 ], has proven superior thus far. 

At any rate, the extension of the algorithm to a multiple period model involving 

a complete set of real data is now being investigated. The computational results 

reported above and gained thus far in this research would appear encouraging 

relative to the model's application on realistic data sets. 
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VII - Future Efforts  

In this section, we describe the current status of the research dealing 

with displacement and deterrence modeling after which we discuss briefly those 

areas where further work appears both necessary and most fruitful. 

Current . Status of the Displacement and Deterrence Model  

Presently, a model for criminal displacement has been constructed and 

validated on a sample set of real data. In the working mode, the model is 

functional to the extent that a set of tuned network flows can be computed 

which in turn, provide the vehicle for prediction of future displacement 

patterns. Necessary input to the model include parameters such as histor-

ical or observed flows, crime zone-node lables which are generated from the 

univariant time series models, and various socio-economic/demographic data 

used in the construction of cost functions, the latter being used to affect 

directly, the tuning process. The overall model has not as of yet been 

tested on a large scale set of data over multiple periods and in addition, 

the notion of explicit deterrence modeling has not been addressed. 

Refining Deterrence  

At the outset, reference has been made to a model of both deterrence 

and displacement. We have shown how the model of displacement can be iden-

tified and have devoted a major share of this memo to such description. 

Caution should be taken however, in considering true deterrence aspects. 

Recall that the nature of the tuning process upon which the displacement 

model is based, requires historical data of displacement. No such data ex-

ists relative to deterrence. In fact, data used in displacement modeling 

arises from arrest records. By contrast, deterrence "data" would have no 
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such basis. The end result is that there appears to be no easy method of 

"tuning" for deterrence. Note that we consider here, explicit zone-to-zone 

deterrence. An aggregation or overall deterrence measure could be hypothe-

sized as was suggested in Section III. 

A major aspect remains with regard to the modeling of explicit crime 

deterrence. Presently, it would appear that alternate modeling strategies 

may be necessary, both from the structural view as well as with reference 

to parametric requirements. It may be that separate though not necessarily 

independent models for displacement and deterrence will have to be consid-

ered. 

Development of Data Bases  

Currently, the manipulation and validation of the displacement model 

has involved elementary data collection and retrieval formats. In order to 

enhance user ease and practicality of the model, an improved data manage-

ment scheme must be addressed. To this point in the research such a project 

has not been necessary since the primary thrust has been concerned with mod-

eling and validation. 

An effective data storage and retrieval scheme would involve management 

of basic information for the model's tuning aspects such as crime location 

and location of the offender's residence. In addition, the entire realm of 

socio-economic/demographic data collection and storage appears to be a major 

consideration in the ensuing research, especially to the extent that refine-

ments of cost functions are considered. 

Refinement of Cost Functions  

The construction of suitable cost functions, which provide the driving 

mechanism in the tuning algorithm, will receive substantial attention in fu-

ture work. Thus far, cost functions have been constructed using only heuristic 
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notions and as such, no real effort has been made in seeking more "appropriate" 

or "meaningful" functions which relate zone to zone displacement. Two issues 

arise here. First, the notion regarding the type of variables and parameters 

that might comprise a suitable cost function must be considered in detail. An 

effort is currently underway to examine the work of other investigators in this 

area. Secondly, the form of the cost function can be important both from the 

view of its ability to generate suitable cost coefficients as well as its in-

fluence on computational efforts in the overall tuning process. While this se-

cond aspect of function refinement is more methodological than the first, its 

analysis is important relative to the overall displacement model from the view-

point of user capability. 

Conduct Selected Applications of the Model to Appropriate Data  

Naturally, it will be worthwhile to apply the models which have been devel-

oped thus far to data from other metropolitan areas. Not only will such "testing" 

provide stronger validation confidence, but as important, insight into peculiar-

ities and/or similarities in displacement patterns among other regions can be 

observed. 
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